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‘I’ PREFACE

This manual documents the organization and logic of the Lincoln Laboratory
TX-2 computer. The manual is intended to serve primarily as an aid to the
‘ computer maintenance personnel and, in order to be of maximum value, should be
supplemented by a file of TX-2 block and wiring schematics. The TX-2 "Red
Book'", which describes the TX-2 circuits and packages, should also be available
for reference. The manual by itself will also be useful to programmers and
other computer operators who desire more detailed information about the oper-

ation of the computer than is available in the TX-2 programming manual.

The first volume of the manual gives a simple general description of the
organization of the computer. The principal emphasis is on the general
specifications, organization, and component parts of the computer. The second
volume covers in detail the iogic and timing of the computer. Each element,
i.e., the Memory Element, Control Element, Program Element, Exchange Element,
Arithmetic Element and In-Out Element, is discussed separately. Descriptions
of the individual in-out units will be added in the future to complete the
chapter on the In-Out Element. The final volume lists and describes all the
possible control, memory, and instruction timing cycles. It is arranged

primarily for convenient use during computer maintenance operations.

Acknowledgements are due to the technical writers from Jackson & Moreland, Inc.,
who prepared the text and figures for the manual; and to Madeline Higgins at
Lincoln Laboratory who retyped the several versions of the manuscript and,

with the help of Anna Nagy, prepared the final text for printing.

J.M. Frankovich
Group 51

June 1961 :
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CHAPTER 1
INTRODUCTORY DESCRIPTION

1-1 INTRODUCTION

TX-2 is a large-scale, high-speed, general-purpose digital computer designed and built by

the Digital Computers Group at the Massachusetts Institute of Technology Lincoln Laboratory,
Lexington, Massachusetts. It is an experimental computer and contains both solid-state and
electron-tube devices. Provisions have been made so that additional circuitry can be readily

incorporated into the existing framework in order to increase the usefulness of the computer.
1-2 FUNCTION OF COMPUTER

TX-2 is currently used as a research tool in scientific computations and in data-handling

and real-time problems. It differs from conventional general-purpose computers in that it
permits an exceptionally high degree of flexibility in programming and in the use of input-
output devices. This increase in flexibility, needless to say, is accompanied by a marked
increase in design complexity. In many respects the machine is unique and one that has no

counterpart at present.
1-3 SPECIAL FEATURES

To enhance programming flexibility, several types of special control have been incorporated
into the TX-2 computer. For example, the configuration of the basic computer word is under
program control and allows operands to be divided into subwords during the execution of
instructions. This enables the same operation to be performed simultaneously upon several

subwords. The result is an over-all increase in the effective speed of the computer.

The multiple-sequencing feature allows automatic switching in the computer among various

program sequences. The individual in-out devices are associated with particular program
sequences in a manner such that several devices can operate simultaneously. A particular
program sequence is then started when the associated device needs attention. By assigning
priority numbers, it is possible to determine which program sequences can start at a given
time. A low priority sequence can also be interrupted when a higher priority sequence
needs to be started. Data can be thereby transferred between the computer and the in-out
device having the highest priority first, and then between the computer and the next lower

priority device, etc.

With overlapped memory operations, instruction words and operand words can sometimes be

obtained simultaneously from memory, thereby effectively halving the memory cycle times.
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Other features of TX-2 are index registers and deferred addressing. These features, now

common in many computers, serve as further aids in programming. Index registers allow the
programmer to effectively modify the base address section of the instruction word without
actually modifying the instruction word itself. By means of deferred addressing (or

substitute addressing), it is possible to go to an intermediate address in memory in order
to obtain the desired address of an operand.

1-4 COMPUTER STRUCTURE

TX-2 is a parallel binary computer with a basic 36-bit word length. The words in the
Memory Element also have a parity check bit and a programming meta bit. Any word in the
Memory Element can be used for instructions, operands, or deferred addresses. The internal
memory is all random access and consists of 69,632 registers of parity checked magnetic-
core memory and about 70 additional toggle switch, plugboard, and other miscellaneous
registers. Approximately 200,000 instructions can be executed per second. Instructions
are of the indexed single-address type. A fixed-point, signed-fraction, one's complement

binary number system is used.
1-5 BASIC ELEMENTS

Fig. 1-1 illustrates the basic elements that comprise the TX-2 computer and Fig. 1-2 shows
the principal registers and transfer paths. The basic elements are: the Memory Element
(ME), the Arithmetic Element (AE), the Program Element (PE), the In-Out Element (IOE), the
Exchange Element (EE), and the Control Element (CE). Not shown are the various power
supplies, coders, decoders, counters, alarms, indicators, logic nets, and other computer

elements that contribute to the over-all system design.
1-6 BASIC PRINCIPLES OF OPERATION

Programs and data are usually read into the Memory Element via a paper tape reader. The
initial read-in programs are placed manually in the plugboard or toggle switch storage.

During the execution of a typical instruction in a program, the instruction is obtained
from the Memory Element register addressed by the P register and placed in the N register

in the Program Element. Here the instruction is interpreted. If an operand is required

its address is determined and placed in the Q register. The operand is then obtained from
the Memory Element and placed in the M register in the Exchange Element. The operation
specified by the instruction is then performed upon the operand. The final result is
either: (1) left in one of the registers of the AE, EE, or PE, or (2) transmitted to one of

the IOE devices, or (3) placed back in the register of the ME from which the operand was
obtained.
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1-7 COMPUTER CHARACTERISTICS

Tables 1-1 through 1-3 summarize the general characteristics of the TX-2 computer. The
actual significance of such terms as meta bit, two-phase clock, and 9-bit quarters will be
explained in the chapters that follow.

1-8 COMPONENT LOCATION

A floor plan of the TX-2 computer installation is shown in Fig. 1-3, along with the
physical location of the principal registers, memories, and in-out devices. The entire
facility occupies approximately 1500 square feet, including a separate room for the air
conditioner and the primary power supplies. Although the U Memory has not as yet been
constructed, its future location is indicated.
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TABLE 1-1
TX-2 CHARACTERISTICS

CENTRAL COMPUTER

General

38-bit word length, including a memory parity check bit and a
programming meta bit

Parallel word transfers

Synchronous timing 5 mc two-phase clock

Instructions

One single-address instruction per word
Addresses are indexable; double indexing is possible

Indirect addressing, on all instructions, can be iterated
indefinitely.

Operands

Operands can be given a subword configuration based upon 9-bit|
quarters:

One 36-bit operand Four 9-bit operands
Two 18-bit operands One 27-bit and one 9-bit
operand

Most instructions specify a subword configuration, and the
arrangement and number of the subwords used

Arithmetic

1's complement binary number system, fixed-point arithmetic

From 200,000, 36-bit additions per second to 800,000, 9-bit
additions per second

From 50,000, 36-bit multiplications per second to 400,000, 9-
bit multiplications per second

From 14,000, 36-bit divisions per second to 200,000, 9-bit
divisions per second

Arithmetic instructions longer than one memory cycle can be
executed concurrently with nonarithmetic instructions

Memory

S Memory: 65,536 registers of magnetic-core memory with 6.k4-
microsecond cycle time and 4.0-microsecond access time

T Memory: 4,096 registers of magnetic-core memory with L.lL-
microsecond cycle time and 2.0-microsecond access time

16 registers of toggle-switch memory
32 registers of plugboard memory
5 registers in the Arithmetic and Exchange Elements

Each register, except the last five, has an additional meta
(i.e., trapping) bit

All core memory registers are parity checked
Instructions and operands can be obtained concurrently

Addressing for a total of 131,072 registers of memory
provided
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TABLE 1-1 - cont'd
TX-2 CHARACTERISTICS

CENTRAL COMPUTER

Special Memories

X Memory: 64 register magnetic-core index register memory,
19-bit word, with 3.6-microsecond cycle time and 0.6-micro-
second access time

CF Memory: 32 register magnetic-film configuration memory,
10-bit word, with 0.8-microsecond cycle time and 0.2-micro-
second access time

Area Requirements

1500 square feet of floor space
20 kw of power

(approximately) 20 tons of air conditioning (primarily for S Memory)
Checking Marginal checking
Facilities

Test programs
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TABLE 1-2
TX-2 CHARACTERISTICS

IN-OUT SYSTEM

Photoelectric Tape
Reader (PETR)

High-Speed Tape
Punch

Display Scope

Lincoln Writer

Xerox High-Speed
Printer

Datrac

200-2000 lines per second

200 lines per second

20 to 80 microsecond per point

Keyboard: Up to 10 characters per second

Tape Reader: 19 lines per second

Tape Punch: 20 lines per second

Printer: 10 characters per second

Paper Feed: 2 to 4 inches per second

Printing Rate: 2000 to 4000 characters per
second

Sample Rate: approximately 25 kc
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TABLE 1-3
TX-2 CHARACTERISTICS

MAGNETIC TAPE SYSTEM

General 3 information channels, 2 tracks per channel, 40O bits per
inch per channel
1 block mark channel
1 timing track (800 flux reversals per inch); recorded at
fixed density, used to synchronize writing and to detect
speed of tape

Tape Speeds Controlled Speeds Full Bore

Inches/sec: 35 60 150 300 320 - 1000

Bits/sec (kc):

Lo T2 180 360 380 - 1200

3 bit lines/sec (kc): 1k 2k 60 120 128 - koo
Microsecond/9 bit byte: 214 125 50 25 O3 fu aT
10
Capacity 10" bits in system

T0: X 106 bits/reel 3/4-inch tape (now) (7200 ft. reel)
250 X 10~ bits/reel 1-1/4-inch tape (future)
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CHAPTER 2
FUNCTIONAL DESCRIPTION OF TX-2

INTRODUCTION

This chapter provides an introduction to the over-all operation of the computer. It will
establish a useful perspective for reading the more detailed descriptions that appear in
the succeeding chapters. It includes a brief functional description of five of the

following six basic Elements that constitute the computer:

1) Memory Element

2) Exchange Element
3) Program Element

4) Arithmetic Element
5) In-Out Element

6) Control Element

The Control Element is not described in this chapter. It is sufficient to know that it is
involved in all the activity that takes place in the other Elements.

The term 'central computer'" is used throughout the manual to refer to the computer as a
whole, with the exception of the Memory Element and the In-Out Element. Thus the In-Out

Element is described as "communicating with the central computer", etc.

The chapter begins by discussing the basic computer words, e.g. instruction words, operand
words and deferred-address words. The more common interpretation of the bits in these

words is established and the bit and quarter numbering scheme is described.

Since the basic cycle of the computer begins with an instruction word, the whole process by
which an instruction word is obtained and interpreted is described. These processes
primarily involve the Program Element. The subsequent activity that can occur as a result
of interpreting the instruction word is then described. After this discussion, involving
the Program Element, the chapter proceeds by discussing the other Element's in the computer.

The basic processes that can occur in each Element are identified and described.

WORD STRUCTURE

2-2.1 GENERAL DESCRIPTION. The basic computer word is 36 bits long, plus a parity check
bit and a word meta bit. The 36 bit word is divided into four 9-bit quarters.

The bit numbering scheme for the major flip-flop and memory registers is shown on
Fig. 2-1. Note that the bits in each quarter, as well as the quarters themselves
are ordered from right to left. When a double-number is used, the number to the

left of the decimal point refers to the quarter in which the bit is found and the
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number to the right of the decimal point refers to the specific bit within the
quarter. Thus 2.6 refers to bit 6 in quarter 2.

As shown in Fig. 2-1 not all registers contain full words, nor do all full word
registers contain a meta and/or a parity bit. Furthermore, the double-number scheme
is not always used. For example, the QKIRCF register contains a 9-bit word plus a
parity bit. These bits are numbered 1 to 10 from right to left with no reference to

quarters.

2-2.2 INSTRUCTION WORD. The layout of an instruction word as it appears in the N register
after being read out of memory is shown in Fig. 2-2(a). The content of N provides
all the information for executing the instruction, including the information for
obtaining an operand if one is required by the instruction. The content of N is
actually disassembled and transferred to other registers for interpretation, but
the discussion here will be limited to the content of the N register itself.

The instruction word in the N register can be broken up into groups of bits that
have specific functions. Note that in nearly all instructions, all the bits which
appear in the N register are interpreted, although not all the bits necessarily

have the same functional interpretation in every instruction.

The base address is specified by the 18 Y bits (2.9 - 1.1). The final address is
usually found by "indexing" the base address with the content of the X Memory index
register selected by the six J bits (3.6 - 3.1), but is sometimes simply equal to
the base address. The final address is usually the address of an operand or of the

next instruction. It can also be the address of a deferred address.

Bit 2.9 is called the defer (* ) bit.* When the defer bit is a ONE, the address is
used to read a deferred address out of memory. The deferred address replaces the
original address. When bit 2.9 is a ZERO, the address is used in the manner speci-
fied by the operation code.

The six OP bits (4.3 - 3.7) are used to specify the operation called for by the
instruction word. There are currently 50 defined operation codes that can be speci-
fied by these six bits.

The five CF bits (4.8 - L4.L4) are usually used to specify a computer configuration by
specifying the address of a configuration word stored in the F Memory. This word is
read out and its content used to restructure operand words. For example, the
configuration information can be used to form two 18-bit subwords, one of which is

inactive, from a 36 bit operand word.

* The defer bit is also frequently designated by a delta "/A", as well as by an asterisk "¥".
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Bit 4.9 is called the hold (H) bit. The computer is designed to run with a variety
of In-Out devices, for example a paper tape reader, punch, etc. Each of these
devices requires its own computer program or program sequence. When the hold bit
is a ONE, the computer can be forced to proceed from the current instruction to the
next instruction in the same program sequence. For example, the computer can be
forced to hold in the paper tape reader program sequence instead of changing to the

punch sequence.

Bit 2.10 is called the "parity" bit and bit 4.10 is called the '"word meta' bit.
These bits have somewhat special purposes. The parity bit is used solely for
checking for memory readout errors. The meta bit is ordinarily used as a kind of
tag. By operating the computer with the "Trapping" program sequence turned "on",
instruction words with meta bits set to ONE can be trapped and processed by the
Trapping program sequence.

While the defer (* ), operation (OP) and hold (H) bits are always interpreted as

described above, the base address (Y), index (J) and configuration (CF) bits can be
interpreted in quite different ways than those described. The interpretation is a
function of the operation code being executed. The special interpretations will be

discussed later.

2-2.3 DEFERRED ADDRESS WORD. This is a word that is used in the deferred addressing

process described later in the chapter.

The layout of a deferred address word as it appears in the N register after being
read out of memory is shown in Fig. 2-2(b). Bits 4.9 - 3.1 are not used. The
function of the bits that are used is the same as the function of the corresponding
bits in an instruction word.* Note that a deferred address can hence call for

another deferred address when the defer bit is a ONE.

2-2.4 OPERAND WORD. When an instruction calls for an operand word, it is obtained from
the Memory Element and placed in the M register. The layout of a memory operand

word as it appears in the M register is shown in Fig. 2-3.

Depending on the operation and configuration specified by the instruction, the
operand can be subjected to considerable manipulation as it is transferred through
the computer. The configuration specifies which quarters of the operand word are

to be used, and with which quarters of the central computer they are to be associated.

The parity bit is used to check the parity of the word as it appears in the M
register, and the meta bit is used as a signal to the Trapping program sequence.

Note that the meta bit of a word in the Memory Element can be altered only when the
word is placed in the M register and even then it can only be altered by a particular

instruction.

% The base address Y in a deferred address is always indexed.
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2-3 PROGRAM ELEMENT

2-3.1

GENERAL DESCRIPTION. The primary functions of the Program Element are: (1) to
determine what is the location in the Memory Element of the next instruction; and
(2) to interpret the instruction when it is obtained and placed in the N register.
Fig. 2-4 is a simplified block diagram of the Program Element.

The first function is determined by decisions made in the Sequence Selector. This
unit determines what program sequence the next instruction will be taken from.
During the execution of each instruction, the computer must constantly be deciding
whether it will continue executing instructions in the current program sequence or
change to a new program sequence. The logic for making these decisions is found in

the Sequence Selector.

The function of interpreting the content of the N register requires a variety of
registers, memories, coders, decoders and special circuits. Generally these can be
grouped according to the bits in the N register they are interpreting. During the
interpretation of a typical instruction word the components might be functionally
grouped as follows:

Interpreting J Bits

J Decoder
X Memory
X Register

The J bits in the N register are decoded by the J Decoder to select a register in
the X Memory. The X register serves as the memory buffer register.

Interpreting Y Bits

X Adder
Q Register

The X Adder can form the sum of the Y bits in the N register and the content of X
register, or simply transmit the value of Y. This result can then be copied into

the @ (or P or E) register.

Interpreting OP Bits

PKIROP
QKIROP

AKIR (during arithmetic instructions)

The OP bits are copied into the PKIR P register and there interpreted. Further

O
interpretation also can occur in the QKIROP and AKIROP registers.
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2-3.2
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Interpreting CF Bits
PKIR

CF
CF Decoder
F Memory

QKIR (and associated decoders)
AKIR . (during arithmetic instructions)

The CF bits are copied into the PKIRCF register. The CF Decoder then selects a
register in the F Memory. The content of the selected register is placed in the
QKIRCF register and is interpreted there. Further interpretation also can occur in

the AKIRCF register.

Interpreting H Bit

PKIRH

The H bit is copied into the PKIR. flip-flop before being interpreted.

H
These distinctions are not rigid, however, since most of the components serve more
than one function. Thus the X Memory, and the registers associated with it, are an
integral part of the program sequence selection process, as well as being used in

the interpretation of instruction words.

PROGRAM ELEMENT MEMORY SYSTEMS. The two memories in the Program Element are a 6l-
register l9-bit/register X Memory and a 32-register lO—bit/register F Memory. The

X Memory holds the program counters used in the sequence selection process and the
indices used to modify the base address of instruction and deferred address words.
All of the 64 registers in the X Memory can be used as index registers; however,

only 33 of them can be used to hold program counters. In addition to holding indices
and program counters, the X Memory registers can also be used to store operands.
Operands can be transferred from the X Memory to the Memory Element, and vice versa,
over communication paths between the X Adder, Exchange Element and Memory Element.
These paths also provide a means for loading an X register from a Memory Element

register and for storing the content of an X register in a Memory Element register.

The F Memory holds configuration words. Paths between the QKIRCF register,
Exchange Element and Memory Element provide a means for loading and storing F

Memory registers.

Both memories are equipped with circuits which compute and check the parity of
memory words. Also associated with each memory are a memory address decoder and
a memory buffer. The decoder selects the memory register whose content is to be
read into the memory buffer. During the memory write cycle, the content of the

buffer register is written into the selected memory register.



The first register of both memories are made so as to always contain all ZEROES.
Thus if register Xb is selected for modification of the base address of an instruction,

then effectively no modification occurs. Similarly, when register FO is selected
for a configuration, then, as we shall see, only the normal 36-bit word computer

configuration is realized.

2-3.3 SEQUENCE SELECTION. At some point just before the completion of an instruction
word memory cycle, the Program Element must decide whether the next instruction is
to be taken from the current program sequence or from some new program sequence.
The decision is based on information from the Sequence Selector and on the "hold"
and "dismiss" information found in the instruction being executed. This latter

information is decoded from the PKIRH, PKIR 7 and PKIR . registers, respectively.

C OP

Fig. 2-5 illustrates the parts of the computer involved in a sequence selection.

The program sequences are numbered O, 40, 41, ..., 77 (octal). These numbers
correspond to the addresses of the registers in the X Memory which ordinarily store
the program counter associated with each program sequence. Only the program counter
of the current program sequence is not held in the X Memory; instead, it is held in
the P register and its sequence number in the K register. As we shall see, the

program sequences have a priority relationship among themselves.

The number of the current program sequence is stored in the K register. The
Sequence Selector is informed of this number via the K Decoder. Another program
sequence can request attention via the Sequence Selector if: (1) the flag of this
new program sequence is up and requesting attention; (2) no other higher priority
program sequence has its flag up; and (3) the current instruction is dismissing or
the current program sequence has a lower priority number than the new sequence and
the hold bit of the current instruction is in the "not hold" state. When these
conditions are fulfilled, the computer will stop executing instructions in the
current program sequence and start executing instructions in the new program
sequence. This is called "a change of program sequence'. The Sequence Selector

provides the number of the new program sequence via the J Coder.

Fig. 2-6 illustrates schematically the procedure followed during the execution of
each instruction which determines whether the next instruction will be from the
current program sequence or from some other sequence. Note that this figure does

not show all the details of the procedure; these will be covered later.

2-3.3.1 WAIT CYCLE. Sometimes the computer may be unable to proceed executing
instructions in any program sequence. In such instances the computer goes
through a wait cycle lasting 1.6 microseconds and then again tries to
continue in some program sequencé. The computer will repeat wait cycles

until conditions are present for proceeding in some program sequence.
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2-3.3.2

2-3.3.3

CHANGE OF SEQUENCE CYCLE. When the computer is able to make a change of
sequence the number of the new program counter is placed in the J bits of
the N register from the J Coder (Fig. 2-5). The new program counter is
then obtained from the J-th register (XJ) in the X Memory and placed in
the X register. The content of the P register and the X register are
interchanged by transferring the content of P directly to the X register
and, at the same time, copying the content of the X register to P via the
X Adder.

Note that since the X Adder forms the sum of the content of the X register
and the Y bits of the N register, the Y bits are ordinarily made all ZEROES
during a change of sequence. However, if the number supplied by the J
Coder is 00, then the content of XJ (L. e} lof XO) will always be ZEROES.

In this case, the content of the special toggle switch register TSP is
placed in the Y bits of N instead of ZEROES. This special register
provides the programmer with a means of manually specifying the initial

value of one particular program counter.

The content of the K register (K has been holding the old program counter
number) is also interchanged with the J bits of the N register. After
this, the old program counter, now in the X register, can be stored in its
proper location (XJ) in the X Memory. Note that the J bits of the N
register first contain the number supplied by the J Coder while the new
program counter is being obtained from the X Memory, and afterwards contain
the number from the K register while the old program counter is being
stored in the X Memory. The state of the Sequence Selector changes to
conform to this change of sequence by virtue of the change of the content
of the K register. Certain information about the change of sequence is
remembered in the E register of the Exchange Element in order to allow the

programmer to analyze the sequence change.

PROGRAM SEQUENCE PRIORITY. The priority relationship of the program
sequences is determined by the Priority Patch Panel plugboard. The
programmer can arbitrarily specify various priority relationships.

However, the plugboard is ordinarily connected with the order of priorities
shown in Fig. 2-7. The names associated with the program sequences are

also shown in the figure.

INTERPRETATION OF INSTRUCTION WORD DEFER AND OP BITS FOR BASIC SEQUENCE CYCLES.

The address of the next instruction in the current program sequence is located in

the P register. This is the register in the Program Element that addresses (selects)

the register in the Memory Element whose content is read into the N register and

interpreted as an instruction word. (See Fig. 2-8.) DNote that since a read-out of

the Memory Element is usually destructive, the word read out, in this case the
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content of N, is parity checked and rewritten back into the Memory Element.
Immediately after an instruction word is read out of memory (and rewritten), the
content of the P register is increased (indexed) by one and the contents of the H,
CF and OP bits are placed in the PKIRH, PKIRCF and PKIR
process is called the instruction word cycle.

op registers. This whole

2-3.4.1 DEFERRED ADDRESS WORD CYCLE. (See Fig. 2-8.) After an instruction word
has been read into the N register, the value of its defer bit (*) is ‘
sensed. If the defer bit is a ONE, the instruction is called for a
deferred address word. This base address Y is then placed in the Q
register of the Program Element, and the content of the J bits is (tempo-
rarily) stored in QKIR -

A deferred address word is then read out of the Memory Element, using the
memory address in Q, into the N register. Only the base address (Y) and
index (J) bits of this deferred address word will be interpreted by the
Program Element. If the defer bit (%) in the base address is a ONE, the
address of another deferred address word will be computed, by indexing the
base address, and placed in Q. The process repeats until finally a
deferred address word is read out whose defer bit (%) is ZERO. The
indexed base address is again computed, but this time it replaces the Y
bits in the N register. The original value of the J bits in the instruction
word is then restored and the instruction is interpreted. Note that the
interpretation is made with the hold, configuration and operation code

information contained in the original instruction word that initiated the

deferred addressing since this information was stored in the PKIRH, PKIRCF
and PKIROP registers, respectively, all during the deferred addressing
process. The purpose of the deferred addressing process is to compute a
new set of Y bits that may be used with the original hold, configuration

and operation code information.*

2-3.4.2 OPERAND ADDRESS CYCLE. When the defer bit is ZERO and the operation code
calls for an operand, the final address is placed in the Q register. 1In
this case, an operand is read into the M register from the register in the
Memory Element addressed by the Q register. (See Fig. 2-9.) While the

operand word is in the Exchange Element, it is altered according to the

configuration specified by the instruction word. The configured operand
can then be transferred to the Arithmetic Element, In-Out Element or
Program Element. Or it can be simply kept in the Exchange Element for

further processing.

* In effect, each new deferred address cycle simply substitutes new Y bits for the previous set,
and then interprets the new defer bit.
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If a "load" type instruction is executed, the original operand read out of
memory will be rewritten back in memory. If a "store" type instruction is
involved, the result of the operation is written back into memory in place

of the original operand read out of memory.

JUMP CYCLE. When the defer bit is ZERO and the operation code specifies a
Jjump instruction, the final address is placed in the P register if the jump
conditions are satisfied. (See Fig. 2-8.) After either a jump cycle or
an operand cycle, unless a change of sequence or wait cycle occurs, P
addresses the Memory Element for another instruction word which is then

read into the N register.

2-3.5 GENERAL INSTRUCTION WORD INTERPRETATION.

March 1961
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J AND Y BITS INTERPRETATION. Indexable type instructions add the content

of an index register (XJ) to the base address Y of the instruction word.

The sum is called the effective address, r. (See Fig. 2-4.) With this
indexing system, it is possible to alter the address section of instructions

before they are performed, without changing the instruction word in memory.

The selection of a particular index register is accomplished by decoding
the six J bits in the N register instruction word. The content of the
selected index register, XJ, is read into the X register, and then re-
written from the X register back into the specified index register of the
X Memory. By means of the X Adder, the content of X_ is added to the base

J
address, Y, to form the effective address, r.

It should be noted that the X Adder is part of the Program Element and that
any additions performed here are not related to arithmetic operations
performed in the Arithmetic Element. It should also be noted that index
register X

0
normally used when the base address of an indexable type instruction is to

is permanently wired so as to appear to contain ZEROES and is

remain unchanged. In this case the effective address r is equal to the

value of the Y bits.

OP BIT INTERPRETATION. The operation code of the instruction word is
specified by the six OP bits of the N register (see Fig. 2-10). These six
bits give a coded representation of the 26 = 64 possible operations.
Interpretation of the operation code is accomplished by means of three 6-bit

registers designated PKIROP, QKIROP and AKIROP.
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The PK:[ROP
be performed. Execution of the instruction may involve copying PKIROP into
QKIROP, and perhaps QKIROP into AKIROP. Each of these OP registers is

register is interpreted to determine the kind of instruction to

interpreted by two kinds of decoders: an "OP Decoder", which resolves the
particular operation code to be performed; and an "OP class decoder", which
determines certain class properties of the operation code. PKIROP and
Q,KIROP are used by the whole computer, whereas AKIROP is used primarily in

the Arithmetic Element.

CF BIT INTERPRETATION. In configurable instructions, the five CF bits are
copied into the PKIRCF register. (See Fig. 2-11.) They are then decoded
and used to select a particular register in the F Memory. The content of
the selected register is read into the F Memory buffer register, QKIRCF,
where it is interpreted.

Two of the bits in the QKIR., register specify the form ("coupling" or
"fracture") of the computer during the execution of the instruction. This
subword form can be one 36-bit subword, two 18-bit subwords, one 27-bit
subword and one 9-bit subword, or four 9-bit subwords (see Fig. 2-12).
These subwords can be formed simply by coupling together the quarters of

the data registers in various combinations during data processing.

Four bits in the QKIRCF register are used to specify the "activity" of the
subwords. Each one of these four bits corresponds to a quarter of the data
registers. When one of these bits is ZERO, then the associated quarter is
"active"; when one of these bits is ONE, then the associated quarter is

"inactive" or "latent'".

Since subwords consisting of more than one quarter have more than one
activity bit associated with them, it is possible to have partially active
subwords. Depending upon the kind of instruction being executed and the
direction of information flow (to or from the Memory Element), another
process called "sign extension" occurs. In sign extension, the sign bits
of active quarters are extended left to fill adjacent inactive quarters
within subwords. This occurs in the Exchange Element as information flows

from the Memory Element.
Finally, the remaining three bits in QKIRCF cause a "permutation" of the

quarters of the operand words as they are passed through the Exchange
Element. Only 8 of the 24 possible permutations are realized.
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The interpretation of the CF bits in any instruction word is carried out

after the NCF bits are copied into the PKIRCF

deferred address cycles to occur, after an instruction word has been read

register. This permits

out of the Memory Element and before the instruction is interpreted, with-
out losing the value of the specified CF bits.

Some configurable-type instructions which use the Arithmetic Element also
make use of a further configuration register, AKIRCF. This register is
supplied only with coupling and activity information from QKIRCF, since no
permutations are performed in the Arithmetic Element. In addition, all
subwords used in the Arithmetic Element are forced to be fully active or
completely inactive. Thus, an 18-bit subword originally specified with
only one quarter active will appear to the Arithmetic Element to have both

quarters active.
2-4 MEMORY ELEMENT

2-4.1 GENERAL DESCRIPTION. The Memory Element contains four physically separate memories.
Each memory is a complete unit containing all the circuitry needed for the operation
of the unit except for the memory address and memory buffer registers. The P and Q
registers in the Program Element serve as memory address registers, and the N
register, in the Program Element, and the M register, in the Exchange Element, serve

as memory buffer registers.

The basic organization of the Memory Element and the information paths to and from
the Memory Element are illustrated in Fig. 2-13. For simplicity the connections to
the Control Element and the read-write control logic are omitted. The V Memory is

also shown as a single unit.

The P register is used to specify the address in the Memory Element of instruction
words only. Such words are read out of the selected memory and strobed into the N
register. They are then rewritten (if the read out was destructive) back into the
memory register. The Q register specifies the address either of deferred address

words or of operand words. Deferred address words are strobed into the N register,

and operand words into the M register.

2-L.2 MEMORIES. The four memories in the Memory Element are called the S Memory, T Memory,
U Memory and V Memory. The characteristics of each of these memories is given in
Table 2-1.

The S Memory is a 65,536 register magnetic core memory which uses magnetic core
switches and vacuum tube drivers to select the register in the memory specified by
the memory address register. As a result the access time to this memory is rather

long compared to the other memories.
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The T Memory is a 4096 register magnetic core memory. All of its circuitry uses

transistors.
The U Memory has not yet been built, but will essentially be a copy of the T Memory.

The V Memory contains all the miscellaneous storage registers in the computer which
can be addressed by a programmer. One part of this memory, called the va memory,
consists of the four 36-bit flip-flop registers in the Arithmetic Element and the E
register in the Exchange Element. The transfer paths used when these registers are
selected differ from the ones normally used. In the case of va’ information is
transferred from or through the E register to the M and N registers.

The remainder of the V Memory, called the Vs Memory, consists of various "fixed"
registers, such as toggle switches and plugboards. These registers are fixed in the
sense that a programmer cannot change the content of any of these registers by using
"store" type instructions to store the content of central computer registers in them.
Usually, however, there are other methods for changing the content of these registers,
as for instance by manually changing the position of toggle switches in the toggle
switch registers. This Vf?-Memory contains a shaft encoder register. The content

of this register is changed by rotating 4 shafts whose angular positions are each
digitally encoded as 9 bit numbers. The VfF Memory also includes a 36-bit real time

clock which counts at a 100 kilocycle - per-second rate.

Each word in the S, T and U memories contains, in addition to the 36-bit "word" used
by the central computer, a parity check bit. When a word is written into memory this
bit is always made to have a value that will make the parity of the entire word odd.

Each word in the S, T, U and VfF~memories also contains a meta bit. The meta and
parity bits are not included in the normal meémory word interpretation process. This
bit is instead used to tag, or mark, the word in which it is found. It is used
either by the Trapping Sequence or by the one instruction (SKM) which can alter this
bit.

Thus, all the memory registers in the S, T and U memories have 38 bits; those in the
Vfﬁ Memory have 37 bits; and those in the VFF Memory have 36 bits.

MEMORY REGISTER SELECTION. The process of selecting a memory register and reading
its content into a buffer register is initiated by the Control Element. The. Control
Element decides that a certain kind of word in memory is required and then starts

the necessary read-write memory cycle to obtain it.
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The memory register selection occurs as follows. The Memory Address Selector
examines the content of either the P or Q memory address register, depending on the
kind of memory word cycle called for. It examines bits of the address register
successively from left to right. The first bits examined determine in which of the
four memories contains the word and the remaining bits determine the register in this

memory.

The Memory Address Selector routes the memory register selection bits in P or Q to
the address decoder of the selected memory. It also serves to control the duration
of the read-write cycle, since this depends on the particular memory selected. This
unit is also used to route the content of the selected memory register into the
desired memory buffer (M or N), during the memory read-out; and back through the

inhibit selector to the memory register, during the memory rewrite.

The details of the memory register selection process are further described in
Chapter 4 and 12.

MEMORY OVERLAPPING. Since there are two memory address registers and two memory
buffer registers, in addition to the four memories in the Memory Element, it is

sometimes possible to perform two memory read-write cycles simultaneously.

During an operand word memory cycle the Q register selects a memory register whose
content is strobed into the M register. The memory cycle is completed when the
content of the M register is rewritten back into the selected memory register. After
such an operand cycle the computer will usually perform an instruction word memory
cycle. (The operand cycle can be followed by a change of sequence cycle.) If an
instruction cycle does follow, then the P register holds the address of the memory
register containing the next instruction. Since the N register is usually not used
during operand memory cycles, the computer will attempt to perform this instruction

word memory read-write cycle while the operand cycle is still being performed.

A variety of conditions can inhibit the instruction word memory cycle until the
operand cycle is finished. While we shall not be concerned with most of them here,
one condition of note is whether the desired instruction word is in the same memory
as the previous operand word selected by the Q register. If this is not the case,
i.e., if Q selects one memory to obtain an operand word and P selects a different
memory to obtain an instruction word, then, assuming all the other miscellaneous
conditions are fulfilled, the two memory cycles will proceed simultaneously. Note
that there is no restriction on which memories the operand and instruction word are
stored in, except that, if overlap is allowed to occur, they must be stored in
different memories. Note also that the instruction word cycle, if it uses the T
Memory for example, can finish before the operand word cycle if the operand cycle
uses the S Memory. This can happen, even though the instruction word cycle begins
after the operand word cycle, because the T Memory read-write cycle time is much

shorter than the S Memory cycle time.
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MEMORY SPEED. The times listed in Table 2-1 for the memory cycle time are the
minimum times only. These times usually occur when an instruction or deferred
address word is obtained from the memories. If an operand word is obtained from the
memory, the cycle time can be up to two or three microseconds longer when the operand
word in the memory register is changed by the instruction. These timing situations

are covered in Chapter 9.

2-5 EXCHANGE ELEMENT

2-5.1

2-5.2

GENERAL DESCRIPTION. Nearly all information transmitted to the two memory buffer
registers M and N, except information coming directly from the Memory Element, passes
through the E register in the Exchange Element. Also, nearly all information
transmitted to the Program, Arithmetic and In-Out Elements passes through the E
register. This register thus serves as a bus for most of the information transfers
in the central computer. Fig. 2-14 illustrates the central position of the Exchange
Element in the computer.

Information passing through the Exchange Element can be transformed in various ways.
Many of these transformations are controlled by a configuration specified by the
instruction which causes the transfer. The information for configuration control is
obtained from the F Memory, as described earlier in the chapter. Transformations
can also occur in the Exchange Element as part of the inherent execution logic of an

instruction.

These transformations are realized for the most part by providing each quarter of

each register in the Exchange Element with its own loéical control. This is indicated,
for example, in Fig. 2-15 by the separate paths between each pair of corresponding
quarters of the E and M registers. FEach quarter of the E register can also be
separately cleared and/or complemented. In addition, each quarter of the E register
is connected to every other quarter of the E register by permutation paths, as shown
in Fig. 2-15. Each of these paths is also separately controlled by the computer

logic.

This control of the paths among the quarters of the registers within the Exchange
Element is essential for the realization of much of the power and flexibility of
TX-2 instructions.

OPERAND CONFIGURATION IN THE EXCHANGE ELEMENT

2-5.2.1 PERMUTATION. Fig. 2-11 illustrated the decoding of a configuration word in

the QKIRCF register during the execution of instructions which use a

configuration.
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As an operand word is transmitted through the Exchange Element on its way
to or from the Memory Element it is permuted in the E register. This per-
mutation uses the E register permutation paths. The form of the permutation
is determined by the value of the three permutation bits in the QKIRCF
register. The permutation bits specify a route between the quarters of the
M register and the quarters of the E register. The route is traversed by a
combination of a vertical and lateral transfer as shown below. Since the
permutation actually occurs in the E register one permutation must occur
when a word is transmitted from the Memory Element through the Exchange
Element to other parts of the computer, and the inverse permutation:when a

word is transmitted in the reverse direction.

In Fig. 2-16 the permutations are shown which can occur in the E register
while an operand word is being transmitted from the Memo?y Element to the
central computer. The graphic notation illustrates the "effective" path
from the M register to the E register. These paths are realized by
transferring the operand word from M to E and then permuting the word in E.
(M is always assumed to be at the upper end of the arrows in such a graph,
and E at the lower end, regardless of the direction of the arrows.) The
recombination of the quarters of an operand word in the E register after
the permutations is also shown. The quarter arrangement shown is that
found after a memory operand word has been brought into a register (e.g.,

the A register) in the central computer.

In Fig. 2-17 the inverse permutations are shown which can occur in the E
register while an operand word is being transmitted from the central
computer to the Memory Element. In this case the inverse permutations are
graphically represented by arrows from E to M. The recombinations of
central computer register quarters in a Memory Elemenf register are also
listed.

Note that for each permutation listed in Fig. 2-16, there is a corresponding
inverse permutation listed in Fig. 2-17. Note also that some permutations
are their own inverses, i.e., permutations 000, 010, 100 and 10l. This
means that such permutations and their inverses are realized by the same

set of paths among the quarters of the E register.

The graphic notation portrays the effective path between the quarters of the
E register and those of the M register. The value of this notation is that
it is independent of the permutation of information that is actually

occurring. Thus the graphic notation (with one quarter emphasized)



£-5.2.2

2-5.2.3

can be used to represent either of the following two actual permutation

processes:
M L 3 2 1 L 8 2 1
b A

a9 T, e sl
Aradiaden - = st

E I 3 2 1 L 3 2 .
DIRECT PERMUTATION INVERSE PERMUTATION

Hence the graphic notation can be used to simply represent the permutation
specified by the configuration without regard for the kind of instruction

being executed.

ACTIVITY. The four activity or latency bits in the configuration word
specify the quarters of the registers in the central computer which shall
be active during the execution of an instruction. Each bit is uniquely
associated with a quarter. Fig. 2-18 shows the sixteen possibilities that
can be realized. These activity bits act as a mask on the quarter of the
register, permitting information to be transmitted through the quarter of
the E register only if the corresponding activity bit is a ZERO. Note that
a quarter is latent, i.e., inactive, when the corresponding activity bit is

a ONE.

The graphic notation used on Fig. 2-18 indicates the latency of a quarter
by removing the arrowhead from the arrow. (In Fig. 2-19 only permutation
000 is illustrated.)

SUBWORD FORM. As described earlier, the left two configuration word bits
specify the subword form of the operands in the central computer registers.
These subword forms are illustrated in Fig. 2-19. The graphic notation
used in the figure makes use of an under-bracket to show the quarter

groupings that form the subwords.

2-18 March 1961




March 1961

2-5.2.4

The subword forms primarily influence the manner in which arithmetic
operations are performed. Thus the carry process that occurs in addition
would be influenced by the subword form, since carries would not occur

between quarters that were not in the same subword.

PARTIALLY ACTIVE SUBWORDS. These are subwords in which one or more of the
quarters (but not all) are made inactive by the configuration specified by
the instruction. For example, a programmer can specify a configuration

which has the binary value,
01 11550 % Ele) 000
\> No permutation
Quarter 1 active
Quarters 2, 3 and 4 latent (inactive)
» 18, 18 subword form

The graphic notation for this configuration would look as follows:

R

| [ /
Inactive Partially Active
Subword Subword

This notation indicates that two 18-bit subwords are formed in the central
computer register, but that only quarter 1 is active. It is convenient

to have the central computer work at all times with fully active subwords.
This is realized automatically in the computer by "activity extension" and
"sign extension". This allows the programmer to specify any of the possible
activity and subword form combinations without worrying about how arithmetic
operations are performed upon partially active subwords. However, use is
made of the fact that a subword is only partially active while the subword
is in the E register.

Activity Extension. The computer "extends" the activity of partially active

subwords to make the whole subword active. In the example the effect of
activity extension is, as far as subword form is concerned, the same as if

the programmer had specified the configuration

ol I 1040 000

i 5

—» Quarter 1 and 2 active




B

Note,howevex;that there is now ambiguity about the content of the quarters
made active by "activity extension".

Sign Extension. This process extends the sign bit of the operand in the
active quarters of partially active subwords into the inactive quarters.
This gives a meaning to the inactive quarters of a subword, to be used in
arithmetic operations, when the subword is made fully active by activity

extension.

After an operand arrives in the E register from the Memory Element (i.eq
from the M register) and is permuted, the sign bits of the active quarters
of E are extended to the left within the subwords umtil an active quarter
is encountered. This extension carries around from the left end of a sub-
word back to the right end of the same subword, i.e., there can be an end-
around-carry of the signs. Since there are no active gquarters in wholly

inactive subwords, no sign extension occurs in such subwords.

Fig. 2-20 illustrates the way in which the sign would be extended if the
configuration is 011110XXX. Fig. 2-21 shows the more complex situation
resulting when the configuration is 000101XXX. In this latter case two
different sign bits are extended within the same subword, one of them
around to the right end of the subword.

It should be realized that activity and sign extension occur in the E
register only when an operand is being brought from memory to the central
computer. Since there are no possible interquarter transfers of information
in a Memory Element register, the subword form is ignored when an operand

is transmitted from the central computer to the Memory Element. Only the
permutation and activity bits of the configuration are used in this case.

2-6 ARITHMETIC ELEMENT

2-6,1 GENERAL DESCRIPTION. Most of the arithmetic and logical operations in TX-2 are
carried out in the Arithmetic Element. (Some of these operations can also be per-
formed in the Exchange Element and the Program Element.) Since many of these
operations are complex and time consuming, the Arithmetic Element is designed to
operate independently of the rest of the computer once it has started performing
some operation. Thus,a multiplication can be executed in the Arithmetic Element
while the rest of the computer proceeds with the execution of the instructions that
follow the multiplication. Note, however, that the instructions that follow are
inhibited if they also require the use of the Arithmetic Element.
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ARTITHMETIC ELEMENT REGISTERS. Fig. 2-22 illustrates the registers and information
transfer paths in the Arithmetic Element.

The A register serves as the accumulator, i.e., this register usually contains one
of the operands involved in an arithmetic:operation (the other operand comes from
the Memory Element via the Exchange Element), and the result of the operation is
usually left in the A register. The B register usually serves as an extension on
the right end of A register. It is used this way dﬁfing multiplication, for example,
when a double register length producp is formed. The primary purpose of the C
rggister is to hold the partial carries which are generated when an addition is

performed. The D register usually holds the operand brought from memory.

The content of any of these registers can be stored in a memory register, or be
replaced by the content of a memory register. The four registers are also addressable
as part of the va memory in the Memory Element. The variety of means of access to
these registers provides considerable programming flexibility. Note, however, that
all communication with these registers from outside the Arithmetic Element is through

the E register.

Each of the four registers is divided into four 9-bit quarters. A Z overflow flip-
flop is associated with each quarter of the A register. These overflow flip-flops
are used to remember whether an arithmetic overflow occurred during a previous
arithmetic instruction (e.g., during an addition). The Z flip-flops are also used

for sign control during some instructions.

A Y flip-flop is associated with each sign quarter of the D register. These four
Y flip-flops are altered only when an operand is placed in the D register from the
E register. They remember the original sign of the memory operand word placed in D

after the content of D has been altered during the execution of an instruction.

INFORMATION PATHS IN THE ARITHMETIC ELEMENT. The only simple register transfer
paths within the Arithmetic Element are between the A and B registers. These are

"jam" transfer paths which copy the content of one register into the other.

The contents of the A and B registers can be rotated either to the left or to the
right. This rotation can also occur when the B register acts as an extension of the
A register, i.e., the content of the AB register can be rotated to the left or right.
These shift paths are illustrated in Fig. 2-22.

The other paths in the Arithmetic Element involve transformations of the information
being transferred. The exclusive OR of the contents of the D and A registers can
replace the content of the A register. The result left in the A register by this

operation is the "partial sum" of the contents of the two registers.
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The logical product of the A and D registers can be placed in the C register. This

operation forms the '"partial carry"

of the contents of the A and D registers.

Both the partial sum and the partial carry are formed simultaneously during an
addition in the Arithmetic Element. The "complete sum" of the original contents of
A and D is then formed in the A register by forming the "complete carry'. The
complete carry circuit forms the complete sum by combining_ the partial sum and
partial carry in the A and C registers and placing the result in A.

There are other transformations in the Arithmetic Element that involve a partial sum

and partial carry. For example, these quantities are combined in the partial carry

and shift right logic called "multiply step". In "multiply step" the partial carries

in the C register are carried only one bit position to the left in both A and C.
The entire result, in both the A and C registers, is then shifted one place to the
right. The multiply step transformation is used to speed up the multiplication
algorithm. It is described in detail in Chapter 1k.

The quarters of the D register can also act as counters. There are circuits' which
add ONE to the content of each quarter of the D register each time certain other

operations are performed in the Arithmetic Element.

OPERATIONS IN THE ARITHMETIC ELEMENT. The operations which can be performed in the
Arithmetic Element are:
Addition. The memory operand is placed in the D register and the partial sum
and carries are formed. The complete carry is then placed in the A register,
forming the desired sum. An overflow, if it occurs, is simultaneously placed
in Z.

Subtraction. This operation is identical to addition except that the memory

operand in D is complemented before the addition occurs.

Multiplication. The double length product of the memory operand, which is
placed in D, and the original content of A is placed in the AB register. The
product is formed by first placing the content of A in B and clearing the A
register. A multiplication cycle is then repeated as many times as there are
bits in the operand subword. The cycle consists of adding the content of D to
the content of A if the least significant bit in B is a ONE. The content of AB
is then shifted to the right one place. The addition consists of forming the

partial sum and partial carry in A and C, respectively, and then doing a multiply
step. A shift right of one place in A, B and C occurs when the multiply step is

performed, and the partial carries are reduced so that further partial sums can
be formed. After a sufficient number of repetitions of the cycle the complete
carry is formed in A and the result in AB is then the desired product.
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Division. The operand from memory is divided into the content of the AB
register. This process is the inverse of multiplication and leaves the gquotient

in A and the remainder, if any, in B.

The cycle used here involves forming the difference between the contents of D
and A in A, and then shifting the content of AB left one place. The sign bits
of each difference formed in A are shifted into B to form the quotient. The
content of D will be complemented, if necessary, at the beginning of each cycle
so that it always differs in sign from the content of A. An addition is then

performed.

If an overflow occurs initially the Z flip-flops are set. After the last cycle
the remainder is in the A register. At the end of the instruction the contents

of A and B are interchanged.

Shift. The content of A, AB (including the overflow in Z) or B can be arith-
metically shifted either to the left or to the right. The number of places
shifted is determined by the memory operand word placed in D. The count circuit

on D is indexed once for each shift.

Cycle. This operation is identical to Shift, except that a pure rotation of the

content of the selected register occurs, and that the overflow is not involved.

Normalize. The content of A or AB (including the overflow in Z) is arithmetically
shifted until the sign bit in A and the bit to the right of the sign bit differ.
The number of shifts to the right (left) which occur is added to (subtracted

from) the memory operand placed in D.

Tally. The number of bits which are ONES in a memory operand word placed in the

A register is added to the original content of D.

"e

Logical Operations. The logical "inclusive OR", "exclusive OR", and "AND" of a

memory operand and the original content of A can be formed in A by these

operations.

These are the basic operations which can be performed in the Arithmetic Element.
Variations on the simple process of loading and storing the contents of registers in
the Arithmetic Element can also be performed. These operations are covered in
Chapter 16.

CONFIGURATION IN THE ARITHMETIC ELEMENT. Subword form and activity in the Arithmetic
Element, which constitute the configuration of the Arithmetic Element, are determined
by the content of the AKIRCF register; just as configuration in the Exchange Element
is determined by the content of the QKIRCF register. By having configuration
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(AKIRCF) and operation code (AKIROP) registers of its own, the Arithmetic Element
becomes independent of the QKIRCF and QKIROP register. In this way an Arithmetic
Element instruction can continue to be performed even though a new instruction is
begun which fills QKIRCF and Q,KIROP with new configuration and operation information,

respectively.

However the activity bits in AKIRCF do not represent mere copies of the activity
bits ih QKIRCF. Instead AKIRCF
Arithmetic Element by the process described earlier. In this way subwords in the

is set up so that activity is extended in the

Arithmetic Element are made either wholly active or wholly inactive.

Note that the permutation information contained in the configuration word is not
used by the Arithmetic Element, but only influences the memory operand as it passes
through the Exchange Element to the Arithmetic Element. Note also, that the sign
extension process is completed in the Exchange Element, before the memory operand is
transferred into the Arithmetic Element.

QUARTERED PATHS IN THE ARITHMETIC ELEMENT. All the registers in the Arithmetic
Element and also all the lateral information transfer paths in it are quartered.
These lateral transfer paths are the shift paths in, and between, the A and B
registers, and the carry paths. The quarters of the shift paths can transmit
information either to the left or right into each quarter of the A and B registers.
The quarters of carry circuit can transmit information only to the left into each

quarter of A.

The subword form specifies the connection between the quartered segments of these
paths. The actual connections are realized by coupling units, as illustrated in

Fig. 2-23. Fig. 2-2L4 illustrates how the complete shift and carry paths can be
formed by connecting the outputs of the quarters of the registers (or carry circuits)
in various ways. The subword form specified by the configuration bits determine
which one of the several inputs to each coupling unit actually is transmitted through
the unit. Since the subword forms are limited to the ones illustrated in Fig. 2-19,
not all conceivable input connections to coupling units are realized. For example,

a carry coupling unit receives an input either from the quarter immediately to the

right, or from the quarter farthest to the left in the same subword.

It should be realized that these coupling units in the shift and carry circuits are
the sole means used to realize the variety of subword forms during the execution of
Arithmetic Element instructions. Fig. 2-25 illustrates these subword forms as they
are reflected in the apparent structure of the Arithmetic Element register. A
programmer can effectively use several Arithmetic Elements simultaneously when he
specifies a configuration with subwords less than 36 bits in length. Fig. 2-25 shows
these multiple Arithmetic Elements and the corresponding operand word structure.

The activity bits of course also give the programmer the ability to control just which
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of these Arithmetic Elements are actually used during the execution of an instruction.
For example, one, two, three or four 9-bit additions can be simultaneously performed
in any of the 9-bit Arithmetic Elements illustrated.

2-7 IN-OUT ELEMENT

2-T7.1 GENERAL DESCRIPTION. The principal paths for transmitting data into or out from
TX-2 are in the In-Out Element. These paths are routed over an In-Out Bus. The bus
effectively connects a variety of input and output devices with the E register in
the Exchange Element. The bus also transmits signals which enable the central
computer to control the operation of the In-Out devices. Included in these control
signals are central computer clock pulses. These clock pulses are used to synchronize

signals generated by the In-Out device with operations in the central computer.

Each In-Out device has its own program, called a program sequence, stored in the
Memory Element. As described earlier, there are 33 different program counters
stored in the X Memory in the Program Element. The content of each of these program
counter registers, when transferred to the P register, addresses its own program
sequence in the Memory Element. Instructions can be executed from only one program
sequence at a time, i.e., only one program counter can actually be in use at any
given time. However, certain instructions in a program can cause a change from one

program sequence to another.

Thus, each In-Out device is uniquely associated with one of the 33 program counters.
The number of the associated program counter is assigned to the In-Out device. Thus
there can exist at most 33 In-Out devices. As shown in Fig. 2-7, there are currently
about 16 such devices. The four highest priority program counters also have a
(special) relationship with the In-Out Element, so that about 20 of the program

counters are associated with the In-Out Element.

These 20 program counters are distinguished by the fact that the FLAG flip-flop for
each program counter can be set (i.e., "raised") when the associated In-Out unit
generates a raise flag signal. This signal indicates that, for some reason, the
In-Out unit requires the corresponding program sequence to be performed by the
computer. The computer does this as soon as this sequence becomes the highest

priority sequence with a FLAG raised.

As stated before, there are basically two different situations which can initiate a
change of program sequence. Either the program sequence, which is currently being
performed, can initiate the change, or the In-Out unit associated with one of the

20 program counters can do this.
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2-7.2  STRUCTURE OF THE IN-OUT ELEMENT. Fig. 2-26 is a simplified block diagram of the
In-Out Element. It illustrates the structure of the In-Out Element and the connections

between it and the central computer.

Each In-Out unit is divided into a number of packages. These packages include:
1) The In-Out device itself
2) A control box for the device
3) A sequence switch

Only the sequence switch is connected to the In-Out Bus.

2-T.3 IN-OUT BUS. At any given time data can be transmitted over the In-Out Bus between
the E register and only one In-Out unit. These data transfers occur only during the
TSD (Erangfer Qata.) instructions. The particular connected unit is the one associated ‘
with the current program sequence. It is selected by the decoder on the K register
in the Program Element. The output of the K Decoder is sent out over the In-Out Bus
to the In-Out units and only the K-th unit is allowed to transmit data over the bus.

The computer can also control the operation of In-Out units. This control occurs
only during the IOS (In-Out Select) instruction. It is realized by transmitting
the Y bits in the N register (this is a case of the Y bits being used for a special
purpose) over the In-Out Bus to the specified In-Out unit. In this case the partic-
ular unit is selected by the decoder on the J bits in the N register. The output
of the NJ Decoder is sent out over the In-Out Bus to the In-Out units and only the
J-th unit receives the Y bits.

Synchronization and alarm control signals are also transmitted over the In-Out Bus

between the Control Element of the central computer and the In-Out units.

DTl SEQUENCE SWITCHES. The actual connection between an In-Out unit and the In-Out Bus
is realized in the sequence switch of the unit. The data transfers are gated in the
sequence switch by the K Decoder outputs. The Y bits from the N register are gated

by the N_ Decoder outputs.

J

The sequence switches isolate the In-Out units from the In-Out Bus so that at most

one unit is connected to a given set of information lines in the bus at one time.

Some units, particularly the ones for the special program sequences, consist only of

sequence switches. (See Fig. 2-26.) These units are:

The Startover Sequence Switch (0) transmits raise flag signals to FLAGo when-
ever the Startover button on the control console is pressed. The associated

program sequence is usually used to initially start the computer.

The Computer Alarm Sequence Switch (40) will raise FLAGMO whenever a selected

central computer alarm occurs.
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The In-Out Alarm Sequence Switch (41) will raise FLAG),, whenever an In-Out

unit alarm occurs.

The Trapping Sequence Switch (42) will raise FLAG) , whenever & selected set

meta bit occurs in the M or N register.

A1l of these sequence switches contain some control logic which is governed by the
I0S instruction. However, these special sequence switches are rather simple when

compared with the sequence switches for the In-Out devices.

IN-OUT CONTROL BOXES. The control boxes control the operation of the In-Out devices.
They also contain the In-Out buffers which hold the data flowing between the In-Out
devices and the E register.

The Y bits in an IOS instruction are copied into control flip-flops in the control
box of the In-Out unit selected by the IOS, and the contents of these flip-flops
then determine the mode of operation of the In-Out devices. There are usually also
some manual controls in a control box which allow the computer operator to influence

the operation of the In-Out device.

The buffer register holds one character of the data transmitted to or from the
device. The central computer can change or read this character in a buffer only by

performing a TSD instruction in the program sequence associated with the device.

IN-OUT DEVICES. An In-Out device is some electrical, mechanical or optical, etc.
device which either samples some external signal source or reads some data record
and converts these inputs to characters of digital data for input to the computer,

or, conversely, converts a character of data to an external signal or record.

Fig. 2-T7 listed the names of the In-Out devices associated with some of the program
sequences. A brief description of these devices follows:

Magnetic Tape (46). (Currently not installed.) This is the only input and

output device. 9-bit data characters can be recorded or read while the magnetic

tape is traveling in either the forward or reverse direction.

Miscellaneous Inputs (47). This device simply raises FLAGh7 whenever some

" selected external source generates a pulse.

Datrac (50). This device digitizes an external analogue signal. 11-bit data

characters are formed by this process and transmitted to the computer.



Xerox (51). A high speed printer which can print 88 different 8-bit characters

in two different sizes.

PETR (522. A photo electric paper tape reader. It reads six bit characters

from punched paper tape.

Interval Timer (54). An 18-bit timer which can be reset by the computer.

When the timer counts down to zero a pulse is generated which can either raise
FLAGSh or be sent to some other device.

Light Pen (55). A photo electric sensing device which raises FLAG.. when the
pen is held over a point displayed on a cathode ray tube (CRT) display (see
below) .

Display No. 2 (56). (Currently not installed.) A CRT point display tube
similar to Display No. 1.

Display No. 1 (60). A CRT point display tube which can intensify any point in
a 1024 X 1024 raster.

Random Number Generator (61). This unit generates nine bit numbers with the

properties of a sequence random number. It uses a radioactive source.

Punch No. 2 (62).  (Currently not installed.) This unit is similar to Punch
No. 1.

Punch No. 1 (63). This unit can punch six bit characters with or without a

seventh hole in papef tape.

Lincoln Writer Input No. 1 (65). This unit can read six bit characters into

the computer. These characters can be generated either by a keyboard or a’

paper tape reader.

Lincoln Writer Output No. 1 (66). This unit can print six bit characters

using a typewriter. The unit can also punch the characters on paper tape.

Lincoln Writer Input No. 2 (71). This unit is identical to Lincoln Writer
Input No. 1.

Lincoln Writer Output No. 2 (72). This unit is identical to Lincoln Writer
Output No. 1.
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Plotter (74). A two-coordinate line plotter. The motion of the pen is
controlled by specifying the coordinate position of the pen.

Miscellaneous Outputs (75). This device simply holds the value of the Y bits
of an I0S. This information can then be used to control an arbitrary external
device.
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ACCESS CYCLE BIT
MEMORY TYPE TIME TIME REGISTERS WORD

(psec) (psec) LENGTH
S MAGNETIC CORE k.o 6.4 65,536 38*
i MAGNETIC CORE 2.0 L.k Log6 38%
U MAGNETIC CORE ** ** Log6 38%
Ver PLUGBOARD REGISTERS 32 37
Ver TOGGLE-SWITCH REGISTERS 16 37
Ver REAL-TIME CLOCK REGISTER 1 36
Ver SHAFT ENCODERS REGISTER i 36
Vep A REGISTER il 36
Vpp B REGISTER uf 36
Vo C REGISTER 1 36
Vi D REGISTER 1 36
Vep E REGISTER i 36
*  INCLUDES PARITY BIT
*% CURRENTLY UNDEFINED

|

TABLE 2-1 MEMORY ELEMENT REGISTER
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CHAPTER 3
CIRCUIT LOGIC ELEMENTS

3-1 INTRODUCTION

3.2

TX-2 has a modular construction, where the modules are plug-in packages, each containing
several transistor circuits. In order to understand the details of the logic of the
computer, it is necessary to understand the operation of and connections among the individual

circuits and the techniques for physically realizing logic functions.

This chapter describes the logical characteristics of the TX-2 circuits. These character-
istics are discussed only in sufficient detail to make the logical function apparent or to
indicate certain operating limitations. A complete circuit analysis of each of the TX-2

plug-in packages is contained in the TX-2 Circuits Handbook.

It is assumed that the reader is familiar with symbolic logic as applied to computers and
is able to interpret truth tables. Fig. 3-1 defines the logical AND, inclusive OR, and
exclusive OR functions, as well as the complement function. The more common circuit con-

ventions and symbols found on TX-2 block schematics are shown in Fig. 3-2.
SINGLE-TRANSISTOR LOGIC ELEMENTS

3-2.1 INTRODUCTION. The two basic transistor circuits used throughout the computer are:
the saturated inverter and the emitter follower. Both circuits are used extensively
for logic nets in which the inputs are levels. The inverter is also used for pulse
gating and mixing. In these nets, some inputs are levels and others are pulses. The

circuit diagrams for the inverter and emitter follower are shown in Fig. 3-3.

3-2.2 NOTATION. In level logic nets, all single-transistor logic elements are drawn as a
rectangle with the emitter on the top and the collector on the bottom. Inverters
can be distinguished from emitter followers by usage; that is, the emitter follower
collector is always connected directly to a -3 volt supply, and the inverter emitter
is always returned to ground either directly or through the collectors of other
inverters. The diamond on a small side of the rectangle indicates a level input and
is solid for -3 volts and hollow for ground. These same diamond conventions are

used for the output.

In pulse nets, all inverters are drawn opposite to the above, i.e., with the emitter
on the bottom and the collector on the top. Level inputs to these nets are shown by
diamonds as in level nets. However, pulse inputs (which are always negative) are

shown as solid arrows, and the positive output pulses are shown as hollow arrows.
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3-3 LEVEL LOGIC CIRCUITS

3-3.1

3-3.2

3533

March 1961

EMITTER FOLLOWERS. In this circuit, Fig. 3-3(a), the collector is tied to a -3 volt
supply (indicated by a solid circle) and the emitter, which is the output terminal,

is connected through a load resistor R. to a +10 volt supply (indicated by hollow

square). This circuit is somewhat sim?lar to the vacuum-tube cathode follower.
Whenever the input is more negative (say 0.3 volt) than the output, more negative
base current is drawn. The transistor amplifies this current and a negative emitter
current many times larger flows in the emitter lead. This current tends to make the
output go negative because of the voltage drop developed across RL. The output

(emitter) tends to follow the input, hence the terminology "emitter follower".

To summarize: In the emitter follower, a ground input results in a ground output,

and a -3 volt input results in a -3 volt output.

INVERTERS. In this circuit, Fig. 3-3(b), the emitter is tied to ground (indicated by
a hollow circle) and the collector is tied through a load resistor RL to a -10 volt
supply (indicated by solid square). When the input is at -3 volts, negative base
current is drawn, and the transistor acts as a short circuit. This has the effect of
connecting the output to ground. When the input is at ground, the transistor acts as

a high impedance. In this case, the current through load register R. makes the output

L
drop from ground to -3 volts or lower.

To summarize: In inverters, a ground input results in a -3 volt output, and a -3

volt input results in a ground output. Hence the terminology "inverter".

It should be noted that resistors Rl and R2 and capacitor C are contained in the
symbolic representation of the circuit. Hence, the left half of Fig. 3-3(b) is drawn
with the implicit understanding that the circuitry shown on the base of the transistor

in the right half of Fig. 3-3(b) is present. Input resistance R, and positive bias

T
resistance R2 provide tolerance to noise, and to signal-voltage and transistor-

parameter variations. Capacitor C improves the circuit transition time.

APPLICATION TO LEVEL LOGIC NETS. The basic single-transistor logic elements, namely
emitter followers and inverters, can be interconnected to perform logical functions
on input signals as shown in Fig. 3-4. The emitters of two or more emitter followers
connected in parallel will assume the voltage of the most negative input. See

Fig. 3-U(a). In no case may emitter followers be put in a series connection.

In the case of the inverter, two basic types of connection are pbssible as shown in
Figs. 3-4(b) and (c). For the series connection, the output will remain negative
unless both input A and input B are made negative. In this case, the two series-
connected short circuits will ground the output; in all other cases, the output
will be negative. For the parallel connection, the output will be grounded if either
input A or input B is made negative. These two basic types of connection can be

combined to produce more complicated nets.
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3-3.4 TRANSIENT CHARACTERISTICS. The dynamic characteristics of emitter followers and

3-3.5

3-3.6

inverters are fundamental limitations on the speed at which the computer can operate.

Two factors which must be considered are "transition time" and "saturation".

a) Transition Time: Logically speaking, all the computer level signals are
nominally O volts (ground) or -3 volts, although they may vary widely from
these values. Ideally, the transistor circuit element should reproduce or
invert the signal transition appearing at its input instantaneously. In
practice, this ideal situation is compromised both by the transistor and by

the external circuitry tied to the transistor.

Because of hole storage time in the transistor, a finite time delay (dead
time) occurs between the time an input changes and the time the output
responds. In addition to this delay time, the transient properties of the
transistor and the external loading circuitry result in a finite rise time
or fall time. The sum of the delay time and the rise or fall time is called
the "transition time". Fig. 3-5 shows time plots of a typical transistor

edrentits

b) Saturation: It is important that circuits be insensitive to wide voltage
and transistor-parameter variations; that is, while the nominal signal
voltages are O and -3 volts, actually they may lie in the two bands of +0.5
to -0.4 volts and -2.4 to -5 volts. Fig. 3-6 shows how operating an inverter
circuit in its "saturated" region minimizes the effects of these variations.

For this, and other reasons, the transistors are normally saturated.

TRANSISTOR TYPES. Two basic PNP types of transistors are used in the TX-2 computer.
The high-speed logic circuitry uses a surface-barrier transistor usually referred to
as an L-5122, but similar to the 2N240. If high current gain at high current levels
is required, a micro-alloy transistor (L-5134, similar to 2N393) is used. Other PNP

and some NPN transistors are used for special applications.

CASCADING LIMITATIONS. As indicated previously, it is important that the transistors
operate in their saturated region. It is also important that the cumulative time lag
through circuit stages be kept within certain limits. These two considerations
result in rules of combination for series and parallel arrangements of emitter
followers and inverters. These are known as "fan in" rules. The same considerations
limit the types and number of circuits that can be loaded on a driving stage and

result in so-called "fan out" rules.

Two classes of emitter followers are used: saturated and non-saturated. Saturated
emitter followers are those driven by inverters. In this case, the input voltage
will go more negative than the -3 volt supply, causing the emitter follower to
saturate and thereby normally produce a -2.9 volt output signal. The outputs of

flip-flops and the cascode to be described later are special cases of the saturated
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emitter follower using micro-alloy transistors. Nonsaturated emitter followers are
those driven by saturated emitter followers. 1In this case, the output voltage is a
function of the input and is normally only -2.6 volts. However, this will produce

adequate drive on all following inverter circuits. In no case may emitter followers

be driven by nonsaturated emitter followers.

To summarize: saturated emitter followers are those driven by inverters; non-
saturated emitter followers are those driven by saturated emitter followers, flip-
flops, or cascodes. A nonsaturated emitter follower may not drive other emitter

followers, only inverters.

There are also limitations on the inverter. The ground input level to an inverter
in a level logic net must be no more negative than -0.4 volt; hence, no more than
two inverters may be placed in series. No firm limitation may be placed on the
number of parallel inverters, although it is usually limited to eight. Special

considerations, involved in the case of series-parallel nets, will be covered later.

The driving ability of emitter followers and the load on their drivers are not well
defined. Lightly loaded emitter followers impose a load on their drivers equal to
approximately 2/3 of a "standard load", which is defined as the load presented by
an inverter. This increases to one "standard load" when the emitter follower is

driving its full load of four "standard loads".

The load presented by an inverter to its driver is one "standard load" and amounts
to about 1.2 ma. The driving ability of an inverter is limited to two "standard

loads". Hence, an inverter may drive two other inverters or three emitter followers.

3-3.7 CASCODES. Fig. 3-7 shows a typical cascode. This circuit can be used to provide
logical inversion. The cascode has the additional properties of fast rise and fall
times, and the ability to supply a large amount of current in both the ground and
-3 volt states. For these reasons, it is used as a power amplifier. When used for
driving signals over coaxial cable, a terminating resistor is employed to match the

output impedance of the cascode to the cable impedance.

The cascode input signal is applied simultaneously to the base circuits of transistors

Ql and Q2. Therefore, the inputs to Q2 and Q_  are always opposite in phase, so that

in the steady state only one transistor is coiducting. Transistor Q3 acts as an
emitter follower and provides the driving current in the -3 volt stage, quickly
pulling the output down to -3 volts. Q2 acts as an inverter and provides the current
in the ground state, quickly pulling the output up to ground. Thus, the cascode
circuit exploits the fast fall time of the emitter follower and the fast rise time

of the inverter, and makes the total power available to the load since none is dis-

sipated in load resistances.
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The cascode circuit is capable of driving twelve "standard loads" or one series-
terminated 93-ohm coaxial cable and four other "standard loads". A series-terminated
coaxial cable can drive three inverter loads. Emitter followers may not be used as
loads on a series-terminated coaxial cable. The cascode input presents two "standard
loads" to its driver.

3-4 LEVEL LOGIC NETS

3-4.1 GENERAL. This section investigates the logical possibilities that exist for mixing
levels by means of two or more transistors. All of these circuits will be either

emitter followers or inverters.

3-L.2 TWO TRANSISTOR LEVEL LOGIC. Fig. 3-8 shows how logical AND and OR type circuits can
be realized using emitter followers or inverters in series or in parallel. Note that
Fig. 3-8(a), (c), and (e) are all AND circuits with two inputs. If the circuits are
considered as black boxes, the only differences are the voltages used to represent
the truth state of the input and output variables. Thus, the truth and false state-
ments given in the respective truth tables are identical; only the corresponding
voltages are different. Three possibilities exist: (1) ground inputs produce a
ground output; (2) ground inputs produce a -3 volt output; and (3) -3 volt inputs
produce a éround output. There is no AND circuit which combines -3 volt inputs and

gives a -3 volt output.

Figs. 3-8(b), (d), and (f), in comparison, are inclusive OR circuits with two inputs.
All the statements made about the AND circuits are also true for the OR circuits.
However, the voltages used to represent the truth states of the OR circuits are the
complements of the voltagés used to represent the truth states of the AND circuits.
In Fig. 3-8(a), for example, both A and B must be at ground in order that C be at
ground. Therefore, the circuit is an AND circuit. In Fig. 3-8(b), C will be at -3
volts if either A or B (or both) is at -3 volts. Therefore, the circuit is an

inclusive OR circuit.

3-4.3 THREE-TRANSISTOR LEVEL LOGIC. Fig. 3-9 shows how three-transistor circuits may be
used to express more complex relationships than are possible with two-transistor
circuits, thét is, logical AND's and OR's appear together in the same expression.
These circuits may be considered as simple elaborations of the two-transistor logic
nets shown in Fig. 3-8. Thus, the A + B circuit shown in Fig. 3-8(d) becomes the
core of the (A + B) + C circuit shown in Fig. 3-9(f).

The circuits on the right side of Fig. 3-9 are the same as those on the left side,
except that the corresponding inputs and outputs are complements of one another.
Complementing the voltages has the effect of changing all AND's to OR's, and all OR's

to AND's, in the logical expressions.
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3-b.b

3-h.5

FOUR-TRANSISTOR LEVEL LOGIC. The use of four transistors provides even more combina-
tion possibilities, as shown in Fig. 3-10. The principles of operation are similar

to those for two- and three-transistor circuits.

LARGER NETS. Still larger nets of emitter followers and inverters are useful in the
computer. Fig. 3-11 shows some of the larger inverter nets with their logic function

for -3 volt inputs and ground outputs.

Circuit limitations determine the extent to which these nets can be increased. There
is a limit on the total number of inputs to non-ground eléments in series-parallel

or parallel-series nets. Such nets contain transistors with emitters not tied
directly to ground. For example, inputs F and G, D and F, and D, G, and G in

Fig. 3-11(a), (b), and (c) respectively are of this type. This rule limits the total
number of these inputs to two. Mutually exclusive inputs are considered as one;

thus, G and G in Fig. 3-11(c) mey be counted as only one input.

3-5 PULSE LOGIC CIRCUITS

3-5.1

3-5.2

3-5:3

3-5.b

March 1961

GENERAL. In addition to static signal levels, pulses are also used in the computer.
These pulses are used for timing control and therefore are precisely spaced in time.

The times at which level transitions occur are determined by pulses.

POLARITY. Pulses are described as either negative (going) or positive (going)
depending on whether they have ground as a reference and extend to -3 volts, or have

-3 volts as a reference and extend to ground.

REPETITION FREQUENCY. The TX-2 computer uses a vacuum-tube pulse-generator to pro-
duce pulses at a 2.5 megacycle basic clock rate; that is, one pulse every 0.4
microsecond. As shown in Fig. 3-12, two pulse outputs are available from the 2.5
megacycle clock. One pulse stream, the B phase, is delayed 0.2 microsecond from the
other pulse stream, the & phase. The & and P pulses differ only in their reference
to some arbitrary zero starting time. By means of this system, events can occur
every 0.2 microsecond despite the fact that the clock frequency is only 2.5 mega-

cycles on each pulse line.

PULSE SOURCE. Fig. 3-13 shows the @ and B pulse-generator system. Each clock pulse
output phase is fed to a shaper and then to a shaper amplifier which drives ten
vacuum-tube driver amplifiers. The output of these amplifiers is a 40 volt positive
pulse which, in turn, drives five buffer amplifiers. Negative, 30 volt, 0.1 micro-
second pulses are transferred from each buffer amplifier to the computer frame over
separate coaxial cables. At the end of each cable, a non-inverting 10:1 pulse

transformer provides -3 volt clock pulses for the logical circuitry.
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3-5.5 PULSE NOTATION. Since diamonds are used to indicate levels, arrows are used to
indicate pulses (see Fig. 3-2). A hollow arrow indicates a positive pulse, and a
solid arrow indicates a negative pulse. (The solid arrow used for negative pulses Q
should not be confused with similar-type arrows used on block diagrams to indicate

signal paths.)

3-5.6 PULSE GATING. 1In logic nets using both pulses and levels, levels are used to gate
pulses. The inputs to these nets are one or more levels and a single pulse line @
input. The output is always a pulse (usually of the opposite polarity to the input
pulse). When the input level logic is satisfied, an input pulse will cause a pulse
output. This process is sometimes described as the input pulse "sampling" the input
level logic. The need for logic nets with both pulse and level inputs will become
apparent in the sections that follow. °

3-5.7 SINGLE-STAGE PULSE GATES. Fig. 3-14(a) shows an inverter with a negative pulse input
and a positive pulse output. If the emitter is tied to ground through a level logic
circuit, the situation in Fig. 3-14(b) results. In this case, when the emitter is
at -3 volts, the transistor will not conduct regardless of the pulse on the base
circuit. However, when the emitter is at ground, a negative pulse on the base pro-
duces a positive pulse at the collector. This ground level to the emitter may come
from a flip-flop or another inverter. 1In Fig. 3-14(c), two transistors are used,
with a negative pulse and a -3 volt level input producing a positive pulse output.
Fig. 3-14(d) shows the same circuit used for mixing a negative pulse and two levels
of opposite sense. Note, in Fig. 3-14, that all the circuits form logical AND gates;
that is, all the indicated input signals must be present in order to produce a pulse o
output.

The inverter circuits used to make up pulse gates are standard inverters. Up to
three inverters may normally be put in series, with the pulse being applied to the
output transistor. The level inputs present one "standard load" to their driver.
The pulse input presents one "pulse load" to its driver when its emitter is grounded,

and approximately 1/3 "pulse load" when gated off.
¥

3-5.8 REGISTER DRIVERS. In order that the single-stage gating circuits just discussed
operate properly, it is necessary that the pulse inputs be of proper magnitude and
shape. To accomplish this, the outputs of special circuits called "register drivers"
are used as pulse inputs to the single-stage gates. (See Fig. 3-15) o

If the two register-driver level inputs are at ground, the inverter supplies current

to the bases of Q. and Qh' These transistors are saturated emitter followers whose

51
collector supply voltage is made up of clock pulses from the distribution system of
Fig. 3-13. When saturated, these transistors short the input pulse through to the o

output terminal. The circuit is able to drive twelve "pulse inputs" plus a 100-ohm

line terminator.
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Both level inputs to the register driver must be at ground before a pulse output can
occur. The clock pulses determine precisely when a pulse will occur at the output of
the register driver. The level inputs to the register driver each present two

"standard loads" to their driving source.

3-6 FLIP-FLOPS

3261

2560

3-6.3
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GENERAL. Flip-flops are memory or data-storage devices. The basic activity of the
computer involves transferring data into and out of these storage devices. The
inputs to the flip-flops are positive pulses and the outputs are levels. Like any
memory element, the flip-flop is a two-state (bistable) device. These states are
called the ZERO state and the ONE state. The flip-flop will remain indefinitely in

one of these states until pulsed into the opposite state.

OPERATION. There are three inputs to the flip-flop (see Fig. 3-16). A "set to zero"
input pulse places the flip-flop in the ZERO state. This is true regardless of the
state the flip-flop was in prior to the pulse. Likewise, a "set to one" input pulse
places the flip-flop in the ONE state regardless of the prior flip-flop state. A
"set to complement" pulse places the flip-flop in the opposite state from that which
it was in prior to the pulse. Note that the inputs are always at -3 volts until an
input pulse occurs. Pulses are barred by logical design from occurring on more than
one input at a time, or closer together than 0.2 microseconds, because of the

ambiguity involved.

NOTATION. While the operation of flip-flops is straightforward, there are certain
subtleties in the labeling of the outputs that are important to grasp. The flip-
flop is a two-state device and may be in either the ONE state or the ZERO state.
The flip-flop states themselves can be represented by variables, namely FFO and FFl
FFO is the name of the variable representing the ZERO state, and FFl is the name of
the variable representing the ONE state. The variable is TRUE if the flip-flop is
in the state represented by the variable, and is FALSE if the flip-flop is not in
the state represented by the variable (that is, in the opposite state). Thus, FFl
is TRUE if the flip-flop is in the ONE state, and FALSE if the flip-flop is in the
ZERO state.

Note that nothing has been said thus far about the output voltage levels used to
represent the state of the flip-flop. A flip-flop has two output wires which have
opposite voltages on them: that is, when one is at ground, the other is at -3 volts.
These wires are called the "O wire" and the "1 wire". By definition, the "0 wire"
has -3 volts on it when the flip-flop is in the ZERO state, and the "1 wire" has

-3 volts on it when the flip-flop is in the ONE state.

Fig. 3-16 summarizes the operation of the flip-flop. If the flip-flop is first

"set to ZERO", then "set to ONE", and then "set to complement", the sequence of

voltages given in the variable truth table will appear on the O and 1 wires. Whether
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3-6.k

3-6.5

3-6.6

the wire is in the TRUE or FALSE state of the variable depends on the agreement (or
lack of agreement) between the state of the flip-flop and the state represented by

the variable.

INTERNAL CIRCUITRY. Fig. 3-17 shows the internal circuitry of the flip-flop. The
heart of the circuit is a transistor variation of the familiar Eccles-Jordan multi-
vibrator. In this case, the gating transistors external to the flip-flop form
inverters with resistors in the flip-flop themselves. The outputs of the inverters
provide the trigger inputs to the two-state circuitry. The cascodes provide a low-
impedance driving source and decouple the flip-flop from its load. Note that the
two cascodes are cross-tied. In all other respects, the cascodes are similar to

those described previously.

EXTERNAL INPUT CIRCUITRY. Fig. 3-18 shows the typical input circuitry external to
the flip-flop. The flip-flop is pulsed by ANDing a "when" and "what" type signal at
the input gate. The "when" pulse signal determines precisely when in time the flip-
flop is going to be pulsed (assuming that the "what" circuitry indicates a ground
level is available to be sampled). The "what" level signal determines the state to
which the flip-flop will be set. For example, if the emitter on the external "set
to ONE" gate is at ground, the flip-flop will be pulsed to the ONE state. Data is
shifted through the computer along the "what" lines. Data shift time control occurs

along the "when" lines.

PULSE AND LEVEL TIME RELATIONSHIP. Fig. 3-19 shows the time relationship of the
pulse and level transitions that might occur in Fig. 3-18. Assume that at time

t = 0, the output of logic net Cl is at ground and that the outputs of logic nets

C2 and C3 are at -3 volts. Clock pulses of the shape shown in the Fig. 3-19 arrive
at the input to the register driver at O.4-microsecond intervals. The output of the
register driver, however, will remain at a constant voltage that is slightly positive

of ground level.

At approximately t = 0.15 microsecond, the output of logic net C2 rises toward
ground. The total rise time depends on the circuitry of logic net C2 and typically
might be 40 millimicroseconds. As the output of logic net C2 approaches ground, the
output of the register driver will begin to follow the input clock pulses. A small
amount of attenuation and lag occur through the register driver, but can be neglected
for all practical purposes. No input gating occurs at this time because the output
of logic net C3 is at -3 volts. At approximately t = 0.7 microsecond, the output of
logic net C3 rises toward ground. Generally, the rise time will be shorter for logic
net C3 than for logic net C2.

The register driver pulse occurring at t = 0.8 microsecond will now sample the ground
level from logic net C3. The output of the gate will be at -4 volts up until the
time it is pulsed. The gate output pulse never actually reaches ground, but never-

theless triggers the flip-flop. The positive input pulse to the flip-flop now

342 March 1961



reverses the polarity of the voltage on the O and 1 wires coming out of the flip-flop.
The delay time for the flip-flop is about equal to the width of the clock pulses;

that is, 0.1 microsecond.

Several interesting and very important observations can now be made. First, the
state of the flip-flop did not start to change until the clock pulse that caused the
change was over. This means that the same clock pulse that was used to change the
state of the flip-flop could also have been used to sample the output of the flip-
flop before its state changed. On the other hand, the flip-flop state changed
quickly enough to allow a clock pulse to complement the state of the flip-flop
again. Thus, the flip-flop can change states at a 5-megacycle rate (once every 0.2
microsecond) even though the pulses from any 6ther register driver occur at a

maximum 2.5-megacycle rate (once every 0.4 microsecond).

3-7 FLIP-FLOP REGISTERS

3=

3-7.2
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GENERAL. A flip-flop register comprises one or more flip-flops and assumes an
identity of its own. Flip-flops contain a bit of information and registers contain
a word. When one speaks of a 36-bit flip-flop register, he means a register composed

of 36 flip-flops.

A1l the normal things that are done to flip-flops, such as "setting to ZERO",
"setting to ONE", and "complementing", are also done to registers. Sometimes the
terminology is different. For example, one commonly speaks of "clearing" a register

rather than "setting to ZERO", but the idea is the same.

REGISTER TRANSFERS. Register transfers will be treated at the level of data trans-
fers into the individual flip-flops that make up the registers. Fig. 3-20 shows how
ZEROS and ONES are gated into the flip-flop by transfer pulses.

3-7.2.1 JAMMING. Data transfer between flip-flops may be accomplished by several
different techniques. One technique, called "jam transfer", is illustrated
in Fig. 3-21. In this case, the bit of data stored in flip-flop FFl is

transferred into flip-flop FF, by a single transfer pulse. Symbolically,

2
this transfer is written

FFl -—1b~—-FF2

This transfer is interpreted as "jamming the contents of FF, into FF2".

Two types of jamming circuitry are used (see Fig. 3-21). One type uses an

emitter fed input gate. This can be done only when FF. is physically close

1
to FF2 so that the ground in FFl is in close proximity to the emitter of
the gate. In this case, only one transistor is required for each input.
The other jamming circuit uses a base fed input gate and requires two

may be physically

transistors on each input. In this case, FFl and FF2

distant from one another.
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3-7.2.3

An obvious, but sometimes overlooked fact, is that the data transfer has no

effect on the state of the register from which the data is transferred.

0'S, 1'S TRANSFER. In this technique, the circuitry is similar to that used
in jamming but the transfer pulse for the ZEROS comes from a different
register driver than the transfer pulse for the ONES. (See Fig. 3-22.) It
is now possible to effect a register transfer by first clearing (that is,
"setting to ZERO") all the flip-flops in a register and then transferring
ONES. One clear gate on each bit (requiring one transistor per bit) may be
used to clear the register before ONES are transferred from several different
flip-flops. In this technique, fewer transistors are required than in
jamming, but a time penalty is imposed in that two succeeding time pulses
are required -- one for clearing and one for setting ONES. It is also
obvious that logical transfers requiring separate control of the ZERO and

ONE inputs are now possible.

INTERNAL REGISTER TRANSFERS. There are several types of internal register
transfers which are all "jam transfers" between bits in a register. One of
these is called "shifting" and involves transferring individual bits from
one flip-flop to either the flip-flop on the immediate right or on the
immediate left; hence the names "shift right" and "shift left". Arithmetic
Element registers in TX-2 are often considered as closed rings, in which
case the bits shifted off the right or left end of a register are jammed
into the opposite end of the register. Under certain other conditions, the
registers may be broken into several smaller rings in which case the bits

are shifted around these rings.

Another type of internal register transfers is called "permuting” and con-
sists of interchanging subwords of the register. This is done by jamming

the bits of each subword into the corresponding bits of its permuted subword.

3-7.3 LOGICAL TRANSFERS. This operation involves the logical combination of two registers.

The result is either stored in one of the two registers or in a third register.

S=Te3yl

opias

PARTIAL ADD (EXCLUSIVE OR). Fig. 3-23 shows the truth table for a partial
add operation and indicates how it is performed. Note that the state of
FF_ is changed only when FFl is in the ONE state. When FFl is in the ZERO

2

state, FF2 is unaffected. The logic is performed by means of the complement

input and is executed by a single pulse.

LOGICAL SUM (INCLUSIVE OR). 1In this case, two registers are combined and
the result stored in a third register. (See Fig. 3-24.) With this circuit,
the operation requires two successive time pulses. On the first time pulse,
flip-flop FF3 is cleared. The logical sum pulse then performs the logical

transfer itself. Note that an OR inverter circuit is used, so that when
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either FFl or FF, is in the ONE state (FFi or FF;), FF3 is set to ONE. When
both FFl and FF2 are in the ZERO state, the output of the inverter is tied
to ground and the logical sum pulse has no effect on FF3- Note also that
the 1's transfer of Fig. 3-22 is performing the logical sum of FFl and FF2
but with the results stored in FF2-

3-7.3.3 PARTTIAL ADD TRANSFER (THREE REGISTERS, TWO PULSES). In this case, the
result of the partial addition of two registers is stored in a third register.
(See Fig. 3-25.) It is first necessary to clear the register in which the
result is to be stored. This is accomplished by a clear pulse. The
"exclusive or" logic itself is performed by the cross-tied four-transistor
inverter circuit. A -3 volt output from the inverter occurs when both top
transistors or both bottom transistors have their inputs grounded. Note
that this occurs in only two of the four possible state combinations of
FF2 and FFl'

3-7.3.4 PARTTIAL ADD TRANSFER (THREE REGISTERS, ONE PULSE). In this case, the result
that was accomplished with two time pulses in Fig. 3-25 is obtained with one
time pulse. This increase in speed is obtained at the expense of additional
transistor circuitry. (See Fig. 3-26.) Note that an input pulse is applied
to FF, in all four possible cases. Two of the cases effect the "set to one"

3

input, and two of the cases effect the "set to zero" input.
3-8 REGISTER DECODERS

n
If a register contains n flip-flops, the register as a whole may be in any one of 2 states.

3

For example, a 3-bit register may be in any one of 27 = 8 states. Each of these register
states may have a name, and it may be necessary to recognize and indicate each of these

states.

Fig. 3-27 shows a typical "register decoder" in which the decoding networks are simple ANDing
emitter follower circuits. There is an output wire for each state of the register and the
wire is labelled according to the name of the particular register state. All the output
wires will be at -3 volts, except the wire that represents the present register state. This

wire will be at ground.

Note that the register states may have completely arbitrary names. The figure shows the
states named sequentially (both numerically and alphabetically) according to the state of
the register, which is represented as a binary number.

3-9 COUNTER AND TIME LEVEL DECODERS

3-9.1 GENERAL. A counter is a register with a count circuit as an input. A time level

decoder is an ordinary register decoder.
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3-9.2 COUNTERS. Fig. 3-28(a) shows a typical counter. The principle of operation is that
each count pulse indexes the counter by one. When all the flip-flops contain ONES,
the next count pulse resets all the flip-flops to ZERO. Each of the states of the
register is given a time name, such as Ko, Kl, Kg, K3, etc. Fig. 3-28(b) shows a

variation on the simple counter just described. In this case, K , and K form

K
et 3
the indexing counter. Kh is independently controlled and effectively determines how
the indexing counter state should be interpreted. This is clear from the accompanying
table. Note that both counters in Fig. 3-28 contain four flip-flops and are capable

in
of registering 2 = 16 different states.

3-9.3 TIME LEVEL DECODERS. Fig. 3-29 shows how the state of the counter is decoded. The
pulses for the @ counter come from register drivers with & clock pulses. Note that
the inputs to the counter are time pulses and that the outputs of the time level

decoder are levels representing time states.

Actually, it is convenient to have B time levels as well as O time levels. The B
time levels occur just 0.2 microsecond after the corresponding & time levels. This
is accomplished by gating the & counter register into a P counter register with B
pulses. Thus, the & register contents appear in the P register, but delayed 0.2
microsecond from the time they appeared in the O registef. The B register is then
decoded by a B time level decoder.

Each time state (0Q, 1C, etc.) has two complementary output wires, so that the

counter state can be represented by either a ground level or a -3 volt level.
3-10 REGISTER DRIVER CONTROL NETS

A somewhat special type of logical notation is used when discussing register drivers. In
some cases, it is more advantageous to indicate the logic that inhibits pulses from the
register driver rather than the logic that permits pulses from the register driver. This

is shown in Fig. 3-30. In order that a pulse appear at the output of the register driver,
it is necessary that both register driver level inputs be at ground. Fig. 3-30(a) shows a
typical permissive type of register driver control circuit. When either A or B is -3 volts,
both inputs to the register driver are at ground and a pulse appears at the output of the
register driver. On the other hand, when both inputs to the logic net are at ground, no

pulse appears at the output of the register driver.

Fig. 3-30(b) shows a typical inhibitory type of register driver control circuit. First look
at the inputs and output of the register driver. They indicate that, when either input is
at -3 volts, no pulse appears at the output of the register driver that will transfer the
contents of flip-flop FFl into FFE'

volts when A and B are not present and C is present in one of the logic nets, or when D and

One of these register driver inputs will be at -3

E are present in the other logic net.
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The question now arises as to when a transfer pulse will appear at the output of the register

driver. ‘It will occur when both register driver inputs are at ground. This in turn will

occur when A or B is present and C is not present in one logic net, and D or E is not present

in the other logic net. By "present", it is meant that the voltage on the wire is the same

as the voltage used to represent the truth state of the uncomplemented variable.

3-11 OTHER COMPUTER CIRCUITRY

3-11.1

3-11.2

3-11.3

March 1961

GENERAL. The other miscellaneous special-purpose circuitry used in the computer
falls into two categories: (1) high-speed circuitry generally used in the central
computer; and (2) low-speed circuitry generally used in the In-Out Element. The
pulses used in the low-speed circuitry tend to look more like the levels used in the
high-speed circuitry. That is, instead of being O.l-microsecond wide, the pulses

are approximately O.l4-microsecond wide.

SYNCHRONIZER. The information from pushbutton controls on the console must be
synchronized with the basic clock-rate activity in the central computer. The cir-
cuit for doing this is shown in Fig. 3-31. A similar low-speed type synchronizer

is used in the In-Out Element to synchronize information from the external world.

The logical operation of the synchronizer is as follows: An asynchronous pulse
appears at the "set to one" input of FF A -3 volt level will appear asynchron-

ously at the output of FF

1" Since FF2 is in the ZERO state at the time FFl is set
to ONE, the synchronous clock pulse can trigger the "set to one" pulse of FF2
synchronously. When this clock pulse appears, FF2 is in the ZERO state, so that
the open gate on the "set to zero" input of FF, and FF, prevents the pulse from
effecting these inputs. However, by the next clock pulse, FF2 is in the ONE state.
Both FFl and FF2 will now be set to ZERO. The time relationship of these events

is shown in Fig. 3-32.

Note, in Fig. 3-32, that the output on the 1 wire of FF2 is a synchronous level
exactly 0.4 microsecond wide and positioned with respect to the clock pulses. The
asynchronous input pulses cannot appear closer together than 0.8 microsecond. Also

note that the cycle is completed by both FF, and FF_ being "set to zero" by the

2
same clock pulse. Both flip-flops stay in the ZERO state until the next asynchronous

pulse requiring synchronization appears.

PULSE DELAY LINE. Fig. 3-33 illustrates the characteristics of a typical pulse
delay line. For the delay line shown, the input pulse can be delayed in twenty
discrete 20-millimicrosecond intervals. Thus, the pulse appearing at output No. 1
occurs exactly 120 millimicroseconds after a pulse appeared at the input. Similarly,
the pulse appearing at output No. 2 occurs exactly 400 millimicroseconds after a
pulse occurs at the input. Pulse delay lines are used to solve some of the timing
problems found in the memory systems. They are also used in other parts of the

computer.
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3-11.5

3-11.6

3-11.7

GATED PULSE AMPLIFIER. This is a two-stage transformer-coupled amplifier for 0.1-
microsecond negative pulses. The output is capable of driving 10 bases and a 100-ohm
termination. It is used to amplify the weak outputs of delay lines and for amplifi-

cation purposes in some of the in-out circuitry.

VARTABLE DELAY UNIT. Fig. 3-34 shows a typical variasble delay unit. A O.l-micro-
second negative pulse applied to the input provides a -3 volt output level for a
period continuously variable from 0.3 microsecond to 2.2 seconds. The coarse ranges
are set by means of switching capacitors, and a potentiometer provides the fine time
setting. The end of the delay can be made to occur synchronously with a clock pulse
by use of the added external inverter shown in Fig. 3-34. Fig. 3-35 shows time

characteristics of the variable delay unit.

LOW-SPEED FLIP-FLOP AND CAPACITOR-DIODE GATE. The low-speed flip-flop is a simple
transistor version of the Eccles-Jordan flip-flop with "set to zero" and "set to
one" inputs applied directly to the base terminals of the transistors through
capacitor-diode gates. (See Fig. 3-36.) If the flip-flop is in the ONE state,
the "one" output is at -3 volts and inverter Ql is saturated. If the base of Ql
is driven positive, thereby making its base current zero, then Ql will become an
open circuit and its output will turn on Q2, thus reversing the state of the flip-
flop. Pulses which do this are formed, gated, and coupled into the base of the

flip-flop by the capacitor-diode gate.

The input pulses to the capacitor-diode gate are wide positive pulses normally at
-3 volts. The circuit forms a pulse from the rising edge of the input and applies
it to the flip-flop if the gate input is at ground, but does not couple it if the

gate is at -3 volts.

There are several limitations on the use of the low-speed flip-flop and capacitor-
diode gate. First, the pulse input signal must not have an amplitude greater than
3.6 volts. Next, the pulse input to this circuit draws 2 ma. The gate input draws
1 ma and does not gate off the input pulse immediately, but only after 1.2 micro-
seconds. Finally, the flip-flop has an uncontrolled delay which may be shorter than
0.1 microsecond and has a rise time of 0.2 microsecond or better. It is capable of
driving five "standard loads". As a result of these limitations, the circuit is
used only on in-out equipment where necessary operating speeds are less than 600

kilopulses per second.

0.3 MICROSECOND PULSE FORMER. This unit is essentially a low-speed flip-flop which
has been modified so that it is stable in the ONE state only. When a pulse is applied
to its input via a capacitor-diode gate, the unit goes to the opposite state for 0.3
microsecond, but then automatically falls back to its rest state. Operation is

therefore similar to a one-shot multivibrator.
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SCHMIDT TRIGGER. This is a static hysteresis-type circuit with input-output
characteristics as shown in Fig. 3-37. The circuit provides an output between
ground and -3 volts that is independent of the rise and fall time of the input.
The output is inverted with respect to the input. The circuit triggers when a
rising input reaches 0.9 volt (the output then drops to the -3 volt level in less
than 0.15 microsecond). It also triggers when a falling input reaches -2.2 volts

(the output then rises from -3 volts to ground in less than 0.1 microsecond).

INPUT MIXER AND OUTPUT DISTRIBUTOR. These two units provide complementary functions
in the In-Out Element. The input mixer selects a particular in-out unit and routes
one of its output signals to the central computer. Several mixers use a common
amplifier to drive their output over coaxial cable to the E register. The output
distributor, on the other hand, routes a signal from the gentral computer to a
particular preselected in-out unit. The distributor drives the central computer

signal over coaxial cable from the Sequence Switch to the In-Out Control Box.
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CHAPTER 4
MEMORIES

INTRODUCTION

The computer has six independent memories designated by S, T, U, V, X and F. The function
of each of these memories was described in Chapter 2. This chapter will describe the
structure of the memory systems and explain the principle of operation of the cores used
in the memories. The details of control for the S, T, U and V memories will be discussed

in Chapter 11, and for the X and F memories in Chapter 12.
MEMORY ELEMENT

The major components of the S, T, U and V memories are shown in Fig. 4-1. They are:
(1) the memory address selector, (2) the decoders for each memory, (3) the S, T, U and V

memories, and (4) the read-write control for each memory.
MEMORY ADDRESS SELECTOR

The memory address selector uses the leftmost bits of both the P and Q registers to select
the desired memory. The remaining bits in the P and Q registers determine the address of
the word in the selected memory. The selection and address bit coding for the S, T, U and
V memories is illustrated in Fig. 4-2. Defer bit 2.9 is not used during the memory cycle
and, since it may be a ONE or a ZERO, is represented by "x". Fig. L-2 illustrates the
following points:
1) The selection and address bit coding is the same for both the P and Q registers.
2) When bit 2.8 of one of these registers is a ZERO, then that register will select
S Memory. Similarly, when bit 2.8 is a ONE and bits 2.7 - 2.4 are ZEROS, the
T Memory is selected; when bits 2.8 and 2.4 are ONES and bits 2.7 - 2.5 are
ZEROS, the U Memory is selected; and finally, when bits 2.8 - 1.8 are ONES, the
V Memory is selected. The selection of a particular register in VFF or Vﬁﬁ is
determined by address bits 1.7 - 1.5. When bits 1.7 - 1.5 are all ZEROS, VFF is
selected; when any one of bits 1.7 - 1.5 is a ONE, Vf? is selected.
3) Not every combination of the 17 bits in P or Q actually selects a register in a

memory.

Lk s MEMORY

L_4.1 GENERAL DESCRIPTION. The S Memory is a high-speed, random-access coincident-current
magnetic-core unit with a storage capacity of 65,536 38-bit words (registers). The
bits in the word are read out in parallel. The access time, which is the time required
to locate and read out a particular register in a memory, is 4.0 microseconds. The
cycle time is 6.4 microseconds. (Cycle time is defined as the minimum time between
successive read operations in the same memory when cbmplete read-write cycles are
performed.) Two coordinates are used to select a register during the read operation,

and three coordinates are used for writing.
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The major components that comprise the S Memory are shown in Fig. 4-3. They include
the following: an address decoder and associated cable drivers, 8 switch driver
current regulators, 32 switch driver input amplifiers, 64 switch drivers, two 16 X 16
magnetic-core switches, a 256 X 256 core memory array, 152 digit plane drivers, and
38 sensing amplifiers. The number of lines interconnecting the various components is
indicated in Fig. 4-3.

L-L.2 CORE MEMORY ARRAY (See Fig. 4-4). The S Memory array is made up of thirty-eight
256 X 256 memory planes and contains 2,490,368 ferrite memory cores. The outside
diameter of each core is 80 mils, the inside diameter 50 mils, and the thickness
22 mils. The cores are wired into 64 by 64 subassemblies. Each subassembly is a
complete operating memory plane with its own sense and digit winding. Sixteen
64 by 64 subassemblies are assembled in a square array and connected together to
form each 256 by 256 plane. Thirty-eight 256 by 256 planes are stacked one on top

of another with their X and Y wires connected in parallel to form the complete

memory array.

L-L4.2.1 OPERATING PRINCIPLE. Consider an array of cores arranged in planes and
oriented with respect to three orthogonal axes as shown in Fig. 4-5. Each
core in the array lies at the intersection of a unique set of X, Y and Z
co-ordinate planes. A wire runs through the cores in each plane. The sense

windings which are in the Z plane are not shown.

The memory-core hysteresis loop is sketched in Fig. 4-6. The lower flux
state by definition will constitute a ONE and the upper flux state a ZERO.
During a read-out, enough positive current must be applied to switch the
core from the lower to the upper state. Thus, when the core holds a ONE,
reading causes a large flux change which produces a large voltage output.
If, however, the core was already in the ZERO state, reading causes a very
small flux change which in turn produces a small voltage output. (See
Fig. hag)

The memory cycle consists in reading out the information contained in a
register, and then writing information back into the same register (not
necessarily the same information). It is important at this point to
recognize two important facts:
1) The read-out destroys the information held in the core, i.e., all
cores in the register are put in the ZERO state.

2) The read-out does not require any selection among the digits.

The entire register receives the read-out excitation, whereas in
writing, some cores in the register will be switched to the ONE

state and others will be left, as they were, in the ZERO state -
depending, of course, on the information to be stored in the

register.
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Two functions need explaining:
1) How a register is selected for read-out.
2) How an arbitrary pattern of ONE's and ZERO's can be written in a

register.

Both of these functions must be accomplished without changing the information

held by the cores in other registers in the array.

If the current necessary to switch a core is defined as Im and the core
material is such that Im/2 will not switch the core, then by applying
+Im/2 to an X line and +Im/2 to a Y 1line, it is possible to select the
register at the intersection of these two co-ordinates without destroying
the information held in other registers. In order to write in this
register -Im/2 is applied on the X and -Im/2 on the Y line. The appropriate
Z-windings are used to inhibit with +Im/2 on those planes in which ZEROs
are to be written. This selection process depends entirely on the ability
of the core to switch at an excitation of Im and to remain unchanged when
subjected to an excitation of Im/e. At this point it is convenient to
define the noise in this system as that part of the sense-winding output
during read-out which is not contributed by the selected core. The noise
would be made up of capacitive and inductive coupling from driving lines
as well as the outputs due to half-selected cores which are subjected to
Im/2 excitation.

4-4.3 MAGNETIC-CORE SWITCH. In order to match the characteristics of the driver tubes to
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the X and Y selection lines, current step-down devices called magnetic-core switches
are used. These switch cores also perform the final stage of the decoding of the

address.

L-4.3.1 MECHANICAL FEATURES. A schematic of a magnetic-core switch is illustrated
in Fig. 4-8. Bach of the two magnetic-core switches is made up of 256
tape-wound cores. Four windings are placed on each core: two 12-turn
input windings, a 16-turn output winding and a 2-turn bias winding. These
cores are connected into a square array to form a 2-coordinate switch.

The inputs to the X switch are called XU XU RN Ly XV, and

0r 157 XV, 15
the inputs to the Y switch are called YUO,---, YU, YVgiaie o' YV15.

Ll o
The decoders select one core in each of the two magnetic-core switches.
The switching of these two cores generates currents in the memory X and Y
windings. The currents switch the memory cores which contain ONES in the
selected memory register. The flux reversal generates signals in the sense
windings of the switched cores. When the two cores in the magnetic-core

" switch are deselected, they generate opposite currents in the memory cores
of the selected register. This writes ONES in the memory cores that have

no current in the inhibit (Z) winding.
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4-4.3.2

OPERATING PRINCIPLE. The operation of the switch is illustrated in Fig. 4-9.
A bias current is used to bias all the cores in the switch to point A of the
hysteresis loop. When the core is switched, the flux reverses to point C of
the hysteresis loop. The magnetomotive force required to switch the core is
generated by two current pulses called U and V. The application of either
the U or V current pulses alone is not sufficient to switch the core. How-
ever, the occurrence of both the U and V current pulses in the windings of a
core is sufficient to cause the core to switch. The switching of the core

generates a read current pulse at its secondary.

When the U and V current pulses end, the bias current switches the core back

to point A. This generates a write pulse.

4-L.4 SWITCH DRIVING. Since the magnitude of the current levels from the memory address

level decoders is insufficient to actuate the memory array, switch drivers, switch

driver input amplifiers, and switch driver current regulators are used to amplify and

regulate the memory current.

L-4.4.1 BLOCK DIAGRAM. Fig. 4-10 shows a block diagram of the switch core driving

Lok k.2

system associated with the XU inputs to the X magnetic-core switches.
Similar systems exist for the XV, YU and YV magnetic-core switch inputs.
Thus, there are 4 switch core driving systems, each set containing 16 switch
drivers, 8 switch driver input amplifiers and 2 switch driver current

regulators.

OPERATING PRINCIPLE. Fig. 4-10 shows the 16 switch drivers as two groups

of eight, with one current regulator feeding each group. The switch driver
is made up of several power triodes connected in parallel. The current
regulator signal is applied to the cathode and the input amplifier signal is
applied to the grid of the associated switch drivers. The grid input lines
to the first group of eight drivers are connected consecutively from O to

T. The grid input lines to the second group of eight drivers are connected
in parallel with the first group.

A particular line in the switch is selected by first grounding one of the
grid input lines and then pulsing one of the current regulators. For
example, to select line O, grid input O is grounded and the current regulator
input is pulsed, thus actuating driver O. Current regulator input O is
pulsed for switch drivers O through 7 and current input 1 is pulsed for
switch drivers 8 through 15.

4_4.5 DIGIT DRIVERS. The digit drivers are used during the WRITE phase of a memory cycle.
They provide the inhibit currents that prevent the cores, in which it is desired to

write ZEROS, from reversing to the ONE state when the write current is applied.
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L-4.5.1 BLOCK DIAGRAM. The digit-plane driver block diagram is shown in Fig. L-11.

4-Lk.5.2

It is similar to the current regulator in the switch drive circuit. Four
such circuits are associated with each 256 by 256 plane, one for each
quarter of the digit plane winding. Each quarter is made up of the digit

winding of four subassemblies connected in series.

OPERATING PRINCIPLE. The input to the digit driver is a transistor "AND"
gate. The quarter selection level is applied to one input and the timing
level to the second input. The output of the géte circuit controls an
amplifier which supplies a regulated current pulse to the inhibit winding.

L-L4.6 SENSE AMPLIFIERS

March 1961

L-L4.6.1

L k.6.2

BLOCK DIAGRAM. The block diagram of a typical sense amplifier is shown in
Fig. 4-12. Each sense amplifier has four bi-polar inputs. Each bi-polar
input comes from a sense winding section of a Z plane in the memory array
and goes to one of four differential amplifiers in the sense amplifier.

The four amplifier outputs are then mixed in an emitter follower and finally
amplified by a pulse amplifier. One four-input sense amplifier is asso-
ciated with each 256 by 256 plane. Thus, there is a total of 38 sense

amplifiers for the entire memory.

The sense windings in a 256 X 256 plane are broken up into four sections.
Each section consists of the sense windings from four diagonally adjacent
(in the sense of Fig. 4-12) 64 X 64 subassemblies. By connecting the sense
windings on the diagonal, there is a minimum coupling between the active

X and Y windings and the sense winding. (Ideally the coupling should occur
in only one case in the plane.) Note that a given X or Y drive line inter-
sects only one of the subassemblies in the diagonal section which the sense
windings are interconnected. It should also be noted that with this method
of connection, the voltage induced in the sense windings by the half
selected cores (i.e., the cores in which either the X or Y winding is pulsed

but not both) is equal to that in one 64 X 64 subassembly memory.

Each sense winding is also a delay line. To reduce the delay and resultant
signal distortion, the four assemblies on a given sense winding section are
connected ih series-parallel as shown in Fig. 4-12 rather than just in

series.

OPERATING PRINCIPLE. The bi-polar signal is fed into the differential
amplifier in the sense amplifier. The outputs of the differential ampli-
fiers are mixed (ORed) and rectified in the emitter-follower circuit, and
then further amplified in the pulse amplifier to a certain voltage. If a
ONE is read out, the voltage will be 3 volts, and if a ZERO is read out,
the voltage will be zero volts. The signal is transmitted to the memory

buffer register where it is sampled by a 0.1 microsecond strobe pulse.
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4-5 T MEMORY

b-5.1

L5.2

4-5.3

GENERAL DESCRIPTION. The T Memory is a high-speed, random-access, coincident-
current magnetic-core unit ;ith a storage capacity of 4096 38-bit words (registers).
It contains only transistors and diodes in the read, write, and selection circuitry
in contrast to the S Memory which uses principally vacuum tubes and magnetic cores.
The bits in a word are read out in parallel. The cycle time is 4.4 microseconds

and the access time is 2.0 microseconds. As in the S Memory, a 2:1 current selection
ratio is used, with two coordinates used‘to select a register during read-out and

three coordinates used during write.

BLOCK DIAGRAM. Fig. 4-13 is a block diagram of the T Memory. It is very similar to
that of the S Memory. The basic difference is that transistor drivers, called
selection line drivers, are used to select and drive the X and Y memory lines

instead of the magnetic-core switches used in the S Memory.

Like the S Memory, the T Memory uses two coordinate selection of memory registers.
The X and Y lines are selected in a two level decoder. The decoded coordinate
selection levels are amplified by two sets of 64 selection line drivers to the
magnitude required to operate the cores. Other components are 30 digit plane
drivers, 38 sensing amplifiers, a read-write selector and 4 read-write current

generators.

The T Memory is made up of thirty-eight 64 by 64 planes and contains 155,648 ferrite
cores. The cores are composed of the same material as those of the S Memory, but
are dimensionally smaller. The outside diameter of each core is 50 mils, the inside

diameter 30 mils and the thickness 12 mils.

OPERATING PRINCIPLE. The operation of the T Memory is very similar to that of the

S Memory. The first and second level decoders operate as standard decoders. The
drivers operate as switches in a similar manner to those of the S Memory except that
they drive the cores directly instead of through core switches. Thirty-two selection
line drivers are used in conjunction with each read-write current generator in order
to reduce the capacitive load on the read-write generator. The READ-WRITE operation

is the same as the S Memory.

The operation of the digit inhibit circuits and sense amplifiers is also the same
as those of the S Memory. However, since there is only one 64 X 64 array per digit,

one digit plane driver and one sense amplifier per digit suffice.

4.6 U MEMORY

The U Memory is currently undefined. However, it is expected to be similar in construction

and operation to the T Memory. It will have a storage capacity of 4096 38-bit words

(registers).
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L-7 V MEMORY

L_7.1 GENERAL DESCRIPTION. Fig. 4-1L4 is a simplified block diagram of the V Memory. The
selection of VFF or VTF is determined by the V Memory selector control which decodes

bits 1.7 - 1.5. Components of Vﬁ? include 32 plugboard registers, 16 toggle switch
registers, a real-time clock register, and a shaft encoder register. Components of
VFF include the 5 flip-flop registers A, B, C, D, and E.

h-7.2 MEMORY (A, B, C, D AND E REGISTERS)

Vrp

L_7.2.1 GENERAL DESCRIPTION. The A, B, C, D and E registers located in the
Arithmetic Element and the Exchange Element are also used as memory storage
registers. They have a non-destructive READ cycle. Thus, a write cycle is

not required, unless a store type instruction is being performed.

4_7.2.2 MECHANICAL FEATURES. The five VFF registers contain 36 bits numbered from
left Torlghts 4.9 < 4.1, 3.9 - 3.1, 2.9 - 2.1 and 1.9 - 1.1. Since there
is no 2.10 bit, parity checking is excluded. Note that there is also no

4.10 (meta) bit associated with these registers.

4-7.2.3 OPERATING PRINCIPLE. During the READ phase of the READ-WRITE cycle, the
information is transferred out of the A, B, C or D register into the E
register and from there into the N or M register. First, the content of
the E register is read into the M register. Next, the content of the
selected A, B, C or D register is read into the E register. Then the con-
tent of the E register is transferred into the N or M register and, at the
same time, the content of the M register is placed back in the E register.

When writing into the A, B, C or D registers during the WRITE phase, the
content of the M register is transferred into the E register. The selected
register in the Arithmetic Element is then cleared and the content of the
E register is transferred into that register. Since read-out of the VFF
registers is non-destructive, the content of the N register never needs to

be rewritten.
Lh-7.3 Vﬁﬁ MEMORY

4-7.3.1 TOGGLE SWITCH REGISTERS. The toggle switch register is a manually set static

memory which, like the V.

TR Memory, has a non-destructive read cycle.

The 16 toggle switch registers are arranged in horizontal rows in groups of
four on the control console. (See Fig. 4-15.) The addresses are labelled
in octal code from 377720 through 377737. Each register consists of 37 bits
(vertical columns) numbered from left to right as follows: L4.10 - L.1,

3.9 - 3.1, 2.9 - 2.1, and 1.9 - 1.1. Bit 2.10 is excluded because there is
no parity checking for the V Memory. The circuitry is built so that another
8 registers can be easily added.
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Yor.3.8

4-7.3.3

Fig. L4-16 illustrates the basic operating principles of the toggle switch
storage. The basic mechanism of the storage is a resistor-switch matrix
which contains 592 resistors and 592 switches (16 X 37 = 592). Each
resistor has one end tied to a digit line (16 resistors per digit line) and
the other end tied to the common terminal of a switch. ©One side of each
switch, the ZERO or normally closed position, is tied to ground. The other
side, the ONE or normally open position, is tied to a resistor driver

(37 resistors per driver). One resistor from each digit line goes to each

resistor driver.

The resistor driver of a register is selected by a -3 volt level on one of
three lines and by a ground level on one of eight lines. The output of the
selected resistor driver swings from ground to -25 volts. All unselected

resistor drivers are held at ground.

Those resistors that are tied to switches set in the ONE position are
connected to resistor drivers. They drive their digit lines to -1 volt.
Hence, a -1 volt signal on a digit line means that the appropriate digit
of the selected register is a ONE.

The digit line signal is detected, amplified to a standard level, and
inverted in a digit detector unit. The digit detector, in turn, drives a
cable driver which transfers the information to the sense amplifier and

strobe selector, where it is strobed and used.

PLUGBOARD REGISTERS. The plugboard registers, like the toggle switch
register, form a manually set static memory which has a non-destructive
read cycle. Provisions are made so that two plugboards can be connected to
the computer at a given time. These plugboards are designated A and B.

They are used as storage for utility and maintenance routines. The sequence
switch priority plugboard is not considered part of VTF'

Fig. 4-17 shows a typical plugboard. The octal addresses are numbered from
0 to 17, and the register bits are numbered from left to right: L4.10 - 4.1,
39 -3.1, 2.9 - 2.1, and 1.9 - 1.1. Again, bit 2.10 is excluded because
there is no parity checking required.

The operation of the plugboard is similar to the toggle switch storage
previously described. In this case, insertion of a jumper (dual-prong

patchcord) has the same effect as closing a switch. (See Fig. 4-17.)

SHAFT ENCODER. The shaft encoder is an analog-to-digital converter which
translates shaft position information into digital code by means of a self-
contained, non-ambiguous, dual-brush selection logic. The unit itself and

one of the two internal converter discs are shown in Fig. L4-18.
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L-7.3.4

The voltage appearing on each lead of the two sets of output terminals
represents a coefficient in the natural binary system. A terminal voltage
of -20 volts develops the coefficient ONE and zero voltage develops the
coefficient ZERO. The complement of the binary output is provided on the

second set of terminals.

REAL-TIME CLOCK. The real-time clock uses a 100-kc pulse source and a
36-bit counter. Pulses are applied continuously to the counter so that a

time reference is always available.

4.8 PROGRAM ELEMENT MEMORIES

4-8.1 GENERAL DESCRIPTION. The Program Element contains two memories designated X and F.

4.8.2
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X is the

6h-register 19-bit index memory and F is the 32-register 10-bit config-

uration memory. Both memories have a parity bit, but no meta bit. The operation

of both memories is described in somewhat more detail in Chapter 12.

X MEMORY

S o

I8 o%0

GENERAL DESCRIPTION. There are three modes of operation for the magnetic-
core X Memory: READ-WRITE, READ, AND CLEAR-WRITE. Unlike the S, T, and U
memories, two cores per bit in a single memory plane are used. The bits of
a word are read out in parallel with a cycle time of 3.6 microseconds and
an access time of 0.6 microsecond. In the X Memory, cycle time is the time
between successive strobe pulses during a repetitive READ-WRITE cycle;
access time is the minimum delay between setting the address register and

strobing.

The X Memory system is shown in Fig. 4-19. The word selection method used
is determined by the manner in which the NJ bits are decoded. The first
five bits (1\13‘5 & 3.1) of the six NJ bits are decoded by the J Decoder into
32 J Decoder levels. These levels represent the addresses of 32 pairs of
registers in the X Memory. The selection of which of the two registers in
a pair is determined by the sixth J bit (N3.6)' This bit is used in a
second level selector, with the selection determined by the value of the
bit.

MECHANICAL FEATURES. The cores used for the X Memory are 47 mils OD, 27
mils ‘ID, and 12 mils thick. Both the digit and word selection windings
make 4 turns on each core through which they pass. Fig. 4-20(a) shows the
complete memory plane. Fig. 4-20(b) shows a portion of it enlarged. The
cores are mounted on a lucite plane. The wires pass through openings made
by the intersection of slots.milled on one side of the plate with similar
slots milled at right angles on the other side. The digit current is 8 ma,
the write driver output current is 18 ma, and the read driver currents is
117 ma.
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4-8.2.3 OPERATING PRINCIPLE. Each bit in the X Memory has an A and B core asso-
ciated with it. Each of these cores may be in either a CLEARED or SET state,
but both cores cannot be in the SET state at the same time. If an A core
is SET, a ONE will be read-out during the READ process when this core is
switched. Similarly, if the B core is SET, a ZERO will be read-out during
the read process if this core is switched. Whichever core is switched,
both will be left in the CLEARED state at the end of the READ process.

The winding configuration is shown in Fig. 4-21. A word is selected by
connecting the upper end of a word line, e.g., Y, to a specified voltage
(-3 V). The READ driver then puts out a current pulse 4-1/3 times that
required to switch a core (on a 2:1 basis). (See Fig. 4-22.) Only one of
the two cores (per bit) A or B is switched to the CLEARED state, since any
previous WRITE operation will have left one core SET, and one core CLEARED.
The switched core generates a pulse in its digit line. This line passes
through one of the cores in the same direction as the word line and through
the other core in a direction opposite to the word line. Thus, the polarity
of the induced pulse on the digit line during READ indicates whether a ONE
or a ZERO is being read out.

The ends of the digit line are connected to two differential amplifiers,
each of which responds to pulses of only one polarity. The output of one
amplifier is fed to the SET TO ONE input side of the buffer flip-flop and
the output of the other amplifier is fed to the SET TO ZERO side of the
buffer flip-flop. Thus the output of the memory is jammed into the buffer

register by the strobe pulse.

At all times, a digit bias current flows in the digit winding. The direction
of this current is determined by the state of the buffer register flip-flop
associated with the digit. The amplitude of the current is 1/3 that
required to switch the core in a 2:1 system. This digit bias current is
very small compared with the read current and thus has no effect on the

READ process. However, the digit bias current does enter into the logic

of the WRITE process. During WRITE, a current of 2/3 that required to
switch the core is placed on the selected word line. If the buffer register
bit contains a ONE, the polarity of the digit bias current will be such as
to add to the select line current in the A core. The current in this core
is now sufficient to switch it, and accordingly it will be SET. If the
buffer register bit contained a ZERO the B core would have been SET in the
same manner. Notice that while the digit bias current is adding to the
select word current in one core, because of the winding configuration it
will be subtracting from the select word current in the other core, i.e.,
the net current in that core will be 1/3 that required to switch the core.
That core will be undisturbed and left in the CLEARED state.
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4-8.3 F MEMORY
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§.8:3. 1L

4-8.3.2

Thus, the current ratio used during WRITE is 3:1 (i.e., 1:1/3) with a dis-
turb current of no more than 1/3. Fig. 4-22 shows the timing and current
relationships in cores A and B of Fig. 4-21. Note that during both the

READ and WRITE processes, as well as during quiescent periods, there is a

current of % 1/3 in all the cores.

The complete READ-WRITE cycle has been described above. Sometimes the READ
operation is used alone, when there is no need or time to perform a complete
READ-WRITE cycle. When the computer returns to WRITE in registers have

had a READ cycle only, the CLEAR-WRITE cycle is used. CLEAR-WRITE is the
same as READ-WRITE except that the strobe into the buffer register is
eliminated. The CLEAR-WRITE cycle is necessary to insure correct writing,
since if a WRITE operation should follow a previous WRITE operation in the

same register, some bits might have both A and B cores SET.

GENERAL DESCRIPTION. The configuration memory is used to store 32 config-

uration words. Each word has a word length of 9 bits plus a parity bit.

This memory differs from the other memories in the computer in that it is a
thin magnetic film memory. A film memory has several potential advantages
over the familiar ferrite toroidal core memory: faster cycle time, lower
power dissipation, greater compactness, and simpler fabrication of the

wiring arrays.

MECHANICAL FEATURES. Two 16 X 16 arrays, one of which is shown in Fig. 4-23,
are placed side by side to form the memory. Each of the 256 individual film
elements of an array are round spots 0.060" in diameter and 5 X 10 inches
thick and are composed of 81% nickel and 19% iron. They are deposited on a
small plate of glass 1.6 inches square with a thickness of 0.007 inch. The
center to center spacing of the spots is 0.10 inches. The films are
relatively stable in ordinary environments and no special treatment or sur-
face coatings are required. However, a coating of "Krylon" is applied to

resist abrasion during handling.

There are three lines associated with each spot: (1) word, (2) digit and
(3) sense lines. TFig. L4-24 shows a complete set of word, digit and sense
lines for one spot. Fig. 4-25 is a schematic view of the drive and sense

line winding configuration.

Each word line is driven by a magnetic core. These cores serve a purpose
similar to that of the switch cores in the S Memory. Each core has two

selection windings, one of which is based on a decoding of three of the

address bits and the other on the remaining two address bits. The diode
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in the word lines permit current to flow only when the core is selected.
When a core is deselected, a bias current in the selection windings switches

the core back to its normal state.

The digit and sense lines are parallel. The digit lines usually have

current flowing in one direction. The current is reversed only during a
write cycle when a ONE is being written. The sense line picks up the signals
generated by a film switching during read-out. Note that the sense windings

are crossed between the two memory arrays to minimize noise pickup.

4-8.3.3 OPERATING PRINCIPLE. The thin films are fabricated in such a way as to
have an easy axis of magnetization. Application of an external field along
this axis simultaneously with the application of a small transverse field
can cause the film to switch from one magnetized state to the other. The
transverse field is generated by the word line current pulse and the longi-
tudinal field by the digit line current level.

One of the directions of the film's magnetization along the easy axis is
arbitrarily chosen to represent a ONE, and the other direction to represent
a ZERO. During a READ the field generated by the digit line is in the ZERO
direction. If the film is in the ONE state, it will switch to a ZERO and
the resulting rotating field induces a voltage in the sense line. If the
film is a ZERO, there is no switching but merely a slight disturbance of
the film's field and no voltage is induced in the sense line. Thus it can
be seen that the READ is a destructive type in that it clears the memory
word register. During a write operation, if a ONE is to be written, the
digit current is reversed so that the field switches the film into the
original ONE state. If a ZERO is to be written, the digit current is not
changed and the film remains in the ZERO state it was placed in during the

destructive read out.
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A. Photograph of shaft encoder.

B. Converter disc.”

Fig. 4-18. Shaft encoder.

* Reproduced by permission.
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CHAPTER 5
TIMING AND CONTROL

INTRODUCTION

The pattern of activity in time that takes place in the computer is determined by the
Control Element. This chapter will first describe the different sequences of events that
make up this pattern. It will then explain the basic features of control and timing that
keep the computer running in a disciplined fashion. Chapter 6 will give an integrated

functional description of the Control Element itself.

Previous chapters established that memories, logic nets, flip-flops, and other components
require finite but determinate lengths of time to operate. The fact that the operating
times are determinate means that maximum times to satisfy the "worst condition" situations
can be established. After initiating one event, it is only necessary to meter out the
required time before initiating the next event. The hardware for performing this metering

is usually a counter, although sometimes a delay line is used.

The simplest dynamic picture of the computer illustrates how data is transferred in and
out of storage devices as a function of time. It is only necessary to understand the time
patterns during this shuffling of data in order to understand the basic control and timing

features of the computer.
PATTERN OF ACTIVITY

Two basic cycles are dominant in the general pattern of recurrent execution of instructions:
the instruction cycle and the operand cycle. Other subordinate and auxiliary cycles occur
but they play a secondary and dependent role. Fig. 5-1(a) shows what is occurring in time
from this elementary viewpoint. Some of the subordinate activity is shown in Fig. 5-1(b).
During a typical instruction cycle an instruction is first strobed out of the main memory
into the N register. The contents of the N register are then decoded. At some point, the
base address in the N register may be modified by indexing it with the contents of an X
Memory register. During a typical operand cycle, an operand is first strobed out of memory
into the M register of the Exchange Element. The operations on the operand called for by
the instructions are then performed. The basic mechanisms involved in these operations were

described in Chapter 2.

Within the design limits of the computer, there is an obvious advantage in compressing the
amount of time required by the various patterns of activity. One method of reducing the
over-all time is to overlap the basic cycles and the subordinate activities. Usually one
cycle or phase need not be completed before the next begins. Fig. 5-2 shows how the
pattern illustrated in Fig. 5-1(b) can be compressed in time.
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5-3 OVERLAPPING

Some explanation of the points at which cverlap can generally occur is in order. Once an
instruction word has been read out of a memory element register and strobed into the N
register, it is possible to immediately start decoding the N register even though the
instruction word memory cycle is not completed until the instruction word is rewritten back
into the memory. Similarly, it is not necessary that all the bits of the N register be
decoded before the address modification process begins since only the Y base address and J
index bits are required for this process. The address modification process is completed
when the address of the operand appears at the output of the X Adder, ready for insertion
in the Q register. At this point the process of reading the operand out of memory can

begin.

The execution of the operation called for by the instruction can be initiated as soon as
the instruction in the N register is decoded. Usually, the instruction calls for an
operand. In Fig. 5-2, the operation is shown being initiated after the operand is strobed
out of memory into the M register. The operation process can overlap the operand rewrite
process whenever the operation does not involve modifying the operand before it is re-
written in memory. Thus, the processes performed during the execution of an instruction

can be overlapped to a considerable extent.

In Fig. 5-3, the next instruction word memory cycle is shown overlapping the operand word
memory cycle of the current instruction. This is allowable whenever the instruction word
and operand word are obtained from different memories in the Memory Element. This kind of
overlapping yields nearly all the speed advantages which can possibly accrue from over-
lapping memory cycles. In fact, the total effective time required to execute an instruction

can be reduced to little more than one memory cycle.

It should be noted that the preceding description of overlapping has been highly simplified.
Both the basic cycles and the subordinate forms of activity vary widely depending on the
specific instruction and the prior state of the computer. More details on overlapping are

covered in Chapter 9.

5-4 CONTROL SCHEME

5-4.,1 GENERAL. The basic control requirements involve some scheme for metering out time
for all the various activities that occur. This metering is done by counters. Each
of the basic cycles has its own time meter, or counter. In addition, several other
types of computer activity, such as those involving the X and F Memories, Change of
Sequence, the Arithmetic Element, etc., have a counter associated with them. These

counters will be described in Chapter 6 and Chapter 10.

It is also important to have a control scheme for determining precisely when a new

activity can begin. This is accomplished by an interlock control. An interlock is
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5-L4.2

5-4.3

5-5 TIMING

a storage device (a flip-flop) which remembers when various conditions have occurred.
A number of interlocks are used to determine when counters can begin their cycles and

thus when the associated processes can be performed.

COUNTERS. The general characteristics of counters as they relate to the control of
the computer will now be described. The basic function of the counter is to convert
a stream of indistinguishable clock pulses into distinguishable time levels. These
levels can then be used to select, or "gate" clock pulses at specific times. Con-
sider for the moment a free running counter (Fig. 5-4), that is, one in which an
uninterrupted stream of clock pulses is emanating from the related counter register
driver. Levels of 0.4 microsecond duration appear on the output wires of the time
level decoders in the time order shown in Fig. 5-4. After the counter reaches the
6a state, it reverts to the OQ state and begins another cycle.

One point should be emphasized. The clock pulse that causes the counter to generate
the 50 time level occurs 0.4 microsecond prior to the clock pulse that can be gated
by the 5a time level. The clock pulse that causes the 50 time level, occurs while
the counter is in state 4Q, and can in fact also be gated by the LQ time level.

This distinction should be borne in mind when attempting to determine when events,

caused by interlocks and time levels, occur with respect to each other.

As mentioned earlier, the various counters in the computer are associated with
specific kinds of computer activity. When the counter has completed its cycle
(which is tantamount to completing the associated activity), it will be inhibited
from recycling by interlocks. When this activity is again required, the interlock

will permit the counter to start again.

INTERLOCKS. Interlock level logic controls the counter register driver logic nets.
The inputs to these nets come from interlock flip-flops and from other sources of
interlock information in the computer. Basically, the interlock logic indicates
that all the things which must be done before starting a counter have in fact been
done. As indicated above, nothing prevents two counters from operating simultane-
ously. The only obvious limitation is that two counters may not control the
operation of the same device simultaneously. Nothing prevents them from alternately
doing this, however. The other somewhat arbitrary limitation is that usually no two
counters start at the same time. All of the information necessary to impose these

limitations finds its way into the interlock logic nets.

There is considerable value in understanding how the clock pulses and the time levels from

the time level decoders‘are specifically used in controlling the timing of events. All

events

occurring in the computer are initiated by gated clock pulses. This gating occurs

in register drivers and is determined by the output of logic nets. The event itself may

5.4 March 1961



arbitrarily be defined as the appearance of the gated pulse at the input to a flip-flop or

memory device. Fig. 5-5 shows the form of the logic at the register driver. Many control
levels of various kinds will enter the register driver logic nets. These levels will
always be ANDed with time levels from one or more counters. This logic will in turn be
ANDed with a clock pulse in the register driver itself to produce a gated clock pulse which

can initiate an event.

Certain generalities may now be stated: (1) every clock pulse which is used in the computer
is gated by some time level; and (2) every time level is coincident with some clock pulse.
This coincidence is shown in Fig. 5-6. These two generalities are keystone ideas in time

control in the computer.

Fig. 5-T7 shows how the counters are integrated with the rest of the computer by means of
their output time levels. This figure also indicates the feedback paths that can occur.
Note that the counter register driver logic is similar to that of any of the other register
drivers. It may in fact look at time levels from the same counter it is driving. After the
register driver pulses have transferred data between registers, cleared and set flip-flops,
read information out of memory, etc., the new states of the affected storage devices feed-
back through logic nets into the register drivers and then another cycle of events is

repeated.
5-6 SYNCHRONISM

The operation of most computers is described as either synchronous or asynchronous. The
term asynchronous implies the completion of an event is indicated by the occurrence of the
event itself; that is, it is not sufficient that the event be initiated, there must be
positive indication by the event itself that the event is completed. Then and only then can
a succeeding event take place. The term synchronous implies that each event takes a known
(maximum) length of time and that it is only necessary to meter out a time interval* before
initiating a succeeding event. In this case, no positive indication is required that the
event has in fact taken place before the next event is initiated. These terms have somewhat
loose meanings and are in practice difficult to use in precisely describing the behavior of
a computer. It may be stated, however, that TX-2 is dominantly a synchronous machine. It
is asynchronous to the extent that interlocks, and not fixed intervals of time, determine

when the basic memory cycles and change of sequence cycles can be initiated.

Because the computer is synchronous in nature, events initiated in the outside world (that
is, in the In-Out Element or at the pushbutton console) must be synchronized with the
computer. Chapter 3 described a synchronizer type circuit for doing this. The important
feature of this circuit is that the level outputs initiated by asynchronous pulses are
coincident in the sense of Fig. 5-6 with the computer clock pulses.

*This time interval is usually some integer number of basic time increments. These increments
are 0.2 or 0.4 microseconds, in the case of TX-2.
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5-7 SUMMARY

The dynamic operation of the TX-2 computer is determined by the counters and the interlock

control. The time levels from the counters find their way into logic nets which are used
to gate clock pulses. These gated pulses initiate events such as register transfers. The
sum of the events associated with a given counter constitute some basic process in the
computer such as a memory cycle. The interlock control determines when the specific

counters should start, that is, when it is required and permissible for one of the basic

processes to be initiated.
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CHAPTER 6
FUNCTIONAL ORGANIZATION
OF THE
CONTROL ELEMENT

6-1 INTRODUCTION
This chapter will describe the principle parts of the Control Element.

One of the basic problems in discussing the Control Element is that of properly establishing
the boundary lines between the other Elements, i.e., the Memory Element, Exchange Element,
Arithmetic Element, Program Elemerit and In-Out Element, and the Control Element itself.

(The problem is analogous to defining the boundary between the organs of a body and the
nervous system controlling the organs.) In the computer the demarcation line is somewhat
arbitrarily established by locating the information registers (exclusive of the counter
registers) in the Elements and the associated register drivers in the Control Element. One
can visualize the Control Element as reaching into all the Elements via the register

drivers and controlling the dynamic activity taking place in the registers that comprise
each Element. (See Fig. 6-1)

Behind the register drivers are a variety of Control Element devices whose chief function is
to coordinate the various activities going on in the computer, remember critical events in
the computer's previous history, and provide indication and a means of manual control of the

computer.

The Control Element consists of console controls and indicators, interlocks, counters and
register drivers, as well as the logic interconnecting them. Fig. 6-2 illustrates the

general paths of communication within the Control Element.

The control console contains all the manual controls, i.e., the pushbuttons and toggle
switches. The indicators on the console provide useful information to the operator on the

current state of the computer.

When an operand, instruction or other cycle is initiated an associated counter is used to
time control the activity. Time levels from this counter find their way into the register
driver logic involved in the activity. Interlocks are used to determine when the various

counters can begin their cycles.
6-2 CONSOLE ‘CONTROL

6-2.1 GENERAL DESCRIPTION. The console control consists of a number of pushbuttons and
toggle switches as shown in Fig. 6-3. All the pushbuttons are of the momentary type.
They and the toggle switches trigger level producing mercury relays. The levels
generated are asynchronous with respect to the computer clock pulses and are usually

synchronized before being used by the Control Element.
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6-2.2

The indicators shown in Fig. 6-4 consist of banks of lamps arranged to display both

in octal and binary form the contents of the registers and counters. Individual

indicator lamps are also used to display the state of interlocks, alarms and in-out

units.

PUSHBUTTON CONTROL

6-2.2.1

652.2.2

START-STOP CONTROL. The two pushbuttons STOP and CALACO* (Clear Alarms and

Continue) provide a manual means for stopping and restarting the computer.

The two push-push switches LOW SPEED and LOW SPEED REPEAT control the "speed"
of operation of the computer. If both switches are off, the computer will
operate in the high speed mode. When the computer is in the high speed
mode, the interlock control will allow the basic cycles of the computer to
occur as soon as these cycles are needed and can be performed. However,
when the computer is not in the high speed mode it is in either the }gz

speed mode or the low speed repeat mode, and four of the basic cycles

instruction word, operand word, deferred address word and change of sequence
cycles are controlled by the push-push switches PK STOPl, PK STOPE, QK STOP
and CSK STOP, respectively. When the computer is in either of these low
speed modes, i.e., not in the high speed mode, then the computer will stop
whenever it attempts to perform one of the four basic cycles for which the
corresponding console stop switch is on. If the LOW SPEED switch is on, the
computer can be restarted by pressing the CALACO pushbutton, but, if the LOW
SPEED REPEAT switch is on, the computer will be automatically restarted by a
pulse generated from an internal oscillator called the LOW SPEED OSCILLATOR.
The frequency of this oscillator can be continuously adjusted from O to

500 KC by knobs on the console.

Thus, if the computer is in the low speed repeat mode, and if only the

PK STOPl stop switch is on and the LSO is running at 1 cycle per second,
then every time the computer attempts to read an instruction word out of the
Memory Element it will stop and wait for (about) 1 second before continuing.

Note that the CALACO pushbutton clears all the existing alarms before it

starts the computer.

STARTOVER CONTROL. Pressing the STARTOVER pushbutton raises the flag of
Sequence 0. Since Sequence O is the highest priority sequence, pressing
the STARTOVER pushbutton will eventually cause a change of sequence to
Sequence 0 to occur. Sequence O will usually perform some special program

at that time.

®

o

*CALACO generates three pulses called CLEAR SUPPRESSED ALARMS, CLEAR UNSUPPRESSED ALARMS and
START.

6-4 March 1961



6~2:2.3

6-2.2.4

6:2.2:5

6:2.2.6

6=2.2.7

PRESET CONTROL. Pressing the PRESET pushbutton places certain critical flip-
flops in a pre-determined state. The states of these flip-flops guarantee

that pressing other pushbuttons will be meaningful.

CLEAR SUPPRESSED ALARMS CONTROL. Pressing the CLEAR SUPPRESSED ALARM push-
button will clear the computer of all the existing suppressed alarms. The
dozen or so alarms in the computer have various individually associated
controls. One of these controls can suppress the effect of the alarm,
although the alarm is still indicated when it occurs. This pushbutton

clears the indication of such alarms.

CLEAR UNSUPPRESSED ALARMS CONTROL. Pressing the CLEAR UNSUPPRESSED ALARMS
pushbutton will clear the computer of all the existing alarms that have not
been suppressed. The unsuppressed alarms cause the computer to stop. They

must be cleared before the computer can be started again.

CLEAR REAL-TIME CLOCK CONTROL. Pressing the CLEAR REAL-TIME CLOCK pushbutton

will reset the clock to zero.

COMPUTER MASTER START CONTROL. Pressing the CODABO (Count Down and Blast
Off) pushbutton initiates a succession of actions which start the computer
from any condition. The CODABO pushbutton actuates the following other
pushbuttons in the indicated order:

1) STOP

2) CLEAR SUPPRESSED ALARM

3) CLEAR UNSUPPRESSED ALARM

L) PRESET
5) STARTOVER
6) START

6-2.3 ALARM INDICATIONS AND CONTROL

March 1961

6-2.3.1 GENERAL DESCRIPTION. Alarms are generated by computer or programming errors.

These alarms may be classified into five categories:
1) Memory selection alarms
2) Memory parity alarms
3) In-out alarms
L) Operation code alarms

5) Miscellaneous alarms

Associated with each of most of the alarms is an indicator light, and a
toggle switch used to suppress the effect of the alarm condition. (Only the
miscellaneous alarms are not suppressible.) A two-tone chime emits one tone

whenever a suppressed alarm occurs and the other tone whenever an unsuppressed

6-5




6-2.3.2

6-2.3.3

6-2.3.k

6-2.3.5

6-2.3.6

*See Chapter T.

alarm occurs. The occurrence of an unsuppressed alarm will cause the com-
puter to stop, while a suppressed alarm will not interrupt the computer

operation.

Alarms are cleared by depressing the CLEAR SUPPRESSED ALARMS or CLEAR UN-
SUPPRESSED ALARMS pushbuttons.

MEMORY SELECTION ALARMS (PSAL AND QSAL). If either the P or Q register
contains an illegal address and is used to select a Memory Element register,
the associated memory selection alarm will be generated. The specified
address is illegal if either the address is in the range 220 000 to 377 577
(octal) or if the S, T, or U memories are addressed and these memories are
turned off. These memories may be turned off by the SMOFF, TMOFF, or UMOFF

console switches respectively.

OPERATION CODE SELECTION ALARM (OCSAL). This alarm occurs whenever the
computer selects one of the 14 undefined operation codes. The occurrence

may be caused either by a computer error or a programming error.

MEMORY PARITY ALARMS (MPAL, NPAL, XPAL AND FPAL). Whenever a bad memory
readout into a buffer is made, the parity alarm associated with this buffer
will occur. For example, if a Memory Element register is read into the M
register with a bad (even) parity, then an MPAL will occur.

IN-OUT ALARMS (IOSAL, MISAL). The IOSAL (In-Out Selection Alarm) alarm will
be generated whenever an IOS 3X XXX or IOS 6X XXX type instruction* selects
an in-out unit which is in the maintenance mode. The MISAL (Misindication
Alarm) alarm occurs whenever an in-out unit loses a line of data because the
central computer fails to perform the proper in-out instruction. Note that

MISAL alarms are associated only with "free running" in-out units.

MISCELLANEOUS ALARMS (TSAL, SYAL AND MOUSETRAP). A TSAL (T Memory Selection
Alarm) alarm is generated whenever the T Memory selection circuits fail to

perform properly.

A SYAL (Synch System Alarm) alarm is generated whenever the synch system

stops the computer.

The "Mousetrap" alarm is used to stop the computer during special, main-

tenance operations.
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6-2.4

6-2.5

6-2.6

6-2.7

6-2.8

6-2.9

AUTOMATIC START FROM ALARMS

6-2.4.1 AUTO START AFTER UNSUPPRESSED ALARM TOGGLE SWITCH. This switch automatically
starts the computer after it has stopped on an unsuppressed alarm. The
action of the switch is equivalent to pressing the CLEAR UNSUPPRESSED ALARM
pushbutton and then pressing the START pushbutton*.

6-2.4.2 PRESET AND STARTOVER AFTER SUPPRESSED ALARM TOGGLE SWITCH. This switch has
effect only when the computer has stopped on a suppressed alarm. The action
of the switch is equivalent to pressing the PRESET pushbutton and then
pressing the START pushbutton*.

TOGGLE SWITCH PROGRAM SWITCHES (TSP). The Toggle Switch Program counter consists of
18 toggle switches. The binary number set up in these switches is used to specify
the value of the program counter read out, whenever a change to Sequence O occurs.

This number is then loaded into the P register.

REMOTE PUSHBUTTON AND TOGGLE SWITCH PROGRAM. For convenience, a portable control
console is provided with several of the control pushbuttons and switches located on
it.

NO OVERLAP TOGGLE SWITCH (NO). This switch can be used to inhibit the simultaneous

execution of two Memory Element word read out cycles.

SYNCH TRAP TOGGLE SWITCH. This switch determines whether the trapping sequence con-
trol or the external Synchronization System will provide the signals which raise the

flag of the trapping sequence.

STOP AE ON SELECTED SYNCHRONIZATION TOGGLE SWITCH. When this switch is turned on,
the computer will stop whenever the particular conditions specified by the Synchron-

ization System exist in the Arithmetic Element.

INTERLOCK CONTROL

6-3:1

632

GENERAL DESCRIPTION. The interlocks themselves are individual flip-flops which are
set to ONE and cleared to ZERO when certain specific interlock logic associated with
them is satisfied. The important characteristic of these interlocks is that they
remember certain conditions have occurred after the conditions themselves have dis-
appeared. By means of the interlock control the past history of the computer is used

to control the future activity of the computer.

ARITHMETIC ELEMENT PREDICT INTERLOCK (AEP). This interlock is used to predict when
the Arithmetic Element will be finished with its current activity and be again avail-

able for another use. E.g., if a division is being performed, the AEP interlock

*Note that the action of the START button has been incorporated into the action of the CALACO
button.
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6-3.3

6-3.4

6-3.5

6-3.6

6-3.7

6-3.8

6-3.9

6-3.10

6230

6-3.12

predicts when this division will be completed and the Arithmetic Element free to

perform another operation, such as an addition.

E REGISTER BUSY INTERLOCK (EB). EBl indicates that the E register is currently in

use and is not yet available for some new use.

0
INSTRUCTION INTERLOCKl (PIl). PIl is one of the conditions that is required before
an instruction word memory cycle or a change of sequence cycle can begin. PIl is one

s
of the conditions that is required before an operand memory word cycle can begin.

INSTRUCTION INTERLOCK, (PIe). PI; indicates that a deferred address cycle is

required.

1
INSTRUCTION INTERLOCK3 (PI3). PI3 indicates that a change of sequence cycle is to
oceur.
INSTRUCTION INTERLOCK, (PIu). This interlock remembers the value of the hold bit of

the last instruction executed.

1
INSTRUCTION INTERLOCK5 (PIS). PI5 indicates that an intermediate deferred address

cycle is required.

Q REGISTER BUSY INTERLOCK (QB). QB1 indicates that the Q register is currently being

used in an operand cycle and is not yet ready for some new purpose.

X REGISTER BUSY INTERLOCK (XB). XB® indicates that the X (index) register is being

used and is not yet ready for some new purpose.

1
X MEMORY WRITE INTERLOCK (XW). XW indicates that both the X (index) register and

the X (index) memory are being used and are not yet ready for some new purpose.

F MEMORY INTERLOCK (FI). FIl indicates, in certain circumstances, whether the F
(configuration) memory is to be used.

6-4 INTERLOCK LEVEL CONTROL

6-4.1 GENERAL DESCRIPTION. Interlock control levels are used to start up counters, or

place them in waiting states. These interlock control levels are usually not

effective until the counters which use them are in some specific state.

The interlock control levels are generated by certain conditions in the computer

including, most importantly, the state of the interlock flip-flops.
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6-4.2

6-4.3

6-L.4

6-4.5

6-4.6

6-4.7

6-4.8

6-4.9

6-4.10

6l .11

6-4.12
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START

INSTRUCTION CYCLE INTERLOCK STARTl LEVEL (PI 1). This level is used to start

the PK counter in an instruction cycle. PK must be in its 00 resting state before

this level can be used.

INSTRUCTION CYCLE INTERLOCK START,, LEVEL (prSTART

the PK counter in a deferred address cycle. PK must be in its 00 resting state

2). This level is used to start

before this level can be used.

START 5
OPERAND CYCLE INTERLOCK START LEVEL (QI ). This level is used to start the QK
counter in an operand cycle. QK must be in its 00 resting state before this level
can be used.

START). This level is used to

CHANGE OF SEQUENCE CYCLE INTERLOCK START LEVEL (CST
start the CSK counter in a change of sequence cycle. CSK must be in its 00 resting
state before this level can be used.

o SEQ). This level indicates

INSTRUCTION CYCLE CHANGE OF SEQUENCE INTERLOCK LEVEL (PI
that a CSK counter cycle will occur after the current PK counter cycle. This level
is generated while the PK counter is running and interpreted by the logic controlling

PI_. PI_ then remembers whether a change of sequence has been requested.

3 3

INSTRUCTION CYCLE INTERLOCK WAIT LEVEL (PIWAIT).
to stop and wait in an intermediate state of the counter (state 23) until some other

interlock condition is satisfied. Various interlock conditions can cause PIWAIT to

This level occurs if PK is required

be generated.

INSTRUCTION CYCLE INTERLOCK LEAVE SEQUENCE LEVEL (PILV SEQ).

PK is required to leave the current instruction cycle uncompleted in order that a

This level occurs if

change of sequence cycle can occur. PK is in the 22nd or 23rd state when the
LV SEQ } LV SEQ
PI level becomes effective. Various interlock conditions can cause PI

to be generated.

F MEMORY COUNTER START LEVEL (LST2%% FK). This level is used to start the FK
counter in an F (configuration) memory cycle. FK must be in its 00 resting state

before this level can be used.

START
X MEMORY COUNTER START LEVEL (L—————->XWK). This level is used to start the XWK
counter in an X (index) memory cycle. XWK must be in its 00 resting state before

this level can be used.

ARITHMETIC COUNTER START LEVEL ( Sl AK). This level is used to start the AK

counter. AK must be in its 00 resting state before this level can be used.

ARITHMETIC STEP COUNTER START LEVEL ( ol ASK). This level is used to start the
ASK counter. ASK must be in its OO resting state before this level can be used.



6-h.13 IN-OUT DELAY SYNCHRONIZATION COUNTER START LEVEL ( ST IODK). This level is used

to start the IODK counter part of the CSK counter. (Part of this counter is used
during an in-out delay synchronization cycle, while the other part is used during a
change of sequence cycle.) The counter must be in its 8th state before this level
can be interpreted.

6-L.14 ALARM DELAY COUNTER START LEVEL ( o2 ADK). This level is used to start the ADK
counter in an alarm delay cycle. ADK must be in its 00 resting state before this

level can be used.
6-5 COUNTER REGISTER DRIVER CONTROL

6-5.1 GENERAL DESCRIPTION. The counter register drivers gate clock pulses. These gated

clock pulses are then used to change the state of the associated counter.

Usually a counter will proceed from one state to the next in step with a stream of
gated clock pulses. However, the register driver logic may alter this pattern and
give use to one of three possibilities. The possibilities are that the counter may
"rest", "wait", and "skip" when it is in particular states. These possibilities are
determined by the counter logic and the general condition of the computer at the

moment .

Usually a counter will rest in its 00 state until it has a reason to start counting
or because it is inhibited from starting by other conditions. The interlock levels
in the counter register driver logic determine when the counter can start. As
mentioned above, frequently a counter will not count through all its states
successively, but, instead will skip a number of states. These skips are controlled
in ‘the register driver logic by levels which define the kind of counter cycle being
performed. In other circumstances a counter will stop and wait in some intermediate
state. This usually occurs because some interlock level prevents clock pulses from

getting through the register driver to change the state of the counter.
6-6 COUNTERS

6-6.1 GENERAL DESCRIPTION. The physical structure of time level counters was described in
Chapter III. The time levels generated by a counter are used as factors in register
driver logic. There they serve to identify the particular clock pulses which, when
ANDed with the remainder of the register driver logic, affect the contents of the

associated register.

'

There are eight counters in the Control Element. These counters time control the
execution of memory cycles, change of sequence, arithmetic operations, and other

miscellaneous activities.
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The logic controlling the counters reflects conditions existing throughout the computer

including the state of the counters themselves.

6-6.2 CHANGE OF SEQUENCE COUNTER (CSK). This is a three stage counter with one additional
flip-flop used as an interlock. Although 16 time level states can be decoded, the

counter actually generates either one or the other of two sets of 8 time levels.

The first set of 8 states from 00 to O7 comprise a part of the counter which time
controls the change of sequence cycle. This part of the counter is called CSK. The
second set of 8 states from 08 to 15 comprise a part of the counter which time con-
trols the in-out delay synchronization cycle. This part of the counter is called
IODK*. As will be seen later, 1.6 microseconds is sufficient to perform an in-out

delay synchronization cycle. For this reason only states 08 to 11 of IODK are used.

6-6.3 INSTRUCTION COUNTER (PK). This is a five stage counter consisting of two sets of
five flip-flops. One set generates alpha time levels and the other set generates
beta time levels. The basic function of this counter is to time control the

execution of an instruction or deferred address cycle.

6-6.4 OPERAND COUNTER (QK). This is a five stage, two phase counter similar in structure
to PK. The basic function of this counter is to time control the execution of an

operand cycle.

6-6.5 ARITHMETIC OPERATION COUNTER (AK). This counter differs from the other counters in
that it is actually a shift register. Like the other counters it has both an alpha
and beta phase. The basic function of this counter is to time control the execution
of arithmetic operations. Thus AK time controls the basic addition, subtraction,
scale and cycle operations. Certain other arithmetic operations require the ASK

counter to operate concurrently with the AK counter in the time control process.

6-6.6 ARITHMETIC ELEMENT STEP COUNTER (ASK). This is a seven stage counter. The basic
function of this counter is to count the iterations of certain sub-operations that
occur during the AK cycle, when the divide, multiply, tally, and, in a special sense,

normalize operations are being executed.

6-6.7 F MEMORY COUNTER (FK). This is a four stage, two phase counter. Only 9 of the 16
possible alpha states are decoded, the beta states are only partially decoded. The
basic function of this counter is to time control the execution of the F

(configuration) memory cycle.

6-6.8 X MEMORY COUNTER (XWK). This is a three stage counter. The basic function of this
counter is to time control the execution of the write part of an X (index) memory

read-write cycle.

*As will be seen, this part of the counter is just as frequently called DSK, the delay synchroni-
zation counter.
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6-6.9 ALARM DELAY COUNTER (ADK). This is a two stage counter where the counting mode is
determined by variable delay units. The basic function of this counter is to control
time delays, after an alarm occurs, so as to stop the computer and, in some cases,

start it again in a controlled manner.
6-7 REGISTER DRIVERS FOR REGISTERS

6-7.1 GENERAL DESCRIPTION. Information transfers in the central computer are effected by
pulses from register driver units. These register drivers are bit by either alpha
or beta clock pulses every 0.4t microsecond. These pulses are gated in the register

drivers in the usual way by logic levels, including time levels.
6-8 REGISTERS

6-8.1 GENERAL DESCRIPTION. The registers in the central computer hold information that is
either in process of being transferred to or from the various memories and in-out
units, or is the intermediate result of a computation or other operation. The
information contained in the register frequently makes a significant contribution
to the decisions made in the Control Element. The registers themselves, however,
are classified as belonging to the various other elements, i.e., the Arithmetic

Element, Program Element, Exchange Element, In-Out Element and Memory Element.

Information is placed in registers by register driver pulses. The information

remains there until new information is placed there by new register driver pulses.
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CHAPTER 7
OPERATION CODES

INTRODUCTION

As mentioned earlier; the P register specifies the address of instruction words in the
Memory Element. An instruction word is strobed into the N register where it is interpreted.

Bits Nh 3 determine the basic operation to be performed during the execution of the

3.7

instruction, e.g., multiplication, addition, etc.

In Chapter 2, the over-all pattern of activity occurring in the computer during the execution
of a typical instruction was described. This chapter emphasizes the variety of operations
that can be specified by the operation codes and discusses the basic features of these

operations. The details of the logic of each operation is covered in Chapter 16.
DEFINED OPERATION CODES

Of the 64 possible operation codes, only 50 are currently defined. These defined codes are
listed in Fig. 7-1. (The attempted execution of an instruction containing an undefined
operation code causes an OCSAL alarm.) New codes can be defined in the future as new

programming needs arise.

It should be noted that AOP and IOS are variations of the single operation code OPR. The
selection of OPRAE or OPRIOS is determined by the value of bits 2.8 and 2.7 in the address

section of the instruction.
INSTRUCTION CHARACTERISTICS

During the execution of indexable and configurable type instructions, the CF, OP and J bits
are interpreted in the normal manner. However, during the execution of nonindexable or

nonconfigurable type instructions, these bits are either interpreted in a different way or
not at all. Whether the instruction is indexable or nonindexable, or configurable or non-

configurable usually depends only on the operation code specified in the instruction.

Note that, as described in Chapter 2, the base address of indexable instructions is modified
T The result of this addition

is called the indexed base address. However, any instruction can call for deferred addressing.

by adding the content of the specified X Memory register X

If deferred addressing is called for, then the final base address, obtained as a result of
the deferred addressing, is modified by the content of the index register specified by the
original instruction word. In this case it is more precise to speak of the indexed final

base address.

Many instructions can perform the same operation upon several active subwords simultaneously.

In the following discussions usually the effect of the operation upon only one active subword

is described.
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During the execution of most instructions the operand word written in the selected Memory

Element register at the end of the instruction is also copied into the E register. An

instruction usually involves both an operand register in the Memory Element and an operand

register in the central computer, i.e., the Arithmetic Element, Program Element, Exchange

Element, or In-Out Element. When either operand register is the E register in the Exchange

Element, then the rule about placing the final content of the selected Memory Element

register in the E register does not apply.

ARITHMETIC ELEMENT OPERATION CODES

With the exception of AOP, all Arithmetic Element instructions are both indexable and

configurable.

T4l

Toles

7-h.3

T-b. 4

LOAD OPERATIONS. During the execution of a LDA instruction, the content of a

selected Memory Element register is configured and "loaded" into the A register of
the Arithmetic Element. The LDB, LDC and LDD instructions are similar except that
registers B, C, and D, respectively, are loaded with the configured operand.

The LD- type instructions rewrite the original (unconfigured) operand back into the
selected Memory Element register and also leave this original operand copied in the

E register.

STORE OPERATIONS. During the execution of a STA instruction, the content of the A
register is inversely configured and "stored" in the selected Memory Element register.
The STB, STC and STD instructions are similar except that the inversely configured
contents of registers B, C and D, respectively, are stored in the selected memory

register.
The final content of the selected memory register is also placed in the E register.

EXCHANGE A OPERATION. The EXA instruction is a combination load and store type
instruction. It exchanges the content of the selected Memory Element register with

the content of the A register.

The content of the A register is inversely configured and stored in the selected
memory register (as in a STA instruction) and, at the same time, the content of the
selected memory register is configured and loaded into the A register (as in a LDA

instruction).
ARITHMETIC OPERATIONS
T=U 4.1 ADD OPERATTION. During an ADD instruction, the content of the selected

Memory Element register is configured and added to the content of the A

register. The signed sum is left in the A register. If an overflow occurs

Tl March 1961



in any of the active subwords of A as a result of this addition, the
associated overflow flip-flop Zi is left set to ONE. (Zi is always cleared
at the beginning of the ADD instruction in all the active subwords. )

) SUBTRACT OPERATION. During a SUB instruction, the configured content of
the selected Memory Element register is subtracted from the content of the
A register. The signed difference is left in the A register. Except for
the fact that the configured operand loaded into D from memory is initially

complemented, the addition and subtraction process are identical.

7-4.4.3 MULTIPLY OPERATION. During a MUL instruction, the configured content of
the selected Memory Element register is multiplied by the content of the
A register. The signed product is left in the AB register. Note that the
right most bit of the active subword in the B register is not part of the
product, and is in fact a copy of the sign bit in the A register.

7-4.4.4 DIVIDE OPERATION. During a DIV instruction, the content of the AB register
is divided by the configured content of the selected Memory Element register.
The dividend in the AB register before the DIV is performed has the same
form as a product after an MUL. The signed quotient is left in the A
register and the signed remainder is left in the B register. If an overflow
occurs (as it will unless the divisor is smaller than the part of the
dividend in A), the associated overflow flip-flop Zi is left set to ONE.

(Zi is always cleared at the beginning of the division process.)

7l s SCALE OPERATIONS. In the SCA instruction, the content of the A register is
shifted the number of places to the left or right specified by the configured

content of the selected Memory Element register.

The configured operand is first loaded into the D register from memory.
Each active subword in the A register is then arithmetically shifted "n"
places (where "n" is the number now located in the sign quarter of each
corresponding subword in the D register). The subword in A is shifted to

the left if "n" is positive and to the right if "n" is negative.

The contents of the overflow flip-flops may be shifted by the scaling
process, but the true sign of the data in the A register is not altered by

the scaling process.
The SCB instruction is the same as the SCA instruction, except that the

shifting process dccurs in the B register instead of in the A register.

Note that there are no overflow bits associated with the B register.
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7-4.4.6

Tl T

7-4.4.8

The SAB instruction is the same as the other scale instructions, except that

the shifting takes place in the AB register.

CYCLE OPERATIONS. The CYA, CYB and CAB instructions are similar to the SCA,
SCB and SAB instructions respectively, except that the CY- type instructions
ignore the state of the overflow flip-flops and give no special significance
to the sign bits in the data registers. The CY- type instructions simply
rotate the data in the registers as if it had no arithmetic significance.

NORMALIZE OPERATION. In the NOA instruction, the content of the A register
is shifted to the left or right until the value of the data in the A register
(and the overflow flip-flops) has a value between 1/2 and 1.

The configured content of the selected Memory Element register is first
loaded into the D register from memory. ZEach active subword in the A
register is then arithmetically shifted until its content is "normalized".
The number of shifts required to do this is added to (if shifting to the
right occurred) or subtracted from (if shifting to the left occurred) the
current number in the sign quarter of each corresponding subword in the D

register.

The data will be shifted to the right only if a previous instruction left
the overflow flip-flop associated with the data set to ONE. Note that a
shift of only one place to the right is required to normalize the data in
this case. 1In all other cases, the normalizing process shifts the data to
the left.

TALLY OPERATION. During a TLY instruction, the number of ONES in the
configured content of the selected Memory Element register are counted. The
total is then added to the content of the D register.

The configured operand is first loaded into the A register from memory. The
number of ONES in each active subword of the A register is added to the
current number in the sign quarter of each corresponding subword in the D

register.

7-4.5 LOGICAL OPERATIONS

T-4.5.1

INTERSECT OPERATION. During an ITA instruction, the configured content of
the selected Memory Element register is logically ANDed ("intersected") with
the content of the A register. The "intersection" is left in the A register.
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7-4.5.2 UNITE OPERATION. During a UNA instruction, the configured content of the
selected Memory Element register is inclusively ORed ("united") with the

content of the A register. The "union" is left in the A register.

7-4.5.3 DISTINGUISH OPERATION. During a DSA instruction, the configured content of
the selected Memory Element register is exclusively ORed ("distinguished")
with the content of the A register. The result of the "distinguishing"

process is left in the A register.

7-4.5.4 INSERT OPERATION. The INS instruction is similar to a STA instruction in
which certain bits in the A register are "masked". The INS instruction
copies the configured contents of those bits in the A register that have
corresponding bits in the B register in the ONE state into the selected
Memory Element register. The remaining bits in the memory register are left
undisturbed.

ARITHMETIC ELEMENT COMMAND. . See Miscellaneous Operation Codes (OPRAE).

7-5 X (INDEX) MEMORY OPERATION CODES.

The X Memory type instructions are similar to the Arithmetic Element load, store and exchange

type instructions. Some of the X Memory type instructions involve arithmetic modification

of the content of an X Memory register by the content of a Memory Element register, or the

arithmetic modification of a Memory Element register by the content of an X Memory register.

None of these instructions are indexable, but all are configurable.

T-5.1

7-5.2

(e
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RESET X OPERATION. During an RSX instruction, the content of the X Memory register
XJ, specified by the J bits of the instruction word, is "reset" by the right 18 bits
of the configured content of the selected Memory Element register. By means of the

RSX instruction data in the Memory Element can be loaded into the X Memory.

DEPOSIT X OPERATION. During a DPX instruction, the inversely configured content of
the X Memory register XJ, specified by the J bits of the instruction word, is
"deposited" in the selected Memory Element register. By means of the DPX instruction,

data in the X Memory can be stored in the Memory Element.

In this instruction the content of XJ is considered as a 36 bit number, where the left

18 bits are the same as the sign bit of the right 18 bits.

EXCHANGE X OPERATION. The EXX instruction is a combination reset and deposit instruction.
It "exchanges" the configured content of the selected Memory Element register with

the content of the X Memory register XJ specified by the J bits of the instruction

word. The content of the X Memory register is inversely configured and stored in the
selected Memory register (as in a DPX instruction), and at the same time the content

of the selected Memory Element register is configured and loaded into the specified

X Memory register (as in a RSX instruction).
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i)

AUGMENT X OPERATION. During an AUX instruction, the content of the X Memory register
X, specified by the J bits of the instruction word is "augmented" by the configured

content of the selected Memory Element register.

Specifically, the ONE's complement sum of the right 18 bits of the configured content
of the selected Memory Element register (with zeroes in the inactive subwords) and

the content of the X Memory register X._ is placed in XJ.

J

ADD X OPERATION. During an ADX instruction, the content of the X Memory register X
specified by the J bits of the instruction word is added to the content of the

J

selected Memory Element register.

Specifically, the ONE's complement sum of the right 18 bits of the configured content
of the selected Memory Element register (with zeroes in the inactive subwords) and
the content of the X Memory register XJ is placed in the selected Memory Element

register.

7-6 F (CONFIGURATION) MEMORY OPERATION CODES

The F Memory operations perform only load and store operations. ‘These operations are not

configurable, but are indexable.

To651

7=6.2

7-6.3

SPECIFY FORM OPERATION. During a SPF instruction, the content of the rightmost
(first) quarter of the selected Memory Element register is loaded into the F Memory

register specified by the CF bits of the instruction word.

SPECIFY GROUP OF FORMS OPERATION. During a SPG instruction, the 36 bit content of

the selected Memory Element register is loaded into four successive F Memory registers.
In the execution of the instruction the content of the rightmost (first) quarter of
the memory register is loaded into the F Memory register specified by the CF bits of
the instruction word. The contents of the second, third, and fourth quarters of the
same Memory Element register are then loaded into the following F Memory registers,

successively.

Should the CF bits specify the last F Memory register, then the content of the next
quarter of the Memory Element register is loaded into the first F Memory register

(FO), and so forth. (Note that the contents of F, always remain zero. )

FILE FORM OPERATION. The FLF instruction is the reverse of the SPG instruction in
that the content of the F Memory register specified by the CF bits of the instruction

word is stored in the first quarter of the selected Memory Element register.
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7-6.4 FILE GROUP OF FORMS OPERATION. The FLG instruction is the reverse of the SPG
instruction in that the contents of four successive F Memory registers are stored in

the first, second, third and fourth quarters of one selected Memory Element register.
EXCHANGE ELEMENT OPERATION CODES
A1l of the Exchange Element instructions are indexable and configurable.

T-7-1 LOAD E OPERATION. The LDE instruction is similar to the Arithmetic Element load type
instructions. In this case the configured content of the selected Memory Element

register is loaded into the E register.

7-7-2 STORE E OPERATION. The STE instruction is similar to the Arithmetic Flement store
type instructions. In this case, the inversely configured content of the E register

is stored in the selected Memory Element register.

7-7-3 INTERSECT E OPERATION. The ITE instruction is similar to the ITA instruction. In
this case, the configured content of the selected Memory Element register is "inter-
sected" (logically ANDed) with the content of the E register. The result is left in
the E register.

Tl PERMUTE AND COMPLEMENT OPERATIONS. During a PCM instruction, the content of the
selected Memory Element register is first configured and placed in the E register.
A1l the active subwords in the E register are then complemented. The final content
of the E register (whether active or not) is then placed in the selected Memory
Element register without inverse configuration. This instruction alters the original

contents of the selected memory register.

If the configuration bits (CF) specify permutation only, then the operation is
usually called PERMUTE (PMT); if the configuration bits specify activity only, the
active subwords are complemented and the operation is usually called COMPLEMENT (COM).

SKIP OPERATION CODES

Of the three skip instructions, SED is indexable and configurable. The other two, SKM and

SKX, are neither indexable nor configurable.

T7-8.1 SKIP IF E DIFFERS OPERATION. During the SED instruction, the content of the E register
is compared with the content of the selected Memory Element register. If the contents
differ, then the next instruction is not executed (that is, it is skipped). Specif-
ically, the configured content of the selected Memory Element register is compared
with the content of the E register to determine whether any subwords differ. If there

is a difference, then the next instruction is skipped.
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7-8.2

7-8.3

The content of the E register remains unchanged during an SED operation.

SKIP ON M OPERATION. The SKM instruction is a bit-setting and decision-making
instruction. In this instruction, the J bits of the instruction word are used to
select a particular bit in the selected Memory Element register. The CF bits are

then used to specify such functions as changing the binary value of the selected bit
and making a decision based on the value of the selected bit. The exact interpretation
of the J and CF bits is illustrated in Fig. T7-2.

The four J bits (3.4 - 3.1) are used to specify the bit number, and the remaining two
J bits (3.6 - 3.5) are used to specify the quarter number. For example, Ol 0001
specifies bit 1.1 of the selected memory register. Similarly, 00 1010 specifies bit
4.10.

The following points should be noted:

1) Decision making is always done first.

2) Bit changing comes next.

3) Cycling, or rotation, comes last.

L) The final content of the E register is the same as the final content of the
selected Memory Element register.

5) If all the cf bits are zero, SKM does nothing other than changing the content
of the E register.

6) SKM is the only operation that can affect the operand word meta bit. (It
can not change the parity bit.)

SKIP ON INDEX OPERATION. The SKX instruction permits a programmer to dismiss, raise
a flag, skip the next instruction and either reset or augment an index (X Memory)
register. Neither an operand from the Memory Element nor a configuration from the
F Memory is used. The X Memory register specified by the J bits of the instruction
word is the only operand register affected by this operation.

The seventeen base address bits (2.8 - 1.1) are used as an operand rather than as the
address of an operand. Since X Memory registers contain 18 bits, this operand is
normally treated as a positive 18-bit number. If any deferred address cycles are
executed, then it is possible for the resulting base address (which is to be used as
the operand) to be negative.

The J bits address both an X Memory register, XJ, and the flag of a sequence, FLAGJ

(if one exists).

The CF bits are decoded to specify the desired variation of the SKX operation:
E)Y-TF the CF5 bit is a ONE and if the hold bit is a ZERO, then a dismiss is

performed, lowering the flag of the current sequence.
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2) 1If the CF), is a ONE, then FLAG; will be raised (if such a flag exists).
Since flag raising occurs after a flag lowering caused by a dismiss, an SKX
operation which dismisses and raises the flag of its own sequence will have
no apparent effect on the flag.

3) The remaining three CF bits are decoded as shown in Fig. T7-3.
T-9 JUMP OPERATION CODES

JPA, JNA and JOV are indexable, configurable instructions. JPX and JNX are nonindexable,

nonconfigurable instructions. JMP is an indexable, nonconfigurable instruction.

7-9.1 JUMP OPERATION. The JMP instruction has several variants. These variants are
specified by the CF bits:
1) 1If the CFl bit of the instruction word is a ZERO, then a jump is performed
to the Memory Element register specified by the final base address. If the
CFl bit is a ONE, then a jump is performed to the Memory Element register
specified by the indexed final base address.
2) When the CF,

ONE of the JMP instruction is placed in register X

bit of the instruction word is a ONE, then the address plus

T of the X Memory.

3) When the CF3 bit of the instruction word is a ONE, then the address plus
ONE of the JMP instruction is placed in the first two quarters of the E
register.

4) When the CF), bit of the instruction word is a ONE, then the content of the
Q register is placed in the third and fourth quarters of the E register.

5) When the CF5 bit is a ONE and the hold bit (H) is a ZERO, then the present

sequence is dismissed.
Fig. T-4 summarizes the interpretation of the CF bits during a JMP operation.

7-9.2 JUMP ON POSITIVE A OPERATION. During a JPA instruction, a jump is performed to the
selected Memory Element register if any one of the active subwords in the A register

is positive and non-zero.

If a jump occurs, the right half of the E register is set to the return address (the
address plus ONE of the JPA instruction); otherwise, no change is made in the E

register.
7-9.3 JUMP ON NEGATIVE A OPERATION. The JNA instruction is the same as the JPA instruction,

except that a jump is performed only if one of the active subwords in the A register

is negative and non-zero.
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7-9.4

(=940

72046

T-10 IN-OUT

TSD is

T7-10.1

JUMP ON QYERFLOW OPERATION. The JOV instruction is the same as the JPA instruction,
except that a jump is performed only if the overflow flip-flop (Zi) of one of the
active subwords in the A register is set to a ONE.

The JOV instruction does not clear overflow.

JUMP ON POSITIVE INDEX OPERATION. During a JPX instruction, a jump is performed to
the selected Memory Element register if the initial content of X Memory register XJ

is positive and non-zero.

If a jump is made, the return address is saved in the right half of the E register.
Also, if a jump is made and the hold bit (H) is a ZERO, then the present sequence is

dismissed.

Whether a jump occurs or not, the JPX instruction adds an increment to the content
of XJ. This increment is represented by the CF bits. These 5 bits are interpreted
as a b bit one's complement number with a sign digit.

JUMP ON NEGATIVE INDEX OPERATION. The JNX instruction is the same as the JPX
instruction except that a jump is performed only if the initial content of the X

Memory register XJ is negative and non-zero.
OPERATION CODES
indexable and, sometimes, configurable; IOS is neither indexable nor configurable.

TRANSFER DATA OPERATION. The TSD instruction transfers data between the selected
Memory Element register and the K-th In-Out buffer register. If the K-th In-Out unit
is an input device, data is transferred from the K-th In-Out buffer register to the
selected Memory Element register. The transfer path is reversed when the K-th In-Out
unit is an output device.

For certain In-Out units, the data can be transferred in either a NORMAL or an ASSEMBLY
mode. When a TSD is executed in the NORMAL mode, data is transferred as a contiguous
block of bits. In this case, the data is configured. If a TSD is executed in the
ASSEMBLY mode, the data is not configured; instead, the Memory Element word is

rotated one position to the left or right after the In-Out data transfer is completed.

The CF bits specify configuration when TSD is in the NORMAL mode. However, when TSD
is in the ASSEMBLY mode, the CF bits are not used.

TSD uses the hold bit (H) in a unique manner. Normally, if the hold bit of the
previous instruction is a ONE, no change of sequence can occur before the current
instruction is executed. However, if the current instruction is a TSD and the K-th

In-Out unit is not ready for an In-Out data transfer, then a dismiss is performed
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(vefore the TSD is executed) independent of the value of the hold bit of the previous
instruction. This is called "dismiss and wait" to distinguish it from ordinary
dismissing, since the TSD instruction which causes the dismiss has not yet been
executed. When the K-th In-Out unit is ready to perform the In-Out data transfer,
then the flag of the K-th sequence is raised and the TSD is finally executed.

A I0
7-10.2 IN-OUT SELECT OPERATION. See Miscellaneous Operation Codes/ (OPR™ "),

MISCELLANEOUS OPERATION CODES

At present, there is one Miscellaneous Operation Code, namely OPR. Depending on the value
of bits 2.8 and 2.7 in the final address section of the instruction word, OPR may be inter-
preted as an AOP or IOS instruction. Specifically, if bits 2.8 and 2.7 are both ZERO, an
I0S is executed; if bit 2.8 is a ZERO and bit 2.7 is a ONE, then an AOP is executed. That

is,
N2.8 N2.7 OPR
0 0 108
0 il AOP
AR 0 undefined
il il undefined

Both AOP and IOS are nonindexable, nonconfigurable instructions.

Fig. T7-5 shows the interpretation of the Y bits in the instruction word for both the IOS

and AOP variation of this instruction.

7-11.1 ARITHMETIC ELEMENT COMMAND OPERATION. The AOP (OPRAE) instruction is used when it is
desired to manipulate directly existing data in the Arithmetic Element.

In this operation, the J and CF bits of the instruction word are not used, and the H
bit serves its normal "hold" function. The Y bits, as shown in Fig. 7-5, determine
the Arithmetic Element operation (addition, subtraction, etc.) and also the config-

uration (activity and subword form only).

T-11.2 IN-OUT SELECT OPERATION. The IOS (OPRIO) instruction is used to control and/or report
on the status of the In-Out system. For example, it can be used to raise and lower

flags, and to connect and disconnect the various In-Out units.

The J bits of the instruction word are used to specify the sequence controlled by the
I0S operation. The interpretation of the Y bits is shown in Fig. 7-5.

Only two of the CF bits are used. If CFl is a ONE, then a report on the current state

of the In-Out unit is placed in the E register. The sequence specified by the J bits

is dismissed when CF5 is a ONE and H is a ZERO.
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