
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

TX-2 TECHNICAL MANUAL

LINCOLN MANUAL NO. 44

Volume 1

MAY 1961

The work reported in this document was performed at Lincoln Laboratory,
a center for research operated by Massachusetts Institute of Technology,
with the joint support of the U.S. Army, Navy and Air Force under Air
Force Contract AF 19(604)-7400.

LEXINGTON MASSACHUSETTS

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

\

\

PREFACE

This manual documents the organization and logic of the Lincoln Laboratory

TX-2 computer. The manual is intended to serve primarily as an aid to the

computer maintenance personnel and, in order to be of maximum value, should be

supplemented by a file of TX-2 block and wiring schematics. The TX-2 "Red

Book", which describes the TX-2 circuits and packages, should also be available

for reference. The manual by itself will also be useful to programmers and

other computer operators who desire more detailed information about the oper­

ation of the computer than is available in the TX-2 programming manual.

The first volume of the manual gives a simple general description of the

organization of the computer. The principal emphasis is on the general

specifications, organization, and component parts of the computer. The second

volume covers in detail the logic and timing of the computer. Each element,

i.e., the Memory Element, Control Element, Program Element, Exchange Element,

Arithmetic Element and In-Out Element, is discussed separately. Descriptions

of the individual in-out units will be added in the future to complete the

chapter on the In-Out Element. The final volume lists and describes all the

possible control, memory, and instruction timing cycles. It is arranged

primarily for convenient use during computer maintenance operations.

Acknowledgements are due to the technical writers from Jackson & Moreland, Inc.,

who prepared the text and figures for the manual; and to Madeline Higgins at

Lincoln Laboratory who retyped the several versions of the manuscript and,

with the help of Anna Nagy, prepared the final text for printing.

June 1961

J.M. Frankovich

Group 51

TX-2 TECHNICAL MANUAL

TABLE OF CONTENTS

VOLUME I

CHAPTER 1 INTRODUCTORY DESCRIPTION

CHAPTER 2 FUNCTIONAL DESCRIPTION OF TX-2

CHAPTER 3 CIRCUIT LOGIC ELEMENTS

CHAPTER 4 MEMORIES

CHAPTER 5 TIMING AND CONTROL

CHAPTER 6 FUNCTIONAL ORGANIZATION OF THE CONTROL ELEMENT

CHAPTER 7 OPERATION CODES

VOLUME II

CHAPTER 8 PULSE AND LEVEL NOTATION

CHAPTER 9 COMPUTER DYNAMICS

CHAPTER 10 CONTROL ELEMENT

CHAPTER 11 MEMORY ELEMENT

CHAPTER 12 PROGRAM ELEMENT

CHAPTER 13 EXCHANGE ELEMENT

CHAPTER 14 ARITHMETIC ELEMENT

CHAPTER 15 IN-OUT ELEMENT

VOLUME III

CHAPTER 16 TIMING CHARTS

1-1 INTRODUCTION

1-2 FUNCTION OF CCMPUTER

1-3 SPECIAL FEATURES

1-4 CCMPUTER STRUCTURE

1-5 BASIC ELEMENTS

1-6 BASIC PRINCIPLES OF OPERATION

1-7 CCMPUTER CHARACTERISTICS

1-8 CCMPONENT LOCATION

1-1 BASIC TX-2 ELEMENTS

1-2 TX-2 SYSTEM BLOCK DIAGRAM

1-3 FLOOR PLAN - TX-2 CCMPUTER ROOM

March 1961

CHAPTER 1

INTRODUCTORY DESCRIPI'ION

TABLE OF CONTENTS

LIST OF FIGURES

1-1

1-1 INTRODUCTION

CHAPI'ERl

INTRODUCTORY DESCRIPI'ION

TX-2 is a large-scale, high-speed, general-purpose digital computer designed and built by

the Digital Computers Group at the Massachusetts Institute of Technology Lincoln Laboratory,

Lexington, Massachusetts. It is an experimental computer and contains both solid-state and

electron-tube devices. Provisions have been made so that additional circuitry can be readily

incorporated into the existing framework in order to increase the usefulness of the computer.

1-2 FUNCTION OF CCMPUTER

TX-2 is currently used as a research tool in scientific computations and in data-handling

and real-time problems. It differs from conventional general-purpose computers in that it

permits an exceptionally high degree of flexibility in programming and in the use of input­

output devices. This increase in flexibility, needless to say, is accompanied by a marked

increase in design complexity. In many respects the machine is unique and one that has no

counterpart at present.

1-3 SPECIAL FEATURES

To enhance programming flexibility, several types of special control have been incorporated

into the TX-2 computer. For example, the configuration of the basic computer word is under

program control and allows operands to be divided into subwords during the execution of

instructions. This enables the same operation to be performed simultaneously upon several

subwords, The result is an over-all increase in the effective speed of the computer.

The multiple-sequencing feat~e allows automatic switching in the computer among various

program sequences. The individual in-out devices are associated with particular program

sequences in a manner such that several devices can operate simultaneously. A particular

program sequence is then started when the associated device needs attention. By assigning

priority numbers, it is possible to determine which program sequences can start at a given

time. A low priority sequence can also be interrupted when a ~igher priority sequence

needs to be started. Data can be thereby transferred between the computer and the in-out

device having the highest priority first, and then between the computer and the next lower

priority device, etc.

With overlapped memory operations, instruction words and operand words can sometimes be

obtained simultaneously from memory, thereby effectively halving the memory cycle times.

1-2 June 1961

Other features of TX-2 are index registers and deferred addressing. These features, now

common in many computers, serve as further aids in progrannning. Index registers allow the

programmer to effec½ively modify the base address section of the instruction word without

actually modifying the instruction word itself. By means of deferred addressing (or

substitute addressing), it is possible to go to an intermediate address in memory in order

to obtain the desired address of an operand.

1-4 CCMPUTER STRUCTURE

TX-2 is a parallel binary computer with a basic 36-bit word length. The words in the

Memory Element also have a parity check bit and a progrannning meta bit, Any word in the

Memory Element can be used for instructions, operands, or deferred addresses. The internal

memory is all random access and consists of 69,632 registers of parity checked magnetic­

core memory and about 70 additional toggle switch, plugboard, and other miscellaneous

registers. Approximately 200,000 instructions can be executed per second. Instructions

are of the indexed single-address type. A fixed-point, signed-fraction, one's complement

binary number system is used.

1-5 BASIC ELEMENTS

Fig. 1-1 illustrates the basis elements that comprise the TX-2 computer and Fig. 1-2 shows

the principal registers and transfer paths. The basic elements are: the Memory Element

(ME), the Arithmetic Element (AE), the Program Element (PE), the In-Out Element (IOE), the

Exchange Element (EE), and the Control Element (CE). Not shown are the various power

supplies, coders, decoders, counters, alarms, indicators, logic nets, and other computer

elements that contribute to the over-all system design.

1-6 BASIC PRINCIPLES OF OPERATION

Programs and data are usually read into the Memory Element via a paper tape reader. The

initial read-in programs are placed manually in the plugboard or toggle switch storage.

During the execution of a typical instruction in a program, the instruction is obtained

from the Memory Element register addressed by the P register and placed in the N register

in the Program Element. Here the instruction is interpreted. If an operand is required

its address is determined and placed in the Q register. The operand is then obtained from

the Memory Element and placed in the M register in the Exchange Element. The operation

specified by the instruction is then performed upon the operand. The final result is

either: (1) left in one of the registers of the AE, EE, or PE, or (2) transmitted to one of

the IOE devices, or (3) placed back in the register of the ME from which the operand was

obtained.

March 1961 1-3

1-7 COMPUTER CHARACTERISTICS

Tables 1-1 through 1-3 summarize the general characteristics of the TX-2 computer. The

actual significance of such terms as meta bit, two-phase clock, and 9-bit quarters will be

explained in the chapters that follow.

1-8 COMPONENT LOCATION

A floor plan of the TX-2 computer installation is shown in Fig, 1-3, along with the

physical location of the principal registers, memories, and in-out devices. The entire

facility occupies approximately 1500 square feet, including a separate room for the air

conditioner and the primary power supplies. Although the U Memory has not as yet been

constructed, its future location is indicated.

1-4 March 1961

General

Instructions

Operands

Arithmetic

Memory

March 1961

TABLE 1-1

TX-2 CHARACTERISTICS

CENTRAL CCMPUTER

38-bit word length, including a memory parity check bit and a
programming meta bit

Parallel word transfers

Synchronous timing 5 me two-phase clock

One single-address instruction per word

Addresses are indexable; double indexing is possible

Indirect addressing, on all instructions, can be iterated
indefinitely.

Operands can be given a subword configuration based upon 9-bit
quarters:

One 36-bit operand
Two 18-bit operands

Four 9-bit operands
One 27-bit and one 9-bit
operand

Most instructions specify a subword configuration, and the
arrangement and number of the subwords used

l's complement binary number system, fixed-point arithmetic

From 200,000, 36-bit additions per second to 800,000, 9-bit
additions per second

From 50,000, 36-bit multiplications per second to 400,000, 9-
bit multiplications per second

From 14,000, 36-bit divisions per second to 200,000, 9-bit
divisions per second

Arithmetic instructions longer than one memory cycle can be
executed concurrently with nonarithmetic instructions

S Memory: 65,536 registers of magnetic-core memory with 6.4-
microsecond cycle time and 4.0-microsecond access time

T Memory: 4,096 registers of magnetic-core memory with 4.4-
microsecond cycle time and 2.0-microsecond access time

16 registers of toggle-switch memory

32 registers of plugboard memory

5 registers in the Arithmetic and Exchange Elements

Each register, except the last five, has an additional meta
(i.e., trapping) bit

All core memory registers are parity checked

Instructions and operands can be obtained concurrently

Addressing for a total of 131,072 registers of memory
provided

1-5

Special Memories

Area Requirements
(approximately)

Checking
·Facilities

TABLE 1-1 - cont'd

TX-2 CHARACTERISTICS

CENTRAL CCMPUTER

X Memory: 64 register magnetic-core index register memory,
19-bit word, with 3.6-microsecond cycle time and o.6-micro-
second access time

CF Memory: 32 register magnetic-film configuration memory,
10-bit word, with 0.8-microsecond cycle time and 0.2-micro-
second access time

1500 square feet of floor space

20 kw of power

20 tons of air conditioning (primarily for S Memory)

Marginal checking

Test programs

1-6 March 1961

March 1961

Photoelectric Tape
Reader (PETR)

High-Speed Tape
Punch

Display Scope

Lincoln Writer

Xerox High-Speed
Printer

Datrac

TABLE 1-2

TX-2 CHARACTERISTICS

IN-OUT SYSTEN

200-2000 lines per second

200 lines per second

20 to 80 microsecond per point

Keyboard:

Tape Reader:

Tape Punch:

Printer:

Paper Feed:

Printing Rate:

Sample Rate:

1-7

Up to 10 characters per second

19 lines per second

20 lines per second

10 characters per second

2 to 4 inches per second

2000 to 4ooo characters per
second

approximately 25 kc

TABLE 1-3

TX-2 CHARACTERISTICS

MAGNETIC TAPE SYSTEM

General 3 information channels, 2 tracks per channel, 4oo bits per
inch per channel

1 block mark channel

1 timing track (800 flux reversals per inch); recorded at
fixed density, used to synchronize writing and to detect
speed of tape

Tape Speeds Controlled Speeds Full Bore

Inches/sec: 35 6o 150 300 320 - 1000

Bits/sec (kc): 42 72 180 360 380 - 1200

3 bit lines/ sec (kc): 14 24 6o 120 128 - 400

Microsecond/9 bit byte: 214 125 50 25 23 - 7,5

Capacity 10 10 bits in system

70 X 106 bits/reel 3/4-inch tape (now) (7200 ft. reel)

250 X 106 bits/reel 1-1/4-inch tape (future)

1-8 March 1961

ME:Moft'/
Co~~'-

6l..6-JAG1Ji -
~l.6-ME-1J1

;~ .

j~

. ., .~
I

A~\T'"'IV\6-i\(EXC.fiA~/:aE'
"' - PRO(:,QAM

EL~~UJT" - i'~'T
.. .

==Lb-M~T ·~
•r

rw-ou, e:~~,

l 5 l'AfitT- STOP ro"'1TRol.. l

~ E] t:1 □
l ,-, N1 I t.J"' £,O~TAol..)

[.:x+.lreA Loek co,.lfAA,\.. }
lREblS~ ~s~ c::OA.tr~3
coa.n~o\. E LE-M~T CC. E)

. - ·- A,~ -
'°6-MoA't EL.IM~i (ME) -... ltJ!,tla,..)C,~ l¼'t>OAe-.s.~

4 II. l lNS~l)C.TIAl.l

0~ •
BJ l J

., [K]
]> I M l l I N [EJ

l I L E .] .

C. O~I> ~

~ · .. ~

1PI< [R 1 re.,. 1 00
~ -......

eXGttAf.lbE . E'l,.Eft'~Nl' {1:t:) OR

!ID I l
Mc

A 4 ~llotJ
OAfAAt-lC> @<f~l tJ • r

I B] -
J_ ~~1 [.:ro Bus

Af<IT~Mt-r1c Et.tMa,.r .
[ro . se-Q. sw, n:H . I (Ai)

) :co go FffQ r [.ro Cof.l~l} l ~c~~c::.c 5'!-t.Eer6~
l.ro ,wv,cc I l F\..ft6,S]

L! -~--our ~LEMEUr (I()e'> PRObeAM 1:rt.EMHJT (PE)

hu~E 1-2. T)(-l. S"t!ti&tJl Bt.oa,11D11~61uu11~ .Sf.low,~ PR1t..>GcP1t~ ~~1Sr6~ A~1>

13 it~Fff. •. PAT,tl~

I Q I

]

' I
1 .
'

i t
.:~ ;

I l
i i
J PbtV~t
(~

~oo/A i
' ' }

. J& I '"4~ T'f/A~TI(i N- our
L) 5~Ut:11Cc- y l'>f:t l A,.I,\ (Ott.fol~

,._ f: l..o ,._" S'E:-LecToa. -bU);,\i:,1'4T
&us , t Lt/Ac-NT

lN·D~ T C.f- <.o,n tu>L
$~i;> c.E /A~IA02.Y /Atlt\O l '(f:-L f,J/\f: N i lo~ Ii

C A

LJ
f L o b ll. P L A. ri - T X · '2. C O /A P O T e IL Jl O ~ ti\

--l=- l(r J - ~

CHAPTER 2

FUNCTIONAL DESCRIPTION OF TX-2

TABLE OF CONTENTS

2-1 INTRODUCTION

2-2 WORD STRUCTURE

2-2.1 GENERAL DESCRIPTION

2-2.2 INSTRUCTION WORD

2-2 ,3 DEFERRED ADDRESS WORD

2-2.4 OPERAND WORD

2-3 PROGRAM ELEMENT

2-3,1 GENERAL DESCRIPTION

2-3-2 PROGRAM ELEMENT MEMORY SYSTEMS

2-3-3 SEQUENCE SELECTION

2-3 -3-1 WAIT CYCLE

2-3.3.2 CHANGE OF SEQUENCE CYCLE

2-3 .3 .3 PROGRAM SEQUENCE PRIORITY

2-3.4 INTERPRETATION OF INSTRUCTION WORD DEFER AND OP BITS FOR BASIC SEQUENCE CYCLES

2-3,4,1 DEFERRED ADDRESS CYCLE

2-3.4.2 OPERAND ADDRESS CYCLE

2-3.4.3 JUMP CYCLE

2-3.5 GENERAL INSTRUCTION WORD INTERPRETATION

2-3.5.1 JANDY BITS INTERPRETATION

2-3,5,2 OP BITS INTERPRETATION_

2-3.5.3 CF BITS INTERPRETATION

2-4 MEMORY ELEMENT

2-4.1 GENERAL DESCRIPTION

2-4. 2 MEMORIES

2-4.3 MEMORY REGISTER SELECTION

2-4.4 MEMORY OVERLAPPING

2-4.5 MEMORY SPEED

2-5 EXCHANGE ELEMENT

2-5,1 GENERAL DESCRIPTION

2-5 ,2 OPERAND CONFIGURATION IN THE EXCHANGE ELEMENT

2-5.2.1 PERMUTATION

2-5,2, 2 ACTIVITY

2-5.2.3 SUBWORD FORM

2-5. 2.4 PARTIALLY ACTIVE SUBWORDS

2-6 ARITHMETIC ELEMENT

2-6. 1 GENERAL DESCRIPTION

2-6.2 ARITHMETIC ELEMENT REGISTERS

2-6.3 INFORMATION PATHS IN THE ARITHMETIC ELEMENT

2-6 .4 OPERATIONS IN THE ARITHMETIC ELEMENT

2-6 . 5 CONFIGURATION IN THE ARITHMETIC ELEMENT

2-6.6 QUARTERED PATHS IN THE ARITHMETIC ELEMENT

March 1961 2-1

2-7 IN-OUT ELEMENT

2-7,1 GENERAL DESCRIPI'ION

2-7,2 STRUCTURE OF THE IN-OUT ELEMENT

2-7,3 IN-OUT BUS

2-7,4 SEQUENCE SWITCHES

2-7,5 IN-OUT DEVICES

LIST OF FIGURES

2-1 BIT NUMBERING SCHEME

2-2 N REGISTER INSTRUCTION AND DEFERRED ADDRESS WORD LAYOUT

2-3 M REGISTER OPERAND WORD LAYOUT

2-4 PROGRAM ELEMENT, SIMPLIFIED BLOCK DIAGRAM

2-5 TRANSFER PATHS DURING SEQUENCE SELECTION AND CHANGE OF SEQUENCE

2-6 SEQUENCE DETERMINATION AND HOLD CYCLE

2-7 PROGRAM SEQUENCE PRIORITY LIST

2-8 TRANSFER PATHS FOR INSTRUCTION AND DEFERRED ADDRESS CYCLES

2-9 TRANSFER PATHS DURING OPERAND ADDRESS CYCLE

2-10 OP CODE BLOCK DIAGRAM

2-11 TRANSFER PATHS DURING CONFIGURATION CONTROL CYCLE

2-12 SUBWORD FORMS

2-13 MEMORY ELEMENT, SIMPLIFIED BLOCK DIAGRAM

2-14 EXCHANGE ELEMENT PRINCIPAL PATHS FOR INFORMATION FLOW

2-15 E REGISTER PERMUTATION PATHS

2-16 PERMUTATION FORMS (MEMORY TO CCll1PUTER)

2-17 INVERSE PERMUTATION FORMS (COMPUTER TO MEMORY)

2-18 ACTIVITY FORMS

2-19 SUBWORD FORMS

2-20 SIGN EXTENSION

2-21 SIGN EXTENSION

2-22 ARITHMETIC ELEMENT TRANSFER PATHS

2-23 QUARTER COUPLING UNIT BLOCK DIAGRAM

2-24 QUARTER COUPLING CONNECTIONS

2-25 COUPLING UNIT CONNECTION FORMS

2-26 IN-OUT ELEMENT SIMPLIFIED BLOCK DIAGRAM

2-2 March 1961

CHAPTER 2

FUNCTIONAL DESCRIPTION OF TX-2

2-1 INTRODUCTION

This chapter provides an introduction to the over-all operation of the computer. It will

establish a useful perspective for reading the more detailed descriptions that appear in

the succeeding chapters. It includes a brief functional description of five of the

following six basic Elements that constitute the computer:

1) Memory Element

2) Exchange Element

3) Program Element

4) Arithmetic Element

5) In-Out Element

6) Control Element

The Control Element is not described in this chapter. It is sufficient to know that it is

involved in all the activity that takes place in the other Elements.

The term "central computer" is used throughout the manual to refer to the computer as a

whole, with the exception of the Memory Element and the In-Out Element. Thus the In-Out

Element is described as "communicating with the central computer", etc.

The chapter begins by discussing the basic computer words, e.g., instruction words, operand

words and deferred-address words. The more common interpretation of the bits in these

words is established and the bit and quarter numbering scheme is described.

Since the basic cycle of the computer begins with an instruction word, the whole process by

which an instruction word is obtained and interpreted is described. These processes

primarily involve the Program Element. The subsequent activity that can occur as a result

of interpreting the instruction word is then described. After this discussion, involving

the Program Element, the chapter proceeds by discussing the other Element's in the computer.

The basic processes that can occur in each Element are identified and described.

2-2 WORD STRUCTURE

2-2.1 GENERAL DESCRIPTION. The basic computer word is 36 bits long, plus a parity check

bit and a word meta bit. The 36 bit word is divided into four 9-bit quarters.

March 1961

The bit numbering scheme for the major flip-flop and memory registers is shown on

Fig. 2-1. Note that the bits in. each quarter, as well as the quarters themselves

are ordered from right to left. When a double-number is used, the number to the

left of the decimal point refers to the quarter in which the bit is found and the

2-3

number to the right of the decimal point refers to the specific bit within the

quarter. Thus 2.6 refers to bit 6 in quarter 2.

As shown in Fig. 2-1 not all registers contain full words, nor do all full word

registers contain a meta and/or a parity bit. Furthermore, the double-number scheme

is not always used. For example, the QKIRCF register contains a 9-bit word plus a

parity bit. These bits are numbered 1 to 10 from right to left with no reference to

quarters.

2-2.2 INSTRUCTION WORD. The layout of an instruction word as it appears in the N register

after being read out of memory is shown in Fig. 2-2(a). The content of N provides

all the information for executing the instruction, including the information for

obtaining an operand if one is required by the instruction. The content of N is

actually disassembled and transferred to other registers for interpretation, but

the discussion here will be limited to the content of the N register itself.

The instruction word in the N register can be broken up into groups of bits that

have specific functions. Note that in nearly all instructions, all the bits which

appear in the N register are interpreted, although not all the bits necessarily

have the same functional interpretation in every instruction.

The base address is specified by the 18 Y bits (2.9 - 1.1). The final address is

usually found by "indexing" the base address with the content of the X Memory index

register selected by the six J bits (3.6 - 3.1), but is sometimes simply equal to

the base address. The final address is usually the address of an operand or of the

next instruction. It can also be the address of a deferred address.

Bit 2.9 is called the defer (*) bit.* When the defer bit is a ONE, the address is

used to read a deferred address out of memory. The deferred address replaces the

original address. When bit 2.9 is a ZERO, the address is used in the manner speci­

fied by the operation code.

The six OP bits (4.3 - 3.7) are used to specify the operation called for by the

instruction wortl. There are currently 50 defined operation codes that can be speci­

fied by these six bits.

The five CF bits (4.8 - 4.4) are usually used to specify a computer configuration by

specifying the address of a configuration word stored in the F Memory. This word is

read out and its content used to restructure operand words. For example, the

configuration information can be used to form two 18-bit subwords, one of which is

inactive, from a 36 bit operand word.

* The defer bit is also frequently designated by a delta"~", as well as by an asterisk"*"·

2-4 March 1961

Bit 4.9 is called the hold (H) bit. The computer is designed to run with a variety

of In-Out devices, for example a paper tape reader, punch, etc . Each of these

devices requires its own computer program or program sequence. When the hold bit

is a ONE, the computer can be forced to proceed from the current instruction to the

next instruction in the same program sequence. For example, the computer can be

forced to hold in the paper tape reader program sequence instead of changing to the

punch sequence.

Bit 2.10 is called the "parity" bit and bit 4.10 is called the "word meta" bit.

These bits have somewhat special purposes. The parity bit is used solely for

checking for memory readout errors. The meta bit is ordinarily used as a kind of

tag. By operating the computer with the "Trapping" program sequence turned "on",

instruction words with meta bits set to ONE can be trapped and processed by the

Trapping program sequence.

While the defer (*) , operation (OP) and hold (H) bi ts are always interpreted as

described above, the base address (Y), index (J) and configuration (CF) bits can be

interpreted in quite different ways than those described. The interpretation is a

function of the operation code being executed. The special interpretations will be

discussed later.

2-2.3 DEFERRED ADDRESS WORD. This is a word that is used in the deferred addressing

process described later in the chapter.

The layout of a deferred address word as it appears in the N register after being

read out of memory is shown in Fig. 2 -2(b) . Bits 4 . 9 - 3.1 are not used. The

function of the bits that are used is the same as the function of the corresponding

bits in an instruction word.* Note that a deferred address can hence call for

another deferred address when the defer bit is a ONE.

2-2.4 OPERAND WORD. When an instruction calls for an operand word, it is obtained from

the Memory Element and placed in the M register. The layout of a memory operand

word as it appears in the M register is shown in Fig. 2-3.

Depending on the operation and configuration specified by the instruction, the

operand can be subjected to considerable manipulation as it is transferred through

the computer. The configuration specifies which quarters of the operand word are

to be used, and with which quarters of the central computer they are to be associated.

The parity bit is used to check the parity of the word as it appears in the M

register, and the meta bit is used as a signal to the Trapping program sequence.

Note that the meta bit of a word in the Memory Element can be altered only when the

word is placed in the M register and even then it can only be altered by a particular

instruction.

* The base address Yin a deferred address is always indexed.

March 1961 2-5

2-3 PROGRAM ELEMENT

2-3,1 GENERAL DESCRIPTION. The primary functions of the Program Element are: (1) to

determine what is the location in the Memory Element of the next instruction; and

(2) to interpret the instruction when it is obtained and placed in the N register.

Fig. 2-4 is a simplified block diagram of the Program Element.

The first function is determined by decisions made in the Sequence Selector. This

unit determines what program sequence the next instruction will be taken from.

During the execution of each instruction, the computer must constantly be deciding

whether it will continue executing instructions in the current program sequence or

change to a new program sequence. The logic for making these decisions is found i~

the Sequence Selector.

The function of interpreting the content of the N register requires a variety of

registers, memories, coders, decoders and special circuits. Generally these can be

grouped according to the bits in the N register they are interpreting. During the

interpretation of a typical instruction word the components might be functionally

grouped as follows:

Interpreting J Bits

J Decoder

X Memory

X Register

The J bits in the N register are decoded by the J Decoder to select a register in

the X Memory. The X register serves as the memory buffer register.

Interpreting Y Bits

X Adder

Q Register

The X Adder can form the sum of the Y bits in the N register and the content of X

register, or simply transmit the value of Y. This result can then be copied into

the Q (or P or E) register.

Interpreting OP Bits

PKIROP

QKIROP
A1aR0p (during arithmetic instructions)

The OP bits are copied into the PKIROP register and there interpreted. Further

interpretation also can occur in the QKIR0P and AKIR0P registers.

2-6 March 1961

Interpreting CF Bits

PKIRCF

CF Decoder

F Memory

QKIRCF (and associated decoders)

AKIRCF (during arithmetic instructions)

The CF bits are copied into the PKIRCF register. The CF Decoder then selects a

register in the F Memory. The content of the selected register is placed in the

QKIRCF register and is interpreted there. Further interpretation also can occur in

the AKIRCF register.

Interpreting H Bit

The H bit is copied into the PKIRH flip-flop before being interpreted.

These distinctions are not rigid, however, since most of the components serve more

than one function. Thus the X Memory, and the registers associated with it, are an

integral part of the program sequence selection process, as well as being used in

the interpretation of instruction words.

2-3,2 PROGRAM ELEMENT MEMORY SYSTEMS. The two memories in the Program Element are a 64-

register 19-bit/register X Memory and a 32-register 10-bit/register F Memory. The

X Memory holds the program counters used in the sequence selection process and the

indices used to modify the base address of instruction and deferred address words.

All of the 64 registers in the X Memory can be used as index registers; however,

March 1961

only 33 of them can be used to hold program counters. In addition to holding indices

and program counters, the X Memory registers can also be used to store operands.

Operands can be transferred from the X Memory to the Memory Element, and vice versa,

over communication paths between the X Adder, Exchange Element and Memory Element.

These paths also provide a means for loading an X register from a Memory Element

register and for storing the content of an X register in a Memory Element register .

The F Memory holds configuration words. Paths between the QKIRCF register,

Exchange Element and Memory Element provide a means for loading and storing F

Memory registers.

Both memories are equipped with circuits which compute and check the parity of

memory words. Also associated with each memory are a memory address decoder and

a memory buffer. The decoder selects the memory register whose content is to be

read into the memory buffer. During the memory write cycle, the content of the

buffer regi ster i s written into the selected memory register.

2-7

The first register of both memories are made so as to always contain all ZEROES.

Thus if register x0 is selected for modification of the base address of an instruction,

then effectively no modification occurs. Similarly, when register F0 is selected

for a configuration, then, as we shall see, only the normal 36-bit word computer

configuration is realized.

2-3-3 SEQUENCE SELECTION. At some point just before the completion of an instruction

word memory cycle, the Program Element must decide whether the next instruction is

to be taken from the current program sequence or from some new program sequence.

The decision is based on information from the Sequence Selector and on the "hold"

and "dismiss" information found in the instruction being executed. This latter

information is decoded from the P!C[RH' P!C[RCF and P!C[ROP registers, respectively.

Fig. 2-5 illustrates the parts of the computer involved in a sequence selection.

The program sequences are numbered O, 40, 41, •.. , 77 (octal). These numbers

correspond to the addresses of the registers in the X Memory which ordinarily store

the program counter associated with each program sequence. Only the program counter

of the current program sequence is not held in the X Memory; instead, it is held in

the P register and its sequence number in the K register. As we shall see, the

program sequences have a priority relationship among themselves.

The number of the current program sequence is stored in the K register. The

Sequence Selector is informed of this number via the K Decoder. Another program

sequence can request attention via the Sequence Selector if: (1) the flag of this

new program sequence is up and requesting attention; (2) no other higher priority

program sequence has its flag up; and (3) the current instruction is dismissing or

the current program sequence has a lower priority number than the new sequence and

the hold bit of the current instruction is in the "not hold" state. When these

conditions are fulfilled, the computer will stop executing instructions in the

current program sequence and start executing instructions in the new program

sequence. This is called "a change of program sequence". The Sequence Selector

provides the number of the new program sequence via the J Coder.

Fig. 2-6 illustrates schematically the procedure followed during the execution of

each instruction which determines whether the next instruction will be from the

current program sequence or from some other sequence. Note that this figure does

not show all the details of the procedure; these will be covered later.

2-3.3.1 WAIT CYCLE. Sometimes the computer may be unable to proceed executing

instructions in any program sequence. In such instances the computer goes

through a wait cycle lasting 1. 6 microseconds and then again tries to

continue in some program sequence. The computer will repeat wait cycles

until conditions a.re present for proceeding in some program sequence.

2-8 March 1961

2-3 . 3.2 CHANGE OF SEQUENCE CYCLE. When the computer is able to make a change of

sequence the number of the new program counter is placed in the J bits of

the N register from the J Coder (Fig. 2-5) , The new program counter is

then obtained from the J-th register (XJ) in the X Memory and placed in

the X register . The content of the P register and the X register are

interchanged by transferring the content of P directly to the X register

and, at the same time, copying the content of the X register to P via the

X Adder .

Note that since the X Adder forms the sum of the content of the X register

and the Y bits of the N register, the Y bits are ordinarily made all ZEROES

during a change of sequence . However, if the number supplied by the J

Coder is 00, then the content of XJ (i . e ., of x0) will always be ZEROES.

In this case, the content of the special toggle switch register TSP is

placed in the Y bits of N instead of ZEROES. This special register

provides the programmer with a means of manually specifying the initial

value of one particular program counter .

The content of the K register (K has been holding the old program counter

number) is also interchanged with the J bits of the N register. After

this, the old program counter, now in the X register, can be stored in its

proper location (XJ) in the X Memory . Note that the J bits of the N

register first contain the number supplied by the J Coder while the new

program counter is being obtained from the X Memory, and afterwards contain

the number from the K register while the old program counter is being

stored in the X Memory. The state of the Sequence Selector changes to

conform to this change of sequence by virtue of the change of the content

of the K register. Certain information about the change of sequence is

remembered in the E register of the Exchange Element in order to allow the

programmer to analyze the sequence change .

2-3 . 3 . 3 PROGRAM SEQUENCE PRIORITY . The priority relationship of the program

sequences is determined by the Priority Patch Panel plugboard. The

programmer can arbitrarily specify various priority relationships .

However, the plugboard is ordinarily connected with the order of priorities

shown in Fig . 2 -7. The names associated with the program sequences are

also shown in the figure .

2 - 3 . 4 INTERPRETATION OF INSTRUCTION WORD DEFER AND OP BITS FOR BASIC SEQUENCE CYCLES .

March 1961

The address of the next instruction in the current program sequence is locat ed in

the P register. This is the register in the Program Element that addresses (selects)

the register in the Memory Element whose content is read into the N register and

interpreted as an instruction word . (See Fig. 2-8.) Note that since a read-out of

the Memory Element is usually destructive, the word read out, in this case the

2-9

content of N, is parity checked and rewritten back into the Memory Element.

Immediately after an instruction word is read out of memory (and rewritten), the

content of the P register is increased (indexed) by one and the contents of the H,

CF and OP bits are placed in the PKIRH' PKIRCF and PKIROP registers. This whol e

process is called the instruction word cycle.

2-3.4.1 DEFERRED ADDRESS WORD CYCLE. (See Fig. 2-8 .) After an instruction word

has been read into the N register, the value of its defer bit (*)is

sensed. If the defer bit is a ONE, the instruction is called for a

deferred address word. This base address Y is then placed in the Q

register of the Program Element, and the content of the J bits is (tempo­

rarily) stored in QKIRcF ·

A deferred address word is then read out of the Memory Element, using the

memory address in Q, into the N register. Only the base address (Y) and

index (J) bits of this deferred address word will be interpreted by the

Program Element. If the defer bit (*)in the base address is a ONE , the

address of another deferred address word will be computed, by indexing the

base address, and placed in Q. The process repeats until finally a

deferred address word is read out whose defer bit (*)is ZERO . The

indexed base address is again computed, but this time it replaces the Y

bits in the N register . The original value of the J bits in the instruction

word is then restored and the instruction is interpreted. Note that the

interpretation is made with the hold, configuration and operation code

information contained in the original instruction word that initiated the

deferred addressing since this information was stored in the PKIRH, PKIRCF

and PKIR0p registers, respectively, all during the deferred addressing

process . The purpose of the deferred addressing process is to compute a

new set of Y bits that may be used with the original hold, configuration

and operation code information.*

2-3. 4 . 2 OPERAND ADDRESS CYCLE . When the defer bit is ZERO and the operation code

calls for an oper and, the final address is placed in the Q register. In

this case , an operand is read into the M register from the register in the

Memory Element addressed by the Q register. (See Fig. 2 -9 .) While the

operand word is in the Exchange Element, it is altered according to the

configuration specified by the instruction word . The configured operand

can then be transferred to the Arithmetic Element , In-Out Element or

Program Element. Or it can be simply kept in the Exchange Element for

further processing.

* In effect , each new deferred address cycle simply substitutes new Y bits for the previous set,

and then interprets the new defer bit.

2-10 March 1961

If a "load" type instruction is executed, the original operand read out of

memory will be rewritten back in memory. If a "store" type instruction is

involved, the result of the operation is written back into memory in place

of the original operand read out of memory.

2-3.4.3 JUMP CYCLE. When the defer bit is ZERO and the operation code specifies a

jump instruction, the final address is placed in the P register if the jump

conditions are satisfied. (See Fig. 2-8.) After either a jump cycle or

an operand cycle, unless a change of sequence or wait cycle occurs, P

addresses the Memory Element for another instruction word which is then

read into the N register.

2 - 3 -5 GENERAL INSTRUCTION WORD INTERPRETATION .

March 1961

2 - 3 . 5.1 JANDY BITS INTERPRETATION. Indexable type instructions add the content

of an index register (XJ) to the base address Y of the instruction word.

The sum is called the effective address, r. (See Fig . 2-4.) With this

indexing system, it is possible to alter the address section of instructions

before they are performed, without changing the instruction word in memory.

The selection of a particular index register is accomplished by decoding

the six J bits in the N register instruction word . The content of the

selected index register, XJ, is read into the X register, and then re­

written from the X register back into the specified index register of the

X Memory. By means of the X Adder, the content of XJ is added to the base

address, Y, to form the effective address, r.

It should be noted that the X Adder is part of the Program Element and that

any additions performed here are not related to arithmetic operations

performed in the Arithmetic Element. It should also be noted that index

register x0 is permanently wired so as to appear to contain ZEROES and is

normally used when the base address of an indexable type instruction is to

remain unchanged. In this case the effective address r is equal to the

value of the Y bits .

2 - 3 . 5 . 2 OP BIT INTERPRETATION. The operation code of the instruction word is

specified by the six OP bits of the N register (see Fig. 2 -10). These six

bits give a coded representation of the 26 = 64 possible operations.

Interpretation of the operation code is accomplished by means of three 6-bit

registers designated PKIROP' QKIROP and AKIRop ·

2-11

The PKrROP register is interpreted to determine the kind of instruction to

be performed. Execution of the instruction may involve copying PKrROP into

QKrROP' and perhaps QKrROP into AKrRop · Each of these OP registers is

interpreted by two kinds of decoders: an "OP Decoder", which resolves the

particular operation code to be performed; and an "OP class decoder", which

determines certain class properties of the operation code . PKrR0P and

QKrROP are used by the whole computer, whereas AKrROP is used primarily in

the Arithmetic Element.

2-3.5,3 CF BIT INTERPRETATION. In configurable instructions, the five CF bits are

copied into the PKrRCF register. (See Fig. 2-11.) They are then decoded

and used to select a particular register in the F Memory . The content of

the selected register is read into the F Memory buffer register, QKrRCF'

where it is interpreted .

Two of the bits in the QKrRCF register specify the form ("coupling" or

"fracture") of the computer during the execution of the instruction. This

subword form can be one 36-bit subword, two 18-bit subwords, one 27 -bit

subword and one 9-bit subword, or four 9-bit subwords (see Fig. 2-12) .

These subwords can be formed simply by coupling together the quarters of

the data registers in various combinations during data processing.

Four bits in the QKrRCF register are used to specify the "activity" of the

subwords. Each one of these four bits corresponds to a quarter of the data

registers. When one of these bits is ZERO, then the associated quarter is

"active"; when one of these bits is ONE, then the associated quarter is

"inactive" or "latent".

Since subwords consisting of more than one quarter have more than one

activity bit associated with them, it is possible to have partially active

subwords. Depending upon the kind of instruction being executed and the

direction of information flow (to or from the Memory Element), another

process called "sign extension" occurs . In sign extension, the sign bits

of active quarters are extended left to fill adjacent inactive quarters

within subwords . This occurs in the Exchange Element as information flows

from the Memory Element.

Finally, the remaining three bits in QKrRCF cause a "permutation" of the

quarters of the operand words as they are passed through the Exchange

Element . Only 8 of the 24 possible permutations are realized.

2-12 March 1961

The interpretation of the CF bits in any instruction word is carried out

after the NCF bits are copied into the PKIRCF register. This permits

deferred addxess cycles to occur, after an instruction word has been read

out of the Memory Element and before the instruction is interpreted, with­

out losing the value of the specified CF bits .

Some configurable-type instructions which use the Arithmetic Element also

make use of a further configuration register, AKIRCF' This register is

supplied only with coupling and activity information from QKIRCF' since no

permutations are performed in the Arithmetic Element. In addition, all

subwords used in the Arithmetic Element are forced to be fully act ive or

completely inactive. Thus, an 18-bit subword original ly specified with

only one quarter active will appear to the Arithmetic Element to have both

quarters active.

2- 4 M»iORY ELEMENT

2-4 . 1 GENERAL DESCRIPTION. The Memory Element contains four physically separate memories.

Each memory is a complete unit containing all the circuitry needed for the operation

of the unit except for the memory addxess and memory buffer registers. The P and Q

registers in the Program Element serve as memory addxess registers, and the N

register, in the Program Element, and the M register, in the Exchange Element, serve

as memory buffer registers.

The basic organization of the Memory Element and the information paths to and from

the Memory Element are illustrated in Fig. 2-13 , For simplicity the connections to

the Control Element and the read-write control logic are omitted. The V Memory is

also shown as a single unit.

The P register is used to specify the addxess in the Memory Element of instruction

words onl y. Such words are read out of the selected memory and strobed into the N

register. They are then rewritten (if the read out was destructive) back into the

memory register. The Q register specifies the addxess either of deferred addxess

words or of operand words . Deferred addxess words are strobed into the N register,

and operand words into the M register.

2-4.2 MEMORIES. The four memories in the Memory Element are called the S Memory, T Memory,

U Memory and V Memory. The characteristics of each of these memories is given in

Table 2-1.

March 1961

The S Memory is a 65,536 register magnetic core memory which uses magnetic core

switches and vacuum tube dxivers to select the register in the memory specified by

the memory addxess register. As a result the access time to this memory is rather

long compared to the other memories .

2-13

The T Memory is a 4096 register magnetic core memory. All of its circuitry uses

transistors.

The U Memory has not yet been built, but will essentially be a copy of the T Memory.

The V Memory contains all the miscellaneous storage registers in the computer which

can be addressed by a programmer. One part of this memory, called the VFF memory,

consists of the four 36-bit flip-flop registers in the Arithmetic Element and the E

register in the Ex.change Element. The transfer paths used when these registers are

selected differ from the ones ·normally used. In the case of VFF' information is

transferred from or through the E register to the Mand N registers.

The remainder of the V Memory, called the VFF Memory, consists of various "fixed"

registers, such as toggle switches and plugboards. These registers are fixed in the

sense that a programmer cannot change the content of any of these registers by using

"store" type instructions to store the content of central computer registers in them.

Usually, however, there are other methods for changing the content of these registers,

as for instance by manually changing the position of toggle switches in the toggle

switch registers. This VFF Memory contains a shaft encoder register. The content

of this register is changed by rotating 4 shafts whose angular positions are each

digitally encoded as 9 bit ntnnbers. The VFF Memory also includes a 36-bit real time

clock which counts at a 100 kilocycle - per-second rate.

Each word in the S, T and U memories contains, in addition to the 36-bit "word" used

by the central computer, a parity check bit. When a word is written into memory this

bit is always made to have a value that will make the parity of the entire word odd.

Each word in the S, T, U and VFF memories also contains a meta bit. The meta and

parity bits are not included in the normal memory word interpretation process. This

bit is instead used to tag, or mark, the word in which it is found. It is used

either by the Trapping Sequence or by the one instruction (SKM) which can alter this

bit.

Thus, all the memory registers in the S, T and U memories have 38 bits; those in the

~FF Memory have 37 bits; and those in the VFF Memory have 36 bits.

2-4.3 MEMORY REGISTER SELECTION. The process of selecting a memory register and reading

its content into a buffer register is initiated by the Control Element. The Control

Element decides that a certain kind of word in memory is required and then starts

the necessary read-write memory cycle to obtain it.

2-14 March 1961

The memory register selection occurs as follows . The Memor y Address Selector

examines the content of either the P or Q memor y address regi ster, dependi ng on the

kind of memory word cycle called for . It examines bits of the address r egister

successivel y from left to right . The first bits examined determine in which of the

four memories contains the word and the remaining bits determine the register in this

memory.

The Memory Address Selector routes the memory register selection bits in P or Q to

the address decoder of the selected memory . It also serves to control the duration

of the read-write cycle, since this depends on the particular memor y selected. This

unit is also used to route the content of the selected memory register into the

desired memory buffer (Mor N), during the memory read-out; and back through the

inhibit selector to the memory register, during the memory rewrite .

The details of the memory register selection process are further described in

Chapter 4 and 12 .

2-4.4 MEMORY OVERLAPPING. Since there are two memor y address registers and two memory

buffer registers, in addition to the four memories in the Memory Element, it is

sometimes possible to perform two memory read-write cycles simultaneously .

March 1961

During an operand word memory cycle the Q register selects a memory register whose

content is strobed into the M register. The memory cycle is completed when the

content of the M register is rewritten back into the selected memory register . After

such an operand cycle the computer will usually perform an instruction word memory

cycle . (The operand cycle can be followed by a change of sequence cycle .) If an

instruction cycle does follow, then the P register holds the address of the memory

register containing the next instruction . Since the N register is usually not used

during operand memory cycles, the computer will attempt to perform this instruction

word memory read-write cycle while the operand cycle is still being performed .

A variety of conditions can . inhibit the instruction word memory cycle until the

operand cyc l e is finished. While we shall not be concerned with most of them here,

one condition of note is whether the desired instruction word is in the same memory

as the previous operand word selected by the Q register . If this is not the case,

i.e . , if Q selects one memory to obtain an operand word and P selects a different

memory to obtain an instruction word, then, assuming all the other miscellaneous

conditions are fulfilled, t he two memory cycles will proceed simultaneously . Note

that there is no restriction on which memories the operand and instruction word are

stored in, except that, if overlap is all owed to occur, they must be stored in

different memories . Note also that the instruction word cycle, if it uses the T

Memory for example, can finish before the operand word cycle if the operand cycle

uses the S Memory . This can happen, even though the instruction word cycle begins

after the operand word cycle, because the T Memory r ead-write cycle time is much

shorter than the S Memory cycle time.

2-15

2-4.5 MEMORY SPEED. The times listed in Table 2-1 for the memory cycle time are the

minimum times only. These times usually occur when an instruction or deferred

address word is obtained from the memories. If an operand word is obtained from the

memory, the cycle time can be up to two or three microseconds longer when the operand

word in the memory register is changed by the instruction. These timing situations

are covered in Chapter 9 .

2-5 EXCHANGE ELEMENT

2-5,l GENERAL DESCRIPTION. Nearly all information transmitted to the two memory buffer

registers Mand N, except information coming directly from the Memory Element, passes

through the E register in the Exchange Element. Also, nearly all information

transmitted to the Program, Arithmetic and In-Out Elements passes through the E

register. This register thus serves as a bus for most of the information transfers

in the central computer. Fig. 2-14 illustrates the central position of the Exchange

Element in the computer.

Information passing through the Exchange Element can be transformed in various ways.

Many of these transformations are controlled by a configuration specified by the

instruction which causes the transfer. The information for configuration control is

obtained from the F Memory, as described earlier in the chapter. Transformations

can also occur in the Exchange Element as part of the inherent execution logic of an

instruction.

These transformations are realized for the most part by providing each quarter of

each register in the Exchange Element with its own logical control. This is indicated,

for example, in Fig. 2-15 by the separate paths between each pair of corresponding

quarters of the E and M registers. Each quarter of the E register can also be

separately cleared and/or complemented. In addition, each quarter of the E register

is connected to every other quarter of the E register by permutation paths, as shown

in Fig. 2-15, Each of these paths is also separately controlled by the computer

logic.

This control of the paths among the quarters of the registers within the Exchange

Element is essential for the realization of much of the power and flexibility of

TX-2 instructions.

2-5 ,2 OPERAND CONFIGURATION IN THE EXCHANGE ELEMENT

2-5.2.1 PERMUTATION. Fig. 2-11 illustrated the decoding of a configuration word in

the QKIRCF register during the execution of instructions which use a

configuration.

2-16 March 1961

March 1961

As an operand word is transmitted through the Exchange Element on its way

to or from the ME!lllory Element it is permuted in the E register. This per­

mutation uses the E register permutation paths . The form of the permutation

is determined by the value of the three permutation bits in the QKIRCF

register. The permutation bits specify a route between the quarters of the

M register and the quarters of the E register . The route is traversed by a

combination of a vertical and lateral transfer as shown below. Since the

permutation actually occurs in the E register one permutation must occur

when a word is transmitted from the Memory Element through the Exchange

Element to other parts of the computer, and the inverse permutation when a

word is transmitted in the reverse direction .

In Fig. 2-16 the permutations are shown which can occur in the E register
' while an operand word is being transmitted from the Memo~y Element to the

central computer. The graphic notation illustrates the "effective" path

from the M register to the E register. These paths are realized by

transferring the operand word from M to E and then permuting the word in E.

(Mis always assumed to be at the upper end of the arrows in such a graph,

and Eat the lower end, regardless of the direction of the arrows.) The

recombination of the quarters of an operand word in the E register after

the permutations is also shown. The quarter arrangement shown is that

found after a memory operand word has been brought into a register (e.g.,

the A register) in the central computer.

In Fig. 2-17 the inverse permutations are shown which can occur in the E

register while an operand word is being transmitted from the central

computer to the Memory Element. In this case the inverse permutations are

graphically represented by arrows from E to M. The recombinations of

central computer register quarters in a Memory Element register are also

listed.

Note that for each permutation listed in Fig. 2-16, there is a corresponding

inverse permutation listed in Fig. 2-17. Note also that some permutations

are their own inverses, i.e., permutations 000, 010, 100 and 101. This

means that such permutations and their inverses are realized by the same

set of paths among the quarters of the E register.

The graphic notation portrays the effective path between the quarters of the

E register and those of the M register. The value of this notation is that

it is independent of the permutation of information that is actually

occurring. Thus the graphic notation (with one quarter emphasized)

2 -17

M

E

can be used to represent either of the following two actual permutation

processes:

M 4 3 2 1

or

E 3 2 1

DIRECT PERMUTATION INVERSE PERMUTATION

Hence the graphic notation can be used to simply represent the permutation

specified by the configuration without regard for the kind of instruction

being executed.

2-5,2,2 ACTIVITY. The four activity or latency bits in the configuration word

specify the quarters of the registers in the cerutral computer which shall

be active during the execution of an instruction. Each bit is uniquely

associated with a quarter. Fig. 2-18 shows the sixteen possibilities that

can be realized. These activity bits act as a mask on the quarter of the

register, permitting information to be transmitted through the quarter of

the E register only if the corresponding activity bit is a ZERO. Note that

a quarter is latent, i.e., inactive, when the corresponding activity bit is

a ONE.

The graphic notation used on Fig. 2-18 indicates the latency of a quarter

by removing the arrowhead from the arrow. (In Fig. 2-19 only permutation

000 is illustrated.)

2-5,2,3 SUBWORD FORM. As described earlier, the left two configuration word bits

specify the subword form of the operands in the central computer registers.

These subword forms are illustrated in Fig. 2-19, The graphic notation

used in the figure makes use of an under-bracket to show the quarter

groupings that form the subwords.

2-18 March 1961

March 1961

The subword forms primarily influence the manner in which arithmetic

operations are performed. Thus the carry process that occurs in addition

would be influenced by the subword form, since carries would not occur

between quarters that were not in the same subword.

2-5,2,4 PARTIALLY ACTIVE SUBWORDS. These are subwords in which one or more of the

quarters (but not all) are made inactive by the configuration specified by

the instruction. For example, a progrBJlllller can specif y a configuration

which has the binary value,

0 1 1 1 1 0 0 0 0

1 l ~ No permutation

Quarter 1 active ..
Quarters 2, 3 and 4 latent (inactive) .. 18, 18 subword form

The graphic notation for this configuration would look as follows:

Inactive Partially Active

Subword Subword

This notation indicates that two 18-bit subwords are formed in the centr al

computer register, but that only quarter 1 is active. It is convenient

to have the central computer work at all times with fully active subwords .

This is realized automatically in the computer by "activity extension" and

"sign extension". This allows the progrBJlllller to specify any of the possible

activity and subword form combinations without worrying about how arithmetic

operations are performed upon partially active subwords, However, use is

made of the fact that a subword is only partially active while the subword

is in the E register.

Activity Extension. The computer "extends" the activity of partially active

subwords to make the whole subword active. In the example the effect of

activity extension is, as far as subword form is concerned, the same as if

the programmer had specified the configuration

0 1 1 1 0 0 0 0 0

Quarter 1 and 2 active

2-19

Note,however, that there is now ambiguity about the content of the quarters

made active by "activity extension".

Sign Extension. This process extends the sign bit of the operand in the

active quarters of partially active subwords into the inactive quarters.

This gives a meaning to the inactive quarters of a subword, to be used in

arithmetic operations, when the subword is made fully active by activity

extension.

After an operand arrives in the E register from the Memory Element (i.e.,

from the M register) and is permuted, the sign bits of the active quarters

of E are extended to the left within the subwords \llltil an active quarter

is encountered. This extension carries around from the left end of a sub­

word back to the right end of the same subword, i.e.,there can be an end­

around-carry of the signs. Since there are no active quarters in wholly

inactive subwords, no sign extension occurs in such subwords.

Fig. 2-20 illustrates the way in which the sign would be extended if the

configuration is OllllOXXX. Fig. 2-21 shows the more complex situation

resulting when the configuration is 000101XXX. In this latter case two

different sign bits are extended within the same subword, one of them

around to the right end of the subword.

It should be realized that activity and sign extension occur in the E

register only when an operand is being brought from memory to the central

computer. Since there are no possible interquarter transfers of information

in a Memory Element register, the subword form is ignored when an operand

is transmitted from the central computer to the Memory Element. Only the

permutation and activity bits of the configuration are used in this case.

2-6 ARITHMETIC ELEMENT

2-6.1 GENERAL DESCRIPTION. Most of the arithmetic and logical operations in TX-2 are

carried out in the Arithmetic Element. (Some of these operations can also be per­

formed in the Exchange Element and the Program Element.) Since many of these

operations are complex and time consuming, the Arithmetic Element is designed to

operate independently of the rest of the computer once it has started performing

some operation. Thus,a multiplication can be executed in the Arit hmetic Element

while the rest of the computer proceeds with the execution of the instructions that

follow the multiplication. Note, however, that the instructions that follow are

inhibited if they also . require the use of the Arithmetic Element.

2-20 March 1961

2-6.2 ARITHMETIC ELEMENT REGISTERS. Fig. 2-22 illustrates the registers and information

transfer paths in the Arithmetic Element.

The A register serves as the accumulator,' i.e., this register usually contains one

of the operands involved in an arithmetic··operation (the other operand comes from

the Memory Element via the Exchange Element), and the result of the operation is

u~ualiy left in the A register. The B register US1.18.lly serves as an extension on

the right end of A register. It is used this way during multiplication,for example,

when a double register length produc~ is formed. The primary purpose of the C

register is to hold the partial carries which are generated when an addition is

performed. The D register usually holds the operand brought from memory.

The content of any of these registers can be stored in a memory register, or be

replaced by the content of a memory register. The four registers are also addressabl e

as part of the VFF memory in the Memory Element . The variety of means of access to

these registers provides considerable programming flexibility. Note, however, that

all collllllunication with these registers from outside the Arithmetic Element is through

the E register.

Each of the four registers is divided into four 9-bit quarters. AZ overflow flip­

flop is associated with each quarter of the A register . These overflow flip -flops

are used to remember whether an arithmetic overflow occurred during a previous

arithmetic instruction (e.g., during an addition). The Z flip-flops are also used

for sign control during some instructions .

A Y f l ip-flop is associated with each sign quarter of the D register. These four

Y flip-flops are altered only when an operand is placed in the D register from the

E register. They remember the original sign of the memory operand word placed in D

after the content of D has been altered during the execution of an instruction.

2-6 . 3 INFORMATION PATHS IN THE ARITHMETIC ELEMENT. The only simple register transfer

paths within the Arithmetic Element are between the A and B registers. These are

"jam" transfer paths which copy the content of one register into the other .

March 1961

The contents of the A and B registers can be rotated either to the left or to the

right . This rotation can also occur when the B register acts as an extension of the

A register, i.e., the content of the AB register can be rotated to the left or right .

These shift paths are illustrated in Fig. 2-22 .

The other paths in the Arithmetic Element involve transformations of the information

being transferred . The exclusive OR of the contents of the D and A registers can

replace the content of the A register. The result left in the A register by this

operation is the "partial sum" of the contents of the two registers.

2-21

The logical product of the A and D registers can be placed in the C register. This

operation forms the "partial carry" of the contents of the A and D registers.

Both the partial sum and the partial carry are formed simultaneously during an

addition in the Arithmetic Element. The "complete sum" of the original contents of

A and Dis then formed in the A register by forming the "complete carry". The

complete carry circuit forms the complete sum by combining.the partial sum and

partial carry in the A and C registers and placing the result in A.

There are other transformations in the Arithmetic Element that involve a partial sum

and partial carry. For example, these quantities are combined in the partial carry

and shift right logic called "multiply step". In "multiply step" the partial carries

in the C register are carried only one bit position to the left in both A and C.

The entire result, in both the A and C registers, is then shifted one place to the

right. The multiply step transformation is used to speed up the multiplication

algorithm. It is described in detail in Chapter 14.

The quarters of the D register can also act as counters. There are circuits· which

add ONE to the content of each quarter of the D register each time certain other

operations are performed in the Arithmetic Element.

2-6.4 OPERATIONS IN THE ARITHMETIC ELEMENT. The operations which can be performed in the

Arithmetic Element are:

Addition. The memory operand is placed in the D register and the partial sum

and carries are formed. The complete carry is then placed in the A register,

forming the desired sum. An overflow, if it occurs, is simultaneously placed

in Z.

Subtraction. This operation is identical to addition except that the memory

operand in Dis complemented before the addition occurs.

Multiplication. The double length product of the memory operand, which is

placed in D, and the original content of A is placed in the AB register. The

product is formed by first placing the content of A in Band clearing the A

register. A multiplication cycle is then repeated as many times as there are

bits in the operand subword. The cycle consists of adding the content of D to

the content o:f A if the least significant bit in Bis a ONE. The content of AB

is then shifted to the right one place. The addition consists of forming the

partial sum and partial carry in A and C, respectively, and then doing a multiply

step. A shift right of one place in A, Band C occurs when the multiply step is

performed, and the partial carries are reduced so that further partial sums can

be formed. After a sufficient number of repetitions of the cycle the complete

carry is formed in A and the result in AB is then the desired product.

2-22 March 1961

Division. The operand from memory is divided into the content of the AB

register. This process is the inverse of multiplication and leaves the quotient

in A and the remainder, if any, in B.

The cycle used here involves forming the difference between the contents of D

and A in A, and then shifting the content of AB left one place . The sign bits

of each difference formed in A are shifted into B to form the quotient. The

content of D will be complemented, if necessary, at the beginning of each cycle

so that it always differs in sign from the content of A. An addition is then

performed.

If an overflow occurs initially the Z flip -flops are set . After the last cycle

the remainder is in the A register. At the end of the instruction the contents

of A and Bare interchanged.

Shift. The content of A, AB (including the overflow in Z) or B can be arith­

metically shifted either to the left or to the right. The number of places

shifted is determined by the memory operand word placed in D. The count circuit

on Dis indexed once for each shift .

Cycle . This operation is identical to Shift, except that a pure rotation of the

content of the selected register occurs, and that the overflow is not involved .

Normalize . The content of A or AB (including the overflow in Z) is arithmetically

shifted until the sign bit in A and the bit to the right of the sign bit differ.

The number of shifts to the right (left) which occur is added to (subtracted

from) the memory operand placed in D.

Tally . The number of bi ts which are ONES in a memory operand word placed in the

A register is added to the ori ginal content of D.

Logical Operations. The logical "inclusive OR", "exclusive OR", and "AND" of a

memory operand and the original content of A can be formed in A by these

operations .

These are the basic operati ons which can be performed in the Arithmetic Element .

Variations on the simple process of loading and storing the contents of registers in

the Arithmetic Element can also be performed. These operations are covered in

Chapter 16.

2-6 .5 CONFIGURATION IN THE ARITHMETIC ELEMENT. Subword form and activity in the Arithmetic

Element, which constitute the configuration of the Arithmetic Element, are determined

by the content of the AICTRCF register; just as configuration in the Exchange Element

is determined by the content of the QKIRCF register. By having configuration

March 1961 2-23

(AKIRCF) and operation code (AKIR0p) registers of its own, the Arithmetic Element

becomes independent of the QKIRCF and QKIR0P register. In this way an Arithmetic

Element instruction can continue to be performed even though a new instruction is

begun which fills QKIRCF and QKIROP with new configuration and operation information,

respectively.

However the activity bits in AKIRCF do not represent mere copies of the activity

bits ih QKIRCF. Instead AKIRCF is set up so that activity is extended in the

Arithmetic Element by the process described earlier. In this way subwords in the

Arithmetic Element are made either wholly active or wholly inactive.

Note that the permutation information contained in the configuration word is not

used by the Arithmetic Element, but only influences the memory operand as it passes

through the Exchange Element to the Arithmetic Element. Note also, that the sign

extension process is completed in the Exchange Element, before the memory operand is

transferred into the Arithmetic Element.

2-6.6 QUARTERED PATHS IN THE ARITHMETIC ELEMENT. All the registers in the Arithmetic

Element and also all the lateral information transfer paths in it are quartered.

These lateral transfer paths are the shift paths in, and between, the A and B

registers, and the carry paths. The quarters of the shift paths can transmit

information either to the left or right into each quarter of the A and B registers.

The quarters of carry circuit can transmit information only to the left into each

quarter of A.

The subword form specifies the connection between the quartered segments of these

paths. The actual connections are realized by coupling units, as illustrated in

Fig. 2 -23 , Fig. 2 -24 illustrates how the complete shift and carry paths can be

formed by connecting the outputs of the quarters of the registers (or carry circuits)

in various ways. The subword form specified by the configuration bits determine

which one of the several inputs to each coupling unit actually is transmitted through

the unit. Since the subword forms are limited to the ones illustrated in Fig. 2-19,

not all conceivable input connections to coupling units are realized. For example,

a carry coupling unit receives an input either from the quarter immediately to the

right, or from the quarter farthest to the left in the same subword.

It should be realized that these coupling units in the shift and carry circuits are

the sole means used to realize the variety of subword forms during the execution of

Arithmetic Element instructions. Fig. 2-25 illustrates these subword forms as they

are reflected in the apparent structure of the Arithmetic Element register. A

programmer can effectively use several Arithmetic Elements simultaneously when he

specifies a configuration with subwords less than 36 bits in length. Fig. 2-25 shows

these multiple Arithmetic Elements and the corresponding operand word structure .

The activity bits of course also give the programmer the ability to control just which

2-24 March 1961

of these Arithmetic Elements are actually used during the execution of an instruction.

For example, one, two, three or four 9-bit additions can be simultaneously performed

in any of the 9-bit Arithmetic Elements illustrated .

2 -7 IN-OUT ELEMENT

2-7 .1 GENERAL DESCRIPTION. The principal paths for transmitting data into or out from

March 1961

TX-2 are in the In-Out Element. These paths are routed over an In- Out Bus. The bus

effectively connects a variety of input and output devices with the E register in

the Exchange Element. The bus also transmits signals which enable the centr al

computer to control the operation of the In-Out devices . Included in these control

signals are central computer clock pulses. These clock pulses are used to synchronize

signals generated by the In-Out device with operations in the central computer.

Each In- Out device has its own program, called a program sequence, stored in the

Memory Element. As described earlier, there are 33 different program counters

stored in the X Memory in the Program Element. The content of each of these program

counter registers, when transferred to the P register, addresses its own program

sequence in the Memory Element. Instructions can be executed from only one program

sequence at a time, i.e . , only one program counter can actually be in use at any

given time . However, certain instructions in a program can cause a change from one

program sequence to another .

Thus, each In-Out device is uniquely associated with one of the 33 program counters .

The number of the associated program counter is assigned to the In - Out device. Thus

there can exist at most 33 In- Out devices . As shown in Fig. 2-7, there are currently

about 16 such devices . The four highest priority program counters also have a

(special) relationship with the In-Out Element, so that about 20 of the program

counters are associated with the In-Out Element .

These 20 program counters are distinguished by the fact that the FLAG flip-flop for

each program counter can be set (i.e., "raised") when the associated In-Out unit

generates a raise flag signal. This signal indicates that, for some reason, the

In-Out unit requires the corresponding program sequence to be performed by the

computer. The computer does this as soon as this sequence becomes the highest

priority sequence with a FLAG raised.

As stated before, there are basically two different situations which can initiate a

change of program sequence. Either the program sequence, which is currently being

performed, can initiate the change, or the In-Out unit associated with one of the

20 program counters can do this.

2-25

2-7,2

2-7 ,3

2-7 , 4

STRUCTURE OF THE IN-OUT ELEMENT. Fig. 2-26 is a simplified block diagram of the

In-Out Element. It illustrates the structure of the In-Out Element and the connections

between it and the central computer,

Each In-Out unit is divided into a number of packages. These packages include:

1) The In-Out device itself

2) A control box for the device

3) A sequence switch

Only the sequence switch is connected to the In-Out Bus.

IN-OUT BUS . At any given time data can be transmitted over the In - Out Bus between

the E register and only one In-Out unit, These data transfers occur only during the

TSD (!ran~fer ~ata) instructions. The particular connected unit is the one associated

with the current program sequence. It is selected by the decoder on the K register

in the Program Element. The output of the K Decoder is sent out over the In-Out Bus

to the In-Out units and only the K-th unit is allowed to transmit data over the bus.

The computer can also control the operation of In-Out units . This control occurs

only during the IOS (In-Out Select) instruction . It is realized by transmitting

the Y bits in the N register (this is a case of the Y bits being used for a special

purpose) over the In-Out Bus to the specified In-Out unit. In this case the partic­

ular unit is selected by the decoder on the J bits in the N register. The output

of the NJ Decoder is sent out over the In-Out Bus to the In-Out units and only the

J-th unit receives the Y bits.

Synchronization and alarm control signals are also transmitted over the In-Out Bus

between the Control Element of the central computer and the In-Out units.

SEQUENCE SWITCHES . The actual connection between an In-Out unit and the In-Out Bus

is realized in the sequence switch of the unit. The data transfers are gated in the

sequence switch by the K Decoder outputs. The Y bits from the N register are gated

by the NJ Decoder outputs .

The sequence switches isolate the In-Out units from the In-Out Bus so that at most

one unit is connected to a given set of information lines in the bus at one time.

Some units, particularly the ones for the special program sequences, consist only of

sequence switches. (See Fig. 2-26.) These units are:

The Startover Sequence Switch (0) transmits raise flag signals to FLAG0 when­

ever the Startover button on the control console is pressed. The associated

program sequence is usually used to initially start the computer.

The Computer Alarm Sequence Switch (40) will raise FLAG40 whenever a selected

central computer alarm occurs.

2-26 March 1961

The In- Out Alarm Sequence Switch (41) will raise FIAG41 whenever an In-Out

unit alarm occurs .

The Trapping Sequence Switch (42) will raise FIAG42 whenever a selected set

meta bit occurs in the Mor N register.

All of these sequence switches contain some control logic which is governed by the

IOS instruction. However, these special sequence switches are rather simple when

compared with the sequence switches for the In-Out devices .

2-7-5 IN- OUT CONTROL BOXES. The control boxes control the operation of the In-Out devices .

They also contain the In-Out buffers which hold the data flowing between the In-Out

devices and the E register.

The Y bits in an IOS instruction are copied into control flip-flops in the control

box of the In-Out unit selected by the IOS, and the contents of these flip-flops

then determine the mode of oper ation of the In-Out devices . There are usually also

some manual controls in a control box which allow the computer operator to influence

the operation of the In-Out device.

The buffer register holds one character of the data transmitted to or from the

device. The central computer can change or read this character in a buffer only by

performing a TSD instruction in the program sequence associat ed with the device .

2 -7 . 6 IN-OUT DEVICES . An In-Out device is some electrical , mechanical or optical, etc.

device which either sampl es some external signal source or reads some data record

and converts these inputs to characters of digital data for input to the computer,

or, conversely, converts a character of data to an external signal or record.

March 1961

Fig . 2-7 listed the names of the In- Out devices associated with some of the program

sequences. A brief description of these devices follows:

Magnetic Tape (46) . (Currently not installed .) This is the only input and

output device . 9-bit data characters can be recorded or read while the magnetic

tape is traveling in either the forward or reverse direction.

Miscellaneous Inputs (47) . This device simply raises FIAa47 whenever some

· selected external source generates a pulse.

Datrac (50). This device digitizes an external analogue signal . 11- bit data

characters are formed by this process and transmitted to t he computer .

2-27

Xerox (51). A high speed printer which can print 88 different 8-bit characters

in two different sizes.

PETR (52). A photo electric paper tape reader. It reads six bit characters

from punched paper tape.

Interval Timer (54). An 18-bit timer which can be reset by the computer.

When the timer counts down to zero a pulse is generated which can either raise

FLAG54 or be sent to some other device.

Light Pen (55). A photo electric sensing device which raises FLAG55 when the

pen is held over a point displayed on a cathode ray tube (CRT) display (see

below).

Display No. 2 (56). (Currently not installed,) A CRT point display tube

similar to Display No. 1.

Display No. 1 (6c). A CRT point display tube which can intensify any point in

a 1024 X 1024 raster.

Random Number Generator (61). This unit generates nine bit numbers with the

properties of a se~uence random number. It uses a radioactive source .

Punch No . 2 (62). (Currently not installed.) This unit is similar to Punch

No. 1.

Punch No. 1 (63). This unit can punch six bit characters with or without a
'

seventh hole in paper tape.

Lincoln Writer Input No. 1 (65) . This unit can read six bit characters into

the computer. These characters can be generated either by a keyboard or a'

paper tape reader.

Lincoln Writer Output No. 1 (66). This unit can print six bit characters

using a typewriter. The unit can also punch the characters on paper tape.

Lincoln Writer Input No . 2 (71). This unit is identical to Lin~oln Writer

Input No. 1.

Lincoln Writer Output No . 2 (72). This unit is identical to Lincoln Writer

Output No. 1.

2-28 March 1961

March 1961

Plotter (74). A two-coordinate line plotter. The motion of the pen is

controlled by specifying the coordinate position of the pen.

Miscellaneous Outputs (75). This device simply holds the value of the Y bits

of an IOS. This information can then be used to control an arbitrary external

device.

2-29

ACCESS CYCLE BIT
MEMORY TYPE TIME TIME REGISTERS WORD

(µsec) (µsec) LENGTH

s MAGNEI'IC CORE 4.o 6.4 65,536 38*

T MAGNEI'IC CORE 2.0 4.4 4o96 38*

u MAGNEI'IC CORE ** ** 4o96 38*

VFF PLUGBOARD REGISTERS 32 37
v-FF TOGGLE-SWITCH REGISTERS 16 37
v-FF REAL-TIME CLOCK REGISTER 1 36

VFF SHAFT ENCODERS REGISTER 1 36

VFF A REGISTER 1 36

VFF B REGISTER 1 36

VFF C REGISTER 1 36

VFF D REGISTER 1 36

VFF E REGISTER 1 36

* INCLUDES PARITY BIT

** CURRENTLY UNDEFINED

I

TABLE 2-1 MEMORY ELEMENT REGISTER

March 1961

tt~f ~"41J:I a,Uf\RT~1' 1-~~ QIJF\t<TI!:" -W:---2~ Q.)ARTf-ll. - !- ,~ QJ/'IRT"~ - I
e,tT...___ Pre~ , I I

q,10 l1T • 2. I0

~fl)Y.S!P l'H IY,s 11/,Y J~.J 14.zl~-')1.~ IJ&\ 3;1J~.~l3,s \1.~ \3.~ \H\3.lj \2.'f l,.ejnl?-_,12.s j1.<1 [2.~ \2:2.!2.1 !1.<i \1.a !1.1 I 1.t. I 1.sj 1.4 l1, 3 EiEiJ
N-REblSi~

M-RE(;,t~W• ..

S-1'1\fMO~'I' WD!<P

T-- k'\EtM~Y kJORI)

U- NIEtll~'t WO~

V-1<\E'NIO~)' 'j/o~} ~ ~.q - - - - - - - 4.113;q - - - - - - - ,.iJ .1 z.'l - - - :-~-=-~:.-.~1CL:___ __ ..:·~- --=::-·_:: -u]
A- Reb1sre~
B- Re (:,j >lei<
C-RE'(:,1S~

D- R\:6i.ST6l<.
E-~biST~

} H-~ - - - - - - - *·' l3.'l - - - - :::-=-- 3.iJ lz,1 - - - - - - - 2.1 y;,q - - - ··-- - ---=-~-,.-;i

X- &.J ff~ Re btsr€R. }

X- ME11!DR.'/ WoA.b

P- Rl:615 r~R

Q- REbl'-r~lc..

K - RE{;:,\ST"R.

Cl' PIIRIT'/ BIT

c:J
I l9le\rrl1olsl4\'l>ltl1 \

f;)KrRci:- REblST6R.

CF· h'll:l<'\OR.'t UJOIU>

,Fi(?. 2- I . &IT t,JUM~I~ SCHEltlE

~ l."l - - - - - 2., B--- _ -=--::. - - _...:-_1_.1 .1

M~uitT"C --!Bl ·------ ·- 1~ -----:-~1 ~.el _ 2.1 1:1 _ _ - - _- __ - _ - _1..1J

[3.i, -

iz.ql - - - - - - - 2.iJii.-=. ... : -..:----= -- =----=----=-101
3.1]

l" l 5 I 415 Ii.. I l I
Pl<J:~Of' .. R6c.,,$,~

q\(If<op -~&ISi'~~

AK :rPop- ~bli'llR.

AKIR,~- R,&1$Ttl!..

l 514 I ~ \-i I I I
PK.I~cF - RE 61 ST£~

8
PK Il<h - ~&IST£R.

"1.J 0
"1610 ... ,,.
g,r

·' I . ,l l,) •
h c+ op J s "

------v·---~-v---'
NoT O.s ,.D uh)'=){

H~t1P/l.t'

~l)ciaU

-----v------
1

aA&I! ~o~ees.s (;1.. Ct>N&tS'r,S

OF 18 8 t t.S' Ji TH i IT . .I

IS DE~ft B ,T,

H

------v-·-----
i3AS f ~ t>O RESj

b) Dt:.Ftee~o Al)D~~S..S Wo,n L~v-our

Fie;, 'l-Z N '(E~ISTE~ h-1sT~oc.T10N AND DEFEeRED

Aoo~E.SS \/'JoR..c LA'/OUT

-1, lb 2 ,JC
MElA PNtl'('

~,r i~,tt "'4 ,t 1,'l 3,I 8,r ~-C:, J,, ' ,,., I I I

I ~I t-1~

°'
>1:s

"
M-z..

4
M,

"
I ,J ,r I I

" '
Q"Ailf"I&'. e '4 Qu"tTJft 3 Q~M1"Et t ~\)~tTEt l.

N RcbCST"ER.
,------------------

I- -- 7 Ql<IR4 r-------- ---- -----,
1,., .__ _____ ___;I Pflfl\T'/ CGOPUOlb l..~llel-l~Y ~\IT"•ITIOIJ 1

I

I
I

\: I
1R~ST~1
I I
I I
I
I
I
I

I
2 3

Al<:tj;!ci: ,--- -------,
I F I
I I
I ,.._-r--=..!...--,--....:lL.I f ,_ -

c:F

$1:Q\J~t.JCE
SELerc..o~5

r11J-0UT .ScO<JE,JCE SW11Ql !
l-,. _____ -------·

I · OT -t-Lt:/,\tlti.

j

I
I
I

_J

J

)(flt>l>ef<.

T5P

---7
I

I& I _____ ...J ~, · ,:,

t

I
: t , cF
I I 5
I

- - -

Pl<.Ii-,

I"

T
FROM

I)j -our SEQ \-1$#,JC.E Sw I n: It

TSP 16

- -- - · - - -

X
MfMoA.'/

t

X AD.1>€R.

I '

\8

h =- •HoL.r;, &1T of- P~•v I ou S
~~S'T'I.UC..'T I ON

c ... il,G.I(S•t.>u•N<.e Sf:L.-ec.;os­
Foe OTMElr- '!»l!:QYli.NCE.~ w·,,..,. ~•ue.o FLA Cits

1

!4=- f-t..44" IS f241S•t>,

CoMPAl:ll:- S4rQU&NGi!' -
~ H 1(;,IIE5T f"~10R.1T'/

NuM&•~ WJTI-I <!ua;e.ea11.&T ,.._

s~u&NG6 NtJl-1!.f.li?. ,~ K

Hl(:.~!s°f ?~l~ITY

!f-" "Al S-e-1) f-t.44- ~UE~e

i S Of Hl4-f"t EJ;?. Pf< 101?1 ,)'

•~~ l'J C::. 1 .. H~R-eNT S6¢>u et,.l Ge-
~

Tl-'i:.N (:HANqe S~J.J~
C '(ct. l= I .S. 'P-e=-~ ~ M&b

'

,,
. ~I :7~"f t'MIO RIT"f --,

!.;:. l<A 1s..&i> f-L-A4- S E~ut-fJCE
" 1~ 01= le.we-R.. ~•oR.JTY

THAN 4(1.1 RQ::&NT' sec.iiuaNc.&,

~ ~N ~IZo c.e. 1:1) To N £X T,

lN~T~L•<. Tfc, f\l ~ o:(D

1 •

5f-QU.f-Nc.f- I7..f:.T-f-f2h\lNATlON & WOLl7 CYCL-f-
+-\ c.r- 'L-G

t
~~ es
la~

P-4

~
~~

re

i

FIG. 2-7 PROGRAM SEQUENCE PRIORITY LIST f 1----------------------....----------1
PROGRAM
SEQUENCE SEQUENCE NAMES

NO.

00 STARTOVER

4o - -
41 IN-Ot11' AIARM

COMMENT

l SPECIAL
> PROGRAM

SEQUENCES

t.

42 TRAPPING SEQUENCE -'-----~---- ------------- -+---------------43
44

45
46

47
50
51
52

I 53
j
I 54

' ' 55
56
57
60
61

I
62
63
64.
65 ' 66
67
70
71
72
73
74
75
76
77

- -
- -
- -

MAGNETIC TAPE

MI SCELLA.NEOUS INPt11'S

DATRAC

XEROX

Pm'R

- -
INTERVAL TIMER

LITE PEN

DISPLAY NO. 2

- -
DISPLAY NO. 1
RANDOM NUMBER GENERATOR

PUNCH NO. 2
PUNCH NO. 1

- -
LINCOLN WRITER INPur NO. 1
LINCOLN WRITER Ol1rPt11' NO. 1

- -
- -

LINCOLN WRITER INPur NO. 2
LINCOLN WRITER OurPur NO. 2

- -
PLO'l'l'ER

MISCELLANEOUS OurPl1rS

- -
- - --

-

I
I
j I PROGRAM SEQUENCES
f ASSOCIATED WITH

IN-Ot11' DEVICES

I

I
1

I
I
J

I
I
I
!
j
!

.

.-'-·
"bl>A r-

MfMoA.'f rt.~ME'-1T - ~R ··
(o:

1~0Gnoe.1~ ~
AtJb Ji)''m\JCt' l0J,l . '!)£FE

t:EFeAAe~ fltl)P ftffj Al>!>R
OfERAtU).S Al>~'~; (0::1

. , N ,, ,-;-------· -----·---.
I I : i ,J hp- ' &: j p M J ' Q

38 I I I $ 6 I> i l8 I . 18 '8
I ' ~ ~ l~l h ·- ,..._- --... ..-...-

I - - --- -~-
\lMDt,r;P (

' ' ,~
'.

,4-J.li ~
ft\~

(x·) J, i-
'

')(

Sl.lffd.
I

~► '

X 1-\1>~

--

~OTE

(Xj) C6lh be Pos, t,* ov V\t!!iat,~

Fie,. 2-a lr'onsfo- pa1t,s For ,~sftuct,o\l a~ Jetevre.l ~ress C.';fc.l•s

i . r--1
I ~R ITM-H~Tll

I tLEH£W1" I

I I ,~(tN~, '
L-- _J

r HE ... o~'(' E'~~ ... e~Tl .
I '"'"'~'{ ~1!6.rr,a!• _ L ~UAll.0-9'?RB.!~, I __ __ _j :

,-
t [M

. I
Co .. F1e.&>1?A.T1eN /,., FO

l ·1 --7 ,-
- I I

I

I

rbl
fa..fMf~T I

I
Ell C. .. A ll6f t ht)1/!IIT

Peoc.t-A~

_ J
. t • I E I• i .. lf1t fr&1.sre1I

I I. L _ --.

I

I
1 1~-our

P.IG., J . .=, T2ANSF~J2 PA~.S .DIJl(JNC. 6PEil.ANJ.')

A.1}~1t~-'S C~c '-l:.

N -R-&4-J ST-E:-R' t\ G~ OP ' '-,,___._ ____ ..;;.1----'----------
,

J

OP COD.f:.- BLOC~ DIAUQAM

Cf-
5

C-f-
-i2)(.10_ h'\-&-h\Of2'r'

2!!.0

3'!P
-4~

0

I

z
3

op

I I

II

,,

o'-
I 8 ,18

2.7,9
;!J, ~,~ ,~

,

J

0
'

' 7

II

·"

18

D ... re-R.MtNf::S Tl-Ur Pfr~~u T.ATto,

0-F- THE: QUAl:i'T"&~.5 0~ -rHE-

0p&~4~ 1) WoQ.r., '"""

T'4-6 e)(c. HA"" ~-1::-L..i!:M-&-NT

S14t-.1

-E-XT-£=-N SI ON

..DEco~R

TRAtJ SF€e. PATHS ::b0R < ~(::,

c0Nr1G-UJ2AT10N coNr~o~ c'(cL€

2 - ''

Su~wo120 +-012~5
QuARr-£:R No of-f)1TS Po5•T 10N ..._"" c, AR.QAll.l4~""T

CoM&1NAT10
P-£-~

Sue.woR..C> 111a-r-il:ct. f.!

1 I I
2 9 I 1
3 9 l I
4 9 I I

2.,1 IS l)

4,3 18 I l
4,3,2 27 I I
4,5,2,1 3G I }

-----~--. Mel'()Olky f'tI>t>~~~ S'€L6"C.1?:)R. C:O~RO\..

5 Mer<io~'t

IIS,,31. X 38

t------ -----

M REb\S,~'<.

I E:°>(C \-\ ~t-...)bE"

~LEM(;+.l, I I_--.-...---- ----1

B

,- - - - - - - --
1 ~ f<EGIS.Tl-f<. I t_..;,..;__ _______ __.

I
I
I
l
I

'--

ht~TRUCTION
AoPeL~)

!

Dt~E.RRE.O
At>1>~~~S
~It._ oPEUt-10
\N09'.0

AOD~ES.~

- - - --- - --7
r---..1.---,

I
I

I
I
I

I
I

Huuitl" ~~~•stet

--H---.
l1l3J.il1IM 1-.c-· --~

11 11 11 11
E:X.CHA~'-E. ELEMENT

Ii I~ I~ H
I 4 J 3 j J. J I I ~ I I.,__ _____ --+

N; I I

~
r

F'll.l>'-tA-11 ~W!Jf~lff

XA

, J

F',G,. J. 11 EXCUA N~E ELS'1E Ha

P~1N.C1PAL PATHS FoK INF0tt1A-TION ~L.IJW

r

- ,

' • I I I 9
Ir ~, f 1 ,,

E1 E~ Fi... E,
A f 4 a 4 J. j ~

.

4 1 'Z I

000 43~1 1,,' I c: : : I [l l I
· A _ 1'2.1

..

i, I[~ :i:L~ r q~ ~ C ~ ' :I Do I . . 14!2
1432.

:: r 1::!·:1 1: ~ ~
4 5L I

010 2143
~ - I I (]

~; { -1 ~;; ~ ! ~: ; 4 ~21

~ Oil 3214 m I ~ 1
3 2.'

~ ~
ol\- 32. I ·

~ ~ I oo 3412 xx I ~ I] I : ~ ~ : I
3 4 I ~

~ : c: ~
4.!2.1

f O I I 2 34 ~ (I J
I 2.. '3 4

s i [:; 4 3 2.1

~
1

I I 0 2. 4-3 I){<l [I ~ I [: : : : : I
2.4?.'

;

~ ; 4-3 :z.,
I I I 3241 JK~ I I I I I l r I

J ~

INV-t-R5t:- P.f:-C2.MUTATION -f-OC2VY\S
C c:oM,=,uT-e:-S::Z. 'To IY\-E-~oszy)

: Po SIT I C> N AN P AS:U2AN~•~,..T
Q ~ •~,.,),& ~f:R. 4-RAP~K

(JiM1.1N.Q"t~ ~,,_. 14~GlllUTtDI I ~&l>CT12' f2N1>Qc.t¥trA1'.I J\5,-~AR,,Mtf

4 3 2 I

I I 000 4 3 21 ft ft [4 · 3 I [2. l I \ I
4 3 2. I

.

3 2- I ◄ (I ~ f [~ ;E I (·j O O I !~\-1 . ~ I I] l
"\ l '2 ~

'

{ E } i:i :j w l I I o .Io ~\43 [I]
1 l ~ I

'
: I

l, ui ~,; t 1 : ~· J L 1 j l. 1 l :t { 0 ' , m (J I I
i 3 l I

3 .. I 1

I t ~.::~::: j c·:t :!: ~:~~~ \ 0 0 .3 -4 1-2 xx]]
4'll.f

l 23 ◄ t.~ .~. [~:~ ~::.[?~ ~:) \ 0 i .\ ?.~4' ~ l 1
-1' l l. I

3 .2 -4 I (~-~:! ::i::~: l I Io . 3 1 ... ~ >« t r I I I]
-1 3 ~'

"

t:~ ~; f i::1~•~ ~ ~ 3 l

I I I : i~ 31 ~t I I c: ·::i:]
~l.ll ·

-f-' 4- 2.-l·p

AC. Tt,/ITV +-OC2.M5
$Kltf. Ac.TIV«- ' (fll.APHIC Po s 1-r, e 1'J

' 1,"'4l ~aA~i-tlU NarAT,o"" (4TJQuA~1"E~ 13 ~DQuArue?\I l2~QuA Jl'l"~r.t lr'~$~T£RJ

0000 4~'21 '•J• I I I l I I [I
0 0 0 I 4 ~ 2. J t l I [I I I I I ~
0010 -4 31 J J I l I I I I B8o&?SZ8 c: :: ,
O O I I 43 'J , , I I I I &xz>9¼f VTl721
o I 00 42.t l l' I I I mxxa I I [: I
o \ o l 42 l I J I I J RS3™ [rt I ™2t
o I IO 41 J I I i I J RSoooc3 ~ I I
o \\ I 4 ~ 11 I (I l&)¢QQ1 f'lmR3 l60o<X'2I
I o 06 321 I J J t ~ L [c:: :] I. I
I oo I .:32. I Jl I ~ [I [. : : I ~
\ 0 I 0 31 l J I ~ KXxx&1 I I &Wi6¢j c: :::: ,]

I o I I 3 I ! I I fO<Xll5t [:.:] k2$X&29I ~

\ I O 6 2.1 I 11 ! EXXc6s:i R)()Q0§1 1:: : : :.1 c: .:1
\ l O I 2. I I ! I - PQS&X)§I ~ r: .. :: : I ~
l I I o I I 11 i EXcliQJ lo660<2t ~ 1.: .:: .::: . :::]
\I l I - I I \ \ ~ ~ ~ ~

...
L-f:.-Cr-E:-N D :

l I ACTIV-&-
~ .tN4C..T1V-E- -f-l q 2..- ~ ~

s ~ ~, 0.:1 Q(fo M nos b t-i- · 9' 1

L b J [b JI b I I b j ff fT I I

I 6 11 Lt' I Tt t f 01

I g,
11 I g, I TTTT 10

l
'.

I 't t t t\ 00 -Jr

N Of .L' rod Q(IQM ij<1S
N Ot ..L V .LO~ g rbj:) 2J I)l~

:>ttfd~"25~

~ ~Q::{ 0 JOM 8fl S'

[

St4N P->tT Of- At'.Tl"-E:- ~UARTe-12.

hT'c-"-lPE:-D TO T"'ILL IN l,-JA<:.T t '1-E-­

QuArrr•~ "T"O 'T~+ L.-E:-t=--T

I
18 BIT S t>B WO R.O

PA~TIA.LLY At::.TIV-E::-

2.-10

514-N P.>1T of- A<::.rtV~ QuA..tz.T-e:-12.

-f:-xTf:-N Df:-P Ta f-,u. 1N lNA<,iv.(;­

Qt.,AR i--£-R -ro TMi::- L~i

p .,

516N -f:-XT.f:-NSION

ADD 0Nt-

~
(o)+I--D

IY - .. , .
D - £2.-&-Cf"I ST+~

I

I

'I

Loer I' "41... ,..

P~01'UC.T -
(A).C..(t>).,.C

~' • l
C - lZ-E:-'4- t s T-f:-12..

q,

1 •r

;a- ...£;-,c C.L.uS1\l'-E:- - PAR.TIAL t...OMPll:e'T-&
- OR

c...o.iur."'I --- A.Nr.. ~c:z.g_"(----(A)<! (e>)➔A S'-'lflf Rl((t-ti
. ~

I I h
1 , • I ~ if

- -- ~

r--+ A - IZ-t-(f I 'S T-E:-R. '4-

-........__

-
:.tOlifffl .,11~fiP.e'IM~~~

~
_ P., - r.z.-&- 4" I 61-e-~

....
-,. ,_,.,,' ,.., """"_.._.,,_ l ,_"

I •

ARIT~/Y\f.TIC ~Lt.Mt-NT Tl2ANS-i=-b--R t?ATUS
+,e; 2-22,

-

~

..

St-1\+-T ~l"HT
COUC,L,NC, UNITS

ON•QuAQ.'A!tt
o+--

A- (2(.-~I ST-.42.

°"'""Q~'NrR.
c-~

8-R'-"'1.ST..fcR.

QU~QT-f:-R COUDLIN((UNIT· ~LOCI<

DJACrQA~

+1 '-r 2- 23

r---1.-..__ - - - ___ ,-'-A,a,g,-y Lr= J

7 <::t~CUIT jl_ j:::

+-+.b QLJA21tt1t ---~ - - - ._ ... \ ~.:r c;>UA.R.TU

A-R"4•S ,~~ A· RwCttS?f:'R

4 ~ QutR.rE:R.
~ -1< •Cc'• ~-rt:Jl~

- - ____ ...,_ _ _.

- - - ..,.._~

\9..IQUA1t1'<-R
11)-Rwc'cl~rl

QUARI-f:-~ COUPLINCr CONNf:-CT\ON~
m . .

Two , a I!> IT Are:-' s
(1e,,e)

" <::
4

4 3 2.

f!:, ___ ..___ ________ ...__ _ ___,

4 3

--D
(_

A -r-.___ ---- ...---......... -----~~---------

2.

-1--- -

OP-&-R.AND WoQ.r, Sr~uc.ruR-£:1-fs'--[__ ,_, __ _.,J '-=(s;.i,_) __ i_7 __ I

D
C

A

4

3 2

- ·-o~ 27 ~,, A
ONw . ! l!,tT A-&

(2.7 , 9) e,L--_______ ___.

Or,•sz."""1D 'WOR.t' STRocTo~I 2~]

4- .3 2

+-OuR_ 9 ~ \ T A.f:! S !? --
c~,9 ,9 ,9) C. --- -

A ..._ __ .-..-. .. -~

fsl. O p.a.JZ.A N Q 'No Q. c, Jsl 8 I Isl 8 I 8 :1 STR.\.)C-'Tu12..+-

·.,,._,_,,. _...__

-
Is(4]

~ --- ----
----- -

l~ 8]

COUPLIN(f UNIT CONN-G-CTION -t:oRMS

-=-=--:-=-=-=-=-===--:--------------------------===;

t I

i I ___ -
l
l

l
!
i
i

i

I
!
!

. f

'

E.
f:,uLl

I I fle: >-I I! N"t I

, ~~ j _ -___ L-=- -1- --1

K

- _ __J

I I
r..,._ou, Bv.s

&=-=--=-=--=----=-==---_ _.◄-----:===....:::::-==-===-=~I=-=~=~~ I
I ,~-out E°LE'1 tNT I j STAtT6VER

I
I

.$ E~VP"Gf
.sw,rctt

• •

Sl:'~uENC.E'
CON°TebL m-tiui I sw,i-c.. Foe.

•N-OvT Sox. Pt:VJGE
OE:\JtGf.

I l----------~~~- 5.rr __ ______________ , _______ , __ I Tg,AP
SE:~v£H<,f

I SW 1TCtt

I
I SPt'CI AL

I SfQOt=NCfS

L_ ----

1YPICA L

tN-OUT UN Ii I
..__ - --,_ --

CHAPTER 3

CIRCUIT LOGIC ELEMENTS

TABLE OF CONTENTS

3-1 INTRODUCTION

3-2 SINGLE -TRANSISTOR LOGIC ELEMENTS

3-2.1 INTRODUCTION

3-2.2 NOTATION

3-3 LEVEL LOGIC CIRCUITS

3-3-1 EMITTER FOLLOWERS

3-3.2 INVERTERS

3-3 -3 APPLICATION TO LEVEL LOGIC

3-3.4 TRANSIENT CHARACTERISTICS

3-3-5 TRANSISTOR TYPES

3-3 ,6 CASCADING LIMITATIONS

3-3-7 CASCODES

3-4 LEVEL LOGIC NETS

3-4.1 GENERAL

NETS

3-4.2 TWO-TRANSISTOR LEVEL LOGIC

3-4.3 THREE-TRANSISTOR LEVEL LOGIC

3-4 .4 FOUR-TRANSISTOR LEVEL LOGIC

3-4 .5 LARGER NETS

3- 5 PULSE LOG IC CIRCUITS

3-5-1 GENERAL

3-5-2 POLARITY

3-5-3 REPETITION FREQUENCY

3-5.4 PULSE SOURCE

3-5-5 PULSE NOTATION

3-5,6 PULSE GATING

3-5-7 SINGLE-STAGE PULSE GATES

3-5.8 REGISTER DRIVERS

3-6 FLIP-FLOPS

3-6 .1 GENERAL

3-6 .2 OPERATION

3-6.3 NOTATION

3-6.4 INTERNAL CIRCUITRY

3-6. 5 EXTERNAL INPUT CIRCUITRY

3-6 .6 PULSE AND LEVEL TIME RELATIONSHIP

3-7 FLIP-FLOP REGISTERS

3-7.1 GENERAL

3-7 .2 REGISTER TRANSFERS

3-7 ,2 .1 JAMMING

3-7,2.2 O' s, l's TRANSFER

3-7.2-3 INTERNAL REGISTER TRANSFERS

March 1961 3-1

3-7,3 LOGICAL TRANSFERS

3-7,3,1 PARTIAL ADD (EXCLUSIVE OR)

3-7,3,2 LOGICAL SUM (INCLUSIVE OR)

3-7,3,3 PARTIAL ADD TRANSFER (THREE REGISTERS, TWO PULSES)

3-7,3,4 PARTIAL ADD TRANSFER (THREE REGISTERS, ONE PULSE)

3-8 REGISTER DECODERS

3-9 COUNTERS AND TIME LEVEL DECODERS

3-9,1 GENERAL

3-9 .2 COUNTERS

3-9,3 TIME LEVEL DECODERS

3-10 REGISTER DRIVER CONTROL NETS

3-11 OTHER COMPUTER CIRCUITRY

3-11.1 GENERAL
3-11.2 SYNCHRONIZER

3-11,3 PULSE DELAY LINE

3-11.4 GATED PULSE AMPLIFIER

3-11. 5 VARIABLE DELAY UNIT

3-11.6 LOW-SPEED FLIP-FLOP AND CAPACITOR-DIODE GATE

3-11,7 0.3 MICROSECOND PULSE FORMER

3-11.8 SCHMIDT TRIGGER

3-11,9 INPUT MIXER AND OUTPUT DISTRIBUTOR

LIST OF FIGURES

3-1 TRUTH TABLES FOR COMMON LOGICAL FUNCTIONS

3-2 TX-2 BLOCK SYMBOLS

3-3 BASIC EMITTER FOLLOWER AND INVERTER CIRCUITS

3-4 APPLICATION OF SINGLE-TRANSISTOR LOGIC ELEMENTS TO D-C LOGIC NETS

3-5 TRANSISTOR CIRCUIT TIME CHARACTERISTICS

3-6 SATURATION CHARACTERISTICS OF INVERTERS

3-:7 CASCODE

3-8 TWO-TRANSISTOR LOGIC

3-9 THREE-TRANSISTOR LOGIC

3-10 FOUR-TRANSISTOR LOGIC

3-11 TYPICAL LARGER NETS

3-12 a: AND ~ CLOCK PULSES

3-13 0: AND~ PULSE-GENERATOR SYSTEM

3-14 SINGLE-STAGE PULSE GATES

3-15 REGISTER DRIVER

3-16 FLIP-FLOP NOTATION

3-17 BASIC FLIP-FLOP CIRCUIT

3-18 FLIP-FLOP INPUT CONTROL CIRCUITRY

3-19 WAVEFORMS FOR FIG. 3-18
3-20 DATA TRANSFER INTO FLIP-FLOPS

3-21 JAM REGISTER TRANSFER

3-2 March 1961

3-22 O'S AND l'S REGISTER TRANSFER

3-23 PARTIAL ADD (EXCLUSIVE OR) REGISTER TRANSFER

3-24 LOGICAL SUM (INCLUSIVE OR) REGISTER TRANSFER INVOLVING THREE REGISTERS AND TWO PULSES

3-25 PARTIAL ADD (EXCLUSIVE OR) REGISTER TRANSFER INVOLVING THREE REGISTERS AND TWO TIME PULSES

3-26 PARTIAL ADD REGISTER TRANSFER INVOLVING THREE REGISTERS AND ONE TIME PULSE

3-27 REGISTER DECODING

3-28a 16-STATE, 4-STAGE COUNTER USING INVERTERS

3-28b 16-STAGE, TWO-MODE, 3-STAGE COUNTERS USING INVERTERS

3-29 COUNTERS AND TIME LEVEL DECODERS

3- 30 REGISTER DRIVER CONTROL LOGIC

3- 31 HIGH-SPEED SYNCHRONIZER

3-32 HIGH-SPEED SYNCHRONIZER TIME CHARACTERISTICS

3-33 TYPICAL PULSE DELAY LINE

3- 34 VARIABLE DELAY UNIT

3-35 CHARACTERISTICS OF VARIABLE DELAY UNIT

3-36 LOW-SPEED FLIP-FLOP AND CAPACITOR-DIODE GATE

3-37 SCHMIDT TRIGGER CHARACTERISTICS

March 1961 3-3

3-1 INTRODUCTION

CHAPTER 3

CIRCUIT LOGIC ELEMENTS

TX-2 has a modular construction, where the modules are plug-in packages, each containing

several transistor circuits. In order to understand the details of the logic of the

computer, it is necessary to understand the operation of and connections among the individual

circuits and the techniques for physically realizing logic functions.

This chapter describes the logical characteristics of the TX-2 circuits. These character­

istics are discussed only in sufficient detail to make the logical function apparent or to

indicate certain operating limitations. A complete circuit analysis of each of the TX-2

plug-in packages is contained in the TX-2 Circuits Handbook.

It is assumed that the reader is familiar with symbolic logic as applied to computers and

is able to interpret truth tables. Fig. 3-1 defines the logical AND, inclusive OR, and

exclusive OR functions, as well as the complement function. The more common circuit con­

ventions and symbols found on TX-2 block schematics are shown in Fig. 3-2.

3-2 SINGLE-TRANSISTOR LOGIC ELEMENTS

3-2.1 INTRODUCTION. The two basic transistor circuits used throughout the computer are:

the saturated inverter and the emitter follower. Both circuits are used extensively

for logic nets in which the inputs are levels. The inverter is also used for pulse

gating and mixing. In these nets, some inputs are levels and others are pulses. The

circuit diagrams for the inverter and emitter follower are shown in Fig. 3-3,

3-2.2 NOTATION. In level logic nets, all single-transistor logic elements are drawn as a

rectangle with the emitter on the top and the collector on the bottom. Inverters

can be distinguished from emitter followers by usage; that is, the emitter follower

collector is always connected directly to a -3 volt supply, and the inverter emitter

is always returned to ground either directly or through the collectors of other

inverters. The diamond on a small side of the rectangle indicates a level input and

is solid for -3 volts and hollow for ground. These same diamond conventions are

used for the output.

In pulse nets, all inverters are drawn opposite to the above, i.e., with the emitter

on the bottom and the collector on the top. Level inputs to these nets are shown by

diamonds as in level nets. However, pulse inputs (which are always negative) are

shown as solid arrows, and the positive output pulses are shown as hollow arrows.

3-4 March 1961

3- 3 LEVEL LOGIC CIRCUITS

3- 3 ,1 EMITTER FOLLOWERS. In this circuit, Fig. 3- 3(a), the collector is tied to a - 3 volt

supply (indicated by a solid circle) and the emitter, which is the output terminal,

is connected through a load resistor RL to a +10 volt supply (indicated by hollow

square) . This circuit is somewhat similar to the vacuum- tube cathode follower.

Whenever the input is more negative (say 0.3 volt) than the output , more negative

base current is drawn . The transistor amplifies this current and a negative emitter

current many times larger flows in the emitter lead . This current tends to make the

output go negative because of the voltage drop developed across RL. The output

(emitter) tends to follow the input, hence the terminology "emitter follower".

To summarize: In the emitter follower, a ground input results in a ground output,

and a -3 volt input results in a - 3 volt output .

3-3.2 INVERTERS . In this circuit, Fig . 3- 3(b), the emitter is tied to ground (indicated by

a hollow circle) and the collector is tied through a load resistor RL to a -10 volt

supply (indicated by solid square) . When the input is at - 3 volts, negative base

current is drawn, and the transistor acts as a short circuit. This has the effect of

connecting the output to ground . When the input is at ground, the transistor acts as

a high impedance. In this case, the current through load register RL makes the output

drop from ground to -3 volts or lower.

To summarize: In inverters, a ground input results in a -3 volt output, and a - 3

volt input results in a ground output. Hence the terminology " inverter" .

It should be noted that resistors R1 and R2 and capacitor Care contained in the

symbolic representation of the circuit . Hence , the left half of Fig. 3- 3(b) is drawn

with the implicit understanding that the circuitry shown on the base of the transistor

in the right half of Fig. 3-3(b) is present. Input resistance R1 and positive bias

resistance R2 provide tolerance to noise, and to signal-voltage and t r ansistor­

parameter variations . Capacitor C improves the circuit transition time .

3-3 ,3 APPLICATION TO LEVEL LOGIC NETS . The basic single - transistor l ogic elements, namely

emitter followers and inverters, can be interconnected to perform logical functions

on input signals as shown in Fig . 3-4 . The emitters of two or more emitter followers

connected in parallel will assume the voltage of the most negative input . See

March 1961

Fig . 3-4(a) . In no case may emitter followers be put in a series connection .

In the case of the inverter, two basic types of connection are possible as shown in

Figs. 3- 4(b) and (c). For the series connection, the output will remain negative

unless both input A and input Bare made negative. In this case, the two series ­

connected short circuits will ground the output; in all other cases, the output

will be negative . For the parallel connection, the output will be grounded if either

input A or input Bis made negative . These two basic types of connection can be

comb ined to produce more complicated nets .

3-5

3-3 , 4 TRANSIENT CHARACTERISTICS. The dynamic characteristics of emitter followers and

inverters are fundamental limitations on the speed at which the computer can operate .

Two factors which must be considered are "transition time " and "saturation".

a) Transition Time: Logically speaking, all the computer level signals are

nominally O volts (ground) or -3 volts, although they may vary widely from

these values. Ideally, the transistor circuit element should reproduce or

invert the signal t ransition appearing at its input instantaneously . In

practice, this ideal situation is compromised both by the transistor and by

the external circuitry tied to the transistor.

Because of hole storage time in the transistor, a finite time delay (dead

time) occurs between the time an input changes and the time the output

responds. In addition to this delay time, the transient properties of the

transistor and the external l oading circuitry result in a finite rise time

or fall time . The sum of the delay time and the rise or fall time is called

the "transition time". Fig. 3-5 shows time plots of a typical transistor

circuit.

b) Saturation: It is important that circuits be insensitive to wide voltage

and transistor-para.meter variations ; that is, while the nominal signal

voltages are O and -3 volts, actually they may lie in the two bands of +0 . 5

to -0 . 4 volts and - 2 .4 to - 5 volts. Fig . 3- 6 shows how operating an inverter

circuit in its "saturated" r egion minimizes the effects of these variations .

For this, and other reasons, the transistors are normally saturated.

3-3,5 TRANSISTOR TYPES. Two basic PNP types of transistors are used in the TX-2 computer.

The high - speed logic circuitry uses a surface -barrier transistor usually referred to

as an L-5122, but similar to the 2N240 . If high current gain at high current levels

is required, a micro-alloy transistor (L -5134, similar to 2N393) is used. Other PNP

and some NPN transistors are used for special applications.

3- 3 ,6 CASCADING LIMITATIONS. As indicated previously, it is important that the transistors

operate in their saturated region . It is also important that the cumulative time lag

through circuit stages be kept within certain limits . These two considerations

result in rules of combination for series and parallel arrangements of emitter

followers and inverters . These are known as "fan in" rules. The same considerations

limit the types and number of circuits that can be loaded on a driving stage and

result in so-called "fan out" rules .

Two classes of emitter followers are used: saturated and non-saturated. Saturated

emitter followers are those driven by inverters. In this case, the input voltage

will go more negative than the -3 volt supply, causing the emitter follower to

saturate and thereby normally produce a -2.9 volt output signal. The outputs of

flip-flops and the cascade to be described later are special cases of the saturated

3-6 March 1961

emitter follower using micro -alloy transistors. Nonsaturated emitter followers are

those driven by saturated emitter followers . In this case, the output voltage is a

function of the input and is normally only - 2 . 6 volts . However, this will produce

adequate drive on all following inverter circuits . In no case may emitter followers

be driven by nonsaturated emitter followers .

To summarize: saturated emitter followers a re those driven by inverters; non­

saturated emitter followers are those driven by saturated emitter follower s, flip­

flops, or cascodes. A nonsaturated emitter follower may not drive other emitter

f ollowers, onl y inverters.

There are also l imitations on the inverter . The ground input level to an inverter

in a level logic net must be no more negative than -0. 4 volt; hence, no more than

two inverters may be placed in series . No firm l imitation may be placed on the

number of parallel inverters, although it is usually l imited to eight. Special

considerations, involved in the case of series -parallel nets, will be covered later .

The driving ability of emitter followers and the load on their drivers are not well

defined. Lightly loaded emitter followers impose a l oad on their drivers equal to

approximately 2/3 of a "standard load", which is defined as the load presented by

an inverter . This increases to one "standard load" when the emitter follower is

driving its full load of four "standard loads".

The load presented by an inverter to its driver is one "s tandard load" and amounts

to about 1. 2 ma . The driving ability of an inverter is limited to two "standard

loads" . Hence, an inverter may drive two other inverters or three emitter followers .

3-3-7 CASCODES . Fig. 3-7 shows a typical cascode . This circuit can be used to provide

logical inversion . The cascode has the additional properties of fast ris e and fall

times, and the ability to supply a large amount of current in both the ground and

- 3 volt states . For these reasons, it is used as a power amplifier . When used for

driving signal s over coaxial cable, a terminating resistor is employed to match the

output impedance of the cascode to the cable impedance ..

March 1961

The cascode input signal is applied simultaneously to the base circuits of transistors

Q1 and Q2 . Therefore, the inputs to Q2 and Q3 are always opposite in phase, so that

in the steady state only one t ransis tor is conducting . Transistor Q3 acts as an

emitter follower and provides the driving current in the -3 volt stage, quickly

pulling the output down to -3 volts. Q2 acts as an inverter and provides the current

in the ground state, quickly pulling the output up to ground . Thus , the cascode

circuit expl oits the fast fall time of the emitter follower and the fast rise time

of the inverter, and makes the total power available to the load since none is dis­

sipated in load resistances .

3-7

The cascode circuit is capable of driving twelve "standard loads" or one series­

tenninated 93-ohm coaxial cable and four other "standard loads" . A series-tenninated

coaxial cable can drive three inverter loads. Emitter followers may not be used as

loads on a series-terminated coaxial cable . The cascode input presents two "standard

loads" to its driver .

3-4 LEVEL LOGIC NETS

3-4.1 GENERAL. This section investigates the logical possibilities that exist for mixing

levels by means of two or more transis tors. All of these circuits will be either

emitter followers or inverters.

3-4.2 TWa TRANSISTOR LEVEL LOGIC. Fig. 3-8 shows how logical AND and OR type circuits can

be realized using emitter followers or inverters in series or in parallel. Note that

Fig. 3-8(a), (c), and (e) are all AND circuits with two inputs. If the circuits are

considered as black boxes, the only differences are the voltages used to represent

the truth state of the input and output variables. Thus, the truth and false state­

ments given in the respective truth tables are identical; only the corresponding

voltages are different. Three possibilities exist: (1) ground inputs produce a

ground output; (2) ground inputs produce a -3 volt output; and (3) -3 volt inputs

produce a ground output. There is no AND circuit which combines -3 volt inputs and

gives a -3 volt output.

Figs. 3-8(b), (d), and (f), in comparison, are inclusive OR circuits with two inputs.

All the statements made about the AND circuits are also true for the OR circuits.

However, the voltages used to represent the truth states of the OR circuits are the

complements of the voltages used to represent the truth states of the AND circuits.

In Fig. 3-8(a), for example, both A and B must be at ground in order that C be at

ground. Therefore, the circuit is an AND circuit . In Fig . 3-8(b), C will be at -3

volts if either A or B (or both) is at -3 volts . Therefore, the circuit is an

inclusive OR circuit.

3-4.3 THREE-TRANSISTOR LEVEL LOGIC. Fig . 3-9 shows how three-transistor circuits may be

used to express more complex relationships than are possible with two-transistor

circuits, that is, logical AND 's and OR 's appear together in the same expression.

These circuits may be considered as simple elaborations of the two- transistor logic

nets shown in Fig. 3-8. Thus, the A+ B circuit shown in Fig. 3-B(d) becomes the

core of the (A+ B) · C circuit shown in Fig. 3-9(f).

The circuits on the right side of Fig . 3-9 are the same as those on the left side,

except that the corresponding inputs and outputs are complements of one another .

Complementing the voltages has the effect of changing all AND's to OR ' s, and all OR 's

to AND's, in the logical expressions.

3-8 March 1961

3-4.4 FOUR-TRANSISTOR LEVEL LOGIC. The use of four transistors provides even more combina­

tion possibilities, as shown in Fig. 3-10. The principles of operation are similar

to those for two- and three-transistor circuits.

3-4.5 LARGER NETS. Still larger nets of emitter followers and inverters are useful in the

computer. Fig. 3-11 shows some of the larger inverter nets with their logic function

for -3 volt inputs and ground outputs.

Circuit limitations determine the extent to which these nets can be increased. There

is a limit on the total number of inputs to non-ground elements in series-parallel

or parallel-series nets. Such nets contain transistors with emitters not tied

directly to ground. For example, inputs F and G, D and F, and D, G, and Gin

Fig. 3-ll(a), (b), and (c) respectively are of this type. This rule limits the total

number of these inputs to two. Mutually exclusive inputs are considered as one;

thus, G and G. in Fig . 3-ll(c) may be counted as onl y one input .

3- 5 PULSE LOGIC CIRCUITS

3- 5 ,1 GENERAL . In addition to static signal levels, pulses are also used in the computer.

These pulses are used for timing control and therefore are precisely spaced in time.

The times at which level transitions occur are determined by pulses.

3- 5 ,2 POLARITY. Pulses are described as either negative (going) or positive (going)

depending on whether they have ground as a reference and extend to -3 volts, or have

-3 volts as a reference and extend to ground.

3-5,3 REPETITION FREQUENCY. The TX-2 computer uses a vacuum-tube pulse -generator to pro­

duce pulses at a 2.5 megacycle basic clock rate; that is, one pulse every o .4

microsecond. As shown in Fig. 3-12, two pulse outputs are available from the 2.5

megacycle clock. One pulse stream, the~ phase, is delayed 0.2 microsecond from the

other pulse stream, the a phase. The a and~ pulses differ only in their reference

to some arbitrary zero starting time. By means of this system, events can occur

every 0.2 microsecond despite the fact that the clock frequency is only 2.5 mega­

cycles on each pulse line.

3-5.4 PULSE SOURCE . Fig. 3-13 shows the a and~ pulse-generator system. Each clock pulse

output phase is fed to a shaper and then to a shaper amplifier which drives ten

vacuum-tube driver amplifiers. The output of these amplifiers is a 40 volt positive

pulse which, in turn, drives five buffer amplifiers . Negative, 30 volt, 0.1 micro­

second pulses are transferred from each buffer amplifier to the computer frame over

separate coaxial cables. At the end of each cable, a non-inverting 10:1 pulse

transformer provides -3 volt clock pulses for the logical circuitry.

March 1961 3-9

3-5-5 PULSE NOTATION. Since diamonds are used to indicate levels, arrows are used to

indicate pulses (see Fig. 3-2). A hollow arrow indicates a positive pulse, and a

solid arrow indicates a negative pulse. (The solid arrow used for negative pulses

should not be confused with similar- type arrows used on block diagrams to indicate

signal paths.)

3-5,6 PULSE GATING. In logic nets using both pulses and levels, levels are used to gate

pulses. The inputs to these nets are one or more levels and a single pulse line

input. The output is always a pulse (usually of the opposite polarity to the input

pulse). When the input level logic is satisfied, an input pulse will cause a pulse

output. This process is sometimes described as the input pulse "sampling" the input

level logic. The need for logic nets with both pulse and level inputs will become

apparent in the sections that follow.

3-5,7 SINGLE-STAGE PULSE GATES . Fig. 3-14(a) shows an inverter with a negative pulse input

and a positive pulse output. If the emitter is tied to ground through a level logic

circuit, the situation in Fig. 3-14(b) results. In this case, when the emitter is

at -3 volts, the transistor will not conduct regardless of the pulse on the base

circuit. However, when the emitter is at ground, a negative pulse on the base pro­

duces a positive pulse at the collector. This ground level to the emitter may come

from a flip-flop or another inverter. In Fig. 3-14(c), two transistors are used,

with a negative pulse and a -3 volt level input producing a positive pulse output.

Fig. 3-14(d) shows the same circuit used for mixing a negative pulse and two levels

of opposite sense. Note, in Fig. 3-14, that all the circuits form logical AND gates;

that is, all the indicated input signals must be present in order to produce a pulse

output.

The inverter circuits used to make up pulse gates are standard inverters. Up to

three inverters may normally be put in series, with the pulse being applied to the

output transistor. The level inputs present one "standard load" to their driver.

The pulse input presents one "pulse load" to its driver when its emitter is grounded,

and approximately 1/3 "pulse load" when gated off .

3-5.8 REGISTER DRIVERS. In order that the single-stage gating circuits just discussed

operate properly, it is necessary that the pulse inputs be of proper magnitude and

shape. To accomplish this, the outputs of special circuits called "register drivers"

are used as pulse inputs to the single-stage gates . (See Fig . 3-15)

If the two register-driver level inputs are at ground, the inverter supplies current

to the bases of Q3 and Q4 . These transistors are saturated emitter followers whose

collector supply voltage is made up of clock pulses from the distribution system of

Fig. 3-13 , When saturated, these transistors short the input pulse through to the

output terminal. The circuit is abl e to drive twelve "pulse inputs" plus a 100-ohm

line terminator .

3-10 March 1961

Both level inputs to the r egister driver must be at ground before a pulse output can

occur . The clock pulses determine precisely when a pul se will occur at the output of

the register driver. The level inputs to the register driver each present two

"standard loads" to their driving source.

3-6 FLIP-FLOPS

3-6.1 GENERAL . Flip- flops are memory or data- storage devices. The basic activity of the

computer involves transferring data into and out of these storage devices . The

inputs to the flip - flops are positive pulses and the outputs are levels . Like any

memor y element, the flip - flop is a two- state (bistable) device. These states are

called t he ZERO state and the ONE state . The flip - flop will remain indefinitely in

one of these states until pulsed into the opposite state .

3-6.2 OPERATION. There are three inputs to the flip - flop (see Fig. 3-16). A "set to zero"

input pulse p laces the flip -f l op in the ZERO state . This is true regardless of the

state the flip - flop was in prior to the pulse . Likewise, a "set to one " input pulse

places the f lip - flop in the ONE state regardless of the prior flip - flop state. A

"set to complement" pulse places the flip - flop in the opposite state from that which

it was in prior to the pulse . Note that the inputs a.re always a.t - 3 volts until an

input pulse occurs . Pulses are barred by logical design from occurring on more than

one input at a time, or closer together than 0 .2 microseconds, because of the

ambiguity involved.

3-6.3 NOTATION . While the operation of flip - flops is straightforward , there are certain

subtleties in the labeling of the outputs that are important to grasp . The flip-

March 1961

flop is a two- state device and may be in either the ONE state or

The flip - flop states themselves can be represented by variables,

FFO is the name of the variable r epresenting the ZERO state , and

the ZERO state .
0 1

namely FF and FF

FF1 is the name of

the variable representing the ONE state . The variable is TRUE if the flip - flop is

in the state represented by the variable, and is FALSE if the flip-flop is not i n

the state represented by the variable (that is, i n the opposite state) . Thus, FF1

is TRUE if the flip - flop is in the ONE state, and FALSE if the flip -flop is in the

ZERO state.

Note that nothing has been said thus far about the output voltage levels used to

represent the state of the flip - flop. A flip - flop has two output wires which have

opposite voltages on them : that is, when one is at ground, the other is at -3 volts.

These wires are called the "o wire " and the 11 1 wire" . By definition, the "o wire "

has -3 volts on it when the flip - flop is in the ZERO state , and the "l wire" has

-3 volts on it when the flip - flop is in the ONE state.

Fig. 3-16 summarizes the operation of the flip - flop . If the flip-flop is first

"set to ZERO" , then "set to ONE" , and then "set to complement ", the sequence of

voltages given in the variable truth table will appear on the O and 1 wires . Whether

3-11

the wire is in the TRUE or FALSE state of the variable depends on the agreement (or

lack of agreement) between. the state of the flip-flop and the state represented by

the variable.

3-6.4 INTERNAL CIRCUITRY. Fig. 3-17 shows the internal circuitry of the flip-flop. The

heart of the circuit is a transistor variation of the familiar Eccles-Jordan multi­

vibrator. In this case, the gating transistors external to the flip-flop form

inverters with resistors in the flip-flop themselves. The outputs of the inverters

provide the trigger inputs to the two-state circuitry . The cascodes provide a low­

impedance driving source and decouple the flip -flop from its load. Note that the

two cascodes are cross-tied . In all other respects, the cascodes are similar to

those described previously.

3-6.5 EXTERNAL INPUT CIRCUITRY. Fig . 3-18 shows the typical input circuitry external to

the flip-flop . The flip-flop is pulsed by ANDing a "when" and "what" type signal at

the input gate . The "when" pulse signal determines precisely when in time the flip­

flop is going to be pulsed (assuming that the "what" circuitry indicates a ground

level is available to be sampled). The "what" level signal determines the state to

which the flip-flop will be set . For example, if the emitter on the external "set

to ONE" gate is at ground, the flip-flop will be pulsed to the ONE state . Data is

shifted through the computer along the "what" lines. Data shift time control occurs

along the "when" lines.

3-6.6 PULSE AND LEVEL TIME RELATIONSHIP . Fig . 3-19 shows the time relationship of the

pulse and level transitions that might occur in Fig. 3-18. Assume that at time

t = O, the output of logic net Cl is at ground and that the outputs of logic nets

C2 and C3 are at -3 volts. Clock pulses of the shape shown in the Fig . 3-19 arrive

at the input to the register driver at o . 4-microsecond intervals. The output of the

register driver, however, will remain at a constant voltage that is slightly positive

of ground level.

At approximately t = 0 .15 microsecond, the output of logic net C2 rises toward

ground. The total rise time depends on the circuitry of logic net C2 and typically

might be 40 millimicroseconds. As the output of logic net C2 approaches ground, the

output of the register driver will begin to follow the input clock pulses. A small

amount of attenuation and lag occur through the register driver, but can be neglected

for all practical purposes. No input gating occurs at this time because the output

of logic net C3 is at -3 volts. At approximately t = 0.7 microsecond, the output of

logic net C3 rises toward ground. Generally, the rise time will be shorter for logic

net C3 than for logic net C2.

The register driver pulse occurring at t = 0.8 microsecond will now sample the ground

level from logic net c3. The output of the gate will be at -4 volt.sup until the

time it is pulsed. The gate output pulse never actually reaches ground, but never­

theless triggers the flip-flop. The positive input pulse to the flip-flop now

3-12 March 1961

reverses the polarity of the voltage on the O and 1 wires coming out of the flip-flop.

The delay time for the flip-flop is about equal to the width of the clock pulses;

that is, 0.1 microsecond.

Several interesting and very important observations can now be made. First, the

state of the flip-flop did not start to change until the clock pulse that caused the

change was over. This means that the same clock pulse that was used to change the

state of the flip-flop could also have been used to sample the output of the flip­

flop before its state changed. On the other hand, the flip-flop state changed

quickly enough to allow a clock pulse to complement the state of the flip -flop

again. Thus, the flip-flop can change states at a 5-megacycle rate (once every 0.2

microsecond) even though the pulses from any other register driver occur at a

maximum 2.5-megacycle rate (once every o.4 microsecond).

3-7 FLIP-FLOP REGISTERS

3-7-1 GENERAL. A flip-flop register comprises one or more flip-flops and assumes an

identity of its own . Flip-flops contain a bit of information and registers con·tain

a word. When one speaks of a 36-bit flip-flop register, he means a register composed

of 36 flip-flops.

All the normal things that are done to flip-flops, such as "setting to ZERO",

"setting to ONE", and "complementing", are also done to registers. Sometimes the

terminology is different. For example, one commonly speaks of "clearing" a register

rather than "setting to ZERO", but the idea is the same.

3-7.2 REGISTER TRANSFERS. Register transfers will be treated at the level of data t rans­

fers into the individual flip-flops that make up the registers. Fig. 3- 20 shows how

ZEROS and ONES are gated into t he flip -flop by transfer pulses.

March 1961

3-7.2.1 JAMMING . Data transfer between flip-flops may be accomplished by several

different techniques . One technique, called "jam transfer", is illustrated

in Fig. 3- 21. In this case, the bit of data stored in flip-flop FF1 is

transferred into flip-flop FF2 by a single transfer pulse. Symbolically,

this transfer is written

FF l ---&- FF 2

This transfer is interpreted as "jamming the contents of FF1 into FF2".

Two types of jamming circuitry are used (see Fig. 3-21). One type uses an

emitter fed input gate. This can be done only when FF1 is physically close

to FF2 so that the ground in FF1 is in close proximity to the emitter of

the gate . In this case, only one transistor is required for each input .

The other jamming circuit uses a base fed input gate and requires two

transistors on each input. In this case, FF1 and FF2 may be physically

distant from one another.

3-13

An obvious, but sometimes overlooked fact, is that the data transfer has no

effect on the state of the register from which the data is transferred.

3-7.2.2 O'S, l'S TRANSFER. In this technique, the circuitry is similar to that used

in jamming but the transfer pulse for the ZEROS comes from a different

register driver than the transfer pulse for the ONES. (See Fig. 3-22 .) It

is now possible to effect a register transfer by first clearing (that is,

"setting to ZERO") all the flip-flops in a register and then transferring

ONES. One clear gate on each bit (requiring one transistor per bit) may be

used to clear the register before ONES are transferred from several different

flip-flops. In this technique, fewer transistors are required than in

jamming, but a time penalty is imposed in that two succeeding time pulses

are required -- one for clearing and one for setting ONES . It is also

obvious that logical transfers requiring separate control of the ZERO and

ONE inputs are now possible.

3-7.2.3 INTERNAL REGISTER TRANSFERS. There are several types of internal register

transfers which are all " jam transfers " between bits in a register. One of

these is called "shifting" and involves transferring individual bits from

one flip-flop to either the flip-flop on the immediate right or on the

immediate left; hence the names "shift right" and "shift left". Arithmetic

Element registers in TX-2 are often considered as closed rings, in which

case the bits shifted off the right or left end of a register are jammed

into the opposite end of the register. Under certain other conditions, the

registers may be broken into several smaller rings in which case the bits

are shifted around these rings.

Another type of internal register transfers is called "permuting" and con­

sists of interchanging subwords of the register. This is done by jamming

the bits of each subword into the corresponding bits of its permuted subword.

3-7-3 LOGICAL TRANSFERS. This operation involves the logical combination of two registers.

The result is either stored in one of the two registers or in a third register.

3-7-3-1 PARTIAL ADD (EXCLUSIVE OR) . Fig . 3-23 shows the truth table for a partial

add operation and indicates how it is performed. Note that the state of

FF2 is changed only when FF1 is in the ONE state. When FF1 is in the ZERO

state, FF2 is unaffected. The logic is performed by means of the complement

input and is executed by a single pulse.

3-7-3-2 LOGICAL SUM (INCLUSIVE OR). In this case, two registers are combined and

the result stored in a third register. (See Fig. 3-24 .) With this circuit ,

the operation requires two successive time pulses. On the first time pulse,

flip-flop FF3 is cleared. The logical sum pulse then performs the logical

t ransfer itself. Note that an OR inverter circuit is used, so that when

3-14 March 1961

1 1
either FF1 or FF2 is in the ONE state (FF1 or FF2), FF3 is set to ONE. When

both FF1 and FF2 are in the ZERO state, the output of the inverter is tied

to ground and the logical sum pulse has no effect on FF3 . Note also that

the l's transfer of Fig. 3-22 is perfonning the logical sum of FF1 and FF2
but with the results stored in FF2 ,

3-7,3,3 PARTIAL ADD TRANSFER (THREE REGISTERS, 'IWO PULSES). In this case, the

result of t he partial addition of two registers is stored in a third register .

(See Fig. 3-25,) It is first necessary to clear the register in which the

result is to be stored. This is accomplished by a clear pulse. The

"exclusive or" logic itself is perfonned by the cross-tied four-transistor

inverter circuit. A -3 volt output from the inverter occurs when both top

transistors or both bottom transistors have their inputs grounded. Note

that this occurs in only two of the four possible state combinat ions of

FF2 and FF1 .

3-7,3,4 PARTIAL ADD TRANSFER (THREE REGISTERS, ONE PULSE). In this case, the result

that was accomplished with two time pulses in Fig. 3-25 is obtained with one

time pulse. This increase in speed is obtained at the expense of additional

transistor circuitry. (See Fig. 3-26.) Note that an input pulse is applied

to FF3 in all four possible cases. Two of the cases effect the "set to one"

input, and two of the cases effect the "set to zer o" input.

3-8 REGISTER DECODERS

If a regis ter contains n flip-flops, the register as a whole may be in any one of 2n states.

For example, a 3-bit register may be in any one of 23 = 8 states. Each of these register

states may have a name, and it may be necessary to recognize and indicate each of these

states.

Fig. 3-27 shows a typical "register decoder" in which the decoding networks are simple ANDing

emitter follower circuits. There is an output wire for each state of the register and the

wire is labelled according to the name of the particular register state. All the output

wires will be at -3 volts, except the wire that represents the present register state. This

wire will be a t ground.

Note that the register states may have completely arbitrary names. The figure shows the

states named sequentially (both numerically and alphabetically) according to the state of

the register, which is represented as a binary number.

3-9 COUNTER AND TIME LEVEL DECODERS

3-9 ,1 GENERAL. A counter is a register with a count circuit as an input. A time level

decoder is an ordinary register decoder.

March 1961 3-15

3-9 -2 COUNTERS. Fig, 3-28(a) shows a typical counter . The p rinciple of operation is that

each count pulse indexes the counter by one . When all the flip-flops contain ONES,

the next count pulse resets all the flip-flops to ZERO . Each of the states of the

. t i . t · h KO Kl 2 3 8() regis er s given a ime name, sue as , , K, K, etc . Fig. 3-2 b shows a

variation on the simple counter just described. In this case, K1 , K2 , and K3 form

the indexing counter . K4 is independently controlled and effectively determines how

the indexing counter state shoul d be interpreted . This is c l ear from the accompanying

table. Note that both counters in Fig. 3- 28 contain four flip-flops and are capable
4

of registering 2 = 16 different states.

3-9-3 TIME LEVEL DECODERS . Fig. 3- 29 shows how the state of the counter is decoded. The

pulses for the a counter come from register drivers with a cl ock pulses. Note that

the inputs to the counter are time pulses and that the outputs of the time level

decoder are levels representing time states.

Actually, it is convenient to have~ time levels as well as a time levels. The~

time levels occur just 0 .2 microsecond after the cor responding a time levels. This

is accomplished by gating the a counter register into a~ counter register with~

pulses. Thus, the a register contents appear in the~ register, but delayed 0.2

microsecond from the time they appeared in the a register . The~ register is then

decoded by a~ time level decoder.

Each time state (oa, 1a, etc .) has two complementary output wires, so that the

counter state can be represented by either a ground level or a -3 volt level.

3-10 REGISTER DRIVER CONTROL NETS

A somewhat special type of logical notation is used when discussing register drivers. In

some cases, it is more advantageous to indicate the logic that inhibits pulses from the

register driver rather than the logic that permits pulses from the register driver . This

is shown in Fig. 3- 30. In order that a pulse appear at the output of the register driver,

it is necessary that both register driver level inputs be at ground. Fig. 3-30(a) shows a

typical permissive type of register driver control circuit . When either A or Bis -3 volts,

both inputs to the register driver are at ground and a pulse appears at the output of the

register driver. On the other hand, when both inputs to the logic net are at ground, no

pulse appears at the output of the register driver .

Fig. 3-30(b) shows a typical inhibitory type of register driver control circuit. First look

at the inputs and output of the register driver. They indicate that, when either input is

at -3 volts, no pulse appears at the output of the register driver that will transfer the

contents of flip-flop FF1 into FF2 . One of these register driver inputs will be at -3

volts when A and Bare not present and C is present in one of the logic nets, or when D and

E are present in the other logic net.

3-16 March 1961

The question now arises as to when a transfer pulse will appear at the output of the register

driver. ·It will occur when both register driver inputs are at ground. This in turn will

occur when A or Bis present and C is not present in one logic net, and Dor Eis not present

in the other logic net. By."present", it is meant that the voltage on the wire is the same

as the voltage used to represent the truth state of the uncomplemented variable.

3-11 OTHER COMPUTER CIRCUITRY

3-11.1 GENERAL. The other miscellaneous special-purpose circuitry used in the computer

falls into two categories: (1) high-speed circuitry generally used in the central

computer; and (2) low-speed circuitry generally used in the In-Out Element. The

pulses used in the low-speed circuitry tend to look more like the levels used in the

high-speed circuitry. That is, instead of being 0.1-microsecond wide, the pulses

are approximately o.4-microsecond wide.

3-11.2 SYNCHRONIZER. The information from pushbutton controls on the console must be

synchronized with the basic clock-rate activity in the central computer. The cir­

cuit for doing this is shown in Fig. 3-31, A similar low-speed type synchronizer

is used in the In-Out Element to synchronize information from the external world.

The logical operation of the synchronizer is as follows: An asynchronous pulse

appears at the "set to one" input of FF1 . A -3 volt level will appear asynchron­

ously at the output of FF1 . Since FF2 is in the ZERO state at the time FF1 is set

to ONE, the synchronous clock pulse can trigger the "set to one" pulse of FF2
synchronously. When this clock pulse appears, FF2 is in the ZERO state, so that

the open gate on the "set to zero" input of FF1 and FF2 prevents the pulse from

effecting these inputs. However, by the next clock pulse, FF2 is in the ONE state.

Both FF1 and FF2 will now be set to ZERO. The time relationship of these events

is shown in Fig. 3-32,

Note, in Fig. 3-32, that the output on the 1 wire of FF2 is a synchronous level

exactly o.4 microsecond wide and positioned with respect to the clock pulses. The

asynchronous input pulses cannot appear closer together than o.8 microsecond. Also

note that the cycle is completed by both FF1 and FF2 being "set to zero" by the

same clock pulse. Both flip-flops stay in the ZERO state until the next asynchronous

pulse requiring synchronization appears.

3-11.3 PULSE DELAY LINE. Fig. 3-33 illustrates the characteristics of a typical pulse

delay line. For the delay line shown, the input pulse can be delayed in twenty

discrete 20-millimicrosecond intervals. Thus, the pulse appearing at output No. 1

occurs exactly 120 millimicroseconds after a pulse appeared at the input. Similarly,

the pulse appearing at output No. 2 occurs exactly 400 millimicroseconds after a

pulse occurs at the input. Pulse delay lines are used to solve some of the timing

problems found in the memory systems. They are also used in other parts of the

computer.

March 1961 3-17

3-11 . 4 GATED PULSE AMPLIFIER . This is a two-stage t ransformer -coupled amp l ifier for 0 .1 -

microsecond negative pulses . The output is capable of driving 10 bases and a 100-ohm

termination. It is used to amplify the weak outputs of delay lines and for ampl ifi ­

cation purposes in some of the in-out circuitry .

3-11 . 5 VARIABLE DELAY UNIT. Fig . 3 -34 shows a typical variable delay unit . A 0 .1 -micro ­

second negative pulse applied to the input provides a - 3 volt output level for a

period continuously variable from 0 . 3 microsecond to 2 .2 seconds . The coar se ranges

are set by means of switching capacitors, and a potentiometer provides the fine time

setting . The end of the delay can be made to occur synchr onously with a clock pulse

by use of the added external inverter shown in Fig . 3-34 . Fig . 3- 35 shows time

characteristics of the variable delay unit .

3-11 .6 LOW-SPEED FLIP -FLOP AND CAPACITOR-DIODE GATE . The low-speed flip-flop is a simple

transistor version of the Eccles-Jordan flip - f l op with "set to zero" and "set to

one" inputs applied directly to the base terminals of the transistors thr ough

capacitor-diode gates . (See Fig . 3-36 .) If the flip - flop is in the ONE state ,

the "one" output is at -3 volts and inverter Ql is saturated. If the base of Ql

is driven positive, thereby making its base current zero, then Ql will become an

open circuit and its output will turn on Q2, t hus reversing the state of the flip­

flop. Pulses which do this are formed, gated, and coupled into the base of the

flip-flop by the capacitor -diode gate .

The input pulses to the capacitor-diode gate ar e wide positive pulses normally at

-3 volts . The circuit forms a pulse from the rising edge of the input and applies

it to the flip-flop if the gate input is at ground, but does not couple it if the

gate is at - 3 volts.

There are several limitations on the use of the low-speed flip - flop and capacitor-

diode gate .

3 . 6 volts .

First, the pulse input signal must not have an amplitude greater than

Next, the pulse input to this circuit draws 2 ma . The gate input draws

1 ma and does not gate off the input pulse immediately, but only after 1.2 micro­

seconds. Finally, the flip - flop has an uncontrolled delay which may be shorter than

0 .1 microsecond and has a rise time of 0 . 2 microsecond or better . It is capable of

dr iving five "standard loads " . As a result of these limitations, the circuit is

used only on in-out equipment where necessary operating speeds are less than 600

kilopulses per second.

3-11 .7 0 .3 MICROSECOND PULSE FORMER . This unit is essential ly a low-speed flip -flop which

has been modified so that it is stable in the ONE state only . When a pulse is applied

to its input via a capacitor-diode gate, the unit goes to the opposite state for 0.3

microsecond, but then automatically falls back to its rest state. Operation is

ther efore simil ar to a one - shot multivibrator .

3-18 March 1961

3-11.8 SCHMIDT TRIGGER. This is a static hysteresis-type circuit with input-output

characteristics as shown in Fig. 3-37- The circuit provides an output between

ground and -3 volts -that is independent of the rise and fall t:ilne of the input.

The output is inverted with respect to the input. The circuit triggers when a

rising input reaches 0.9 volt (the output then drops to the -3 volt level in less

than 0.15 microsecond). It also triggers when a falling input reaches -2.2 volts

(the output then rises from -3 volts to ground in less than 0.1 microsecond).

3-11-9 INPUT MIXER AND OUTPUT DISTRIBUTOR. These two units provide complementary functions

in the In-Out Element. The input mixer selects a particular in-out unit and routes

one of its output signals to the central computer. Several mixers use a common

amplifier to drive their output over coaxial cable to th@ E register. The output

distributor, on the other hand, routes a signal from the fentral computer to a

particular preselected in-out unit. The distributor drives the central computer

signal over coaxial cable from the Sequence Switch to the In-Out Control Box.

March 1961 3-19

R B A•B rs -Qt!) -
0 0 0 6 6 0
0 0 0 l I

' b 0 l 0 I I \ 1.
\ ' ' Lo~•~~l (.:}N.0 TV\ J. vs, t/~ 0 R

q,& A ➔ 11
(A ar1cl B) (A or B ~ or 6 ot~)

t) t f}~ -~ - -..............,.~~

6 0 D
0 ' 0 f I ()

) 0 l
\) l ()

~©~
(!ior-8, buT not both)

p, (,, 3-1 I R\.>Tti TAgLf ~
Fo1,

Cot-1 VION Lo<.• tAL. F lJNC.i\ON~

S1 J\/<;LE­
TMus,.sroR

LoG, C.. E.LEt\1 ENT

DroDE

Lr::vcLs:

PllLSEs:

'D_ ©(i'Nitt~ ... IJQSe

C.ol lecf-o 1-

Eht iff'e r

Bue~
~ or

Coll(tdo\"'

or

~
-3 VoLrs •

0 VOLTS ------<> (GRD)

N£GATIVE" ~

Po~, T\V s ---t>-

S u PPL."(VoL.rA c; ES:

f I f
+3o ¼LTS +lD VoLT!> bRounc

l 1

~

Eh\itter-
1Jo. .

<:ollec.for

l -3 Yt)LiS
-10 VOLTS

- ~6 YolTs

Fi G. 3-2. TX-2 E Lo c.r 5YM8oLs
,Hl!=ET 1o 2

p;,.i-i. -rx-?.. Bkoc..t S l(t-tgo1.._s
((0-V. t ~ I.)~)

·HOV
+1ov

0vtPuT

INPUT

I
I
t
\

I

l
I
I
I
I
I

--

-,av

C Q// EM,T'f'F-.f Fc1..Loweie. (b) TY\ \IE ie.re ~

+1ov

+roV

8

~r~
{"a.)

~~
(b)

+toV

47

-JC V

A

ij

I

' \
f JNIIJ'l.'lft, '

L- ~ - - 1

I
l
I

~
\ "r' ,-y EtHlt

,_ - --~

tro1,sit1'.i, ti"'e.

tr;..,.,,+1'1>11 ti''"" e

)
-tr _ _....._, I

~ rs J.. t+-,
0 --~===----r---------,~~tr-~::.:a====­

- 1

_,
.D -i

-1

_, I
tQ~ ►

I I If o---,~--t-~----.::======+~---
1 J
f ' r-t..e-+j
I I

F

-.3

..

-
'\

-l -3

INPUT

-,ov -3Y

OU TPtJ•

{

l\!€S1Sl~rt Fort.

{Zv t1AJZ,.,IN6-, c.~a .. ~
"!~P0.DAN(:£._

-0:~- -"'."--=-
7'' ·~L£ ----..

~I~@ ••~u1i
f!.fi Geo.• IA\Jti

- Q g C
(:, {T) ~(T) G-(T)

'-CT> -3(F -3lF)

-~ ('Fi ~tr) -·3 (F)

. ~ .
A & -3V=-l~"'t
f!> L :SV=-lw1utD <; f) G- (f) G(►

,;.. (v) -~ tT) -1 l T)

-l t,) G, (f) -~ lT)

__________ ___ ..._._,,.,...,..-..~-.....,._ _ .. 1- -:!> {i) -~ (T) ..- ~ (r") - -~------i------- ·

'H ,,.,, : IA11lt
gi '1.-.o = i -A -.tt

C,

&ti) G-(r) -3 (T)
fr cr) -~ (F) " (F)

-~ (r) ~ (l) G (F)

- -\(F) -j(F ~ (r)

T.1111·1-l, 'r~ ~

L., J -r }-tr+◊"~ ~

~

A:-~ v-.t,..>tJ
13: -l\J=~~tt

~C:-~\l' -~tfAvM A '. B C At G~b -:::. J-\11ti
~: -lU-.:-IAutl Gr(~) G;(F) -!)(F) t:!,: GRc -aT .. .tt

& (i:) -3 (T) -J(f)

c: GRO = ~1,1~ ~ 1 ('t) c;. (F') ~ (F) c:- -1 'J~ T.,.-,tt
'~(r) -~ (i) (;.(i

. n t:i (i/
ti-) r. .. l ... a two -leA~.s,.s-r~2. ~O~IC.

Tl.utl. T~J.'); F
TJ-i ir -t Out vf 4-11.0

_ ft ~ C. -
'-- (F) ~ l f) -l l F)
~ (f1 , -~ (,) ~ en
-l(l) (, (f) C:..(T)

-J (T) -J.. tn ~ (T)

C

. T».11 Tbhl" 1---
. I'""" u½i (;12p + Ouf ..,f -l,r

-
~ Cr)

~CT)

-l (F)

-l (F)

B C

<.- Cr> -~ Ct)
-~ (f) - _3 (f)

~ Lr) ti-~ (1)

-.l lf) 1 G, (F)

D

Fof' ~ ~"'t-J-1 i.r ov~fl>i_.

A .. [3.-C-=0

\Ll_

Fot q',l ""fJ ~- ~ 1J" o.ilq-.J;

(A•B)+C=P

~)
F,·C'r, l-'f T~tft:. -1~-Af'-)S,s'fo'(. Loe."c..

0

it+8+Ct.D=E . . . ' .. -c~ e-~--- 11,4.-_.....,_ __

~ ... £ z

--

(fl+G)• (C+I>): E
C,.$6 •

(B•C..)+ (~ D)=E

f"~ ~ ~J-1v ov+pvf.> Fe--,--l~ ~._/~ J~
(-e . A1 l3•(C,U>.)=~ ~ t B-t (C•.P):: S

A + [(3+!} • P] ::: E

w..--+-----r--- C
L~Jl---+---.D

......,_E

HeA+B+(C+D-tE.J•(F+b) (a...)

G

(b)

H

J.~~st
c'"b't: r"~E~ - ,

(4/oLT!;) _d

(! ?MMt b

c""°"i&uj-,

(Vo t..T'~) - 2..

t (})sec.) --~

,;. .
CLOCIC

(R. .. sE -C.,-...)

PVLSc

ortt~,
~l\ll!iilt
AhPI-IF/ft,

OTltl!!lf
ll.lFFU

A11P&.1,1t'el

j

Buir,it

A"tl'-1FIJ!,t•-~----_,)

p v L.S e. - ~ E N E Ii AT OR.

10:,

P11 ... ~:;;.~_.....--, ,,,- __ 7
,,,. Pua.~e. I

I
I

Flip-Floy,, I
p,:.-

1 ____ ___ J

c~1

I-Pu~E7
'...J I

I I
\ I
I FF I
l . I
L-----'

tl)

L (V 1!1-

/

(

I

~- - - --\
Pv~;. 1

I

I p,:
I I

I l

L------ -J

Ch/

1- - --1
_ J PvLS,e. 1

I
\
I

FF' I

-- _J

,-- -
I

Ovr~ur

(Pvi...s£ l"IPUT

To s,~'-• -
STi\1a.E GATE)

I
I

J
f
I
I

' ---- -- -- -- -- - --- -- -----------'

Q1 I.S

Ft='

~

0 I i
I I ,_ - - 6 j

---....J

F'F FF

. f j 'TS;T to oh e
Se+ to Lero S +-... -, I i 5 et To One e , 10 '-ero

Set to C.o,Y1 pie >)tent-
Se+ to Con, f /er>, en f-

(a.) Fl I t-f /or r'n II ONE'' S+;;;r;: ,, ''s:1 -'-Cb.) Fl,"r-=ffor II, ZERO ra-~

,.

T1,puf- ~ Va~,Qi)e FF 1
]- •~ .. , .. ,,., _

Ihpuf Sf-a+e I
V c r, 'ab le FF' o .Sejt)ehc.,.~ \

6 w,·,-.e 1 w,'re. ow,~ .. 1 ~,r -e. I -~---- ,... __
-·,

th \ Set to -Ze r o Zero Fals-e.. -::3 qrd True -3
{

1rc1 '
: r
,, (

Se+n 6ne fii;e. jrd -3 ' F,)se fh+I
f 0he. 9rd -.3 ~ l

r
t ' F t

Set io Co1ti ~let•e~4 Zero t ht 1.

i

~lse -3 t'

I qrd 1 Tt-ue -"3 ~ t-d - -____ JJ.-~ f i - ... -.., __ ... _ .. __ ,..

t --- "" . -..-,:_.,.,...,..~ ~--Cc) truf /; TI, b I e.

F,3. 3-1~ F/,):,-1/ot)Jofa-/-i 017

--- ------- - - - -~--------- - --- - -- - --- --

l

- -7
I

I
I
I
I
I

I
I
l
j

''s_;_L_ET_,.,o_\?._,-,---------- 1 l~:::•:~:.. : J j su~E ouw11&) I

"' sn Tc, zirro' - - - - - - - - - - -. - - - - • - - - - - ~ - - - - - - - -- - - _ _j
",,,,,.,,, • 11T 'lo 0~£ l

T
SET TD 2eeo

f.xreehl9L c;~Tf

SET TO Cot1Pl..t!HfAJT"

E~ii!'llW1'L (;•Te

S~r 1o O>JE.

I!" T~ i.N A\... '• lll

S~, T,

C o,iPLe-11e.,r

I

I

Wtt~N

WH-4T

0

-1

-2

- 3

0

-1

- 2. \

OCLOC.K. r'VL.~ES

tE41STEC D1t1v£c OurPtrr fll'vl..S~'S ~~---~ ~:;:;:,-~--

Lo~1c U~T C1
L.EVCL OuTPVTS

I
I
I
I

I /
\ I
I I
\
\

I
I
I
I \
I \
I \
I
I

I \

Loe. IC. ijEi c Z.
LEv£ L OUTf>Uf

I \
I \ LO <. l C. ...,E'f C 1
I I
/ l LE"vE"L 0(1TPVT

: I I /
I I \
I \

- 3 .,__ __ ,s;,. ____________ -~ l..0G1c ij£T (3 ',----
"-.._ L!.V E L O U r PUT

0 l---r----------.,....--r--;---,------...
VOLTS -1

-z
-3

-41------------r
0 ~~i-----::----ir-----r----ir----r---r--+---,,---,.....--T--r--

-1

-2

-3

Ft, P-/:"toP
I

OvThTS
I
I
I

o 0.1 o,z 0.1 0.4 o.s o,6 0.1 o,8 o., i.o LI l•l.
t. (µsec) t-

0 \

PP

Set ~ One

(SET)

t Clot.I(

O 1
pp

o 1
PP

I

O 1
p F'2-

0 1
PF,

0 i
PP,_

P ~ ...e.. pp
I \-

I -

IJ ~,.;;:;~..;:;..llii l..:u.Jlc::....--1111

o 1
F' F',

1 's T1<"N~ FFti.

(~,tt~ ~tJ)

C, 1
?P,

' -0 ~ l~ANSFfJl_

(.tA-,. • ,-tt-~ 1 eJ) - -------- ~----··-------------
('r:, ;1 FP PP.1 n ~P-,- r1 ---=, '-" --., -

0 1

PP

0 1 0

o 1
e PL.,,

rf.' p P., f I

1.

1 's lfA-NSFt 1t o'$ T12.ANSFf!Z

(h~s, ~~) (~ ·,tr~ ~J)

-· F' r:'1 pp,_
-

0 0

0 1
1 0

1 1

F'P 1..

1

~
pt- '.l.

0

1
1

0

......_

Pr, F'P ,_

0 I 6

0 1
1 6

1 1

PF l

0

0

0

0

6 1
F"F' I

FP~

0 -
1

1 Ill-

1

f'"F~ set fo ''ooe ''

fi6-, ~-;t4 L6c;1C.AL ~vvi (I~c1.vs1ve:6~), K'e& 1.s1 e.1e. T!Z.ANSFFIL

IN V<H. v IN"'" Tt\ Jt. ~ E Yi G,., ~ 1'"E t? S A,.n T \.v6 'Yu L~~.S

r (:"'• PP .. PF~ F'~
- · --·-- --~~----p ~-,., 'I! _

0 0 D 0 -

I~ 1 6 1 jif--

6 0 1

C" tt" ,. pr 3 .se o Otie

1 1 0 0

-t- · i.,.t, ,,,
I.)

-

PP, Pf, PPi-

/~
0 () 6 C, 1. 6

FF, 1 1.

\
6 · 1 b,t 1 Ff~

5et to 1 6 b1 1 1 0 \ 0 1
1 s~ta

1'l~i-o
,,

F'F_ r~ 6 o, 1 110he-,.

"\c 1 b 1 0} ✓l 1 0, 1 .:)
1

V
l L f V

St-t t 2~o .s ~t t ONE

P,c,. '!.-·'-' PA-~\A\.... flDD ~ tST•tt 'lltA..sF•~

r111vC>LIIINdl,, I ~,.c R1,4.,sTecs ~~- 0-... 'P\II.S£

, __
(

)

I
.,

I i -.r 1oo61
,,___-o,6 i ➔ M I •~.- --..;.......\ ,--1-----i----:--l - i

1-

1

t

' I
)·

I

I
r

L _

- -

..,___:--________ .;.-:i-_;---,--rcJ-0\0
\

-...-!..-~I --.-_,;....I -L----:---,r---<;>106

· I I
➔---._r ---.--, ~'----.:..I_ --~~t°'tol

I . I
---.!..-~--r--r--r---:---,-~110

r

- -

r< ~ ~•J'T IHt. I
----- ___,,.__. - · ---· ~ --------

,p_.,.4L! f'oU -1.t '

Nu~HIU&. Alf!11.411r11t
s-,-.,"t, ,~r£ t,lo"L w.,.s

7
i>CI.StlLf

... \IHtt~&.

ST4Tf
NA,-;,

D

E

" iu••t..F
\\Lfilllu.tlt

st.'t'f

~"'""'

o I(11

~ Ki k'1. k', .sr.-.Te ~AM£

0 () 0 f> 0
0 0

~~ 0 C ' 0 0~1-------1 l
0 I C 0 ◄
0 \ 0,.,-----1 • 0 ' I o "
c ~ \ .-.------ ' ~ I
t "' Q 6 C

,
8

I 0 O~I
.,

I 0 I o ID
I 0 ...-----1 ~ I ••

' I O O I 'i

f 0 1 I 13

' l~O , ...
18

~

0

C,

0

0

o t'1i:..>r 0
()

0
()

'
'
' I

1 Mooe

\

I

~l

0
b
0
0

I

I

I

0

0
0
0

I
l
I

0 ~ 1
3

k'1,

0

0

I

' 0

0

' I --- ...-
C>

0
I

•
0
0

"• ST4TE IIJAf1e

0 0

' t
0 i
I l
0 ..
' r
0 ' I

6 B

' ct
b ,o
I II
0)l.

I 13
0 '1
I tS-

r.,, 3-28 bJ ,~ ST11re.,1wo -11001,, l-ST'-&-E ,61.1~r,-2i
L>l l>J 6,, INV E 12. 71! Ii

......----------------,=!~ 0~

0 0

I

I

•

'
' ' L. ______ _,____, ___ ~-.....,,..-- ·----..,j""--<> .. } 'v\~

0

RO

o 1
PP\.,

O 1
PP,

d· t ~+ cs} ~ Pvl~ (PP, • PFi-)

d . t. ~ • g] ~ N tJ ~ l PP, -h- FF,.,)
([.~ VP~~ 1?-e~t..vie-i ~ C~i--to)

0

Rt>

0

rr,

CJ\• L A • e; • c J+ [o • r J ~ Nb r u , ~ c P F, -++ PF~)

d• [A 1- B t C] • [D-t EJ.: 'Pu 1~~ (F p • • FF1.)

(b) T~ l,,.b Ao~7 f<:' ,! <) 's+~ Tu w-e.i C o,,J;,c I
~. -~r ~- .30 ~e,,~-ree DR..IVEt. CoNa~OL.. Lo6-I'-

o 1
FF2.

r-P. I

~-----,
I
I ,---..

I f r----~•- I
C, j t

f=' F, I
I

,-------,_,,-.. - ~ J.s-c. J.
I ?vi.st...
I

PP.' _I
L-JI~ ·- - -

(.)

- __ ,,.,,.,,,,,. \-l ~y ~ c,.,Lf't;~o u~

S '/ "'~f'o-v. ov ~

l •

'-------

Ov{ f -1f Wo. I

Ov~Q'ut No/?

\

llO I'° QOD l1o 28D :SJD .\~ '4o{)
t: (rn fl sec,) -.

PUL.Sf DE lA'(LIN.E..

() 1
\IOU

Ou,- Pc.I,

VDU

leto _____ __.._~
,uT

18o,AM/ "111(

er-
l~PUT R

I
J

OU'tPUT A
G-4TE

C-0 GA.TE

{ To DrH er C At>•C.JToe-

D10Pi G'4T!£

0

t f lNPOT

-1
Vo ... -n -a

-1
I

l
I

"'t z,

~DI-~ +1
0

\
OUTPUT (S

} -\o

8 "\ ~

Q2,

'fl(1&.,,,t,,~

I

·4'1'~
c-0 ~"-TE.

ONf
OIJT

. ~
INPUT 8

Dri.e~ c~p,..c,. I iDll-

\J 100 E G.A.-Te,

-0•1 .
I

I

- '
OUT PVT

-f1 f4'- ~t ~ O, I_.A.stc..
0 ~------+------...----·

-1

-2.

t ►

INPUT- OUTPUT

CHAPTER 4

MEMORIES

TABLE OF CONTENTS

4-1 INTRODUCTION

4-2 MEMORY ELEMENT

4-3 MEMORY ADDRESS SELECTOR

4-4 S MEMORY

4-4.1 GENERAL DESCRIPTION

4-4.2 CORE MEMORY ARRAY

4-4.2.1 OPERATING PRINCIPLE

4-4.3 MAGNETIC CORE SWITCH

4-4 .3.1 MECHANICAL FEATURES

4-4.3.2 OPERATING PRINCIPLE

4-4 .4 SWITCH DRIVING

4-4.4.1 BLOCK DIAGRAM

4-4.4.2 OPERATING PRINCIPLE

4-4.5 DIGIT DRIVERS

4-4.5.1 BLOCK DIAGRAM

4-4.5.2 OPERATING PRINCIPLE

4-4.6 SENSE AMPLIFIERS

4-4.6 .1 BLOCK DIAGRAM

4-4.6.2 OPERATING PRINCIPLE

4-5 T MEMORY

4-5 .1 GENERAL DESCRIPTION

4-5.2 BLOCK DIAGRAM

4-5-3 OPERATING PRINCIPLE

4-6 U MEMORY

4-7 V MEMORY

4-7.1 GENERAL DESCRIPTION

4-7,2 VFF MEMORY (A, B, C, D AND E REGISTERS)

4-7.2.1 GENERAL DESCRIPTION

4-7.2.2 MECHANICAL FEATURES

4-7.2 .3 OPERATING PRINCIPLE

4-7 -3 VFF MEMORY

4-7 .3.1 TOGGLE SWITCH REGISTERS

4-7.3.2 PLUGBOARD

4-7.3.3 SHAFT ENCODER

4-7.3.4 REAL-TIME CLOCK

4-8 PROGRAM ELEMENT MEMORIES

4-8.1 GENERAL DESCRIPTION

4-8.2 X MEMORY

March 1961

4-8.2.1 GENERAL DESCRIPTION

4-8.2.2 MECHANICAL FEATURES

4-8.2.3 OPERATING PRINCIPLE

4-1

4-8.3 F MEMORY

4-8.3.1 GENERAL DESCRIPTION

4-8.3.2 MECHANICAL FEATURES

4-8.3.3 OPERATING PRINCIPLE

LIST OF FIGURES

4-1 MEMORY ELEMENT, SIMPLIFIED BLOCK DIAGRAM

4-2 MEMORY ADDRESS SELECTOR CODING

4-3 S-MEMORY, SIMPLIFIED BLOCK DIAGRAM

4-4 256 X 256 X 38 CORE MEMORY ARRAY (S MEMORY)

4-5 S-MEMORY WINDING CONFIGURATION

4-6 MEMORY CODE HYSTERESIS LOOP

4-7 ZERO AND ONE OUTPUTS FROM A MEMORY CORE

4-8 MAGNETIC-CORE SWITCHING

4-9 MAGNETIC-CORE SWITCH CHARACTERISTIC

4-10 BLOCK DIAGRAM OF XU SWITCH CORE DRIVING SYSTEM

4-11 BLOCK DIAGRAM OF DIGIT-PLANE DRIVER

4-12 BLOCK DIAGRAM OF SENSE AMPLIFIER

4-13 T MEMORY, SIMPLIFIED BLOCK DIAGRAM

4-14 V MEMORY, SIMPLIFIED BLOCK DIAGRAM

4-15 TOGGLE SWITCH STORAGE

4-16 TOGGLE SWITCH STORAGE, SIMPLIFIED SCHEMATIC DIAGRAM

4-17 PLUGBOARD STORAGE

4-18 SHAFT ENCODER

4-19 X-MEMORY SYSTEM

4-20 X MEMORY PLANE

4-21 X MEMORY WINDING CONFIGURATION

4-22 X MEMORY TIMING DIAGRAM

4-23 ONE PLATE OF 16 X 16 PERMALLOY SPOTS

4-24 WORD, DIGIT AND SENSE WINDINGS ON THIN FILM MEMORY SPOT

4-25 F MEMORY WINDING CONFIGURATION

4-2

I

March 1961

CHAPTER 4
MEMORIES

4-1 INTRODUCTION

The computer has six independent memories designated by S, T, U, V, X and F. The function

of each of these memories was described in Chapter 2. This chapter will describe the

structure of the memory systems and explain the principle of operation of the cores used

in the memories. The details of control for the S, T, U and V memories will be discussed

in Chapter 11, and for the X and F memories in Chapter 12.

4-2 MEMORY ELEMENT

The maj or components of the S, T, U and V memories are shown in Fig. 4-1. They are:

(1) the memory address selector, (2) the decoders for each memory, (3) the S, T, U and V

memories, and (4) the read-write control for each memory.

4-3 MEMORY ADDRESS SELECTOR

The memory address selector uses the leftmost bits of both the P and Q registers to select

the desired memory. The remaining bits in the P and Q registers determine the address of

the word in the selected memory. The selection and address bit coding for the s, T, U and

V memories is illustrated in Fig. 4-2. Defer bit 2.9 is not used during the memory cycle

and, since it may be a ONE or a ZERO, is represented by "x". Fig. 4-2 illustrates the

following points:

1) The selection and address bit coding is the same for both the P and Q registers.

2) When bit 2.8 of one of these registers is a ZERO, then that register will select

S Memory. Similarly, when bit 2.8 is a ONE and bits 2.7 - 2.4 are ZEROS, the

T Memory is selected; when bits 2.8 and 2.4 are ONES and bits 2.7 - 2.5 are

ZEROS, the U Memory is selected; and finally, when bits 2.8 - 1.8 are ONES, the

V Memory is selected. The selection of a particular register in VFF or VFF is

determined by address bits 1.7 - 1.5. When bits 1.7 - 1.5 are all ZEROS, VFF is

selected; when any one of bits 1.7 - 1.5 is a ONE, VFF is selected.

3) Not every combination of the 17 bits in P or Q actually selects a register in a

memory.

4-4 S MEMORY

4-4.1 GENERAL DESCRIPTION. The S Memory is a high-speed, random-access coincident-current

magnetic-core unit with a storage capacity of 65,536 38-bit words (registers). The

bits in the word are read out in parallel. The access time, which is the time required

to locate and read out a particular register in a memory, is 4.0 microseconds. The

cycle time is 6.4 microseconds. (Cycle time is defined as the minimum time between

successive read operations in the same memory when complete read-write cycles are

performed.) Two coordinates are used to select a register during the read operation,

and three coordinates are used for writing.

March 1961 4-3

The major components that comprise the S Memory are shown in Fig. 4-3. They include

the following: an address decoder and associated cable drivers, 8 switch driver

current regulators, 32 switch driver input amplifiers, 64 switch drivers, two 16 X 16

magnetic-core switches, a 256 X 256 core memory array, 152 digit plane drivers, and

38 sensing amplifiers. The number of lines interconnecting the various components is

indicated in Fig. 4-3.

4-4.2 CORE MEMORY ARRAY (See Fig. 4-4). The S Memory array is made up of thirty-eight

256 X 256 memory planes and contains 2,490,368 ferrite memory cores. The outside

diameter of each core is 80 mils, the inside diameter 50 mils, and the thickness

22 mils. The cores are wired into 64 by 64 subassemblies. Each subassembly is a

complete operating memory plane with its own sense and digit winding. Sixteen

64 by 64 subassemblies are assembled in a square array and connected together to

form each 256 by 256 plane. Thirty-eight 256 by 256 planes are stacked one on top

of another with their X and Y wires connected in parallel to form the complete

memory array.

4-4.2.1 OPERATING PRINCIPLE. Consider an array of cores arranged in planes and

oriented with respect to three orthogonal axes as shown in Fig. 4-5. Each

core in the array lies at the intersection of a unique set of X, Y and Z

co-ordinate planes. A wire runs through the cores in each plane. The sense

windings which are in the Z plane are not shown.

The memory-core hysteresis loop is sketched in Fig. 4-6. The lower flux

state by definition will constitute a ONE and the upper flux state a ZERO.

During a read-out, enough positive current must be applied to switch the

core from the lower to the upper state. Thus, when the core holds a ONE,

reading causes a large flux change which produces a large voltage output.

If, however, the core was already in the ZERO state, reading causes a very

small flux change which in turn produces a small voltage output. (See

Fig. 4-7)

The memory cycle consists in reading out the information contained in a

register, and then writing information back into the same register (not

necessarily the same information). It is important at this point to

recognize two important facts:

1) The read-out destroys the information held in the core, i.e., all

cores in the register are put in the ZERO stat e.

2) The read-out does not require any selection among the digits.

The entire register receives the read-out excitation, whereas in

writing, some cores in the register will be switched to the ONE

state and others will be left, as they were, in the ZERO state -

depending, of course, on the information to be stored in the

register.

4/4 March 1961

Two functions need. explaining:

1) How a register is selected for read-out.

2) How an arbitrary pattern of ONE's and ZERO's can be written in a

register.

Both of these functions must be accomplished without changing the information

held by the cores in other registers in the array.

If the current necessary to switch a cor e is defined as Im and the core

material is such that I /2 will not switch the core, then by applying
m

+I /2 to an X line and +I /2 to a Y line, it is possible to select the
m m

register at the intersection of these two co-ordinates without destroying

the information held in other registers. In order to write in this

register -I /2 is applied on the X and -I /2 on the Y line. The appropriate
m m

Z-windings are used to inhibit with +I /2 on those planes in which ZEROs
m

are to be written. This selection process depends entirely on the ability

of the core to switch at an excitation of I and to remain unchanged when
m

subjected to an excitation of I /2 . At this point it is convenient to
m

define the noise in this system as that part of the sense-winding output

during read-out which is not contributed by the selected core. The noise

would be made up of capacitive and inductive coupling from driving lines

as well as the outputs due to half-selected cores which are subjected to

I /2 excitation.
m

4-4.3 MAGNEI'IC-CORE SWITCH. In order to match the characteristics of the driver tubes to

the X and Y selection lines, current step-down devices called magnetic-core switches

are used. These switch cores also perform the final stage of the decoding of the

address.

March 1961

4-4.3.1 MECHANICAL FEATURES. A schematic of a magnetic-core switch is illustrated

in Fig. 4-8. Each of the two magnetic-core switches is made up of 256

tape-wound cores. Four windings are placed on each core: two 12-turn

input windings, a 16-turn output winding and a 2-turn bias winding. These

cores are connected into a square array to form a 2-coordinate switch.

The inputs to the X switch are called xuo, ... ' XU15' xvo, ... , xv
15'

and

the inputs to the y switch are called YUO, ... ' YU15' YVO, ... , YV15·

The decoders select one core in each of the two magnetic-core switches.

The switching of these two cores generates currents in the memory X and Y

windings. The currents switch the memory cores which contain ONES in the

selected memory register. The flux reversal generates signals in the sense

windings of the switched cores. When the two cores in the magnetic-core

switch are deselected, they generate opposite currents in the memory cores

of the selected register. This writes ONES in the memory cores that have

no current in the inhibit (Z) winding.

4-5

4-4.3.2 OPERATING PRINCIPLE. The operation uf the switch is illustrated in Fig. 4-9-
A bias current is used to bias all the cores in the switch to point A of the

hysteresis loop. When the core is switched, the flux reverses to point C of

the hysteresis loop. The magnetomotive force required to switch the core is

generated by two current pulses called U and V. The application of either

the U or V current pulses alone is not sufficient to switch the core. How­

ever, the occurrence of both the U and V current pulses in the windings of a

core is sufficient to cause the core to switch. The switching of the core

generates a read current pulse at its secondary.

When the U and V current pulses end, the bias current switches the core back

to point A. This generates a write pulse.

4-4.4 SWITCH DRIVING. Since the magnitude of the current levels from the memory address

level decoders is insufficient to actuate the memory array, switch drivers, switch

driver input amplifiers, and switch driver current regulators are used to amplify and

regulate the memory current.

4-4.4.1 BLOCK DIAGRAM. Fig. 4-10 shows a block diagram of the switch core driving

system associated with the XU inputs to the X magnetic-core switches.

Similar systems exist for the XV, YU and YV magnetic-core switch inputs.

Thus, there are 4 switch core driving systems, each set containing 16 switch

drivers, 8 switch driver input amplifiers and 2 switch driver current

regulators.

4-4.4.2 OPERATING PRINCIPLE. Fig. 4-10 shows the 16 switch drivers as two groups

of eight, with one current regulator feeding each group. The switch driver

is made up of several power triodes connected in parallel. The current

regulator signal is applied to the cathode and the input amplifier signal is

applied to the grid of the associated switch drivers. The grid input lines

to the first group of eight drivers are connected consecutively from Oto

7. The grid input lines to the second group of eight drivers are connected

in parallel with the first group.

A particular line in the switch is selected by first grounding one of the

grid input lines and then pulsing one of the current regulators. For

example, to select line O, grid input O is grounded and the current regulator

input is pulsed, thus actuating driver O. Current regulator input O is

pulsed for switch drivers O through 7 and current input 1 is pulsed for

switch drivers 8 through 15.

4-4.5 DIGIT DRIVERS. The digit drivers are used during the WRITE phase of a memory cycle.

Th~y provide the inhibit currents that prevent the cores, in which it is desired to

write ZEROS, from reversing to the ONE state when the write current is applied.

4-6 March 1961

4-4.5.1 BLOCK DIAGRAM . The digit-plane driver b l ock diagram is shown in Fig. 4-11.

It is similar to the current regulator in the switch drive circuit. Four

such circuits are associated with each 256 by 256 plane, one for each

quarter of the digit plane winding. Each quarter is made up of the digit

winding of four subassemblies connected in series .

4-4.5 .2 OPERATING PRINCIPLE. The input to the digit driver is a t r ansistor "AND"

gate. The quarter selection level is appl ied to one input and the timing

l evel to the second input . The output of the gate cir cuit controls an

ampl ifier which suppl ies a regul ated curr ent pul se to the inhibit winding .

4- 4 .6 SENSE AMPLIFIERS

Mar ch 1961

4-4 .6 .1 "BLOCK DIAGRAM . The block diagram of a typical sense amplifier is shown in

Fig. 4-12. Each sense amplifier has four bi -polar i nputs. Each bi -polar

input comes from a sense winding section of a Z plane in the memory array

and goes to one of four differential amplifiers in the sense amplifier.

The four amplifier outputs are then mixed in an emitter follower and finally

ampl ified by a pulse amplifier. One four- input sense amplifier is asso­

ciated with each 256 by 256 plane . Thus, there is a total of 38 sense

amplifiers for the entire memory.

The sense windings in a 256 X 256 plane are broken up into four sections.

Each section consists of the sense windings from four diagonally adjacent

(in the sense of Fig. 4-12) 64 X 64 subassemblies . By connecting the sense

windings on the diagonal, there is a minimum coupling between the active

X and Y windings and the sense winding. (Ideally the coupl ing should occur

in only one case in the plane .) Note that a given X or Y dri ve line inter­

sects only one of the subassemblies in the diagonal section which the sense

windings are interconnected . It should also be noted that with this method

of connection, the voltage induced in the sense windings by the half

selected cores (i.e . , the cores in which either the X or Y winding is pulsed

but not both) is equal to that in one 64 X 64 subassembly memory.

Each sense winding is also a delay line. To reduce the delay and resultant

signal dis,;tortion, the four assemblies on a given sense winding section are

connected in series-parallel as shown in Fig. 4- 12 rather than just in

series .

4-4 .6.2 OPERATING PRINCIPLE . The bi-polar signal is fed into the differential

ampl ifier in the sense amplifier. The outputs of the differential ampli­

fiers are mixed (ORed) and rectified in the emitter-follower circuit, and

then further amplified in the pulse amplifier to a certain voltage. If a

ONE is read out, the voltage will be 3 volts, and if a ZERO is read out,

the voltage will be zero volt s. The signal is transmitted to the memory

buffer register where it is sampled by a 0 .1 microsecond strobe pulse.

4-7

4-5 T MEMORY

4-5.1 GENERAL DESCRIPTION. The T Memory is a high-speed, random-access, coincident­

current magnetic-core unit with a storage capacity of 4096 38-bit words (registers).

It contains only transistors and diodes in the read, write, and selection circuitry

in contrast to the S Memory which uses principally vacuum tubes and magnetic cores.

The bits in a word are read out in parallel. The cycle time is 4.4 microseconds

and the access time is 2.0 microseconds. As in the S Memory, a 2:1 current selection

ratio is used, with two coordinates used to select a register during read-out and

three coordinates used during write.

4-5,2 BLOCK DIAGRAM. Fig. 4-13 is a block diagram of the T Memory. It is very similar to

that of the S Memory. The basic difference is that transistor drivers, called

selection line drivers, are used to select and drive the X and Y memory lines

instead of the magnetic-core switches used in the S Memory.

Like the S Memory, the T Memory uses two coordinate selection of memory registers.

The X and Y lines are selected in a two level decoder. The decoded coordinate

selection levels are amplified by two sets of 64 selection line drivers to the

magnitude required to operate the cores. Other components are 30 digit plane

drivers, 38 sensing amplifiers, a read-write selector and 4 read-write current

generators.

The T Memory is made up of thirty-eight 64 by 64 planes and contains 155,648 ferrite

cores. The cores are composed of the same material as those of the S Memory, but

are dimensionally smaller. The outside diameter of each core is 50 mils, the inside

diameter 30 mils and the thickness 12 mils.

4-5.3 OPERATING PRINCIPLE. The operation of the T Memory is very similar to that of the

S Memory. The first and second level decoders operate as standard decoders. The

drivers operate as switches in a similar manner to those of the S Memory except that

they drive the cores directly instead of through core switches. Thirty-two selection

line drivers are used in conjunction with each read-write current generator in order

to reduce the capacitive load on the read-write generator. The READ-WRITE operation

is the same as the S Memory.

The operation of the digit inhibit circuits and sense amplifiers is also the same

as those of the S Memory. However, since there is only one 64 X 64 array per digit,

one digit plane driver and one sense amplifier per digit suffice.

4-6 U MEMORY

The U Memory is currently undefined. However, it is expected to be similar in construction

and operation to the T Memory. It will have a storage capacity of 4096 38-bit words

(registers).

4-8 March 1961

4-7 V MEMORY

4-7,1 GENERAL DESCRIPTION. Fig. 4-14 is a simplified block diagram of the V Memory. The

sel ection of VFF or VFF is determined by the V Memory selector control which decodes

bits 1.7 - 1.5. Components of VFF include 32 plugboard registers, 16 toggle switch

registers, a real-time clock register, and a shaft encoder register. Components of

VFF include the 5 flip-flop registers A, B, C, D, and E.

4-7,2 VFF MEMORY (A, B, C, D AND E REGISTERS)

4-7,2,1 GENERAL DESCRIPTION. The A, B, C, D and E registers located in the

Arithmetic Element and the Exchange Element are also used as memory storage

registers. They have a non-destructive READ cycle. Thus, a write cycle is

not required, unless a store type instruction is being performed.

4-7 .2.2 MECHANICAL FEATURES . The five VFF registers contain 36 bits numbered from

left to right: 4.9 - 4.1, 3.9 - 3.1, 2.9 - 2.1 and 1 .9 - 1.1 . Since there

is no 2.10 bit, parity checking is excluded . Note that there is also no

4.10 (meta) bit associated with these registers.

4-7.2.3 OPERATING PRINCIPLE. During the READ phase of the READ-WRITE cycle, the

information is transferred out of the A, B, C or D register into the E

register and from there into the Nor M register . First, the content of

the E register is read into the M register. Next, the content of the

selected A, B, C or D register is read into the E register . Then the con­

tent of the E register is transferred into the Nor M register and, at the

same time, the content of the M register is placed back in the E register.

When writing into the A, B, C or D registers during the WRITE phase, the

content of the M register is transferred into the E register. The selected

register in the Arithmetic Element is then cleared and the content of the

E register is transferred into that register. Since read-out of the VFF

registers is non-destructive, the content of the N register never needs to

be rewritten.

4-7 ,3 VFF MEMORY

March 1961

4-7 .3.1 TOGGLE SWITCH REGISTERS. The toggle switch register is a manually set static

memory which, like the VFF Memory, has a non-destructive read cycle.

The 16 toggle switch registers are arranged in horizontal rows in groups of

four on the control console. (See Fig . 4-15.) The addresses are labelled

in octal code from 377720 through 377737 . Each register consists of 37 bits

(vertical columns) numbered from left to right as follows: 4.10 - 4.1,

3.9 - 3.1, 2.9 - 2.1, and 1.9 - 1.1. Bit 2 .10 is excluded because there is

no parity checking for the V Memory. The circuitry is built so that another

8 registers can be easily added.

4-9

Fig. 4-16 illustrates the basic operating principles of the toggle switch

storage. The basic mechanism of the storage is a resistor-switch matrix

which contains 592 resistors and 592 switches (16 X 37 = 592). Each

resistor has one end tied to a digit line (16 resistors per digit line) and

the other end tied to the common terminal of a switch. One side of each

switch, the ZERO or normally closed position, is tied to ground. The other

side, the ONE or normally open position, is tied to a resistor driver

(37 resistors per driver). One resistor from each digit line goes to each

resistor driver.

The resistor driver of a register is selected by a -3 volt level on one of

three lines and by a ground level on one of eight lines. The output of the

selected resistor driver swings from ground to -25 volts. All unselected

resistor drivers are held at ground.

Those resistors that are tied to switches set in the ONE position are

connected to resistor drivers. They drive their digit lines to -1 volt.

Hence, a -1 volt signal on a digit line means that the appropriate digit

of the selected register is a ONE.

The digit line signal is detected, amplified to a standard level, and

inverted in a digit detector unit. The digit detector, in turn, drives a

cable driver which transfers the information to the sense amplifier and

strobe selector, where it is strobed and used.

4-7.3.2 PLUGBOARD REGISTERS. The plugboard registers, like the toggle switch

register, form a manually set static memory which has a non-destructive

read cycle. Provisions are made so that two plugboards can be connected to

the computer at a given time. These plugboards are designated A and B.

They are used as storage for utility and maintenance routines. The sequence

switch priority plugboard is not considered part of VFF.

Fig. 4-17 shows a typical plugboard. The octal addresses are numbered from

Oto 17, and the register bits are numbered from left to right: 4.10 - 4.1,

3.9 - 3.1, 2.9 - 2.1, and 1.9 - 1.1. Again, bit 2.10 is excluded because

there is no parity checking required.

The operation of the plugboard is similar to the toggle switch storage

previously described. In this case, insertion of a jumper (dual-prong

patchcord) has the same effect as closing a switch. (See Fig. 4-17.)

4-7.3.3 SHAFT ENCODER. The shaft encoder is an analog-to-digital converter which

translates shaft position information into digital code by means of a self­

contained, non-ambiguous, dual-brush selection logic. The unit itself and

one of the two internal converter discs are shown in Fig. 4-18.

4-10 March 1961

The voltage appearing on each lead of the two sets of output tenninals

represents a coefficient in the natural binary system. A tenninal voltage

of -20 volts develops the coefficient ONE and zero voltage develops the

coefficient ZERO. The complement of the binary output is provided on the

second set of tenninals.

4-7.3.4 REAL-TlJ.1E CLOCK. The real-time clock uses a 100-kc pulse source and a

36-bit counter. Pulses are applied continuously to the counter so that a

time reference is always available.

4-8 PROGRAM ELEMENT MEMORIES

4-8.1 GENERAL DESCRIPTION. The Program Element contains two memories designated X and F.

Xis the 64-register 19-bit index memory and Fis the 3?-register 10-bit config­

uration memory. Both memories have a parity bit, but no meta bit. The operation

of both memories is described in somewhat more detail in Chapter 12.

4-8.2 X MEMORY

March 1961

4-8.2.1 GENERAL DESCRIPTION. There are three modes of operation for the magnetic­

core X Memory: READ-WRITE, READ, AND CLEAR -WRITE. Unlike the S, T, and U

memories, two cores per bit in a single memory plane are used . The bits of

a word are read out in parallel with a cycle time of 3.6 microseconds and

an access time of o.6 microsecond. In the X Memory, cycle time is the time

between successive strobe pulses during a repetitive READ-WRITE cycle;

access time is the minimum delay between setting the address register and

strobing.

The X Memory system is shown in Fig. 4-19. The word selection method used

is detennined by the manner in which the NJ bits are decoded. The first

five bits (N 3) of the six N bits are decoded by the J Decoder into
3.5 - .1 J

32 J Decoder levels. These levels represent the addresses of 32 pairs of

registers in the X Memory. The selection of which of the two registers in

a pair is detennined by the sixth J bit (N3 _6). This bit is used in a

second level selector, with the selection detennined by the value of the

bit.

4-8.2.2 MECHANICAL FEATURES. The cores used for the X Memory are 47 mils OD, 27

mils ID, and 12 mils thick. Both the digit and word selection windings

make 4 turns on each core through which they pass. Fig. 4-20(a) shows the

complete memory plane. Fig. 4-20(b) shows a portion of it enlarged. The

cores are mounted on a lucite plane. The wires pass through openings made

by the intersection of slots milled on one side of the plate with similar

slots milled at right angles on the other side. The digit current is 8 ma,

the write driver output current is 18 ma, and the read driver currents is

117 ma.

4-11

4-8.2.3 OPERATING PRINCIPLE. Each bit in the X Memory has an A and B core asso­

ciated with it. Each of these cores may be in either a CLEARED or SET state,

but both cores cannot be in the SET state at the same time. If an A core

is SET, a ONE will be read-out during the READ process when this core is

switched. Similarly, if the B core is SET, a ZERO will be read-out during

the read process if this core is switched. Whichever core is switched,

both will be left in the CLEARED state at the end of the READ process.

The winding configuration is shown in Fig. 4-21. A word is selected by

connecting the upper end of a word line, e.g., Y, to a specified voltage

(-3 V). The READ driver then puts out a current pulse 4-1/3 times that

required to switch a core (on a 2:1 basis). (See Fig. 4-22.) Only one of

the two cores (per bit) A or Bis switched to the CLEARED state, since any

previous WRITE operation will have left one core SET, and one core CLEARED.

The switched core generates a pulse in its digit line. This line passes

through one of the cores in the same direction as the word line and through

the other core in a direction opposite to the word line. Thus, the polarity

of the induced pulse on the digit line during READ indicates whether a ONE

or a ZERO is being read out.

The ends of the digit line are connected to two differential amplifiers,

each of which responds to pulses of only one polarity. The output of one

amplifier is fed to the SET TO ONE input side of the buffer flip-flop and

the output of the other amplifier is fed to the SET TO ZERO side of the

buffer flip-flop. Thus the output of the memory is jammed into the buffer

register by the strobe pulse.

At all times, a digit bias current flows in the digit winding. The direction

of this current is determined by the state of the buffer register flip-flop

associated with the digit. The amplitude of the current is 1/3 that

required to switch the core in a 2:1 system. This digit bias current is

very small compared with the read current and thus has no effect on the

READ process. However, the digit bias current does enter into the logic

of the WRITE process. During WRITE, a current of 2/3 that required to

switch the core is placed on the selected word line. If the buffer register

bit contains a ONE, the polarity of the digit bias current will be such as

to add to the select line current in the A core. The current in this core

is now sufficient to switch it, and accordingly it will be SET. If the

buffer register bit contained a ZERO the B core would have been SET in the

same manner. Notice that while the digit bias current is adding to the

select word current in one core, because of the winding configuration it

will be subtracting from the select word current in the other core, i.e.,

the net current in that core will be 1/3 that required to switch the core.

That core will be undisturbed and left in the CLEARED state.

4-12 March 1961

Thus, the current ratio used during WRITE is 3:1 (i.e., 1:1/3) with a dis­

turb current of no more than 1/3. Fig. 4-22 shows the timing and current

relationships in cores A and B of Fig. 4-21. Note that during both the

READ and WRITE processes, as well as during quiescent periods, there is a

current of± 1/3 in all the cores.

The complete READ-WRITE cycle has been described above. Sometimes the READ

operation is used alone, when there is no need or time to perform a complete

READ-WRITE cycle. When the computer returns to WRITE in registers have

had a READ cycle only, the CLEAR-WRITE cycle is used. CLEAR-WRITE is the

same as READ-WRITE except that the strobe into the buffer register is

eliminated. The CLEAR-WRITE cycle is necessary to insure correct writing,

since if a WRITE operation should follow a previous WRITE operation in the

same register, some bits might have both A and B cores SET.

4-8.3 F MEMORY

March 1961

4-8.3.1 GENERAL DESCRIPI'ION. The configuration memory is used to store 32 config­

uration words. Each word has a word length of 9 bits plus a parity bit.

This memory differs from the other memories in the computer in that it is a

thin magnetic film memory. A film memory has several potential advantages

over the familiar ferrite toroidal core memory: faster cycle time, lower

power dissipation, greater compactness, and simpler fabrication of the

wiring arrays.

4-8.3.2 MECHANICAL FEATURES. Two 16 X 16 arrays, one of which is shown in Fig. 4-23,

are placed side by side to form the memory. Each of the 256 individual film

elements of an array are round spots 0.060" in diameter and 5 X 10-6 inches

thick and are composed of 81% nickel and 19% iron. They are deposited on a

small plate of glass 1.6 inches square with a thickness of 0.007 inch. The

center to center spacing of the spots is 0.10 inches. The films are

relatively stable in ordinary environments and no special treatment or sur­

face coatings are required. However, a coating of "Krylon" is applied to

resist abrasion during handling.

There are three lines associated with each spot: (1) word, (2) digit and

(3) sense lines. Fig. 4-24 shows a complete set of word, digit and sense

lines for one spot. Fig. 4-25 is a schematic view of the drive and sense

line winding configuration.

Each word line is driven by a magnetic core. These cores serve a purpose

similar to that of the switch cores in the S Memory. Each core has two

selection windings, one of which is based on a decoding of three of the

address bits and the other on the remaining two address bits. The diode

4-13

in the word lines pennit current to flow only when the core is selected.

When a core is deselected, a bias current in the selection windings switches

the core back to its nonnal state.

The digit and sense lines are parallel. The digit lines usually have

current flowing in one direction. The current is reversed only during a

write cycle when a ONE is being written. The sense line picks up the signals

generated by a film switching during read-out. Note that the sense windings

are crossed between the two memory arrays to minimize noise pickup.

4-8.3.3 OPERATING PRINCIPLE. The thin films are fabricated in such a way as to

have an easy a.xis of magnetization. Application of an external field along

this axis simultaneously with the application of a small transverse field

can cause the film to switch from one magnetized state to the other. The

transverse field is generated by the word line current pulse and the longi­

tudinal field by the digit line current level.

One of the directions of the film's magnetization along the easy a.xis is

arbitrarily chosen to represent a ONE, and the other direction to represent

a ZERO. During a READ the field generated by the digit line is in the ZERO

direction. If the film is in the ONE state, it will switch to a ZERO and

the resulting rotating field induces a voltage in the sense line. If the

film is a ZERO, there is no switching but merely a slight disturbance of

the film's field and no voltage is induced in the sense line. Thus it can

be seen that the READ is a destructive type in that it clears the memory

word register. During a write operation, if a ONE is to be written, the

digit current is reversed so that the field switches the film into the

original ONE state. If a ZERO is to be written, the digit current is not

changed and the film remains in the ZERO state it was placed in during the

d~structive read out.

4-14 March 1961

Mi.lw\iJQ'f At>~

Ml=M<:Q-1 Al>I>/¥~ RE't.1~~ $1:LR:mR. co..srAoL

P REbiSlcR.
(ff\FfYloR'/ ADDRESs RE61ST~)

Q l<c bl.ST&R.
6,-\e:tf\Ol<'f llDDl<6SS RE"61S~)

(2.e-1.a).I, 10- - 1a .I, (2.a-1.s)
(

S"Y'.tJ;V MEMO~Y Al>bRE°SS- StU,crz,Q CQO.JT~OI.. i----+----,..----...\4--TIM•~~R>f!NUI\TIOIJ

8 _Jl, Cz.7-1.1) COf..lfll.;i'.i,~IJff61<AM

~
1.'FIID-u>IITC
C:0"1Aal.-

(z:7-\, I) ,l I(.
s. T, u, V ~MoP.'I Ab1>Ress S\:Lcc.n:Ji:;I.

s
IV'll!M~'j

3&

"

!,&

s, T, tJ

1'2.
(2.)-1.1\

T
ME'MO~Y

18 39

11JH1B\T' S€LECTOR.

1-i
{2.1-1.1\

u
l'llfiV'ICIA.'(

38 38

SEIJ$c AMPLIF\~ f
STROSE SELECrD~

7
(t.7-1.,\

s, ', l)
IVIEMoA."1
J:l.)~ l~T'~OI...

iA!.I<:.
i _ _l __ _ I I I I J _ I __J I I / CoRw W\Et,'lofN iiM11J&

.1

N Re:61s~K'
(MEMoQ'f Bul'l"E'lt ~61sn,f1.)

~

f'PiR1T'/
Cl~ll•T

Al.AA~

37

M
(M™CR-J

l=t~ 4-·l M~MO!Z'f eLEME"iJT, .SIMPLll'\il) °B,LDCK 1)/AG,IHIIJI

~tG.IST6~
81.lFl=tR. ~~61!,Tc'!I-)

38

?P,Al'T'/

c1e.,u1T

ALPIRM

SETM'-1.J L .. ~.~... 1... ________ _

~t.1st¥A

f?tfli>-WRITI,
CUA-.f..,,-S ~

Mf.Mdf/:f

f,XfoT_J__

STRoei. 1
Pu~~

llJ~1a1r
CUflA~iJT rr:-_

000.,000
' •
I

1,1, 777

200,000 . . •
201, 7"77

--------- l8 i,\TS

l+T'"'l.._..,... __ -+--~D~Rc.S~ ----------...i.
\.: "5'1.~not-l (Ho)

(1) r

}(, o o :o o o o o o lo o o ;oo oo o o
I I

)(0 I ' I ' I I I I I 1, 'L_ .. _',_.'_J~_
! I ;
' I

.,..5EL,~r1otJ ~ - A~l)R6$S 1
I (l2)

\

I)(I 0 10 0 0 0 O O O 0 !0 10 0 0 0 0 0

I I I I I I I I I I I I
I

, I -----+--+-------6---~-----_.____
u

MEN\OR'i

210,000 .

I
i I i

~~1.EC.1"iot.l ~
1(.S)

I

Al>t:>~~~$, I

(l'2.') ; :

___ 1 __ ~

! i
x,o lo ·o, o

i
oo l oo :o ' oo

'

)(t O O 0 \ I I I I I I
I i

,---

Q
~(/,l~Uit

'---

ME-.i
A~U•M

Sl!l.liC.Toll
COfilTl'c:L

~'f-llbD~S.
SEtMTI>t.

l>E""'lls-1> I+-­
"~•

I u .. 1~11.1>
~ F\1)1)1¥5,

s1;1,.t(.1'1JQ

◄

s--'f
~
w

~'I

A~llAt"
Dt~

---w
ltBt,otl.'(
A~{
~

~ - - '- _ I 3'2 J Y.Y
M6-MoltY
IIP,R~'

. r--I 11. jlll~IOII
~ Al>DlleS,

~oll.

~

e
1!£61$TfR

L___

i4
11\~MOll't
Ar>bR~S
'il.£C111R
c~

:S-Ml:Moll~
fle"b-4'JlllTE
FLlf'. F'\.01>.S

XU
M6MDQ.Y

Al>~S.
.ll6GoDER

J

2
i 1 I :'.>UllTlK !)(11\1!11.I 2
~ C'UftAt:1-'T / t--=---+

li?e(,ULATOl!.S

B
I R ISOlltllllR\l>!lll e
~ IIJPll'I" ~

AMPLIN~S

I.:...,,

~
JIUITli)I<~:~~

· CV,:l/¥1-)r
~IATI>llS

~ SIOlTl.l' DJR:r,,tE ~
11.lPUf""

AMPLlFI~,

HSWlm\21:le\',tE.
c~
~~

2.

e
I 8 ISlllm~ !>E.,.._ I B
~ IIJPOT" ~

l'r~_l' LJl'~_!L

1/o
SW!rc~

DRIVt-RS

IC.

.SWITCH

DRl~RS

'" SW1n:H
DRf\JtAS

1i;,
S11J1m1
l>lll~tli.S

'"'

lb

y

v I Ml\bl.!6-TIC
co~E

S(/.)11"Ct-\

''- >< \(.

u

BIA':>

1
~

~1'1,At:,IJHIC
coRE

Sw, re.ft
..,

l'-X' 1'-
\G,

u

4

4 I 4 I CI\Slol)ES
IIIHIBlr 5£lE"lT/at-l ~ f\lll) 4

CABLE"
l:>1<1~6-R';> -4

lit?uRE 4-3 • 5-MtMo~Y. SIMPL1F1(l> B\.a:K DIA~AM
4

y
~~P-WRITf"

I
- M
RE64STt-~
COl-lT~O\..

lsTRoe£

1~11 •l~r

"38

S€11Slllu

co1<E ~ck(P,P.f;.l\'I
254 >< 2.Sb
(38- g,r wo~)

St:IISE I 08 ., 'l~PLlf"R~ ~

X
~REA!>-WIIITE"

'"¾11!>\T

~ '

}_I!> I 38 ·I (4 ,1,1POT.S
~ p~

• /\MPLlfl~)

M
J3uFFiR.)
R~&ISti:~

~~ll~)

N
l8uFFB<.)
Rtc.tSTfll.

(111S111L><noll

""!) bt~1'D

1--

~

A~)

38 ' 39 ___ __,

'38
!)(,Ir PLl\'11' tRI~

s
l)lb4T ~E Df!l~t~S

38

.srRotll:

1,,1
~IS~
C<>J.>~\..

:,S
3& .--

~""'"'
!-ME.!~y~ =
:OHH&IT

S.Lt<.roll.
-(

C:OtJlRoL.

S-ME'MOIIV
-r1,1tt1St1"'

f'"Ul'-Fi.dlS

~8-BIT WORt>

(30 CORES)o..ie I~
'=Ac.~ PlA':iE)

I I I

,:-------ri----i~-~r--~i&.----Pl.FIIJE 1-10, \

I I I I I I I I I I I I I I

V
2,s,)(L u•E~

------PL~tJ £, ~. '2.
----f>l.f\-1,lE ...io.~

z P1...ANE -~r--='-"'-:, /I
F

(d ii it ~ la-"'e)
(0~ f S f l. E C,, i ED \1 I(

oi:: Tl+e"-<: 1'1.,11,,~1:~

No,f' ; Ttff SHEc.Tf~ lE~•~TEll 1s F,i

i\11: 111\UUEcncN of Tit!. X ~wo '{

f1,,AN~S ,

z,

Im
2

zo

Im y~
I 2

- -

I NTi;l2S ECTl0'1

i:m
2

-- ---

'<:,,' ~ 'f' ~ .1.

Im
x,.~ 2

...

["'

2
z2 a 4 , 0 0 ' O)

l

V I
REAC _::!!.~IT

0

)(1- Im
2- -~ -~

y ; r1111 -~ I"YI
2, a -T

.~11- +I""
2.

f 11, 1-~ ~MEVJDR'(w n.JDJN~ CoN FIG u l!.AT/ ON.

ZfA.O

-----C>,

ltlll1 (OQt t1/ fttt/\/ Ltft~

z P1.ANE -~ < I
F > A

cd1~•t pl~~)

~ p L~ N ~

Co-: 1: S e LE G i 1: o i '<
oF T~e~f 'P"-.«io~ ~~

I ...i T t: 12. S EC TI C>lJ

No"rf';Tlff SE-1..Ec.Tfb eEc,,~TEll 1$ 11T
1\.1\: llllUUECT'ION of THI. ')(. /:)wp ~

F1.uas.

Im
2 z . 4

0

I"' y~
2 I

ZI

'Im
2

.~~
- .

~

-~. -- --·

"=-' 'f' "=' .l

Im
x,., 2

,..

.z,

[Ill

2

V I

r14, 1-S"" ~ME¥JDR'(WIND IN~ C oN FIG u f2..AT/ ON.

,i.

READ ~~ lTE
0

Tim _ lllf'I
)(2- y -~
y -tr~ -~ - I~

2, 2 T

.r11- +I""'
'2.

Z t A.O

'C)- \/R.1 T t (U iR..t1'11 _.,_c:i - a. E:-A..O C.00...11..f:Nl , P

ltlll1 (O~t 11/ rtat/\/ ll6f

/Oftf:'

lt lO ~n V O Nt O orn OJ/ flOA\ A.

Mt,tOlY (Ott

f I<,, 4-7

V
I --

o J T , nr
T I ~.

f!it,\SWo''-~ -!- -

i'<P•'" L >1A~ -CoeE
sw,TCJ4

I(,

:s s x ,s1, x~.st
ME H~!? ~ 4Rl?4Y

2S~ X PLANE

\JJttE,S

t
Hrt1t>R'(AOP R.i .S.S

OEC 01)1! 't~

It,

j~

p

-- oc BIAS ·
CV~Rfl'-lT

C I

~
I

~ ...

I I :r.

A)
.J

1'.S ?01NT _/
tU' CuitRewr?v~E

I
V CuUhT Pui.s.f

tT oi.e\ V C 1>1Ulf..»T Pv "'' 6
I

't1Af9 NETIC -CoRE

C t+ A lZ ACT~ e IS T) C....

FRo~ XU
., f't-10"'(

~DOR£~S

Dfeoot~

xu~
xu,S"

,111---flt> S~l --.. .sol.5

XU'- I tp

110---@>
XU11 ')£U 1NM.S

~ .S OIi .so,<!\ I

,o
HA6--CO~f . I

I SW lllt-tEl
I

(St r f 91,1y8) I t 1
)(t> t

I)(\)"

001--{t> so ----... sn., I

X Oa
xu8 o-{;> 00 n $0 ~ .SOe, L-v---- . e,

"To CR•D$ SO- S WITCM 'Di?I\IE rt

To(,,-> { $UXA ... Sw1ic1-t Daw&rt
l'NP1.11 A.-, P1.1;:-1Ee

s.o so .SOC t- Sw ,.rct1 De 1\1£(ce CR Cuae E,WT l<E',l.>&.ATO~

r 0

1

81..ot.t D1A~JlAH (>,f:)(U swn-ctt-

CoRE DiHVHJ, S (S T~'1 {_ .S 1111 '-A f2

DRIV)N'- .S (.STE'l1~ f'>ltS, Fof~. TH£

XV; yu; e,--J l.(V HA6 -CoiE S'w1TGH- IN-tJV,~)

IRAHS ISTbR f{ IE<. (H. A. 'Tl! C>

Cve~E~T

(+,-,PLIF115f<.

Fon. ONE QoA~T'Efl D~

0Ne c~.,,r p'-ANE

6F

INH-IOti 1-t>JI: F'DR.
6NE QUI" IHrll., OF OtJf.

D1G,1t' P1.-J1.NE

TfPICAL O,c:;.,r 'PLANe

('i-- P1.ANE)

DaFFelt­

.____., Ell&Ji-l&.. q .,,u,n

P1Ft:a~­
~ioc:,c~~:ic:i0~~:_ __ _J ll'Nf6AI. ~11•~

2. 1 .. .,,c.A1. ~•.u•
Wo&t>JH& SI: CT IONS

JecnoN i .._ ____ _

D,Ff,t­

-~E1nli\L ~liPUfi

!)iFFet­

----1"'1 ~tlrlAJ. arstw1

~-----------v--•-·-··
Ba1eu.1t l"' "#01"S

J:aon .Seei1~ \V ~j)4N'­

s .- c r, o N s

J"POf T6

0 ,.t! If. iT DF

M~MO,t<' (S\)~~--ll

cz.~,.s r6rt.

((((((

(u,-1.1) ~ 32.
X X. S-El.tC.T/Ot,,.;\

~ ~
l-1 NE°

\ST 2WD l:>RI~~

LEVEL ------.. LE"VEL ?.2..

t,,

l)-e:(:o[:t~ t)E'CaDl:R '!.2.
Se'LE='G not-J

64 L-lt.JE =>8
MEi'loRY - l>Rt\/e~ r

~ ~ ~8 Dlb\T
P\.At,le

;~

Al>J>~~ ~ <>lf Kb4 t ~8
S~t.ECToR. ! Co~E

~\\Jt-llS

I N'ltM~'I

~ 3'2. Pt"-A.A"/
- ~'2. 38

'I - Sel.~t;-TtotJ 38 sal.SOOb ~ 'I

l 4
L..1~e- ; AMPLIF~ ...

I 1sr '2NI> J)1<l~R5
Lt=VEL LEVEL -s~lz T ~~ - a

(2.3-/.1) 't>E'CD I)(, R :bE'co~R 32. L1f..le -- .DRI\J6R$ ~at-
2 8

(I.BJ I. 2.)
...... I

I
,,

I I I
}(. X y ..,,

Rt-At>- l.u RITE Rt-Al>- LulhiE' ~'0- <..o'llTE: RcAb-- wi,h TI;?
CURRc~T 6cf..>f;~~roR. C:::~A,Et.:K (:,E~OR. wRM-"-'r c'.:,QJ~ilff~ C~T C:>e~A.ATOl'l

Rf w Rf tw Rt tw Rf fw
~ f<t'Ab-Lo~\T'E S€'1.6::.roR

READ f twQ1TE

(T Ml:fVlOQ.'f Re-FtD-WRrre C::olJT'Aol-

_J
--

J

j

A. Photograph of shaft encoder.

J
B. Converter disc.*

Fig. 4-18. Shaft encoder.

* Reproduced by permission.

n -~ t 6 I f T t ~ (J - ~ 111)

1- ,p L~-f-1..
s f-L., ,i:_c.,; ot, 1 r

J-Tit(OUU 1 '1 L tV tL
JtLtCfOl

JD ~ A

"
~t~l!Tttl -
Jtltt10~

r-"

I
XWD A,

j J -- - I

- X- h\th\Ol~ Xi ~A
~

-- - I ' ,

. XWOg . ,

')

I
w

~11..011,
it HJ t

· V 1 q 1 i
(It r A- .D) Da.lVt~
A-MPLlfltU

◄ >

~ '
X·&Ofrt~ llt~IJT f-Q

X- ,t\tA\ OJtY JY/lt/A

Fig. 4-20a. 11 X11 memory plane, complete (4 1/4 X 6 1/4 inches over-all).

Fig. 4-206. 11 X11 memory plane enlarged.

TO WORD SELECTION SWITCH

TO READ ANO WRITE DRIVERS

Fig. 4-21. 11 X11 memory winding configuration.

TIME, µSEC . 0 I 2 3 4
2
-1

CURRENT IN 3 z
I t '-Jj~ I

REGISTER UYN
WRITE

- 4 3 I

I I-NET CURRE_NT 3I~ ~
IN CORE "A" _Jj

I

NET -~,y- ~,c=
CURRENT
IN CORE ••• 3 ~

-431

Fig. 4-22. 11 X" memory timing diagram.

••• •••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• ••••••••••••••••

. 1/16 inch in
ts Each spot is h late are 16 X 16 perma I loy sp~o~s of spots of eac p 23 One plate of h" k The best ten F · 4- • 600 A t I c •

19. d about . as spares. diameter an .. g rows remain
d . the remain in

use , .

Ss.:H.SE L,wE

((_) N'E T111t>.1)

vt

" ct

W oft.0 LIN Ji.

(Two TveHS.)

D1&.11 l1NE.

(Two Tuli?ws)

l '('Pt::AL 11Mr -Col?S
C t>e£ Sw1TG~ _.,.,,,

1r
Wo(l'I) w,~PU't&,.

"'- -I D - 1
Si;~E ~

DIG.IT
'W tW.1)1, '"'"' \~ x_)(, I~ XI~ WiNOIN~

lJ V

5-1 INTRODUCTION

5-2 PATTERN OF ACTIVITY

5-3 OVERLAPPING

5-4 CONTROL SCHEME

5-4.1 GENERAL

5-4.2 COUNTERS
~ 5-4.3 INTERLOCKS

5-5 TIMING

5-6 SYNCHRONISM

5-7 SUMMARY

5-1 TIME ACTIVITY PATTERNS

5-2 COMPRESSED ACTIVITY PATTERNS

CHAPTER 5
TIMING AND CONTROL

TABLE OF CONTENTS

LIST OF FIGURES

5-3 BASIC CYCLE OVERLAP WHEN INSTRUCTION WORD AND OPERAND WORD ARE LOCATED IN DIFFERENT MEMORIES

5-4 FREE-RUNNING COUNTER

5-5 REGISTER DRIVER TIME LOGIC

5-6 COINCIDENCE OF TIME LEVEL DECODER LEVELS AND CLOCK PULSES

5-7 TIME LEVEL DISTRIBUTION

March 1961 5-1

5-1 INTRODUCTION

CHAPTER 5

TIMilW AND CONTROL

The pattern of activity in time that takes place in the computer is determined by the

Control Element . This chapter will first describe the different sequences of events that

make up this pattern . It will then explain the basic features of control and timing that

keep the computer running i n a disciplined fashion. Chapter 6 wi ll give an integrated

functional description of the Control Element itself.

Previous chapters established that memories, logic nets, flip-flops, and other components

require finite but determinate lengths of time to operate. The fact that the operating

times are determinate means that maximum times to satisfy the "worst condition" situations

can be established. After initiating one event, it is only necessary to meter out the

required time before initiating the next event. The hardware for performing this metering

is usually a counter, although sometimes a delay line is used.

The simplest dynamic picture of the computer illustrates how data is transferred in and

out of storage devices as a function of time. It is only necessary to understand the time

patterns during this shuffling of data in order to understand the basic control and timing

features of the computer .

5-2 PATTERN OF ACTIVITY

Two basic cycles are dominant in the general pattern of recurrent execution of instructions:

the instruction cycle and the operand cycle. Other subordinate and auxiliary cycles occur

but they play a secondary and dependent role. Fig. 5-l(a) shows what is occurring in time

from this elementary viewpoint. Some of the subordinate activity is shown in Fig. 5-l(b).

During a typical instruction cycle an instruction is first strobed out of the main memory

into the N register. The contents of the N register are then decoded. At some point, the

base address in the N register may be modified by indexing it with the contents of an X

Memory register. During a typical operand cycle, an operand is first strobed out of memory

into the M register of the Exchange Element. The operations on the operand called for by

the instructions are then performed. The basic mechanisms involved in these operations were

described in Chapter 2.

Within the design limits of the computer, there is an obvious advantage in compressing the

amount of time required by the various patterns of activity. One method of reducing the

over-all time is to overlap the basic cycles and the subordinate activities. Usually one

cycle or phase need not be completed before the next begins. Fig. 5-2 shows how the

pattern illustrated in Fig . 5-l(b) can be compressed in time .

5-2 Marcl;l 1961

5-3 OVERLAPPING

Some explanation of the points at which cverlap can generally occur is in order. Once an

instruction word has been read out of a memory element register and strobed into the N

register, it is possible to immediately start decoding the N register even though the

instruction word memory cycle is not completed until the instruction word is rewritten back

into the memory. Similarly, it is not necessary that all the bits of the N register be

decoded before the address modification process begins since only the Y base address and J

index bits are required for this process. The address modification process is completed

when the address of the operand appears at the output of the X Adder, ready for insertion

in the Q register. At this point the process of reading the operand out of memory can

begin.

The execution of the operation called for by the instruction can be initiated as soon as

the instruction in the N register is decoded. Usually, the instruction calls for an

operand. In Fig. 5-2, the operation is shown being initiated after the operand is strobed

out of memory into the M register. The operation process can overlap the operand rewrite

process whenever the operation does not involve modifying the operand before it is re­

written in memory. Thus, the processes performed during the execution of an instruction

can be overlapped to a considerable extent.

In Fig. 5-3, the next instruction word memory cycle is shown overlapping the operand word

memory cycle of the current instruction. This is allowable whenever the instruction word

and operand word are obtained from different memories in the Memory Element. This kind of

overlapping yields nearly all the speed advantages which can possibly accrue from over­

lapping memory cycles. In fact, the total effective time required to execute an instruction

can be reduced to little more than one memory cycle.

It should be noted that the preceding description of overlapping has been highly simplified.

Both the basic cycles and the subordinate forms of activity vary widely depending on the

specific instruction and the prior state of the computer. More details on overlapping are

covered in Chapter 9.

5-4 CONTROL SCHEME

5-4.1 GENERAL. The basic control requirements involve some scheme for metering out time

for all the various activities that occur. This metering is done by counters. Each

of the basic cycles has its own time meter, or counter. In addition, several other

types of computer activity, such as those involving the X and F Memories, Change of

Sequence, the Arithmetic Element, etc., have a counter associated with them. These

counters will be described in Chapter 6 and Chapter 10.

March 1961

I~ is also important to have a control scheme for determining precisely when a new

activity can begin. This is accomplished by an interlock control. An interlock is

5-3

a storage device (a flip-flop) which remembers when various conditions have occurred.

A number of interlocks are used to determine when counters can begin their cycles and

thus when the associated processes can be performed.

5-4.2 COUNTERS. The general characteristics of counters as they relate to the control of

the computer will now be described. The basic function of the counter is to convert

a stream of indistinguishable clock pulses into distinguishable time levels. These

levels can then be used to select, or "gate" clock pulses at specific times. Con­

sider for the moment a free running counter (Fig. 5-4), that is, one in which an

uninterrupted stream of clock pulses is emanating from the related counter register

driver. Levels of O.4 microsecond duration appear on the output wires of the time

level decoders in the time order shown in Fig. 5-4. After the counter reaches the

€a state, it reverts to the oa state and begins another cycle.

One point should be emphasized. The clock pulse that causes the counter to generate

the 5a time level occurs O.4 microsecond prior to the clock pulse that can be gated

by the 5a time level. The clock pulse that causes the 5a time level, occurs while

the counter is in state 4a, and can in fact also be gated by the 4a time level.

This distinction should be borne in mind when attempting to determine when events,

caused by interlocks and time levels, occur with respect to each other.

As mentioned earlier, the various counters in the computer are associated with

specific kinds of computer activity. When the counter has completed its cycle

(which is tantamount to completing the associated activity), it will be inhibited

from recycling by interlocks. When this activity is again required, the interlock

will permit the counter to start again.

5-4.3 INTERLOCKS. Interlock level logic controls the counter register driver logic nets.

5-5 TIMING

The inputs to these nets come from interlock flip-flops and from other sources of

interlock information in the computer. Basically, the interlock logic indicates

that all the things which must be done before starting a counter have in fact been

done. As indicated above, nothing prevents two counters from operating simultane­

ously. The only obvious limitation is that two counters may not control the

operation of the same device simultaneously. Nothing prevents them from alternately

doing this, however. The other somewhat arbitrary limitation is that usually no two

counters start at the same ti.me. All of the information necessary to impose these

limitations finds its way into the interlock logic nets.

There is considerable value in understanding how the clock pulses and the time levels from

the time level decoders•are specifically used in controlling the ti.ming of events. All

events occurring in the computer are initiated by gated clock pulses. This gating occurs

in register drivers and is determined by the output of logic nets. The event itself may

5-4 March 1961

arbitrarily be defined as the appearance of the gated pulse at the input to a flip-flop or

memory device. Fig. 5-5 shows the form of the logic at the register driver. Many control

levels of various kinds will enter the register driver logic nets. These levels will

always be ANDed with time levels from one or more counters. This logic will in turn be

ANDed with a clock pulse in the regis ter driver itself to produce a gated clock pulse which

can initiate an event.

Certain generalities may now be stated: (1) every clock pulse which is used in the computer

is gated by some time level; and (2) every time level is coincident with some clock pulse.

This coincidence is shown in Fig. 5-6. These two generalities are keystone ideas in time

control in the computer.

Fig. 5-7 shows how the counters are integrated with the rest of the computer by means of

their output time levels. This figure also indicates the feedback paths that can occur.

Note that the counter register driver logic is similar to that of any of the other register

drivers. It may in fact look at time levels from the same counter it is driving. After the

register driver pulses have transferred data between registers, cleared and set flip-flops,

read information out of memory, etc., the new states of the affected storage devices feed­

back through logic nets into the register drivers and then another cycle of events is

repeated.

5-6 SYNCHRONISM

The operation of most computers is described as either synchronous or asynchronous. The

term asynchronous implies the completion of an event is indicated by the occurrence of the

event itself; that is, it is not sufficient that the event be initiated, there must be

positive indication by the event itself that the event is completed. Then and only then can

a succeeding event take place. The term synchronous implies that each event takes a known

(maximum) length of time and that it is only necessary to meter out a time interval* before

initiating a succeeding event. In this case, no positive indication is required that the

event has in fact taken place before the next event is initiated. These terms have somewhat

loose meanings and are in practice difficult to use in precisely describing the behavior of

a computer. It may be stated, however, that TX-2 is dominantly a synchronous machine. It

is asynchronous to the extent that interlocks, and not fixed intervals of time, determine

when the basic memory cycles and change of sequence cycles can be initiated.

Because the computer is synchronous in nature, events initiated in the outside world (that

is, in the In-Out Element or at the pushbutton console) must be synchronized with the

computer. Chapter 3 described a synchronizer type circuit for doing this. The important

feature of this circuit is that the level outputs initiated by asynchronous pulses are

coincident in the sense of Fig. 5-6 with the computer clock pulses.

*This time interval is usually some integer number of basic time increments. These increments
are 0.2 or o.4 microseconds, in the case of TX-2.

March 1961 5-5

5-7 SUMMARY

The dynamic operation of the TX-2 computer is determined by the counters and the interlock

control. The time levels from the counters find their way into logic nets which are used

to gate clock pulses. These gated pulses initiate events such as register transfers. The

sum of the events associated with a given counter constitute some basic process in the

computer such as a memory cycle. The interlock control determines when the specific

counters should start, that is, when it is required and permissible for one of the basic

processes to be initiated.

5-6 March 1961

r---------- __, ________ , ,--------------r
I INST~UCTIO"' C'(CL.! l I OPf:~Ai,&> CYCt..E.

l~------ ~---ff:
I i>ISHVC.JIO>I wo"O I llfCOOfl . HDOIF'(I ~ OP!'U,>H) 1woeo
: HEt10~ '(C'(CLE ~OORfSS : I .-JEHO('(t (C l.f

I t.,_ f
t I I

11ME~ 1
I I

.,
I

I
I LI - _ X Mft10f('('
I 'MA.IN nH1~e'C" 1,111: I 1L«>&IC h11f I~- Tu1e I :
I

i I r-fA•H Hrne•n: T,"1~ t I Lot-,, Ti~ f 1:
1-- - - - ·- - - - - - .- - - - - - _J L- - - - - - - - - - _j

, . --------------""
I

1 INSTl~UCTION. WOl~D ~Ft10~'(C'fCLE'
I I

(''
r ~ INST wo~C l='Ro..., HEH, l?!)(CII{ i f

' r
r ' I OECope .

t
I
I

'1Hee Qpp t

I
I
r - - _J_ - - - - -- - - · --

' oP e R.Ati40 wo 1t.·0)1f >10R1< c Y"CLE I
r I
I I i om wogP ff.OH ,.._f11, 1< ~~t?•TI! •

' ' a I
't OPfflATIO"f ~

- - - __ ,

, . ,

6VER.l.AP

CYCLE

.-..

........

~

~

7-Sr-~re
CouNTEt -

.JhU>

···I I \ 1··7
~

Tu1E levii ...-..
~

DrGoDEt_

Ci.octc Pu LSE.$ (Tl-l))

~ .._.

~

_..

..-. -

.....

1[111111111111111

f

I
1

i
I

~<>o

,,.

Odo

~~

t

t

0d.

-.....Od

~~ ~i. I

~

I

I
.l

LJ I
...

'Cid-

C'-ot.K Yv1..se
INP<>r.s

ro CouNTE'(

T1H E L I! 1,1 ~ L

OurPu'tS

~o"" TL.O

'KE~ISTi:71(,, DR 1\/flZ

ANC> LoG.JG Ners

·c;.A,. eo
"---....

(\.~IC.. 'PvL-!.E..S

G-AT1N <,. "cc. u ~ ~ w He N 1TM E L 1!'Vf L..S A~D

CoNTi()\... l..i!vEL~ AR~ Co,')Jc;ort-,)r W1T1+ CLocK. P~1..,f ~
(S EJ f:1'-, $"-,)

I

' \

l

.. , • Q • ◄ J1,'e&O.SU:ONO
I ,_..

I
I
I

l•hl! LEVEL

O~u,oe-~s

K"E6>1STER

()~lVf'~

Lo<.ac

r------..,,_
0t I

--¢ gE,•~Tl:ll I

--~ D~,"~tt ~
I Lo~,~ '

~----"-" I --- r- -~
•
•
•
•

(C()vNTi°e)
---....>I R~&-•£1!~

Dll.,vE ll

Lo~,c..

GATED C1-ccK PuLSE~

R~" Tl!,z I '2ANS FE It. Pv L-r.E.s
r.re 2L.oc~ PuJ..~E..S

M£Mo..Z-< Pv1..~e.s
C'ov~i£t. Pva..se-..s

e.lc. .

F,<.,, S'-l iinE LtvEL..

P•ST~) SVTI t>N

6-1 INTRODUCTION

6-2 CONSOLE CONTROL

6-2.1 GENERAL DESCRIPTION

6-2.2 PUSHBUTTON CONTROL

CHAPI'ER 6

FUNCTIONAL ORGANIZATION

OF THE

CONTROL ELEMENT

TABLE OF CONTENTS

6-2.2.1 START-STOP CONTROL

6-2.2.2 STARTOVER CONTROL

6-2.2.3 PRESET CONTROL

6-2.2.4 CLEAR SUPPRESSED ALARMS CONTROL

6-2.2.5 CLEAR UNSUPPRESSED ALARMS CONTROL

6-2.2.6 CLEAR REAL-TIME CLOCK CONTROL

6-2.2.7 COMPUTER MASTER START CONTROL

6-2.3 ALARM INDICATIONS AND CONTROL

6-2.3.1 GENERAL DESCRIPTION

6-2 .3.2 MEMORY SELECTION ALARMS

6-2.3.3 OPERATION CODE SELECTION ALARM (OCSAL)

6-2.3.4 MEMORY PARITY ALARMS (MPAL, NPAL, XPAL, FPAL)

6-2 .3.5 IN-OUT ALARMS (IOSAL, MISAL)

6-2.3.6 MISCELLANEOUS ALARMS (TSAL, SYAL, MOUSETRAP)

6-2.4 AUTOMATIC START FROM ALARMS

6-2.4.1 AUTO START AFTER UNSUPPRESSED ALARM TOGGLE SWITCH

6-2.4.2 PRESET AND STARTOVER AFTER SUPPRESSED ALARM TOGGLE SWITCH

6-2 .5 TOGGLE SWITCH PROGRAM SWITCHES (TSP)

6-2 .6 REMOTE PUSHBUTTON AND TOGGLE SWITCH PROGRAM

6-2.7 NO OVERLAP TOGGLE SWITCH (NO)

6-2.8 SYNCH TRAP TOGGLE SWITCH

6-2.9 STOP AEON SELECTED SYNCHRONIZATION TOGGLE SWITCH

6-3 INTERLOCK CONTROL

6-3.1 GENERAL DESCRIPTION

6-3.2 ARITHMETIC ELEMENT PREDICT INTERLOCK (AEP)

6-3-3 E REGISTER BUSY INTERLOCK (EB)

6-3 . 4 INSTRUCTION INTERLOCK1 (PI1)

6-3-5 INSTRUCTION INTERLOCK2 (PI2)

6-3.6 INSTRUCTION INTERLOCK3 (PI3)

6-3-7 INSTRUCTION INTERLOCK4 (PI4)
6-3 .8 INSTRUCTION INTERLOCK5 (PI5)
6-3.9. Q REGISTER BUSY INTERLOCK (QB)

March 1961 6-1

6-3,10 X REGISTER BUSY INTERLOCK (XB)

6-3,11 X MEMORY WRITE INTERLOCK (XW)

6-3,12 F MEMORY INTERLOCK (FI)

6-4 INTERLOCK LEVEL CONTROL

6-4.1 GENERAL DESCRIPTION

6-4.2 INSTRUCTION CYCLE INTERLOCK STARTl LEVEL (PISTARTl)

6-4.3 INSTRUCTION CYCLE INTERLOCK START2 LEVEL (PISTART2)

6-4.4 OPERAND CYCLE INTERLOCK START LEVEL (QISTART)

6 -4. 5 CHANGE OF SEQUENCE CYCLE INTERLOCK START LEVEL (CSISTART)

6-4. 6 INSTRUCTION CYCLE CHANGE OF SEQUENCE INTERLOCK LEVEL (PlH SEQ)

6-4.7 INSTRUCTION CYCLE INTERLOCK WAIT LEVEL (PIWAIT)

6-4.8 INSTRUCTION CYCLE INTERLOCK LEAVE SEQUENCE LEVEL (PILV SEQ)

6-4.9 F MEMORY COUNTER START LEVEL (/ START.,. FK)

6-4.10 X MEMORY COUNTER START LEVEL (/ START.,. XWK)

6-4.11 ARITHMETIC COUNTER START LEVEL (/ START.,. AK)

6-4.12 ARITHMETIC STEP COUNTER START LEVEL (/ STARt, ASK)

6-4.13 IN-OUT DELAY SYNCHRONIZATION COUNTER START LEVEL (/ START.,. IODK)

6-4. 14 ALARM DELAY COUNTER START LEVEL (/ START.,. ADK)

6-5 COUNTER REGISTER DRIVER CONTROL

6-5,1 GENERAL DESCRIPTION

6-6 COUNTERS

6-6.1 GENERAL DESCRIPTION

6-6.2 CHANGE OF SEQUENCE COUNTER (CSK)

6-6.3 INSTRUCTION COUNTER (PK)

6-6.4 OPERAND COUNTER (QK)

6 -6.5 ARITHMETIC OPERATION COUNTER (AK)

6-6.6 ARITHMETIC ELEMENT STEP COUNTER (ASK)

6-6.7 F MEMORY COUNTER (FK)

6-6.8 X MEMORY COUNTER (XWK)

6-6.9 ALARM DELAY COUNTER (ADK)

6-7 REGISTER DRIVERS FOR REGISTERS

6-7,1 GENERAL DESCRIPTION

6-8 REGISTERS

6-8.1 GENERAL DESCRIPTION

LIST OF FIGURES

6-1 RELATIONSHIP OF CONTROL ELEMENT TO OTHER ELEMENTS IN COMPUTER

6-2 CONTROL ELEMENT BLOCK DIAGRAM

o-3 CONSOLE CONTROL PUSHBUTTONS AND TOGGLE SWITCHES

6-4 CONTROL INDICATORS

6-2 March 1961

6-1 INTRODUCTION

CHAPTER 6

FUNCTIONAL ORGANIZATION

OF THE

CONTROL ELEMENT

This chapter will describe the principle parts of the Control Element.

One of the basic problems in discussing the Control Element is that of properly establishing

the boundary lines be tween the other Elements, i.e., the Memory Element, Exchange Element,

Arithmetic Element, Program Element and In-Out Element, and the Control Element itself.

(The problem is analogous to defining the boundary between the organs of a body and the

nervous system controlling the organs.) In the computer the demarcation line is somewhat

arbitrarily established by locating the information registers (exclusive of the counter

registers.) in the Elements and the associated register drivers in the Control Element. One

can visualize the Control Element as reaching into all the Elements via the register

drivers and controlling the dynamic activity taking place in the registers that comprise

each Element. (See Fig. 6-1)

Behind the register drivers are a variety of Control Element devices whose chief function is

to coordinate the various activities going on in the computer, remember critical events in

the computer's previous history, and provide indication and a means of manual control of the

computer.

The Control Element consists of console controls and indicators, interlocks, counters and

register drivers, as well as the logic interconnecting them . Fig. 6-2 illustrates the

general paths of communication within the Control Element.

The control console contains all the manual controls, i.e.,the pushbuttons and toggle

switches. The indicators on the console provide useful information to the operator on the

current state of the computer.

When an operand, instruction or other cycle is initiated an associated counter is used to

time control the activity. Time levels from this counter find their way into the register

driver logic involved in the activity. Interlocks are used to determine when the various

counters can begin their cycles.

6-2 CONSOLE CONTROL

6-2.1 GENERAL DESCRIPTION. The console control consists of a number of pushbuttons and

toggle switches as shown in Fig. 6- 3, All the pushbuttons are of the momentary type .

They and the toggle switches trigger level producing mercury relays. The levels

generated are asynchronous with respect to the computer clock pulses and are usually

synchronized before being used by the Control Element.

March 1961

The indicators shown in Fig, 6-4 consist of banks of lamps arranged to display both

in octal and binary fonn the contents of the registers and counters. Individual

indicator lamps are also used to display the state of interlocks, alanns and in-out

units.

6-2.2 PUSHBU'ITON CONTROL

6-2.2.1 START-STOP CONTROL, The two pushbuttons STOP and CALACO* (Clear Alanns and

Continue) provide a manual means for stopping and restarting the computer.

The two push-push switches LOW SPEED and LOW SPEED REPEAT control the "speed"

of operation of the computer. If both switches are off, the computer will

operate in the high speed mode. When the computer is in the high speed

mode, the interlock control will allow the basic cycles of the computer to

occur as soon as these cycles are needed and can be perfonned. However,

when the computer is not in the high speed mode it is in either the low

speed mode or the low speed repeat mode, and four of the basic cycles

instruction word, operand word, deferred address word and change of sequence

cycles are controlled by the push-push switches PK STOP1 , PK STOP2 , QK STOP

and CSK STOP, respectively. When the computer is in either of these low

speed modes, i.e., not in the high speed mode, then the computer will stop

whenever it attempts to perfonn one of the four basic cycles for which the

corresponding console stop switch is on. If the LOW SPEED switch is on, the

computer can be restarted by pressing the CALACO pushbutton, but, if the LOW

SPEED REPEAT switch is on, the computer will be automatically restarted by a

pulse generated from an internal oscillator called the LOW SPEED OSCILLATOR.

The frequency of this oscillator can be continuously adjusted from Oto

500 KC by knobs on the console,

Thus, if the computer is in the low speed repeat mode, and if only the

PK STOP1 stop switch is on and the LSO is running at 1 cycle per second,

then every time the computer attempts to read an instruction word out of the

Memory Element it will stop and wait for (about) 1 second before continuing.

Note that the CALACO pushbutton clears all the existing alanns before it

starts the computer.

6-2.2.2 STARTOVER CONTROL. Pressing the STARTOVER pushbutton raises the flag of

Sequence o. Since Sequence O is the highest priority sequence, pressing

the STARTOVER pushbutton will eventually cause a change of sequence to

Sequence Oto occur. Sequence O will usually perfonn some special program

at that time.

*CALACO generates three pulses called CLEAR SUPPRESSED ALARMS, CLEAR UNSUPPRESSED ALARMS and
START.

6-4 March 1961

6-2 . 2 .3 PRESET CONTROL. Pressing the PRESET pushbutton places certain critical flip­

flops in a pre-determined state. The states of these flip-flops guarantee

that pressing other pushbuttons will be meaningful .

6-2.2.4 CLEAR SUPPRESSED ALARMS CONTROL. Pressing the CLEAR SUPPRESSED ALARM push­

button will clear the computer of all the existing suppressed alarms. The

dozen or so alarms in the computer have various individually associated

controls . One of these controls can suppress the effect of the alarm,

although the alarm is still indicated when it occurs. This pushbutton

clears the indication of such alarms.

6 - 2 . 2.5 CLEAR UNSUPPRESSED ALARMS CONTROL . Pressing the CLEAR UNSUPPRESSED ALARMS

pushbutton will clear the computer of all the existing alarms that have not

been suppressed. The unsuppressed alarms cause the computer to stop . They

must be cleared before the computer can be started again .

6-2 .2.6 CLEAR REAL - TIME CLOCK CONTROL . Pressing the CLEAR REAL-TIME CLOCK pushbutton

will reset the clock to zero.

6 -2.2.7 COMPUTER MASTER START CONTROL . Pressing the CODABO (Count Down and Blast

Off) pushbutton initiates a succession of actions which start the computer

from any condition. The CODABO pushbutton actuates the following other

pushbuttons in the indicated order:

1) STOP

2) CLEAR SUPPRESSED ALARM

3) CLEAR UNSUPPRESSED ALARM

4) PRESET

5) STARTOVER

6) START

6- 2.3 ALARM INDICATIONS AND CONTROL

March 1961

6-2 . 3.1 GENERAL DESCRIPTION. Alarms are generated by computer or programming errors.

These alarms may be classified into five categories:

1) Memory selection alarms

2) Memory parity alarms

3) In-out alarms

4) Operation code alarms

5) Miscellaneous alarms

Associated with each of most of the alarms is an indicator light, and a

toggle switch used to suppress the effect of the alarm condition . (Only the

miscellaneous alarms are not suppressible.) A two -tone chime emits one tone

whenever a suppressed alarm occurs and the other tone whenever an unsuppressed

6- 5

alann occurs. The occurrence of an unsuppressed alann will cause the com­

puter to stop, while a suppressed alann will not interrupt the computer

operation.

Alarms are cleared by depressing the CLEAR SUPPRESSED ALARMS or CLEAR UN­

SUPPRESSED ALARMS pushbuttons.

6-2.3.2 MEMORY SELECTION ALARMS (PSAL AND Q,SAL). If either the P or Q register

contains an illegal address and is used to select a Memory Element register,

the associated memory selection alann will be generated. The specified

address is illegal if either the address is in the range 220 000 to 377 577

(octal) or if the S, T, or U memories are addressed and these memories are

turned off. These memories may be turned off by the SMOFF, TMOFF, or UMOFF

console switches respectively.

6-2.3.3 OPERATION CODE SELECTION ALARM (OCSAL). This alann occurs whenever the

computer selects one of the 14 undefined operation codes. The occurrence

may be caused either by a computer error or a programming error.

6-2.3.4 MEMORY PARITY ALARMS (MPAL, NPAL, XPAL AND FPAL). Whenever a bad memory

readout into a buffer is made, the parity alann associated with this buffer

will occur. For example, if a Memory Element register is read into the M

register with a bad (even) parity, then an MPAL will occur.

6-2.3.5 IN-OUT ALARMS (IOOAL, MISAL). The IOSAL (In-Out Selection Alann) alann will

be generated whenever an IOS 3X XXX or IOS 6X XXX type instruction* selects

an in-out unit which is in the maintenance mode. The MISAL (Misindication

Alann) alann occurs whenever an in-out unit loses a line of data because the

central computer fails to perfonn the proper in-out instruction. Note that

MISAL alarms are associated only with "free running" in-out units.

6-2.3.6 MISCELLANEOUS ALARMS (TSAL, SYAL AND MOUSETRAP). A TSAL (T Memory Selection

Alann) alann is generated whenever the T Memory selection circuits fail to

perfonn properly.

*See Chapter 7.

A SYAL (Synch System Alann) alann is generated whenever the synch system

stops the computer.

The "Mousetrap" alann is used to stop the computer during special, main­

tenance operations.

6-6 March 1961

6-2.4 AUTOMATIC START FROM ALARMS

6-2.4.1 AUTO START AFTER UNSUPPRESSED ALARM TOGGLE SWITCH. This switch automatically

starts the computer after it has stopped on an unsuppressed alarm. The

action of the switch is equivalent to pressing the CLEAR UNSUPPRESSED ALARM

pushbutton and then pressing the START pushbutton*.

6-2.4. 2 PRESET AND STARTOVER AFTER SUPPRESSED ALARM TOGGLE SWITCH. This switch has

effect only when the computer has stopped on a suppressed alarm. The action

of the switch is equivalent to pressing the PRESET pushbutton and then

pressing the START pushbutton*.

6-2 .5 TOGGLE SWITCH PROGRAM SWITCHES (TSP) . The Toggle Switch Program counter consists of

18 toggle switches. The binary number set up in these switches is used to specify

the value of the program counter read out, whenever a change to Sequence O occurs.

This number is then loaded into the P register.

6-2.6 REMOTE PUSHBUTrON AND TOGGLE SWITCH PROGRAM. For convenience, a portable control

console is provided with several of the control pushbuttons and switches located on

it.

6-2.7 NO OVERLAP TOGGLE SWITCH (NO). This switch can be used to inhibit the simultaneous

execution of two Memory Element word read out cycles.

6-2.8 SYNCH TRAP TOGGLE SWITCH . This switch determines whether the trapping sequence con­

trol or the external Synchronization System will provide the signals which raise the

flag of the trapping sequence.

6-2,9 STOP AEON SELECTED SYNCHRONIZATION TOGGLE SWITCH . When this switch is turned on,

the computer will stop whenever the particular conditions specified by the Synchron­

ization System exist in the Arithmetic Element.

6-3 INTERLOCK CONTROL

6-3 ,1 GENERAL DESCRIPTION. The interlocks themselves are individual flip-flops which are

set to ONE and cleared to ZERO when certain specific interlock logic associated with

them is satisfied. The important characteristic of these interlocks is that they

remember certain conditions have occurred after the conditions themselves have dis­

appeared. By means of the interlock control the past history of the computer is used

to control the future activity of the computer.

6-3,2 ARITHMETIC ELEMENT PREDICT INTERLOCK (AEP). This interlock is used to predict when

the Arithmetic Element will be finished with its current activity and be again avail­

able for another use. E.g., if a division is being performed, the AEP interlock

*Note that the action of the START button has been incorporated into the action of the CALACO
button.

March 1961 6-7

predicts when this division will be completed and the Arithmetic Element free to

perform another operation, such as an addition.

6-3.3 E REGISTER BUSY INTERLOCK (EB). EB1 indicates that the E register is currently in

use and is not yet available for some new use.

6-3.4 INSTRUCTION INTERLOCK1 (PI1). PI~ is one of the conditions that is required before

an instruction word memory cycle or a change of sequence cycle can begin. PI1 is one
1

of the conditions that is required before an operand memory word cycle can begin.

6-3.5 INSTRUCTION INTERLOCK2 (PI2). PI~ indicates that a deferred address cycle is

required.

6-3.6 INSTRUCTION INTERLOCK3 (PI3). PI~ indicates that a change of sequence cycle is to

occur.

6-3-7 INSTRUCTION INTERLOCK4 (PI4). This interlock remembers the value of the hold bit of

the last instruction executed.

6-3.8 INSTRUCTION INTERLOCK5 (PI5). PI~ indicates that an intermediate deferred address

cycle is required.

6-3.9 Q REGISTER BUSY INTERLOCK (QB). QB1 indicates that the Q register is currently being

used in an operand cycle and is not yet ready for some new purpose.

6-3.10 X REGISTER BUSY INTERLOCK (XB). XB1 indicates that the X (index) register is being

used and is not yet ready for some new purpose.

6-3,11 X MEMORY WRITE INTERLOCK (XW). xw1 indicates that both the X (index) register and

the X (index) memory are being used and are not yet ready for some new purpose.

6-3,12 F MEMORY INTERLOCK (FI).
1

FI indicates, in certain circumstances, whether the F

(configuration) memory is to be used.

6-4 INTERLOCK LEVEL CONTROL

6-4.1 GENERAL DESCRIPTION. Interlock control levels are used to start up counters, or

place them in waiting states. These interlock control levels are usually not

effective until the counters which use them are in some specific state.

The interlock control levels are generated by certain conditions in the computer

including, most importantly, the state of the interlock flip-flops.

6-8 March 1961

6-4.2 INSTRUCTION CYCLE INTERLOCK START1 LEVEL (PISTARTl). This level is used to start

the PK counter in an instruction cycle. PK must be in its 00 resting state before

this level can be used.

6-4.3 INSTRUCTION CYCLE INTERLOCK START2 LEVEL (PISTART2) . This level is used to start

the PK counter in a deferred address cycle. PK must be in its 00 resting state

before this level can be used.

6-4.4 OPERAND CYCLE INTERLOCK START LEVEL (QISTART). This level is used to start the QK

counter in an operand cycle. QK must be in its 00 resting state before this level

can be used.

6-4. 5 CHANGE OF SEQUENCE CYCLE INTERLOCK START LEVEL (csr8TART). This level is used to

start the CSK counter in a change of sequence cycle. CSK must be in its 00 resting

state before this level can be used.

6-4.6 INSTRUCTION CYCLE CHANGE OF SEQUENCE INTERLOCK LEVEL (PlH SEQ). This level indicates

that a CSK counter cycle will occur after the current PK counter cycle. This level

is generated while the PK counter is running and interpreted by the logic controlling

PI3 , PI3 then remembers whether a change of sequence has been requested .

6-4.7 INSTRUCTION CYCLE INTERLOCK WAIT LEVEL (PIWAIT). This level occurs if PK is required

to stop and wait in an intermediate state of the counter (state 23) until some other

interlock condition is satisfied. Various interlock conditions can cause PIWAIT to

be generated.

6-4.8 INSTRUCTION CYCLE INTERLOCK LEAVE SEQUENCE LEVEL (PILV SEQ). This level occurs if

PK is required to leave the current instruction cycle uncompleted in order that a

change of sequence cycle can occur. PK is in the 22nd or 23rd state when the
LV SEQ LV SEQ

PI level becomes effective. Various interlock conditions can cause PI

to be generated.

6- 4 .9 F MEMORY COUNTER START LEVEL (/ START► FK). This level is used to start the FK

counter in an F (configuration) memory cycle. FK must be in its 00 resting state

before this level can be used.

6-4.10 X MEMORY COUNTER START LEVEL (f START► XWK) . This level is used to start the XWK

counter in an X (index) memory cycle. XWK must be in its 00 resting state before

this level can be used.

6-4. 11 ARITHMETIC COUNTER START LEVEL (/ START., AK). This level is used to start the AK

counter. AK must be in its 00 resting state before this level can be used.

6-4 .12 ARITHMETIC STEP COUNTER START LEVEL (/ START► ASK). This level is :used to start the

ASK counter. ASK ~ust be in its 00 resting state before this level can be used.

March 1961 6-9

6-4.13 IN- OUT DELAY SYNCHRONIZATION COUNTER START LEVEL (/ START► IODK). This level is used

to start the IODK counter part of the CSK counter. (Part of this counter is used

during an in-out delay synchronization cycle, while the other part is used during a

change of sequence cycle.) The counter must be in its 8th state before this level

can be interpreted.

6-4.14 ALARM DELAY COUNTER START LEVEL (/ START .. ADK). This level is used to start the ADK

counter in an alarm delay cycle . ADK must be in its 00 resting state before this

level can be used.

6- 5 COUNTER REGISTER DRIVER CONTROL

6-5.1 GENERAL DESCRIPTION. The counter register drivers gate clock pulses. These gated

clock pulses are then used to change the state of the associated counter.

Usually a counter will proceed from one state to the next in step with a stream of

gated clock pulses. However, the register driver logic may alter this pattern and

give use to one of three possibilities. The possibilities are that the counter may

"rest", "wait", and "skip" when it is in particular states. These possibilities are

determined by the counter logic and the general condition of the computer at the

moment.

Usually a counter will rest in its 00 state until it has a reason to start counting

or because it is inhibited from starting by other conditions. The interlock levels

in the counter register driver logic determine when the counter can start. As

mentioned above, frequently a counter will not count through all its states

successively, but, instead will skip a number of states . These skips are controlled

in ·the register driver logic by levels which define the kind of counter cycle being

performed. In other circumstances a counter will stop and wait in some intermediate

state. This usually occurs because some interlock level prevents clock pulses from

getting through the register driver to change the state of the counter.

6-6 COUNTERS

6-6.1 GENERAL DESCRIPTION. The physical structure of time level counters was described in

Chapter III. The time levels generated by a counter are used as factors in register

driver logic. There they serve to identify the particular clock pulses which, when

ANDed with the remainder of the register driver logic, affect the contents of the

associated register.

There are eight counters in the Control Element. These counters time control the

execution of memory cycles, change of sequence, arithmetic operations, and other

miscellaneous activities.

6-10 March 1961

The logic controlling the counters reflects conditions existing throughout the computer

including the state of the counters themselves.

6-6.2 CHANGE OF SEQUENCE COUNTER (CSK). This is a three stage counter with one additional

flip-flop used as an interlock. Although 16 time level states can be decoded, the

counter actually generates either one or the other of two sets of 8 time levels.

The first set of 8 states from 00 to 07 comprise a part of the counter which time

controls the change of sequence cycle. This part of the counter is called CSK. The

second set of 8 states from 08 to 15 comprise a part of the counter which time con­

trols the in-out delay synchronization cycle. This part of the counter is called

IODK*. As will be seen later, 1.6 microseconds is sufficient to perform an in-out

delay synchronization cycle. For this reason only states -08 to 11 of IODK are used.

6-6.3 INSTRUCTION COUNTER (PK). This is a five stage counter consisting of two sets of

five flip-flops. One set generates alpha time levels and the other set generates

beta time levels. The basic function of this counter is to time control the

execution of an instruction or deferred address cycle.

6-6.4 OPERAND COUNTER (QK). This is a five stage, two phase counter similar in structure

to PK. The basic function of this counter is to time control the execution of an

operand cycle.

6-6.5 ARITHMETIC OPERATION COUNTER (AK). This counter differs from the other counters in

that it is actually a shift register. Like the other counters it has both an alpha

and beta phase. The basic function of this counter is to time control the execution

of arithmetic operations. Thus AK time controls the basic addition, subtraction,

scale and cycle operations. Certain other arithmetic operations require the ASK

counter to operate concurrently with the AK counter in the time control process.

6-6.6 ARITHMETIC ELEMENT STEP COUNTER (ASK). This is a seven stage counter. The basic

function of this counter is to count the iterations of certain sub-operations that

occur during the AK cycle, when the divide, multiply, tally, and, in a special sense,

normalize operations are being executed.

6-6.7 F MEMORY COUNTER (FK). This is a four stage, two phase counter. Only 9 of the 16
possible alpha states are decoded, the beta states are only partially decoded. The

basic function of this counter is to time control the execution of the F

(configuration) memory cycle.

6-6.8 X MEMORY COUNTER (XWK). This is a three stage counter. The basic function of this

counter is to time control the execution of the write part of an X (index) memory

read-write cycle.

*As will be seen, this part of the counter is just as frequently called DSK, the delay synchroni­
zation counter.

March 1961 6-11

6-6.9 ALARM DELAY COUNTER (ADK). This is a two stage counter where the counting mode is

determined by variable delay units. The basic function of this counter is to control

time delays, after an alarm occurs, so as to stop the computer and, in some cases,

start it again in a controlled manner.

6-7 REGISTER DRIVERS FOR REGISTERS

6-7.1 GENERAL DESCRIPTION. Information transfers in the central computer are effected by

pulses from register driver units. These register drivers are bit by either alpha

or beta clock pulses every o.4 microsecond. These pulses are gated in the register

drivers in the usual way by logic levels, including time levels.

6-8 REGISTERS

6-8.1 GENERAL DESCRIPTION, The registers in the central computer hold information that is

either in process of being transferred to or from the various memories and in-out

units, or is the intermediate result of a computation or other operation. The

information contained in the register frequently makes a significant contribution

to the decisions made in the Control Element. The registers themselves, however,

are classified as belonging to the various other elements, i.e., the Arithmetic

Element, Program Element, Exchange Element, In-Out Element and Memory Element.

Information is placed in registers by register driver pulses. The information

remains there until new information is placed there by new register driver pulses.

6-12 March 1961

& (f.. I.S T ~ R /?,If IV ,e I? J

hY TE~"-aC./(.S

T / H ,ti LEV/!' J. < 0 I..) /)I T ,e ,P J
h,o~c-1 T~lf .s

#~ /'I t.,ir/4 ..J' Jvl7CN$..,S

Fig. 6-1. Relationship of control element to other elements in computer.

r

◄•

,, (oMTR.OL .. -,,. .(l'41>1Q'nllt
I I

C
CONTtbl .

CONSOi.£

(ON SOL-f:-

~

-
r

,.
,..

~

"I -

◄ t

I
t
I
I
I
I

!Nf..,12:
Lc:,c.l(

c~,-n•
\
I
l

' I

... , -

I
I
I
I
I

'4 I
I

......... Co~
~

,12P
f Lo"' .. l

' I
' \

)

'- ~ . . , -~

CoNT[20L.. INT":~lOC.ILS

CouNT-G"r·,.._
R-=<r 1$T..;.~
DRr✓-&-R

CoN ,.-12..,oL.

-.... ""

◄•

I
\
I
I
I

s -.

I
\
I
I
t

-
7

I

1
I

' ~
1

I
- ~

~ - ...
t>

IC.

I
I
I

i I

l I

~1~'1"'=-1<.

OQ.iv-e--1'2.
CoLJNTcR~ (oNi~OL

Fig. 6-2. Control element block diagram.

..,
I

I

l
I

l
I
I

- s
I

I

' I
I

7

•
Fig. 6-3. Console control pushbuttons and toggle switches.

•

• T

• ,

• • •
•

• •
•
" • •

• • •
•
• . •
•
•

• •

•

.........
• •

...
Nii ---~ - ... _

...- l,. '" , ... ,,,,
... "" ""
"" _ ... ,.. l -

"""".,. "',. ..,
"""""" - ... "''"''" ffl !!! ...

..

Fig.

... -.... i

......... re ,\. , ,, ...

6-4.

CHAPTER 7
OPERATI ON CODES

TABLE OF CONTENTS

7-1 I NTRODUCTION

7-2 DEFI NED OPERATI ON CODES

7-3 INSTRUCTION CHARACTERI STICS

7-4 ARITHMETIC ELEMENT OPERATION CODES

7-4.1 LOAD OPERATIONS (LDA, LDB, LDC , LDD)

7-4.2 STORE OPERATIONS (STA, STB, STC, STD)

7-4.3 EXCHANGE OPERATI ON (EXA)

7-4.4 ARITHMETIC OPERATIONS

7-4 .4.1 ADD OPERATION (ADD)

7-4.4.2 SUBTRACT OPERATION (SUB)

7-4.4.3 MULTIPLY OPERATION (MUL)

7-4.4.4 DI VIDE OPERATION (DIV)

7-4.4 .5 SCALE OPERATIONS (SCA, SCB,

7-4.4.6 CYCLE OPERATIONS (CYA, CYB,

7-4.4.7 NORMALIZE OPERATIONS (NOA)

7-4.4.8 TALLY OPERATION (TLY)

7-4.5 LOGICAL OPERATIONS

7-4.5.1 I NTERSECT OPERATION (ITA)

7-4.5.2 UNITE OPERATION (UNA)

7-4. 5.3 DISTINGUISH OPERATION (DSA)

7-4. 5.4 INTERSECT OPERATION (INS)

SAB)

CAB)

7-4.6 ARITHMETIC ELEMENT COMMAND (OPRAE = AOP)

7-5 X (I NDEX) MEMORY OPERATION CODES

7-5-1 RESET X OPERATION (RSX)

7-5-2 DEPOSI T X OPERATION (DPX)

7-5-3 EXCHANGE X OPERATION (EXX)

7-5-4 AUGMENT X OPERATION (AUX)

7-5-5 ADD X OPERATION (ADX)

7-6 F (CONFI GURATION) MEMORY OPERATION CODES

7-6.1 SPECIFY FORM OPERATION (SPF)

7-6.2 SPECIFY GROUP OF FORMS OPERATION (SPG)

7-6.3 FILE FORM OPERATION (FLF)

7-6 .4 FILE GROUP OF FORMS OPERATION (FLG)

7-7 EXCHANGE ELEMENT OPERATION CODES

7-7-1 LOAD E OPERATION (LDE)

7-7 -2
7-7 -3
7-7-4

March 1961

STORE E OPERATION (STE)

I NTERSECT E OPERATION (INS)

PERMUTE AND COMPLEMENT OPERATIONS (PCM)

7-1

7-8 SKIP OPERATION CODES

7-8,1 SKIP IF E DIFFERS OPERATION (SED)

7-8.2 SKIP ON M OPERATION (SKM)

7-8.3 SKIP ON INDEX OPERATION (SKX)

7-9 JUMP OPERATION CODES

7-9 ,1 JUMP OPERATION (JMP)

7-9,2 JUMP ON POSITIVE A OPERATION (JPA)

7-9,3 JUMP ON NEGATIVE A OPERATION (JNA)

7-9 ,4 JUMP ON OVERFLOW OPERATION (JOV)

7-9,5 JUMP ON POSITIVE INDEX O?ERATION (JPX)

7-9,6 JUMP ON NEGATIVE INDEX OPERATION (JNX)

7-10 IN-OUT OPERATION CODES

7-10 ,1 TRANSFER DATA OPERATION (TSD)

7-10 .2 IN- OUT SELECT OPERATION (OPRIOS = IOS)

1-11 MISCELLANEOUS OPERATION CODES

7-11 .1 ARITHMETIC ELEMENT CCMMA.ND OPERATION (OPRAE = AOP)

7-11 ,2 IN-OUT SELECT OPERATION (OPRIOS = IOS)

LIST OF FIGURES

7-1 BASIC OPERATION CODES

7-2 INTERPRETATION OF BITS IN SKM INSTRUCTION

7-3 INTERPRETATION OF CF3_1 IN SKX INSTRUCTION

7-4 INTERPRETATION OF CF BITS DURING JMP OPERATION

7-5 INTERPRETATION OF Y BITS IN OPR INSTRUCTION

7 -2 March 1961

7 -1 INTRODUCTION

CHAPTER 7

OPERATION CODES

As mentioned earlier , the P register specifies the address of instruction words in the

Memory Element . An instruction word is strobed into the N register where it is interpreted .

Bits N4 _3 _ 3_7 determine the basic operation to be performed during the execution of the

instruction, e . g ., multiplication , addition, etc .

In Chapter 2, the over -all pattern of activity occurring in the computer during the execution

of a typical instruction was described . This chapter emphasizes the variety of operations

that can be specified by the operation codes and discusses the basic features of these

operations . The details of the logic of each operation i s covered in Chapter 16 .

7 -2 DEFINED OPERATION CODES

Of the 64 possible operation codes , only 50 are currently defined . These defined codes are

listed in Fi g . 7 -1 . (The attempted execution of an instruction containing an undefined

operation code causes an OCSAL alarm.) New codes can be defined in the future as new

pr ogramming needs arise .

It should be noted t hat AOP and IOS are variati ons of the single operation code OPR . The

selection of OPRAE or OPRIOS is determined by the val ue of bits 2 . 8 and 2 . 7 in the address

secti on of the instructi on .

7-3 INSTRUCTION CHARACTERISTICS

Duri ng the execution of indexable and configurable type instructions , the CF , OP and J bi ts

are interpreted i n the normal manner . However , during the executi on of nonindexabl e or

nonconfigurabl e type instructions , these bits are either interpreted in a different way or

not at a l l . Whether the i nstr uction is indexable or nonindexable , or configurable or non­

configurable usually depends only on the operation code specified i n the instruction .

Note that , as described in Chapter 2, the base address of i ndexable instructions is modified

by adding the content of the specified X Memory regi ster XJ . The result of this addition

is cal led the indexed base address . However , any instruction can cal l for deferred addressing .

I f deferred addressing is call ed for , then the final base address , obtained as a result of

the deferred addressing, is modifi ed by the content of the index regi ster specified by the

original instruction word . In thi s case it is more preci se to speak of the indexed final

base address .

Many instructions can perform the same operation upon several active subwords simultaneously.

In the following discussions usually the effect of the operation upon only one active subword

is described .

March 1961 7-3

During the execution of most instructions the operand word written in the selected Memory

Element register at the end of the instruction is also copied into the E register. An

instruction usually involves both an operand register in the Memory Element and an operand

register in the central computer, i.e., the Arithmetic Element, Program Element, Exchange

Element, or In-Out Element. When either operand register is the E register in the Exchange

Element, then the rule about placing the final content of the selected Memory Element

register in the E register does not apply.

7-4 ARITHMEI'IC ELEMENT OPERATION CODES

With the exception of AOP, all Arithmetic Element instructions are both indexable and

configurable.

7-4.1 LOAD OPERATIONS. During the execution of a LDA instruction, the content of a

selected Memory Element register is configured and "loaded" into the A register of

the Arithmetic Element. The LDB, LDC and LDD instructions are similar except that

registers B, c, and D, respectively, are loaded with the configured operand.

The LD- type instructions rewrite the original (unconfigured) operand back into the

selected Memory Element register and also leave this original operand copied in the

E register.

7-4. 2 STORE OPERATIONS. During the execution of a STA instruction, the content of the A

register is inversely configured and "stored" in the selected Memory Element register.

The STB, STC and STD instructions are similar except that the inversely configured

contents of registers B, C and D, respectively, are stored in the selected memory

register.

The final content of the selected memory register is also placed in the E register.

7-4.3 EXCHANGE A OPERATION. The EXA instruction is a combination load and store type

instruction. It exchanges the content of the selected Memory Element register with

the content of the A register.

The content of the A register is inversely configured and stored in the selected

memory register (as in a STA instruction) and, at the same time, the content of the

selected memory register is configured and loaded into the A register (as in a LDA

instruction).

7-4.4 ARITHMEI'IC OPERATIONS

7-4.4.1 ADD OPERATION. During an ADD instruction, the content of the selected

Memory Element register is configured and added to the content of the A

register. The signed sum is left in the A register. If an overflow occurs

7-4 March 1961

March 1961

in any of the active subwords of A as a result of this addition, the

associated overflow flip-flop Zi is left set to ONE . (Zi is always cleared

at the beginning of the ADD instruction in all the active subwords .)

7-4 .4.2 SUBTRACT OPERATION. During a SUB instruction, the configured content of

the selected Memory Element register is subtracted from the content of the

A register. The signed difference is left in the A register. Except for

the fact that the configured operand loaded into D from memory is initially

complemented, the addition and subtraction process are identical.

7-4.4.3 MULTIPLY OPERATION. During a MUL instruction, the configured content of

the selected Memory Element register is multiplied by the content of the

A register . The signed product is left in the AB register . Note that the

right most bit of the active subword in the B register is not part of the

product, and is in fact a copy of the sign bit in the A register.

7-4 .4.4 DIVIDE OPERATION. During a DIV instruction, the content of the AB register

is divided by the configured content of the selected Memory Element register .

The dividend in the AB register before the DIV is performed has the same

form as a product after an MUL. The signed quotient is left in the A

register and the signed remainder is left in the B register. If an overflow

occurs (as it will unless the divisor is smaller than the part of the

dividend in A), the associated overflow flip - flop Z. is left set to ONE.
l

(Z. is always cleared at the beginning of the division process.)
l

7-4.4.5 SCALE OPERATIONS. In the SCA instruction, the content of the A register is

shifted the number of places to the left or right specified by the configured

content of the selected Memory Element register.

The configured operand is first loaded into the D register from memory.

Each active subword in the A register is then arithmetically shifted "n"

places (where "n" is the number now located in the sign quarter of each

corresponding subword in the D register). The subword in A is shifted to

the left if "n" is positive and to the right if "n" is negative.

The contents of the overflow flip -flops may be shifted by the scaling

process , Qut the true sign of the data in the A register is not altered by

the scaling process.

The SCB instruction is the same as the SCA instruction, except that the

shifting process occurs in the B register instead of in the A register.

Note that there are no overflow bits associated with the B register .

7-5

The SAB instruction is the same as the other scale instructions, except that

the shifting takes place in the AB register.

7-4.4.6 CYCLE OPERATIONS, The CYA, CYB and CAB instructions are similar to the SCA,

SCB and SAB instructions respectively, except that the CY- type instructions

ignore the state of the overflow flip-flops and give no special significance

to the sign bits in the data registers. The CY- type instructions simply

rotate the data in the registers as if it had no arithmetic significance.

7-4.4.7 NORMALIZE OPERATION. In the NOA instruction, the content of the A register

is shifted to the left or right until the value of the data in the A register

(and the overflow flip-flops) has a value between 1/2 and 1,

The configured content of the selected Memory Element register is first

loaded into the D register from memory. Each active subword in the A

register is then arithmetically shifted until its content is "normalized".

The number of shifts required to do this is added to (if shifting to the

right occurred) or subtracted from (if shifting to the left occurred) the

current number in the sign quarter of each corresponding subword in the D

register.

The data will be shifted to the right only if a previous instrtlction left

the overflow flip-flop associated with the data set to ONE. Note that a

shift of only one place to the right is required to normalize the data in

this case. In all other cases, the normalizing process shifts the data to

the left.

7-4.4.8 TALLY OPERATION, During a TLY instruction, the number of ONES in the

configured content of the selected Memory Element register are counted. The

total is then added to the content of the D register.

The configured operand is first loaded into the A register from memory. The

number of ONES in each active subword of the A register is added to the

current number in the sign quarter of each corresponding subword in the D

register.

7-4.5 LOGICAL OPERATIONS

7-4.5.1 INTERSECT OPERATION. During an ITA instruction, the configured content of

the selected Memory Element register is logically ANDed ("intersected") with

the content of the A register. The "intersection" is left in the A register.

7 -6 March 1961

7-4.5 .2 UNITE OPERATION. During a UNA instruction, the configured content of the

selected Memory Element register is inclusively ORed ("united") with the

content of the A register. The "union" is left in the A register .

7-4 . 5.3 DISTINGUISH OPERATION. During a DSA instruction, the configured content of

the selected Memory Element register is exclusively ORed ("distinguished")

with the content of the A register, The result of the "distinguishing"

process is left in the A register.

7-4.5.4 INSERT OPERATION. The INS instruction is similar to a STA instruction in

which certain bits in the A register are "masked". The INS instruction

copies the configured contents of those bits in the A register that have

corresponding bits in the B register in the ONE state into the selected

Memory Element register . The remaining bits in the memory register are left

undisturbed .

7-4.6 ARITHMETIC ELEMENT COMMAND . . See Miscellaneous Operation Codes (OPRAE).

7-5 X (INDEX) MEMORY OPERATION CODES .

The X Memory type instructions are similar to the Arithmetic Element load, store and exchange

type instructions. Some of the X Memory type instructions involve arithmetic modification

of the content of an X Memory register by the content of a Memory Element register, or the

arithmetic modification of a Memory Element regi ster by the content of an X Memory register.

None of these instructions are indexable, but all are configurable.

7-5-1 RESET X OPERATION. During an RSX instruction, the content of the X Memory register

XJ, specified by the J bits of the instruction word, is "reset" by the right 18 bits

of the configured content of the selected Memory Element register . By means of the

RSX instruction data in the Memory Element can be loaded into the X Memory .

7-5-2 DEPOSIT X OPERATION. During a DPX instruction, the inversely configured content of

the X Memory register XJ, specified by the J bits of the instruction word, is

"deposited" in the selected Memory Element register . By means of the DPX instruction,

data in the X Memory can be stored in the Memory Element.

In this instruction the content of XJ is considered as a 36 bit number, where the left

18 bits are the s8Jlle as the sign bit of the right 18 bits.

7-5-3 EXCHANGE X OPERATION . The EXX instruction is a combination reset and deposit instruction .

March 1961

It "exchanges" the configured content of the selected Memory Element register with

the content of the X Memory register XJ specified by the J bits of the instruction

word. The content of the X Memory register is inversely configured and stored in the

selected Memory register (as in a DPX instruction), and at the same time the content

of the selected Memory Element register is configured and loaded into the specified

X Memory register (as in a RSX instruction).

7-7

7-5,4 AUGMENT X OPERATION. During an AUX instruction, the content of the X Memory register

XJ specified by the J bits of the instruction word is "augmented" by the configured

content of the selected Memory Element register.

Specifically, the ONE's complement sum of the right 18 bits of the configured content

of the selected Memory Element register (with zeroes in the inactive subwords) and

the content of the X Memory register XJ is placed in XJ.

7-5,5 ADD X OPERATION. During an ADX instruction, the content of the X Memory register XJ

specified by the J bits of the instruction word is added to the content of the

selected Memory Element register.

Specifically, the ONE's complement sum of the right 18 bits of the configured content

of the selected Memory Element register (with zeroes in the inactive subwords) and

the content of the X Memory register XJ is placed in the selected Memory Element

register.

7-6 F (CONFIGURATION) MEMORY OPERATION CODES

The F Memory operations perform only load and store operations. These operations are not

configurable, but are indexable.

7-6.1 SPECIFY FORM OPERATION. During a SPF instruction, the content of the rightmost

(first) quarter of the selected Memory Element register is loaded into the F Memory

register specified by the CF bits of the instruction word.

7-6.2 SPECIFY GROUP OF FORMS OPERATION. During a SPG instruction, the 36 bit content of

the selected Memory Element register is loaded into four successive F Memory registers.

In the execution of the instruction the content of the rightmost (first) quarter of

the memory register is loaded into the F Memory register specified by the CF bits of

the instruction word. The contents of the second, third, and fourth quarters of the

same Memory Element register are then loaded into the following F Memory registers,

successively.

Should the CF bits specify the last F Memory register, then the content of the next

quarter of the Memory Element register is loaded into the first F Memory register

(FO), and so forth. (Note that the contents of FO always remain zero.)

7-6.3 FILE FORM OPERATION. The FLF instruction is the reverse of the SPG instruction in

that the content of the F Memory register specified by the CF bits of the instruction

word is stored in the first quarter of the selected Memory Element register.

7-8 March 1961

7-6.4 FILE GROUP OF FORMS OPERATION. The FLG instruction is the reverse of the SPG

instruction in that the contents of four successive F Memory registers are stored in

the first, second , third and fourth quarters of one selected Memory Element register .

7-7 EXCHANGE ELEMENT OPERATION CODES

All of the Exchange Element instructions are indexable and configurable .

7-7- 1 LOAD E OPERATION. The LDE instruction is similar to the Arithmetic Element load type

instructions. In this case the configured content of the selected Memory Element

register is loaded into the E register.

7-7,2 STORE E OPERATION . The STE instruction is similar to the Arithmetic Element store

type instructions. In this case, the inversely configured content of the E register

is stored in the selected Memory Element register .

7-7-3 INTERSECT E OPERATION . The ITE instruction is similar to the ITA instruction. In

this case, the configured content of the selected Memory Element register is "inter­

sected" (logically ANDed) with the content of the E register. The result is left in

the E register.

7-7 .4 PERMUTE AND COMPLEMENT OPERATIONS. During a PCM instruction, the content of the

select ed Memory Element register is first configured and placed in the E register .

All the active subwords in the E register are then complemented . The final content

of the E register (whether active or not) is then placed in the selected Memory

Element r egister without inverse configuration . This instruction alters the original

contents of the selected memory register .

If the configuration bits (CF) specify permutation only, then the operation is

usually called ~Efil:!lJ!E (PMT); if the configuration bits specify activity only, the

active subwords are complemented and the operation is usually called COMPLEMENT (COM).

7 -8 SKIP OPERATION CODES

Of the three skip instructions, SED is indexable and configurable . The other two, SKM and

SKX, are neither indexable nor configurable .

7 -8 .1 SKIP IF E DIFFERS OPERATION . During the SED instruction, the content of the E register

is compared with the content of the selected Memory Element register. If the contents

differ, then the next instruction is not executed (that is, it is skipped) . Specif­

ically, the configured content of the selected Memory Element register is compared

with the content of the E register to determine whether any subwords differ . If there

is a difference, then the next instruction is skipped .

March 1961 7-9

The content of the E regi ster remains unchanged during an SED operation .

7 -8 . 2 SKIP ON M OPERATION. The SKM instruction is a bit-setting and decision -making

instruction . In this instruction, the J bits of the instruction word are used to

select a particular bit in the selected Memory Element register . The CF bits are

then used to specify such functions as changing the binary value of the selected bit

and making a decision based on the value of the selected bit . The exact interpretation

of the J and CF bits is illustrated in Fig. 7 -2.

The four J bits (3.4 - 3 . 1) are used to specify the bit number , and the remaining two

J bits (3.6 - 3. 5) are used to specify the quarter number . For example, 01 0001

specifies bit 1-1 of the selected memory register . Similarly, 00 1010 specifies bit

4 .10.

The following points should be noted:

1) Decision making is always done first .

2) Bit changing comes next.

3) Cycling, or rotation , comes last .

4) The final content of the E register is the same as the final content of the

selected Memory Element register .

5) If all the cf bits are zero, SKM does nothing other than changing the content

of the E register ,

6) SKM is the only operation that can affect the operand word meta bit . (It

can not change the parity bit.)

7 -8 . 3 SKIP ON INDEX OPERATION, The SKX instruction permits a programmer to dismiss, raise

a flag , skip the next instruction and either reset or augment an index (X Memory)

register . Neither an operand from the Memory Element nor a configuration from the

F Memory is used , The X Memory register specified by the J bits of the instruction

word is the only operand register affected by this oper ation .

The seventeen base address bits (2.8 - 1 . 1) are used as an oper and rather than as the

address of an operand . Since X Memory registers contain 18 bits, this operand is

normally treated as a positive 18-bit number . If any deferred address cycles are

executed, then it is possible for t he r esulting base address (which is to be used as

the operand) to be negative ,

The J bits address both an X Memory register , XJ , and the flag of a sequence, FLAGJ

(if one exists).

The CF bits are decoded to specify the desired variation of the SKX operation:

1) If the CF5 bit is a ONE and if the hold bit is a ZERO, then a dismiss is

performed, lowering the flag of the current sequence .

7-10 Mar ch 1961

2) If the CF4 is a ONE, then FLAGJ will be raised (if such a flag exists).

Since flag raising occurs after a flag lowering caused by a dismiss, an SKX

operation which dismisses and raises the flag of its own sequence will have

no apparent effect on the flag.

3) The remaining three CF bits are decoded as shown in Fig. 7-3-

7-9 JUMP OPERATION CODES

JPA, JNA and JOV are indexable, configurable instructions. JPX and JNX are nonindexable,

nonconfigurable instructions. JMP is an indexable, nonconfigurable instruction.

7-9,1 JUMP OPERATION. The JMP instruction has several variants. These variants are

specified by the CF bits:

1) If the CF1 bit of the instruction word is a ZERO, then a jump is performed

to the Memory Element register specified by the final base address. If the

CF1 bit is a ONE, then a jump is performed to the Memory Element register

specified by the indexed final base address.

2) When the CF2 bit of the instruction word is a ONE, then the address plus

ONE of the JMP instruction is placed in register XJ of the X Memory.

3) When the CF3 bit of the instruction word is a ONE, then the address plus

ONE of the JMP instruction is placed in the first two quarters of the E

register.

4) When the CF4 bit of the instruction word is a ONE, then the content of the

Q register is placed in the third and fourth quarters of the E register.

5) When the CF5 bit is a ONE and the hold bit (H) is a ZERO, then the present

sequence is dismissed .

Fig. 7-4 summarizes the interpretation of the CF bits during a JMP operation .

7-9 ,2 JUMP ON POSITIVE A OPERATION. During a JPA instruction, a jump is performed to the

~elected Memory Element register if any one of the active subwords in the A register

is positive and non-zero.

If a jump occurs, the right half of the E register is set to the return address (the

address plus ONE of the JPA instruction); otherwise, no change is made in the E

register.

7-9 -3 JUMP ON NEGATIVE A OPERATION. The JNA instruction is the same as the JPA instruction,

except that a jump is performed only if one of the active subwords in the A register

is negative and non-zero.

March 1961 7-11

7-9.4 JUMP ON OVERFLOW OPERATION. The JOV instruction is the same as the JPA instruction,

except that a jump is performed only if the overflow flip-flop (Z.) of one of the
1

active subwords in the A register is set to a ONE.

The JOV instruction does not clear overflow.

7-9-5 JUMP ON POSITIVE INDEX OPERATION. During a JPX instruction, a jump is performed to

the selected Memory Element register if the initial content of X Memory register XJ

is positive and non-zero,

If a jump is made, the return address is saved in the right half of the E register.

Also, if a jump is made and the hold bit (H) is a ZERO, then the present sequence is

dismissed.

Whether a jump occurs or not, the JPX instruction adds an increment to the content

of XJ. This increment is represented by the CF bits. These 5 bits are interpreted

as a 4 bit one's complement number with a sign digit.

7-9.6 JUMP ON NEGATIVE INDEX OPERATION. The JNX instruction is the same as the JPX

instruction except that a jump is performed only if the initial content of the X

Memory register XJ is negative and non-zero.

7-10 IN-OUT OPERATION CODES

TSD is indexable and, sometimes, configurable; IOS is neither indexable nor configurable.

7-10,l ~~FER ~ATA OPERATION. The TSD instruction transfers data between the selected

Memory Element register and the K-th In-Out buffer register. If the K-th In-Out unit

is an input device, data is transferred from the K-th In-Out buffer register to the

selected Memory Element register. The transfer path is reversed when the K-th In-Out

unit is an output device.

For certain In-Out units, the data can be transferred in either a NORMAL or an ASSEMBLY

mode. When a TSD is executed in the NORMAL mode, data is transferred as a contiguous

block of bits. In this case, the data is configured. If a TSD is executed in the

ASSEMBLY mode, the data is not configured; instead, the Memory Element word is

rotated one position to the left or right after the In-Out data transfer is completed.

The CF bits specify configuration when TSD is in the NOrtMAL mode. However, when TSD

is in the ASSEMBLY mode, the CF bits are not used.

TSD uses the hold bit (H) in a unique manner. Normally, if the hold bit of the

previous instruction is a ONE, no change of sequence can occur before the current

instruction is executed. However, if the current instruction is a TSD and the K-th

In-Out unit is not ready for an In-Out data transfer, then a dismiss is performed

7-12 March 1961

(befor e the TSD is executed) independent of the value of the hold bit of the previous

i nstruction . This is called "dismiss and wait" to distinguish it from ordinary

di smissing, since the TSD instruction which causes the dismiss has not yet been

executed. When the K-th In - Out unit is ready to perform the In- Out data transfer,

then the flag of the K-th sequence is raised and the TSD is finally executed .

' IO
7 -10 . 2 IN- OUT SELECT OPERATION . See Miscellaneous Oper ation Codef/ (OPR).

7 -11 MISCELLANEOUS OPERATION CODES

At pr esent , there is one Miscellaneous Operation Code , namel y OPR . Depending on the value

of bits 2 .8 and 2.7 in the final address section of the instruction word, OPR may be inter ­

preted as an AOP or IOS instruction . Specifically, if bits 2 . 8 and 2 .7 are both ZERO, an

IOS is executed; i f bit 2 . 8 is a ZERO and bit 2.7 is a ONE, then an AOP is executed. That

is ,

0

0

1

1

0

1

0

1

OPR

IOS

AOP

undefined

undefined

Both AOP and IOS are nonindexable , nonconfigurabl e instructions.

Fig. 7-5 shows the inter pretation of the Y bits in the instruction word for both the IOS

and AOP variation of this instruction .

7 -11, 1 ARITHMETIC ELEMENT CCMMA.ND OPERATION. The AOP (OPRAE) instruction is used when it is

desired to manipulate directly existing data in the Arithmetic Element.

In this oper ation, the J and CF bits of the instruction word are not used, and the H

bit serves its normal "hold" function. The Y bits , as shown in Fig. 7-5, determine

the Arithmetic Element operation (addition, subtraction, etc .) and also the config­

uration (activity and subword form only) .

7 -11. 2 I N- OUT SELECT OPERATION . The IOS (OPRIO) instruction is used to control and/or report

on the status of the In- Out system. For example , it can be used to raise and lower

flags, and to connect and disconnect the var ious In- Out units .

March 1961

The J bits of the instruction word are used to specify the sequence controlled by the

IOS operation . The interpretation of the Y bits is shown in Fig. 7-5•

Only two of the CF bits are used . If CF1 is a ONE, then a report on the current state

of the In- Out unit is placed in the E register . The sequence specified by the J bits

is dismissed when CF5 is a ONE and His a ZERO .

7 -13

T'r'PE.
N\NEMO~IC

.DJT6R.~1AT1o.J
OCTAL

CODE Cf'l.0£

AR\Tt-\W\ET1C ELEM£l.JT OP6RiAno..J l".'ODE'S

L..l)A LOAD A it
Lt>B LoA'D s 2S

LOAD L.DC L..DAI) C 2.,
Lt)l) LoAJ) D 2.7
STA STD~ A ~4

$TORE" STB SToQE 8 35

STC STO~E C 3,

STb 'Sib~ D 37

Ex'CHPlk)bE' 'f: 'K.A Exc.~Aw&E: A s1

ADD f:\t)'l) ~,
SUB SUBTRACT" 11
MUL Ml.Jl..i IP\..)' 1,

ARITHMMie D1V DI\/ICE' 75
$RAT 100.S SCA SCALE A 70

scB SCALE B 11
5AS SGAL.E A J B» 12,

C.YA C.YCL~ A lit,

. c~B C'-/CLE f>
,,

CAB ! C'ICLE A tB ,2

I NOA NORMALl2E A ~-1
NAB NOR('()Al.1'?.6 A f B ~, I
TL'i T~\.l'i 7-1

:tTA Xt.JTcR~r A ~I

U~A VtJITE A 42
L061C, DSA Dl$rlt-lbUISH A ~s I

~l<,AilO~ ItJS l)J~6Rf ss
-

A E coMtflAtJl> AO? PIRITHM~TIC ELE-Mt:ur O~ATE (oPR~=) 0--f

I

Fl-.7-/

.

TYPE I"~~~"" I
MEMoR'i ~RAilOtJ coce:s

RSX
l>PX
.E'XX
fiUX
ADX

SPF
SPb
F"LF
FL&

LDE
STE'

.ITE'
PCM ·

RESET~

"l>6Pos, T X
EXC.HPrUbe)(

AUbMtor X
At>t> X

S\¥.CIF'/ FORM

SPGC\ f:'I bRooP OF" R:>l<!MS
FtLE FORM

F'"I\...E bR:xJP 0~ R>~MS

LOAD E

STOl<t E
I.t,ff61<S~T E
~RJ'f\l.JTE. f <::OM PLEt.l\tlJt

Sk'lt> O~AATIO#J <!:'ODE'S

SE't>
Sl<Nl
Sk'X

S\<\P lF E DIFFE~S

S l{.\P--MAt<e
SKIP 0~ illD6X

JUMP o~R.AT,o~ <~?~.w~
'J" MP JlJ MP
.JPA JUMP 01.l Pos1T1\J't: A
J'"N A .TUMP o fJ IJ£6Ait\JE A
rov .JtJMr lJI-J o-1ERF\.dJJ
J""PX .JUMP 0~ POSITI\JE llJbe~

J"NX J"UW\P t>~ ~Eb~TIVE /NC',6)(
.I:l.1-0UT OP6RATl0tJ CObES

I TSD l TRA~SF~ t>A,A
IC>$ lt-J- OUT S'El..'2Ci (OPR :t:o)

M1 sc_~_LlB~{""JP~~Tile9~--r!~~1.

43
11
12.

I,

rj bit.s -

op

ooo\ (S\i 1-,10, I)
91-r SELE'CTfP O 0\0 (BIT No.Z)

IO o I (B\T t.30.'I)
IO 10 (e1T tJo. I~

Gk.JA~r~R : Sf: LElTEO O (L,. , ._____________ \ 9ua·n e'r I J

00 : l)o Uoi C.HAr-J(::,E. T \.¼E SEL i:a-c.-r~ I> ?>1~
0 I : COl't\P\.E MefJT iHE Sf;I.E.c.T~l> 8\'T"

\O:: l'nAKE SEl..€Ci!=l> 81T A "2ERo''
\ \ = f't\P\ KE $ELEC.T€b 81 r A 110fJt ,,

O::. No ~oT~no~

, 0 ('fuar-ter 2.)
I I C 9u;;n•tev ~)
0 0 (quarter 4-)

I= RoT~,e e~Tlf<E 1~-1?>1, toe'MoQ.'(LOOQ.1) (-AJ-0r r11e- M~i~ a,r')
ooe Pl FICE TO THE ~ l'31-lT

1------ OD= Do #JOT S°KIP Tl1E t.l(rXT l~STAUc..Ttot-.l

or= $\('IP THI: ~ E~T IJJSTt<IJC.TIOk) u~,oJl)\ltOI-.IALl.'f

/O= SKIP rHE tJExr /~STliu,-r10f..) IF' 5EL.ECT"E.b 81i IS A 11 '2ER011

\I: Sk:1f> THE tJE~'.1' IIJ.Si#:!Uc.TtolJ IF SE'l.c(Tif> !Ir I.S A 1101-Je ,,

CF ls IT..S

0 0 0

0 o I

D 0

srvis o 1..1 c.

I:) f S, R I PT IO~

?1.AC.£ F1).1t\L- Bi'-SI! A OOiE.S~

J').. r~ l'NcE)(R!61~rf:2.')(j. ..

PLAC-E 18- ~ 1T OijE'1 COHP·

L£".-.F.'tJi ~ f fuH\ L lS.t...s·t f>t ogers.s
: J). ri-& :t"N01)(f£'-t$lF'l 'xj,

,Av&.Mf1JT CoW1E~ TS OF
tr NO i!)(~£ &-•·~ T ,E: 2)(j W IT.+,

Foh\t. 3•$! f\o~ee.s~ ~-
t-----+---i----++-------............ --------- ----- - --

0

tl'-'& 1-t~ ~ T C t>N 'f E NH oF - l Jw.>£>< ei",sra:2 >\i w,,.rt
Jl.t)(jl---.xj I \8-g1r (nU 1l COHPLfJ')ENT o,

----a-.-------- t-----~"-~·--•~--····•-"""· l-·-~l~ ~ L-- B~~-i BP.ORE$~ 1¥ •
f S~-tP NE,tT 1._.JTR1.>tT lti~ 1r !bij•
~

~ TE~T~ ~~- :f w ·&•)t ~Ii'-' ~TE2.)(j
"JfF'4~S(IP · 8i~ ~L6--E&i..MC.A'-L'(NOf ftw1U Tc C, 0

--------··------~·--·~----"-• _ E,~~~-- ~ -1;,,.a ~,.P.Ql.:,f i ,,\ . ~ .!.---·-···

D

0

S,:: IP ti) Ew'T t~.S 'ttlVt t U»,l IF ~ CM i!;il1 ~

0 ~ T"'Cl)t ' -Pf.t$TtH2. ~j R-i.;
•At.&Ea12~1cAa.J.'< Nor e~~uc ~i's

.~°'1f'&.f11i~~.I . .'►dl ·6 . --A-~- ..
SIC.IP 1-JlwT l~.STiUt.1 ICN l~ t~TJt.)'tS

~ 1 l < 1\,. J .s KI p o F :\ Ml:>·1E>t ~FC-11T ~it)(~ 0~r
-1 A1.•l!1tt1~1tAI.I..\C lr.u ·TH•~ F,"'~L

-r,..;;~.___..._ ________________ +-~ - A.!)e,!?~ .-~ ~~----- ·-·-
si<1P 1-,Jfvt Jt.l$f ~IJtilO~ \F to~inl'tS

:7".""'\ - t>~ T t-U) f: x ii'~ •-"f1'1t ~ i ~ if
'/. i l >A :J SKI? 1-\L..&t-irallAIC-'u.'< 'll"'r,,i ~"'" ONt's

------~--_.i.:_ ______ -+-"c~_,b;.:,.lM~r' __ L=EM~~~t.1.,_llOI..Lt'l.~_ fltft A, --~--

S KX (si-::1 p oN 1NoE:x)

-------cfi =I

1o--------c~ :I

:ruMp to Me r-~~is-fa"" Sp«i~u~l. b~ ~•'f'lal base a.kl~ss

!u'Mp -h rvie: v-~1~tev- spec,~e.cl ~ 1·ri~e~ h~~, bast
~4cl1rtSS

Sa\/t a.c!cl1res~ (Q') o ~ last ope~vJ 1V1 le{:~ ~l~
o~ E

--1> -··

oi' ~ lSaT~

CoDE 2-8 2.1 2,., :2,5 2.~ 2.3 ... 2,1 l,'f-+ f,-1 l,l-. 1,1
r UNCT, ol-l A&.. :De.SC e lPT,o~

. - - . .

0 0 - - SPEC ,F lE.\ A"N lO.$ 6PS2Ait0~

6 I 0 - O, ~ c.o~ 1'l E~i !Ou· j
. -

Lo.S 0 I I)(.)(.)(. t..X"J..
CoNNECt I'OU~ (P~A~E IN- Ho~£ xx.')l x~x
SPEC 1J!t£1) R'(>J1,1 ·l•l)

I I 0 -,...,<~ ~y..)()()(~xx. S&i. EC..T" it¼£ J>SV!t E ,~ rou·
SP,c If tE I) B'<' f.Ji.J-1•/ ~

I 0 I IC-A\, E J:" ,J
. .

- 1
z• Z\!&P 0#- - .

•a.• : ~

I 0 0 Lowsti. r.,_A~~
- ~.-,;.,~~- · .

6 I SPEc1r:1ES ~M, AoP 6ft,Aii0~
-~~~~'V~ !liii - ,

Q6P ◄ OP coo£ ~o, I?. ,u k:J1, ~ - ~d l)ia~ To SPSC1Fy
► 6P !oQE

Gan ,..P.' ~ ••C-n-~~-~~• , ,~ ~ ~ ,_.._.,..._

C.ONFl- S,i--s N,,1 -l•-1
t) ''"

To s,~e •~'(
G.uliATIOlt_

~~N ~ It utlA it ON 'D, Pr t!1 '- Y" To ~r
-

:Ft c., I 7- ~ I NT E R. p ~ E. TAT I O ~ Q F y B IT s \ t,.\ 0 p 12: I N 5 T ~ u <. T I C N

