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PREFACE 

This manual documents the organization and logic of the Lincoln Laboratory 

TX-2 computer. The manual is intended to serve primarily as an aid to the 

computer maintenance personnel and, in order to be of maximum value, should be 

supplemented by a file of TX-2 block and wiring schematics. The TX-2 "Red 

Book", which describes the TX-2 circuits and packages, should also be available 

for reference. The manual by itself will also be useful to programmers and 

other computer operators who desire more detailed information about the oper­

ation of the computer than is available in the TX-2 programming manual. 

The first volume of the manual gives a simple general description of the 

organization of the computer. The principal emphasis is on the general 

specifications, organization, and component parts of the computer. The second 

volume covers in detail the logic and timing of the computer. Each element, 

i.e., the Memory Element, Control Element, Program Element, Exchange Element, 

Arithmetic Element and In-Out Element, is discussed separately. Descriptions 

of the individual in-out units will be added in the future to complete the 

chapter on the In-Out Element. The final volume lists and describes all the 

possible control, memory, and instruction timing cycles. It is arranged 

primarily for convenient use during computer maintenance operations. 

Acknowledgements are due to the technical writers from Jackson & Moreland, Inc., 

who prepared the text and figures for the manual; and to Madeline Higgins at 

Lincoln Laboratory who retyped the several versions of the manuscript and, 

with the help of Anna Nagy, prepared the final text for printing. 

June 1961 

J.M. Frankovich 

Group 51 
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1-1 INTRODUCTION 

CHAPI'ERl 

INTRODUCTORY DESCRIPI'ION 

TX-2 is a large-scale, high-speed, general-purpose digital computer designed and built by 

the Digital Computers Group at the Massachusetts Institute of Technology Lincoln Laboratory, 

Lexington, Massachusetts. It is an experimental computer and contains both solid-state and 

electron-tube devices. Provisions have been made so that additional circuitry can be readily 

incorporated into the existing framework in order to increase the usefulness of the computer. 

1-2 FUNCTION OF CCMPUTER 

TX-2 is currently used as a research tool in scientific computations and in data-handling 

and real-time problems. It differs from conventional general-purpose computers in that it 

permits an exceptionally high degree of flexibility in programming and in the use of input­

output devices. This increase in flexibility, needless to say, is accompanied by a marked 

increase in design complexity. In many respects the machine is unique and one that has no 

counterpart at present. 

1-3 SPECIAL FEATURES 

To enhance programming flexibility, several types of special control have been incorporated 

into the TX-2 computer. For example, the configuration of the basic computer word is under 

program control and allows operands to be divided into subwords during the execution of 

instructions. This enables the same operation to be performed simultaneously upon several 

subwords, The result is an over-all increase in the effective speed of the computer. 

The multiple-sequencing feat~e allows automatic switching in the computer among various 

program sequences. The individual in-out devices are associated with particular program 

sequences in a manner such that several devices can operate simultaneously. A particular 

program sequence is then started when the associated device needs attention. By assigning 

priority numbers, it is possible to determine which program sequences can start at a given 

time. A low priority sequence can also be interrupted when a ~igher priority sequence 

needs to be started. Data can be thereby transferred between the computer and the in-out 

device having the highest priority first, and then between the computer and the next lower 

priority device, etc. 

With overlapped memory operations, instruction words and operand words can sometimes be 

obtained simultaneously from memory, thereby effectively halving the memory cycle times. 
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Other features of TX-2 are index registers and deferred addressing. These features, now 

common in many computers, serve as further aids in progrannning. Index registers allow the 

programmer to effec½ively modify the base address section of the instruction word without 

actually modifying the instruction word itself. By means of deferred addressing (or 

substitute addressing), it is possible to go to an intermediate address in memory in order 

to obtain the desired address of an operand. 

1-4 CCMPUTER STRUCTURE 

TX-2 is a parallel binary computer with a basic 36-bit word length. The words in the 

Memory Element also have a parity check bit and a progrannning meta bit, Any word in the 

Memory Element can be used for instructions, operands, or deferred addresses. The internal 

memory is all random access and consists of 69,632 registers of parity checked magnetic­

core memory and about 70 additional toggle switch, plugboard, and other miscellaneous 

registers. Approximately 200,000 instructions can be executed per second. Instructions 

are of the indexed single-address type. A fixed-point, signed-fraction, one's complement 

binary number system is used. 

1-5 BASIC ELEMENTS 

Fig. 1-1 illustrates the basis elements that comprise the TX-2 computer and Fig. 1-2 shows 

the principal registers and transfer paths. The basic elements are: the Memory Element 

(ME), the Arithmetic Element (AE), the Program Element (PE), the In-Out Element (IOE), the 

Exchange Element (EE), and the Control Element (CE). Not shown are the various power 

supplies, coders, decoders, counters, alarms, indicators, logic nets, and other computer 

elements that contribute to the over-all system design. 

1-6 BASIC PRINCIPLES OF OPERATION 

Programs and data are usually read into the Memory Element via a paper tape reader. The 

initial read-in programs are placed manually in the plugboard or toggle switch storage. 

During the execution of a typical instruction in a program, the instruction is obtained 

from the Memory Element register addressed by the P register and placed in the N register 

in the Program Element. Here the instruction is interpreted. If an operand is required 

its address is determined and placed in the Q register. The operand is then obtained from 

the Memory Element and placed in the M register in the Exchange Element. The operation 

specified by the instruction is then performed upon the operand. The final result is 

either: (1) left in one of the registers of the AE, EE, or PE, or (2) transmitted to one of 

the IOE devices, or (3) placed back in the register of the ME from which the operand was 

obtained. 
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1-7 COMPUTER CHARACTERISTICS 

Tables 1-1 through 1-3 summarize the general characteristics of the TX-2 computer. The 

actual significance of such terms as meta bit, two-phase clock, and 9-bit quarters will be 

explained in the chapters that follow. 

1-8 COMPONENT LOCATION 

A floor plan of the TX-2 computer installation is shown in Fig, 1-3, along with the 

physical location of the principal registers, memories, and in-out devices. The entire 

facility occupies approximately 1500 square feet, including a separate room for the air 

conditioner and the primary power supplies. Although the U Memory has not as yet been 

constructed, its future location is indicated. 
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General 

Instructions 

Operands 

Arithmetic 

Memory 
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TABLE 1-1 

TX-2 CHARACTERISTICS 

CENTRAL CCMPUTER 

38-bit word length, including a memory parity check bit and a 
programming meta bit 

Parallel word transfers 

Synchronous timing 5 me two-phase clock 

One single-address instruction per word 

Addresses are indexable; double indexing is possible 

Indirect addressing, on all instructions, can be iterated 
indefinitely. 

Operands can be given a subword configuration based upon 9-bit 
quarters: 

One 36-bit operand 
Two 18-bit operands 

Four 9-bit operands 
One 27-bit and one 9-bit 
operand 

Most instructions specify a subword configuration, and the 
arrangement and number of the subwords used 

l's complement binary number system, fixed-point arithmetic 

From 200,000, 36-bit additions per second to 800,000, 9-bit 
additions per second 

From 50,000, 36-bit multiplications per second to 400,000, 9-
bit multiplications per second 

From 14,000, 36-bit divisions per second to 200,000, 9-bit 
divisions per second 

Arithmetic instructions longer than one memory cycle can be 
executed concurrently with nonarithmetic instructions 

S Memory: 65,536 registers of magnetic-core memory with 6.4-
microsecond cycle time and 4.0-microsecond access time 

T Memory: 4,096 registers of magnetic-core memory with 4.4-
microsecond cycle time and 2.0-microsecond access time 

16 registers of toggle-switch memory 

32 registers of plugboard memory 

5 registers in the Arithmetic and Exchange Elements 

Each register, except the last five, has an additional meta 
(i.e., trapping) bit 

All core memory registers are parity checked 

Instructions and operands can be obtained concurrently 

Addressing for a total of 131,072 registers of memory 
provided 
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Special Memories 

Area Requirements 
(approximately) 

Checking 
·Facilities 

TABLE 1-1 - cont'd 

TX-2 CHARACTERISTICS 

CENTRAL CCMPUTER 

X Memory: 64 register magnetic-core index register memory, 
19-bit word, with 3.6-microsecond cycle time and o.6-micro-
second access time 

CF Memory: 32 register magnetic-film configuration memory, 
10-bit word, with 0.8-microsecond cycle time and 0.2-micro-
second access time 

1500 square feet of floor space 

20 kw of power 

20 tons of air conditioning (primarily for S Memory) 

Marginal checking 

Test programs 
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Photoelectric Tape 
Reader (PETR) 

High-Speed Tape 
Punch 

Display Scope 

Lincoln Writer 

Xerox High-Speed 
Printer 

Datrac 

TABLE 1-2 

TX-2 CHARACTERISTICS 

IN-OUT SYSTEN 

200-2000 lines per second 

200 lines per second 

20 to 80 microsecond per point 

Keyboard: 

Tape Reader: 

Tape Punch: 

Printer: 

Paper Feed: 

Printing Rate: 

Sample Rate: 

1-7 

Up to 10 characters per second 

19 lines per second 

20 lines per second 

10 characters per second 

2 to 4 inches per second 

2000 to 4ooo characters per 
second 

approximately 25 kc 



TABLE 1-3 

TX-2 CHARACTERISTICS 

MAGNETIC TAPE SYSTEM 

General 3 information channels, 2 tracks per channel, 4oo bits per 
inch per channel 

1 block mark channel 

1 timing track (800 flux reversals per inch); recorded at 
fixed density, used to synchronize writing and to detect 
speed of tape 

Tape Speeds Controlled Speeds Full Bore 

Inches/sec: 35 6o 150 300 320 - 1000 

Bits/sec (kc): 42 72 180 360 380 - 1200 

3 bit lines/ sec (kc): 14 24 6o 120 128 - 400 

Microsecond/9 bit byte: 214 125 50 25 23 - 7,5 

Capacity 10 10 bits in system 

70 X 106 bits/reel 3/4-inch tape (now) (7200 ft. reel) 

250 X 106 bits/reel 1-1/4-inch tape (future) 
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CHAPTER 2 

FUNCTIONAL DESCRIPTION OF TX-2 

2-1 INTRODUCTION 

This chapter provides an introduction to the over-all operation of the computer. It will 

establish a useful perspective for reading the more detailed descriptions that appear in 

the succeeding chapters. It includes a brief functional description of five of the 

following six basic Elements that constitute the computer: 

1) Memory Element 

2) Exchange Element 

3) Program Element 

4) Arithmetic Element 

5) In-Out Element 

6) Control Element 

The Control Element is not described in this chapter. It is sufficient to know that it is 

involved in all the activity that takes place in the other Elements. 

The term "central computer" is used throughout the manual to refer to the computer as a 

whole, with the exception of the Memory Element and the In-Out Element. Thus the In-Out 

Element is described as "communicating with the central computer", etc. 

The chapter begins by discussing the basic computer words, e.g., instruction words, operand 

words and deferred-address words. The more common interpretation of the bits in these 

words is established and the bit and quarter numbering scheme is described. 

Since the basic cycle of the computer begins with an instruction word, the whole process by 

which an instruction word is obtained and interpreted is described. These processes 

primarily involve the Program Element. The subsequent activity that can occur as a result 

of interpreting the instruction word is then described. After this discussion, involving 

the Program Element, the chapter proceeds by discussing the other Element's in the computer. 

The basic processes that can occur in each Element are identified and described. 

2-2 WORD STRUCTURE 

2-2.1 GENERAL DESCRIPTION. The basic computer word is 36 bits long, plus a parity check 

bit and a word meta bit. The 36 bit word is divided into four 9-bit quarters. 

March 1961 

The bit numbering scheme for the major flip-flop and memory registers is shown on 

Fig. 2-1. Note that the bits in. each quarter, as well as the quarters themselves 

are ordered from right to left. When a double-number is used, the number to the 

left of the decimal point refers to the quarter in which the bit is found and the 
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number to the right of the decimal point refers to the specific bit within the 

quarter. Thus 2.6 refers to bit 6 in quarter 2. 

As shown in Fig. 2-1 not all registers contain full words, nor do all full word 

registers contain a meta and/or a parity bit. Furthermore, the double-number scheme 

is not always used. For example, the QKIRCF register contains a 9-bit word plus a 

parity bit. These bits are numbered 1 to 10 from right to left with no reference to 

quarters. 

2-2.2 INSTRUCTION WORD. The layout of an instruction word as it appears in the N register 

after being read out of memory is shown in Fig. 2-2(a). The content of N provides 

all the information for executing the instruction, including the information for 

obtaining an operand if one is required by the instruction. The content of N is 

actually disassembled and transferred to other registers for interpretation, but 

the discussion here will be limited to the content of the N register itself. 

The instruction word in the N register can be broken up into groups of bits that 

have specific functions. Note that in nearly all instructions, all the bits which 

appear in the N register are interpreted, although not all the bits necessarily 

have the same functional interpretation in every instruction. 

The base address is specified by the 18 Y bits (2.9 - 1.1). The final address is 

usually found by "indexing" the base address with the content of the X Memory index 

register selected by the six J bits (3.6 - 3.1), but is sometimes simply equal to 

the base address. The final address is usually the address of an operand or of the 

next instruction. It can also be the address of a deferred address. 

Bit 2.9 is called the defer ( *) bit.* When the defer bit is a ONE, the address is 

used to read a deferred address out of memory. The deferred address replaces the 

original address. When bit 2.9 is a ZERO, the address is used in the manner speci­

fied by the operation code. 

The six OP bits (4.3 - 3.7) are used to specify the operation called for by the 

instruction wortl. There are currently 50 defined operation codes that can be speci­

fied by these six bits. 

The five CF bits (4.8 - 4.4) are usually used to specify a computer configuration by 

specifying the address of a configuration word stored in the F Memory. This word is 

read out and its content used to restructure operand words. For example, the 

configuration information can be used to form two 18-bit subwords, one of which is 

inactive, from a 36 bit operand word. 

* The defer bit is also frequently designated by a delta"~", as well as by an asterisk"*"· 
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Bit 4.9 is called the hold (H) bit. The computer is designed to run with a variety 

of In-Out devices, for example a paper tape reader, punch, etc . Each of these 

devices requires its own computer program or program sequence. When the hold bit 

is a ONE, the computer can be forced to proceed from the current instruction to the 

next instruction in the same program sequence. For example, the computer can be 

forced to hold in the paper tape reader program sequence instead of changing to the 

punch sequence. 

Bit 2.10 is called the "parity" bit and bit 4.10 is called the "word meta" bit. 

These bits have somewhat special purposes. The parity bit is used solely for 

checking for memory readout errors. The meta bit is ordinarily used as a kind of 

tag. By operating the computer with the "Trapping" program sequence turned "on", 

instruction words with meta bits set to ONE can be trapped and processed by the 

Trapping program sequence. 

While the defer ( * ) , operation (OP) and hold (H) bi ts are always interpreted as 

described above, the base address (Y), index (J) and configuration (CF) bits can be 

interpreted in quite different ways than those described. The interpretation is a 

function of the operation code being executed. The special interpretations will be 

discussed later. 

2-2.3 DEFERRED ADDRESS WORD. This is a word that is used in the deferred addressing 

process described later in the chapter. 

The layout of a deferred address word as it appears in the N register after being 

read out of memory is shown in Fig. 2 -2(b) . Bits 4 . 9 - 3.1 are not used. The 

function of the bits that are used is the same as the function of the corresponding 

bits in an instruction word.* Note that a deferred address can hence call for 

another deferred address when the defer bit is a ONE. 

2-2.4 OPERAND WORD. When an instruction calls for an operand word, it is obtained from 

the Memory Element and placed in the M register. The layout of a memory operand 

word as it appears in the M register is shown in Fig. 2-3. 

Depending on the operation and configuration specified by the instruction, the 

operand can be subjected to considerable manipulation as it is transferred through 

the computer. The configuration specifies which quarters of the operand word are 

to be used, and with which quarters of the central computer they are to be associated. 

The parity bit is used to check the parity of the word as it appears in the M 

register, and the meta bit is used as a signal to the Trapping program sequence. 

Note that the meta bit of a word in the Memory Element can be altered only when the 

word is placed in the M register and even then it can only be altered by a particular 

instruction. 

* The base address Yin a deferred address is always indexed. 
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2-3 PROGRAM ELEMENT 

2-3,1 GENERAL DESCRIPTION. The primary functions of the Program Element are: (1) to 

determine what is the location in the Memory Element of the next instruction; and 

(2) to interpret the instruction when it is obtained and placed in the N register. 

Fig. 2-4 is a simplified block diagram of the Program Element. 

The first function is determined by decisions made in the Sequence Selector. This 

unit determines what program sequence the next instruction will be taken from. 

During the execution of each instruction, the computer must constantly be deciding 

whether it will continue executing instructions in the current program sequence or 

change to a new program sequence. The logic for making these decisions is found i~ 

the Sequence Selector. 

The function of interpreting the content of the N register requires a variety of 

registers, memories, coders, decoders and special circuits. Generally these can be 

grouped according to the bits in the N register they are interpreting. During the 

interpretation of a typical instruction word the components might be functionally 

grouped as follows: 

Interpreting J Bits 

J Decoder 

X Memory 

X Register 

The J bits in the N register are decoded by the J Decoder to select a register in 

the X Memory. The X register serves as the memory buffer register. 

Interpreting Y Bits 

X Adder 

Q Register 

The X Adder can form the sum of the Y bits in the N register and the content of X 

register, or simply transmit the value of Y. This result can then be copied into 

the Q (or P or E) register. 

Interpreting OP Bits 

PKIROP 

QKIROP 
A1aR0p (during arithmetic instructions) 

The OP bits are copied into the PKIROP register and there interpreted. Further 

interpretation also can occur in the QKIR0P and AKIR0P registers. 
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Interpreting CF Bits 

PKIRCF 

CF Decoder 

F Memory 

QKIRCF (and associated decoders) 

AKIRCF (during arithmetic instructions) 

The CF bits are copied into the PKIRCF register. The CF Decoder then selects a 

register in the F Memory. The content of the selected register is placed in the 

QKIRCF register and is interpreted there. Further interpretation also can occur in 

the AKIRCF register. 

Interpreting H Bit 

The H bit is copied into the PKIRH flip-flop before being interpreted. 

These distinctions are not rigid, however, since most of the components serve more 

than one function. Thus the X Memory, and the registers associated with it, are an 

integral part of the program sequence selection process, as well as being used in 

the interpretation of instruction words. 

2-3,2 PROGRAM ELEMENT MEMORY SYSTEMS. The two memories in the Program Element are a 64-

register 19-bit/register X Memory and a 32-register 10-bit/register F Memory. The 

X Memory holds the program counters used in the sequence selection process and the 

indices used to modify the base address of instruction and deferred address words. 

All of the 64 registers in the X Memory can be used as index registers; however, 
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only 33 of them can be used to hold program counters. In addition to holding indices 

and program counters, the X Memory registers can also be used to store operands. 

Operands can be transferred from the X Memory to the Memory Element, and vice versa, 

over communication paths between the X Adder, Exchange Element and Memory Element. 

These paths also provide a means for loading an X register from a Memory Element 

register and for storing the content of an X register in a Memory Element register . 

The F Memory holds configuration words. Paths between the QKIRCF register, 

Exchange Element and Memory Element provide a means for loading and storing F 

Memory registers. 

Both memories are equipped with circuits which compute and check the parity of 

memory words. Also associated with each memory are a memory address decoder and 

a memory buffer. The decoder selects the memory register whose content is to be 

read into the memory buffer. During the memory write cycle, the content of the 

buffer regi ster i s written into the selected memory register. 
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The first register of both memories are made so as to always contain all ZEROES. 

Thus if register x0 is selected for modification of the base address of an instruction, 

then effectively no modification occurs. Similarly, when register F0 is selected 

for a configuration, then, as we shall see, only the normal 36-bit word computer 

configuration is realized. 

2-3-3 SEQUENCE SELECTION. At some point just before the completion of an instruction 

word memory cycle, the Program Element must decide whether the next instruction is 

to be taken from the current program sequence or from some new program sequence. 

The decision is based on information from the Sequence Selector and on the "hold" 

and "dismiss" information found in the instruction being executed. This latter 

information is decoded from the P!C[RH' P!C[RCF and P!C[ROP registers, respectively. 

Fig. 2-5 illustrates the parts of the computer involved in a sequence selection. 

The program sequences are numbered O, 40, 41, •.. , 77 (octal). These numbers 

correspond to the addresses of the registers in the X Memory which ordinarily store 

the program counter associated with each program sequence. Only the program counter 

of the current program sequence is not held in the X Memory; instead, it is held in 

the P register and its sequence number in the K register. As we shall see, the 

program sequences have a priority relationship among themselves. 

The number of the current program sequence is stored in the K register. The 

Sequence Selector is informed of this number via the K Decoder. Another program 

sequence can request attention via the Sequence Selector if: (1) the flag of this 

new program sequence is up and requesting attention; (2) no other higher priority 

program sequence has its flag up; and (3) the current instruction is dismissing or 

the current program sequence has a lower priority number than the new sequence and 

the hold bit of the current instruction is in the "not hold" state. When these 

conditions are fulfilled, the computer will stop executing instructions in the 

current program sequence and start executing instructions in the new program 

sequence. This is called "a change of program sequence". The Sequence Selector 

provides the number of the new program sequence via the J Coder. 

Fig. 2-6 illustrates schematically the procedure followed during the execution of 

each instruction which determines whether the next instruction will be from the 

current program sequence or from some other sequence. Note that this figure does 

not show all the details of the procedure; these will be covered later. 

2-3.3.1 WAIT CYCLE. Sometimes the computer may be unable to proceed executing 

instructions in any program sequence. In such instances the computer goes 

through a wait cycle lasting 1. 6 microseconds and then again tries to 

continue in some program sequence. The computer will repeat wait cycles 

until conditions a.re present for proceeding in some program sequence. 
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2-3 . 3.2 CHANGE OF SEQUENCE CYCLE. When the computer is able to make a change of 

sequence the number of the new program counter is placed in the J bits of 

the N register from the J Coder (Fig. 2-5) , The new program counter is 

then obtained from the J-th register (XJ) in the X Memory and placed in 

the X register . The content of the P register and the X register are 

interchanged by transferring the content of P directly to the X register 

and, at the same time, copying the content of the X register to P via the 

X Adder . 

Note that since the X Adder forms the sum of the content of the X register 

and the Y bits of the N register, the Y bits are ordinarily made all ZEROES 

during a change of sequence . However, if the number supplied by the J 

Coder is 00, then the content of XJ (i . e ., of x0 ) will always be ZEROES. 

In this case, the content of the special toggle switch register TSP is 

placed in the Y bits of N instead of ZEROES. This special register 

provides the programmer with a means of manually specifying the initial 

value of one particular program counter . 

The content of the K register (K has been holding the old program counter 

number) is also interchanged with the J bits of the N register. After 

this, the old program counter, now in the X register, can be stored in its 

proper location (XJ) in the X Memory . Note that the J bits of the N 

register first contain the number supplied by the J Coder while the new 

program counter is being obtained from the X Memory, and afterwards contain 

the number from the K register while the old program counter is being 

stored in the X Memory. The state of the Sequence Selector changes to 

conform to this change of sequence by virtue of the change of the content 

of the K register. Certain information about the change of sequence is 

remembered in the E register of the Exchange Element in order to allow the 

programmer to analyze the sequence change . 

2-3 . 3 . 3 PROGRAM SEQUENCE PRIORITY . The priority relationship of the program 

sequences is determined by the Priority Patch Panel plugboard. The 

programmer can arbitrarily specify various priority relationships . 

However, the plugboard is ordinarily connected with the order of priorities 

shown in Fig . 2 -7. The names associated with the program sequences are 

also shown in the figure . 

2 - 3 . 4 INTERPRETATION OF INSTRUCTION WORD DEFER AND OP BITS FOR BASIC SEQUENCE CYCLES . 

March 1961 

The address of the next instruction in the current program sequence is locat ed in 

the P register. This is the register in the Program Element that addresses (selects) 

the register in the Memory Element whose content is read into the N register and 

interpreted as an instruction word . (See Fig. 2-8.) Note that since a read-out of 

the Memory Element is usually destructive, the word read out, in this case the 
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content of N, is parity checked and rewritten back into the Memory Element. 

Immediately after an instruction word is read out of memory (and rewritten), the 

content of the P register is increased (indexed) by one and the contents of the H, 

CF and OP bits are placed in the PKIRH' PKIRCF and PKIROP registers. This whol e 

process is called the instruction word cycle. 

2-3.4.1 DEFERRED ADDRESS WORD CYCLE. (See Fig. 2-8 . ) After an instruction word 

has been read into the N register, the value of its defer bit (*)is 

sensed. If the defer bit is a ONE, the instruction is called for a 

deferred address word. This base address Y is then placed in the Q 

register of the Program Element, and the content of the J bits is (tempo­

rarily) stored in QKIRcF · 

A deferred address word is then read out of the Memory Element, using the 

memory address in Q, into the N register. Only the base address (Y) and 

index (J) bits of this deferred address word will be interpreted by the 

Program Element. If the defer bit (*)in the base address is a ONE , the 

address of another deferred address word will be computed, by indexing the 

base address, and placed in Q. The process repeats until finally a 

deferred address word is read out whose defer bit (*)is ZERO . The 

indexed base address is again computed, but this time it replaces the Y 

bits in the N register . The original value of the J bits in the instruction 

word is then restored and the instruction is interpreted. Note that the 

interpretation is made with the hold, configuration and operation code 

information contained in the original instruction word that initiated the 

deferred addressing since this information was stored in the PKIRH, PKIRCF 

and PKIR0p registers, respectively, all during the deferred addressing 

process . The purpose of the deferred addressing process is to compute a 

new set of Y bits that may be used with the original hold, configuration 

and operation code information.* 

2-3. 4 . 2 OPERAND ADDRESS CYCLE . When the defer bit is ZERO and the operation code 

calls for an oper and, the final address is placed in the Q register. In 

this case , an operand is read into the M register from the register in the 

Memory Element addressed by the Q register. (See Fig. 2 -9 . ) While the 

operand word is in the Exchange Element, it is altered according to the 

configuration specified by the instruction word . The configured operand 

can then be transferred to the Arithmetic Element , In-Out Element or 

Program Element. Or it can be simply kept in the Exchange Element for 

further processing. 

* In effect , each new deferred address cycle simply substitutes new Y bits for the previous set, 

and then interprets the new defer bit. 
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If a "load" type instruction is executed, the original operand read out of 

memory will be rewritten back in memory. If a "store" type instruction is 

involved, the result of the operation is written back into memory in place 

of the original operand read out of memory. 

2-3.4.3 JUMP CYCLE. When the defer bit is ZERO and the operation code specifies a 

jump instruction, the final address is placed in the P register if the jump 

conditions are satisfied. (See Fig. 2-8.) After either a jump cycle or 

an operand cycle, unless a change of sequence or wait cycle occurs, P 

addresses the Memory Element for another instruction word which is then 

read into the N register. 

2 - 3 -5 GENERAL INSTRUCTION WORD INTERPRETATION . 
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2 - 3 . 5.1 JANDY BITS INTERPRETATION. Indexable type instructions add the content 

of an index register (XJ) to the base address Y of the instruction word. 

The sum is called the effective address, r. (See Fig . 2-4.) With this 

indexing system, it is possible to alter the address section of instructions 

before they are performed, without changing the instruction word in memory. 

The selection of a particular index register is accomplished by decoding 

the six J bits in the N register instruction word . The content of the 

selected index register, XJ, is read into the X register, and then re­

written from the X register back into the specified index register of the 

X Memory. By means of the X Adder, the content of XJ is added to the base 

address, Y, to form the effective address, r. 

It should be noted that the X Adder is part of the Program Element and that 

any additions performed here are not related to arithmetic operations 

performed in the Arithmetic Element. It should also be noted that index 

register x0 is permanently wired so as to appear to contain ZEROES and is 

normally used when the base address of an indexable type instruction is to 

remain unchanged. In this case the effective address r is equal to the 

value of the Y bits . 

2 - 3 . 5 . 2 OP BIT INTERPRETATION. The operation code of the instruction word is 

specified by the six OP bits of the N register (see Fig. 2 -10). These six 

bits give a coded representation of the 26 = 64 possible operations. 

Interpretation of the operation code is accomplished by means of three 6-bit 

registers designated PKIROP' QKIROP and AKIRop · 
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The PKrROP register is interpreted to determine the kind of instruction to 

be performed. Execution of the instruction may involve copying PKrROP into 

QKrROP' and perhaps QKrROP into AKrRop · Each of these OP registers is 

interpreted by two kinds of decoders: an "OP Decoder", which resolves the 

particular operation code to be performed; and an "OP class decoder", which 

determines certain class properties of the operation code . PKrR0P and 

QKrROP are used by the whole computer, whereas AKrROP is used primarily in 

the Arithmetic Element. 

2-3.5,3 CF BIT INTERPRETATION. In configurable instructions, the five CF bits are 

copied into the PKrRCF register. (See Fig. 2-11.) They are then decoded 

and used to select a particular register in the F Memory . The content of 

the selected register is read into the F Memory buffer register, QKrRCF' 

where it is interpreted . 

Two of the bits in the QKrRCF register specify the form ("coupling" or 

"fracture") of the computer during the execution of the instruction. This 

subword form can be one 36-bit subword, two 18-bit subwords, one 27 -bit 

subword and one 9-bit subword, or four 9-bit subwords (see Fig. 2-12) . 

These subwords can be formed simply by coupling together the quarters of 

the data registers in various combinations during data processing. 

Four bits in the QKrRCF register are used to specify the "activity" of the 

subwords. Each one of these four bits corresponds to a quarter of the data 

registers. When one of these bits is ZERO, then the associated quarter is 

"active"; when one of these bits is ONE, then the associated quarter is 

"inactive" or "latent". 

Since subwords consisting of more than one quarter have more than one 

activity bit associated with them, it is possible to have partially active 

subwords. Depending upon the kind of instruction being executed and the 

direction of information flow (to or from the Memory Element), another 

process called "sign extension" occurs . In sign extension, the sign bits 

of active quarters are extended left to fill adjacent inactive quarters 

within subwords . This occurs in the Exchange Element as information flows 

from the Memory Element. 

Finally, the remaining three bits in QKrRCF cause a "permutation" of the 

quarters of the operand words as they are passed through the Exchange 

Element . Only 8 of the 24 possible permutations are realized. 

2-12 March 1961 



The interpretation of the CF bits in any instruction word is carried out 

after the NCF bits are copied into the PKIRCF register. This permits 

deferred addxess cycles to occur, after an instruction word has been read 

out of the Memory Element and before the instruction is interpreted, with­

out losing the value of the specified CF bits . 

Some configurable-type instructions which use the Arithmetic Element also 

make use of a further configuration register, AKIRCF' This register is 

supplied only with coupling and activity information from QKIRCF' since no 

permutations are performed in the Arithmetic Element. In addition, all 

subwords used in the Arithmetic Element are forced to be fully act ive or 

completely inactive. Thus, an 18-bit subword original ly specified with 

only one quarter active will appear to the Arithmetic Element to have both 

quarters active. 

2- 4 M»iORY ELEMENT 

2-4 . 1 GENERAL DESCRIPTION. The Memory Element contains four physically separate memories. 

Each memory is a complete unit containing all the circuitry needed for the operation 

of the unit except for the memory addxess and memory buffer registers. The P and Q 

registers in the Program Element serve as memory addxess registers, and the N 

register, in the Program Element, and the M register, in the Exchange Element, serve 

as memory buffer registers. 

The basic organization of the Memory Element and the information paths to and from 

the Memory Element are illustrated in Fig. 2-13 , For simplicity the connections to 

the Control Element and the read-write control logic are omitted. The V Memory is 

also shown as a single unit. 

The P register is used to specify the addxess in the Memory Element of instruction 

words onl y. Such words are read out of the selected memory and strobed into the N 

register. They are then rewritten (if the read out was destructive) back into the 

memory register. The Q register specifies the addxess either of deferred addxess 

words or of operand words . Deferred addxess words are strobed into the N register, 

and operand words into the M register. 

2-4.2 MEMORIES. The four memories in the Memory Element are called the S Memory, T Memory, 

U Memory and V Memory. The characteristics of each of these memories is given in 

Table 2-1. 
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The S Memory is a 65,536 register magnetic core memory which uses magnetic core 

switches and vacuum tube dxivers to select the register in the memory specified by 

the memory addxess register. As a result the access time to this memory is rather 

long compared to the other memories . 
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The T Memory is a 4096 register magnetic core memory. All of its circuitry uses 

transistors. 

The U Memory has not yet been built, but will essentially be a copy of the T Memory. 

The V Memory contains all the miscellaneous storage registers in the computer which 

can be addressed by a programmer. One part of this memory, called the VFF memory, 

consists of the four 36-bit flip-flop registers in the Arithmetic Element and the E 

register in the Ex.change Element. The transfer paths used when these registers are 

selected differ from the ones ·normally used. In the case of VFF' information is 

transferred from or through the E register to the Mand N registers. 

The remainder of the V Memory, called the VFF Memory, consists of various "fixed" 

registers, such as toggle switches and plugboards. These registers are fixed in the 

sense that a programmer cannot change the content of any of these registers by using 

"store" type instructions to store the content of central computer registers in them. 

Usually, however, there are other methods for changing the content of these registers, 

as for instance by manually changing the position of toggle switches in the toggle 

switch registers. This VFF Memory contains a shaft encoder register. The content 

of this register is changed by rotating 4 shafts whose angular positions are each 

digitally encoded as 9 bit ntnnbers. The VFF Memory also includes a 36-bit real time 

clock which counts at a 100 kilocycle - per-second rate. 

Each word in the S, T and U memories contains, in addition to the 36-bit "word" used 

by the central computer, a parity check bit. When a word is written into memory this 

bit is always made to have a value that will make the parity of the entire word odd. 

Each word in the S, T, U and VFF memories also contains a meta bit. The meta and 

parity bits are not included in the normal memory word interpretation process. This 

bit is instead used to tag, or mark, the word in which it is found. It is used 

either by the Trapping Sequence or by the one instruction (SKM) which can alter this 

bit. 

Thus, all the memory registers in the S, T and U memories have 38 bits; those in the 

~FF Memory have 37 bits; and those in the VFF Memory have 36 bits. 

2-4.3 MEMORY REGISTER SELECTION. The process of selecting a memory register and reading 

its content into a buffer register is initiated by the Control Element. The Control 

Element decides that a certain kind of word in memory is required and then starts 

the necessary read-write memory cycle to obtain it. 
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The memory register selection occurs as follows . The Memor y Address Selector 

examines the content of either the P or Q memor y address regi ster, dependi ng on the 

kind of memory word cycle called for . It examines bits of the address r egister 

successivel y from left to right . The first bits examined determine in which of the 

four memories contains the word and the remaining bits determine the register in this 

memory. 

The Memory Address Selector routes the memory register selection bits in P or Q to 

the address decoder of the selected memory . It also serves to control the duration 

of the read-write cycle, since this depends on the particular memor y selected. This 

unit is also used to route the content of the selected memory register into the 

desired memory buffer (Mor N), during the memory read-out; and back through the 

inhibit selector to the memory register, during the memory rewrite . 

The details of the memory register selection process are further described in 

Chapter 4 and 12 . 

2-4.4 MEMORY OVERLAPPING. Since there are two memor y address registers and two memory 

buffer registers, in addition to the four memories in the Memory Element, it is 

sometimes possible to perform two memory read-write cycles simultaneously . 
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During an operand word memory cycle the Q register selects a memory register whose 

content is strobed into the M register. The memory cycle is completed when the 

content of the M register is rewritten back into the selected memory register . After 

such an operand cycle the computer will usually perform an instruction word memory 

cycle . (The operand cycle can be followed by a change of sequence cycle . ) If an 

instruction cycle does follow, then the P register holds the address of the memory 

register containing the next instruction . Since the N register is usually not used 

during operand memory cycles, the computer will attempt to perform this instruction 

word memory read-write cycle while the operand cycle is still being performed . 

A variety of conditions can . inhibit the instruction word memory cycle until the 

operand cyc l e is finished. While we shall not be concerned with most of them here, 

one condition of note is whether the desired instruction word is in the same memory 

as the previous operand word selected by the Q register . If this is not the case, 

i.e . , if Q selects one memory to obtain an operand word and P selects a different 

memory to obtain an instruction word, then, assuming all the other miscellaneous 

conditions are fulfilled, t he two memory cycles will proceed simultaneously . Note 

that there is no restriction on which memories the operand and instruction word are 

stored in, except that, if overlap is all owed to occur, they must be stored in 

different memories . Note also that the instruction word cycle, if it uses the T 

Memory for example, can finish before the operand word cycle if the operand cycle 

uses the S Memory . This can happen, even though the instruction word cycle begins 

after the operand word cycle, because the T Memory r ead-write cycle time is much 

shorter than the S Memory cycle time. 
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2-4.5 MEMORY SPEED. The times listed in Table 2-1 for the memory cycle time are the 

minimum times only. These times usually occur when an instruction or deferred 

address word is obtained from the memories. If an operand word is obtained from the 

memory, the cycle time can be up to two or three microseconds longer when the operand 

word in the memory register is changed by the instruction. These timing situations 

are covered in Chapter 9 . 

2-5 EXCHANGE ELEMENT 

2-5,l GENERAL DESCRIPTION. Nearly all information transmitted to the two memory buffer 

registers Mand N, except information coming directly from the Memory Element, passes 

through the E register in the Exchange Element. Also, nearly all information 

transmitted to the Program, Arithmetic and In-Out Elements passes through the E 

register. This register thus serves as a bus for most of the information transfers 

in the central computer. Fig. 2-14 illustrates the central position of the Exchange 

Element in the computer. 

Information passing through the Exchange Element can be transformed in various ways. 

Many of these transformations are controlled by a configuration specified by the 

instruction which causes the transfer. The information for configuration control is 

obtained from the F Memory, as described earlier in the chapter. Transformations 

can also occur in the Exchange Element as part of the inherent execution logic of an 

instruction. 

These transformations are realized for the most part by providing each quarter of 

each register in the Exchange Element with its own logical control. This is indicated, 

for example, in Fig. 2-15 by the separate paths between each pair of corresponding 

quarters of the E and M registers. Each quarter of the E register can also be 

separately cleared and/or complemented. In addition, each quarter of the E register 

is connected to every other quarter of the E register by permutation paths, as shown 

in Fig. 2-15, Each of these paths is also separately controlled by the computer 

logic. 

This control of the paths among the quarters of the registers within the Exchange 

Element is essential for the realization of much of the power and flexibility of 

TX-2 instructions. 

2-5 ,2 OPERAND CONFIGURATION IN THE EXCHANGE ELEMENT 

2-5.2.1 PERMUTATION. Fig. 2-11 illustrated the decoding of a configuration word in 

the QKIRCF register during the execution of instructions which use a 

configuration. 
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As an operand word is transmitted through the Exchange Element on its way 

to or from the ME!lllory Element it is permuted in the E register. This per­

mutation uses the E register permutation paths . The form of the permutation 

is determined by the value of the three permutation bits in the QKIRCF 

register. The permutation bits specify a route between the quarters of the 

M register and the quarters of the E register . The route is traversed by a 

combination of a vertical and lateral transfer as shown below. Since the 

permutation actually occurs in the E register one permutation must occur 

when a word is transmitted from the Memory Element through the Exchange 

Element to other parts of the computer, and the inverse permutation when a 

word is transmitted in the reverse direction . 

In Fig. 2-16 the permutations are shown which can occur in the E register 
' while an operand word is being transmitted from the Memo~y Element to the 

central computer. The graphic notation illustrates the "effective" path 

from the M register to the E register. These paths are realized by 

transferring the operand word from M to E and then permuting the word in E. 

(Mis always assumed to be at the upper end of the arrows in such a graph, 

and Eat the lower end, regardless of the direction of the arrows.) The 

recombination of the quarters of an operand word in the E register after 

the permutations is also shown. The quarter arrangement shown is that 

found after a memory operand word has been brought into a register (e.g., 

the A register) in the central computer. 

In Fig. 2-17 the inverse permutations are shown which can occur in the E 

register while an operand word is being transmitted from the central 

computer to the Memory Element. In this case the inverse permutations are 

graphically represented by arrows from E to M. The recombinations of 

central computer register quarters in a Memory Element register are also 

listed. 

Note that for each permutation listed in Fig. 2-16, there is a corresponding 

inverse permutation listed in Fig. 2-17. Note also that some permutations 

are their own inverses, i.e., permutations 000, 010, 100 and 101. This 

means that such permutations and their inverses are realized by the same 

set of paths among the quarters of the E register. 

The graphic notation portrays the effective path between the quarters of the 

E register and those of the M register. The value of this notation is that 

it is independent of the permutation of information that is actually 

occurring. Thus the graphic notation (with one quarter emphasized) 
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M 

E 

can be used to represent either of the following two actual permutation 

processes: 

M 4 3 2 1 

or 

E 3 2 1 

DIRECT PERMUTATION INVERSE PERMUTATION 

Hence the graphic notation can be used to simply represent the permutation 

specified by the configuration without regard for the kind of instruction 

being executed. 

2-5,2,2 ACTIVITY. The four activity or latency bits in the configuration word 

specify the quarters of the registers in the cerutral computer which shall 

be active during the execution of an instruction. Each bit is uniquely 

associated with a quarter. Fig. 2-18 shows the sixteen possibilities that 

can be realized. These activity bits act as a mask on the quarter of the 

register, permitting information to be transmitted through the quarter of 

the E register only if the corresponding activity bit is a ZERO. Note that 

a quarter is latent, i.e., inactive, when the corresponding activity bit is 

a ONE. 

The graphic notation used on Fig. 2-18 indicates the latency of a quarter 

by removing the arrowhead from the arrow. (In Fig. 2-19 only permutation 

000 is illustrated.) 

2-5,2,3 SUBWORD FORM. As described earlier, the left two configuration word bits 

specify the subword form of the operands in the central computer registers. 

These subword forms are illustrated in Fig. 2-19, The graphic notation 

used in the figure makes use of an under-bracket to show the quarter 

groupings that form the subwords. 
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The subword forms primarily influence the manner in which arithmetic 

operations are performed. Thus the carry process that occurs in addition 

would be influenced by the subword form, since carries would not occur 

between quarters that were not in the same subword. 

2-5,2,4 PARTIALLY ACTIVE SUBWORDS. These are subwords in which one or more of the 

quarters (but not all) are made inactive by the configuration specified by 

the instruction. For example, a progrBJlllller can specif y a configuration 

which has the binary value, 

0 1 1 1 1 0 0 0 0 

1 l ~ No permutation 

Quarter 1 active .. 
Quarters 2, 3 and 4 latent (inactive) .. 18, 18 subword form 

The graphic notation for this configuration would look as follows: 

Inactive Partially Active 

Subword Subword 

This notation indicates that two 18-bit subwords are formed in the centr al 

computer register, but that only quarter 1 is active. It is convenient 

to have the central computer work at all times with fully active subwords . 

This is realized automatically in the computer by "activity extension" and 

"sign extension". This allows the progrBJlllller to specify any of the possible 

activity and subword form combinations without worrying about how arithmetic 

operations are performed upon partially active subwords, However, use is 

made of the fact that a subword is only partially active while the subword 

is in the E register. 

Activity Extension. The computer "extends" the activity of partially active 

subwords to make the whole subword active. In the example the effect of 

activity extension is, as far as subword form is concerned, the same as if 

the programmer had specified the configuration 

0 1 1 1 0 0 0 0 0 

Quarter 1 and 2 active 
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Note,however, that there is now ambiguity about the content of the quarters 

made active by "activity extension". 

Sign Extension. This process extends the sign bit of the operand in the 

active quarters of partially active subwords into the inactive quarters. 

This gives a meaning to the inactive quarters of a subword, to be used in 

arithmetic operations, when the subword is made fully active by activity 

extension. 

After an operand arrives in the E register from the Memory Element (i.e., 

from the M register) and is permuted, the sign bits of the active quarters 

of E are extended to the left within the subwords \llltil an active quarter 

is encountered. This extension carries around from the left end of a sub­

word back to the right end of the same subword, i.e.,there can be an end­

around-carry of the signs. Since there are no active quarters in wholly 

inactive subwords, no sign extension occurs in such subwords. 

Fig. 2-20 illustrates the way in which the sign would be extended if the 

configuration is OllllOXXX. Fig. 2-21 shows the more complex situation 

resulting when the configuration is 000101XXX. In this latter case two 

different sign bits are extended within the same subword, one of them 

around to the right end of the subword. 

It should be realized that activity and sign extension occur in the E 

register only when an operand is being brought from memory to the central 

computer. Since there are no possible interquarter transfers of information 

in a Memory Element register, the subword form is ignored when an operand 

is transmitted from the central computer to the Memory Element. Only the 

permutation and activity bits of the configuration are used in this case. 

2-6 ARITHMETIC ELEMENT 

2-6.1 GENERAL DESCRIPTION. Most of the arithmetic and logical operations in TX-2 are 

carried out in the Arithmetic Element. (Some of these operations can also be per­

formed in the Exchange Element and the Program Element.) Since many of these 

operations are complex and time consuming, the Arithmetic Element is designed to 

operate independently of the rest of the computer once it has started performing 

some operation. Thus,a multiplication can be executed in the Arit hmetic Element 

while the rest of the computer proceeds with the execution of the instructions that 

follow the multiplication. Note, however, that the instructions that follow are 

inhibited if they also . require the use of the Arithmetic Element. 
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2-6.2 ARITHMETIC ELEMENT REGISTERS. Fig. 2-22 illustrates the registers and information 

transfer paths in the Arithmetic Element. 

The A register serves as the accumulator,' i.e., this register usually contains one 

of the operands involved in an arithmetic··operation (the other operand comes from 

the Memory Element via the Exchange Element), and the result of the operation is 

u~ualiy left in the A register. The B register US1.18.lly serves as an extension on 

the right end of A register. It is used this way during multiplication,for example, 

when a double register length produc~ is formed. The primary purpose of the C 

register is to hold the partial carries which are generated when an addition is 

performed. The D register usually holds the operand brought from memory. 

The content of any of these registers can be stored in a memory register, or be 

replaced by the content of a memory register. The four registers are also addressabl e 

as part of the VFF memory in the Memory Element . The variety of means of access to 

these registers provides considerable programming flexibility. Note, however, that 

all collllllunication with these registers from outside the Arithmetic Element is through 

the E register. 

Each of the four registers is divided into four 9-bit quarters. AZ overflow flip­

flop is associated with each quarter of the A register . These overflow flip -flops 

are used to remember whether an arithmetic overflow occurred during a previous 

arithmetic instruction (e.g., during an addition). The Z flip-flops are also used 

for sign control during some instructions . 

A Y f l ip-flop is associated with each sign quarter of the D register. These four 

Y flip-flops are altered only when an operand is placed in the D register from the 

E register. They remember the original sign of the memory operand word placed in D 

after the content of D has been altered during the execution of an instruction. 

2-6 . 3 INFORMATION PATHS IN THE ARITHMETIC ELEMENT. The only simple register transfer 

paths within the Arithmetic Element are between the A and B registers. These are 

"jam" transfer paths which copy the content of one register into the other . 

March 1961 

The contents of the A and B registers can be rotated either to the left or to the 

right . This rotation can also occur when the B register acts as an extension of the 

A register, i.e., the content of the AB register can be rotated to the left or right . 

These shift paths are illustrated in Fig. 2-22 . 

The other paths in the Arithmetic Element involve transformations of the information 

being transferred . The exclusive OR of the contents of the D and A registers can 

replace the content of the A register. The result left in the A register by this 

operation is the "partial sum" of the contents of the two registers. 
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The logical product of the A and D registers can be placed in the C register. This 

operation forms the "partial carry" of the contents of the A and D registers. 

Both the partial sum and the partial carry are formed simultaneously during an 

addition in the Arithmetic Element. The "complete sum" of the original contents of 

A and Dis then formed in the A register by forming the "complete carry". The 

complete carry circuit forms the complete sum by combining.the partial sum and 

partial carry in the A and C registers and placing the result in A. 

There are other transformations in the Arithmetic Element that involve a partial sum 

and partial carry. For example, these quantities are combined in the partial carry 

and shift right logic called "multiply step". In "multiply step" the partial carries 

in the C register are carried only one bit position to the left in both A and C. 

The entire result, in both the A and C registers, is then shifted one place to the 

right. The multiply step transformation is used to speed up the multiplication 

algorithm. It is described in detail in Chapter 14. 

The quarters of the D register can also act as counters. There are circuits· which 

add ONE to the content of each quarter of the D register each time certain other 

operations are performed in the Arithmetic Element. 

2-6.4 OPERATIONS IN THE ARITHMETIC ELEMENT. The operations which can be performed in the 

Arithmetic Element are: 

Addition. The memory operand is placed in the D register and the partial sum 

and carries are formed. The complete carry is then placed in the A register, 

forming the desired sum. An overflow, if it occurs, is simultaneously placed 

in Z. 

Subtraction. This operation is identical to addition except that the memory 

operand in Dis complemented before the addition occurs. 

Multiplication. The double length product of the memory operand, which is 

placed in D, and the original content of A is placed in the AB register. The 

product is formed by first placing the content of A in Band clearing the A 

register. A multiplication cycle is then repeated as many times as there are 

bits in the operand subword. The cycle consists of adding the content of D to 

the content o:f A if the least significant bit in Bis a ONE. The content of AB 

is then shifted to the right one place. The addition consists of forming the 

partial sum and partial carry in A and C, respectively, and then doing a multiply 

step. A shift right of one place in A, Band C occurs when the multiply step is 

performed, and the partial carries are reduced so that further partial sums can 

be formed. After a sufficient number of repetitions of the cycle the complete 

carry is formed in A and the result in AB is then the desired product. 
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Division. The operand from memory is divided into the content of the AB 

register. This process is the inverse of multiplication and leaves the quotient 

in A and the remainder, if any, in B. 

The cycle used here involves forming the difference between the contents of D 

and A in A, and then shifting the content of AB left one place . The sign bits 

of each difference formed in A are shifted into B to form the quotient. The 

content of D will be complemented, if necessary, at the beginning of each cycle 

so that it always differs in sign from the content of A. An addition is then 

performed. 

If an overflow occurs initially the Z flip -flops are set . After the last cycle 

the remainder is in the A register. At the end of the instruction the contents 

of A and Bare interchanged. 

Shift. The content of A, AB (including the overflow in Z) or B can be arith­

metically shifted either to the left or to the right. The number of places 

shifted is determined by the memory operand word placed in D. The count circuit 

on Dis indexed once for each shift . 

Cycle . This operation is identical to Shift, except that a pure rotation of the 

content of the selected register occurs, and that the overflow is not involved . 

Normalize . The content of A or AB (including the overflow in Z) is arithmetically 

shifted until the sign bit in A and the bit to the right of the sign bit differ. 

The number of shifts to the right (left) which occur is added to (subtracted 

from) the memory operand placed in D. 

Tally . The number of bi ts which are ONES in a memory operand word placed in the 

A register is added to the ori ginal content of D. 

Logical Operations. The logical "inclusive OR", "exclusive OR", and "AND" of a 

memory operand and the original content of A can be formed in A by these 

operations . 

These are the basic operati ons which can be performed in the Arithmetic Element . 

Variations on the simple process of loading and storing the contents of registers in 

the Arithmetic Element can also be performed. These operations are covered in 

Chapter 16. 

2-6 .5 CONFIGURATION IN THE ARITHMETIC ELEMENT. Subword form and activity in the Arithmetic 

Element, which constitute the configuration of the Arithmetic Element, are determined 

by the content of the AICTRCF register; just as configuration in the Exchange Element 

is determined by the content of the QKIRCF register. By having configuration 
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(AKIRCF) and operation code (AKIR0p) registers of its own, the Arithmetic Element 

becomes independent of the QKIRCF and QKIR0P register. In this way an Arithmetic 

Element instruction can continue to be performed even though a new instruction is 

begun which fills QKIRCF and QKIROP with new configuration and operation information, 

respectively. 

However the activity bits in AKIRCF do not represent mere copies of the activity 

bits ih QKIRCF. Instead AKIRCF is set up so that activity is extended in the 

Arithmetic Element by the process described earlier. In this way subwords in the 

Arithmetic Element are made either wholly active or wholly inactive. 

Note that the permutation information contained in the configuration word is not 

used by the Arithmetic Element, but only influences the memory operand as it passes 

through the Exchange Element to the Arithmetic Element. Note also, that the sign 

extension process is completed in the Exchange Element, before the memory operand is 

transferred into the Arithmetic Element. 

2-6.6 QUARTERED PATHS IN THE ARITHMETIC ELEMENT. All the registers in the Arithmetic 

Element and also all the lateral information transfer paths in it are quartered. 

These lateral transfer paths are the shift paths in, and between, the A and B 

registers, and the carry paths. The quarters of the shift paths can transmit 

information either to the left or right into each quarter of the A and B registers. 

The quarters of carry circuit can transmit information only to the left into each 

quarter of A. 

The subword form specifies the connection between the quartered segments of these 

paths. The actual connections are realized by coupling units, as illustrated in 

Fig. 2 -23 , Fig. 2 -24 illustrates how the complete shift and carry paths can be 

formed by connecting the outputs of the quarters of the registers (or carry circuits) 

in various ways. The subword form specified by the configuration bits determine 

which one of the several inputs to each coupling unit actually is transmitted through 

the unit. Since the subword forms are limited to the ones illustrated in Fig. 2-19, 

not all conceivable input connections to coupling units are realized. For example, 

a carry coupling unit receives an input either from the quarter immediately to the 

right, or from the quarter farthest to the left in the same subword. 

It should be realized that these coupling units in the shift and carry circuits are 

the sole means used to realize the variety of subword forms during the execution of 

Arithmetic Element instructions. Fig. 2-25 illustrates these subword forms as they 

are reflected in the apparent structure of the Arithmetic Element register. A 

programmer can effectively use several Arithmetic Elements simultaneously when he 

specifies a configuration with subwords less than 36 bits in length. Fig. 2-25 shows 

these multiple Arithmetic Elements and the corresponding operand word structure . 

The activity bits of course also give the programmer the ability to control just which 
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of these Arithmetic Elements are actually used during the execution of an instruction. 

For example, one, two, three or four 9-bit additions can be simultaneously performed 

in any of the 9-bit Arithmetic Elements illustrated . 

2 -7 IN-OUT ELEMENT 

2-7 .1 GENERAL DESCRIPTION. The principal paths for transmitting data into or out from 

March 1961 

TX-2 are in the In-Out Element. These paths are routed over an In- Out Bus. The bus 

effectively connects a variety of input and output devices with the E register in 

the Exchange Element. The bus also transmits signals which enable the centr al 

computer to control the operation of the In-Out devices . Included in these control 

signals are central computer clock pulses. These clock pulses are used to synchronize 

signals generated by the In-Out device with operations in the central computer. 

Each In- Out device has its own program, called a program sequence, stored in the 

Memory Element. As described earlier, there are 33 different program counters 

stored in the X Memory in the Program Element. The content of each of these program 

counter registers, when transferred to the P register, addresses its own program 

sequence in the Memory Element. Instructions can be executed from only one program 

sequence at a time, i.e . , only one program counter can actually be in use at any 

given time . However, certain instructions in a program can cause a change from one 

program sequence to another . 

Thus, each In-Out device is uniquely associated with one of the 33 program counters . 

The number of the associated program counter is assigned to the In - Out device. Thus 

there can exist at most 33 In- Out devices . As shown in Fig. 2-7, there are currently 

about 16 such devices . The four highest priority program counters also have a 

(special) relationship with the In-Out Element, so that about 20 of the program 

counters are associated with the In-Out Element . 

These 20 program counters are distinguished by the fact that the FLAG flip-flop for 

each program counter can be set (i.e., "raised") when the associated In-Out unit 

generates a raise flag signal. This signal indicates that, for some reason, the 

In-Out unit requires the corresponding program sequence to be performed by the 

computer. The computer does this as soon as this sequence becomes the highest 

priority sequence with a FLAG raised. 

As stated before, there are basically two different situations which can initiate a 

change of program sequence. Either the program sequence, which is currently being 

performed, can initiate the change, or the In-Out unit associated with one of the 

20 program counters can do this. 
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2-7,2 

2-7 ,3 

2-7 , 4 

STRUCTURE OF THE IN-OUT ELEMENT. Fig. 2-26 is a simplified block diagram of the 

In-Out Element. It illustrates the structure of the In-Out Element and the connections 

between it and the central computer, 

Each In-Out unit is divided into a number of packages. These packages include: 

1) The In-Out device itself 

2) A control box for the device 

3) A sequence switch 

Only the sequence switch is connected to the In-Out Bus. 

IN-OUT BUS . At any given time data can be transmitted over the In - Out Bus between 

the E register and only one In-Out unit, These data transfers occur only during the 

TSD (!ran~fer ~ata) instructions. The particular connected unit is the one associated 

with the current program sequence. It is selected by the decoder on the K register 

in the Program Element. The output of the K Decoder is sent out over the In-Out Bus 

to the In-Out units and only the K-th unit is allowed to transmit data over the bus. 

The computer can also control the operation of In-Out units . This control occurs 

only during the IOS (In-Out Select) instruction . It is realized by transmitting 

the Y bits in the N register (this is a case of the Y bits being used for a special 

purpose ) over the In-Out Bus to the specified In-Out unit. In this case the partic­

ular unit is selected by the decoder on the J bits in the N register. The output 

of the NJ Decoder is sent out over the In-Out Bus to the In-Out units and only the 

J-th unit receives the Y bits. 

Synchronization and alarm control signals are also transmitted over the In-Out Bus 

between the Control Element of the central computer and the In-Out units. 

SEQUENCE SWITCHES . The actual connection between an In-Out unit and the In-Out Bus 

is realized in the sequence switch of the unit. The data transfers are gated in the 

sequence switch by the K Decoder outputs. The Y bits from the N register are gated 

by the NJ Decoder outputs . 

The sequence switches isolate the In-Out units from the In-Out Bus so that at most 

one unit is connected to a given set of information lines in the bus at one time. 

Some units, particularly the ones for the special program sequences, consist only of 

sequence switches. (See Fig. 2-26. ) These units are: 

The Startover Sequence Switch (0) transmits raise flag signals to FLAG0 when­

ever the Startover button on the control console is pressed. The associated 

program sequence is usually used to initially start the computer. 

The Computer Alarm Sequence Switch (40) will raise FLAG40 whenever a selected 

central computer alarm occurs. 
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The In- Out Alarm Sequence Switch (41) will raise FIAG41 whenever an In-Out 

unit alarm occurs . 

The Trapping Sequence Switch (42) will raise FIAG42 whenever a selected set 

meta bit occurs in the Mor N register. 

All of these sequence switches contain some control logic which is governed by the 

IOS instruction. However, these special sequence switches are rather simple when 

compared with the sequence switches for the In-Out devices . 

2-7-5 IN- OUT CONTROL BOXES. The control boxes control the operation of the In-Out devices . 

They also contain the In-Out buffers which hold the data flowing between the In-Out 

devices and the E register. 

The Y bits in an IOS instruction are copied into control flip-flops in the control 

box of the In-Out unit selected by the IOS, and the contents of these flip-flops 

then determine the mode of oper ation of the In-Out devices . There are usually also 

some manual controls in a control box which allow the computer operator to influence 

the operation of the In-Out device. 

The buffer register holds one character of the data transmitted to or from the 

device. The central computer can change or read this character in a buffer only by 

performing a TSD instruction in the program sequence associat ed with the device . 

2 -7 . 6 IN-OUT DEVICES . An In-Out device is some electrical , mechanical or optical, etc. 

device which either sampl es some external signal source or reads some data record 

and converts these inputs to characters of digital data for input to the computer, 

or, conversely, converts a character of data to an external signal or record. 
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Fig . 2-7 listed the names of the In- Out devices associated with some of the program 

sequences. A brief description of these devices follows: 

Magnetic Tape (46) . (Currently not installed .) This is the only input and 

output device . 9-bit data characters can be recorded or read while the magnetic 

tape is traveling in either the forward or reverse direction. 

Miscellaneous Inputs (47) . This device simply raises FIAa47 whenever some 

· selected external source generates a pulse. 

Datrac (50). This device digitizes an external analogue signal . 11- bit data 

characters are formed by this process and transmitted to t he computer . 
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Xerox (51). A high speed printer which can print 88 different 8-bit characters 

in two different sizes. 

PETR (52). A photo electric paper tape reader. It reads six bit characters 

from punched paper tape. 

Interval Timer (54). An 18-bit timer which can be reset by the computer. 

When the timer counts down to zero a pulse is generated which can either raise 

FLAG54 or be sent to some other device. 

Light Pen (55). A photo electric sensing device which raises FLAG55 when the 

pen is held over a point displayed on a cathode ray tube (CRT) display (see 

below). 

Display No. 2 (56). (Currently not installed,) A CRT point display tube 

similar to Display No. 1. 

Display No. 1 (6c). A CRT point display tube which can intensify any point in 

a 1024 X 1024 raster. 

Random Number Generator (61). This unit generates nine bit numbers with the 

properties of a se~uence random number. It uses a radioactive source . 

Punch No . 2 (62). (Currently not installed.) This unit is similar to Punch 

No. 1. 

Punch No. 1 (63). This unit can punch six bit characters with or without a 
' 

seventh hole in paper tape. 

Lincoln Writer Input No. 1 (65) . This unit can read six bit characters into 

the computer. These characters can be generated either by a keyboard or a' 

paper tape reader. 

Lincoln Writer Output No. 1 (66). This unit can print six bit characters 

using a typewriter. The unit can also punch the characters on paper tape. 

Lincoln Writer Input No . 2 (71). This unit is identical to Lin~oln Writer 

Input No. 1. 

Lincoln Writer Output No . 2 (72). This unit is identical to Lincoln Writer 

Output No. 1. 
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Plotter (74). A two-coordinate line plotter. The motion of the pen is 

controlled by specifying the coordinate position of the pen. 

Miscellaneous Outputs (75). This device simply holds the value of the Y bits 

of an IOS. This information can then be used to control an arbitrary external 

device. 
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ACCESS CYCLE BIT 
MEMORY TYPE TIME TIME REGISTERS WORD 

(µsec) (µsec) LENGTH 

s MAGNEI'IC CORE 4.o 6.4 65,536 38* 

T MAGNEI'IC CORE 2.0 4.4 4o96 38* 

u MAGNEI'IC CORE ** ** 4o96 38* 

VFF PLUGBOARD REGISTERS 32 37 
v-FF TOGGLE-SWITCH REGISTERS 16 37 
v-FF REAL-TIME CLOCK REGISTER 1 36 

VFF SHAFT ENCODERS REGISTER 1 36 

VFF A REGISTER 1 36 

VFF B REGISTER 1 36 

VFF C REGISTER 1 36 

VFF D REGISTER 1 36 

VFF E REGISTER 1 36 

* INCLUDES PARITY BIT 

** CURRENTLY UNDEFINED 

I 

TABLE 2-1 MEMORY ELEMENT REGISTER 
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FIG. 2-7 PROGRAM SEQUENCE PRIORITY LIST f 1----------------------....----------1 
PROGRAM 
SEQUENCE SEQUENCE NAMES 

NO. 

00 STARTOVER 

4o - -
41 IN-Ot11' AIARM 

COMMENT 

l SPECIAL 
> PROGRAM 

SEQUENCES 

t. 

42 TRAPPING SEQUENCE -'-----~---- ------------- -+---------------43 
44 

45 
46 

47 
50 
51 
52 

I 53 
j 
I 54 

' ' 55 
56 
57 
60 
61 

I 
62 
63 
64. 
65 ' 66 
67 
70 
71 
72 
73 
74 
75 
76 
77 

- -
- -
- -

MAGNETIC TAPE 

MI SCELLA.NEOUS INPt11'S 

DATRAC 

XEROX 

Pm'R 

- -
INTERVAL TIMER 

LITE PEN 

DISPLAY NO. 2 

- -
DISPLAY NO. 1 
RANDOM NUMBER GENERATOR 

PUNCH NO. 2 
PUNCH NO. 1 

- -
LINCOLN WRITER INPur NO. 1 
LINCOLN WRITER Ol1rPt11' NO. 1 
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3-1 INTRODUCTION 

CHAPTER 3 

CIRCUIT LOGIC ELEMENTS 

TX-2 has a modular construction, where the modules are plug-in packages, each containing 

several transistor circuits. In order to understand the details of the logic of the 

computer, it is necessary to understand the operation of and connections among the individual 

circuits and the techniques for physically realizing logic functions. 

This chapter describes the logical characteristics of the TX-2 circuits. These character­

istics are discussed only in sufficient detail to make the logical function apparent or to 

indicate certain operating limitations. A complete circuit analysis of each of the TX-2 

plug-in packages is contained in the TX-2 Circuits Handbook. 

It is assumed that the reader is familiar with symbolic logic as applied to computers and 

is able to interpret truth tables. Fig. 3-1 defines the logical AND, inclusive OR, and 

exclusive OR functions, as well as the complement function. The more common circuit con­

ventions and symbols found on TX-2 block schematics are shown in Fig. 3-2. 

3-2 SINGLE-TRANSISTOR LOGIC ELEMENTS 

3-2.1 INTRODUCTION. The two basic transistor circuits used throughout the computer are: 

the saturated inverter and the emitter follower. Both circuits are used extensively 

for logic nets in which the inputs are levels. The inverter is also used for pulse 

gating and mixing. In these nets, some inputs are levels and others are pulses. The 

circuit diagrams for the inverter and emitter follower are shown in Fig. 3-3, 

3-2.2 NOTATION. In level logic nets, all single-transistor logic elements are drawn as a 

rectangle with the emitter on the top and the collector on the bottom. Inverters 

can be distinguished from emitter followers by usage; that is, the emitter follower 

collector is always connected directly to a -3 volt supply, and the inverter emitter 

is always returned to ground either directly or through the collectors of other 

inverters. The diamond on a small side of the rectangle indicates a level input and 

is solid for -3 volts and hollow for ground. These same diamond conventions are 

used for the output. 

In pulse nets, all inverters are drawn opposite to the above, i.e., with the emitter 

on the bottom and the collector on the top. Level inputs to these nets are shown by 

diamonds as in level nets. However, pulse inputs (which are always negative) are 

shown as solid arrows, and the positive output pulses are shown as hollow arrows. 
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3- 3 LEVEL LOGIC CIRCUITS 

3- 3 ,1 EMITTER FOLLOWERS. In this circuit, Fig. 3- 3(a), the collector is tied to a - 3 volt 

supply (indicated by a solid circle) and the emitter, which is the output terminal, 

is connected through a load resistor RL to a +10 volt supply (indicated by hollow 

square) . This circuit is somewhat similar to the vacuum- tube cathode follower. 

Whenever the input is more negative (say 0.3 volt) than the output , more negative 

base current is drawn . The transistor amplifies this current and a negative emitter 

current many times larger flows in the emitter lead . This current tends to make the 

output go negative because of the voltage drop developed across RL. The output 

(emitter) tends to follow the input, hence the terminology "emitter follower". 

To summarize: In the emitter follower, a ground input results in a ground output, 

and a -3 volt input results in a - 3 volt output . 

3-3.2 INVERTERS . In this circuit, Fig . 3- 3(b), the emitter is tied to ground (indicated by 

a hollow circle) and the collector is tied through a load resistor RL to a -10 volt 

supply (indicated by solid square) . When the input is at - 3 volts, negative base 

current is drawn, and the transistor acts as a short circuit. This has the effect of 

connecting the output to ground . When the input is at ground, the transistor acts as 

a high impedance. In this case, the current through load register RL makes the output 

drop from ground to -3 volts or lower. 

To summarize: In inverters, a ground input results in a -3 volt output, and a - 3 

volt input results in a ground output. Hence the terminology " inverter" . 

It should be noted that resistors R1 and R2 and capacitor Care contained in the 

symbolic representation of the circuit . Hence , the left half of Fig. 3- 3(b) is drawn 

with the implicit understanding that the circuitry shown on the base of the transistor 

in the right half of Fig. 3-3(b) is present. Input resistance R1 and positive bias 

resistance R2 provide tolerance to noise, and to signal-voltage and t r ansistor­

parameter variations . Capacitor C improves the circuit transition time . 

3-3 ,3 APPLICATION TO LEVEL LOGIC NETS . The basic single - transistor l ogic elements, namely 

emitter followers and inverters, can be interconnected to perform logical functions 

on input signals as shown in Fig . 3-4 . The emitters of two or more emitter followers 

connected in parallel will assume the voltage of the most negative input . See 

March 1961 

Fig . 3-4(a) . In no case may emitter followers be put in a series connection . 

In the case of the inverter, two basic types of connection are possible as shown in 

Figs. 3- 4(b) and (c). For the series connection, the output will remain negative 

unless both input A and input Bare made negative. In this case, the two series ­

connected short circuits will ground the output; in all other cases, the output 

will be negative . For the parallel connection, the output will be grounded if either 

input A or input Bis made negative . These two basic types of connection can be 

comb ined to produce more complicated nets . 
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3-3 , 4 TRANSIENT CHARACTERISTICS. The dynamic characteristics of emitter followers and 

inverters are fundamental limitations on the speed at which the computer can operate . 

Two factors which must be considered are "transition time " and "saturation". 

a) Transition Time: Logically speaking, all the computer level signals are 

nominally O volts (ground) or -3 volts, although they may vary widely from 

these values. Ideally, the transistor circuit element should reproduce or 

invert the signal t ransition appearing at its input instantaneously . In 

practice, this ideal situation is compromised both by the transistor and by 

the external circuitry tied to the transistor. 

Because of hole storage time in the transistor, a finite time delay (dead 

time) occurs between the time an input changes and the time the output 

responds. In addition to this delay time, the transient properties of the 

transistor and the external l oading circuitry result in a finite rise time 

or fall time . The sum of the delay time and the rise or fall time is called 

the "transition time". Fig. 3-5 shows time plots of a typical transistor 

circuit. 

b) Saturation: It is important that circuits be insensitive to wide voltage 

and transistor-para.meter variations ; that is, while the nominal signal 

voltages are O and -3 volts, actually they may lie in the two bands of +0 . 5 

to -0 . 4 volts and - 2 .4 to - 5 volts. Fig . 3- 6 shows how operating an inverter 

circuit in its "saturated" r egion minimizes the effects of these variations . 

For this, and other reasons, the transistors are normally saturated. 

3-3,5 TRANSISTOR TYPES. Two basic PNP types of transistors are used in the TX-2 computer. 

The high - speed logic circuitry uses a surface -barrier transistor usually referred to 

as an L-5122, but similar to the 2N240 . If high current gain at high current levels 

is required, a micro-alloy transistor (L -5134, similar to 2N393) is used. Other PNP 

and some NPN transistors are used for special applications. 

3- 3 ,6 CASCADING LIMITATIONS. As indicated previously, it is important that the transistors 

operate in their saturated region . It is also important that the cumulative time lag 

through circuit stages be kept within certain limits . These two considerations 

result in rules of combination for series and parallel arrangements of emitter 

followers and inverters . These are known as "fan in" rules. The same considerations 

limit the types and number of circuits that can be loaded on a driving stage and 

result in so-called "fan out" rules . 

Two classes of emitter followers are used: saturated and non-saturated. Saturated 

emitter followers are those driven by inverters. In this case, the input voltage 

will go more negative than the -3 volt supply, causing the emitter follower to 

saturate and thereby normally produce a -2.9 volt output signal. The outputs of 

flip-flops and the cascade to be described later are special cases of the saturated 
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emitter follower using micro -alloy transistors. Nonsaturated emitter followers are 

those driven by saturated emitter followers . In this case, the output voltage is a 

function of the input and is normally only - 2 . 6 volts . However, this will produce 

adequate drive on all following inverter circuits . In no case may emitter followers 

be driven by nonsaturated emitter followers . 

To summarize: saturated emitter followers a re those driven by inverters; non­

saturated emitter followers are those driven by saturated emitter follower s, flip­

flops, or cascodes. A nonsaturated emitter follower may not drive other emitter 

f ollowers, onl y inverters. 

There are also l imitations on the inverter . The ground input level to an inverter 

in a level logic net must be no more negative than -0. 4 volt; hence, no more than 

two inverters may be placed in series . No firm l imitation may be placed on the 

number of parallel inverters, although it is usually l imited to eight. Special 

considerations, involved in the case of series -parallel nets, will be covered later . 

The driving ability of emitter followers and the load on their drivers are not well 

defined. Lightly loaded emitter followers impose a l oad on their drivers equal to 

approximately 2/3 of a "standard load", which is defined as the load presented by 

an inverter . This increases to one "standard load" when the emitter follower is 

driving its full load of four "standard loads". 

The load presented by an inverter to its driver is one "s tandard load" and amounts 

to about 1. 2 ma . The driving ability of an inverter is limited to two "standard 

loads" . Hence, an inverter may drive two other inverters or three emitter followers . 

3-3-7 CASCODES . Fig. 3-7 shows a typical cascode . This circuit can be used to provide 

logical inversion . The cascode has the additional properties of fast ris e and fall 

times, and the ability to supply a large amount of current in both the ground and 

- 3 volt states . For these reasons, it is used as a power amplifier . When used for 

driving signal s over coaxial cable, a terminating resistor is employed to match the 

output impedance of the cascode to the cable impedance .. 
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The cascode input signal is applied simultaneously to the base circuits of transistors 

Q1 and Q2 . Therefore, the inputs to Q2 and Q3 are always opposite in phase, so that 

in the steady state only one t ransis tor is conducting . Transistor Q3 acts as an 

emitter follower and provides the driving current in the -3 volt stage, quickly 

pulling the output down to -3 volts. Q2 acts as an inverter and provides the current 

in the ground state, quickly pulling the output up to ground . Thus , the cascode 

circuit expl oits the fast fall time of the emitter follower and the fast rise time 

of the inverter, and makes the total power available to the load since none is dis­

sipated in load resistances . 

3-7 



The cascode circuit is capable of driving twelve "standard loads" or one series­

tenninated 93-ohm coaxial cable and four other "standard loads" . A series-tenninated 

coaxial cable can drive three inverter loads. Emitter followers may not be used as 

loads on a series-terminated coaxial cable . The cascode input presents two "standard 

loads" to its driver . 

3-4 LEVEL LOGIC NETS 

3-4.1 GENERAL. This section investigates the logical possibilities that exist for mixing 

levels by means of two or more transis tors. All of these circuits will be either 

emitter followers or inverters. 

3-4.2 TWa TRANSISTOR LEVEL LOGIC. Fig. 3-8 shows how logical AND and OR type circuits can 

be realized using emitter followers or inverters in series or in parallel. Note that 

Fig. 3-8(a), (c), and (e) are all AND circuits with two inputs. If the circuits are 

considered as black boxes, the only differences are the voltages used to represent 

the truth state of the input and output variables. Thus, the truth and false state­

ments given in the respective truth tables are identical; only the corresponding 

voltages are different. Three possibilities exist: (1) ground inputs produce a 

ground output; (2) ground inputs produce a -3 volt output; and (3) -3 volt inputs 

produce a ground output. There is no AND circuit which combines -3 volt inputs and 

gives a -3 volt output. 

Figs. 3-8(b), (d), and (f), in comparison, are inclusive OR circuits with two inputs. 

All the statements made about the AND circuits are also true for the OR circuits. 

However, the voltages used to represent the truth states of the OR circuits are the 

complements of the voltages used to represent the truth states of the AND circuits. 

In Fig. 3-8(a), for example, both A and B must be at ground in order that C be at 

ground. Therefore, the circuit is an AND circuit . In Fig . 3-8(b), C will be at -3 

volts if either A or B (or both) is at -3 volts . Therefore, the circuit is an 

inclusive OR circuit. 

3-4.3 THREE-TRANSISTOR LEVEL LOGIC. Fig . 3-9 shows how three-transistor circuits may be 

used to express more complex relationships than are possible with two-transistor 

circuits, that is, logical AND 's and OR 's appear together in the same expression. 

These circuits may be considered as simple elaborations of the two- transistor logic 

nets shown in Fig. 3-8. Thus, the A+ B circuit shown in Fig. 3-B(d) becomes the 

core of the (A+ B) · C circuit shown in Fig. 3-9(f). 

The circuits on the right side of Fig . 3-9 are the same as those on the left side, 

except that the corresponding inputs and outputs are complements of one another . 

Complementing the voltages has the effect of changing all AND's to OR ' s, and all OR 's 

to AND's, in the logical expressions. 
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3-4.4 FOUR-TRANSISTOR LEVEL LOGIC. The use of four transistors provides even more combina­

tion possibilities, as shown in Fig. 3-10. The principles of operation are similar 

to those for two- and three-transistor circuits. 

3-4.5 LARGER NETS. Still larger nets of emitter followers and inverters are useful in the 

computer. Fig. 3-11 shows some of the larger inverter nets with their logic function 

for -3 volt inputs and ground outputs. 

Circuit limitations determine the extent to which these nets can be increased. There 

is a limit on the total number of inputs to non-ground elements in series-parallel 

or parallel-series nets. Such nets contain transistors with emitters not tied 

directly to ground. For example, inputs F and G, D and F, and D, G, and Gin 

Fig. 3-ll(a), (b), and (c) respectively are of this type. This rule limits the total 

number of these inputs to two. Mutually exclusive inputs are considered as one; 

thus, G and G. in Fig . 3-ll(c) may be counted as onl y one input . 

3- 5 PULSE LOGIC CIRCUITS 

3- 5 ,1 GENERAL . In addition to static signal levels, pulses are also used in the computer. 

These pulses are used for timing control and therefore are precisely spaced in time. 

The times at which level transitions occur are determined by pulses. 

3- 5 ,2 POLARITY. Pulses are described as either negative (going) or positive (going) 

depending on whether they have ground as a reference and extend to -3 volts, or have 

-3 volts as a reference and extend to ground. 

3-5,3 REPETITION FREQUENCY. The TX-2 computer uses a vacuum-tube pulse -generator to pro­

duce pulses at a 2.5 megacycle basic clock rate; that is, one pulse every o .4 

microsecond. As shown in Fig. 3-12, two pulse outputs are available from the 2.5 

megacycle clock. One pulse stream, the~ phase, is delayed 0.2 microsecond from the 

other pulse stream, the a phase. The a and~ pulses differ only in their reference 

to some arbitrary zero starting time. By means of this system, events can occur 

every 0.2 microsecond despite the fact that the clock frequency is only 2.5 mega­

cycles on each pulse line. 

3-5.4 PULSE SOURCE . Fig. 3-13 shows the a and~ pulse-generator system. Each clock pulse 

output phase is fed to a shaper and then to a shaper amplifier which drives ten 

vacuum-tube driver amplifiers. The output of these amplifiers is a 40 volt positive 

pulse which, in turn, drives five buffer amplifiers . Negative, 30 volt, 0.1 micro­

second pulses are transferred from each buffer amplifier to the computer frame over 

separate coaxial cables. At the end of each cable, a non-inverting 10:1 pulse 

transformer provides -3 volt clock pulses for the logical circuitry. 
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3-5-5 PULSE NOTATION. Since diamonds are used to indicate levels, arrows are used to 

indicate pulses (see Fig. 3-2). A hollow arrow indicates a positive pulse, and a 

solid arrow indicates a negative pulse. (The solid arrow used for negative pulses 

should not be confused with similar- type arrows used on block diagrams to indicate 

signal paths.) 

3-5,6 PULSE GATING. In logic nets using both pulses and levels, levels are used to gate 

pulses. The inputs to these nets are one or more levels and a single pulse line 

input. The output is always a pulse (usually of the opposite polarity to the input 

pulse). When the input level logic is satisfied, an input pulse will cause a pulse 

output. This process is sometimes described as the input pulse "sampling" the input 

level logic. The need for logic nets with both pulse and level inputs will become 

apparent in the sections that follow. 

3-5,7 SINGLE-STAGE PULSE GATES . Fig. 3-14(a) shows an inverter with a negative pulse input 

and a positive pulse output. If the emitter is tied to ground through a level logic 

circuit, the situation in Fig. 3-14(b) results. In this case, when the emitter is 

at -3 volts, the transistor will not conduct regardless of the pulse on the base 

circuit. However, when the emitter is at ground, a negative pulse on the base pro­

duces a positive pulse at the collector. This ground level to the emitter may come 

from a flip-flop or another inverter. In Fig. 3-14(c), two transistors are used, 

with a negative pulse and a -3 volt level input producing a positive pulse output. 

Fig. 3-14(d) shows the same circuit used for mixing a negative pulse and two levels 

of opposite sense. Note, in Fig. 3-14, that all the circuits form logical AND gates; 

that is, all the indicated input signals must be present in order to produce a pulse 

output. 

The inverter circuits used to make up pulse gates are standard inverters. Up to 

three inverters may normally be put in series, with the pulse being applied to the 

output transistor. The level inputs present one "standard load" to their driver. 

The pulse input presents one "pulse load" to its driver when its emitter is grounded, 

and approximately 1/3 "pulse load" when gated off . 

3-5.8 REGISTER DRIVERS. In order that the single-stage gating circuits just discussed 

operate properly, it is necessary that the pulse inputs be of proper magnitude and 

shape. To accomplish this, the outputs of special circuits called "register drivers" 

are used as pulse inputs to the single-stage gates . (See Fig . 3-15) 

If the two register-driver level inputs are at ground, the inverter supplies current 

to the bases of Q3 and Q4 . These transistors are saturated emitter followers whose 

collector supply voltage is made up of clock pulses from the distribution system of 

Fig. 3-13 , When saturated, these transistors short the input pulse through to the 

output terminal. The circuit is abl e to drive twelve "pulse inputs" plus a 100-ohm 

line terminator . 
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Both level inputs to the r egister driver must be at ground before a pulse output can 

occur . The clock pulses determine precisely when a pul se will occur at the output of 

the register driver. The level inputs to the register driver each present two 

"standard loads" to their driving source. 

3-6 FLIP-FLOPS 

3-6.1 GENERAL . Flip- flops are memory or data- storage devices. The basic activity of the 

computer involves transferring data into and out of these storage devices . The 

inputs to the flip - flops are positive pulses and the outputs are levels . Like any 

memor y element, the flip - flop is a two- state (bistable) device. These states are 

called t he ZERO state and the ONE state . The flip - flop will remain indefinitely in 

one of these states until pulsed into the opposite state . 

3-6.2 OPERATION. There are three inputs to the flip - flop (see Fig. 3-16). A "set to zero" 

input pulse p laces the flip -f l op in the ZERO state . This is true regardless of the 

state the flip - flop was in prior to the pulse . Likewise, a "set to one " input pulse 

places the f lip - flop in the ONE state regardless of the prior flip - flop state. A 

"set to complement" pulse places the flip - flop in the opposite state from that which 

it was in prior to the pulse . Note that the inputs a.re always a.t - 3 volts until an 

input pulse occurs . Pulses are barred by logical design from occurring on more than 

one input at a time, or closer together than 0 .2 microseconds, because of the 

ambiguity involved. 

3-6.3 NOTATION . While the operation of flip - flops is straightforward , there are certain 

subtleties in the labeling of the outputs that are important to grasp . The flip-
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flop is a two- state device and may be in either the ONE state or 

The flip - flop states themselves can be represented by variables, 

FFO is the name of the variable r epresenting the ZERO state , and 

the ZERO state . 
0 1 

namely FF and FF 

FF1 is the name of 

the variable representing the ONE state . The variable is TRUE if the flip - flop is 

in the state represented by the variable, and is FALSE if the flip-flop is not i n 

the state represented by the variable (that is, i n the opposite state) . Thus, FF1 

is TRUE if the flip - flop is in the ONE state, and FALSE if the flip -flop is in the 

ZERO state. 

Note that nothing has been said thus far about the output voltage levels used to 

represent the state of the flip - flop. A flip - flop has two output wires which have 

opposite voltages on them : that is, when one is at ground, the other is at -3 volts. 

These wires are called the "o wire " and the 11 1 wire" . By definition, the "o wire " 

has -3 volts on it when the flip - flop is in the ZERO state , and the "l wire" has 

-3 volts on it when the flip - flop is in the ONE state. 

Fig. 3-16 summarizes the operation of the flip - flop . If the flip-flop is first 

"set to ZERO" , then "set to ONE" , and then "set to complement ", the sequence of 

voltages given in the variable truth table will appear on the O and 1 wires . Whether 
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the wire is in the TRUE or FALSE state of the variable depends on the agreement (or 

lack of agreement) between. the state of the flip-flop and the state represented by 

the variable. 

3-6.4 INTERNAL CIRCUITRY. Fig. 3-17 shows the internal circuitry of the flip-flop. The 

heart of the circuit is a transistor variation of the familiar Eccles-Jordan multi­

vibrator. In this case, the gating transistors external to the flip-flop form 

inverters with resistors in the flip-flop themselves. The outputs of the inverters 

provide the trigger inputs to the two-state circuitry . The cascodes provide a low­

impedance driving source and decouple the flip -flop from its load. Note that the 

two cascodes are cross-tied . In all other respects, the cascodes are similar to 

those described previously. 

3-6.5 EXTERNAL INPUT CIRCUITRY. Fig . 3-18 shows the typical input circuitry external to 

the flip-flop . The flip-flop is pulsed by ANDing a "when" and "what" type signal at 

the input gate . The "when" pulse signal determines precisely when in time the flip­

flop is going to be pulsed (assuming that the "what" circuitry indicates a ground 

level is available to be sampled). The "what" level signal determines the state to 

which the flip-flop will be set . For example, if the emitter on the external "set 

to ONE" gate is at ground, the flip-flop will be pulsed to the ONE state . Data is 

shifted through the computer along the "what" lines. Data shift time control occurs 

along the "when" lines. 

3-6.6 PULSE AND LEVEL TIME RELATIONSHIP . Fig . 3-19 shows the time relationship of the 

pulse and level transitions that might occur in Fig. 3-18. Assume that at time 

t = O, the output of logic net Cl is at ground and that the outputs of logic nets 

C2 and C3 are at -3 volts. Clock pulses of the shape shown in the Fig . 3-19 arrive 

at the input to the register driver at o . 4-microsecond intervals. The output of the 

register driver, however, will remain at a constant voltage that is slightly positive 

of ground level. 

At approximately t = 0 .15 microsecond, the output of logic net C2 rises toward 

ground. The total rise time depends on the circuitry of logic net C2 and typically 

might be 40 millimicroseconds. As the output of logic net C2 approaches ground, the 

output of the register driver will begin to follow the input clock pulses. A small 

amount of attenuation and lag occur through the register driver, but can be neglected 

for all practical purposes. No input gating occurs at this time because the output 

of logic net C3 is at -3 volts. At approximately t = 0.7 microsecond, the output of 

logic net C3 rises toward ground. Generally, the rise time will be shorter for logic 

net C3 than for logic net C2. 

The register driver pulse occurring at t = 0.8 microsecond will now sample the ground 

level from logic net c3. The output of the gate will be at -4 volt.sup until the 

time it is pulsed. The gate output pulse never actually reaches ground, but never­

theless triggers the flip-flop. The positive input pulse to the flip-flop now 
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reverses the polarity of the voltage on the O and 1 wires coming out of the flip-flop. 

The delay time for the flip-flop is about equal to the width of the clock pulses; 

that is, 0.1 microsecond. 

Several interesting and very important observations can now be made. First, the 

state of the flip-flop did not start to change until the clock pulse that caused the 

change was over. This means that the same clock pulse that was used to change the 

state of the flip-flop could also have been used to sample the output of the flip­

flop before its state changed. On the other hand, the flip-flop state changed 

quickly enough to allow a clock pulse to complement the state of the flip -flop 

again. Thus, the flip-flop can change states at a 5-megacycle rate (once every 0.2 

microsecond) even though the pulses from any other register driver occur at a 

maximum 2.5-megacycle rate (once every o.4 microsecond). 

3-7 FLIP-FLOP REGISTERS 

3-7-1 GENERAL. A flip-flop register comprises one or more flip-flops and assumes an 

identity of its own . Flip-flops contain a bit of information and registers con·tain 

a word. When one speaks of a 36-bit flip-flop register, he means a register composed 

of 36 flip-flops. 

All the normal things that are done to flip-flops, such as "setting to ZERO", 

"setting to ONE", and "complementing", are also done to registers. Sometimes the 

terminology is different. For example, one commonly speaks of "clearing" a register 

rather than "setting to ZERO", but the idea is the same. 

3-7.2 REGISTER TRANSFERS. Register transfers will be treated at the level of data t rans­

fers into the individual flip-flops that make up the registers. Fig. 3- 20 shows how 

ZEROS and ONES are gated into t he flip -flop by transfer pulses. 
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3-7.2.1 JAMMING . Data transfer between flip-flops may be accomplished by several 

different techniques . One technique, called "jam transfer", is illustrated 

in Fig. 3- 21. In this case, the bit of data stored in flip-flop FF1 is 

transferred into flip-flop FF2 by a single transfer pulse. Symbolically, 

this transfer is written 

FF l ---&- FF 2 

This transfer is interpreted as "jamming the contents of FF1 into FF2". 

Two types of jamming circuitry are used (see Fig. 3-21). One type uses an 

emitter fed input gate. This can be done only when FF1 is physically close 

to FF2 so that the ground in FF1 is in close proximity to the emitter of 

the gate . In this case, only one transistor is required for each input . 

The other jamming circuit uses a base fed input gate and requires two 

transistors on each input. In this case, FF1 and FF2 may be physically 

distant from one another. 
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An obvious, but sometimes overlooked fact, is that the data transfer has no 

effect on the state of the register from which the data is transferred. 

3-7.2.2 O'S, l'S TRANSFER. In this technique, the circuitry is similar to that used 

in jamming but the transfer pulse for the ZEROS comes from a different 

register driver than the transfer pulse for the ONES. (See Fig. 3-22 .) It 

is now possible to effect a register transfer by first clearing (that is, 

"setting to ZERO") all the flip-flops in a register and then transferring 

ONES. One clear gate on each bit (requiring one transistor per bit) may be 

used to clear the register before ONES are transferred from several different 

flip-flops. In this technique, fewer transistors are required than in 

jamming, but a time penalty is imposed in that two succeeding time pulses 

are required -- one for clearing and one for setting ONES . It is also 

obvious that logical transfers requiring separate control of the ZERO and 

ONE inputs are now possible. 

3-7.2.3 INTERNAL REGISTER TRANSFERS. There are several types of internal register 

transfers which are all " jam transfers " between bits in a register. One of 

these is called "shifting" and involves transferring individual bits from 

one flip-flop to either the flip-flop on the immediate right or on the 

immediate left; hence the names "shift right" and "shift left". Arithmetic 

Element registers in TX-2 are often considered as closed rings, in which 

case the bits shifted off the right or left end of a register are jammed 

into the opposite end of the register. Under certain other conditions, the 

registers may be broken into several smaller rings in which case the bits 

are shifted around these rings. 

Another type of internal register transfers is called "permuting" and con­

sists of interchanging subwords of the register. This is done by jamming 

the bits of each subword into the corresponding bits of its permuted subword. 

3-7-3 LOGICAL TRANSFERS. This operation involves the logical combination of two registers. 

The result is either stored in one of the two registers or in a third register. 

3-7-3-1 PARTIAL ADD (EXCLUSIVE OR) . Fig . 3-23 shows the truth table for a partial 

add operation and indicates how it is performed. Note that the state of 

FF2 is changed only when FF1 is in the ONE state. When FF1 is in the ZERO 

state, FF2 is unaffected. The logic is performed by means of the complement 

input and is executed by a single pulse. 

3-7-3-2 LOGICAL SUM (INCLUSIVE OR). In this case, two registers are combined and 

the result stored in a third register. (See Fig. 3-24 .) With this circuit , 

the operation requires two successive time pulses. On the first time pulse, 

flip-flop FF3 is cleared. The logical sum pulse then performs the logical 

t ransfer itself. Note that an OR inverter circuit is used, so that when 
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1 1 
either FF1 or FF2 is in the ONE state (FF1 or FF2 ), FF3 is set to ONE. When 

both FF1 and FF2 are in the ZERO state, the output of the inverter is tied 

to ground and the logical sum pulse has no effect on FF3 . Note also that 

the l's transfer of Fig. 3-22 is perfonning the logical sum of FF1 and FF2 
but with the results stored in FF2 , 

3-7,3,3 PARTIAL ADD TRANSFER (THREE REGISTERS, 'IWO PULSES). In this case, the 

result of t he partial addition of two registers is stored in a third register . 

(See Fig. 3-25,) It is first necessary to clear the register in which the 

result is to be stored. This is accomplished by a clear pulse. The 

"exclusive or" logic itself is perfonned by the cross-tied four-transistor 

inverter circuit. A -3 volt output from the inverter occurs when both top 

transistors or both bottom transistors have their inputs grounded. Note 

that this occurs in only two of the four possible state combinat ions of 

FF2 and FF1 . 

3-7,3,4 PARTIAL ADD TRANSFER (THREE REGISTERS, ONE PULSE). In this case, the result 

that was accomplished with two time pulses in Fig. 3-25 is obtained with one 

time pulse. This increase in speed is obtained at the expense of additional 

transistor circuitry. (See Fig. 3-26.) Note that an input pulse is applied 

to FF3 in all four possible cases. Two of the cases effect the "set to one" 

input, and two of the cases effect the "set to zer o" input. 

3-8 REGISTER DECODERS 

If a regis ter contains n flip-flops, the register as a whole may be in any one of 2n states. 

For example, a 3-bit register may be in any one of 23 = 8 states. Each of these register 

states may have a name, and it may be necessary to recognize and indicate each of these 

states. 

Fig. 3-27 shows a typical "register decoder" in which the decoding networks are simple ANDing 

emitter follower circuits. There is an output wire for each state of the register and the 

wire is labelled according to the name of the particular register state. All the output 

wires will be at -3 volts, except the wire that represents the present register state. This 

wire will be a t ground. 

Note that the register states may have completely arbitrary names. The figure shows the 

states named sequentially (both numerically and alphabetically) according to the state of 

the register, which is represented as a binary number. 

3-9 COUNTER AND TIME LEVEL DECODERS 

3-9 ,1 GENERAL. A counter is a register with a count circuit as an input. A time level 

decoder is an ordinary register decoder. 
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3-9 -2 COUNTERS. Fig, 3-28(a) shows a typical counter . The p rinciple of operation is that 

each count pulse indexes the counter by one . When all the flip-flops contain ONES, 

the next count pulse resets all the flip-flops to ZERO . Each of the states of the 

. t i . t · h KO Kl 2 3 8( ) regis er s given a ime name, sue as , , K, K, etc . Fig. 3-2 b shows a 

variation on the simple counter just described. In this case, K1 , K2 , and K3 form 

the indexing counter . K4 is independently controlled and effectively determines how 

the indexing counter state shoul d be interpreted . This is c l ear from the accompanying 

table. Note that both counters in Fig. 3- 28 contain four flip-flops and are capable 
4 

of registering 2 = 16 different states. 

3-9-3 TIME LEVEL DECODERS . Fig. 3- 29 shows how the state of the counter is decoded. The 

pulses for the a counter come from register drivers with a cl ock pulses. Note that 

the inputs to the counter are time pulses and that the outputs of the time level 

decoder are levels representing time states. 

Actually, it is convenient to have~ time levels as well as a time levels. The~ 

time levels occur just 0 .2 microsecond after the cor responding a time levels. This 

is accomplished by gating the a counter register into a~ counter register with~ 

pulses. Thus, the a register contents appear in the~ register, but delayed 0.2 

microsecond from the time they appeared in the a register . The~ register is then 

decoded by a~ time level decoder. 

Each time state (oa, 1a, etc . ) has two complementary output wires, so that the 

counter state can be represented by either a ground level or a -3 volt level. 

3-10 REGISTER DRIVER CONTROL NETS 

A somewhat special type of logical notation is used when discussing register drivers. In 

some cases, it is more advantageous to indicate the logic that inhibits pulses from the 

register driver rather than the logic that permits pulses from the register driver . This 

is shown in Fig. 3- 30. In order that a pulse appear at the output of the register driver, 

it is necessary that both register driver level inputs be at ground. Fig. 3-30(a) shows a 

typical permissive type of register driver control circuit . When either A or Bis -3 volts, 

both inputs to the register driver are at ground and a pulse appears at the output of the 

register driver. On the other hand, when both inputs to the logic net are at ground, no 

pulse appears at the output of the register driver . 

Fig. 3-30(b) shows a typical inhibitory type of register driver control circuit. First look 

at the inputs and output of the register driver. They indicate that, when either input is 

at -3 volts, no pulse appears at the output of the register driver that will transfer the 

contents of flip-flop FF1 into FF2 . One of these register driver inputs will be at -3 

volts when A and Bare not present and C is present in one of the logic nets, or when D and 

E are present in the other logic net. 

3-16 March 1961 



The question now arises as to when a transfer pulse will appear at the output of the register 

driver. ·It will occur when both register driver inputs are at ground. This in turn will 

occur when A or Bis present and C is not present in one logic net, and Dor Eis not present 

in the other logic net. By."present", it is meant that the voltage on the wire is the same 

as the voltage used to represent the truth state of the uncomplemented variable. 

3-11 OTHER COMPUTER CIRCUITRY 

3-11.1 GENERAL. The other miscellaneous special-purpose circuitry used in the computer 

falls into two categories: (1) high-speed circuitry generally used in the central 

computer; and (2) low-speed circuitry generally used in the In-Out Element. The 

pulses used in the low-speed circuitry tend to look more like the levels used in the 

high-speed circuitry. That is, instead of being 0.1-microsecond wide, the pulses 

are approximately o.4-microsecond wide. 

3-11.2 SYNCHRONIZER. The information from pushbutton controls on the console must be 

synchronized with the basic clock-rate activity in the central computer. The cir­

cuit for doing this is shown in Fig. 3-31, A similar low-speed type synchronizer 

is used in the In-Out Element to synchronize information from the external world. 

The logical operation of the synchronizer is as follows: An asynchronous pulse 

appears at the "set to one" input of FF1 . A -3 volt level will appear asynchron­

ously at the output of FF1 . Since FF2 is in the ZERO state at the time FF1 is set 

to ONE, the synchronous clock pulse can trigger the "set to one" pulse of FF2 
synchronously. When this clock pulse appears, FF2 is in the ZERO state, so that 

the open gate on the "set to zero" input of FF1 and FF2 prevents the pulse from 

effecting these inputs. However, by the next clock pulse, FF2 is in the ONE state. 

Both FF1 and FF2 will now be set to ZERO. The time relationship of these events 

is shown in Fig. 3-32, 

Note, in Fig. 3-32, that the output on the 1 wire of FF2 is a synchronous level 

exactly o.4 microsecond wide and positioned with respect to the clock pulses. The 

asynchronous input pulses cannot appear closer together than o.8 microsecond. Also 

note that the cycle is completed by both FF1 and FF2 being "set to zero" by the 

same clock pulse. Both flip-flops stay in the ZERO state until the next asynchronous 

pulse requiring synchronization appears. 

3-11.3 PULSE DELAY LINE. Fig. 3-33 illustrates the characteristics of a typical pulse 

delay line. For the delay line shown, the input pulse can be delayed in twenty 

discrete 20-millimicrosecond intervals. Thus, the pulse appearing at output No. 1 

occurs exactly 120 millimicroseconds after a pulse appeared at the input. Similarly, 

the pulse appearing at output No. 2 occurs exactly 400 millimicroseconds after a 

pulse occurs at the input. Pulse delay lines are used to solve some of the timing 

problems found in the memory systems. They are also used in other parts of the 

computer. 
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3-11 . 4 GATED PULSE AMPLIFIER . This is a two-stage t ransformer -coupled amp l ifier for 0 .1 -

microsecond negative pulses . The output is capable of driving 10 bases and a 100-ohm 

termination. It is used to amplify the weak outputs of delay lines and for ampl ifi ­

cation purposes in some of the in-out circuitry . 

3-11 . 5 VARIABLE DELAY UNIT. Fig . 3 -34 shows a typical variable delay unit . A 0 .1 -micro ­

second negative pulse applied to the input provides a - 3 volt output level for a 

period continuously variable from 0 . 3 microsecond to 2 .2 seconds . The coar se ranges 

are set by means of switching capacitors, and a potentiometer provides the fine time 

setting . The end of the delay can be made to occur synchr onously with a clock pulse 

by use of the added external inverter shown in Fig . 3-34 . Fig . 3- 35 shows time 

characteristics of the variable delay unit . 

3-11 .6 LOW-SPEED FLIP -FLOP AND CAPACITOR-DIODE GATE . The low-speed flip-flop is a simple 

transistor version of the Eccles-Jordan flip - f l op with "set to zero" and "set to 

one" inputs applied directly to the base terminals of the transistors thr ough 

capacitor-diode gates . (See Fig . 3-36 . ) If the flip - flop is in the ONE state , 

the "one" output is at -3 volts and inverter Ql is saturated. If the base of Ql 

is driven positive, thereby making its base current zero, then Ql will become an 

open circuit and its output will turn on Q2, t hus reversing the state of the flip­

flop. Pulses which do this are formed, gated, and coupled into the base of the 

flip-flop by the capacitor -diode gate . 

The input pulses to the capacitor-diode gate ar e wide positive pulses normally at 

-3 volts . The circuit forms a pulse from the rising edge of the input and applies 

it to the flip-flop if the gate input is at ground, but does not couple it if the 

gate is at - 3 volts. 

There are several limitations on the use of the low-speed flip - flop and capacitor-

diode gate . 

3 . 6 volts . 

First, the pulse input signal must not have an amplitude greater than 

Next, the pulse input to this circuit draws 2 ma . The gate input draws 

1 ma and does not gate off the input pulse immediately, but only after 1.2 micro­

seconds. Finally, the flip - flop has an uncontrolled delay which may be shorter than 

0 .1 microsecond and has a rise time of 0 . 2 microsecond or better . It is capable of 

dr iving five "standard loads " . As a result of these limitations, the circuit is 

used only on in-out equipment where necessary operating speeds are less than 600 

kilopulses per second. 

3-11 .7 0 .3 MICROSECOND PULSE FORMER . This unit is essential ly a low-speed flip -flop which 

has been modified so that it is stable in the ONE state only . When a pulse is applied 

to its input via a capacitor-diode gate, the unit goes to the opposite state for 0.3 

microsecond, but then automatically falls back to its rest state. Operation is 

ther efore simil ar to a one - shot multivibrator . 
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3-11.8 SCHMIDT TRIGGER. This is a static hysteresis-type circuit with input-output 

characteristics as shown in Fig. 3-37- The circuit provides an output between 

ground and -3 volts -that is independent of the rise and fall t:ilne of the input. 

The output is inverted with respect to the input. The circuit triggers when a 

rising input reaches 0.9 volt (the output then drops to the -3 volt level in less 

than 0.15 microsecond). It also triggers when a falling input reaches -2.2 volts 

(the output then rises from -3 volts to ground in less than 0.1 microsecond). 

3-11-9 INPUT MIXER AND OUTPUT DISTRIBUTOR. These two units provide complementary functions 

in the In-Out Element. The input mixer selects a particular in-out unit and routes 

one of its output signals to the central computer. Several mixers use a common 

amplifier to drive their output over coaxial cable to th@ E register. The output 

distributor, on the other hand, routes a signal from the fentral computer to a 

particular preselected in-out unit. The distributor drives the central computer 

signal over coaxial cable from the Sequence Switch to the In-Out Control Box. 
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CHAPTER 4 
MEMORIES 

4-1 INTRODUCTION 

The computer has six independent memories designated by S, T, U, V, X and F. The function 

of each of these memories was described in Chapter 2. This chapter will describe the 

structure of the memory systems and explain the principle of operation of the cores used 

in the memories. The details of control for the S, T, U and V memories will be discussed 

in Chapter 11, and for the X and F memories in Chapter 12. 

4-2 MEMORY ELEMENT 

The maj or components of the S, T, U and V memories are shown in Fig. 4-1. They are: 

(1) the memory address selector, (2) the decoders for each memory, (3) the S, T, U and V 

memories, and (4) the read-write control for each memory. 

4-3 MEMORY ADDRESS SELECTOR 

The memory address selector uses the leftmost bits of both the P and Q registers to select 

the desired memory. The remaining bits in the P and Q registers determine the address of 

the word in the selected memory. The selection and address bit coding for the s, T, U and 

V memories is illustrated in Fig. 4-2. Defer bit 2.9 is not used during the memory cycle 

and, since it may be a ONE or a ZERO, is represented by "x". Fig. 4-2 illustrates the 

following points: 

1) The selection and address bit coding is the same for both the P and Q registers. 

2) When bit 2.8 of one of these registers is a ZERO, then that register will select 

S Memory. Similarly, when bit 2.8 is a ONE and bits 2.7 - 2.4 are ZEROS, the 

T Memory is selected; when bits 2.8 and 2.4 are ONES and bits 2.7 - 2.5 are 

ZEROS, the U Memory is selected; and finally, when bits 2.8 - 1.8 are ONES, the 

V Memory is selected. The selection of a particular register in VFF or VFF is 

determined by address bits 1.7 - 1.5. When bits 1.7 - 1.5 are all ZEROS, VFF is 

selected; when any one of bits 1.7 - 1.5 is a ONE, VFF is selected. 

3) Not every combination of the 17 bits in P or Q actually selects a register in a 

memory. 

4-4 S MEMORY 

4-4.1 GENERAL DESCRIPTION. The S Memory is a high-speed, random-access coincident-current 

magnetic-core unit with a storage capacity of 65,536 38-bit words (registers). The 

bits in the word are read out in parallel. The access time, which is the time required 

to locate and read out a particular register in a memory, is 4.0 microseconds. The 

cycle time is 6.4 microseconds. (Cycle time is defined as the minimum time between 

successive read operations in the same memory when complete read-write cycles are 

performed.) Two coordinates are used to select a register during the read operation, 

and three coordinates are used for writing. 
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The major components that comprise the S Memory are shown in Fig. 4-3. They include 

the following: an address decoder and associated cable drivers, 8 switch driver 

current regulators, 32 switch driver input amplifiers, 64 switch drivers, two 16 X 16 

magnetic-core switches, a 256 X 256 core memory array, 152 digit plane drivers, and 

38 sensing amplifiers. The number of lines interconnecting the various components is 

indicated in Fig. 4-3. 

4-4.2 CORE MEMORY ARRAY (See Fig. 4-4). The S Memory array is made up of thirty-eight 

256 X 256 memory planes and contains 2,490,368 ferrite memory cores. The outside 

diameter of each core is 80 mils, the inside diameter 50 mils, and the thickness 

22 mils. The cores are wired into 64 by 64 subassemblies. Each subassembly is a 

complete operating memory plane with its own sense and digit winding. Sixteen 

64 by 64 subassemblies are assembled in a square array and connected together to 

form each 256 by 256 plane. Thirty-eight 256 by 256 planes are stacked one on top 

of another with their X and Y wires connected in parallel to form the complete 

memory array. 

4-4.2.1 OPERATING PRINCIPLE. Consider an array of cores arranged in planes and 

oriented with respect to three orthogonal axes as shown in Fig. 4-5. Each 

core in the array lies at the intersection of a unique set of X, Y and Z 

co-ordinate planes. A wire runs through the cores in each plane. The sense 

windings which are in the Z plane are not shown. 

The memory-core hysteresis loop is sketched in Fig. 4-6. The lower flux 

state by definition will constitute a ONE and the upper flux state a ZERO. 

During a read-out, enough positive current must be applied to switch the 

core from the lower to the upper state. Thus, when the core holds a ONE, 

reading causes a large flux change which produces a large voltage output. 

If, however, the core was already in the ZERO state, reading causes a very 

small flux change which in turn produces a small voltage output. (See 

Fig. 4-7) 

The memory cycle consists in reading out the information contained in a 

register, and then writing information back into the same register (not 

necessarily the same information). It is important at this point to 

recognize two important facts: 

1) The read-out destroys the information held in the core, i.e., all 

cores in the register are put in the ZERO stat e. 

2) The read-out does not require any selection among the digits. 

The entire register receives the read-out excitation, whereas in 

writing, some cores in the register will be switched to the ONE 

state and others will be left, as they were, in the ZERO state -

depending, of course, on the information to be stored in the 

register. 
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Two functions need. explaining: 

1) How a register is selected for read-out. 

2) How an arbitrary pattern of ONE's and ZERO's can be written in a 

register. 

Both of these functions must be accomplished without changing the information 

held by the cores in other registers in the array. 

If the current necessary to switch a cor e is defined as Im and the core 

material is such that I /2 will not switch the core, then by applying 
m 

+I /2 to an X line and +I /2 to a Y line, it is possible to select the 
m m 

register at the intersection of these two co-ordinates without destroying 

the information held in other registers. In order to write in this 

register -I /2 is applied on the X and -I /2 on the Y line. The appropriate 
m m 

Z-windings are used to inhibit with +I /2 on those planes in which ZEROs 
m 

are to be written. This selection process depends entirely on the ability 

of the core to switch at an excitation of I and to remain unchanged when 
m 

subjected to an excitation of I /2 . At this point it is convenient to 
m 

define the noise in this system as that part of the sense-winding output 

during read-out which is not contributed by the selected core. The noise 

would be made up of capacitive and inductive coupling from driving lines 

as well as the outputs due to half-selected cores which are subjected to 

I /2 excitation. 
m 

4-4.3 MAGNEI'IC-CORE SWITCH. In order to match the characteristics of the driver tubes to 

the X and Y selection lines, current step-down devices called magnetic-core switches 

are used. These switch cores also perform the final stage of the decoding of the 

address. 
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4-4.3.1 MECHANICAL FEATURES. A schematic of a magnetic-core switch is illustrated 

in Fig. 4-8. Each of the two magnetic-core switches is made up of 256 

tape-wound cores. Four windings are placed on each core: two 12-turn 

input windings, a 16-turn output winding and a 2-turn bias winding. These 

cores are connected into a square array to form a 2-coordinate switch. 

The inputs to the X switch are called xuo, ... ' XU15' xvo, ... , xv 
15' 

and 

the inputs to the y switch are called YUO, ... ' YU15' YVO, ... , YV15· 

The decoders select one core in each of the two magnetic-core switches. 

The switching of these two cores generates currents in the memory X and Y 

windings. The currents switch the memory cores which contain ONES in the 

selected memory register. The flux reversal generates signals in the sense 

windings of the switched cores. When the two cores in the magnetic-core 

switch are deselected, they generate opposite currents in the memory cores 

of the selected register. This writes ONES in the memory cores that have 

no current in the inhibit (Z) winding. 
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4-4.3.2 OPERATING PRINCIPLE. The operation uf the switch is illustrated in Fig. 4-9-
A bias current is used to bias all the cores in the switch to point A of the 

hysteresis loop. When the core is switched, the flux reverses to point C of 

the hysteresis loop. The magnetomotive force required to switch the core is 

generated by two current pulses called U and V. The application of either 

the U or V current pulses alone is not sufficient to switch the core. How­

ever, the occurrence of both the U and V current pulses in the windings of a 

core is sufficient to cause the core to switch. The switching of the core 

generates a read current pulse at its secondary. 

When the U and V current pulses end, the bias current switches the core back 

to point A. This generates a write pulse. 

4-4.4 SWITCH DRIVING. Since the magnitude of the current levels from the memory address 

level decoders is insufficient to actuate the memory array, switch drivers, switch 

driver input amplifiers, and switch driver current regulators are used to amplify and 

regulate the memory current. 

4-4.4.1 BLOCK DIAGRAM. Fig. 4-10 shows a block diagram of the switch core driving 

system associated with the XU inputs to the X magnetic-core switches. 

Similar systems exist for the XV, YU and YV magnetic-core switch inputs. 

Thus, there are 4 switch core driving systems, each set containing 16 switch 

drivers, 8 switch driver input amplifiers and 2 switch driver current 

regulators. 

4-4.4.2 OPERATING PRINCIPLE. Fig. 4-10 shows the 16 switch drivers as two groups 

of eight, with one current regulator feeding each group. The switch driver 

is made up of several power triodes connected in parallel. The current 

regulator signal is applied to the cathode and the input amplifier signal is 

applied to the grid of the associated switch drivers. The grid input lines 

to the first group of eight drivers are connected consecutively from Oto 

7. The grid input lines to the second group of eight drivers are connected 

in parallel with the first group. 

A particular line in the switch is selected by first grounding one of the 

grid input lines and then pulsing one of the current regulators. For 

example, to select line O, grid input O is grounded and the current regulator 

input is pulsed, thus actuating driver O. Current regulator input O is 

pulsed for switch drivers O through 7 and current input 1 is pulsed for 

switch drivers 8 through 15. 

4-4.5 DIGIT DRIVERS. The digit drivers are used during the WRITE phase of a memory cycle. 

Th~y provide the inhibit currents that prevent the cores, in which it is desired to 

write ZEROS, from reversing to the ONE state when the write current is applied. 
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4-4.5.1 BLOCK DIAGRAM . The digit-plane driver b l ock diagram is shown in Fig. 4-11. 

It is similar to the current regulator in the switch drive circuit. Four 

such circuits are associated with each 256 by 256 plane, one for each 

quarter of the digit plane winding. Each quarter is made up of the digit 

winding of four subassemblies connected in series . 

4-4.5 .2 OPERATING PRINCIPLE. The input to the digit driver is a t r ansistor "AND" 

gate. The quarter selection level is appl ied to one input and the timing 

l evel to the second input . The output of the gate cir cuit controls an 

ampl ifier which suppl ies a regul ated curr ent pul se to the inhibit winding . 

4- 4 .6 SENSE AMPLIFIERS 
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4-4 .6 .1 "BLOCK DIAGRAM . The block diagram of a typical sense amplifier is shown in 

Fig. 4-12. Each sense amplifier has four bi -polar i nputs. Each bi -polar 

input comes from a sense winding section of a Z plane in the memory array 

and goes to one of four differential amplifiers in the sense amplifier. 

The four amplifier outputs are then mixed in an emitter follower and finally 

ampl ified by a pulse amplifier. One four- input sense amplifier is asso­

ciated with each 256 by 256 plane . Thus, there is a total of 38 sense 

amplifiers for the entire memory. 

The sense windings in a 256 X 256 plane are broken up into four sections. 

Each section consists of the sense windings from four diagonally adjacent 

(in the sense of Fig. 4-12) 64 X 64 subassemblies . By connecting the sense 

windings on the diagonal, there is a minimum coupling between the active 

X and Y windings and the sense winding. (Ideally the coupl ing should occur 

in only one case in the plane . ) Note that a given X or Y dri ve line inter­

sects only one of the subassemblies in the diagonal section which the sense 

windings are interconnected . It should also be noted that with this method 

of connection, the voltage induced in the sense windings by the half 

selected cores (i.e . , the cores in which either the X or Y winding is pulsed 

but not both) is equal to that in one 64 X 64 subassembly memory. 

Each sense winding is also a delay line. To reduce the delay and resultant 

signal dis,;tortion, the four assemblies on a given sense winding section are 

connected in series-parallel as shown in Fig. 4- 12 rather than just in 

series . 

4-4 .6.2 OPERATING PRINCIPLE . The bi-polar signal is fed into the differential 

ampl ifier in the sense amplifier. The outputs of the differential ampli­

fiers are mixed (ORed) and rectified in the emitter-follower circuit, and 

then further amplified in the pulse amplifier to a certain voltage. If a 

ONE is read out, the voltage will be 3 volts, and if a ZERO is read out, 

the voltage will be zero volt s. The signal is transmitted to the memory 

buffer register where it is sampled by a 0 .1 microsecond strobe pulse. 
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4-5 T MEMORY 

4-5.1 GENERAL DESCRIPTION. The T Memory is a high-speed, random-access, coincident­

current magnetic-core unit with a storage capacity of 4096 38-bit words (registers). 

It contains only transistors and diodes in the read, write, and selection circuitry 

in contrast to the S Memory which uses principally vacuum tubes and magnetic cores. 

The bits in a word are read out in parallel. The cycle time is 4.4 microseconds 

and the access time is 2.0 microseconds. As in the S Memory, a 2:1 current selection 

ratio is used, with two coordinates used to select a register during read-out and 

three coordinates used during write. 

4-5,2 BLOCK DIAGRAM. Fig. 4-13 is a block diagram of the T Memory. It is very similar to 

that of the S Memory. The basic difference is that transistor drivers, called 

selection line drivers, are used to select and drive the X and Y memory lines 

instead of the magnetic-core switches used in the S Memory. 

Like the S Memory, the T Memory uses two coordinate selection of memory registers. 

The X and Y lines are selected in a two level decoder. The decoded coordinate 

selection levels are amplified by two sets of 64 selection line drivers to the 

magnitude required to operate the cores. Other components are 30 digit plane 

drivers, 38 sensing amplifiers, a read-write selector and 4 read-write current 

generators. 

The T Memory is made up of thirty-eight 64 by 64 planes and contains 155,648 ferrite 

cores. The cores are composed of the same material as those of the S Memory, but 

are dimensionally smaller. The outside diameter of each core is 50 mils, the inside 

diameter 30 mils and the thickness 12 mils. 

4-5.3 OPERATING PRINCIPLE. The operation of the T Memory is very similar to that of the 

S Memory. The first and second level decoders operate as standard decoders. The 

drivers operate as switches in a similar manner to those of the S Memory except that 

they drive the cores directly instead of through core switches. Thirty-two selection 

line drivers are used in conjunction with each read-write current generator in order 

to reduce the capacitive load on the read-write generator. The READ-WRITE operation 

is the same as the S Memory. 

The operation of the digit inhibit circuits and sense amplifiers is also the same 

as those of the S Memory. However, since there is only one 64 X 64 array per digit, 

one digit plane driver and one sense amplifier per digit suffice. 

4-6 U MEMORY 

The U Memory is currently undefined. However, it is expected to be similar in construction 

and operation to the T Memory. It will have a storage capacity of 4096 38-bit words 

(registers). 
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4-7 V MEMORY 

4-7,1 GENERAL DESCRIPTION. Fig. 4-14 is a simplified block diagram of the V Memory. The 

sel ection of VFF or VFF is determined by the V Memory selector control which decodes 

bits 1.7 - 1.5. Components of VFF include 32 plugboard registers, 16 toggle switch 

registers, a real-time clock register, and a shaft encoder register. Components of 

VFF include the 5 flip-flop registers A, B, C, D, and E. 

4-7,2 VFF MEMORY (A, B, C, D AND E REGISTERS) 

4-7,2,1 GENERAL DESCRIPTION. The A, B, C, D and E registers located in the 

Arithmetic Element and the Exchange Element are also used as memory storage 

registers. They have a non-destructive READ cycle. Thus, a write cycle is 

not required, unless a store type instruction is being performed. 

4-7 .2.2 MECHANICAL FEATURES . The five VFF registers contain 36 bits numbered from 

left to right: 4.9 - 4.1, 3.9 - 3.1, 2.9 - 2.1 and 1 .9 - 1.1 . Since there 

is no 2.10 bit, parity checking is excluded . Note that there is also no 

4.10 (meta) bit associated with these registers. 

4-7.2.3 OPERATING PRINCIPLE. During the READ phase of the READ-WRITE cycle, the 

information is transferred out of the A, B, C or D register into the E 

register and from there into the Nor M register . First, the content of 

the E register is read into the M register. Next, the content of the 

selected A, B, C or D register is read into the E register . Then the con­

tent of the E register is transferred into the Nor M register and, at the 

same time, the content of the M register is placed back in the E register. 

When writing into the A, B, C or D registers during the WRITE phase, the 

content of the M register is transferred into the E register. The selected 

register in the Arithmetic Element is then cleared and the content of the 

E register is transferred into that register. Since read-out of the VFF 

registers is non-destructive, the content of the N register never needs to 

be rewritten. 

4-7 ,3 VFF MEMORY 

March 1961 

4-7 .3.1 TOGGLE SWITCH REGISTERS. The toggle switch register is a manually set static 

memory which, like the VFF Memory, has a non-destructive read cycle. 

The 16 toggle switch registers are arranged in horizontal rows in groups of 

four on the control console. (See Fig . 4-15.) The addresses are labelled 

in octal code from 377720 through 377737 . Each register consists of 37 bits 

(vertical columns) numbered from left to right as follows: 4.10 - 4.1, 

3.9 - 3.1, 2.9 - 2.1, and 1.9 - 1.1. Bit 2 .10 is excluded because there is 

no parity checking for the V Memory. The circuitry is built so that another 

8 registers can be easily added. 
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Fig. 4-16 illustrates the basic operating principles of the toggle switch 

storage. The basic mechanism of the storage is a resistor-switch matrix 

which contains 592 resistors and 592 switches (16 X 37 = 592). Each 

resistor has one end tied to a digit line (16 resistors per digit line) and 

the other end tied to the common terminal of a switch. One side of each 

switch, the ZERO or normally closed position, is tied to ground. The other 

side, the ONE or normally open position, is tied to a resistor driver 

(37 resistors per driver). One resistor from each digit line goes to each 

resistor driver. 

The resistor driver of a register is selected by a -3 volt level on one of 

three lines and by a ground level on one of eight lines. The output of the 

selected resistor driver swings from ground to -25 volts. All unselected 

resistor drivers are held at ground. 

Those resistors that are tied to switches set in the ONE position are 

connected to resistor drivers. They drive their digit lines to -1 volt. 

Hence, a -1 volt signal on a digit line means that the appropriate digit 

of the selected register is a ONE. 

The digit line signal is detected, amplified to a standard level, and 

inverted in a digit detector unit. The digit detector, in turn, drives a 

cable driver which transfers the information to the sense amplifier and 

strobe selector, where it is strobed and used. 

4-7.3.2 PLUGBOARD REGISTERS. The plugboard registers, like the toggle switch 

register, form a manually set static memory which has a non-destructive 

read cycle. Provisions are made so that two plugboards can be connected to 

the computer at a given time. These plugboards are designated A and B. 

They are used as storage for utility and maintenance routines. The sequence 

switch priority plugboard is not considered part of VFF. 

Fig. 4-17 shows a typical plugboard. The octal addresses are numbered from 

Oto 17, and the register bits are numbered from left to right: 4.10 - 4.1, 

3.9 - 3.1, 2.9 - 2.1, and 1.9 - 1.1. Again, bit 2.10 is excluded because 

there is no parity checking required. 

The operation of the plugboard is similar to the toggle switch storage 

previously described. In this case, insertion of a jumper (dual-prong 

patchcord) has the same effect as closing a switch. (See Fig. 4-17.) 

4-7.3.3 SHAFT ENCODER. The shaft encoder is an analog-to-digital converter which 

translates shaft position information into digital code by means of a self­

contained, non-ambiguous, dual-brush selection logic. The unit itself and 

one of the two internal converter discs are shown in Fig. 4-18. 
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The voltage appearing on each lead of the two sets of output tenninals 

represents a coefficient in the natural binary system. A tenninal voltage 

of -20 volts develops the coefficient ONE and zero voltage develops the 

coefficient ZERO. The complement of the binary output is provided on the 

second set of tenninals. 

4-7.3.4 REAL-TlJ.1E CLOCK. The real-time clock uses a 100-kc pulse source and a 

36-bit counter. Pulses are applied continuously to the counter so that a 

time reference is always available. 

4-8 PROGRAM ELEMENT MEMORIES 

4-8.1 GENERAL DESCRIPTION. The Program Element contains two memories designated X and F. 

Xis the 64-register 19-bit index memory and Fis the 3?-register 10-bit config­

uration memory. Both memories have a parity bit, but no meta bit. The operation 

of both memories is described in somewhat more detail in Chapter 12. 

4-8.2 X MEMORY 
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4-8.2.1 GENERAL DESCRIPTION. There are three modes of operation for the magnetic­

core X Memory: READ-WRITE, READ, AND CLEAR -WRITE. Unlike the S, T, and U 

memories, two cores per bit in a single memory plane are used . The bits of 

a word are read out in parallel with a cycle time of 3.6 microseconds and 

an access time of o.6 microsecond. In the X Memory, cycle time is the time 

between successive strobe pulses during a repetitive READ-WRITE cycle; 

access time is the minimum delay between setting the address register and 

strobing. 

The X Memory system is shown in Fig. 4-19. The word selection method used 

is detennined by the manner in which the NJ bits are decoded. The first 

five bits (N 3 ) of the six N bits are decoded by the J Decoder into 
3.5 - .1 J 

32 J Decoder levels. These levels represent the addresses of 32 pairs of 

registers in the X Memory. The selection of which of the two registers in 

a pair is detennined by the sixth J bit (N3 _6 ). This bit is used in a 

second level selector, with the selection detennined by the value of the 

bit. 

4-8.2.2 MECHANICAL FEATURES. The cores used for the X Memory are 47 mils OD, 27 

mils ID, and 12 mils thick. Both the digit and word selection windings 

make 4 turns on each core through which they pass. Fig. 4-20(a) shows the 

complete memory plane. Fig. 4-20(b) shows a portion of it enlarged. The 

cores are mounted on a lucite plane. The wires pass through openings made 

by the intersection of slots milled on one side of the plate with similar 

slots milled at right angles on the other side. The digit current is 8 ma, 

the write driver output current is 18 ma, and the read driver currents is 

117 ma. 
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4-8.2.3 OPERATING PRINCIPLE. Each bit in the X Memory has an A and B core asso­

ciated with it. Each of these cores may be in either a CLEARED or SET state, 

but both cores cannot be in the SET state at the same time. If an A core 

is SET, a ONE will be read-out during the READ process when this core is 

switched. Similarly, if the B core is SET, a ZERO will be read-out during 

the read process if this core is switched. Whichever core is switched, 

both will be left in the CLEARED state at the end of the READ process. 

The winding configuration is shown in Fig. 4-21. A word is selected by 

connecting the upper end of a word line, e.g., Y, to a specified voltage 

(-3 V). The READ driver then puts out a current pulse 4-1/3 times that 

required to switch a core (on a 2:1 basis). (See Fig. 4-22.) Only one of 

the two cores (per bit) A or Bis switched to the CLEARED state, since any 

previous WRITE operation will have left one core SET, and one core CLEARED. 

The switched core generates a pulse in its digit line. This line passes 

through one of the cores in the same direction as the word line and through 

the other core in a direction opposite to the word line. Thus, the polarity 

of the induced pulse on the digit line during READ indicates whether a ONE 

or a ZERO is being read out. 

The ends of the digit line are connected to two differential amplifiers, 

each of which responds to pulses of only one polarity. The output of one 

amplifier is fed to the SET TO ONE input side of the buffer flip-flop and 

the output of the other amplifier is fed to the SET TO ZERO side of the 

buffer flip-flop. Thus the output of the memory is jammed into the buffer 

register by the strobe pulse. 

At all times, a digit bias current flows in the digit winding. The direction 

of this current is determined by the state of the buffer register flip-flop 

associated with the digit. The amplitude of the current is 1/3 that 

required to switch the core in a 2:1 system. This digit bias current is 

very small compared with the read current and thus has no effect on the 

READ process. However, the digit bias current does enter into the logic 

of the WRITE process. During WRITE, a current of 2/3 that required to 

switch the core is placed on the selected word line. If the buffer register 

bit contains a ONE, the polarity of the digit bias current will be such as 

to add to the select line current in the A core. The current in this core 

is now sufficient to switch it, and accordingly it will be SET. If the 

buffer register bit contained a ZERO the B core would have been SET in the 

same manner. Notice that while the digit bias current is adding to the 

select word current in one core, because of the winding configuration it 

will be subtracting from the select word current in the other core, i.e., 

the net current in that core will be 1/3 that required to switch the core. 

That core will be undisturbed and left in the CLEARED state. 
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Thus, the current ratio used during WRITE is 3:1 (i.e., 1:1/3) with a dis­

turb current of no more than 1/3. Fig. 4-22 shows the timing and current 

relationships in cores A and B of Fig. 4-21. Note that during both the 

READ and WRITE processes, as well as during quiescent periods, there is a 

current of± 1/3 in all the cores. 

The complete READ-WRITE cycle has been described above. Sometimes the READ 

operation is used alone, when there is no need or time to perform a complete 

READ-WRITE cycle. When the computer returns to WRITE in registers have 

had a READ cycle only, the CLEAR-WRITE cycle is used. CLEAR-WRITE is the 

same as READ-WRITE except that the strobe into the buffer register is 

eliminated. The CLEAR-WRITE cycle is necessary to insure correct writing, 

since if a WRITE operation should follow a previous WRITE operation in the 

same register, some bits might have both A and B cores SET. 

4-8.3 F MEMORY 

March 1961 

4-8.3.1 GENERAL DESCRIPI'ION. The configuration memory is used to store 32 config­

uration words. Each word has a word length of 9 bits plus a parity bit. 

This memory differs from the other memories in the computer in that it is a 

thin magnetic film memory. A film memory has several potential advantages 

over the familiar ferrite toroidal core memory: faster cycle time, lower 

power dissipation, greater compactness, and simpler fabrication of the 

wiring arrays. 

4-8.3.2 MECHANICAL FEATURES. Two 16 X 16 arrays, one of which is shown in Fig. 4-23, 

are placed side by side to form the memory. Each of the 256 individual film 

elements of an array are round spots 0.060" in diameter and 5 X 10-6 inches 

thick and are composed of 81% nickel and 19% iron. They are deposited on a 

small plate of glass 1.6 inches square with a thickness of 0.007 inch. The 

center to center spacing of the spots is 0.10 inches. The films are 

relatively stable in ordinary environments and no special treatment or sur­

face coatings are required. However, a coating of "Krylon" is applied to 

resist abrasion during handling. 

There are three lines associated with each spot: (1) word, (2) digit and 

(3) sense lines. Fig. 4-24 shows a complete set of word, digit and sense 

lines for one spot. Fig. 4-25 is a schematic view of the drive and sense 

line winding configuration. 

Each word line is driven by a magnetic core. These cores serve a purpose 

similar to that of the switch cores in the S Memory. Each core has two 

selection windings, one of which is based on a decoding of three of the 

address bits and the other on the remaining two address bits. The diode 
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in the word lines pennit current to flow only when the core is selected. 

When a core is deselected, a bias current in the selection windings switches 

the core back to its nonnal state. 

The digit and sense lines are parallel. The digit lines usually have 

current flowing in one direction. The current is reversed only during a 

write cycle when a ONE is being written. The sense line picks up the signals 

generated by a film switching during read-out. Note that the sense windings 

are crossed between the two memory arrays to minimize noise pickup. 

4-8.3.3 OPERATING PRINCIPLE. The thin films are fabricated in such a way as to 

have an easy a.xis of magnetization. Application of an external field along 

this axis simultaneously with the application of a small transverse field 

can cause the film to switch from one magnetized state to the other. The 

transverse field is generated by the word line current pulse and the longi­

tudinal field by the digit line current level. 

One of the directions of the film's magnetization along the easy a.xis is 

arbitrarily chosen to represent a ONE, and the other direction to represent 

a ZERO. During a READ the field generated by the digit line is in the ZERO 

direction. If the film is in the ONE state, it will switch to a ZERO and 

the resulting rotating field induces a voltage in the sense line. If the 

film is a ZERO, there is no switching but merely a slight disturbance of 

the film's field and no voltage is induced in the sense line. Thus it can 

be seen that the READ is a destructive type in that it clears the memory 

word register. During a write operation, if a ONE is to be written, the 

digit current is reversed so that the field switches the film into the 

original ONE state. If a ZERO is to be written, the digit current is not 

changed and the film remains in the ZERO state it was placed in during the 

d~structive read out. 
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A. Photograph of shaft encoder. 

J 
B. Converter disc.* 

Fig. 4-18. Shaft encoder. 

* Reproduced by permission. 
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Fig. 4-20a. 11 X11 memory plane, complete (4 1/4 X 6 1/4 inches over-all). 

Fig. 4-206. 11 X11 memory plane enlarged. 
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Fig. 4-21. 11 X11 memory winding configuration. 
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5-1 INTRODUCTION 

CHAPTER 5 

TIMilW AND CONTROL 

The pattern of activity in time that takes place in the computer is determined by the 

Control Element . This chapter will first describe the different sequences of events that 

make up this pattern . It will then explain the basic features of control and timing that 

keep the computer running i n a disciplined fashion. Chapter 6 wi ll give an integrated 

functional description of the Control Element itself. 

Previous chapters established that memories, logic nets, flip-flops, and other components 

require finite but determinate lengths of time to operate. The fact that the operating 

times are determinate means that maximum times to satisfy the "worst condition" situations 

can be established. After initiating one event, it is only necessary to meter out the 

required time before initiating the next event. The hardware for performing this metering 

is usually a counter, although sometimes a delay line is used. 

The simplest dynamic picture of the computer illustrates how data is transferred in and 

out of storage devices as a function of time. It is only necessary to understand the time 

patterns during this shuffling of data in order to understand the basic control and timing 

features of the computer . 

5-2 PATTERN OF ACTIVITY 

Two basic cycles are dominant in the general pattern of recurrent execution of instructions: 

the instruction cycle and the operand cycle. Other subordinate and auxiliary cycles occur 

but they play a secondary and dependent role. Fig. 5-l(a) shows what is occurring in time 

from this elementary viewpoint. Some of the subordinate activity is shown in Fig. 5-l(b). 

During a typical instruction cycle an instruction is first strobed out of the main memory 

into the N register. The contents of the N register are then decoded. At some point, the 

base address in the N register may be modified by indexing it with the contents of an X 

Memory register. During a typical operand cycle, an operand is first strobed out of memory 

into the M register of the Exchange Element. The operations on the operand called for by 

the instructions are then performed. The basic mechanisms involved in these operations were 

described in Chapter 2. 

Within the design limits of the computer, there is an obvious advantage in compressing the 

amount of time required by the various patterns of activity. One method of reducing the 

over-all time is to overlap the basic cycles and the subordinate activities. Usually one 

cycle or phase need not be completed before the next begins. Fig. 5-2 shows how the 

pattern illustrated in Fig . 5-l(b) can be compressed in time . 
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5-3 OVERLAPPING 

Some explanation of the points at which cverlap can generally occur is in order. Once an 

instruction word has been read out of a memory element register and strobed into the N 

register, it is possible to immediately start decoding the N register even though the 

instruction word memory cycle is not completed until the instruction word is rewritten back 

into the memory. Similarly, it is not necessary that all the bits of the N register be 

decoded before the address modification process begins since only the Y base address and J 

index bits are required for this process. The address modification process is completed 

when the address of the operand appears at the output of the X Adder, ready for insertion 

in the Q register. At this point the process of reading the operand out of memory can 

begin. 

The execution of the operation called for by the instruction can be initiated as soon as 

the instruction in the N register is decoded. Usually, the instruction calls for an 

operand. In Fig. 5-2, the operation is shown being initiated after the operand is strobed 

out of memory into the M register. The operation process can overlap the operand rewrite 

process whenever the operation does not involve modifying the operand before it is re­

written in memory. Thus, the processes performed during the execution of an instruction 

can be overlapped to a considerable extent. 

In Fig. 5-3, the next instruction word memory cycle is shown overlapping the operand word 

memory cycle of the current instruction. This is allowable whenever the instruction word 

and operand word are obtained from different memories in the Memory Element. This kind of 

overlapping yields nearly all the speed advantages which can possibly accrue from over­

lapping memory cycles. In fact, the total effective time required to execute an instruction 

can be reduced to little more than one memory cycle. 

It should be noted that the preceding description of overlapping has been highly simplified. 

Both the basic cycles and the subordinate forms of activity vary widely depending on the 

specific instruction and the prior state of the computer. More details on overlapping are 

covered in Chapter 9. 

5-4 CONTROL SCHEME 

5-4.1 GENERAL. The basic control requirements involve some scheme for metering out time 

for all the various activities that occur. This metering is done by counters. Each 

of the basic cycles has its own time meter, or counter. In addition, several other 

types of computer activity, such as those involving the X and F Memories, Change of 

Sequence, the Arithmetic Element, etc., have a counter associated with them. These 

counters will be described in Chapter 6 and Chapter 10. 
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I~ is also important to have a control scheme for determining precisely when a new 

activity can begin. This is accomplished by an interlock control. An interlock is 
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a storage device (a flip-flop) which remembers when various conditions have occurred. 

A number of interlocks are used to determine when counters can begin their cycles and 

thus when the associated processes can be performed. 

5-4.2 COUNTERS. The general characteristics of counters as they relate to the control of 

the computer will now be described. The basic function of the counter is to convert 

a stream of indistinguishable clock pulses into distinguishable time levels. These 

levels can then be used to select, or "gate" clock pulses at specific times. Con­

sider for the moment a free running counter (Fig. 5-4), that is, one in which an 

uninterrupted stream of clock pulses is emanating from the related counter register 

driver. Levels of O.4 microsecond duration appear on the output wires of the time 

level decoders in the time order shown in Fig. 5-4. After the counter reaches the 

€a state, it reverts to the oa state and begins another cycle. 

One point should be emphasized. The clock pulse that causes the counter to generate 

the 5a time level occurs O.4 microsecond prior to the clock pulse that can be gated 

by the 5a time level. The clock pulse that causes the 5a time level, occurs while 

the counter is in state 4a, and can in fact also be gated by the 4a time level. 

This distinction should be borne in mind when attempting to determine when events, 

caused by interlocks and time levels, occur with respect to each other. 

As mentioned earlier, the various counters in the computer are associated with 

specific kinds of computer activity. When the counter has completed its cycle 

(which is tantamount to completing the associated activity), it will be inhibited 

from recycling by interlocks. When this activity is again required, the interlock 

will permit the counter to start again. 

5-4.3 INTERLOCKS. Interlock level logic controls the counter register driver logic nets. 

5-5 TIMING 

The inputs to these nets come from interlock flip-flops and from other sources of 

interlock information in the computer. Basically, the interlock logic indicates 

that all the things which must be done before starting a counter have in fact been 

done. As indicated above, nothing prevents two counters from operating simultane­

ously. The only obvious limitation is that two counters may not control the 

operation of the same device simultaneously. Nothing prevents them from alternately 

doing this, however. The other somewhat arbitrary limitation is that usually no two 

counters start at the same ti.me. All of the information necessary to impose these 

limitations finds its way into the interlock logic nets. 

There is considerable value in understanding how the clock pulses and the time levels from 

the time level decoders•are specifically used in controlling the ti.ming of events. All 

events occurring in the computer are initiated by gated clock pulses. This gating occurs 

in register drivers and is determined by the output of logic nets. The event itself may 
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arbitrarily be defined as the appearance of the gated pulse at the input to a flip-flop or 

memory device. Fig. 5-5 shows the form of the logic at the register driver. Many control 

levels of various kinds will enter the register driver logic nets. These levels will 

always be ANDed with time levels from one or more counters. This logic will in turn be 

ANDed with a clock pulse in the regis ter driver itself to produce a gated clock pulse which 

can initiate an event. 

Certain generalities may now be stated: (1) every clock pulse which is used in the computer 

is gated by some time level; and (2) every time level is coincident with some clock pulse. 

This coincidence is shown in Fig. 5-6. These two generalities are keystone ideas in time 

control in the computer. 

Fig. 5-7 shows how the counters are integrated with the rest of the computer by means of 

their output time levels. This figure also indicates the feedback paths that can occur. 

Note that the counter register driver logic is similar to that of any of the other register 

drivers. It may in fact look at time levels from the same counter it is driving. After the 

register driver pulses have transferred data between registers, cleared and set flip-flops, 

read information out of memory, etc., the new states of the affected storage devices feed­

back through logic nets into the register drivers and then another cycle of events is 

repeated. 

5-6 SYNCHRONISM 

The operation of most computers is described as either synchronous or asynchronous. The 

term asynchronous implies the completion of an event is indicated by the occurrence of the 

event itself; that is, it is not sufficient that the event be initiated, there must be 

positive indication by the event itself that the event is completed. Then and only then can 

a succeeding event take place. The term synchronous implies that each event takes a known 

(maximum) length of time and that it is only necessary to meter out a time interval* before 

initiating a succeeding event. In this case, no positive indication is required that the 

event has in fact taken place before the next event is initiated. These terms have somewhat 

loose meanings and are in practice difficult to use in precisely describing the behavior of 

a computer. It may be stated, however, that TX-2 is dominantly a synchronous machine. It 

is asynchronous to the extent that interlocks, and not fixed intervals of time, determine 

when the basic memory cycles and change of sequence cycles can be initiated. 

Because the computer is synchronous in nature, events initiated in the outside world (that 

is, in the In-Out Element or at the pushbutton console) must be synchronized with the 

computer. Chapter 3 described a synchronizer type circuit for doing this. The important 

feature of this circuit is that the level outputs initiated by asynchronous pulses are 

coincident in the sense of Fig. 5-6 with the computer clock pulses. 

*This time interval is usually some integer number of basic time increments. These increments 
are 0.2 or o.4 microseconds, in the case of TX-2. 
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5-7 SUMMARY 

The dynamic operation of the TX-2 computer is determined by the counters and the interlock 

control. The time levels from the counters find their way into logic nets which are used 

to gate clock pulses. These gated pulses initiate events such as register transfers. The 

sum of the events associated with a given counter constitute some basic process in the 

computer such as a memory cycle. The interlock control determines when the specific 

counters should start, that is, when it is required and permissible for one of the basic 

processes to be initiated. 
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6-1 INTRODUCTION 

CHAPTER 6 

FUNCTIONAL ORGANIZATION 

OF THE 

CONTROL ELEMENT 

This chapter will describe the principle parts of the Control Element. 

One of the basic problems in discussing the Control Element is that of properly establishing 

the boundary lines be tween the other Elements, i.e., the Memory Element, Exchange Element, 

Arithmetic Element, Program Element and In-Out Element, and the Control Element itself. 

(The problem is analogous to defining the boundary between the organs of a body and the 

nervous system controlling the organs.) In the computer the demarcation line is somewhat 

arbitrarily established by locating the information registers (exclusive of the counter 

registers.) in the Elements and the associated register drivers in the Control Element. One 

can visualize the Control Element as reaching into all the Elements via the register 

drivers and controlling the dynamic activity taking place in the registers that comprise 

each Element. (See Fig. 6-1) 

Behind the register drivers are a variety of Control Element devices whose chief function is 

to coordinate the various activities going on in the computer, remember critical events in 

the computer's previous history, and provide indication and a means of manual control of the 

computer. 

The Control Element consists of console controls and indicators, interlocks, counters and 

register drivers, as well as the logic interconnecting them . Fig. 6-2 illustrates the 

general paths of communication within the Control Element. 

The control console contains all the manual controls, i.e.,the pushbuttons and toggle 

switches. The indicators on the console provide useful information to the operator on the 

current state of the computer. 

When an operand, instruction or other cycle is initiated an associated counter is used to 

time control the activity. Time levels from this counter find their way into the register 

driver logic involved in the activity. Interlocks are used to determine when the various 

counters can begin their cycles. 

6-2 CONSOLE CONTROL 

6-2.1 GENERAL DESCRIPTION. The console control consists of a number of pushbuttons and 

toggle switches as shown in Fig. 6- 3, All the pushbuttons are of the momentary type . 

They and the toggle switches trigger level producing mercury relays. The levels 

generated are asynchronous with respect to the computer clock pulses and are usually 

synchronized before being used by the Control Element. 
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The indicators shown in Fig, 6-4 consist of banks of lamps arranged to display both 

in octal and binary fonn the contents of the registers and counters. Individual 

indicator lamps are also used to display the state of interlocks, alanns and in-out 

units. 

6-2.2 PUSHBU'ITON CONTROL 

6-2.2.1 START-STOP CONTROL, The two pushbuttons STOP and CALACO* (Clear Alanns and 

Continue) provide a manual means for stopping and restarting the computer. 

The two push-push switches LOW SPEED and LOW SPEED REPEAT control the "speed" 

of operation of the computer. If both switches are off, the computer will 

operate in the high speed mode. When the computer is in the high speed 

mode, the interlock control will allow the basic cycles of the computer to 

occur as soon as these cycles are needed and can be perfonned. However, 

when the computer is not in the high speed mode it is in either the low 

speed mode or the low speed repeat mode, and four of the basic cycles 

instruction word, operand word, deferred address word and change of sequence 

cycles are controlled by the push-push switches PK STOP1 , PK STOP2 , QK STOP 

and CSK STOP, respectively. When the computer is in either of these low 

speed modes, i.e., not in the high speed mode, then the computer will stop 

whenever it attempts to perfonn one of the four basic cycles for which the 

corresponding console stop switch is on. If the LOW SPEED switch is on, the 

computer can be restarted by pressing the CALACO pushbutton, but, if the LOW 

SPEED REPEAT switch is on, the computer will be automatically restarted by a 

pulse generated from an internal oscillator called the LOW SPEED OSCILLATOR. 

The frequency of this oscillator can be continuously adjusted from Oto 

500 KC by knobs on the console, 

Thus, if the computer is in the low speed repeat mode, and if only the 

PK STOP1 stop switch is on and the LSO is running at 1 cycle per second, 

then every time the computer attempts to read an instruction word out of the 

Memory Element it will stop and wait for (about) 1 second before continuing. 

Note that the CALACO pushbutton clears all the existing alanns before it 

starts the computer. 

6-2.2.2 STARTOVER CONTROL. Pressing the STARTOVER pushbutton raises the flag of 

Sequence o. Since Sequence O is the highest priority sequence, pressing 

the STARTOVER pushbutton will eventually cause a change of sequence to 

Sequence Oto occur. Sequence O will usually perfonn some special program 

at that time. 

*CALACO generates three pulses called CLEAR SUPPRESSED ALARMS, CLEAR UNSUPPRESSED ALARMS and 
START. 
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6-2 . 2 .3 PRESET CONTROL. Pressing the PRESET pushbutton places certain critical flip­

flops in a pre-determined state. The states of these flip-flops guarantee 

that pressing other pushbuttons will be meaningful . 

6-2.2.4 CLEAR SUPPRESSED ALARMS CONTROL. Pressing the CLEAR SUPPRESSED ALARM push­

button will clear the computer of all the existing suppressed alarms. The 

dozen or so alarms in the computer have various individually associated 

controls . One of these controls can suppress the effect of the alarm, 

although the alarm is still indicated when it occurs. This pushbutton 

clears the indication of such alarms. 

6 - 2 . 2.5 CLEAR UNSUPPRESSED ALARMS CONTROL . Pressing the CLEAR UNSUPPRESSED ALARMS 

pushbutton will clear the computer of all the existing alarms that have not 

been suppressed. The unsuppressed alarms cause the computer to stop . They 

must be cleared before the computer can be started again . 

6-2 .2.6 CLEAR REAL - TIME CLOCK CONTROL . Pressing the CLEAR REAL-TIME CLOCK pushbutton 

will reset the clock to zero. 

6 -2.2.7 COMPUTER MASTER START CONTROL . Pressing the CODABO (Count Down and Blast 

Off) pushbutton initiates a succession of actions which start the computer 

from any condition. The CODABO pushbutton actuates the following other 

pushbuttons in the indicated order: 

1) STOP 

2) CLEAR SUPPRESSED ALARM 

3) CLEAR UNSUPPRESSED ALARM 

4) PRESET 

5) STARTOVER 

6) START 

6- 2.3 ALARM INDICATIONS AND CONTROL 
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6-2 . 3.1 GENERAL DESCRIPTION. Alarms are generated by computer or programming errors. 

These alarms may be classified into five categories: 

1) Memory selection alarms 

2) Memory parity alarms 

3) In-out alarms 

4) Operation code alarms 

5) Miscellaneous alarms 

Associated with each of most of the alarms is an indicator light, and a 

toggle switch used to suppress the effect of the alarm condition . (Only the 

miscellaneous alarms are not suppressible.) A two -tone chime emits one tone 

whenever a suppressed alarm occurs and the other tone whenever an unsuppressed 
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alann occurs. The occurrence of an unsuppressed alann will cause the com­

puter to stop, while a suppressed alann will not interrupt the computer 

operation. 

Alarms are cleared by depressing the CLEAR SUPPRESSED ALARMS or CLEAR UN­

SUPPRESSED ALARMS pushbuttons. 

6-2.3.2 MEMORY SELECTION ALARMS (PSAL AND Q,SAL). If either the P or Q register 

contains an illegal address and is used to select a Memory Element register, 

the associated memory selection alann will be generated. The specified 

address is illegal if either the address is in the range 220 000 to 377 577 

(octal) or if the S, T, or U memories are addressed and these memories are 

turned off. These memories may be turned off by the SMOFF, TMOFF, or UMOFF 

console switches respectively. 

6-2.3.3 OPERATION CODE SELECTION ALARM (OCSAL). This alann occurs whenever the 

computer selects one of the 14 undefined operation codes. The occurrence 

may be caused either by a computer error or a programming error. 

6-2.3.4 MEMORY PARITY ALARMS (MPAL, NPAL, XPAL AND FPAL). Whenever a bad memory 

readout into a buffer is made, the parity alann associated with this buffer 

will occur. For example, if a Memory Element register is read into the M 

register with a bad (even) parity, then an MPAL will occur. 

6-2.3.5 IN-OUT ALARMS (IOOAL, MISAL). The IOSAL (In-Out Selection Alann) alann will 

be generated whenever an IOS 3X XXX or IOS 6X XXX type instruction* selects 

an in-out unit which is in the maintenance mode. The MISAL (Misindication 

Alann) alann occurs whenever an in-out unit loses a line of data because the 

central computer fails to perfonn the proper in-out instruction. Note that 

MISAL alarms are associated only with "free running" in-out units. 

6-2.3.6 MISCELLANEOUS ALARMS (TSAL, SYAL AND MOUSETRAP). A TSAL (T Memory Selection 

Alann) alann is generated whenever the T Memory selection circuits fail to 

perfonn properly. 

*See Chapter 7. 

A SYAL (Synch System Alann) alann is generated whenever the synch system 

stops the computer. 

The "Mousetrap" alann is used to stop the computer during special, main­

tenance operations. 
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6-2.4 AUTOMATIC START FROM ALARMS 

6-2.4.1 AUTO START AFTER UNSUPPRESSED ALARM TOGGLE SWITCH. This switch automatically 

starts the computer after it has stopped on an unsuppressed alarm. The 

action of the switch is equivalent to pressing the CLEAR UNSUPPRESSED ALARM 

pushbutton and then pressing the START pushbutton*. 

6-2.4. 2 PRESET AND STARTOVER AFTER SUPPRESSED ALARM TOGGLE SWITCH. This switch has 

effect only when the computer has stopped on a suppressed alarm. The action 

of the switch is equivalent to pressing the PRESET pushbutton and then 

pressing the START pushbutton*. 

6-2 .5 TOGGLE SWITCH PROGRAM SWITCHES (TSP) . The Toggle Switch Program counter consists of 

18 toggle switches. The binary number set up in these switches is used to specify 

the value of the program counter read out, whenever a change to Sequence O occurs. 

This number is then loaded into the P register. 

6-2.6 REMOTE PUSHBUTrON AND TOGGLE SWITCH PROGRAM. For convenience, a portable control 

console is provided with several of the control pushbuttons and switches located on 

it. 

6-2.7 NO OVERLAP TOGGLE SWITCH (NO). This switch can be used to inhibit the simultaneous 

execution of two Memory Element word read out cycles. 

6-2.8 SYNCH TRAP TOGGLE SWITCH . This switch determines whether the trapping sequence con­

trol or the external Synchronization System will provide the signals which raise the 

flag of the trapping sequence. 

6-2,9 STOP AEON SELECTED SYNCHRONIZATION TOGGLE SWITCH . When this switch is turned on, 

the computer will stop whenever the particular conditions specified by the Synchron­

ization System exist in the Arithmetic Element. 

6-3 INTERLOCK CONTROL 

6-3 ,1 GENERAL DESCRIPTION. The interlocks themselves are individual flip-flops which are 

set to ONE and cleared to ZERO when certain specific interlock logic associated with 

them is satisfied. The important characteristic of these interlocks is that they 

remember certain conditions have occurred after the conditions themselves have dis­

appeared. By means of the interlock control the past history of the computer is used 

to control the future activity of the computer. 

6-3,2 ARITHMETIC ELEMENT PREDICT INTERLOCK (AEP). This interlock is used to predict when 

the Arithmetic Element will be finished with its current activity and be again avail­

able for another use. E.g., if a division is being performed, the AEP interlock 

*Note that the action of the START button has been incorporated into the action of the CALACO 
button. 
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predicts when this division will be completed and the Arithmetic Element free to 

perform another operation, such as an addition. 

6-3.3 E REGISTER BUSY INTERLOCK (EB). EB1 indicates that the E register is currently in 

use and is not yet available for some new use. 

6-3.4 INSTRUCTION INTERLOCK1 (PI1 ). PI~ is one of the conditions that is required before 

an instruction word memory cycle or a change of sequence cycle can begin. PI1 is one 
1 

of the conditions that is required before an operand memory word cycle can begin. 

6-3.5 INSTRUCTION INTERLOCK2 (PI2 ). PI~ indicates that a deferred address cycle is 

required. 

6-3.6 INSTRUCTION INTERLOCK3 (PI3). PI~ indicates that a change of sequence cycle is to 

occur. 

6-3-7 INSTRUCTION INTERLOCK4 (PI4). This interlock remembers the value of the hold bit of 

the last instruction executed. 

6-3.8 INSTRUCTION INTERLOCK5 (PI5). PI~ indicates that an intermediate deferred address 

cycle is required. 

6-3.9 Q REGISTER BUSY INTERLOCK (QB). QB1 indicates that the Q register is currently being 

used in an operand cycle and is not yet ready for some new purpose. 

6-3.10 X REGISTER BUSY INTERLOCK (XB). XB1 indicates that the X (index) register is being 

used and is not yet ready for some new purpose. 

6-3,11 X MEMORY WRITE INTERLOCK (XW). xw1 indicates that both the X ( index) register and 

the X (index) memory are being used and are not yet ready for some new purpose. 

6-3,12 F MEMORY INTERLOCK (FI). 
1 

FI indicates, in certain circumstances, whether the F 

(configuration) memory is to be used. 

6-4 INTERLOCK LEVEL CONTROL 

6-4.1 GENERAL DESCRIPTION. Interlock control levels are used to start up counters, or 

place them in waiting states. These interlock control levels are usually not 

effective until the counters which use them are in some specific state. 

The interlock control levels are generated by certain conditions in the computer 

including, most importantly, the state of the interlock flip-flops. 
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6-4.2 INSTRUCTION CYCLE INTERLOCK START1 LEVEL (PISTARTl). This level is used to start 

the PK counter in an instruction cycle. PK must be in its 00 resting state before 

this level can be used. 

6-4.3 INSTRUCTION CYCLE INTERLOCK START2 LEVEL (PISTART2) . This level is used to start 

the PK counter in a deferred address cycle. PK must be in its 00 resting state 

before this level can be used. 

6-4.4 OPERAND CYCLE INTERLOCK START LEVEL (QISTART). This level is used to start the QK 

counter in an operand cycle. QK must be in its 00 resting state before this level 

can be used. 

6-4. 5 CHANGE OF SEQUENCE CYCLE INTERLOCK START LEVEL ( csr8TART). This level is used to 

start the CSK counter in a change of sequence cycle. CSK must be in its 00 resting 

state before this level can be used. 

6-4.6 INSTRUCTION CYCLE CHANGE OF SEQUENCE INTERLOCK LEVEL (PlH SEQ). This level indicates 

that a CSK counter cycle will occur after the current PK counter cycle. This level 

is generated while the PK counter is running and interpreted by the logic controlling 

PI3 , PI3 then remembers whether a change of sequence has been requested . 

6-4.7 INSTRUCTION CYCLE INTERLOCK WAIT LEVEL (PIWAIT). This level occurs if PK is required 

to stop and wait in an intermediate state of the counter (state 23) until some other 

interlock condition is satisfied. Various interlock conditions can cause PIWAIT to 

be generated. 

6-4.8 INSTRUCTION CYCLE INTERLOCK LEAVE SEQUENCE LEVEL (PILV SEQ). This level occurs if 

PK is required to leave the current instruction cycle uncompleted in order that a 

change of sequence cycle can occur. PK is in the 22nd or 23rd state when the 
LV SEQ LV SEQ 

PI level becomes effective. Various interlock conditions can cause PI 

to be generated. 

6- 4 .9 F MEMORY COUNTER START LEVEL (/ START► FK). This level is used to start the FK 

counter in an F (configuration) memory cycle. FK must be in its 00 resting state 

before this level can be used. 

6-4.10 X MEMORY COUNTER START LEVEL (f START► XWK) . This level is used to start the XWK 

counter in an X (index) memory cycle. XWK must be in its 00 resting state before 

this level can be used. 

6-4. 11 ARITHMETIC COUNTER START LEVEL (/ START., AK). This level is used to start the AK 

counter. AK must be in its 00 resting state before this level can be used. 

6-4 .12 ARITHMETIC STEP COUNTER START LEVEL (/ START► ASK). This level is :used to start the 

ASK counter. ASK ~ust be in its 00 resting state before this level can be used. 
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6-4.13 IN- OUT DELAY SYNCHRONIZATION COUNTER START LEVEL (/ START► IODK). This level is used 

to start the IODK counter part of the CSK counter. (Part of this counter is used 

during an in-out delay synchronization cycle, while the other part is used during a 

change of sequence cycle.) The counter must be in its 8th state before this level 

can be interpreted. 

6-4.14 ALARM DELAY COUNTER START LEVEL (/ START .. ADK). This level is used to start the ADK 

counter in an alarm delay cycle . ADK must be in its 00 resting state before this 

level can be used. 

6- 5 COUNTER REGISTER DRIVER CONTROL 

6-5.1 GENERAL DESCRIPTION. The counter register drivers gate clock pulses. These gated 

clock pulses are then used to change the state of the associated counter. 

Usually a counter will proceed from one state to the next in step with a stream of 

gated clock pulses. However, the register driver logic may alter this pattern and 

give use to one of three possibilities. The possibilities are that the counter may 

"rest", "wait", and "skip" when it is in particular states. These possibilities are 

determined by the counter logic and the general condition of the computer at the 

moment. 

Usually a counter will rest in its 00 state until it has a reason to start counting 

or because it is inhibited from starting by other conditions. The interlock levels 

in the counter register driver logic determine when the counter can start. As 

mentioned above, frequently a counter will not count through all its states 

successively, but, instead will skip a number of states . These skips are controlled 

in ·the register driver logic by levels which define the kind of counter cycle being 

performed. In other circumstances a counter will stop and wait in some intermediate 

state. This usually occurs because some interlock level prevents clock pulses from 

getting through the register driver to change the state of the counter. 

6-6 COUNTERS 

6-6.1 GENERAL DESCRIPTION. The physical structure of time level counters was described in 

Chapter III. The time levels generated by a counter are used as factors in register 

driver logic. There they serve to identify the particular clock pulses which, when 

ANDed with the remainder of the register driver logic, affect the contents of the 

associated register. 

There are eight counters in the Control Element. These counters time control the 

execution of memory cycles, change of sequence, arithmetic operations, and other 

miscellaneous activities. 
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The logic controlling the counters reflects conditions existing throughout the computer 

including the state of the counters themselves. 

6-6.2 CHANGE OF SEQUENCE COUNTER (CSK). This is a three stage counter with one additional 

flip-flop used as an interlock. Although 16 time level states can be decoded, the 

counter actually generates either one or the other of two sets of 8 time levels. 

The first set of 8 states from 00 to 07 comprise a part of the counter which time 

controls the change of sequence cycle. This part of the counter is called CSK. The 

second set of 8 states from 08 to 15 comprise a part of the counter which time con­

trols the in-out delay synchronization cycle. This part of the counter is called 

IODK*. As will be seen later, 1.6 microseconds is sufficient to perform an in-out 

delay synchronization cycle. For this reason only states -08 to 11 of IODK are used. 

6-6.3 INSTRUCTION COUNTER (PK). This is a five stage counter consisting of two sets of 

five flip-flops. One set generates alpha time levels and the other set generates 

beta time levels. The basic function of this counter is to time control the 

execution of an instruction or deferred address cycle. 

6-6.4 OPERAND COUNTER (QK). This is a five stage, two phase counter similar in structure 

to PK. The basic function of this counter is to time control the execution of an 

operand cycle. 

6-6.5 ARITHMETIC OPERATION COUNTER (AK). This counter differs from the other counters in 

that it is actually a shift register. Like the other counters it has both an alpha 

and beta phase. The basic function of this counter is to time control the execution 

of arithmetic operations. Thus AK time controls the basic addition, subtraction, 

scale and cycle operations. Certain other arithmetic operations require the ASK 

counter to operate concurrently with the AK counter in the time control process. 

6-6.6 ARITHMETIC ELEMENT STEP COUNTER (ASK). This is a seven stage counter. The basic 

function of this counter is to count the iterations of certain sub-operations that 

occur during the AK cycle, when the divide, multiply, tally, and, in a special sense, 

normalize operations are being executed. 

6-6.7 F MEMORY COUNTER (FK). This is a four stage, two phase counter. Only 9 of the 16 
possible alpha states are decoded, the beta states are only partially decoded. The 

basic function of this counter is to time control the execution of the F 

(configuration) memory cycle. 

6-6.8 X MEMORY COUNTER (XWK). This is a three stage counter. The basic function of this 

counter is to time control the execution of the write part of an X (index) memory 

read-write cycle. 

*As will be seen, this part of the counter is just as frequently called DSK, the delay synchroni­
zation counter. 
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6-6.9 ALARM DELAY COUNTER (ADK). This is a two stage counter where the counting mode is 

determined by variable delay units. The basic function of this counter is to control 

time delays, after an alarm occurs, so as to stop the computer and, in some cases, 

start it again in a controlled manner. 

6-7 REGISTER DRIVERS FOR REGISTERS 

6-7.1 GENERAL DESCRIPTION. Information transfers in the central computer are effected by 

pulses from register driver units. These register drivers are bit by either alpha 

or beta clock pulses every o.4 microsecond. These pulses are gated in the register 

drivers in the usual way by logic levels, including time levels. 

6-8 REGISTERS 

6-8.1 GENERAL DESCRIPTION, The registers in the central computer hold information that is 

either in process of being transferred to or from the various memories and in-out 

units, or is the intermediate result of a computation or other operation. The 

information contained in the register frequently makes a significant contribution 

to the decisions made in the Control Element. The registers themselves, however, 

are classified as belonging to the various other elements, i.e., the Arithmetic 

Element, Program Element, Exchange Element, In-Out Element and Memory Element. 

Information is placed in registers by register driver pulses. The information 

remains there until new information is placed there by new register driver pulses. 
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7 -1 INTRODUCTION 

CHAPTER 7 

OPERATION CODES 

As mentioned earlier , the P register specifies the address of instruction words in the 

Memory Element . An instruction word is strobed into the N register where it is interpreted . 

Bits N4 _3 _ 3_7 determine the basic operation to be performed during the execution of the 

instruction, e . g ., multiplication , addition, etc . 

In Chapter 2, the over -all pattern of activity occurring in the computer during the execution 

of a typical instruction was described . This chapter emphasizes the variety of operations 

that can be specified by the operation codes and discusses the basic features of these 

operations . The details of the logic of each operation i s covered in Chapter 16 . 

7 -2 DEFINED OPERATION CODES 

Of the 64 possible operation codes , only 50 are currently defined . These defined codes are 

listed in Fi g . 7 -1 . (The attempted execution of an instruction containing an undefined 

operation code causes an OCSAL alarm. ) New codes can be defined in the future as new 

pr ogramming needs arise . 

It should be noted t hat AOP and IOS are variati ons of the single operation code OPR . The 

selection of OPRAE or OPRIOS is determined by the val ue of bits 2 . 8 and 2 . 7 in the address 

secti on of the instructi on . 

7-3 INSTRUCTION CHARACTERISTICS 

Duri ng the execution of indexable and configurable type instructions , the CF , OP and J bi ts 

are interpreted i n the normal manner . However , during the executi on of nonindexabl e or 

nonconfigurabl e type instructions , these bits are either interpreted in a different way or 

not at a l l . Whether the i nstr uction is indexable or nonindexable , or configurable or non­

configurable usually depends only on the operation code specified i n the instruction . 

Note that , as described in Chapter 2, the base address of i ndexable instructions is modified 

by adding the content of the specified X Memory regi ster XJ . The result of this addition 

is cal led the indexed base address . However , any instruction can cal l for deferred addressing . 

I f deferred addressing is call ed for , then the final base address , obtained as a result of 

the deferred addressing, is modifi ed by the content of the index regi ster specified by the 

original instruction word . In thi s case it is more preci se to speak of the indexed final 

base address . 

Many instructions can perform the same operation upon several active subwords simultaneously. 

In the following discussions usually the effect of the operation upon only one active subword 

is described . 
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During the execution of most instructions the operand word written in the selected Memory 

Element register at the end of the instruction is also copied into the E register. An 

instruction usually involves both an operand register in the Memory Element and an operand 

register in the central computer, i.e., the Arithmetic Element, Program Element, Exchange 

Element, or In-Out Element. When either operand register is the E register in the Exchange 

Element, then the rule about placing the final content of the selected Memory Element 

register in the E register does not apply. 

7-4 ARITHMEI'IC ELEMENT OPERATION CODES 

With the exception of AOP, all Arithmetic Element instructions are both indexable and 

configurable. 

7-4.1 LOAD OPERATIONS. During the execution of a LDA instruction, the content of a 

selected Memory Element register is configured and "loaded" into the A register of 

the Arithmetic Element. The LDB, LDC and LDD instructions are similar except that 

registers B, c, and D, respectively, are loaded with the configured operand. 

The LD- type instructions rewrite the original (unconfigured) operand back into the 

selected Memory Element register and also leave this original operand copied in the 

E register. 

7-4. 2 STORE OPERATIONS. During the execution of a STA instruction, the content of the A 

register is inversely configured and "stored" in the selected Memory Element register. 

The STB, STC and STD instructions are similar except that the inversely configured 

contents of registers B, C and D, respectively, are stored in the selected memory 

register. 

The final content of the selected memory register is also placed in the E register. 

7-4.3 EXCHANGE A OPERATION. The EXA instruction is a combination load and store type 

instruction. It exchanges the content of the selected Memory Element register with 

the content of the A register. 

The content of the A register is inversely configured and stored in the selected 

memory register (as in a STA instruction) and, at the same time, the content of the 

selected memory register is configured and loaded into the A register (as in a LDA 

instruction). 

7-4.4 ARITHMEI'IC OPERATIONS 

7-4.4.1 ADD OPERATION. During an ADD instruction, the content of the selected 

Memory Element register is configured and added to the content of the A 

register. The signed sum is left in the A register. If an overflow occurs 

7-4 March 1961 



March 1961 

in any of the active subwords of A as a result of this addition, the 

associated overflow flip-flop Zi is left set to ONE . (Zi is always cleared 

at the beginning of the ADD instruction in all the active subwords . ) 

7-4 .4.2 SUBTRACT OPERATION. During a SUB instruction, the configured content of 

the selected Memory Element register is subtracted from the content of the 

A register. The signed difference is left in the A register. Except for 

the fact that the configured operand loaded into D from memory is initially 

complemented, the addition and subtraction process are identical. 

7-4.4.3 MULTIPLY OPERATION. During a MUL instruction, the configured content of 

the selected Memory Element register is multiplied by the content of the 

A register . The signed product is left in the AB register . Note that the 

right most bit of the active subword in the B register is not part of the 

product, and is in fact a copy of the sign bit in the A register. 

7-4 .4.4 DIVIDE OPERATION. During a DIV instruction, the content of the AB register 

is divided by the configured content of the selected Memory Element register . 

The dividend in the AB register before the DIV is performed has the same 

form as a product after an MUL. The signed quotient is left in the A 

register and the signed remainder is left in the B register. If an overflow 

occurs (as it will unless the divisor is smaller than the part of the 

dividend in A), the associated overflow flip - flop Z. is left set to ONE. 
l 

(Z. is always cleared at the beginning of the division process.) 
l 

7-4.4.5 SCALE OPERATIONS. In the SCA instruction, the content of the A register is 

shifted the number of places to the left or right specified by the configured 

content of the selected Memory Element register. 

The configured operand is first loaded into the D register from memory. 

Each active subword in the A register is then arithmetically shifted "n" 

places (where "n" is the number now located in the sign quarter of each 

corresponding subword in the D register). The subword in A is shifted to 

the left if "n" is positive and to the right if "n" is negative. 

The contents of the overflow flip -flops may be shifted by the scaling 

process , Qut the true sign of the data in the A register is not altered by 

the scaling process. 

The SCB instruction is the same as the SCA instruction, except that the 

shifting process occurs in the B register instead of in the A register. 

Note that there are no overflow bits associated with the B register . 
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The SAB instruction is the same as the other scale instructions, except that 

the shifting takes place in the AB register. 

7-4.4.6 CYCLE OPERATIONS, The CYA, CYB and CAB instructions are similar to the SCA, 

SCB and SAB instructions respectively, except that the CY- type instructions 

ignore the state of the overflow flip-flops and give no special significance 

to the sign bits in the data registers. The CY- type instructions simply 

rotate the data in the registers as if it had no arithmetic significance. 

7-4.4.7 NORMALIZE OPERATION. In the NOA instruction, the content of the A register 

is shifted to the left or right until the value of the data in the A register 

(and the overflow flip-flops) has a value between 1/2 and 1, 

The configured content of the selected Memory Element register is first 

loaded into the D register from memory. Each active subword in the A 

register is then arithmetically shifted until its content is "normalized". 

The number of shifts required to do this is added to (if shifting to the 

right occurred) or subtracted from (if shifting to the left occurred) the 

current number in the sign quarter of each corresponding subword in the D 

register. 

The data will be shifted to the right only if a previous instrtlction left 

the overflow flip-flop associated with the data set to ONE. Note that a 

shift of only one place to the right is required to normalize the data in 

this case. In all other cases, the normalizing process shifts the data to 

the left. 

7-4.4.8 TALLY OPERATION, During a TLY instruction, the number of ONES in the 

configured content of the selected Memory Element register are counted. The 

total is then added to the content of the D register. 

The configured operand is first loaded into the A register from memory. The 

number of ONES in each active subword of the A register is added to the 

current number in the sign quarter of each corresponding subword in the D 

register. 

7-4.5 LOGICAL OPERATIONS 

7-4.5.1 INTERSECT OPERATION. During an ITA instruction, the configured content of 

the selected Memory Element register is logically ANDed ("intersected") with 

the content of the A register. The "intersection" is left in the A register. 
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7-4.5 .2 UNITE OPERATION. During a UNA instruction, the configured content of the 

selected Memory Element register is inclusively ORed ("united") with the 

content of the A register. The "union" is left in the A register . 

7-4 . 5.3 DISTINGUISH OPERATION. During a DSA instruction, the configured content of 

the selected Memory Element register is exclusively ORed ("distinguished") 

with the content of the A register, The result of the "distinguishing" 

process is left in the A register. 

7-4.5.4 INSERT OPERATION. The INS instruction is similar to a STA instruction in 

which certain bits in the A register are "masked". The INS instruction 

copies the configured contents of those bits in the A register that have 

corresponding bits in the B register in the ONE state into the selected 

Memory Element register . The remaining bits in the memory register are left 

undisturbed . 

7-4.6 ARITHMETIC ELEMENT COMMAND . . See Miscellaneous Operation Codes (OPRAE). 

7-5 X (INDEX) MEMORY OPERATION CODES . 

The X Memory type instructions are similar to the Arithmetic Element load, store and exchange 

type instructions. Some of the X Memory type instructions involve arithmetic modification 

of the content of an X Memory register by the content of a Memory Element register, or the 

arithmetic modification of a Memory Element regi ster by the content of an X Memory register. 

None of these instructions are indexable, but all are configurable. 

7-5-1 RESET X OPERATION. During an RSX instruction, the content of the X Memory register 

XJ, specified by the J bits of the instruction word, is "reset" by the right 18 bits 

of the configured content of the selected Memory Element register . By means of the 

RSX instruction data in the Memory Element can be loaded into the X Memory . 

7-5-2 DEPOSIT X OPERATION. During a DPX instruction, the inversely configured content of 

the X Memory register XJ, specified by the J bits of the instruction word, is 

"deposited" in the selected Memory Element register . By means of the DPX instruction, 

data in the X Memory can be stored in the Memory Element. 

In this instruction the content of XJ is considered as a 36 bit number, where the left 

18 bits are the s8Jlle as the sign bit of the right 18 bits. 

7-5-3 EXCHANGE X OPERATION . The EXX instruction is a combination reset and deposit instruction . 
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It "exchanges" the configured content of the selected Memory Element register with 

the content of the X Memory register XJ specified by the J bits of the instruction 

word. The content of the X Memory register is inversely configured and stored in the 

selected Memory register (as in a DPX instruction), and at the same time the content 

of the selected Memory Element register is configured and loaded into the specified 

X Memory register (as in a RSX instruction). 
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7-5,4 AUGMENT X OPERATION. During an AUX instruction, the content of the X Memory register 

XJ specified by the J bits of the instruction word is "augmented" by the configured 

content of the selected Memory Element register. 

Specifically, the ONE's complement sum of the right 18 bits of the configured content 

of the selected Memory Element register (with zeroes in the inactive subwords) and 

the content of the X Memory register XJ is placed in XJ. 

7-5,5 ADD X OPERATION. During an ADX instruction, the content of the X Memory register XJ 

specified by the J bits of the instruction word is added to the content of the 

selected Memory Element register. 

Specifically, the ONE's complement sum of the right 18 bits of the configured content 

of the selected Memory Element register (with zeroes in the inactive subwords) and 

the content of the X Memory register XJ is placed in the selected Memory Element 

register. 

7-6 F (CONFIGURATION) MEMORY OPERATION CODES 

The F Memory operations perform only load and store operations. These operations are not 

configurable, but are indexable. 

7-6.1 SPECIFY FORM OPERATION. During a SPF instruction, the content of the rightmost 

(first) quarter of the selected Memory Element register is loaded into the F Memory 

register specified by the CF bits of the instruction word. 

7-6.2 SPECIFY GROUP OF FORMS OPERATION. During a SPG instruction, the 36 bit content of 

the selected Memory Element register is loaded into four successive F Memory registers. 

In the execution of the instruction the content of the rightmost (first) quarter of 

the memory register is loaded into the F Memory register specified by the CF bits of 

the instruction word. The contents of the second, third, and fourth quarters of the 

same Memory Element register are then loaded into the following F Memory registers, 

successively. 

Should the CF bits specify the last F Memory register, then the content of the next 

quarter of the Memory Element register is loaded into the first F Memory register 

(FO), and so forth. (Note that the contents of FO always remain zero.) 

7-6.3 FILE FORM OPERATION. The FLF instruction is the reverse of the SPG instruction in 

that the content of the F Memory register specified by the CF bits of the instruction 

word is stored in the first quarter of the selected Memory Element register. 
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7-6.4 FILE GROUP OF FORMS OPERATION. The FLG instruction is the reverse of the SPG 

instruction in that the contents of four successive F Memory registers are stored in 

the first, second , third and fourth quarters of one selected Memory Element register . 

7-7 EXCHANGE ELEMENT OPERATION CODES 

All of the Exchange Element instructions are indexable and configurable . 

7-7- 1 LOAD E OPERATION. The LDE instruction is similar to the Arithmetic Element load type 

instructions. In this case the configured content of the selected Memory Element 

register is loaded into the E register. 

7-7,2 STORE E OPERATION . The STE instruction is similar to the Arithmetic Element store 

type instructions. In this case, the inversely configured content of the E register 

is stored in the selected Memory Element register . 

7-7-3 INTERSECT E OPERATION . The ITE instruction is similar to the ITA instruction. In 

this case, the configured content of the selected Memory Element register is "inter­

sected" (logically ANDed) with the content of the E register. The result is left in 

the E register. 

7-7 .4 PERMUTE AND COMPLEMENT OPERATIONS. During a PCM instruction, the content of the 

select ed Memory Element register is first configured and placed in the E register . 

All the active subwords in the E register are then complemented . The final content 

of the E register (whether active or not) is then placed in the selected Memory 

Element r egister without inverse configuration . This instruction alters the original 

contents of the selected memory register . 

If the configuration bits (CF) specify permutation only, then the operation is 

usually called ~Efil:!lJ!E (PMT); if the configuration bits specify activity only, the 

active subwords are complemented and the operation is usually called COMPLEMENT (COM). 

7 -8 SKIP OPERATION CODES 

Of the three skip instructions, SED is indexable and configurable . The other two, SKM and 

SKX, are neither indexable nor configurable . 

7 -8 .1 SKIP IF E DIFFERS OPERATION . During the SED instruction, the content of the E register 

is compared with the content of the selected Memory Element register. If the contents 

differ, then the next instruction is not executed (that is, it is skipped) . Specif­

ically, the configured content of the selected Memory Element register is compared 

with the content of the E register to determine whether any subwords differ . If there 

is a difference, then the next instruction is skipped . 
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The content of the E regi ster remains unchanged during an SED operation . 

7 -8 . 2 SKIP ON M OPERATION. The SKM instruction is a bit-setting and decision -making 

instruction . In this instruction, the J bits of the instruction word are used to 

select a particular bit in the selected Memory Element register . The CF bits are 

then used to specify such functions as changing the binary value of the selected bit 

and making a decision based on the value of the selected bit . The exact interpretation 

of the J and CF bits is illustrated in Fig. 7 -2. 

The four J bits (3.4 - 3 . 1) are used to specify the bit number , and the remaining two 

J bits (3.6 - 3. 5) are used to specify the quarter number . For example, 01 0001 

specifies bit 1-1 of the selected memory register . Similarly, 00 1010 specifies bit 

4 .10. 

The following points should be noted: 

1) Decision making is always done first . 

2) Bit changing comes next. 

3) Cycling, or rotation , comes last . 

4) The final content of the E register is the same as the final content of the 

selected Memory Element register . 

5) If all the cf bits are zero, SKM does nothing other than changing the content 

of the E register , 

6) SKM is the only operation that can affect the operand word meta bit . (It 

can not change the parity bit.) 

7 -8 . 3 SKIP ON INDEX OPERATION, The SKX instruction permits a programmer to dismiss, raise 

a flag , skip the next instruction and either reset or augment an index (X Memory) 

register . Neither an operand from the Memory Element nor a configuration from the 

F Memory is used , The X Memory register specified by the J bits of the instruction 

word is the only operand register affected by this oper ation . 

The seventeen base address bits (2.8 - 1 . 1) are used as an oper and rather than as the 

address of an operand . Since X Memory registers contain 18 bits, this operand is 

normally treated as a positive 18-bit number . If any deferred address cycles are 

executed, then it is possible for t he r esulting base address (which is to be used as 

the operand) to be negative , 

The J bits address both an X Memory register , XJ , and the flag of a sequence, FLAGJ 

(if one exists). 

The CF bits are decoded to specify the desired variation of the SKX operation: 

1) If the CF5 bit is a ONE and if the hold bit is a ZERO, then a dismiss is 

performed, lowering the flag of the current sequence . 
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2) If the CF4 is a ONE, then FLAGJ will be raised (if such a flag exists). 

Since flag raising occurs after a flag lowering caused by a dismiss, an SKX 

operation which dismisses and raises the flag of its own sequence will have 

no apparent effect on the flag. 

3) The remaining three CF bits are decoded as shown in Fig. 7-3-

7-9 JUMP OPERATION CODES 

JPA, JNA and JOV are indexable, configurable instructions. JPX and JNX are nonindexable, 

nonconfigurable instructions. JMP is an indexable, nonconfigurable instruction. 

7-9,1 JUMP OPERATION. The JMP instruction has several variants. These variants are 

specified by the CF bits: 

1) If the CF1 bit of the instruction word is a ZERO, then a jump is performed 

to the Memory Element register specified by the final base address. If the 

CF1 bit is a ONE, then a jump is performed to the Memory Element register 

specified by the indexed final base address. 

2) When the CF2 bit of the instruction word is a ONE, then the address plus 

ONE of the JMP instruction is placed in register XJ of the X Memory. 

3) When the CF3 bit of the instruction word is a ONE, then the address plus 

ONE of the JMP instruction is placed in the first two quarters of the E 

register. 

4) When the CF4 bit of the instruction word is a ONE, then the content of the 

Q register is placed in the third and fourth quarters of the E register. 

5) When the CF5 bit is a ONE and the hold bit (H) is a ZERO, then the present 

sequence is dismissed . 

Fig. 7-4 summarizes the interpretation of the CF bits during a JMP operation . 

7-9 ,2 JUMP ON POSITIVE A OPERATION. During a JPA instruction, a jump is performed to the 

~elected Memory Element register if any one of the active subwords in the A register 

is positive and non-zero. 

If a jump occurs, the right half of the E register is set to the return address (the 

address plus ONE of the JPA instruction); otherwise, no change is made in the E 

register. 

7-9 -3 JUMP ON NEGATIVE A OPERATION. The JNA instruction is the same as the JPA instruction, 

except that a jump is performed only if one of the active subwords in the A register 

is negative and non-zero. 
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7-9.4 JUMP ON OVERFLOW OPERATION. The JOV instruction is the same as the JPA instruction, 

except that a jump is performed only if the overflow flip-flop (Z.) of one of the 
1 

active subwords in the A register is set to a ONE. 

The JOV instruction does not clear overflow. 

7-9-5 JUMP ON POSITIVE INDEX OPERATION. During a JPX instruction, a jump is performed to 

the selected Memory Element register if the initial content of X Memory register XJ 

is positive and non-zero, 

If a jump is made, the return address is saved in the right half of the E register. 

Also, if a jump is made and the hold bit (H) is a ZERO, then the present sequence is 

dismissed. 

Whether a jump occurs or not, the JPX instruction adds an increment to the content 

of XJ. This increment is represented by the CF bits. These 5 bits are interpreted 

as a 4 bit one's complement number with a sign digit. 

7-9.6 JUMP ON NEGATIVE INDEX OPERATION. The JNX instruction is the same as the JPX 

instruction except that a jump is performed only if the initial content of the X 

Memory register XJ is negative and non-zero. 

7-10 IN-OUT OPERATION CODES 

TSD is indexable and, sometimes, configurable; IOS is neither indexable nor configurable. 

7-10,l ~~FER ~ATA OPERATION. The TSD instruction transfers data between the selected 

Memory Element register and the K-th In-Out buffer register. If the K-th In-Out unit 

is an input device, data is transferred from the K-th In-Out buffer register to the 

selected Memory Element register. The transfer path is reversed when the K-th In-Out 

unit is an output device. 

For certain In-Out units, the data can be transferred in either a NORMAL or an ASSEMBLY 

mode. When a TSD is executed in the NORMAL mode, data is transferred as a contiguous 

block of bits. In this case, the data is configured. If a TSD is executed in the 

ASSEMBLY mode, the data is not configured; instead, the Memory Element word is 

rotated one position to the left or right after the In-Out data transfer is completed. 

The CF bits specify configuration when TSD is in the NOrtMAL mode. However, when TSD 

is in the ASSEMBLY mode, the CF bits are not used. 

TSD uses the hold bit (H) in a unique manner. Normally, if the hold bit of the 

previous instruction is a ONE, no change of sequence can occur before the current 

instruction is executed. However, if the current instruction is a TSD and the K-th 

In-Out unit is not ready for an In-Out data transfer, then a dismiss is performed 

7-12 March 1961 



(befor e the TSD is executed) independent of the value of the hold bit of the previous 

i nstruction . This is called "dismiss and wait" to distinguish it from ordinary 

di smissing, since the TSD instruction which causes the dismiss has not yet been 

executed. When the K-th In - Out unit is ready to perform the In- Out data transfer, 

then the flag of the K-th sequence is raised and the TSD is finally executed . 

' IO 
7 -10 . 2 IN- OUT SELECT OPERATION . See Miscellaneous Oper ation Codef/ (OPR ). 

7 -11 MISCELLANEOUS OPERATION CODES 

At pr esent , there is one Miscellaneous Operation Code , namel y OPR . Depending on the value 

of bits 2 .8 and 2.7 in the final address section of the instruction word, OPR may be inter ­

preted as an AOP or IOS instruction . Specifically, if bits 2 . 8 and 2 .7 are both ZERO, an 

IOS is executed; i f bit 2 . 8 is a ZERO and bit 2.7 is a ONE, then an AOP is executed. That 

is , 

0 

0 

1 

1 

0 

1 

0 

1 

OPR 

IOS 

AOP 

undefined 

undefined 

Both AOP and IOS are nonindexable , nonconfigurabl e instructions. 

Fig. 7-5 shows the inter pretation of the Y bits in the instruction word for both the IOS 

and AOP variation of this instruction . 

7 -11, 1 ARITHMETIC ELEMENT CCMMA.ND OPERATION. The AOP (OPRAE) instruction is used when it is 

desired to manipulate directly existing data in the Arithmetic Element. 

In this oper ation, the J and CF bits of the instruction word are not used, and the H 

bit serves its normal "hold" function. The Y bits , as shown in Fig. 7-5, determine 

the Arithmetic Element operation (addition, subtraction, etc . ) and also the config­

uration (activity and subword form only) . 

7 -11. 2 I N- OUT SELECT OPERATION . The IOS (OPRIO) instruction is used to control and/or report 

on the status of the In- Out system. For example , it can be used to raise and lower 

flags, and to connect and disconnect the var ious In- Out units . 
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The J bits of the instruction word are used to specify the sequence controlled by the 

IOS operation . The interpretation of the Y bits is shown in Fig. 7-5• 

Only two of the CF bits are used . If CF1 is a ONE, then a report on the current state 

of the In- Out unit is placed in the E register . The sequence specified by the J bits 

is dismissed when CF5 is a ONE and His a ZERO . 
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