ESD-TR-70-274

ESD ACCESSION LIST
ESTI Call No. 7O 753
Conv No / of %/___ cys

USER'S MANUAL
COBOL COMPILER VALIDATION SYSTEM

ESTI FILE COPY

" o~ rvw A T
ESD RECCORED CORPY
i RETURN TO
BCIENTIFIC & TECHNICAL INFORMATION CIVISION
{ESTI), BUILDING 1211

July 1970

DIRECTORATE OF SYSTEMS DESIGN & DEVELOPMENT

HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

This document has been
approved for public release and
sale; its distribution is
unlimited.

LEGAL NOTICE

When U.S. Government drawings, specificatians ar ather data are used far any
purpose ather than a definitely related government procurement aperatian, the
government thereby incurs na responsibility nor any abligation whatsaever; and
the fact that the gavernment may have farmulated, furnished, or in any way sup=-
plied the said drawings, specifications, or other data is not ta be regarded by
implicatian ar atherwise as in any manner licensing the halder ar any ather person
or canveying any rights or permission to manufacture, use, or sell any patented
inventian that may in any way be related thereto.

OTHER NOTICES

Do nat return this capy. Retain ar destray.

ESD-TR-70-274

USER'S MANUAL
COBOL COMPILER VALIDATION SYSTEM

July 1970

DIRECTORATE OF SYSTEMS DESIGN & DEVELOPMENT
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

This document has been
approved for public release and
salej its distribution is
unlimited.

FOREWORD

The COBOL Compiler Validation System (CCVS) Users Manual is intended as a
reference manual for on-site operations.

The system was developed as a part of Project 6917 under Contract F19628-
67-C-0424 for the Electronic Systems Division (AFSC) by Information Manage-
ment, Inc., San Francisco, California 94111. The project monitor was

Mr. Russell A. Meier, ESMDA. The work was performed during the period

from August 1967 through January 1969.

This technical report has been reviewed and is approved.
/01224224bvv\f5¢a4:2“‘ .
WILLIAM F. HEISLER, Colonel, USAF

Director, Systems Design & Development
Deputy for Command & Management Systems

ii

ABSTRACT

This technical report consists of detailed specifications for the use of
the COBOL Compiler Validation System (CCVS). The system is designed to
measure the compliance of a specific COBOL compiler against the American
National Standards Institute standard COBOL (ANSI X3.23-1968). This
report describes the card input formats, deck structures, tape require-
ments, test modules, and operator procedures required to use the system.

iii

Section

II.

T LT

oelds

.1

TABLE OF CONTENTS

INTRODUCT TON e ss) oteiio s o ieliene) fode shiaie) (s el opieite) ioite

SYSTEM DESCRIPTIONc0.00. eRer

The USA Standard COBOL ...e.vvevvnenn

CCVS Design Criteria SToie ke S

CCVS ComponentsS..c.eeeeeeenoeneoncons

The

CCVS Data Bas€..eeeeoe Kol Netevte

Environmental Data........

The Population File Maintenance Program......

The

Selector Program........... 5

The Source Program Maintenance Program.......

The

How the

Test ProgramsS....c.cceceesse

CCVS 1S sed.. i:isvees o755 slime s s e

Initial System Preparation......

Test Program GenerationN.........

Test Program Execution..........

Test Results Evaluation.........

USAGE INSTRUCTIONS.....ceceeeeecenensss

Population File Maintenance Program.

Preparation of Inputs.......... g

Environmental Data........

Environment Header......

Environmental Data Cards

ooooooooooooo

ooooooooooooo

9

10

10

11

11

12

12

13

13

13

14

15

17

18

18

18

18

119

2

Section

Iv.

oL

sl

2

2.

1

TPeSE HeQAOT : 1w 5 i o5 oo o)1 ohars 5251 91 6rs B w61 61104 G4 3

Results of Operation......vvvvienneeernnnnnenns

SellectOr PLOSEAMI o ous skisrens/ieds oo 6Hokis bt sxioptaial son shatic o 54o)15

Preparation Of INPULS: i .vicnesraeocooeosens

Results of

OPETAELON 15, 150t 1 w3108 spiore] (01151 18451 8] 01 (o1 4945) B (ol o

Source Program Maintenance Program.............

Preparation of INPULS. ... vt vreneronnnnnns

Results of

OP ELALEAON . o v v o siigevar s 5 5140 878 (o) oiis jarioraiiots

Character Code Conversion Program..............

Preparation of TInPUEL . ioaom oes on s aemes s es

Test Program Qutput Analysis........eeeeueeeens

OPERATING INSTRUCTIONS. ...evveeveoeonseoannsonsos

Compilation and Execution........cveevueeevoens

Population File Maintenance Program............

Input-Qutput Assignments.....couveeeveecoecas

SEILeCEOT PEOGEAM . e ioiis sue) oiis s (vsis, sl wria fs ol ihist s, to 1003 o)) 10 10 (esie

Input-Qutput Assignments......coeeeeeeoocoes

Sort Control Fields.......ccieivevvinennesnnns

Source Program Maintenance Program.............

Input-Qutput Assignments........coveveeesoues

Preparation of Test Program Change Deck.....

Character Code Conversion Program..............

Test Programs
Program 10

Program 11

vi

24

28

29

35

35

36

39

40

40

42

46

46

49

49

50

50

52

53

53

54

39

56

57

58

Section

Progtams L2l s ot oue el ops: oot o 1616 s

PLOETAMS! D= IG5 1ui oeije tote) oroleitofis Koke tsie (eate o fotis) e]Folgs vons

Program 19

Priogriams! S30=0i c oo e st oneie 0 s oids /6 o) fos 5o

Program 45
Program 46

Program 47

vii

59

B,

60

60

60

Section Page

APPENDIX 1 DROP CODE LIST.eccveeeeenncenoasne sHolleaker eptsfielle ok ek h <l e ek H 61
APPENDIX II DROP CODE USAGE IN TESTS..e..coec0esse o115} a1 ol{o R oLisi o le Ao} skiotie 66
APPENDIX III INITIATING ENVIRONMENTAL DATA.....c0cceecnncecacons 77
APPENDIX IV TEST DIRECTORY....eecevven Cecesocaasaosaa sieiw fn wie SHess 89
APPENDIX V PFM DIAGNOSTIC MESSAGES....eiceveeceoncs o foiej eoRs] oS/ SHiehis 133
APPENDIX VI CONSIDERATIONS IN CREATING TESTS.ee.ccosvovocoss oliaite 135
APPENDIX VII SYSTEM GENERATION SPECIFICATION......... teveenae o 142

APPENDIX VIII SAMPLE CONTROL CARDS FOR CHARACTER CONVERSION
PROGRAM........ SfenedetoRells L 144

viii

LIST OF FIGURES

Figure Page
1. Schematic Diagram Showing the Structure of the

SAS SitaNd AT dNEOB Q5 el e el oo opie)Xo oXe 1ol e fa aHols| o o 4o e hehia lo o Ho0 SHlol1 oS telge ot e el lorleie Neiier shise s Ae1 /o 4
2. The Validation Process..... et le e R ep oo eeris 1o s feris relte s AR Gheile, (0= o feRe Kool T it Ca P 16
3. Environmental Data Card Format........ RIS e LR teme o¥lo oo e SRR ete Oy o 78
4., Envitonmental Datal Cards Tor! XYZ=8795L. . .emmn os oo o aahe (@ e ol oo fs, oroliel e o istolieaie 84
5. Output Listing of Environmental Data for XYZ-8795.........0ittiitunnnrsns 86
6. Relationship Between User Input and PFM Envrion-

mental Qutput........... SRR TNy . LT L S T R P e B T . -
7. Sequence Numbering for Test Cards.....cceveiesececonooncas G et s PR A 136

LIST OF TABLES

1. Drop Code Usage in TeStS...uv.eveerenurons ot o e SuEeHONe R TR S S s, PIEEaE i 60
2. Drop Code Assignments by TeSt.......ciuerorinecnesnsosaesasceennsoanassnas 71

ix

SECTION I

INTRODUCTION

The purpose of this manual is threefold. First, it provides an intro-
duction to the COBOL Compiler Validation System. This introduction
is directed both to prospective users of the system and to those who

are merely interested in its objectives and how they are achieved.

Second, it provides detailed instructions in the use of the CCVS in
measuring COBOL compilers against USA Standard COBOL. Finally, it pre-
sents quidelines that may be useful to those responsible for system

maintenance or extension.

The manual is divided into four parts. Part 2, which immediately
follows this introduction, is a genaral description of the COBOL Com-
piler Validation System. As prelude it offers a brief description

of how USA Standard COBOL is structursed, then discusses the design
criteria under which the system was developed, the functions performed
by the system's components, and finally, the way in which the system

is used in measuring the degree of compiler standardization.

Part 3 presents the details of how to use the system. It describes

the control information needed for expanding the system in terms of
both its environmental "knowledge" and its repertoire of tests, and for
generating test programs. A concluding section discusses the meaning
of the results obtained from executing a test program and how such
results can be traced through the system to find their purpose and

resolve suspected compiler faults.

lne of the primary design ob jectives of this system is the ability to
run on any computer with a COBOL compiler. This flexibility places a
limit on the detail with which this document can discuss certain facets
of the system. This is particularly true in the area of operating

ingstructions. Because the programs generated by the

.

system will run on a variety of computer-compilers, this manual can
only enumerate the kinds of information an operator might require and
indicate where he might find more specific instructions for operating

within a particular environment,

Part 4, therefore, discusses in very general terms the kind of inform-
Ation that operating systems will require in order to correctly
compile and execute the system itself and the test programs it gener-

ates.

e

SECTION II
SYSTEM DESCRIPTION

The COBOL Compiler Validation System (CCVS) is designed to measure 'ie
extent of compliance of any COBOL compiler with the set of COBOL langy-
‘age elements specified in USA Standard COBOL. To obtein a measurement,
tie user indicetes to the CCVS the composition of the COBOL language

set that forms the baeis for a particular evaluation. In reeponse, the
CCVS produces one or more COBOL source progrems that contain a represen-
tative sample of statemente drawn from the specified set. This program
(or set of programe) ie then compiled and executed. During execution,
the results are compared with those that should obtain if the compiler

had been implemented according to the standard.

In order to guarantee a common baee of knowledge among the readers of
thie document, a brief deecription of USA Stenderd COBOL follows. This
description is excerpted from Chepter 1 of X 3.4 COBOL Information
Bulletin #9, pages 1-1 through l-6a.

USA STANDARD COBOL

In order to represent more effectively the uses for which COBOL nas been
designed, the historical organization of (0BOL specifications, that is,
Identification Division, Environment Division, Data Division, and
Procedure Division has been revised within the proposed standard. The
new organization is oriented around a functional processing module (FPM)
concept. A nucleus (for internal processing) and seven functional pro-
cessing modules have been defined. These functional processing modules
are Table Handling, Sequential Access, Random Access, Sort, Report Uriter,

Segmentatinn and Library.

The Nucleus has been divided into two levels. The lower level contains
the elements required for basic internal processing and is a proper
subset of the high level. Each functional processing module contains two
or more levels. In all caees, the lower levels are proper subsets of

the progressively higher levele within the same module. In addition, some

functional processing modules contain a null set as their lowest

level.

This organization provides the flexibility necessary to tailor
specifications in such a way that they will satisfy the requirements

of a large variety of data procesesing applications., At the same time
it provides the ability to determine with a greater degree of certainty
than previously possible the standard elements that comprise a given

compiler.

The requirements for an implementation of USA Standard COBOL can be
seen by referring to Figure 1. A COBOL implementation that includes

a specified level of each of the functional proceeeing modules and of
the Nucleus, implemented as defined in the etandard, will be considered

to meet the requiremente for an implementation of USA Standard COBOL.

FUNCTIONAL PROCESSING MODULES
TABLE SEQUENTIAL RANDOM REPORT SEGMEN-
NUCLEUS HANDLING ACCESS ACCESS SORT WRITER TATION LIBRARY

37BL 2RAC 25RT 2RPU 25EG 2L1I8
2NUC 25EQ

2TBL 1RAC 1SRT 1RPW 1SEG 1LIB
TNUC 1SEQ

1TBL null null null null null

NOTE: The shorthand notation used in this figure is identical to that used
in the CCVYS control cards, It consiets of a number indicating the
level's position within the hisrarchy and a three-character mnemonic
name.

Figure 1. Schematic Diagram Showing the Structure of USA Standard COBOL

As an illustration, the following definitions of minimum and full USA

Standard COBOL are given:

The minimum USA Standard COBOL is composed of the minimum level

of each functional processing module and of the Nucleus. Because

of the presence of null sets, the minimum standard consists of the
low levels of the Nucleus, Table Handling, and Sequential Access.,

The full USA Standard COBOL ie compoeed of the maximum level of

each functional processing module and of the Nucleus.

Throughout the USA Standard COBOL Specifications there are certain
language elements that depend, for their implementation, on particular
types of hardware components. The implemantor specifies the minimum
hardware configuration required for a given implementation of USA Sten-
dard COBOL and the hardware componente that it supports. Any language
elements that depend on hardware components for which support is claimed
must be implemented. Those language elements that are not implemented
because of their dependence on hardware components whose support is not
claimed for an implementation must be so specified and their absence

will not render the implementation non-standard.

When a facility is provided that accomplishes the functions specified

by any particular COBOL slement, it may be unnecessary to include that
particular element within the COBOL source program. If such an unneces-
sary element doee appear in the source program, it must be accepted

by the compiler. However, if the element does not lead to the produc-
tion of object code, no substitute statements shall be required within

the COBOL source program to accomplish this function.

By the same token, the inclueion of language elements or of functions
that are not a part of the USA Standard COBOL specifications will not
render an implementation of USA Standard COBOL non-standard. This is
true even though it may imply the extension of the list of reserved

words by the implementor, and prevent proper compilation of some pro-

grams which conform to the Standard.

==

2.2

CCVS DESIGN CRITERIA

The CCVS has been designed to fulfill the following functional reguire-

ments:

1.

Thoroughness: The tests developed for sach standard moduls must
explore a compiler and its generated code to an extent sufficient
to give a high probability of accuracy to its evaluation. This

ab jective has been accomplished by testing a particular function

to:

a. Exercise all its basic structural variants. Structural vari-
ants arise from the format of a particular statement or func-
tion, as modified by the applicable syntactical rules. Ffor

example, the format

VERB operand-1 {-)S-)Yi} operand-2

yields tha basic structural variants

VERB opsrand-1 XX operand-2
VERB opsrand-1 YY opsrand-2

b. Test a sample carefully selected from the set of possible

combinations of operand types available to the statement.

c. Test several variants arising from the opsration of the

ellipsis (...).

1t is clear that in the majorily of cases, a complete test of each
structural variant, with every possible caombination of operand type<
would result in an inordinately large number of statements. Therefare,
a high degree of judgement was exercised in choosing a representative
subset of test statements. Several possible types of tests have been

eliminated from consideration.

a. No tests are made of erroneous statements. Ffor example, syntac-

tically incorrect statements are not generated. Such tests would

-

result in failure to compile or in run-time errors, either of
which would result in confusion. This is especially true in the
case of run-time errors (e.g., CLOSEing a file that is not in
open status) because of the difficulty of associating an error

with a particular statement in a program with a number of errors.

b. Tests are not designed to indicate how a function is implemented.
Thus, the CCVS does not attempt to distinguish between good

(efficient) and bad (inefficient) implementations.

c. No testing of non-standard extensions to COBOL is made. There

are three classes of extensions that are of concern:

1) Valid COBOL features that are not specifically referred to
by the standard (e.g., COMPUTATIONAL-n and the APPLY clause
are valid COBOL features but are not included in the

standard because they are hardware-related features).

2) Manufacturer extensions that have no relation to the remain-
ing COBOL language. (e.g., IBM's TRANSFORM verb.)

3) Manufacturer extensions that are required in order to utilize
a standard COBOL feature. (e.g., IBM's ORGANIZATION and RECORD
KEY clauses). In the latter case, we will manually include
such statements in test programs in order to exercise functions
that otherwise could not be tested (e.g., Random Access).
The Air Force will have the same facility for future test

program modifications.

d. No test of the ENTER verb is made because of the obvious difficul-

ties involved.

Openendedness: The user must be able to alter the population of
test statements to conform to changes in the USA Standard COBOL.
For thie reasen, the user is provided the ability to edd

tests to the population file, modify the content of existing tests,

delete tests, and change the modules against which a test is selected.

Ease of use: The CCVS must be relatively sasy to use now and
should become easier to use in the future. As the

COBOL Standard becomes widely used, it is expected that more and
more compilers will adhere to its specification. Thus, future ease
of use should not be compromised in order to expedite testing the

system using current non-standard compilers.

In order to accomplish this objective, the population of tests has
been designed without reference to current implementations; the
standard was the only reference material used. Thus, a '"standard"
compiler would compile and execute those modules it implemented

with no adjustment whatscever. This is the condition that (hopefully)
wi}l exist in the future. 1In order to make it easy for the user to
cobe with current implementations that are far from standard, a sour i
program maintenance feature is provided. This feature facilitates the
addition, deletion or modification of test program statements in order

to tailor a particular test program to a non-standard implementation.
Additional features that make the CCVS easy to use are:

a. A test case can be specified by a user who does not have a
detailed knowledge of COBOL. However, the activities involved
in obtaining a test program that executes and evaluating the
test results require some degree of expertise. As noted above,
these activities should diminish in time.

b. Test results are clearly marked when they do not correspond to
the result expected. The tests are documented in such a way that
the offending test and the part of the standard to which it appli:
can be quickly identified.

c. The system is thoroughly documented to facilitate future maintenance

-B-

2.3

d. A particular compiler may be measured against any combination
of Functional Processing Modules (FPM's), because the
CCVS will construct test programs containing a single FPM
or any combination of FPM's up to and including full USA
Standard C0BOL. The selection of FPM's to appear in a par-
ticular test program is based on a single, user supplied con-

trol card.

4. Machine Independence: Both the validation system and the test
programs it produces must be available to operate on any computer
for which a COBOL compiler is available and to do so with a minimum
of reprogramming or manual intervention. The only hardware re-
quirement imposed by the CCVS is minimal Input-Butput configura-
tion. The system requires that environmental data be supplied
for each compiler that will be validated. Once this information
has been supplied to it, the CCVS automatically generates the
Environment Division and other hardware-oriented entries required
by a particular test program. The environmental data is available

to the CCVS until the user chooses to delete it.

5. Extendability: The underlying design of the CCVS must be of
sufficient generality to be applicable to the validation of the

compilers of other languages against their standards.

It is evident that one criterion usually specified for computer systems
- namely, efficiency - is missing from this list. Efficiency, in the
case of the CCVS, is of relatively little importance, because it will
not be run as a regularly scheduled program. FfFurthermore, its effi-
ciency would have been exceedingly difficult to predict since it de-

pends almost entirely on the design point of the compiler being tested.

CCVS Components

The validation system consists of three computer programs and a data
base. 0One program, the Selector, operates on the data base to pro-
duce the test programs called for by the user. A second program,

Source Program Maintenance, is available to modify the selected test

programs to: 1) remove statements that do not compile or run

e

20351

successfully, and 2) add statements that are necessary to test
non-standard features or that support standard functions. The
third program, Population File Maintenance, is available to
modify the set of available test statements that comprise the

data base, and to add, delete or change environmental data.

Thus, the CCVS is not a set of COBOL Compiler test programs,

but rather, a system capable of generating a very large number

of "tailored" test programs. A particular test program can be
tailored by the user to fit the environment of a particular COBOL
compiler, to include representative operations from any subset of
FPM's and to exclude tests of certain functions that are known to
be inoperative or not implemented in the compiler undergoing

gvaluation.

The compiler test programs themselves need exist only during the
short period of compiler evaluation. At all other times, the
individuai tests that comprise these programs are resident in the

Population File.

The CCVUS Data Base

The data base or "Population File" contains twao distinct kinds
of information: environmental data and tests. Both types of
information are carried as unblocked 80-character COBOL source
card images. The content of the Population File is discussed in
detail in 3.1.2.

Environmental Data

The COBOL Environment Division contains a number of implementor
names and other implementation dependent information. To a lesser
extent, the Data Division contains information of a similar naturs.
In order to make the specification of a test program as easy as
possible, this environmental data is maintained in COBOL Source card
form for every compiler of interest. Thus, when a test program

is to be generated for, say, the B-8500, the user merely specifies the

o

2,3,1.2

2.3.2

computer-name to the Selector Program, and it then selects the
Environment Division entries appropriate to modules included in

the test, using the environmental data contained in the B-B500

table on the Population File.

Environmentel Data ie carried on the Population File in order
by mnemonic computer-name. A set of dete for e particuler com-
piler-computer coneiete of an environment header caerd followed

by a eeriee of COBOL eource entries.

Teets

A Teet coneiste of one or more COBOL statements thet exerciee a
particular COBOL function (e.g., @ verb). These etatements ere
surrounded by a eet of supporting Date and Procedure Division

entries. The general sequence of statements within a Test is

as follouws:

1. Source and Result fields.

2. Initialization procedures.

3. The actual statements that perform the test.

4, Statements that move the test name, actual result and
expected result to a common work area, and perform the
result analysis and output routine that is common to each

test program.

Tests are carried on the Population File in test serial number
sequence. Etach test begins with a test header, Followed by the

source cards comprising the test.

The various system utility programs comprise a special category of
While functionally different, they reside on the population file

in order to utilize environmental data in the same way as tests.

The Population File Maintenance Program

Thie progrem operatee on the Population File, end enables the

ueer to add, modify or delete both environmental data and tests.

-11-

tests,

2.3.3

2.3.4

The most frequent use of this progrem will be the addition of
environmental data for new compilers and the deletion of datea for
compilers that are no longer undergoing tests. The modification of
tests should occur only when the USA Standard COBOL changes. Such
a change may require the addition.of new tests, the deletion of
existing tests, the shifting of tests from one level of a module
to another or between modules, or some combination of these.

These operations are aveilable to users through this program.

The Selector Program

The Selector program performs three functions:

l. Using the compiler-computer name supplied by the user,

locates the applicable environment data and saves it.

2, Using the user supplied specification, selects those tests
eppropriate to the standard modules to be tested, deletes those
tests designated by the user, and obtains the Environment
Division statements required by the selected tests from the
data saved in Step l. For convenience, the Population File
Maintenance, Selector and Source Program Maintenance
Programs are handled like tests in order to supply them with
Environmental Data.

3. Pleces the resulting series of teste and supporting statements
in the order required for compilation, after removing certain
date items with identical descriptions. Operating system con-

trol cerds can optionally be placed before and after the source
deck.

The Source Program Maintenance Program

This program is used to modify the source tepe of a test program
either before its initial compilation or between compileations.
Modification may be necessary because:

1. The user wiehes to test one or more non-standard features

known to be implemented on the compiler, or

2, DOne or more test statements did not compile correctly or,

having compiled, caueed the object program to end abnormally.

-12-

208105

The Test Program

Each test program produced by the Sslector program is a complete
COBOL source program, ready for compilation. The exact composition
of a particular program depends on the contents of the information

that the user supplied to the Selector program.

Each individual test within a program audits a particular feature

or element of the COBOL language by executing one or more procedural
statements. The result of that execution is then compared to a
pre-determined "standard" result by a support routine. A parameter
supplied to the Selector determines whether all tests results, or

only those that differ from standard, are displayed.
HOW THE CCVS IS USED

This section describes the general activities required on the part
of the user to validate COBOL compilers using the CCVUS. The
activities are divided into four phases: (1) Initial system pre-
paration, (2) Test program generation, (3) Test program execution,

and (4) Test result evaluation.

Initial System Preparation

The CCVUS is delivered on an IBM 360 loadable tape. Appendix G
contains a description of how to generate the Character Code Con-

version Program, the Selector Program, and the Population File.

The initial step in using the CCVS is the compilation of the Selector
program on the user's computer. This program, as well as Population
File Maintenance and Source Program Maintenance, is written in a
subset of minimum USA Standard COBOL to insure, as nearly as
possible, that it will compile into a useable program when processed
by any COBOL compiler. The COBOL subset is described in Appendix 4
of the CEI Detail Specification, Part I (reference 3).

The Selector program is carried on the Population File and can be
selected with all its Environment Division entries completed,
providing another computer is available on which to make the selec-
tion. Alternatively, the user can manually complete the necessary

entries. Once the three phasee of the Selector have been compiled,

-] 3=

2.4.2

the object programs must be interfaced with this implemantor'e
Sort Program (the Selector does not utilize the COBOL SORT verb)
and Operating System.

The Selector program in its object form may now be used to generate
the Population File Maintenance program and the Source Program

Maintenance program.

The Population File will be delivered with the user's computer
reflected in the environmental data section. Thus, no
Environment Division entriee are required prior to thie
compilation. After compilation, thie program muet also be
interfaced with the Operating Syetem.

Under normal circumstancee, the Selector program will be com=-

piled and run on a singls ‘base' computer, as will the

Population File Maintenance program. These programe in their object
form will be used to generate teet program(s) and a Source

Program Maintenance program for each compiler to be validated.

It is unlikely that the Selector program itself need ever be
compiled on any other computer. Furthermore, it seems prudent

to limit access to the Population File Maintenance program and,

hence, it too need eeldom, if ever, be recompiled.

Test Program Gensration

The firet step the user takee when he desires to gensrate a test
program ie to determine whether the Population File contains
environmental data for the implementation in question. This can
be ascertained from the latest print-out from the Population File
Maintenance program. If the data ie not there, it ie created in
the manner explained in appendix C and placed on the file by a

Population File Maintenance run, as explained in Section 3.1.

Next, the ueer must decide which functione and which level of each
function he wiehes to meaeure the implementation against. There are

at leaet two waye of arriving at thie decieion:

1. The reaeon for evaluation mey provide the criteria. Ffor

example, if the compiler hae been named ae part of the answer

-14-

4.3

to a Request for Proposal, the RFP may contain a list of the
modules that must be implemented, or the issuing agency may

have a standard requirement that provides this information.

2. The implementor may claim in his advertising the level at
which his compiler is rated. The user may simply wish to

verify this claim.

If neither of these ways is open, the user can resort to the
"relaxation" method. That is, he may measure the compiler
against full USA Standard COBOL, then successively reduce the
requirements until he achisves a clean compilation. This,

obviously, is a time consuming approach.

Finally, the user can review the implementor's COBOL manual
and determine which elements in the modules to be tested are
not available in this compiler. These elements can be

identified to the Selector program for elimination.

The next step in preparing the Test Program is to run the Selec-
tor program to generate the Source Program Maintenance program
and the specified test program(s) for the implementation being

evaluated. Thia run is discussed in Section 3.2.
Finally, a set of Operating Syatem control cards must be pre-
pared according to the implementor's manual. These cards will be

used for both the compilation and the execution of the program(s).

Test Program Execution

The validation process is diagrammed in Figqure 2. The first
step is the compilation of the source deck of the test program(s)
as it emerges from the Selector Program. If the compilation is
free of serious error messages, the object deck of the test

program is exscuted. If compile-time errors have occurred, the

user must trace each measage back to the source statement that

75

~” -
/ coBoL
| ‘coey’
\LIBRARY
\',

COMPILER
ouUTPUTS

N\

HRnEB FOR
vauDaTION
cCome.

SELECTOA
PROGRAM

PERFORMED ON USER'S
COMPUTER

coeoL
COMPILE

PERFORMED ON COMPUTER]

BEING
EVALUATED

cosoL
COMPILE

CORMRECTION
CARDS

(

EXECUTE
TeST o
.~ <
PROGRAM
Figure 2.

EXECUTE
SQURCE
PROGRAM
MAINTENANCE

-16-

The Validation Process

caused it and, using the Source Program Maintenance program,

modify the source deck of the test program to eliminate the errors.

Output from the Source Program Maintenance program should be
kept to document the changes. The test program is compiled (and
modified as required) until all serious error messages are

eliminated.

The final step of the validation process is to run the object
version of the test program. If an error occurs during the

run, the error must be traced to the source program, the program
must be modified using Source Program Maintenance, then compiled

again.

Test Results Evaluation

The result of a validation run - the answer to the question of
compiler compliance with a particular set of Standard modules -

must be determined from:

1. The list of language elements initially eliminated by the
Selector program.

2. Any messages from the Selector program concerning missing
environmental data.

3. The modifications made to the source deck of the test
program as indicated in the output of Source Program
Maintenance.

4. The actual test results that are flagged in the output of the
test program. The test codes that identify each result can
be used to locate in the Test Directory the test that pro-
duced the questionable result. This Directory indicates
the module to which the test applies and the particular

feature being examined.

=

Sl

3is gl

SECTION III

USAGE INSTRUCTIONS

POPULATION FILE MAINTENANCE PROGRAM (PFm)

The PFM program maintains the CCVS deta base - the Population File.

This file contains two dietinct kinde of data: Environmental Data and
Tests., Both typee are compoeed of groups of related COBOL source entries,
with the groups sequenced by an identifying code. The PFM treats each
type of data eeparately. It has the facility to add, delete, change the
content of, or merely print groupe of each type. 1Input to PFM consists

of entry information arranged in the eame sequence as the Population Fils,
and the Population File iteelf. Output ie a revieed Population File,
error meseagee, and listinge of the groupe added, deleted, changed or

requested for printing.

Preparation of Inputs

Environmantal Data

Each unique configuration for which a test program ie to be generated is
identified to the CCVS by an indicative name and ie repreesnted on the
Population File by a set of COBOL ecurce entries. Theee source entries are
constructed by the PFM from user eupplied input and can be referred to by
any test in euch a way that the Selector Program will replace the reference
by the entry referred to. In this way, the tests and the system utility

programs are tailored to run on an individual configuration.

Environmental input coneiets of a header card that contains the indicative
computer name and an indication of the action to be performed, followed

by one or more data carde (unleee a "delete" action ie epecified).

-18-

3.1.1.1.)1 Environment Header: The format of the Environment Header card

is shown below.

00
13

(E indicative-computer-name

T OO PR+~

The Environment header card is identified by the 'E' in column 1,

followed by a blank in column 2.

Columns 3 through 12 contein the indicative-computer-name by

which the PFM, the Selector, and the user refer to the entries.
Because snvironmental data groups are sequenced by indicative
name and because collating sequence differs among computers, a

consistent format for this name must be adopted by each user.

Indicative name is assigned by the user and has the basic fixed format:

AAANNNNNNN

where:

AAA contains the alphabetic abbreviation for the configura-
tion's manufacturer. No spaces are permitted. For
example, Control Data Corporation could be abbreviated
as CDC, General Electric as GEC and Burroughs as BUR.
Any abbreviation can be used as long as it is three

letters long with no imbedded blanks.

NNNNNNN is all numeric and contains the configuration's model
number and any other informetion such as system number,
compiler level, etc. While the only requirement is that

this field be numeric, it is suggested that the last two

=19~

A

digits be used to guarantes uniquensss among different

configurations of the same series computer.

Column 13 contains the Action Code. Four options are available:

Add a new set of entries identified by the indicative name, to
the Population File. 1When this option is used, all twslve

environmental data cards must follow the hesader.

Delete the set of entries identified by indicative name. ihen
this option is used, no envirommental data cards follow the

header.

Change the set of entries to reflect the information contained in
whichever data cards follow. The header is followed by from one
to twelve environmental data cards. Replacement is done on a

card by card basis. Therefore, all entries in a given card must
be filled out correctly, even though only one entry represent:

a change. for example, if entry 31 on card 9 is to be chanyed,
entries 26 through 30 and 32 through 34 must be filled out exactly
as they were for the initial entry, even though they themselves

are not being changed. (see Figure 3, Appendix C for card format).

Print the entire sst of snvirommental entries for indicative name.
Because an A, D or C option will cause automatic printing of the
entire set of entries, the indicative name appearing with a P option
must not appear anywhere slss in the environment input stream foi

a given PFM run.

-20-

J.1.1.1.2

0 O

3.1.1.2.1

Environmental Data Cards. There are twelve environmental data

cards that can follow the environment header when the operation
specified is "add" or "change'. These cards are filled out
according to a set of gueetions using information from the imple-

mentor's COBOL manual.

Appendix C contains the questionnaire, a blank environmental
data sheet showing the card formats, and a sample environmental
data sheet for a fully implemented USASI compiler together with

the corresponding output of a PFM run.

Tests

Each Test begins with e test header that contains the Test's

serial number, the program number in which the test eppears, the
module membership indicators, and one or more drop codee that, when
specified to the Selector program, cause the Test to be deleted from
a particular test progrem. The header is followed by the source
cards that comprise the Test. Each card of a Teet is coded with

a unique eequence number that ie used by the Selector program to

place the card in the correct sequence for compilation.

Test Header. The format of the test header is shown below.

1 3 9 11 95

r/T test-serial~number program-number modules drop-codes

OO »|m

Columne 1 and 2 of the Teet Header contain T followed by a space.

Columns 3 - 7 contain the test serial number. Tests are carried

on the Populetion file in test serial number sequence. This
eerial number uniquely identifies each teet to the PFM, Selector
and the user, and has the format:

Nmmm

n ¢ XXmm
YYmm

Y .

where n is the level (1, 2 or 3) within the module; N identifies

the Nucleus and mmm the sequence of the test within the Nucleus;

XX identifies one of the functional modules and mm is the sequence
number of ths test within that module; or YY identifies a non-test
reseident (e.g., a system utility program) and mm is the phase number

or 01 if the rssident has only one phase.

The functional moduls identifiers are:

TH Table Handling

sQ Sequential Access
RA Random Accsss

ST Sort

RW Report Uriter

SG Segmentation

LB Library

The current non-test resident identifiers are:

PF Population File Maintenance
SL Sslsctor

SP Source Program Maintenance
SuU Support Routine

Column 8 containe the following action identifiere:

A Add the teet header and the series of carde between it and the

next header to the Population File,

D Delete the test whose seriel number begins in Column 3 of this
card. When thie option is used, no source test cards follow
the header. ’

C Change the test identified in columns 3 -~ 7 to reflect the data
in the cards that follow. Thie header replacee the existing
header. If eource cards follow the header, they are merged
into the existing test in order by sequence number (a new

card replaces an old card with the same sequence number).

P Print the teast. Since options A, D and C cause the test to be
printed, this option ie used to print tests not otherwiee men-

tioned in the input etream for this PFI run.

=22~

Columns 9 -~ 10 contain the program number in which the test

appears. Program numbers have been assigned as follous:

01 Support Routine (never appears alone)

02 PFM

03 SPm

04 Selector I

05 Selector II

06 Selector III

07-09 Reserved for system programs

10 NUC (except 1N304, 1N305, 1N314, 1N315, 2N0S0, 2N0S1 and 2NOL2)
TBL

SEQ (except RERUN, 15Q27-31, and 25Q15)
RAC (except 2RA18)

2SRT
1RPY (except 1RWO1)
11 15£Q (RERUN, 1SQ27-31)
2RPW
12 1SEG
S 25601
14 25602
15-18 LIB (except 1LB04, 1LBOG)
19 1NUC (CURRENCY SIGN, 1N314; DECIMAL POINT, 1N315)
20 1N304, 1N305, 2N0O50, 2N0S1, and 2N0S2
21 2RA18
22 25015

23-29 Unassioned

30-44 1SRT (1 test per program)

45 1LB04
46 1LB0G
47 1RWO1

48-49 Unassigned
50 Library Entries for 1LIB, 2LIB
99 92299 (header only -- for artificial end-of-file)

Columns 11 through 54 contain from 1 to 9 designations of the

module and level to which the test applies. All tests in the louw

level of a module designate both the low and high levels. The

—08=

designation is coded in standard form sepzrated by commas with

no intervening spaces (e.q., 1TBL,2T8L,3TBL).

Colunns 55 - 80 contain up to 9 two-digit "drop codcs". Thesc

codes refer to COBOL language features that are commonly not

implemented in currently available compilecrs. The present lisi

of codes is found in Appendix A. This list can be expanded by

the user by merely adding features and corresponding unique codes Lo

the 1list. During a Selector run, when a drop code appears in a tecst heado
and @ Selector program DROP card, the test is dropped. The codcs

are separated by comnas with no intervening spaces (o.g., 1D,2(,5C).

3,1.2 RUSHLTS OF OPCRATION

The Population File that is produced by this run is unlabeled and
consists of unblocked 80-character card images. The sequence of

information on the file is as follows:

1. Environmental Entries, in sequence by the indicative-computer-
name in columns 3 through 12 of the Header card of cach sect.
An environmental set consists of:
a. The header
b. Fifty-two environmental data cards, in sequence by columns

1 through 6.

2. Tests and other residents, in sequence by the test serial
number in columns 3 through 7 of the Header card of each testi.
A test consists of:
a. The header

b. Any number of source cards in sequence by columns 1 through 6.

The Population File contains the following items:

1. Environment sets:
BURD350001
COCO640001
GECO062501
IBMOO36001
UNVO110801

A=

20k

Tests and

oLBOO
0SLO1

0Ssu01-

1LBOM
1NOO1
1RAO1
1RWO
1SG01
15Q01
15701
1THOA
2LB01
2N001
2RA01
2RW01
25G01
25Q05
25701
2THOM
3THOM
9PF 01
95pP01
97799

other residentis:

through

through
through
through
through
through
through
through
through
through
through
through
through
through
through
through
through
through

Test 97799 consists of

Selector program as &

0SLO3

1LB10
1N31B
1RACB
1RWO3
1SG14
15031
15718
1THO4
2LB10
2N061
2RA18
2RW05
25602
25015
25706
2THO4
3THO6

a header only and is used by Lhe

machine-independent end-of-file indicator,

The resull of a PFM run depends on the action specified:

l.

Add Action.

The add action in the case of the Environmental

dala creates a header and 52 card images. The add action for

@ Test places tho card images complete with header on the

population file exactly as they are received from the input

dovice,

The new entiries are printed out.

=D

2. Delete Action. The delete action in either the case of the
environnental data or the tests deletes all card images
on the population file until the next header is found. In

both casos the deleted information will be printed out.

3. Print Action. The print action simply prints and copies

the card images up until the next header.

4, Change Action. The change action in the cgse of the
Environmental data changes only that information on a

particular input card. The sample below will illustrate
this:

The input cards:

E XYzZ0879501C
06 READ-UNIT

will change ET0230 and ET0240 under the header E XYZ0079501C
from (See Appendix C for an explanation of Environmental cards)s

ET0250 DISK2

£ET0240 READER

to

ET0230

£70240 READ-UNIT

Note that the blank field on the input card was transmitted
to ET0230 which means that all information generated by

an environmental data card must be present if it is not to
be blanked out.

The change action for a test operates on the basis of the
serial numbers in columns 1 through 6 on the test card
images. Equal serials cause replacement by input, uncqual
scrials cause collation in sequence. The following example

will clarify:

-26-

The input cards:

T 2STO1C102SRT 4G ,4U
854400 ADD 1
854405 TO SUP-NUM-WK,

will change

854400 ADD 1 TO SUP-NUM-WK.

854410 MOVE '*' TO SUP~CTL (SUP=NUM~WK).
to

854400 ADD 1

854405 TO SUP-NUM-WK «

854410 MOVE '#*' TO SUP~CTL (SUP~NUM-WK).

and the old header
T 2STO1A1025RT 4G L4T

will change to

T 2STO1C102SRT 4G ,4U

In both the test and the environment cese the entire set of

card images between headers of the chenged file will print out.

Appendix E containe the liet of diagnoetic messages produced
by PFM,

-2~

a2

SELECTOR PROGRAM

The Selector generates test programs from Population File

entries, based on user supplied control information.

The Selector is capable of supplying any resident on the Population
File with environmental data. The only provisions are that: 1) tne
resident must be entered through a PFM run in the manner specified
for tests, and 2) the resident must be named on the TEST card.

The PFM, SPM, the Selector itself and 'COPY' Library entries (for
tests of LIB) are currently supplied wiih environmental data in

this fashion.

The inputs to the Selector are the Population File and a set of
control statements that define the test programs that are

to be generatad.

Principle considerations in the preparation of these control
cards are the machine-compiler configuration subject to test,
the modules of USA Standard COBOL against which the compiler is
to be measured, which (if any) standard features are known not
to be implemented, and the operating system's requirements for
the sub ject machine and the compiler environment. Each consi-

deration is expressed in a separate control card.

The Selesctor produces one or more test programs plus a set of

diagnostic and infoarmative messages.

=78

3.2.1 Preparation of Inputs

The Selector accepts five control cards, the first two of which

are required. They are as follows:

HDWR - Hardware description: This card is required and

indicates the indicative-name assigned to the environmental
data to be used by the Selector in tailoring the test programs.

The format of the HDWR card is:

1 6
HDWR indicative-name SALL

Indicative-name must be identical to the name that appears
on the header card of an environmental data set (see 3.1.1.1.1).
This environmental data will be used to tailor whatever

Population fFile residents are named on the TEST card.

The optional parameter ALL specifies that all test results are
to be printed by the test programs when they are executed.
The omission of this parameter causes only those results that

differ from the expected results to be printed.

TEST - test specification card: This card is required

and indicates: 1) the content of the test program in

terms of Standard modules, and 2) which CCVS utility programs
(or data) are to be selected from the Population File and
tailored. More than one TEST card can be used if a single

card is overflowed. The format of the TEST card is:

1 6
TEST nXXX ,nXXX ...

=29~

The indicator nXXX may be:

1. The name of a USA Standard COBOL module (e.g., 1NUC,
2RPW)., Appendix D discusses the tests that comprise each

module.

2. The special indicators:

a. 1MIN which stands for the ‘minimum standard requirement -
1NUC, 17BL, 1SEQ. When 1MIN is specified, modules other

than the three for which it stands may also be specified,

b. 1MAX which stands for the maximum standard requirement -
2NUC, 37BL, 2SEG, 2RAC, 25RT, 2RPW, 25EG, 2LIB. When 1MAX

appears, no other modules may be specified.

3. The resident designators:*

0SL1 Selector, phase 1

0SL2 Selector, phase 2

0SL3 Selector, phase 3

OLIB "COPY" Library entries for both 1LIB and 2LIB
1PFM Population File Maintenance program

15PM Source Program Maintenance program

*0 equals zero

~30-

In the table below, an X indicatee which combinations may

appear together on e TEST card:

v [max | nnuc | nTBL | nsEq mg;g?; Kreiidz”tl
MIN X X
TMAX X
ANUC X X X X
nTBL X X X X
nSEQ X X X X
i X x | x X X
reeidents X X X X X X X

If the computer on which the test progrem is to run has a small
main storage capacity, it is adviseble to limit the number of
modules that appear on a TEST card. Multiple Selector runs

(not multiple TEST cards in & eingls run) will then be necessary
to generate all the teet programs needed to satiefy the particular
validation requiremente. If a further reduction in teet program
size ie required, the DROP card can be used to epecify by serial

number certain tsets to be eliminated during eelection.

DROP - Drop indicatore: The Drop Card is optional and epecifies one

or more items to be eliminated during the selection process.

Thie enables the ueer to eliminete features that he knowe are

not implemented in the compiler being velidated before the test
program ie selected. For example, in validating most currently
available COBOL compilere for 1TBL, the Indexing feature would be

DROPed. More than one DROP cerd cen eppear in the input stream.

.

1 6

DROP identifier ,identifier ...

Identifier may be either:

1. A two digit "drop code". The relationship of Drop codses to
standard COBOL features is shown in Appendix A. A single
drop code may cause one or a number of tests to be dropped
from one or more of the modules specified on the TEST card.

Up to 75 codes may be specified for a Selector run.

2., A five character test serial number., Each test has been
assigned a unique serial number (see 3.1.1.2.1) that associates
thé various statements comprising the test. This serial
number is found in the Test Directory (ses Appendix D) and
when used in the DROP card, causes all the statements related
to the particular test to be dropped. Up to 50 serial numbers

can be specified for a Selector run.

It should be noted that if a particular test contains both imple-
mented and non-implemented statements, the SPM program should

be used to modify it rather than using a drop code to eliminate it,
unless the entirs test is rendered meaningless by the absence of the

non-implemented statements.

HEAD and TAIL Cards: These optional cards esnable the user to

place Operating System Control cards before (HEAD) and after
(TAIL) the source deck of each test program. This feature may
snable a smoother run sequsnce to be obtained under certain

Opesrating Systems. The format of these cards is:

9 6
HEAD nn
TAIL
wheres n is the number of control cards. This number of cards

must follow the HEAD or TAIL card in question. Ffor example:

T

3.2.2

('CC3
/ TEST

(' program 2
_J/ - ('002
r TAIL { e

cc2 will ('c03
(Lt
. TEST
result in
program 1

vl
('cc2

cct

Only one HEAD and one TAIL card may appear in the input stream;
each may contain a different number, but the sum of the two

numbers must not exceed SD;

The control cards muet be recognizable ae such to the Selec-
tor program; that is, thsy must not contain end-of-file indi-

cations, nor can they contain all numeric data in columns 1-6.

As ehown in the example above, when the compoeite of modules
selected on the TEST card resulte in the generation of more than
one test program (eee 3.1.1.2.1), the control cards are repeated

and placed before and after each individual source program.

Results of Operation

The Selector generates one or more test programs depending on
the parametere of the particular TEST card. The assignment of
modules to programs is deecribed in 3.1.1.2.1. The selected pro-

grame appear in program number order on the output file.

In addition, the Selector producee an information and diagnostic
lieting. Thie liet containe two kinde of information in the

same format:

1. A liet of the serial numbere of all teete dropped together
with the cauee of their removal and the modules in which the

tests normally appear.

=33=

2. A list of non-standard situations reflected in the environ-
mental data for the particular implementation. For example,

the lack of a RESERVE clause would be reported at this point.

This listing contains three columns: (1) Test serial number,
(2) meesage, which contains a short message or a drop code, and
(3) the module and level to which the test belonge, taken from

the test header card (see 3.1.1.2.1). For example:

SERIAL MESSAGE MODULE
1NOD4 4N 1NUC, 2NUC
IN316 48 1NUC , 2NUC

47
1THO2 m 178L,27BL,3TBL
25011 ENV ERR FATAL 25EQ
2THO2 m 2TBL,3TBL

3THO1 NAMED ON DROP 3TBL

The first three tests were esliminated because @heir test

headere contained a drop code identical to one contained on

the DROP card. Notice that the eecond teet, 1N316, was dropped

by two drop codee., The fourth test was dropped bscause the en-
vironmental date it requested wae missing, and the card in the

test that requeeted this data indicated that the entire test

muet be dropped in this event (eee Appendix F for further

detaile). The fifth teet was dropped by the eame drop code,

1M, that dropped the third teet. The laet teet wae dropped because

ite serial number eppeared on the DROP card.

The lack of environmentasl date requeeted by a particular test

results in one of 2 additional messages:

ENVIRONMENT HAS NO ENTRY...CARD DROPPED
ENVIRONMENTAL ERROR CAUSES FOLLOWING TEST TO DROP...

These messages are interspersed with those deecribed abovs,

=34

3.3 SOURCE PROGRAM MAINTENANCE PROGRAM (SPM)

The primery purpose of SPM ie to permit eource level modifications
to test program contents. Modifications may be required if
language elemente are not implemented in the compiler under-

going tests, or if that compiler obeerves conventions different

from or in addition to those observed in USA Standard COBOL.

Many of these differences can be handled more easily through

the Drop Code facility or by entriee on the Environmental Data
portion of the Population File., Character punch code differences
are handled by the Character Code Convereion Progrem described

in 3.4.

Any differences that cannot be handled by those means, but which
will have an effect on the execution of the teste, must be
handled by means of an SPM run. For example, & compiler might
require certein non-etandard information in FD entries. The:e
entries cennot be provided through the environmental date faci-

lity end, thue, muet be added by means of SPM.

Since the complete univeree of changee which may become necessary
cannot be predicted, no eet working procedure cen be eeteblished.
Some factors to consider during test preparation for e epecific

compiler include these:

1. Does the implementor note any non-steandard features, or
extensione to USA Standard COBOL that are neceesary for

the correct operation of etandard features?

2, Does the menufacturer note eny reetrictions, un-implemented

or partially=-implemented featuree?

=35=

5Bl

Se

6.

If
to

Is the implementation on a par with the level of each
module to be validated in the tests?

Are thers known problem areas or "buge" in the current version

of the compiler?

Does the compilation of the test program produce error

messages, or is the execution incorrect?

Do system considerations have an effect on the test design

(e.g., file passing techniques)?

the answers to any of thess questions indicats that changes

the test programs are required, the following points must be

considered in making these chenges.

1.

2,

KN

4.

How many tests are affected by the change?
Does the change invelidate the purpoee cf any individual test?

Can the change be made more sasily by use of either the
environment table (see PFM, 3.1) or Selsctor control cards
(Sselector, 3.2)7

Does the change require reprogramming or redesign of any test?

Preparation of Inputs

Input to an SPM run consiets of the file of test programs produced

by the Selector, and 8 set of change cards. Change cards must be

in sequence by program number (columns 73-74), then sequence number

(columns 1-6).

—-36-

SPM considers any card that is not in sequence by program number/
sequence number to be a system control card. Because system
control cards do not usually contain fields for sequence number

or program number, changes to these cards cannot be made by

SPM, Rather, the source program must be punched out and such
changes made manually. The system end-of-file (whatever is
recognized as an AT END condition by the COBOL READ statement)
cannot appear in the source or maintenance inputs except to desig-

nate the end of such inputs.

All modifications are made on a card-by~card basis. To make
changes to individual words within a statement - for instance,
to delete an optional word from the middle of a statement - the
entire card on which that statement appears must be replaced

by one containing the desired wording. The individual tests
have besn designed in such a way as to facilitate card-by-card

modification.

The SPM input card formats and corresponding functions are as

follows:

OPTION: This card controls the content of the SPM output
listing. An OPTION card appliee to all programs following
it until overridden by another OPTION card.

1 7 13 14 73 74
OPTION L program-number

1-6: must be blank.
7-12¢ OPTION.

13: L or blank. L causes the lieting of the output source
program with the changes annotated (this option is
aseumed if no OPTION card is found by SPM). Blank
causes the listing of correction cards only.

14: must be blank,

73~74: program number or blank.,

-l T

DELETE: Single source entries or a series of source entries

may be deleted by means of this card.

1 7 13 18 73 74
sequence-no-1DELE TEsequence-no-2 program-npumber

where sequence-no-1 identifies the first or only source pro-
gram card to be deleted and sequence-no-2 identifies the last
card to be deleted. When only one card is to be deleted,

sequence-no-2 must be equal to sequence-no-1. Columns 73-74

must contain the program numbers,

No DELETE card may indicate a range which overlaps the range
of another DELETE card.

Insertions: These require no control card. The cards to
be inserted must be assigned serial numbers in columns 1-6

which fall between a pair of existing serial numbers.

When a group of cards is to be inserted at a single point,
only the first card need be punched with a serial number;
the remaining cards may be blank in columns 1-6. However,

all must contain the program number in columns 73-74.
Insertions may be made within the range of a DELETE.

Replacements: Replacements are similar to insertions except

that the serial number field of the replacing card equals

the serial number on the source program card to be replaced.

When a series of cards contains more cards than are being
replaced, the extra cards may either be assigned serial
numbers between the last replaced one and the following one;

or, as with inserts, contain a blank sequence field.

-38-

I

WUhen a series of replacement cards contains less cards than

are being replaced, the excess must be deleted by a CELETE con-
trol card. In this case, it may be more convenient to DELETE
the entire group to be replaced, following it by an insertion.
Note that blank serial numbered cards following from a DELETE

card are permitted.

END:

1 7 73 74

END program-number

1-6 blank
7-9: END
10-72: blank

73-74: program-number or blank
SPM input cards are arranged in the following order:

1. OPTION card (optional),
2. Program groups; arranged in sequence by program number

(columns 73-74).

a. OPTION card (optional),

b. Deletions, insertions and replacements in order by
sequence number (columns 1-6). Card with blank sequences
numbers are treated as if they were consecutively
numbered from the first card of their group.

3. END card.

Results of Operation

An SPM run results in: (1) an updated source tape of test
programs, (2) a listing for each program modified by the run,
as specified by the option card in force when the program was

processed.

o, (T

3.4 CHARACTER CODE CONVERSION PROGRAM

Becauee of the differing repreeentation of character codes in
different computers, a charactsr code convereion program has
besn furnished. Thie progrem, unliks the othsr CCVS utility
programe, ie not written in COBOL. Rather, it ie a Syetem/360

BAL program that operatss as a free-standing program,

The progream accepte any COBOL sourcs program or the Population
File as input, togethsr with two control cards epecifying the
sourcs and target character codes. Output of the program ie the

convertsd program or Population Fils.

3.4.1 Preparation of Input

Control carde requirsd by the program are:
1., SOURCE card:

a, Columne 1l - 6

SOURCE,

b. Columns 7 = 9 = the addrses of the input device;
i.s., 180, 00C, stc.

c. Columns 10 - 11 = If 2540 is ueed, 01 = Data Mods 1,
02 = Data Mods 2, If tepe ie ueed, ths mode eetting

ehown in ths chart bslow should bs ussd.
d. Columns 12 - 80 = Characters to be tranelated.

2. O0BJECT card:

a. Columne 1 - 6

OBJECT,

b. Columns 7 = 9 the address of the output dsvice;
i.e., 180, 00D, etc.

c. Columne 10 - 11 = If 2540 is used, 01 = Data Mode 1,
02 = Data Mode 2. If tape ie ueed, ths mode setting
ehown in the chart bslow ehould be ueed. For all othsr

eituatione, leave these columne blenk.

-40-

d. Columns 12-80 = Characters to which SOURCE character are
to be translated. E£ach 0BJECT character should appear in
the same column as that SOURCE character from which the

translation is to be mads.

Col Bytes Trenslate Convert
10-11 per Inch Parity Feature Feature

10 200 odd of f on

20 200 even of f of f

28 200 even on of f

30 200 odd of f of f

38 200 odd on of f

50 556 odd of f on

60 556 sven of f of f

68 556 even on of f

70 556 odd of f of f

78 556 odd on of f

90 800 odd of f on

AO 800 aven of f of f

A8 800 aven on off

80 800 odd of f of f

88 800 odd on of f

co 800 single~density 9-track tapes only

1600 dual-density 9-track tapes only
(f:] 800 dual-density 9-track tapes only

A set of sample control cards is found in Appendix H.

The following rules must be observed when determining device

assignments.

1. If either the input or output device is a card reader that
will be reading or punching other than EBCDIC punches, that
device must be a 2540 with the data mode 2 option.

2. When either input or output is aesigned to tape, only

EBCOIC punches may be ueed in sither control card.

3. Remember that, on tape, the objective is a particular bit
configuration; the punches in the control cards should be

selected with this in mind.

=4 =

3.5 TEST PROGRAM OUTPUT ANALYSIS

The ALL parameter of the HDWR card conditions a test program

to display the actual and pre-determined result of every test

in a test program. If an actual and a pre-determined result
differ (as determined by a character-by-character comparison)

the actual result is underlined. The absence of the ALL
perameter results in the display of the actual and pre-determined

results of only those tests where a difference is found.

Test results are displayed acroes the output page. Four lines

appear:

1. The top line contains the test serial number (e.g., 1N026,
1THO2).

2, The second line contains the pre-determined result.
3. The third line contains the actual result,

4, The fourth line contains dashee that underline those cases
wherein the pre-determined and actual results do not

agree.

I1f a failure is noted in the ocutput, it is necessary to trace the
error to its cause in order to determine whether or not the
failure represents a violation of the USA Standard COBOL. The
procedure to follow in gathering information about & particuler

test 1e as follous:

l., Note the teet serial number which appeare in the first line
of the test result printout.

2., Look up that test in the test directory found in Appendix D.
This will indicate what the purpose of the test is and how the

test results are related to that purpose,

-42-

3. If more detailed information is desired, look up the test
in the test descriptions found in Part II of the Detailed

Program Specification (Reference 4).

4, Look up the test on the listing produced by the PFii. This
ie the ultimate source of information on the procedures and

design of the test.

Once the source of the difference ie isolated, it must be con-
sidered in light of the purpose of the test. Ae an example,

suppoee a8 sort test indicatee & eingle error, as follows:

1 8§ T 0 9 *
l1 1 1 1 1 1 1 1 1=*
1 1 1 0 1 1 1 1 1 #*

The preeence of dashes in the last row indicates an error some-
where in the resulte. Comparing the middle two rowe shows the
error to be in the fourth poeition. The first row identifies

the teet as 15T09,

Looking at the test directory under 15T09, we see that each

position represents the most recently chenged sort key field
on coneecutive sorted recorde and that the fourth record in

the ascending sequence expected has, as its most recently

changed field, the eighth key with a generated value of -14.

Going to the test listing for 15T09, we note that the eighth
key is computetionel, unsigned. Thus, the expected result

that was checked for was +14,

This indicates that an uneigned computetional item which

originally had been eeeigned to a value of -14 hed failed

when used ae a sort key,

AT

The error must now be correlated to a feature. Check over other
results to see if any other failures are related to this one. If
so, try to determine the trouble by isolating the moet common
cause. Check all diagnostics produced at compilation and at exe-
cution, and the manufacturer'e literature for restrictions, special

implementatione or known problems.

If the error can be correlated to a feature other than those
being tested in the failing test, the test should be modified to

eliminate it:

l. Determine the change required in order to bypase the problem

without invalidating the purpose of the test.

2, Prepare the changs using SPM change techniques. The program
number in which the test appears can be found in the test
header on the PFM list. The sequsence numbers found thers for
the test source cards are the same as those found on the test

program lieting.

3. Using the SPM make the changes to the test program (not to
the tests themeelves) and re-execute. In the case of data
items, the item to bes chenged may appear under a& different
test ssrial number because of the elimination feature of the

Selector Program (see 2.3.3 and reference 4).

Re a continuation of the earlier example, all test results are
checked for failure related to sort keys, computational or

unsigned fields. Ssveral failurses of unsigned computational

fields might be found in tests of another module indicating a pro-
blem with such fielde. If a diagnostic meseage or a manufacturer's
manual warns of computational iteme being considered as always

signed, it could be aesumed that this is the cause of the failure.
Since the purpose of test 15709 is to teet certain RETURN etate-

ment situations, the ues of this particular key is incidsntal
and thue the test would still be valid without it.

~44-

Several changes might be made toc eliminate the error
from the test but perhaps causing the expected
value check to be changed from +14 to =14 would be

the easiest.

In the teet program listing for 15709, cerd 851180
(Columns 1 - 6) is found to contain the 14 ueed in the
existing check. A replacement card 851180 with =14 is

prepared and used in an SPM run to update test program 38,

The SPM output provides a record of the change.

— 45

SECTION IV

OPERATING INSTRUCTIONS

COMPILATION AND EXECUTION

Because the CCVS is intended to be usable with any COBOL
compiler, it is readily apparent that it must operate in
any of a large number of environments. Ffor this reason,
the compilation and exscution of the test programs are

discussed here in genseral terms, rather than in relation

to any particular implementation.

Several items will be useful to the operator in preparing
to run the CCVS:

1. The implementor's COB0OL manual,

2. The appropriate operating system manual, (a COBOL
related abstract may be contained in the COBOL
manual),

3. A Printout of test program(s) from Selector run

(or Source Program Maintenance).

The paragraphs that follow outline a series of steps that

must be taken to prepare for compilation and execution.

Determine if the implementation being tested will allow stacked
input,i.e., multiple programs not separated by end-of-file marks.
If not, the user must take one of the following approaches:
1. Choose tests such that only one program will bse
produced by the Selector program.
2. Punch out the Selector output file and manually
sgparate the programs, using columns 73-74.
3. Write a program to copy the Selsctor output file
and insert the appropriate end-of-file marks betwesen

programs.

Determine the method of assigning "implementor-name" (in the
ASSIGN clause of the SELECT sentence) to a physical device.
This is often done at execution time with & type-in or control

card, although in some systems it may be specified either

-46=

explicitly or implicitly in the ASSIGN clause itself. If
neither Sequential nor Random Access is being tested, the user
need only determine the aseignment for the devices to be used
for printing (often a printer, although eometimes a file that
is printed in a separate operation), and for ACCEPT and DISPLAY

statements (these may not require explicit assignment).

If Sequential without maes storage is being tested, the tape and
printed "implementor-namee'" must be assigned to their appropriate
devices. If either Sequential maes etorage operations or the

Random Access moduls is bsing tested, the mass storage "implsmsntor-

namee'" muet also be appropriately aseigned.

Determine any unusual control carde that may be necessary. Ffor
example, a machine that hae no hardware ewitches may simulate

them via control information.

If Segmentation is being tested, determine whether any control

cards are needed or affected therehby.

If Sort teste are being tested, extra control information may be

needed by the sort program invoked by the Sort statement.

Some determination must aleo be made about what is necessary
to invoke execution of both the compiler and the resulting object
program. Implementations differ coneiderably in thie area, ranging

from eimple to very complex.

Although the preferred procedure is to eet up the job as a "compile
and go" operation, as nearly self-contained as possible, an

occaeional implementation may not allow thie approach.

There are a number of areas in which machine dependent problems
may manifest themeelves. For example, the bit configuration
generated by arithmetic on eigned fields is sometimes not repre-
sented by a printer graphic. When thie occurs, extra care is

neceseary to ineure that proper interpretation ie made.

=47~

Some machines have rather specialized input media such as paper
tape or magnetic tape only. When this occurs, some means of
translation from punched card format must be devised. It should
be remembered, however, that a machine of a particular make and
model can wusually be found eomewhere with provision for punched

card format input.

A situation sometimes arises in which input-output software
limitations cause problems. For example, compilers occesionally
limit references to any given FD to only one mode (i.e., INPUT,
OUTPUT, etc.). This is a severe limitation that renders the
compiler non-standard. To run Sequential and/or Random Access
module tests with this restriction, the user must run on an
individual test basis using the "DROP" facility in the Selector
Program and possibly the Source Program Maintenance Program

to construct the runs.

Another non-standard restriction is more easily circumvented

in the test runs but could be quite cumbersome in a production
environment. This is the caee where the "implementor-name"

in the ASSICGN clause of the SELECT sentence is restricted to
repreeenting a unique physical device. (e.g., tape unit 1).

To run the tests in this environment, a separate physical

device is required for every ¥D in a given run and the "implementor-
names" inserted by the Selector have to be changed using the

Source Program Maintenance Program.
In the sections that follow, some specified considerations such

as input-output aseignments and file-paeeing requirements, are

discussed for each program in the CCVS.

4B

4.2 POPULATION FILE MAINTENANCE PROGRAM
4,21 Input-0Output Assignments

The following table defines I/0 requirements for this program:

Printer

Input
File Name Output Usage
PAP-FILE i 01d Population File master.
TAPE-ZUT o New Population File master.
CANTREL-CARD i Update cards.
PRINTER-gGUT 0 Listing.,

NOTE: f indicates alpha 0 in file-names.

~4G-

4.3 SELECTOR PROGRAM

4.3.1 Input-Output Assignments

The Selector consists of three COBOL programs which must be inter-
faced with two sorts. The sorts, either system sorts or simple
COBOL sort statements aof the USING, GIVING type, must be provided
as separate jobs or job steps. file passing must also be provided

for betwseen the execution of these phases.

R typical job flow using a system control-card type of sort facility

is shown below.

SELECTOR
SELECTOR |_—""| PHASE 1
CONTROL CARDS

SORT

0
\

SELECTOR
PHASE 11

SORT
II

l

SELECTOR
PHASE III

?\
b8 Be

\

™MPAUT
(Seratchy

-50-

Filee used by the Selector are: printer
input
output file record

PHASE Name on chart FD Name scratch paeeing size
Sel I Population File POP-FILE i not paseed 80
Sel I Selector Control CONTRAL-CARD- i not passed 80

File FILE

Sel 1 TMPOUT TEMP-AUT~FILE s not passed 80
Sel I SEL10UT SEL-gUT o passed MR
Sel I PRINTER=-AUT D
Sort 1 SEL10UT i not passed 117
Sort 1 SRT10UT o passed 117
Sel II SRT10UT SEL-INS-FILE i not passed 117
Sel II SEL20UT SEL-BUT-FILE o passed B8
Sel II PRINTER-GUT D
Sort II SEL20UT i not passed 88
Sort I1I SRT20UT o passed 88
Sel III SRT20UT SEL-INS-FILE i not passed 88
Sel III TESTFIL SEL-GUT~FILE o passed 80
Sel III TMPOUT SEL-TMP-FILE s not passed 88
Sel PRINTER-GUT P

ARll messages are placed on PRINTER-OUT.
checking plus sequence checking.

of records coming from a sorting step, the selector requests on the

Messages include certain error

In the event of an error in the sequence

printer that the eort be performed again and then terminates the phass.

=5]=

(&3]

Sort Control Fields

The Selector appends keys to the front of the records to be sorted,
and arranges the key fields such that the entire key may be used
as a single key for simplicity. The relative sequence of records
with like keys is unimportant and no assumptions are made by the
Selector based upon such sequences. Since records are not modified

during sorts, input record counts should equal output record count:.

Sort I
Major key 1-2 Alphanumeric Ascending
Inter key 3-32 " 1Y
Minor key 33-37 i i
(body) 38-117
Sort II
Ma jor key 1-2 Alphanumeric Ascending
Minor key 3-8 o ik
(body) 9-88

e

SOURCE PROGRAM MAINTENANCE PROGRAM

Input-0Output Assignments

SPM is a single phase program whose purpose is to permit updating

a test program file by means of a maintenance file in order to

a new test program file.

form

The operator must verify the control card set up for the maintenance

file and for the compile and exscution (or just execution if pre-

viously compiled) of SPM itself. The source program for SPM is

obtained by use of the Selector Program.

A typical job flow is:

Test
Program
Source

Revised
Test
Program

SPM

Source
Test //////;ﬂ
Program
7 Changes
The table that follows defines the I/0 requirements:
printer
input Record
Name on chart FD Name output Size Notes
Test-Program Source SHURCE-FILE i 80
Test-Program Changes MAINT-FILE i 80 May be card
reader, tapoe
or disk.
Revised Test Program BUT-FILE o 80
Source PRINT-FILE p

<5 T

4.4.2

Preparation of Test Program Change Deck

System control cards may be included to provide an end-of-file
for this deck. The deck may be pre-placed on & tepe or disk fils

or it may be read from a card reader.

If the END (column 7-9) card is used as the last card in the change deck,
no attempt will be made to read beyond that card.

The order of the deck is sequence number (column l1-6) within

program-number (column 73-74), with these exceptions:

1. OPTION (column 7-12) cards may appear at the front of the deck.
2. END (column 7-12) card may appear at the end of the deck and serves

the same function as an end-of-file.
3. Change cards may be blank in columns 1-6 if they follow a

change or a DELETE card which has a value in column 1-6.

-54-

CHARACTER CODE CONVERSION PROGRAM (Sec. 3.4)

The CCVS Character Code Conversion program is an IBM System

360 BAL program and may be run on any System/360 with a

console typewriter with unit address 01lF, a card reader with

unit address 00C, and the additional I/0 devices needed by the

user.

T

Place object deck followed by the "SOURCE" and "OBJECT"
control cards, followed by the input deck (if any) in the
card reader hopper.
Ready any other devices to be used.
Press LOAD. An END OF JOB message will be typed out when
the run is completed.
1/0 errors and control card errors will be typed out in the
following format:
1/0 ERROR ddd STATUS aaaa SENSE bbbb
WHERE: ddd = device address
aaaa = status bytes
bbbb = sense bytes
INTERVENTION REQUIRED ddd
JOB CANCELED -~ PERMANENT I/0 ERROR ddd
JOB CANCELED - CONTROL CARD ERROR cc

WHERE: cc = error code

CODE. ERROR

10 CC1-6 do not contain 'SOURCE"
or "OBJECT"

20 CC7-11 do not contain valid hex

characters (0-9,A-F)
30 CC10-11 do not contain a legal data

mode

2Ee

TEST PROGRAMS

The Selector program is capable of generating a number of
test programs. The exact number generated for any particular
run depends on the content of the TEST card. A epecific test
program, in turn, may or may not contain the teste for a
particular module. Thus, each test program preeente ite

own set of operational probleme, but the number of thess to

be reeolved during a2 given teet eeseion is variable.

All teet programe utilize the output device identified ae the
PRINTER in the environmental data. Other devices used depend
on the exact content of the program. In most caeee, the
control information required by a particular implementation
can be obtained from the source listing of the test program.

Some unueual problems are discussed below, by program

number.

=BG

4.

6.1

Prougram 10

Prograh 10 contains, &t most, tests of: NUC, TBL, SEQ, RAC,
2SRT, and 1RPY (except 1RWO1).

SEQ and RAC present no particular problems. 2SRT interfaces
through the SORT verb with the implementor's generalized
sort program. This interface may cause additional control
information requiremsnts:
1. Some control systems require special information on
files utilized by the USING and GIVING ouptions of the
SORT. The following file-names describe files asso-
ciated with one of these two options:
FILE-NAME-USING-2SRT-1
FILE-NANME-USING-25RT-3
FILE-NAME-GIVING-25RT-4

2. Sort work files may not necessarily be ASSIGNed in the
Environment Division, but rather, may have implicit
assignments that require that control information be
submitted for prescribed device-names. This will

usually be mentioned in the implementor's COBOL manual.

RPW produces output that may have to be printed off-line. The
exact format of tapes written under control of a particular
implementation's Report WUriter fesature must be determined from
the COBOL manual. Of particular interest are: (1) record
length, (2) block length, (3) relative position and meaning of
the printer carriage control symbols used by Report Uriter, and

(4) recording mode of the report tapes.

LIB presents a special problem because the input format of
entries to the implementor's "COPY" library and the methods for
creating and maintaining such a library are not specified in

the USA Standard COBOL.

4

0/ 2se

4.6.3

4.6.4

Library enlries are carried in the Populaticn File in program 50
and can be acquired for a particular implementation by specifying
TEST 0OLIB. Etach entry is preceeded by a header thal contains the
name by which the entry is referred to by the COPY statement in the
test program. This header is merely for information and is not foi

entry in the library.

The library entries must be placed in the "COPY" library in the
format and using the method of the implementation in question.

Both items of information can usually be found in the COBOL manual.

Program 11
Program 11 contains, at most, tests of 1SEQ (15022),

and 2RPW. Tho general considerations discussed in program

10 apply to program 11 as well.

2RU03 tests the CODE clause of the RD by interspersing three reports
on a single file (FILE-NAME-REPORT-2RPW-3). The COBOL Report Writer
assigns a unique code to records of each of the three reports. Pre-
sumably, the implementor supplies a utility program that is able to

separate the file at print time. If such a program is not available,

the tape can be dumped for visual inspection.

Programs 12-14

Programs 12-14 contain tests for SEG. These tests have no explicit
Input-Uutput requirements. Some implementalions may require
additional control information because one or more object program
segments reside on an external device. Because it is impossible

to predict how many segments will be forced onto external storage,
(if any), this information will have to be found in the source

program listing, in a procedure map or similar display.

Programs 15-18

Programs 15-18 contain the library tests (except 1LB0O4 and 1LB0OG).
The OLIB library entries must have been placed in the "COPY" library

prior to compiling programs 15-16.

4.6.5

Program 19
Program 19 contains the tests 1N314, CURRENCY SIGN and 1N315,

DECIMAL POINT. Neither test requires any control information.

Program 20
Prograin 20 tests DISPLAY without the UPON option, then ACCEPT

without the FROM option, followed by ACCEPT...FROM, then DISPLAY
«+.UPON. The devices addressed by tnese statements may have to

appear in an entry on an operating system control card.

The DISPLAY statement of 1N304 outputs the string
BBuvans¥Z = P € =8 5 5 s T) F P MHowonsas®
on the DISPLAY device. If this device is visible to the oporator,

this display will indicate that ACCEPT will immediately follow.

The ACCEPRT statement of 1N305 requires as input the character
string:

ABCOE.....XYZ012,...4..9 + - ¥
with no intervening spaces. If the ACCEPT device is the operator's
consule, the operator must key in this string at the appropriate
time. Otherwise, the string must be entered on the media used

by the ACCEPT device (card-reader, paper-tape reader, etc.).

The ACCEPT statement of 2N0S0 (which immediately follows the ACCEDPT
of 1N305) requires as input the character string.

123456789*%

The DISPLAY from 2N0O51 produces the character string:
2N051 ABCDEFGHIJ0123456789

The final DISPLAY from 2N052 produces the character string:
2N0S2 -AB...YZ + - YL =%, 3 0) /P 01.ceus8
2N052 -AB...YZ + - =%, 3 :()/B0...0.90...2 4

. 28,3 .()/F0...9

Programs 21 and 22

Programs 21 and 22 test Declarative LABEL PROCEDURES but present

no problems,

~-59-

4.6.6 Programs SU-44

4.6.7

4.6.8

Programs 30-44 each contain one test of a 1SRT feature. The
individual programs generally alternate in function between
creating a file to be sorted, and performing the sort itself

and verifying the output. As a result, files must be passed from
the crealing progrems to the program that sorts and verifies.

The implemcntor's techniques for identifying files passed between

programs must be used.

The table below indicates the files passed by the various programs:

FD file name created in Used in Rec Size Noteo
FILE-NAME-USING=3 31 32 (USING) 18

FILE~-NAME~USING-4 32 33 (USING) 18

FILE-NAME-GIVING-4 33 (GIVING) 34 18

FILE-NAME-GIVING=-6 35 (GIVING) 36 27 Alt. device possible
FILE~NAME-USING=-11 39 40 (USING) 50-100 differing lengths
FILE~NAME-USING-11 40 (GIVING) 41 50-100 differing lengths
FILE~NAME-USING-14 42 42 (USING) 33 multi-reel
FILE-NAME-GIVING-14 43 44 33 multi-reel

Program 45
Program 45 is identical to 157071 except that the SD enlry is
copied from Lhe "COPY" library.

Progrem 46
Program 46 is identical to 1RW0O2 except that the RD entry is

copied from the "COPY" library.

Progrem 47
Program 47 contains 1RWO1T as it is not compatible wilh other

programs. lhe report wriler considerations mentioned under

program 10 apply Lo program 47 also.

~60~

11-09

APPENDIX I

DROP CODE LIST

The COBOL language features that may be dropped during Selection are

listed under DESCRIPTION. The column headed FPM shows the Func-

tional Processing Module to which each feature belongs.

DESCRIPTION FPm CODE
LANGUAGE CONCEPTS
Punctuation Character , 2 Nuc 1A
H 2 NUC 1B
Relation Characters > <« 2 NUC 1C
= 2 NUC 1D
Condition-names, level-88, Condition-name test 2 NUC 1E
Procedure-names, all numeric 2 NUC 1F
Figurative Constants: plural forms 2 NUC 1G
ALL, except for 'character' 2 NUC 1H
Logical connectives AND OR, Compound conditions 2 NUC 13
Qualification: Data Division 2 NUC 1K
Procedure Division 2 NUC 1L
Indexing feature 1 7BL im
Reference Format: continuation of words
and numeric literals 2 NUC 1IN
IDENTIFICATION DIVISION
DATE-COMPILED 2 NUC 2A

-61-

DESCRIPTION FPm CODE
ENVIRONMENT DIVISION
CONFIGURATION SECTION
SPECIAL-NAMES CURRENCY SIGN 1 NUC 3A
DECIMAL~POINT 1 NUC 3B
I-0 SECTION
OPTIONAL Files 2 SEQ 3C
RESERVE clause 2 SEQ 33
SAME AREA 1 SEQ/RAC 3N
RECORD option 2 SEQ/RAC 3p
SORT option 2 SRT 3R
series option 2 seq/Rac/ | 3s
SRT

-62—-

DESCRIPTION FPM CODE
DATA DIVISION

Level numbers: 66 2 NUC 4S
88 2 NUC 1E
single digit 2 NUC 4A
Abbreviations SYNC, JUST, PIC, COMP 1 NUC 4B
BLOCK integer-1 TO option 2 SEQ 4D
CODE 2 RPU 4E
GROUP INDICATE 2 RPU 4F
JUSTIFIED RIGHT 1 NUC 4G
LABEL RECORDS data-name 2 SEQ/RAC 4H

OCCURS
ASCENDING/DESCENDING 3 TBL 4]
INDEXED BY 1 TBL m
DEPENDING option 3 TBL 4L
PICTURE mixed A, X, 9 in AN Picture 1 NUC am
AN edited items 1 NUC 4N
Currency Sign 1 NUC 3A
Decimal Point 1 NUC 3B
RECORD CONTAINS 1 SEQ/RAC 4p
RENAMES and level 66 2 NUC 4S
SYNCHRONIZED 1 NUC 4T
USAGE COMPUTATIONAL 1 NUC 4y
INDEX 1 TBL m
VALUE literal series 2 NUC 4y
literal THRU literel 2 NuC Al
VALUE OF date-name IS data-name 2 SEQ/RAC 4ix

-53=

DESCRIPTION Fem coog
PROCEDURE DIVISION

Arithmetic formulas 2 NUC SA
Conditions: Relational operators P 2 NuC 1E
= 2 NUC 1D

Condition-name condition 2 NUC 1E

Compound, logical ops. AND, OR 2 NUC 1]

Abbreviation 1 2 NUC 58

2 2 NuC 5C

Options: ROUNDED 1 NUuC SE
SIZE ERROR 1 NUC SF

Multiple result fields-Arith. verbs 2 NUC 56
CORRESPONDING, ADD and SUBTRACT 2 Nuc SH

NO REWIND, OPEN and CLOSE 2 SEQ 5K

Verbs and options

ACCEPT FROM 2 NUC 6F

CLOSE UNIT SEQ/RAC 5L

LOCK SEQ/RAC | 5M

compuTe 2 NUC 5P

DISPLAY UPON 2 NUC 6H

DIVIDE BY option 1 NUC SR

REMAINDER option 2 NUC SD

IF nesting on true path 2 NuC 5SS

nesting on false path 2 NUC ST

MOVE CORRESPONDING 2 NUC Su

OPEN REVERSED 2 SEQ SV

PERFORM VARYING 2 and 3 levels 2 NUC paiil}

=64=

DESCRIPTION FPm CODE
READ INTO SEQ/RAC 63
RELEASE 2 SRT 5X
RETURN INTO 2 SRT 5Y
SEARCH (format 1) 3 TBL 52
ALL (format 2) 3 TBL 4)
SEEK 1 RAC 6A
SET 1 TBL m
USE
Error procedure SEQ/RAC 68
Label procedure SEQ/RAC 4H
BEFORE REPORTING 2 RPW 6C
WRITE ADVANCING
BEFORE 1 SEQ 6D
AFTER 1 SEQ 6E
FROM SEQ/RAC 6K

- -

bt APPENDIX I

TEST - DROP CODE CROSS REFERENCE
TABLE 1. DROP CODE USAGE IN TESTS

l
! USED IN TESTS

CODE | FPM
1A 2NUC 2ND61
i 1
‘18 2NUC 2N061
1C 2NUC 2ND43
1D 2NUC 2ND24-2N032,2N034,2N035,2N043, 2N04S , 2N046
1l 2nUC 2NDS9
IF 2NUC 2NO61
16 2NUC 2NDS8
1H 2NUC 2NDS8
13 2NUC 2ND39-2N042
1K 2NUC 2NDS8
1L 2NUC 2N0S53,2N054
{
m 1TBL 1THO2-1THO4,2THO2-2THO4 ,3THO1-3THO4 , 2N022
IN 2NUC i 2N008
.
2R 2NUC 2ND60
3A INUC 1N314
38 INUC 1N315
3¢ 2SEQ 25Q05
32 25EQ 25Q06-25Q08,25T04

-66-

3N 1SEQ/RAC 15011,15Q12

3p 2SEQ/RAC 25702

3R 25RT 2ST03

3s 2SRT 25703

4n 1NUC 1N316

4D 2SEQ/RAC 2RA01-2RA08,25006-25008

4E 2RPW 2RW03

4F 2RPW 2RWO1, 2RWO2

4G 1NUC 1N313,2RW03,25701,25703,25T06, IN316

4H 25EQ/RAC 25Q006.25007,25012, 25015, 2RA13,2RA17,2RA18

4) 3T6L 3THO2,3THO4

4L 3TBL 3THO3-3THO6

am 1INUC 1N313

4l UG 1N004,1N013,1N016,1N017, 1NO20, 1ND25, 1NO28 |
1N034,1N037,1ND40, 1IND43, 1ND47, 1NOS2

4p 1SEQ/RAC 15Q09,15Q10,15Q21,15706,15707,15T10-15T12,25Q11

45 20NUC '2N0S6,2N057) -

47 1NUC IN313,1N316

=G

4y 1NUC INO77-1NOB0, IN105-1N108, IN313,1N316, IN132-1N134
1N169-1N171,25T01,25T02,25T06

4y 2NUC 2N059

4\ 2NUC 2N059

4X 2510 /RAC 2RA13-2RA16,25006,25G07

5A 2NUC 2N026-2N032,2N034-2N036

58 2NUC 2N045

5E 2NUC 2N046

50 2NUC 2ND33
1NN66, 1N067 , INO70-1NO73, 1INO94, 1NDYS, INDOB~1N101, IN121,

5¢ INUC IN124,1N125,1N127,1N130,1N131,1N151, IN154,1IN15S, IN1SY,
1N160,1N161, 1IN163,1N166,1N167,2N001,2N003, 2N005,2N007,
2ND09,2N011,2N031,2N034,2N035

5F 1NUC 1NO68-1N07%, 1NOBO, INO96-1N101, 1N108, IN122--1N125,1N128~
IN131,1N152-1N155, 1N158~-1N161, IN164~1N167,2N002,2N003,
2N006,2N008,2N009, 2N015, 2N032, 2N034, 2N037, 25T0S

S6 2NUC 2N001, 210003, 2N007-2N009

SH 2NUC 2N004-21006,2N010,2N011,2N013,2N015

Sl 25EQ 25006,25Q09

5L 1SEQ/RAC 15023,15Q28

5 25E£Q/RAC 2RAL16,25Q08

—6B=

5p 2NUC 2N024-2N032,2N034,2N035

SR 1NUC 1N162-1N167,1N171

55 2NUC 2N038

5T 2NUC 2N038

5U 2NUC 2N013,2N016

5V 2SEQ 25Q10

5W 2NUC 2N020,2N022

5X 25RT 25T704,25T06

5Y 25RT 25T05,25T06

52 3TBL 3THO1,3THO3

6A 1RAC 1RA02,1RA03,1RA06,1RA07,2RA02,2RA03,2RA06,2RA07,2RA10
2RA11,2RA14,2RA15

68 2SEQ/RAC 25Q12,2RA17

6C 2RPW 2RWO4 , 2RWOS

6D 1SEQ 15Q21,25Q11

6€ 1S€EQ 15Q21,25Q11

6F 2NUC 2N050

-69-=

6H 2NUC 2N0S1,2N052
63 2SEQ/RAC 25Q14,2RA10-2RA12,2RA14-2RA16
6K 2SEQ/RAC 25013,2RA09,2RA11,2RA13,2RA15

-70-

TABLE 2. DROP CODE ASSIGNMENT BY TEST
TEST ID DROP CODES TEST ID DROP CODES
1NOD4 4N 1NO69 SF
1NO13 4N 1NO70 SE , 5F
1NO16 4N 1NO71 SE ,SF
1NO17 4N 1NO72 5€ ,5F
1N020 4N 1NO73 SE , 5F
1N025 4N 1NO77 4
1N028 4N 1NO78 4
1NO34 4N 1NO79 4
1NO37 4N 1N0BO 44, SF
1N040 4N 1N094 SE
1NO43 4an 1ND95 5E
1NO47 4N 1NO96E 5F
1NOS2 4N 1NO97 SF
1NOE6 SE 1NO98 SE , SF
1NO67 SE 1N099 SE , 5F
1NO68 5F 1N100 SE , S5F

=7 =

TEST 10 DROP CODES TEST ID DROP CODES
1N101 SE, SF 1N133 4U
1N105 4U 1N134 4U
1IN106 4U 1N151 SE
1N107 4U 1N152 5F
1N108 40, 5F 1N153 SF
1N121 SE 1N154 SE,SF
1N122 SF 1N155 SE, 5F
1N123 SF 1N157 SE
1N124 SE, SF 1N158 SF
1N125 SEioF 1N159 SF
1N127 SE 1N160 SE, SF
1N128 SF TN161 SE , SF
1N129 SF 1N162 SR
1N130 SE ;.5F 1IN163 SE, SR
1N131 5E 5:9F 1N164 SF, SR
1N132 4U 1N165S SF,SR

=77

TEST 1D DROP CODES TEST 1D DROP CODES
1N166 5€,5F,5R 15Q12 3N

1N167 5¢,5F,5R 15021 4P, 6D, 6E
1N169 4U 15023 5L

1N170 4u 15028 5L

IN171 4U,5R 15706 4p

18313 4G,4M,4T,4U 15707 4p

1N314 3A 15709 4u

1N315 3B 15T10 4p

IN316 48,4G,4T,4U 15T11 4p

1RAD2 6A 15T12 4p

1RAD3 6A 1THO2 m

1RAD6 6A 1THO3 m

1RAO7 6A 1THO4 m

15Q09 4p 2N001 5€, 56
15010 4p 2N002 5F

15011 3N 2N003 55,5F,5c

L

TEST 1D DROP CODES TEST ID DROP CODES
2N004 5H 2N026 1D,5A,5P
2N005 5€ , 5H 20027 1D, 5A,5P
2N006 5F , 5H 2N028 1D,5A,5P
2N007 5E, 56 2N029 1D,5A,5P
2N008 5F,5G, 1N 2N030 1D,5A,5P
2N009Y SE,5F, 56 2N0%1 1D,5A,5E,50
2N010 5H 2N032 1D, 5A, 5F, 5P
2N011 5€ , S5H 2N033 5D
2N013 5U 2N034 10,5A,5£,5r,;p
2N015 5F, 5H 2N035 1D,5A,5E ,5P
2N016 50 2N036 SA
2NO20 5U 2N037 5F
ZN022 1M, SN 2N038 55,5T
2N024 10,50 2N039 13
2N025 1D, 5P 2N040 13

2N041 {5

-4~

TEST 1D DROP CODES TEST ID DROP CODES
2N042 19 2RA02 4D, 6A

2N043 1C,1D 2RA03 4D, 6A

2N045 1D, 58 2RAD4 4D

2N046 1D,5C 2RADS5 4D

2N050 6F 2RA06 4D, 6A

2N051 6H 2RA07 4D, 6A

2N052 6H 2RA08 4D

2N053 1L 2RA09 6K

2N054 il 2RA10 6A,63,6K
2N056 45 2RA11 6A,63,6K
2N057 45 2RA12 6A,63,6K
2N058 1G, 1H, 1K 2RA13 4H,4X, 6K
2N059 1€,4V,4U 2RA14 4H,4X,6A,63
2N060 2A 2RA15 4H,4X,6A,63,6K
2N061 17,18, 1F 2RA16 4H,4X%,5M, 6]
2RA01 4D 2RA17 4H,68

-75~

TEST ID DROP CODES TEST 1B DROP CODES
2RA18B 4H 25015 4H

2RUI01 4F 25704 4G ,4U

ZRUO2 4F 2ST02 3P, 4U

2RUO% 4E, 46 25703 3R, 35,46
2RWO4 6C 2STO4 33,5X

2RU05 6C 25705 S5F,5Y

25005 3C 25TU6 40 54l S S
25006 33,4D,5K,4H,4X 2THO2 m

25007 33,4D,4H,4X 2THO3 m

25008 33,4D,5M 2THO4 m

25009 5K 3THOY m,57

25010 5V 3THO2 M, 43

25011 4p, 6D, 6E 3THO3 M, 4l , 57 —
25012 44,68 3THO4 M, 43, 4L
250173 6K 3THUS 4L

25014 63 3THO6 4L

—76=

APPENDIX III

INITIATING ENVIRONMENTAL DATA

Environmental Data is entered on the form shown in Figure 3.
The number of each entry is related to a statement found in
the Environmental Data questionnaire that follows Figure 3.

The information required is found in the implementor's COBOL

manuzal,

The method for assigning the indicative computer-name is dis-
cussed in 301.101.20

Figures 4, S and & are presented as an aid to understanding the
various environmental input entries and how they are treated by
the PFM run. Figure 4 shows a form similar to that appearing

in Figure 3, filled out with entries for & fictional implemen-
tation - the XYZ 8795, model 1. Figure 5 shows the corresponding
result of processing this information through PFM. The relationship
between the user's entries on Figure 4 and the PFM output of
Figure S5 is expressed on Figure 6. This indicates for each
output card (ETOnnn), the user's entry from which it came and

any transformations applied by PFM. 1In the absence of an entry
in the "Comments" column, the PFM output is teken directly from
the user input. UWhen the user input is blank, PFM places an

'N' in column 7 of the corresponding output card.

==

jewdo 4 pde] 232Q T23uswuoITAul ‘¢ 8InbTj

~ e e e et et 4 -

' = . ik . S &, LB o Ui o I T R |..-|IT;|_
RS O -.\!.Ii..!lll”l_l_ L el i .M .CZD Ww.m\udd .KUUM/D =g
; Pl
7 SRR) o 5 i
i &) m (2 P
™ 2 = o vy e ormoer e O == x T TERTI N T RA ST A B b e ST Sy BT e E

.u.‘.i."....., _I.w..”.l ..-.nl..lv.u.“w.ua.lu.nl_ o _-.m.».w_ Bl i i 7, .. v t ..cm. SRS T £ L .PHW.NMI;NIM&HF_.\“_
; a,llJ N nww8¢ .59&5 ; < £
; m " B
S h ‘“-unn.- - Y LY [.C.u.. TEIRU W .w () .O.x.L' 2 w... L u 1 %Cr 2 ok < W ,w.\.. R L I. S L o . et W A (R = p
o ik el ._-l| _ NS NG v N _Lllr.FL.L orl... M Vrlfzo IWWI@.I&L! _.m 1 ROl J .P.:CD m&c m
| | ¢
i 1] [Ty
; 3) : 2
: <=4 w v i !
i PEATERAESEE e Y - N ¢ 3 9L, L, ¢, " el i Mt B
RSN T PR L R e ! £ n. :
| % 30, [ams! W B T Y L NPT M TR YA M SN DAEA W LY ;€0
N 4 : Pl
; G \M‘mm \.Wm .ﬂl i

B Wi cot <o e e 7= 9 ;
: Sl O I ., P
TR N L S D A Y S AN A DN SO R SN AP U WP I
| hA ROAACY | X511 88 VoS0 | polits gnivis - 20
; 2, wones-assad . b i
g e o) i PasT s H
N L m & : ' .
Nt W%Jw...l..!.?ﬁ.. ,uz.,f. I o .s..:;. A ._Mac_J,.z», ./zﬂi.rm N . N T wlf
¢ = L.\..n H i i w
(e INAUSA! f {1

M m w

Ve I T S A\ Rt
s = P & = 0C S ut u ‘ 3
- us ' (A0 .5 , (49 S L3 5t oe . 4 ve, it L St e b o e .3
<, : A P Pl 1 150 { L i s TS - 2 o = 10 | S
T S T P ..o - : S0k
w Y3 L0dW), T

LA JIALEDICNT T
=t 3=
Y L

& T LT ST T T AT S o s

(P,3U03) 32wWI05 pIe] 23EC [BIUBWUOITAUSZ

fINzWE N LNV >w¥.2pb<..uxba95« (&

..&95« 2%)cor)c M Aan ..55«

- o i R O ||,.w . A 1.1.. 2 Wn:m 1: 2Ly o cll.l.i.-m. 2 e SOl

N A N » AR AR A BN NN T D T R I e

- BT R o Y R

- 40 BEWN A0 IOWAS

e g B el 0

el e B B A S A A A TN S T i _;...;...‘.,.:.-w.H L
i m wr&z MOE&E&J&E, - 30 u3¢>w a AUIALA | Y wé&z-Mon W3AIWL ~ 30 m3¢>

! | 30 207N | bt

= v S A s D, , SU—— — S e S SV, | W

! =) M ne ' Cc,ﬁw :

. 1 N o= . - S

L w x.«»” R O ~.|_mn_|” ._iu!_.w._.lu.i.l..!_m.\n.._ g &% r”‘ B .,:...r.ﬂ....: i 25 W L m. .411|.<14”._. Fh n g o Gl o a9 u
G NQ223 22 uidZ-dorZ.wE %Eﬁ 2 . & ?Jauqu,MJ¢)Dk,) MqumFS, AR L=’ UUO.SC

e 3 ZE § I 72N u 5 w e i AR 2N

- U\Ls Pv,ls v " muq /,l\.\ 2 w 4P.W.Hll...ul¢u‘l."m.dtl!" J\:\‘P,ﬂ ..SI»JJ!JM.\M\Z.M‘\.l;...w.....;l...a.!., /..“l...l.dn..u]u-”

o m; N N LR m f v/, i »s& mlm.r.l 4.. R X Cn‘,ﬂ. by, ‘k.... cE L Pl oy Ly il soe o 8 l.w_
......IL.“. ST T TO de| SE ! | SO M T din 3 1) BT h i g 02, 1 L O | SO \ CAcet ln

{ =2 i h . N 2 Y !u?_.oi i L ANA P.uo@ L

WAV AW AN LASEEIING W W - WSy i

...... - 5 = e " L e i

R i R IR A i 2 o o : &> 4

A G ! & ey | G2 in G2 ik -
! A SLa RN R g N e e Pk AN A SRS A SR AL H | 8 n- v, ST S T N NN Y A
M S TRa T 150s | 2 e .Eom .,‘:4

B ! . —

n. & i i) Lo

R) !) ek (.,.v [A - 3 . . St " = i
..... 1 P P TR BRI G S R O I (il S TS T O M S NI S S E R t : i 1 g0 2 i

m VAT a .v..uOV . 1N & i

. L 3

- L i } A

i AN § (o= 2=

m ——— ’{lﬂl.ul.m-.ﬂr“dhlhu‘ T AL prigr =0 -y - 3 m.‘l O f"\.Mw\\L ‘ll"-.

=70

FIELD NUMBER VS INFORMATION
ON
ENVIRONMENTAL DATA CARDS

MAXIMUM
NO. OF

0 g

ENVIRONMENT DIVISION CHARACTERS

CONFICURATION SECTION. IN ENTRY

FIELD NO. . OBJECT COMPUTER

1. The implementor's name for OBJECT-COMPUTER. 30

2. The menory size and unit of measure as specified for 30
the MENORY SIZE clauss.

3. The memory size of the object computer in characters/bytes, 6
written as a six digit intseger.

4, The print line size of the on-line printer written as a 3
three digit integer less than or equal to 120. 120 assumed
if omitted.

5. Name specified by implemsntor for a switch testable by the 30
switch-status test.

6. Name specified by implementor for the switch whose setting 30
indicates a RERUN is to be taken {use only if 48=Y)

7. If the "mnemonic-name" option is available for switch- 12
names snter FIRST-SWITCH.

8. If both the ON STATUS and OFF STATUS options are available 1
enter a '1'. If only ON STATUS is available, enter '2'.

OTHER-NAMES

9. Name spacified for the device available using the FROM option 30
of ACCEPT.

10. Name specified for the device available using the UPON option 30
of DISPLAY.

1. If the mnemonic-name option of the ADVANCING featurs of UWRITE 3
has been implemented, write the character designated by the
implementor to denote singls space, enclosed in quotes if
necessary.

12. Urite the charactor denoting double spacs. 3

13. Writo tho charactor denoting pags e ject.)

14, 1f the "CODE mnemonic-name'" oplion of tho RD clauso is 1
implemented enter a "Y",

INPUT-O0UTPUT SECTION

FILE-CONTROL
15, If the 'integer' option of the ASSIGN clause is available, 1

enter a 'Y'.

=B

16.

17.
18.
19.

20.

21.
22,

25,24,
25 & 26.

27.

28,

29,

30.

31,

32,33

& 34

35.

36.

37.

Entries 16 through 22 are concerned with the implomentor-

names for input-output devices. O0f these, the entries for

the 3 tape units, the card reader and the printer are mandatory
(the card reader and/or printer may be system-units or any
sequential device not previously named). Enter the implementor-
name for Lhe first tape-unit.

Enter the implementor-name for the second tape unit.
Enter the implementor-name for the third tape unit.

Enter the implementor-name for the first of two mass-
storage devices (may be omitted if no device available).

Enter the implementor-name of the second mass-storage device.
(May be omitted if no device available.)

Enter the implementor-name of the card reader.
Enter the implementor-name of the printer.

Enter the implementor-name of the Sort units 1 through 4 if the
SORT feature has been implemented.

For the data-name option of the FILE-LIMIT clause, enter
the description (picture and usage) necessary to describe
data-name in entries 27 and 28. Enter the PICTURE (e.g., 9(5)).

Enter the USAGE of data-name: C for COMPUTATIONAL or D for
DISPLAY.

Enter the literal designated by the implementor as meaning
the lowsst available mass-storage eddress for the FILE-LIMIT
clause.

Enter the literal that indicetes a mass storage eddress twenty
records of 100 characters each higher than the address specified
in 29,

If a second set of FILE-LIMITS can be specified in the implementation
enter a numbher that when added to the literals specified in 29 and
30 specifies a second available area of this mass-storage file.

If a second mass-storage device has been specified (see entry 20),
specify the lower and upper limits, and increment for it in the
same way as specified under 29, 30 and 31.

Enter the PICTURE required in the description of the data-name
used in the ACTUAL KEY clause (e.g., 9(5)).

Enter the USAGE required in the description of the data-name
used in the ACTUAL KEY clause: C for CONPUTATIONAL or D
for DISPLAY.

Enter the literal value that when placed in the data-name of
ACTUAL KEY will indicate the lowest mass-storage address
associated with the first area allocated for the first
mass-storage device (see 29 and 30).

—B4=

30
30
30

30

30
30

30

6,6,6

36.

Enter the literal velue thal when placed in the data-
name of ACTUAL KEY will indicate the lowest mass-storage
address associated with the second area allocated

for the first mass-ctorage device (sec 31). 6
39. Enter the literal value that when placed in the data-
name of ACTUAL KEY will indicale the lowesti mass-
storage address asscciated with the firsl area allocated
for the second mass-storage device. 6
40. Enter the literal value that when placed in the data-
name of ACTUAL KEY will indicate ihe lowest mass-
storage address asscciated with the second area
allocated for the second mass-storage device (see 34). 6
41. Enter the literal value that corresponds to an increment
of one 100 characlter logical record to the ACTUAL KEY
of the first mass-storage device. 6
42, Enter the literal value lhat corresponds to an
increment of one 100 character logical record to the
ACTUAL KEY of the second mass-storage device. 6
I-0-CONTROL
43, If an implemenlor-name is available to the RERUN clause,
enter it here. 30
Items 44-48 deal with Lhe versions of the RERUN clause
available. Enter a 'Y' for each option available: sach
option so marked will be testled.
44, END OF REEL 1
45, END OF UNIT 1
46. integer RECORDS (item 43 above must be filled in) 1
47. integer CLOCK-UNITS (ilem 43 above must be filled in) 1
48, condition-name (swilch-name musl be entered in 6) 1
DATA DIVISION
FILE SECTION
49, Fnter the implomantor's fixed-name for the file
idontification to be used in tho VALUL OF clause. 30
50. tnlar any literal value thal corresponds tothe
implementor's rules for tha contont of the file idonti-
fication., Includo qguotes if requirad, 15
1. Etntor the implemagntor's fixed name for an itom in the
standard label record (other than file identification)
that is inserted into output labels (e.q., Relention-
poriod). 30

B2

52+

53.

Enter the literal corresponding to the implementor-
name entered in 51,

If the data-name option of the VALUE OF clause is
available, enter the PICTURE required by the
implementor's file identification.

-B3-

15

G6LB—ZAX 104 spde]

ejeg T23jUBWUOITAU]

*y aanbry4

1 Ly b4 N T - T e e SO o W . w20 ; / e
SR _ HETQ 5
m o
= A
- & =y . SR
R L W B D e S Vil o fE o B $% ol ol b BEl o n sl LA S By 8 s o
w ™eQ €344},
-~ ; = ==}
z bt ——
) el R il PR S R i i 1 b Pl u g U L T, o) A
m EEELAY au&k o~
. :
TSR i : = s
w &) e s
e, b o, S g 3 B s A TR o T o NIM
T R N TR m “ETySNgIIl
kA3 20T = SN, o_
e ; : .
S — . I
TENEH ©
R e e T atare St B < s came: v s rage n— . e
- P R e eI S i g s YT) R -y ™ " -y " cam 4 r——"
. e, : Js , Im ; o8, e e .y ~..~..r. , 4 Cr, T S kG] Lt - oi..l.
THAL VG =181 3 IRSITOS THYI1 AGiZs!
¢ ¥

: : ;

H ’
T i) d =\ a0
o) i %)) ﬁY)

.\ - o i ..(L.v 4(e S T Tt f)dluu. Aé\l(.l} e b.b.lla - 5 - = .Lw. s 3 e : =

° : I‘-“ll - .."'I "Il“}ll- ll‘.k'[U " —r\o I . . i ST [y 1 v . . . 1 gl g . ‘.ll-.m

oﬁwﬁ sS _ - nﬁ&[ﬂ ; SHLB -ZRX{ic.

! ;

et i . : x g

. m‘v. @) ; 9 g
bte v o - T s i B) B oL . = . i

| B ﬁdoﬂﬁﬁwd.maﬂ

' m “

S T P

ey al|L.

(P,3U0]) G6LB-ZAX 304 Spie) ejeq

TejuawuolTAuU]

*‘y 8anbry

B S e N I A T, e ey D e U o L AN T T AL S G b oy ut .|.|w Ivm
§ s
]
] m }
P e
0% i, 8 L.l.ml\lWl O o ru._ Lt ...J [} .(.v.n (i s -n.:._ I ;.un e sL, S s M.‘ ip il ol = i

. (7)b; 200;<.

i i !

N 1 Ga b
R — - ;) o= i
” ——— et = - = S Kbr:’r\ﬂﬂlrli.nvnuiwlj
Bt T e 2 ST R U T4 s SO T - T N ey e 8% m 2% [N A | 2L 3 e S S e o
m dPi33d-NPILNIL37: _wmwazw K
i i N
_ m g ; L
S = g $ - .
m S | G m o L

e .
$ AT eE y¢ A U C S B
F X oo Fe o 40 T8 e B8 4 g i 1t . ' TS TS S S B Y
.]—“ - .
(3 urﬂ“ ZW\A39s:.5:
1] -4
L} t P
= it 2 SEy
n 2 :
@) | G !
- - e) e g et £
...... o 58y g [OR D E
e] .«Il
(2 4 M
..... .4|. ' S<, A uf SRR O T T I
, e
: BNV e
[: &
== — 7 ulli
) ’ = {
< i Yo S PSS,

F XY70R798014

L)
1S

t11SASTs
0n?

cececsvsccccscccscscrens FNV ADD
F XYZNRTQS0O1Y
FTo0t0 XY7?7=RT7Q%
FTOON?20 XY7=R795
F1003N0 MFMNRY ST/F 32748 WNARDS,
FI0040 N19AA0
FTosn PICTURF Y(121),
FT10AOD 1720
FYnorn SWITCHY
FTNNARON H FIRSY=SWITCH
FTN0Q0 SWITCH?
Frnyno IN STATHS TS
FIN110 NFF STATHIS 1S
FT012n0 FONSNLE
FIN$3IN CONSOI F
FI1nta0 R I
FIHY1S0 172
FINTAD tFt
FTny7zn Al
FTYN{RN 1
FTY190 TAPF Y
FI020N TAPF?
FITN0210 TAPF 3
FT0220 NTSK §
FTN230 NTSK?
FYON?240 RFADFR
F1n280 PRINTER
FTO2A0 SNRTY
cI0270 SNRT?
FINZ2AR0 SORTA
FT0290 SNATA
FYN3ION PICTHRFE SOQ(AR)Y COMPIITATINNAYL ,
FTIN3tO on00ny
FTNID2N nooe21
FIN330 nnonlo
FIN3IAN onoong
F103%0 0n0n2y
FINIAQN 000030
FTN370 PICTNRE SOCRY COMPUTATINNAI
FTN3IAN oonnng
FInian nono21
FI0QO0 nonnny
FTOH41 0 00021
FTY0O420 npnonng
F1n04a3n noonnt
FT0OAD RFRIN NN RFRIIN®NAMF
FT10a80 FVFRY FMN OF RFEFI
FINBAON FVFRY FND NF 1INTT
FTNAQTON FVFRY {0 RFCNADS
FTNLRON FVFRY § CLOCK=UNITS
FTOHAQON FVIRY
FTOSOO0 VALUF 0OF ID
FINKLO VAL IWF NF RFTFMTINNPFRIND
£E1052n PICTIRE 9C4)
Figure 5. Output Listing of Environmental Data - XYZ-8795

-86-

ouTeRUuUT FrROM

CARD NO. ENTRY COMMENT

ET0010 1

ET0020 1

ETO030 2

ETO040 it} Entry 3 is divided by 10 and zero-filled to 6 digits.
ETO0050 4 Entry 4 plus 1.

ETO060 4

ETO070 9

ETO0BO 7

ETO0S0 6

ET0100 8 If entry 8 = 1 or 2, column 7 is blank, otherwise N.
ETO110 8 If entry 8 = 1, column 7 is blank, otherwise N.
ET0120 9

ETOAB0 10

ET0140 11

ET0150 12

ETO160 13

ETO170 14 If 14 = Y, column 7 is blank, otherwise N.
£T0180 1S If 14 = Y, column 7 is blank, otherwise N.
ET0O190 16

ETO200 17

ET0O210 18

ET0220 19

ET0230 20

ET0240 21

ET0250 22

ET0260 23

ET0270 24

ETD280 25

ET0290 26

Figure 6. (1)
Relationship Between User Input

and PFM Environmental Output

S

LUTPUT FROM

CARD NO. ENTRY COMMENT

ETO300 27, 28 Entry 28 is first letter of Usage.

ET0310 29

£70320 30

ET0O330 31

ET0340 32

ET0350 38

£70360 34

ET0370 35, 36 Entry 36 is first letter of Usage.

£T0380 37

ET0350 38

£ET0400 39

ET0410 40

£ET0420 41

ET0430 42

£T0440 43

ET0450 44 If entry is Y, column 7 is blank, otherwise N.
ETO460 45 If entry is Y, column 7 is blank, otherwise N.
£T0470 46 If entry is Y, column 7 is blank, otherwise N.
E£ET0480 47 If entry is Y, column 7 is blank, otherwise N.
ET0490 48 If entry is Y, column 7 is blank, otherwise N.
ETOS00 49, 50

£T0S10 Sily 92

ET0520 53

Figure 6. (2)

Relationship Between User Input

and PFM Environmental QOutput

-88-

NuC

TBL

SEQ

RAC

SRT

RPW

SEG

LIB

APPENDIX IV

TEST DIRECTORY

IE e et s s kaptesMakte) ool i gs Ze ks S NES 90
S W W et S A sl oFeTeLte 108
T o am) ane. Fererons Snee ks (Ghe erse 114
2/ ooty spoits s ool G FReT NN 4 18 (T syt 115
R A A i St O e SR L r 116
T R L Lot R PR 117
2 e er ol teites eToHeWes PRehishs 119
e e ay e FatFe)lo o re Rl oI e WEiahis 120
2 el XY e ool T slts Mo sElaltowar e neRiohiatte 121
1. Ao e e e W e a st ells B o 123
24| 1L ¥ OS] 5! ATe {o%a et oMo s (oie 125
T8 Ghavarionne) sporter slisiian e heilei sk saetelleran ok s 126
2 oY o AR S RS T o) T LM Dt o 127
e T R o H e eH el e o e ek cWolte o e ol fo LK 128
2 itieee i 8 B DR e 5 Gl s 130
| overisheiter o B o1l SIS T o) He 45 PO Foo e 131
2 TTisr Snol sh stieh W S0} SRR SRS (o0 132

o

Jesl ID

Sutinary of Test

Breakdoun

of Printed Resultis

fibad

00T MOVE GRP-GROUP~MOVE-FROM T0 GRP-GROUD- Roceiving is printed.

MOVE-TO.

N0O2 MOVE GRP-ALPHABETIC TO WRK-AN-00026. Receiving field is printed.
TNGO3Y MOVE GRP-ALPHANUWMERIC TO WRK=-XN-0OCD49 Receiving field is p¥;:;fd,
1NOO4 MOVE GRP-ALPHANUMERIC 10 AE-0001. Receiving field is printcd.
1NOOS MOVE GRP-NUNMERIC TO WRK-DU-10VODO. Receiving field is printed.
1NOO6 ffOVE GRP=-NUNERIC TO NE-0GO1. Receiving field is printed.
~1NOU7 MOVE ALPHABET-AN-00026 TO GRP-WRK-

AN-00026. Receiving field is printed.
NUOB MOVE ALPHABET-AN-00026 TO WRK-AN-

00026. Receiving field is printed.
1ND0O9 MOVE ALPHABET-AN-00026 TO WRK-XN-00049. Receiving field is p;;;Led. ~
1NC1O MOVE ALPHANUNMERIC-XN-D0049 TO)

GRP-WRK-XN-00045. Receiving field ic printed.
TNO1 MOVE ALPHANUMERIC-XN-00049 TO WRK-AN-00026. Receiving fjeld-}s printed._m
1NO12 MOVE ALPHANUMERIC-XN-00049 TO WRK-XN-00049. |Receiving field is pzzlled.
1IND13 MOVE ALPHANUMERIC- XNﬁﬂﬁhzén}O AE-0001. Receiving field is printed.
1NO14 fMOVE ALPHANUMERIC-XN-00049 70 UWRK-DU-10VOGO.{Receiving field is printed.
TNO1Y MOVE ALPHANUMERIC-XN-00049 TO NE-0002. Receiving field is printed.
1IND16 MOVE AE-0001 TO SUP-WK-A, Receiving field is printed. -
o7 MOVE AE-0001 TO AE-000Z. Roceiving;;;eld is prin{zgj—-
1NC18 MOVE DIGITS-DU-10LVCY TO GRP-WRK-DU-10V0O. Receiving field is printed,
1ND1Y MOVE DIGITS-DU-10V00 TO WRK-XN-00049. Receiving field is printed.
1NO20 MOVE DIGITS-DU-10VCO 70 AE-0002, Receiving field is printed.
1NO21 MOVE DIGITS-DU-10VCT TO WRK-DU-10VGO. Receiving fiolddigljrhw;:;;mk
1N027 MOVE DIGITS-DU-06V04-S TO NE-00O1. lRocoiving field is p;::tcd.

50—

Test ID

Summary of Test

Breakdown

of Printed Results

TND23 MOVE NE-DOO71 TO GRP-WRK-XN-00049. Receiving field is printed.
TNOZ4 MOVE NE-0O0D1 TO WRK-XN-00049. Receiving field is printed.
1NDO25 MOVE NE-00D1 TO ARE-COO02. Receiving field is printed.
TND26 MOVE ZERD TO GRP-WRK-DU-10VO0O. Receiving field is printed.
1NO27 MOVE ZERO TO WRK-XN-00045, Receiving field is printed.
INO28 MOVE ZERO TO AE-0002. Receiving field is printed.
1NO29 MOVE ZERD TO WRK-DU-10VOO. Receiving field is printed.
1NO30 MOVE ZERD TO NE-DODO1. Receiving field is printed.
1NO31 MOVE SPACE TO GRP-WRK-DU-10VOO. Rgceiving field is printed.
1N032 MOVE SPACE TO WRK-AN-0DD26. Receiving field is printed.
1NO33 MOVE SPACE TO WRK-XN-00049. Receiving field is printed.
TNO34 MOVE SPACE TO AE-0002. Receiving field is printed.
TNO35 MOVE HIGH-VALUE TO GRP-WRK-DU-10VO0O. Receiving field is printed.
1NO36 MOVE HIGH-VALUE T0O WRK-XN-0004S. Receiving field is printed.
INO37 MOVE HIGH-VALUE TO AE-0002. Receiving field is printed.
1NO38 MOVE LOW-VALUE TO GRP-WRK-DU-10VO0Q. Receiving field is printed.
TNO39 MOVE LOW-VALUE TO WRK-XN-00049. Receiving field is printed.
1NO4O MOVE LOW-VALUE TO RE-0002. Receiving field is printed.
1NO4 1 MOVE QUOTE TO GRP-WRK-DU-10V0O. Receiving field is printed.
TNO4 2 MOVE QUOTE TO WRK-XN-DDD4S. Receiving field is printed.
1NO43 MOVE QUOTE TO AE-DODDZ2. Receiving field is printed.
1NO44 MOVE "A1B2C3D4ES"™ TO GRP-WRK-DU-10VO0O. Receiving field is printed.
1NO45S MOVE "ABCDEFGHIJK"™ TO WRK-AN-00D026. Receiving field is printed.
1NO46 MOVE "1A2B3C4DSEGF™ TO WRK-XN-000495. Receiving field is printed.

-91-

Test ID Summary of Test Breakdown of Printed Results
1NO47 MOVE '"1Z2Y3X4W5Y"™ TO AE-0002. Receiving field is printed.
1M048 MOVE "9B876543210" TO WRK-DU-10v0O0. Receiving field is printed.
1NO49 MOVE "9876543210"™ TO NE-0002. Receiving field is printed.
1NOSO MOVE 0123456789 TO GRP-WRK-DU-10V0Q. Receiving field is printed.
TNO51 MOVE 0918273645 TO WRK~-XN-00049. Receiving field is printed.
1N052 MOVE 019823 TO AE~0002. Receiving field is printed.
1NO53 MOVE 9876543210 TO WRK-DU-~10vO0O., Receiving field is printed.
1NO54 MOVE 00012345 TO NE~0002. Receiving field is printed.
TNO55 MOVE 000011.1223 TO NE-0O0O1. Receiving field is printed.

-092-

Test 1D Summary of Test Breakdown of Printed Results
|
1NO61 ADD A180NES-DS-18V00 TO WRK-DS-18v00,. Arithmetic result is printed.
TND62 ADD A100NES-DS-10V00 AOSONES-DS-05v00 Arithmetic result is printed.
T0 WRK-DS-10v0O0.
1NO63 ADD AD20NES-DS-02vV00 A100NES-DS-10V00 Arithmetic result is printed.
AOSONES-DS-05vV00 TO WRK-DS-t10v00.
1ND64 ADD AO6THREES-DS-03V03 A12THREES-DS-06VY06 | Arithmetic result is printed.
GIVING WRK-DS-09Vv0S.
1NO65S ADD AOS0NES-DS-05V00 AOSONES-DS-00V0S Arithmetic result is printed.
A12THREES-DS-06V06 AO6THREES-DS-03V03
GIVING WRK-DS-06V06.
1NO66 ADD 55554.5 TO WRK-DS-05V00 ROUNDED, Arithmetic result is printed.
1NO67 ADD AOSONES-DS-00V05 A12THREES-DS-06V06 Arithmetic result is printed.
AOSONES-DS-00V0S GIVING WRK-DS-05V00
ROUNDED,
1NO68 ADD -99 TO WRK-DS-02vV00 ON SIZE ERROR
MOVE "1" TO WRK-XN-00001, Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).
1NO6S ADD A120NES-DS=-12V00 ZERO GIVING Arithmetic result is printed;
WRK-DS-10V00 ON SIZE ERROR MOVE "1™ the last digit indicates
TO WRK-XN-0001. vhether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).
1NO70 ADD 33333 AD6THREES-DS-03V03 A12THREES- Arithmetic result is printed;
DS-06V06 TO WRK-DS-05V00 ROUNDED ON SIZE the last digit indicates
ERROR. whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).
TNO71 ADD A12THREES-DS-06V06 333333 AO6THREES- Arithmetic result is printed;

DS-03V03 TO WRK-DS-06V06 ROUNDED ON SIZE
ERROR MOVE "O" TO WRK-XN-00001.

the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;

0 = incorrect).

=03

Test ID

Summary of Test

Breakdown of Printed Results

1NO72 ADD 33333 AO6THREES-DS~03VY03 A12THREES- Arithmetic result is printed;
DS-06V06 GIVING WRK-DS-05V00 ROUNDED the last digit indicates
ON SIZE ERROR MOVE "1" TO WRK-XN-D00O1. whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).
1NO73 ADD A12THREES-DS~06V06 333333 AO6THREES~ Arithmetic result is printed;
-DS-03V03 GIVING WRK~-DS~06V06 ROUNDED ON the last digit indicates
SIZE ERROR. whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).
1NO74 ADD A99-DS-02V00 AO30NES-DS-02V01 Arithmetic result is printed.
AO60ONES~DS-03V03 AOBTWOS~-DS-~02V06
~1.1111111 +.11111111 AU1UNE-DS-PQ801
GIVING WRK-DS-03V10.
1NO75 ADD AO10NE-DS~P08B07T +.11111111 Arithmetic result is printed.
-1.1111111 ADBTWOS~-DS~02VY06 AD6ONES~DS
03V03 AO30NES-DS~02V01 A99-DS-02V00
GIVING WRK-DS-~03V10.
TNO76 ADD ADBTWOS-DS-02V06 A99-~DS~02V00 Arithmetic result is printed.
-1.17111111 AD30ONES-DS~02V01 AO10NE-DS
POB0O1 +.11111111 AOBONES-DS~03V03
GIVING WRK-DS~03V10.
INO77 ADD A180NES-DS~18V00 TO WRK=CS-18V00. Arithmetic result is printed.
1NO78 ADD A1BCNES-CS5-18V00 TO WRK~DS~18Vv00. Arithmetic result is printed.
1NO79 ADD A99-(CS-02V00 TO WRK-CS-02V02. Arithmetic result is printed.
1NO8O ADD A99-CS~02V00 70 WRK-CS~02V02 ON Arithmetic result is printed;

SIZE ERROR MOVE "1" TO WRK=-XN-00001.

the last digit indicates
wvhether SIZE£ ERROR worked
correctly (1 = correct;

0 = incorrect).

-94—

Test ID

Summary of Test

Breakdown of Printed Results

1NO90 SUBTRACT A180NES-DS-18v00 FROM WRK-DS- Arithmetic result is printed.
18v00.
1NDS1 SUBTRACT AOS50NES-DS-05V00 AOS50NES-DS- Arithmetic result is printed.
00vV0S5 AD60NES-DS-03V03 FROM WRK-DS-06V06.
1ND92 SUBTRACT AO6THREES-DS-03V03 FROM Arithmetic result is printed.
A12THREES-DS-06V06 GIVING WRK-DS-06V06.
1N0OS3 SUBTRACT AO50NES-DS-05V00 ADSO0ONES-DS-00VOS|Arithmetic result is printed.
A12THREES-DS-06V06 AO6THREES-DS-03V03
FROM ZERO GIVING WRK=-DS-06V06.
1N094 SUBTRACT A99-DS-02vV00 FROM WRK-DS-0201P Arithmetic result is printed.
ROUNDED,
1N09S5 SUBTRACT AOS50NES-DS-05V00 -11111 AZERO- Arithmetic result is printed.
DS-05V05 FROM WRK-DS-06V06 GIVING
WRK-DS-06V00 ROUNDED,
1NOS6 SUBTRACT A99-DS-02V00 FROM WRK-DS-02V0O0 Arithmetic result is printed;
ON SIZE ERROR MOVE "1" TO WRK-XN-DOOO1. the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct,
D = incorrect).
1ND97 SUBTRACT A120NES-DS-12V00 FROM ZERO Arithmetic result is printed;
GIVING WRK-DS-10V00 ON SIZE ERROR MOVE the last digit indicates
""" TO WRK-XN-00001. whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).
1NDS8 SUBTRACT 33333 AO6THREES-DS-03v03 Arithmetic result is printed;
A12THREES-DS-06V06 FROM WRK-DS-05v00 the last digit indicates
ROUNDED ON SIZE ERROR MOVE ™1" TO WRK- whether SIZE ERROR worked
XN-00001, correctly (1 = correct;
0 = incorrect).
1N09S SUBTRACT A12THREES-DS-06V06 333333 Arithmetic result is printed;

AD6THREES-DS-03V03 FROM WRK-DS-06V06
ROUNDED ON SIZE ERROR MOVE "0'" TO
WRK=-XN-00001.

the lest digit indicates
whether SIZE ERROR worked
correctly (1 = correct;

0 = incorrect).

~-05-

a

ERROR MOVE "1" TO WRK-XN-00001.

the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;

0 = incorrect).

Test ID Summary of Test Breakdown of Printed Results

1N100 SUBTRACT 33333 AD6THREES-DS-03Vv03 Arithmetic result is printed;
A12THREES-DS-06V06 FROM -1000000 WRK-DS- | the last digit indicates
CS5V00 ROUNDED ON SIZE ERROR MOVE ™" TO whether SIZE ERROR worked
WRK-XN-00001. correctly (1 = correct;

0 = incorrect).

TN101 SUBTRACT A12THREES-DS-06V06 333333 Arithmetic result is printed;
AO6THREES-DS-03v03 -.0000009 FROM the last digit indicates
-.1000000 GIVING WRK-DS-06Y06 ROUNDED whether SIZE ERROR worked
ON SIZE ERROR MOVE "0O" TO WRK-XN-0OOO1. correctly (1 = correct;

0 = incorrect).

1N102 SUBTRACT A99-D5-02vV00 AO3NES-DS-02V01 Arithmetic result is printed.
ARO60NES-DS-03v03 AOBTWOS-DS-02v06
-1.1111111 +.11111111 AD10NE-DS-P0BO1
FROM -1000.000000 GIVING WRK-DS-03V10.

1N103 SUBTRACT AO10ONE-DS-P0OBOT +.11111111 Arithmetic result is printed.
-1.1111111 ADOBTWOS-DS-02V06 ADEONES-DS
03v03 AO30ONES-DS-02v01 A99-DS-02v00 FROM
-1000.000000 GIVING WRK-DS-03v10.

-

1N104 SUBTRACT AOBTWOS-DS-02v06 A99-DS-02v00 Arithmetic result is printed.
-1.1111111 AO30NES-DS-02V01 AD1ONE-DS-
P2B801 +.11111111 AOB6ONES-DS-03V03 FROM
-1000.000000 GIVING WRK-DS-03v10.

1N10S SUBTRACT A1BONES-DS-18v00 FROM WRK-CS- Srithiwtile nesULt is pointeds |
18v00.

1N106 SUBTRACT A180NES-CS-18V00 FROM WRK-DS- Arithmetic result is printed.
18v00.

1N107 SUBTRACT A99-CS-02V00 FROM WRK-CS-02v02, Arithmetic result is printed. |

e i
1N108 ! SUBTRACT -99 FROM WRK-CS-02v02 ON SIZE Arithmetic result is printed;

—96-

L

DS-12V00 GIVING WRK-DS-10V00 ON SIZE
ERROR MOVE "O0" TO WRK-XN-00001.

Test ID Summary of Test Breakdown of Printed Results
r S a5 4 b R R L e e B Ry S A Ao o i b - R i B e - - s q
TN120 MULTIPLY AD6THREES-DS-03V03 BY WRK-DS- Arithmetic result is printed.
18v00.
1N121 MULTIPLY 0.4 BY WRK-DS-06V06 ROUNDED. Arithmetic result is printed.
1N122 MULTIPLY A12THREES-DS-06V06 BY WRK-DS- Arithmetic result is printed,
10V00 ON SIZE ERROR MOVE "1" TO WRK- the last digit indicates
XN-00001. wvhether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).
1N123 MULTIPLY AZERO-DS-05V05 ON SIZE ERROR Arithmetic result is printed;
MOVE "O" TO WRK=-XN-00001. the lest digit indicates
whether SIZE ERRDOR worked
correctly (1 = correct;
0 = incorrect).
1N124 MULTIPLY 99.5 BY WRK-DS-02V00 ROUNDED Arithmetic result is printed;
ON SIZE ERROR MOVE ™" TO WRK-XN-00001. the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).
1N125 MULTIPLY 99.4 BY WRK-DS-02V00 ROUNDED Arithmetic result is printed;
ON SIZE ERROR MOVE "O" TO WRK-XN-000D1. the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).
1IN126 MULTIPLY AD6THREES-DS-03V03 BY Arithmetic resul. is printed.
A12THREES-DS-06V06 GIVING WRK-DS-09vD9.
IN127 MULTIPLY AO6THREES-DS-03V0D3 BY Arithmetic result is printed.
AO6THREES-DS-03V03 GIVING WRK-=DS-=10V00)
ROUNDED. ?
1N128 MULTIPLY ADSONES-DS-10V00 ON SIZE ERROR Arithmetic result is printedi
MOVE "1" TO WRK-XN-00001. the last digit indicates ;
whether SIZE ERROR worked ﬁ
correctly (1 = correct; 1
y 0 = incorrect). a
1N129 MULTIPLY AO10NES-DS-P0B01 BY A120NES- I

Arithmetic result is printed;
the last digit indicates
vhether SIZE ERROR worked
correctly (1 = correct;

0 = incorrect).

g T

=07

¥

Test ID

TN130

1N131

TN132
1N133

1N134

Summary of Test

MULTIPLY 1.5 BY A100NES~-DS-10V00 GIVING

WRK~DS=10V00 ROUNDED ON SIZE ERROR
MOVE "1" TO WRK-XN-00001.

MULTIPLY AOT0NE-DS-P0B01 BY A180NES-
DS~18V00 GIVING WRK-DS-09vV08 ROUNDED
ON SIZE ERROR MOVE "O" TO WRK-XN~-
o0coo1.

MULTIPLY AD1T0ONE~CS-00V0O1 BY WRK-DS-
0201p.
MULTIPLY AOC10ONE-DS-P0801 BY WRK~CS~
18v00.

MULTIPLY A99-CS-02Y00 BY AO10NE~-CS-
00V01 GIVING WRK-CS~02v02,

{

Breakdown of Printed Results

i .'_".'.._—.‘:.'{:"—-_ SRRty 5

. Arithmetic result is printed;

the last digit indicates

- whether SIZE ERROR worked

correctly (1 =
0 = incorrect).

correct;

Arithmetic result is printed;
the last digit indicates
wvhether SIZE ERROR worked
correctly (1 = correct;

0 = incorrect).

. Arithmetic results are printed.

, Arithmetic results are printed.

Arithmetic results are printed.

|

|

Soy- 1

K|
réreakdown oF Printed Resul:'s I
|
I

Arithmetic result is printed.

Arithmetic result is printed

1 Test ID ? Summary of Test
| :
[1N15) . DIVIDE A99-DS-02v00 INTO WRK-DS-18v00.
pe - o= % PR F— e e L o P SO SRS
; 1N151 " DIVIDE 4 INTO WRK—DS 12v00 RUUNDED.
% 1N152 2 DIVIDE 0.1 INTO WRK-DS-01v00 ON SIZE
i . ERROR MOVE "1" TO WRK=XN=00001. |
| ! (0 =
R i
[1N153 | DIVIDE AO10ONE-DS-pP0801 INTO WRK-DS-09VOO
| ; ON SIZE ERROR MOVE "0O" TO WRK-XN-00001.
i |
: : correctly (1 =
: i { 0 = incorrect).
1N154 ! DIVIDE AZERO-DS-05V05 INTO WRK-DSO1vOO
! { ROUNDED ON SIZE ERROR MOVE "1" TO WRK=-
.+ XN=00001.
I correctly (1 =
! 0 = incorrect).
1N155 : DIVIDE AONES=-DS-09V09 INTO WRK=DS-09V09

S R 1

Arithmetic result is prlnted.
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
incorrect).

k!
i
‘
|
i

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correct;

1N156

1N157

Arithmetic result is printed;
the last digit indicates
wvhether SIZE ERROR worked
correct;

el il Tonpin Sl o e

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correct;

Arithmetic result is printed.

ROUNDED ON SIZE ERROR MOVE "0" TO WRK=XN
00001.
correctly (1 =
0 = incorrect).
"DIVIDE -10.9 INTO AO2TWOS-DS-02v00
GIVING WRK-DS-01v0Q.
DIVIDE WRK-DS-03V10 INTO AO10NE-DS-P0801

GIVING WRK-DS=-18V00 ROUNDED.

1N158

1N159

Arithmetic result is printed.

DIVIDE
GIVING
ll1" TG

AZERO-DS=-05V0S INTG A99 DS 02voo
WRK-DS-18V00 ON SIZE ERROR MOVE
WRK=-XN-00001.

; the last digit indicates

Arithmetic result is prlnted,

whether SIZE ERRCOR worked
correctly (1 = correct;
0 = incorrect).

DIVIDE
GIVING
"gn 10

AONES- DS 09V09 INTO WRK-DS- 09V09
WRK~-DS-09V09 ON SIZE ERROR MOVE
WRK-XN=-00001.

S PR N S S vt BN S e, W ey S e S ST e

Arithmetic result is printed,
the last digit indicates
whether SIZE ERROR worked !
correctly (1 = correct;
0 = incorrect).

-99-

Test ID Summary of Test Breakdown of Printed Results
INTG) DIVIDE WRK-DS=09Y0Y INTO AQOS0NES-DS-00V05] Arithmetic result is printed;
GIVING WRK-DS-0U2U1P ROUNDED ON SIZE ERROR! the last digit indicales
MOVE "1" TO WRK-XN-00O0O1. i whether SI1ZE ERRUR worked
correctly (1 = correct;
0 = incorrect).
TN161 DIVIDE AQ2TWOS-DS-02v00 INTO A02TW0OS-DS- Arithmetic result is printed;
03v02 GIVING WRK-DS-01V0O ROUNDED ON SIZE} the last digit indicates
ERROR MOVE "0O" TO WRK-XN-000O01. whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).
1N162 DIVIDE AQ2TW0OS-DS-02v0O0 BY -10.9 Arithmetic result is printed.
GIVING WRK-DS-01v0O.
TN163 DIVIDE AO1ONE-DS-P0OB01 BY WRK-DS- 03V10 Arithmetic result is printed.
GIVING WRK-DS-18V00D ROUNDED.
TN164 DIVIDE A99-DS-02V00 BY AZERD-DS-05V0S Arithmetic result is printed;
GIVING WRK-DS-18V0O0 ON SIZE ERROR the last digit indicates
MOVE "1" TO WRK-XN-00001. whether SIZE ERROR worked
correctly (1 - correct;
0 = incorrect).
TN165 DIVIDE WRK-DS-09V09 BY AONES-DS-09V09 Arithmetic result is printed;
GIVING WRK-DS-09V09 ON SIZE ERROR the last digit indicataes
MOVE "0O" TO WRK-XN-00001. whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).
TN166 DIVIDE ADSONES-DS-00V0OS BY WRK-DS-09v0S Arithmetic result is printed;
GIVING WRK-DS-0201P ROUNDED ON SIZE ERROR| the last digit indicates
MOVE "1" TO WRK-XN-0O0OO01. whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).
TIN167 DIVIDE AO2TWOS-DS-03V02 BY A02TWOS-DS Arithmetic result is printed;
02V00 GIVING WRK-DS-01vV0O ROUNDED the last digit indicates
ON SIZE ERROR MOVE "0" TO WRK-XN-000OO01. whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).
IN168 DIVIDE A99-DS-02V00 INTO WRK-DS-02v00. Arithmetic result is printed.
IN169 DIVIDE A99U-DS-0201P INTO WRK-CS-02v02. Arithmetic result is printed.
IN170 DIVIDE AOQ1ONE-CS-(I0V0O1 INTO A99-CS-02V00 Arithmetic result is printed.
GIVING WRK-DS-05v00.
IN1T71 DIVIDE A99-CS-02vV00 BY AO1ONE-CS-00VO1l Arithmetic result is printed.
GIVING WRK-DS-05V00.

e

Test ID

Summary of Test

Breakdown of Printed Results

1N20J PERFORM paragraph-name. Execution sequence indicators
PERFORM section-name. are printed.

1N201 PERFORM paragraph-name integer TIMES. Execution sequence indicators
PERFORM section-name data-name TIMES. are printed.

1N202 PERFORM paragraph-name THRU paragraph- Execution sequence indicators
name. are printed.
PERFORM section-name THRU section-name.
PERFORM paragraph-name THRU section-
name .

1N203 PERFORM paragraph-name THRU paragraphe- Execution sequence indicators
name integer TIMES. are printed.
PERFORM section-name THRU section-name
integer TIMES.
PERFORM section-name THRU paragraph-
name integer TIMES.
PERFORM paragraph-name THRU section=-
name integer TIMES.

1N210 Tests nested PERFORM statements. Execution sequence indicators

are printed.
1N215 Tests the use of EXIT. Execution sequence indicators

are printed.

-101-

Test ID

Summary of Test

Breakdown

of Printed Results

1N230 EXAMINE NDATA-DS-0SV09 TALLYING The value of TALLY is printed.
UNTIL FIRST 9.
IN231 EXAMINE XDATA=XN=-00018 TALLYING ALL "oM. The value of TALLY is printed.
IN222 EXAMINE XDATA-XN-GCOO18 TALLYING The value of TALLY is printed.
LEADING SPACE,
TN237 EXAMINE WRK-DS-09V09 TALLYING UNTIL The value of TALLY and the
FIRST ZERO REPLACING BY 9, examined item are printed.
1N238 EXAMINE WRK-XN-00CUL18 TALLYING ALL ZERO The value of TALLY and the
REPLACING BY SPACE, examined item are printed.
1N2739 EXAMINE WRK-XN-00018 TALLYING LEADING The value of TALLY and the
"0" REPLACING BY "yn, examined item are printed.
TN242 EXAMINE WRK=-DS-USV09 REPLACING ALL O The value of the examined
BY 9 item is printed.
IN243 EXAMINE WRK-XN-00018 REPLACING LEADING The value of the examined
"g"™ gy "z". item is printed.
TNZ244 FXAMINE WRK=XN-00018 REPLACING UNTIL The value of the examined
SPACE BY ZERO. item is printed.
1N245 EXAMINE WRK-DS-09V09 REPLACING FIRST The value of the examined

8 BY ZERO.

item is printed.

«7 02

Test ID Summary of Test Breakdown of Printed Results

1N250 IF AZERO-DS-05V0S IS EQUAL TO ZERO The result of the comparison
MOVE "1" TO SUP-UK-B (1). is printed.

1N251 IF SPACE IS EQUAL TO SUP-UK-A The result of the comparison
MOVE '"O" 7O SUP-UK-B (1). is printed.

1N252 IF A1BONES-DS-18v00 IS EQUAL TO ONES-XN-| The result of the comparison
00018 MOVE "1" TO SUP-WK-B (1). is printed.

1IN253 IF TWOS-XN-00002 IS EQUAL TO A99-DS- The result of the comparison
02V00 MOVE "O" TO SUP-WK-B (1). is printed.

1N254 IF A99-DS-02V00 IS LESS THAN Al1BONES- The result of the comparisan
DS-09vV09 MOVE "1" TO SUP-WK-B (1) ELSE is printed.
MOVE "0" TO SUP-WK-B (2).

1N255 IF "11" IS LESS THAN ONES-XN-00002 The result of the comparison
MOVE "O0" TP SuP-WK-B (1) is printed.
ELSE MOVE "1'" TO SUP-WK-B (2).

TN256 IF AD2TW0OS-DU-D2V00 IS LESS THAN ONES- The result of the comperison
XN-00002 MOVE "1" TO SUP-WK-B (1) is printed.
ELSE MOVE "O" TO SUP-UWK-B (2).

1N257 IF TWOS-XN-00002 IS LESS THAN AD2TWOS- The result of the comparison
DU-02vV00 MOVE "O'" 70 SUP-WK-B (1) is printed.
ELSE MOVE "1" 70 SUP-WK-B (2).

1N258 IF A99-DS-02v00 IS GREATER THAN 88B.9 The result of the comparison
NEXT SENTENCE ELSE MOVE "0" 7O SUP-WK-B is printed.
1)

TN259 IF ONES-XN-00002 IS GREATER THAN TWOS- The result of the comparison
XN-00002 NEXT SENTENCE ELSE MOVE "1" 7O is printed.
SUP-WK-B (1) GO 7O TEST-1NUC-259-A.

1N260 IF AD2TWOS-DU-02V00 IS GREATER THAN ONESH The result of the comparison
XN-00002 NEXT SENTENCE ELSE MOVE "0" TO is printed.
SUP-WK-B (1).

1IN261 IF TWOS-XN-00002 IS GREATER THAN RO2TWOSH The result of the comparison
DU-02V00 NEXT SENTENCE ELSE MOVE "1" TO is printed.
SUP-WK-B (1) GO TO TEST-INUC-261-A.

1N262 IF ZERD IS NOT EQUAL TO SUP-UK-A The result of the comparison

MOVE "1" TO SUP-WK-B (1) GO TO TEST-
1NUC-262-A ELSE NEXT SENTENCE.

is printed.

-103-

Test ID Summary of Test Breakdown of Printed Results

1N263 IF AD2TW0S-DU-02V00 IS NOT EQUAL TO AOZ2TWOS- The result of the comparison
DS-03V02 MOVE "O0" TO SuP-WK-B (1) GO TO is printed.
TEST-1NUC-263-A ELSE NEXT SENTENCE.

IN264 IF TWOS-XN-00002 IS NOT LESS THAN ONES- The result of the comperison
XN-00002 MOVE "1" TO SUP-WK-B (1) GO TO is printed.
TEST-1NUC-264-A ELSE NEXT SENTENCE.

1N265 If 0.0000000001 IS NOT LESS THAN AO1ONES- | The result of the comparison
DS-POBO1 MOVE "O" TO SUP-WK-B (1) GO TO TEST- is printed.
INUC-265-A ELSE NEXT SENTENCE.

“N266 IF ONES-XN-00002 IS NOT GREATER THAN TWOS-{ The result of the comparison
XN-00002 MOVE "1" TO SUP-WK-B (1) GO TO is printed.
TEST-1NUC-266-A ELSE NEXT SENTENCE.

IN2E67 IF A990-DS-0201P IS NOT GREATER THAN The result of the comparison
A99-DS-02V00OMOVE "O" TO SUP-WK-B (1) is printed.
GO TO TEST-1NUC-267-A ELSE NEXT SENTENCE.

1IN270 IF ONES-XN-00018 IS NUMERIC MOVE "1" TO The result of the test is
SUP-WK-B (1). printed.

1IN271 IF AO2TWOS-DS-03V02 IS NUMERIC MOVE "1 The result of the test is
TO SUP-WK=-B (1). printed.

IN272 IF XDATA-XN-00018 IS NUMERIC mOvE "g" The result of the test is
TO SUP-WK-B I{1) GO TO TEST=-1NUC-272-A. printed.

1N273 IF XDATA-DS-18Y00-5 IS NUMERIC MOVE "Q" The result of the test is
TO SUP-WK-B (1) GO TO TEST-1NUC-273-A. printed.

IN274 IF SUP-WK=A IS NOT NUMERIC MOVE "1" TO The result of the test is
SUP-WK-B (1) GO TO TEST=-1NUC-274-A. printed.

TN275 IF XDATA-DS-18V00-S IS NOT NUMERIC MOVE The result of the test is
"1" TO SuP-WwK-B (1). printed.

IN276 IF SUP=-WK-A IS NOT NUMERIC MOVE "O0" TO The result of the test is
SUP-WK-B (1) GO TO TEST-1NUC-277-A. printed.

104~

Test ID Summary of Test Breakdown of Printed Results

IN277 IF A990-DS-0201PF IS NOT NUMERIC MOVE The result of the test is
"O0" TO SUP-WK-B (1) GO TO TEST-1NUC-277- | printed.
A.

1N278 IF YADATA-XN-00010 IS ALPHABETIC MOVE The result of the test is
"1" TO SUP-WK-B (1). printed.

1N279 IF SUP-WK-A IS ALPHABETIC MOVE "X" TO The result of the test is
SUP-WK-B (1) GO TO TEST-1NUC-279-A. printed.

1N280 IF XDATA-XN-00018 IS NOT ALPHABETIC MOVE | The result of the test is
"1'" TO SUP-WK-B (1). printed.

1N281 IF YADATA-XN-00010 IS NOT ALPHABETIC The result of the test is
MOVE "O" TO SUP-WK-B (1) GO TO TEST- printed.
1NUC-281-A,

1N282 IF IFNUM-DU-01V0O0 IS NUMERIC MOVE "Q" The result of the test is
TO SUP-WK-B (1) GO TO TEST-1NUC-282-A. printed.

=105~

Test ID Summary of Test Breakdown of Printed Results
IN300 Tests format 1 of the GO TO Execution sequence indicators
statement. are printed.
TN302 Tests format 2 of the GO TO statement. Execution sequence indicators
are printed.
INSBS Tests ALTER/GO TO combination. Execution sequence indicators
are printed.
1N304 Tests the DISPLAY statement. No printed results except
the output of the statement
itself,
TN305 Tests the ACCEPT statement. The data that was read is
printed.
1N307 Tests the NOTE statement and NOTE Execution sequence indicators
paragraph., are printed.
1N310 Tests the use of switch-status-names Execution sequence indicators
in IF statements. are printed.
TN311 Tests non-floating insertion characters. Receiving fields are printed.
1N312 Tests the use of floating insertion and Receiving fields are printed.

replacement characters.

Jests the use of level numbers 01-10
REDEFINES, SYNCHRONIZED, JUSTIFIED,
BLANK, USAGE, and mixed PICTURE of
A, X, 9,

Receiving fields are printed.
Because the operation of the
SYNC clause makes the size of
the result indeterminate no
expected result is printed.

1N314 Tests the CURRENCY SIGN clause. Receiving fields are printed.

1N315 Tests the DECIMAL POINT IS COMMA clause, Receiving fields are printed,

1N316lﬂ» Tests the Data Division abbreviations: Receiving fields are printed.
84 SYNC, PIC, COMP, JUST,

-106-

Test ID Summary of Test Breakdown of Printed Results

1N317 Tests 30 character data-name and Correctness indicator is
procedure~-name. printed.

1N318 Correctness indicator is

Tests 120 character literal.

printed.

=] 7=

ADb AZERO-DS-05V0S5 0.5 TO WRK=-DS-01v0O

Test ID Summary of Tesat. |Breakdown of Printed Results

DS-03V10 WRK=-DS-0201P ROUNDED WRK-DS=~
03V00 ON SIZE ERROR MOVE"1" TO WRK=XN=-
00001.

2N001 Arithmetic result is printed.
WRK-DS=-05V00 ROUNDED WRK-DS-06V06.
2N002 ADD AOQSONES-DS=-05V00 A99-DS=02V00 A1BONESH Arithmetic result is printed;
DS-09v09 GRIVING WRK-DS-09V0S ON SIZE the last digit indicates
ERROR MOVE "0" TO WRK-XN-000O1. whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).
2N003 ADD AZERO-DS-0SV05 999 TO WRK-DS=03V10 Arithmetic result is printed;
WRK-DS-0201P ROUNDED WRK-DS-03v00 ON SIZE | the last digit indicates
ERROR MOVE "1" TO WRK=XN=0000l. whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).
2N004 ADD CORRESPONDING GRP-FOR-ADD-CORR-1 Arithmetic result is printed.
TO GRP=FOR=ADD-=CORR=R,
2N00S ADD CORRESPONDING GRP-ADD-SUB-CORR Arithmetic result is printed.
TO GRP-FOR-ADD-CORR=R ROUNDED.
2N006 ADD CORRESPONDING GRP-SUBTRACT-CORR-3 Arithmetic result is printed;
TO GRP-FOR-ADD=-CORR-R ON SIZE ERROR the last digit indicates
MOVE "1" TO WRK-XN-00001l. whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).
2N007 SUBTRACT AZERO-DS-05 =99.9 FROM WRK=DS- Arithmetic result is printed.
02v00 WRK-DS-1BV0OO ROUNDED WRK=-DS=09V09.
2N008 SUBTRACT AZERO-DS-05V05 =99.9 FROM WRK- Arithmetic result is printed;
DS-02V00 WRK-DS-18V00 WRK=-DS-09V09 ON the last digit indicates
SIZE ERROR MOVE "0" TO WRK=-XN=00O0O1. whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).
2N00S SUBTRACT AZERO-DS-05V0S5 =999 FROM WRK- Arithmetic result is printed;

the last digit indicates
whether SIZE ERROR worked.:
correctly (1 = correct;

0 = incorrect).

-108-

Test 1D

Summary of Test

Breakdown of Printed Results

]

2NC10 SUBTRACT CORRESPONDING GRP-FOR-ADD- Arithmetic result is printed.
CORR-1 FROM GRP-FOR-ADD-CORR-R.

2NO11 SUBTRACT CORRESPONDING GRP-ADD-SUB-CORR Arithmetic result is printed.
FROM GRP-FOR~ADD-CORR~R ROUNDED.

2N013 MOVE CORRESPONDING GRP-MOVE-CORR-1 TO Arithmetic result is printel,
GRP-MOVE-CORR-R.

2NG15S SUBTRACT CORRESPONDING GRP-SUBTRACT- Arithmetic result is printed;

CORR-3 FROM GRP-FOR-ADD-CORR-R ON SIZE
ERROR MOVE "1" TO WRK~XN-0G0GOG1T.

the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;

0 = incorrect).

-109~

— oo ot —

Execution sequence indicators

are printed.

=0k

~_ Test 1D Summary of Test Breakdown of Printed Results
2N016 MOVE CORRESPONDING GRP-TO-MOVE~CORR-1 Receiving fields are printed.
T0 GRP-TO-MOVE-CORR-R.
2N017 PERFORM TEST-2NUC-017-A UNTIL TEST- Execution sequence indicators
2NUC~-COND~95. are printed. L N
2N0O18 PERFORM TEST-2NUC-018-A VARYING WRK-DS~ Execution sequence indicators
02V00 FROM 1 BY 1 UNTIL TEST-2NUC-COND-99.| are printed. |
| 7
2N01% PERFORM TESTZNUC-018-A VARYING WRK-DS- Execution sequence indicators
02v00 FROM AD2TWOS-DS-02V00 BY AO2TWOS- are printed.
DS-02V00 UNTIL (WRK-DS-02V00 + 12)
= 1000 |
2NC020 Tests PERFORM ... VARYING to thre: levels.| Execution sequence indicators
and final values of identifiers
are printed.
BamatlE ——— o
2N022 Tests PERFORM ... VARYING to threse Execution sequence indicators
levels; uses index-names. and final values of
identifiers are printed.
2NG23 Tests ALTER with the series option.

L Je=e

_Summary of Test

SRR A, 5 -

Breakdown of Printed Results

DS-05v00 / 5 ON SIZE ERROR move "1"
TO WRK-XN-0001.

2N024 COMPUTE WRK-DS-02vV00 = -9, Arithmetic result is printed.
2N025 COMPUTE WRK-DS-02Y00 = A99-DS-02v00. Arithmetic result is printed.
2N026 COMPUTE WRK-DS-18V00 = Al1BONES-DS- Arithmetic result is printed.
18v00 + A1BONES-DS-18v0O0.
2N027 COMPUTE WRK-DS-18V00 = AlBTW0OS-DS- Arithmetic result is printed.
18Y00 - A1BONES-DS-18v00.
2N028 COMPUTE TALLY = 3 * AD2TWOS-DU-02V0O0. Arithmetic result ic printed.
2N029 COMPUTE WRK-DS-05V00 = A02TU0OS-DU-
02V00 / AD2TWOS-DS-03V02. Arithmetic result is printed.
2N030 COMPUTE WRK-DS-05V00 = 3 ** ATWO-DS- Arithmetic result is printed.
olvoo.
2N031 COMPUTE WRK-DS-02V00 ROUNDED = A99- Arithmetic result is printed.
DS-02V00 + AZERO-DS-05V05 - 2.5.
-
2N032 COMPUTE WRK-DS-02v00 = A99-DS- Arithmetic result is printed;
02Y00 + AZERO-DS-05V05 ON SIZE ERROR the last digit indicates
MOVE "O" TO WRK-XN-000O01l. whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).
2N033 Test REMAINDER option of DIVIDE. Arithmetic result is printed.
2N034 COMPUTE WRK-DS-0201P ROUNDED = AOSDNES Arithmetic result is printed,

The last digit indicates
whether SIZE ERROR worked
correctly (1=correct;
O=incorrect).

-111=

are

Test ID Summary of Test Breakdown of Printed Results
2ND35 A Using COMPUTE, tests a particular Both results are printed.
B arithmetic expression both with
and without parentheses.
2N036 Tests a particular arithmetic Results of comparison
expression both with and without are printed.
parentheses in IF statementa.
2N037 Tests ADD with ON SIZE ERROR Resulte of arithmetic and
option in the true and false of comparisons are printed.
an IF statement.
2N038 Tests IF statements nested on Results of comparisons are
true and false paths of an IF printed.
statement.
2N039 Tests an IF statement containing Results of the comparisons
a compound condition with one OR., are printed.
2N040 Tests an IF statement conteining Resulta of the comparisons
a compound condition with one AND, are printed.
' . . — e E—— —
2N041 ' Tests an IF etatement containing a Results of the comparisons
| compound condition with mixed ANDs | are printed.
| and ORs.
] e e
!
2N042 | Tests an IF statement containing a Results of the comparisons
, compound condition with mixed ANDe, printed.
; ORs, and NOTs.
; -—— — @ ————
2M043 i Tests IF statements uaing =,)-,<f, Reeults of the comparisonse
i ae relational operators. are printed.
2N0G45 Teste an IF statement ueing ab- Results of the comparisons
I breviation 1 in the condition. are printed.
SR “._.n_r____m~_-. . ARSI W
211046 Tests an IF atatement uaing Results of the comparisons

|

abbreviation 2 in the condition.

are printed.

=112=

2N048

Test ID

Summary of Test

Breakdown of Printed Results

Tests unequal size operands fields

Results of the comparisons are
in a conditional expression printed.
where squality should exist. ,
O e NP P o ——
2N049 Tests unequal size operand fields Results of the comparisons are
| in a conditional expression printed.
where inequality should exist.
2N050 Tests ACCEPT...FROM... Data that was read is printed.
|
: 2N05S1 Tests DISPLAY literal UPON No printed results except the
mnemonic-name. actual output on the device
specified by mnemonic-name.
2N052 Test DISPLAY mixed-literal- No printed results except the
and-identifier-series UPON actual output on the device
mnemonic-name. specified by mnemonic-name.
2ND53 Tests the operation of quali- The fields to which reference
fications where it is required. is made are printed.
2N0S4 Tests the operation of qualifi- The fields to which reference is
cation where it is not required. made are printed.
2N056 A Tests the operation of RENAMES The fields to which reference is
B without the THRU option. made are printed.
2N0S7 A Tests the operation of RENAMES The fields to which reference is
B with the THRU option. made are printed.
- e s ey = . g S I
2N058 Tests Data Division qualification The fields to which reference i:
and the plural form of the figura- made are printed.
tive constants.
2N059 Tests level 88 entries with the Results of comparisons are
series option of the VALUE clausse. printed.
2N060 Tests the DATE-COMPILED paragraph. No printed results at execution
time.
2N061 Tests punctuation characters (; Correctness indicators are
and ,) and all numeric procedure- printed.
names.

= S

Test 1D

Summary of Test

Breakdown of Printed Results

1THO1

Tests single level subscripting and
the use of TALLY as a subscript.

Correctness indicators and
table elements are printed.

1THO?2

Tests single level indexing.

Correctness indicators and
table elements are printed.

1THO 3

Tests all combinationa of operands
in the SET...T0... statement.

Occurence numbers are
printed.

1THO4

Tests the use of relation con-
ditions containing indexes and
index-data-items.

Results of the comparison are
printed.

S

Test ID

Summary of Test

Breakdown of Printed Results

2THO1

Tests 2 and 3 level subscripting.

Correctness indicators and
table elements are printed.

2THO?2

Tests 2 and 3 level indexing.

Correctness indicators and
table elements are printed.

2THO3

Tests the structural variations of
format 1 of the SET statement that
are unique to 27BL.

Occurence numbers are printed.

2THO4

Tests the structural variations of
format 2 of the SET statement.

Occurence numbers are printed.

-115-

Test ID

Summary of Test

Breakdown of Printed Results

3THOT

Tests the structural variations
of format 1 of the SEARCH state-
ment.

Correctnees indicators and table
elements found are printed.

3THO2

Tests the structural variations
of format 2 of the SEARCH etate-
ment.

Correctnees indicators and table
elemente found are printed.

3THO3

Same as 3THO1 but uses variable
length tables.

Correctness indicators and table
elements found are printed.

3THO4

Same as 3THO0Z2 but uses variable
length tables.

Correctness indicators and table
elemente found are printed.

3THOS

Creates a sequential file con-
taining logical recorde whose
description contains OCCURS
with the DEPENDING option.

none

3THO6

Reads and verifies the file
created in 3THOS.

Correctness indicators for every
record and ons for AT END are
printed.

-116-

"~
.

Test 1D [

Summmzry of Tecst

Brealkdown of Printed Resulls

15001 Urites an unblocked sequential tape file|{no printed results.
containing fixed length records.

15002 Reads the file created in 15Q01. Tests One character for each record
operation of the elements necessary for |read: 1 = input record is
an input file; also validates 15001. equal Lo Working Storage item

used to WRITE it. 0 = input
record not equal. 9 = if CLOF
found orematuraly, answer

is filled with 9's atl that
point. One characler for Al
END: 1 = executed at corraect
time. 0 = not executed.

16003 Writes a blocked sequential tape file
containing fixed length records. no printed results.

SQ04 Reads the file created in 15Q03. Tests Same as 15Q02.
operation of the elements necessary for
an input file; also validates 15Q03.

15005 Writes a blocked, wulti-reel, sequential{no printed results.
tape file containing fixed length
records.

15006 Reads the filo created in 15Q05. Tests [Same as 15Q02.
the opcration of these elements necessa-
ry for an input file; also validates

5105,

15007 Writes an unblocked sequential tape filelno printed results.
containing differing length records.

15006 Reads file created in 15G07. Tests the Same as 15002.
operation of the elements necessary for
an input filej also validates 15Q07.

15009 Writes a blocked sequential tape file no printed results.
containing differing length records.

15010 Reads the file created in 15Q09. Tests Same as 1SQ02.
the operation of the eloments neces-
sary for an input file; also validates
15009,

60111 Urites a blocked, multi-reol, soquent- no printed results,
ial tape file containing differing
length records.

NS012 fleads the file created in 15011. Tests |Same as 15002.
the operation of the eloments necessary
for an input file; also validates 15Q11.

=177

Test 1D ' Summary oi oot
L]

Broal:doun of Printid ftaculta

165013 WUrites an unblocked sequential mass no printed results.
storage file countaining fixed length
records,

15Q14 Reads the file created in 15Q13. Tests Same as 15Q02.

the operation of the elements necessary
for an input file; also validates 15Q13.

168015 Reads and updates the file created in no printed results.
15Q13. Tests the opsesration of the

elements necessary for an input-output
file.

15Q16 Reads the file created in 15Q13 and Same as 15Q02.
updated in 150Q15. Validates 15Q15.

15017 WUrites blocked sequential mass storage no printed results.
file containing fixed length records.

15018 Reads the file created in 15Q17. Tests Same as 15Q02.
the operation of the elements necessary
for an input file; also validates 15Q17.

15Q19 Roads and updates the file created in no printed results.
15Q17. Tests the opsration of the
elements necessary for an input-output

file.
15Q20 Reads the file created in 15Q17 and Same as 15Q02.
updated in 15Q19. Validates 15Q19.
15Q21 Urites a print file using BEFORE and Each line contains the
AFTER ADVANCING. statement used to write it.
15027% Urites a blocked, multi-unit, No printed results.

soquential mass slorage file
containing fixed length records.

150424 Reads the file created in 15Q23. Same as 150Q02.
Tests the operation of the elements
necessary for an input file; also
validates 15Q23.

15025 Reads and updates the file created No printed results.
15Q23. Tests the operation of the
elements necessary for an input-
output file in a multi-unit file
environment.

15Q26 Reads the file created in 15Q23 and Same as 150Q02.]
updated in 15Q25. Validates 15Q25.

15027~ Tests the five options of RERUN in the Execution sequsnce indicalorg

15031 order shown on page B2, items 44-48, are printed.

-118-

Tesl 1D

Summary of Tust

Breakdown of Printed Results

25005 Tests the use of an OPTIONAL file. One character for each record
read: 1 = input record is
equal to Uorking Slurage itam
used to WRITE it. O = input
record not equal. 9 = if EOF
found prematurely, answer is
filled with 9's at that point.
One character for AT END; 1 =
executed at correct time. O =
not executed,

25006 Creates a MULTIPLE FILE TAPE. none

25Q07 Reads and verifies the tape Same as 25Q05,

created in 250Q06.

25Q08 Reads and verifies the last file Same as 25Q0%,

on the tape created in 25Q06.

25Q09 Creates a file for use in 25Q10. none

25Q10 Tests the use of OPEN with the Same as 25Q05,

REVERSED option.

25Q11 Tests the ADVANCING option of WRITE } Each line contains the state-

using data-name and mnemonic name. ment used to uwrite it.

25Q12 Tesls the acceptability and Execution sequence indi-

operation of the USE cators are printed.
statement.
25Q13 Creates a file for use in 25Q14 ard INone
tests "WRITE...FROM..." .
25Q14 Read and verifies the file created ;Same as 25(Q05,
in 25Q13; and tests "READ...INTO..."}
25Q15 Tests LABEL RECORDS data-name One character for each ccndi-

together with LABEL PROCEDURE
declaratives.

tion as follous: (1) 1 indi-
cates BEGINNING LABEL on OUT-
PUT written.(2) 1 indicates
ENDING LABEL on OUTPUT written.
(3) 1 indicates BEGINNING LABCL
on INPUT verified. (4) 1 indi-
cates ENDING LABEL on OUTRPUT

verified.

-119-

Test ID

Summary of Test

Breakdown of Printed Resulls

1RAO01 Urites an unblocked mass storage no printed results .
file in random access mode.
1RAD2 Reads and verifies the file created One character per record read:
in 1RAO1. 1 = input record is equal to
Vorking Storage item used to
UWRITE it. O = input record
not equal. 9 = INVALID KEY
exit taken on record.
1RAD3 Reads and updates inpplace the no printed reSUIts..
file created in 1RA01.
1RA04 Reads and verifies the file created Same as 1RA02,
in 1RA01 and updated in 1RA03,
1RAOS5 Logically equivalent to 1RAO01 but no printed results.
for blocked records.
1RAO6 Logically equivalent to 1RA01 but Same as 1RA0Z2.
for blocked records.
1RA07 Logically equivalent to 1RA03 but no printed results.
for blocked records.
1RA0DB Logically equivalent to 1RA04 but Same as 1RA02.

for blocked records.

-120-

Test ID

Summary of Test

Breakdown of Printod Results

2RA01 Creates a random access file whose No printed results.
records are unblocked and of differ-
ing lengths. Uses data-name option
of FILE-LIMITS clause, and "TO inte-
ger" option of BLOCK CONTAINS.
One character per record roead:
2RA02 Reads and verifies the file created 1 = input record is coual to
in ZRADT. Working Storage ilem used to
WRITE it. 0 = inpul record notl
equal. 9 = INVALID Kt Y exit
taken on record.
2RA03 Reads and updates in place the file No printed resulls.
created in 2RA01.
2RA04 Reads and verifies the file created Same as 2RA02.
in 2RA01 and updated in 2RAD3.
2RA05 Logically equivalent to 2RA02 but No printed results.
for blocked records.
2RA06 Logically equivalent to 2RA02 but Same as 2RA02.
for blocked records.
2RA07 Logically equivalent to 2RA03 but No printed result:.
for blocked records.
2RA08 Logically equivalent to 2RA04 but Same as 2RA02.
for blocked records.
2RA09 Logically equivalent to 2RA07T thru Same as 2RA01 thru 2RAU4.
. 2RAD4 except that WRITE... FRUM,
READ... INTO, literal series option
ZRAT2 of FILE-LINITS clause, STANDARD

option of LABEL RECORDS clause and
literal-series option of VALUE OF
clauses are used.

Test ID

Summary of Test

- e e ia e b eo e S

Breakdown of Printed Results

2RA13
thru
2RA16

Logically equivalent to 2RA05
thru 2RA08 except that WRITE...
FROM, READ...INTD, data-name
series option of FILE-LIMITS
clause, data-name series option
of LABEL RECORDS clause, data-
name series of VALUE OF clause,
and in 2RAl6 CLOSE,.,.WITH LOCK,
are used.

ettt m e m——. = e — e

Same as 2RA05 thru 2RA08,

2RA17

Tests the acceptability and
operation of the USE state-
ment.,

Execution sequence indicators
are printed,

2RA18

Tests LABEL RECORDS data—name
in conjunction with USE...LABEL
PROCEDURE ON OUTPUT, INPUT,
=

Results indicate a '"1' for
1. OUTPUT HEADER written
2. OUTPUT TRAILER written
3. INPUT HEADER verified
4, INPUT TRAILER verified
S. I-0 HEADER verified

6. I-0 TRAILER verified.

-122-

A A N

Test ID Summary of Test Breakdown of Prirted Results
15701 Sorts 6 records created in and aaabbbcccdddeeef ffg*
checks the sequence of the returned | Each returned record, represented
records in the OUTPUT PROCEDURE. by a through f, has three tests
made upon it: for content of
first non-key field; the sort key;
for the content of the second non-
key field. The finmal g is 0O if an
incorrect number of records are
returned.
15702 Services 1ST03 by creating an
input for it. No sort. No printed results.
15T03 The file created by 1ST02 is sortedy aabbcc===xxyyz*
descending, with the OUTPUT PROCED-} Each of the records, represen-
URE checking sequence on keye and ted by a through y, has two
contents of non-key areas. Sorted tests made upon it: for the non-
records are written onto a FILE- key area; for the key area. =z
NAME~USING=-4 for paseing to 1STO04. represents 1 for good count, 0 for
bad count.
1ST04 The USING file is the descendingly No printed resulte.
sorted file of 1STO3 which ie
sorted into ascending order and
passed to 1STO0S.
15705 Checks sequence of file paeeed from| Same as 1S5T03.
15704,
1ST06 Sorts with THRU option of INPUT No printed results.
PROCEDURE and with the OR option
of the ASSIGN clause. Depends upon
blank and zero relative collating
eequences for SORT and IF being the
same. GIVING used.
15707 Checke eequence of file paeeed from| aaabbbccc...xxxyyyz*
15706, Each of the keys is separately
checked in each of the records.
Correct count is reflected in z.
15708 Sort with multiple RELEASE state- aaabbbcece. .. xxxyyyz*
ments in the INPUT PROCEDURE and Each of the keys is separately
multiple descending keys. OUTPUT checked in sach of the records.
PROCEDURE used. Correct amount is reflected in z.
15709 Sorte with multiple RETURN state- abc...xXyz*

ments in the OQOUTPUT PROCEDURE, on
eight types of aecending Keys.
Uses INPUT PROCEDURE.

Records are checked only for the
most recently changed Key. The
record count is reflected in z.

-123-

Test 10

Summary of Test

Breakdown of Printed Results

15710 Createe a file of differing No printed results.
length records to be paseed to
1ST11.
15711 Sorts file from 1ST10 records, No printed results.
descending, on two seriee Keye.
Uses USING, GIVING and the TO
option of RECORD CONTAINS.
15712 Checke sequence of file paeeed aaabbbccc...xxxyyyz*
from 15T11. Cach record is checked on three
fields: a body field unique to each
record length; Key-1l; and Key-2.
The record count is reflected in z.
15713 Prepares a 3 reel tape file
(using CLOSE REEL) each contain- | No printed resulte.
ing 26 records of 33 charactere
each to be paseed to 15T1l4.
15T14 Sorts the multi-reel file creat- No printed reeulte.
ed in 1ST13 into deecending
sequence. Uses USING, GIVING.
The sort Key is an 0l elemen-
tary item and is also named in
the DATA RECORDS clausee of the
SO.
LST1'S Checks sequence of the file abc...xyz*

paeeed from 1ST1l4.

The 78 recorde are each checked for
total contente once. The record
count ie reflected in z.

=128~

Test ID | Summary of Test Breakdown of Printed Results
25701 A double sort in which one aabbcC...xxyyz*
sort (I/P, GIVING) is by Each of the records returned is
another (USING 0/P) in which | checked first on an indicative non-
the USING file is the same key field and then upon the Key
FD-name as is the previous field. The total record count is
GIVING file. reflected in z.
25702 SAME RECORD clause for both aaabbbccc...xxxyyyz*
an SD and two FD files, all |The recorde (here repressentsd by
| defined within this test. a,b,cy...x,y) are checked: upon a set
non-key field; on another non-key
| 1field; and on the sort Key. The
i record count is reflected in z.
25703 i The USE of SAME SORT and aaa bbb ccc ... xxx yyy z*
: SAME RECORD clauses and of |The records are checked: on an alpha-
i multiple SAME clauees. betic justif