-csD ACCESSION Lis L

STi Call No.

opy No. .

ESD-TR-70-198

£ST! FILE COPY

of Q‘ cys.

MTR-1843

PRINCIPLES OF OPERATION OF THE VENUS MICROPROGRAM
B. J. Huberman

JULY 1970

Prepared for

DIRECTORATE OF PLANNING AND TECHNOLOGY

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

EL£0 ﬁﬁﬁ@ﬂo COPY.
T RETURN 10

SCIENTHG & uffu-ﬂu'; it CRIMATION DIVISION
P i), pulbing 121l

Project 700A
Prepared by

This docomert has been approved for public THE MITRE CORPORATION
release and sale; its distribution is wun- Bedford, Massachusetts
S Contract F19(628)-68-C-0365

At

When U.S. Government drawings, specifico-
tions, or other doto are used for any purpose
other thon o definitely related government
procurement operotion, the government there-
by incurs no responsibility nor ony obligation
whatsoever; and the fact that the government
moy hove formuloted, fumished, or in ony
woy supplied the soid drowings, specifico-
tions, or other dato is not to be regorded by
implication or otherwise, os in ony monner
licensing the holder or ony other person or
corporotion, or conveying ony rights or per-
mission to moanufacture, use, or sell ony
potented invention thot moy in ony way be
refoted thereto.

Do not return this copy. Retoin or destroy.

ESD-TR-70-198 MTR-1843

PRINCIPLES OF OPERATION OF THE VENUS MICROPROGRAM

B. J. Huberman

JULY 1970

Prepared for

DIRECTORATE OF PLANNING AND TECHNOLOGY
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Project 700A
Prepared by

This dacument hos been approved for public THE MITRE CORPORATION
release and sale; its distributian is une Bedford, Massachusetts
limited. Contract F19(628)-68-C-0365

FOREWORD

This report was developed under Air Force Contract F19(628)-68-C-0365
with The MITRE Corporation in Bedford, Massachusetts. It carries a
MITRE Project Number of 700A. There is no Air Force project or task
number. The report describes the Venus system, which is a computer
system comprised of microprograms and software. It is implemented on
the Interdata 3, a small, micro-programmable computer. This document
contains a complete description of the micro-program part of Venus.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

totet? flavey

44| awTHONY P. TRUNFTO
i Technical Advisor

Development Engineering Division
Directorate of Planning & Technology

[

ii

ABSTRACT

Venus is a computer system comprised of microprograms and soft-
ware. It is implemented on the Interdata 3, which is a small, micro-
programmable computer. This document contains a complete description
of the microprogram part of Venus.

111

LIST OF ILLUSTRATIONS
SECTION I

SECTION II

SECTION III

SECTION IV

SECTION V

SECTION VI

SECTION VII

SECTION VIII

SECTION IX

TABLE OF CONTENTS

INTRODUCTION

NOTATION
NUMBER BASES
ADDRESS SPACES
VALUES
SYNTAX
NOTATION FOR INSTRUCTIONS
CLASSES OF INSTRUCTIONS
CONDITION CODE

THE JOB AREA
THE JOB AREA INSTRUCTION

VIRTUAL MEMORY
MAPPING OF VIRTUAL INTO REAL MEMORY
THE AGE CHAIN
THE CORE PAGE TABLE
STREAM REGISTER INSTRUCTIONS

BASIC INSTRUCTIONS
LOAD AND STORE INSTRUCTIONS
ARITHMETIC INSTRUCTIONS
LOGICAL INSTRUCTIONS
SHIFT INSTRUCTIONS

CONDITIONS
CONDITION INSTRUCTIONS

PUSHDOWN STACKS
STACK INSTRUCTIONS

THE CONTROL STACK
CONTROL STACK INSTRUCTIONS

PROCEDURES
BRANCH INSTRUCTIONS
CALL AND RETURN INSTRUCTIONS

Page
vii

~N~NoabswbhbNN b=

\O O

10
10
13
14
18

20
20
23
27
30

33
35

36
36

41
42

44
46
49

TABLE OF CONTENTS (Concluded)

Page

SECTION X MULTIPROGRAMMING A!D SEMAPHORES 53
P AND V INSTRUCTIONS 55

SECTION XI THE MICROPRUOGRAMMED MULTIPLEX CHANNEL 57
THE CHANNEL-COMMAND PROGRAM 60

THE CHANNEL 62

SECTION XII INPUT/OUTPUT 70
CHANNEL INPUT/OUTPUT INSTRUCTIONS 70

NON-CHANNEL INPUT/OUTPUT INSTRUCTIONS 70

SECTION XIII LEVEL 1 74
LEVEL 1 INSTRUCTIONS 75

SECTION XIV NON-INSTRUCTION PARTS OF VENUS 78
TIME-SLICING 78

INSTRUMENTATION 78

BOOTS 79

DISPLAY PANEL 82

THE IDLE LOOP 85

APPENDIX I OPCODE MATRIX 87
APPENDIX II INSTRUCTIONS LISTED ALPhABETICALLY BY 88

OPCODE MNEMONIC

APPENDIX TIII LOCATIONS IN THE JOB AREA 95

APPENDIX IV GLOBAL CORE LOCATIONS KNOWN TO THE 98
MICROPROGRAM

APPENDIX V ILLEGAL OPCODES 100

APPENDIX VI CONTROL STACK FORMATS 101

APPENDIX VII CONTENTS OF CORE PAGE TABLE FOR CORE 102

PAGES WHICH CONTAIN STKEAM PAGES

APPENDIX VIII INDEX TO LOCATIUNS KNOWN 10 THE 104
MICROPROGkAM

vi

Figure Number

1

(o WU, N LN VLI V)

LIST OF ILLUSTRATIONS

The Relationship between Registers, Stream
Registers and Extensions

Example of Entries in Core Page Table

How the Channel Fits into the Microprogram
Execution of Channel Commands

Terminate Transfer

Channel Interrupt-Handling for a Device

vii

SECTION I

INTRODUCTION

Venus is a computer system comprised of microprograms and soft-
ware. It is implemented on the Interdata 3, which is a small, micro-
programmable computer. The Venus system supports:

i Multiprogramming;

2% Named virtual memories;

3. Recursive and reentrant procedures;
4, Interrupts for debugging;

5. A microprogrammed, multiplex channel.

This document contains a complete description of the microprogram
part of Venus. Each of the above features is partially or fully
implemented in the microprogram. In addition, the microprogram part
of Venus completely defines the instruction set (used by the software
part). The software part of Venus is not defined by this document;
occasionally, however, a place will be described where the microprogram
and the software communicate.

This document is intended to be read sequentially the first time,
since the descriptions of important concepts in the Venus system appear
as required for the definitions of instructions. Subsequently, the
document may be used as a reference manual. Appendix II provides an
index to the instructionms.

SECTION II

NOTATION

NUMBER RASES

Venus reflects the fact that the Interdata is a hexadecimal
machine, addressable by 8-bit bytes. Each byte contains two hexa-
decimal digits. In this document, hexadecimal numbers will be used
for locations and for constants, like FF. Decimal numbers are used
to refer to quantities (for example, 16 general registers) and to
refer to bits.

ADDRESS SPACES

In Venus there are three address spaces: registers, core and
streams. Locations in the various address spaces are represented
as follows.

Registers

A user in Venus is supplied with 16, 16-bit general registers.
The name of a register is a 4-bit number (hexadecimal digit); e.g.,
2 or F. In this document registers are referred to symbolically by
the letters X and R.

Associated with each register is a stream register. The stream
register is named symbolically by putting an S before the symbolic
name of the general register:

SR 1s the stream register associated with register R.
SX 1s the stream register assoclated with register X.
Core
Any 16-bit quantity can stand for a location in core. Core

is divided into 256-byte pages. CP 1s frequently used as an
abbreviation for core page.

Streams

Streams are named virtual memories. In order to specify a
location in a stream, both the name of the stream (15 bits) and
the location within the stream (16 bits) must be given. The
following notation is used:

stream name.address in stream -

Streams are divided into 256-byte pages. SP 1is frequently used as
an abbreviation for stream page.

VALUES

Data in Venus occurs in 8- or 16-bit containers. Bytes are
8-bit containers while halfwords are 16 bits long. Bits in a
halfword are numbered from O to 15, Core and streams are both
addressed at byte boundaries. A halfword consists of two bytes
and always starts on an even byte boundary:

0 78 15
[byten | byten+1 |, where n is even.

b halfword n

If a reference is made to halfword m, where m is odd, then halfword
m-1 will be accessed.

No particular meaning is assigned to bytes. However, halfwords
contain different kinds of data.

Numeric Quantities

All numeric quantities are 16 bits long. A 16-bit quantity may
stand for a signed 15-bit integer, an unsigned 16-bit integer, or an
address in core or within a stream. Signed integers are all stored
in two's complement notation. Bit 0 is the sign bit.

Stream Names

Stream names are 15 bits long but are contained in a 16-bit
halfword with bit zero unused:

01 15
] stream name | .

1

unused

Semaphores

Semaphores are 7-bit signed integers. They are always locate.
in the right byte of a 16-bit halfword; the left byte contains a
pointer to the queue associated with the semaphore:

| pointer | semaphore |,
0 78 15

SYNTAX

The following terminal characters are used to explain the
meaning of instructions:

rotated left

+ plus
- minus
mod modulo

stream address

8-15

[

times

and

or

not

exclusive or
equal

not equal

end of statement

one's complement; for example,
2E = D1

assignment

"the contents of'"; for example,

(R) means the contents of general
register R

(A) means the contents of core
location A

subscripts are used whenever less
than 16 bits of a 16-bit quantity
are used; e.g., R8_ 5 means bits
8 through 15 of reg}ster R, and
Rg means bit 6 of register R

used to clarify the extent of an
operation

NOTATION FOR INSTRUCTIONS

Instructions in Venus consist of an opcode and two fields.
They occupy one or two halfwords.

0 78 1112 15
| OPCODE | R T x |

o 718 11'12 15 16 51
] OPCODE 1 R | X | A i
opcode field 1 field 2

The opcode is 8 bits long. The first field, R, is 4 bits long su’
usually coutains the number of a general register. The seccnd field
is either 4 bits long or 20 bits long. If it is 4 bits long, it con-
tains the number, X, of a general register and the instruction is
called a short instruction. A short instruction is written:

OPCODE R,X -

If the second field is 20 bits long, it is divided into two
subfields, A and X. X is the number of a general register and A
is a 16-bit quantity. Such an instruction is called a long in-
struction and is written:

OPCODE R,A(X).

A and X are combined together to form a 16-bit address or a 16- or
8- or 4-bit value.

Some instructions make use of only one field. The same notation
is used for fields in this case, so the reader can tell which field
is being used and which is omitted. For example:

JOBA R is a short instruction using only
the first ficld.

P A(X) is a long instruction using only
the second field.

The notation for instructions is introduced here only for the
purposes of this document. It is not related to any language running
under Venus.

CLASSES OF INSTRUCTION

Most instructions in Venus are members of one of the following
five classes. Membership in a class determines what the second
field of the instruction means.

Class C: Core instructions. Instructions in this class are all
long (32 bits). The second field defines a location in core.

Class R: Register instructions. Instructions in this class are all
short (16 bits) and the last letter of the opcode mnemonic is usually
R. The second field contains the number of a general register.

Class I: Immediate instructions. These instructions are all long
and the last letter of the opcode mnemonic is usually I. The second
field defines an 8- or 16-bit constant.

Class S: Stream instructions. These instructions are all long and
the last letter of the opcode mnemonic is always S. The second field
defines a location in a stream.

Class P: Procedure instructions. These instructions are all long
and the last letter of the opcode mnemonic is always P. The second
field defines a location within the current procedure stream (the
procedure which contains the instruction being executed). The name
of this procedure is stored in JSTRNM in the job area.

The user should note that store instructions only occur in
classes C, R and S. In class I the second field does not provide
a location in which to store things. 1in class P the second field
provides a location in a procedure; however, Venus encourages the
writing of reentrant procedures by not providing instructions to
store in procedures.

CONDITION CODE
The condition code contains information about the effect of a

previous instruction. Many instructions set it; some instructions
test it. It is composed of four bits: the C, V, G and L bits.

condition code= | C|{V|[G|L |

In general these bits have the following meaning:

c

is the '"carry" tit. In general it is on if a carry
occurred (a 1 was carried out of bit 0) during the
execution of a previous instruction.

is the "arithmetic overflow'" bit. If it is on, then
during the execution of some previous instruction
the bit carried out of position 1 was not the same
as the bit carried out of position O.

is the "greater than zero” bit. If it is on, it
means the result of the execution of some previous
instruction had bit 0 (the sign bit) off.

is the ''less than zero" bit. If it is on, then the
resulct of the execution of some previous instruction
had bit 0 (the sign bit) on.

SECTION III

THE JOB AREA

Venus is a multiprogramming system in which 16 jobs can run
concurrently. These jobs are numbered in hex from 0 to F. A job
area consisting of 156 contiguous bytes of core memory is assigned
to each job running under the VENUS system. The first location in
the job area for job n is the first location of core page n*10.
The core address of this location is n*1000. The job area contains
the general registers, instruction counter and all other job specific
information. In addition it contains data which is used by the system
to make the multiprogramming run smoothly.

Throughout the body of this paper, references are made to data
in the job area. These references use the symbolic names whose lo-
cations are defined in the chart in Appendix III. The true location
of any piece of data, D, for job n is

|n*1ooo| + D.
For example, the location of the LINK register for job 3 is

In*lOOOI + LINK = |3*1000| + 6A = 306A.

THE JOB AREA INSTRUCTION

Most instructions which refer to data in the job area are
automatically interpreted by the microprogram to refer to the job
area of the job executing the instruction. Sometimes, however, it
is necessary for a job to know the location of the job area from
which it is running. The JOBA instruction provides this information.

Job Area Instruction

JOBA R
As the result of the execution of JOBA, the core address of
the first byte of the job area is stored in register R. For
example, if job A performs
JOBA R

then the contents of register R become A000.

The condition code is not affected by the JOBA instruction.

SECTION IV

VIRTUAL MEMORY

Most data used by a program in Venus will be stored in streams.
Streams are named virtual memories, containing 64K bytes of data and
having 15-bit names. Streams are divided into 256-byte pages. Core
is also divided into 256-byte pages, so that one stream page fits into
one core page. The Interdata is supplied with a disk. Streams are
paged between disk and core and the microprogram automatically maps
stream addresses into core addresses.

When accessing data within a stream, it is necessary to give the
name of the stream and the 16-bit address within the strcam. In order
to provide space for this data, each job is provided with eight 16-bit
stream registers. The stream registers are paired with the general
registers: a stream register, general register pair provides the bits
needed to reference a stream. The stream register holds the stream
name, right adjusted, while the general register holds the address
within the stream. Given the number of the general register, X, the
number of the associated stream register, SX, is computed simply:

SX = X mod 8.

Each stream register is equipped with a 16-bit extension which
is also located in the job area. This extension is used by the micro-
program to hold information about the mapping of stream addresses into
core addresses. Figure 1 shows the relationship between registers,
stream registers and extensions.

MAPPING OF VIRTUAL INTO REAL MEMORY

When a reference is made to a stream, only the general register,
X, 1is mentioned. The microprogram computes the number of the associ-
ated stream register, SX, and uses its contents as the stream name,
SN. This means that prior to making a reference to a stream, a pro-
gram must load the stream register being used for the reference with
the name of the stream being referenced. The value of the address
within the stream, SA, depends upon the instruction being executed.

10

[register (n + 8)]

lstream register n|

|

{ sp | cp |

extension to
stream register n

Figure 1. The Relationship between Registers,
Stream Registers and Extensions

11

SA is broken into two parts:

0 78 15

SA = SP, LOW ,

where SPy is the stream page and LOW is the address within the stream
page. The extension of SX is also broken into two parts:

0 78 15
extension = | SP] CP 1,

where SP is a stream page number and CP is a core page number. If
CP # 0, then stream page SP of the stream whose name is in SX is cc .-
tained in core page CP. Therefore, if

CP # 0 A SP, = SP, (1)

A

the core address of the desired data is simply

core address = | CP Al LOW 1.

The desired stream page in this case is called a locked-in page
because it is guaranteed to be located in core at core page CP. The
reason that this particular page is locked in is because previously
a stream reference was made to it through stream register SX. This
fact is central to the way programs run in Venus.

If a stream page is in core, the microprogram will find it.
However, the amount of time required to locate it varies. If it is
locked-in by the stream register being used to reference it, the
minimum amount of time is required. Otherwise, the microprogram
must search for it. The remainder of this section describes the
details of this search.

Whenever (1) above is not true, the microprogram makes use of a
table in core called the Core Page Table (CPT). This table contains in-
formation about the contents of each core page. Among other things,
it contains the stream name and the number of the stream page which
occupy a core page. The CPT is indexed by core page and entered by
means of a hash chain from hash table HASH. An 8-bit hash code, H,
is formed:

H*—ISN A FFI Xor SPA'

12

H is used as an entry into HASH and a search is made of the hash chain
starting from HASHy to see if the desired stream page is contained in

core. If it is in core, say at core page CPI, then the core address
is

core address = | CP1 1 LOW |28

In addition to forming the core address, the microprogram updates the
contents of the extension of stream register SX to contain information
about this reference (it locks in the stream page). It becomes

extension = SPA CPI

It is likely, of course, that the desired stream page is not in
core. This is recognized when the microprogram reaches the end of
the hash chain without finding the desired page. The end of the hash
chain is recognized by finding a link equal to 0. 1In this case the
microprogram stops right where it is, in the middle of executing an
instruction, and starts a software program called the page fault
handler (PFH). The PFH will fetch the desired page from the disk,
store it in some core page, and update the Core Page Table and the
HASH table. Then it returns, via a special instruction (UNQP), to
the microprogram at the place from which it was started.

THE AGE CHAIN

In order to bring a page into core, the PFH will very likely
have to remove a page from core. Of course, it cannot remove any
page which is locked in. Instead it must remove some page which
is not referred to by any stream register extension. It does not
need to search the Core Page Table for these pages, however, be~
cause the microprogram places all pages which are not locked in on
an age chain. The head of the age chain is AGEHD at location 202:

AGEHD =| OLDEST | NEWEST |.

OLDEST is the number of the core page containing the stream page
which was released from being locked in longest ago, while NEWEST
is the number of the core page containing the stream page which
was most recently released.

13

The microprogram is responsible for keeping all pages which are
not locked in on the age chain. Two functions are performed by the
microprogram to keep the age chain current: aged and unaged. aged is
performed whenever a reference is made through a stream register
whose extension locks in a different page than the desired one, while
unaged is performed when the search through the Core Page Table via
the hash chain successfully locates the desired stream page.

The definitions of aged and unaged take account of the fact that
in Venus streams are shared. This is obvious from the way the micro-
program searches the CPT for a desired stream page. Any job which
wants to use a stream simply refers to it by name. This means that
when a reference is made through a stream register whose extension
locks in a different page, the microprogram cannot automatically
put that page on the age chain because it may be referred to by som:
other stream register extension. Therefore, the microprogram keeps
a count for each locked-in page of how many different extension: lock
it im.

THE CORE PAGE TABLE

Before definitions of aged and unaged are given, the Core Page
Table must be defined. The CPT is located in core starting at lo-
cation 200 and extending to 7FF. The table is actually divided into
three separate tables. Each of these tables is indexed by core page.
The user should note, however, that not all pages in core are available
to hold stream pages. Among others, pages are reserved for the job
areas and for data used by the microprogram, including the HASH table
and the CPT. Spaces thus appear in the CPT and these are sometimes
used to hold other information. This means that the CPT can be
searched meaningfully only through the hash chains.

For core pages which contain stream pages, the CPT contains the
following information.

1ys SN table. This table is located between 400 and 5FF. For
each core page, there is one halfword of information:

01 15
L1 SN | -
1

Change Bit

Bit 0 of this halfword is set by the microprogram whenever data is
stored in the core page. SN is the name of the stream whose page
occupies this core page.

14

2. SPNEXT table. This table is located between 600 and 7FF.
For each core page, there is one halfword of information:

0 7 8 15
[SP | NEXT |-

SP is the number of the stream page which occupies this core page.
NEXT is the core page of the next link on the hash chain. If
NEXT = 0, this entry is the end of the chain.

3le INDCNT table. This table is located between 200 and 3FF.
For each core page, there is one halfword of information:

0 78 15
| IND | CNT | -

This information has two different meanings, depending on whether
the stream page is locked in or not.

a. Locked in. The page is locked in if
IND = O.

In this case CNT equals one less than
the number of extensions locking in the

page.
b. Aged. The page is on the age chain if
IND # O.
In this case IND equals the core page
of the next newer page on the age chain
and CNT equals the number of the next

older page.

Figure 2 gives an example of how HASH and CPT are used.

15

HASH Table

entry 21 00
22 38
23 3 6

Core Page Table

IND CNT SN SP NEXT
core page :
36 00|00[|0O1DCjJ{FF|37
37 01/38|4123 0 0
38 37/01/01DC|FE 0

Three entries in HASH are shown. HASH3j; = O, which means no
stream page located in core at the moment hashes into 21.
HASHy9 and HASH73 both contain the starts of hash chains.

The chain coming from HASH 2 1s only one link long (HASH,, =
38 and NEXT3g = 0). The cﬁain coming from HASH;3 is two links
long (HASH;3 = 36, NEXT3¢ = 37, and NEXT,4 = 0).

Core page 36 contains stream 1DC, page FF, and core page 37
contains stream 4123, page 0. Both these stream pages produce
the same hash code. Core page 38 contains stream 1DC, page FE.
Since HASH21 = 0, stream 1DC, page FD is not in core.

Stream 1DC, page FF 1is locked in (IND36 = (0) and has one user
(CNT3¢ = 0). The other two pages are on the age chain. Stream
1DC, page FE has been on the chain longer than stream 4123,
page O.

Figure 2. Example of Entries in Core Page Table

16

Definitions of aged and unaged

Now definitions can be given for aged and unaged. If a stream

reference is made through register X and

CP # 0 ASP # SP,,

then the stream page location in core page CP is aged. This means:

(CNTp) + (CNTp) = 1

if (CNTCP) < 0 then do begin
(CNTCP)" (NEWEST) ;
(IND,) + 13

(IND wrwEsT)) ™ ©F3

(NEWEST) <« CP end

When the desired stream page is found in core at core page CPl,
is unaged. This means:

if (IND = 0 then (CNT) = (CNT...) + 1 else

CPl) CPl CPl

do begin

(CNT ‘) + (CNT

b2
- CPl

(INDC

(IND) = (IND .5,)35
(CNT_p;) CcP1

(TND oz)= O

CP1

(CNT._,) = 0 end

crl

17

it

STREAM REGISTER INSTRUCTIONS

When a reference is made to & stream, only the general register,
X, is mentioned. The microprogram computes the name of the associated
stream register, SX, and uses its contents as the stream name. This
means that prior to making a reference to a stream, a program must
load the stream register, SX, being used for the reference with the
name of the stream being referenced. The 'load stream name' in-
structions are defined for this purpose. The '"store stream name'
instructions are used to save the contents of stream registers.

Load Stream Name

The second field defines a stream name. This name is compare.
with the current contents of the stream register, SR, associated with
the general register R. If the names are the same, the instruc:ion
is finished. If the names are different and some stream page is
locked in by the extension of SR, that stream page is aged. The core
page in the extension is set to zero. The stream name is then loaded
into SR. The condition code is not affected.

LSN R,A(X) Load stream name from core

(SR) «— {if X = 0 then (A) else (A + (X))

LSNR R,X Load stream name from register
(SR) ~ (X)
LSNI R,A(X) Load stream name immediate

(SR) « |1£ X = 0 then A else A + (X)

LSNS R,A(X) Load stream name from stream

(SR) — ((SX).|A % (X)I)

LSNP R,A(X) Load stream name from procedure

(SR) — ((JSTRNM).Ii_f X = 0 then A else A + (X))

18

Store Stream Name

The contents of the stream register, SR, associated with R are
stored in the location specified by the second field. The condition
code is not affected.

SSN R,A(X) Store stream name in core

if X = 0 then (A) — (SR) else (A + (X)) «— (SR)

SSNR' R,X Store stream name in register
(X) ~ (SR)
SSNS R,A(X) Store stream name in stream

(0. [a + ®]) = 6B

19

SECTION V

BASIC INSTRUCTIONS

LOAD AND STORE INSTRUCTIONS

These instructions allow the user to move data from one location
to another.

Load Halfword

The value of the second field defines a 16-bit halfword. It is
loaded into the general register R. Load instructions set the con-
dition code as follows:

CIVIGIL
o[(ofo]1 (R) =1
0[0f1]0) = 0 AR) $0
olololo ?
LH R,A(X) Load halfword from core

(R) « {if X = 0 then (A) else (A + (X))

LHR R,X Load halfword from register
(R) ~ (X)
LHI R,A(X) Load halfword immediate

(R) + |1gx = 0 then A else A + (X)

LHS R,A(X) Load halfword from stream

® = (0. [a+ @]

LHP R,A(X) Load halfword from procedure

(R) « ((JSTRNM).';; X = 0 then A else A + (X)])

20

Load the

The value of the second field defines an 8-bit byte. It is
stored in the right byte of R. The left byte of R is set to O,
The comdition code i1s not affected.

LB R,A(X) Load byte from core
(Rg_y) = O

(Rs_ls)o— 1f X = 0 then (A) else (A + (X))

LBR R,X Load byte from register
(R0_7)°- 0

(Rg_y5) = (Xg_y5)

LBI R,A(X) Load byte immediate
(Rg_7)* 0

(Rg_ys) = |1£ X = 0 then Ag_;; else |4+ (0|4]
LBS R,A(X) Load byte from stream
B = 0

(Ry_y5) = ((5K).[a + GO

LBP R,A(X) Load byte from procedure
(gt = ©
(R8_15)¢- ((JSTRNM) . {if X = O then A else A + (X){)

21

Store Halfword

The contents of R are stored in the location indicated by the
second field. The condition code is not affected.

STH R,A(X) Store halfword in core

if X = 0 then (A) +~ (R) else (A + (X)) — (R)

STHR R,X Store halfword in register
(X) =— (R)
STHS R,A(X) Store halfword in stream

(0.2 + ®)= ®
Store Byte

The contents of R8—15 are stored in the location specified by
the second field. The condition code is not affected.

STB R,A(X) Store byte in core

if X = 0 then (A)«~ (R

if 8-15) else (A + (X)) ~ (R

8-15)
STBR R,X Store byte in register

(Xg_15) — (Rg_y5)

STBS R,A(X) Store byte in stream

((sx>.|A + (%) |) - (R, o)

8-15

22

ARITHMETIC INSTRUCTIONS
Addition and subtraction are the only arithmetic instructions
supported by the Venus microprogram. These instructions operate on

halfwords of data.

Add Halfword

The second field defines a 16-bit value. It is added to the
contents of R. The result is stored in R. The condition code
becomes:

CIVIG|L
110 (Ro)-OA(R)#O
0f1 (R)) =1
0]0 (R} =0
1 * Arithmetic overflow
1 Carry
AH R,A(X) Add halfword from core

(R) = (R) +{1if X = 0 then (A) else (A + (X))

AHR R,X Add halfword from register

R)~ (R) + (X)

AHI R,A(X) Add halfword immediate

(R) « (R) +|1£ X = 0 then A else A + (X)

AHS R,A(X) Add halfword from stream

(R) ~ (R) + (‘(SX).IA + <x>|)

AHP R,A(X) Add halfword from procedure

(R) «~ (R) + ((JSTRNM).Ii_f X = 0 then A else A + (X)|)

23

Subtract Halfword

The second field defines a 16-bit value. It is subtracted from
the contents of R. The result is stored in R. The condition code
becomes:

CIVIGI|L
1{0 (Ro)=0A(R)#0
0l1 (R) =1
010 (R = 0
1 Arithmetic overflow
1l Borrow
SH R,A(X) Subtract halfword from core

(R) = (R) - | if X = 0 then (A) else (A + (X))

SHR R,X Subtract halfword from register

(R) = (B) = (X)

SHI R,A(X) Subtract halfword immediate

(R)<-(R)-I£X=OthenAelseA+(X)

SHS R,A(X) Subtract halfword from stream

® = ® - (50.[a+ ®]
SHP R,A(X) Subtract halfword from procedure
(R) ~ (R) - ((Jsmm).lg X = O then A else A + (X)|)

Programmer's Note: The result of the subtraction is in two's com-
plement form. For example, the result of subtracting 3 from 2 is
FFFF, and C 1is set.

24

Add with Carry Halfword

The second field defines a 16-bit value. This value and the
carry bit, C, are added to the contents of R. The result is stored
in R. The value of the condition code depends on its value prior
to the execution of the instruction:

CIVI|G|L
10 (RO) =0 A I(R) # OV the G or L bit was onl
0|1 (RO) =1
0]0 (R.) =0 A lthe G and L bits were off
1 Arithmetic overflow
1 Carry
ACH R,A(X) Add with carry halfword from core

(R) « (R) +{if X = 0 then (A) else (A+ (X)) |+ C

ACHR R,X Add with carry halfword from register

(R)— (R) + (X) + C

ACHI R,A(X) Add with carry halfword immediate

(R) — (R) + |1£_X = 0 then A else A+ (X) |+ C

ACHS R,A(X) Add with carry halfword from stream

(R) — (R) + ((SX).,A + (x),) +C

ACHP R,A(X) Add with carry halfword from procedure

(R) — (R) + ((JSTRNM).I}E_X = 0 then A else A+ (X)}) + C

Programmer's Note: Multiple precision addition may be accomplished
by using an "add" instruction for the least significant portion of
the two operands and then using an "add with carry halfword" in-
struction for the remainder of the operation. The result will be
in two's complement form. The G and L bits will tell the sign of
the multiple precision result.

25

Subtract with Carry Halfword

The second field defines a 16-bit value. This value and the
carry bit, C, are subtracted from the contents of R. The result is
stored in R. The value of the condition code depends on its value
prior to the execution of the instruction:

ClV]G]L]
1]0 (RO) =0 AI(R) # 0 Vv the G or L bit was onl
01 (R) =1
01]0 (R? =0 Althe G and L bits were off
1 Arithmetic overflow
1 Borrow
SCH R,A(X) Subtract with carry halfword from core

(® —[(®) - [1f X = 0 then (&) else @ +an||- ¢

SCHR R,X Subtract with carry halfword from register

®—|® - w]|-c

SCHI R,A(X) Subtract with carry halfword immediate

(R)-—I(R)-'gx=0t_hﬂAgg@_A+(x)H-c

SCHS R,A(X) Subtract with carry halfword from stream

® —|®) - (0. [a+ @] -c

SCHP R,A(X) Subtract with carry halfword from procedure

(®) ~[®) - ((JSTRMM).|1f X = O then A else & + (O]) | - ¢

Programmer's Note: See the "add with carry halfword" instructions.

26

LOGICAL INSTRUCTIONS

The logical instructions permit the user to perform logical
"and", "or", and "exclusive or'" operations. These operations are

always performed on 16-bit unsigned integers. A logical comparison
is also available.

And Halfword

A logical "and" is performed on the 16-bit value defined by the
second field and the 16-bit contents of R. The result is stored in
R. The condition code is set:

CIVIGIL
0j0f1]0 (RO) =0A@®) #0
010[0[1 (R)) =1
0101010 (R9 =0
NH R,A(X) And halfword from core

(R) = (R)A{if X = 0 then (A) else (A + (X))

NHR R,X And halfword from register

[R) = (R) A (X)

NHI R,A(X) And halfword immediate

(R)'—(R)Ali_f_X= 0 then A else A + (X)

NHS R,A(X) And halfword from stream

® — ® A (sX).[a+ ®))

NHP R,A(X) And halfword from procedure

(R) — (R) A ((JSTRNM).IE X = 0 then A else A + (X)])

27

R.

Or Halfword

A logical "or" is performed on the 16-bit value defined by the
second field and the 16-bit contents of R. The result is stored in
The condition code 1s set:

OH

o oo <4
O (O |

=lie]lalie

(=1t i{=]

R,A(X)

(R,)
&%)
&Y

0A(R)#0

LI |
=

Or halfword from core

(R) = (R) v{if X = 0 then (A) else (A + (X))

OHR

R,X

(R) < (R) v (X)

OHI

R,A(X)

’

Or halfword from register

Or halfword immediate

(R) '—(R)VI}_f_X= 0 then A else A + (X)

OHS

R,A(X)

(R) = (R) v ((sx>.|A + (x>])

OHP

R,A(X)

Or halfword from stream

Or halfword from procedure

(®) « (R) v ((JSTRMM).[1f X = O then A else A + (X))

28

Exclusive Or Halfword

A logical "exclusive or" is performed on the 16-bit value defined
by the second field and the 16-~bit contents of R. The result is
stored in R. The condition code 1is set:

C[VIG]|L
0j0j1]0 (Rg) =0 A(R) #0
0i0]01{1 (Rg) =1
olojojo (R) =0
XH R,A(X) Exclusive or halfword from core

(R) — (R) xor {if X = O then (A) else (A + (X))

XHR R,X Exclusive or halfword from register

(R) <~ (R) xor (X)

XHI R,A(X) Exclusive or halfword immediate

(R) -~ (R) xor|1£ X = 0 then A else A + (X)

XHS R,A(X) Exclusive or halfword from stream

(R) - (R) xor ((sx>.|A + (x)|)

XHP R,A(X) Exclusive or halfword from procedure

(R) — (R) xor ((JSTRNM).[1if X = O then A else A + (X))

29

Compare Logical Halfword

The 16-bit value defined by the second field is compared logically
with the contents of R. The different versions of the instruction dif-
fer only in the computation of the value. The condition code is set
by subtracting the value defined by the second field from (R). This
is exactly the same as if the instruction were a subtract. However,
only the condition code is affected by the instruction.

CLH R,A(X) Compare logical halfword from csro

value if X = 0 then (A) else (A + (X))

CLHR R,X Compare logical halfword from rerister
value = (X)
CLHI R,A(X) Compare logical halfword immediate

value = ,if X = 0 then A else A + (X)

CLHS R,A(X) Compare logical halfword from stream

value

((SX).IA + (x)l)

CLHP R,A(X) Compare logical halfword from procedure

value ((JSTRNM).'EQ X = 0 then A else A + (X)})

SHIFT INSTRUCTIONS
Shift instructions permit the user to shift a 16-bit halfword
to the left or right, or to rotate a 16-bit halfword to the left.

In addition, a signed 15-bit integer may be shifted arithmetically
to the right.

30

Rotate Left Halfword

RLH R,A(X)

The contents of R are rotated left the number of bits specified
by the second field mod 16. The result is stored in R:

(R) = (R) rotated left II;;_X = 0 then A else A + (X)lmod 16L

The condition code 1is set as follows:

C|VI[G|L
0f1}0 (RO) =0 A(R)£0
0[0]1) = 1
0j0[0|0 9
10 (R) = 1
15
0i0 (Rls) = (
Shift Left Halfword Logical
SLHL R,A(X)

The contents of R are shifted left the number of bits specified
by the second field mod 16:

Amount of shift = |if X = 0 then A else A + (X){mod 16,
Bits shifted out of position 0 are shifted through the carry bit of

the condition code. Zeros are shifted into position 15. The result
is stored in R. The condition code 1s set as follows:

CiVI|G|L

0/[1]0 (RO) =0A(R) #0

0l0]1) = 1

0[0]0 9
1]0 last bit shifted out of position 0 was a 1
Q10 last bit shifted out of position O was a O

31

Shift Right Halfword Logical

SRHL R,A(X)

The contents of R are shifted right the number of bits specified
by the second field mod 16:

Amount of shift = { if X = O then A else A + (X)}mod 16 .

Bits shifted out of position 15 are shifted through the carry bit of
the condition code. Zeros are shifted into position 0. The result
is stored in R.

The condition code is set as follows:

VIG|L

0f1]0 (RO) =0AR)#0

0f0]1 (R)) =1

o[0]o @) =0
110 last bit shifted out of position 15 was a 1l
010 last bit shifted out of position 15 was a O

Shift Right Halfword Arithmetic

SRHA R,A(X)

(R}-15 are shifted right the number of bits specified by the
second field mod 16:

Amount of shift = | if X = 0 then A else A + (X)!mod 16.
The sign bit (R,) is unchanged. Bits shifted out of position 15 are
shifted through the carry bit. The sign bit (RO) is propagated into
position 1, for each bit shifted.

The condition code is set as follows:

C|VIG|L

olilo (RO)-OA(R)#O

0{0}1 (R)) =1

0f0]0 (R} =0
1/0 last bit shifted out of position 15 was a 1l
0'0 last bit shifted out of position 15 was a 0

32

SECTION VI

CONDITIONS

Conditions represent a set of events which, when enabled by a
mask, can cause interrupts in a running job. These interrupts are
intended to aid the user in debugging his program. The microprogram
or software recognizes the occurrence of an event. The interrupt
which results causes the execution of an instruction out of sequence.
This instruction can start a software debugging routine. Conditions
should not be confused with the condition code.

Conditions are controlled by a 16-bit condition register, COND,
and an 8-entry instruction table, with room for one 32-bit instruction
per condition. COND is broken into two bytes: ON and MASK.

COND = | ON | MASK |

Each bit in ON, if set to 1, indicates the occurrence of a condition.
The corresponding bits in MASK are used as a mask. If the bit for
an interrupt is set in ON, then the condition is said to be on; if
the bit is set in MASK, the condition is enabled.

The microprogram checks for the occurrence of conditions at the
beginning of each instruction cycle. If a condition is both on and
enabled, an interrupt occurs: the corresponding condition instruction
(16 or 32 bits long) in the instruction table is executed, and the
condition is turned off. The core location of the instruction which
would have been executed if the interrupt had not occurred is stored
in TEMPIC. The event which caused the condition bit to be turned on
must have happened before the start of the current instruction cycle.

Each condition is assigned a priority, which is reflected in the
assignment of the bits, with the highest priority conditions on the
left, decreasing toward the right. If more than one on/mask com-
bination is on, the higher priority condition is honored first. If
the instruction for this condition is a CALL, as will very frequently
be the case, the condition which is being handled and all lower
priority conditions (with the exception of the "in-stream illegal
instruction'” condition) are disabled. They are re-enabled by the
execution of the corresponding RETN.

33

The eight condition bits are assigned as follows:

Bit Interrupt Condition
0 kill
1 every instruction
2 undefined
3 stack overflow/underflow
4 call
5 undefined
6 illegal in-core instructioa
7 illegal in-stream instruction

Kill would normally be turned on by system software when it determines
that this job should be terminated. The "kill" condition is always
enabled for user programs.

Every instruction is turned on after the execution of every instruction,
except the instruction executed as a result of the "every instruction"
interrupt. It is turned off by RETIN if the return is from a procedure
whose execution began as the result of the "every instruction' interrupt.

Undefined occurs only when turned on by software.

Stack overflow/underflow is set when a push or a pop of a stack would
store or retrieve from beyond the stack.

Call is set when a CALL instruction is executed, except when the CALL
is the instruction to be executed on a ''call" condition.

Illegal in-core instruction will be set when an unimplemented in-
struction is encountered while processing instructions in-core (as
opposed to in-stream). The job executing this instruction will nor-
mally be running a level 1 program. The microprogram enables this
interrupt as well as turning it on.

Illegal in-stream instruction occurs when an unimplemented instruction
is encountered in a program running from a procedure stream. This
condition is always enabled for programs running from streams, and is
used by the microprogram to distinguish between in-core and in~stream
programs.

34

When an illegal instruction is encountered, the instruction
counter is stepped by the assumed length of the illegal instruction.
The microprogram stores information about the amount of change to
the instruction counter in TUTFF in the job area. If bit 6 of TUTFF
is on, the program counter has been stepped by 4; otherwise it has
been stepped by 2. If the illegal instruction is a condition in-
struction, the address of this condition instruction relative to the
job area is stored in OLDTP. A value for the second field may have
been developed before the instruction was discovered to be illegal.
This value is stored in TR5R6. A list of the opcodes for which this
value is developed is given in Appendix V.

CONDITION INSTRUCTIONS

Two instructions have been defined to modify COND. SET will turn
bits on in COND and RSET will turn them off. However, RSET will not
turn off either the "kill" bit or the "in-stream'" bit. Neither in-

struction affects the condition code.

Reset Condition Register

RSET R,A(X)

RSET turns off bits in the condition register of the job specified
in register R, or the job in which the RSET occurred if R = 0. The
bits to be turned off are those which correspond to the bits set in
the 16-bit value defined by the second field:

(COND) (COND) A [81 v [1f X = 0 then A else A + wl||.

Programmer's Note: The "kill" condition and the "in-stream'" condition
cannot be disabled.

Set Condition Register

SET R,A(X)

SET turns on bits in the condition register of the job specified
in register R, or the job in which the SET occurred if R = 0. The
bits turned on correspond to the bits which are on in the 16-bit
value defined by the second field:

(COND) «— (COND) V {if X = O then A else A + (x)!}.
Programmer's Note: When a condition is enabled, an interrupt will
take place if the condition occurred in the past. To avoid this,

RSET may be used prior to SET to turn off the condition.

35

SECTION VII

PUSHDOWN STACKS

Streams may be used as pushdown stacks in Venus. When used as
a stack, a stream is considered to be a collection of halfwords.
Associated with each stack is a stack pointer. A stack pointer is
a 32-bit entity contained in a general register, R, and the associated

stream register, SR. This pointer always points to the piece of data
in the top of the stack.

Stack operations do not affect the condition code. They may,
however, turn on the "stack underflow/overflow" bit in the conditi a
register COND. If a stack operation would cause a stack %o under-
flow or overflow, the "underflow/overflow'" bit in COND is tur: ¢! on
and the instruction is not executed. In addition, the number of the
stream register being used to reference the stack is stored in
SAVREG in the job area. That is:

3-5
if {(R) = FFFE A instruction is pushl \Y; l(R) =0 A
instruction is pop | then
1) The underflow/overflow bit in COND is turned on.
2) The instruction is not executed.

3) (SAVREG) <= SR.

3-5

In the following descriptions of the stack instructions, it is
assumed that overflow/underflow does not occur.

STACK INSTRUCTIONS

Push Halfword

The contents of R are incremented by two. The 16-bit value
defined by the second field is pushed into the stack named by SR
at the location specified by the incremented value of R.

Stream (SR) Stream (SR)
(R)- data data
(R) - | new data

before push after push

36

PU R,A(X) Push halfword from core
(R)— (R) + 2

((SR).(R)) «{if X = 0 then (A) else (A + (X))

PUR R,X Push halfword from register
(R) *= (R) + 2

((SR).(R)) — (X)

PUI R,A(X) Push halfword immediate
(R) = (B) +'2

((SR).(R)) «= {if X = O then A else A + (X)

PUS R,A(X) Push halfword from stream
R)Y* (R) + 2

((SR).<R))~<<sx>.[A + (x>|)

PUP R,A(X) Push halfword from procedure
(B) == (R) + 2

((SR).(R)) + ((JSTRNM).{if X = O then A else A + (X)})

Push Byte

The contents of R are incremented by two. A sixteen-bit value
consisting of a zero in the high byte and the eight-bit value defined
by the second field in the low byte is placed in the stack named by
SR at the location specified by the incremented value of the R.

Stream (SR)

(R) — 0 | data

stack after '"push byte"

34

Pop Halfword

A sixteen-bit value is fetched from the stack named by SR at
the location specified by R and stored in the location specified

by the second field. Then the contents of R are decremented by
two.

PO R,A(X) Pop halfword into core
if X = 0 then (A) « ((SR).(R)) else (A + (X)) = ((SR).(R))

(R) = (R) = 2

POR R,X Pop halfword into register
(X) = ((SR).(R))

(R) <« (R) - 2

POS R,A(X) Pop halfword into stream

(0. [a + @] = (R ®)

(B) = (R) = 2
Pop Byte

A halfword is fetched from the stack named by SR at the location
specified by R. The low eight bits of this halfword are stored in

the location indicated by the second field. Then the contents of R
are decremented by two.

POB R,A(X) Pop byte into core
if X = O then (A) = (,(SR).(R)ls_lS) else

@+ @)= ([6B.®|g 15

(R) <= (R) - 2

39

POBR R,X Pop byte into register

(Xg_y5) = (SR (®)| g_;)
®) = ®) - 2

POBS R,A(X) Pop byte into stream

(Jeswr.fa + @llg_y5) = (JR).®]4_)5)
® = ®) -2

40

SECTION VIII

THE CONTROL STACK

Each job is provided with a control stack which is used to hold
information about the environment. A user may save the contents of
a register, stream register or condition instruction by means of a
"push into control stack" (PUC) instruction. The "pop from the con-
trol stack" instruction (POC) restores information entered in the
control stack by a PUC.

The only other instructions which affect the control stack are
the CALL and RETN instructions. These instructions are defined in
the next section. CALL leaves a record of seven halfwords, called
the activation record, in the control stack. This means that the
control stack contains a running history of the job. Some programs
are interested in using this history -- for example, debugging aids.
Such programs may use the control stack as a stream. This can be
done by picking up the name of the control stack from location
CSNAME in the job area. The pointer to the top of the control
stack is also needed. The stream page of this pointer is in
CSEXTO_7; the low part of the pointer is in CSREG8_15.

Stack overflow and underflow are recognized for all operations
on the control stack. In addition, pseudo overflow is recognized
for the control stack.

1 True overflow or underflow: If during the course
of a control stack instruction, true overflow or
underflow occurs, then SAVREG, is turned on, the
"stack overflow/underflow" bit is turned on, and
the instruction becomes a NOP.

2 Pseudo overflow occurs if during the interpretation
of a PUC or CALL, the last page of the control stack
stream is entered. 1In this case SAVREG, is turned
on and the "'stack overflow/underflow'" bit is turned
on, but the execution of the instruction is con-
tinued.

In the descriptions of control stack instructions which follow,
it is assumed that underflow and overflow do not occur.

41

CONTROL STACK INSTRUCTIONS

Push into the Control Stack

PUC N

The format of PUC is different from that of any other instruction.
It is a short instruction:

0 78 15
(52 | N |-

N is the 8-bit address of the halfword in the job area which is to
be saved. N must be the address of a general register, stream
register or (part of a) condition instruction. These are all group.d
together in the bottom of the job area. If N is not an allowalle
address, which is true if N > 50, then the microprogram will not
execute the PUC. It becomes a NOP.

If N is legal, first the halfword pointed to by N is pushed
into the control stack. Then a control word equal to N*2 is pushed
in. We have

<+top of control stack

data before PUC
unused | N*2 «top of control stack
78 15 after PUC

The condition code is not changed.

Pop from Control Stack

POC

The halfword in the top of the control stack is examined. 1If
bit 15 = 1, then the top record in the control stack is an activation
record (see CALL) rather than a PUC record. In this case the POC has
no effect, but the carry bit in the condition code is turned on.

42

If bit 15 is off, then the top record in the control stack is
a PUC record. This means bits 8 to 14 of the top halfword contain
the address in the job area in which the data should be stored.

control stack =»
pointer after POC data
control stack —- | unused | N*2
pointer before POQ

This data is fetched (from the next word in the control stack) and
stored in the correct place. Recall that N is the address of a
general register, stream register or (part of a) condition in=-
struction. If N is the address of a stream register, then the
effect of the POC instruction on N is precisely the same as if

a "load stream name'" instruction were being used to set the stream
register at N. This means, if

(N) = data

then nothing further is done, but otherwise the page referred to by
the extension of the stream register at N is aged and then

(N) = data.

If N is the address of a general register or condition instruction,
then

(N) « data.

The effect of POC on the condition code is:

C|VI|G|L
1 Top record in Control Stack is an activation record.
0 Top record in Control Stack was a PUC record.

POC does not affect the V, G or L bits.

Programmer's Note: POC is defined so that a user can restore the job
area without having to count the number of PUC's. Instead he performs

A POC
BFC 8,A(0) (see next section)

The branch falls through when the activation record is reached.

43

SECTION IX

PROCEDURES

Procedures reside in streams, one procedure per stream. Procedure
streams have the following format:

bytes 0 -1 alternate name for job in job area 0.
bytes 2 - 3 alternate name for job in job area 1.
bytes 1E - 1F alternate name for job in job area F.
bytes 20 - 23 pointer to control information for procedure.
bytes 24 - FFFF body of procedure; the first location of the

procedure is at location 24.

An alternate name is the stream name of a procedure stream. Al-
ternate names have the following use. Suppose a job, job n, wishes
to use an alternate representation of a system procedure, say SQRT,
in such a way that even system routines which it calls will use its
version of SQRT. Other jobs running simultaneously may also refer
to SQRT; these jobs will want the original version of SQRT. Both
requirements are satisfied if job n sets halfword 2n in the procedure
stream containing the original version of SQRT to the stream name of
the procedure stream containing its version of SQRT. This binding
may only occur at execution time and must be undone when job n stops
running. A zero in halfword 2n means there is no alternate name for
job n.

The pointer to control information is large enough to hold an
entire stream address. What the control information is and where
it is stored will be defined by software.

Jobs under Venus are almost always running from a procedure (in
stream mode with COND on)., The name of the procedure which is
running from a job area is stored in JSTRNM in that job area. When
this job is the running job, the core address of the next instruction
to be executed is kept in the micro-registers. When the job is not
running, this pointer is kept in PC in the job area. 1In either case
the number of the stream page containing the next instruction to be
executed is kept in ICSTRP in the job area. This stream page is
locked in.

44

In addition to this page, one other procedure page may be locked
in. This is called the alternate procedure page. The alternate pro-
cedure page is the page of the procedure referenced immediately before
the current page. The number of this page and the number of the core
page containing it are stored in JEXT in the job area. JEXT is like
any stream register extension: if the core page equals zero, this
indicates no page is locked in.

The stepping of the instruction counter in stream mode may cause
a page fault within the procedure stream. When the microprogram de-
termines that a new procedure page may be required, which would happen
as the result of a branch instruction, it compares the new stream
page, SP, with the current stream page, SPC. If these pages are the
same, there is no difficulty. 1If they are different, or if the in-
struction counter has run over the top of the current stream page, the
microprogram compares the new stream page with the alternate stream
page, SP,. SPp is stored in JEXT:

(JEXT) <~ [SP, | CPy |-

If
CPA # 0 ASP = SPA,

then the current and alternate procedure pages are exchanged. This
means:

1) (JEXT) « SPC current core page

2) (ICSTRP) = SPA

3) The new core location is stored in the micro-registers.
No page swapping is required in this case.

If

CP, = 0 VvV SP # SP

A A’

then the alternate procedure page is aged, and the current procedure
page becomes the alternate procedure page:

(JEXT) «~ SPC current core page

45

Then the new stream page is located (and possibly fetched from the
disk). Finally,

(TICSTRP) *~ 8P
and the new core location is stored in the micro-registers.

Two instructions, CALL and RETN, are supplied for transfer of
control between procedures. Branch instructions only transfer con-
trol within a procedure.

BRANCH INSTRUCTIONS

The result of executing a branch instruction in Venus .er2nds on
the mode in which the job is running. Jobs in Venus usually rua in
stream mode, but occasionally a job will run in core mode. Bit 15 of
COND in the job area tells what the mode is. If bit 15 in COND is
off, the branch will be to a location in core.

If bit 15 in COND is on, then the job is in stream mode. The
branch will be to another location in the same stream in this case;
in other words, the branch goes to another location in the same pro-
cedure. Control cannot be switched from one procedure to another by
means of a branch instruction.

Branch instructions do not affect the condition code. However,
some branch instructions test the condition code. In these instructions
the first field is a 4-bit mask, M. This mask is compared with the
condition code. The four bits of the condition code are arranged:

condition code = "

with G and M, with L.

Therefore, M 2 3

is compared with C, M, with V, M

0

Branch on True Condition

1

A logical "and" is performed on the 4-bit mask M specified in
the instruction and the condition code. 1If the result is non-zero,
which means at least one of the conditions being tested is on, then
the branch is taken. Otherwise the next instruction is executed.
The second field defines the branch address (depending on the class
of the instruction). This address is interpreted according to the
value of bit 15 of COND.

46

BTC M,A(X) Branch on True Condition

branch address if X = 0 then A else A + x)

BTCR M,X Branch on True Condition

branch address X)
Programmer's Note: If M = 0, then BTC and BTCR are NOPs.

Branch on False Condition

A logical "and" of the mask M and the condition code is performed.

If the result is zero, which means all conditions being tested are off,
then the branch is taken; otherwise the next instruction is executed.
The second field defines the branch address. This address is inter-
preted as being in the procedure stream if bit 15 of COND is on;
otherwise it is interpreted as being in core.

BFC M,A(X) Branch on False Condition

branch address if X = 0 then A else A + (X)

BFCR M,X Branch on False Condition

branch address

(x)

Programmer's Note: If M = 0, then BFC and BFCR are unconditional
branches. :

Branch and Link

First the current instruction counter, which is a 16-bit pointer
in core or within the procedure stream, depending on CONDlS’ is saved
in R:

(R) < current instruction counter.
Then the branch is taken to the branch address defined by the second

field. The branch address is interpreted according to the value of
bit 15 of COND.

47

BAL R,A(X) Branch and Link

branch address = {if X = 0 then A else A + (X)

BALR R,X Branch and Link from Register
branch address = (X)

Branch on Index High

Prior to the execution of this instruction:

(R) = 16-bit count
(R+1) = 16-bit increment
(R+ 2) = 16-bit limit.

First of all

(R) = (R) + (R + 1).
Then (R) is compared with (R + 2). If (R) < (R + 2), the program con-
tinues in sequence. If (R) > (R + 2), then the branch is taken to the
branch address specified by the second field. The branch address is
interpreted according to the value of bit 15 of COND.

BXH R,A(X) Branch on Index High

branch address if X = 0 then A else A + (X)

BXHR R,X Branch on Index High

branch address

(X)

48

Branch on Index Low or Equal

Prior to the execution of this instruction:
(R) = 16-bit count

(R+1) 16-bit increment

(R + 2) 16-bit limit.
First of all

(Ry = (R) + (R + 1).
Then (R) is compared with (R + 2). If (R) > (R + 2), the program con-
tinues in sequence. Otherwise, if (R) € (R + 2), the branch is taken
to the branch address specified by the second field. The branch
address is interpreted according to the value of bit 15 of COND.

BXLE R,A(X) Branch on Index Low or Equal

branch address if X = 0 then A else A + (X)

BXLR R,X Branch on Index Low or Equal

6.9

branch address

CALL AND RETURN INSTRUCTIONS

Call Procedure

CALL A(X)
CALL is the instruction which passes control from the present
procedure to a new one. The name of the new procedure is given by

the second field:

Name = | if X = 0 then A else A + xX){.

49

CALL has two primary tasks to perform: it must save a snapshot
of the present environment in the control stack, and then it must
start the new procedure. This snapshot is called the activation
record:

control stack
+pointer before
(JSTRNM) CALL
(SR1)
old instruction counter
(R1)
(R9)
unused job condition
number code
condition condition «—control s ack
information mask pointer after
0 78 151 cALL

Activation Record

The contents of JSTRNM, SR1, Rl and R9 are picked up from the job
area. The old instruction counter is the stream address of the
instruction after the CALL. The job number and condition code are
taken from the micro-registers.

The condition information given depends on whether the CALL
being executed is a condition instruction. If not,

condition information =” MASK * 2 l A FF| vi.

If the CALL is a condition instruction, then the condition information
comprises 8 bits of the form: zero to seven ones followed by zero to
seven zeros followed by a one; for example,

11100001.

If the condition information is compared with MASK, then its left-
most zero is in the position in the condition mask of the condition
which caused the interrupt (in the example, "stack overflow/underflow")
unless the '"illegal stream instruction' interrupt is being executed.

In this case, the condition information contains all ones. In
addition, when the CALL is a condition instruction, the condition

mask in the job area is set to

(MASK) ~ (condition information) A (MASK).

50

This means that the interrupt being honored and all lower priority
interrupts are disabled for the new procedure.

The CALL instruction also turns on the 'call interrupt' bit
unless it is the '"call interrupt'" instruction.

Finally, to start the new procedure, the present procedure page
and the alternate procedure page are aged and JEXT, is set to
zero. Then the first page of the new grocedure is 1ocated (and fetched
from the disk if necessary). If the n h halfword of this procedure is
zero, where n is the job number, then the new instruction counter is
set to point to location 24 (hex) of that procedure. If the nth half-
word is non-zero, then it contains the name of another procedure. The
first page of this procedure is located and the instruction counter
set to location 24 (hex) of this procedure.

The condition code is not affected by the CALL instruction.

Return from Procedure

RETN R,A(X)

The first thing the RETN instruction does is to search down the
control stack for an activation record. One word is popped from the
control stack and the low bit examined to determine if it indicates
return information (bit 15 = 1). If not, a PUC record has been found,
and it must be skipped. The next word is also popped, bits 4 and 5
of BITS are turned on, and the RETN is interrupted to permit the
channel to function. Then the search for the activation record is
continued.

When an activation record is found, it is used to restore the
environment at the time of the CALL. The condition mask, MASK, is
restored to its previous value. The conditio:s information is examined;
if the CALL was caused by an "every instruction" interrupt, the '"every
instruction" bit in ON is turned off. The condition code is set to
its old value. Rl and R9 are set to the values in the stack. SRl
is compared to the value in the stack; if the old and new names do
not match, then the current contents of SRl are aged and the old
name is restored.

51

SECTION X

MULTIPROGRAMMING AND SEMAPHORES

Venus is a multiprogramming system supporting up to sixteen jobs
running concurrently. However, for the most part, jobs running under
Venus need not be concerned with the fact that other jobs are also
running. There is interaction between two different jobs only if the
jobs desire it.

The question remains of how control is transferred from one job
to another. Although there is a limited time-slicing capability in
Venus, the primary reasons for a new job to start running are:

1. The old running job is temporarily unable to proceed, or

2 Some other job with higher priority than the running job
is now able to proceed.

The mechanism which allows a job to stop running and then later starts
it running again is provided by semaphoresk*.

Semaphores are a special kind of data provided in Venus. They
are used to control the sharing of resources and to permit the syn-
chronization of concurrent processes. One semaphore is associated
with each such resource or synchronization.

A semaphore is a seven-bit signed integer counter. Attached to
each semaphore is a queue. The queue hangs from an eight-bit pointer
which is stored in the same halfword as the semaphore:

0 7 8) 15
halfword =| pointer | semaphore |.
t
sign bit

This halfword may be located in core or in a stream.

* Dijkstra, E. W., "The Structure of the 'THE'-Multiprogramming
System', Communications of the ACM, Vol. 11, No. 5; May 1968.

53

If the value of a semaphore is non-negative, then the attached
queue 1is empty. In this case the pointer equals 1. If the semaphore
is negative, then the queue is represented by a chain starting at the
attached pointer and going through the LINK registers in the job areas.
The pointer equals the core page number of some job area. In this job
area the LINK register either equals 1, meaning the queue stops there,
or it equals the page number of some other job area. In addition, the
absolute value of the semaphore equals the number of jobs on the queue.

Only two instructions may be used to manipulate semaphores. These
are the P and V instructions, also defined by Dijkstra. An example of
the use of P and V for controlling sharing of a resource is given here.
Suppose the console teletype is shared among the jobs. If a job wishes
to use it, it calls a system program. Before using the console te. :-
type, this program performs a P on the semaphore controlling its use.

By the time the instruction following the P is executed, the program

is assured that it is the sole owner of the console teletype. It then
proceeds to use it for a limited time (say one message and one response)
and, when finished, releases it by performing a V on the same semaphore.

A semaphore used to control the sharing of a resource is called
a public semaphore by Dijkstra. Such a semaphore should be initialized
to 1 (and its attached pointer also to 1). A job which performs a P
on a public semaphore must later perform a V on it.

Semaphores used for synchronization are called private semaphores
by Dijkstra. They are initialized to either 0 or 1 (and the attached
pointer initialized to 1). If a semaphore is initialized to 0, then
a V must be performed on it before a P can be concluded on it. Private
semaphores differ from public ones in that different jobs may perform
the P and V. The most common use of private semaphores is to syn-
chronize a job with its I/0.

Jobs in Venus are always in one of three states. A job is either:
Iz The running job.

2 Unable to run. In this case it has performed a P on some
semaphore and is waiting for a V.

3. Ready to run. In this case it is waiting on the JOBSEM
(location AO0). The JOBSEM is organized just like a sema-
phore, but P's and V's must never be performed on it.

Each job in Venus has a priority. This priority is assigned by soft-
ware and stored in PRIOR in the job area. Whenever the microprogram
must choose which job to remove from a queue, it will select the one
with highest priority; if several jobs have the same priority, then
the one which has been on the queue the longest is selected.

54

Two operations are used to describe P and V.

. "Job J is added to the queue'" means

begin
(J*1000 + LINK) « (pointer);

(pointer) « J*10
end

2, "A job J is unqueued from the nonempty queue'' means

begin

J «-(pointerb_3);

L. ==J3
for (L*1000 + LINK) # 1 do begin L <« ({L*1000 + LINK 0_3);
if (L*1000 + PRIOR) > (J*1000 + PRIOR) then J+ L

end
end

P AND V INSTRUCTIONS

P and V almost completely define the flow of control from job
to job in Venus. V often has the effect of adding a job to the
JOBSEM. P may cause the number of jobs on the JOBSEM to be reduced
by one. When there are no jobs on the JOBSEM and a P is performed
on a non-positive semaphore, the microprogram enters the idle loop.
P and V do not change the condition code.

P of Semaphore

The semaphore specified by the second field is decremented by 1:
(semaphore) «— (semaphore) - 1.

If the result is non-negative, control proceeds to the next instruction.

5%

If the result is negative, two things happen. First, the job is
suspended and added to the queue attached to the semaphore (operation 1).
Next the microprogram looks for a new running job. If the JOBSEM is
empty then the idle loop is entered. Otherwise a job is unqueued from
the JOBSEM (operation 2) and becomes the running job.

The two versions of this instruction differ only in the computation
of the address of the halfword containing the pointer and the semaphore.

P A(X) P of semaphore in core

address = lig X = 0 then A else A + (X)

PS A(X) P of semaphore in stream
address = (SX).‘A + (X)l

V of Semaphore

The semaphore specified by the second field is incremented by one:
(semaphore) « (sémaphore) + 1.
If the result is positive the instruction is complete.

If the result is non-pesitive, a job, J, is unqueued from the
queue attached to the semaphore (operation 2). If the priority of J
is greater than the priority of the running job, then the running job
is added to the JOBSEM (operation 1) and J becomes the running job.
Otherwise J is added to the JOBSEM (operation 1).

The two forms of V differ only in the computation of the address
of the halfword containing the pointer and semaphore.

v A(X) V of semaphore in core

address = llﬁ X = 0 then A else A + (X)

Vs A(X) V of semaphore in stream

address = (SX).,A + (Xﬂ

56

SECTION XI

THE MICROPROGRAMMED MULTIPLEX CHANNEL

Input/Output in VENUS-is handled primarily by means of the micro-
programmed channel. The channel is started by execution of a "start
I/0" instruction (SIO or SIOR). These instructions will be described
in the next section. MSW4 (location A6) must be on if the channel is
to run.

A job in VENUS may run simultaneously with its I/0. After giving
the "start I/0" instruction it continues to run. When it needs to know
that its I/0 is finished, it performs a P on its IOSEM (located in the
job area). The normal sequence of instructions is like:

SIO R,A(X)
JOBA R R#0
P IOSEM(R)

When the job reaches the instruction after the P, this means some other
process has performed a V on the IOSEM. If the job is only running one
device, then it can assume the I/0 is finished. If it is running more
than one device, then it must determine which device performed the V
(by consulting TSTAT in the DSW of the device -- explained later).

The "start I/0" instruction causes the execution of a program of
channel commands. This program is located in core, and is responsible
for initializing the Device Status Word (DSW) for the device on which
I/0 is to be performed. For example, it initializes the (in-core)
location of the buffer, the number of bytes to be transferred, and
the type of I/0 to be performed. Much of the initialization is
device-dependent, Finally, the channel-command program starts the
I/0 and transfers control to the channel.

Between the execution of the instructions, the microprogram checks
to see if any I/0 device requires attention (see Figure 3). If any
does, the channel starts to run. The channel will handle the I/0
transfer according to the information in the DSW.

57

—

executoe
instruction

N

A

ny device\
wants
i attention \

no yes

call the

chiannel to

service the
device

Figure 3. How the Channel Fits into
the Microprogram

58

When the channel determines that the transfer is complete, it

does one of two things:

either it performs a V on the IOSEM of some

job or it returns to the channel-command program at the instruction
after the one which transferred control to the channel.

The DSWs are stored in the DSW table (in-core). This table is

indexed by device number.
stored in NOVLIS (BO).

16 bits

16 bits

16 bits

16 bits

16 bits

4 bits

COM

LOC

CNT

STAT

TSTAT

A pointer to the start of this table is

Each DSW contains 16 bytes of information.

contains the core address of the next channel
command .

contains an address in the buffer.

contains the number of bytes to be trans-
ferred.

The status of the device at each attention
is 'or'ed into the left byte and its com-
plement into the right byte if the channel
is instructed to do so.

contains the core location of a 1l6-byte
table; each bit in the table corresponds
to one of the 128 7-bit ASCII characters.
Input characters may be checked to see if
the corresponding bit in the table is set.
This option can be used when reading to
terminate I/0 or to skip characters.

Transfer status, which has the format:
bit 0O INUS is on if the device is in use.

bit 1 SPUR is on if a spurious attention
has occurred (attention requested
while INUS = 0).

bit 2 VR is on if the last transmission
for this device ended with a V
on the regular job and a spurious
interrupt did not occur.

bit 3 VS is on if the last transmission

for this device ended with a V
on the supervisor.

59

12 bits WID What To Do, which actually controls the
transfer (described later).

16 bits MSK MSK may be compared with the status during
a data transfer and the transfer terminated
if a match is detected.

4 bits REG The job number of the job controlling the
device (the regular job).

4 bits SUP The job number of the supervisor. The
supervisor job number is set by software.

CoM LOC CNT STAT | ADD WID MSK

Z

AN

t
TSTAT REG sup
The DSW

THE CHANNEL -COMMAND PROGRAM

At the time the "start I/0" instruction is given, the number of
the job giving it is stored in REG. This is the only automatic
initialization done by the microprogram. The channel commands must
initialize the DSW so that the data transfer may proceed correctly.
Channel commands have the following format:

bits 0 - 2 opcode

bit 3 X

bits 4 - 15 WIDC - The What To Do in the Command
bits 16 - 31 A

60

All eight possible opcodes are recognized. They are:

LCNT 000 A is stored in CNT. This command initializes the
count of the number of bytes to be transferred.

LADD 001 A is stored in ADD. This command initializes the
start of the ADD table (in-core). The ADD table
is only used when the type of transfer is READ
(explained later).

LLOC 010 A is stored in LOC. This command initializes the
location of the buffer (in-core).

LMSK 011 A is stored in MSK. This option is used if the
I/0 transfer should be terminated based on status
as well as on CNT = 0.

CHOC 100 The right byte of A is sent to the device as a
command. This command starts the device going.
The value of A is device-dependent.

BRCH 101 An unconditional branch in channel to A, which must
be a core location.

BNZC 110 If CNT # 0, the next command is taken at A; other-
wise the program continues in sequence. A must be
a core location.

TEST 111 A is compared with STAT. If A A STAT = 0, then the
next command is skipped; otherwise the next command
is taken.

Some combination of the first four commands is given to initialize
the DSW. Then CHOC is used to start the device going. At about the
time that CHOC is given, the channel-command program will have done as
much as it can prior to data transfer. Therefore, it is necessary to
discontinue running the channel-command program, while leaving infor-
mation about the transfer for the channel. This is accomplished with
the X bit and the WIDC. The WIDC contains all information about the
kind of transfer, the reasons for termination, and the type of ter-
mination. If X is on, the WIDC will be stored in WID in the DSW, and
the interpretation of commands will be stopped. TSTAT in the DSW is
set to 8 (INUS on). At this point STAT will be cleared if LAST (in
WIDC) is off.

61

When the channel terminates a transfer, it returns control either
to a job (through a V), or to the channel-command program. This per-
mits the channel to read many pieces of data without communicating with
the job. Two of the channel commands can be used to see why the pre-
vious transfer terminated (BNZC and TEST). The channel-command program
will perform a V if X is off and one of the V bits in the WIDC on.

The V may be performed on the IOSEM belonging to either the regular
job or the supervisor. Otherwise the channel-command program can go
on to initiate the next transfer. Figure 4 diagrams the execution of
channel commands.

THE CHANNEL

Each time the channel is entered because a device wants attention,
it first checks the INUS bit in C. If this bit is off, then a spurious
attention has occurred. SPUR is turned on; if VS is on it is unchanged,
but VR is turned off:

(TSTAT) « | (TSTAT) A 1 Vv 4.

If INUS is on, the channel decides what to do by consulting the WID
stored in the DSW for the device. The WID has the following format:

bit O VREG If this bit is set, when the I/0O transfer is
complete, the channel will perform a V on the
IOSEM of the job controlling the device.

bit 1 VSUP If this bit is set (and VREG is off), when the
I/0 transfer is complete, the channel will
perform a V(IOSEM) of the supervisor,

bit 2 SIFM Stop if match; only meaningful if CODE (below)
is READ.

bit 3 MATCH Only meaningful if CODE is READ.

bit 4 OR Only meaningful if CODE is READ.

bit 5 LAST If this bit is off, the status of the device

and its complement will be 'or'ed into STAT
each time the device requires attention.

bit 6 NSNC No store, no count. Only meaningful if CODE
is READ.

62

"start I/0" Instruction

from Job J
& Channel
(REG) « J;
[COM) ~ address >
defined by A :
second field do command at
COM; set COM
appropriately
X on
0 | Yes
A /VSUP or = Y
VREG on (AID)FSIDE
"‘JNo [YES
terminate
transfer LAST on

]ﬁ; Yes

(STAT) < O

N

(TSTAT) - 8

l

channel-
command
program
finished

Figure 4. Execution of Channel Commands

63

bit 7 STFM Store if match. Only meaningful if CODE is
READ.

bits 8, 9 CODE CODE tells the channel what type of data trans-
fer is taking place. It will be described below.

bit 10 STNM Store if no match. The meaning of this bit
depends on the value of CODE.

bit 11 EOM End of message. The meaning of this bit depends
on the value of CODE.

0 1 2 3 4 5 6 i 8,9 10 11
[VREG [VSUP [SIFM |MATCH | OR _|LAST |NSNC |STFM [CODE |STINM | EOM |

The WTD

Types of Termination

Three types of termination of a particular I/0 transfer are
available to the channel (see Figure 5). If VREG is on, it performs
a V on the IOSEM of the regular job. TSTAT is set to 2 (VR on). If
VREG is off and VSUP is on, it will perform a V on the IOSEM of the
supervisor and set TSTAT to 1 (VS on). If both VREG and VSUP are
off, the channel transfers control to the channel command in the
location stored in COM in the WID. This will be the command fol-
lowing the one in which the X bit was on.

Reasons for Termination

There are four reasons for termination.

il CNT goes to O. This reason for termination is checked
automatically.

2% The device gives a status, S, such that
[lousiy > A s| # o] vatsry_; o A 5| # 9.
where S means the one's complement of S. The transfer

can terminate for this reason only if the EOM bit is on
in the mask, and the type of transfer is not CLOCK.

64

VREG on

Yes
(TSTAT) ~ 2;
do V on IOSEM
of REG VSUP on
Yes
(TSTAT) «~ 1; start channeH
do V on IOSEM command
of SUP program at
COM
Figure 5. Terminate Transfer

65

3 A terminal character is read. A transfer may be
terminated for this reasoa only if the type of
transfer is READ. The definition of terminal char-
acters is given by the ADD table.

4, Transfer termination on the first interrupt will
occur if the type of trancfer is CLOCK and EOM is
on.

Types of Transfers

The type of transfer is indicated by the value of CODE in the
WID. Prior to the interpretation of CODE, if LAST is off, the status
of the device will be 'or'ed into the left byte of STAT and its on:'s
complement into the right byte of STAT.

CLOCK (00): A device which is used as a clock may either
be used for time-slicing or to wake up a job after some
number of ticks. Only the EOM bit and the STNM bits mean
anything for this type of transfer.

If EOM is on, the transfer is automatically terminated
without doing anything else (reason 4).

If EOM is off, the first thing the channel does 1s to
increment a counter by 1. This counter is comprised of 3
bytes; LOC points to the leftmost byte.

Next CNT will be decremented by 1. If the result is
non-zero, the interrupt is finished. If CNT = O and STNM
is off, time-slicing will be performed. This means the
interval is reset from TIMCNT,

CNT + TIMCNT,

and the time-slicing routine is entered. This action does
not constitute a termination of transfer, although the
interrupt is finished. If CNT = O and STNM is on, the
transfer will be terminated (reascn 1).

Prior to interpreting the other three CODES, if the EOM is on

the channel will compare the device status with MSK. If any bits
match, it terminates the transfer (reason 2).

66

WRITE (01): The channel transfers the next byte from the
buffer to the device. It increments LOC and decrements

CNT. When CNT goes to 0, the transfer is terminated
(reason 1).

READ2 (11): This CODE is supplied to handle the card
reader, which produces two bytes at once. Two bytes

are read from the device. They are stored in the buffer
if STNM is on. LOC is incremented and CNT decremented
after each byte; when CNT goes to 0, the transfer is
terminated (reason 1).

READ (10): READ is the most complicated CODE. It has

an option which allows the user to terminate the transfer
on the recognition of specified characters. The user may
also skip specified characters (read them without putting
them into the buffer). Both of these features make use
of the ADD table and are enabled by the MATCH bit. In
addition, characters which are stored in the buffer always
have their first bit 'or'ed with OR. This permits the
user to receive a consistent 8-bit ASCII representation
of a character even from a device (like a teletype) which
uses bit 0 as a parity bit.

The first thing READ does is to read a character,
and terminate on status if indicated. Otherwise, if
MATCH is on, the bit in the ADD table corresponding to
the character just read is fetched. The ADD table con-
tains 128 bits or 8 halfwords of information. The
character just read is broken into 2 hexadecimal digits.
The left digit (with high order bit ignored) tells the
halfword. The right digit tells the bit within the
halfword. For example, if the character is a ''carriage
return" (8D), then bit D (i.e., bit 13) of halfword O of
ADD is used. If this bit is on, a match is considered
to have occurred. The other bits in the WID all refer
to this match:

STFM - store if match
STNM - store if no match
SIFM - stop if match
NSNC - no store, no count

67

If a match occurred, then STFM controls the handling
of the character; otherwise STNM is in control. Three
options are possible:

1. Store character just read. The character just
read, C, (with bit O 'or'ed with OR) is stored
in the location indicated by LOC. LOC is in-
creased by one and CNT is decreased by one.
This case occurs if:

A STNM'

c|

MATCH A ADD_ A STFMI v[-\lMATCH A ADD

2 Skip character just read but decrement CNT.
The only action is that CNT is decreased by
one. This occurs if:

— NSNC /\HMATCH A ADD A —\STFM|\/ lﬂ‘MATCH A ADDCI

A'ﬂSTNM||

3% Skip character just read and do not decrement
CNT. No action is taken. This occurs if:

NSNC /\HMATCH A ADD, A —ISTFM' vtﬁlMATCH A ADDCI

A"WSTNMI}

Two reasons for termination are recognized for
READ (in addition to terminate on status). They are:
CNT goes to 0 (reason 1) and recognition of terminal
character (reason 3). Transfer will terminate if

CNT = 0 v | MATCH A ADDC A SIFM | .

Figure 6 is a flow chart of channel device-interrupt handling.

68

spurious

interrupt.
(TSTAT) ~
(TSTATIA L1V4

_—t@, |Yes No
increment .
e, s 0
(CNT)-(CNT) -1
Yes No 1/
1
(CODE) =

Yes

read 1 byte
and handle as
explained in
i cection
(CNT) +~ | I
(TIMCNT) write 1 || read 2
byte bytes
- B
|]
TSLICE (CNT) ~ | | (CNT) -
(GNT) = 1| | (GNT) - 2 No Yes
| l I
Yes e
1€
interrupt
finished ; (eNT) =0
‘ Yes I No

| interrupt
finished

terminate
transfer

Figure 6.

Channel Interrupt-Handling for a Device

69

SECTION XII
INPUT/OUTPUT
Input/Output in Venus is handled primarily by the channel, which
is started by a '"start I/0" instruction (SIO or SIOR). In addition,
Venus supports a few other I/0 instructions. Some devices are started
bv these other instructions before the "start I/0" instruction sets
the channel in motion. In general, non-channel I/0 should not be
used. It is not truly compatible with Venus.
CHANNEL INPUT/OUTPUT INSTRUCTIONS
The second field defines the core address of the first command
in a channel—-command program. The two versions of the instruction
differ only in the computation of this address. R contains the

number of the device on which the I/0 is to be performed:

device = (R)8_15.

SIO R,A(X) Start I/0

address = |if X = O then A else A + X)

SIOR R,X Start I/0 from register
address = (X)

The condition code is not affected by these instructiomns.

NON-CHANNEL INPUT/OUTPUT INSTRUCTIONS
Read Data

The right byte of R contains the number of the device being
addressed:

device = (R8—15)'

70

One byte is read from this device and stored in the location which
is defined by the second :iield. The condition code becomes:

ClVIG]L

0j0j1]|0 Device responded.

01110 Device did not respond.
RD R,A(X) Read data into core

(if X = 0 then A else A + (X)) = (device)

RDR R,X Read data into register
(X8-15)‘_ (device)

Gl = 1O
Write Data

The right byte of R contains the number of the device being
addressed:

device = (R8—15)'

The second field defines an 8-bit value. This value is written to
the device being addressed as data. The condition code becomes:

C|IVI|G|L
0010 Device responded.
0111110 Device did not respond.
WD R,A(X) Write data from core

(device) <« {if X = 0 then (A) else (A + (X))

WDR R,X Write data from register

(device) *-(X8_15)

71

Qutput Command

The right byte of R contains the number of the device being
addressed:

device = (RS—IS)'

The second field defines an 8-bit value which is sent to the device
as a command. The condition code becomes:

C|VIG|L

0j0{1|0O Command has been sent.

10111110 Device did not respond.
ocC R,A(X) Output command from core
(dorize) *‘!}f v « 0 rhen (A) else (A + (X))
OCR R,X Output command from register
(device) ~— (X8_15)

Sense Status

The right byte of R contains the number of the device being
addressed:

e

device = (R8__ls
The status of this device is read and stored in the location specified
in the second field. The condition code is replaced by the 4 low bits
of the status:

Device did not respond.
Device busy.

End of meaium.

Device unavailable.

el elle]
o|ojo|+|<
el fel o {p]
=lojoloj

SS R,A(X) Sense status into core

(1f X = 0 then A else A + (X)) « status

72

SSR R,X Sense status into register

(x8—15) «— status

(Xg_7

73

SECTION XIII

LEVEL 1

Streams in Venus are virtual memories. The microprogram performs
the mapping between stream addresses and core address. Furthermore,
streams are paged in Venus between core and the disk. Streams are
divided into 256-byte pages and so is core memory, so that one stream
page fits in cne core page. In the course of converting a given
stream address into a core address, the microprogram may discover
that the desired stream page is not in core. This can happen at
different places during the execution of an instruction. In this
case, the microprogram starts a software routine, the Page Tault
Handler (PFH), which will fetch the desired page from the disk.

When finished, the PFH returns to the microprogram at the place
where the page fault was discovered -- that is, into the middle
of the execution of an instruction.

The PFH must run in core rather than in stream; obviously its
running must cause no page faults. Its first instruction is at
PGFLT (lccation 109E). It makes use of an in-core table, the Core
Page Table (CPT), to determine which core page should be assigned to
hold the new stream page. It also uses the selector channel and the
disk to move pages between core and the disk. Thus it owns two resources:

18 Core Page Table
24 Selector channel (and disk).

Software functions other than page-fault handling also must be
performed on the resources of the PFH (for example, creating a
stream). All the functions using these resources are grouped to-
gether and comprise the level 1 programs. Level 1 programs as a
group are non-reentrant; entry into level 1 is controlled by the
DSKSEM. Level 1 programs other than the PFH are entered by means
of the ELl instruction; they start at LEVELl -- a different entry
point.

A level 1 program runs from the job area of the job which
caused it to start. The state of the micromachine is saved before
the level 1 program starts running; the level 1 program preserves
the state of the job area. Thus, a level 1 program can run without
disturbing the environment of the job at all.

74

Two instructions, UNQP and DIE, are used by level 1 programs
when they wish to stop running. These instructions may only be
used by level 1 programs. In addition, the ICOR instruction is
used by level 1 programs.

LEVEL 1 INSTRUCTIONS

Enter Level 1

EL1 R,A(X)
The second field defines a value:
value = |if X = 0 then A else A + (X)}.

This value is an argument which tells which level 1 program should
be performed; R may hold an argument for this program or may return
a value from this program. After the value of the second field has
been computed, the state of the micromachine 1s saved in the job
area in MICROSAVE. Micro-registers R3 and R7 contain the value;
micro-register R4 contains R. MASK is also saved in MICROSAVE;
then MASK is set to 0 (all conditions are disabled). The current
value of the instruction counter is saved (micro-registers RO and
Rl), and the instruction counter set to LEVEL1l (location 10A2).

Next a P is performed on the DSKSEM. When this P is complete,
the priority of the job 1is raised:

(PRIOR) < (PRIOR) + 80.

This gives the level 1 program the highest priority of all running
jobs, and therefore it becomes the running job immediately. Execution
begins at location 10A2.

When level 1 is entered through a page fault, the micromachine
is saved as described above, but the instruction counter is set to
PGFLT (109E), micro-registers R5 and R6 contain the name of the
desired stream, R7 contains the number of the desired stream page,
and the value of R4 saved in TR4R5 tells which stream register caused
the page fault. Then the P on the DSKSEM is performed as described
above.

75

uNgP

UNQP is the instruction which a level 1 program uses when it is
finished and wishes to return control to the program which caused it
to run. UNQP is a short instruction which uses neither field.

First the priority of the running job is reduced to its previous
value:

(PRIOR) += (PRIOR) - 80.

Then bit 5 of BITS is turned on to indicate that a level 1 program
is returning.

If the queue hanging on the DSKSEM is not empty, a job is
unqueued from this queue. The priority of this job is raised and
it becomes the running job (as explained in EL1). The old running
job is added to the JOBSEM.

If the queue hanging on the DSKSEM is empty, the new priority
of the running job is compared with the priorities of jobs on the
JOBSEM queue. If no job on this queue has higher priority than the
running job, it continues to run. Otherwise, a job is unqueued from
the JOBSEM and becomes the new running job. The old running job is
added to the JOBSEM.

At the time at which the old running job is permitted to con-
tinue running, the micro-registers are restored from MICROSAVE and
MASK is set to its o0ld value. The microprogram continues execution
of the instruction which caused the level 1 program to start running.

UNQP may be used only by a level 1 program.

DIE

DIE is performed by a level 1 program when it wishes to stop
running without returning control to the program which caused it to
run. DIE is a short instruction which uses neither field.

If the queue hanging on the DSKSEM is not empty, a job is un-

queued from the queue. The priority of the job is raised and it
becomes the running job.

76

If the queue hanging on the DSKSEM is empty but the JOBSEM
queue is not empty, a job is unqueued from the JOBSEM and becomes
the running job. Otherwise the idle loop is entered.

DIE may be used only by a level 1 program.

In Core
ICOR AX)

ICOR is the instruction used by a level 1 program when it wishes
to discover whether a stream page is in core.

If the stream page containing (SX).lA + (X)J is in core, the
extension of SX is set accordingly and the C bit in the condition
code is turned off. 1If the page is not in core, the C bit is
turned on. In either case, the previous reference in the extension
of SX is aged if necessary. The V, G and L bits are all turned off.

ICOR is primarily of use to level 1 programs. It permits them

to make use of the microcode to determine if a page is in core without
triggering a page fault.

77

When the micromachine discovers that the running job must stop
running, it does the following. CORET1 and CORET2, , comprise a
3-byte counter which is being updated by the clock. "The clock only
gives an interrupt when it exceeds more than 8 bits of data. Thus
the current value of the clock (accurate to 1 millisecond) may be
considered the fourth byte of current time. The microprogram forms
this 4-byte counter CTIME and then:

TIME < TIME + CTIME - CURRT This increments running time
of job.

CURRT < CTIME This sets time of last job change.

In these computations, 4-byte arithmetic with carries is being per-
formed.

Whenever the microprogram leaves the idle loop it performs the
same calculations using IDLET rather than TIME:

IDLET - IDLET + CTIME - CURRT This increments idle time.
CURRT <+ CTIME

Thus, jobs will never be charged for idle time.

BOOTS*

BOOTS is a simple microprogrammed core loader for the I-3.
BOOTS is capable of loading either punched paper tape from the
teletype (or possibly from a high-speed reader) or cards. It will
perform scatter-loads to any part of real memory. A continuous
display of the address currently being loaded and the loaded con-
tents thereof is generated.

* The section on BOOTS is an update of previous work by J. E. Sullivan.

79

Formats

TaEe

The tape expected by BOOTS is a standard 8-channel paper tape.
A byte, e.g., "E6" (hexadecimal), is punched HHHNN/HHN where H =
"hole'", and the slash represents the sprocket feed holes.

The tape consists of any number of ''records", each preceded

by an arbitrary amount of blank tape (sprockets only). A record
is punched as follows:

EE
start address left
start address right

data

EE
F4 or F8

The left and right parts of the start address specified become
the first (16-bit) address loaded by the specified data; data beyond
the first two bytes are, of course, loaded into successive locations.
Two points should be noted: (1) the start address must be even (a
halfword address), and (2) an even number of data bytes (an integral
number of halfwords) must be given in the data -- otherwise, the last
byte is simply lost.

In the "data" section, the data byte "EE" is always represented
by the two-byte sequence

EE
F@

This combination counts as one byte in rule (2) above.

80

The terminal code "F4'" signals the end of the current record;
the loader immediately begins scanning for the next record. The
code "F8" (or equivalently, "FF") has a similar meaning except that
the processor halts before resuming the scan. This is normally the
terminal code of the "last" record on a tape.

Cards

A byte is read from a single card column in the following format:

Bits Rows
0-3 12 -1
4 - 7 6 -9

Rows 2-5 should not be punched on any card read by BOOTS.

Records have exactly the same format as for paper tape (above).
However, one and only one record may appear on a single card. (The
record may begin and end anywhere on the card.) Unlike tape, a
record terminated by an F8 code will cause reading of the input
device to cease as well as the processor operation.

Operating Procedures

Tape

1% The TTY should be on-line, the mode switch on "KT", the
tape reader toggle switch on "STOP".

2. Turn the processor mode switch to '"MEMW" and put 02 in
switches 8-15.

3 Initialize.

4. Execute.

5. Put the tape to be loaded in the reader. Flip the toggle
to "RUN". The display should be active while the tape is
loading. The processor (though not the tape) will halt
(wait light on) when a EE/F8 or EE/FF terminal code is

sensed.

6. Flip the toggle to '"STOP'". To load another tape, go back
to Step 4.

81

Cards

The card reader should be ready-to-go, with the "motor"
and "start" buttons on and the deck to be loaded in the
input hopper.

Turn the processor mode switch to '"MEMW" and put 04
in switches 8-15.

Initialize.

Execute. The display should be active while the deck
is loading. The reader and processor will stop (wait
light on) when a record containing a EE/F8 (or EE/FF)
code is sensed.

If the card hopper should become empty or the
reader otherwise leave the "ready" state, loading will
resume automatically when the reader is returned to the
"ready" state as defined in (1) above.

To load another deck, go back to Step 4.

DISPLAY PANEL

Display Lights

There are two rows of 16 lights each on the display panel.
are used to display three types of information:

1.

Normal display. The upper lights contain the core in-
struction counter. The lower lights contain the number
of the current stream page in positions 0-7, the curren
job number in positions 8-11, and the condition code in
positions 12-15,

They

t

Memory display. The upper lights contain the core memory

address and the lower ones contain the contents of that
memory location.

BOOTS display. This is a memory display produced for
each location loaded by the BOOTS loader.

82

Power

The lower of the three push button switches at the lower left of
the display controls power. The light next to it is lit whenever
power is on. Power can be turned off whenever the machine is operating
normally. Power down causes the current core instruction counter to be

stored at PROR1 (AA) and the job number and condition code at location
PR2(AC).

Initialize

The button immediately above the power button is the initialize
button. Pushing this button jnitializes all I/0 interfaces and the
computer. In addition, the computer starts running at the beginning
of its microprogram. The microprogram tests the upper rotary switch
to determine what it will do. There are four meaningful positions:

168 OFF. This operates the BOOTS loader. The number of the
input device is placed in the right 8 of the row of 16
push-button switches below the display lights. The
initialize and execute buttons are pushed and the device
operated. After loading is complete, the loader may be
run again by pushing the execute button. This button
is directly above the initialize button.

2 Register Display (RD). The instruction counter, job
area number, and condition code are restored to what
they were before the last power down (from PROR1 and
PR2), and the computer enters the display loop.

S INST. The instruction counter is restored to what it
was before the last power down and the job area number
and condition code are set to 0. The computer then
enters the display loop.

4, PSW. The instruction counter is restored from the last
power down. The job area number is taken from switches
8-11; the condition code is taken from switches 12-15.
The computer then enters the display loop.

83

Display Loop

Between the execution of instructions, at the same time that it
checks for devices requiring attention, the microprogram checks
whether a display is being requested. A display is requested by
pushing the execute button with the lower rotary switch set to other
than RUN, or by pushing the initialize button with the upper rotary
switch set to RD, INST, or PSW. Such an action cavses the micro-
program to enter the display loop. While it is in the disptay locp,
the wait light above the power light is 1lit. The microprogram will
resume execution of instructions when execute is pushed with the
lower rotary switch set to RUN or VARI.

The following functions may be performed while in the display
loop:

Reading and Writing Memory

Pushing the execute button with the lower rotary switch straight
down (MEMA) causes the memory location inserted in the switches to
be displayed. After that, whenever the execute button is pushed and
the lower rotary switch is set at MEMR the next higher location is
displayed. With the rotary switch at MEMW, the location being dis-
played is changed to the contents of the switches and the next higher
location is displayed. MEMR and MEMW may be used in any sequence
desired.

The Starting Address

When the lower rotary switch is set at ADRS, pushing the execute
button transfers the contents of the switches to the instruction
counter. makes the normal display, and enters the display loop.

Stopping

When the lower rotary switch is set at HALT, pushing the execute
button causes an entry into the display loop and a normal display.

Running

When the switch is at RUN, pushing the execute button causes
a normal display and, if there is a running job, it is caused to run.
A running job exists if the instruction counter is greater than FF.
Otherwise the machine is in the idle loop.

84

Single Stepping

When the lower rotary switch is set to VARI, pressing the
execute button causes the machine to enter the single state. 1In
this state, if the knob below the upper rotary switch is in any
position but SNGL, the machine will operate instructions at a slow
rate making the normal display between them. The speed is controlled
by the knob. If the knob below the upper rotary switch points to
SNGL, the microprogram executes one instruction, makes the normal
display, and enters the display loop. The machine will not leave
the single state until the execute button is pushed with the lower
rotary switch in some position other than VARI. Single stepping
will take place only if MSW4 (location A6) is set.

THE IDLE LOOP

When the running job performs an instruction which causes it
to stop running (for example, a P instruction), and there is no job
ready to run (the JOBSEM queue is empty), then the microprogram
enters the idle loop. It does this by setting the instruction
counter to a value in core page zero and then entering the display
loop. It will remain in the display loop until the channel per-
forms a V, or until a new job is entered through the display.

85

APPENDIX I
OPCODE MATRIX
The opcode of an instruction consists of the row number in hex

followed by the column number in hex. Thus, LH is B9. Instructions
in rows 2, 5, 8 and C are short. All others are long.

P V | STB | POB | STH PO | SSN i OC| RD | WD |SS

STBR| POBRj STHR| POR | SSNR OCR [RDR {WDR | SSR |JOBA

PS VS | STBS| POBS| STHS| POS |SSNS ;

DIE | UNQR PUC | POC

l
;
f
|
|

BXLE | BAL | BTC |BXH |BFC |SIO |EL1 |SET | RSET REIN| CALL] ICOR|{SRHL|SLHL|SRHA| RLH

BXLR | BALR| BTCR| BXHR| BFCR |[SIOR i

PU | PUB |LSN | NH {CLH OH | XH | LH LB | AH SH ACH; SCH
PUR | PUBR|LSNR|{NHR |CLHR| OHR|XHR | LHR | LBR j AHR | SHR ACHR |SCHR
PUI | PUBI|LSNI|NHI (CLHI| OHI {XHI LHT | LBI | AHI | SHI ACHI [SCHI

lPUS PUBS|LSNS [NHS |CLHS| OHS |XHS LHS | LBS | AHS | SHS ACHS |SCHS
PUP | PUBP|LSNP [NHP |CLHP| OHP|XHP | LHP { LBP | AHP | SHP ACHP |SCHP |

87

LY

Ly

LY

Ly

8%

8%

£e

14

14

[X4

| X4

Y4

G¢

§¢

S¢

G¢

qovd

398

195

398

198

39§

398

398

39S

398

39S

4d00 NOILIANOD

J0

asq
asq

asn

‘asn
‘asn
10
‘asn
‘asn
‘asf
‘asn
‘asn
‘asn

‘asn

asn

¢8
L
%8
7L
18
1L
vi
VO
via

va

g4

g0

d4

aa

a4

OTI AN

UOTITPUOD NI UO Yydueag

UOT3TpPUOD 3INI3 uoO yosueayq

UOT3ITIPUOD ISTEJ UO youexg

UOT3IFpPUOD ISTEJ UO Youeag

193571391 WO} uy] puB youeag

U] puB Youeig

wealjs wolj piomIey

1935871321 woxJ plomjiey

aanpadoad woiJ piomFiey

9JeIpamu] plomyiey

9100 wolJ paomyiey

wea13ls wWolxJ piomjiey £3ied yYiim
19381391 woly paiomyley Ai1xed YIiIm
aanpadsoid woaJ paomyyey LI1I1BO Y
9jeIpowuy pIomyTey AIIBO YIM

9109 WOIJ pIomITey L1IBO YiIM

ONINVIHN

OINOWINW JQ00d0 X9 XATIVOILIAVHATV QILSIT SNOLLOAYISNI

IT XTdNddav

PPV

PPV

PPV

PPV

PPV

PPV

PPV

PPV

PPV

PPV

4014

oLd

4044

244

aTvd

vd

SHV

YHV

dHY

IHV

SHOV

dHOV

dHOV

oV

HOV

OINOWANK

88

144

1¢

e

1¢

1¢

LL

SL

9L

113

0¢

0¢

0¢

0¢

6%

6%

I/

8%

8%

qovd

188

319§

pETS

19§

198

198

da0D NOILIANOD
J0 dsn

6d

60

64d

6d

64

4z

V4

9L

0s

¢d

Sd

¢d

Sa

sl

VL

08

0L

£8

£l

OTUIWNN

weslijs wWoij
19351891 woag
2anpadoad woay
d3eTpaumT

9100 wo1jJ

934q peoT]
234q peol
934q peo1
234q peol

9234q proT]

UoT3IeO0T B3IV qOf

wea1ls wolj piomyiey
19351891 woaJ paomIiey
aanpadoid woaj paomyiey
23eIpoumiT piomjiey

9109 wolaj paomIiey

1enbs 10 mo7
1enbs 10 Moy
y31y

y3ty

2100 ufy

1 19A91 a93jug

Teo18071
1eo18071
1891807
1891307

18018071

°1d
aaedwo)
saedwo)
aaedwo)

aaedwo)

aaedwo)

aanpadsoad [1e)d

X9pufl uo youeag

X3pufl uo youeag

X9pui uo youeag

X3pUT UO youeig

ONINVAW

SH1

991

ddq1

191

vaor

4001

114

4Id

SHTO

JH1d

dHTID

IHTIO

HTD

TIVO

9

IXd

JHXd

HX4

OINOWINI

89

8¢

(44

(44

x4

(e

x4

L7

LT

8T

8T

8T

8T

81

0¢

0¢

0¢

0¢

0¢

qovd

338

398

198

398

395

39§

398

39S

398

39§

39S

19s

440D NOILIAGNOD
J0 dsn

9d

94

:v4

A

VLS

%70

VE!

7

74

td

£0

t£d

ta

td

84

80

8d

8d

84

OTIDUIN

23jeIpauwmuY piomiIeY IQ

2100 woijy paomIiey 10

19381891 woay pueumod 3ndjng

3109 wolj pusumnod nding

wealils woliy pAOMITBY puy

19357891 wolj piomIIeYy puy

aanpasoad woxy paomjiey puy

a3BIpoum} PIOMITBY puUv

9100 W01y piomITeRY DUY

wealls wolj] SWeu Wealls
19381891 woaj Sureu WEIIIS
2anpasoad woll sweu wesalils
23]BTpaUMIT SWBU WE313S

3102 WO1J SWEU Wealls
wea13s woij plomIiey
19381891 woaj paomiey
aanpadsoad woiy paomyjey
9]BTpouMIT PIOMITEBY

2102 WO1j pIomyTey

ONINVIR

peo1

peoT]

peo]

peoT

peOT

peoT]

peoT

peoT]

peo]

peo]

THO

HO

400

00

SNST

dNS'T

INST

NS

SH'1

dH1

IH1

OINOWANK

90

[A]

8¢

8¢

8¢

8¢

8¢

LE

96

6¢

6t

(A

oy

oY

6¢

6¢

9¢

8¢

8¢

8¢

qIvd

398

198

398

398

dd00 NOILIANOD
40 dsi

[4

rAC!

[4)

¢d

ca

(4!

14

0¢

St

Y4

139

£e

£C

€1

S1

01

94

90

94

OTdINON

3¥oB3S JOIJUOD O3JUT ysng

weax3ls woay 33Lq ysng

1935891 woay 2349 ysnd

2anpoadsoad woay 2349 ysng

a3eIpoumty 934q ysnd

2100 woxJ 334q ysng

9100 WOXF pIOMITBY ysng

wea13s8 ur aaoydewss Jo g

weaX3s Ojul pIomyiey
19387891 03Ul paomjiey
3}o®B3S JOa3UOD WOlJ
weaxls o3juTl 234q
193s1891 ojul 934q
2102 03Ul 234q

92100 03UT pIomITeY

dog
dog
dog
dog
dog

dog

dog

2300 ut axaoydewas Jo g

weal3ls wolJ paomITeY I0

193571891 woiy paomyiey 10

aanpadoxd woay paomyrey 10

ONINVIN

ond

sdnd

qdnd

dand

14nd

and

nd

Sd

Sod

40d

30d

sg0d

4g0d

g0d

od

SHO

dHO

dHO

OINOWINKW

91

%e

wZ

Se

92

9¢

9¢

9¢

9¢

Se

1€

Ts

TL

1L

Le

LE

45

LE

q0vd

39§

193

198

198

198

dd00 NOILIANOD

+d
U
%]

‘asn

‘asn

‘asn
‘asn

‘asn

39§
198
398

398

40 4S8

a4

a9

LL

J4

40

J4

{0}

J9

8L

crA

6L

J¢

o1

14

10

14

1a

0T STANN

?23eIpowIT PIOMFTBY 1I0B1IQNG
2100 wol] piomIeBY 1Io0B1IqNG
193151891 UOIITPUOD 33§

uea13s
woly piomF1eY £11®d YiTM 10B1IQNG

19351891
wolJ] piomyiey A11Ed Y3jTA I0B1IQNG

aanpadsoad
woij piomyiey A118d Y3lTM 1d2B1IQNS

931BTpoumT pIiomyiey L11BD YlIM 30B1IQNS
9100 wolj piomyiey £1I1BD YA 30BIIQNSG
123181891 UOTITPUOD 3983Y

plomyiey 1331 238BIO0Y

2anpadsoid woly uaniay

19387881 OjuT ®BIEBp PBIY

2109 0jul ®BiEp pEIY

weal13ls wol piomyley ysng

193871891 woly piomyieYy Yysnd

2anpadoid woiy piaomIiey ysnd

93@TpowT piomyieY Ysnd

ONINVIN

HS

LIS

SHOS

4HOS

dHOS

IHOS

HOS

LASYd

HTI

NIId

i

OTNOWANKW

92

(44

(44

(44

44

(4

£L

61

6T

6T

<L

(43

(4%

1€

1]4

14

we

%e

vt

Jovd

19s

195

19s

39S

108

19§

10§

19§

3400 NOILIANOD
Jo asn

7€

Y7¢

71

(43

(XA

Al

cr4

9t

9¢

91

d1

oL

aL

at

¢8

GL

qd

a0

g4

OTUINNN

weails ojuT paomjiey
a93s189a o3juT paomyiey
9100 O3UT pIoMITeYy

wealls o3jur 2334q
193851891 03juT 934q

3100 o3juT 934q

193sI8ax ojur snjels
weal3ls U SWEU WeaIIs
I193SI892a uT Bsweu weaxls
9100 UT SWEU wWeaa3s

9100 03Ul Snjels

1801301 paomyiey Y31
OTjawy3lTae plomyiey 3Iy3ia
T1eoT301 paomyiey 3391
193sT89x1 woxy Tauueyd Q/I

T1suueyd Q/1

3103§

21038

310318

31038

910318

2103§

asuag

3103§

9103§

910318

asuag

I3TYs

I3TYS

I3TYS

jaeas

jae3s

wealls woly paomyiey 3oexiqng

193513891 wolij pIomyIey 3Ioeaiqns

aanpadoad woay paomjley 30eaaqng

ONINVIR

SHLS

YHLS

HLS

S4LS

g4dLs

q1s

gss

SNSS

gNSSs

NSS

SS

THYS

VHES

TH'IS

Jois

OIS

SHS

OINOWINK

93

6¢

6¢

6¢

6¢

6¢

1L

1L

9¢

96

9L

4ovd

3138

198

EEH

398

198

395

395

Jd0J3 NOILIANOD
J0 dsn

La

LD

Ld

La

L4

az

at

1€

11

139

DT IWIN

wealls wolJ PAOMITBY 10 SAISNTIXT
127871891 WolJ PIOMITBY 10 SATSNTIXY
21npa%01d woiy pIOMFTBY IO IATSNTIXY
9]BIpoumT pPIOMITBY 10 DAISNTIXT

9109 WOIJ pPIOMITRY I0 DATSNTIXY
19387891 woly eIRp B3ITIM

9109 wWOlj BIBP IITIM

weal1ls ul aioydewss Jo A

210> ul aioydewsas jo A

pPaysSTuUIJ 1 [2A9] udaym ananbup

ONINVIN

qaM

SA

ddoNn

OINOWINW

94

APPENDIX III

LOCATIONS IN THE JOB AREAS

Job Area
Location Contents Name
0 - 1F 16 16-bit registers RO - RF
20 - 3F 8 32-bit condition instructions
40 = 4F 8 16-bit stream registers SRO - SR7?
50 - 51 Name of procedure stream being executed JS TRNM
52 - 53 Name of control stack stream CSNAME
54 - 55 Instruction counter (core value); only PC
meaningful when job is not running (is
waiting on a semaphore)
57 Job number - condition code; only
meaningful when job waiting on a semaphore
5A - 5B When an illegal instruction is encountered, TR5R6
TR5R6 may contain the value of the second
operand
5C - 5D Pointer to top of control stack (core value) CSREG
5E Stream page containing (first halfword of) ICSTRP
instruction about to be executed
60 - 63 Accumulated job run time TIME1, TIME2
64 - 65 Input/Output semaphore I0SEM
66 - 67 The condition register COND
conD = | oN | MASK |
0 78 15

ON tells which conditions have occurred;
MASK tells which are enabled. If CONDps
is on, the job is running in stream mode;
otherwise it is running from core

95

Job Area
Location Contents Name

68 - 69 The temporary instruction counter contains TEMPIC
the core location of the instruction which
would have been executed had an interrupt
not occurred

6A LINK holds queue information if the job is LINK
not running

6B PRIOR contains the priority of the job PRIOR

6C - 6D The microprogram saves HR4 and UR5 here TR4R S
while it is checking whether a page is in
core

70 - 7B The state of the micromachine is saved MICROSAVE

here when a program enters level 1. Of
particular interest is the core location
of the instruction after the one which
caused entry into level 1; this is saved

in 72 - 73
80 - 8F 8 16-bit extensions of the stream registers SRX
90 - 91 Stream page/core page for alternate procedure JEXT
page
92 - 93 Stream page/core page for control stack CSEXT
94 - 95 If bit 5 and bit 4 of BITS are on, then the BITS

RETN instruction is searching for an activation
record. If bit 5 is on, but bit 4 is off, then
level 1 is returning. If bit 6 is on, the job
is participating in time-slicing

96 If SAVREGy = 1, then the control stack has SAVREG
overflowed/underflowed; otherwise SAVREG3 o =
the number of the stream register being used
to access the stack which overflowed/underflowed

99 If an attempt is made to execute an illegal OLDTP

condition instruction, its address relative
to the job area is saved in OLDTP

96

Job Area

Location

9A

Contents

When an illegal instruction is encountered,
TUTFF tells how long the instruction is; if
it is 32 bits long, bit 6 will be on and
bit 7 off; otherwise the instruction is 16
bits long and bit 7 is on and bit 6 off

97

Name

TUTFF

Location
9C 9F
AO Al
A2 A3
A4 A5
A6

A8 A9
AA AB
AC

AE AF
BO Bl
B2 B3
B4 - B7
100 1FF
200 3FF
202 203

APPENDIX IV

GLOBAL CORE LOCATIONS KNOWN TO THE MICROPROGRAM

Contents Name
Time of last job change CURRT1,
CURRT2
Semaphore controlling entry into level 1 DSKSEM
Head of the queue of jobs which are ready JOBSEM
to run
A4 contains the core page number, shifted MFJPR

right 1, of the job area of the most favored

job; if there is no most favored job, A4y = 1.

A5 contains the amount by which the priority

of the most favored job is raised

If bit 4 of A6 is on, the channel is enabled MSW

This halfword contains the address of the last MAD
halfword displayed

Core value of instruction counter before last PRORL
power down

Number of running job before last power down PR2
and its condition code

Number of ticks per time-slice TIMCNT
Base for Device Status Table NOVLIS

Device number of clock used for time-slicing CLKNUM

Most recent time clock was read CORET1,
CORET2
Hash table HASH
Age table CPTAGE
(INDCNT)
Head of the age chain AGEHD

98

Location

260 - 263
400 - S5FF
600 - 7FF
109E - 10Al
10A2 - 10A5

Contents

Accumulated idle time (implies core page 31
may not be used for page swapping)

Stream name table
Stream page/link table
First instruction of page fault

First instruction of level 1

99

Name

IDLET1,
IDLET2

SPNEXT
PGFLT

LEVEL1

APPENDIX V
ILLEGAL OPCODES
This is the list of illegal opcodes for which the second operand

has been developed and stored in TR5R6. The corresponding value
of bit 6 of TUIFF is also given.

Opcode Bit 6 of TUTFF
17, 18, 19, 1A on
27, 28, 29, 2A off
BO, BB, BC on
€05 GB5: 6C of f
DO, DB, DC on
EO, EB, EC on
FO, FB, ¥C on

100

APPENDIX VI

CONTROL STACK FORMATS

pointer before PUC—
data
pointer after PUC —| unused | N*2
0 78 15

PUC Record for PUC N

pointer before CALL —

(JSTRNM)

(SR1)
old instruction counter

(RL)

(R9
unused job [condition
number code
condition old cordition
information MASK
0 7 18 15

pointer after CALL —

Activation Record for CALL

101

APPENDIX VII

CONTENTS OF CORE PAGE TABLE FOR CORE PAGES
WHICH CONTAIN STREAM PAGES

s SN table. This table is located between 400 and 5FF. For
each core page, there is one halfword of information:

01 15
L SN |-

t
Change Bit

Bit 0 of this halfword is set by the microprogram whenever data is
stored in the core page. SN is the name of the stream whose page
occupies this core page.

28 SPNEXT table. This table is located between 600 and 7FF.
For each core page, there is one halfword of information:

0 7 8 15
[sp | NEXT |-

SP is the number of the stream page which occupies this core page.
NEXT is the core page of the next link on the hash chain. If
NEXT = 0, this entry is the end of the chain.

3. INDCNT table. This table is located between 200 and 3FF.
For each core page, there is one halfword of information:

0 7 8 15
[IND | CNT fi:

This information has two different meanings, depending on whether
the stream page is locked in or not.

a. Locked in. The page is locked in if
IND = O.
In this case CNT equals one less than

the number of extensions locking in
the page.

102

Aged. The page is on the age chain if
IND # 0.

In this case IND equals the core page

of the next newer page on the age chain

and CNT equals the number of the next
older page.

103

APPENDIX VIII

INDEX TO LOCATIONS KNOWN TO THE MICROPROGRAM

Type of
Name Location Reterences
AGEHD GLOBAL 13, 17
BITS JOB AREA 51, 76, 78
CLKNUM GLOBAL 78
COND JOB AREA 33, 35, 36, 44, 46, 47
CORET1 GLOBAL 78, 79
CORET2 GLOBAL 78, 79
CSEXT JOB AREA 41
CSNAME JOB AREA 41
CSREG JOB AREA 41
CURRT1 GLOBAL 78
CURRT2 GLOBAL 78
DSKSEM GLOBAL 74, 75, 76, 77
HASH GLOBAL 12, 13, 16
ICSTRP JOB AREA 44, 45, 46
IDLET1 GLOBAL 78
IDLET2 GLOBAL 78
INDCNT GLOBAL 15, 16, 17
IOSEM JOB AREA 57, 59, 62, 64, 65
JEXT JOB AREA 45, 51, 52

104

Name

JOBSEM

JSTRNM

LEVEL1
LINK
MASK
MFJPR
MICROSAVE
MSwW
NOVLIS
:ON
OLDTP
PC
PGFLT
PROR1
PR2
PRIOR
SAVREG
SN
SPNEXT
TEMPIC

TIMCNT

Type of

Location

GLOBAL

JOB AREA

GLOBAL

JOB AREA

JOB AREA

GLOBAL

JOB AREA

GLOBAL

GLOBAL

JOB AREA

JOB AREA

JOB AREA

GLOBAL

GLOBAL

GLOBAL

JOB AREA

JOB AREA

GLOBAL

GLOBAL

JOB AREA

GLOBAL

References

54, 55, 56, 76, 77, 78, 85

75 205 2l 235 24y 25,. 1265, 27 1285
29, 30, 37, 38, 44, 50, 52

74, 75

9, 54, 55

33, 50, 51, 75, 76
78

75, 76

57, 85

59

33, 51

35

44

74, 75

83

83

54, 55, 75, 76
36, 41

14, 16

15, 16

33

66, 69, 78

105

Name

TIME1l

TIME2

TR4RS

TR5R6

TUTFF

Type of

Location

GLOBAL

GLOBAL

JOB AREA

JOB AREA

JOB AREA

References
78

78

35, 75

35

35

106

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classilication of titie, body of ebstract end indexing annotation must be enterad when tha overall report is clasailied)
I. ORIGINATING ACTIVITY (Corporete author) 2a8. REPORT SECURITY CLASSIFICATION

The MITRE Corporation B TIED

2b, GROUP

Bedford, Massachusetts

3. REPORT TITLE

PRINCIPLES OF OPERATION OF THE VENUS MICROPROGRAM

4. DESCRIPTIVE NOTES (Type of report end inclusiva dates)

N/A

S. AUTHORI(S) (First name, middle initial, lest neme)

Barbara J. Huberman

6. REPORT QOATE 7a4. TOTAL NO. OF PAGES 75. NO. OF REFS
JULY 1970 112 0
8a. CONTRACT OR GRANT NO. 9¢. ORIGINATOR'S REPORT NUMBER(S)

F19(628)-68-C-0365

b. PROJECT NO.

ESD-TR-70-198
700A

c. 9b. OTHER REPORT NO(S) (Any other numbers thet may be essigned

this report)
MTR-1843

10. DISTRIBUTION STATEMENT
This document has been approved for public release and sale; its distribution is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Directorate Of
Planning and Technology, Electronic Systems
N/A Division, AF Systems Command, L. G. Hanscon
Field, Bedford, Massachusetts

13. ABSTRACT

Venus is a computer system comprised of microprograms and software. It is
implemented on the Interdata 3, which is a small, microprogrammable computer.
This document contains a complete description of thc_e microprogram part of Venus.

DD lFNOORVM651 4 73

Security Classification

ta.

Security Classification

KEY WORDS

LINK A LINK B

LINK C

ROLE wT ROLE

wT ROLE wT

VENUS
MICROPROGRAMMING

COMPUTER SOFTWARE
VENUS MICROPROGRAM

Security Classification

