
- SD ACCESSION LISX
;STI Call No.,

iopy No.

V
GL
O
o
UJ

ESD-TR-70-198 MTR-1843

PRINCIPLES OF OPERATION OF THE VENUS MICROPROGRAM

B. J. Huberman

JULY 1970

Prepared for

DIRECTORATE OF PLANNING AND TECHNOLOGY
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Em RECORD COPY
RETURN TO

SC\£I^T\l\C, £ UQHHlCto lUrORNIATION DIVISION
(ifttt, fcUHUING 1211

This document has been approved for public

release and sale; its distribution is un-

limited.

Project 700A
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract F19(628)-68-C-0365

(W>^ tf

When U.S. Government drawings, specifica-
tions, or other data are used tor any purpose

other than a definitely related government

procurement operation, the government there-

by incurs no responsibility nor any obligation
whatsoever; and the fact that the government

may have formulated, furnished, or in any

way supplied the said drawings, specifica-

tions, or other data is not to be regarded by

implication or otherwise, as in any manner

licensing the holder or any other person or

corporation, or conveying any rights or per-

mission to manufacture, use, or sell any

patented invention that may in any way be

related thereto.

Do not return this copy. Retoin or destroy.

ESD-TR-70-198
MTR-1843

PRINCIPLES OF OPERATION OF THE VENUS MICROPROGRAM

B. J. Huberman

JULY 1970

Prepared for

DIRECTORATE OF PLANNING AND TECHNOLOGY
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

This do cument has been apprc ved for pu blic

release and sale; its distr bution i s un-

limited.

Project 700A
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract F19(628)-68-C-0365

FOREWORD

This report was developed under Air Force Contract F19(628)-68-C-0365
with The MITRE Corporation in Bedford, Massachusetts. It carries a
MITRE Project Number of 700A. There is no Air Force project or task
number. The report describes the Venus system, which is a computer
system comprised of microprograms and software. It is implemented on
the Interdata 3, a small, micro-programmable computer. This document
contains a complete description of the micro-program part of Venus.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

M ANTHONY P. TRUNFIO Technical Advisor
Development Engineering Division
Directorate of Planning & Technology

ii

ABSTRACT

Venus is a computer system comprised of microprograms and soft-
ware. It is implemented on the Interdata 3, which is a small, micro-
programmable computer. This document contains a complete description
of the microprogram part of Venus.

iii

:ABLE OF CONTENTS

LIST OF ILLUSTRATIONS

SECTION I

SECTION II

SECTION III

SECTION IV

SECTION V

SECTION VI

SECTION VII

SECTION VIII

SECTION IX

INTRODUCTION

NOTATION
NUMBER BASES
ADDRESS SPACES
VALUES
SYNTAX
NOTATION FOR INSTRUCTIONS
CLASSES OF INSTRUCTIONS
CONDITION CODE

THE JOB AREA
THE JOB AREA INSTRUCTION

VIRTUAL MEMORY
MAPPING OF VIRTUAL INTO REAL MEMORY
THE AGE CHAIN
THE CORE PAGE TABLE
STREAM REGISTER INSTRUCTIONS

BASIC INSTRUCTIONS
LOAD AND STORE INSTRUCTIONS
ARITHMETIC INSTRUCTIONS
LOGICAL INSTRUCTIONS
SHIFT INSTRUCTIONS

CONDITIONS
CONDITION INSTRUCTIONS

PUSHDOWN STACKS
STACK INSTRUCTIONS

THE CONTROL STACK
CONTROL STACK INSTRUCTIONS

PROCEDURES
BRANCH INSTRUCTIONS
CALL AND RETURN INSTRUCTIONS

Page

vii

2
2
2
3
4
6
7
7

9
9

10
10
13
14
18

20
20
23
27
30

33
35

36
36

41
42

44
46
49

TABLE OF CONTENTS (Concluded)

SECTION X

SECTION XI

SECTION XII

SECTION XIII

SECTION XIV

MULTIPROGRAMMING hiiD SEMAPHORES
P AND V INSTRUCTIONS

THE MICROPROGRAMMED MULTIPLEX CHANNEL
THE CHANNEL-COMMAND PROGRAM
THE CHANNEL

INPUT/OUTPUT
CHANNEL INPUT/OUTPUT INSTRUCTIONS
NON-CHANNEL INPUT/OUTPUT INSTRUCTIONS

LEVEL 1
LEVEL 1 INSTRUCTIONS

NON-INSTRUCTION PARTS OF VENUS
TIME-SLICING
INSTRUMENTATION
BOOTS
DISPLAY PANEL
THE IDLE LOOP

Page

53
55

57
60
62

70
70
70

74
75

78
78
78
79
82
85

APPENDIX I

APPENDIX II

APPENDIX III

APPENDIX IV

APPENDIX V

APPENDIX VI

APPENDIX VII

APPENDIX VIII

OPCODE MATRIX 87

INSTRUCTIONS LISTED ALPhABETICALLY BY 88
OPCODE MNEMONIC

LOCATIONS IN THE JOB AREA 95

GLOBAL CORE LOCATIONS KNOWN TO THE 98
MICROPROGRAM

ILLEGAL OPCODES 100

CONTROL STACK FORMATS 101

CONTENTS OF CORE PAGE TABLE FOR CORE 102
PAGES WHICH CONTAIN STREAM PAGES

INDEX TO LOCATIONS KNOWN TO THE 104
MICROPROGRAM

vi

LIST OF ILLUSTRATIONS

Figure Number Page

1 The Relationship between Registers, Stream 11
Registers and Extensions

2 Example of Entries in Core Page Table 16
3 How the Channel Fits into the Microprogram 58
4 Execution of Channel Commands 63
5 Terminate Transfer 65
6 Channel Interrupt-Handling for a Device 69

vii

SECTION I

INTRODUCTION

Venus is a computer system comprised of microprograms and soft-
ware. It is implemented on the Interdata 3, which is a small, micro-
programmable computer. The Venus system supports:

1. Multiprogramming;

2. Named virtual memories;

3. Recursive and reentrant procedures;

4. Interrupts for debugging;

5. A microprogrammed, multiplex channel.

This document contains a complete description of the microprogram
part of Venus. Each of the above features is partially or fully
implemented in the microprogram. In addition, the microprogram part
of Venus completely defines the instruction set (used by the software
part). The software part of Venus is not defined by this document;
occasionally, however, a place will be described where the microprogram
and the software communicate.

This document is intended to be read sequentially the first time,
since the descriptions of important concepts in the Venus system appear
as required for the definitions of instructions. Subsequently, the
document may be used as a reference manual. Appendix II provides an
index to the instructions.

SECTION II

NOTATION

NUMBER BASES

Venus reflects the fact that the Interdata is a hexadecimal
machine, addressable by 8-bit bytes. Each byte contains two hexa-
decimal digits. In this document, hexadecimal numbers will be used
for locations and for constants, like FF. Decimal numbers are used
to refer to quantities (for example, 16 general registers) and to
refer to bits.

ADDRESS SPACES

In Venus there are three address spaces: registers, core and
streams. Locations in the various address spaces are represented
as follows.

Registers

A user in Venus is supplied with 16, 16-bit general registers.
The name of a register is a 4-bit number (hexadecimal digit); e.g.,
2 or F. In this document registers are referred to symbolically by
the letters X and R.

Associated with each register is a stream register. The stream
register is named symbolically by putting an S before the symbolic
name of the general register:

SR is the stream register associated with register R.

SX is the stream register associated with register X.

Core

Any 16-bit quantity can stand for a location in core. Core
is divided into 256-byte pages. CP is frequently used as an
abbreviation for core page.

Streams

Streams are named virtual memories. In order to specify a
location in a stream, both the name of the stream (15 bits) and
the location within the stream (16 bits) must be given. The
following notation is used:

stream name.address in stream

Streams are divided into 256-byte pages. SP is frequently used as
an abbreviation for stream page.

VALUES

Data in Venus occurs in 8- or 16-bit containers. Bytes are
8-bit containers while halfwords are 16 bits long. Bits in a
halfword are numbered from 0 to 15. Core and streams are both
addressed at byte boundaries. A halfword consists of two bytes
and always starts on an even byte boundary:

0 7 8 15
byte n | byte n + 1 , where n is even

halfword n

If a reference is made to halfword m, where m is odd, then halfword
m-1 will be accessed.

No particular meaning is assigned to bytes. However, halfwords
contain different kinds of data.

Numeric Quantities

All numeric quantities are 16 bits long. A 16-bit quantity may
stand for a signed 15-bit integer, an unsigned 16-bit integer, or an
address in core or within a stream. Signed integers are all stored
in two's complement notation. Bit 0 is the sign bit.

Stream Names

Stream names are 15 bits long but are contained in a 16-bit
halfword with bit tero unused:

01 15
stream name 1 .

T
unused

Semaphores

Semaphores are 7-bit signed integers. They are always locate*-,
in the right byte of a 16-bit halfword; the left byte contains a
pointer to the queue associated with the semaphore:

pointer semaphore
7 8 15

SYNTAX

The following terminal characters are used to explain the
meaning of instructions:

if

then

else

begin

end

rotated left

+ plus

- minus

mod modulo

• stream address

* times

A and

v or

-i not

xor exclusive or

• equal

^ not equal

; end of statement

2E one's complement; for example,
2E = Dl

•— assignment

() "the contents of"; for example.
(R) means the contents of general

register R
(A) means the contents of core

location A

Rft 1_ subscripts are used whenever less
than 16 bits of a 16-bit quantity
are used; e.g., Rg ,- means bits

R, 8 through 15 of register R, and
Rg means bit 6 of register R

used to clarify the extent of an
operation

NOTATION FOR INSTRUCTIONS

Instructions in Venus consist of an opcode and two fields.
They occupy one or two halfwords.

0 7 8 11 12 15
OPCODE R X

'0

I I
1 I

7 18 11'12

I
i

15' 16 31
OPCODE R X A

opcode field 1 field 2

The opcode is 8 bits long. The first field, R, is 4 bits long PH-'

usually contains the number of a general register. The second field
is either 4 bits long or 20 bits long. If it is 4 bits long, it con-
tains the number, X, of a general register and the instruction is
called a short instruction. A short instruction is written:

OPCODE R,X

If the second field is 20 bits long, it is divided into two
subfields, A and X. X is the number of a general register and A
is a 16-bit quantity. Such an instruction is called a long in-
struction and is written:

OPCODE R.AfX).

A and X are combined together to form a 16-bit address or a 16- or
8- or 4-bit value.

Some instructions make use of only one field. The same notation
is used for fields in this case, so the reader can tell which field
is being used and which is omitted. For example:

JOBA is a short instruction using only
the first field.

A(X) is a long instruction using only
the second field.

The notation for instructions is introduced here only for the
purposes of this document. It is not related to any language running
under Venus.

CLASSES OF INSTRUCTION

Most instructions in Venus are members of one of the following
five classes. Membership in a class determines what the second
field of the instruction means.

Class C: Core instructions. Instructions in this class are all
long (32 bits). The second field defines a location in core.

Class R: Register instructions. Instructions in this class are all
short (16 bits) and the last letter of the opcode mnemonic is usually
R. The second field contains the number of a general register.

Class I: Immediate instructions. These instructions are all long
and the last letter of the opcode mnemonic is usually I. The second
field defines an 8- or 16-bit constant.

Class S: Stream instructions. These instructions are all long and
the last letter of the opcode mnemonic is always S. The second field
defines a location in a stream.

Class P: Procedure instructions. These instructions are all long
and the last letter of the opcode mnemonic is always P. The second
field defines a location within the current procedure stream (the
procedure which contains the instruction being executed). The name
of this procedure is stored in JSTRNM in the job area.

The user should note that store instructions only occur in
classes C, R and S. In class I the second field does not provide
a location in which to store things. In class P the second field
provides a location in a procedure; however, Venus encourages the
writing of reentrant procedures by not providing instructions to
store in procedures.

CONDITION CODE

The condition code contains information about the effect of a
previous instruction. Many instructions set it; some instructions
test it. It is composed of four bits: the C, V, G and L bits.

condition code= C V G L

In general these bits have the following meaning:

C is the "carry" bit. In general it is on if a carry
occurred (a 1 was carried out of bit 0) during the
execution of a previous instruction.

V is the "arithmetic overflow" bit. If it is on, then
during the execution of some previous instruction
the bit carried out of position 1 was not the same
as the bit carried out of position 0.

G is the "greater than zero" bit. If it is on, it
means the result of the execution of some previous
instruction had bit 0 (the sign bit) off.

L is the "less than zero" bit. If it is on, then the
resulc of the execution of some previous instruction
had bit 0 (the sign bit) on.

SECTION III

THE JOB AREA

Venus is a multiprogramming system in which 16 jobs can run
concurrently. These jobs are numbered in hex from 0 to F. A job
area consisting of 156 contiguous bytes of core memory is assigned
to each job running under the VENUS system. The first location in
the job area for job n is the first location of core page n*10.
The core address of this location is n*1000. The job area contains
the general registers, instruction counter and all other job specific
information. In addition it contains data which is used by the system
to make the multiprogramming run smoothly.

Throughout the body of this paper, references are made to data
in the job area. These references use the symbolic names whose lo-
cations are defined in the chart in Appendix III. The true location
of any piece of data, D, for job n is

n*1000 + D.

For example, the location of the LINK register for job 3 is

n*1000 + LINK 3*1000 + 6A = 306A.

THE JOB AREA INSTRUCTION

Most instructions which refer to data in the job area are
automatically interpreted by the microprogram to refer to the job
area of the job executing the instruction. Sometimes, however, it
is necessary for a job to know the location of the job area from
which it is running. The JOBA instruction provides this information.

Job Area Instruction

JOBA R

As the result of the execution of JOBA, the core address of
the first byte of the job area is stored in register R. For
example, if job A performs

JOBA R

then the contents of register R become A000.

The condition code is not affected by the JOBA instruction.

SECTION IV

VIRTUAL MEMORY

Most data used by a program in Venus will be stored in streams.
Streams are named virtual memories, containing 64K bytes of data and
having 15-bit names. Streams are divided into 256-byte pages. Core
is also divided into 256-byte pages, so that one stream page fits into
one core page. The Interdata is supplied with a disk. Streams are
paged between disk and core and the microprogram automatically maps
stream addresses into core addresses.

When accessing data within a stream, it is necessary to give ths
name of the stream and the 16-bit address within the stream. In order
to provide space for this data, each job is provided with eight 16-bit
stream registers. The stream registers are paired with the general
registers: a stream register, general register pair provides the bits
needed to reference a stream. The stream register holds the stream
name, right adjusted, while the general register holds the address
within the stream. Given the number of the general register, X, the
number of the associated stream register, SX, is computed simply:

SX •= X mod 8.

Each stream register is equipped with a 16-bit extension which
is also located in the job area. This extension is used by the micro-
program to hold information about the mapping of stream addresses into
core addresses. Figure 1 shows the relationship between registers,
stream registers and extensions.

MAPPING OF VIRTUAL INTO REAL MEMORY

When a reference is made to a stream, only the general register,
X, is mentioned. The microprogram computes the number of the associ-
ated stream register, SX, and uses its contents as the stream name,
SN. This means that prior to making a reference to a stream, a pro-
gram must load the stream register being used for the reference with
the name of the stream being referenced. The value of the address
within the stream, SA, depends upon the instruction being executed.

10

jregister n|

\
jstream r<

register (n + 8)

/

jgister n|

• >

SP CP

extension to
stream register n

Figure 1. The Relationship between Registers,
Stream Registers and Extensions

11

SA is broken into two parts:

0 7 8
SA SP,

15
LOW

where SP^ is the stream page and LOW is the address within the stream
page. The extension of SX is also broken into two parts:

extension =

where SP is a stream page number and CP is a core page number. If
CP ^ 0, then stream page SP of the stream whose name is in SX is cc i-
tained in core page CP. Therefore, if

0 7 8 15
SP ~r CP

CP 4 0 A SP. = SP, A

the core address of the desired data is simply

(1)

CP LOW core address =

The desired stream page in this case is called a locked-in page
because it is guaranteed to be located in core at core page CP. The
reason that this particular page is locked in is because previously
a stream reference was made to it through stream register SX. This
fact is central to the way programs run in Venus.

If a stream page is in core, the microprogram will find it.
However, the amount of time required to locate it varies. If it is
locked-in by the stream register being used to reference it, the
minimum amount of time is required. Otherwise, the microprogram
must search for it. The remainder of this section describes the
details of this search.

Whenever (1) above is not true, the microprogram makes use of a
table in core called the Core Page Table (CPT). This table contains in-
formation about the contents of each core page. Among other things,
it contains the stream name and the number of the stream page which
occupy a core page. The CPT is indexed by core page and entered by
means of a hash chain from hash table HASH. An 8-bit hash code, H,
is formed:

H< SN A FF xor SP

12

H is used as an entry into HASH and a search is made of the hash chain
starting from HASHg to see if the desired stream page is contained in
core. If it is in core, say at core page CPI, then the core address
is

core address = CPI LOW

SPA
CPI

In addition to forming the core address, the microprogram updates the
contents of the extension of stream register SX to contain information
about this reference (it locks in the stream page). It becomes

extension =

It is likely, of course, that the desired stream page is not in
core. This is recognized when the microprogram reaches the end of
the hash chain without finding the desired page. The end of the hash
chain is recognized by finding a link equal to 0. In this case the
microprogram stops right where it is, in the middle of executing an
instruction, and starts a software program called the page fault
handler (PFH). The PFH will fetch the desired page from the disk,
store it in some core page, and update the Core Page Table and the
HASH table. Then it returns, via a special instruction (UNQP), to
the microprogram at the place from which it was started.

THE AGE CHAIN

In order to bring a page into core, the PFH will very likely
have to remove a page from core. Of course, it cannot remove any
page which is locked in. Instead it must remove some page which
is not referred to by any stream register extension. It does not
need to search the Core Page Table for these pages, however, be-
cause the microprogram places all pages which are not locked in on
an age chain. The head of the age chain is AGEHD at location 202:

OLDEST NEWEST AGEHD -

OLDEST is the number of the core page containing the stream page
which was released from being locked in longest ago, while NEWEST
is the number of the core page containing the stream page which
was most recently released.

13

The microprogram is responsible for keeping all pages which are
not locked in on the age chain. Two functions are performed by the
microprogram to keep the age chain current: aged and unaged. aged is
performed whenever a reference is made through a stream register
whose extension locks in a different page than the desired one, while
unaged is performed when the search through the Core Page Table via
the hash chain successfully locates the desired stream page.

The definitions of aged and unaged take account of the fact that
in Venus streams are shared. This is obvious from the way the micro-
program searches the CPT for a desired stream page. Any job which
wants to use a stream simply refers to it by name. This means that
when a reference is made through a stream register whose extension
locks in a different page, the microprogram cannot automatically
put that page on the age chain because it may be referred to by sonu
other stream register extension. Therefore, the microprogram keeps
a count for each locked-in page of how many different extensions lock
it in.

THE CORE PAGE TABLE

Before definitions of aged and unaged are given, the Core Page
Table must be defined. The CPT is located in core starting at lo-
cation 200 and extending to 7FF. The table is actually divided into
three separate tables. Each of these tables is indexed by core page.
The user should note, however, that not all pages in core are available
to hold stream pages. Among others, pages are reserved for the job
areas and for data used by the microprogram, including the HASH table
and the CPT. Spaces thus appear in the CPT and these are sometimes
used to hold other information. This means that the CPT can be
searched meaningfully only through the hash chains.

For core pages which contain stream pages, the CPT contains the
following information.

1. SN table. This table is located between 400 and 5FF. For
each core page, there is one halfword of information:

0 1 15
SN

T
Change Bit

Bit 0 of this halfword is set by the microprogram whenever data is
stored in the core page. SN is the name of the stream whose page
occupies this core page.

14

2. SPNEXT table. This table is located between 600 and 7FF.
For each core page, there is one halfword of information:

0 7 8 15
SP NEXT

SP is the number of the stream page which occupies this core page.
NEXT is the core page of the next link on the hash chain. If
NEXT = 0, this entry is the end of the chain.

3. INDCNT table. This table is located between 200 and 3FF.
For each core page, there is one halfword of information:

0 7 8 15
IND CNT

This information has two different meanings, depending on whether
the stream page is locked in or not.

a. Locked in. The page is locked in if

IND = 0.

In this case CNT equals one less than
the number of extensions locking in the
page.

b. Aged. The page is on the age chain if

IND ^ 0.

In this case IND equals the core page
of the next newer page on the age chain
and CNT equals the number of the next
older page.

Figure 2 gives an example of how HASH and CPT are used.

15

HASH Table

•
•

entry 21 0 0
22 3 8
23 3 6

•
•
•

Core Page Table

IND CNT SN SP NEXT

e page •

36 0 0 0 0 0 1 D C F F 3 7
37 0 1 3 8 4 12 3 0 0
38 3 7 0 1 0 1 D C F E 0

•

Three entries in HASH are shown. HASH21 • 0, which means no
stream page located in core at the moment hashes into 21.
HASH22 and HASH23 both contain the starts of hash chains.
The chain coming from HASH22 is only one link long (HASH22 •
38 and NEXT38 = 0). The chain coming from HASH23 is two links
long (HASH23 = 36, NEXT36 = 37, and NEXT37 = 0).

Core page 36 contains stream IDC, page FF, and core page 37
contains stream 4123, page 0. Both these stream pages produce
the same hash code. Core page 38 contains stream IDC, page FE.
Since HASH-. = 0, stream IDC, page FD is not in core.

Stream IDC, page FF is locked in (IND36 - 0) and has one user
(CNT36 = 0). The other two pagee are on the age chain. Stream
IDC, page FE has been on the chain longer than stream 4123,
page 0.

Figure 2. Example of Entries in Core Page Table

16

Definitions of aged and unaged

Now definitions can be given for aged and unaged. If a stream
reference is made through register X and

CP + 0 A SP ^ SPA,

then the stream page location in core page CP is aged. This means:

(CNTcp) - (CNTCp) - 1;

if (CNT) < 0 then do begin

(CNTcp) - (NEWEST);

(INDcp) - l;

(IND(NEWEST)^ CP;

(NEWEST) - CP end

When the desired stream page is found in core at core page CP1, it
is unaged. This means:

if (INDCpl) = 0 then (CNTcpl) - (CNTCpl) + 1 else

do begin

(CNT(INDcpl)
)^ (CNTCP1);

^(CNT^^^CPl^

(INDCpl)^0;

(CNTCpl) - 0 end

17

STREAM REGISTER INSTRUCTIONS

When a reference is made to a stream, only the general register,
X, is mentioned. The microprogram computes the name of the associated
stream register, SX, and uses its contents as the stream name. This
means that prior to making a reference to a stream, a program must
load the stream register, SX, being used for the reference with the
name of the stream being referenced. The "load stream name" in-
structions are defined for this purpose. The "store stream name"
instructions are used to save the contents of stream registers.

Load Stream Name

The second field defines a stream name. This name is compare
with the current contents of the stream register, SR, associated with
the general register R. If the names are the same, the instruction
is finished. If the names are different and some stream page is
locked in by the extension of SR, that stream page is aged. The core
page in the extension is set to zero. The stream name is then loaded
into SR. The condition code is not affected.

LSN R,A(X)

(SR)

Load stream name from core

if X - 0 then (A) else (A + (X))

LSNR R,X

(SR) - (X)

Load stream name from register

LSNI R,A(X) Load stream name immediate

(SR) — if X = 0 then A else A + (X)|

LSNS R,A(X)

(SR)- ((SX).

Load stream name from stream

A + (X)|)

LSNP R,A(X) Load stream name from procedure

(SR)«- ((JSTRNM).I if X - 0 then A else A + (X) I)

18

Store Stream Name

The contents of the stream register, SR, associated with R are
stored in the location specified by the second field. The condition
code is not affected.

SSN R,A(X) Store stream name in core

if X = 0 then (A) - (SR) else (A + (X)) — (SR)

SSNR R,X Store stream name in register

(X) - (SR)

SSNS R,A(X) Store stream name in stream

((SX).JA + (X)|) - (SR)

19

SECTION V

BASIC INSTRUCTIONS

LOAD AND STORE INSTRUCTIONS

These instructions allow the user to move data from one location
to another.

Load Halfword

The value of the second field defines a 16-bit halfword. It ic
loaded into the general register R. Load instructions set the con-
dition code as follows:

c V G L
0 0 0 1
0 0 1 0
o o Q 0

(R0) - 1
(R") - 0 A (R) i 0

- 0

LH R,A(X) Load halfword from core

(R) - I if X - 0 then (A) else (A + (X))|

LHR R,X Load halfword from register

(R) - (X)

LHI R,A(X) Load halfword immediate

(R) *• I if X - 0 then A else A + (X)|

LHS R,A(X) Load halfword from stream

(R)- ((SX).|A + (X)|)

LHP R,A(X) Load halfword from procedure

(R) - ((JSTRNM).I if X - 0 then A else A + (X) I)

20

Load Byte

The value of the second field defines an 8-bit byte. It is
stored in the right byte of R. The left byte of R is set to 0.
The condition code is not affected.

LB R,A(X) Load byte from core

(R0-7> - °

(R8_15)— I if X - 0 then (A) else (A + (X))

LBR R,X Load byte from register

(R0-7) *" °

(R8-15}*~ (X8-15)

LBI R,A(X) Load byte immediate

< v7> - °
'A+ (X)|8_15| ^R8-15^ *~ — X = ° then AR-15 else

LBS R,A(X) Load byte from stream

(R0-7) *" °

(R8_15) - «SX).|A + (X)|)

LBP R,A(X) Load byte from procedure

(R0-7> - °

(RQ .-) — ((JSTRNM).I if X - 0 then A else A + (X) I)

21

Store Halfword

The contents of R are stored in the location indicated by the
second field. The condition code is not affected.

STH R,A(X) Store halfword in core

if X = 0 then (A) - (R) else (A + (X)) «- (R)

STHR R,X Store halfword in register

(X) — (R)

STHS R,A(X) Store halfword in stream

((SX).

Store Byte

A + (X)) - (R)

The contents of R« .. are stored in the location specified by
the second field. The condition code is not affected.

STB R,A(X) Store byte in core

if X = 0 then (A)- (Rg_15) else (A + (X)) — (Rg_15)

STBR R,X Store byte in register

(X8-15) ^(R8-15}

STBS R,A(X) Store byte in stream

((SX).|A + (x)|)— (R8_15)

22

ARITHMETIC INSTRUCTIONS

Addition and subtraction are the only arithmetic instructions
supported by the Venus microprogram. These instructions operate on
halfwords of data.

Add Halfword

The second field defines a 16-bit value. It is added to the
contents of R. The result is stored in R. The condition code
becomes:

c V G L
1 0
0 1
0 0

1
1

AH R,A(X)

(R) - 0 A (R) i 0

<v -1
(RJ - 0
Arithmetic overflow
Carry

Add halfword from core

(R) — (R) + if X = 0 then (A) else (A + (X))

AHR R,X

(R) «- (R) + (X)

Add halfword from register

AHI R,A(X) Add halfword immediate

(R) «- (R) +1 if X - 0 then A else A + (X) I

AHS R,A(X)

(R) - (R) + ((SX)

Add halfword from stream

A + (X))

AHP R,A(X) Add halfword from procedure

(R) — (R) + ((JSTRNM). if X = 0 then A else A + (X))

23

Subtract Halfword

The second field defines a 16-bit value. It is subtracted from
the contents of R. The result is stored in R. The condition code
becomes:

(Rn) - 0 A (R) i 0

<v •L
(R7 - 0
Arithmetic overflow
Borrow

c V G L
1 0
0 1
0 0

1
1

SH R,A(X) Subtract halfword from core

(R) *- (R) - I if X - 0 then (A) else (A + (X))|

SHR R,X

(R) - (R) - (X)

Subtract halfword from register

SHI R,A(X) Subtract halfword immediate

(R) «- (R) - I if X - 0 then A else A + (X) |

SHS R,A(X)

<R)~ (R) - ((SX)

Subtract halfword from stream

A + (X))

SHP R,A(X) Subtract halfword from procedure

(R) *- (R) - ((JSTRNM).I if X - 0 then A else A + (X)I)

Programmer's Note: The result of the subtraction is in two's com-
plement form. For example, the result of subtracting 3 from 2 is
FFFF, and C is set.

24

Add with Carry Halfword

The second field defines a 16-bit value. This value and the
carry bit, C, are added to the contents of R. The result is stored
in R. The value of the condition code depends on its value prior
to the execution of the instruction:

c V G L
1 0
0 1
0 0

1
1

(R_) = 0 A (R) ft 0 V the G or L bit was on (v = 1 ,
(R.) = 0 A |the G and L bits were off
Arithmetic overflow
Carry

ACH R,A(X) Add with carry halfword from core

(R) — (R) + if X = 0 then (A) else (A + (X)) + C

ACHR R,X

(R) — (R) + (X) + C

Add with carry halfword from register

ACHI R,A(X) Add with carry halfword immediate

(R) *— (R) + I if X - 0 then A else A + (X) + C

ACHS R,A(X)

(R)- (R) + ((SX).

Add with carry halfword from stream

A + (X) I) + C

ACHP R,A(X) Add with carry halfword from procedure

(R) «- (R) + ((JSTRNM) . I if X - 0 then A else A + (X) |) + C

Programmer's Note: Multiple precision addition may be accomplished
by using an "add" instruction for the least significant portion of
the two operands and then using an "add with carry halfword" in-
struction for the remainder of the operation. The result will be
in two's complement form. The G and L bits will tell the sign of
the multiple precision result.

25

Subtract with Carry Halfword

The second field defines a 16-bit value. This value and the
carry bit, C, are subtracted from the contents of R. The result is
stored in R. The value of the condition code depends on its value
prior to the execution of the instruction:

c V G L
1 0
0 1
0 0

1
1

(R) |i 0 V the G or L bit was on) (Rn) = 0 A

(R; • 0 A the G and L bits were off
Arithmetic overflow
Borrow

SCH

(R)-

R,A(X) Subtract with carry halfword from core

(R) - if X = 0 then (A) else (A + (X)) - C

SCHR R,X

(R)-I(R) - (X)

Subtract with carry halfword from register

- C

SCHI R,A(X) Subtract with carry halfword immediate

(R) — (R) - if X = 0 then A else A + (X) - C

SCHS R,A(X) Subtract with carry halfword from stream

(R)*- (R) - ((SX).|A + (X)) - c

SCHP R,A(X) Subtract with carry halfword from procedure

(R) *-|(R) - ((JSTRNM).jif X « 0 then A else A + (X)|) | - C

Programmer's Note: See the "add with carry halfword" instructions.

26

LOGICAL INSTRUCTIONS

The logical instructions permit the user to perform logical
"and", "or", and "exclusive or" operations. These operations are
always performed on 16-bit unsigned integers. A logical comparison
is also available.

And Halfword

A logical "and" is performed on the 16-bit value defined by the
second field and the 16-bit contents of R. The result is stored in
R. The condition code is set:

c V G L
0 0 1 0
0 0 0 1
0 0 0 0

(R-) = 0 A (R) ^ 0
(B) -1
(RJ = 0

NH R,A(X) And halfword from core

(R) - (R) A I if X = 0 then (A) else (A + (X)) |

NHR R,X

(R) - (R) A (X)

And halfword from register

NHI R,A(X) And halfword immediate

(R) *- (R) A if X = 0 then A else A + (X)

NHS R,A(X) And halfword from stream

(R) — (R) A ((SX).|A + (X)|)

NHP R,A(X) And halfword from procedure

(R) — (R) A ((JSTRNM). if X = 0 then A else A + (X)|)

27

Or Halfword

A logical "or" is performed on the 16-bit value defined by the
second field and the 16-bit contents of R. The result is stored in
R. The condition code is set:

(R_) = 0 A (R) + 0
(2) -1
(R7 = 0

c V G L
0 0 1 0
0 0 0 1
0 0 0 0

OH

(R)

R,A(X) Or halfword from core

(R) vlif X - 0 then (A) else (A + (X))|

OHR R,X

(R) - (R) V (X)

Or halfword from register

OHI R,A(X) Or halfword immediate

(R) *- (R)v I if X - 0 then A else A + (X) |

OHS R,A(X) Or halfword from stream

(R)«- (R) V ((SX).JA + (X)|)

OHP R,A(X) Or halfword from procedure

(R) - (R) v ((JSTRNM).I if X = 0 then A else A + (X)|)

28

Exclusive Or Halfword

A logical "exclusive or" is performed on the 16-bit value defined
by the second field and the 16-bit contents of R. The result is
stored in R. The condition code is set:

(R0) = 0 A (R) + 0
(R0) = 1
(R) = 0

XH R,A(X) Exclusive or halfword from core

(R) *- (R) xor I if X = 0 the

XHR R,X

(R) - (R) xor (X)

c V G L
0 0 1 0
0 0 0 1
0 0 0 0

Exclusive or halfword from register

XHI R,A(X) Exclusive or halfword immediate

(R) — (R) xoilll X = 0 then A else A + (X)|

XHS R,A(X) Exclusive or halfword from stream

(R) <- (R) xor ((SX).IA + (X) I)

XHP R,A(X) Exclusive or halfword from procedure

(R) — (R) xor ((JSTRNM). I if X - 0 then A else A + (X)|)

29

Compare Logical Halfword

The 16-bit value defined by the second field is compared logically
with the contents of R. The different versions of the instruction dif-
fer only in the computation of the value. The condition code is set
by subtracting the value defined by the second field from (R). This
is exactly the same as if the instruction were a subtract. However,
only the condition code is affected by the instruction.

CLH R,A(X) Compare logical halfword irom core

value = jif X = 0 then (A) else (A + (X))|

CLHR R,X Compare logical halfword from register

value = (X)

CLHI R,A(X) Compare logical halfword immediate

value - j if X = 0 then A else A + (X)|

CLHS R,A(X) Compare logical halfword from stream

value = ((SX).IA + (X)I)

CLHP R,A(X) Compare logical halfword from procedure

value = ((JSTRNM) . { if X «= 0 then A else A + (X) I)

SHIFT INSTRUCTIONS

Shift instructions permit the user to shift a 16-bit halfword
to the left or right, or to rotate a 16-bit halfword to the left.
In addition, a signed 15-bit integer may be shifted arithmetically
to the right.

30

Rotate Left Halfword

RLH R,A(X)

The contents of R are rotated left the number of bits specified
by the second field mod 16. The result is stored in R:

(R) *- (R) rotated left if X - 0 then A else A + (X) mod 16

The condition code is set as follows:

c V G L
0 1 0
0 0 1

0 0 0 0
1 0
0 0

(Rn) - 0 A (R) + 0

(R>
(R15

0
) = 1

0

Shift Left Halfword Logical

SLHL R,A(X)

The contents of R are shifted left the number of bits specified
by the second field mod 16:

Amount of shift = I if X = 0 then A else A + (X)lmod 16.

Bits shifted out of position 0 are shifted through the carry bit of
the condition code. Zeros are shifted into position 15. The result
is stored in R. The condition code is set as follows:

c V G L
0 1 0
0 0 1
0 0 0

1 0
o 0

(Rn) - 0 A (R) i 0

<V - X
(R7 - 0
last bit shifted out of position 0 was a 1
last bit shifted out of position 0 was a 0

31

Shift Right Halfword Logical

SRHL R,A(X)

The contents of R are shifted right the number of bits specified
by the second field mod 16:

Amount of shift • I if X • 0 then A else A + (X)tmod 16 .

Bits shifted out of position 15 are shifted through the carry bit of
the condition code. Zeros are shifted into position 0. The result
is stored in R.

The condition code is set as follows:

c V G L
0 1 0
0 0 1
0 0 0

1 0
0 0

(R.) - 0 A (R) ^ 0
<V -1
(RJ = 0
last bit shifted out of position 15 was a 1
last bit shifted out of position 15 was a 0

Shift Right Halfword Arithmetic

SRHA R,A(X)

(
R
}L-15

are shifted right the number of bits specified by the
second field mod 16:

Amount of shift • if X = 0 then A else A + (X) mod 16 .

The sign bit (Rfi) is unchanged. Bits shifted out of position 15 are
shifted through the carry bit. The sign bit (RQ) is propagated into
position 1, for each bit shifted.

The condition code is set as follows:

c V G L
0 1 0
0 0 1
0 0 0

1 0
Q o

(R-) - 0 A (R) + 0

<v -X
(RJ - o
last bit shifted out of position 15 was a 1
last bit shifted out of position 15 was a 0

32

ON MASK

SECTION VI

CONDITIONS

Conditions represent a set of events which, when enabled by a
mask, can cause interrupts in a running job. These interrupts are
intended to aid the user in debugging his program. The microprogram
or software recognizes the occurrence of an event. The interrupt
which results causes the execution of an instruction out of sequence.
This instruction can start a software debugging routine. Conditions
should not be confused with the condition code.

Conditions are controlled by a 16-bit condition register, COND,
and an 8-entry instruction table, with room for one 32-bit instruction
per condition. COND is broken into two bytes: ON and MASK.

COND =

Each bit in ON, if set to 1, indicates the occurrence of a condition.
The corresponding bits in MASK are used as a mask. If the bit for
an interrupt is set in ON, then the condition is said to be on; if
the bit is set in MASK, the condition is enabled.

The microprogram checks for the occurrence of conditions at the
beginning of each instruction cycle. If a condition is both on and
enabled, an interrupt occurs: the corresponding condition instruction
(16 or 32 bits long) in the instruction table is executed, and the
condition is turned off. The core location of the instruction which
would have been executed if the interrupt had not occurred is stored
in TEMPIC. The event which caused the condition bit to be turned on
must have happened before the start of the current instruction cycle.

Each condition is assigned a priority, which is reflected in the
assignment of the bits, with the highest priority conditions on the
left, decreasing toward the right. If more than one on/mask com-
bination is on, the higher priority condition is honored first. If
the instruction for this condition is a CALL, as will very frequently
be the case, the condition which is being handled and all lower
priority conditions (with the exception of the "in-stream illegal
instruction" condition) are disabled. They are re-enabled by the
execution of the corresponding RETN.

33

The eight condition bits are assigned as follows:

Bit Interrupt Condition

0 kill

1 every instruction

2 undefined

3 stack overflow/underflow

4 call

5 undefined

6 illegal in-core instruction

7 illegal in-stream instruction

Kill would normally be turned on by system software when it determines
that this job should be terminated. The "kill" condition is always
enabled for user programs.

Every instruction is turned on after the execution of every instruction,
except the instruction executed as a result of the "every instruction"
interrupt. It is turned off by RETN if the return is from a procedure
whose execution began as the result of the "every instruction" interrupt.

Undefined occurs only when turned on by software.

Stack overflow/underflow is set when a push or a pop of a stack would
store or retrieve from beyond the stack.

Call is set when a CALL instruction is executed, except when the CALL
is the instruction to be executed on a "call" condition.

Illegal in-core instruction will be set when an unimplemented in-
struction is encountered while processing instructions in-core (as
opposed to in-stream). The Job executing this instruction will nor-
mally be running a level 1 program. The microprogram enables this
interrupt as well as turning it on.

Illegal in-stream instruction occurs when an unimplemented instruction
is encountered in a program running from a procedure stream. This
condition is always enabled for programs running from streams, and is
used by the microprogram to distinguish between in-core and in-stream
programs.

34

When an illegal instruction is encountered, the instruction
counter is stepped by the assumed length of the illegal instruction.
The microprogram stores information about the amount of change to
the instruction counter in TUTFF in the job area. If bit 6 of TUTFF
is on, the program counter has been stepped by A; otherwise it has
been stepped by 2. If the illegal instruction is a condition in-
struction, the address of this condition instruction relative to the
job area is stored in OLDTP. A value for the second field may have
been developed before the instruction was discovered to be illegal.
This value is stored in TR5R6. A list of the opcodes for which this
value is developed is given in Appendix V.

CONDITION INSTRUCTIONS

Two instructions have been defined to modify COND. SET will turn
bits on in COND and RSET will turn them off. However, RSET will not
turn off either the "kill" bit or the "in-stream" bit. Neither in-
struction affects the condition code.

Reset Condition Register

RSET R,A(X)

RSET turns off bits in the condition register of the job specified
in register R, or the job in which the RSET occurred if R • 0. The
bits to be turned off are those which correspond to the bits set in
the 16-bit value defined by the second field:

(COND) — (COND) A 81 V if X = 0 then A else A + (X)||.

Programmer's Note: The "kill" condition and the "in-stream" condition
cannot be disabled.

Set Condition Register

SET R,A(X)

SET turns on bits in the condition register of the job specified
in register R, or the job in which the SET occurred if R = 0. The
bits turned on correspond to the bits which are on in the 16-bit
value defined by the second field:

(COND) *- (COND) V if X = 0 then A else A + (X) .

Programmer's Note: When a condition is enabled, an interrupt will
take place if the condition occurred in the past. To avoid this,
RSET may be used prior to SET to turn off the condition.

35

SECTION VII

PUSHDOWN STACKS

Streams may be used as pushdown stacks in Venus. When used as
a stack, a stream is considered to be a collection of halfwords.
Associated with each stack ia a stack pointer. A stack pointer is
a 32-bit entity contained in a general register, R, and the associated
stream register, SR. This pointer always points to the piece of data
in the top of the stack.

Stack operations do not affect the condition code. They may,
however, turn on the "stack underflow/overflow" bit in the oonditi >.i
register COND. If a stack operation would cause a stack to under-
flow or overflow, the "underflow/overflow" bit in COND is turne 1 on
and the instruction is not executed. In addition, the number of the
stream register being used to reference the stack is stored in
SAVREG- c in the job area. That is: 3-5 J

if (R) = FFFE A instruction is push I V I (R) = 0 A

instruction is pop then

1) The underflow/overflow bit in COND is turned on.

2) The instruction is not executed.

3) (SAVREG3_5)— SR.

In the following descriptions of the stack instructions, it is
assumed that overflow/underflow does not occur.

STACK INSTRUCTIONS

Push Halfword

The contents of R are incremented by two. The 16-bit value
defined by the second field is pushed into the stack named by SR
at the location specified by the incremented value of R.

Stream (SR)

(R)- data
(R)-

Stream (SR)

data
new data

before push after push

36

PU R,A(X)

(R) — (R) + 2

Push halfword from core

((SR).(R))- if X - 0 then (A) else (A + (X))

PUR R,X

(R) - (R) + 2

((SR).(R)) — (X)

Push halfword from register

Push halfword immediate PUI R,A(X)

(R) - (R) + 2

((SR).(R)) - I if X = 0 then A else A + (X)|

PUS R,A(X)

(R) «- (R) + 2

((SR).(R))-«SX).|A + (X)|)

Push halfword from stream

PUP R,A(X) Push halfword from procedure

(R) - (R) + 2

((SR).(R)) - ((JSTRNM).lif X = 0 then A else A + (X)|)

Push Byte

The contents of R are incremented by two. A sixteen-bit value
consisting of a zero in the high byte and the eight-bit value defined
by the second field in the low byte is placed in the stack named by
SR at the location specified by the incremented value of the R.

Stream (SR)

(R) — 1 0 | data

stack after "push byte"

37

Pop Halfword

A sixteen-bit value is fetched from the stack named by SR at
the location specified by R and stored in the location specified
by the second field. Then the contents of R are decremented by
two.

PO R,A(X) Pop halfword into core

if X = 0 then (A) - ((SR) . (R)) else (A + (X)) - ((SR) . (R))

(R) - (R) - 2

POR R,X

(X) - ((SR).(R))

(R) - (R) - 2

Pop halfword into register

POS R,A(X)

((SX).IA + (X)

(R) - (R) - 2

Pop halfword into stream

)- ((SR).(R))

Pop Byte

A halfword is fetched from the stack named by SR at the location
specified by R. The low eight bits of this halfword are stored in
the location indicated by the second field. Then the contents of R
are decremented by two.

POB R,A(X) Pop byte into core

if X = 0 then (A) - ((SR).(R)L - _) else

(A + (X))- (

(R) «- (R) - 2

(SR).(R) 8-15'

39

POBR R,X

(SR).(R)

- 2

Pop byte into register

(X8-15> - (8-15'

POBS

((SX).

R,A(X)

A + (X)

Pop byte into stream

8-15>- < (SR).(R)L_15)

(R) - (R) - 2

40

SECTION VIII

THE CONTROL STACK

Each job is provided with a control stack which is used to hold
information about the environment. A user may save the contents of
a register, stream register or condition instruction by means of a
"push into control stack" (PUC) instruction. The "pop from the con-
trol stack" instruction (POC) restores information entered in the
control stack by a PUC.

The only other instructions which affect the control stack are
the CALL and RETN instructions. These instructions are defined in
the next section. CALL leaves a record of seven halfwords, called
the activation record, in the control stack. This means that the
control stack contains a running history of the job. Some programs
are interested in using this history — for example, debugging aids.
Such programs may use the control stack as a stream. This can be
done by picking up the name of the control stack from location
CSNAME in the job area. The pointer to the top of ^he control
stack is also needed. The stream page of this pointer is in
CSEXT^ .,; the low part of the pointer is in CSREGQ 1C. 0—7 o-lj

Stack overflow and underflow are recognized for all operations
on the control stack. In addition, pseudo overflow is recognized
for the control stack.

1. True overflow or underflow: If during the course
of a control stack instruction, true overflow or
underflow occurs, then SAVREGj is turned on, the
"stack overflow/underflow" bit is turned on, and
the instruction becomes a NOP.

2. Pseudo overflow occurs if during the interpretation
of a PUC or CALL, the last page of the control stack
stream is entered. In this case SAVREGQ is turned
on and the "stack overflow/underflow" bit is turned
on, but the execution of the instruction is con-
tinued.

In the descriptions of control stack instructions which follow,
it is assumed that underflow and overflow do not occur.

41

CONTROL STACK INSTRUCTIONS

Push into the Control Stack

It

PUC N

The format of PUC is different from that of any other instruction,
is a short instruction:

0 7 8 15
5 2 N

N is the 8-bit address of the halfword in the job area which is to
be saved. N must be the address of a general register, stream
register or (part of a) condition instruction. These are all grouped
together in the bottom of the job area. If N is not an allowable
address, which is true if N > 50, then the microprogram will not
execute the PUC. It becomes a NOP.

If N is legal, first the halfword pointed to by N is pushed
into the control stack. Then a control word equal to N*2 is pushed
in. We have

data

to
unused N*2

7 8 15

••-top of control stack
before PUC

•-top of control stack
after PUC

The condition code is not changed.

Pop from Control Stack

POC

The halfword in the top of the control stack is examined. If
bit 15 = 1, then the top record in the control stack is an activation
record (see CALL) rather than a PUC record. In this case the POC has
no effect, but the carry bit in the condition code is turned on.

42

If bit 15 is off, then the top record in the control stack is
a PUC record. This means bits 8 to 14 of the top halfword contain
the address in the job area in which the data should be stored.

control stack -»
pointer after POC
control stack _•
pointer before POC

data
unused N*2

This data is fetched (from the next word in the control stack) and
Stored in the correct place. Recall that N is the address of a
general register, stream register or (part of a) condition in-
struction. If N is the address of a stream register, then the
effect of the POC instruction on N is precisely the same as if
a "load stream name" instruction were being used to set the stream
register at N. This means, if

(N) = data

then nothing further is done, but otherwise the page referred to by
the extension of the stream register at N is aged and then

(N)— data.

If N is the address of a general register or condition instruction,
then

(N) •- data.

The effect of POC on the condition code is:

C [VIGIL
1_ Top record in Control Stack is an activation record,

Top record in Control Stack was a PUC record.

POC does not affect the V, G or L bits.

Programmer's Note: POC is defined so that a user can restore the job
area without having to count the number of PUC's. Instead he performs

A POC
BFC 8,A(0) (see next section)

The branch falls through when the activation record is reached.

43

SECTION IX

PROCEDURES

Procedures reside in streams, one procedure per stream. Procedure
streams have the following format:

bytes 0-1 alternate name for job in job area 0.

bytes 2-3 alternate name for job in job area 1.

bytes IE - IF alternate name for job in job area F.

bytec 20 - 23 pointer to control information for procedure.

bytes 24 - FFFF body of procedure; the first location of the
procedure is at location 24.

An alternate name is the stream name of a procedure stream. Al-
ternate names have the following use. Suppose a job, job n, wishes
to use an alternate representation of a system procedure, say SQRT,
in such a way that even system routines which it calls will use its
version of SQRT. Other jobs running simultaneously may also refer
to SQRT; these jobs will want the original version of SQRT. Both
requirements are satisfied if job n sets halfword 2n in the procedure
stream containing the original version of SQRT to the stream name of
the procedure stream containing its version of SQRT. This binding
may only occur at execution time and must be undone when job n stops
running. A zero in halfword 2n means there is no alternate name for
job n.

The pointer to control information is large enough to hold an
entire stream address. What the control information is and where
it is stored will be defined by software.

Jobs under Venus are almost always running from a procedure (in
stream mode with COND.. s on). The name of the procedure which is
running from a job area is stored in JSTRNM in that job area. When
this job is the running job, the core address of the next instruction
to be executed is kept in the micro-registers. When the job is not
running, this pointer is kept in PC in the job area. In either case
the number of the stream page containing the next instruction to be
executed is kept in ICSTRP in the job area. This stream page is
locked in.

44

In addition to this page, one other procedure page may be locked
in. This is called the alternate procedure page. The alternate pro-
cedure page is the page of the procedure referenced immediately before
the current page. The number of this page and the number of the core
page containing it are stored in JEXT in the job area. JEXT is like
any stream register extension: if the core page equals zero, this
indicates no page is locked in.

The stepping of the instruction counter in stream mode may cause
a page fault within the procedure stream. When the microprogram de-
termines that a new procedure page may be required, which would happen
as the result of a branch instruction, it compares the new stream
page, SP, with the current stream page, SP/-,. If these pages are the
same, there is no difficulty. If they are different, or if the in-
struction counter has run over the top of the current stream page, the
microprogram compares the new stream page with the alternate stream
page, SPA. SPA is stored in JEXT:

(JEXT) SPA CPA

If

CP. ^ 0 A SP = SPA, A A

then the current and alternate procedure pages are exchanged. This
means:

1) (JEXT) «- spc current core page

2) (ICSTRP) *• SPA A

3) The new core location is stored in the micro-registers.
No page swapping is required in this case.

If

CP = 0 V SP # SP ,
A A

then the alternate procedure page is aged, and the current procedure
page becomes the alternate procedure page:

(JEXT) *- spc current core page

45

Then the new stream page is located (and possibly fetched from the
disk). Finally,

(ICSTRP)— SP

and the new core location is stored in the micro-registers.

Two instructions, CALL and RETN, are supplied for transfer of
control between procedures. Branch instructions only transfer con-
trol within a procedure.

BRANCH INSTRUCTIONS

The result of executing a branch instruction in Venus 'ersnds on
the mode in which the job is running. Jobs in Venus usually run *.n
stream mode, but occasionally a job will run in core mode. Bit 15 of
COND in the job area tells what the mode is. If bit 15 in COND is
off, the branch will be to a location in core.

If bit 15 in COND is on, then the job is in stream mode. The
branch will be to another location in the same stream in this case;
in other words, the branch goes to another location in the same pro-
cedure. Control cannot be switched from one procedure to another by
means of a branch instruction.

Branch instructions do not affect the condition code. However,
some branch instructions test the condition code. In these instructions
the first field is a 4-bit mask, M. This mask is compared with the
condition code. The four bits of the condition code are arranged:

condition code - | C) V |G |L.

Therefore, M- is compared with C, M.. with V, M„ with G and M_ with L.

Branch on True Condition

A logical "and" is performed on the 4-bit mask M specified in
the instruction and the condition code. If the result is non-zero,
which means at least one of the conditions being tested is on, then
the branch is taken. Otherwise the next instruction is executed.
The second field defines the branch address (depending on the class
of the instruction). This address is interpreted according to the
value of bit 15 of COND.

46

BTC M,A(X) Branch on True Condition

branch address = if X = 0 then A else A + (X)

BTCR M,X Branch on True Condition

branch address = (X)

Programmer's Note: If M = 0, then BTC and BTCR areNOPs.

Branch on False Condition

A logical "and" of the mask M and the condition code is performed.
If the result is zero, which means all conditions being tested are off,
then the branch is taken; otherwise the next instruction is executed.
The second field defines the branch address. This address is inter-
preted as being in the procedure stream if bit 15 of COND is on;
otherwise it is interpreted as being in core.

BFC M,A(X) Branch on False Condition

branch address = ±f_ X = 0 then A else A + (X)

BFCR M,X Branch on False Condition

branch address = (X)

Programmer's Note: If M = 0, then BFC and BFCR are unconditional
branches.

Branch and Link

First the current instruction counter, which is a 16-bit pointer
in core or within the procedure stream, depending on COND , is saved
in R:

(R)*— current instruction counter.

Then the branch is taken to the branch address defined by the second
field. The branch address is interpreted according to the value of
bit 15 of COND.

47

BAL R,A(X) Branch and Link

branch address = ±f_ X = 0 then A else A + (X)

BALR R,X Branch and Link from Register

branch address = (X)

Branch on Index High

Prior to the execution of this instruction:

(R) = 16-bit count

(R + 1) = 16-bit increment

(R + 2) = 16-bit limit.

First of all

(R) - (R) + (R + 1).

Then (R) is compared with (R + 2). If (R) < (R + 2), the program con-
tinues in sequence. If (R) > (R + 2), then the branch is taken to the
branch address specified by the second field. The branch address is
interpreted according to the value of bit 15 of COND.

BXH R,A(X)

branch address =

Branch on Index High

if X = 0 then A else A + (X)!

BXHR R,X

branch address = (X)

Branch on Index High

48

Branch on Index Low or Equal

Prior to the execution of this instruction:

(R) = 16-bit count

(R + 1) = 16-bit increment

(R + 2) = 16-bit limit.

First of all

(R) - (R) + (R + 1) .

Then (R) is compared with (R + 2). If (R) > (R + 2), the program con-
tinues in sequence. Otherwise, if (R) < (R + 2), the branch is taken
to the branch address specified by the second field. The branch
address is interpreted according to the value of bit 15 of COND.

BXLE R,A(X) Branch on Index Low or Equal

branch address = if X = 0 then A else A + (X)

BXLR R,X Branch on Index Low or Equal

branch address = (X)

CALL AND RETURN INSTRUCTIONS

Call Procedure

CALL A(X)

CALL is the instruction which passes control from the present
procedure to a new one. The name of the new procedure is given by
the second field:

Name = I if X = 0 then A else A + (X)

49

CALL has two primary tasks to perform: it must save a snapshot
of the present environment in the control stack, and then it must
start the new procedure. This snapshot is called the activation
record:

control stack
•-pointer before
CALL (JSTRNM)

(SRI)
old instruction counter

(RD
(R9)

unused

condition
information

job
number

condition
code

condition
mask

7 8 15

•-control s ack
pointer after
CALL

Activation Record

The contents of JSTRNM, SRI, Rl and R9 are picked up from the job
area. The old instruction counter is the stream address of the
instruction after the CALL. The job number and condition code are
taken from the micro-registers.

The condition information given depends on whether the CALL
being executed is a condition instruction. If not,

MASK * 2 AFF V 1. condition information =

If the CALL is a condition instruction, then the condition information
comprises 8 bits of the form: zero to seven ones followed by zero to
seven zeros followed by a one; for example,

11100001.

If the condition information is compared with MASK, then its left-
most zero is in the position in the condition mask of the condition
which caused the interrupt (in the example, "stack overflow/underflow")
unless the "illegal stream instruction" interrupt is being executed.
In this case, the condition information contains all ones. In
addition, when the CALL is a condition instruction, the condition
mask in the job area is set to

(MASK)— (condition information) A (MASK).

50

This means that the interrupt being honored and all lower priority
interrupts are disabled for the new procedure.

The CALL instruction also turns on the "call interrupt" bit
unless it is the "call interrupt" instruction.

Finally, to start the new procedure, the present procedure page
and the alternate procedure page are aged and JEXTfi_1_ is set to
zero. Then the first page of the new procedure is located (and fetched
from the disk if necessary). If the nth halfword of this procedure is
zero, where n is the job number, then the new instruction counter is
set to point to location 24 (hex) of that procedure. If the n"1 half-
word is non-zero, then it contains the name of another procedure. The
first page of this procedure is located and the instruction counter
set to location 24 (hex) of this procedure.

The condition code is not affected by the CALL instruction.

Return from Procedure

RETN R,A(X)

The first thing the RETN instruction does is to search down the
control stack for an activation record. One word is popped from the
control stack and the low bit examined to determine if it indicates
return information (bit 15 • 1). If not, a PUC record has been found,
and it must be skipped. The next word is also popped, bits 4 and 5
of BITS are turned on, and the RETN is interrupted to permit the
channel to function. Then the search for the activation record is
continued.

When an activation record is found, it is used to restore the
environment at the time of the CALL. The condition mask, MASK, is
restored to its previous value. The condition information is examined;
if the CALL was caused by an "every instruction" interrupt, the "every
instruction" bit in ON is turned off. The condition code is set to
its old value. Rl and R9 are set to the values in the stack. SRI
is compared to the value in the stack; if the old and new names do
not match, then the current contents of SRI are aged and the old
name is restored.

51

SECTION X

MULTIPROGRAMMING AND SEMAPHORES

Venus is a multiprogramming system supporting up to sixteen jobs
running concurrently. However, for the most part, jobs running under
Venus need not be concerned with the fact that other jobs are also
running. There is interaction between two different jobs only if the
jobs desire it.

The question remains of how control is transferred from one job
to another. Although there is a limited time-slicing capability in
Venus, the primary reasons for a new job to start running are:

1. The old running job is temporarily unable to proceed, or

2. Some other job with higher priority than the running job
is now able to proceed.

The mechanism which allows a job to stop .running and then later starts
it running again is provided by semaphores*.

Semaphores are a special kind of data provided in Venus. They
are used to control the sharing of resources and to permit the syn-
chronization of concurrent processes. One semaphore is associated
with each such resource or synchronization.

A semaphore is a seven-bit signed integer counter. Attached to
each semaphore is a queue. The queue hangs from an eight-bit pointer
which is stored in the same halfword as the semaphore:

0 7 8 15
halfword = |_ pointer | semaphore

t
sign bit

This halfword may be located in core or in a stream.

* Dijkstra, E. W., "The Structure of the 'THE'-Multiprogramming
System", Communications of the ACM, Vol. 11, No. 5; May 1968.

53

If the value of a semaphore is non-negative, then the attached
queue is empty. In this case the pointer equals 1. If the semaphore
is negative, then the queue is represented by a chain starting at the
attached pointer and going through the LINK registers in the job areas.
The pointer equals the core page number of some job area. In this job
area the LINK register either equals 1, meaning the queue stops there,
or it equals the page number of some other job area. In addition, the
absolute value of the semaphore equals the number of jobs on the queue.

Only two instructions may be used to manipulate semaphores. These
are the P and V instructions, also defined by Dijkstra. An example of
the use of P and V for controlling sharing of a resource is given here.
Suppose the console teletype is shared among the jobs. If a job wishes
to use it, it calls a system program. Before using the console te. s-
type, this program performs a P on the semaphore controlling its use.
By the time the instruction following the P is executed, the program
is assured that it is the sole owner of the console teletype. It then
proceeds to use it for a limited time (say one message and one response)
and, when finished, releases it by performing a V on the same semaphore.

A semaphore used to control the sharing of a resource is called
a public semaphore by Dijkstra. Such a semaphore should be initialized
to 1 (and its attached pointer also to 1). A job which performs a P
on a public semaphore must later perform a V on it.

Semaphores used for synchronization are called private semaphores
by Dijkstra. They are initialized to either 0 or 1 (and the attached
pointer initialized to 1). If a semaphore is initialized to 0, then
a V must be performed on it before a P can be concluded on it. Private
semaphores differ from public ones in that different jobs may perform
the P and V. The most common use of private semaphores is to syn-
chronize a job with its I/O.

Jobs in Venus are always in one of three states. A job is either:

1. The running job.

2. Unable to run. In this case it has performed a P on some
semaphore and is waiting for a V.

3. Ready to run. In this case it is waiting on the JOBSEM
(location A0). The JOBSEM is organized just like a sema-
phore, but P's and V's must never be performed on it.

Each job in Venus has a priority. This priority is assigned by soft-
ware and stored in PRIOR in the job area. Whenever the microprogram
must choose which job to remove from a queue, it will select the one
with highest priority; if several jobs have the same priority, then
the one which has been on the queue the longest is selected.

54

Two operations are used to describe P and V.

1. "Job J is added to the queue" means

begin

(J*1000 + LINK) — (pointer);

(pointer) «- J*10

end

2. "A job J is unqueued from the nonempty queue" means

begin

j - (pointer0_3);

L —J;

for (L*1000 + LINK) ^ 1 do begin L — (|L*1000 + LINKL);

if (L*1000 + ERIOR) > (J*1000 + PRIOR) then J — L

end
end

P AND V INSTRUCTIONS

P and V almost completely define the flow of control from job
to job in Venus. V often has the effect of adding a job to the
JOBSEM. P may cause the number of jobs on the JOBSEM to be reduced
by one. When there are no jobs on the JOBSEM and a P is performed
on a non-positive semaphore, the microprogram enters the idle loop.
P and V do not change the condition code.

P of Semaphore

The semaphore specified by the second field is decremented by 1:

(semaphore) «— (semaphore) - 1.

If the result is non-negative, control proceeds to the next instruction.

55

If the result is negative, two things happen. First, the job is
suspended and added to the queue attached to the semaphore (operation 1).
Next the microprogram looks for a new running job. If the JOBSEM is
empty then the idle loop is entered. Otherwise a job is unqueued from
the JOBSEM (operation 2) and becomes the running job.

The two versions of this instruction differ only in the computation
of the address of the halfword containing the pointer and the semaphore.

P A(X) P of semaphore in core

address • if X • 0 then A else A + (X)I

PS A(X) P of semaphore in stream

address = (SX).|A + (X)|

V of Semaphore

The semaphore specified by the second field is incremented by one:

(semaphore) *- (semaphore) + 1.

If the result is positive the instruction is complete.

If the result is non-positive, a job, J, is unqueued from the
queue attached to the semaphore (operation 2). If the priority of J
is greater than the priority of the running job, then the running job
is added to the JOBSEM (operation 1) and J becomes the running job.
Otherwise J is added to the JOBSEM (operation 1).

The two forms of V differ only in the computation of the address
of the halfword containing the pointer and semaphore.

V A(X) V of semaphore in core

address = if X = 0 then A else A + (X)

VS A(X) V of semaphore in stream

address = (SX).|A + (X)l

56

SECTION XI

THE MICROPROGRAMMED MULTIPLEX CHANNEL

Input/Output in VENUS-is handled primarily by means of the micro-
programmed channel. The channel is started by execution of a "start
I/O" instruction (SIO or SIOR). These instructions will be described
in the next section. MSW, (location A6) must be on if the channel is
to run.

A job in VENUS may run simultaneously with its I/O. After giving
the "start I/O" instruction it continues to run. When it needs to know
that its I/O is finished, it performs a P on its IOSEM (located in the
job area). The normal sequence of instructions is like:

SIO R,A(X)

JOBA R R i* o

P IOSEM(R)

When the job reaches the instruction after the P, this means some other
process has performed a V on the IOSEM. If the job is only running one
device, then it can assume the I/O is finished. If it is running more
than one device, then it must determine which device performed the V
(by consulting TSTAT in the DSW of the device — explained later).

The "start I/O" instruction causes the execution of a program of
channel commands. This program is located in core, and is responsible
for initializing the Device Status Word (DSW) for the device on which
I/O is to be performed. For example, it initializes the (in-core)
location of the buffer, the number of byteL, to be transferred, and
the type of I/O to be performed. Much of the initialization is
device-dependent. Finally, the channel-command program starts the
I/O and transfers control to the channel.

Between the execution of the instructions, the microprogram checks
to see if any I/O device requires attention (see Figure 3). If any
does, the channel starts to run. The channel will handle the I/O
transfer according to the information in the DSW.

57

execute
instruction

iny device
wants

attention

\

no yes

call the
channel to
service the
device

Figure 3. How the Channel Fits into
the Microprogram

58

When the channel determines that the transfer is complete, it
does one of two things: either it performs a V on the IOSEM of some
job or it returns to the channel-command program at the instruction
after the one which transferred control to the channel.

The DSWs are stored in the DSW table (in-core). This table is
indexed by device number. A pointer to the start of this table is
stored in NOVLIS (BO). Each DSW contains 16 bytes of information.

16 bits COM

16 bits LOC

16 bits CNT

16 bits STAT

contains the core address of the next channel
command.

contains an address in the buffer.

contains the number of bytes to be trans-
ferred.

The status of the device at each attention
is 'or'ed into the left byte and its com-
plement into the right byte if the channel
is instructed to do so.

16 bits ADD

4 bits TSTAT

contains the core location of a 16-byte
table; each bit in the table corresponds
to one of the 128 7-bit ASCII characters.
Input characters may be checked to see if
the corresponding bit in the table is set.
This option can be used when reading to
terminate I/O or to skip characters.

Transfer status, which has the format:

bit 0 INUS is on if the device is in use.

bit 1 SPUR is on if a spurious attention
has occurred (attention requested
while INUS • 0).

bit 2 VR is on if the last transmission
for this device ended with a V
on the regular job and a spurious
interrupt did not occur.

bit 3 VS is on if the last transmission
for this device ended with a V
on the supervisor.

59

12 bits

16 bits

4 bits

4 bits

WTD

MSK

REG

SUP

What To Do, which actually controls the
transfer (described later).

MSK may be compared with the status during
a data transfer and the transfer terminated
if a match is detected.

The job number of the job controlling the
device (the regular job).

The job number of the supervisor. The
supervisor job number is set by software.

COM LOC CNT STAT ADD WTD MSK
££ ^

'-s'

t
TSTAT

t t
REG SUP

The DSW

THE CHANNEL-COMMAND PROGRAM

At the time the "start I/O" instruction is given, the number of
the job giving it is stored in REG. This is the only automatic
initialization done by the microprogram. The channel commands must
initialize the DSW so that the data transfer may proceed correctly.
Channel commands have the following format:

bits 0-2

bit 3

bits 4-15

bits 16 - 31

opcode

X

WTDC - The What To Do in the Command

60

All eight possible opcodes are recognized. They are:

LCNT 000 A is stored in CNT. This command initializes the
count of the number of bytes to be transferred.

LADD 001 A is stored in ADD. This command initializes the
start of the ADD table (in-core). The ADD table
is only used when the type of transfer is READ
(explained later).

LLOC 010 A is stored in LOC. This command initializes the
location of the buffer (in-core).

LMSK 011 A is stored in MSK. This option is used if the
I/O transfer should be terminated based on status
as well as on CNT - 0.

CHOC 100 The right byte of A is sent to the device as a
command. This command starts the device going.
The value of A is device-dependent.

BRCH 101 An unconditional branch in channel to A, which must
be a core location.

BNZC 110 If CNT ^ 0, the next command is taken at A; other-
wise the program continues in sequence. A must be
a core location.

TEST 111 A is compared with STAT. If A A STAT = 0, then the
next command is skipped; otherwise the next command
is taken.

Some combination of the first four commands is given to initialize
the DSW. Then CHOC is used to start the device going. At about the
time that CHOC is given, the channel-command program will have done as
much as it can prior to data transfer. Therefore, it is necessary to
discontinue running the channel-command program, while leaving infor-
mation about the transfer for the channel. This is accomplished with
the X bit and the WTDC. The WTDC contains all information about the
kind of transfer, the reasons for termination, and the type of ter-
mination. If X is on, the WTDC will be stored in WTD in the DSW, and
the interpretation of commands will be stopped. TSTAT in the DSW is
set to 8 (INUS on). At this point STAT will be cleared if LAST (in
WTDC) is off.

61

When the channel terminates a transfer, it returns control either
to a job (through a V), or to the channel-command program. This per-
mits the channel to read many pieces of data without communicating with
the job. Two of the channel commands can be used to see why the pre-
vious transfer terminated (BNZC and TEST). The channel-command program
will perform a V if X is off and one of the V bits in the WTDC on.
The V may be performed on the IOSEM belonging to either the regular
job or the supervisor. Otherwise the channel-command program can go
on to initiate the next transfer. Figure 4 diagrams the execution of
channel commands.

THE CHANNEL

Each time the channel is entered because a device wants attention,
it first checks the INUS bit in C. If this bit is off, then a spurious
attention has occurred. SPUR is turned on; if VS is on it is unchanged,
but VR is turned off:

(TSTAT) *• (TSTAT) A l v 4.

If INUS is on, the channel decides what to do by consulting the WTD
stored in the DSW for the device. The WTD has the following format:

bit 0 VREG If this bit is set, when the I/O transfer is
complete, the channel will perform a V on the
IOSEM of the job controlling the device.

bit 1 VSUP If this bit is set (and VREG is off) , when the
I/O transfer is complete, the channel will
perform a V(IOSEM) of the supervisor.

bit 2 SIFM Stop if match; only meaningful if CODE (below)
is READ.

bit 3 MATCH

bit 4 OR

bit 5 LAST

Only meaningful if CODE is READ.

Only meaningful if CODE is READ.

If this bit is off, the status of the device
and its complement will be 'or'ed into STAT
each time the device requires attention.

bit 6 NSNC No store, no count. Only meaningful if CODE
is READ.

62

"start I/O" Instruction
from Job J

(REG) *- J;
[COM) *- address
defined by
second field

Channel

-^1
do command at
COM; set COM
appropriately

X on

(j /VSUP or
VREG on

No

Jtefi.

(WTD) - (WTDC]

Yes

terminate
transfer LA.ST on

No

(STAT) - 0

Yes

(TSTA.T) - 8

channel-
command
program
finished

Figure 4. Execution of Channel Commands

63

bit 7 STFM

bits 8, 9 CODE

bit 10 STNM

bit 11 EOM

Store if match. Only meaningful if CODE is
READ.

CODE tells the channel what type of data trans-
fer is taking place. It will be described below.

Store if no match. The meaning of this bit
depends on the value of CODE.

End of message. The meaning of this bit depends
on the value of CODE.

0 12 3 4 5 6 7 8.9 10 11
|VREG VSUP SIFM MATCH OR LAST NSNC STFM CODE STNM EOM |

The WTD

Types of Termination

Three types of termination of a particular I/O transfer are
available to the channel (see Figure 5). If VREG is on, it performs
a V on the IOSEM of the regular job. TSTAT is set to 2 (VR on). If
VREG is off and VSUP is on, it will perform a V on the IOSEM of the
supervisor and set TSTAT to 1 (VS on). If both VREG and VSUP are
off, the channel transfers control to the channel command in the
location stored in COM in the WTD. This will be the command fol-
lowing the one in which the X bit was on.

Reasons for Termination

There are four reasons for termination.

1. CNT goes to 0. This reason for termination is checked
automatically.

2. The device gives a status, S, such that

(MSKQ_7) A S i o v (MSKk) A S \ + 0 ,

where S means the one's complement of S. The transfer
can terminate for this reason only if the EOM bit is on
in the mask, and the type of transfer is not CLOCK.

64

(TSTAT) - 2;
do V on IOSEM
of REG

(TSTAT) «- 1;
do V on IOSEM

of SUP

start channel
command

program at
COM

Figure 5. Terminate Transfer

65

3. A terminal character is read. A transfer may be
terminated for this reason only if the type of
transfer is READ. The definition of terminal char-
acters is given by the ADD table.

4. Transfer termination on the first interrupt will
occur if the type of transfer is CLOCK and EOM is
on.

Types of Transfers

The type of transfer is indicated by the value of CODE in the
WTD. Prior to the interpretation of CODE, if LAST is off, the status
of the device will be 'or'ed into the left byte of STAT and its on 's
complement into the right byte of STAT.

CLOCK (00): A device which is used as a clock may either
be used for time-slicing or to wake up a job after some
number of ticks. Only the EOM bit and the STNM bits mean
anything for this type of transfer.

If EOM is on, the transfer is automatically terminated
without doing anything else (reason 4).

If EOM is off, the first thing the channel does is to
increment a counter by 1. This counter is comprised of 3
bytes; LOC points to the leftmost byte.

Next CNT will be decremented by 1. If the result is
non-zero, the interrupt is finished. If CNT = 0 and STNM
is off, time-slicing will be performed. This means the
interval is reset from TIMCNT*

CNT - TIMCNT,

and the time-slicing routine is entered. This action does
not constitute a termination of transfer, although the
interrupt is finished. If CNT = 0 and STNM is on, the
transfer will be terminated (reason 1).

Prior to interpreting the other three CODES, if the EOM is on
the channel will compare the device status with MSK. If any bits
match, it terminates the transfer (reason 2).

66

WRITE (01): The channel transfers the next byte from the
buffer to the device. It increments LOC and decrements
CNT. When CNT goes to 0, the transfer is terminated
(reason 1).

READ2 (11): This CODE is supplied to handle the card
reader, which produces two bytes at once. Two bytes
are read from the device. They are stored in the buffer
if STNM is on. LOC is incremented and CNT decremented
after each byte; when CNT goes to 0, the transfer is
terminated (reason 1).

READ (10): READ is the most complicated CODE. It has
an option which allows the user to terminate the transfer
on the recognition of specified characters. The user may
also skip specified characters (read them without putting
them into the buffer). Both of these features make use
of the ADD table and are enabled by the MATCH bit. In
addition, characters which are stored in the buffer always
have their first bit 'or'ed with OR. This permits the
user to receive a consistent 8-bit ASCII representation
of a character even from a device (like a teletype) which
uses bit 0 as a parity bit.

The first thing READ does is to read a character,
and terminate on status if indicated. Otherwise, if
MATCH is on, the bit in the ADD table corresponding to
the character just read is fetched. The ADD table con-
tains 128 bits or 8 halfwords of information. The
character just read is broken into 2 hexadecimal digits.
The left digit (with high order bit ignored) tells the
halfword. The right digit tells the bit within the
halfword. For example, if the character is a "carriage
return" (8D), then bit D (i.e., bit 13) of halfword 0 of
ADD is used. If this bit is on, a match is considered
to have occurred. The other bits in the WTD all refer
to this match:

STFM - store if match

STNM - store if no match

SIFM - stop if match

NSNC - no store, no count

67

If a match occurred, then STFM controls the handling
of the character; otherwise STNM is in control. Three
options are possible:

1. Store character just read. The character just
read, C, (with bit 0 'or'ed with OR) is stored
in the location indicated by LOC. LOC is in-
creased by one and CNT is decreased by one.
This case occurs if:

MATCH A ADDr A STFM v MATCH A ADD, A STNM

2. Skip character just read but decrement CNT.
The only action is that CNT is decreased by
one. This occurs if:

NSNC A MATCH A ADD A -• STFM

A-iSTNM

MATCH A ADD,

Skip character just read and do not decrement
CNT. No action is taken. This occurs if:

NSNC A [MATCH A ADD A

i STNM

STFM v hi MATCH A ADD,

Two reasons for termination are recognized for
READ (in addition to terminate on status). They are:
CNT goes to 0 (reason 1) and recognition of terminal
character (reason 3). Transfer will terminate if

CNT = 0 V I MATCH A ADDC A SIFM

Figure 6 is a flow chart of channel device-interrupt handling.

68

INUS on

No Yes

spurious
interrupt.
(TSTAT) - LAST on

No

update
STAT

Yes

EOM on

No

increment
counter at

LOC;
(CNT)-(CNT)-1

(CNT) -
(TIMCNT)

TSLICE

Yes

interrupt
finished

read 2
bytes

(CNT) -
(CNT) - 1

(CNT) -
(CNT) - 2

1*-

(CNT) = 0

Yes No

read 1 byte
and handle as
explained in

cection

MATCH A
ADDC A SIFM\

No Yes

interrupt
finished

terminate
transfer

Figure 6. Channel Interrupt-Handling for a Device

69

SECTION XII

INPUT/OUTPUT

Input/Output in Venus is handled primarily by the channel, which
is started by a "start I/O" instruction (SIO or SIOR). In addition,
Venus supports a few other I/O instructions. Some devices are started
by these other instructions before the "start I/O" instruction sets
the channel in motion. In general, non-channel I/O should not be
used. It is not truly compatible with Venus.

CHANNEL INPUT/OUTPUT INSTRUCTIONS

The second field defines the core address of the first command
in a channel-command program. The two versions of the instruction
differ only in the computation of this address. R contains the
number of the device on which the I/O is to be performed:

device = (R)8_15«

SIO R,A(X) Start I/O

address = if X = 0 then A else A + (X)

SIOR R,X Start I/O from register

address = (X)

The condition code is not affected by these instructions.

NON-CHANNEL INPUT/OUTPUT INSTRUCTIONS

Read Data

The right byte of R contains the number of the device being
addressed:

device - (Ro_15)•

70

One byte is read from this device and stored in the location which
is defined by the second iield. The condition code becomes:

Device responded.
Device did not respond,

c V G L
0 0 1 0
0 1 1 0

RD R,A(X) Read data into core

(if X = 0 then A else A + (X)) — (device)

RDR R,X Read data into register

(Xg_15) — (device)

(X0-7} " °

Write Data

The right byte of R contains the number of the device being
addressed:

device = (R8_15)•

The second field defines an 8-bit value. This value is written to
the device being addressed as data. The condition code becomes:

Device responded.
Device did not respond.

c V G L
0 0 1 0
0 1 1 0

WD R,A(X) Write data from core

(device) — if X - 0 then (A) else (A + (X))

WDR R,X

(device) «- (Xg_15)

Write data from register

71

Output Command

The right byte of R contains the number of the device being
addressed:

device = (Rg_15)•

The second field defines an 8-bit value which is sent to the device
as a command. The condition code becomes:

c V G L
0 0 1 0
0 1 1 0

Command has been sent.
Device did not respond,

OC R,A(X) Output command from core

(dcvi-.«) — I if X - C *hen (A) else (A + (X))

OCR R,X Output command from register

(device) - (Xg_15)

Sense Status

The right byte of R contains the number of the device being
addressed:

device = (R8_15)•

The status of this device is read and stored in the location specified
in the second field. The condition code is replaced by the 4 low bits
of the status:

c V G L
0 1 1 0
1 0 0 0
0 0 1 0
0 0 o 1

Device did not respond.
Device busy.
End of medium.
Device unavailable.

SS R,A(X) Sense status into core

(if X = 0 then A else A + (X)) — status

72

SSR R,X Sense status into register

(X„ . _) *- status

(X0-7) ~ °

73

SECTION XIII

LEVEL 1

Streams in Venus are virtual memories. The microprogram performs
the mapping between stream addresses and core address. Furthermore,
streams are paged in Venus between core and the disk. Streams are
divided into 256-byte pages and so is core memory, so that one stream
page fits in one core page. In the course of converting a given
stream address into a core address, the microprogram may discover
that the desired stream page is not in core. This can happen at
different places during the execution of an instruction. In this
case, the microprogram starts a software routine, the Page Tault
Handler (PFH), which will fetch the desired page from the disk.
When finished, the PFH returns to the microprogram at the place
where the page fault was discovered — that is, into the middle
of the execution of an instruction.

The PFH must run in core rather than in stream; obviously its
running must cause no page faults. Its first instruction is at
PGFLT (location 109E). It makes use of an in-core table, the Core
Page Table (CPT), to determine which core page should be assigned to
hold the new stream page. It also uses the selector channel and the
disk to move pages between core and the disk. Thus it owns two resources:

1. Core Page Table

2. Selector channel (and disk).

Software functions other than page-fault handling also must be
performed on the resources of the PFH (for example, creating a
stream). All the functions using these resources are grouped to-
gether and comprise the level 1 programs. Level 1 programs as a
group are non-reentrant; entry into level 1 is controlled by the
DSKSEM. Level 1 programs other than the PFH are entered by means
of the ELI instruction; they start at LEVEL1 — a different entry
point.

A level 1 program runs from the job area of the job which
caused it to start. The state of the micromachine is saved before
the level 1 program starts running; the level 1 program preserves
the state of the job area. Thus, a level 1 program can run without
disturbing the environment of the job at all.

74

Two instructions, UNQP and DIE, are used by level 1 programs
when they wish to stop running. These instructions may only be
used by level 1 programs. In addition, the ICOR instruction is
used by level 1 programs.

LEVEL 1 INSTRUCTIONS

Enter Level 1

ELI R,A(X)

The second field defines a value:

value = if X = 0 then A else A + (X)

This value is an argument which tells which level 1 program should
be performed; R may hold an argument for this program or may return
a value from this program. After the value of the second field has
been computed, the state of the micromachine is saved in the job
area in MICROSAVE. Micro-registers R3 and R7 contain the value;
micro-register R4 contains R. MASK is also saved in MICROSAVE;
then MASK is set to 0 (all conditions are disabled). The current
value of the instruction counter is saved (micro-registers RO and
Rl), and the instruction counter set to LEVEL1 (location 10A2).

Next a P is performed on the DSKSEM. When this P is complete,
the priority of the job is raised:

(PRIOR) *- (PRIOR) + 80.

This gives the level 1 program the highest priority of all running
jobs, and therefore it becomes the running job immediately. Execution
begins at location 10A2.

When level 1 is entered through a page fault, the micromachine
is saved as described above, but the instruction counter is set to
PGFLT (109E), micro-registers R5 and R6 contain the name of the
desired stream, R7 contains the number of the desired stream page,
and the value of RA saved in TR4R5 tells which stream register caused
the page fault. Then the P on the DSKSEM is performed as described
above.

75

UNQP

UNQP is the instruction which a level 1 program uses when it is
finished and wishes to return control to the program which caused it
to run. UNQP is a short instruction which uses neither field.

First the priority of the running job is reduced to its previous
value:

(PRIOR) *• (PRIOR) - 80.

Then bit 5 of BITS is turned on to indicate that a level 1 program
is returning.

If the queue hanging on the DSKSEM is not empty, a job is
unqueued from this queue. The priority of this job is raised and
it becomes the running job (as explained in ELI). The old running
job is added to the JOBSEM.

If the queue hanging on the DSKSEM is empty, the new priority
of the running job is compared with the priorities of jobs on the
JOBSEM queue. If no job on this queue has higher priority than the
running job, it continues to run. Otherwise, a job is unqueued from
the JOBSEM and becomes the new running job. The old running job is
added to the JOBSEM.

At the time at which the old running job is permitted to con-
tinue running, the micro-registers are restored from MICROSAVE and
MASK is set to its old value. The microprogram continues execution
of the instruction which caused the level 1 program to start running.

UNQP may be used only by a level 1 program.

DIE

DIE is performed by a level 1 program when it wishes to stop
running without returning control to the program which caused it to
run. DIE is a short instruction which uses neither field.

If the queue hanging on the DSKSEM is not empty, a job is un-
queued from the queue. The priority of the job is raised and it
becomes the running job.

76

If the queue hanging on the DSKSEM is empty but the JOBSEM
queue is not empty, a job is unqueued from the JOBSEM and becomes
the running job. Otherwise the idle loop is entered.

DIE may be used only by a level 1 program.

In Core

ICOR A(X)

ICOR is the instruction used by a level 1 program when it wishes
to discover whether a stream page is in core.

If the stream page containing (SX). A + (X)l is in core, the
extension of SX is set accordingly and the C bit in the condition
code is turned off. If the page is not in core, the C bit is
turned on. In either case, the previous reference in the extension
of SX is aged if necessary. The V, G and L bits are all turned off.

ICOR is primarily of use to level 1 programs. It permits them
to make use of the microcode to determine if a page is in core without
triggering a page fault.

77

When the micromachine discovers that the running job must stop
running, it does the following. C0RET1 and C0RET2- comprise a
3-byte counter which is being updated by the clock. The clock only
gives an interrupt when it exceeds more than 8 bits of data. Thus
the current value of the clock (accurate to 1 millisecond) may be
considered the fourth byte of current time. The microprogram forms
this 4-byte counter CTIME and then:

TIME - TIME + CTIME - CURRT This increments running time
of job.

CURRT*- CTIME This sets time of last job change.

In these computations, 4-byte arithmetic with carries is being per-
formed.

Whenever the microprogram leaves the idle loop it performs the
same calculations using IDLET rather than TIME:

IDLET *- IDLET + CTIME - CURRT This increments idle time.

CURRT —CTIME

Thus, jobs will never be charged for idle time.

BOOTS*

BOOTS is a simple microprogrammed core loader for the 1-3.
BOOTS is capable of loading either punched paper tape from the
teletype (or possibly from a high-speed reader) or cards. It will
perform scatter-loads to any part of real memory. A continuous
display of the address currently being loaded and the loaded con-
tents thereof is generated.

* The section on BOOTS is an update of previous work by J. E. Sullivan.

79

Formats

Tape

The tape expected by BOOTS is a standard 8-channel paper tape.
A byte, e.g., "E6" (hexadecimal), is punched HHHNN/HHN where H =
"hole", and the slash represents the sprocket feed holes.

The tape consists of any number of "records", each preceded
by an arbitrary amount of blank tape (sprockets only). A record
is punched as follows:

EE

start address left

start address right

data

EE

F4 or F8

The left and right parts of the start address specified become
the first (16-bit) address loaded by the specified data; data beyond
the first two bytes are, of course, loaded into successive locations.
Two points should be noted: (1) the start address must be even (a
halfword address), and (2) an even number of data bytes (an integral
number of halfwords) must be given in the data — otherwise, the last
byte is simply lost.

In the "data" section, the data byte "EE" is always represented
by the two-byte sequence

EE
F0

This combination counts as one byte in rule (2) above.

80

The terminal code "F4" signals the end of the current record;
the loader immediately begins scanning for the next record. The
code "F8" (or equivalently, "FF") has a similar meaning except that
the processor halts before resuming the scan. This is normally the
terminal code of the "last" record on a tape.

Cards

A byte is read from a single card column in the following format;

Bits Rows

0-3 12-1

4-7 6-9

Rows 2-5 should not be punched on any card read by BOOTS.

Records have exactly the same format as for paper tape (above).
However, one and only one record may appear on a single card. (The
record may begin and end anywhere on the card.) Unlike tape, a
record terminated by an F8 code will cause reading of the input
device to cease as well as the processor operation.

Operating Procedures

Tape

1. The TTY should be on-line, the mode switch on "KT", the
tape reader toggle switch on "STOP".

2. Turn the processor mode switch to "MEMW" and put 02 in
switches 8-15.

3. Initialize.

4. Execute.

5. Put the tape to be loaded in the reader. Flip the toggle
to "RUN". The display should be active while the tape is
loading. The processor (though not the tape) will halt
(wait light on) when a EE/F8 or EE/FF terminal code is
sensed.

6. Flip the toggle to "STOP". To load another tape, go back
to Step 4.

81

Cards

1. The card reader should be ready-to-go, with the "motor"
and "start" buttons on and the deck to be loaded in the
input hopper.

2. Turn the processor mode switch to "MEMW" and put 04
in switches 8-15.

3. Initialize.

4. Execute. The display should be active while the deck
is loading. The reader and processor will stop (wait
light on) when a record containing a EE/F8 (or EE/FF)
code is sensed.

If the card hopper should become empty or the
reader otherwise leave the "ready" state, loading will
resume automatically when the reader is returned to the
"ready" state as defined in (1) above.

5. To load another deck, go back to Step 4.

DISPLAY PANEL

Display Lights

There are two rows of 16 lights each on the display panel. They
are used to display three types of information:

1. Normal display. The upper lights contain the core in-
struction counter. The lower lights contain the number
of the current stream page in positions 0-7, the current
job number in positions 8-11, and the condition code in
positions 12-15.

2. Memory display. The upper lights contain the core memory
address and the lower ones contain the contents of that
memory location.

3. BOOTS display. This is a memory display produced for
each location loaded by the BOOTS loader.

82

Power

The lower of the three push button switches at the lower left of
the display controls power. The light next to it is lit whenever
power is on. Power can be turned off whenever the machine is operating
normally. Power down causes the current core instruction counter to be
stored at PR0R1 (AA) and the job number and condition code at location
PR2(AC).

Initialize

The button immediately above the power button is the initialize
button. Pushing this button initializes all I/O interfaces and the
computer. In addition, the computer starts running at the beginning
of its microprogram. The microprogram tests the upper rotary switch
to determine what it will do. There are four meaningful positions:

1. OFF. This operates the BOOTS loader. The number of the
input device is placed in the right 8 of the row of 16
push-button switches below the display lights. The
initialize and execute buttons are pushed and the device
operated. After loading is complete, the loader may be
run again by pushing the execute button. This button
is directly above the initialize button.

2. Register Display (RD). The instruction counter, job
area number, and condition code are restored to what
they were before the last power down (from PR0R1 and
PR2), and the computer enters the display loop.

3. INST. The instruction counter is restored to what it
was before the last power down and the job area number
and condition code are set to 0. The computer then
enters the display loop.

4. PSW. The instruction counter is restored from the last
power down. The job area number is taken from switches
8-11; the condition code is taken from switches 12-15.
The computer then enters the display loop.

83

Display Loop

Between the execution of instructions, at the same time that it
checks for devices requiring attention, the microprogram checks
whether a display is being requested. A display is requested by
pushing the execute button with the lower rotary switch set to other
than RUN, or by pushing the initialize button with the upper rotary
switch set to RD, INST, or PSW. Such an action causes the micro-
program to enter the display loop. While it is in the display loop,
the wait light above the power light is lit. The microprogram will
resume execution of instructions when execute is pushed with the
lower rotary switch set to RUN or VARI.

The following functions may be performed while in the display
loop:

Reading and Writing Memory

Pushing the execute button with the lower rotary switch straight
down (MEMA) causes the memory location inserted in the switches to
be displayed. After that, whenever the execute button is pushed and
the lower rotary switch is set at MEMR the next higher location is
displayed. With the rotary switch at MEMW, the location being dis-
played is changed to the contents of the switches and the next higher
location is displayed. MEMR and MEMW may be used in any sequence
desired.

The Starting Address

When the lower rotary switch is set at ADRS, pushing the execute
button transfers the contents of the switches to the instruction
counter, makes the normal display, and enters the display loop.

Stopping

When the lower rotary switch is set at HALT, pushing the execute
button causes an entry into the display loop and a normal display.

Running

When the switch is at RUN, pushing the execute button causes
a normal display and, if there is a running job, it is caused to run.
A running job exists if the instruction counter is greater than FF.
Otherwise the machine is in the idle loop.

84

Single Stepping

When the lower rotary switch is set to VARI, pressing the
execute button causes the machine to enter the single state. In
this state, if the knob below the upper rotary switch is in any
position but SNGL, the machine will operate instructions at a slow
rate making the normal display between them. The speed is controlled
by the knob. If the knob below the upper rotary switch points to
SNGL, the microprogram executes one instruction, makes the normal
display, and enters the display loop. The machine will not leave
the single state until the execute button is pushed with the lower
rotary switch in some position other than VARI. Single stepping
will take place only if MSW, (location A6) is set.

THE IDLE LOOP

When the running job performs an instruction which causes it
to stop running (for example, a P instruction), and there is no job
ready to run (the JOBSEM queue is empty), then the microprogram
enters the idle loop. It does this by setting the instruction
counter to a value in core page zero and then entering the display
loop. It will remain in the display loop until the channel per-
forms a V, or until a new job is entered through the display.

85

APPENDIX I

OPCODE MATRIX

The opcode of an instruction consists of the row number in hex
followed by the column number in hex. Thus, LH is B9. Instructions
in rows 2, 5, 8 and C are short. All others are long.

2

3

4

7

8

9

D

E

F

0 1 2 3 4 5 6 7 8 9 A B C D E F

V STB POB STH PO SSN OC P RD

RDR

WD

WDR

SS

STBR POBR STHR POR SSNR OCR SSR JOBA

PS VS STBS POBS STHS POS SSNS

1
1

DIE UNQP PUC POC 1

I

BXLE BAL BTC BXH BFC SIO ELI SET RSET RETN CALL I COR SRHL SLHL SRHA RLH

BXLR BALR BTCR BXHR BFCR SIOR

PU PUB LSN NH CLH OH XH LH LB AH SH ACHJ SCH

PUR PUBR LSNR NHR CLHR OHR XHR LHR LBR AHR SHR ACHR SCHR

PUT PUBI LSNI NKI CLHI OHI XHI LHI LBI AHI SHI ACHI SCHI

PUS PUBS LSNS NHS CLHS OHS XHS LHS LBS AHS SHS ACHS SCHS j

PUP PUBP LSNP NHP CLHP OHP XHP LHP LBP AHP SHP ACHP SCHPi

87

W
O u-i u-i U-I m u~l co co CO CO CO 00 00 r^ r^ r^ r^
< CN CN CM CM CM CM CM CM CM CM <r «tf ~3- ^r <r •<r
P«

I

u o
8 4-1 4J 4J •u u 4-1 4J 4J •u 4J

h HI u U <u oi 01 0) 4* 0> 0)
o z w oo M O0 to 00 00 00 00 OO

o
W M
OT H 0) <u 0) 01 II) 01 0) V 0) 0)
P M w • CO (0 m CO (0 10 03 co

p P P 3 P £3 p p P P

01 01 0) 0)
co co to w
P P P P

9
u

X M
Q
sr.

CLj
<

H
w
pq

a <

a
i
s
I

CJ

5
L)J H H Ed w fe 3 < <d <: < .-1 •-I <!- o- CM CM

|
pq Q h u w a PH o w r^ 00 r^- 00 r^- 00

4)
u

3 0)
XI
01

4-1
CO 1

4) 0) CJ •r-l 01
M 4J o 00 r-l
O cfl h 01 4-1
CJ •r-l a u CO

u
E % B a 01
o p o o 0) 4J

M g u r-l r-i M u co
U-l •~4 U-l 4-1 u-i D

X)
01
4-1 a

•r-l a
0

6
o C d

-o XI XI XI XI 0) CO 01 •r-l •H o o
u U u M u 01 01 y •H 01 M 4-1 4-1 •H •r4
0

i %
u-l

O o M 4-1 o 60 U Vj •r-l 4J 4J

a 15 a O
U

(0
•H

u
a

01 4J
CD

E
o XI

C
XI
C

•r4
XI

•r4
X)

r-l r-1 r-l 1-4 •—1 XI u o o c c

g «0 CO 03 cO cfl E 8 E R U-I o u o o
J= _C A A A O g o 0 CJ CJ

M p M u M t -^ Ol 01 52 >> Ps f> >> >> •4-1 •H u-4 «-i 14-1 S CO CO 0) 0)
«g^ M H U U U •r-l •H >—1 r-l 3 2 w U u u U h XI T3 XI XJ XI rJ rJ cfl cfl l-l
y « c« CO CO c« u H M U U 4-4 U-I 4J 4J

o o O CJ o 0 O O o o XI XI

A -e A A A a | eg cB i c
cfl

C
cfl

c
O

c
O

d
o

d
o

u 4J u 4-1 4-1 r-t *-» r-4 ^-1 r-l

t t t ti *
Cfl co cfl Cfl

A
Cfl
A

A o
c

A
o s

A o
C

x:
u
G i o

c
XI x> "0 XI XI XI X) XI •v X) cfl cfl cfl cfl cfl cfl
XI XJ •v XI XI TJ XI X) XJ XI U r-l u H r-l u
< < < < «< < <S < < < PQ PQ PQ PQ PQ PQ

Bd H S S EB
^ ^ y S5 L^ < < •< <i •< I 9 < S PQ

b
PQ

P<

PQ PQ

U
H
PQ

88

a*
oo oo r- ON ON o o o o O vO LO r^
<r <c <r <r <r m ro en ro tn r» r^ r>» CM

o

Ed
Q
O
O

IS
o

W M

g cu 01 CD 0) 0)
CO CO CO CO CO

c
u

cu
CO

(T) r-i O o <! m in m m in o ^O PQ fl4 o> ON ON ON ON
r-~ 00

•-<
3
tr
o
u

00

CO

cr
0)

r>» pq

<U
U
O
O

|
o
u

14-4

-3

1-1
o

a

cu
4-1

to
•r4
•3

CU

•H

"O
(-4

O

1X4

(U
U
3

-o
CU
o
o
u
3.

4-1

-a
u
o

M
cu
4-1

w
•H
oo
0)
M

1
o
(-1

y-i

-a
u
0

!
a)
I)
(4

4-J
in

§
r4

y-i

TJ
^4
O

m r-~ r~- CS m Q CM

CU

3

u

u
CU

w

x J3
o o a £ a •8 a CU

4-1 §
00 00 S S .-4 r-l .—1 r-4 .-4 (U CU o •H <u

•r4 •H o o co co to « cO M 4-1 o 00)-l
X X T—1 .-4 X X X X X

o
o
o

cfl V4

P-.
<u
>4

4-1
co

X X X X —1 .-i r-4 .-1 r 4 •r4 T3
<u 0) <D CU CD cO co cO n) co 4-1 e CU g e e
-o "3 T3 T3 >-i o o o o O ^-4 rt o £ o o o
c 3 e c 3 •H •H •M •r4 •H o u g u V4 V4

•H •r4 •H •H
CU

b0
O

oO
0

60
O

00
0 O

r-4
<1)

o
.-1

1+4 •r4 y-i 144 4-4

c C c c o P> CU CU cu CU CU
o O o o o (U • 4-1 4-1 4-1 4-1

^ u cu cu a) 0) CU ^-1 0) (U :>> P^ P>N ^
X X XI X a. ^ r4 n >-l S-l i^4 i^4 X X X X X
o o u o <0 co cfl co cO)-t O cS c d c c •-I Pi. a a a. CU OJ o -o T3 X) •v XI
ctf nj rt cO <~> B § 1 6 | CU 4-J X rt cfl cfl CO ns
s-i ^ M ^ co o 0 o o o •r4 C C o o 0 O O o
m pq m pq u a c_> a u CJ O w M *1 •J ^J -1 HJ ,J

pq

Pi

pq

w BSl

3 ri
pq pq

-1 a a Pi 1 £2 w r-4
Pi
O

<C h-i HJ hJ HJ a M rJ u
U o u u u u Q W M

as o 9 9
Pu
pq
rJ s

CO
pq

89

Ex]
U o o O o O
< CM CM <N CM CN
eu

00 CO CO CO CO r^ r~ r» r^ r- CM CM 00
CM CM CM CM CM r^ r>» tN

TO

U
Q
O
U

o s o
W M
CO H

g
o
u

4-. 4J 4J 4-1 4-1
0) (1) CD 0) 0)
CO to CO CO CO

4J4J4J4J4-I4J4-I4J
0041010)4)0)4)01
cococococococococo

U
s
5

CO 00 CO CO CO m CO CO CO CO «tf <f «* o- «* PQ pa \0 KD
pa Q &H U M PQ Q fn O w M o U* u u i-< CM (Q Q

g

CU
1-1
o
o
e
o

4-1

0

a
CO

£

co
o

0)
>-<
3

T)
CU
O

O
U

a
E
o
u

•v
u
o

cB
1-1

3
•v
<0
o

a)

cu

g

U
o

eg
r-l

CO

X.
•a
co
o

cu

M
o

CO

J3

T3
CO

O

H3

cu
i-i
o
o

T3
M
o

I-I
CO

<

01
M
3 •a
CU

o
o

a.

n
o

.-4

CO

A

cu
4-1
CO

•M
60
CU
U

•a

I
CO

•s «3

cu
u

§

u I
i—l

CO

-C

•a
c
<

cu
u
o
o

-a

o

.-4

c0
ja

u
o

0)
4J

T3
CU

•O

O

CO

o

I a
H PH pi CO

co 2: z jz: z JH
S CO CO CO CO CO
a HJ s 3 a H

o
O

P<
c_> o § o

90

O-i

00 00 CO ^£> CTv OS o o CN ON CTN vO r>» 00 CO 00 00 CO cj
CM CM CM U"| m ro <r <r <r co O-I in r*l rn en rn m rn <r

fa
o
w
CO
3

u
§ o
Z
o 4-1 4-1 •u

0) 0) a)
CO CO to

•u
CJ

CO

o
u

u
a

vD vO vD
En o w

CO 0O c-0 in m o .-H CN CN CN CN CN CM
CN m in CN en to pq cq Q c* u w m

cj u
u S-i CJ
a CJ 4-1 s E CJ

-a 4-1 £ CO CO n) CJ)-l H ^
CJ CO cd a) <D n *. •H CJ CJ S-l p CJ CJ
u •r4 0) u in CJ o 60 U U o T3 4-1 P CS
o CO V4 o o 4-1 1 rt CJ 4J 4-1 u CJ CO Cu 4-1
u CJ 4J o o CO 4-1 ^4 co • CJ CJ O ••-4 CJ CO
a 1H CO CJ •H CJ CO 6 M 4-1 O co U

O C o u DO M O o c 0 O CO V4 CJ 4-J .-4
2 E e e •r4 4-1 o 0) 4-1 ,-4 4-1 4-1 •H u o •H DH u CO o

g 0 o o c o M CO O c C M-l -o u
S-J u >-i CJ •r4 !-i •1-1 •r-4 <U E CJ E E E 4-1 <* M~l M-I U-4 ^ 0 o o 4-1 M -o 0 E o 0 0 C

w O X) 4J 4-1 4-1 C T3 T3 O u u B !-i u i-i o s T3 X) •a ,£! ^4 C c a O 1-1 M x: §
M-l •r4 M-l M-l M-l o

1H U u a. o •r-l •r4 •.-I U O O D«
0 o o c3 3 a a? I M-l CJ CJ CJ CJ CJ o
a 3 3 E M-l 0) CJ 4) 6 .-4 4-1 4-1 4-1

fc
4-1 4-1

4-4 M-l CJ .-4 4-1 4-J 4J o •-I r-4 CJ Cfl ^ >. ^ >, c
I—I i-4 .-< to Ctf >> >> >> u a) c« CO XT x> XI Xi XI X> •rH « rt a) x: x> x .a M-l -C x:
X! x: x: M-l M-l x: x; x: x: x: JS X

O a. a. a. a Cu a, a O co co CO co co CO CO
u VH M o o 'O o O o o 3 3 2 3 3 3 3
o o O OH a, o.. PM P-. OH OH PH OH OH OH OH OH OH OH

OH

SB o
Oi

o

Pi CO

3 pq cq cq CJ Pi CO
O o o O o o O CO Z3

o OH OH OH OH OH OH OH (^ c^> OH OH

PH

OH

PH- CO
O

PH

91

UJ
o r*» r-» r^ r^
< en en en en
eu

in vD \D VO ^D JD m <r -»
en CM CM CM CM CM m CM (M

o
U
&

Q
O
O
s
o

oi 01 01 01 Ol
CO CO CO CO CO

•u 4-1 4-1 4J 4J 4J
01 01 0) 01 1* * * " •1 01 >J

CO co co CO 01
to
33

01
to
3>

01
to
P

oi
to

01
to
33

CO w

o o

s
r-l t—i r-4 r-l u CJ CT\ Crf 00 rM r* fa b PH r^ en PQ
Q CM a W ,—i CM r-. r^ r^ PQ Q E U W r-~ PQ a

Ol Ol
M 4-1
O cd
o •r4

0) g
o

E
O

E
o

n B ^ 1-4 ^
4-1 •r4 m 4H m

V -a XI -a T3 -a
J-i M l-c r4 n U u 0) ai
3 01 o O o O o M 4J

01 to i M £ 1 ^ £ 3 o
o

cd

01 o •l-l a) M Ol r-l r-l I-I i—i ^ •o
•u o oo M 0) 4-1 fd cd cd cd to u g Ol
cd u 01 •u •U 01 to JB A X £ X 01 o g

•H a. u to to U •a •H 4-1 ^(S
•a s •H 3 u 00 >* >> ^ >, ^ to I4H •H

i g g g u 60 13 o Ol t-i U V-i u M •T-l

a o o o o Ol 0) 3 u M U u u u 00 •a T3
s t* u y> M o rJ O cd cd Cfl cd cd 0) u)-l

1 •H 4-1 <4-4 IM o i—i 3 O o o o o u o O
o o rJ cd O S a < •a T3 T3 -o •u 4-1 CU £ •H XI £ J3 x: X 3 IM

M rJ u rJ 3 3 4-1 4J 4-1 4-1 4J 4J O r-l r-J

§ O O o o •H

Cfl

•r4

Cd

1
o
u

4-1
4-1
01

•r4
X)
3

•s ti t
Ol

•s ti 4J

•r-l

cd
X

td
X

.-1 i—l r-l 1-1 4J 4-1 IW r-4 O 4-1 4-1 U U 4J u 4J T3 4J 4-1
cd cd m cd cd cd o o o o 3 U 0) O 3 O o
X £ .3 A TJ •a 3 Ol cd 3 ca •o CO 4J td g O cd cd

r4 4-1 4-1 u u n Ol l-(to tj O r4 u
J3 XS x x •a •a 3 cd Ol 4J 4J 4-1 o 4-1 •H 4J Ol 4-1 4J
m to to to cd S 4-1 4J to Xi X A o XI oo X ^ 4-1 X X
3 3 3 3 ai ai CJ O 01 3 3 3 u 3 Ol 3 4-J Ol 3 3
£ PL, fi PM e4 Pi C4 06 pei CO CO CO a, CO 1-1 CO to CO CO CO

H PM Pi CO Pi H 33 W

PLiPMtXtPLiWKSpCW

M H w a a H
u CJ u CJ U W
CO CO CO CO CO CO

IS
CO

s
CO

92

u
o
P-.

«tf <r <r o o l-H CM CM CM
CM CM CM r* r«» en cn cn r*»

o cn CM CM CM CM CM CM
r> CM CM CM CM CM CM

I
Sg •u 4J 4J

0) QJ OJ
C/5 to CO

4-1 4J 4-1 4-1
0) (1 0) 11

CO CO CO CO

4-1

OJ
CO

o a

« pq PQ u-i m a w O fa a W r~ oo r^- r^ r»
w vO KD v£> w CM CM CM O- <t <r

i-(CM cn CM r-l CM cn i—i CM cn

a)
J-l u o

3 QJ QJ •rH
•a 4-> B 4J 4J !-l

CJ CO CO cn |
T-I OJ J-4

o •r-l OJ •r-l r-l CO 4J e OJ
0 00 (-1 60 nj Xi a CO CO r-l 4-1 G £ 0) 4J QJ o 4-1 •r-l CD •r-l OJ OJ cn CO a (-1 co J-l •r-l •H 00 l-i oo J-l 4-1 u QJ •r-l 0)

oo J-i o O OJ 4-1 cn OJ U OO 1-4
6 6 E a o CO r-l cu CJ r-l cn •H 4-1 s o QJ 4-1
O o o o r-l r-l oo cn CO O u en u J-l J-l u X) X) o C c 3 OJ OJ •r-l 0)

a u-i 4-1 4-1 u-i XJ !-i u o •H —I •H S-i !-i 00 r-l o O o
5 M O o o OJ 4J 4-) 4-1 4-1

XI XI X) .—1 t-i O a 5 o OJ a J! o o u en c c 3 ^ n VI J-l OJ QJ 1! 4-> g 6 S 4-1 •H •r-l •r-l <ri 0 0 o c 5 r-J r-l c CO CO CO c o o O

Eg 5 a 5 5
CO

2
CO

i—i
CO

CO CO •r-l 3 3 c •H 4J
d

4-1

c
4-1

a XI
J-l

X)
U

-a
S-l

r-4 r-l r-l JS ,C x: CO S S e cn •H •H •H o o o
CO M eg u 0 4J 4J 3 CO CO CO 3 a £ £ JC X 43 4-> 42 x; 4-1 0) OJ 4) 4-1 OJ OJ QJ

o o U-I 00 00 CO J-l u 1-1 CO 4-1 4-1 4-1 r-l r-J 1-4
4-1 4-1 4-1 x^. ^» HI •r-l •r-l 4-1 4J 4J 4J 4-1 >-. ^ ^ CO CO CO
o O O M M r-l S-l u CO CO cn cn CO £> rQ -Q -c J3 ~c
CO 03 CO
r-l l-i U 4J 4-) 4J 4-J 4-1 CU 0) OJ OJ OJ OJ OJ QJ QJ QJ QJ
4-1 4-1 4-1 u J-i U-I U-I U-I CO r-l u U CO J-i r-l U u J-i u
J3 £ 03 CO CO •H •H •H C O 0 o C O O o o O o a 3 3 4J 4-1 rC JZ .c <U 4J 4J 4-1 OJ 4J 4J 4-1 4-1 4-1 4-1
CO CO CO W CO CO CO co CO C/2 CO w CO CO CO CO CO CO CO

& g s
CO CO CO

o 8 ^
M H HJ
CO c/l CO

d pi CO S SB § 3 tt. PQ
erf CO CO CO CO CO H
w CO CO CO CO CO CO

ed

CO

CO
PQ
H
CO

S B
H
CO

H
W

93

Ed
O vO vO v£) <s r^ m m £

c^ CXs av o\ 0*
CM CM CM CM CM

§ o
o z o
W M
to H
13 l-l

4-1 •u 4J 4-1 4J 4-1 4J
CO ID co 0) CO 01 CO

co CO CO CO CO CO CO

8

Q Q r^ r^ t^ r-~ r-~
.-I CM pq Q fe O u

0)
V4 u
3 co

T3 4-1 ^
0) CO co

CO CO O •r-4 CO
V4 4-1 O to u

T3 o cfl u co u
CO o •H Q. u to

J= T3
CO

•d § M
g
U i E

o
u

1
t-i V4

-r-4 CO U-4 •i-l >4-4 4-1 <4-l
U-l co CO •U

h M CO T3 TJ TJ •3 •3
t-l 0 4J co •i-l >-l M n M M

o 03 ^ M O O 1 O O
1-4
cu c c

o
o

co
u .2 £ £ c2

> •i-l ••-1 •—1 .-I .-1 1-4 i-4
co a g CO cfl CO CO CO

•—i CO
M

CO
u

0 O .c .c .c -C x;
c o o 4-4 4-i ki w h M M
CO £. J2 o o o o O

"§ a. a. n) 0) i g 4-1 4-1 CO CO CO co CO
CO CO > > > > >

CJ CO co T> T3 •H •r4 ••-I •r< •i-l
3 CO CO CO CO CO CO CO
0) CO co 3 3 3 3 3
3 U-4 4-4 4-1 4-1 ^ .-i r-l .-4 .-1
<y o O •r4 •1-4 O o CJ o O
c u U X X X X X
t= > > s ft w W w U u

CO >
pi

94

Job Area
Location

0 - IF

20 - 3F

40 - 4F

50 - 51

52 - 53

54-55

57

5A - 5B

5C - 5D

5E

60 - 63

64 - 65

66 - 67

APPENDIX III

LOCATIONS IN THE JOB AREAS

Contents

16 16-bit registers

8 32-bit condition instructions

8 16-bit stream registers

Name of procedure stream being executed

Name of control stack stream

Instruction counter (core value); only
meaningful when job is not running (is
waiting on a semaphore)

Job number - condition code; only
meaningful when job waiting on a semaphore

When an illegal instruction is encountered,
TR5R6 may contain the value of the second
operand

Pointer to top of control stack (core value)

Stream page containing (first halfword of)
instruction about to be executed

Accumulated job run time

Input/Output semaphore

The condition register

Name

RO - RF

SRO - SR7

JSTRNM

CSNAME

PC

TR5R6

CSREG

ICSTRP

TIME1, TIME2

IOSEM

COND

COND = ON MASK
0 7 8 15

ON tells which conditions have occurred;
MASK tells which are enabled. If COND15
is on, the job is running in stream mode;
otherwise it is running from core

95

Job Area
Location Contents Name

68 - 69 The temporary instruction counter contains
the core location of the instruction which
would have been executed had an interrupt
not occurred

TEMPIC

6A LINK holds queue information if the job is
not running

6B PRIOR contains the priority of the job

6C - 6D The microprogram saves //R4 and /iR5 here
while it is checking whether a page is in
core

LINK

PRIOR

TR4Ri

70 - 7B The state of the micromachine is saved
here when a program enters level 1. Of
particular interest is the core location
of the instruction after the one which
caused entry into level 1; this is saved
in 72 - 73

MICROSAVE

80 - 8F 8 16-bit extensions of the stream registers SRX

90 - 91 Stream page/core page for alternate procedure JEXT
page

92 - 93 Stream page/core page for control stack CSEXT

94 - 95 If bit 5 and bit 4 of BITS are on, then the BITS
RETN instruction is searching for an activation
record. If bit 5 is on, but bit 4 is off, then
level 1 is returning. If bit 6 is on, the job
is participating in time-slicing

96 If SAVREGQ - 1, then the control stack has SAVREG
overflowed/underf lowed; otherwise SAVREG-jr •
the number of the stream register being used
to access the stack which overflowed/underflowed

99 If an attempt is made to execute an illegal OLDTP
condition instruction, its address relative
to the job area is saved in OLDTP

96

Job Area
Location Contents Name

9A When an illegal instruction is encountered, TUTFF
TUTFF tells how long the instruction is; if
it is 32 bits long, bit 6 will be on and
bit 7 off; otherwise the instruction is 16
bits long and bit 7 is on and bit 6 off

97

APPENDIX IV

GLOBAL CORE LOCATIONS KNOWN TO THE MICROPROGRAM

Location Contents Name

9C - 9F Time of last job change CURRT1,
CURRT2

AO - Al Semaphore controlling entry into level 1 DSKSEM

A2 - A3 Head of the queue of jobs which are ready JOBSEM
to run

A4 - A5 A4 contains the core page number, shifted MFJPR
right 1, of the job area of the most favored
job; if there is no most favored job, A4g = 1.
A5 contains the amount by which the priority
of the most favored job is raised

A6 If bit 4 of A6 is on, the channel is enabled MSW

A8 - A9 This halfword contains the address of the last MAD
halfword displayed

AA - AB Core value of instruction counter before last PRORl
power down

AC Number of running job before last power down PR2
and its condition code

AE - AF Number of ticks per time-slice TIMCNT

BO - Bl Base for Device Status Table NOVLIS

B2 - B3 Device number of clock used for time-slicing CLKNUM

B4 - B7 Most recent time clock was read C0RET1,
C0RET2

100 - IFF Hash table HASH

200 - 3FF Age table CPTAGE
(INDCNT)

202 - 203 Head of the age chain AGEHD

98

Location Contents Name

260 - 263 Accumulated idle time (implies core page 31 IDLET1,
may not be used for page swapping) IDLET2

400 - 5FF Stream name table SN

600 - 7FF Stream page/link table SPNEXT

109E - 10A1 First instruction of page fault PGFLT

10A2 - 10A5 First instruction of level 1 LEVELl

99

APPENDIX V

ILLEGAL OPCODES

This is the list of illegal opcodes for which the second operand
has been developed and stored in TR5R6. The corresponding value
of bit 6 of TUTFF is also given.

Opcode Bit 6 of TUTFF

17, 18, 19, 1A on

27, 28, 29, 2A off

BO, BB, BC on

CO, CB, CC off

DO, DB, DC on

EO, EB, EC on

FO, FB, FC on

100

APPENDIX VI

CONTROL STACK FORMATS

pointer before PIC-

pointer after PUC
 data
unused] N*2

10 7 8

PUC Record for PUC N

13

pointer before CALL

pointer after CALL

(JSTRNM)
(SRI)

old instruction counter
(RD

unused
mi

condition
information

job
number

condition
code

old condition
MASK

7 8 15

Activation Record for CALL

101

APPENDIX VII

CONTENTS OF CORE PAGE TABLE FOR CORE PAGES
WHICH CONTAIN STREAM PAGES

1. SN table. This table is located between 400 and 5FF. For
each core page, there is one halfword of information:

0 1 15
SN

Change Bit

Bit 0 of this halfword is set by the microprogram whenever data is
stored in the core page. SN is the name of the stream whose page
occupies this core page.

2. SPNEXT table. This table is located between 600 and 7FF.
For each core page, there is one halfword of information:

0 7 8 15
SP NEXT

SP is the number of the stream page which occupies this core page.
NEXT is the core page of the next link on the hash chain. If
NEXT = 0, this entry is the end of the chain.

3. INDCNT table. This table is located between 200 and 3FF.
For each core page, there is one halfword of information:

0 7 8 15
IND | CNT |

This information has two different meanings, depending on whether
the stream page is locked in or not.

a. Locked in. The page is locked in if

IND = 0.

In this case CNT equals one less than
the number of extensions locking in
the page.

102

b. Aged. The page is on the age chain if

IND 4 0.

In this case IND equals the core page
of the next newer page on the age chain
and CNT equals the number of the next
older page.

103

APPENDIX VIII

INDEX TO LOCATIONS KNOWN TO THE MICROPROGRAM

Type of
Name Location Ret< jrences

AGEHD GLOBAL 13, 17

BITS JOB AREA 51, 76, 78

CLKNUM GLOBAL 78

COND JOB AREA 33, 35, 36, 44, 46, 47

CORET1 GLOBAL 78, 79

CORET2 GLOBAL 78, 79

CSEXT JOB AREA 41

CSNAME JOB AREA 41

CSREG JOB AREA 41

CURRT1 GLOBAL 78

CURRT2 GLOBAL 78

DSKSEM GLOBAL 74, 75, 76, 77

HASH GLOBAL 12, 13, 16

ICSTRP JOB AREA 44, 45, 46

IDLET1 GLOBAL 78

IDLET2 GLOBAL 78

INDCNT GLOBAL 15, 16, 17

IOSEM JOB AREA 57, 59, 62, 64, 65

JEXT JOB AREA 45, 51, 52

104

Type of
Name Location

JOBSEM GLOBAL

JSTRNM JOB AREA

LEVEL1 GLOBAL

LINK JOB AREA

MASK JOB AREA

MFJPR GLOBAL

MICROSAVE JOB AREA

MSW GLOBAL

NOVLIS GLOBAL

ON JOB AREA

OLDTP JOB AREA

PC JOB AREA

PGFLT GLOBAL

PROR1 GLOBAL

PR2 GLOBAL

PRIOR JOB AREA

SAVREG JOB AREA

SN GLOBAL

SPNEXT GLOBAL

TEMPIC JOB AREA

TIMCNT GLOBAL

References

54, 55, 56, 76, 77, 78, 85

7, 20, 21, 23, 24, 25, 26, 27, 28,
29, 30, 37, 38, 44, 50, 52

74, 75

9, 54, 55

33, 50, 51, 75, 76

78

75, 76

57, 85

59

33, 51

35

44

74, 75

83

83

54, 55, 75, 76

36, 41

14, 16

15, 16

33

66, 69, 78

105

Type of
Name Location References

TIME1 GLOBAL 78

TIME2 GLOBAL 78

TR4R5 JOB AREA 35, 75

TR5R6 JOB AREA 35

TUTFF JOB AREA 35

106

Security Clasgific«Hon

DOCUMENT CONTROL DATA -R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report Is classified)

1. ORIGINATING ACTIVITY (Corporate author)

The MITRE Corporation
Bedford, Massachusetts

2». REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
26. GROUP

3 REPORT TITLE

PRINCIPLES OF OPERATION OF THE VENUS MICROPROGRAM

4 DESCRIPTIVE NO TES (Type of report and Inclusive dales)

N/A
9' *u THORIS) (First name, middle initial, laat name)

Barbara J. Huberman

6 REPORT DATE

JULY 1970
7a. TOTAL NO. OF PAGES

112
7b. NO. OF REFS

t«. CONTRACT OR GRANT NO. »«. ORIGINATOR'S REPORT NUMBER(S)

b. PROJEC T NO.

F19(628)-68-C-0365

700A

ESD-TR-70-198

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)

MTR-1843

10 DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited.

II SUPPLEMENTARY NOTES

N/A

12. SPONSORING MILITARY ACTIVITY Directorate of
Planning and Technology, Electronic Systems
Division, AF Systems Command, L. G. Hanscon
Field, Bedford, Massachusetts

13. ABSTRACT

Venus is a computer system comprised of microprograms and software. It is
implemented on the Interdata 3, which is a small, microprogrammable computer.
This document contains a complete description of the microprogram part of Venus.

DD ,FN°ORVM
651473

Security Classification

Security Classification

KEY wo not

VENUS

MICROPROGRAMMING

COMPUTER SOFTWARE

VENUS MICROPROGRAM

Security Classification

