
Co?f 

ESD-TR-69-364 ESD ACCESSION LIST 
ESTI Call No. 

Copy No. Of 

MTR-927 

cys. 

HASP:   A PL/1 HASH 
STORAGE PACKAGE 

ESD RECOHD CC^Y 
RETURN TO 

SCIENTIFIC & TECHNICAI  INH    VIUION DlVtSiON 
(ESTI), BUILDING 121L 

Joseph E. Sullivan 

NOVEMBER 1969 

Prepared for 

DIRECTORATE OF PLANNING AND TECHNOLOGY 
ELECTRONIC SYSTEMS DIVISION 
AIR FORCE SYSTEMS COMMAND 

UNITED STATES AIR FORCE 
L. G. Hanscom Field, Bedford, Massachusetts 

Tliis document has been approved for public 

release and sale; its distribution is un- 

limited. 

Project 512C 
Prepared by 

THE MITRE CORPORATION 
Bedford, Massachusetts 

Contract AF19(628)-68-C-0365 

PftQ^WQ 



When U.S. Government drawings, specifica- 

tions, or other data are used for any purpose 

other than a definitely related government 

procurement operation, the government there- 

by incurs no responsibility nor any obligation 
whatsoever; and the fact that the government 

may hove formulated, furnished, or in any 

way supplied the said drawings, specifica- 

tions, or other data is not to be regarded by 

implication or otherwise, as in any manner 

licensing the holder or any other person or 

corporation, or conveying any rights or per- 

mission to manufacture, use, or sell any 

patented invention that may in any way be 
related thereto. 

Do not return this copy.  Retain or destroy. 



ESD-TR-69-364 MTR-927 

HASP:   A PL/1 HASH 
STORAGE PACKAGE 

Joseph E. Sullivan 

NOVEMBER 1969 

Prepared for 

DIRECTORATE OF PLANNING AND TECHNOLOGY 
ELECTRONIC SYSTEMS DIVISION 
AIR FORCE SYSTEMS COMMAND 

UNITED STATES AIR FORCE 
L. G. Hanscom Field, Bedford, Massachusetts 

This document has been approved for public 

release    and   sale;   its   distribution is  un- 

limited. 

Project 512C 
Prepared by 

THE MITRE CORPORATION 
Bedford, Massachusetts 

Contract AF19(628)-68-C-0365 



FOREWORD 

This report is the result of a need for hash coding schemes written 
in PL/1.   Although the techniques have been available for some time, 
we believe this to be the first implementation of the technique in PL/1. 

The work was performed under contract F19628-68-C-0365 for 
Electronics Systems Division, U.S. Air Force Systems Command. 

REVIEW AND APPROVAL 

This report has been reviewed and is approved. 

WILLIAM F. HEELER, Colonel, USAF 
Chief, Command Systems Division 
Directorate of Planning &Technology 

ii 



ABSTRACT 

A "generalized" PL/1 program is described which permits the 
assignment of "values" to a set of symbols, and the retrieval of the 
value assigned to a given symbol. That is, functions of character 
strings may be defined and evaluated.  The method used is hash entry 
with chaining. 

iii 



TABLE OF CONTENTS 

SECTION I 

SECTION II 

SECTION III 

REFERENCES 

INTRODUCTION 

PROGRAM USAGE 
INITIALIZING (HASP) 

Programming 
Hash Entry Algorithm 
Hash Entry Table 
Symbol Storage Area 
Accessing the Header Table and Symbol Storage 

GENERAL PROPERTIES OF THE STORE AND RETRIEVE 
FUNCTIONS 

ADDING AND MODIFYING ENTRIES 
HSTOW - Add or Modify 
HSNEW - Add Only 
HSOLD - Modify Only 

DELETING ENTRIES 
HDROP - Delete or Ignore 
HDOLD - Delete Only 
HCLEAR - Grand Delete 

RETRIEVING ENTRIES 
IV-Value Function 
IVLU - Value Look-Up Subroutine 
HPLU - Pointer Look-Up Function 
HALL - Grand Retrieve 

DELETING THE TABLE (HRLSE) 

PROGRAM AVAILABILITY 

Pa^e 

1 

2 
2 
2 
4 
b 
6 
6 

7 
& 
8 
8 
8 
9 
9 
9 
9 
9 
9 

10 
10 
10 
11 

12 

13 

LIST OF ILLUSTRATIONS 

Figure Number 

1      Hasp Table Relationships 

Pa^e 

5 



SECTION I 

INTRODUCTION 

HASP is a PL/1 program package for general-purpose hash-coded 
storage and retrieval of symbolically indexed values.  Ref. 1 
provides general background on this subject; in its terms, the 
method used is a "scatter index table" with collisions resolved by 
direct chaining.  This document is intended as a user's guide and 
reference. 



SECTION II 

PROGRAM USAGE 

INITIALIZING (HASP) 

Programming 

For each "universe" (i.e., separate symbol table) that the user 
wishes to maintain, a structure of the general form 

DCL 1 U. 

2 NE BIN FIXED(31), 
2 HA BIN FIXED (3D, 
2 HN BIN FIXED, 
2 HP POINTER, 
2 SN BIN FIXED, 
2 SI BIN FIXED(31), 
2 SSP POINTER, 
2 SP POINTER, 
2 DV BIN FIXED(31); 

must be reserved (in any storage class) and retained at least while 
the table is in use.  (Note that BASED storage class for U may be 
unfortunate for some purposes - see below).  U is initialized by the 
statement 

CALL HASP(U); 

after the items HN, SN and probably HA, SI and DV have been set by 
the user.  These and the other items are discussed individually 
below: 

NE  is the current number of items in the table. HASP sets NE 
to 0; NE is maintained by the HASP package thereafter. 

HA  is the hash entry algorithm number (see below).  If not set 
to a legal number by the user prior to calling HASP, HASP 
sets it to 1.  (Because 1 is the only legal choice at present, 
HASP sets HA to 1 unconditionally.) HA may not be modified 
while there are entries in the table. 



HN  is the size of the hash entry table (see below). With 
algorithm 1, HN must be an odd number - if it is not, 
HASP increments it by 1 with the comment 

"HASP: HN SET TO    ". 

and 

HN must remain fixed during the life of the table. 

HP  is a pointer set by HASP to point to the hash entry (header) 
table.  For many applications, the user need not be concerned 
with this item (other than not to modify it) nor the table 
it indicates.  Instructions for gaining access to the header 
table in other cases are given below.  HP is maintained by 
the HASP package. 

SN  is the current size, in bytes, of the symbol storage area 
(see below).  It should be set by the user prior to calling 
HASP; this setting determines the initial allocation. 
Thereafter, SN is maintained by the HASP package. 

SI  is the amount, in bytes, by which the symbol storage area 
is to be expanded when the current allocation is exhausted. 
It can be set to any nonnegative value at any time by the 
user.  However, if SI is found to be 0 by the HASP package 
at a time when more storage is needed, a condition called 
HSFULL is raised.  If a normal recovery is programmed from 
this condition, it must include setting of SI to a positive 
value, e.g., 

ON CONDITION (HSFULL) SNAP SI=1000; 

SSP are pointers to a structure containing the symbol storage 
area and the area itself. As with HP, this would rarely by 
the user's worry - but see below if it is.  SSP and SP are 

SP  maintained by the HASP package. 

DV is the "default value" for the space - the value returned 
when an undefined symbol is referenced. DV can be set at 
will by the user. 



After initialization, a table is ready for addition, retrieval 
and deletion of entries. These functions are accomplished by other 
calls to the HASP package (actually additional entry points to the 
same program). The initialization entry is the only one which does 
not presume a prior initialized state for the table U; in all other 
cases, if an uninitialized table is referenced, an undefined result 
(IBMese for "a very messy error") will ensue. 

The relationship among U, the header table, and the symbol 
storage area are illustrated in Fig. 1. 

Hash Entry Algorithm 

The efficiency of hash coding depends critically upon the ability 
of the hashing algorithm to distribute the allowable symbol space (or 
a subspace thereof, selected with heavy bias) more or less uniformly 
among the HN available slots in the hash entry table.  The method 
designated "algorithm 1" in HASP is a form of the widely used "division" 
hashing technique, and was selected on the basis of favorable experience 
as reported in Reference 2 (the "drawback" reported there does not apply 
when collisions are resolved by direct chaining).  However, there can 
be no guarantee that this algorithm will perform well for every set of 
codes nor for every set of symbols, so logical "room" has been left for 
other algorithms. 

Algorithm 1 works as follows: 

(1) Pad the string on the right with up to 3 "FF " characters 
to make up an integral multiple of 4 characters. 

(2) Sum up the 32-bit integers formed by successive groups of 
4 characters, using 2's complement arithmetic and discarding 
carries from the leftmost bit. 

(3) Add the complement of the leftmost bit to the whole sum, 
again neglecting carryout. 

(4) Set the leftmost bit to 0 and find the modulus of the 
resulting 31-bit positive integer with respect to HN. 
Add 1.  The result is the hash entry number. 



u 

CONTROL 
TABLE 

NE 
HA 
HN 
HP 
SN 
SI 

SSP 
SP 
DV 

HN   J 
SLOTS^ 

HEADER 
TABLE 

SYMBOL   STORAGE   AREA 

oo 
CO 
aT 
CM 

I 

CD 

Figure i.     HASP   TABLE  RELATIONSHIPS 



Hash Entry Table 

The hash entry (header) table is a set of HN offset pointers, 
each of which designates a list of current symbols all hashing to 
that particular entry.  Its size is 4 x HN bytes.  Normally, HN is 
set to approximately the average number of entries (NE) expected to 
reside in the table at one time, but this is not essential if one 
wishes to choose another point in the space-time tradeoff curve. 
If the hashing algorithm is assumed to select slots according to a 
uniform distribution, the average number of probes required to find 
an item known to be in the table is 

2(HN)   l' 

Symbol Storage Area 

The symbol storage area is a contiguous area of core, distinct 
from the header table, containing the symbols and their values.  Each 
entry requires 12 bytes plus the length of the symbol string (rounded 
up, in effect, to the nearest multiple of 4 bytes). When an entry is 
deleted, the space usually becomes a "hole" suitable only for entries 
of similar or shorter length.  This characteristic will adversely 
affect the effective density of a table containing variable-length 
symbols after a series of additions and deletions. 

Accessing the Header Table and Symbol Storage 

For special purposes, such as saving or restoring of a table via 
I/O, or when using HPLU or HALL (q.v.), it is necessary to "get at" 
the tables directly.  Depending on the purpose, one or more of the 
following declarations will permit such access: 

DCL  1  HEDS BASED (U. HP), 0-] 

2  HEDSIZ FIXED BIN, 
2  HEDRS (U.HN REFER (HEDSIZ)) 

OFFSET(SPACE); 

DCL    SPACE AREA  BASED   (U.SP); [2] 

DCL     1     NSPS  BASED   (U.SSP), H3 

2  NSPSIZ FIXED BIN, 
2    NSPACE AREA   (U.SN REFER  (NSPSIZ)); 



DCL 1  SYMDEF BASED (P), [4] 

2 CHN OFFSET (SPACE), 
2 IVALUE FIXED BIN(31), 
2 CSIZE FIXED BIN, 
2 CSTR CHAR (CN REFER(CSIZE)), 

P PTR, CN FIXED BIN; 

Note that none of the first three declarations will be allowed 
by the compiler if U is BASED ( although they are permissable if U 
is a parameter ). 

HEDS is the header table.  SPACE is the symbol storage area, 
actually part of the structure NSPS (SPACE and NSPACE are equivalent). 
Each entry in the table has the form of SYMDEF. 

Declarations (1) and (4), as written, require the presence of 
declaration (2).  If the offsets are not actually to be used, however, 
it is often more convenient to replace OFFSET (SPACE) in (1) or (4) 
with BIT(32) or something similar. 

GENERAL PROPERTIES OF THE STORE AND RETRIEVE FUNCTIONS 

While a table is in use (after a HASP call and prior to a HRLSE 
call), entries are made and referenced by calls to other HASP entry 
points.  In every case, the "universe" U is passed as an argument to 
the package.  If the particular table entry must be identified by 
symbol, STRING - a fixed or varying length character string of arbi- 
trary size - is passed for this purpose.  Where appropriate, the 
"value" of the symbol is passed into or returned from the HASP package 
as IVAL.  Within HASP, IVAL is considered to be BIN FIXED(31) - a 
widely used data type in itself, as a table subscript, or as a key 
to a REGIONAL (1) file.  However, using the PL/1 UNSPEC function, 
the user can make the value anything he wishes that 'ill fit in 32 
bits, including 

POINTER, 

OFFSET, 

CHAR (4), 

BIN FL0AT(21), and 

BIT(32). 

> 



In several cases, provision is made for logical (BIT(l)) error 
indicators to be returned by HASP.  EX denotes an error because a 
symbol, expected to be a new entry from the form of the call, was 
found to exist (to have a previous definition).  NEX denotes the 
complementary situation. 

Every entry-specific store or retrieve call to HASP will cause 
two EXTERNAL items, HASHEN and HCLASH, both BIN FIXED (31), to be 
set.  These are, respectively, the hash entry number (the subscript 
to the header table) and the number of probes made into the collision 
chain before the entry (or the end of the list) was found - i.e. , 
HCLASH ^ 0.  These items are useful primarily for instrumentation. 

ADDING AND MODIFYING ENTRIES 

HSTOW - Add or Modify 

The statement 

CALL HSTOW (U, STRING, IVAL); 

will cause IVAL to become the value of STRING in U - creating a new 
entry in the table or replacing a previously defined value. 

HSNEW - Add Only 

The statement 

CALL HSNEW (U, STRING, IVAL, EX); 

will cause a new entry for STRING, with the value IVAL, to be made 
in U - provided an entry for STRING is not already present.  In this 
case EX is returned reset.* Otherwise, EX is returned set and the 
table is not affected. 

HSOLD - Modify Only 

The statement 

CALL HSOLD (U, STRING, IVAL, NEX); 

will cause IVAL to become the new value for STRING in U, provided an 
entry for STRING already exists in the table.  In this case, NEX is 
returned reset.  Otherwise, NEX is returned set and the table is not 
affected. 

"Reset" means 'O'B (false); "set" means 'l'B (true). 



DELETING ENTRIES 

HDROP - Delete or Ignore 

The statement 

CALL HDROP (U, STRING); 

will cause the entry for the symbol STRING, if any, to be deleted 
from the table.  If no such entry exists, there is no effect. 

HDOLD - Delete Only 

The statement 

CALL HDOLD (U, STRING, NEX); 

will cause the entry for the symbol STRING to be deleted from the 
table, provided such an entry exists.  In this case, NEX is returned 
set and the table is not affected. 

HCLEAR - Grand Delete 

The statement 

CALL HCLEAR (U); 

will cause all entries to be deleted.  The table is left in an ini- 
tialized state although the symbol storage area size (SN) may now be 
greater than when the table was originally initialized.  Deletion of 
all entries is not equivalent to deletion (release) of the table 
itself, recovering the space (this is discussed in a later section). 

RETRIEVING ENTRIES 

IV-Value Function 

The function reference 

IV (U, STRING) 

will yield the current value of STRING in U, if defined, or U.DV 
otherwise.  IV is FIXED BIN (31). 



IVLU - Value Look-Up Subroutine 

The statement 

CALL IVLU (U, STRING, IVAL, NEX); 

will cause IVAL to be set to the value of STRING in U, if such an 
entry appears in the table. In this case, NEX is returned reset. 
Otherwise, IVAL is returned set to U.DV and NEX set. 

HPLU - Pointer Look-Up Function 

The function reference 

HPLU (U, STRING) 

will yield a pointer to the symbol definition for STRING in U if such 
exists, the pointer NULL otherwise. 

This pointer is the base for SYMDEF (see "Accessing the Header 
Table and Symbol Storage" above) and so permits direct reference to 
the elements thereof. The value associated with STRING, the element 
SYMDEF.IVALUE, may also be modified directly. The other elements 
cannot simply be modified; additional provisions must be made to 
preserve the structural integrity of the table. 

HALL - Grand Retrieve 

The call 

CALL HALL (U, PA); 

where PA is an array of pointers, will retrieve all current entries 
in the form of pointers to the SYMDEF structures (compare HPLU above), 
PA may be of any storage class and should be dimensioned at least 
equal to NE at the time of call. 

If, due to contamination, the number of entries found by HALL 
is not equal to NE, an ERROR condition is signalled. No more than 
NE pointers will be stored in PA in any case. 

The order of entries returned will be arbitrary from the user's 
viewpoint (major sort by hash entry, minor sort by position in clash 
chain).  Of course, they may be rearranged in any order to suit the 
user's needs (e.g., an alphabetic list of symbols). 

10 



DELETING THE TABLE (HRLSE) 

The statement 

CALL HRLSE (U); 

will cause the table U to be deleted and the space occupied by the 
headers and symbol storage to be released.  The table is left in an 
uninitialized state; HASP must be called before it can be used again. 
Note that U should be initialized at the time HRLSE is called. 

11 



SECTION III 

PROGRAM AVAILABILITY 

HASP presently exists in "NCAL" load module form as member HASP 
in AALIB on disk pack DP5010.  If AALIB is concatenated with SYS1. 
PL1LIB in one's SYSLIB DD statement, references to HASP are auto- 
matically resolved and the control sections automatically included. 

To alleviate coding tedium, a data set containing PL/1 text, 
suitable for %  INCLUDE reference, has been placed on disk pack 
DP5010 as member HASPINC of PDS AAINC.  This text consists of pre- 
processor statements defining three preprocessor symbols 

HASP_ES#, 

HASP_S#, and 

HASP_P#. 

HASP_S# is a string variable whose value is the "U" structure 
declaration save for the "DCL 1 U," and the terminal semicolon. 
Hence, a table can be declared by coding only 

DCL 1 MYTABLE, HASP_S#; 

HASP_ES# yields a string which, when coded in the parameter list 
of an ENTRY declaration, designates that parameter as a HASP structure, 
e.g., 

DCL MYSUBR ENTRY (HASP_ES#, BIN FLOAT (21)); 

HASP_P# yields a complete declaration for all HASP entries, wherever 
the "statement" 

HASP_P#; 

is coded. 

If HASPINC is used, INCB - also in AAINC - must also be included. 

12 



REFERENCES 

1. Morris, Robert, "Scatter Storage Techniques", Communications of 
the ACM, Vol. 11, No. 1 

2. Maurer, W. D., "An Improved Hash Code for Scatter Storage" 
Communications of the ACM, Vol. 11, No. 1 (January 1968), 35-"8 

13 



Security Classification 

DOCUMENT CONTROL DATA -R&D 
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report Is classified) 

I.  ORIGINATING  ACTIVITY (Corporate author) 

The MITRE Corporation 
Bedford, Massachusetts 

2a. REPORT  SECURITY   CLASSIFICATION 

Unclassified 
2b.   GROUP 

3.   REPORT   TITLE 

HASP:  A PL/1 Hash Storage Package 

4.  DESCRIPTIVE NOTES (Type of report and inclusive dates) 

N/A  
5.  AUTHORIS) (First name, middle initial, last name) 

Joseph E.   Sullivan 

8     REPORT   DATE 

30 July  1969 
7a.   TOTAL   NO.  OF  PAGES 

17 
76.   NO.   OF   REFS 

2 
8a.    CONTRACT   OR   GRANT   NO. 

F19(628)-68-C-0365 
b.   PROJEC T  NO. 

512C 

9a.   ORIGINATOR'S   REPORT   NUMBER(S) 

MTR-927 

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned 
this report) 

10.   DISTRIBUTION   STATEMENT 

This document has been approved for public release and sale; its distribution 
is unlimited. 

II.   SUPPLEMENTARY   NOTES 

N/A 

12.   SPONSORING   MILITARY   ACTIVITY 

Director of Planning and Technology, 
Electronic Systems Division, Air Force 
Systems Command, USAF, L.G. Hanscom Field, 
Bedford. Massachusetts.  

13. ABSTRACT 

A "generalized" PL/1 program is described which permits the assignment of 
"values" to a set of symbols, and the retrieval of the value assigned to a given 
symbol.  That is, functions of character strings may be defined and evaluated. 
The method used is hash entry with chaining. 

DD,FN°oRvMe51473 
Security Classification 



Security Classification 

KEY    WORDS 
ROL E WT 

Hash Addressing 

Hash Code 

Hash Table 

Scatter Storage 

Searching 

File Searching 

File Addressing 

Storage Layout 

Security Classification 


