
ESD RECORD COPY
RETURN TO

SCIENTIFIC & TECHNICAL INFORMATION DIVISION
ESD-TR-68-I54 (fSTI). BUILDING 1211

PROCEEDINGS OF PL/I SEMINARS,
December 5, 1967 and March 5, 1968

ESD ACCESSION LIS.X
April 1968 ESTI Call No,

Copy No. /
-*> cys.

COMMAND SYSTEMS DIVISION
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G . Hanscom Field, Bedford, Massachusetts

.

•

This document has been
approved for public release and
sale; its distribution is
unlimited.

:

(Prepared under Contract No. FI9628-67-C-0396 by Log icon, Incorporated,
255 West Fifth Street, San Pedro, California.)

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

ESD-TR-68-I54

PROCEEDINGS OF PL/I SEMINARS,
December 5, 1967 and March 5, 1968

April 1968

COMMAND SYSTEMS DIVISION
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G . Hanscom Field, Bedford, Massachusetts

This document has been
approved for public release and
sale; its distribution is
unlimited.

(Prepared under Contract No. FI9628-67-C-0396 by Logicon, Incorporated,
255 West Fifth Street, San Pedro, California.)

FOREWORD

This report presents the proceedings of two seminars conducted by
Logicon under contract F19628-67-C-0396 with the Electronic Systems Divi-
sion of the Air Force Systems Command. The contract was sponsored under
Project 6917, Task 8, by the Air Force Directorate of Data Automation.
Mr. George Reynolds (ESLFE) was the Electronic Systems Division project
monitor and Mr. William Rinehuls (AFADAB) was the cognizant task leader.

The overall purpose of the contract was to provide first-hand data on
experience with PL/I to support subsequent evaluations of its usefulness
in Air Force applications of the future. Two data categories were within the
scope of the contract, the chief one being written presentation of information
gained through the coding and checkout of benchmark problems in PL/I and
another higher level programming language. The detailed data developed by
Logicon for this category are given in ESD-TR -68- 150. The second category
consisted of oral presentations by experts who had actively participated in
the design of the language or who are engaged in implementing systems using
PL/I. The seminars at which these presentations were made were held in
the Command Presentation Room, Laurence G. Hanscom Field, Bedford,
Massachusetts, on December 5, 1967 and March 5, 1968.

Transcriptions of tape recordings made through the facilities of the
Command Presentation Room and in some cases manuscripts furnished
by the speakers served as the basis for the material presented here.
Mr. William J» Stoner was responsible for arrangements for the seminars
md coordination oi these proceedings. Mrs. Laurel Bentley was responsible
for their preparation. These proceedings were submitted in April 1968.
The Logicon report number is CS-6819-R0106.

This technical report has been reviewed and is approved.

WILLIAM F. HEISLER, Colonel, USAF
Chief, Command Systems Division

•li-

ABSTRACT

This report consists of the proceedings of two seminars at which presen-
tations were made by experts who had actively participated in the design
of the PL/I language or who are engaged in implementing systems using
PL/I. Each presentation was followed by a question-and-answer session
in which the audience participated, and each seminar included an informal
panel discussion among the authorities present.

-111-

CONTENTS

First Seminar, December 5, 1967

Frederick P. Brooks, Jr. , "Experience with Teaching PL/I" ... 1

Mary Douglas Lasky, "PL/I in a Scientific Environment" 17

Christopher J. Shaw, "The Utility of PL/I for
Command and Control Programming" 33

First Panel Discussion 55

Robert F. Rosin, "Strings and Arrays in PL/I" 65
"Arrays in PL/I" 66
"Character Strings in General Purpose

Procedural Languages 72

Second Seminar, March 5, 1968

Earl O. Althoff, "Experience with PL/I" 87

Fernando J. Corbato, "PL/I as a Tool for System
Programming" 103

J. Michael Sykes, "Experiences in PL/I at
Imperial Chemical Industries, Ltd. " 119

Raymond J. Rubey, "Summary of Logicon's Comparative
Evaluation of PL/I" 133

Second Panel Discussion 161

-IV-

EXPERIENCE WITH TEACHING PL/I

Frederick P. Brooks, Jr.
Professor and Chairman,

Department of Information Science
University of North Carolina
Chapel Hill, North Carolina

First, let me begin with a bit of context. Three universities in North Carolina
located within 30 miles of each other—two state universities, one private
university—have a joint computing center known as Triangle Universities
Computing Center. This is located out in the woods, equidistant from us,
and is operated via communications from the campuses where we have
smaller machines. Here at the big center we have a System/360 Model 75,
with large core storage. It is a file-based system; there are only five tape
drives on it. At Duke University and North Carolina State University there
are System/360 Model 30s, and at the University of North Carolina at Chapel
Hill we have a Model 40. These are connected to the big machine by TelpacA
phone lines. The machine is out in the woods rather than being on one of the
campuses for reasons which are essentially political—very important. The
three universities are equal partners in this center and run it as a separate
nonprofit corporation. So I will be discussing the experience of the whole
complex of three universities, with different ownerships and managements.
These three essentially constitute one computer-using community, and I polled
all over it to find out reactions and experiences in the use of PL/I.

At Chapel Hill, we began teaching PL/I in the fall of 1965, with a course in
programming systems, an advanced course for students who already knew
how to program computers. Now, this was about all we could do at that time
because we had no compiler. In the spring of 1966 we began using the first
prereleased compiler with the spring term advanced programming systems
class. In the summer we began acquiring really substantial faculty experience
in its use. In the fall of 1966, we switched all of our beginning programming
classes to PL/I. Last fall we taught about 2 50 students; last spring we taught
another crop of 2 80; and this fall we have a third crop of about 270 going
through their initial introduction to computers and PL/I. At North Carolina
State University in Raleigh and at Duke University they have been offering
some instruction in PL/I and some in FORTRAN. As a community we have
now a fair amount of experience. In January of this past year we switched
from Release 1 to Release 2 of PL/I, which was a substantial improvement
in many ways, and we are in the process of installing the third release now,
which promises to make improvements in the efficiency of the object code.

What kinds of things do we do, and why, and how? First, consider the
beginning programming courses using PL/I. At Duke they had 150 students

1-

EXPERIENCE WITH TEACHING PL/I

last year in the beginning programming course; at State they taught 60
chemical engineering students; we taught, as I said, about 530 students last
year and we are teaching another 270 this fall. Our experience at Chapel
Hill illustrates one of the things that I like most about PL/I. The large
state-supported engineering school is at Raleigh at North Carolina State
University; Chapel Hill is a liberal arts university with a medical complex,
various professional schools, pure sciences, mathematics, statistics, social
sciences. The demand for students to learn to use computers arises in all of
these areas. Our beginning programming course is a high-level-language
course; we teach machine language in the second term of a computer sequence.
I think this is the right way to do it. I started off convinced that one should
teach machine language first, then teach a high-level programming language.
I have completely switched.

We have the following pair of problems: one, our students come from many
backgrounds and have many interests in what one does with a computer; two,
many of them are going to take further courses in computing and we want these
to rest on a common foundation course. Our clientele falls into three general
categories: 1) the science and math types, who want to learn principally about
scientific computing; 2) the business types, who are especially interested in
business data processing and in management decision-making; and 3) the
natural-language types: students in English, social sciences, the Romance
languages, journalism, all of whom are especially interested in using a com-
puter for the purpose of taking English language text and performing informa-
tion retrieval, syntax analysis, linguistic studies, etc.

We would like all these students to become proficient to a common level on
which stands the rest of the curriculum. We therefore offer our beginning
programming course in three flavors; we call these A, B and C. Each of
these courses teaches PL/I. Each teaches the topics in different order. Each
draws the examples from different subject matter, according to what the
students are interested in. Each designs the student exercises according to
the field of interest. In short, we tailor-make the student's introduction to
computers according to the field of application in which he's interested.

In business data processing they start with input/output, for example. In the
natural-language sections, they start with character strings and work with
nothing but character strings for some time. By the end of the term, all
sections are competent in a common language base. Other courses build on
that. Now, this common-language /multiple-flavor approach would not be
possible for us with any other high-level language, and it is one of the big
advantages of PL/I. In such a class, the student works five to seven prob-
lems a semester, and our students take about five machine runs for each

•2-

EXPERIENCE WITH TEACHING PL/I

problem. Let me read several remarks from the instructors about the kinds
of exercises. From one of the science-math sections:

"We ran five problems plus a term project. Problems one and
two were based on polynomial evaluations; problem three was
a Newton-Raphson method which finds roots of algebraic equa-
tions; problem four was a two-dimensional Monte Carlo inte-
gration; problem five was a simple alphanumeric search and
count. Term projects included bidding bridge hands, coding
and decoding messages, determining legal moves for checkers
or chess, etc. "

From a professor of chemical engineering at North Carolina State, who has
been teaching sophomores:

"I have been using PL/I extensively in the past year for my
own research, and I have been teaching the PL/I language
to our chemical engineering sophomores. The research in-
volves the numerical solution ol sets of partial differential
equations in the general area of experimental data reduction
and analysis. For this kind of work the array statements
are especially useful. I am presently teaching PL/I to 60
chemical engineering sophomores. We are teaching PL/I
in one class per week. We have given, so tar, six lectures
on the PL/I language, and the students have written and run
six programs. I think the PL/I language is much easier to
teach than any of the other languages I have used. Students
in this course have been very successful in getting their
programs to run, and I would estimate that 95% of them
have turned in essentially correct programs on time. I
would be very discouraged if I had to go back to teaching
FORTRAN. "

Now, let me say that this is a very skilled teacher, and he finds PL/I easier
to teach because he's carefully selected the order in which he presents the
topics. If I take a graduate student with no teaching experience and fling a
PL/I manual at him and say, "Teach that to beginners, " a disaster ensues.

The second area that I want to discuss is the use of PL/I as a tool for teach-
ing advanced courses. Obviously, Numerical Analysis, a mathematics
course, is one in which you need a programming language for the student to
work his exercises; we use PL/I and find it quite satisfactory. The same is
true in Mathematical Physics, an elementary theoretical methods course.

EXPERIENCE WITH TEACHING PL/I

The same is true in our Business Data Processing course. This is an advanced
course in which the students do very little programming; they are principally
concerned with systems analysis, file organization, input verification, and the
problems of setting up a business system. For what programming they do, we
use PL/I as the tool and find it satisfactory. Then we have several courses in
natural-language processing: one in syntax analyzers, one in information
retrieval, and a general natural-language course that covers indexing and
concordances and other topics. In all of these, then, we find it convenient to
have the students already know a language which they can use.

Now, a special kind of course is Programming Systems. We do teach students
how to build programming systems, and in this course we've undertaken some
fairly elaborate laboratory projects. I divide the students into teams of six.
In the first lab meeting of the course I explain that we're going to build some-
thing, and spend minutes describing the ultimate objective. Then I walk to the
back of the room, and leave them, totally unstructured, to choose a team
leader, decide on a plan of action, establish a schedule, and get going. They
are almost invariably late, but that's part of learning how to build program-
ming systems.

Some of the projects might be of interest to you. These have been built using
PL/I as the tool, partly because there wasn't schedule time to use assembly
language, and partly because PL/I is much easier to debug in. Last term,
for example, one team built a thing called "PUNT, " which was a Teletype -
based PL/I syntax analyzer. One sits at the Teletype and keys in a statement.
At the end of each statement the computer returns, statement by statement,
diagnostics of syntax errors. It does not attempt to execute the program; it
only looks at each statement to see if the programmer left out commas or the
semicolon, used the wrong kind of function, or things like that. They built
this, and got it running, and I was rather proud of them. It was a nice piece
of work.

Another team built a system called Report Program Language (RPL). A
report program generator is rather a convenient way of doing input and out-
put: one specifies input by laying out cards; one specifies output by laying
out printout sheets. The IBM report program generator has, however, an
awkward language for what one does between input and output—their arithmetic
specifications. So the team built a language that has RPG input and output
facilities and has the full range of PL/I in the middle. They did this by using
the macro facility in PL/I to translate the RPG input and output statements
into PL/I input and output statements. It's not quite running, but they got
well along.

-4-

EXPERIENCE WITH TEACHING PL/1

One student text editor uses the graphical display. The Journalism Department
receives the Associated Press wire service, which is entered into the computer
on paper tape. The text editor displays the text from the AP wire on the 'scope.
Then he takes the light pen, and strikes out, deletes, inserts, adds or edits;
when he finishes, the system instantaneously right-justifies the text. The
editor pushes the button, and the stuff is printed out, upper and lower case,
on the high-speed printer downstairs. And, once again, this is the kind of
program in which PL/I's facilities for character manipulation, tied with the
ability to interact with the 'scope, are very important to us.

Another student has taken for his master's thesis the problem of writing a
compiler for Iverson's language, APL. His assignment was to write a trans-
lating compiler with the least possible effort. He did this by using macro
facility in PL/I statements, then harnessing the PL/I compiler to compile
them. He uses a subset of Iverson's language, needless to say. He got a
compiler in about six weeks of effort. I thought that was rather nice. It
illustrates the power of the compile-time facility in PL/I.

Another student has been writing course material for a computer-assisted-
instruction program. We have a little pilot project in computer-assisted
instruction. We're trying to learn how one does this, and whether it really
helps. One student has been preparing the control program in PL/I. We hope
to put our first victims on beginning in the February semester.

Over at Duke in the Physics Department they've been using PL/I principally to
write data reduction programs. They get volumes of data, pictures they take
of bubble chamber events. They go to Brookhaven to turn on the big accelerator.
They take perhaps 10,000 pictures, one every 2 seconds while they are on, and
then they come trucking home to spend the next few months figuring out whether
they caught anything or not. That's fishing with a fine net in a big ocean. They
scan the film semiautomatically, getting the data into a computer, and then they
compute for all those tracks, first finding out where the track is, then screening
the interesting tracks from the uninteresting tracks.

Professor Ferrell in Chemical Engineering at State has been doing heat transfer
and partial differential equations, data reduction and analysis. We have one man
in Biochemistry who has been working on the structure of the protein molecule,
essentially a geometric problem; he's been working with hemoglobin. Now,
hemoglobin is an interesting molecule — apparently hemoglobin does not combine
with oxygen in the lungs and carry the oxygen to the muscles. If it did, the
undoing of the chemical bond between the hemoglobin and the oxygen would use

-5-

EXPERIENCE WITH TEACHING PL/I

up a lot of energy in the muscles. What apparently happens is this: The
hemoglobin has a basket shape in three dimensions, and when oxygen is dis-
solved in the blood in the lungs, it changes the acidity slightly. Under this
condition the hemoglobin changes in shape and wraps around the oxygen mole-
cules, and they are carried out to the muscles. Out at the muscles, the doing
of work is generating lactic acid. That changes the acidity, so the hemoglobin
opens up and makes that oxygen available to the muscles. It is difficult to
conceive of a lower energy mechanism; I find it impossible to believe that all
that mechanism didn't have a designer. Our biochemist has been working to
establish the structure of hemoglobin. This is a very big combinatorial prob-
lem. They have been working in PL/I, and they are anxiously waiting the
third release, since object-code performance is vital.

I wrote a little system this summer. We didn't have a good concordance-
generating program. The technique is straightforward, so I decided I could
spend an hour a day on it. The system starts from a Dura-paper-tape type-
writer, which types in upper and lower case and punches paper tape. This
goes to magnetic tape. Then a program goes through the text determining the
word boundaries. Then it looks them up in a table of function words and throws
out the the' s and and' s and some 200 other function words. It performs, in
the process, a code conversion, from whatever code it was originally in to
standard internal code. The entries are then sorted and printed in concordance
form, with the word, a hundred characters of context, and page number.

It might be interesting for you to look at some PL/I, so I brought along two of
the subroutines for this program. One of these is the program which does the
code conversion; this is a byte-by-byte table look-up and translation. The
second one is the one that does the search in the function word table. This is
an ordinary binary search; it starts in the middle and goes up or down until it
homes in on the word—returns a 1 if the word is in the list and a 0 if it is not.
The procedure is straightforward. It illustrates an implementation dependency;
it depends upon the use of 8 bits to represent the character. It also illustrates
the uses of bit and character string manipulations.

Let's go on to the second slide. FNWORD is the procedure. It returns a 1
if a 20-character word is in the 256-word list. The words must be in alpha-
betical order. Look at the names of the variables; I have declared K, then, to
be a character string 20 characters long. X is the table of words searched for
the presence of K. It is 256 entries long, and each entry is 20 characters long.
J, P and Q are fixed binary; they are, in fact, integers and are used as indices.
The algorithm is straightforward, and I won't go through it. Both of these are

-6-

EXPERIENCE WITH TEACHING PL/I

EH
*••

co

o
O
a-

1

4)

CVJ
H

EXPERIENCE WITH TEACHING PL/I

*-JL» ^L. vL> ^L> vL- *A* ^ "A* *A* NL* "^ -JJ' il* "1* *A» "A* *A* "A" *^> "Jf" *A" ~^
"T* *T* "T" T* T^ "T* *T* *^ *T* "T" *T" "T- -T" "T* *T* •T* *T" *T* "T* "T* •T" "T*

•-c

ft

CQ

EH

o
EH H
CO EH
H H
i-q PQ

9.
ITS
CM

H
< pq

S EH
M CO

CO g
H

CO

gg o o

o
EH

PM

sg
PM

M S
EH
CQ

H
TO

EH ^ CO

pq o
Pw

w TO
w
pq

o

80

8 8
§§ § o o
pq PQ

o o

3*33

s
* # #

3 co
3 H

co co

3 CM

* *

O

s
a
(x,

B
I-H"
<

co

o
CQ

CVJ
* *

w

EH
H
m

*—«.
x

o

1
o

o
OJ

o w
OJ o

CVJ

o
M

CO

ft
H
PQ

p

o

O

pq

- Wed

8-°

2 B

(in tfXWb
U} +11 II

•-5 ^LTN PL, « Px, C3f
OfH OJ ^ R

il JI H PH

o '-/
X)
•H

W

Q| Q

1-3 "-?

OJ fOv-H/
WWW

h^SftpM U]

W W
f-CO
W W

OJ rojj- LTWDOO O OJ fO\J"VO C—00
H H H H H H H

-8-

EXPERIENCE WITH TEACHING PL/I

real working subroutines — but they are small and simple enough that I thought
that you might be interested in looking at them.

I teach students to declare all variables. I think this is sound practice in any
programming language that has declaration facilities. PL/I will allow one to
do a lot of things by default. It also makes up things for you that are very
interesting and occasionally amusing when you've defaulted on your options. I
think it is a sound practice to declare all variables.

It is important in this language to use mixed numbers in fixed point only when
you really want mixed numbers and really need fixed point. The fixed point is
intended as an integer mode. It was generalized, principally to provide for the
command and control application, so that a person can write highly efficient
machine code in which the scaling is done for him. That's the only purpose for
which fixed-point mixed numbers should be used. By mixed numbers I mean
integers plus fractional parts. They must be used carefully, as carefully as
though they were being scaled by hand. If the fixed point is used as an integer
mode, just as in ALGOL or FORTRAN, it behaves the same way as the integer
mode in those languages.

So much for the research area. The last area that you might find interesting is
the North Carolina Computer Orientation Project. We have a scheme sponsored
by the State Board of Higher Education to try to bring the blessings of compu-
tation to the far-flung corners of the state. In North Carolina that's pretty far,
from the outer banks to way back in the mountains. This takes advantage of the
new technical ability to operate computers from terminals. Under the Computer
Orientation Project, we go to every post-high-school institution in the state
and say, "If you want to, you may try our computer service for a year free.
We furnish you a Teletype and communications. We furnish you enough machine
time to run 100 jobs a month. Three circuit riders, who spend much of their
time on the road, will help to answer your questions, teach your faculty, help
you organize courses, etc. " There are 86 eligible institutions in the state;
1 6 of them are on line today, and we are adding about two a month. The first
one went on last April, so we've been adding two and three a month since April.

The users run the whole range from experienced faculty to beginning program-
mers. There are also beginning programmers among the faculty, and experi-
enced people among the students. They are operating in batch mode from
Teletype. They prepare the program on paper tape, transmit it, and get the
answer back when the machine runs it, which may be five minutes to several
hours on these problems.

•9-

EXPERIENCE WITH TEACHING PL/I

For use with a terminal, free-form language is essential. The most awkward
part of our remote operation is the Job Control Language, which is not free-
form. In fact, we have written a substitute job control language that a little
editor reads from Teletype and translates and expands into regular JCL.

So much for the nature of our experience. To summarize, I talked about our
use of PL/I: 1) in teaching beginning programming courses; 2) as a tool in
other courses; 3) in a programming systems course where PL/I is the
principal laboratory facility; and 4) in faculty and student research. I also
mentioned smaller institutions who work completely via a Teletype.

Next, I should like to evaluate the language in terms of the needed improve-
ments and the things which we have found to be advantageous. We will consider
the needed improvements first and in order of importance.

The shortcoming we most severely feel is poor literature. The manuals are
very bad. The main reference manual is complete and is rather accurate, but
it is very had to find in it the answer to any particular question. The new
version includes a certain amount of primer material at the beginning, which
is a great improvement. The primer is a little better, but it is not a primer;
it does not begin at the beginning and treat only the topics you need to know to
get off the ground. The best primer is the publication IBM allowed to go
obsolete and then out of print. It's called A Guide to PL/I for FORTRAN Users.
Even if one had never touched FORTRAN — and I tried this on a class of students
who had never seen FORTRAN—the Guide for FORTRAN Users was the clearest
introduction to the language. There are some books beginning to appear; Mary
Lasky here has one. These are beginning to help the situation. I would still say
that from the point of view of use, this is far and away the most critical problem:
the lack of good elementary material.

The compile speed of the OS/360 F-level compiler needs improvement. To some
extent, this problem is peculiar to the university environment. If 300 students
run 5 problems at 5 shots apiece, that is 7, 500 compilations per semester. We
want their compilations to go in a hurry, and we don't much care about execute
time, because executions will be short and relatively infrequent. This is, of
course, quite different from many production computing installations.

It is my opinion that any computing installation needs at least two versions of
every important language: a fast-compile version and a fast-execute version.
The two versions should be literally, strictly, exactly compatible. It is ac-
ceptable to have the fast-compile version be an interpreter, and I think as we
move to more and more terminal orientation, this may be the solution. We

10-

EXPERIENCE WITH TEACHING PL/I

have available to us in FORTRAN the WATFOR system. WATFOR is an inter-
pretive compiler written by the University of Waterloo, and it is very fast. If
a job will run for more than 3 seconds, one doesn't want to use WATFOR be-
cause the object code is poor. On the other hand, student runs take about
3/10 second with WATFOR, when batched in batches of 10. PL/I takes us
8 seconds. With this discrepancy, Professor Ferrell at North Carolina State
University is still teaching PL/I to his students in Chemical Engineering, but
the people in the Computer Science Department are teaching WATFOR to their
beginning engineers; they couldn't afford the difference. I am still teaching
PL/I because when it's done in 8 seconds, we can afford it. But I very badly
feel the need for a l/2-second kind of compiler.

Operating System speed is another problem. The OS/360 scheduler takes longer
than the whole WATFOR compiler, and the linkage editor takes longer than the
whole PL/I compiler—this is ridiculous. However, we now have a loader
built by American Data Processing which loads directly to core. For 95% of
all jobs, this looks like the answer. I do not have any operating figures on
the loader at this point.

Minimum object code size is a very serious problem on Model 30s. The object
code takes almost 44K bytes of memory no matter how little the program, be-
cause of the subroutines. This is relatively painful on a 64K machine. On the
75 this is not painful, because big programs take little more space, and we
operate in memory partition whose minimum size is 100K and whose maximum
is 350K.

In the area of user conveniences, the most important is cleanup of the Job
Control Language. Then, we need shorter diagnostics. The diagnostics are
just plain wordy, and that's all right for a line printer, but when you're waiting
at a Teletype, it just kills you to watch it go on and on and on. However, the
diagnostics are in tabular form, and we have gone through on the Teletype
system and just substituted terser remarks for some of these elaborate
Anglicisms.

Another need is for less treacherous fixes. The compiler operates by fixing
bad syntax so it can complete the compilation by hook or crook. For example,
when it doesn't find a verb anywhere in the statement, it inserts an -, and I
have never seen a case in which this helped. I've had it do this in the declara-
tions, and thus it ripped away all the declarations. What happened then was
glorious to behold: a cascade of diagnostics just bellowed forth, because all
the arrays become functions, and all the subscripts then became meaningless
or arguments, and it was just wonderful.

11

EXPERIENCE WITH TEACHING PL,/1

Interface with assembly program is awkward. We've been remedying this by
writing some home-grown macros that our people could use. One such is just
a standard PL/I enter; write it in the assembly program and it will put a pro-
logue in front of it. We need something designed and supported to simplify
interfacing in each direction.

The latest release looks as though it will overcome our principal problems
with object code speed. The string manipulations were dead slow. The new
release puts such in line, rather than going out to subroutines each time. This
performs radical improvements in object code speed; it also makes the object
look smaller.

I would say, in general, that of all the things that could be fixed, I would com-
plain least about language problems, and put everything else ahead in the list.
I have a list of language details, of course, minor points of one kind and another.
The biggest one would be programmable defaults. The language originally de-
fined had the ability for the user to specify what defaults he wanted, and I am
eager to have that ability back; it is perfectly compatible with the language and
could be done.

Now for the major pluses of the language, I think I've probably indicated them,
but let me just summarize them. The first is the universality, the fact that we
can, in fact, use it for teaching programmers from all parts of the spectrum,
use it in all kinds of research, and build local expertise in one language instead
of three or four. That has been the biggest plus in our shop, and of very great
importance. The second is that it is easily subsettable. The default options
mean that one can define subsets and the beginners do not have to know that
other facilities exist. I like the controlled storage capability, the ability to
manipulate what's happening in core. I think the macro feature is very im-
portant. I am excited by the ability to teach and to use compile-time process-
ing as a routine part of a language. I think that the compile-time processing
is going to be a very important trend in the development of programming lan-
guages; and I think that over the next five years we are going to see less
emphasis on the development of procedure languages than on the development
of subject matter languages. Then the question is, "What tools do I need to get
good compilers for subject matter languages?" I think the answer is good
compile-time facilities.

Then there are some advantages that will be mentioned many times today: the
block structure taken from ALGOL, the whole control of scope and of storage
allocation — and the control of scope and of storage allocation are properly

-12-

EXPERIENCE WITH TEACHING PL/1

treated as two separate problems. The IF and DO facilities are far easier to
use than in FORTRAN, for example. I asked all our instructors for comments,
and every one of them mentioned the fact that the IF is a straightforward way
of specifying conditions. The character and bit facilities have been mentioned.
The I/O is rich, rich almost beyond bearing unless approached in subsets. The
array and structure data types allow one to use the same kind of powerful tools
that Iverson's notation allows for dealing with whole masses of data in one fell
swoop.

Let me spend a minute or two on the F compiler per se, because it's very dif-
ficult to discuss this language apart from its implementations. The F com-
piler is rich in diagnostics. Our students finH that they have no trouble tak-
ing the diagnostic output and determining their troubles from that. We teach
students to take the source listing, the attribute table which tells what dec-
larations the compiler used (including defaults), and compiler and execution
error messages. We never take the object code listing, never take cross-
reference tables, never take execute-time dumps, etc. We find that this is
quite adequate.

The compiler's remarkably clean. The number of bugs per 10,000 instructions
is the lowest of any part of the whole Operating System. The attribute table
which I mentioned is very handy. Getting statement numbers in execute-time
error messages is just elegant. This facility is the following: if, after I have
compiled the code and put it away in the file, three months later I run it and I
read an invalid card, or something, I get an error message. The error message
includes the statement number from the source code as to when the error
occurred, so I do not have to look at the object code listing. Debugging can,
in fact, be done from the source listing. In my own experience, that has been
a very powerful convenience.

Questions and Answers

Question: Your students are being exposed to other languages also, I imagine?

Answer: Mine aren't. They're being exposed to assembly language in the
second course, and they're being exposed to ALGOL and FORTRAN
by the time they get to about a fifth course, which is a programming
languages course — but these are graduate students who are major-
ing in computer science. Most of the students are not being exposed
to another language.

13-

EXPERIENCE WITH TEACHING PL/I

Q: Have you had any feedback from those who have been exposed to
other languages, let's say before PL/I?

A: We get quite a few who have already come with FORTRAN ex-
perience, and we get some with COBOL experience. There are
two reactions. One—and you get one or the other—is: "There's
too much of PL/I, " which means that we didn't do the subsetting
job right; and the other reaction is the kind that we got from
Professor Ferrell: "I'm glad I don't have to go back to the more
rigid format. "

Q: Are your comments on literature unique to PL/I, or do they hold
for the 360 system in general?

A: The OS/360 system is highly variable in the quality of the literature.
There are some things that are relatively well documented and some
that are relatively poor. I would say the Reference Manual for PL/I
is a very obscure document. It, however, is quite precise, and it
is complete, but it is not easy to find what you want in it. In many
of the control program manuals the material is imprecise or in-
complete, and in many parts it is also obscure. Now, the Assembly
Language Manual is a rather good manual. Some of the other lan-
guage manuals are excellent manuals. You have to look at each one
from the point of view of: Is it right? Does it tell the whole story?
Can you read it? With respect to the PL/I Reference Manual, it
seems to be right, it tells the whole story, and you can't read it.

Q: You said it's a good idea to declare all variables in a program and
you also said that you'd like to have programmable default conditions,
so I presume that you don't think it's necessary to declare all the
possible attributes. . .

A: Absolutely not, absolutely not.

Q: ... so could you clarify which attributes you think ought to be
declared, and which ought to be defaulted?

A: Well, in the first place, I neither know nor teach all the attributes
for all the variables. I think it important to declare at least type,
so: fixed, floating, character string. Obviously, for arrays you've
got to declare the dimensions or the absence of dimensions. But,

14-

EXPERIENCE WITH TEACHING PL./I

from a programming practice point of view, I think it wise to
declare all the variables. I teach students to declare them all at
the beginning of the program so that the program becomes self-
documenting. Notice in the illustrations I brought that I put
comments in the declaration, variable by variable; the most criti-
cal thing to help a person read a program is to tell him what the
variables stand for. So I really don't care how few attributes a
student declares as long as he names the variables and puts com-
ments by them.

I believe that the only solution to program documentation is to write
self-documenting programs. Whenever you write the documentation
independently, it's going to be late and out of date and not consistent
with the program. So I have abandoned flow-charting completely and
use a minimum of supplementary paper but insist that people put the
documentation in the text of the program. That policy leads to this
declaration rule.

I noticed in your slides that the comments were side by side with the
statements. This isn't the normal IBM compiler output, is it?

It comes out however you put it in. May I have the second slide
again? I believe the most important comments in a program are
the paragraphs you put first. The paragraph that comes first is
the critical comment on the subroutine; it tells what it does, what
its input and outputs are. The next most important comments, to
my view, are the ones that come by the declarations, and it is very
sensible for those to be side by side, variable and explanation,
variable and explanation. Notice that I've factored the attributes;
that is, I've said that J, P, and Q all have this single set of
attributes. This is a facility the language allows—it saves labor—
but I nevertheless put the variables on separate lines so that I can
put separate comments by each one. I just fished this program out
of the file and it has typo's—but this is the way this program is
compiled and run in actual use; it has not been dressed up in any
way. This is just the way it came out, and I submit that even if
you don't know PL/I you can read and understand this program. It
is a self-documenting program in that sense. Now, you will notice
that I have given almost no comments here, and that's because this
algorithm is straight out of the book. If you are interested in the
details of the algorithm and can't follow it, there is a book refer-
ence for it. The first paragraph comment gets you off the ground;
it is a standard binary search procedure.

15-

EXPERIENCE WITH TEACHING PL/I

Comment: (Professor Rosin) I want to save a lot of my comments for the
panel, which I think is more appropriate. You said that you had
very few objections to details of the language, with which I guess
I would agree, but some of them appear to be central. There has
been a great deal of discussion as to whether internal variables
variables internal to a nested procedure—should indeed be static
or automatic by default. This appears to be one area in which a
detailed language could become critical in terms of prevalent use.
Is that possibly true in your case?

A: I think the right solution is programmable defaults.

C: I agree, but even in the light of programmable defaults, it seems
to me that occasionally one would choose that the standard default—
that is, one that need not be opted out—perhaps could be recon-
sidered.

A: No, in general I want automatic variables for nested procedures.
Yes sir, I want that core to go away when I'm through using that
subroutine so I can pull another subroutine in and not run out of
space.

C: So it depends on how much core you have in the environment?

A: Automatic allocation is justified from the point of just good prac-
tice. Now, I would like the ability to write, at the beginning of the
whole outermost procedure, "All allocation is static unless other-
wise specified. " The programmable default is the right way to
solve that and a host of other problems.

C: It is my understanding that "implicit" is back in the language as a
language point, although it is not scheduled for implementation.
There were apparently a large number of problems of inheritance
of attributes and priority of attributes; that is, if you said every-
thing is character string, does that mean fixed string or does it
mean varying string? Does it mean everything fixed, and does that
apply to strings as well? There was a lot of consideration before
"implicit" could be put back in.

A: I'm enough of a pragmatist and little enough of a scholar that if
you tell me something's in the language and not in the implementa-
tion, I'm not really interested.

C: I agree with you, but I think it's important to know that it be con-
sidered.

-16-

PL/1 IN A SCIENTIFIC ENVIRONMENT

Mary Douglas La sky
Computing Science Group

Applied Physics Laboratory
The Johns Hopkins University

Silver Spring, Maryland

PL/I can be considered a logical development from previous major algebraic
languages: FORTRAN, ALGOL, MAD and JOVIAL. PL/I has new features
that make it unique and give reason to consider it as a major advance in pro-
gramming languages, in a scientific environment, as well as for general use.

Evaluating PL/I's place in a scientific environment brings up several questions
that need to be answered. Is PL/I adequate for the scientist's needs? Does
it help scientists do things they could not do before? If so, what? What is the
potential ability of PL/I in scientific computing? Is a general purpose language
of more benefit to scientists than special purpose languages?

Programming in a scientific environment is roughly divided into two categories,
that done by the professional who is programming large involved systems or
general purpose library routines, and that done by the scientist who is pro-
gramming his own research problems.

PL/I for the Professional Scientific Programmer

The majority of scientific programs are written in an algebraic or algorithmic
or procedure-oriented language, that is, in a high level language that is rela-
tively machine independent. However, if such an algebraic language proves
inadequate, the professional programmer must resort to assembly language
(i.e., symbolic machine language) to handle such problems as interrupts,
storage management, character or bit string manipulation or critical speed of
numerical calculations.

Furthermore, data or program errors will often raise a condition that can be
detected by the program. The most common of these errors are overflow,
underflow, zero divide, conversion, and such problems as a computed sub-
script exceeding its permitted array bounds or detection of an end of file. When
such a condition is raised, it causes the program to be interrupted and control
given to the operating system or monitor, and a standard system action taken.
It is frequently useful to be able to specify an action to be taken in lieu of the
standard system action. In PL/l this is done by means of an "ON" statement.

17-

PL/I IN A SCIENTIFIC ENVIRONMENT

The "ON" statement has the general form of "ON condition on-unit"
unit" is a PL/I statement or block of statements that specifies the action that
the PL/I programmer wants taken when the "condition" occurs.

In general, other programming languages have no way of controlling the action
taken when an interrupt occurs. If it is imperative that the system action be
overridden, then assembly language routines have to be written.

The ability to handle interrupts becomes extremely important for large programs.
Standard system action usually taken by the operating system is to write a
message stating what happened and then terminate execution.

If a job runs for many hours, as for example, the satellite GEODESY program
at the Applied Physics Laboratory, which runs for eight to nine hours at a
stretch on the IBM 7094, then it is critical not to lose all the information that
has been processed up to the point at which an interrupt condition occurs, and
to try to recover to the extent that execution can continue or the job restarted.
Otherwise a great deal of time and money is wasted. PL/I provides interrupt
handling ability.

Storage management is another of the major problems arising when writing
large programs. Several other algebraic languages do provide some method
of storage management. For example, FORTRAN permits storage overlay of
data and of program segments as does JOVIAL, but the arrangement of data
must be carefully planned, and the process of overlaying segments is time
consuming and impractical if many overlays are required. Storage allocation
is static, and the amount of storage needed is fixed at compilation time.

On the other hand, dynamic storage allocation is the normal case in PL/I, and
variables are automatically assigned storage each time the routine in which
they belong is entered, and the storage released when the routine is left, thereby
freeing space which is no longer required. This philosophy of storage manage-
ment saves space and prevents some programs from ever getting so large that
they would require overlaying of segments.

More important, this automatic allocation permits the programmer to assign
and free storage for a given variable during execution. When planning large
programs, this can be valuable. To accomplish this a variable is designated
as "CONTROLLED". Then at any point in the logic of the program that vari-
able maybe "ALLOCATED", i.e., given space, and later "FREED". Later
in the same program, that same variable name may be reassigned storage,

18-

PL./1 IN A SCIENTIFIC ENVIRONMENT

but this time the programmer has the ability to change the extents of the
dimension or length of the string. As an example:

DECLARE X(10) FLOAT CONTROLLED;

LI: ALLOCATE X;

L2: FREE X;

L3: ALLOCATE X(50);

where "X" is designated as an array of 10 floating point numbers and assigned
locations in storage when the statement labeled LI is executed; the storage is
freed when the statement labeled L2 is executed, and reassigned at the state-
ment labeled L3 but this time as an array of 50 elements.

Automatic or dynamic handling of storage does have its drawbacks, because
there is overhead in execution time associated with allocating and freeing
storage every time a routine is entered. In order to save some of the time re-
sulting from automatic or dynamic storage allocation, the programmer can
specify that the variable is to be assigned storage for the duration of the pro-
gram. This ability is also needed for variables that are used in several rou-
tines that are compiled separately but run together.

A third major problem area in scientific languages has been the manipulation
of character and bit string data. Processing of information from satellites,
missiles, and spacecraft, and from high speed experimental data acquisition
systems, for instance, has become increasingly important in scientific com-
putation. The data from these sources are not in numeric word form but,
rather, a string of alphanumeric characters or a coded bit string. These
strings need to be compared, scanned for patterns of specific bits, and charac-
ter or bit strings inserted or extracted from the data. It is clear that charac-
ter manipulation has become a necessity in the scientific environment.

PL/I provides for both character and bit string processing. These strings can
be grouped in both arrays and structures; bit strings of length 1 can be used as
Boolean variables. Powerful functions to manipulate string data are part of
the language specification.

19-

PL/I IN A SCIENTIFIC ENVIRONMENT

A fourth major problem area for the professional scientific programmer is
speed of calculations. This seems to be a direct result of how the code is
compiled. For example, if a large set of simultaneous equations must be
solved repeatedly in the time that a satellite is passing overhead, o:r in the
time a missile is in flight, there is no room for slack in any of the calcula-
tions. This has had to be done in assembly language before, and may have to
be done in assembly language even with PL/I, as there are no features to take
care of this problem. The faster machines may be the deciding factor in the
quest for speed with high level languages. To maintain flexibility with an
algebraic language, it is now both possible and economical to acquire a faster
machine. This certainly was not true when FORTRAN was introduced.

Another problem of the professional programmer, particularly the one working
on large programs, is to try to keep the program general so that changes will
not be costly in reprogramming time.

At compile time PL/I provides facility, called the "compile time facility", to
modify a program, expand sections of code, conditionally compile sections of
code and include code from external sources.

This compile time facility provides the valuable ability to modify a program
simply and quickly. For example, the precision attribute could be made a
compile time variable. If the calcuations need to be more accurate, the pre-
cision can be extended by changing the value of the compile time variable, and
thereby all the variables requiring the same precision are correspondingly
changed. The conditional compile ability could be used in a large research
program to selectively compile various sections corresponding to different
experiments or to different theoretical models. Naturally, the programmer
must be extremely careful when using this facility.

It should be noted here, with regard to desired future development of the lan-
guage, that the compile time facility provided in PL/I, although valuable to the
programmer, is not yet powerful enough to provide for introducing new graphics
into the character set or changing the meaning of existing operators, such as
"+", or ••#", as a more general capability might. In order to make PL/I power-
ful enough so that specialized languages can grow from it, a more general ability
is needed.

PL/I also provides for internal and external procedures. An external procedure
is one that is compiled as a unit. Internal procedures are nested inside another
procedure. Internal and external procedures coupled with interrupt handling and
storage management make subprogram linkages complicated. The programmer

-20-

PL/I IN A SCIENTIFIC ENVIRONMENT

must be careful because organizing programs in PL/I in the same way they
would be organized in other scientific languages may not be efficient. For
instance, portions of programs put into subroutines in other languages might
need to be kept in the main program to save the overhead. Probably each
project should study this very closely and have a set of standards to be followed
when forming large programs.

The interrupt handling, storage management, character and bit manipulation,
as well as the compile time facility, give the professional programmer flexi-
bility and power. Generally, no assembly language routines will be needed.

PL/I for the Research Scientist and for the Engineer

FORTRAN has been around for many years now; many scientists and engineers
are familiar with the computer and know how to take advantage of it, to some
extent, through a high level language. Since FORTRAN is relatively simple
to learn, or at least to learn its basic principles, the scientist or engineer has
usually had success with the computer.

There are some features in PL/I that will make it easier to use than FORTRAN
and ALGOL, especially for the scientist doing his own programming. The
main ones, I believe, are DATA and LIST Directed Input/ Output. These are
free forms of input and output and do not require format statements. In DATA
Directed Input/Output, each variable name precedes its value.

For example, using DATA Directed Output, if "X" is to be written out and its
value is 25, the output would appear as "X=25", thus, each value is easily
identified. The LIST Directed I/O is equally easy and flexible. The COPY
option on input statements gives a printout of the input values as they enter
the computer.

On the other hand, there are several features that the scientist, who is not
programming in PL/I frequently, will have to be aware of. The way PL/I
passes arguments to subprocedures needs much study and can be confusing.
In my opinion, PL/I has been made needlessly complicated in this aspect.
Constants used as arguments can be pitfalls particularly. I believe it is a good
idea to always have a DECLARE statement for the subprocedure being called
and explicitly declare the attributes for each argument. For example, if pro-
cedure SUB is to be called and it has arguments A and B, which are floating
point and fixed point respectively, then the DECLARE statement should read:

• 21

PL/I IN A SCIENTIFIC ENVIRONMENT

DECLARE SUB ENTRY (FLOAT, FIXED);

The scientist must also be aware that the language is not yet smooth in all
respects. There are places where in one operation an expression may be used
and in the next operation a similar expression is not allowed. For example,
the precision for the ADD function must be a constant while expressions are
allowed for the variables to be added. Here again, I see no reason for not
permitting an expression for the precision.

However, the research scientist not only benefits from the flexibility of PL/I
in describing complicated processes, but also, where many specialists are
working on the specifications of a complicated system (such as the satellite
system at the Applied Physics Laboratory, mentioned before, which required
assembly language programming) it is now possible for each scientist to develop
his own component in PL/I and have the professional programmer assemble the
system directly, and in a form intelligible to the scientist.

Do the New Features in PL/I Truly Help in Solving Numerical Problems?

Problems in the actual numerical calculations, as contrasted with the mathe-
matical formulation, are very important in scientific computing. The question
is asked, "How accurate are the numerical answers to the problem?" Numerical
difficulties in the results may be due to instability of the technique, or they may
be a matter of precision. (They can be a result of both.)

Precision in PL/I can vary from "1" to "n" decimal or binary digits. The "n"
will, of practical necessity, be set at an implementation maximum. An example
of the precision attribute is:

DECLARE X FIXED DECIMAL (8);

X is a fixed-point decimal number with 8 significant digits.

FORTRAN, typically, is implicitly word machine oriented and only single and
double precision, rather than a range of precision, are provided. The wide
range of precision in PL/I has great potential for studying different ranges of
accuracy in a problem.

A great deal of effort has gone into the error analysis of numerical computations,
and one way to prevent errors from accumulating in critical operations is to use
extended precision and then truncate or round for the final answer. This means

• 22-

PL/I IN A SCIENTIFIC ENVIRONMENT

that twice as much storage is taken for each variable. One of the most critical
error problems arises in inner products. If these alone can be taken in extended
precision, such numerical calculations are greatly improved. The error pro-
duced from doing the summing of inner products in single precision is approxi-
mately (l/2)b*_t, where b = base and t = number of base b digits, whereas the
double precision error becomes (l/2)b^~^^, which is virtually equal to 1, for
there is only truncation or rounding of one unit in the least significant digit of
the single precision number (Reference 1).

PL/I provides two built-in functions, ADD and MULTIPLY, which allow for
addition and multiplication in any desired precision. To multiply two vectors of
n elements each and add them to an extended precision number, H, using the
ADD and MULTIPLY functions for n numbers, we might state:

DECLARE (X, Y) (N) FLOAT,
H FLOAT(k) INITIAL (0);

DO I = 1 to N;

H = ADD(H, MULTIPLY (X(I), Y(I), k), k);

END;

The "k" is a constant expressing the precision of the multiplication and addition
function. For large or for very sensitive calculations this can be of advantage.

Some, but not all, compilers for other algebraic languages automatically use
extended precision if the variable on the left-hand side is in extended precision.
If a compiler does not, then either extra variables of the extended precision
have to be introduced or assembly language routines need to be written to obtain
similar results. The PL/I functions insure how the precision is to be carried out.

I took two numerical problems to do a limited study in order to get some feel-
ing of the benefit gained from the extended precision and from the ADD and
MULTIPLY functions. The first problem is the solution of systems of simul-
taneous linear equations. Two different, commonly used techniques were chosen
for comparison, the traditional method of Gaussian elimination with pivoting, and
the Crout decomposition with pivoting, the latter having potentially less error
when inner products can be accumulated in extended precision (Reference 1).

I also chose a modified Newton method for finding zeros of polynomials because
it involves sums of inner products in a complex mode (Reference 2).

•23-

PL/I IN A SCIENTIFIC ENVIRONMENT

Since this was a limited experiment no absolute judgements should be based on
it, but the following conclusions seem correct.

1) It is of definite advantage to be able to use a compile time variable
to specify the precision when doing experiments of this type. The
program can be easily modified to obtain more accurate or less
accurate results.

2) The ADD and MULTIPLY functions did help considerably for ill
conditioned forms such as the Hilbert matrix.

3) Gaussian elimination in the single precision implemented on the
IBM 360 lost a great deal of accuracy, but was greatly improved by
using extended precision.

When programming basic library routines such as these, it is valuable to be
able to keep them as general as possible. The bounds of an array in a called
procedure can be specified by asterisks, *, which means that the value of the
dimensions will be taken from the calling program. For example:

MAIN: PROCEDURE OPTIONS (MAIN);

DECLARE (X(5), Y(-2:7), Z(100)) FLOAT;

CALL SUB (X);

CALL SUB (Y);

CALL SUB (Z);

END MAIN;

SUB: PROCEDURE (A);

DECLARE A(*) FLOAT;

END SUB;

The variable A in the procedure SUB takes on the bounds of the argument from
the calling procedure. When SUB is called with X as the argument the bounds of
A are 1 to 5, with Y the bounds are -2 to 7, and with Z the bounds are 1 to 100.

As has been shown in the example, the upper and lower bounds of the dimension
can be any value as long as the upper bound is greater than the lower bound. The

•24-

PL/I IN A SCIENTIFIC ENVIRONMENT

"*" for the bounds in the calling program is unique to PL/I. Although other
languages have ways of accomplishing the same results, they are not clear
and disguise what is truly happening.

FORTRAN Libraries

Nearly every scientific installation in the country has a FORTRAN compiler,
and nearly every general purpose computer has a FORTRAN compiler written
for it. Large libraries of routines are written in FORTRAN, and consequently,
a great deal of interchange of programs is done in a scientific environment.

Unfortunately, since there are many dialects of FORTRAN, this interchange
is not always as smooth as it could be. Different compilers handle operations
differently, and what runs under one system may not run under another. There
is a standard USASI FORTRAN, but this is not always adhered ±o. Also, pro-
grams may include assembly language routines which may need to be rewritten.

The interchange of programs is not as frequent in the commercial world
because the programs are often tailored to an individual installation. So far,
PL/I is being used more in the commercial realm than in the scientific. I
believe that these large libraries already built up in FORTRAN have been
largely responsible for people's hesitation to move to PL/I. There is a
large reprogramming job ahead and communication between languages is
not trivial at present.

At the Applied Physics Laboratory, our problem is somewhat different,
because the majority of our programs are either in assembly language or
in FORTRAN II. Consequently, we must necessarily do language conversion
to go to "third generation hardware". All of the programs for the Satellite
Division, which uses the majority of the time on our computers, are written
in assembly language because FORTRAN was not adequate for their needs,
but PL/I satisfies their needs. Therefore, we at the Applied Physics Lab-
oratory are converting to PL/I.

We have written a FORTRAN II-to-PL/I translator, written in PL/I, which
took eight people about one man-year to produce. We did it to gain experience
in PL/I, and to learn something about writing large systems in that language.
The translator is being released to the SHARE Distribution Agency.

As part of our study of realistic scientific applications, we selected a program
used by the Aeronautics Division at APL, which was originally written in

•25-

PL/I IN A SCIENTIFIC ENVIRONMENT

FORTRAN II at the Naval Ordnance Test Station with the title "Computation
of Equilibrium Composition Thermodynamic Properties and Performance
Characteristics of Propellant Systems" (Reference 3). The program was
modified at APL and is used to determine the composition and thermodynamic
properties of combustion products for rocket and ramjet performance
estimates. I believe that a certain variation of the same type of study is
done by the Air Force. The mathematical method used to solve the set of
simultaneous equations is Villar's method, which is iterative and does not
require matrix inversion. The translation of the program was started at
the end of October 1967, and we hope to report on the results in the near
future.

Other PL /I Features

So far, I have concentrated on advances PL /I has made that are especially
useful to the professional programmer and to the research scientist. There
are other features of PL/I that have advantages in scientific applications.
Some of them are structures, list processing, asynchronous operations and
increased input/output facility.

Structures provide a powerful technique for grouping nonhomogeneous data,
and I believe that as the scientist becomes more familiar with them he will
find structures invaluable. For example, in satellite tracking, what is known
as the satellite epoch is best defined as a structure containing the year and
day of an epoch as one type of data, and seconds as another type. All three
elements may be treated as a unit "EPOCH" as follows:

DECLARE 1 EPOCH,

(2 YEAR,

2 DAY) FIXED BINARY,

2 SECONDS FLOAT;

List processing is used in scientific work for such things as report genera-
tion, and it is valuable that the capability is provided in an algebraic language.

Asynchronous operations are also provided in order to take advantage of
these advances in technology. A task can be attached during execution, then
the tasks can be synchronized or tested for completion. This overlap of
execution time has great potential.

-26-

PL/1 IN A SCIENTIFIC ENVIRONMENT

More and more data are being generated by scientists, and it becomes in-
creasingly important to be able to store and retrieve the information rapidly
in machine-readable form. After such data are stored, not all of them are
needed at any one time again. Therefore, the data need to be searched and
sorted, etc. The need to handle this efficiently in an algebraic or procedure-
oriented language is important.

PL /I provides for large volume input and output by means of "LOCATE mode
Input/Output". Data are located in the operating system's buffers and are
not transferred from the system buffer to the program storage area unless
they are needed for actual calculations. This is efficient because there is
not a core-to-core move for every record (Reference 4).

Conclusion

There is a growing feeling in the computer community that special purpose
languages can best solve the needs of the scientist. On the other hand, there
is just as much feeling that the trend is toward general purpose ones. PL/I
is a general purpose language, and I believe it can be of great benefit in
scientific computing. There has not been much interchange between the com-
mercial and scientific worlds in the past. As the scientist's need for large
volume data increases, he can learn much from the commercial people who
have been dealing with these problems for a long time. In return, the scientist
can teach the commercial people about the handling of numerical calculations.
With a common language this will happen more readily.

As far as the scientific environment is concerned, the advances in PL/I will
aid the professional programmer to solve his problems more easily, with
the ability to handle interrupts, manage storage, manipulate bits and character
strings and handle input/output more effectively. The research scientist will
have a simple input/output capability and a way to express his problem so
that it reflects his research model. Since both types of programmers will
be using the same programming language they can more easily communicate.

PL/I has made a significant advance in computer languages and will be an
advantage to the scientific community both for large scale systems and for
research problems.

•27-

PL/I IN A SCIENTIFIC ENVIRONMENT

References

1) Forsythe, George and Moler, Cleve, Computer Solution of Linear
Algebraic Systems. Englewood Cliffs, N. J. : Prentice Hall, Inc.,
pp. 148, 27-31, 47-48.

2) Ehrlich, L. W. , "A Modified Newton Method for Polynomials, "
Communications of the Association for Computing Machinery,
10 February 1967), pp. 107-108.

3) Cruise, D. R. , "Notes on the Rapid Computation of Chemical
Equilibria, " The Journal of Physical Chemistry, 68 (December
1964), pp. 3797-3802.

4) Bates, Frank and Douglas, Mary L., Programming Language/One.
Englewood Cliffs, N. J. : Prentice Hall, Inc., pp. 302-306.

Questions and Answers

Question: If you were were writing a PL/I program and you wished to get
into a subroutine that is already written in assembly language, is
there any convenient way that you can write this into your PL/I
program, go into it, operate in the assembly mode, and then at
the proper time return to the PL/I program?

Answer: Yes. We have done some work along this line. We are groping
along with many other people in this whole area of inter-language
communication. If you know how PL/I is set up, then you can
fairly easily write your assembly language routine. You must
know how your arrays are stored and whether your calling
sequence refers to the data item itself or to what is commonly
called a "dope vector," which is just a way of describing the data.
We have not had many problems in communication if the main
routine is in PL/I — but if the assembly language routine is the
main routine and calls a PL/I subroutine, more problems arise
because of the way PL/I handles interrupts. Let me recommend
that if you can have a PL/I main procedure, then your job of
communication between languages is a lot easier.

-28-

PL/I IN A SCIENTIFIC ENVIRONMENT

Comment: (Professor Rosin) Let me offer a footnote here. There is a
programmer at our installation who was assigned the task of
writing an assembly language program to support the 2260 device,
which is a typewriter character display tube. The installation has
no standard language at present. What he did, relatively easily —
I think it was probably easier to do this than any other of the alter-
natives which might be available — was to write a common routine
with alternative entry points for use in PL/I, FORTRAN, and
COBOL. The need to provide a common routine meant that he had
to standardize a lot of things which otherwise would have been done
in particular ways. The result is a very effective and efficient
program.

Q: Does PL/I handle the external interrupt — let's say from I/O—in
the same manner as the internal?

A: These I/O interrupts interface mainly into the operating system.
My experience has been with writing a 2260 routine which is called
by a PL/I program — I wasn't so clever as to interface it with all
the languages. My technique was to have the assembly language
routine wait to get the trap from the 2260.

C: (Professor Rosin) A fellow at Bell Labs has written a very effective
routine that generates a signal which is indeed an asynchronous
interrupt. There is a problem of PL/I handling true asynchronous
interrupts which isn't clearly resolvable right now, but it is possible.
The Bell Labs program is written as a library routine, at this point
in assembly language. I would hope eventually to find a library of
routines that will provide facilities which interface rather directly
with PL/I—so that one could say, for example, "On 2260 interrupt
do thus and so, " or "On 2260 interrupt give me the name of the
2260 which generated this interrupt. "

IBM is now considering — with SHARE'S instigation, guidance, and
sometimes thorns — the integration into PL/I of facilities which will
allow these routines to be written more directly into PL/I. As far
as I've been able to tell from my limited survey, people have been
successful in providing this kind of support—and in a way which is
more and more compatible with PL/I — taking advantage of the PL/I
interrupt facilities and ON-code, ON-unit, and other pseudovariables
that can be used.

•29-

PL/I IN A SCIENTIFIC ENVIRONMENT

Q: In your paper you indicated that one of your large programs at
APL runs 8 to 9 hours on the IBM 7094. I'm sure you have con-
siderable concern, in rewriting this in PL/I, about how fast it will
run on whatever 360 you are using — Model 65?

A: We hope to get a Model 91 in July, and have test time starting in
January. We don't have any real results of how fast PL/I routines
are actually going to run.

Q: Have you made any estimates, forecast memory requirements and
run time relative to the 7094, given some scale of performance
between the two computers?

A: Only a small portion of the geodesy program you asked about has
been written in PL/I as a research project. We are keeping one
7094 so we can run these problems in their present form for some
time. Also, there's been a great deal of new physics developed,
so that when the programs are completely rewritten it won't be a
matter of straight translation.

Q: Do you have any statistics on translating some of the problems
from the 7094?

A: One program that I mentioned—done by the Aeronautics Division
for ramjet and rocket analysis — has a problem in the amount of
core generated; it used between 16 and 18K on the7094, not count-
ing the operating system. After we translated it to PL/I it takes
28K words on the 360. This is a line-for-line translation from
FORTRAN II to PL/I; that is, no improvements were made to make
it good PL/I code. For example, the program requires large
arrays so that it will satisfy any case desired. With dynamic alloca-
tion in PL/I combined with the asterisk notation you saw in one of
my examples, the storage requirements can be cut down in most
cases.

C: (Professor Rosin) I'd like to add something that may go further
than what Dr. Brooks said about how clean the PL/I compiler was
for the first cut at a very large scale language processor. I think
it's interesting that we always compare the current PL/I processor
with processors for languages that have been around for a long
time. I suspect the second try at building a large-scale PL/I

-30-

PL/I IN A SCIENTIFIC ENVIRONMENT

processor will result in a smaller requirement for object-time
space and in better object-time efficiency—perhaps by orders of
magnitude. It's a little unrealistic to compare the first cut at
something this large with processors for a language like FORTRAN,
which has been around for 10 years.

31

THE UTILITY OF PL/I FOR COMMAND AND CONTROL PROGRAMMING

Christopher J. Shaw
Project Leader

Information Processing Technical Information Center
System Development Corporation

Santa Monica, California

Abstract

This paper: attempts to define and charac-
terize the command and control application
area; discusses the requirements this
application area imposes on programming
languages and processors, and how well
PL/I meets these requirements; comments
on PL/I's prospects for widespread use in
the command and control area; recommends
that the Air Force command and control
programming language standard not be
changed from JOVIAL to PL/I until signifi-
cant savings in time or money can be
demonstrated.

Any discussion of the utility of PL/I for command and control programming —
its advantages and weaknesses — must be fairly academic, since no command
and control programs have as yet been written in the language. Nevertheless,
the command and control application area is now more than ten years old; the
kinds of programming tools required for it are well known, as are the demands
it makes on a programming language. And PL/I is available for study and use,
so it is possible to form some relevant opinions on the question of whether PL/I
is really suitable for command and control programming.

In the most general terms, it is clear that the answer to this question is "yes. "
PL/I is a very broadly applicable language, and command and control is a very
wide application area, so there is bound to be some overlap. But this observa-
tion is essentially trivial. What is needed are some practical guidelines for
looking at a particular command and control system to determine its program-
ming language requirements, and for looking at the various alternatives —
including dialects of PL/I — to make the best choice by matching the require-
ments against the alternatives.

33-

THE UTILITY OF PL/I FOR COMMAND AND CONTROL PROGRAMMING

There are presently only two practical alternatives to PL/I for command and
control programming: assembly language and JOVIAL. I have no detailed
guidelines to offer here on how to choose among these alternatives; that is a
topic for another paper. This paper deals with a few, more basic topics.
First, what is command and control? Everyone has his own ideas, of course,
and there is probably even a standard Air Force definition. Nevertheless I
should explain how I look at it, sol can talk about the kind of programming
language you need to write a command and control system, and how well PL/I
meets these needs. Finally, I have some comments on the question of PL/I's
prospects in command and control.

What is Command and Control?

The Definition

A military command and control system can be defined as an information-
processing system that is intended to provide military personnel with direct
computational support in conducting an actual or anticipated battle. This
definition includes all of the command and control systems I know of, but it
excludes many military systems that are not used in fighting battles, such as
payroll accounting systems, and it also excludes systems that do not have a
man/machine interface, such as weapons guidance systems. These exclusions,
however, do little to delimit the kind of language you need for command and
control programming.

The Spectrum

Looking closely at the command and control application area, you find it covers
a more or less continuous spectrum of applications. This is shown in Figure 1.

Unfortunately, there are two kinds of people in the world: those who explain
everything in terms of dichotomies, and those who do not. Thus the command
and control application spectrum is often said to consist of only two major
categories. These have had many names applied to them over the years—
names like "tactical" versus "strategic" systems, or "real-time" versus
"nonreal-time" systems. For simplicity, let me call them: "surveillance
and control-oriented" versus "command-oriented" systems.

• 34-

THE UTILITY OF PL/I FOR COMMAND AND CONTROL PROGRAMMING

•

i>

SURVEILLANCE
AND CONTROL

SYSTEM > i
COMMAND

POST
INFORMATION

SYSTEM > f
Figure 1. The Command and Control Spectrum

This kind of distinction is commonly made, but it is the basis for the distinction
that is important, and hard to pin down. I think it is the degree to which the
system is automatically linked to the outside world that it must sense and affect.
Now this is something you can measure. You can measure the ratio between the
system inputs that come from people, and the inputs that come from some kind
of automatic sensor, like a radar. And you can measure the ratio between the
system outputs that go to people, and those that go to some kind of automatic
control system. So you actually do have a spectrum.

At one end of this spectrum, there are surveillance and control systems, such
as the Ballistic Missile Early Warning System (BMEWS) and the Sentinel anti-
ballistic-missile system, which sense and affect their environments almost
completely automatically. At the other end, there are command post informa-
tion systems, like the U.S. Strike Command's STRICOM system and the Air
Force Headquarters' 473L system, which sense and affect their environments
manually. In a surveillance and control system, response time and reliability
are the key things, and human interaction tends to be minimized and fairly
rigid. For many reasons, such systems usually cannot afford too much com-
putational inefficiency. In a command post system, there are still response

• 35-

THE UTILITY OF PL/I FOR COMMAND AND CONTROL PROGRAMMING

time problems, but they are not nearly as important. (A missed deadline does
not automatically mean a system failure, it just means an irritated commander.)
Human interaction is the main thing in this kind of system, so a lot of computa-
tional flexibility is needed.

Then in the middle of the spectrum, there are command and control systems
where the surveillance, control, and command functions are combined. Perhaps
the SAGE air defense system is the best-known example here.

The Software

Let us consider briefly the kinds of computer software necessary for a command
and control system — or any system, for that matter. This is another area that
has fallen into the hands of the dichotomizers, who currently use the labels
"functional" and "nonfunctional" software. This is unfortunate, because it will
be hard to get managers to buy "nonfunctional" software, even though it forms
a vital part of a system.

For most purposes, software is better categorized as utility, application, or
support software, as shown in Figure 2.

UTILITY SOFTWARE

APPLICATION SOFTWARE

SUPPORT SOFTWARE

PRODUCTION TIME

Figure 2. Command and Control Software

•36-

THE UTILITY OF PL/I FOR COMMAND AND CONTROL PROGRAMMING

A utility program is a programming tool used for producing, testing, or
installing other programs. Examples are compilers and assembly programs,
debuggers, test data generation programs, and the like. Operational or appli-
cation programs are those that help the military users do their command and
control job. Nobody doubts the need for this kind of software.

Finally, there is the vital yet sometimes overlooked category of support soft-
ware. A support program is one that is used in training and exercising the
system, particularly its human operators, or in analyzing and evaluating the
system, in both live and exercise situations. A support program necessarily
deals with the whole system, including the people. A program used to exercise
and evaluate just the hardware or just the software would be a diagnostic or a
utility program, rather than a support program. Some examples are environ-
ment simulation programs for producing exercise inputs, and operational
recording and analysis programs for auditing or determining how the system
is doing.

These three categories of software impose their own requirements on a program-
ming language, in addition to the requirements of any particular type of command
and control system. Let us look at some of these requirements, at least the
unusual ones — those that are not satisfied by languages like ALGOL or FORTRAN
 and try to see why they are almost always necessary.

Command and Control Language Needs

Aside from the ordinary features every programming language needs, the essential
requirements of a command and control programming language are few. They
include the capability to specify text processing, bit processing, fixed-point
arithmetic, arbitrary data origins, varying table entries, and preset data.
Interestingly enough, these requirements all have to do with data types and
st ructu res.

Text Processing

A command and control programming language must be able to handle text pro-
cessing, by which I mean arbitrary manipulations on arbitrary character strings.
In most command post information systems, at least part of the data base is
textual; text is what the command staff puts into the system and hopefully what
they get back out of it. Even in surveillance and command systems, there is
usually some textual communication with the operators, even where most of it

-37-

THE UTILITY OF PL/I FOR COMMAND AND CONTROL PROGRAMMING

is by function-push-button or light-pen actions and graphic displays. In
addition, communication between the utility and support systems and their
users is largely textual.

These systems can be programmed in a language with a very rudimentary
text-processing capability. Languages as elaborate as SNOBOL, for example,
are not really necessary, although extra features are always helpful if the
user can afford what they cost. What is necessary is the ability to declare
textual variables of arbitrary length — up to some reasonable maximum. The
ability to declare textual variables up to the length of at least a print line is
useful, because this simplifies much of the programming. But textual vari-
ables limited to the length of a computer word, say 6 or 8 characters, are
adequate. Other requirements are the abilities to assign new values to
textual variables, denote constant textual values, and compare two textual
values for equality and alphabetical order. A concatenation operator is useful,
though not vital. However, it is essential to be able to designate, as a textual
variable, any dynamically specified substring of another textual variable.

The following examples show how PL/I expresses some of the text-processing
functions I have mentioned.

declare TEXT character (500) varying;

substr (TEXT, I, 3) = '(' | | A| | ')';

if 'M' < = substr (TEXT, I, 1) then . . .

Fixed- or varying-length textual variables can be declared in PL/I. In the
examples, a variable named TEXT is declared to have a maximum length of
500 characters. (In the IBM F-level compiler, variables up to 32,000 charac-
ters in length can be declared.) Textual substrings can be dynamically speci-
fied in PL/I. In the example (second line), the three characters beginning
at the Ith character are being assigned the value: a left parenthesis, con-
catenated with the (presumably single) character designated by the textual
variable A, concatenated with a right parenthesis. The third example shows
the Ith character being compared to see if the letter "M" is less than or equal
to it.

Of course, PL/I has other text-processing features. In particular, it has a
very useful string-searching procedure named index, and another one named
length that indicates the current size of a string. But these are extras, not
really essential for command and control programming.

38-

THE UTILITY OF PL/I FOR COMMAND AND CONTROL PROGRAMMING

Bit Processing

Just as text-processing features are needed to write programs that communi-
cate with people, so bit-processing features are needed to write programs
that communicate with the remote sensors, control devices and other systems
that a command and control system must interface with. Since these devices
tend to communicate in strange codes and formats (that language designers
evidently have never heard of), it is necessary to manipulate individual bits.
However, this is not a universal requirement, because in some command post
systems the interfaces may all be textual. But it is common enough, and if
new equipment requiring new formats is added to an existing system, it is
useful to be able to program for it.

In essence, the bit-processing capabilities required are identical to the text-
processing ones, except they are applied to bit strings rather than character
strings. In addition, it is desirable to do logical operations on bit strings—
that is, treat them as Boolean vectors. But again, this capability is not vital.
Here are some examples of bit processing, dealing with a 32-bit string
named X.

declare X bit (32);

substr (X, 1, J) = "1 (A & B) | C;

if substr (X, I, 1) = ' 1 'b then . . .

In PL/I, bit strings are handled like character strings, with the same opera-
tions. In addition, all the logical operations on bit strings can be used, such
as "not" (-j), "and" (&), and "or" (I). In the second example, the first J bits
of X are set to the resultsof "and"-ing the bits in A and B together, taking the
complement of that, and "or"-ing it with the bits in C. The third example
tests the Ith bit of X, and shows how awkward the PL/I notation can be when
compared with the nearest equivalent ALGOL expression shown below.

if X[I] then . . .

Fixed-Point Arithmetic

A capability for fixed-point arithmetic is mandatory for command and control,
mainly because of the economy in execution time and storage space it provides

-39-

THE UTILITY OF PL/I FOR COMMAND AND CONTROL PROGRAMMING

(compared to floating point). In most computers, fixed-point arithmetic is
much faster than floating point, and this can make a vital difference in a real-
time system. In any kind of system, it takes a lot less space to store, for
example, 5, 000 fixed-point numbers each 18 bits long than it does to store
5, 000 floating-point numbers that are each 36 bits long. Also, less time is
spent managing this data, moving it in and out of core. While this difference
may be unimportant in a prototype command post system, for example, where
floating-point numbers are acceptable for sample files, in any real system,
floating-point numbers may be a luxury the user cannot afford.

To do fixed-point arithmetic, the only essential requirement is the ability to
declare fixed-point variables of arbitrary size and scaling. That includes the
ability to declare part-word variables, but not necessarily multiword variables,
and the ability to declare the radix point to be anywhere inside — and even
outside — the field boundaries of the variable. Also, of course, it is necessary
to be able to denote constant fixed-point values. Naturally, when arithmetic
on fixed-point values is specified, the compiler should automatically take care
of the scaling.

PL/I has almost all the facilities for doing fixed-point binary or decimal
arithmetic, as shown in the following examples.

declare (X binary, Y decimal) real fixed (8, 5);

X = 1.1b; Y = 10+(3/2);

A: if X = Y then go to A;

The first line of code declares X and Y as 8-digit, fixed-point variables, each
with 5 fraction digits — binary in the one case, decimal in the other. The "5"
in the declaration could have been just about any positive or negative integer.
(In the IBM F-level compiler, binary variables can be declared up to 31 binary
or 16 decimal digits long.) Still, there are some minor but very real annoy-
ances. For instance, all fixed-point variables in PL/I carry sign bits, and a
positive, unsigned variable cannot be declared without a sign bit (although an
unsigned binary integer can be declared as a bit string). Even though it looks
as if part-word variables could be declared in PL/I (such as X, which is
nominally just 8 bits plus a sign bit long), the F-level compiler does not really
allow this, because it allocates storage for fixed-point variables in full-word
units.

• 40-

THE UTILITY OF PL/I FOR COMMAND AND CONTROL PROGRAMMING

Another problem concerns the fixed-point scaling rules in PL/I, which some-
times produce curious results. The second line of code in the examples above
sets X to the binary constant one and a half (1. lb), and Y to the formula
10+(3/2), which—incidentally—could just as well involve variables with the
same precisions and values. Then, barring any conversion errors I have not
bothered to account for, you will find that X does indeed equal Y, because the
division (3/2) gives you the maximum number of digits, but only one integer
digit. To add the ten, you must truncate something, and the PL/I scaling
rules demand truncation of the most significant integer digit, rather than the
least significant fraction digit.

Arbitrary Data Origins

Another command and control language requirement is the ability to declare
origins for data elements. That is, the programmer must be able to say
that a certain item starts in bit so-and-so of word such-and-such, both in
absolute terms, and relative to some other location, and with provision for
overlaps and gaps. The command and control programmer needs this so he
can deal with the irregular data formats in the unusual places he is sure to
encounter, particularly in a real-time system. At times he must be able to
get at data that is wired into certain bits in core memory.

One way the programmer might use PL/I to get at any given string of bits is
to declare an array that takes up all of core memory, which a "smart" com-
piler could assume was supposed to overlay everything else, including the
program. Here is an example of this:

declare WORD (32768) bit (32), FIELD bit (20)

defined WORD(639) position (8);

Assume you have a computer with a core memory of 32, 768 words, each 32 bits
long, and you want to get at bits 8 to 2 7 of word 63 9. The first part of the
example above declares the WORD array; the second declares a 20-bit FIELD,
defined to start right where you want it.

One problem with using defined overlays is that the only thing that can be de-
fined on top of a bit string in PL/I is another bit string. The same holds true
for the other data types. Now, let us say you want to describe the format of
a word, as shown in Figure 3, where the first bit is an indicator (named I)

• 41.

THE UTILITY OF PL/1 FOR COMMAND AND CONTROL PROGRAMMING

that tells you whether the rest of the word contains a regular 8-bit character
(named A), or a character (named B) from some special, 5-bit alphabet such
as the Baudot teletypewriter code.

1 25 32

• A

B
28 32

Figure 3. A Simple, One-Word Data Format

The format in Figure 3 can be declared by the following "cryptogram."

declare

1 NULL1 packed,

2 I bit (1),

2 NULL2 cell,

3 NULL3,

4 NULL4 bit (23),

4 A character (1),

3 NULL5,

4 NULL6 bit (26),

4 B bit (5);

-42-

THE UTILITY OF PL./I FOR COMMAND AND CONTROL PROGRAMMING

Notice that this simple data format is declared in PL/I as a four-level data
structure, with half a dozen null names (which have to be there, and have to
be unique — at least those at the same level have to be unique) even though we
will never use them in the program. At the first level, we declare the whole
word as a packed data structure (NULL1), which means there is to be no
unused storage between adjacent data items. (Unfortunately, this only applies
to string items in PL/I.) At the second level, we declare a 1-bit indicator (I),
and we also declare a cell (NULL2), which is an area of storage with sev-
eral alternative formats. Ours we declare as a pair of third-level struc-
tures (NULL3 and NULL5). One (NULL3) consists of the character item (A),
preceded by a 23-bit filler item (NULL4), which we need so that A will start
at the right place. The other (NULL5) consists of a filler item (NULL6)
followed by the 5-bit character item (B), which we have to declare as a bit
string, though we will probably process it as an integer. '

The previous example shows it i£ possible to declare rigid data formats in
PL/I, even though the language really is not designed to make this easy. It
is also possible, though awkward, to declare tables with varying entries in
PL/I.

Varying Table Entries

A typical data structure in command and control applications is the table with
variable-size entries. An example of this is a table of flight, plan data, where
each flight plan has a variable number of checkpoints. Figure 4 shows a very
simplified example of an entry in such a table. It assumes that the common
data items for each flight plan fit into one 32-bit word. The n checkpoints
(P379 i to P379 n) are each ten bits long, and are stored three per word.
Presumably, they are indexes to some other table (of location identifiers).
The flight plan table itself would be indexed by word, so that P379 3 would
refer to the third checkpoint of the flight plan entered at word 379 of the table.

There are ways to avoid the varying table entry, but it is so common and
useful a structure that any command and control programming language should
be able to handle it. PL/I can handle it, in fact, though not, as you might
expect, with the varying attribute, which results in the allocation of a fixed,

* It would often be very convenient if PL/I allowed programmers to define
arbitrary alphabets (see Reference 4), but it does not.

-43-

THE UTILITY OF PL/I FOR COMMAND AND CONTROL PROGRAMMING

1 32

WORD 379 COMMON DATA ITEMS

WORD 380 p
379,1

p
379,2

p
379,3

P379,n-1
P

379,n

Figure 4, A Variable-Size Table Entry-

maximum amount of storage. One way this can be done is shown in the next
"cryptogram. "

declare

1 FPT (2500) packed cell,

2 NULL7,

3

• /*common data items*/

2 NULL8

3 NULL9 bit (2),

3 Q (3) bit (10),

P (2500, 3) bit_(l0) defined Q(l + lsub+ floor(2sub/3),

l+mod(2sub , 3));

-44-

THE UTILITY OF PL/I FOR COMMAND AND CONTROL PROGRAMMING

I have named the flight plan table FPT, and allocated 2, 500 words to it. It
is a packed cell with two alternative, second-level formats. (Unfortunately,
this is a coding mistake. For some reason, you cannot declare a packed cell
in PL/I; the two attributes are incompatible. But you can easily get around
this restriction by inserting another structure, with the cell attribute, between
the first-level structure and the two second-level, alternative structures.)
The first one (NULL7) contains the word full of common data items, which I
have not bothered to spell out. The other (NULL8) contains a 2-bit filler
(NULL9) and three checkpoints, which I have had to give a dummy name (Q),
since I can not index them the way I want to index the P's. Thus, I must
declare P as a separate array, with dummy (but hopefully adequate) dimensions,
defined onto Q. The complicated subscript expression after Q gives the functions
for mapping the subscripts of P—which are referred to as 1 sub and 2sub — onto
the subscripts of Q.

Preset Data

The last requirement on my list is the need to initialize data within the program
at compile time. This is a common requirement, and not just for command
and control programming. There are many uses for such things as tables of
constants, and while there are other ways of making them available to a
program besides having the compiler generate them, these are usually rather
cumbersome in actual practice.

PL/I has a reasonably good mechanism for initializing data values. The
following example gives the declaration for the rather picturesque character
array shown in Figure 5,

declare TAB (8, 3) character (1)

initial ('A', 'B\ 'C,

(18) (1) •*'

T, 'Z', ' ');

A repetition factor of 18 (on the third line above) is used to get the 18 asterisks.
But to avoid producing a single, 18-character string, another repetition factor
of one must be inserted.

-45-

THE UTILITY OF PL/I FOR COMMAND AND CONTROL PROGRAMMING

TAB: A B C

* * *

* * *

* * *

* * *

* *

* # *

Y
z 0.

Figure 5. A Preset Character Array

The PL/I initialization feature has only two relatively minor annoyances. The
first is that a multidimensional array must be initialized with a one-dimensional
list of values; the second is that when a table is initialized, each item in it
must be initialized with a separate list. Thus, the initial values for each entry
cannot be grouped together in the natural way. But, again, these are minor
problems.

Other Language Features

The list of requirements presented thus far may seem rather pedestrian and
unexciting. Perhaps the most interesting part of it is what I have left off the
list — and why.

As I mentioned before, I have left off my list of requirements all the ordinary
features found in most high-level programming languages — things like machine
independence, loops, and subroutines. These features are also required, of
course, but are not worth discussing here.

-46-

THE UTILITY OF PL/l FOR COMMAND AND CONTROL PROGRAMMING

Also, I have left out almost all of PL/I's powerful and exciting new features —
things like the compile-time facilities, list processing, automatic and controlled
storage allocation, recursive procedures, array and structure expressions,
and so on. These features are all very useful, but are not essential require-
ments. The user decides whether he can afford them by trying to figure out
how much they will add to the cost of acquiring, operating, and maintaining his
compiler, versus how much they will save in programming costs.

Of more interest, however, are the features missing from my set of requirements
that you might reasonably expect to find in a list of command and control lan-
guage needs. These other language features include: input/output and file
processing, priority and interrupt processing, parallel processing, and
machine-dependent processing.

There is certainly a need to do input/output and file processing in any command
and control system, as well as the need to do priority and interrupt processing.
Like it or not, some machine-dependent processing is usually required, and
since most command and control systems involve at least an additional back-up
computer, some kind of parallel processing is often necessary.

Except for the capability for machine-dependent processing, PL/I has all these
features. But I do not include them among the essential requirements because
there are perfectly acceptable ways of getting along without them in the language.
Input/output and file processing, for example, may just as well be done by
calling on library subroutines, and any necessary machine-dependent processes
can also be library subroutines. The main thing that determines whether or not
these capabilities are necessary in a command and control language is the
operating philosophy adopted for the particular command and control system.

Operating Philosophy

For any command and control system, it is clear that a custom-built executive
is necessary. Operating systems supplied by computer manufacturers are

Experience with JOVIAL for command and control programming seems to indi-
cate that even all the features of that relatively modest language are seldom
warranted, much less the additional features of a language like PL/I.

•47-

THE UTILITY OF PL/I FOR COMMAND AND CONTROL PROGRAMMING

simply too general-purpose and inefficient—even for a nonreal-time, command
post information system. So the questions of operating philosophy, as shown
in Figure 6, are the key issues in both command and control system design,
and the choice of language features.

For any particular function, of course, the first question is whether or not it
is really needed. I think the answer is "yes" for the functions I have just been
discussing, so the next question is: Should these functions be performed
centrally, in the executive, or in the individual subprograms?

In answering this question, the two major considerations are always efficiency
of operation and ease of program maintenance. Efficiency of operation implies
at least some degree of centralization, and ease of maintenance implies a need
to minimize the interface between the executive and the individual subprograms
of the system, so that one can be changed without necessarily having to change
the other. This usually implies more centralization, which means these other
language features are not necessary in writing the system's individual sub-
programs, because the executive performs these functions. With the help of
relatively few machine-language subroutines, these features are even un-
necessary in writing the executive.

It may be necessary, of course, for the individual subprograms to exercise
some control over when and how the executive does these functions. This is
done by having the subprogram leave a message for the executive, in a public
table, or call an executive subroutine. But the programmer may just as well
set the message in the table or call the subroutine himself, rather than have
the compiler generate code to do it from some language feature, particularly
since the former approach partly avoids the need to modify the compiler each
time a change is made to the executive.

I should mention, however, that this argument applies mainly to the operational
system—the application software—and not to the utility or support software.
But a capability for priority and interrupt processing, for parallel processing,
or even for machine-dependent processing is not usually needed in writing
utility and support software, although input/output and file processing capa-
bilities are required, if they can be implemented efficiently enough for pro-
duction usage.

-48-

THE UTILITY OF PL/I FOR COMMAND AND CONTROL PROGRAMMING

DO THE
FUNCTION?

YES

IN THE
EXECUTIVE?

I YES

UNDER
PROGRAM
CONTROL?

YES

YES

IN THE
PROGRAM?

YES

NO

NO

CALLED BY \
THE PROGRAM? J

NO

NO

FORGET IT!

EXECUTIVE'S
PRIVATE

PARTS

EXECUTIVE'S
PUBLIC
TABLES

EXECUTIVE
SUBROUTINE

CALLS

LIBRARY
SUBROUTINE

CALLS

COMPILED
TARGET
CODE

Figure 6. Questions of Operating Philosophy

-49-

THE UTILITY OF PL/l FOR COMMAND AND CONTROL PROGRAMMING

Command and Control Processor Needs

In addition to the programming language requirements I have been discussing,
the command and control application area imposes fairly severe requirements
on the language processor. It must be "compool" sensitive, it must interface
with various executives, it must produce reliable, efficient target code, and it
must be economical of implementation, operation, and maintenance. (And
perhaps even courteous, brave, clean, and reverent.) Incidentally, these
requirements are harder for a compiler to meet than an assembler, and they
have considerable impact on the utility of PL/I for command and control pro-
gramming, because they can be met only by picking a specialized command
and control subset of PL/I, and custom-building a compiler for it. (The
F-level compiler, for example, would be almost useless for command and
control programming.) There is no question as to the feasibility of doing
this — it is undoubtedly a practical approach.

Compool Sensitivity

To get down to specific requirements we must ask: What is a compool, and
why does a compiler need to be sensitive to it? A compool (which is an abbre-
viation for "communication pool") is just a central file of data descriptions —
a dictionary of data names — that are common to a set of programs. By
referencing a compool, a generalized utility program, like a compiler, can
translate back and forth between the names used by the programmer and the
internal address codes used by the computer, and also between the external
and internal representations of data values.

This is a vital function, but it is the centralization that is the key part of the
compool concept, because it means each programmer can use the same
dictionary, so they do not have to spend all their time trying to coordinate
definitions. When a change has to be made, it can often be made once, in
the compool, thus eliminating the need to look through numerous separate
programs and make thousands of individual changes.

PL/I has two very useful language features that may sometimes be combined
to make a compool unnecessary. One is the include statement, which allows
the programmer to insert a string of PL/I text from a library file into his
program. The other is the external attribute, which allows him to declare
data elements that are common to more than one program. By including
external declarations into a program, the programmer can get almost all the
power and convenience of a compool. But there are some differences. There

•50-

THE UTILITY OF PL/I FOR COMMAND AND CONTROL PROGRAMMING

is usually information in a compool that cannot be expressed in a PL/I text—
for example, auxiliary and alternative storage locations. Also, a compool is
a binary file, not a textual file, so it is much more compact, and this makes
searching and maintaining it much faster. For a system with a very large
amount of precisely allocated common data, I would say that you still need a
compool.

Executive Interfaces

A compiler for command and control applications must necessarily interface
with several executives. It must produce application programs that run under
the operational executive. It must itself run under the utility executive, and
if it is used for utility and support programming, it must produce programs
that run under the utility and support executives.

In some cases, a single executive may suffice for all three systems, which
naturally nullifies this requirement. But, while utility and support programs
can often be run under the same executive, operational requirements usually
dictate a special-purpose operational executive.

Reliable, Efficient Target Code

It is especially vital that a command and control compiler produce reliable
target code because of the exceptional difficulty typically encountered in de-
bugging on-line, real-time systems such as command and control systems.
Anything that adds to this difficulty, like an undebugged compiler, must be
avoided, or at least taken into account.

So far as efficient target code is concerned, there may be extreme cases where
the computer is so big and fast in relation to the job that just about any code
will do, or where the computer is so slow and small that it cannot solve the
problem no matter how well it is coded. However, compilers can be built
that turn out code that is good enough for most command and control systems.
Since the computational requirements for most systems are almost always
underestimated, it is typically just barely possible to do this. Thus, efficient
target code is often the most stringent requirement, to which everything else —
such as compiling speed and nonessential language features — must be sacrificed.

51-

THE UTILITY OF PL/I FOR COMMAND AND CONTROL PROGRAMMING

Economy

Finally, there is a command and control compiler requirement for economy of
implementation, operation, and maintenance. This requirement is imposed
not so much by the tyranny of a fixed budget as by the tyranny of a fixed schedule.
A compiler for a "big" language like PL/I takes a lot of time to build—as IBM
has found out — and since a custom-built rather than an off-the-shelf compiler
is usually required, this can have a great impact on the overall schedule for
a system. A big compiler for a big language is almost necessarily a slow com-
piler. Although economy of operation is always desirable, when there are, say,
100 programmers frantically trying to debug their programs at the same time,
a slow compiler can mean they get many fewer shots at the computer — even a
time-shared computer — and this can have a great impact on a schedule.
Economy of maintenance does not affect schedules as much as it does budgets,
but it is still a worthwhile goal.

All the requirements I have been discussing can be met by a good compiler for
a suitable subset of PL/I. But I would caution against trying to include too
much in that subset — aside from the features that are obviously needed in any
programming language, and the features I mentioned earlier that are needed
for command and control. Again, any additional features should be implemented
only if they will save time or money.

PL/I's Command and Control Prospects

My comments on PL/I's prospects in the command and control field will
probably be unsatisfactory because they boil down to this: Your guess is as
good as mine — at least for the long term. But for the short term, say the
next three or four years, I think PL/I's prospects are surprisingly poor for
becoming the standard command and control programming language. I say
surprisingly, because the language (or rather a dialect of it) is clearly suitable
for command and control, as I hope I have made clear, and because a great
many people, supporters and detractors both, think it is the wave of the future,
and this by itself generates considerable demand for its use.

There are many reasons why this demand will not soon be widely satisfied in
command and control. One reason is simply that the Air Force has only
recently established JOVIAL as the standard computer programming language
for Air Force command and control systems, and I do not anticipate an early
change to this policy. The Navy adopted JOVIAL several years ago as the

•52-

THE UTILITY OF PL/I FOR COMMAND AND CONTROL PROGRAMMING

standard language for its strategic (i.e., shore-based) command and control
systems, though it uses CS- 1 for programming its tactical (i.e., shipborne)
systems. Only in the Army, which seemed until recently on the verge of
choosing JOVIAL as its standard command and control language, are there
any prospects for the use of PL/I. Dialects of PL/I are being developed for
the Sentinel anti-ballistic-missile system and for the Tacfire artillery fire
control system. In addition, there are signs of reluctance, at certain high
levels within the Department of Defense, to encourage the use of any pro-
gramming languages but COBOL and JOVIAL.

Another factor that will slow the acceptance of PL/I for command and control
programming is the lack of an established and suitable dialect. Nobody has
implemented or even announced a command and control dialect of PL/I yet.
The Army's projects are evidently still under development. An IBM project
to develop a military subset of PL/I is still at an early stage, and a small
SDC project has only recently begun to look into requirements.

For the long term, however, if PL/I ever does become the universal pro-
gramming language, supplanting FORTRAN and COBOL for scientific and
commercial applications, then it would clearly make a lot of sense to use it
for military applications too. Some say this is sure to happen. Others say
PL/I will remain a toy, like ALGOL. At any rate, I would not recommend
changing the Air Force command and control programming language standard
from JOVIAL to PL/I until somebody can demonstrate that a lot of time or
money can be saved by doing it.

References

1) "IBM System/360 Operating System, PL/I Language Specifications,"
IBM Form No. C28-6571-4 (1967).

2) "Standard Computer Programming Language for Air Force Command and
Control Systems," Air Force Manual No. 100-24 (15 June 1967).

3) Shaw, C. J. , "Computer Programming and Command and Control, " System
Development Corporation Report No. TM-2857 (25 April 1966).

4) Shaw, C. J. , "On Declaring Arbitrarily Coded Alphabets, " Communications
of the ACM, Vol. 7, No. 5 (May 1964), pages 288-290.

5) Engdahl, S. L. , "Principles of Program Design for Large-Scale Command
and Control Systems and Associated Support Systems, " System Development
Corporation Report No. TM-3396/000/01 (1 May 1967).

-53-

THE UTILITY OF PL/l FOR COMMAND AND CONTROL PROGRAMMING

Questions and Answers

Question: In reference to your comments on the prospects of PL/l in
general, to what extent is the future of PL/I tied to the 360 com-
puter? Is it conceivable that the 360 would be operable without
PL/I?

Answer: Lots of people are using 360s who never heard of PL/I.

Q: Do you envision it as a possibility for the future that the 360
would be usable to a large extent without PL/l?

A: I don't see why not. After all, there are FORTRAN and COBOL
and ALGOL. And if enough people decide it's not worth making
the switch to PL/l, why then they won't. You presumably are go-
ing to have to convince them that they're going to gain more than,
say, 20% reduction in programming costs by switching to PL/I—
otherwise it's not worth the effort. There's an awful lot of inertia
involved.

Q:

A:

Going back to that slide where you have the replication factor—
(18) (1) '*'—what did you say about the use of (1) which avoided
replication of the asterisk?

Well, if I'd left out the (1) I would have specified a single char-
acter string composed of 18 asterisks. This would be a single
value, and would serve to initialize one of the elements of the
array, where in fact I wanted to initialize 18 elements of the
array with a single asterisk; so I had to prefix the asterisk with
a repetition factor of 1 to indicate that I wanted a 1-character
string. This is just a coding trick, if you will, in PL/I.

Comment: The reason it's necessary is that if you do want a character string
which contains 18 asterisks, you can specify it without explicitly
stating 18 asterisks by saying (18) '*'.

•54-

FIRST PANEL DISCUSSION

Participants

Frederick P. Brooks, Jr. , University of North Carolina
Vilas D. Henderson (Moderator), Logicon

Mary D. Lasky, The Johns Hopkins University
Robert E. Rosin, Yale University

Christopher J. Shaw, System Development Corporation

Henderson: Bob Rosin this morning raised the point that I think was also
brought out quite well by Chris Shaw's talk this afternoon: there
is going to be a continual problem regarding who controls the
language PL/I and what happens in connection with the selection
of subsets and so forth. Let's start this off by hearing from Bob
to get his thoughts in this area.

Rosin: It should first of all be clear, as I suspect that most of you know,
that PL/I originally evolved as "NPL" out of a joint SHARE /IBM
effort, three men from each organization. It later was digested
by IBM and came out as an IBM tech report in December '64;
this tech report was later revised into the -0 and eventually the
-4 language specifications manual. Since it went into IBM—and
I'm not questioning whether this is proper or not at this juncture —
it has been controlled by IBM to the extent that they have built a
very elaborate, and in many cases probably well-justified machin-
ery for deciding what does go into the language, what doesn't go
into the language, and in some cases—much more sensitive
cases—what aspects of the language are candidates for review and
perhaps change. Many people, I should point out, have implemented
alternative subsets of PL/I, and in many cases, as Chris points
out, alternative dialects. That is, they have not only constrained
the language in some cases, but they've also modified it, in some
cases quite considerably. We get into debates occasionally in
SHARE, and occasionally just sitting around the campfire some
nights, as to which one of these things—if any of them or if all of
them — is really PL/I. It's clear, for example, that the F-level
implementation is not PL/I; it's a subset. For example, list pro-
cessing, which is now part of the language, is not at all implemented
in the F-level compiler. IBM has implemented a subset, which is
almost a proper subset, for the D-level compiler which is to run
under the DOS system. There are other dialects which look like
ALGOL with character strings, and so forth. There are other dia-
lects which look like FORTRAN with semicolons. Some of you may
have seen documents for some of these things.

• 55-

FIRST PANEL DISCUSSION

It's clear to those of us working in SHARE that if we want to
develop PL/I in SHARE, then we must cooperate with IBM and
somehow work with this structure. Now I say again, if we want
to work in SHARE we must do this; it's clear that this is the case
because SHARE is not about to go out and build a PL/I compiler,
nor is any relatively significant group in SHARE going to do this
and distribute it. We have experiences (before my time in SHARE)
with something called SOS which indicate that this may not be the
way to go. If we as customers of IBM expect IBM to do it, we
therefore must interface with their procedure. On the other hand,
an awful lot of us have been getting up on soap boxes occasionally
and talking about alternative definitions of various features of the
language: in some cases rather significant, and in other cases
rather impudent extensions to the language. I think the kinds of
things Chris was talking about this afternoon were really quite
pertinent. I grew up in an ALGOL 58 dialect, as is JOVIAL,
where, indeed, data is data, and you can define identifiers of
arbitrary data types to overlay one another in sometimes rather
confusing, but in many cases rather powerful ways. Obviously,
this would require a rather radical redefinition of what is PL/I,
in terms of the concept of data in PL/I. Now, the question that
arises is: If one does make this radical redefinition and comes
out with something that has the flavor of PL/I in some sense and
the flavor of, say, JOVIAL in another sense—although I will
discuss in a little while a proposal that has the flavor of SNOBOL,
which is really in some cases radically different — is this still
PL/I, is it a PL/I dialect, is it a PL/I subset, or is it really
a kitty with a different kind of stripes? IBM knows who controls
the language. USASI has a committee that's trying to discover
whether they're good enough to find out what PL/I is and define
it. I'm not sure exactly where we're going.

Henderson: Fred, do you have anything you'd like to say about this?

Brooks: It seems to me the following lesson can be drawn from the COBOL
experience. Control of the language means several things: one
is policy decisions about features, and the other is the detailed
technical working out of syntax and semantics. And that latter
function is not a committee function; it is a one-man function.
You need a uniform conceptual approach which is essentially
the function of one mind. Now, I think it is perfectly possible
to combine that technical work with policy decisions arrived

-56-

FIRST PANEL DISCUSSION

Shaw:

Rosin:

Shaw:

Brooks:

Rosin:

Shaw:

Rosin:

Shaw:

Rosin:

Shaw:

Brooks:

at by committee. I know this is possible because I've seen ma-
chine definition done that way, in which one man writes the
manual with his own pencil but all kinds of policy decisions as
to what priorities and features would be designed are made by
a group.

That's how JOVIAL, was designed. I wrote the manual and we
had a large committee make the policy decisions.

There are some people who feel that PL/I is too big for one man.

It isn't.

It isn't. No. Ask George Radin.

I'm not sure today what position he would take. It is rough; it's
a lot more difficult than it used to be, although I agree with you
that the technical details. . . .

The reason it is so difficult right now, Bob, is that the PL/I
manual has 15 different authors; each one has written a section
of it without reading what the rest of the people have written.

Let me clarify for the group, in case they're not aware, what the
procedure looks like inside of IBM, as I understand it. There is
a Language Control Board and there is a Language Review Board;
I'm never exactly sure which is which, or which does what. The
Language Control Board controls what is going on in the language
by making sure that implementations maintain the letter of the law
and extensions somehow bear in some consistent way upon what
already exists. The Language Review Board is that group which
is responsible for considering extensions and changes. Now that
obviously is not one man. There is, however, a language manager
somewhere in IBM who is responsible for this.

But he doesn't write documents.

That's true.

He should.

He should; there has to be a person, somewhere. We have to dis-
tinguish between this essentially technical fleshing-out function and

57-

FIRST PANEL DISCUSSION

the policy-making function. I think the second thing to be learned
from the COBOL experience is that policy-making decisions should
reflect responsibility. Anybody who has made a significant commit-
ment, as a user or as an implementer, probably should have some
mechanism for having his voice heard. But anybody who is merely
curious, and has not made a significant commitment on his own
part, ought to be rigorously excluded. Otherwise you get too many
dabblers who have nothing to lose; I think we've seen that process
on character code standardization.

Henderson: Mary, do you want to say anything about this area?

Lasky: From working with the SHARE committee on it, I know what goes
through when the SHARE project would like to put a change in the
language, and this change doesn't agree with GUIDE, and then IBM
certainly doesn't like it — it goes around and around. The work that
goes on to get something into the language is certainly not trivial,
not easy, and not fast — and in a way this may be good. I think the
language control could be taken outside of the hands of IBM and
perhaps given to some body like USASI so that they could form a
standardized language that would be the PL/I. If you wanted to
go outside of it and do a subset or something, that would be fine,
but you would have a guideline for doing variations. It will certainly
be a benefit to the other manufacturers who haven't gone forth with
vigor at this time in what they're doing with it; if some grander
body than IBM were holding the strings to the language, then they
could also have a voice on whether something gets changed in it.
So I think that this has a benefit. Being from a scientific installa-
tion and also from a university where many of our programs come
from other installations, I have misgivings about a lot of subsets
creeping up, with their incompatibilities. It would be nice to
have something that's clean enough that I could send my PL/I
program to another installation and have it run without a lot of
modifications. If you get too many little bits and pieces growing
up because people find that one feature doesn't satisfy them, so
they add another little feature here and there, then programs are
no longer compatible. You have this with FORTRAN now, and
have gotten into trouble. I think that unless you guard definitely
against this with PL/I, you're going to get into the same bind.
I don't know what the answer is, or what's going to happen with
USASI. I know they are looking at it now and deciding how the
wording should be about whether they will go ahead and standardize
it or not.

-58-

FIRST PANEL DISCUSSION

Henderson: Chris, how about you?

Shaw: This business about "What is PL/I?" is, in fact, a very difficult
question to answer because as yet there has been no definitive
compiler for the language. Without a definitive compiler for the
language, a lot of the language features that are as yet unimple-
mented are open to more or less serious questions as to their
practicality. We've had similar problems in nomenclature within
SDC concerning JOVIAL. We've gone over these problems and
come up with various solutions to them over the years. At one
time we were going the central committee route, where there was
a central committee, and they, by God, said what JOVIAL was.
This didn't work well for a number of reasons. The approach we
are taking now is actually an old approach. It is the approach
used by the implementers of NELIAC toward defining what they
meant by NELIAC: that approach is simply to specify the basic
subset of the language. This permits a reasonably definitive com-
piler to be written for this basic subset, so that if questions aren't
answered in the manual as to what's in the language, you can look
at the compiler. And there will always be questions that the man-
ual won't answer. Now in standardizing JOVIAL within SDC, what
we have done is standardize our nomenclature for JOVIAL. So we
say that any compiler that calls itself a JOVIAL compiler has to
accept Basic JOVIAL, and produce the same results—essentially
the same results—as our definitive compiler does for the same
input program. We also have one or two other official dialects
of the language; these are necessarily supersets of Basic JOVIAL.
Anybody can build a JOVIAL compiler, but if he is going to call
it a JOVIAL compiler it has to accept Basic JOVIAL. He can add
on this basic framework anything he wants and still call it a
JOVIAL compiler, the only restriction being that it has to be
compatible with the only official JOVIAL dialect, namely, J3. I
think that this is probably a pretty good way toward standardizing
what you mean when you use the work "PL/I, " and this is essen-
tially all that we really want to do. We want to define PL/I. And
I think this is a much better way to go than the COBOL route,
whore they have a standard definitional mechanism for COBOL
that allows you 7000 different dialects of the language in combina-
tions of various modules. I think the USASI standard FORTRANs —
the basic FORTRAN and the full FORTRAN—could be used in this
fashion, the same way that we use Basic JOVIAL and J3 JOVIAL.
And I think this is a very good approach; however, I don't see the
industry approaching this solution for PL/I at a particularly fast

-59-

FIRST PANEL DISCUSSION

rate, I do know there is within IBM a very strong effort to pro-
vide a rigorous formal definition of the language.

Rosin: I made a few notes on Chris's comments. First of all, the
comment about standards: from a practical point of view—this
is a cynical practical point of view, I must admit—standards
are supposed to provide a groundwork upon which things are
based, and apparently this is the case with JOVIAL. One finds,
however, that when he confronts a manufacturer with a standard
and then asks for something to be produced according to that
standard, the standard then becomes the upper bound as well as
the lower bound. This is a little frightening. This is not always
the case, but the extensions above the standard are very frequent-
ly minimal.

Shaw: If you want more, go to them with more money.

Rosin: Oh right, right. I'm now speaking as a small user in a large
community. It's difficult. I think one way out of this may be
the concept of an extensible compiler and extensible language,
where there is a core PL/I processor which includes the ability
for self-definition and self-extension. (This is something we
talked about, and I must confess we've talked about this in the
SHARE PL/I project, generating a lot more heat than light—
probably infinitely more heat than light.) Now, the PL/l
compile-time facilities, as they exist now, to be very blunt
are in my impression a mockery of this concept. I think the
people who are responsible for this in PL/I were aware of it
then and are aware of it now. This is a very difficult problem.
There have been several papers in this area recently; they've
all been good, and I think they've presented a challenge to the
compiler-writing community. I suspect PL/I is an area that
might profit. Let me just make a couple of other comments.

Brooks: Are you going to leave that subject?

Rosin: I'll let you come back to it. . . . OK, go ahead.

Brooks: It seems to me that the principal reason for having a standard
is so that you can trade programs; and if you're going to be able
to trade programs, you have to have more than a minimum
standard. That is, you have to have a standard standard, one
that defines the upper bound as well as the lower bound. This

60-

FIRST PANEL DISCUSSION

is a degree of rigor which no compiler designer or language
designer has been willing to accept. We have finally got to
the point that we know how to do it with machines and have
indeed been able to muster enough discipline to do it. Not
so with languages. Perhaps this reflects the ten years of
extra maturity in one field compared to the other.

Shaw: One of the problems with language design is that a lot of the
theoretical work being done in this area is, in my mind, equiva-
lent to writing compilers for Turing machines. You can do it—
you can presumably write an ALGOL compiler for a universal
Turing machine that defines ALGOL for you very nicely—but
so what?

Brooks: Let me give a more concrete illustration of what I mean. When
we built STRETCH, every time anybody could think of something
that would make the machine look like it was faster, we flung
it in .

Shaw: That's how they designed PL/I i

Brooks: And the result was a machine that was either baroque or rococo
depending upon. .. .

Shaw:

Brooks:

Rosin:

That's PL/II

The thing we learned in looking at the 360 line was that the
requirement of looking at the future, which the big machines
clearly imposed on the small ones, benefitted the small machines.
More surprisingly, the requirement of close attention to cost,
which the little machines imposed upon the big ones, was good
for the big machines. And the requirement of downward com-
patibility was the best thing that the Models 65 and 75 ever saw
because it kept them disciplined. I think the same kind of
discipline imposed on languages—to say, "All right, you build
to this standard, and you do not build above this standard"—
would save an awful lot of garbage getting in.

I agree with you wholeheartedly. The essence of my point is
that if the standard PL/l included an extension facility, then
one might be half-way home.

Shaw: A usable extension facility, one that allows you to do just about
any translation your heart desires.

-61

FIRST PANEL DISCUSSION

Rosin: To be able to define data types, to be able to define operators,
statement types, and to generate code.

Brooks: In building an extension facility one has to be careful to preserve
both machine independence and implementation independence. If
your extension facility says, "Boy, hold, I can change my tables
provided your compiler is built using a certain table structure, "
you have lost rather than gained.

Rosin: I might say that the "flavor" of ALGOL 58 that was used in
Michigan with the MAD compiler does have a rudimentary
extension facility in it, and it turns out to be pretty powerful
at times. That is, you can indeed define new operators, and
you can do this without redefining the language. This is a
powerful tool, both for the experimenter and for the guy who
has a production job.

Let me just offer these other two points, and I'm sure this will
get somebody's hackles up. There are two forces operating here
which are very interesting. In some ways they appear to reflect
the production community as opposed to the research community—
those people with problems to solve as opposed, perhaps, to
those people who invent problems. There is first of all, the
requirement for stability; IBM sees this very, very deeply.
Again I say this from my working with people in IBM on the
policy level of PL/l. If PL/I changes too much, PL/I will not
be adopted by anyone. They insist on this, and this is one
reason for standards, one reason that companies like Univac,
Honeywell, and so forth, are adopting a fairly heavy-handed
wait-and-see attitude. On the other hand, in a university
research-oriented community, change is the status quo; and
it doesn't make much difference to me in teaching my courses
if PL/I changes much from year to year, because if I do a good
job in teaching, my students will be able to recognize the change
and adapt to it without any trouble at all. If they couldn't do
this, then they failed the original course, and I failed in teaching
the original course. Another way of looking at this dichotomy
of stability and change is perhaps "the market" versus 'excel-
lence"—where excellence is defined by something which is rather
dynamic. Now that's sort of an ivory tower picture, and to
avoid Chris's sin, I don't want to really say. . . .

Shaw: Which one?

• 62-

FIRST PANEL DISCUSSION

Rosin: The dichotomy problem not your sin, the sin you're saving us
from. I don't believe there's really a dichotomy; it's obviously
a continuum and it's probably multidimensional. Let me just
ask a question of the panel. It's a serious question; it's a
question that comes up, for example, in SHARE meetings; and I
got badly trounced up in San Francisco for proposing a resolution
which would, in effect, meet some of these ends: What would
happen to PL/I, in terms of acceptance, in terms of a con-
trolled environment, in terms of your teaching, and, Mary, in
the attitudes of your scientific programmers, if somebody who
had capabilities to program and support compilers turned
around tomorrow and delivered a PL/II compiler, where PL/II
was substantially different from PL/I? What would be the
effect on this group sitting here ?

Shaw: I'll tell you what did happen! At SDC this last year we have
been designing a programming language, a fairly powerful
language for the spaceborne application area. The requirements
for this language encompassed all the things that PL/I has and a
half a dozen other things. We came up with a language spec for
a language like this—quite a bit different from JOVIAL or PL/I
or what have you; it was a little bit like CPL, and a little like
the Iverson language. Our next job was to JOVIALize it because
the Department of Defense didn't want it.

Brooks: I'll tell you another example. Mary said most of the code they
are running on the 94 is written in FORTRAN II.

Lasky: For one thing, as Bob said, we're one of the few installations
in the world that took over the SHARE Operating System. We
have done a great deal of our own work using SOS, and have
added other language processors onto it, and have gone through
the experience and expense of maintaining our own software.
With only five or six people in the systems group, we don't want
to do it again—arid we can't afford to do it again as the systems
become larger and larger and you get more powerful machines.

Brooks: Yes, I think we see the same thing happening on three levels. As
an individual I raced out into the world waving a flaming sword,
all for change and down with stability—that was in 1956. I am
now much more in favor of stability. I think that as individual
installations, the computer users have also been continually re-
evaluating this trade-off in favor of higher and higher emphasis

-63-

FIRST PANEL DISCUSSION

on having things stay still long enough to get some work done.
And I think that as a profession and a discipline we are placing
higher values on stability. And so I think at all three levels—
individually, by installation, and as a discipline—we are learn-
ing that the true inertial forces are much greater than we
thought they would be. The thing that's happening is that people
are building parameteral programming systems in which you
build something, and then you build more on top of it, more
and more and more on top, and today we are much more talking
about and building whole systems rather than lots of little
isolated programs. The conversion problems are just orders
of magnitude different between these, so I think we're going
to see the whole works stabilized more and more.

Rosin: Fred, one comment I heard about PL/I—to which several people
have attributed some of its lesser positive qualities—is the fact
that somebody, maybe a committee, decided that PL/I should be
ready about the same time the 360 was ready, and that it probably
needed a year or two more of thinking and experimental compiler
building and so forth before it was cast upon the world.

Brooks: That doesn't correspond to my recollection. PL/I was developed
independently of System/360 and its timing was independent so
far as I know.

Instrument noise transferred to the tape precluded transcription beyond this
point, which occurred about midway in the panel discussion.

64-

STRINGS AND ARRAYS IN PL/I

Robert F. Rosin
Associate Professor,

Engineering and Applied Sciences
Yale University-

New Haven, Connecticut

Author1 s Note

The following pair of papers dealing with
the facilities provided for manipulation of
array and string data in PL/I are the re-
sult of many months of examination and
use of these features of the language. It
might appear that I am highly critical
of these aspects of PL/I, but that
is not my intention. PL/I provides func-
tion and notation for manipulation of these
forms of data in a manner far superior to
that available in any other widely accepted
general purpose language. It is my in-
tention to illustrate these features and then
to highlight a series of language extensions
which would serve to continue the spirit of
excellence upon which the language is
already based.

•65-

ARRAYS IN PL/I

Introduction

As it stands, PL/I provides a far more general array manipulation facility
than does any other widely accepted general purpose language (Reference i).
On the other hand, an examination of what is provided reveals some rather
unfortunate omissions when considered in the light of completeness and
symmetry. Any serious attempt to use the language makes several of these
cases painfully obvious. This discussion will begin with a brief examination
of the array manipulation facilities defined in PL/I and will conclude with a
set of suggested generalizations and extensions. Strings are often considered
a special case of arrays; however, they are treated separately in another
paper by the same author.

Existing Facilities

The defined (and implemented) array facilities in PL/I include the following:

1) Declaration of arrays of arbitrary dimensionality with arbitrary
extents in each dimensionality

2) Declaration of an initial value for a given array

3) The ability to allocate and free storage assigned to an entire array
but not its constituent elements

4) Element-by-element arithmetic on arrays of mutually consistent
dimensionality

5) Arithmetic operations combining arrays and scalars

6) Passing of arrays as arguments to procedures

7) Declaration of other than 1-to-l mappings between arrays:
iSUB notation

8) A set of built-in generic functions for performing certain mathematical
manipulations and for determining extents and bounds of arrays

9) Consecutive subscription and array cross-sections.

66.

ARRAYS IN PL/I

It is clear that these facilities constitute an advance and generalization of array
manipulation, given that languages such as FORTRAN support, at least in part,
only items i, 2, 6, and 9,

However, one simple example is adequate to point out the nature of the existing
deficiencies. Consider the task of writing a procedure to perform an in-core
sort of numeric data. This can be accomplished with relative ease in PL/I,
except for the following unfortunate limitations. First of all, one would prefer
to write SORT in such a way that it could be used as follows:

X = SORT(Y);

However, one discovers that PL/I does not allow array valued procedures in any
form.

This disappointment is supplanted by another when one chooses to redefine the
procedure so that:

CALL SORT(Y.X);

is used in the calling program. In this case one is quickly confronted with the
fact that if the target array, X, does not agree in all attributes save dimension-
ality (which can be arbitrary) with the dummy parameter in the procedure defi-
nition, then the sort will take place but the value of X will not be changed.
PL/I does not convert values associated with array parameters except when
passed into the procedure.

Having decided, therefore, to assure the absolute consistency of array attributes
in a program, one might choose to use data-directed input to initialize the array.
Thus:

PROG: PROC OPTIONS (MAIN); DCL (X, Y)(30); DCL SORT ENTRY ((*), (*));

LOOP: GET DATA; CALL SORT (X, Y);
PUT DATA X; GOTO LOOP;
END PROG;

One is confronted with the prospect of supplying the data to be sorted in the
following way:

Y(l) = 34.2, Y(2) = 56, Y(3) = 77, etc.

That is, unlike in the INITIAL attribute where one can say:

DCL Y (5) INITIAL (34. 2, 56, 77, etc.);

-67-

ARRAYS IN PL/I

the user is forced to use a dummy assignment statement for each element of
the array rather than for the whole array. One would prefer to be able to say
something like:

Y = (34.2, 56, 77, etc.);

These comments may appear to be "nit-picking"; but the author has, unfortunate-
ly, been confronted with exactly this situation in attempting to provide and use
a sort facility in his installation subroutine library. It is clear that these and
other defects can be corrected by providing additional syntax, but it is not always
obvious which of several alternatives is best. Furthermore, early IBM imple-
mentation strategies appear to rule out reasonable interpretation of a few of
the following suggested changes; and the generality implied by several might
lead to inefficiencies in any implementation. Therefore, this area of PL/I
requires serious study in order to meet the two objectives of notational ease
and computational efficiency, which can be in conflict.

Suggested Extensions

The suggestions which are enumerated here fall into the following two categories:
symmetry of PL/I functions and incompleteness of facilities. In addition, some
of these changes are obviously acceptable and others are quite controversial.
No attempt is made to place any proposed extension into any of these categories.

i) A single notation should be defined for array constants, and this notation
should be universally applicable in declarations, expressions, and I/O.
For example:

DCLX (3) INITIAL (1,2,3); DCL (A,B)(3);
A = B + (l,2,3);
PUT LIST (1,2,3);
GET DATA X; with the data card containing X = (1,2, 3);

The use of nested parentheses should be allowed for definition of constants
of dimensionality greater than one, e.g.:

DCL Y (2,2) INITIAL ((1, 2,), (3, 4));

and incomplete rows and columns (etc.) should be filled with zeros.

• 68-

ARRAYS IN PL/I

2) Array expressions should result in array temporaries and not the DO
loop interpretation currently provided, e. g. :

DCL (A,B) (3,3);
A = A/A (1, 1); A = B;

should behave exactly like:

B = A/A (1, 1); A = B;

rather than setting the first element of A to 1 and effecting no other
change. A facility for array temporaries already exists in any PL/I
implementation to allow for conversion of array parameters when
passed to procedures, and it is not clear that this reinterpretation
would necessarily be less efficient than the current approach. Other
examples of the positive effects of this change appear in other pro-
posed extensions.

3) Array subscription should be expressible in one or two ways, and this
notation should be allowed in all contexts. For example:

DCL A (10), B (3);
B = A (4:6); X - (B+A(l:3)) (2);

where the latter extracts the second element of the sum of B added to
the first three elements of A. In the case:

B = A (6:4);

the 1st element of B should contain the 6th element of A, the 2nd element
of B should contain the 5th element of A, etc. Again, the use of array
temporaries would provide quite readily for this generalization. It is not
clear that:

(array expression) (subscript expression)

is syntactically unambiguous, and an explicit subscription operator might
have to be provided for this case.

In I/O statements one is allowed to use DO notation for element selection,
and there is no reason not to provide such a facility for expressions and
declarations. E.g.:

• 69-

ARRAYS IN PL/I

DCL A (10) INITIAL (A(I) - (3, 4, 5) DO I = 1 TO 5 BY 2);
DCL X (3); X = (A(I) DO I = 1 TO 5 BY 2);

4) Array valued functions should be allowed. Consider:

DCL SORT ENTRY ((*)) RETURNS (*);
SORT: PROC ((*))(*);

Again the question of interpretation is important, and the use of array
temporaries rather than the current definition appears to solve the
problem. One should be able to write:

DCL X (4) ; DCL Y (10);
X = (SORT(Y)) (5:2) + (1,2,3,4);

and if Y contains 1,2,3,4,5,6,7,8,9, 10 in any order, then X should
contain 6, 6, 6, 6.

5) In addition to the ability to allocate entire arrays, it is reasonable to
consider providing a facility for reallocation of portions of an existing
array, including adding and deleting rows, columns, etc. and re-
allocation of existing data for use by alternative accessing schemes
(by other than overlay defining). The former might well be inefficient,
requiring reallocation of the existing array, transferring of the selected
elements, and deletion of the old copy. The second scheme would
require only the respecification of the parameters passed to the access-
ing function, which supports the subscription notation and is currently
available in at least one dialect of ALGOL '58 (MAD).

6) Although the ability to define generic functions provides a portion of
the facility desired (and should not be discarded), the ability to obtain
the attribute values of any identifier, either internal, external, or
parameter, would be of great value. Consider, for example, the
ability to select a differing code in a sort procedure depending on the
nature of the data to be sorted — REAL, COMPLEX, or CHARACTER.
This would accomplish a generalization of the currently provided
capability for the programmer to determine the extents and bounds of
arrays at object time.

Several alternative schemes come to mind. For example, the language
might support a separate built-in function for each possible attribute
which would return a character string, perhaps empty, containing the
appropriate attribute value. More general would be a single built-in

-70-

ARRAYS IN PL/I

function which would return a vector of the attribute values which could
then be manipulated by the object program. This latter scheme would
allow for extension of the attributes which the language supports without
necessarily obsoleting previously written programs.

Conclusions

It is clear that PL/I provides facilities for manipulation of arrays which super-
sede those of any general purpose language of wide acceptance. It is equally
clear that these facilities can be made more symmetric and complete, and re-
main within the spirit of the PL/I language. One would hope that the suggestions
in this brief paper would be considered by the programming community, and
especially by those responsible for furthering the development of PL/I.

References

1) IBM Corp., "IBM System/360 Operating System: PL/I F-level
Reference Manual," Form No. C28-8201.

-71-

CHARACTER STRINGS IN GENERAL PURPOSE PROCEDURAL LANGUAGES

Abstract

It is pointed out that PL/I is the only widely
accepted general purpose language which
supports the character string data type to
the same functional extent as do SNOBOL
and COMIT. The PL/I facilities are briefly
described and then a set of notational (but
not functional) changes are proposed and
discussed. The conclusions drawn in this
paper can be readily applied to the inclusion
of character strings in any general purpose
languages.

Introduction

Although there have existed several languages whose primary data type is the
character string (abbreviated henceforth as CS), notably SNOBOL (References 1
and 2) and COMIT (Reference 3), general purpose procedural languages are
seldom able to support fully this most useful form of data. The complex pat-
tern matching and substitution facilities of the two languages mentioned are
obtained only through extremely complex and often syntactically "illegal" con-
structions when considered in the context of FORTRAN, COBOL, and the
several ALGOL dialects. Furthermore, processors for these languages seldom
support the particular form of dynamic storage allocation needed for varying
length strings as outlined by Madnick (Reference 4).

The one notable exception in current use on a widely accepted basis is PL/I,
which offers both the fixed and the varying length CS and a set of operators,
functions, and implicitly called conversion routines capable of very general
CS manipulation (Reference 5). These same facilities are also applicable to
bit strings, a fact with which we shall not be concerned, but which does not
invalidate any of the discussion offered in this paper.

It is the purpose of this paper to present a brief summary of the existing facili-
ties in PL/I for CS manipulation, both in terms of form and function. Following
this we will offer a set of possible language changes which provide the same
function, but in a far more convenient notation. Finally the validity of these
changes will be discussed in terms of a set of critical statements which apply
to both the notation proposed and implementation of this notation extension in
a compiler.

-72-

CHARACTER STRINGS IN GENERAL PURPOSE PROCEDURAL LANGUAGES

Although directed to PL/I, the remarks concerning CS in this paper are relevant
to any attempt to provide a comprehensive CS facility in a general purpose pro-
cedural language. Notational simplicity is a primary reason that these languages
are used. To provide a new function by offering notation which is awkward,
although concise and complete, is to defeat one goal of defining such a language
in the first place. Nevertheless, it is the author's contention that the CS facili-
ties included in PL/I constitute a marked improvement over those offered by any
other general purpose language of wide interest; and its developers should be
recognized for this advance.

The Existing PL/I Facilities

The facilities afforded by PL/I for CS manipulation are summarized here. Of
course, one cannot neglect the additional facilities included in PL/I which are
also useful for general algorithm construction and for CS as well as other data
types.

PL/I provides fixed and varying length strings. In both cases, the maximum
length of the string must be stated at the time that the string is declared. A
CS can be a member of any larger data aggregate, array or structure, and can
appear in based storage. CS constants consist of any string of characters de-
limited at both ends by a pair of apostrophes, with an adjacent pair of included
apostrophes representing a single occurrence of that character. A constant
replication factor can be applied to such a CS constant by enclosing the repli-
cation factor between a pair of parentheses immediately preceding the first
apostrophe.

CS subscription is accomplished by the built-in function SUBSTR, which has a
CS as its value. SUBSTR (X,I,N) returns the substring of X from the Ith
character, N characters long. Exceeding the limits of X currently results in
a truncated value, but more recent proposals have suggested that a STRINGSIZE
condition will be raised instead. If SUBSTR is called with only two arguments,
then the entire CS starting from the Ith character is returned.

SUBSTR can also be used in the sets position in an assignment statement, allow-
ing the programmer to assign a value to a portion of some existing string. The
length of the CS being assigned is adjusted to match the target of the assignment.
For example,

SUBSTR(X,4,3) = 'ABCD';

replaces the 4th, 5th, and 6th characters of X with 'ABC.

• 73-

CHARACTER STRINGS IN GENERAL PURPOSE PROCEDURAL LANGUAGES

PL/I also provides the full set of relational operators and a very complete set of
implicitly invoked conversion procedures, allowing the use of CS data in more tra-
ditional contexts. Also includedisan operator, I | , for denoting concatenation.*

Finally, scanning and pattern matching are supported through another built-in
function INDEX, which returns an integer as its value. INDEX(X, Y) returns the
index of the first character of the left-most substring of X which matches the
CS Y. If no such substring exists, then INDEX returns the value 0 (zero).

The examples in the appendix illustrate a few simple cases of the use of these
facilities along with their counterparts using the notation in the following
section of this paper.

Proposed Language Changes

This proposal and the appended comments have resulted from many months of
thought and speculation about the CS facilities in PL/I. To be sure, the exist-
ing language tools are complete in the sense that one can program any reason-
able scan, replacement, extraction, etc. However, it has been considered
by some that a more natural set of CS operations should be considered for this
language so that reasonable applications could be approached in a straightforward
way.

Much of the flavor of this scheme will appear to be reminiscent of SNOBOL, and
not without cause. SNOBOL has been used with great satisfaction by the author
and his students, and it is considered by many to be the most successful of all
attempts to provide a special purpose programming tool built around the CS
data type.

*The precedence of this operator has recently been changed. Previously, it had
lower precedence than the logical connectives &c and I , which themselves were
below the relational operators. The change places I I immediately above the
relationals. Therefore, the sequence

X =A||B; Y = C||D; IF A| | B = C||D THEN. . .

now groups expressions in a "more natural way" without, the use of parentheses.

•74-

CHARACTER STRINGS IN GENERAL PURPOSE PROCEDURAL LANGUAGES

On the other hand, every effort has been made to preserve the style and spirit
of PL/I. Indeed, the one concept which might tend to cause some consternation
is the generality with which the left-hand-side expression, or pseudovariable,
has been used. This becomes a very powerful tool when freed from the bounds
of functional notation as imposed by SUBSTR. But this proposal does not include
non-PL/I concepts, such as the arbitrary use of assignment within expressions
which does predominate in SNOBOL.

Special problems associated with BIT as opposed to CHARACTER have not been
considered in depth, but no difficulties have appeared so far. Examples of the
use of this extended notation appear in the appendix.

The proposal constitutes the following 12 items:

1) The default attribute for CS should be VARYING, with the option to
declare FIXED. The maximum length, if specified, would serve as
a guide to the compiler, but is optional.

2) SUBSTR(X(A),I, J) should be replaced by X(A:I. . . J+I-l) or some
similar notation.* It follows that:

X(A:I) = X(A:I. ..I)

X(:I)8X(:I,„I)

X<A:...J) = X(A:i... J)

X(A:I. . .) s X(A:I. . . LENGTH(X(A)))

In an expression such as X(:I. . . J) if 1 > J then the value of the expression
is the specified substring with the characters appearing in reverse order.
For example,

X = 'ABCDEFG'; Y = X(:5. . . 3);

results in Y contain 'EDC, and

X ? X(:LENGTH(X). .. 1);

reverses the characters in X.

* It has been proposed that the following alternative be adopted: X(A, I: J+I-1).

-75-

CHARACTER STRINGS IN GENERAL PURPOSE PROCEDURAL LANGUAGES

The implication of such a construction in the ultimate assignment
position should be identical to X(:J. ..I), that is, without reversal.

3) Five new operators should be defined. Their purpose is to scan strings,
left to right, and return a string temporary.

X UPTO Y returns X(:i. . . INDEX(X, Y)+LENGTH(Y)-1)

X BEFORE Y returns X(:l. . . INDEX(X, Y)-I)

X AFTER Y returns X(:INDEX(X, Y)+LENGTH/Y). . .)

X FROM Y returns X(:INDEX(X, Y). . .)

Y IN X returns X(:INDEX(X,Y). . . INDEX(X,Y)+LENGTH(Y)- 1) • Y

In any of these operations, if Y does not occur in X, then the scan is
said to fail, and the value of the resultant string temporary indicates
this (see items 5 and 6 below).

4) The relative precedence of these new operators is:

arithmetic
concatenation
UPTO FROM AFTER BEFORE IN
relationals
logical connectives
assignment

5) The notation in 2 and 3 above can be used on the left-hand side of
assignment statements in what might be called pseudoexpressions,
which can be considered in the same class as PL/I pseudovariables.
Expressions used in this way are not substantially different from
using ordinary subscription on the left-hand side. For example:

X = 'THIS, I BELIEVE, IS TRUE';
X AFTER ', ' UPTO ', ' = ";

results in X containing

•THIS, IS TRUE'

-76-

CHARACTER STRINGS IN GENERAL PURPOSE PROCEDURAL LANGUAGES

6) Replacement is conditioned upon lack of failure in all expressions in
a statement. For example:

Z = !XYZ'; 'A1 IN Z = 'MN';

results in Z containing 'XYZ', and the last statement is said to fail.

Assignment to an unnameable CS such as AJ | B = C; is also said to fail
and will not be executed.

7) Replacement of pseudoexpressions in varying strings causes the
designated string to be adjusted (expanded or contracted) to contain
the expression on the right-hand side. For example:

X = 'ABCDE'; X UPTO 'B' = 'XYZ';

results in X containing 'XYZCDE', and

Q = 'PUT OUT THE CAT'; ' ' IN Q = ";

results in Q containing 'PUTOUT THE CAT1. It is also reasonable to
adopt the same convention for fixed length strings. In this case the
necessary adjustment to the target string would require extension on
the right with blanks or truncation of those characters on the right which
would not fit, in order to preserve the declared length of the string.
The traditional interpretation is easily preserved by writing

X(:I. . . J) = Y(:l. . . J-I+l);

8) Two additional built-in generic functions should be provided: SUC and
FAIL. When used without arguments they return a truth value (bit
string of length 1) indicating the success or failure of the most recent
attempt at string formation, and the indicator is reset to success.
When used with a string expression as an argument, the corresponding
truth value is returned. Examples:

X = 'PUT OUT THE CAT';

DO WHILE(SUC); • ' IN X = ' ';END;

results in X containing "PUTOUTTHECAT', and

•77-

CHARACTER STRINGS IN GENERAL PURPOSE PROCEDURAL LANGUAGES

DIGIT = '1234567890';ST = •ABIZSD';

DO I = i BY 1 WHILE (FAIL(ST(:I) IN DIGIT)); END;

results in I containing 3.

9) There should also be a pseudovariable SUC which could be used to set
the success/fail value.

10) The occurrence of an array as the criterion in a scan results in a left-to-
right scan which is terminated by the first successful match of any
element in the array. The longest array element is selected if two
or more satisfy that criterion. (The inclusion of array constants in
PL/I would greatly enhance this function.) Example:

DCLDIGIT (10) CHAR (1)INITIAL ('O',' 1', '2', '3', '4', '5', '6', '7', '8', '9');

X = 'ABC123DEF'; A = X BEFORE DIGIT;

results in A containing 'ABC.

11) Success and failure are local to the block in which string formation
takes place, although they can be passed between procedures as
attributes of string arguments and results.

12) All function calls in an expression are evaluated, whether or not any
previously computed subexpression in the statement has failed.

Discussion of the Proposal

1) It is possible that the notation shown for the five new operators is
ambiguous, at least in a pragmatic sense if not a syntactic sense.
This arises since they could be confused with identifiers, and PL/I
is premised on a philosophy of no reserved words. One viable alter-
native would be to use an escape character in the prefix position pro-
viding that this notation is totallv unambiguous. One such possibility
would be

"UPTO "AFTER etc.

This would also fit nicely into a scheme for abbreviation such as

"U "A etc.

•78-

CHARACTER STRINGS IN GENERAL PURPOSE PROCEDURAL LANGUAGES

2) It has been pointed out that the generality implied by the extensive use
of left-hand-side expressions (pseudovariables) leads to a definite
ambiguity with respect to the equal sign (=). It is worthwhile to note
that this highlights the unfortunate situations which arise when a
symbol has two distinctly different meanings, supposedly always
delineated by context. Consider the example:

DCL A BIT(10),B BIT (1); A BEFORE B = 'l'B = 'IB';

An interim solution, which is far from adequate would be to define the
first occurrence of the equal sign in an assignment statement to mean
replacement, and all others to be the relational operator, as is currently
the case in PL/I. It is also possible to consider the same rule with the
additional proviso that an equal sign in a parenthesized expression can
imply only the comparison operation.

3) The meaning of replacement changes depending on the success or failure
of all string operations in a statement. The definition included in the
proposal says that failure implies no replacement. An alternative would
be to have failure imply replacement by the null string, although exactly
what should be replaced is not clear in every case. SNOBOL uses the
definition in the proposal and its success leads one to support adopting
that rule. Another alternative is to allow the programmer to change
the mode of replacement by calling a built-in function.

4) It is interesting to consider the addition of an indirectness operator.
This is being explored. One might imagine the following sequence
of statements using the indirectness operator IND:

X = 'ABC;

Y = 'X';

Z = IND Y;

This results in Z containing 'ABC.

5) A similarity can be noted between the operators introduced in this
proposal and the traditional relational operators.

•79-

CHARACTER STRINGS IN GENERAL PURPOSE PROCEDURAL LANGUAGES

> AFTER
> =* FROM
< BEFORE
< = UPTO

= IN
(—1= NOTIN)

It is important to note that the string operators return general string
values, whereas the relationals return only bit strings of length 1
(logical values). The value of NOTIN is, if anything, always the empty
string; the one situation in which it might appear useful is resolved by
using —1 in conjunction with SUC. For example:

IF -| SUC(X IN Y) THEN. . .

6) This proposal points out a few PL/I constructions which should be
generalized. Already noted are the lack of array constants in other
than the INITIAL attribute of the DECLARE statements and the use
of one symbol to mean both assignment and equivalence. In addition,
the ability to subscript arrays and string expressions, not just identi-
fiers, would be valuable. One might consider the syntax

(array or string expression) (subscript expression)

which appears to be syntactically unambiguous. Alternatively, this
function could be supported through the use of an explicit subscription
operator for expressions, while allowing the traditional implied
operator for identifiers.

7) Item 12 of the proposal is open to question, but it is felt that the
solution offered is appropriate for most uses of CS facilities. Item 11
alludes to the passing as arguments of CS expressions which have
failed. Their meaning in the called procedure would be identical to
that of any other expression which has failed. Returning a value such
as • ' IN " would pass failure back to the calling program.

8) With regard to implementation, it should be noted that CS temporaries
generally need not be constructed, except as the result of concatena-
tion and subscription generating reversal of the substring being
specified. In all other cases, CS temporaries take the form of reference
blocks (or "dope vectors") flagged as temporary which contain: a pointer
to the string ultimately referenced, and the extents of the temporary as
a substring of that CS.

•80-

CHARACTER STRINGS IN GENERAL PURPOSE PROCEDURAL LANGUAGES

Current Status and Conclusions

The proposal as outlined has been implemented as a set of defined operators
and a dynamically allocated CS data type in the MAD language using its self-
extension facilities (Reference 6). This package is available at Yale, the
University of Michigan, and is being adapted for an earlier version of MAD
under CTSS at MIT. It is expected that this effort will result in valuable re-
sponse from users at these institutions across a wide variety of applications.

The proposals outlined here appear to be a consistent set of extensions to a
general purpose procedural language. They do not constitute any significant
functional extensions over what PL/I now provides. Attempts at implementa-
tion in MAD indicate that no significant problems arise; and that, indeed, the
generality of CS expressions as opposed to the PL/I constrained notation can
often lead to gains in efficiency (Reference 6).

Acknowledgements

The author wishes to thank the following colleagues not resident at Yale for
their comments on draft versions of the proposals:

M. D. Mcllroy
R. E. Griswold
C. H. Weisert
Mrs. S. Greene

In addition the aid and assistance of the computing center staff at the University
of Michigan in installing these facilities in their system is gratefully
acknowledged.

References

1) Farber, D. J. , Griswold, R.E., and Polonsky, I. P. , "The SNOBOL3
Programming Language, " Bell Systems Technical Journal 45, 6 (July-
August 1966), pp. 985-943.

2) Farber, D. J. , Griswold, R.E., and Polonsky, I. P. , "SNOBOL, A String
Manipulation Language," Journal ACM 12, 1 (January 1964), pp. 21-30.

3) Yngve, V. H. , "COMIT, " Comm. ACM 6, 3 (March 1963), pp. 83-84.

• 81-

CHARACTER STRINGS IN GENERAL PURPOSE PROCEDURAL LANGUAGES

4) Madnick, S. E. , "String Processing Techniques," Comm. ACM 10, 7
(July 1967), pp. 420-423.

5) IBM Corp., "IBM System/360 Operating System: PL/I F-Level
Reference Manual," Form No. C28-8201.

6) Rosin, R. F. , "SNOMAD2, " Memorandum 14, Computer Center,
Yale University (August 1967).

Appendix

Four Brief Examples Using the Existing and Proposed CS Notation

/*!. IN STRING A WHICH CONTAINS AT LEAST 10 BLANKS, REPLACE
THE FIRST 10 BLANKS WITH '*' */

/* EXISTING NOTATION */

DO I = 1 TO 10;
SUBSTR(A,INDEX(A, ' '). 1) = '*';

END;

/* NEW NOTATION */

DO I = 1 TO 10;
• ' IN A = '*•;

END;

/*2. REPLACE ALL OCCURRENCES OF '*' IN X BY 7' */

/* EXISTING NOTATION */

Li: I = INDEX (X, '*');
IF I -j= 0 THEN DO;

SUBSTR (X,I, 1) = •/';
GO TO LI;

END;

-82-

CHARACTER STRINGS IN GENERAL PURPOSE PROCEDURAL LANGUAGES

/* NEW NOTATION */

DO WHILE(SUC); »*' IN X = •/'; END;

/*3. DELETING ALL BLANKS FROM STRING X */

/* EXISTING NOTATION */

LOOP: I - INDEX (X, ' '); IF I = 0 THEN GO TO DONE;
X = SUBSTR (X, 1, I-l)|| SUBSTR(X,I+1);

GO TO LOOP; DONE:;

/* PROPOSED NOTATION */

DO WHILE (SUC); • ' IN X = " ; END;

/*4. THIS ROUTINE SCANS THE STRING T FOR THE FIRST SUBSTRING
OCCURRING BETWEEN A PAIR OF BLANKS AND ASSIGNS THIS VALUE
TO X. IF NO SUCH STRING EXISTS THEN CONTROL IS TRANSFERRED
TO Y. THE PORTION OF T UP TO AND INCLUDING X IS THEN
DELETED. */

/* EXISTING NOTATION */

11 = INDEX (T, ' ');
IF II = 0 THEN GO TO Y;

Tl = SUBSTR (T.I1 + 1);
12 = INDEX (Tl, • ');

IF 12 = 0 THEN GO TO Y;
X = SUBSTR (Tl, 1, 12-1);
T = SUBSTR (T, 12);

/* PROPOSED NOTATION */

X = T AFTER ' • BEFORE • ';
IF FAIL THEN GO TO Y;
T UPTO X = ";

-83-

STRINGS AND ARRAYS IN PL/I

Questions and Answers

Comment: (Mrs. Lasky) I'd like to make a comment. I know that you said
this at the end of your comments, but I'd like to reiterate it. At
APL we have written a program that translates FORTRAN to
PL/I. Naturally this is completely string manipulation; all you
do is scan a string, pick out different parts, and use the string
manipulation facility of PL/I. We've also written a text-editing
program and a print program, and are in the process of writing
a program for the searching of records. This is all done using
the string manipulation facility in PL/I. You may get tired
writing SUBSTR, and you may want to have some notation that
would make it easier and quicker to write, but you can do it —
the functional ability is there.

Answer: I can give an example one generation earlier than yours. In a
way that's not even so powerful as that provided in JOVIAL, we
have the facility in MAD for manipulation characters — but really
as things superimposed on top of integers. We have students who
write little pieces of compilers in this. The second problem in
my introductory course this year was conversion of messages
written in Morse Code to English, and in English to Morse Code.
It can be done, and it's relatively straightforward. But it would
be much more straightforward in the facility I just proposed.

Question: Have you looked into the question of how big a problem it would
be to use PL/I compile-time facilities?

A: The PL/I compile-time facilities which exist now allow extension
of the language only in terms of functions, not in terms of opera-
tors. And I am the kind of guy who likes infix operators and not
functions nested 15 deep to do things that are otherwise not
straightforward. For example:

My proposal: X = Y AFTER ', • UPTO ', ';

Existing PL/I: X = UPTO (AFTER (Y, ', '), ', ');

One thing one cannot do in PL/I is to define pseudofunctions or
pseudovariables. But the compile-time facilities of PL/I, as it
stands today, do not allow one, for example, to define operators.
If it did I would have no quarrel, and indeed I -would never con-
sider proposing this as an extension to PL/I until I had used it

-84-

STRINGS AND ARRAYS IN PL/I

for two years. I think this is a great plug for real compile-time
facilities, real macro facilities. I say that with the full under-
standing that no one, I think, is really sure exactly how to provide
everything that everybody talks about in terms of a real macro
facility. I think a lot of people come close, but then seem to
leave a little off. Galler and Perlis have an interesting article
in the Communications of the ACM that goes only so far, and it
wouldn't encompass this proposal. Chetham gave a very good
paper at the 1966 Fall Joint Computer Conference which is really
excellent, and I think he gets down to the nub of a lot of this. But
I think there are still a few things that seem to escape him — for
example, the definition of additional data types, which turns out
to be a knotty problem. The central problem in building extensible
compilers in general — that is, code generation and the context-
sensitive features of language. But I agree with your point, Chris.
I built this proposal as extensions into MAD, and I could do this
because MAD allows me to define infix operators and to define
new data types. I can use these operators on the left-hand side
of assignment statements.

Q: You've indicated that you spilled a little blood over this. Are you
actually advancing this proposal or passing it on to . . . ?

A: This proposal hasn't been developed overnight. Most of you are
seeing it for the first time, and it's rather muddy and unclear.
It really takes several hours of thinking just to understand what
the objectives are, and what one does with strings in a high-level
language anyway, if you've never done it before. I have proposed
this; the SHARE project has considered it; I have mulled it over
with students and colleagues at Yale for over a year now, and
we've worked through lots of examples; and we understand the
problems of implementation. The SHARE project adopted a
resolution which asked IBM to consider this proposal and either
give us a date for implementation or consider and present alterna-
tives to us. I can report to you that their response to this reso-
lution was, "Not at the present time. "

Again, I think this is a good case for an extensible compiler, but
we have proposed it for the language. I think it is unfortunate
that one would feel compelled to do this, that the language has to
be extended in this way. Although Fred (Professor Brooks) isn't
here to agree or disagree, I think if PL/I had had a few more

-85.

STRING AND ARRAYS IN PL/I

years to mature before it was thrust upon the world, it might
have included a facility like this. I suspect that people like
Griswold and Polonski and Dave Farber (who is now at RAND)
— who did the original SNOBOL—would have contrived something
like this. They were interested in PL/I; they were interested in
writing a SNOBOL processor using the PL/I language — but they
were, in a sense, never given the opportunity.

-86-

EXPERIENCE WITH PL/I

Earl O. Althoff
Director, Joint Computer Evaluation Group

Eastman Kodak Company
Rochester, New York

I am very happy to be invited to discuss PL/I with you. To make this dis-
cussion more meaningful, it is important that you understand my point of
view. Every time I think of this matter of points of view, it reminds me of
the story about the two drunks who were trying to walk home from the local
tavern, but, in actual fact, made a wrong turn and ended up crawling down
the railroad tracks on their hands and knees. One drunk finally said to the
other one: "Say, did you ever climb so darn many stairs in your life?" The
other drunk answered: "No, but it wouldn't be so bad if it weren't for these
low banisters. "

Well, this may be an unusual view of a railroad track, but it does illustrate
the point I am trying to make. That is, reports on PL/I seem to differ, not
from intentional bias, but often because the reporter doesn't have a really
overall view. Getting back to PL/I, I think I have been in a very fortunate
situation, since I have really been concerned with it from several views over
the last four years. That is, professional activity as a GUIDE officer, an
overall company view from the standpoint of a person working at the company
level with worldwide standardization responsibilities, the points of view of
many individual company units representing practically every kind of previous
language usage possible, the point of view of the PL/I programmer, and the
training view of those just starting into PL/I.

Professional Activity as a GUIDE Officer

GUIDE, the organization of large-scale commercial IBM users, has a PL/I
project of about 70 members who are working with IBM on PL/I development.
This effort emphasizes commercial usage and is complemented by a SHARE
project. The two projects meet jointly at least four times per year.

I have been active as an officer in GUIDE and am currently president. A re-
port I made to the GUIDE membership on May 18, 1965, seems as true now
as it did then. I'll read the first part:

"Otis Simpson [president of GUIDE at the time] has asked cae to
review with you at the beginning of this meeting the activities of
your GUIDE executive board pertaining to PL/I. We might begin
by asking why we, serving you as elected representatives of all
GUIDE members, are closely watching these trends in language
development.

-87-

EXPERIENCE WITH PL/I

"I can assure you that I am not here to praise PL/I, or to dis-
parage any existing languages; I am here to report simply on
trends. One major reason that is advanced for PL/I is that it
is inevitable that, some day, a computer language must be de-
veloped which can do all of the jobs of the many partial languages
in use today. These partial languages such as FORTRAN, COBOL,
SPS, Autocoder, RPG, MAP, JOVIAL, LISP, and the like have
made a valuable contribution. They are today used for our live
programming and have contributed also to our total knowledge
about languages. However, many students feel that if one at-
tempted to expand any of these partial languages into a total
language, he would end up with such a mongrel result as to invite
almost certain failure. The second major reason advanced for
PL/I is, of course, that it can be changed quickly to include new
features. This is particularly important in our rapidly advancing
technology.

"I am sure we would all like to have an absolute written guarantee
that PL/I will be this pluperfect total language that is vitally
needed today. Lacking this guarantee, your GUIDE executive
board has taken a careful and deliberate approach in determining
GUIDE'S best role in relation to PL/I. Initially, it was uncertain
as to whether the language was an experiment, or whether it was
indeed a serious effort. With further developments, it has now
been determined that 1) PL/I is a very serious effort indeed,
2) the fundamental objectives of PL/I are to produce a total lan-
guage and to incorporate new developments at once as described
earlier, 3) IBM has promised that they will fully incorporate the
commercial needs as determined by GUIDE, and 4) PL/I is the
effort for the third generation of computers, and it is where the
language development money is going to be spent. Thus, we see
that if GUIDE members are willing to volunteer now to contribute
the benefits of their experience for PL/I, we can have simulta-
neously with the total hardware concept of the 360, a language
that will be as total as our current knowledge permits.

"As is usually true in these cases, one is never quite certain
whether or not the time in history brings about the development,
or whether a given development brings about history. However,
now is a historically correct time for users to consider a total
language alternative. In the first place, improved technology has
forced upon us the adoption of a new computer command structure
and a radically different data structure. We as users may have

• 88-

EXPERIENCE WITH PL/I

not desired this change, but today's needs and the price/
performance ratio are such that many of us are undoubtedly
going to make a changeover. Since we have a reprogramming
task, or more hopefully a translation task, whichever language
we move to will involve about the same amount of effort. In
fact, the total language, PL/I, should be much easier to mechani-
cally translate to than any of the partial languages. As a caution,
however, it does appear that PL/I will lag 6-9 months behind the
earliest available 360 language choices.

"The second reason for considering going to PL/I now is that we
are entering a new era where commercial EDP will be vastly
expanded in scope and complexity over our earlier concept of
purely business EDP. We need a language that integrates engi-
neering and business needs, a language that is good for real-
time applications, a language that can be added to and modified
very rapidly, a language that is good for teleprocessing and
man/machine interaction, as well as a language that incorporates
all of the basic capabilities of assembly language, Autocoder,
and COBOL. "

GUIDE started PL/I project activity with a comprehensive analysis of what was
needed, and I helped author a report dated April 27, 1965. I recently reviewed
this report so as to judge progress of PL/I versus our report.

Several of the items in the report pertained to the need for strong user activity
in the areas of understanding, usage, experience, and training. The cycle here
is that early users make the language work in their own shop; then they exchange
experiences to develop a consensus; and last, but not least, IBM publishes
user-oriented manuals and training courses.

Consider terminology: In 1965 all we had was the study group report — full of
technical and hard-to-understand terms. Good commercial names for PL/I
features had not even been thought up yet. Today, several books and manuals
explain PL/I quite understandably.

Consider training: A higher language removes the programmer that long mile
away from the machine, so he loses identity with object code unless he can
study good material with many examples. So we had many stories by early
PL/I users of jobs taking 5 or 6 hours at first that were cut to 10-20 minutes
by study of object code. This period is over now, since it's fairly easy to
pick up coding tips and thus write effective programs from the beginning.

-89-

EXPERIENCE WITH PL/I

In summary, devoted effort on the part of early users, and their willingness
to share ideas and experiences, have largely overcome problems pertaining
to terminology, understanding, usage, and training. IBM has recently published
a very good manual, and programmed instruction and other training material is
beginning to appear.

Now let us turn our attention to language items. The main need cited in the
1965 GUIDE report was lack of record-type input/output. The language simply
could not be used without it. IBM listened and added Record I/O on a high-
priority basis. The result: PL/I users now enjoy Record I/O in addition to
Edit-Directed I/O and Data-Directed I/O, and have Locate Mode from List
Processing coming along. In only two years we have advanced from an unusable
position to where one has the combined options of three single-purpose languages
— certainly, input/output capability is one of PL/I's outstanding features.

The GUIDE report also stated that certain built-in functions, such as sorting,
selecting, merging, and summarizing, are highly desirable. These would
work just like "Sine and Cosine". As of today, only initial study has occurred.
IBM recently promised that PL/I products would cover data base capability,
so we can assume this will now be given a high priority for language invention.

All of our GUIDE projects have fairly lengthy priority lists of wanted features
and PL/I is no exception. It seems like, as fast as several are taken care of,
new ones appear in our rapidly advancing technology.

Time does not permit me to make a detailed description here, but I could say
a few general words and perhaps there will be time in the discussion period
if you have further questions.

First, we are very concerned with machine independence as a basic principle.
The GUIDE and SHARE project groups, and to a major extent also IBM, are
really zealous on this point.

Second, the GUIDE PL/I project reported last November that PL/I was, today,
an ideal language for commercial data processing. SHARE backs it for scientific
purposes, and, in fact, the project leader of the FORTRAN project switched
over to become project leader of the PL/I project to help enhance conversion
methods devlopment.

Third, the next release in June will essentially be a full-language compiler.
So now the GUIDE and SHARE projects are working mainly on advanced features
not in any languages today — data base needs, teleprocessing needs, decision
tables, code translation, items helpful in writing software.

• 90-

EXPERIENCE WITH PL/I

The 1965 GUIDE report also cited compiler features. The needs for cross-
reference listings and some facility which equaled the COBOL copy facility
were stressed. The people writing in PL/I report that the compiler, together
with its compile-time facility, already goes far beyond the capability mentioned
in the GUIDE report.

The need for the compiler to be integrated with a total testing system was also
stressed. Here we mean a PL/I version of Auto-test. The language debugging
features of PL/I are truly outstanding. However, lack of the "testing system"
has meant that this need could not be satisfied in the manner inteneded in the
GUIDE report, but we do now have a GUIDE group working in the area of a
testing system.

Back two years ago, the greatest GUIDE effort was spent on getting across to
IBM the need for fast compilation time so users could make satisfactory EDP
progress. In particular, a cost analysis was given to IBM. It was stated
in this cost analysis that at $4. 00 and less per compilation, source language
debugging was economical. From $4. 00 to $8. 00, costs were such that com-
pilations were not restricted, but simple corrections were patched. Between
$8. 00 and $15. 00, it was found that the compiler could be used, but EDP man-
agement restricted usage and demanded grinding hours of desk checking— so
EDP progress was held back.

Another point is that until costs are below $10 per compile, almost the sole
selection criterion of a language is compile time, since differences of $10-20
per compile dwarf language facility savings. Below $10. 00 and particularly
below $5. 00, the major language selection criteria are language features and
capability, since a difference of $0. 10-$0.20 per compilation is meaningless if
programmer time is saved.

In summary, the GUIDE report stated, in 1965, that compilation costs of around
$5. 00 were essential if rapid EDP progress was to occur in our companies.

It is a little difficult to give a simple conclusion as to where we stand in relation
to this goal. For one thing, the cost per compilation of the F-level compiler
depends on 1) the amount of memory allowed for the compiler partition, 2)
main frame speed, 3) the hardware peripherals, and 4) the number of features
you elect to use. We compiled a program of 1, 000 statements on a Model 65
with HASP, in 159K, and using full cost rates, we were able to compile from
a cost of $3. 00 up to $9. 50 depending on how many features we elected to use.

Certainly, we are at the range where source level debugging is economic pro-
vided that programs are 500 statements and less. There are two ways of

-91-

EXPERIENCE WITH PL/I

looking at this. You can establish standards of 300-500 statements per PL/l
module so as to be in the economical range for source language debugging, and
then link modules together. The second way to look at it is to assume that we
will get faster compilers, and then use standards of 800 to 1, 000 statements as
your limit.

GUIDE, in this early study, also stressed object program efficiency — particu-
larly pointing out that about 70% of the time our commercial programs are doing
a very few simple things, such as moving data, an equality comparison, an un-
conditional GO TO, a subroutine linkage, and simple addition. Hence, if anyone
designs a language and compiler so that these few items can be as efficient as
with Assembler, one could write programs of 80% efficiency and up, compared
to Assembler.

The early versions were rushed out to help committed customers meet urgent
target dates. IBM then concentrated on efficiency for Release 3, which came
out last November.

With Release 3, if one could develop a totally new system, and if an experienced
person designs his record structures properly so that data conversions are
practically nil, and if we restrict our coding to a suitable subset of PL/I, we
are indeed up in the 80 to 90% efficiency range. However, the cost to write this
type of program is too high for general usage, so we feel that a greater percent
of PL/I must be handled efficiently over the long haul.

I could sum up this professional veiw by paraphrasing a proverb learned at
Kodak Germany: When I look back at 1965, I am amazed at the length of the
road we have come; but, when I look at the length of the road ahead, the road
behind looks quite short in relation to the road ahead. The road ahead includes
many advanced language inventions, since the nature of EDP is that of a dynamic
environment and language must keep pace with hardware. The road ahead also
includes conversion tools and industry standardization, each of which are major
efforts.

Overall Company View

Now turning to the company view: We decided in late 1965, on the basis of a
thorough study and IBM's commitments, to go to PL/I. We stated in 1965 that
we expected to do initial study in 1966; we would do pilot work in 1967; and in
1968 we expected to have a good production tool. This timetable was chosen
after looking at the entire complex of hardware problems and expected delivery

-92-

EXPERIENCE WITH PL/I

dates of OS and PL/I. In fact, of the three, PL/I has been in far the best
shape compared to our needs.

Before you take "pilot work" to mean only an occasional program or two, let
me explain that this is not what it means. By "pilot" we meant that target
dates could not be guaranteed in the sense that our 7080 target dates could be
guaranteed. But, if crucial target dates did not exist, we would write in
PL/I. In addition to this, one installation used PL/I on an absolutely rigid
target date on a very large integrated commercial system. This ensured
that solid company experience was gained during 1967. In fact, the latest
Rochester statistics I have show that we have 21 jobs on a Model 65 running
nearly around the clock on PL/I-oriented commercial work. The computer
installation which concentrates almost entirely on scientific-type work re-
ports that around 40% of their work is now done in PL/I.

The judge of a language is how closely the selection criteria are being met.
Hence, I will discuss PL/I selection criteria, and then cite Kodak experi-
ences in relation to each.

First is the ability to do all types of one's work. Here, PL/I has certainly
been a resounding success. Some 21 different commercial applications are
either in production or in the final stages of testing in Rochester alone. Ex-
amples are a large job status information system, an inventory system, and
a capital asset system. In the area of scientific computing, almost all of our
scientific groups have established PL/I expertise. And it is thus being used
on a wide range of jobs, mathematical, statistical, simulation, quality con-
trol, standard time and cost, etc.

Of particular interest, however, and getting more directly to the reasons we
feel that PL/I is the only language that truly complements 360 concepts, is
what we have learned from combined scientific-commercial efforts. In one
system, we are entering case weight data directly into the computer. The
scientific people are, of course, experts in work connected with scales, pack-
aging, and operating efficiency; meanwhile, the commercial people are getting
the weight information into the necessary shipping and billing documentation.
Both groups are able to code in PL/I in an integrated manner.

In another major plant, a large-scale information system was written princi-
pally by the industrial engineers (from the so-called scientific community);
yet this was integrated with commercial systems through the help of com-
merical PL/I programmers.

•93-

EXPERIENCE WITH PL/I

In one installation, a manpower emergency in a group preparing a commercial
application was met by a temporary transfer from the Research Laboratory.
Under prior concepts, this person could not have been effective for months,
rather than immediately, so target date setbacks would have been the only
possibility.

The people on these and other similar projects report that use of PL/I really
saves by giving the ability to truly communicate with each other.

A second selection criterion is the ability to use a language at all of your
locations. One of the factors involved here is acceptance. We have had no
difficulty with acceptance of PL/I as a language. Several units are using
COBOL, at least temporarily, because the PL/I compilers were not available
in time. The 1130 people are using FORTRAN only because IBM has not yet
offered a compiler for the 1130 in PL/I syntax. All in all, this selection
criterion is being satisfied.

The third item concerns influence on the language. Here, if a language is
under your absolute control, you would score a 100% on this point. With no
influence, you would score zero. By working on the PL/I project, and the
SHARE project, and also even as an individual customer, we have indeed been
listened to by IBM. I can't say that every item that we have asked for has been
immediately accepted, nor can we expect it to be. But'we would certainly have
to say that PL/I scores a tremendous plus in regard to the selection criterion
of influence on the language.

Another selection criterion is extent of integration with other software. Here
100% would mean, for example, that every feature of OS is immediately avail-
able easily through PL/I. A score of zero means that PL/I is considered as
a language entity far apart from OS features. Here we consider PL/I to be
improving and certainly better than other languages, but short of requirements.
The main problems are in the areas of multiprogramming and teleprocessing.

The next criterion concerns extent of usage throughout the industry. Here a
language rates 100% if everyone uses it, and a rating is zero if you are the
only person using it. PL/I was, until Version 3, a language still under early
development, so the percentage of users is in line with our expectations.
Other manufacturers are committed to PL/I compilers, while others are in
various stages of PL/I development, and there is quite a community of users.

Of critical importance to the community-of-users criterion is that the users
should come from all types of computing; in this regard, as far as we can tell,
there are relatively equal numbers of scientific and commercial users.

•94-

EXPERIENCE WITH PL/I

Of course efficiency is "the" criterion. Efficiency is a complex problem and
refers to a number of factors — compiling speed, object program speed over
an 8-10 year period, core and memory efficiency, source level debugging
capability, testing time, turnover of programs, ability to use a scientific
person on a commercial job, modular programming capability, turn-around
time for the compile and test cycle, and a lot of more mundane things such
as even keypunching time.

Since it is difficult to get at an evaluation of efficiency over this range of
factors, let us start by looking at the view of one of our units as to total effi-
ciency. At the current time, this group has 60 man-years of systems design
and programming experience with PL/I. A major production application, in-
voicing and sales accounting, went in full production on a live basis Novem-
ber 1st. The project has 70 PL/I programs, approximately one-half of which
are used for auxiliary purposes. The F-level compiler was used on 128K
equipment.

They report that, setting a modular standard of 350 to 400 statements, the
compiler gives a competitive cost/performance when approximately 96K is
used for the partition size.

With manual optimization of some programs, and with standards which avoid
some PL/I features, and with Version 3 of PL/I, they report that their total
costs are below the costs of the previous computer systems.

This is on a 360 that has been deliberately kept as small as possible in line
with the load, so it has minimal memory, no multiprogramming, and no
2314 equipment. Here we have a major effort now in full production which
has lower running cost than the prior system, with what appears to be a
certainty of further cost reductions.

The usage of PL/I has permitted work to go continuously forward in spite of
turnover. In their 12 years of computing experience and on this extremely
large job, the smoothness with which the individual programs were put to-
gether in one run, were then tested in parallel, and then were launched into
production, has been an order of magnitude better than any other effort.
PL/I must take a great deal of the credit.

I would like to compare costs for you with other language choices, but I have
three problems: 1) we haven't duplicated any 20-30 man-year effort, which
is the only true test; and 2) we would have to compare a single language
versus two languages plus more Assembler, which would be unfair; and

-95-

EXPERIENCE WITH PL/I

3) we would have to know for certain the extent of compiler improvement over
the 10-20 year life of the system.

I listened to experiences cited by a number of people; PL/I is today either
lower in cost, about the same, or higher — you can take your pick. Since this
approach didn't work I went back and assumed that IBM would, as officially
stated, offer new PL/I products. I had to assume something, so I merely
assumed that any speed and language facility now in other compilers or talked
about for PL/I could be expected over time.

It was easy to conclude that, with all of these goodies, we could then save
around 10-20% on work that could be done in a single-purpose language,
20-40% on mixed work, and an additional major savings if the software capa-
bility problem is solved.

For D level, where we are at liberty to redesign, we programmed one job in
1. 6 times as much memory as with 1400 series, or just a little greater than
is required for Assembler. Where we cannot redesign from stem to stern
we are finding that three to four times as much memory is required. Experi-
ence is still too limited for overall cost analysis.

To summarize the total company view, good strides have been made towards
achieving the objectives of PL/I selection. Economical work is being turned
out, except in the portion of scientific work having high compiles. We are
looking forward to greater EDP progress at lower cost as new PL/I products
become available.

Experiences of Company Units

My third set of views comes from working with each unit as they individually
evaluate hardware and language choices. Each unit is autonomous and makes
its own choice as to when and whether to use PL/I. Many units like to use
the type of chart shown on the next page.

Probably most of you are familiar with this chart selection technique, which
often reduces a judgmental and seemingly controversial problem covering a
wide range of factors to a choice upon which all will agree. That is, for each
item concerning a language, we have found that people will argue endlessly
as to the pros and cons and further possibilities. However, since all we are
really concerned with is the actual final choice, a weighted table may show
that all agree on the final choice, even though everyone disagrees as to the
relative reasons why. Usually a representative sample of five people or so
give their ratings and these are then averaged.

-96-

EXPERIENCE WITH PL/I

I don't suppose that any of us here would write down the same specific weights
and ratings that the author of this particular sample did. However, the impor-
tant thing is the overall conclusion. Here we have found that it has not made
any difference what weights the various units have given to each factor, or what
people did the rating; the conclusion is always clearly in favor of PL/I.

SAMPLE LANGUAGE SELECTION TABLE

Assembler
Weight and Macros COBOL PL/I

A. Machine time factors
(over next 5 years)
1. Compilation time with

program master
2. Object program (3rd

generation features)
3. Testing efficiency

B. Programmer factors
(over next 5 years)
1. Transfer of programs
2. Coding-debugging time
3. Learning time
4. Morale-acceptance

C. Machine independence
1. Convertibility cost
2. Extent of compilers offered

D. Other factors
1. English-documentation
2. Scientific and comm'l use
3. Company compatibility
4. Speed of incorporating

new concepts

Total

(40)

15 8 12 14

15 15 5 10
10 2 6 10

(32)
12 2 12 11
14 3 9 12
3 2 3 3
3 1 2 3

(13)
8 0 5 7
5 0 5 3

(15)
4 1 4 3
3 0 0 3
5 2 2 5

3 3 1 2

39 66 86

So, each unit has rated PL/I as the best language. But there is a question of
when? Perhaps some of you have heard one consultant who makes the jibe

-97-

EXPERIENCE WITH PL/I

repeatedly: "PL/WHEN". Our units would say, generally, that this should
be "PL/NOW". There is no real problem in a new case.

However, if one has a small staff who already must support second-generation
Autocoder and Assembler languages, COBOL, FORTRAN, and 360 Assembler,
one has trouble. We have found it to be too great a burden for a person to
keep viable on over two major languages. In this type of unfortunate case,
we must first phase out a couple of the older languages, so some of our units
may not be able to start PL/I usage until late this year or early next year.

Programming with PL/I

The fourth view I've been involved with is the programmer view. Having
spent a good many years in both scientific and commercial programming,
this point of view is dear to my heart.

And I suspect most of us, no matter what we might put on these language
selection charts concerning other factors, have the question of whether or
not programmers will be enthusiastic about the language uppermost in our
minds as we are deciding which language or languages to employ.

Having talked to well over 100 programmers in the company who are using
PL/I, I can assure you they are most enthusiastic about PL/I. Our former
machine assembly language programmers have taken a couple of months to
build up this enthusiasm, since a higher language is a little offensive to their
sense of striving for the utmost in machine cycle utilization. However, it
has generally been almost immediate on the part of programmers who have
previously used higher languages.

It is much more difficult to pinpoint just why these programmers are so en-
thusiastic in order to explain it at the management level. It often appears
that a programmer either likes something or he doesn't like it. But I will
indicate the most common reasons that programmers have advanced. Com-
merical programmers are very much concerned with debugging and with
meeting target dates. The debugging features in PL/I are, as mentioned
earlier, outstanding. Secondly, there is a noticeable uplift in overall morale
T^hen a group shifts to PL/I. Part of this is due, I think, to the fact that
other college graduates, engineers, and scientists, including PhD's, are
visibly using the same language. We are also starting to get accountants and
other commercial people to do some programming in PL/I. This tends to
remove the second-class stigma where our systems analysts have felt that

-98-

EXPERIENCE WITH PL/I

they are looked down upon as mere technicians since they are programming.
Another factor is the ability to change jobs between so-called scientific and
commercial projects.

The next item is true for almost any higher level language in the third genera-
tion; one simply cannot patch. The hatred of patching occurs primarily from
the experience of taking over a program full of patches or hunting for an
error when another programmer is on vacation—it's no fun. The program-
mers also like PL/I simply because it is new and exploits new concepts. I
also find that programmers are very concerned about the high degree of
clerical-type work in their job. Certainly PL/I reduces this another level
by use of the default options.

Again, there are many programmers who like to feel that they are working
with the best tools, the best language, the biggest computer, etc. Certainly
the list of additional capabilities and features in PL/I over prior languages
is imposing, even apart from the concept of a general-purpose language.

Time does not permit me to go into the superior language features in any
great detail and, for that matter, I do not regard myself as a language com-
parison expert. However, just let me give one example. In one of our prior
commercial languages, a commercial programmer who was not a mathema-
tician was faced with the task of taking a square root in order to calculate an
inventory formula. It actually took him approximately 2 months to study
square root and get it programmed and debugged in his commercial language.
He naturally did not regard this as challenging work or anything of that sort-
simply as work which must be done and yet somehow senseless since he knew
it had already been programmed by the scientific people in other languages.
Needless to say, this programmer is quite happy to be working in PL/I,
where we have square root as a built-in function.

Training and Starting to Use PL/I

Now turning to the last view, where I have been involved with many units
helping devise plans to get started in PL/I. What should installations do who
will be just starting to use PL/I now? First and foremost, our experience
is that you can gain nearly as much out of rethinking your total systems and
programming environment as you can from the greater capability of the PL/I
language. Rethink the way you document, the way you test programs, and
the way you run programs in production.

•99-

EXPERIENCE WITH PL/I

Thus we recommend giving your experts a few months' head start to develop
new standards right from the beginning, incorporating into these all of your
previous experience.

The next point is to have your IBM system engineer round up (from various
users and internal IBM circles) the latest user-oriented papers on writing in
PL/I, in addition to IBM manuals.

Next, start your first PL/I programming with a definite subset and objective
in mind. That is, do not let your programmers assume they are trying out,
experimenting with, or evaluating the language. The language permits so
many ways of doing things that you may lose several months by playing
around with the language unless production goals are set.

Let me say that I do not have the answers on how best to train people. In
one commercial case, we simply taught elements of PL/I in one day and they
started writing under careful guidance, gradually building on the one-day sub-
set. That is, PL/I really is based on a simple language approach—one can
teach six statements and be writing fairly complex programs that will run.
After gaining confidence, other statements can be added. I recommend this
approach for 1400 series size installations.

In other cases, we use three weeks of PL/I training followed by three weeks
of practice exercises, thus turning out a fully functioning PL/I programmer.
This is used for large-scale installations, mostly college graduates. We
have also tried many shades in between. All of these methods work, pro-
vided the training methods are consistent with the target dates and purposes
of your first selected jobs.

Lastly, I would advise having a specific individual appointed as a PL/I
"expert". After some experience, he will be able to look over the proposed
plan for a program, and quickly identify poor practices. He can also help
where the PL/I rules may not agree with what a programmer would write on
the basis of his prior experience.

I would like to close my remarks on this point of view of how to get started in
PL/I with a word of warning. One should make organizational changes to
fit PL/I. The programmers knock these PL/I programs out fast; hence the
percentage of programmer-coders to systems analysts is sharply lower.
Also, groups outside the Computer Department can and do use the same lan-
guage. Only FORTRAN has been successful in this area prior to PL/I. This
can be a trap in one way, but can be a real boon if you plan for it properly.

100-

EXPERIENCE WITH PL/I

The real user outside the department can talk to computer people at the pro-
gram level—a really significant advance on commercial work.

Questions and Answers

Question: Would you comment on the minimimum amount of core size in
words or bytes for PL/I to be a viable tool in a commercial
study?

Answer: For large-scale commercial work, we went live using about 100K
out of a 128K byte machine. This pinches you a little too tightly
for large-scale jobs; therefore, I would say 130K. Now for the
small-scale jobs—say taking the typical 1401-type of problem
on a 16K 1401—we are running these on 32K equipment in some
cases, but I would say that a 48K Model 25 would be well chosen.

101-

PL/I AS A TOOL FOR SYSTEM PROGRAMMING

Fernando J. Corbato
Professor of Electrical Engineering

Massachusetts Institute of Technology
Cambridge, Massachusetts

First I have to give some background, because I don't think you can discuss or
evaluate a language like PL/I unless you know the background of the speaker.
To some extent, PL/I is like getting too close to an elephant. All you can see
is the pores, and what you see depends on which side of the elephant you're on.
For present purposes, I have the advantage of not being a language expert.
Instead, my vantage point is that of a system designer-implementer concerned
with the overall system performance and the degree that the system meets the
goals it was designed for. This gives me a little more detachment from the
issue of whether the language is just right or not. For that reason some of my
remarks will not be completely unequivocal but, rather, will be shaded. The
basis of the PL/I experience that I wish to talk about is mostly on the Multics
project, which is a cooperative project being done with the Bell Laboratories,
the General Electric Company, and Project MAC of M. I.T. using the GE 645
computer, which is derived from the GE 635. However, I am not giving an
official Multics view, but only my own opinion as a member of the design team.
In fact, it's a preliminary view because things are too confused at this point
to really be certain that we have analyzed what is happening. (A bit like asking
for comment on a battle while it is still in progress; it's too early to know all
the answers.) Further, one has to be cautious in forming final judgments on
a language even though it is already a de facto standard, since there still is a
need for a great deal of diversity in the computing field so that different tech-
niques can be evaluated.

So that you can understand the context in which our system programming was
done, I first have to give you a brief review of what the Multics project's goals
are. A set of papers are in the 1965 Fall Joint Computer Conference Proceed-
ings if you wish more detail. Briefly, we are trying to create a computer
service utility. In particular, we want continuous operation of pools of identical
units. We want to combine in a single complex the goals of interactive time
sharing and noninteractive batch processing. We want to combine the goals of
remote and local use in one system. The system programming problem is to
develop a framework which multiplexes all this equipment at once and yet allows
controlled interaction and sharing between users working in concert on various
problems in real time. In short, it's a fairly ambitious project, not because of
any single idea but because we're trying to tie together all these ideas at once.
It was our judgment that we required new hardware to meet these goals squarely,
and that, of course, meant that we had to write almost all of our software for

103-

PL/I AS A TOOL FOR SYSTEM PROGRAMMING

ourselves, including, it turned out, even the assembler. We were able to borrow
a little, but not as much as we had hoped. Thus the project began basically at
a research and development level, where flexibility is needed. In our view we
wanted a small team of people, because the hardest thing to do when you're
groping in an unknown area is to coordinate people. We felt strongly that we
had to have maximum flexibility in our implementation.

To give you a little bit of the scale of the project, I will discuss briefly the
implementation. The project began in earnest in the fall of 1964 and should
develop a usable pilot system about the end of this year. This means it will
take approximately four years to create a useful system. That's a long time,
and I think one has to appreciate the investment of effort that goes into such a
venture. If you spend four years developing something, you probably try to
exploit it for a period of time greater than that; thus there is clearly an under-
lying goal here of wanting to see the project evolve as conditions change. The
system itself is described quite tersely at the level suitable for a senior system
programmer in about 4,000 single-spaced typewritten pages in the Multics
System-Programmers' Manual. The system in final form seems to project out
to about 800 to 1, 000 modules of maybe four pages of source code each on the
average, or, in other words, between 3,000 and 4,000 pages of source code.
(It's interesting that the amount of description approximates the amount of code,
but they're of course written at different levels.) The amount of system pro-
gram that's in machine code is less than 10% at the source code level; it would
be even less except that the compiler did not come along early enough, so some
things had to be written in machine code right away. The system projects out
to between one and one and a half million 36-bit words, which loosely is the
supervisor program. In operation most of it, of course, pages out and is not
resident in core, but it is expected to be there, and it is exclusive of all the
languages and facilities of that sort, such as COBOL, FORTRAN, and even
PL/I itself. The manpower to create the system has ranged from approximately
zero to 50 people over a four-year period, with roughly an increasing number
as time went on. When I say zero to 50 people, I mean effective persons who
are involved and working full time. That isn't much for the size of the job that
I've described, and there is clearly the need to have maximum leverage at the
fingertips of each person.

The next question I want to address myself to is why one uses a compiler at all
to do system programming. (I'll take up next the question of why PL/I in
particular, but first: why a compiler?) First, there is the ability to describe
programs briefly and lucidly. One can clearly obfuscate one's ideas with a
compiler language, but it's harder. To some extent one is talking about what
one wants rather than how one wants to do it. The trouble with machine code,
of course, is that when one looks at a random section of machine code

104-

PL/I AS A TOOL FOR SYSTEM PROGRAMMING

one doesn't know what properties of the instructions the programmer really
wanted to exploit. On the 7094, for example, the fact that the P-bit got cleared
by an instruction may or may not be germane to what the program is trying to
accomplish. With a compiler language, especially the later ones, one tends to
describe what one wants to accomplish in terms of a goal and let the compiler
work out the specific detail. This contributes to lucidity, of course. It also
gives one the chance for change and redesign, because on a system as large as
the one I have just described, the only sensible attitude is to assume that the
system is never finished. Although the system obviously goes through phases,
one is continually improving and evolving it. We have had this experience on
CTSS, our previous time-sharing system, and we know it is true. What happens
is that users keep having expanding needs and goals as they exploit the facilities,
and they continually come up with wanted improvements. Certainly the other
extreme — of assuming that a computer software system is like hardware and
can be designed once and for all on a one-shot basis and then left to the hands
of some maintainers — I think has been shown to be a failure.

Another issue, too, in a system of the ambition that we are talking about, is
that the software is at least three-quarters of the design work and yet it usually
doesn't get started until the hardware is already firm. Thus there is a desire
to speed up the implementation effort, and using a compiler allows each pro-
grammer to do more per day. It's our experience that it doesn't matter too
much if one is dealing with assembly language or compiler language; the number
of debugged lines of source code per day is similar. Another point is that the
supervisor is the host of the user services, so that the computer time spent in
the supervisor is between 10% in some well worked out systems to maybe an
extreme of 50% of the total time. Thus the possibility that the compiler isn't
generating the most efficient code isn't a disaster. In other words, one is
dealing with code that isn't being exercised all the time. It has to be there, it
has to be right, but there is room for some clumsiness. Further, if the sys-
tem is well designed, the production job will run efficiently and the supervisor
will remain out of the picture.

Finally, there is the issue of technical management of programming projects:
the problem of trying to maintain a system in the face of personnel turnover
and in the face of varying standards of documentation. Personnel turnover is
expected on a four-year project. (We didn't think it was a four-year project
to begin with; we estimated two.) One has to assume in most organizations
somewhere between 10% and 20% turnover per year even if everybody is rela-
tively happy. People get married, husbands are transferred, and for a vari-
ety of personal reasons people must leave, carrying with them key knowhow.
Training a new person involves a minimum period of six to nine months, even
starting with good people, especially if you're faced with a system which has

-105.

PL/I AS A TOOL FOR SYSTEM PROGRAMMING

4, 000 pages of description in it. You don't casually sit down and read that,
even in a weekend. In fact, it's fair to say that the system is large enough
that no single person can remain abreast of all parts at once. Thus there is
a reasonable case for a compiler in developing large systems.

In developing CTSS we used the MAD compiler slightly, and it was quite
effective. The only problem was that we were cramped for core memory
space for the supervisor. The compiler-generated object code was some-
what bulkier than hand code, and this was, unfortunately, a burden we couldn't
carry too well; but where we used it, it was very effective.

So the question was: What compiler to use when developing Multics? We
chose PL/I. The reasons go somewhat like this. One of the key reasons
that we picked the language was the fact that the object code is modular,
that is, one can compile each subsection of the final program separately,
clean up the syntax, and test it on an individual basis. This seems obvious,
perhaps because it's in several languages, like JOVIAL, FORTRAN, and
MAD, but it isn't in some of the ALGOL implementations and it blocked us
from considering the ALGOL implementation we had available. The second
reason for picking PL/I was the richness of the constructs, especially the
data structures and data types, which we considered to be very powerful
and important features. We had an unknown task on our hands with fairly
strong requirements. We viewed the richness as a mixed blessing, how-
ever, because we certainly were a little wary of the possible consequences.
But it certainly seemed the right direction to start and maybe to err on and
to cut back. As I'll get to later, it was a little too rich but I'll come back
to that. A third reason for choosing PL/I was that it was approximately
machine independent. Our object in doing the system has not been to com-
pete with normal manufacturing. Instead, our object has been to explore
the frontier and see how to put together effectively a system that reaches
and satisfies the goals that were set out. We are trying to find out the key
design ideas and communicate these to others regardless of what system
they are familiar with. Hence a language that gets above the specific de-
tails of the hardware is certainly desirable, and PL/I does a very effective
job of that. In other words, it forces one to design, not to bit-twiddle.
And this has turned out to be one of its strong points.

Another reason that we considered PL/I was that we thought the language
would have wide support. To date it has had the support of one major manu-
facturer. And, the final key reason for PL/I was that two persons associ-
ated with the project, specifically Doug Mcllroy and Robert Morris at Bell
Labs, offered to make it work on a subset basis; they also offered to try to
arrange for a follow-on contract with a vendor for a more polished version

106-

PL/I AS A TOOL FOR SYSTEM PROGRAMMING

of the compiler. That is basically why we chose PL/I. We certainly debated
other choices somewhat casually, but these were the essential reasons why
we picked the language.

The subset that was implemented initially as a quick-and-dirty job was called
EPL, for Early PL/I. Its design characteristics went briefly as follows. It
had no I/O; after all, this is a system programming language and we use the
system subroutines. It had no macros except the INCLUDE macro, which
worked in very smoothly with the time-sharing system, CTSS, that we were
using. It had no PICTURE attributes or things of that sort which represented
the COBOL influence, except for structures, of course. It had no multi-
tasking; we found this to be a defective idea in the sense that it wasn't thought
through well enough, and we certainly didn't need it for a system programming
language. It had various minor restrictions like requiring structure names to
be fully qualified. No complex arithmetic, no controlled storage (you can simu-
late that easily), and, more importantly, no attributes such as IRREDUCIBLE,
REDUCIBLE, ABNORMAL, NORMAL, USES, or SETS —those things which
allow the compiler to do an optimum job of compiling the code with advice from
the program; these are sophisticated and tricky attributes, incidentally but
the reason they're not there is that the compiler didn't intend to optimize any-
way, so it would have ignored advice.

To emphasize the positive, the things that EPL did have were ON conditions
and signals; it did have recursive procedures in fact, the system doesn't
allow any other kind easily. (If you want to work at it, you can program a non-
recursive procedure.) It did have basic storage and pointer variables, and it
had ALLOCATE and FREE. It had structures, as I've mentioned, it had block
structures, and it had varying strings, which we regret to some extent because
of implementation difficulties. In other words, it was a pretty potent subset
from the point of view of language facilities.

The implementation, as I said earlier, was deliberately a quick-and-dirty job.
It was expected to be merely a temporary tool to be soon replaced by a polished
compiler from the vendor. The team consisted of Mcllroy and Morris and two
to four helpers. I am going to give a detailed and candid account of the events
surrounding the EPL implementation because the nature of the events, together
with the very high qualificationsof the people involved, points out clearly that
the difficulties encountered were quite unusual. The original optimistic esti-
mate for making EPL work was that it was only going to take them about six
months. In spite of the dedication of the people involved, it took them over 15
or 16 months to get a compiler that was barely usable. A lot of work has gone
into upgrading it in the last 18 months, since the polished compiler of the
vendor never materialized, and the upgrading process has not yet ended.
Moreover, the EPL effort, like a grueling relay race, has worn out nearly

107-

PL/I AS A TOOL FOR SYSTEM PROGRAMMING

everyone who has worked on it. But to everyone's credit, the compiler works
and is useful.

The language that was used to implement EPL was TMG, short for "transmog-
rifier", which is a language system developed elsewhere by Bob McClure.
It's a clever, interpretive system specifically designed for experimental lan-
guage writing or syntax analysis. However, it is not easy to learn and use
and, therefore, it is hard to pick up the work of somebody else written in the
language. The EPL translator was initially designed as two passes, the first
one being principally a syntax analyzer and the second one basically a macro
expander. The output of the second pass in turn led into an assembler which
handled the specific formatting for the machine. Later a third pass was added
intermediate between the first two in an attempt to optimize the object code.
The quick-and-dirtiness came through when the original language subset specs
had only a single diagnostic, namely, ERROR. That has been expanded so that
maybe now there are half a dozen, but the only help you get is that the message
appears in the neighborhood of the statement that caused the trouble. The com-
pile rate, which was never a major issue, turned out to be a few statements per
second. It has been improved a little with time, but, more critically, the ob-
ject code that is generated has improved to a respectable 10 instructions per
executable statement. (There's obviously a large variance attached to these
figures.)

The environment that the EPL compiler had to fit into is significant. First of
all, we had adopted as a machine standard the full ASCII character set of 95
graphics plus control characters, so one of our first projects was trying to map
a relationship with EBCDIC — the IBM standard. We also intended to use the
language in a machine with program segmentation hardware in which programs
can refer to other sections of programs by name. Fortunately, we could use
the $ sign as a delimiter to allow us to have two-component names. We also
expected the compiler to generate pure procedure code which was capable of
being shared by several users, each with their own data section, who might be
simultaneously trying to execute the same procedure. We also wanted to
establish as a normal standard, although not a required one, the use of recur-
sive procedures by means of a stack for the call, save, and return sequence
linkage information and automatic temporary storage. We also wanted to allow
the machine to have a feature which we've called "dynamic loading" in the sense
that an entire program isn't loaded per se; the first procedure is started, and
as it calls on other procedures, these procedure in turn are automatically
fetched by the supervisor on an as-needed basis rather than on a pre-request
basis. This, of course, is in conflict with any language which allows storage
to be pre-declared by the INITIAL specification within any possible module that
is ever used by the program. (This problem also comes up in FORTRAN.) We

108-

PL/I AS A TOOL FOR SYSTEM PROGRAMMING

also had a feature in the machine which we called "segment addressing", which
is such that when you want to talk about a data segment you don't have to read it
in through input/output; rather, you merely reference it and the supervisor gets
it for you through the file system. In other words, we were trying to design a
host system capable of supporting software constructs which make it easier for
people to write software subsystems. In this rather sophisticated environment,
one of the problems was that much of the time was spent finishing the design of
the compiler so as to implement the mating of the language constructs with the
environment. The things that caused trouble were the SIGNAL and ON conditions,
which are relatively trickly ideas and which clash head on with faults and inter-
rupts. The call, save, and return conventions had to be mated into the standards
of the system. Problems of non-local GOTO's and the releasing of temporary
storage which has been invoked had to be licked. Most of these problems are
implications of the language if one thinks it through, for the language has a lot
of assumptions in it about what kind of an environment it is going to be in. There
are also little subtleties, like when you're talking about strings of characters
and operators, what is the role of control characters, i.e. , codes without graphic
representation such as backspace, when encountered in strings? There are also
obvious difficulties in that the language doesn't discuss any protection mechanisms,
a feature that every system mush have to implement a supervisor-user relation-
ship. Thus, there needed to be some additional modifications made to the com-
piler to make that work out. And then there are strategy problems within the
implementation, such as how you're going to implement internal blocks and in-
ternal functions. These also took some time to work out and were one of the
principal reasons why the compiler implementation was slow going. Further,
it was done simultaneously and in parallel with the system design. I would say
with hindsight that we didn't put enough effort into trying to coordinate the two.
The reason we did not was that, to a first approximation, we felt that the lan-
guage was a decoupleable project. That was a useful thing in the early days, but
as we came home toward the finish line in the design, it began to haunt us that
we hadn't worked out some of these interface ideas more carefully, and we had
to pay the price of redesign in various parts.

One preliminary conclusion we draw from the experience is that PL/I went too
far in specifying the exact environment. There are a lot of ideas that should be
subroutines and not part of the language. I don't mean they shouldn't be thought
through, but to think them through is not the same as putting them in the syntax
of the compiler. In particular, things like SIGNAL and ON conditions could
indeed be implemented as subroutine calls and be part of the environment of the
host system. I don't think they belong in the language per se, although if one
makes the language embrace a standard subroutine library, then I of course
agree.

-109-

PL/I AS A TOOL FOR SYSTEM PROGRAMMING

I'll say very little about the vendor's compiler. They estimated it would take
12 to 18 months. After approximately 24 months, we stopped expecting anything
useful to appear. One of the principal reasons they failed was that there was a
gross underestimation of the work, by a factor of three to five, and it was im-
possible to mount a larger effort by the time the underestimation became evi-
dent. Thus, the pioneering EPL has become the standard system-programming
compiler.

Let me next talk about the use we made of the PL/I language. A strong point,
we felt, is the ability to use long names which were more descriptive. People
still get cryptic, but they're not nearly as cryptic as they were. The full
ASCII character set is a strong point because we wanted to deal with a well
engineered human interface. The structures and the data types, as I mentioned
earlier, we consider to be one of the strongest assets (this perhaps comes as
no surprise to COBOL users, but this feature is very important when you're
trying to design data bases). The POINTER variable and based storage concept,
along with ALLOCATE and FREE, have been pivotal and crucial and have been
used extensively. Some of the features like SIGNAL and ON conditions, which
have cost us a lot of grief, at least in principle have been very graceful ways
of smoothly and uniformly handling the overflow conditions and the like which
suddenly trap you down into the guts of the supervisor. In previous systems
we have always had the quandary of how to allow the user to supply his own
condition handlers in a convenient way. We're not sure that the price is perhaps
too high, but the mechanism does look good. The SIGNAL mechanism also is
an elegant way of handling error messages. One of the problems with an error,
when it is detected at a given subroutine level, is that its significance isn't
always understood. For example, the square root routine may encounter a
negative argument but only the subroutine that called it knows the significance.
Maybe it means that the cubic equation solver has three roots that are not all
real, but that again isn't the true significance. In fact, it may mean that the
experimental data that was being analyzed was merely noisy and incorrect and
that this data point should be abandoned. The SIGNAL mechanism allows each
subroutine in the line to insert a message if it is wanted and allows the square
root routine, that didn't know who called it, let control go back in the right way.
Finally, a last point about PL/I that is perhaps obvious, is that the conditional
statements that are straight out of ALGOL are very valuable.

Overall, the general result that we got from using PL/I was a rather small num-
ber of programming errors (after a programmer learns the ropes), in fact
a sufficiently small number that one of our major sources of trouble is that
a lot of bugs have been caused by mismatched declarations, getting parameters
in a calling sequence inverted, getting argument types in calls mixed up — all
clerical errors in which the language gives you no help and our implementation

110-

PL/I AS A TOOL FOR SYSTEM PROGRAMMING

doesn't either. In fact, this is a defect in the language in the sense that the
independence of the separate compilations has left a gap in the checking of
types. (Sometimes programmers have used mismatched declarations for
gimmicky convenience or efficiency, although we have tried to avoid it be-
cause it obviously destroys machine independence.) We also found that
skillful system programmers who know the machine well don't want to
work in machine language because they make too many mistakes. This
condition is aggravated because in modifying the machine we retrofitted
a lot of involved ideas onto a somewhat ornate order code. Regardless
of the reason, however, we find that programmers would rather get things
done than twiddle bits.

Another major effect of the use of PL/I has been that so far we have been
able to make three major strategy changes which are really vast redesigns.
One of them was in the management of the high-speed drum that did most of
the paging. It was reworked, quite a while ago, when some insight developed
which allowed a tremendous amount of bookkeeping to be eliminated. The
amount of code that was involved dropped from 50, 000 words to 10, 000
words. This total rework was done in less than a month (although not com-
pletely checked out because the person wasn't working full time on it). A
second redesign occurred in the area of a special high-strung I/O control-
ler, which has all kinds of conventions and specialized aspects. The first
cut of the control program design was a little rich; it ended up involving
around 65,000 words of code. After people finished debugging it and re-
covered their breath, they took a closer look at it and saw that, by cutting
out maybe 10% of the features and changing some of the interfaces and speci-
fications, they could streamline it. Two good men working very hard did
the reworking in less than two months. The two months were peak effort,
but they did do it. The program basically shrunk in half, down to 30, 000
words, and it runs about 5 or 10 times faster in key places. This kind of
redesign is invaluable. It gives one the mobility that one is after. It may
be true for the use of nearly any compiler — I'm not trying to argue that
this is exclusively a PL/I attribute — but this is the experience we're get-
ting. Finally, we made another major change in the system strategy of
handling own-data sections, which we call "linkage sections". We were
keeping them as individual segments, but we reorganized things so that
they were all combined into a single segment because some of our initial
design assumptions had not been correct. This reworking was done in the
period of a month. The change was serial to the main line of the project
development, so that it was a rather important period of time to minimize.

Now, there's another side of the coin, namely, object code performance.
This aspect is illustrated in the diagram on the next page. These

-111

PL/I AS A TOOL FOR SYSTEM PROGRAMMING

2-3 5-10

Optimum Best EPL Typical good system
hand code today programmer on his

first try with EPL

figures represent only a preliminary view. The diagram illustrates the
object code execution time in the horizontal direction. (It could also be
object code space since, roughly speaking, they are similar.) The unit 1 rep-
resents optimum machine code or hand code, where one uses all the fea-
tures of the machine but stays within the specifications. The next point on
the figure represents the best results obtained to date by careful juggling
and tuning of EPL written programs. At the moment the comparison to hand
code seems in the vicinity of 2 to 3 times worse and is largely because the
compiler cannot optimize very well. A lot of redundant expressions are
being calculated; this is especially true with based storage and pointers,
where it is easy to build up fairly elaborate expressions to access a variable
and then at the next occurrence repeat the calculation. Finally, and this is
perhaps the one shocking note that should be taken with some caution, we find
that a typical good system programmer on his first try produces EPL-
generated object code which is perhaps 5 to 10 times as poor as hand code. I
think this is the main problem with PL/I, because a factor of 5 or 10 at the
wrong places can sink the system. The reason for the factor of 5 or 10 seems
to be principally that programmers don't always realize the mechanisms they
are triggering off when they write something down. The usual pattern when
one writes a program is to think of four or five ways that one can write out
a part of an algorithm and to pick one of them on the basis of knowing
which way works out best. What has happened is that people are too de-
tached. For example, if you use a 1-bit string for a Boolean variable,
it turns out in our particular implementation you generate a lot more
machinery than if you'd used a fixed integer. Similarly, varying strings
carry a fairly stiff pricetag in our present implementation (although ways
are known to improve matters a little), and they must be used with cau-
tion. Occasionally, too, we've had mishaps where the machine indepen-
dence works against us in the sense that a man declares an array of re-
peating 37-bit elements and the compiler dutifully does it, straddling
word boundaries mercilessly. The best we've been able to do so far is
to get the compiler.to at least remark "IDIOTIC" on the object code list-
ing. There may be other reasons for the factor of 5 to 10, such as the
language learning time, but we do not consider them important. Issues
such as the 10-to-l variation in ability among programmers of similar

-112.

PL/I AS A TOOL FOR SYSTEM PROGRAMMING

experience (discussed in an article by Sackman, Erickson and Grant in the
January 1968 Communications) I think can be discounted in our case. Our
technical management has been thin, but we have kept careful track of
the individual programmers so that mismatches with work assignments
have been minimized.

With regard to remedial measures for upgrading the system, one must re-
member that most of the code in the supervisor doesn't matter (it's not
being used most of the time), so the key thing is program strategy. I don't
have time to discuss here how we localize the parts of the code which are
the functionally important parts, but a segmented machine pays off hand-
somely. Meanwhile, we are learning tradeoffs between the different su-
pervisor mechanisms. In addition, we are trying to develop checklists of
things to avoid in the language. It turns out to be rather hard to get people
to generalize, so it is slow going. On a long-range basis GE is developing
plans for an optimizing compiler, but it isn't going to help us right away.
On a preliminary basis we are also studying smaller subsets of PL/I with
perhaps modifications and changes to the language so that the implementa-
tion is more uniformly potent—or impotent, depending on how you look at
it. That is, the user would be constrained to a language which would im-
plement well regardless of whether he takes one choice or another. And,
finally, there are some coding tricks that might have helped if we had thought
of them sooner.

One of the key problems in our use of PL/I has been that the programmer
doen't have feedback. If the compiler gave the programmer, say, a time
and space estimate on each statement that he writes, and if he were in an
interactive environment developing the program (i. e. , he could get quick
return on his compilations), he might be able to form some intuition about
what he's doing. To implement such estimates is not a trivial problem be-
cause a lot of the mechanisms that are invoked are shared, so that there
needs to be a way of designating the shared mechanisms and showing why
they are included.

Finally, as a last resort in improving supervisor performance we can
always go to machine language on any supercritical module. But this isn't
a panacea, because it is easy to be swamped if one tries to put too much in
machine language and, moreover, one has lost mobility. I always consider
going to machine language to be like parachuting out of an airplane.

I have a few general conclusions. I think that in the language area there has
been considerable leap-frogging. FORTRAN was the first compiler with any

-113-

PL/I AS A TOOL FOR SYSTEM PROGRAMMING

widespread use, and it suffered because it wasn't systematic to implement
and was somewhat clumsy to use. It was, however, a practical language.
ALGOL was in a sense a reaction, but it suffered because it left out the
environment and didn't come to grips very squarely with the implementation.
PL/I in effect is a reaction against ALGOL'S not having considered the en-
vironment, but it suffers from being designed without well formed plans for
a systematic implementation. The notation of "systematic" is important;
without it the cost of implementation, the speed of the compiler, and the
quality of the object code may be off by factors of ten or a hundred. Never-
theless, I admire the PL/I design effort and consider it valuable because it
has inspired language experts to try harder; in effect it has set as goals
what is wanted. The fact that the language has not been implemented well
by anyone I consider to be an object lesson. Nevertheless, techniques for
mastering the problems are being found. In addition, people are beginning
to think of ways of accomplishing the same functional characteristics without
the same internal problems. One of the ways is to try to minimize the lan-
guage syntax and to think through more carefully what is the subroutine
library.

Future languages will come and they'll be beneficial, too. But PL/I is here
now and the alternatives are still untested. Furthermore, I think it is clear
that our EPL implementation is going to squeak by, and in the long run the
Multics project will be ahead because of having used it rather than one of
the older languages. Now, finally, the last question, which I think is a
tough one: If we had to do it all over again would we have done the same
thing? I'm not totally sure of my answer; I just don't know. We certainly
would have designed the language more carefully as part of the system; that
was something we didn't pay enough attention to. If it was EPL or a PL/I
again we would have tried to strip it down more. With hindsight we would
have modified it to some extent to make sure that it could have been imple-
mented well. If it was another language we would have tried to beef it up
with things such as are in PL/I, and maybe modify it. Either course of
action takes a lot of design time, and that's the dilemma: in effect, you
want your cake and you want to eat it too. I think the decision probably
hinges on whether or not one is trying to meet a deadline. I would probably
use FORTRAN to meet a firm deadline. But if I'm trying to solve a problem
with a future, I think I would use either PL/I or its functional equivalent—
and the choice will have to be answered in the future.

114-

PL/I AS A TOOL FOR SYSTEM PROGRAMMING

Questions and Answers

Question: You talked about redesign as being a major part of your devel-
opment, where you got a big payoff. . . . Could you comment on
this . . . maybe your opinion on how well you should design to
start with and how much emphasis you should place on redesign?

Answer: We consider our design documents in absolute terms to be
mediocre, but in relative terms to be good compared to other
programming efforts we know about. We worked hard on this,
and we did it for a reason: one of our principal goals was to be
understood. It's also saved the project over and over again
because people can see what is going on, and new people can
join the project. These design documents weren't just written
and accepted; they were usually bounced around, and the first
proposal wasn't usually the final one. There was a deliberate
self-criticism in the design; the goal that was being sought was
functional isolation of different ideas. We felt strongly that
one should try to design as carefully as possible before writing
programs. Debugging incorrect ideas is a very expensive
waste; nevertheless it is almost impossible today to correctly
foresee all the implications of a large system design. Thus
some redesign is inevitable, and it is here that the compiler
language speeds the process. In particular: 1) you don't get
distracted by bit-twiddling, and 2) you can see what you're
doing and don't get lost in a sea of details. It allows you to
keep focused on what you're trying to accomplish rather than
getting caught in tedium.

Q: I have a question to ask about your comments regarding system-
atic implementation. Do you feel that as PL/I is implemented
by a variety of manufacturers, the implementation will effec-
tively reduce the effectiveness of standardization?

A: Are you worried about the question of whether the different
manufacturers will create different languages — is that what
you're saying?

Q: Well, I'm suggesting that when the language is implemented by
someone, his implementation will vary sufficiently from some-
one else's implementation to cause one to lose the advantages
of having standard syntax.

115-

PL/I AS A TOOL FOR SYSTEM PROGRAMMING

A: I don't think so. Even FORTRANs aren't the same in most
machines. The minute you change the word length underneath
FORTRAN you normally change many of the subtleties, includ-
ing precision and the like. I think the best one ever ought to
expect out of the present view of so-called "language standards"
is a kind of a first cut at having an approximate version of the
program that will work on another machine. You still have to
audit and edit accordingly, and this is, I think, the best we
could hope for out of PL/I. In the case of PL/I, however, I
would expect there to be a larger class of programs for which
one would be indifferent to the subtle variations and only worry
about cases of drastic differences in behavior.

Q: Does that apply also to, say, a program's dependency on an
operating system?

A: I think that in this area the discrepancies between PL/I imple-
mentations will be large. If you get totally wrapped up with
an operating system which is peculiar to a particular set of
hardware, you're trapped. You're just going to have to rework
it on another machine. It is a long-range goal, as yet un-
achieved, to minimize this problem. We've considered the
problem some because one of the obvious questions that arises
when you have a system which has been largely implemented
in PL/I is: Could you put it on another machine? The answer
is "Yes, " although I think it's still at the level of a "technical
challenge" even with similar hardware. To do it one would
have to go through and modify and edit all the programs to
make it come out just right. There are also some strategy
changes probably required unless one actually built an identi-
cal machine. Nevertheless, such a task is still preferable to
having to start all over, writing off as a total loss the ideas
and efforts of several years; this is the alternative to working
in a compiler language for system programming. I don't really
see how there's going to be any progress in the field until we
stop killing off our system children.

Q: In light of the fact that you bemoan the lack of systemization
and I get the impression perhaps it's not quite time to standard-
ize and so forth with PL/I as it is, at the same time it strikes
me from your comments that you probably, you in your project,

116-

PL/I AS A TOOL FOR SYSTEM PROGRAMMING

know something more about machine characteristics that are
suitable for or unsuitable for a language like PL/I if not PL/I
itself. Do you have any comments to make there? That is,
rather than carrying PL/I to another machine which is again
incompatible, what about designing a machine which would
make PL/I a useful tool, a more useful tool?

A: Well, I think it's useful now. I don't think one has to apologize
for the language.

Q: I mean more useful, I mean more ideal.

A: The fact that we've gotten down to a level of only two or three
times clumsier than hand code is perfectly good enough for
many applications. The problem at the moment is that you can
stray off the path; it's like skiing down a mountain and going off
the trail into the woods unexpectedly. Some of the problems
are intrinsic complications of the language, and to some extent
it has to be streamlined to do a much better job. At present
this issue exceeds in effect any hardware improvements to
favor PL/I. As far as being accepted as an industry standard,
I guess I'm a little more laissez-faire about this than most
people. My own reaction is that one can judge for himself when
one has a de facto standard, and treat it accordingly. It already
is a de facto standard of some sort, and there will be future
language standards. But they obviously will have to compete
with PL/I and show that they do, at least in some sense, a
better job.

Q: You indicated that the project started out as a two-year plan.
I was wondering if you'd comment on whether much of your
schedule was perhaps influenced by hardware problems in
addition, say, to the compiler implementation problems. What
were your principal problems? And, talking about doing it over
again, do you expect that you could, looking back and starting
fresh and assuming no uncontrollable factors, have done it in
the two-year period? Is it just this typical problem of under-
estimating the complexity of developing a major software
system?

A: I don't think we're embarrased that it went from two to four
years; that's sort of par for the course for a research project,

117-

PL/I AS A TOOL FOR SYSTEM PROGRAMMING

and that's what it turned out to be. If one really wanted to
predict performance or schedules he'd have to do something he
had already done before. That's just what we didn't want to do.
If we wanted to meet a two-year deadline, we would have had
to say, "Imitate CTSS. Copy it slavishly. " If we had done
this, though, we wouldn't have increased our understanding of
computer utilities.and we would have propagated many system
design limitations. I think one really has to face up to the fact
that if you're going to try something new, whether it be a lan-
guage or a system, you had better leave yourself some slack.
A factor of two is pretty routine on research programming
projects. We were facing three major problems all at once:
new language, new hardware, and new operating system, not
to mention the fact that we had three organizations involved and
in three geographical locations.

118-

EXPERIENCES IN PL/I AT IMPERIAL CHEMICAL INDUSTRIES, LTD.

J. Michael Sykes
Manager, Programming Services
Management Services Department

Imperial Chemical Industries, Ltd.

I think I should start by way of introduction by telling you just a little bit
about what ICI is so that you can get some idea of the perspective of the
environment in which I am speaking. We are one of the largest U.K.
companies with the total of something in the region of 100, 000 employees.
That may not be very big by U. S. standards, but it is pretty big by U. K.
standards. It's a highly decentralized company with nine operating divi-
sions which, apart from their responsibility to make a profit and follow
general company policy, operate more or less independently. That is
to say, they make their own decisions about what equipment they get
for any purpose, in particular for computing. The effect of this is per-
haps a slightly untidy situation. At the time when 360 was announced,
we had a wide variety of computers; in fact, our computing capacity was
more or less on a "you name it, we have it" basis. This was partly
deliberate in the sense that when computers first began to be installed
in the U.K. around about 11 years ago, it didn't seem a good idea to
standardize on one manufacturer. As time went on, there was more
and more talk about standardization (and more and more talk about what
it meant), and eventually the head office did achieve a fairly substantial
policy decision by putting the company's name down for eight 360s on
the day the product was announced. From that point on, you might sup-
pose that everything has been standard; but it hasn't. Shortly after that
time, the first technical report on PL/I appeared. We didn't take too
much notice of it at the time, but a few months later when we started
hearing things about what PL/I was, we became interested because it
was evidently the intention to replace FORTRAN, COBOL, ALGOL, and
pretty well anything else you care to think of.

Before I go on to say what we did about it, let me just mention we have
at the current time nine 360 computers in seven installations, ranging
from two Model 50s down to a couple of Model 30s, one of which is run-
ning with a 50; thus we are in quite a big way in computing in the U. K. ,
and the experience at these different installations is very diverse, as
you can imagine. Another difference I should emphasize between the
United States and the United Kingdom is that labor, and programming
labor in particular, is very much cheaper in England than here, and the
hardware cost is about the same. This means that the programming costs
are liable to be about half in U.K. of what they are here for a compar-
able amount of programming, which very much affects our attitude toward

119-

EXPERIENCES IN PL/I AT IMPERIAL CHEMICAL INDUSTRIES, LTD.

high-level languages. So it wasn't until the 360 came along that any-
body in ICI gave very much thought to high-level languages, other than
for open shop, or amateur, programming, where they were fairly well
established. For data processing, there was very little use of COBOL
before 360. It was because there was so little use of COBOL, and I
happened to be involved in what use there was, that I became the COBOL
expert and subsequently the PL/I expert. We have the traditional method
for appointing experts: you find somebody who has read the manual and
written a program and he becomes the expert.

Just a little about myself. I started programming 1 1 years ago on a
machine called a Ferranti Pegasus, a very small machine by today's
standards, comparable in power to the IBM 650 and the same vintage.
We found programs on these machines very slow to write because they
had to be in machine code; we hadn't even got a symbolic assembler.
So when we started thinking about more ambitious projects, specifically
a real-time system for processing customers' orders, allocating goods
from stock, and notifying the warehouse what they were to send to the
customer, we started thinking about bigger computers and high-level
languages, since we expected that there would be a tremendous amount
of program in this system. Moreover, such a system would never be
complete it would always have to be altered. In any case we weren't
sure that some of it could be programmed at all so as to run economi-
cally. That is to say, if you have to process a thousand orders in the
working day and it takes you one minute to process each one, you're just
not in business. So, we had to do some evaluation work and this we did
in COBOL. I first used COBOL on an RCA 501, which went in England
under the pseudonym of the English Electric KDP 10. This was one of
the first implementations of COBOL 60, and there were no paragraph
names and all GO TO's had to be to statement numbers. Later, when
the 360 was ordered we transferred this work to a 7094 at an IBM Data
Center and discovered that even though one uses a standard language,
it doesn't necessarily mean that one can transfer from one computer to
another without any trouble. We had a similar experience when pro-
grams which had been developed on the 7094 were subsequently trans-
ferred to a Model 360. Even with one manufacturer, we found a lot of
incompatibilities between one implementation of COBOL and another.

Now to get back to PL/I. As you all know, the report on the New Pro-
gramming Language, NPL, came out in the spring of 1964. It was
about nine months later that ICI set up a working party. This was done
by collecting two proponents of each of the languages that PL/I seemed
to be competing with. Thus we had two representatives of ALGOL, two

120-

EXPERIENCES IN PL /I AT IMPERIAL CHEMICAL INDUSTRIES, LTD.

of FORTRAN, two of COBOL (one of which was myself), and two of K-
Autocode, a language nowadays almost exclusive to ICI and roughly equiva-
lent in scope to FORTRAN. This working party met three times only. It
didn't need to meet any more because at the end of that time it was able to
reach a unanimous verdict. I think it will be relevant if I quote a little
from the report, which may seem fairly old but has by no means lost its
relevance.

"PL/I has a much wider range of facilities than any of
the other languages under consideration namely FOR-
TRAN, COBOL, ALGOL, and K-Autocode. "

To produce the evidence for this conclusion we did a fairly detailed com-
parison of PL/I with each of the other languages, except that the two who
wore enjoined to compare PL/I and FORTRAN really didn't think it was
worth the trouble. They said, "On practically any facility you care to
mention, PL/I is better; so please let's forget FORTRAN. " In any case,
there wasn't much use of FORTRAN in ICI at that time, and the people
who were using it didn't think too highly of it in comparison with K-Auto-
code because the latter was giving them very much better run time diag-
nostics. There was also a rider to the report;

"We have not included the details of the PL/I : FORTRAN
and PL/I : K-Autocode studies since the points which
arose are largely covered by the PL/I : ALGOL study.
There are a few facilities in FORTRAN and K-Autocode
which are not available in ALGOL which deserve separate
consideration. COBOL needs separate consideration as
a data-processing language so it comes in a different
category. "

One of the tilings we had been asked to comment on was the desirability
of having a single language for both mathematical computing and com-
mercial data processing. We decided that this was a good idea. Pre-
cisely what it's worth, of course, is a matter on which we couldn't com-
ment. What we did say was,

"If it is achievable, then it is a good thing. "

We quoted from the NPL student text, which was already out:

-121

EXPERIENCES IN PL /I AT IMPERIAL CHEMICAL INDUSTRIES, LTD.

" ' Linear programming, decision making, forecasting in-
crease the scope of computations and hence the area of
competence of the business programmer. Scientific
programming, on the other hand, is faced with the task
of handling problems with masses of data with increas-
ing orders of magnitude and therefore forcing us to look
at the input/output requirements. The differences between
scientific and business programming are thus becoming
less distinct.' "

I think this is generally accepted. I have certainly found it to be the case
in my shop.

"The working party finds that PL/I is a suitable contender.
Footnote: At present, it is the only contender. "

It is the only language which has attempted to combine the virtues of
pretty well the whole field, although it will probably not be long before
some other claimant appears, e.g. , ALGOL 60 could, although I believe
ALGOL 68 is just about around the corner; but how it's going to compare
to PL/I, I really couldn't say, because I can't see around corners.

We were also asked to comment on such things as flexibility and elegance
of the language and its open-endedness. We decided that:

"PL/I is as flexible in application and as open ended in
design as is likely to be the case in any current pro-
gramming language."

I would add that since some of the features originally suggested have
subsequently been dropped from the language, it is even more open
ended than it was. Hardware dependence was another topic to be con-
sidered:

"While there are some features of PL/I which are hard-
ware dependent, the main problem in transferring PL/I
to another system of machines would be the sheer pro-
gramming effort required to write the compilers. It is
reported in Datamation that IBM is investing 600 man-
years in this project. "

-122-

EXPERIENCES IN PL/I AT IMPERIAL CHEMICAL INDUSTRIES, LTD.

A recent estimate given me quite informally was that perhaps 200 man-
years had actually gone into the compiler so far. It is still an awful lot,
so this is obviously a problem for any manufacturer who is thinking of
implementing it. Wc commented on this:

"While much of the effort is doubtless concerned with
documentation, a project of this magnitude could
hardly be undertaken by the relatively small software
groups with which we are familiar in this country. "

This is a reference to the fact that in England you tend to get half a dozen
people together to write a compiler rather than half a hundred.

Logical simplicity and elegance was another factor we were asked to
comment on:

"While PL/I, because of its wide range of features,
may not be as logically symmetric or compact as
might be desired, there would seem to be no intrin-
sic difficulties in teaching the language. "

I'll comment on teaching later. It is obviously very closely bound up
with the elegance or logical simplicity of the language. Another comment
we made on this point was that:

"The ease with which the amateur can use the language
There we mean the open shop programmer, using it,
please note, as opposed to learning it"1 depends on the
efficiency of the diagnostics, and some of us have
some misgivings on this matter. "

I think this is because we were very conscious of the fact that IBM had
not been accustomed to providing such effective, helpful run-time diag-
nostics as we were accustomed to having from our own K-Autocode (in
particular, a source language dump). An interesting sidelight on the
question of logical simplicity was that we could not apply the criterion
that used to be applied: a good programming language is one you can
specify on two sides of a sheet of foolscap, or better still, on one. The
chairman of the working party, R. A. Brooker of Manchester University,
suggested that another possible criterion one might apply to a program-
ming language was to take the number of facilities and divide this by the
number of pages in the manual, but we didn't know how to start counting
facilities so we had to drop this idea.

-123-

EXPERIENCES IN PL/I AT IMPERIAL CHEMICAL INDUSTRIES, LTD.

We did come up with a quite unequivocal conclusion:

"PL/I should be used as the preferred language for
data processing and mathematical computing, if and
when the compilers are shown to be satisfactory. "

Now we didn't say what we meant by "satisfactory", but in the absence of
any compiler, this is obviously something that you can't take for granted.
A rather nice quote that one of the members, not myself, provided to this
report was that:

"We should, as a company, move towards PL /I with de-
liberate but cautious speed. "

That about sums up the report. As the man who had to do the COBOL com-
parison, my conclusion was that there wasn't really much to compare be-
tween PL/I and COBOL; PL/I had it. There were one or two COBOL fea-
tures that weren't in PL/I. We felt that either they would be put in 1 am
thinking specifically of the numeric-alphabetic class test and the EXAMINE
feature, which can be quite useful we thought either these might be added,
or if they weren't, you could probably handle them with assembler subrou-
tines of a fairly general-purpose sort. Although we did study the specifi-
cation of the COBOL report writer feature, which was one of the most signi-
ficant things absent from PL/I, we didn't, in fact, get to the point of under-
standing it sufficiently well to be able to say what it was worth in practice.
We felt that it was a rather clumsy facility and that we would be hardly worse
off without it.

Now we come to the question of experience. We first got a compiler in a
prerelease version in July 1966, and we started playing around with it
straight away, on an experimental basis. As a matter of fact, some of
the more enthusiastic people for PL/I were technical users who were
interested particularly in the new facilities which were becoming avail-
able, and they got themselves into difficulties because they used facili-
ties that theydidn't properly understand in ways that evidently hadn't
been tested very thoroughly and that didn't always work. But we did,
by doing a fair amount of experimentation, reach a decision in September
I966 that the shop of which I was then in charge would go over wholly to
PL/I fairly quickly. It was convenient to do this because we were at that
time transferring a number of quite small schemes onto 360 (when I say
"small" I mean a scheme which consists of three or four programs of
200 to 300 statements each) from our Pegasus computer, which was still
operational at the time. This provided a very convenient environment

124-

EXPERIENCES IN PL/I AT IMPERIAL CHEMICAL INDUSTRIES, LTD.

for evaluating the new language. However, at the same time we were
concerned to tackle something a little more substantial. Now, I don't
really know how big this will appear to be to you by your standards, but it
seemed fairly sizable to us. I said before that ICI was very decentralized.
This meant, in particular, that each separate division has its own respon-
sibility for paying the salaries of the people who work for it. It was sug-
gested that on 360, now that we all had the same type of computer, it would
be nice if a team, preferably in a central department, were to provide a
set of programs which would enable each installation to run its own salaries
project without having to write its own programs. In September 1966 this
scheme had been fairly well specified and it was decided that the ground
was safe enough to program in PL/I. It is the only scheme I'm going to
talk about because I was, and still am, very closely associated with it.
But, round about the same time, we did elsewhere in the company start
on two other scheines, one of which is by now operational, the other
nearly so.

We set up a team of six programmers plus a team leader, and they started
work in September 1966 with the intention of going live in April 1967. In
fact, we didn't get into production till June, largely because of the diffi-
culties I'm going to talk about. In fact, the team was down to about three
by the end ot the period because we found that once the coding was done,
we could reduce the size of the team for the system testing. It's easy to
get two programmers to write one program, but when it comes to the
system testing, they tend to get in each other's way.

There were a number of programs in this project, a large number of
small ones, as you would expect, particularly for doing things that only
have to be done once a year, but the main programs were basically three.
There is a program for checking the input, which is read in random se-
quence, and when it has been checked and sorted, another program up-
dates the master file. The third program then processes every record
and calculates salary, pension contributions, tax, and all the other things
that are required.

I shall not refer further to the first program except to say that we did
discover when writing it that the date-checking facilities of PL/I were
somewhat inadequate. Thus, for example, having read a card and know-
ing that the whole of the information on that card should be numeric, one
has no convenient way in PL/I to check that it is, whereas in COBOL
there is a good way to do so. I believe this deficiency is likely to be made
good, so there's no need to dwell on it.

125-

EXPERIENCES IN PL/I AT IMPERIAL CHEMICAL INDUSTRIES, LTD.

The second program, the file update, was a pretty large program by our
standards. It came out at about 7, 500 PL/I statements. There was a
certain amount of duplication in here because it consists of about 60 mod-
ules of program, and various data declarations appear in every module^
We had quite a lot of trouble with this program the first time we linkage -
edited it. We intended to run the whole system on a 128K machine, so we
reckoned it would have a partition of about 105K to 110K to run in. The
first time we linkage-edited the update program with as much overlay as
we thought we could manage, we found that we had a load module of about
140K. So, we had to go back and think again about dividing up modules in-
to smaller modules and reorganizing our overlay structure, which was a
complicated exercise because, as I have indicated, we finished up with
about 60 overlay segments. There were at that time problems with over-
laying in PL/I, but, in fact, this did not delay us seriously because we
wrote our own program to read the PL/I object decks and remove the
cards that caused the trouble. However, we found that we were still us-
ing a lot of core.

It wasn't until this time that we actually started looking at object code to
see how the compiler came to be using all this core, and, although I ac-
cept that we are not really here today to talk about the implementation, we
did learn one or two things at this time which made us realize that it isn't
necessarily all the compiler's fault when it produces inefficient object
code. This is very important. I am sure that it has been true of other
high-level languages before PL/I, but it is very much more true of PL/I
than it was of any predecessor. We found, for example, that the quantity
of library subroutines we were having to call in, as a result of the way we
had written the program, was anything up to about 35K. It turns out that
to do nothing you need about 6K, but by using a wide variety of facilities,
and perhaps using them rather untidily, we found we were using as much
as 35K. At this point there was too little time to review everything we
had done, but we did do a certain amount where we knew there were
worthwhile gains to be made. This quantity of subroutines is almost im-
plied by the nature of the language.

Another thing we found was taking up a considerable amount of space was
dope vectors. And, if you think about it, these are implied or some in-
formation of this kind is implied by the language itself, because as long
as a subroutine is allowed to declare a parameter as being a character
string of indefinite length or an array of indefinite bounds, then the in-
formation about the length of the string or the bounds of the array has to
be passed at call time. This is quite fundamental, and the information

-126-

EXPERIENCES IN PL /I AT IMPERIAL CHEMICAL INDUSTRIES, LTD.

is passed in the form of dope vectors. We found that our salary master
record, that is, the record which is needed to pay a man's salary every
month, requires 690 bytes of core, and when it's written out it is 690 bytes
on tape, but its dope vector while it's in core occupies about 800 bytes,
which we think rather excessive-—but I don't know what can be done about
it. We also found that quite a lot of core was taken up by code extracting
information from these dope vectors. I don't know what can be done about
that either.

The ability of any PL/I implementation to acquire core dynamically is, I
accept, a very desirable feature in some applications, but it got us into
trouble because we knew about dynamic storage. We knew what it meant
so we decided not to use it explicitly. We didn't declare anything as
being automatic or controlled, but we found that when we entered into a
subroutine, core was nevertheless acquired dynamically for saving regis-
ters and for temporary work space, so that it wasn't good enough to get
our load module down to the size of our partition merely; we had to reduce
it to a lot less than that so as to leave room for storage to be acquired
dynamically. We also found that if an error condition occurred during
execution and there is an ON-unit for that condition, core is acquired
dynamically at this point in fairly substantial quantities (about 4 or 5K).
Thus for a time we had to test the program, executing in the core avail-
able, but if an error occurred and the error-handler was entered, we ran
out of core, which made discovering the cause of the error a little tricky.

We hadn't intended ever to get to the point where we needed to trace
through PL/I dumps, but we found that there were situations in which
we were forced to. In particular this happens in situations of the sort
that Professor Corbato referred to this morning, where there is a mis-
match between the attributes or number of arguments being passed to a
procedure and the way the procedure has declared the parameters it ex-
pects to receive. The compiler doesn't detect this where both procedures
are external, and the consequences can be disastrous, particularly, for
example, where the procedure thinks it is picking up an address, and what
it is actually picking up is a small binary integer. After this scheme had
been in production for several months, one of the installations using it
went to a release of OS/360 which had storage protect for the first time,
and they got a protection violation. It turned out we were using a loca-
tion in core with a very low address as a switch, which is hardly a very
good idea. This was due to a mismatch of parameters, and we had some
trouble locating it. Similarly, if a record is declared as external be-
cause it has to be known to all the procedures, but the declaration is
wrong in one of these procedures, the results are quite unpredictable.

127-

EXPERIENCES IN PL/I AT IMPERIAL CHEMICAL INDUSTRIES, LTD.

Now, I think we have to accept that this is one of the prices we have to pay
for modularity. The compiler doesn't know what other routines are going
to be linkage-edited with the one which it is currently compiling (unless
some means is found in the future of providing it with this information).
I think it would be unwise to ask the compiler to build in code that would
check these definitions at execution time. Certainly we do not want this
sort of code included for every execution, although it might be useful to
have it during debugging, so that at least you can establish that you have a
working program before you say, "OK, now I'm ready to do without these
facilities. Give me some more efficient code. "

We got some nasty surprises in other directions as well. It is often neces-
sary when updating a file to insert a new item into it, and in such a case
there is usually in core the previous record, which you don't want to use
at the moment. It has to be put on one side while the new record is ere-
cted. This shunting out to one side may be done by a simple assignment
statement to move the 69O bytes I referred to previously; the assignment
statement to move these 690 bytes generated about 5K of in-line code.
Now, if you look at the definition of the PL/I language, this should come
as no surprise. Admittedly, the compiler might have been able to detect
that there were no conversions required, that the mapping of the source
structure was exactly the same as that of the target, but it didn't. This
is not difficult to avoid; it is just something you have to know about. An-
other statement we had in there which we thought was extremely valuable
for debugging purposes was PUT DATA (Salary Master Record). This
generated about 7K of code, which is expensive. However, we didn't cut it
out and throw it away; we cut it out and overlaid it, and we still think it's a
very valuable statement. It does get executed occasionally when some-
thing goes wrong or when a record is deleted from the file. We don't
want it out of the language; we don't even care if it is not more efficient-
ly implemented; after all, it is likely to be inefficient because of the
necessity of having a symbol table and data element descriptors; but
it is something one must be aware of and something one must be prepared
to overlay. We overlaid not only the module that called it, but also the
PL/I library subroutines that it needed.

Another thing that I was rather unhappy about, having been used to some-
thing different in COBOL, was that constant subscripts are not evaluated
until run time; for example, if you refer to the fifth element of an array,
it doesn't calculate the offset of the fifth element from the beginning of
the array at the time of compilation. In some cases it could do this,
but suppose a two-dimensional array is passed as parameter; the sub-
routine called doesn't know what the bounds are at compile time, so

128-

EXPERIENCES IN PL/I AT IMPERIAL CHEMICAL INDUSTRIES, LTD.

clearly no offset would have been compiled in however constant the sub-
script.

There are yet other fundamental inefficiencies in the language associated
with stream I/O, which is a facility that I really wasn't accustomed to,
not having had much FORTRAN experience. Any implementation is likely
to be inefficient in this area because the compiler doesn't know what con -
versions are going to be needed until the statement is executed; this occurs
because the correspondence between the data item and the format item is
not resolved until execution time. How can this inefficiency be avoided?
The program has to build up lines of print in core, much as is done in
COBOL, and then use RECORD-type output. Furthermore, we hadn't
realized that if list-directed input is used, this isn't going to be very
efficient in any implementation. It can be very convenient and there are
times when it's a good idea to use it. But in a data-processing system I
don't think there will be very many such occasions, because this statement
has to be prepared to accept any valid constant in the input stream and con-
sequently has to have available whatever subroutines may be necessary in
order to convert this constant into the appropriate internal form. Pro-
grammers need to know such things. Again, I am reminded of what Pro-
fessor Corbatd had to say about ON-units. If you rely too much on them,
for example for replacing leading zeros in a field being read to a picture
format of all 9s, they can be extremely expensive. This occurs because
whenever an ON-condition arises, the program has to acquire extra library
work space and store registers, do one or two other things, which takes a
relatively long time.

Although I am generally in favor of the idea, I do have one qualm about
the use of a single language for both scientific and data-processing work:
there are times when a conflict in optimization arises. The compiler
writer should recognize this and provide the user with the means of con-
trolling which sort of optimization he gets. For example, he may be able
to do something in the prologue of a procedure which speeds up the exe-
cution of an inner loop, and, in fact, this is done to a limited extent in
the existing compiler. But in a commercial situation, you may spend
more time executing the relevant parts of the prologue than in executing
the statement at which the optimization is directed. This is one of my
little hobby horses because I am not sure just how well it is appreciated.

In considering these points I have made about efficiency, I would ask you
to bear in mind that I have been talking about experience with early ver-
sions of the first compiler for a new language. It is a very large language;

129-

EXPERIENCES IN PL/I AT IMPERIAL CHEMICAL INDUSTRIES, LTD.

it is a very ambitious language. It has facilities which no other language
ever had before, so it is not surprising that there is a lot to be learnt, nor
is it surprising that the compiler writers have produced, at any rate in the
earlier versions, a not very efficient compiler. But we do, I believe, have
a language which can, and in my estimation probably will, replace COBOL,
FORTRAN, and possibly ALGOL; I would have a better opinion on that if
I knew more about ALGOL 68. It even supplies rudimentary list-process-
ing facilities that have previously been available only in languages such as
LISP. It has some genuine real-time features which I won't comment on
because I'm not much of a real-time expert. I think we have all the makings
here of a tool which is extremely easy to use in the hands of the amateur
and quite powerful enough to satisfy the professional programmer.

One of the biggest problems remaining to us, I believe, is the teaching
of it. Unless the language is properly taught, we will have on the one
hand the amateur being taken nastily by surprise by, for example, the
precision rules which I believe have probably never been properly taught
and rarely even properly understood; and on the other hand the professional
turning out woefully inefficient programs. In fact, I would repeat my re-
mark of an earlier occasion: I firmly believe that a high-level language
does not enable one to employ low-level programmers, and I doubt if it
ever will. The professional will always need to know what the compiler
will produce from the statements he is writing at least in general terms.
The high-level language is not a substitute for programming skill. It pro-
vides the programmer with the equivalent of a machine tool instead of a
hammer and chisel. And the result is greatly increased productivity.

There are some improvements we need in the language, some of which
are already on the way. (I hope that in any further suggested improve-
ments close attention will be paid to the law of least astonishment, as
enunciated by R. Wexelblatt of the SHARE PL/I project.)

In conclusion I would mention some features that we think are particular-
ly important. We are very impressed with the compile-time facilities.
That doesn't mean we think they are good enough, but we think there is a
lot that can be done with them even in their present form. They haven't
been nearly sufficiently explored. I have attempted to write a simple
program generator, something like an RPG, using the compile-time
facilities, and this was neither terribly difficult nor did it require an
awful lot of effort. % INCLUDE, of course, is a very valuable feature.
It does particularly help one to avoid this mismatch of external data
declared in more than one procedure, which is very important. The ON-
conditions are extremely useful because without them you can't possibly

130-

EXPERIENCES IN PL/I AT IMPERIAL CHEMICAL INDUSTRIES, LTD.

fix up after an error. And, at the same time, if you leave them out, should
the condition arise, you merely get a message, and these are on the whole
very helpful. One feature that gives PL/I a particular advantage over
COBOL, and which I feel is often understated, is the absence of reserved
words. I don't think the fact that PL/I has no reserved words should en-
courage people to write such horrible things as "IF IF = THEN THEN" and
so on, which is of course perfectly legal, but at the same time you don't
want a serious risk of falling flat on your face when a new version of the
compiler comes out and there are two or three new reserved words in
there. I've had this experience with COBOL, and it can be extremely irri-
tating. The versatility of language and programmers is of considerable
value to us, I may say. We often have to move programmers between pro-
jects, and the shop I operate ranges from the scientific at one end to the
data processing at the other. It seems to me on the whole to be an easy
language to write in, a more natural language than COBOL and much more
concise, and less cryptic than FORTRAN as long as data names and labels
are made meaningful. I think using COBOL is a short way to giving pro-
grammers writer's cramp. As far as the run-time debugging facilities
are concerned, there are still people in ICI who feel that they're not as
good as they are accustomed to, but it seems to me that they are a whole
lot better than have ever been provided by COBOL, and certainly better
than anything I've seen from FORTRAN.

Questions and Answers

Question: What improvements did you discover in object code efficiency,
especially in this payroll system that you wrote, from Ver-
sion 2 to Version 3?

Answer: Funnily enough, not a great deal. We did a trial over one
month, shortly after we got Version 3. We recompiled all
our programs and ran them under the new version and dupli-
cated one month's work, mainly in order to see whether we
were going to hit any bugs in the new compiler. We did get
some timings, but there was a fair amount of ham-handedness
in actually timing the programs, and it wasn't really possible
to reach any general conclusion except that it looked as though
there was about a 10% or 20% improvement in efficiency. We
were very interested to find one module which actually came
out bigger under Version 3 than under Version 2. This we
managed to track down to something that didn't really matter
very much, and it was only the one, so who cares?

131

EXPERIENCES IN PL/I AT IMPERIAL CHEMICAL INDUSTRIES, LTD.

When you said that you found PL/I easy to use, were you think-
ing in the context of the good, clean programs that you referred
to later when you said that, knowing these things took place, you
could modify the program to get around them; or were you think-
ing of just writing the program and letting it go?

I was really thinking of the latter case. Let me give an example.
On one occasion, we found that our update program had put some
bad data on the master file. We reckoned that to generate cor-
recting data and put it through the whole system would take over
three hours. (We had at that time a rather high zero time on
the file update program; that is to say, it took a long time just
to process the file without having any amending transactions.)
So we wrote a fix-up program which merely looked at the items,
detected which ones were wrong, corrected them, and reported
what it had done. To write this, debug it, and run it in produc-
tion took about two hours of elapsed time. This is the sort of
ease of programming I am thinking of. I don't think it gets very
much more difficult if people know how to avoid inefficiencies.
They have to pay a little more attention to what they are doing,
but I don't think it's really onerous. What they are really doing
is restricting themselves to a subset, and the subset is certainly
no smaller than, let me say, COBOL 61 (excluding SORT and
report writer features). They are really restricting themselves
to the more COBOL-like features, in fact.

132-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

Raymond J. Rubey
Head, Advanced Systems and Languages Section

Computation and Software Department
Logicon, Inc.

San Pedro, California

Logicon contracted with the Electronic Systems Division (USAF) in August
1967 to evaluate the PL/I language by comparing it with other languages in
the solution of specific benchmark problems. The emphasis was on the lan-
guages, not on the compilers or operating systems utilized. This paper
summarizes the evaluation method used in this experiment and its results.
Full particulars are given in ESD-TR-68-1 50, the final technical report
produced under the contract. It is emphasized here that the study was indeed
an experiment; and that for different benchmark problems, different pro-
grammers, and a different time frame in terms of the implementations of
various language compilers, a different set of results might very well be
expected.

Method

The study encompassed seven benchmark problems in five application areas,
as indicated in Table 1. Each problem was programmed twice by the pro-
grammer assigned to it, once in PL/I and once in the comparison language:
COBOL, FORTRAN, or JOVIAL. The order of implementation was varied
as indicated to minimize the influence that more knowledge of the problem
might have on the results of the second implementation.

GROSS PAYROLL, the first of the business problems, is a dollars-and-
cents type of problem involving the computation of earnings and tax
deductions and the generation of weekly reports by personnel and charge
numbers. ALOREP2, the second business problem, is more concerned with
business data management. It involves the processing of air cargo data files
and their editing and updating based on input information. It also checks the
input information for validity and correctness.

The MMI (for Man/Machine Interaction) problem chosen for the interactive
programming area involves the development of a simple on-line system in
which the user enters equation statements, directives to control their se-
quence of execution, and other directives to output the results of equation
evaluation. The TSME (for Throughput Simulation in a Multiprogramming
Environment) problem representing the simulation and gaming area involves

133-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

Table 1. Evaluation Scheme

Benchmark
Problem

Lang jages
Programmer
Experience Application Area

First Second (years)

Business GROSS PAYROLL COBOL PL/I 3

Business ALOREP2 PL/I COBOL i

Interactive MMI PL/I FORTRAN 9

Simulation and gaming TSME FORTRAN PL/I 10

Scientific VIG PL/I FORTRAN 4

Data management SPP-A JOVIAL PL/I 6

Data management SPP-B PL/I JOVIAL 6

input and execution queues; the scheduling algorithms, job mixes, and re-
sources required by the jobs may be varied by the user. In the scientific
area, the VIG (for Vehicle Impact and Guidance) problem involves computa-
tion of a vehicle's terminal state position and requires many matrix and
vector operations, the standard trigonometric functions, and various limit-
ing and quantization operations.

In the data management application area, there was actually only one bench-
mark problem, SPP (for Simulation Post-Processor), but this problem was
programmed once each in PL/I and in JOVIAL by two different programmers
to gain information about what effects implementation sequence and program-
mer differences might have on the results. The SPP problem involves the
extraction of data from a file, its formatting, and the printing of selected
quantities based on input criteria.

Each of the programmers has a bachelor's degree and two have a master's
degree, one of them in mathematics and one in information sciences. All
are professional programmers. The two programmers assigned to the SPP
problem were considered as similar as possible in total years of experience,
in their education, and in the nature of their programming backgrounds.

134-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

Each benchmark problem programmer remained with his own organizational
group; he was not assigned directly to the project team. Naturally each
knew that his was an evaluation problem, but his instructions were to pro-
ceed just as if it were a normal problem from a customer within the com-
pany. A detailed programming specification was provided for each problem
so that the programmer needed to devote a minimum amount of time to
thinking about just what to solve and what kind of program to develop.

An evaluation study group, consisting of the project head and two project
analysts, was established to gather all the quantitative and qualitative data
resulting from the benchmark problem implementations and to interpret the
results. The members of this group did not try to tell the programmers
how to approach their problems, and did not indicate any language features
that should be used. It was up to the programmers to use the language fea-
tures they felt necessary. Assistance was provided, where necessary, by
the programmer's own supervision. The members of the evaluation study
group were available to help in solving any particular system problems or
unique implementation-dependent problems that arose, but not to assist in
programming the benchmark problem. To as great an extent as possible,
the environment was kept similar to that for typical problem solution within
the company. The evaluation study group did maintain daily contacts with the
programmers to assess their opinions about the languages and to keep track
of progress so this could be factored into the analysis.

Each programmer's time was recorded for four programming phases: the
time devoted to learning and review of the language; the time for design of
the program (this included understanding the programming specification,
redefining it in the light of the language to be used, and constructing any
flow charts necessary to program the problem efficiently); the time for
coding the problem (the time starting when the programmer actually began
to write code and ending when he was able to make his first debugging
run); and last, the amount of time required for checkout. The recorded
times were not strictly calendar or clock time, but the amount of time that
the programmer was actually devoting to the problem. Nonproductive time
such as that spent waiting between computer runs or for keypunching was
not counted. An accurate record was kept of time lost because of problems
with the compiler or the operating system so that their effects could be
factored out.

Quantitative data collected about the runs submitted by the programmers
were recorded on daily run logs. These data included the compilation and
execution times for each run, the number of statements of each type in the

135-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

source program, and descriptive comments about the results of the run.
Error logs were also maintained; when an error was discovered during
debugging, this fact was recorded and the error was classified according to
its type.

After completing the first implementation of a benchmark problem, the pro-
grammer was given a qualitative language evaluation form which required
24 essay responses. The following are typical of the kind of subjective ques-
tions and statements this form contained:

"What elements or features of this language seemed
to be especially suited for this problem? "

"Discuss any specific and strict rules which you
think tend to cause the programmer to make errors
in writing statements. "

After completing his responses to this form with reference to language which
he had just finished using, the programmer handed them in to the evaluation
study group and then started work on the same problem, this time in the
second language. Again, all the pertinent quantitative data were gathered
during the course of the second implementation. After completion of this
second implementation, the programmer answered the qualitative evaluation
form for the second language. Since his answers for the first language were
no longer available to him as a reference, this was an independent evaluation.

Several days after finishing his second independent set of evaluation essays,
the programmer was requested to complete a qualitative language comparison
form. This questionnaire, like the first, contained questions applying spe-
cifically to the problem, for example:

"Overall, which language is more suitable for this
problem? "

and more general questions:

"Which language is more suitable for large problems
in this application area? "

and questions directed to specific language features:

"Which language is easier to use in coding of compli-
cated logic control? "

136-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

The essential difference between this questionnaire and the first was that
this one solicited a direct comparison of the two languages and required
that a choice be made wherever possible. The programmer was requested
to state a brief reason for his choice.

The complete set of results for each benchmark problem, including detailed
tabulations of the quantitative data and all qualitative responses made by the
programmers and the evaluation study group, are presented in ESD-TR-68-
150. The remainder of this paper summarizes these results.

Quantitative Results

One of the more readily measurable language-dependent aspects is the size
of each source program written for problem solution. This is shown in
Figure 1, where each bar indicates the distribution of source program state-
ments between executable and nonexecutable statement categories. With
reference to the total number of statements, ALOREP2 is the smallest of
the PL/I programs, with 214 statements; TSME, which has 703 statements,
is the largest. The smallest program written in one of the comparison lan-
guages is VIG in FORTRAN, with 295 statements; the largest is the MMI
program in FORTRAN, with 1032 statements. The PL/I source program
has fewer statements than the comparison language program in all cases
except for VIG, a small scientific problem. Most of the difference in size
between the PL/I and FORTRAN versions of the VIG problem is due to the
fact that there are fewer comments in the FORTRAN program.

Figure 1 indicates that for some problems, the PL/I version is smaller
chiefly because it has fewer executable statements. For other problems
the PL/I version is smaller chiefly because it has fewer nonexecutable
statements; and in some cases the PL/I version has about an equal savings
in both executable and nonexecutable statements. Therefore it is not possible
to generalize from the results as to whether the executable or nonexecutable
language elements of PL/I are responsible for smaller program size.
Further breakdowns of program size given in the final report show that there
is one area in which the PL/I version is consistently smaller, sometimes by
ratios of 1 5 to 1; this is the data, file, and format description area.

Figure 2 shows the programmer time used in coding and debugging the source
programs. Five of the seven problems were coded more rapidly in PL/I
than in the comparison language; the two exceptions are VIG, which also was
the exception with regard to program size, and SPP-B. However, the de-
bugging time actually spent shows quite the opposite: the PL/I programs

137-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

K\\\\\\\\\^

kWV^WWW^

R??? \

t

L\\\\\\\\\\\\\\\\\V 3^

o
o
o

^^^

I

^s X

^^3

a

\\\\\\\\]

g

wvsssi

o
o

o
o

o
o

to

PH
0, -1
10 2

>
L ° ^

(—1

< -1
(X. &
cu
w >

0
>

W

H

>v

2
<
«
H
a

•J

-^

w
K
O

<

O >*
a <

o
CQ
o
u

0,

o
o

ti
N

• r-l

CO

IT!

M
cc
0
h

IX
<h
u
>-,

C

o

D
•5JJ

g;uaui3)e)s jo aaquin^j

3]qB^nD3X3UOJsI

138-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

KWWWWWW^

0)
M

3
ac
C
A

as

vVWWWWW^S^

i?

NW\1^ K

K\\\\\\\^l

l\\\\\\^

k\W\\\\\N

s

o
00

o
in

O o
a-

O o

CQ
I

a
IX

"\

[X

25
>
o

a.

J

"A

W

H

2
2 v

<

H
05
O

0.

w a
O >-
a <
o Q.

"\

A
O
e
o
u

J
&

V

o

C

W

H
h

O
u

CM

u
!-.
a
at

139-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

generally took longer to debug even though they were smaller in size than the
comparison language versions. The two exceptions here are ALOREP2, for
which the PL/I program required a substantially shorter time for debugging,
and SPP-A, where again there was a rather substantial difference in favor of
PL/I. For the MMI and TSME problems, PL/I and FORTRAN took about the
same total time for problem solution, the longer debugging times being
offset by the shorter coding times.

Figure 3 combines the data from the first two figures and introduces another
factor important to this study: the order of implementation in the two lan-
guages. The vertical scale represents coding time in hours and the horizontal
scale the relative program size, the first implementation of each problem
being considered as having a size of 100%. The MMI problem will be used to
illustrate the way in which this graph was constructed. MMI was implemen-
ted first in PL/I and took 22 hours to code; hence a point is plotted at 100%
and 22 hours. The FORTRAN implementation of this problem took 33 hours
to code and resulted in a source program size of 149% relative to the size
of the firstprogram. A point representing these values is plotted, and the
two points are connected to associate the pair.

On this figure, one language is indicated as superior to the other with which
it was compared when the benchmark program written in it is represented
by a point lower (less coding time) and to the left (a smaller program) of the
point representing the other program. It can be seen that PL/I was the
superior language for five of the seven problems. The exceptions are SPP-B,
for which the PL/I program was smaller but took longer to code, and VIG,
for which the PL/I version took longer to code and was also the larger source
program. It is noted, however, that for both VIG and GROSS PAYROLL the
differences are small and in the opposite direction. In general, PL/I is
indicated as superior regardless of the order of implementation by compar-
ing SPP-A and TSME, which were programmed in the comparison language
first, with MMI and ALOREP2, which were programmed in PL/I first.

Figure 4 is similar, the vertical scale indicating debugging time rather than
coding time. Unlike Figure 3, this graph fails to bring out any definite trends.
Overall, Figure 3 tends to indicate that the smaller size of the PL/I source
programs resulted in less time being required for coding regardless of the
programmer's previous knowledge of the problem, while Figure 4 suggests
that debugging time is not directly related to program size or previous
knowledge of the problem but is more a function of experience with the lan-
guages, that is, the number of errors made in coding.

140-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

o

O
if i

o
o o
"* ~~
~ . V

c N
0

if:
-J

4-1 £ o a m m V u — ",'* M
V c

•—1 (H
Q. 0,

o •*-

N —• H
•>•—i 01 >

'—- 0)

s
o ;/:; H
— fc be
*** C

• •-< -* -a
0

U
H

c?
o 5J rO
—

CJ
(fl h
H a

K M

o U<
c-

o

(BJinoq) aunj, 8UTP°D

-141

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

V
M
M
D
bo
c
n)

cu o

o •

/

i

/

PL, / \ &
\ w
\ K \ °

2 1

\ -1

\<

wo
/ w
/ H

V

OPH

PH\

o

o

o
in

, , CD

o o
o VX

V4

II

c M
0 bo • •-* 0

o 0) ••H

en e OH

£ 00
ti >

o c 5
• H

DO H
-»-«

• be
c 0) • r-I

N oc
O

tfl

43 "- F
nj 0;
h P
QC
0
h »

o (X -r
o

tl cu
> M

»H a
-—i

be

a o
cr

o
oo

o

o
30

o o o o o
O 00

o O o

(sjnoij) auuj, 8ux88nq»Q

142-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

Figure 5 shows that there were indeed more coding error s made in PL/I, even
though the PL/I versions were generally smaller. In this chart the clear
bars show the sums by error category for all PL/I programs, the shaded
bars the sums by error category for all comparison languages combined:
COBOL, FORTRAN, and JOVIAL. If comparable figures were drawn for
each individual problem, their shapes would not be substantially different
from that of the composite given in Figure 5.

In all but two categories there were more errors made in the PL/I versions;
the exceptions are computation and assignment statements and labels. The
error most frequently made was the omission of the semicolon from the end
of PL/I statements. The large difference in the punctuation category is at
least partly due to the fact that the programmers were not as familiar with
the PL/I punctuation rules as with those of the comparison languages, and it
is expected that this and other punctuation errors will decrease in frequency
as programmers gain more experience in using PL/I. The same is probably
generally true of the time required for debugging.

For both PL/I and the comparison languages, many errors were made in the
data, file, and format description category. The number in this category is
far greater than in the sequence control and decision and the computation
and assignment categories where the majority of attention in problem solution
and even debugging is often concentrated. As stated earlier, PL/I showed
a substantial savings in data, file, and format description statements. It
can be expected that as programmers become more experienced in using
these superior capabilities of PL/I, which are evidently a little more com-
plex, errors in this category should decrease.

Qualitative Results

Turning now to the subjective, qualitative opinions of the programmers and
the evaluation study group, the responses to the qualitative language com-
parison form are summarized in Tables 2 through 5. In these tables the top
row of dots for each entry represents the choice of the programmers, the
bottom row the choice of the study group. These tables are to some extent
oversimplifications, since it has been impossible to include on them the
reasons given for each choice. In cases where there is a conflict between
a programmer's choice and that of the study group, it is important to recall
that the selections made by the group were based on their analysis of the
responses to all questionnaires, on the numerical data, on their knowledge

-143-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

id
h

0
u
ft

o

h
o
M
V
It
U

in
V u
fl
O

CO

FH
o
u
u
w

0)

at
• r-l

SJOJ13 jo jaqujnjsj

144-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

about the programmer, and on their daily contacts with him. The complete
set of replies to all questionnaires appears in ESD- TR- 68- 1 50.

The first qualitative opinion recorded in Table 2 refers to which language is
more suitable to the particular benchmark problem. PL/I is preferred for
all benchmark problems except GROSS PAYROLL, the dollars-and-cents
business problem, and VIG, the small scientific problem. When the suit-
ability of the languages for small and medium problems in the application
area is considered, PL/I is the choice except in the business application
area, COBOL being chosen for both dollars-and-cents and business data
management problems. For large problems, PL/I is again chosen as more
suitable than FORTRAN or JOVIAL, while the consensus is that there is no
preference favoring either PL/I or COBOL for the solution of large business
problems.

The next characteristic examined in Table 2 concerns suitability for the
nonprofessional programmer, which for the purpose of this evaluation was

Table 2. Language Suitability

Key: O PL/I
• Other language
-- No preference

For this problem

For small/medium problems

For large problems

For nonprofessional programmer

For professional programmer

COE OL

N

w
(X
o
<

FORTRAN JO

<
1

ft

VIAL

G
R

O
S

S

P
A

Y
R

O
L

L
 r

2 H
0
>

—1
t

ft
ft
CO

• 0 o o 0 O
• O 0 C) -- o O

• • o () o 0
• • o O o o 0

() () O • o o
-- -- o o o o 0

• o • • • o o
• • • • • o o

0 o 0 0 0 o o
o o o o 0 o o

145-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

defined as a person who is interested not so much in the details of program-
ming as in solving a problem to obtain the answers he needs for his primary
field of interest. Such people normally program infrequently, and then only
in a restricted application area. All of the programmers and analysts
participating in the evaluation are professional programmers, and all of
them have extensive experience assisting nonprofessionals in the solution
of problems; that is, they all are familiar with the ways in which non-
professionals have gone about solving programming problems. The choices
of these professionals with regard to suitability of the languages for the
nonprofessional favor PL/I only in comparison with JOVIAL for the data
management application area. There is almost complete agreement that
COBOL is better suited for the nonprofessional in the business area and
FORTRAN for the nonprofessional in the scientific, interactive, and simula-
tion and gaming areas. For the professional programmer, however, PL/I
is the unanimous choice of all participants.

Table 3 shows one more level of detail by bringing out some of the gross lan-
guage characteristics that help to determine a language's suitability. With
regard to generality, PL/I is the unanimous choice except for business

Table 3. Language Characteristics

r

Key: O PL/I
• Other language

-- No preference

Generality

Conciseness

Naturalness

Conciseness : naturalness

COB OL FORTRAN JOV IAL

A (\
A &

w ° w
u <

1
pq

|
0 >- 0 t=j s 0

>

ft ft
« < A g W & <A
O PH < % H CO W

o _ _ O O o o o
-- -- o O o o o

o O o O • o 0
o o o o o o o

• _ _ o o o o o
• -- o o o o o

• o o o o o o
o o o o o o o

-146-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

programming. Even though PL/I is usually considered a more general-
purpose language than COBOL, there is a consensus that PL/I has serious
deficiencies in the business programming area, particularly its lack of
built-in sorting and report writing capabilities; thus no choice could be made
between the two languages. For conciseness the choice of PL/I is unanimous
except for the programmer of the VIG problem. For naturalness to the
particular benchmark problem, PL/I is chosen over JOVIAL and FORTRAN
but not over COBOL; in fact COBOL is considered more natural than PL/I
for the dollars-and-cents type of business problem.

The last set of qualitative choices shown on Table 3 concerns the balance
between conciseness and naturalness. A language in which one could code a
very concise program with the absolute minimum number of statements
would almost certainly not be a very natural language to use. On the other
hand, the most natural language to use, presumably English, is not nearly
concise enough. PL/I is chosen almost unanimously as providing the best
blend between the two characteristics.

Table 4 presents the answers to some questions regarding programmer
reactions to practical language aspects. Almost all responses show the
comparison language to be easier to learn, whether COBOL, FORTRAN, or
JOVIAL. For ease of using the language, the choice is generally PL/I.
The explanations given in the essay answers clarify what might be considered
a contradiction between these two conclusions. FORTRAN, for example,
being more limited than PL/I, is more easily learned. But when it comes
to solving a specific problem, the more extensive capabilities of PL/I make
it necessary to employ few if any tricks to accomplish the task, while the
FORTRAN programmer may have to resort to many programming tricks
and in some cases assembly language to do the same job.

With regard to ease of learning and using for the particular problem, PL/I
is chosen for five of the seven problems. The responses concerning the
ease of reading and writing statements show everyone choosing PL/I except
in comparison with COBOL. For productivity in coding the benchmark
problem, which refers to the amount of time required after receiving the
specification until the program has been designed and coded, PL/I is gener-
ally chosen over FORTRAN; there is a division for the two business problems;
and no preference is indicated between PL/I and JOVIAL for the two SPP
problems. Note that the programmers' subjective opinions agree quite well
with the amount of time they actually spent.

147-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

Table 4. Programmer-Dependent Aspects

Key: O PL/I
• Other language

-- No preference

Learning

Using

Learning and using
for this problem

Reading and writing

Productivity-

COBOL

-1

cog
co «
O 5H

<
U PH

O

FORTRAN

A

OH
w
a u
o s 2

CO
0
i—i

< 2 H >

JOVIAL

a
& OH
OH 0,
CO CO

O o o • • o
O o o o O

O o o • o •

O o o • O O

 o O O o

• o o O o o

O O o • O •

o o o o — —

Table 5. Ease of Use

Key: O PL/I
• Other language

-- No preference

Logic control

Unit manipulation

Statement modification

COBOL FORTRAN JOVIAL

J (VJ
t >

-1 OH
w 0
co K

w
W <

1 1

0 !* O H s u
H

OH OH
« < J -^ CO OH OH
0 On < S H > CO CO

O o o O o O

o o o O o -- --

• o o o 0 • O

o o o o o -- --

O o o o o O o
O o o o o o o

148-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

Table 5 delves further into several language aspects that enter into ease of
use. With regard to capabilities for logic control, PL/I is chosen except
when compared with JOVIAL. For unit manipulation (by which is meant bit,
character, and byte manipulation) PL/I is again preferred except in com-
parison with JOVIAL. Finally, for ease of statement modification, which
refers to the ease with which a statement can be corrected when an error
in the program is found, PL/I is the unanimous choice.

Compiler- and System-Dependent Data

Although the emphasis of the study was on the languages themselves, a great
deal of information was perforce generated about the performance of the
computer systems and compilers utilized; these are identified in Table 6.

Figure 6 shows the computer time required to run the checked-out programs,
with compilation time at the top and loading (link-editing time for IBM 360
versions) and execution time for a typical test case at the bottom. For all

Table 6. Computer Systems and Associated Compilers

Language
Benchmark
Problems

Computer

System
Compiler

PL/I All IBM 360/65 ASP Level F Version 2

COBOL GROSS PAYROLL IBM 360/65 ASP Level F
ALOREP2 IBM 360/65 ASP Level F

FORTRAN MMI IBM 360/65 ASP Level H
TSME IBM 360/65 ASP Level H

VIG* UNIVAC 1108 FORTRAN IV

JOVIAL SPP-A GE 635 Version 36
SPP-B GE 635 Version 36

*The VIG FORTRAN program was also compiled and run on the GE 635, and
compilation time was obtained on the IBM 360/65 ASP system using the
Level H FORTRAN compiler.

-149-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

N\\\\\\\\\l

ESS

k\\\\\\\\\\\^

\\\\\\\\\\V 1
K\V\\\\K\\\\^ 0\\V\\V\N

M
a
00
C
ro

(U o

• H

^^^

^SS?

a_

S9/09£ w?i
S£9 3D

80 n DVAINft

sssss^^sssa

]

\w\w\\i

a.

[X

a
>

8

<
a
H
K
o

>b4

ex

s
2

a,

o
pg
o
u

w 0
w a
O >H

a <
PL,

c

£

60
O
!H

•U3

ajidujOQ

(8»}nujtu) atutx U"U

150-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

problems except VIG, the PL/I compile times were shorter than or equal to
those for the comparison language versions, and for all problems the PL/I
link-editing and execution times were longer than the loading and execution
times obtained for the comparison language programs. For VIG, the com-
pile time for the UNIVAC 1108 FORTRAN version is somewhat less than the
IBM 360 PL/I compile time, the 1108 FORTRAN load and execute time is
but a tenth that of the PL/I version, and the GE 635 FORTRAN times are
even shorter than the UNIVAC 1108 times. While the IBM 360 Level H
FORTRAN compile time is considerably longer than that obtained for the
other two FORTRAN compilers, it seems to be compatible with the FORTRAN
compile times obtained for the MMI and TSME programs. No link-edit and
execute time could be obtained on the IBM 360 for the VIG FORTRAN pro-
gram; while this program was acceptable to the UNIVAC 1108 and GE 635,
several compile errors were encountered when using the IBM 360, these
errors involving features present in the other FORTRAN compilers but
missing from Level H.

Another interesting type of information that can be gleaned from the data
relates to the number of runs required to complete debugging; these are
shown in Figure 7. Runs were sorted into two classes: those made to cor-
rect syntax errors and those that were unproductive because of difficulties
with the system, i. e. , required because of a problem in the compiler or the
operating system or a bad reaction to otherwise good control cards. Pro-
gramming errors are defined as those in which a syntactically correct state-
ment is written, but not the right statement to solve the problem. In some
cases the number of runs found to be unproductive because of system trouble
was nearly a third of the total number of runs. The high number of system-
type errors is probably indicative of the state of compiler and operating
system development for the newer, more advanced systems.

Total debugging cost for each benchmark problem is shown in Figure 8 in
terms of minutes of computer time required. In all but one case, TSME,
PL/I required more computer time than the comparison language did for
debugging. The relative differences are not too substantial, however, except
for the VIG and SPP problems.

Figure 9 shows the sizes of the object code programs. The IBM 360 object
programs, which are measured in bytes (8 bits per byte), were divided by
4 so that they could be compared with the UNIVAC 1108 and GE 635 object
programs, which are measured in words (36 bits per word). For the two
business problems, the PL/I Level F Version 2 compiler generated con-
siderably larger object programs than the Level F COBOL compiler. How-
ever, the sizes of the generated object programs are comparable for the

151-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

I

a,

<
1

o,
OH

>

U

w
H

1—4

w
IX o
<

M O
w a
o >-
a <

>
o

a,

2
<
K
H
K

•2

(X

•J

0
m
o

y <->

J
a,

vWWWV \V
1

\\\Wt\\ \\\NI

\W

c

c
•r-l

1 ex

P

s\\\\\\\\\ \\\\v s\\\V 0

OJ

2
\W S> \N

1 r-

4)
BO
At
3
(XI e
M ^^

(X 0

• s

X\\\\\\\\\\K\\\\\N ^

K\\\\Vk\\\\\\\ \\\\\\\
jaujtuBjgoacj x^iuAg

O OjJ

o O C O
<N1

O

8IOJJ3 jaujuiBjSoJd pue xcjuAg

suntf jo aaqujnjsi

9JOJJ3 LUd^sAg

-152-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

oo
3
00
c
R)

a. o

• H

x\\\\

\\\s

p

v\\\\\\\\\\\\\

\\\\\\\\\\

wwww

\\\\\\\\\\\\\\\\\\v

a.

ft
ft

i—i

>

a.

>

>

w

H

2

H
K

> o

J
a

v

a,
W
K
0

<

CO «
O >-
a <
a (X,

o
EC
o
u

ft

T3

T3
C
<u

W

a
•H
H

4-1

a
2
o
U

CO

u
In

ac

o
m

in o
o

in o
in

(sa^nuiuj) .SUITx J3;ndiuoQ

153-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

? \\\\\\^\\\\\\\\\\\\\^\\\\^ \

K\\\\\\\\\\\\\\\\\\\\\\\\^35

4)
QD
it
3
ac
C «

o, o

n H

80U JVAINft K\\\X\\\

k\\\\\\\\\\\\\\\\\\w

k\\\\\\\\\\\\\\\\\\W

K^VW

p^^

I

"\

>
o

OH
(X

"\
a
I—I

>

w

H

<

H
a

y °

(X

2
2 -^

w
a
O

<

•J
o
PS

3

•N

o
«
o
u

OH

y

N

03
M
ox
O

•M
u

••—*

o

0)
u
•A

En

o
X
fM CO

X
•*

(paom i s ss}Aq f) spjo^ jo aaqujriN

-154-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

PL/I and FORTRAN compilers used for MMI and TSME. For VIG the PL/I
compiler produced a considerably larger object code program than did the
UNIVAC 1108 and GE 635 FORTRAN compilers. The object code program
produced by the SPP-B JOVIAL version was the same size as the SPP-B and
SPP-A PL/I versions, but the SPP-A JOVIAL version was half that size.
One interesting result is that the large differences in sizes of the SPP source
programs do not correspond directly with object code program sizes. It is
apparent that a significant difference in both source and object code sizes is
possible for programs produced by people who have the same experience and
are solving the same problem.

Conclusions

It seems evident that there is no order-of-magnitude improvement in chang-
ing from one of the comparison languages to PL/I, the kind of improvement
one would expect when going from assembly language to FORTRAN, for
example.

PL/I is more difficult to learn than any of the comparison languages. How-
ever, none of the programmers had particular trouble in this area, so
it should not be classed as an extremely difficult language to learn. The
extra capabilities of PL/I indicate that it is a good investment for the pro-
fessional programmer to spend the extra time to learn it.

The PL/I user can probably effect a savings in coding time right away. How-
ever, debugging time is longer than that for any of the comparison languages
until the programmer becomes experienced in debugging with PL/I.

As shown by VIG, the small scientific problem that had approximately 300
statements and was largely just mathematical equations, PL/I probably
complicates simple mathematical problems.

The nonprofessional programmer is probably going to be better off with
small, simple, more specialized languages.

The results of the SPP-A and SPP-B implementations indicate that the dif-
ference between any two languages is less than the difference between two
programmers that, based on their background and experience, would be
considered equivalent; the programmer is a greater influence on the problem
than is the language.

155-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

PL/I generally requires fewer statements to solve a given problem than
COBOL, FORTRAN, or JOVIAL. The size reduction is particularly signifi-
cant in the data, file, and format description area.

Programmers tend at first to make more errors in writing PL/I programs
than when using the comparison languages; this is especially true of punctua-
tion errors. Errors in data, file, and format description were the most
common errors for all of the languages used in this study. In this area
PL/I's better capabilities should eventually favor it relative to the other
languages.

Finally, compiler and operating system considerations can completely over-
ride other factors in choosing a language. This is particularly important if
the user is especially concerned with the time it takes both to compile and to
execute programs and the amount of system troubles he is likely to encounter.
It is in this area that improvements are most urgently needed, for both PL/I
and the comparison languages.

Questions and Answers

Question: Your quantitative data regarding the VIG program seem to
indicate a disparagement or a bad situation for PL/l. Your
comments also indicate that. However, on the slides you showed
detailing the programmers' comments and the committee's com-
ments, it seemed to me that you were recommending PL/I for
the most part all the way through as far as the scientific pro-
grams went.

Answer: That's true. For the qualitative or subjective data the people
felt PL/I was better, even though they couldn't substantiate this
in all the cases with numerical or quantitative data to back them
up, particularly for the VIG problem. It seems that a bigger
scientific problem would have been desirable, something that
was more of a test of PL/I. The VIG problem tended to be the
same in PL/I and FORTRAN; it didn't call on the expanded cap-
abilities of PL/I. I think that would show why the numerical data
would be close, or even show PL/I at a disadvantage for that
problem, but the subjective responses would indicate PL/I was
better.

-156-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

Are you planning to run these PL/I problems through Version 3
of the PL/I compiler, and if you already have, can you comment?

Right now we have no plans on running them through the Version 3
compiler because, as I said, we were interested more in the lan-
guage aspects. Unfortunately, we had to run through existing
compilers. What we would have liked to have done, and we
originally planned to do, was to use another manufacturer's
compiler to get an idea of the system troubles to be expected.
Maybe that would have been better, but we were limited to one
PL/I compiler. That's one of the reasons we stayed with the
Level H FORTRAN compiler. We didn't want to switch over
and use a FORTRAN that we knew might be better, and have less
system troubles, because we felt we would be putting PL/I at a
handicap.

Did you consider using the DOS subset PL/I? Why did you pick
FORTRAN H over FORTRAN G in the 360?

We used what was readily available to us at the service bureaus
and computer centers.

Would you care to comment on what the programming experience
was? You've given the number of years of programming experi-
ence for your people. Would you care to comment on what their
previous knowledge of programming languages was? How many
years?

The ALOREP2 programmer had about one month COBOL, one
month PL/I, and the rest either FORTRAN or machine language
in that one year. The GROSS PAYROLL programmer had most
of his experience with Autocoder. I don't think he had a great
deal of experience in either PL/I or COBOL. The TSME pro-
grammer had about two years of FORTRAN experience and the
rest machine language. The MME programmer had about a year
of PL/I experience, including some PL/I systems work, and
several years of FORTRAN experience. The VIG programmer
had a couple of years of FORTRAN, and her previous PL/I
experience was limited to a two-week IBM training course in
PL/I. Neither one of the SPP programmers had any prior
JOVIAL or PL/I experience.

157-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

Q: How did you get your PL/I experience, your knowledge? What
kind of education?

A: You mean the individual programmers? That was up to the
individual programmers. They were given manuals and texts.
We didn't conduct any formal training classes. There was a lot
of interchange between the programmers as the project developed,
but we didn't specifically try to set up a rigid plan for educating
them in PL/I.

Q: Just by way of information, the COBOL F is really COBOL G.
I think it's important to try to find out which version of FOR-
TRAN H you used, whether it was the optimizing or the zero
level. Was the JOVIAL programming all in JOVIAL or did they
resort to machine code?

A: That's a good point. We did a considerable amount of research
in JOVIAL trying to get a JOVIAL compiler that was for the whole
JOVIAL language. We had to settle for doing the input/output
portions in machine code. We couldn't find any available JOVIAL
compiler which handled the input/output very well.

Q: That might have influenced a great deal of the quantitative results
that you got. You were running on a GE?

A: GE 635. If you remember, we had a considerable number of sys-
tem problems there. Again, we used a JOVIAL compiler that's
sort of in the development stage, too, maybe like PL/I. It's not
by any means a finished compiler.

Q: The number of runs you made seemed to be rather higher than I
would expect. Were you intentionally trying to use machine time
at the expense of programmer time?

A: No; we weren't trying to intentionally bias it either way. This
was what the programmers felt they needed. We do think these
numbers are consistent with the number of runs required to
develop other comparable programs. A lot of the runs were,
again, due to system problems, however. In fact, the number
of runs probably is partly reduced from what would be expected
in an installation where the programmer gets very rapid turn-
around. I think that most of the programmers were getting two
runs a day at the very best.

158-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

Q: In your observations on FORTRAN, comparing it with PL/I, the
people overwhelmingly thought it was easier to learn FORTRAN
but harder to use it. I thought your explanation for this had to
do with the tricky things that you had to do in FORTRAN that you
didn't have to do in PL/I. Were the problems that you were
doing here such that they required the programmers to use these
tricky things in the FORTRAN work they did?

A: I don't think that they were required to use any special new tricks.
There were tricky things that they already knew and probably
used naturally, but they just had the feeling that for many prob-
lems they would have to use tricks.

Q: With COBOL it is not easy to divide the program up into sub-
routines, but FORTRAN does have this feature. Did you use
subroutines, subprograms, to any great extent?

A: No, not in the COBOL problems. In fact in one of the essay
answers, the programmer down-rated COBOL for large problems
because he didn't feel it was natural to use subrotines in COBOL.
I don't think in here that they used subroutines to any great extent
for any of the various problems.

Q: None of your programs got into the area of overlay or chaining?

A: No, none of them required overlay or chaining.

Q: I am making the assumption that you did not have to support any
of your COBOL or FORTRAN work with machine code. Is that
true?

A: That's true, nor was machine code required for the PL/I versions,
in fact. All the debugging was done at the source code level.
Nobody spent time looking at machine code. Everything except
the I/O for the JOVIAL versions was done at the source code
level.

Comment: I'd like to make a comment about the semicolons. That is a
problem in PL/I when you're starting to learn it. COBOL and
FORTRAN and traditionally, I think, most high-level languages
in the last 10 years are oriented to the card image, and they use
that as a statement delimiter, and it's sometimes a little difficult

-159-

SUMMARY OF LOGICON'S COMPARATIVE EVALUATION OF PL/I

to get used to putting the semicolons on. But I think after a
good deal of experience, it becomes rather automatic. To get
around this problem, in FORTRAN and COBOL specifically, they
have specially designed coding sheets.

The tape ended at this point, shortly before the conclusion of the question-
and-answer session. A large part of the panel discussion which followed
dealt with this presentation.

160-

SECOND PANEL DISCUSSION

Participants

Earl O. Althoff, Eastman Kodak Company
Fernando J. Corbato, Massachusetts Institute of Technology

Vilas D. Henderson (Moderator), Logicon
Mary D. Lasky, The Johns Hopkins University

Robert F. Rosin, Yale University
Raymond J. Rubey, Logicon

J. Michael Sykes, Imperial Chemical Industries, Ltd.

Henderson: Since there was some rousing discussion about our presen-
tation, I would like to start by giving each of the panelists a
chance to comment on it before we go into more general
questions. Let's start with Bob Rosin.

Rosin: I've got several points that I'd like to make. I'd like to pre-
face my remarks by saying I really don't have a bone to pick
with the presentation, not a single bone. I don't think it's
overall bad; as a matter of fact, I think it's good. I would
say that trying to do the kind of thing that you did in those
experiments is one of the most difficult things to do in all of
the world of programming right now, and that's why reports
on this kind of work are so seldom found in the literature, the
journals. I also don't—believe it or not—have a vested in-
terest in any one language or even in any one family of lan-
guages. It may not always sound that way from things I say
here or at SHARE, but it's true. If I believed in any language
at all right now it would have to be PL/II or ALGOL 68 or one
of their derivatives—'believed in the sense of what I really
should be working in five or ten years from now. In terms,
however, of a practical tool for the current generation, for
people to be using now and young people to be learning now,
frankly I feel that PL/I is, in its class, superior. I also
think, for example, that SNOBOL4 in its class is superior.
That's another issue. Anyway, I wanted to say that to make
my remarks sound a little more from a different position
other than one close in.

I hope that Vi's introductory comments to the presentation this
afternoon will be made not only at the beginning but also at the
end of whatever further presentation may be made to the Air
Force so that it's well understood that this was one case study

-161

SECOND PANEL DISCUSSION

and one limited environment; and that goes for both positive
and negative aspects of the presentation.

It's my impression that the people who were involved in the
study, the people who were used as the guinea pigs, never
learned PL/I. It may be that they learned FORTRAN and
COBOL and/or JOVIAL. But it's quite clear to me that they
never learned PL/I because frankly I didn't learn PL/I my
first program and I don't know of anybody who did, including
the present manager of the SHARE PL/I project— who, as
was pointed out, was once manager of the SHARE FORTRAN
project and has many years of experience. I am quite puzzled
why, when PL/I was introduced — or, as a matter of fact,
when any of the languages were introduced-— no hints or guid-
ance were given to your programmers on use of the language.
I'm also curious as to what documentation was provided for
learning PL/I, because it's clearly understood that
manual C28-6571 dash whatever is not a tutorial document.
C28-8201 may be, in some peoples' minds, but I doubtthat
it was even available. I am curious what you availed your-
selves of. I would find the whole prospect frightening, frankly.
I am reminded of something I learned when I was a graduate
student in psychology, for the one year that I could take it.
One of my instructors demonstrated to us that there was no
such thing as one-trial learning, that the one trial itself was
really the zeroth trial, and what you measured at the end of
that first trial was not really learning at all but just the sum-
mation of that one trial. I'd be very curious to see what
would happen as a follow-up to this kind of study if identically
the same people were, say, switched onto different problems;
that is, if the programmer who did the payroll problem this
time did the other business problem and vice versa—I'd be
very curious to see what sorts of things happened, both in
COBOL and in PL/l.

Again, I think this kind of study is relatively pioneering. I
would say from a statistical point of view that the evidence is
rather small in all of your work. As Corby said earlier today
in regard to another matter, there is some variance there.
It would be interesting to discover what it was.

162-

SECOND PANEL DISCUSSION

In looking at the number of statements that were used to code
any particular problem, I find it unbelievable that you don't
have in the presentation that you made— and I assume in the
final report — a breakdown not only between executable and
nonexecutable statements but also of comments. The un-
commented FORTRAN program to me sounds incredible. On
the other hand, it is so easy to sit down at a keypunch and bop
in a /* and go on for six pages of PL/I comment that I don't
know exactly how you would measure that. It's also not clear
to me when you talked about comments whether a single
/*. . . */ in PL/I was a single comment even if it went on for
a page and a half or two pages; I don't know. If you counted a
comment card in FORTRAN and then counted one of those
occurrences in PL/I as a single comment, as a single state-
ment, then PL/I comes out way, way ahead, and probably in
fair measure.

Several people, when we were sitting out in the audience,
suggested that a more reasonable experiment, at least to even
out the data with respect to PL/I — again, either positively or
negatively—would be to get some programmers with zero
years of experience. Mary has taught some of these. We
have some people at various installations around the country
who have learned PL/I as their first language rather than
second or third, and these people come through pretty well.
They don't come with built-in prejudices such as: "What is
this semicolon? " or "Why did I leave it off? " et cetera. They
come through not knowing that what they're learning is supposed
to be more difficult than what went on in the past. This is
quite comparable to my own teaching experience when I taught
FORTRAN in the first semester of a replication of the same
course, and in the second semester I taught MAD, which is
an ALGOL 58 dialect not unlike some aspects of JOVIAL. I
found the transition not too terribly difficult, but it was very
interesting to watch people who had first learned FORTRAN
and then learned MAD and, vice versa, people who had first
learned MAD and then learned FORTRAN. The effects were
traumatic.

I say again, as was pointed out from the audience, that in your
slides on load and execution time, you really ought to break

1C3-

SECOND PANEL DISCUSSION

out the link-edit time. It's just unfair to saddle PL/I or
FORTRAN or COBOL with the link-edit time that accrues
from OS 360; it's terribly unfair to any of them.

I also echo the comments that were made from the floor that
the D-level PL/I and/or the Version 3 rather than Version 2
compilers under OS would have been interesting alternatives,
not necessarily replacements, to what you used. I've never
used the D-level compiler; I understand it compiles slower
than molasses but that the object code it puts out is pretty
good. I heard a presentation once at GUIDE on thoughts of
putting the F-level compiler under OS, under DOS in the IBM
scheme of things, and someone got up from the floor and said,
"Have you thought about putting the D-level compiler under
OS? It produces better object code. "

I would say "Yes" in response to your conclusion that a non-
professional would probably be better off using FOTRAN be-
cause it's just less complicated for his applications. I would
say a hearty "No, " however, if that were a nonprofessional
who was either intending, or whom his management was in-
tending, to have further exposure in computing. As I said
several months ago when we met here, there is a vast body
of people in this country, several hundred thousand, unfortu-
nately, who equate the upper bound of computing with what you
can do with FORTRAN. That just ain't so. It hasn't been so
for a long time. I deplore any constraint on the exposure of
programming concepts and programming language tools by,
for example, presenting courses in universities that are based
on FORTRAN.

With respect to the compiler, your figures are right; there's
no question of it, although the Version 3 compiler may per-
form better. However, I think it's very important to point out
the following; as a matter of fact, this is an implicit answer
to one of your questions folllowing up. You asked: "What can
the industry expect in PL/I implementation improvements?"
Well, there are two answers to that question. The first is that
we have indeed learned an awful lot more about compiler writ-
ing since FORTRAN first came out in 1957, and some of what
we've learned is inherent in the current PL/I implementation.
On the other hand, I suspect that the current, the initial PL/I

-164-

SECOND PANEL DISCUSSION

implementation is far superior to most 1963 versions of
FORTRAN, for example, and those 1963 versions of FORTRAN
were six years after Day One of FORTRAN implementation
and FORTRAN thinking. It's clear to me that people will
indeed learn more about implementing better compilers for
this kind of language. I don't know how much better; I can't
give you a figure, but it's very difficult to compare the first
generation of PL/I compilers, for example, or ALGOL 68
compilers — you pick it—to the F generation, for example,
of FORTRAN and COBOL processors. I'm not saying you
shouldn't do it, and I'm not saying you have an alternative;
I'm just saying it's very difficult to do that and to draw con-
clusions that will be valid over a long period of time. It
seems to me that one can liken your study—and again, I'm
not saying you shouldn't have done it and you shouldn't publish
it and promulgate it—but one can liken it to trying to measure
the effectiveness of German versus French by determining
which one is more easily learned, which one takes longer
to learn. It's not clear that you can; I think a reasonable
French author like de Maupassant would certainly find French
a more flexible tool and more easily learned, but Goethe
would disagree to the hilt, and then there'd be those scholars
of comparative literature, comparative language, and com-
parative linguistics who would be sitting on the fence.

Henderson: Mary, do you want to comment?

Lasky: I'd like to know the answers to Bob's questions before we go
on, about the educational tools you people were using and so
forth.

Henderson: The environment that we operate in is such that we first of all
employ above-average professional programmers, and we have
never engaged in formally training them. We don't have that
big a staff, for one thing, and most of our training is done in a
very informal environment. This is true in regard to this study
in connection with JOVIAL, in connection with COBOL, in con-
nection with PL/I. Our organization as a whole already had a
great deal of experience in FORTRAN, so the problem of picking
up any additional knowledge of FORTRAN over coffee was not
very difficult. The documentation was a problem, and not only

-165-

SECOND PANEL DISCUSSION

for PL/I. We fought a lot of battles trying to get documenta-
tion, but the timing of the project didn't allow us the luxury of
having everything beforehand and then giving a course to ex-
plain it. A lot of our learning was done by brute-force digging.

I have to agree that link-edit time has to be factored out of the
quantitative data if you're really going to evaluate only the lan-
guage as such. Obviously we collected a lot of implementation-
dependent data which we chose to display today.

I agree with Bob's statement about exposure to a language:
what a nonprofessional programmer might want to do or might
be called upon to do in the future certainly influences whether
an organization would train him in PL/I or in some specialized
language.

We haven't factored in anything about the value of PL/I
as far as replacing two or three languages that might now be
used by an organization. I know only too well the communica-
tion and other problems when dealing with a lot of different
implementations, using different languages. These haven't
been factored into this study whatsoever. The total user cost,
as brought out by Mr. Althoff this morning, is certainly a
consideration; being able to deal with a single language and
communicating across all your organization is an advantage,
but each organization would find the relative value different.

Again, we conducted a study in a very specific environment,
which we stated. Bob also raised the point about the break-
down of the different kinds of statements. We are itemizing
statements and cataloging them in our written report.

Lasky: Coming from a scientific organization, I think that in some
ways that you can give a group of highly professional program-
mers the manuals and they can produce excellent PL/I code.
We certainly have a group of programmers that we consider
quite outstanding in the Satellite Division at the Laboratory.
They have basically taken the manuals and have gone off and
in a very short period of time were writing extremely good
PL/I code, using controlled storage to allocate their arrays
for various things that they needed, using the compile-time
features. This is a group of programmers that formerly

-166-

SECOND PANEL DISCUSSION

could not do their programming except in assembly language.
They have never had the luxury of using compiler languages
before because they weren't able to do their problems in them.
Learning PL/I was certainly very simple for this group. On
the other hand, we don't send our programmers off without at
least sonic formal education, ranging from the two-hour course
on fancy things in PL/I that I gave to this group to a six-week
course which most professional programmers that have been
experienced in, say, FORTRAN, are taking. I think that,
overall, we have found in the Laboratory that PL/I is ex-
tremely easy to learn. People can in a very short period of
time be writing good PL/I programs.

The PL/I debugging time we have experienced has been mini-
mal. We have found that when our programmers would write
a program in FORTRAN they'd have to have many debugging
runs because (maybe it's just the FORTRAN compiler we
happened to be running under) the compiler catches things in
various phases. A programmer would catch a certain set of
errors and then have to resubmit it and catch more errors in
a later run. But in PL/I, while the diagnostics that come out
may be verbose, the programmer can usually catch all the
errors the very first time around.

As for some of these things like leaving off semicolons: maybe
they do it at the beginning but they soon learn. Experience
is the thing, and when a programmer goes back to writing in
FORTRAN he wants to put semicolons at the end of all his
statements because a statement just isn't a statement any
more unless there is an ending punctuation for it.

As for the nonprofessional scientific programmer: we have
found that people in the Research Division occasionally have
to write a program when they're on very tight budget. They're
not in any respect programmers, but they've done some pro-
gramming in FORTRAN. They come in and learn PL/I, and
all we have to do is tell them that they can use list I/O and
don't have to format their input or format their output or use
data-directed I/O. Immediately their response to the PL/I
language is very good in that it's very easy to learn; it's been
our experience that the nonprofessional seems to go to it much
more readily than he has to FORTRAN.

167-

SECOND PANEL DISCUSSION

Henderson: If we, if the industry now had PL/I subset-directed documen-
tation, I believe it would facilitate the learning process. Per-
haps that will come in time, but as far as learning the lan-
guage right now goes, you get everything or perhaps nothing.
There is some problem in wading through it all.

Rubey: I think it should be brought out that a language really exists
only in its documentation. There's no sense in implementing
a compiler for something that isn't documented. To some
extent a language is always going to have to be evaluated
against what its standard in documentation is. If PL/I is
going to have bad documentation for a long period of time,
then it's going to be poorly used for a long period of time.

Rosin: You didn't get my point earlier. I said that the reference
documents are not easily used as tutorials, and I'll say that
again, but there are at least three publications put out by IBM
as red-covered student text which are not horrendous to go
through: one directed toward commercial applications, one
toward previous FORTRAN users, and one that's called a
primer — it's not clear exactly what it's directed towards.
And there are some books on the market, including one co-
authored by Mary.

Rubey: Right. I didn't mean to imply that our programmers were given
only the reference manual for the language. They were given
a great deal of literature — a library of literature. I think I
probably over-emphasized the lack of support that was given
to the programmers. This was a lack of support in the area
of the specific problem. They were aided in understanding
the language, and on a one-for-one basis. They weren't
sitting in a class; there was somebody really helping them
to understand the language, pointing out to them good manuals,
answering questions they'd bring up. But there was no one
trying to sit down and say, "This is a good feature of the lan-
guage and if you use this, your program's going to be better,"
because this would have been unfair. We'd have had one
person doing the benchmark problems instead of seven peo-
ple; the programmers would just have been intermediaries
between that person and the final result. So it had to be
seven people with a wide range of experience.

Rosin: But that's what the programmer was getting over coffee if he
was a FORTRAN user.

-168-

SECOND PANEL DISCUSSION

Henderson: Well, he was getting a certain amount of that over coffee as
the study progressed. All of the benchmark problems did not
start in parallel, and consequently our organizational experi-
ence picked up as the study went along. There was certainly
better understanding as the problems were completed and
certainly more informal information about the languages
available to the participants.

Rosin: I'll say again: I don't object to anything that was done and I
don't object to the presentation. I just hope you will footnote
it by saying just what you said. I think it would be great if
somehow somebody like the Air Force had a few more dollars,
which they don't this year, to say, "Switch roles and do it
again, " that is, let you run a more well controlled and more
thorough study if you really want to get results that were
meaningful.

Henderson: We were asked to do a lot, but with few benchmark problems.

Althoff: Toward that end, wouldn't it be better to try and get a sample
which is more representative of that which the Air Force has
to deal with if it's the Air Force that's going to do this?

Henderson: You're talking about Air Force personnel now, or are you
talking about Air Force problems, or both?

Althoff: It's the personnel the Air Force will be using to do their work.

Henderson: Well, perhaps it would be a very good experiment for the Air
Force to conduct with its own people.

Question I would be very interested in knowing, based on these limitations
from and a recognition of the many circumstances of small sample
audience: size and other factors, what possible conclusions can come of

the study. What can you possibly conclude in consideration of
all the factors?

Rubey: I think people tend to be commenting on the quantitative data,
and really we tried to make allowances for small sample
size and so forth in our answers to the subjective questions.
As far as the subjective questions go, PL/I does very

169-

SECOND PANEL DISCUSSION

well against COBOL,, FORTRAN, and JOVIAL. If it were
important for somebody to standardize on one language, and
if an efficient compiler were available, then it would be very-
possible to do that using PL/I. I don't feel that our presenta-
tion ever attacks PL/I; I think it to some extent supports PL/I,
given a good implementation of PL/I and good documentation.

Henderson: Yes, Russ [Russ Meier, head of Air Force Project 6917,
which sponsored the study] ?

Meier: Vi, it might be important to mention that we never did envi-
sion your contract as coming out with final conclusions saying
that PL/I was the greatest thing that's ever been produced.
We fought a long time just to be able to get the contract under
way to do exactly what you did. Bob's comments are appro-
priate in that it could be a lot different if we did it again now.
The compiler issue is a trap; we aren't interested in the com-
piler. We were interested in a gross evaluation of language
peculiarities, language capabilities, language possibilities,
but not in coming up with a conclusion that the Air Force next
year should standardize on PL/II or III. I think some of these
questions are trying to get you to say a little more than the
study was ever intended to find out.

Henderson: I'd like to add on that. We're in no position to recommend to
any organization to adopt PL/I or anything else. There are
too many things that one has to look at. In fact, one of the
general questions I have to address to the panel, if we get to
that point, is: "Just how does an organization that hasn't been
exposed to PL/I or perhaps is first getting its own computer —
how does it intelligently approach this problem of whether it
should adopt a language such as PL/I or not? " I don't think
there's a simple "Yes" or "No" answer at this point in time.
You have to look at the people, you have to look at the computer
they're going to get, and so on and so on.

Rubey: We're presenting all the raw data in our final report to let
people draw their own conclusions if they want to. I totaled
it up — there are some 700 different at-least-one-sentence-
or-longer answers to various questions, the result of about
11 people looking at PL/I. So there's a lot of data that people
could study to draw their own conclusions.

-170-

SECOND PANEL DISCUSSION

Henderson: Let's go on to the other participants so we get a complete
cross-section. Mike?

Sykes: There's a thing I omitted to mention this morning on the sub-
ject of teaching. I think one thing that's very important is
that people should learn initially the subset which is likely to
be what they need to use. If you're thinking in terms of a
commercial-type programmer, you can teach him a subset in
which he can do pretty much the same things as he can in
COBOL. He can probably get programs of about the same
degree of efficiency as he can get in COBOL, but it's an
easier language for him to use. We haven't had as much
experience as I would have liked to have had in teaching PL/I.
What we have done is this: We run what we call a Directors'
Computer Course ("director" is English for "vice president"),
and this lasts three days. The second and third days are
devoted mainly to what things can be done and are being done
with computers. But on the first day we start off by telling
them what a computer is, and before they dine that evening
they get their program working, which is quite a lot to do in
one day. It's true!

Henderson: Is that how you evaluate vice presidents?

Sykes: Now, the first dozen or so courses that we had were given
in FORTRAN. In fact, we gave them a two-part problem. They
had to do the first part on the first day and on the morning of
the second day they did the second part. We had to teach them
a little bit more so they could get through it. The language we
teach them now is a subset of PL/I; we do get on one side of
one piece of paper all the syntax they need to know. We teach
that in the space of about one hour. This works. We think
this is the sensible thing to do. We don't tell them anything
about record I/O; we don't tell them anything about data struc-
tures. It is basically a FORTRAN subset, but it's simpler
than a FORTRAN subset would have to be for the simple reason
that we don't have to tell them anything about the rather messy
FORTRAN I/O statements with their formats; they don't need
to know about formats. So, with PL/I it's very much easier
than it used to be. Now they're not going to go away and pro-
gram, so it doesn't much matter if the programs they write
are horribly inefficient.

-171

SECOND PANEL DISCUSSION

I participated in another course where we took some research
chemists and one or two physicists from one of our research
centers. This also was a three-day course but we could
teach them a little bit more of the language. We taught them
iterative DO's and that sort of thing, but we didn't tell them
anything about format. They were writing programs on the
first day; they were debugging programs on the second and
third days; and they each got several programs working. I
think they went away happy with it. This was based on a
14-page document that is more or less a self-tuition thing;
in other words, they could pretty well have gone through it
themselves. It had examples in it, and also exercises with
answers in the back. I believe it was produced by IBM-
Australia. It could do with a bit of tidying up, but it is a very
handy document to introduce someone to PL/I. Using this,
they didn't get into too much trouble. So for them, for what
little they know, PL/I was easy to learn, easy to use, easy to
debug, and they could go away and learn more about the lan-
guage if they wanted to. So, for small programs, I don't
really see that PL/I can be any more difficult to use than
FORTRAN. Unless you take somebody who's up to his ears
in FORTRAN, I just can't think it any other way.

Question: A general question: How much trouble do you imagine they
might get into with the possibility on the default attributes by
teaching a small subset which is not implemented?

Sykes: Very little, I believe.

Question: Do you teach them specifically, for data declarations, for
instance, that they have to be very precise?

Sykes: Well, in fact, we told them that the DECLARE statement was
necessary if they wanted to use arrays. Otherwise they would
have a FORTRAN situation of having floating A-to-H and N-to-Z
and binary integer otherwise.

Question: Binary integer? Did they get into trouble on that one?

Sykes: I don't think so, I don't think so.

172-

SECOND PANEL DISCUSSION

Question: May I offer a comment on teaching? I've done a bit of in-
struction in simplified FORTRAN for open-shop users, some
500 engineers at Westinghouse. My simplified FORTRAN
was ignoring the fact that there were DO statements, ignoring
the fact that there were such things as integer variables; and
teaching floating point and doing I/O with preset FORMAT
statements, so that the user was not concerned with generat-
ing FORMAT statements. The course took three contact
hours. Our aim was to make these engineers able to go and
program their own work themselves. At Harvard, I expanded
the course to five contact hours, and included FORMAT
statements, DO statements, subscripted variables, and so
on, and made use of the recorded lecture series that Hume at
Toronto put out. I would recommend them very highly as a
teaching technique. But when I approached PL/I, I thought I
would use this same idea of simplifying the language and using
a subset, and I thought I'd just forget about the fact that PL/I
fixed-point variables were not integers. I found I couldn't.
The default options caught up with me, and the programmer
who didn't know about these things was hurt by it. Another
thing was the default options with respect to the range over
which variables are defined; we were always getting caught
up in this sort of thing. If you used "X" in one place in a
program it meant one thing; if you used it somewhere else it
may or may not have meant the same thing or something dif-
ferent. This sort of thing made me wary of applying PL/I to
the open-shop user in the same sense that I had been accus-
tomed to doing in FORTRAN.

Rubey: We experienced approximately the same problem through the
default options in our evaluation in that they were different in
different places. The programmers generally found that the
default options weren't immediately useful without knowing
what they were going to be. You couldn't just ignore, not
know about it. You had to say, "Well, OK, this is a default
option; then I don't have to write it down. " You couldn't say,
"then I don't have to know what it is. "

Rosin: I wanted to ask Corby a question in this regard. With respect
to defaults, is the implicit statement implemented in EPL?
Is there an implicit statement or a default statement?

173-

SECOND PANEL DISCUSSION

Corbato: I'm not sure I understand exactly what you mean. There are
default attributes.

Rosin: In the original NPL report, an implicit statement was speci-
fied that allowed the user or installation to essentially manipu-
late the default attributes.

Corbato: I consider that a rather small issue at this point.

I think we can draw some conclusions out of the study that's
been reported on today—not black and white, but it tells me
one thing right away—there isn't an overwhelming difference:
we're talking about something less than a factor of two most
of the time, and for a rather noisy, semicontrolled experi-
ment with small samples. The art of management is making
decisions on the basis of incomplete information; this is what
you have to do here. But this inconclusiveness already says,
"Well, this isn't the problem to worry about, " in the sense
that there are other issues poking up through the study like
the tips of icebergs, telling you that there are other issues
that are just about as important. For instance, it is argued
that it's not appropriate to include the link-edit time, but of
course it is significant if you're trying to use the language
on the particular machine. If you're trying to use it for
student use, where you have lots of small compilations, link-
edit time is a tremendous millstone which you can't ignore.
It has, in fact, discouraged the use of PL/I, even though
there's a strong desire to use the language for some of the
reasons that have been expressed today. I think it's clear,
even with a slight comparison between machines, that there
are differences in implementation. It's also clear that this
implementation, which is almost exclusively an IBM one, is
in its early stages, and I think it can only get better. Although
one has to evaluate where it is, I don't consider it the end of
the line.

I think there is a learning period which was not well controlled
— it's hard to do so with the resources of the experiment — but
I think it can only bias the results against PL/I. The semicolon
idea would have just vanished if you'd used as your sample of
programmers people who had dealt only with ALGOL. There
wouldn't be a problem; they would be putting semicolons after
every statement routinely.

174-

SECOND PANEL DISCUSSION

Question: Even in FORTRAN?

Corbato: Even in FORTRAN. I think it's important to notice a couple
of things, though. One, the evaluation is biased to a single
point of view, namely, that of the programmer or the effec-
tiveness of programming. That's only a single level. There
are other levels from which you could be looking at the lan-
guage. One of them is that of the manager of an installation;
he's worried about the continuity over a five- or ten-year
period. He may also be worried about his ability to maneuver
in the marketplace. At the moment if he adopts PL/I exclu-
sively, he's also made a complete embrace with IBM. That
may not be bad, but it's certainly a decision along with the
adoption of PL/I. So one of his criteria might be that he
would accept PL/I if he could be assured that there was a
version of it with which he could be self-sufficient, which
would allow him to bootstrap onto any manufacturer's hard-
ware by his own gyrations and not by begging the manufacturer
to supply it with the machine. If that's the criterion of evalu-
ating PL/I, of course FL/I has failed right now — most lan-
guages fail. I think that's a rather serious problem, not be-
cause I think pro or con with IBM, but because there's a kind
of rigidity in the situation which forces people to get hysterical
about the choice of languages rather than arguing about their
technical merits; and most languages have some pluses and
minuses.

Another point of view which has not been discussed at all is
the evaluation of the language from the point of view of trying
to implement it. Whether you pay for it directly through a
vendor or try to bludgeon the manufacturer into supplying it
and pressure him to make changes in your own interest and
so forth—you're paying for it in the end. It's a major issue;
it's an overhead that goes with the language all through its
useful life. That hasn't been discussed. I'm not criticizing
the study, but I think it is important to recognize that it's only
looking at a sector of the problem.

Finally, as a person who's interested in the educational pro-
cess, I really can't be altogether charitable to the language.
I like it in many ways. It's a practical language; I think it's

-175-

SECOND PANEL DISCUSSION

quite useful to have it here and now. But from the point of
view of teaching it, I think it's in bad shape. This may im-
prove as people find slicker ways of trying to sweeten the
pill, as has been done in FORTRAN, for example, even
though FORTRAN still has a lot of ugly glitches. PL/I has
not been helped by the attitude of some of the original people
associated with the design of the language; they made in one
article a literal boast that the language lacked formal
description, which can only lead to chaos in trying to deter-
mine the specific intent in design of PL/I. And it has; in
fact, there are telephone directories of design clarification
which are grotesque for anybody faced with trying to implement
it. This kind of know-nothingism, which was part of the origi-
nal spirt of the language and has been to some extent corrected,
still has a price attached to it. Namely, it's hard to teach
the language in the sense that it's a big stew-pot; it's hard to
break it up into packages of ideas which may be taught in sec-
tions so that a person learns a little bit at first and then learns
a little bit more. I'm not convinced that one can't salvage the
situation by some shrewd manual-writing wherein one devises
subsets of ideas which are of increasing usefulness or interest,
and I hope that happens. But I think it's rather difficult at this
stage of the game to salvage the implementation ease by writing
the language such that the layering extends into the implemen-
tation— so that the implementation is also broken down into a
hard core and a layer of extra goodies and so forth. That will
probably require another version of the language, or a succes-
sor, which will, I'm sure, come in time and will be necessary
for the evolution of the computing field. I think one has to be
a little relaxed. PL/I is here today; it's a useful thing. On
the other hand, I don't consider it the end of the line.

Henderson: I'd like to reinforce the fact that our evaluation was indeed
programmer oriented, and that there are certainly a lot of
other factors to consider from a management point of view
and from a cost point of view. I think perhaps Earl would
share that opinion.

Althoff: Yes, I did give a few of those management-type evaluations in
my speech. Generally speaking, the conclusion I had in it was
that the case for PL/I was pretty clear if you had a situation
where you were starting a new installation with programmers

-176-

SECOND PANEL DISCUSSION

new to higher languages, you were going to a new machine,
and you felt that you would stick with IBM for the next four or
five years. Where an installation has about five or six differ-
ent languages and they seem to be meeting its urgent needs
and it has a small number of programmers, I don't think the
case is too clear. In some cases the question whether you can
stick with one manufacturer for four or five years does raise
its head—not too frequently, but in some of our units it does.
We get into all of these factors, and that's one reason I showed
you the chart on selection technique. We found so many
factors we could sit around and discuss them for a week and
come to no conclusion.

I did have a few comments I wanted to make about the presen-
tation. In particular, there was a conclusion that said that
COBOL was preferred for the nonprofessional programmer.
Now, we don't have a single nonprofessional programmer that
will agree to use COBOL, either commercial or scientific, so
this statement does leave me a little perplexed. We do have
quite a few that are using PL/I. And I found one of the advan-
tages in our company was that PL/I would be used and is being
used by accountants, and some of what I called the statistical
people who are involved with the commercial people—so at
least if I were the analyst I would have picked PL/I there.

The second comment I had was on the first benchmark problem,
the one concerning payrolls. We have to write something like
300 to 400 programs of this type per year. It did concern me
approximately a year ago that people writing those programs
felt that, for some reason, PL/I was pretty difficult in com-
parison to the other languages. We got a study group of a
couple of people to look at PL/I and try to pull from all the
spots in all the manuals how to write reports. This actually
resulted in a chapter which has been contributed to GUIDE.
They picked the array handling—something that everybody
would swear was scientific, so the commercial people hadn't
bothered studying it—for automatic totaling and described
how it could be done. I think that the conclusion of our study
group was that PL/l is superior for that type of program.

Another comment I'd like to make, both from the professional
view and the company view, relates to missing items. When-

-177-

SECOND PANEL DISCUSSION

ever we're at GUIDE or SHARE meetings we keep standing up
and urging IBM to get these things in the language. However,
from a company standpoint we really haven't really found
them to be major stumbling blocks. Sort has come up, for
example. Professionally we're working on three different
possible sorts that could be called by PL/I: internal sort, a
kindof external sort within the program, and what I'm calling
the operating system sort. But as a company we simply have
a linkage and we call sorts for PL/I programs all the time.
So we don't visualize this as a huge problem from our company
viewpoint. We've been working on data validation profession-
ally, the problem mentioned by Mr. Sykes. In fact, the PL/I
project group from GUIDE is meeting with IBM this week on
trying to resolve better ways of doing this. The major prob-
lem we've run into is that a lot of the people feel that all of
the implementations proposed destroy some of the machine
independence and we're trying to find some way that leaves
things to the machine. How can you have a zone on a tab card
where Column 79 tells you what the assignment field is in
Column 12 and call that machine independent? However, from
the company view, we really don't have a problem. We have
an 800-position translate test type assembler subroutine that
can be called easily linked with a PL/I program, which we
just go right ahead and write.

I think much of the same is true of the diagnostic problem and
the assembler problems you had in the study: you've got to
keep the two views separate. In my estimation, those are the
main missing items: sort, data validation, and perhaps some
improvement in catching the too lengthy comments that don't
stop with an asterisk and a slash — but we have standards and
coding forms to stop these, or at least catch them. On the
whole, I think the presentation pretty much gave the same con-
clusions we were giving. PL/I is the preferable choice of the
separate languages.

Rosin: With respect to Corby's comment on the link editor: yes, you
do pay that price if you use PL/I on your OS now. I agree,
except that some of us have been exploring the possibility of
writing a program whose name is L-O-A-D-E-R, and a few of
these programs do exist, and, as a matter of fact, they
promise to L-O-A-D PL/I programs. We suspect link-edit

178-

SECOND PANEL DISCUSSION

time will go down under OS; we're not sure, but we suspect
it will.

Your comment on the lack of formal definition is appropriately
painful. One thing that's happening right now — and I'm sure
it's well known—is that IBM is developing a formal definition
for PL/I: both syntactic and attempting a semantic definition
by defining the PL/I machine in a sense against which PL/I
works. The analyzed PL/I programs are interpreted. One
thing that they must be coming out with—and I'm sure that
there would be a consensus on this — is that the language could
be a lot smoother. The fact that the array expressions aren't
array expressions becomes painfully obvious when you have to
write it out in BNF or modified BNF, et cetera, throughout
the language. There's no question of it. The only painful
thing is that I'm afraid that eventually there will be a succes-
sor to PL/I, not in the sense that PL/I will be assassinated
and this new thing will move into its throne, but that eventually
this other thing must come along.

Henderson: Let me address the panel now with a question. I think that
there is a great deal of the industry that does have questions
on its mind whether or not to undertake programming efforts
using PL/I. There are many factors, I'm sure, which oc-
curred to you today which influence such a decision. I would
like to ask the panel: What criteria should an organization
really use in making a decision whether to adopt PL/I or not?
We can take the range of organizations from the Air Force in
toto to that organization which doesn't even have a computer
today and possibly will be getting one in the door in another
three months. Just what should their approach to this problem
be?

Sykes: I think I would agree with Mr. Althoff that anyone who's getting
their first computer—if it's a computer such as one of the
existing series of the Model 360 and it's large enough to use
sensibily one of the existing PL/I compilers—I think their only
decision from my part of the world is whether they would use
PL/I or would stick to assembler language. I don't think they
would consider using COBOL or FORTRAN unless there were

179-

SECOND PANEL DISCUSSION

special circumstances. For example, Rolls-Royce (they are
not, of course, coming to computing for the first time; they've
been in it for some years) do have to use FORTRAN for writ-
ing certain programs that they have to supply as part of the
package that they are selling — for simulating aero engine
performance. They use FORTRAN because their customers
tend to have machines with no PL/I compilers. I think this is
the main consideration in U.K. as to whether you adopt PL/I
as your high-level language or not. Rolls-Royce use PL/I
very extensively; they have something like 200 programmers
using it, and they only resort to FORTRAN in this sort of
case. For a large organization such as ours, I think it de-
pends as much as anything on how interchangeable you want
your programmers to be. We do want to be able to move
programmers from one project to another and we don't want
them to have to learn a new language in the process. We
think this is quite important, particularly as we don't see
much advantage in going to either COBOL or FORTRAN for
any specific purposes.

Henderson: But your ground rules are based on the fact that you have a
computer system for which the PL/I language has been
implemented. Would you go so far as to say that the selec-
tion of a computer these days should be heavily dependent
upon the availability of a PL/I compiler?

Sykes: I certainly think there are sufficient advantages in having
PL/I available, that in selecting a computer one would cer-
tainly want to take this into consideration. I doubt whether it
could really be made a dominating criterion, but I certainly
don't think I'd leave it out altogether.

Lasky: We chose to go to PL/I as the major programming language
we'll use on our 360 Model 91. We did this for the main rea-
son that most of our programs at the present time are written
in assembly language on the 7094. We do not want to be tied
to a particular computer again. We find that the transition of
going from one computer to another computer is extremely
difficult if everything is in assembly language, and as we go
on in our future plans it will become much more so. FORTRAN

180-

SECOND PANEL DISCUSSION

just will not satisfy the requirements of what we need to
accomplish; and so if we kept with FORTRAN on the 360, we
would have to resort to assembly language, which is what we
want to get away from. We find that PL/I answers, except for
some of the very critical timings, all of our problems. The
programming is very easy to do in PL/I, and we find that we
don't have to resort to assembly language.

Another major factor in going to PL/I was that we were able
to write a converter/translator from FORTRAN to PL/I. We
wrote this in PL/I, so it helps with our transition of getting
from one language to another. I know Mr. Althoff brought
this up this morning as one of the considerations of looking at
a language, and I think it's one of the very reasons that there
have been so very few major programming languages so far:
economic considerations inhibit the transition from one lan-
guage to another.

Henderson: Was your decision to go to a 91 instead of, say, the CDC 6600,
possibly dictated by the fact that PL/I compiler would be avail-
able for it?

Lasky: Well, part of our discussions with CDC centered around the
fact that if their equipment were chosen, we would want the
capability provided in a high-level language that was the kind
of thing that would be provided in PL/I.

Rubey: As of this date, though, you don't really have machine inde-
pendence because you're locked in with IBM. Suppose you
wanted to go to a 6600 a year from now, or you wanted to go
to a GE 635. So have you bought any machine independence by
this movement?

Lasky: We are definitely out on a limb in that respect.

Corbato: You bought IBM machine independence!

Henderson: Bob, do you have any comments?

Rosin: I can say the following thing about your question. It forces
more questions, for example: What applications do you have
in mind? How much in PL/I do you want to have available?

-181-

SECOND PANEL DISCUSSION

Do you have old programs to convert? What machine are
you talking about? How big? What kind? What specs, in
general?

I would say that I wouldn't let PL/I frankly dominate my choice
of a machine, but I'll add the following comment from a peda-
gogical point of view. We're offering a course this semester
called Programming Languages in which we're trying to cover
language as well as implementation. Of course, it's impos-
sible in one semester, but PL/I as an example raises more
interesting questions about generality, about facility and func-
tion than any other single language that you can talk about.
There are all sorts of questions about implementation.

In regard to Mr. Althoff's comments, let me raise one other
point which is very indicative of what's happening in this world.
I think we should all be aware of it. When the 360 first came
out, IBM said, in effect, "You will use the following languages
we'll make available, including PL/I, and thou shalt not touch
OS because thou shalt have thy fingers burned, " and we, in
general, I think to a man, to an installation, followed their
indications. When PL/I first came out it was understood that
it was absolutely impossible for any mortal on earth who had
not implemented a PL/I compiler to write an assembly lan-
guage routine that would link successfully with PL/I. Now it
turns out that kind of talk just isn't true any more, and an
installation like Mr. Althoff's is indeed writing assembly lan-
guage programs conveniently, effectively, and efficiently to
link with PL/I, just as we did for years with FORTRAN. We
knew it wasn't clean, but it got the job done. I would submit
that anything that Mr. Althoff wants to do in PL/I—for example,
sort, RPG, a facility for deciding whether or not a certain
field is numeric, something removing overpunches — can be
programmed in PL/I. I also agree that he does not want to
pay the price at times, nor do I, and therefore we escape to
another language, at least for the short term, to solve that
problem. But we're not afraid of the machine any more, or
the system.

Althoff: I think the first thing you must try to do in deciding whether to
adopt a language is make sure there isn't some overriding
thing that makes the decision for you. If, for some reason,
your company says there must permanently be five suppliers

182-

SECOND PANEL DISCUSSION

that can serve the language, you quit; your decision's made.
However, I think if they say, "We're making a choice now for
four years, " and all they want at the end of it is assurance
that somehow we can get out of the "trap" if for some reason
we decide initially on some manufacturer that doesn't have the
language, then all we have to do is show them our capability to
write a translator to the presumed new language — ALGOL 69
or PL/7 or whatever. I think that some of the work that Mary
Lasky's done proves that we could do it. That's a cost at the
end that we put in our selection. One way of getting out of it
is to write a translator. Of course the other way of getting
out of it at the end of the four- or five-year period is if the
new manufacturer that we are considering has a PL/I that we
can go to at a reasonable cost or has 360 code in an emulator.
But this is just an example; normally we find out whether there
is an overriding criterion that management has set that says
"No. " If not, we go in and weigh all of these factors. Until
this industry settles down and standardizes hardware and
everything for a good many years, can you ever get the situa-
tion where you don't have such a major conversion hurdle after
a period of four years of being tied to some supplier9 I know
there are companies that say, "We've got to have at least
three suppliers, " and they think it's perfectly all right to stay
three years behind the field.

Corbatd: I think the issue is not quite that simple, because if you pick a
single supplier you are in a sense becoming a voluntary partner
in price fixing, and you've lost all your leverage and your
ability to change if a better supplier comes along.

Althoff: I did want to point out we have four computer suppliers.

Corbato: OK, but if we're talking about PL/I, it's only on one machine.
My argument vanishes if it's on every machine. I'm not try-
ing to make the case for or against IBM; I'm trying to talk
about the problem in the abstract.

Althoff: We have a General Electric process controller tied to a chemi-
cal process, and there's no way under the sun we can switch
that from General Electric to any other company.

183-

SECOND PANEL DISCUSSION

Corbato: I don't think the problem is unique to PL/I. I'm trying to
talk about a problem in commitment to a unique system. I think
it is a management policy decision, whether they want to
temporarily—four years in a sense is temporary—abrogate
this privilege of being able to get the best possible cost-
effectiveness on an annual basis. At the moment the comput-
ing field is so much in a shambles that annual changes, unless
they're insulated from the practicing programmers, are just
chaos. I also consider the translator and/or emulator to be
a bit of a gamble unless one knows the end transformation
already; but one doesn't know, that's the future. It's certainly
a sensible and savvy way to go, and it's perhaps a gamble, but
one considered worth talking.

I would raise a larger issue, and I think it's one that every
company or every organization I know is faced with today:
There has been a very belated recognition of the need for re-
investing in software development and understanding and a
general support staff in every organization I know. They're
all running on a shoestring in terms of number of system
programmers, the number of people that can understand and
teach, and they're all on thin ice the minute a system change
comes through that isn't quite right—somebody drops a card
somewhere and the whole institution may be set back or shaken
apart. To some extent, I consider this to be a positive reason
for going to PL/I. In other words, one should be investing in
capital improvement. I feel the PL/I argument goes down in
importance if it can be a choice, and where the user is aware
of what kind of a trap he might be getting into and the fact that
he may have to convert later by hook or crook to some other
machine. Unfortunately—well, I think unfortunately — some
companies feel that it is necessary to dictate a single policy
to keep more uniformity in the interests of reducing costs.
I think it's a little short-sighted; I can say that because I'm
not responsible. I may be wrong.

Henderson: Ray, do you have any comments on the last question?

Rubey: It's a very, very complex question. There are a lot of things
that go into it other than the language, like the manufacturer.
There is also the question of whatkindsof inefficiencies you
are willing to tolerate. If you're going to buy a machine you

184-

SECOND PANEL DISCUSSION

want to know the cycle time, the add time of the machine, the
memory access time on the drums and things like that. Peo-
ple pay a lot of attention to the hardware, and then they sort of
accept the software given to them by the manufacturers with-
out the solid guarantees generally that they get on the hard-
ware. You'd probably send the machine back if the memory
cycle time was 10 times what the manufacturer told you, but
if the software takes 10 times longer than you'd expect to roll
off the drum, or something like that, you have no guarantees
on that matter. So to some extent, you're taking software on
faith because it's "given" to you. Your decision whether to
go to any particular language depends a lot on how well you
believe your supplier.

Henderson: I had some more questions but we're running pretty late.
Let's give the panel members an opportunity to address each
other and then call it quits.

Rubey: I'd like to go back to some of the comments about our presen-
tation. First of all, there was a lot of talk about the better
diagnostics of PL/I. But in one sense they could be improved
a lot. I think that many of our programmers will agree that
the most common diagnostic message is DATA INTERRUPT.
You could spend a lot of time trying to find what the data in-
terrupt means. With any new language, when you start out
the diagnostics aren't all the best, so to some extent I think
the fact the diagnostics are less refined in PL/I than in many
other languages probably contributes to the longer debugging
times we got with PL/I.

For the people who were wondering why the nonprofessional
business-type programmer might be better off with COBOL
than PL/I: there are some things missing in PL/I. For ex-
ample, sorting is a very common thing that a nonprofessional
might want to do. He says, "I've got this; now I'd like to sort
it. " But you can't give him a series of articles from the ACM
Journal about different kinds of sort routines and expect him
to pick that up. This should be something that he doesn't
have to know about; he just puts it in order.

Althoff: But, isn't that the sort of thing that's coming along?

185-

SECOND PANEL DISCUSSION

Rubey: Yes, but in our study we're talking about the language the
way it is today and what you can reasonably expect to get with
the current implementation, what it will do now.

This refers to subsets too. You can give the nonprofessional
a subset or you can give the beginner a subset of a language,
but, again, that's something that isn't in PL/I today. There's
nothing to hand somebody and say, "OK, you have a business
problem; here is what you use. " There's no, say, set of de-
fault options. You can't give him a subset and say, "You put
this card in the beginning and you're going to get the business
subset. " The default options were a problem in our study.
Our business programmers said they were all wrong for them;
they didn't like whatever the default options were. For the
nonprofessional user, you're first of all going to have to de-
fine for him a subset and it's going to have to be arranged so
he has the right default options.

Rosin: Let me respond. Those are good points. This sort thing is a
particularly good point in the following sense: the facility
should be there. I agree with what Corby said this morning,
however; that is, I'm not sure that the facility need be in the
host language. And this is where Mr. Althoff and the GUIDE
committee and I are often at loggerheads. A facility should
be in a language for calling a sort as something that may be
in the library, perhaps as a library routine. What it's coded
in is immaterial. It's not clear that it has to be in the lan-
guage. The same is true for RPG and a bunch of other things.
I think the scientific programming community is a little jaded
and a little smug on this point because we have gone with sub-
routine libraries for years and years. The Michigan Library
at Yale right now has about 700 entry points in it, any one of
which is callable, any subset callable from a running MAD
program just by mentioning their names. We can be very
smug about that. This has not been true in the commercial
shop to a great extent. I think it will come.

Corbato": Germane to that point is the reason for the pressure to put
these features in the language. I think the reason is that too
often the language designers have taken the rather arrogant
attitude that if it isn't part of the syntax, it doesn't have to be

186-

SECOND PANEL DISCUSSION

designed. Now that's the problem. Basically it's a reaction
of trying to get somebody to think it through.

Rosin: I agree. We passed a resolution in SHARE, I think about six
months ago, saying that some things shouldn't be in the lan-
guage at all and should be taken out, and other things which
should be in the language should be integrated into it.

I thought in response to the point you just made, however, I
would give a very brief four-item report on some of the things
that came up at the very recent SHARE meeting in regard to
what tbe SHARE project and by implication IBM might be think-
ing about PL/I language development. The first is facilities
for changing implicit and default statements. We agree, for
example, there is no reason in the world in another environ-
ment, say other than commercial, to say that "By default,
unless I say otherwise, everything is a varying character
string, " which for some applications is very useful. There
is no way to say that in the language now. The constraint
we've placed on this, as a matter of spirit, is that it should
be possible by using these facilities to first remove and then
reinstate all of the current default and implicit facilities in
the language, including default attributes for constants.

The second item is the ability to monitor and handle "un-
solicited" interrupts, those interrupts which I guess were
previously referred to as asynchronous, not quite asynchro-
nous but at the same time not quite synchronous. This certainly
ties to things like teleprocessing and graphics. The SHARE
project would rather see thatputin the language than, for ex-
ample, a whole monstrous set of language that's tied specifi-
cally to teleprocessing or specifically to graphics.

The third point that's still under great debate—and this is way,
way off in the future—is the concept of expansible compilers.
This is coming. Somewhere I know there will be such facili-
ties inprocessors for languages other than PL/I before PL/I
has it, but we at least are thinking about it.

The fourth item that came up, again in terms of generality and
smoothness, was array handling.

-187-

SECOND PANEL DISCUSSION

Rubey: Another thing about default options: if you have a lot of
programs to convert, the default options now tie you to a
particular implementation of the compiler. Your manufac-
turer may say, "Boy, I've got the superduper version No. 93;
it runs twice as fast. " But unless it has all the same default
options, you're going to have chaos. We're talking about dif-
ferent ways of changing, say, to suit the business program-
mer. The default options are going to have to change as the
business programmers gain experience. Handling this is
going to be a difficult procedure.

Rosin: I'll give you an interesting example with respect to defaults
which, as far as I know, is not clearly defined. It says in the
language manual, not the implementation manual, that identi-
fiers whose names begin with the letters I through N are fixed
binary. The question is: Is that I through N going I-J-K-L-
M-N, or is it I through N going I-H-G et cetera? This ques-
tion comes about because the collating sequence is not defined
in the language. That's an imprecise feature of the language.
As Corby points out, it results from the fact that there's no
precise specification, and this is something that occurred to
us in our considerations.

Lasky: Some people seem to feel you must always bank on these de-
fault options. Another way of approaching the whole thing is
to declare everything explicitly, especially for beginning
programmers. When IBM brought out the language they
shouted from the chimneytops about all the wonderful defaults.
I think that often when people don't use the defaults but go
ahead and declare, they stay out of a lot of problems that can
come up.

Rubey: I would like to respond to another comment that indicated our
study might have been biased because the programmers had a
lot of experience, say, with FORTRAN. I think the most
startling thing is that we took people who admittedly did have
that sort of bias, but look at their responses when we asked
them, in effect, "We've got the same problem for you, a
little different, but a similar problem. Which language do you
prefer? " I think in six out of seven or at least five out of the
seven cases they said, "Well, I'll take PL/I. " And in the
other cases they said, "Well, maybe I'll take PL./I. " In

188-

SECOND PANEL DISCUSSION

general, in spite of their background, they're pretty solidly
behind PL/I.

Henderson: Let's close the session for today. I want to thank each and
every member of the panel and the audience. I hope that
what's been said here today will help you appreciate a little
better what's going on in the industry. I hope that all of you
remember the qualifying remarks that we've placed on our
study results. Given another set of circumstances, a dif-
ferent environment, and a different time frame, you could
very well see a different set of results. This indeed was an
experiment; the complete results are presented in our final
report.

189-

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA • R&D
(Security ctaaalllcatlon ot title, body o(abstract and indexing annotation mull be entered when the overall report ie claaaitied)

1 ORIGINATING ACTIVITY (Corporate author)

Logicon, Incorporated
255 West Fifth Street
•San Psrirn. California Q0731

2a. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2b GROUP

N/A

3 REPORT TITLE

PROCEEDINGS OF PL/I SEMINARS, December 5, 1967 and March 5, 1968

4 DESCRIPTIVE NOTES (Type of report and Incluelve datee)

None
5 AUTHORCSJ (Lmet name, lint name. Initial)

None

6 REPORT DATE

April 1968
7«. TOTAL NO. OF PAGES 7b. NO. OF RCFI

189
8« CONTRACT OR GRANT NO.
F19628-67-C-0396

b. PROJECT NO.

9a. ORIGINATOR'S REPORT NUMBERfS;

ESD-TR-68-154

9b. OTHER REPORT HO(S) (A ny other numbmn that may 6« mmmignmd
thlm rmport)

Logicon Report No. CS-681 9-R01 06

10. AVAILABILITY/LIMITATION NOTICES

This document has been approved for public
release and sale; its distribution is unlimited.

11 SUPPLEMENTARY NOTES It. SPONSORINO MILITARY ACTIVITY

Command Systems Division, Electronic
Systems Division, AFSC, USAF, L G
Hanscom Field, Bedford, Mass. 01730

13 ABSTRACT

This report consists of the proceedings of two seminars at which presentations
were made by experts who had actively participated in the design of the PL/I
language or who are engaged in implementing systems using PL/I. Each presen-
tation was followed by a question-and-answer session in which the audience
participated, and each seminar included an informal panel discussion among the
authorities present.

DD FORM
1 JAN 04 1473 UNCLASSIFIED

Security Classification

UNCLASSIFIED
Security Classification

KEV WORDS
ROLE *T ROLE WT ROLE WT

PL/I - Evaluation
PL/I - Teaching
PL/I - Scientific
PL/I - Command and Control
PL/I - Strings and Arrays
PL/I - Business
PL/I - System Programming
PL/I - Panel Discussions

UNCLASSIFIED
Security Classification

