ESD RECORD COPY

E RETURN TO

. ESD-TR-68-I43, Vol. I SCIENTIFIC & TECHNICAL INFORMATION DIVISION
(©)

=

(CST). BYLDING 121)

o B

=0

B

IR EVOLUTIONARY SYSTEM FOR DATA PROCESSING

T THE CAINT EXECUTIVE LANG UAGE AND

AR INSTRUCTION G ENERATOR
Charles T. Meadow ESD ACCESSION Lis|
Douglas W. Waugh Esti call No,_ - AR 61084
Gerald F. Conklin , 5 o5
Forrest E. Miller Copy No. '/ 0

AL 61084

January 1968

COMMAND SYSTEMS DIVISION

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE

L. G. Hanscom Field, Bedford, Massachusetts

This document has been

approved for public release and
sale; its distribution is
unlimited.

(Prepared under Contract No. F19628-67-C-0254 by Center for Exploratory
Studies, International Business Machines Corporation, Rockville, Maryland.)

LECAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person

or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

FSC 68-0670/

ESD-TR-68-143, Vol. Il

EVOLUTIONARY SYSTEM FOR DATA PROCESSING

THE CAINT EXECUTIVE LANG UAGE AND
INSTRUCTION G ENERATOR

Charles T. Meadow
Douglas W. Waugh
Gerald F. Canklin
Farrest E. Miller

January 1968

COMMAND SYSTEMS DIVISION
ELECTRONIC SYSTEMS DIVISION

AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE

L. G. Hanscam Field, Bedfard, Massachusetts

This dacument has been
approved for public refease and
sale; its distributian is
unlimited.

(Prepared under Contract No. F19628-67-C-0254 by Center for Explaratory
Studies, International Business Machines Corporatian, Rockville, Maryland.)

FOREWORD

This report presents the results of a stucdy of the specifications
for an information system intended to support the desipn, production
and maintensgnce of large computer programming systems. Called
Evolutionary System for Data Processing, or ESDP, it was berun as an
internal IBM project in 1965 by the Center for Exploratory Studies
of the Federal Systems Division and continued under Air Force
sponsorship during 1967 and early 1968.

This work has been performed under contract nurmber F1962%-67-
CN2ZS4 for the Electronic Systems Division, U.S. Air Force Svstens
Command. The project menitor was Mr. John Goodenough, ESLFE.

The authors wish to express their appreciation €ar the encourapge-
ment and assistance provided by Dr. John Egan, formerly of ESD, and
their colleagues Dr. Harlan D. Mills and Mr. Michael Dyer.

This report is in four volumes: Volume 1, System Description:
Volume 2, Control and Use of the Svstem; Volume 3, The CAINT Executive
Language and Instructicn Generator: and Volume 4, Programming Specifics-
tions. This report was submitted on January 31, 1968.

Tliis report has been reviewed and is approved.

—

b.. i A /\ 110-‘ A1— = " .

} f s sa il P o ln
SYMU'TA R. MAYER WILLIAM F. HEISLER, Col., USaT
Proiect Officer Chief, Command Systems Divisicn

ii

ABSTRACT

ESDP is a proposed system whose purpose is to acquire,
store, retri=ve, publish and disseminate all documentation,
exclusive of graphics, concerned with a large computer
programming aictivity. Documentation is deemed to consist, not
only of final or formally publishel after-the-fact reports, Hut
of working files, design and change notices, informal 4drafts,
manaaement revorts--in fact, the entire recorlable rationile
unierlying a programming system. Maximum Attention has h-:en
concentrated on the means of accuiring and organizinaga
documentation. Two major, complementary annroaches are proposed.
The first 1is called Program Analysis and 1is a process of
extracting do~umentation directly from comnleted programs. Tho
second is called Computer Assisted Tnterrojation and is a process
of eliciting 1information directly from the proagrammer, throuah
on-line communication terminals. The form=r proviies canonical
data about the program's structure. The latter proviles
explanatory miterial about all aspects of the proaram, and in the
absence of <canonical data, may proviie tentative structural
infornation 1s well. The conclusion of the study qroup is that
ESDP is a feasible concept with presant-1ayvy technology and that
it will materially bhenefit using orqganizations in the proluction
of nrograms and in qJuiding their avolution as requirements
chanqge., Tts value will he greater for larqger orcanizations,
whosn internal communications difficulties tend to cause traly
gigantic 1inefficiencies. TIts implementation as a support systern
for such projects would r~quire a significant quantunm of
investment 1in order to produce these henefits anl is predicated
on the use of a conmputer syster dedicatel solely to the use of
ESDH P

234

Volume 3

The CAINT Executive Language and Instruction Generator

I

THE CAINT EXECUTIVE LANGUAGF
Introduction
Language Requirements
Language Flements
Response Processing
Review and Update
Special Responses

Documenting CEL Progranms

IY
TECHNIQUES OF INTERROGATION
The Data Structure
Tnterrogation Sequence

Considering the Responder

ITT1
INSTRUCTION IN ESDP
Nhjective

An Instruction Generating Progran

iv

Page

10

11

14
14
15

15

20
20

21

IV

INSTRUCTIONAL PROGPRANMS 27
1. The Proagram Model 27
2. An Exampla 28
3. Composition of a Question 3.
4., Componsition of the Progranm 36
5. TUsing the Systen 36
v

BIRLTIOGRAPHY 37

Figure ILLUSTRATIONS Page
1 A Sample Interrogation Program 5
2 Response Processing 8
3 Example Of CEL Program Documentation 12
4 A Question in CAI Form 26
5 A Question in PI Form 26
6 _ A Unit of Instruction or Question 29

I

THE CAINT EXECUTIVE LANGUAGE

1. Introduction. In this volume we describe the conversational

programming lanquage, called the CAINT Executive Langquage or CEL,
and describe its application to interrogation and instruction.

The reason for developing CEL was to provide a facility
for programmers that would enable them to write conversational
programs easily. A conversational program in the context used
here 1is a computer program which <carries on a conversation

bhetween man and machine for the purpose of exchanging
information, and for wvwhich there 1s a need for generality in
expressing the conversational elements. Generally, in

conversational programming systems, interaction 1is between a
programmer or designer one hand and an operating system on the
other, and conversations are 1limited to computer programming,
graphic design, text editing, or whatever application has been
built in at the operating system level. In computer assisted
instruction, to which CAINT is similar, conversations cover a
wider range of topics and there is an intermediary program, the
course, written by someone other than the ©programmer of the

operating systen. The student taking a CAI course, for all
practical purposes, 1is aware only of the course and the
particular 1limitations and <capabilities it has. He 1is not

necessarily aware of the operating systenm.

In CAINT, as in CAI, the student, or responder or
documentor, deals not with the operating system but with a
program, or "course," written by an executive programmer.
Conversational techniques are the result of the style of the
executive programmer, not the basic system logic.

Sections I and II of this volume are primarily devoted
to a description of the language and to techniques for its use in
interrogation. While its use 1in instruction imposes no
additional requirements or constraints, we have devoted most of
our effort on instruction to the generation of instruction
programs. Sections III and IV describe our approach to
instruction and the TInstruction Generator, a CEL progran that
produces CAI or PI courses.)

2le Langquage Requirements. A conversational programming
lanquage, in this context, does nothing different from an
ordinary programming language. The difference is in emphasis and
in the relative ease of writing certain kinds of progran
expressions or 1in accomplishing certain kinds of program steps.
The CAINT Executive Language is a general language and could be
used for almost any application, albeit inefficliently in most
cases. Similarly, almost any other language could perform the
logical functions of interrogation or instruction but, we think,
seldom with the ease and efficiency of this PL/I dialect.

Let us consider briefly what the major conversational
functions are and then review each 1in greater detail. The
conversational programmer would 1like:

a. To be able to decide what question the machine
should ask of the man at any given point in the conversation and
to he able to do this on the basis of any definable function of
the program's data base, 1including, but not limited to, the
response to the last question.

b. Not to have to store the exact text of every
question before asking it. Hence, the program should be abhle to
assemble a question either from fragments or skeleton gquestions
or from the data base.

. To make actual presentation of the question
through a suitable output device, elicitation of an answer, and
storage of the answer as mechanically simple as possible because
these are such high frequency operations.

5 8 To permit a wide range of response types such as:
multiple choice, a single number, full text.

e. To have a simplified method for programming of
response analysis. The author should be able to decompose an
answer into an array of words, test a response against an array
of possible values, or perform any of a large number of other
text-handling functions with a minimum of programming effort.

fe To have a simplified 1logic for coping with
unrecognizable (unanticipated by the author) answers. This would
permit the writing of extensive programs for keeping track of
unrecoqgnizahle answers and varying the content of machine
initiated messages depending on the number of consecutive
unrecognizabhle responses.

g. To have a 1large number of functions on which
branching decision can he made. Branching within the
conversational program is, of course, a requirement. Branching
decisions should be able to be made on the basis of any definable
function of the data base.

hie To have any portion of the conversational progranmn
able to he operated as a subroutine so that it may be executed in
other than its normal sequence. This permits reviews and
updating.

9 To have the student be capable of controlling
program execution, to some extent, by the use of non-responsive
answers to questions. A non-responsive answer 1is one which
substitutes a command for the response called for. Such commands
include: GO TO, SIGN OFF, QUERY and BACK. The last of these
enahles a responder to reverse the sequence of operation of the
program and step backvard through the last n questions. It can
be used to recover from the situation where the responder gives a

legal but incorrect response, then discovers that he did not mean
to give that answer and now wishes to pursue the logical path
which would have resulted had he given the correct answer the
first tinme.

3e Lanquage Elements. The basic language used for CEL is PL/I.
CEL is a subset of PL/I with several specialized subroutines,
also written in PL/I, and several usage conventions that simplify
programmer bookkeeping and review or updating operations. CEL
operates under Operating System/360 and <can achieve multi-
terminal operation through the facilities of 0S.

In experimental work to date, we have used the IBM 2260
cathode ray tube display terminal as the man-machine interface.
Hard copy terminals, such as the IBM 1050, can be used by linking
the PL/I programs with the OQueued Telecommunications Access
Method (QTAM) of 0S. This linkage will have to be accomplished
through an assembly language program. It has not heen
accomplished to date, but there are no theoretical problems
anticipated in doing so. The desirability of having a hard copy
terminal in addition to a CRT is, we think, established. 1In
spite of the obvious speed advantage of the CRT there is often a
need to review a previous question or answer. If all reviewing,
however brief, requires a query instead of a glance up the page,
the responder must lose his train of thought.

a. The Question as a Unit of Programming

Programs in CEL are written in units called questions.
As the name implies, a question is all the coding concerned with
eliciting an item of information or a response to one
interrogation question. There may be more than one
conversational exchange in a question, but there will normally be
only one data base element elicited. This may be an array of
elements but would not normally be a set of dissimilar itenms.
The gquestion consists of a heading, text to be displayed by the
computer, elicitation and analysis of a response, and an ending.
A gquestion as a unit of programming should only be entered at the
beginning, or heading, of a question, not its interior, although
no PL/I restriction requires this. There are labels at the
beginning of a question and at several points within one. The
use of the latter is described helow.

b. Subroutines

Let us consider a set of subroutines which perfora some
of the basic tasks in the use of CEL. There are six major ones,
concerned with message transmission, response elicitation,
branching and program bookkeeping.

ASK assumes a message is stored in data item MSG. Tt
displays the message on the terminal indicated and elicits a
response. The response is stored in item RES. The program

author, then, deals only with MSG and RES and need not be
concerned with the mechanics of message transmission or receipt.

TELL causes the contents of MSG to be displayed, but
elicits no response.

INIT is used in the heading of a gquestion to initialize
a number of parameters used in program bookkeeping.

N2XT is wused in the ending of a question to perform
hookkeeping functions and to branch to the next question to bhe
used. At many points within the question the decision on what
question to branch to next might be made, but rather than
performing the transfer, a variable 1is set to the address to
which transfer is made later. Actual branching from one guestion
to another is always done from NEXT.

IINRECOG counts the number of successive unrecognizable
responses, provides a message to the console after each and, if
necessary, terminates the conversation. Provision 1is made for
having a Jifferent machine statement follow each successive
unrecodgnizahle response.

KEYEXT extracts key words and/or punctuation from the
text of a user's response. The punctuation option is often used,
even when short answers are elicited, to remove the differences
among, for example, yes, YES, and Yes. Keyword extraction 1is
used for indexing responses for later retrieval, and for testing
the validity of a text response in an instructional mode.

A series of retrieval subroutines permits 1nitial
storage, replacement, retrieval or deletion of an item or a
structure in the program data base on disk.

c. An Example

To write a guestion, the program author must have: a
label, a CALL to subroutine INIT and a CALL to subroutine ASF.
Prior to ASK, he must have set the character string designated by
the lahel MSG equal to whatever message or question he wishes to
present.

Response analysis <consists larqgely of a series of IF
statements, eich of which may have a THEN and an ELSE <c¢lause
followinge. Figqure 1 shows an example from an instruction
executive program. In reading this condensation of a proqranm,
bear in mind that a branch command would normally occur within
each DO group.

LABEL: CALL INIT;

MSG = *IN WHAT YEAR DID THE CIVIL WAR BEGIN?';

CALL ASK;

IF RES '1865' THEN DO; ... END;
ELSE DO; ... END;

IF RES '1861* THEN DO; ... END;

CALL UNRECOG;

Figure l. A Sample Interrogation Program

Here, the program author anticipates responses of 1865
and 18A1. Any other reply by a responder is unrecognizabhle. The
author could, of <course, have anticipated a larger number of
answers, or he could have used inequality matching and completely
precluded the possibility of an unrecognizable answer. Here, the
aut hor may specify a set of commands to be executed if the answer
is correct, which may include a messaqe to the responder, the
computation nf a grade or the setting up of a switch for a later
branch to a n~w guestion. In the example, the author has chosen
to include a clause to be used in the event the correct answer is
not given, regardless of what other answers are given. This is
the ELSE following the 1865 response test. Here again, he may
piss a message, compute a grade, prepare for a transfer, or
perform any other function.

Tf the student's answer is unrecognizable, the
subroutine types out a message informing bhtim of this. Some
authors may choose, at this point, to review the mechanics of
answering, assuming the ~cause of the error might have bheen a
keyinag error. With the second unrecognizable answer, the Aauthor
might give a hint, and with the third, he might warn that the
responder will he cut off if Aanother unrecognizable reply 1is
given.

Within the DO ... END group, any assignment statements
or subroutine calls are permitted. The IF statements may be
complex, Aallnwing nested logical expressions such as IF(A = '2')
E (B = t31)] (C = *4*'y THEN PL/I allows for another TIF¥ 1in
the DO ... END group, but CEL does not permit this. 1In PL/T
notation & implies AND and means OR,

hes Labels

l.abels on questions must be included in a label array.
We use the form LL(n). The variable n has many uses within a
program. For one, it hecomes the means of communicating transfer
information. If, within an IF statement, it is decided that the
next question to bhe asked 1is gquestion LL({X), a direct branch
cannot bhe mad= at this point. This, it will be recalled, can
only be done from NEXT. Instead, an index, g, 1s set to the
value X and later, in NEXT, transfer is maie to LL(q). Internal
labels within a <question are explainel in the section on
instruction.

One function of INIT and NFXT is to maintain a list of
questions executed. This list, which neel not contain more than
about the last five questions executedi, 1s wused when the
responder «calls £for BACK. Typically, he would do this if he
realiz=d he had given the wrong answer to a1 question and wants
the chance to answer again. By responding BACK to the next
question askedl of him, he backs up to the previous question.
When that 1is asked, he can answer responsively or BACK again,
until he has found the question he wants or has reached the eni
of the 1list. BACKing also requires the removal of data base
elements that were inserted as a result of the wrong (but leaal)

answver.

u. Response Processing. Almost anywhere within a program an
author may enter processing statements. Usually, these will bhe
restricted to use just before the response is elicited or in the
DO groups following the string of IFs in response analysis. In a
program produced through the Generator (Section III.2) there are

more restrictions on placement.

Processing can consist of any assignment statements or
CALLs to subroutines. While a question is only intended to
elicit one information element, the author may 1include
instructions for several messages to be displayed to the
responder within one question unit, giving him instructions,
congratulating him (if a student) on a correct answer, and so on.

Figure 2 shows a short example of a question to
illustrate a typical response analysis.

The following comments are keyed to line numbers in the
figqure.

j The question label is LL(l). The first function
is initialization.

2,3 The first question is set up and asked.

4. Function MEMBER (A,B) returns '1' if A is a member

of array B, '0' otherwise. If the name 1is known
to the roster:

o Set BRL (branch label) to 2 to indicate that the
next question to be executed is LL(2).

6. Now branch, within the guestion, to LE(1l) (E for
ending).

8a This begins an ELSE clause, used when the name is
not on the roster.

Qis This illustrates use of the data base in composing
a message. The message being formed here incluiles
the name just entered, concatenated (”) with the
text showvn.

10. This message 1is displayed, but calls for no
response.

1l. LL(99) is assumed to be a sign-off point.

l14. The label LE(l) indicates the ending section of
the question.

10
X
12
13

14

CALL INIT;

"WHAT IS YOUR NAME?!';

CALL ASK;

IF MEMBER (RES, ROSTER) THEN DO;

BRL = 2;
GO TO LE(1);
END;
ELSE DO;
MSG = RES‘I'IS NOT ON ROSTER. PLEASE CHECK
AITH PROCTOR.';
CALL TELL;
BRL = 99;
GO TO LE(1l);

END;

CALL NEXT;

Figure 2. Response Processing

5. Review and Update. Whether in an instructional mode or an
interrogation mode, there 1is a need to be able, at any given
point, p, in a program, to execute selected questions and then
return to p. In interrogation, we do this in order to change the
contents of a data base item. Recall that our method of updating
(Volume 1, Section II.5) requires that questions concerning the
item to be changed be asked again and that a different path
through a set of related gquestions might result from the change
than was originally used. 1In instruction, at various points in a
course the author may wish to compute a set of review dquestions
based wupon the individual student's performance. Again, given a
set of questions to be reviewed, the execution path through these
questions may be different than the original path through then.

The reviewed portions may consist of a single sequence
of questions, or it may be an unconnected set of questions.
Presumably, the number of possible combinations is large or the
author could have set up the subroutines himself. 1Instead, he
programs criteria for selecting review gquestions as a function of
performance. In interrogation the same technique 1is used for
updating previously entered documentation. We have used the
principle that programmers make changes to documentation by
identifying the information element to be changed and then being
reinterrogated about that element.

Reinterrogation or review might result in execution of
a different sequence of questions than were originally executed.
Hence, what the author specifies is not the actual sequence of
review questions but the beginning and end points of a set of
gquestions. Questions are then executed in normal sequence until
the specified end point 1s reached anl return is made to the
sequence control point. Any number of such segments can bhe
specified by an author to satisfy any one review or
reinterrogation item.

At the end of each question, then, a test must be made
to see if the question was executed in sequential or review moie.
If sequential, the next question executed is that indicated by
the question's branch logic which points to the next question to
be asked. If in a review mode, a branch is made out to the
sequence control routine which checks to see 1if this question
marks the end of a review sequence. If this is so, control
passes to the next review sequence or to the elicitation of a new
updating or review command. TIf it is not the end of a sequence,
control goes back to the NEXT subroutine and that routine
branches to the question indicated by BRL, a variable which 1is
set to the 1index value of the label to which it is desired to
hranch.

6. Special Responses. The responder at a terminal can alter the

sequence of operationm of an executive proqgqram and may interrupt

its operation and resume later, Whenever his Fkeyboard 1is
unlockred the responder may give one of the responses listed below
instead of the reply requested. In experimental work these

responses have been prefaced with // so as not to bhe confused
with valid replies.

GO TO n causes the executive program to begin executing
question LL (n) and picking wup future sequence commands from
there.

NQUERY invokes an on-line retrieval systen. The
responier may then query the data base on an information element
number (IFN) or a key word. An IEN is assigned to each element
in the data base. If a key word search is elected, the progran
retrieves the list of IEN's in which the given word bhas occurred
and then executes a series of TEN searches. Upon completion of
the search, the executive program resumes with the question it
tried to execute when interrupted.

REPORT 1invokes a report generating program. As
presently written, this program gives the responder the option of
receiving a standard, pre-designed report or designing his own
report by specifying a set of IEN's. The report, in either case,
is printed on the high speed printer and ¢then the interrupted
gquestion is resumed.

BACKX causes the executive program to return control to
the previous Juestion executed. A short history of the 1last n
questions is raintained to allow backing over several questions.

CHANGE 1indicates that the responder wants to stop
working on the present UOP and switch to a different one--perhaps
to descrihe a new one he has just named for the first tinme.

SIGN OFF terminates the executive progranm. The
responder is informed of the <4question number at which he
terminated and he may use this to resume in his next session.

The following responses are under author control bhut
are usually used as indicated.

NO signifies the responder does not wish to answer the
question. This is interpreted as meaning that no answer 1is
currently available or that the question does not apply. This
response is often used in design interrogations when full details
are not yet known.

END is used to signify the end of a list when an array
of responses has been elicited. A guestion is asked and the
responder giv2s onhe array element. After each element the
keyboard 1is briefly 1locked as the reply is stored. When the
keyboard is unlocked, the resvonder enters the next element or
//END,

10

HELP in effect means "“Give me a restatement of the
question.” When displaying to the relatively slow typewriter,
program authors may use terse wording to avoid boring the
responder. The responder, however, may then occasionally need
amplification of the question. The author, of course, must have
anticipated this and provided more than one version of the
question. This function has not been implemented yet.

HINT might be used to ask for assistance in answering a
question in an instruction progranm.

7. Documenting CEL Progranms. Interrogation and instruction
prograns require documentation, just as do other forms of
computer programs. The structure of a CEL program is generally

far simpler than a typical computer program. The major point of
interest 1is what 1is said to the responder or terminal user and
what answers are anticipated from him., Hence, a different, fully
automatic form of documentation has been devised for these
progranms.

Briefly, the documentation of an instruction course
vill consist of a list of questions, the anticipated answers anqd
a summary of what is done if a given answer is received from the
terminal. This listing is in order of question nunber. The
listing is followed by a key word index of all text of machine
utterances.

Sample output of a preliminary version of this
documentation is shown in Figure 3.

Akt

QUESTION NUMBER: 001

THE BINARY NUMBER SYSTEM.

THFE BINARY NUMBER SYSTEM CONSISTS

OF TWO DIGITS,

A ZERO AND A ONE.
THESE USUALLY REPRESENT THE OFF AND

ON STATES OF A BI-STABLE ELEMENT.
BY COMBINING THESE DIGITS IN STRING

FORM, NUMBERS OF INCREASING SIZE

CAN BE REPRESENTED.

SINCE ONLY TWO DIGITS ARE USED,
ALL NUMBERS CAN BE REPRESENTED.
TRUFE OR FALSE?

QUESTTION NUMBER: 002

EACH PLACE IN A BINARY NUMBER

REPRESENTS A POWER OF TWO,
THE RIGHT-MOST BEING TWO TO THE

POWER ZERO.

WITH

THE BINARY NUMBER 1010 IS THE
REPRESENTATION OF A DECIMAL:

A: DJNE THOUSAND TEN

B: FOUR
C: TEN

D: ONE HUNDRED ONE
E: NONE OF THESE

Fiqure 3.

NOT

ANSHWER
TRUE
FALSE

ANSWER

o 0>

BRANCH TO
001
002

BRANCH TO
002
002
N03
002
001

Example of CEL Program Documentation.

12

Fiqure 3.

KEY WORD

BINARY
BI-STA
COMBIN
DECIMNA
DIGITS
EACH
ELEME
FALSE
FORYM
HUNDRE
NONE
PLACE
POWER
SIZE
STATES
STRING
SYSTEM
TEN
THOUSA
TRUE
USUALL
ZERO
1010

Example of CEL Program Documentation

INS
INS
INS
INS
INS
INS
INS
INS
INS
INS
INS
INS
INS
INS
INS
INS
INS
INS
INS
INS
INS
INS
INS

13

INDEX

001
001
001
No2
001
002
001
001
001
002
002
002
002
001
001
001
001
002
002
001
001
001
002

INS 002

INS 002

(concluied)

Tl

TECHNIQUES OF INTERROGATION

1. The Data Structure. From a programming point of view, the
object of an interrogation is to make entries in, or make changes
to, a data structure. This structure may be an image of a
report, the raw material from which a report 1is made up, a
computer file to be wused only as 1input to another computer
program, or, 1s we shall describe in Section TII, a computer
program, itself. The first step in creating an interrogation
program is to design the data structure that the program will
work with.

The requirements of the structure that CAINT 1is
designed to work with are that each element must have a unique
information element number, and that hiagher order elements (sets
of lower order elements) are possible and will have IFN's that
reflect this hierarchic relationship. PRach item of information
which can be independently elicited or changed should have a
separate TEN. The nature of the information retrieval systenm
implemented for the experimental versions of CAINT requires that
retrieval be done on the basis of IEN's. Hence, any information
in the data base that is to be stored on, and retrieved fron,
disk memory must be included in the TIEN structure.

We have pointed out that any information in the data
base may be used within any question, to contribute to decision-
making, to assemble the text of a question, or as part of
response processing or student performance aralysis. In any
given gquestion, then, any number of information el=2ments may bhe
retrieved, but only one should bhe stored. This information, such
as various program swvitches, constants, etc., may be defined via
PL/I DECLARFE statements at the discretion of the programmer.

In setting up an IEN structure, the major rule is that
every element or set of elements must have a unique TEN,. For
example, 1if there 1is to be an element called Name of Input, we
might assign it TEN 1l.1l. TIf we then wish to allow for more than
one input, making the VName item an array, we must assign each

element of the array an IEN and the array, itself, an IEN. The
array, then, might inherit the number 1.1 and the first element
in it becomes 1l.1l.1l, the second element 1.1.2, etc. We permit

the use o0f the notation l.l.n to denote the nth element of an
array. If we wish to further extend the array, by 1listing name
and source of each input, we would require the following
structure:

1 INPUT
1.1 ARRAY OF "INPUT NAMES AND SOURCES
Alieediein NAME AND SOURCE OF INPUT N

14

4 R) P NAME OF INPUT N
Lol ons2 SOURCE OF INPUT N

In the 1interrogation program reference may be made to TIEN
1.1.3.2, which 1is the source of the third input. It should be
apparent that a change in the file structure may induce a change
in the interrogation program and vice versa. It should also be
apparent why indiscriminate changes cannot be made in data base
structure without consultation among all programmers of CFL
programs using the affected data items. Mention was made of this
restriction in Volume 2, Section IT.2.

2. Interrogation Sequence. Having decided upon the data
structure to be used, the CEL programmer must then consider what
questions to ask, under what conditions to ask them, and in what
order to ask them. The first of these considerations is largely
one of how to communicate with the responder and we shall discuss

it in greater detail in Section II.3.

Not all questions are used in every interrogation. As
a simple example, 1if a programmer taking an interrogation has
just replied that a particular data item is alphabetic, we do not
ask him whether he will use fixed or floating point
representation. Each response received should be used to the
greatest possible extent to by-pass irrelevant questions and to
make relevant ones more specific.

There is no requirement that the sequence of
interrogation, or presentation of questions, follow the scJuence
of storage of informationm in the IEN structure. A CEL programmer
may choose to follow one item to its completion, say to get 111l
information about one UOP before proceeding to the next, or he
may choose to get a 1little information about each UOP bhefore
getting the detail on any of them. He may elect to skip around
or to allow the responder to make the choice as to topic covered,
insuring that some record 1is kept available to the program of
vhat IEN's are covered and which ones remain to be completed.

3. Considering the Responder. HWriting an interrogation progran
is <carrying on a conversation vicariously. Since it 1is the
ohject of this conversation to acquire a specific, complex set of
information, the job is by no means trivial. The CEL programmer
must consider what the responier knows when he takes an
interrogation, how fast he is probably able to work, how fast he

would like to work, and how easily he can be bored. Skill in CFL

programming does not come automatically from skill at
conventional programming. It requires a mixture of <conventional
programming skill, skill in writing or speaking--the

communication of ideas to people--and experience in both writing
and taking interrogations.

15

A. The Scope of the Question

For reasons having to do with initialization of
programs, we have suggested restricting a question to the
acquisition of a single information element. Tn practice, a CEL
programmer must consider carefully how much information to put
into a single IEN and must consider the effect on the responier
of askina either too much or too little at one time.

If too little is elicited, the responder will becone
bored and will lose the train of his thought. If, for example, a
date were elicited by three questions asking, 'DAY ', '"MONTH

____', “YEAR _____ ', the responder may be expected to show
irritation at the slow pace. If, on the other hand, the program
asks, "Give all twelve information items abhout each of the inputs
you have mentioned." the responder may well forget some of them
and lose his place in the sequence. The ideal 1interrogation
program will help the responder to remember, by cueing him
occasionally, will recognize that the responder 1is 1learning
technique and can improve his performance with practice, yet will
see to 1t that each question is answered before qgoing on to the
next.

To assist the CEL programmer we have developed a
question mpodification technique and have considered use of a
second one, not yet implemented. The first 1is based on the
programmed instruction concept of a fading cue, [1] which, in our
context, means reducing the amount of explanation given with each
successive use of a question. Recall that in interrogation
programs, the responder is going to see the same basic set of
questions ovar and over again, as he reports on different UOP's
and data items. The first time, or the first few times, he sees
A question he needs an explanation of what it means, anrd of where
the answers fit in the overall data base and reports. After a
few times, particularly when using a typewriter terminal with its
slow output rate, the responder needs only to be reminded of what
question is being asked, not necessarily given the full statement
of the question.

At present, we allow for three different versions of a
guestion and shift from version one to two and then to three
after a predetermined number of uses. After a programmer has
answered the question, "What is the function of this uyoP?2"
several times, he need only be asked, "Function" to know how to
respond. Eventually, wvwe vwould allow a responder to recall
version one in case he forgets its meaning, by responding //HELP
to the short form of the question.

The second technique is to enable the CEL programmer to
combine several questions into one, in the manner of a fading
cue, based upon repetition of the questions. A succession of
questions might be these: '

16

First iteration: AHAT IS YOUR NAME?
WHAT TS YOUZX RANXK?
AHAT TS YOUR SERIAL NUMRBER?

Second iteration: GIVFE YNIR NAME, RANK, AND
SERTAL NYMBER SEPARATFD 3Y /

Thiril iteration: NAME/RANK/SERTAL %0,

In anv updating activity, a return to the separate questioas 1is
reyuired.

b. Reaction Mimes

Much 1is saidl and written on the suhject of responso
times in man-nachine systems, althoujgh 1little has bheen “irmlv
estahlished. We have not done any formal 2xperimentation in this
arci, but we have developed some coavictions. Not surnrisinaly,
ve find that responders react differently to delays at differant
points in a conversation. We may classify these approximately as
follows:

(1) Within a gquestion. As a function of hoth
programaing and hardware, sSome sSystems impose delavs, or
otherwise encumher the resnonder, Aduring the printing of 3
machine utterance or the antry of data bv the man. For oxample,
the 1440 CAT system with which we did our early exverimentation
impos=ad a fixd, one-second delay at tle end of anv 1line of
print, even if in the rilile of a sentencea. Ve found this to he
disconcertina to the reader. Some versions o the «ame syston
require the responder to ljepress a1 r=2queat key each *ime Lo
wishes to make a response, then wait a variable lenath of tian,
rarelv exceeding Aabout two seconis, for the keyboard to he
unlocked, This is also bothersome hociuse it delays the man just
at the point where he knows what he wants to dJo or sav anil 1is
ready, but finds the machine not realy. The conclusion is that
these delays are least tolerahle of all--aachanical delays that
interrupt the logical process,

(2) After a service m2ssade. A service nnssage 15
one that asks a procedural or aimiristrative question, not 23
suhstantive one concerned with the lata hase, It miaght asy,
"Jhat subject do you want to consider next?" We use tha tarn
seryvice guestion by analogy with tha term service traffic in
communications, referring to messages ahont the operation of the
communications network over which sont, These questions haive
little intellectual <content and require little thought hv the
responier., H2 would not like to ha delavel by such a messade or

by the process of having that messige ac+tedl upon.

(3) After A substartive responsea. When 3

snbstantive guestion has heen asked and the answer given, a unit
of work has heen perforrped. The resnorder now knows the subhjact

17

mat+or will change, at least sliohtlv, ani he is prepared to
accent a smill delay. Tt may be necessary because it 1is lik~ely
ttat some lata has to he storad at this point, and the progran
myy impose a lelay to 1o so.

(4) After A short querv. Whenr the responier asks
th> computer 1 guestion, which he fenls i3 a simple one, (such as
/73570, or "rotrieve TEN 1.2.) he expects gquick rosponse, delay
possihly in tarms of seconds, hut not minutes. These are short,
nracise auestions. He knows what the answers will look like 3ini
neads only th content,

(5) After an extensive juery. Shen, on the other

Fand, 3 aquestion is asked that is of an analvtic nature, such as,
"inat nroarams mike use of file A for input andl 4o not have an
error rountin=?" the requestor is probhahly willina to tolsrate a
lenathv lelay, evon of 3everal minutes, Here, he does not
anticinate th» answer., He doess not know if there is In answar,
He Ynows he will kave to wait before Ye can proceod. e can also
ir~1lule other requests in this catecorv, such as requests for
arnoration nf a repnrt,

e Iser Control of the Interromation

The ZFRL programmer c¢an deleqgate a areat 1eal of control
over an interrogation to the responder, somcthing he will he more
inclined to 35 if he knows he is workinc with experienced peoplo.
All the nser control techniaues have hean descrihed elsewhere,
but we shall briefly review them hern.

(1y Hpdating. Onece a responder establishes a filc
on kis major towvic (program or data file) he can operatn entirnly
ir an upiating mode thereafter. This redans Lo gpecifies what
tovicss ke wishes to be he interrogated nupon and he restricts the

conversation to these items only.

(Y The CHANGE response. At ary time luring a
proaraim logic description, the responder can clanae tha 1IND he is
laseribict by answering //CUANGE t5 anv cuestion. e then
proviins the name of the 1INP he wants te swWwitch to. In this waiy,
he i3 free to Aocumant UCP's in Any sernense that is aeaningfal
to hiw, unconstrainad by what the CPL programmer mav have thought
best., The OFL projrammer may, however, disallow this resnonse,

(3) Tke 450 T0 ra2spons~c. This response has the
same offect as if it were 3 program ctatement. T+ causes A3
transfer to the named quostinn in the interrogation progrtan, bhut

is availabloe nainly for d~huagiing purnoses,
(4) The BACK respons2. "his is another way the

r>anonier can transfer to a diffoarent quastion, in this case %o
anv question of the last n pteviously askel.

18

(5) The QUERY and REPOPFT responses. These enahle
a resnonder to interrupt the interrogation to ask for information
from the data base. Data will be returned at the terminal in
resnonse to a ONEPY or at the 1line »nrinter in response to A
RFPORT,

19

TIT

INSTRUCTION IN ESDP

l. Objective. A major objective of ESDP has been to include an
inteqgrated instructional subsysten. Briefly, the rationale
behind this obhjective is that large programming projects always
have problems caused by turnover of personnel and expansion, both
in the programming ranks and in the ranks of the managers and
operators of the resulting system. Tt is rare for a progranmming
project to have a comprehensive traininqg program for new
personnel that is addressed to the system rather than to the
mechanics of ©programming the computer or to operating some
component. It 1is rarer for such a curriculum to he hoth
effective anil up to date. The instructional systenm described
here 1is one which <can satisfy these requirements, vyet be
relatively inexpensive to operate and maintain.

Specifically, the objectives of the ESDP instructional
system are:

A. To enable the transformation of ESDP-acqguired
documentation into effective instructional text, both rapidly and
easily.

h. To enable 1instructors (authors of instructional
text) to prepare original training material not copied from
existing text, vrapidly and easily, when either the requisite
documentation does not exist, or, 1in the opinion of the
instructor, it is not of instructional quality.

Cie To enable 1instructors to prepare either computer
assisted instruction or programmed instruction courses (i-2s ;
instruction presented in printed form, off-line) at their option.

In 1966, before the start of the present contract, TBM
conducted a short experiment 1in autonmatic production of
instructional text from ESDP documentation. The approach taken
wvas to emhed the documentation in a standard1 format that would
successively present the student, through a terminal device, with
a topic title (taken from the headings in an ESDP report), the
text supplied by the programmer in documenting his program, a
standard question <calling for the student to summarize what he
had just read, then a summary of the previous text supplied by
the original programmer-documentor. {Summaries of topics were
and still are considered a useful documentation device for ESDP
documents.) The student was then asked to Jjudge whether the
answered correctly, that is, if his summary substantially aqreed
with the programmer's summary. If not, he was asked to explain
the discrepancy. His ansvers and explanations would be subject
to review by an instructor at a later time. The student was then
given the next topic in sequence and the process repeated. At a
number of different points in the presentation of material and
his response to 1it, the student could ask for a review of any

20

previously covered material. Thus, 1f he had forgotten the
definition of a data item previously explained, he could, before
answering the current question, ask for a review of the 1itenm
def inition. The student was able to select his own path through
the instructional material on the basis of major subdivisions.
If there were several major subjects, he could select the orier
of considering them, but within a major subject he had to follow
the prescribed order of presentation of minor topics.

A computer program to generate such instruction
proqrams was written and made operational. The results wvere
found to be unsatisfactory. Mainly, this was because the student
vas left on his own to Jjudge his ability to recognize and
interpret the important concepts in a paragraph with the result
that effective feedback to the student was not provided. One
major change was required: the ability to tailor the question to
the text, and to enable this to be done without the course author
or instructor having to completely retype or regenerate the
documentation or to become too entanqgled in computer programming.
Other requirements to be levied on a new instruction generator
were the ability to generate a program that would, without
modification, reflect minoor changes in the source documentation,
and the eventual interconnection of the generator with the ESDP
data base to allow students to ask information retrieval queries
of that data base while taking instruction.

An 1instruction gJenerator that can test these concents
has been designed and a preliminary model made operational. The
assumptions underlying this design are the following:

. ITn most cases ESDP documentation will exist bhefore
the instruction course is written or compiled and most of this
documentation will be used as text material in the course.

b. The courses will be assembled by people familiar
vith the obiject program system, programming in general, and
instructional technique. It 1is not expected that each object

system programmer will compile his own training materials. While
much mechanical assistance will be provided to the instructors,
there will be no diminution of the requirement for instructional
skill on their parts.

c. The object system programs that form the basis of
the instruction can be expected to change; therefore, the prohlem
of keeping th=a course up to date will always be present.

2 An Instruction Generating Progran. Two models of an
instruction generator have been designed and the first of thase
has been made operational. The purpose of the first moiel

program was to test the feasihility of the approach and to serve
as a test vehicle for future experiments.

21

a. The Initial Model
The program has the following features and limitations:

(1) The generator 1is an interrogation progran
written in the CAINT Executive Language. The object progran
(resultant instructional program) is in the same language. The
object program is generated through an interactive process in
which the conversation between the generator and instructor is in
near natural language. Little programming skill is required of
him, but the facility is available for those who are skilled to
enter PL/I statements of their own into the generated instruction
program.

(2) If an ESDP data base 1is available, the
qenerator can make use of it. An instructor can incorporate any
portion of the base into his program by identifying that portion;
he need not copy it. If such data is not availahle, or if there
is any segment of it the instructor does not choose to use, he
may compose his own text.

(3) Only multiple choice questions can bhe used
{in Model 1). A guestion 1is 1identified as being true/false,
yes/no or other multiple <choice, and the student 1is then
restricted to answering true or false, yes or no, or a, b, ¢, 4,
Sete Sk Any answer other than one of these anticipated answers
is unrecognizable.

(4) An instructor may insert PL/I language
statements to analyze or process responses, but he is able to
compile a fully operable and meaningful course without recourse
to any programming whatever. The generator assists in computing
a student's grade, and counting unrecognizable answers. It can
be made to store responses and type out special messages, all
requiring of the instructor only that he specify what 1is to bhe
done, not how.

(5) The course checks for unrecognizable answers
and offers the student three chances to change an unrecoqnizable
reply to a recognizable one. I1f, after three tries, an answver is
still unrecognizable, the course cuts the student off the
computer. The course also keeps track of student progress ani
allows him to log on and off, resuming where he left off,

b. The Second Model

A second model of the program would expand on the basic
system, primarily enlarging the number of possible answer types
and corresponding response analyses. It would provide the
following features beyond those offered in the first model.

(1) In addition to multipnle choice, instructors
could allow for:

22

o item responses (one or more
distinct fields of information in
the reply)

o phrase response (short, natural
lanquage replies)

o text responses (long natural lan-
guage replies)

o lists of item responses.
Each question may be of a different type.

(2) Key word extraction routines will he
available for <call by the instructor in conjunction with phrase
or text responses. These enable him to make some checks on
extent of subject coverage in a response, {(e.g., did the student
mention "end of file,") but still, of course, does not juige the
adequacy of the content of the reply.

(3) The course author will be given more response
checking alternatives since a response no longer would he
required to match exactly one of a limited set of stored answers,
as in pultiple choice. Instructors would be offered range
checks, abhsolute value checks, inequalities, exact equality, etc.
Also, they <could provide their own response processing, hefore
and after response testing, to allow for far more sophisticated
response analysis than can be explicitly anticipated in design of
the generator. For example, an instructor can make use of a
combination of the student!s performance (grade) thus far in the
course and his latest answer to decide what to do if that answer
has particular characteristics.

(4) The capability to back up, or retrace a path
will be provided when the author replies BACK to a question.

(9) With Model 1 there are several subroutines
available for author use. These, for example, enable him to
program transmission of a message to a student by entering only
message text 3s a parameter. The later model will enable the
course author to "write" his own subroutines which may then be
called anywhere in his program. For example, he may wish to use
a text analysis routine of his own design. He can indicate to
the Generator that he wishes to compose a subroutine, name it,
compose it, then assume it 1is available for his use whenever
convenient.

(6f) Model 2 will have a full capability to hanile
program changes after the course has been generated or partially
generated. This will be done by having the author specify the
operation (add, change, delete) and identify the location within
the <course. He then resumes the course-generating interroqation
to supply new coding.

23

A Jenerator progranm capable of meeting these
specifications should be capable of generating itself. This
would hbe a significant milestone, because the generator is,
itself, a CAINT interrogation program, and if it can be made
self-generating, then it should be able to generate any
interrogation program as well as any instruction program. Even
solely within the context of instructional systems, this is

significant because instructors may wish to have special
information elements, just for instructional use, elicited during
the original documentation interrogation of programmers. Then,

vhen changes are to be made 1in the ESDP data base or in the
manner of interrogation, these can be accomplished and integrated
with instruction more easily.

c. Handling Changes in Documentation

An option with either version of the generator progranm
will be to allow the instructor to make use of documentation
provided by the programmer who wrote a program without actually
copying the text. The instructor will identify the text hy its
IFN, and the gJenerator will respond by placing appropriate PL/T
statements to retrieve the text into the object program at ohject
time. In this way, documentation changes made byv the programmer
would be reflacted in the instruction course without additional
effort on the part of the instructor. The instructor retains the
option of not using the programmer's text, for whatever reason,
and instead supplying his own text or a paraphrase of the
original.

This technique handles one aspect of changing
documentation. Through its use, instruction programs
automatically adjust to small changes made 1in documentation
without, for example, invalidating a course because the

programmer changed the spelling of a word or anmplified an
explanation. Another aspect of changing documentation is found
when the originating programmer changes the structure of the
documentation for a progranm. This may imply a change 1in
structure of the program being described, as well. For example,
the programmer may add a new subroutine, or divide an existing
procedure into two procedures, or simply make use of an
additional data item in an existing calculation. Such chanqges do
not simply cause a replacement of an existinag documentation item
by a new one, but cause additions or deletions to arrays of
program elements, or possibly change the relationship amongqg
existing elements of an array. A course denerated through the
techniques discussed here cannot automatically adapt to this forn
of change. When major documentation changes are made, ESDP has
the capability to store the fact of this change and, when an
instruction course is to be taken, make known to the student the
fact that the course is out of date. 1In a large number of cases,
this will make 1little difference, for one change 1in the
subroutine structure or intrdduction of another data item will
generally have 1little impact on the student's understanding of
the basic concepts of the program and its overall structure. A
regular program of review and revision of generated courses can

24

keep the complete instructional system reasonably up to date.

Both instructors and students must be aware that an
instructional system 1is different from an information retrieval
system; they are not interchangeable with each other.
Instruction concentrates on manner of presentation and attempts
to ensure that its wusers gain a good general understanding.
Retrieval has the mission to provide up to date information, and
may presume that its user can manipulate the system and interpret
its output with skill.

Another approach to automatic updating of instructional
material is to hold the programmer who writes the documentation,
or changes 1it, responsible for updating the instruction. While
this approach would work well mechanically, it requires only a
few more questions to be asked of the programmer as he makes his
documrentation changes, we do not feel that programmers in general
are necessarily qualified instructors. Skill in writing and in
instruction is required.

d. Production of Programmed Instruction Courses

The current experiment in producing instructional text
is not concerned with programmed instruction (PI), but an example
is offered below to show that the ability to produce CAI courses
by computer can easily yield PI courses as well.

A typical gquestion, or unit of instruction, generated
by the ESDP instruction generator, would have approximately the
form shown in Figure 4.

This 1is an abbreviated version of the coding for a
question, but shows most of the essential elements. The sane
question and branching decisions could be used in a PI format,
wvhich might be as shown in Figure 5.

The only real difference between this PI format and a
CAI format is that all "processing" is done by messages, not by
arithmetic. The same branching techniques are used, the same
ability, during generation, to retrieve TEN text or have the
instructor supply it is needed. The major difference is really
that PI courses are printed directly, not compiled as a computer
program. We anticipate that use of the PI option 1in connection
with the ESDP instruction generator would produce a proaram which
would, 1in turn, produce the PI text when the student is ready to
take the course. That is, just as with CAI, the instructor
prepares an object program, but this object program is compiled
and run to produce PI text only when the student 1is actually
ready to take the <course in order that all late changes in
documentation be automatically incorporated in the printed text.

25

INS (1) : *MSG = 'IS THE PERSONNEL FILE SEQUENCED BY
CALL ASK;
IF RES = 'YES' THEN DO; GRADE(l) = 1;
MSG = 'GOOD'; CALL T®ELL; BRL = 2;
GO TO INS(1l):; END
IF RES = 'NO' THEN DO; GRADE(1l) = -1
MSG = *WRONG, TRY AGAIN'; CALL TELL:
GO TO INS(l); END
The ASK/TELL series of subroutines assumes
the text of the message to be displayed is
in data item MSG. If a response is called
for (it will he in the ASX subroutine if
used) the response will be in RES.
Figure 4. A Question in CAI Forn.
INS (1) Is the Personnel File sequenced hy NAM
If your answer is YES, go to INS(2)
If your answer is NO, 30 to INS(3)
TINS5 (2) Good, the correct answer is YES.
Now, the next question ...
TNS (3) Wrong. To review, we said earlier

(text of earlier IEN)

Now go on to TNS (2)

Figure 5. A Question in PI Form.

26

NAME?';

E2

IV
INSTRUCTIONAL PROGRAMNMS

1. The Proqram Model. The basic model of the instruction
program is that of a branching type program, the creation of
wvhich is generally attributed to Norman Crowder.[2,3] The other
major programmed instruction model, a linear or Skinnerian model,
{3,4] is included as a subset within the overall model. A linear
model 1is one which always branches to the next instructional
frame or question, regardless of student response, while a
branching program has the option of going to a diffferent
successor for each different recognizable student response. In
practice, the branching type programs are usually multiple
choice, while the linear proqrams use a constructed responsec
where the student must compose the answer, rather than having
several possibilities presented to him for his consideration.
One advantage of computer assisted instruction is that a great
many constructed response answers can be anticipated by the
instructor, so that the branching technique may be comhined with
the constructed response technigue, giving greater flexibility to
the course author and more feedback to the student.

We define the basic unit of an instruction program to
be a gquestion or unit of instruction. The term guestion is
sliqghtly ambiquous, but is handier to use. Within the question
(used here as a synonym for unit of instruction) there can be a
gquestion (used here as an interrogatory sentence). The unit of
instruction <consists of the elements listed below, some of which
may be omitted. This is a slightly more rigid organization than

specified for CEL programs in general, in Section I.
a. Heading

This is a <call to a subroutine provided by the
generator. Senerally, the instructor does not «control the
heading. The subroutine called btandles certain internal
"housekeeping”" details needed by the instructional program.

b. Title

At the option of the instructor, the U0OI or question
may have a title, wvwhich may be the ¢title of the UOP being
described or any other title provided by the instructor.

Cls Text

Again at the option of the instructor, there may he a
text portion which would normally be used to present the
documentation text provided by the programmer when he documented
his progranm. Alternatively, the text can be provided by the
instructor. The text part of a question 1is displayed to the
student but does not elicit a response froa him.

27

d. Question

This part of the 70I asks the student something about
the text he has just read. Normally, there need be no sharp
break between text and question in programmed instruction. We
draw this distinction because often the text will be a copy of
text supplied by someone other than the instructor, while the
question will be supplied by the instructor. Tf the instructor
were composing his own text and gquestions, he need not make the
distinction, 3and could treat the question as containing the text
as well. A question elicits a response from the student., TIts
use is optional. If not used, only the title and text are
displaved to the student and the course proceeds as proqrammed,
without considering any response.

e, Response Analysis

This portion of the UOI tests the student's response
for compliance with predicted responses or functions of responses
or on other data items, stores the student response and deciies
where in the course to branch next.

f. Ending

The ending is analogous to the heading in that much of
it is supplied automatically by the generator program and is used
for program housekeeping activities, It may also contain
processingy st2ps to be performed reqgaridless of what response the
student gave to the question, and hence 1is separated from the
response anralysis section. For example, a branching decision
could he made on the basis of previous response patterns or total
score.

2is An Exanmple. Figure 6 shows an example of the coding of a

questzon in the object instructional progranm. Labels shown on
coding are labels that might actually appear in the PL/T coding.

28

il INS(l) » CALL INIT3

2 MSG = YINPUT?';

3 CALL TELL;

q XT(L)z CALL RETRV (IEN) ;

5 CALL TELL:

6 X0 (1) : MSG = 'WHICH OF THESE FILES IS UPDATED DAILY?

7 A PERSONNEL

8 B PAYROLL

9 € NEITHER OF THESE?';

10 XA (1) : CALL ASK;

11 IF RES = *A' THEN DO; GRADE(l) = 1;

1.2 MSG = 'GOOD';

13 CALL TELL:

14 BRL = 2;

15 GO TO XE(1l):

16 END;

17 IF RES = *B' THEN DO; GRADE(l) = ~-1;

18 B(l) = B(l) + 1;

19 MSG = YCAREFUOL...TRY AGAIN':

20 GO TO XA(l);

21 END;

23 IF RES = 'C' THEN DO; GRADE(l) = -1;

23 MSG = 'READ THE TEXT AGAIN,
CAREFULLY':

24 CALL TELL;

25 GO TO XT(1l);

26 END:

27 CALL UNRECOG;

28 XE (1) : CALL NEXT;

Figure 6. A Unit of Instruction or Question.

29

Figure 6.

The

10

11

1275

1lu

L5

following comments are keyed to line numbers 1in

The 1label of the question is automatically
composed, and fits the requirements of a label in
a PL/I label array. A CALL 1is 1inserted to the
standard bhookkeeping routine.

The title "INPUT" is displayed. This title was
composed by the instructor, or course author;
othervwise, a retrieval call would bhe here that
would retrieve the title from a list in memory.
The subroutine TELL does not call for a response.

The label here is an internal label, internal to a
question, and has the same subscript as the main
question label. The "T" denotes start of the text
presentation. The call to subroutine RETRV will
cause the text stored under that given IEN to be
retrieved and stored in data item MSG.

Here the question is being posed. The text has
been supplied by the instructor, in the form of a
multiple choice question.

The label denotes the heginning of the response
acquisition and analysis section. The ASK
subroutine elicits a response from the student and
places that response in data item RES.

The first response checked for is A; this being
automatic 1if a multiple choice question form has
heen selected. If this answer has been given, a
grade for the question 1is assigned. The value of
the grade is determined by asking the instructor
during the generation of the course whether the
answer 1s correct or not. TIf correct, the student
gets +1, if not, -1l. Tt is not necessary that
each question be identified as either right or
WL Ong.

13 The instructor has chosen to "reward" the
student with the comment "GOOD."

The instructor has stated that he wants to go naxt
to question 2, which 1is at lahel INS(?2).
Branching out of the question is done only at the
end of the question. Here, the value of B3RL
(branch label) which will be used to index a label
variable is set to 2.

Transfer is ndw made to the ending routine for the
question, XE({1l).

30

17 "B" is a wrong answer, hence the grade is set to
-l.

18 The instructor wants to know how often this answer
was given, so he introduces his own counting
variable, B(l).

19,20 The student is told to answer the gquestion
again, and is branched to the beginning of the
response analysis area. The question will not be
repeated, but the branch 1is to a CALL ASK
Sstatement.

25 Here, in the analysis of the third recognizable
answer, the instructor feels the student must have
grossly misunderstood the text to have given this
answer, so he is going to force a review by
repeating the text by a branch to the heginning of
the text presentation area, XT(l).

27 If no recognizable answer 1s given, a call is made
to subroutine UNRECOG which will converse with the
student, try to get a recognizable answer from him
and, if it cannot, cut the student off.

28 The label XE(l) denotes the ending of the UOT.
The subroutine NEXT performs the actual branching
to the next question.

3. Composition of a Question. More specifically, the functions

and options available for each component of a question are:
a. Heading

All questions must have a heading, hence the heading is
not under control of the instructor. Included are the label for
the question (the label of the PL/TI code group associated with
the gquestion). All such labels are part of a PL/I label array
and consist of an alphabetic prefix, INS, followed by a subscript
generated by the generator progqram. Next, the documentation to
which the question pertains 1is ascertained. This is elicited
from the instructor, as the composition of each gquestion starts,
by the computer asking him what IEN his question is associated
with. Pinally, the heading concludes with a call to the
INIT(ializing) subroutine which records, for the object proqram,
wvhich label is being executed and resets various counters and
registers.

b. Title
The title 1is entirely under control of the instructor

and is optional. Upon being asked for a title, the 1instructor
may respond:

31

TEN=n
//NO
(title)

The first of these responses directs the generator to place in
the object program the coding needed to retrieve the title that
corresponds to the IEN he has selected. This will be the title
used with the ESDP standard report form. For example, he may
insert TIFN=1.2 where 1.2 1is the INPUT DATA DESCRIPTION in the
standard report. 1In that case, the object program will contain a
call to a subroutine that retrieves the stated title at obj2ct
time. If no title is to be used, the instructor replies //NO.
If, when the instructor is asked for a title, he gives any other
response, that response is used in the object program. He might,
in the earlier example, have used INPUT, preferring the shorter
version of the standard title. In this case, the actual text 1is
compiled into the ohject proqgram.

Che Text

Essentially the same options are available +to the
instructor when text is called for by thke generator program. In
this <case, 1if he replies 1IEN=n, the programmer-supplied text
associated with n is implicated, not the title of n. Again, a
call to a subroutine that will retrieve the text at object time
is inserted into the object program, rather than the actual text.

d. Question

Ouestions will not have heen stored by programm~rs
hefore the instruction course is composed, so the instructor will
always compose his own question, if he wants to use one. He nay
respond, then, with the text of the question or with //NO which
means no gquestion is to be asked.

c. Response Analysis

This 1s the most complex of the question components.
First, the generator ascertains what form of guestion 1is to he

useds rmultiple choice, atc. Then, a different set of
interrogations may follow depending on what form of question 1is
used. As an example, assume a true/false form is to be usad.

Then the generator automatically starts the response analysis
component with the strinaq:

TF RES = YTY THEN DC;

where RES 1s the data item which contains the student's answer to
the question.

For each test of an anticipated answer (such as ™ for

TRUE) there is an associated THEN DN...END clause and an optional
FLSE DO...FND clause. The combined clauses are referred to as an

32

answer set: the set of code concerned with analyzing one
anticipated answer. There is an answer set for each anticipated
answer and one for unrecognizable answvers.

The instructor is asked if TRUE is a correct answer to
the question. If so, the next string generated is

GRADE(LABEL) =1

where GRADE is an array of one-character, decimal items and LABFL
is the subscript on the label array. If the answer were deemed
incorrect, GRADE would be set to -1l.

When the author selects multiple choice as a question
form, the array of possible answvers is elicited from him, to
assist him in compiling the question. As soon as he selects the
multiple choice mode, he is shown a display similar to

A.ENTER VALUE

The author then enters the first of the answers he wants his
student to consider. The process is cumulative. As soon as the
author gives a reply, that reply is displayed and a new line is
created asking for the next possible answer. The sequence 1is
terminated by //END and might take this form:

A. ENTER VALUE _ABRAHAM LINCOLN

A. ABRAHAM LINCOLN
B. ENTER VALUE _GEORGE WASHINGTON

A. ABRAHAM LINCOLN
B. GEORGE WASHINGTON
C. ENTER VALUE _//END
Now the instructor 1is asked about any additional
processing he may want done by the object program At the point
vhere the stujent has responded with a TRUE. His options are:
Execute an assignment statement
Type out a message
Count (i.e., add 1 to a designated data item)

Sum {i.e., add RES to some designated data item)

Store (i.e., store the contents of RES in a
standard location, indexed by LABEL)

The count and sum options are intended for arithmetic
processes othar than keeping track of the student's grade. Using
them does not require that the instructor enter a full PL/I
statement, only that he designate which iten is to he
incremented.

33

Similarly, indication that a message is to be typed out
requires only that the instructor enter the message, not that he
enter a PL/T statement that would type out the message.

The only option that requires the instructor to enter
actual programming statements 1s the assign option. This was
included for those cases not <covered by the more simple
operations Jjust described. If the assign option is used, the
instructor enters a PL/I statement whick is checked for wvalidity
by the generator. He must assume the responsibility for its
correct application, but the generator assures him that only
legal PL/T commands are put into the object program. While this
feature has many uses, 1t should be apparent that fairly
elahorate instructional programs can he composed without using
itis The statement validity-checking subroutine 1is not yet
implemented. At present, any character string entered in
response to the question is accepted and assumed to he a PL/I
statement.

The final step 1in each clause of an answer sect is to
find where the instructor wants to branch 1if the student has
given the answer used in the test. (One restriction heinn
imposed on the initial version of this program is that there nmay
not he an TIF following a THEN or ELSE. Another is that, in a
multiple choice question, no informatiorn other than the response
may be used to decide on branching. The capability to use other
information will be inserted later, whern item and text resoponses
are permitted, for the logic involved follows immediately from
the logic of processing those replies.) The instructor may select
the question to which to branch by specifying any of:

Back to a previous label (the label
given must be on a 1list of
generated labels)

Forward to a new label (the label
given may not have been generated

yet)

FPorward to the next sequential
question (with this <choice it 1is
not necessary to give the actual
label)

Then there are several options for branching to other
points within the current question. These are:

Back to the text, so the student
gets the entire tutorial section
over again

Back to the gquestion, so the

question is repeated but not the
tutorial text

34

Back to response analysis, so a new
answer is elicited and all analysis
performed on it, but none of the
foreqoing text or question material
is repeated

Wwhen branching to a different question, entry can only
be made at the "top" of that question. The author <cannot skip
the heading.

Lists are maintained of all generated labels and all
future labels (those indicated as forward branch 1labels at a
branch point). Whenever the instructor goes on to a new
question, he will be given a list showing from where else he
branched to the same label. If he finds he has made a mistake
and did not intend to go to the same label from two different
points, he may change his most recent decision.

Branching is not actually done from the IF statement to
the designated label. The IF statement will contain an
assignment statement that stores the 1label to which branching
outside the boundary of the UNI 1is to be done, then actual
branching is to the ending component of the gquestion.

As many IF statements, or answer sets, are generated as
there are possible answers to check. Up to ten are allowed in a
multiple choice. When full constructed item response analysis is
implemented, there will be no limit except that imposed by memory
considerations.

After all the answver sets are generated, an
unrecognizable response answer set is inserted. In its general
form this routine counts the number of successive unrecognizable

answers, and prints out a different message for each. After
three consecutive unrecognizable answers the student 1is cut off
from the course (or the instructor from the use of the
generator). The instructor provides the messages for the

generated course. For example, if a True/False question is used
and the student replies YRUE this answer would be unrecoqgnizable.
A message to this effect would be typed out and then another
message, specific to the question and supplied by the instructor.
For example, the student might see:

ANSWER UNRECOGNIZABLE
YOU MUST ANSWER TRUE OR FALSE

The first of these 1is 1inserted 1into the ohiject course
automatically by the generator, the second is provided by the
instructor. If the student cannot give a recognizable answer 1in
three tries, he 1is assumed to have gqrossly misunderstood the
instructions or to be playing games, a common, apparently
irrestible, urge among CAI students. The instructor may compose
his own unrecognizable answer routine.

35

f. Ending

The ending routine gives the instructor the opportunity
to do processing that applies to all answers, whether or not they
match any of the anticipated answers, resets various counters,
and performs the actual branch to the selected next question.
The reason for doing the branching in this way is to enable the
question to be operated as a subroutine, if necessary, or to he
part of a sequential program, depending upon the value of some
stated item. That is, if the student is in a review mode, he nay
be routed to a given question, then back to the review control
question, regairdless of this answer. 1In CAINT courses, we use
this technique also for interrogating a programmer only on
selected questions when he is updating files.

4. Composition of the Program. An object instructional program

consists of up to 999 questions of the form just described (the

number 999 heing completely arbhitrary, but some 1limit is
necessary). Wwhen all the questions have been compiled, the
generator program must generate introductory and terminal

material for the obiject course.

Introductory material «consists of required labels and
statements of PL/I, such as data declarations. These are
generated from lists of data items generated in the main body of
the course. The terminal part o€ the course consists of a
standard grade-computing routine, one that gives not only a count
of right and wrong answers, but also a list of the number of
unrecognizahle answers at each question, and could be extended to
give grades within major sections of the course. The terminal
section also contains subroutines, completely pre-written, that
must bhe a part of any object proqgran.

The f£inal result of operation of the generator proaram
is a complete, syntactically valid PL/I proqram, together with
all subroutines and specification statements. There <can be no
gquarantee that the course will execute successfully, because the
instructor may have inserted invalid or meaningless statements,
but the course should always compile.

5. Using the System. The Instruction Generator is a new concept
vhich offers 1 significant improvement in the potential for usina
CATI and PTI for on-the-job training. Certainly, more time is
needed to complete the generator and to test it, both as a
program to be debugged and as an educational tool.

36

{1]

(2]

(3]

(4]

v

BIBLIOGRAPHY

Hughes, J. L., Programmed Instruction for Schools a

n
Industry. Science Research Associates, Chicaqo, 1962, p. 6

Crowder, Norman A., "pAutomatic Tutoring by Intrinsic
Programming," 1in Teaching Machines and Progqrammed Learning:

A Source Book, A. A. Lunsdaine and R. Glaser, FEds.,National

Education Association, Washington, D.C. 1960, pp. 286-298,

Lysaught, Jerome P. and <Clarence M. Williams, A Guide to
Programmed Instruction, John Wiley & Sons, Inc., VNew York,

1963 (a general survey of the subject).

Skinner, B. F., "The Science of Learning and the Art of
Teaching," in Teaching Machines, p. 100.

37

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security clessilication ol title, body ol ebstract and indexing ennotation must be entered when the overell report is clessilied)

1. ORIGINATING ACTIVITY (Corporate euthor) 2a, REPORT SECURITY CLASSIFICATION
Center for Exploratory Studies UNCLASSIFIED
International Business Machines Corporation 26, GROUP
Rockville, Maryland 20850 N/A

3. REPORT TITLE

EVOLUTIONARY SYSTEM FOR DATA PROCESSING
THE CAINT EXECUTIVE LANG UAGE AND INSTRUCTION G ENERATOR

4. CESCRIPTIVE NOTES (Type ol report and inclusive detes)

Nane

8. AUTHOR(S) (First neme, middle initiel, lest name)
Charles T. Meadow

Douglas W. Waugh

Gerald F. Conklin
Forrest E. Miller

6. REPORT DATE 7e. TOTAL NO. OF PAGES 7b. NO. OF REFS

January 1968 42

8e. CONTRACT OR GRANT NO. 9e. ORIGINATOR'S REPORT NUMBER(S)
F19628-67-C-0254

b. PROJECT NO. ESD'TR'68'143, Vol. Il

c. 9b. OTHER REPORT NO(S) (Any other numbers thet may be essigned

thia report)

d.

10. OISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY A.CrlleV .
Command Systems Division, Electronic Systems

Division, Air Force Systems Command, USAF,
L G Hanscom Field, Bedford, Mass. 01730

13. ABSTRACT

ESDP is a proposed system whose purpose is to acquire, store, retrieve, publish and disseminate
all documentation, exclusive of graphics, concerned with a large computer programming activity.
Documentation is deemed to consist, not only of final or formally published after-the-fact reports,
but of working files, design and change notices, informal drafts, management reports--in fact, the
entire recordable rationale underlying a programming system. Maximum attention has been
concentrated on the means of acquiring and organizing documentation. Two major, complementary
approaches are proposed. The first is called Program Analysis and is a process of extracting
documentation directly from completed programs. The second is called Computer Assisted
Interrogation and is a process of eliciting information directly from the programmer, through on-line
communication terminals. The former provides canonical data about the program's structure. The
latter provides explanatory material about all aspects of the program, and in the absence of
canonical data, may provide tentative structural information as well. The conclusion of the study
group is that ESDP is a feasible concept with present-day technology and that it will materially
benefit using organizations in the production of programs and in guiding their evolution as
requirements change. lts value wifl be greater for larger organizations, whose internal communica-
tions difficulties tend to cause truly gigantic inefficiencies. Its implementation as a support system
for such projects would require a significant quantum of investment in order to produce these
benefits and is predicated on the use of a computer system dedicated solely to the use of ESDP.

D D |FNooR\c‘cs1 4 73 Unclossified

Security Classification

