ESD-TR-68-143 , VOL 1V

ESTI FILE COPY

ESD RECORD COPY

RETURN TO
ESD-TR-68-143, Vol. IV SCIENTIFIC & TECHNICAL INFORMATION fives N y/

L ————————————

EVOLUTIONARY SYSTEM FOR DATA PROCESSING
PROG RAMMING SPECIFICATIONS

Charles T. Meadow

Douglas W. Waugh
Ge:gld F. Cont:ign ESD ACCESS'ON LIST
Forrest E. Miller ESTI Call No. AR 6'_08L_

C
opy No. / JZ/ / .

January 1968

COMMAND SYSTEMS DIVISION
ELECTRONIC SYSTEMS DIVISION

AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE

L. G. Hanscom Field, Bedford, Massachusetts

This document has been
approved for public release and
sale; its distribution is
unlimited.

(Prepared under Contract No. F19628-67-C-0254 by Center for Exploratory
Studies, International Business Machines Corporation, Rockville, Maryland.)

AD 67684

LECAL NOTICE

When U.S. Covernment drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

FSC 68-0671/

ESD-TR-68-143, Vol. IV

EVOLUTIONARY SYSTEM FOR DATA PROCESSING
PROG RAMMING SPECIFICATIONS

Charles T. Meadow
Douglas W, Waugh
Cerald F, Conklin
Forrest E. Miller

January 1968

COMMAND SYSTEMS DIVISION
ELECTRONIC SYSTEMS DIVISION

AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE

L. G. Hanscom Field, Bedford, Massachusetts

This document has been
approved for public release and
sale; its distribution Is
unlimited,

(Prepared under Contract No. FI9628-67-C~0254 by Center for Exploratory
Studies, International Business Machines Corporation, Rockville, Maryland.)

FOREWORD

This report presents the results of a study of the specifications
for an information system intended to support the design, production
and maintenance of large computer programming systems. Called
Evolutionary System for Data Processing, or ESDP, it was begun as an
internal IBM project in 1965 by the Center for Exploratory Studies
of the Federal Systems Division and continued under Air Force
sponsorship during 1967 and early 1968.

This work has been performed under contract number F19628-67-
C0254 for the Electronic Systems Division, U.S. Air Force Systems
Command. The project monitor was Mr. John Goodenough, ESLFE.

The authors wish to express their appreciation fnr the encourage-
ment and assistance provided by Dr. John Egan, formerly of ESD, and
their colleagues Dr. Harlan D. Mills and Mr. Michael Dyer.

This report is in four volumes: Volume 1, System Description;
Volume 2, Control and Use of the System; Volume 3, The CAINT Executive
Language and Instruction Generator; and Volume 4, Programming Specifica-
tions. This report was submitted on January 31, 1968.

This report has been reviewed and is approved.

St R M f
J A Sriaa T g .
2 K f” S S A N
SYEVIA R. MAYER WILLTIAM F. HEISLER, Col, USAF
Project Officer Chief, Command Systems Division

I

ESDP is a proposed system whose purpose is to acquire,
store, retriave, opublish and disseminate all Adocumentation,
exclusive of aqraphics, concerned with a large computer
proarammina activity. Documentation is deemed to consist, not
only of final or formally publishel after-the-fact reports, but
of workina files, desian and change notices, informal drafts,
management revorts--in fact, +the entire recordable rationale
unierlyint a programming svsten. Maximum attention has heen
concentratoed on the means of acquiring and organizing
documentation. Two major, complementary aopproaches are proposed,
The first is called Program Analysis and is a process of
extracting locumentation directly from comnleted prograns. The
second is called Computer Assisted Interrojatior and is A process
of elicitina information Adirectlv frem the programmer, througkh
on-line communication terminals. The former rprovides <canonical
Aata about the proaram's structure. The latter proviles
exnlanatorv miterial about all aspects of the program, anl in the
absence of cinonical data, may provide tentative structural
information 1s well. The conclusinn of the study qroup is that
FSNP i35 a feasible concept with present-dav technoloay and that
it will materially benefit using organizations in the production
of proarams and in guiding their =evoluntion Aas requirements
change. Tts value will be qgrea*er for larger oradanizations,
whose internal communications difficnltinas tend to cause truly
aiyantic inefficiencies. Tts implementation as 1 support system
for such projects wouldl reguires A siynificant quantum of
investment in order to proluce these hen=2fits and is predicatel
on tke use of a computer system delicatel solely to the use of
ESiDiP5%

a7

Volume 4

programming Specifications

I

SYSTEM DESCRIPTION

Snneral Approach to Proqramming

Hardware Assumptions

1Y

DATA BASTH
Proqgram Dascription File Set
Data Description File Set
Proqram File Set
Graphic Cnding File Set
Puhlicatinn File Set
Tnstruction Course File Sot
Dissemination File Set
Tnlex Fila Set

BRuffer File Set

T11

PROGRAM ANALYSIS

General
Oneration of Program Analysis

Additional Reguirements

IV

CONVERSATIONAL PROCFSSING

iv

10

10

11

16

19

v

TNFORMATION RETRIFVAL

ESDP Files
¥ile Building and Maintenance
Keyword File

Scarching

VT

PUBLICATIONS

VLK
BLLE PROCHSSING
Paquirements
"ationale for ESDP Approach

Prototvpe FESDP Index Implementation

VIIT

DIBYGGTING SUDPPOET

Tntroduction

Debugging Support Capibilities
Commands

lse of Dehuagaing Capabhilities

Methods of Tmplementationn

TY

RIBLTOGRADHY

20
20
20
22

22

2

29
29
29

33

36
36
36
36
3%

38

41

Figure

ILLUSTRATIONS
General ESDP System Concept
A Typical Dictionary Entry
A Typical Parsing Table Entry
Classification of Data Usage by a Program

Index Entry

vi

Page

14
14
17

32

I

SYSTEM DESCRIPTION

l. General Approach to Prograaming. The general architecture
proposed for the ESDP system 1is that wused for Operating
Systen/360-0ucued Telecommunication Access Method (0S-QTAM) (see
Figure 1). In such a system, terminals communicate with the
central processing unit via telephone 1lines and a multiplexor
channel. In the central processing unit, two or more programs
are operating asynchronously in separate partitions of high speed
memory under control of the 0S supervisor.

In one partition, the Message Control Program plus sone
additional QTAM code dispatches incoming and outgoing messages.
The Message Control Program makes use of core buffers (the number
and size being specified by the programmer) plus message gquaue
storage on a direct access storage device.

In the other partitions are the Message Processing
Programs. These programs perform all the ESDP processing
functions. They receive messages from and transmit messages to
the Message Control Program via GET and PUT macro commands. When
a message has been received, Aan ESDP controller, one of the
Message Processing Programs, must first determine what activity
the sender 1is involved 1in. For 1instance, it must recognize
vhether a messaqge is a response to a question imn interrogation
or, say, a query. Once this determination has been made, sone
type of housekeeping, depending on the particular message and
activity, is performed to initialize the ESDP functional
routines. Program control is then switched to the particular
module of ©programming required to perform the desired activity.
These modules interact with the system files and 1issue messajes
back to the terminals via PUT commands.

In addition to providing the <capabilities outlined
above, the operating system for ESDP must be concerned with the
following rejuirements: (1) More than one user terminal may he
communicating with any one program module at a time. This
requirement may best be met by assuring that the program modules
are reentrant. (Note that 1in our current experimental work wn
have wused PL/T which produces reentrant code.) (2) Differnnt
user terminals may be communicating with different ©prograh
modules at the same time. We feel that this requirement can
probably be met by a multi-tasking supervisor such as that now
used in 0S/360 with Multiprogramming with a Variable Numbher of
Tasks (MVT). This will provide for a primitive form of tinme
sharinqg by activating tasks whenever an I/0 operation occurs,
making use of a priority system for the tasks. For the systen
described, this type of time sharing should suffice, since there
should be no periods of lonhg processing, uninterrupted by TI/0
commands. (3) More than one user terminal may be accessing any
one data element at the same time. This will require that some
form of data base lockout be placed into the system.

Computer

Terminals

Communications
Lines

>

e ﬁMessage
Queues

Partition l Message
1 l Work
Message Control | Areas
Program 4 .
{
A
GE’ PUT
Partition
2-n

Message Processing
Programs

N
ESDP

—

N’

Figure 1. General ESDP System Concept

The general concept of ESDP 1is for a teleprocessed
terminal-oriented system. The terminals themselves should
comprise the following:

a. A cathode ray tube display with keyboard entry.

Most of the conversational processes will be performed
through this device. Light pen capability and/or vector Arawing
capability may be desired depending on the need for activities
such as production of graphics in the documentation. For the
strictly conversational documentation activities, generation of
an average-sized character set (e.q., 64 character set including
numbers and upper case 1letters) on the face of the CRT should
suf fice.

h. Hard copy printer.

It is often desirable to retain a hard copy of that
which has been displayed on the CRT. This can be accomplished
via a typewriter type printer (without keybhoard), the printing
being activated by command from the keyboard associated with the
CRT.

c. Line printer

Lin2 printing should be centralized so that high volune
outputs can be generated 1in the machine room for subsequent
manual transmittal to the requesting user.

d. Terminal polling

A round-robin polling system with priorities such as
that used by 2TAM seems appropriate. Of course, if inefficiency
results, perhaps the priority scheme should be revised so as to
be based on the particular activity, for instance, rather than
simply the terminal identification.

It 1is anticipated that during hours when normal ESDP
documentation activity is light, other programs can he run that
are not under the general QTAM-ESDP set up. Examples of such
proqrams are:

on the direct access storage devices 1in order to reuse spice
freed via deletion of records. This reorgqanizing is one tyne of
file processing that might be performed off-line. In addition,
there are normal wutility functions such as disk copyina, disk
printing, etc., that could fit in this category.

Pre-processors--There may ke some pre-processing
desired for the CAINT Executive Language. This is particularly
true when debugging macros’ are to be used. Such pre-processnHrs

could operate off-line.

2 Hardware Assumptions. Hardware has not been considered in
this study, except indirectly, when feasibility of attaining
various objectives was considered. There were, howvever, some

basic hardware assumptions underlying the study. These are:

a. Machine Utilization

A computing system will be dedicated to ESDP.

b. Machine Type

A System/360 computer with Operating System/360 was
used for the experimental programming 1in this project. This
choice of hariware, of course, is not mandatory. However, much

of the discussion in this report is based on S/360 with 0S and,
therefore, uses that terminology.

Tl

DATA BASE

We foresee the need for several files, or, 1in the
terminology adopted herein, file sets. While it would be
possible to store most of the information to be described below
in one monolithic file, this breakdown recoqnizes differing
frequencies of file modification, different processes to be
performed on data, and different means of control of access.

1. Program Description File Set. This file set contains a
logical record for each unit of programming. Its organization
will bear a close resemblance to the outline of a conventional
proqram description, but there is no permanent standard and it is
expected and encouraged that the content and composition of this

file will be shaped by the users to fit their own needs.

The major subjects to be covered, in a generalized form
of the file are:

o Tdentification--of the program, programmer, date,
e teE
0 Programn Structure--in terms both of the

hierarchical structure of the program anl of the
branching, or control, structure.

o Data BReferences-—the data items named by the
program and the nature of their use.

o) Logic Description—--both symbolic and natural
language descriptions of what the proaram does,
how, why.

0 Management and Status Data--information relative

to the program as an item being produced, its
schedule, progress, problenms, etc.

e} Tllustration References--references to flow charts
and tables to be composed by ESDP ani to be
printed with this program description information.
Also, references to other graphics, used for
illustration, which are not able to be storei
within the ESDP computer.

Except for the identification section, for which no amplification
is necessary, these items are discussed below in qreater detail.

a. Program Structure
This section would contain pointers to related UND's,

There are two general categories of relationship: hierarchical
and control. Hierarchical pointers would indicate subordination

or superordination, and control pointers would 1indicate entry
points or predecessor and successor U00P's. Entries from, or
exits to, label variables would be treated as a special case,
with the variable representing a program switch which might bhe
given a form of UOP status. Also contained in this section would
he a codification of the type of branch control (whether
unconditional, such as a PL/I GO TO; or conditional, such as an
IF or DO and the variables that affect the branch. In addition,
there would be narrative explanations of the control logic, or
pointers to such explanations.

bs Data References

The exact extent to which data documentation should be
split or duplicated between the program and the data description
files depends on the philosophy of management of the object
system. At a minimum, this section of a program description file
must 1list the data elements that occur in the program, and must
give the nature of the usage, such as a control variable (a
variable that directly affects a branching decision), a computed
value(set by an assign or DO statement) or any of a numher of
other categories of usage. The bulk of the actual description of
the data, as differentiated from the codification of the nature
of its use, will be carried in the Data Description File Set.

c. Logic Description

The essence of logic description is to tell what the

program does, how, and why. But each of these points is
subdividahle and answerable on more than one level of
abstraction. Hence, there may be a large number of individual

items contained in this file. It must bhe emphasized that the
logic description is not restricted to narrative data only. Many
aspects of a program®'s function can be codified.

d. Management and Status Data

Perhaps more than any other portion of the
documentation files, this will he the one most often changed to
suit individual user needs. The information to be collected and
the processing to be performed on it is largely a function of the
individual manager, who must satisfy his own requirements for
information plus those of his higher management and the
contractual requirements for system documentation.

The obvious kind of information to be collected has to
do with progress 1in meeting schedules and milestones, manpower
assigned, problems being met or anticipated, and budget data.
Mostly, the information will be collected by interrogation, but
some, such as number and dates of compilation, program lengths,
etc., can he acquired automatically.

e. Illustration References

We may group illustration material into three classes:
flow charts or tables that are required according to the systen
documentation plan, flow <charts or tables volunteered by the
programmer or file documentor to auqment some aspect of his
narrative, and other illustrative material that is volunteered,
but is not in flow chart or table form. The restriction on flow
chart and table form arises, of course, from the planned use of
standard graphic programs that will produce these <confiqurations
easily, but cannot handle the full range of graphic input. Thus,
if a programmer wishes to input a logarithmic graph, or a diaqranm
of two aircraft on a collision course, he will probably have to
draw these in the conventional manner, but include 1in the
machine-storel documentation, a reference to the illustration

copy.

Tn the program description file set will bhe stored only
pointers to the detailed illustration information, whether or not
stored within ESDP. We recommend this separation bhecause these
files will be large, and, while they may be updated whenever the
program is, they will rarely be subject to information retrieval
searches in the same way as detailed data in the remainder of the
file. A user may want to retrieve the information that is
displayed on a chart, but he will not normally want to retrieve
the detailed FLOWCHART instructions that orqganize the display.

2. Data Description File Set. The recommended approach for
documentation of data files is to <create a data descrintion
record for ~ach file or structure used in any program, with as
many working records as needed to give each user a chance to
document the data the way he prefers. Another version of the
descriptive record will be <created anl maintained by an
authorized COMPOOL, or data base, controller in whom will be
vested authority to make final decisions on data definitions and
attrihutes, and who <can delete working records at will. His
expected mode of operation, then, should be to review his data
items vperiodically, 1look at the «conflicting descriptions or
requests of the individual programmers, make his decision on
which version to accept or declare, and put the final decisions
into the permanent record.

Provision can be made, using the dissemination
services, to promulgate the data base controller's decisions
immediately to all programmers concerned.

The organization of the data description record will he
similar to that for a program. It will have the following major
headings:

o Identification

o) Flement description--the narrative and
other information about the item and its
use.

o Structure--primarily, this is wused for
higher 1level structures in order to
define the subordinate structure.

o] Using program references--pointers,
possibly some supporting text on what
effect the particular using program has
on the data.

0 Illustration references

3. Program File Set. This file set will contain the text of the
programs being documented. In addition, consideration will be
given to storing, within this file set, progranm change
information, separate from the program, itself., This will permit
a record to be kept of all changes, and this will pernit
programmers to make changes either to the latest version of a
program, any previous version, or both simultaneously. The
complete text of any version of the program could be retrieved on
request. Another possible class of information for this file set
is partially reduced program analysis data. This would be
intermediate output, produced during a program analysis run,
which could be saved to reduce the time required to ©process a
change to the progran.

4, Graphic Coding File Set. We recommend the use of a progranm
for the automatic production of flow charts and tables. In some
systems, such as FLOWCHART [1], graphics are assembled by the
issuance of commands on how to build them, in a manner similar to
computer programming. The Graphic Coding File Set would contain

these instructions.

The agraphic files may be updated separately from the
program or data files they illustrate, but this form of updating
should probably be restricted to changes in layout. Changes in
content or structure should be keyed to changes in the data or
programs being described, althongh the initiative for a change
may originate with either a program or data description change or
with a graphic change.

5« Publication File Set. This file set will contain partially

processed documentation, taken from any of the other files. The
preparation of copy for ©publication can be a time-consuming

process. Hence, partially edited material should be retained in
machine readable form for reprinting or for selection for
inclusion 1in differently-organized documents. This form of

storage is used by the IBM Administrative Terminal System {21, a
text processing system, a successor of which is recommended for
use in ESDP.

6. Instruction Course File Set. TInstructional material produced
through ESDP plays a dual role. It is used in its own right as a
system program, but it is also a form of documentation ani
changes in it must bhe keyed to changes in the programs or data
being taught. Hence, instruction courses can be stored as
programs, but must have appropriate pointers back and forth to
the documentation from which they were derived.

7. Dissemination File Set. These files will contain the profile

and distribution 1lists needed to operate the internal ESDP
dissemination system on documentation and changes thereto.

8. Index File Set. These files are those indexes and inverted
indexes used by the information retrieval system to carry out its
functions. These are also dynamic files, which are subject to

frequent change as the documentation files change.

9. Buffer File Set. Buffer files are dynamically created files

and are for use by the information retrieval systenm.

I1I

PROGRAM ANALYSIS

l. General. A Program Analysis (PA) program has been produced
by IBM [3] as part of 1its own 1internally sponsored ESDP
activities. This program accepts input in PL/I, 0S/360 Job
Control or 0S/360 Linkage Editor 1languages and compiles a
canonical or structural data file descriptive of the hierarchical

and control structure of the programs and their usages of data.

Source Code Analysis is performed by a set of compiler-
like analyzers which are oriented to a particular language. The
number of analyzers 1is dependent on the make-up of the user's
programming system. The role of each analyzer 1is 1identical
regardless of the 1language, namely to map source code into the
U0P coordinate structure and generate the data records associated
with it. In this way, each analyzer, which 1is necessarily
language dependent, can effect a comnon 1interface with the
system.

Three analyzers have been written, for 0S/360 JOB
Control Language (JCL), 0S/360 Linkage Editor Language, and
05/360 PL/I Language. This sample was selected to permit
experimentation with programming systems written primarily in
PL/I, of which the analyzer, itself, is an example. We note again
that the treatment of run-time languages (e.g9., JCL) as pro-
gramming languages 1is a «critical point since it is key to the
automatic analysis of system-wide interactions.

Current compilers and assemblers now generate source
code 1listings and cross reference lists for data variables for a
single program at compilation time. However, this 1s ordinarily
the extent of their automatic capabilities. Additional
programming information on program interactions within a larger
system, vrationale behind program 1logic and program groupings,
data flow through the system, and so on, are necessarily based on
interrogation-acquired documentation.

The analyzer parses the source program 1into elements
called Units of Programming (UOP). The current program produces
UOP's at the following levels:

JOB
LOAD MODULE
SOURCE MODULE (Compilation Unit)

CALL MODULE - Procedure EBlock

10

GROUP - BEGIN block
DO group
IF compound statement
ON compound statement

SEGMENT

For each UOP in a structure, a data record 1is created
which contains the appropriate structure, logic and data usage
information. This structure and logic data of the individual 1yQP
records is also the mechanism for creating the total structure of
a program system or any of its major components.

To make the programmer avware of how his program 1is

structured, a revised program 1listing 1is generated, which
graphically d2picts the coordinate structure ani 1labeling for
this proqgranm. This revised 1listing 1is useful, not only as a

guide to the files, but also as a picture of program execution
which may easily become obscure 1in the compiler generated
listing, particularly with free format languages where multiple
statements can be strung together in a single print line.

System-wide 1interactions of a program can he obtained
through the automatic analysis of the Object Module generated by
the compiler and the JCL deck that would be written for
execution.

Object module analysis yields information regarding
program interaction (external procedure in PL/T terms) in a
system. This process consists, basically, of extracting symbols
from the external symbol dictionaries of all the object modules
involved in a given linkage editor run, detecting module cross-
references anl, discriminating between data references and branch
references.

This information is critical when sets of programs are
linked together and manipulate the same data, since this 1is +the
source of most problems and delays Aduring integration of
programming systems where the various pieces were written and
debugged by different people.

Within 0S/360, the execution of a program would require
a JOB Control deck or program. The analysis would equate, within
the UOP records, the file declarations at the JOB level with all
references to these files down to the SEGMENT level. In a more
complex case, where condition codes and multiple job steps w=re
defined, this same correlation of program units and data usage
would have adled significance.

2 Operation of Program Analysis. The analysis of PL/I code is
performed in several phases. In Phase 1, PL/I source code 1is
read in, and blanks, comments, and constants are eliminated. The
remaining characters are translated throuqh use of a translation
table. The general effect of this translation is to replace the
source language string with numeric c¢odes in such a way that

11

alphanumeric strings are grouped in the higher number codes,
special characters in the lower number codes, and operation codes
in the middle. This is done so that in future processing, simple
limit testing can be used on the codes to determine the type.

An output string is organized in which each statement
is given a statement nunmber.

The statements are scanned and whenever labels, file
names, parameters, or condition names are encountered, a
dictionary entry is created, and a pointer to the dictionary
entry is stored with the statement.

When UOP defining statements (e.g., DO, BEGIN) are
encountered in the scan, entries are made in a parsing table.
Then, when stitements are encounteredj that end UOP*'s (e.g., END),
the table 1is searched to determine which entry is closed. The
table then contains the statement numbhers defining the limits of
the UOP's.

At the completion of Phase 1, the parsing table has
been filled, and the dictionary has been partially filled.

Phase 2 reformats the source text, indicating the
parsed wunits and statement numbers. The units are indicated in
such a way as to ease reading.

In Phase 3, DECLARE statements are analyzed. This 1is
done using an array of attribute masks., Fach data attribute is
represented by a 32-bit mask (row) . Each element, A(i,])

represents the interaction of attributes i and j. If A(i,J) is
one, then the two attributes can co-occur. Zero means that they
cannot CoO-0CCure. For instance, EXTERNAL can co-occur with FIXED
but not with INTERNAL. ©Each attribute is looked up in the table
of masks and all of the masks are AND'ed together. The result is
a 32-bit string with ones representing the attributes of the
DECLARE*d data. Note that by starting with the assumption that
all attributes apply and then ruling out impossibilities,
defaulted attributes are also depicted. Scope tables are
generated for the data and these plus the attribute masks are
added to the Jdictionary, which is now completed.

At this point in the Program Analysis process, two
internal tables have been built--the dictionary and the parsing
table. Their formats are described below.

a. Dictionary

(1) Bytes 1-2 are reserved for a hash chain
during the first three phases of analysis and for a data type
code during the latter phases.

(2) Bytes 3-6 contain the scope data for the
entry in terms of procedure and statement numbers.

12

(3) Bytes 7-8 contain for structures, pointers to
structure elements, and for labels, the statement number of the
label declaration.

(4) Bytes 9-28 contain the 1identifier as 1t
appears in the source code.

(5) Bytes 29-32 contain a bit table that defines
the unique attributes or characteristics of the entry.

() Bytes 33-40 are a set of offset values that
point to the overflow area. VNote that certain PL/I attributes
carry value information, e.g., precision, bounds of dimensions,
file environments, etc. This value data 1is stored 1in the
overflow area and the offsets are used to delimit the start and
stop of various values.

{(7) Bytes 40-119 contain any values associated
with attributes.

Figure 2 illustrates a typical dictionary entry.

b. Parsing Table

To delimit UOP structures and keep track of 7JOP
nesting, this table is generated during the analysis. Tt also is
delcared as an array of bit strings where each element represents

a single UOP. The format of each element is as follows:

(1) Bit 1 - status switch used to determine if
UOP has been closed.

(2) Bits 2-9 - UOP level code vwhere code runs
from 1 - 6, corresponding to JOB level to Segment level.

(3) Bits 10-73 contain the procedure name or
label on the including procedure.

(W) Bits 74-85 contain the statement number of
the first statement in the UOP.

(5) Bits 86-97 <contain the statement number of
the last statement in the UOP.

{6) Bits 98-106 contain a dictionary pointer to
the label associated with the UOP, if any.

Figure 3 illustrates a typical parsing table entry.

13

Hash Scope Structure Data Name Attri- Table Over-
Chain Pointers butes of flow
Offsets Area

Byte 1 3 7 9 29 33 40

Figure 2. A Typical Dictionary Entry.

Including First Last
Switch Level Procedure Statement Statement Dictionary
Number Name Number Number Pointer
Byte 1 2 10 74 86 98

Figure 3. A Typical Parsing Table Entry.

14

The string generated in Phase 1 is read in Phase 4, ani
a new string 1is produced that 1is completely coded. All
identifiers are replaced with dictionary pointers.

Phase S5 determines data type for all data in the
dictionary and adds a data type code to the dictionary.

Phase 6 reads in the parsing table and reads in the
program statements, one at a time. From these it generates the
UOP records and with the additional input of the dictionary it
generates the trailer records. These are written out on tape.

The JCL cards are used by the JCLSCAN Program, and each
card 1is examined to determine if it is a JOB card, an EXEC card,
a DD card, or other. <Cards in the other cateqgory are immediately
rejected. JOB cards are further examined for condition codes at
the JOB level. If they exist, they are stored on an analysis
list.

For EXEC cards, the program stores the job step name in
the analysis list and then determines if the name refers to a
catalogued procedure. If it does, the name is marked as job
level. If it does not, the name is marked as load module 1level.
The EXEC <card 1is then checked for JOB step parameters, and if
there are any, they are stored in the analysis list. The saime
process 1is followed for JOB STEP condition codes.

For DD cards, the DSNAMF is stored in the analysis list
along with any disposition parameters.

After all of the JCL cards have been read, the analysis
list 1is further processed, the process varyinqg with the type of
JCL statement.

JOB - The UOP name is extracted from the jobh statement
label field. The entry and exit portions of the UOP are marked,
and if condition codes exist, subordinate UJOP are marked as exit
points.

DD - A data reference entry is made in the UOP for the
DD.

EXEC - JOB STEPS become subordinate units to the JOBR
uoP. The UOP names are the JOB STEP names. If J0O8 STEP
parameters exist, a data reference entry is made using a dunmy
name. If JOB STEP condition codes wexist, the subordinate
transfer table is marked accordingly.

The Linkage Editor Analysis Program (LEAR) hegins by

reading from the primary 1input streanm. A test 1is made to
determine if the first entry in the stream is a 1linkage editor
command. If it 1is not, the entry is processed as an object

module. If it is, another test 1is made to determine if the
command 1is an INCLUDE statement. INCLUDE statements effact
readings from secondary input streams. All other «command types

15

are ignored. Object module processinag continues in the primary
stream until an INCLUDE is found. Then, processing shifts to the
secondary stream. In the secondary stream, the first column of
the card image is checked for a blank (indicating command), a 12-
9-2 punch (indicating an object module), or any other (indicating
a load module). The first ¢two are processed as previously
discussed and the third (load module) causes a load module
subordinate unit entry to be established.

Once all of ¢the 1linkage editor object modules, load
modules and commands have been processed, a UOP record is formed.
This UOP is in the same format as a PL/I UOP.

3. Additional Requirements. There must be added to the program
analysis implementation an incremental analysis capability. When
a programmer makes a change to an existing program, he should not
have to run the &entire program through analysis again. This
process now takes an amount of time on the same order as a full
compilation, hence in a 1large system it «could become a
significant drain on computer <capacity if repeated of ten.
Tnstead, the approach recommended 1is to have ESDP store the
latest copy, and let the programmer make changes by use of ADD,
CHANGE, and DELETE commands, treating his stored program as a
file. TIn this way, PA need only analyze the changes and make
minimal modification to the <canonical data file, and new
interrogations can be initiated only on those portions of the
program affected.

Mora detailed information than that produced by the
present PA program is needed for classifying the manner in which
data labels are used or referred to within the program text. For
a variety of reasons {e<g.., making up more detailed
interrogations, assisting in test planning, assisting in
debugging, anl providing better cross indexing of documentation),
ve feel that data usage should be classified in as much detail as
possible. Furthermore, the 1information desired is availabhle
through the program analysis function, but currently is discarded
rather than saved (this 1is also true of compilation). A
hierarchical classification code should bhe used for each
appearance of a data label. This code should reflect whether the
item is changed by this usage or not; whether it is changed by
being assiqned a new value or having a new value read in:
wvhether it is used without bheing changed; whether when used in an
assignment statement, it is used as an item in itself, or an
index to another item, a control item, etc. A first
approximation to such a classification system is given in Fiqure
4, which also appeared in Volume 1.

16

i.

Context of

1.1 Assig
1.1-1
)

Appearance

nment Statement

Computed Value
Argument

1.2 Control Statement

Is21
L. 22

Variable I/0 Command

Branching or Transfer Command

1.2.2.1 Argument or condition statement (IF,
ON wwe)

1.2.2.2 1Iterative Control Variable (DO)
1.2.2.2.1 1Initial index value
1.2.2.2.2 TIncrement
1.2.2.2.3 Maximum value or limit

1.2.2.3 Vvariable address

1.3 Subroutine/Function/Macro Calling Sequence

1. 3%
l1.3.2

Transmitted to SR/Function/Macro
Received from SR/Function/Macro

1.4 Data Declaration Statement (or other non-executahle
statement)
1.5 TInput/Output

Je5al

la5.2

Input

1.5.1.1 Tnput Control Variable

1.5.1.2 Data Element read in

Output

1.5.2.1 Output Control Variable

1.5.2.2 Data Element written out ot transmitted

Change Status

2.1 Value
b e
Qearlier?
2l 3

2.2 Value

Structural

Changed by Containing Statement
Value Directly Assigned by Assignment Statoment
Value Directly Changed by DO Statement
Value Directly Changed by Variahle I/0 Statemoant

not Changed by Containing Statement

Role

3.1 Data Element is a Structure or Array

3.2 Index
s 2.1
3.2.2

or Subscript
VALUE OF AN Index
Element of an Index Term

3.3 Scalar Itenm

Figure 4.

Classification of Data Usage by a Program.

17

Another aspect of program analysis (or possibly of
information retrieval) to be borne 1in mind 1is that, as the
documentation files grow large, there will be inevitable errors,
such as programmers misnaming programs, submitting the wrong
version of a program for analysis, entering changes 1incorrectly
(resulting in an actual program that differs from what the author
thinks it is), etc. These are normal mistakes of any programming
project and, in a purely manual system they can be tolerated and
relatively easily reversed. The documentation file system and
the program analysis system must be so designed as to anticipate
such errors and, while it is not ESDP's responsibility to detect
them, it should be ©possible within ESDP to correct them with
minimum difficulty.

18

IV

CONVERSATIONAL PROCESSING

A thorough description of the <conversational 1lanquage
and processing required is contained in Volume 3 of this report.
Programming of the conversational routines represents a
considerable share of the entire ESDP implementation effort. The
scope, techniques and other aspects of the programming required
should become evident from the discussion of the conversational
activities and 1languaqe contained in that volume and therefore
will not be further discussed here.

19

v

INFORMATION RETRIEVAL

1. ESDP Files. The files handled in the ESDP system include the

following:
a. Program Description File Set

This file set contains a record for each UOP in the
object systen. The information in the file may be derived
through program analysis, interrogation, or both with the source
being identified.

b. Data Description File Set

This file contains a record for each Unit of Data
(u0OD). Here, the information is obtained throuqh interrogation
only. UoP and UOD are linked via pointers since the data are
referenced in UOP.

c. Index File Set

A file is build of keywords indicating for each the UOP
or U0OD and IEN associated with the key word. The key words are
extracted automatically at the time that a response to a gquestion
is entered during interrogation. At that time, the UOP name of
the UOP currently the subject of the interrogation and the TIFEN
associated with the question are appended to all key words in the
response.

diz Ruffer File Set

Provision 1is made in the ESDP concept for general file

handling capabilities. Programs that interpret file format
tables for file accessing will be included. 1In addition, file
building may be done on line as well as off line, The intended

use of the special files is as personalized subsets of the ESDP
data base. It is anticipated that this feature would be heavily
used by systen managers to create, update, and search
personalized management information systems.

2. File Building and Maintenance. Creation and modification of
UOP records and UOD records are planned in ESDP to match the
changes in the object system of programs. Records are created
vhenever the system becomes aware of a new UOP or UOD. This

information may be acquired in any one of a number of wvays:
a. Source Code Parsing
Program Analysis 'creates UOP's by parsing source

language code. UOP's created are named either by program label
or by a combination of containing UOP name and statement numbers.

20

bia Source Code References

References may be made in the source code to UOD or
other UOP not subject to Program Analysis. The appearance of
these references in source coding will cause the creation of the
appropriate records and names will be taken from the source coile,

c. Interrogation

UOP or UOD may also be named by the programmer at a
console in the interrogation process. This can occur during
design interrogation or during interrogations performed after the
object system program has been subjected to program analysis.
Naming of these UOP's and UOD's is a simple process since the
programmer assigns these.

Whenever changes to source code are submitted for
analysis or incremental interrogations are processed, changes to
data 1items in existing UOP or UOD records are likely to take
place. The changes can take the form of ADD, DELETE, or 2FEPLACE
({DELETE and ADD). The way in which thke system handles the file
updating will depeni on the data elements to be changed and the
manner in which the requested changes are entered into the
systen.

ADD'ed data items derivel from interrogation may be
handled directly since a full record is created for each U0OP or
UOD whether or not all of the data item fields contair
information. Therefore, an ADD amounts to storing the new
information into an appropriate position in the <core-resiiant
image of the NMOP/UOD record, and rewriting the record to the disk
file. Cross references are added in the normal manner. DELETR's
and REPLACE's present a more difficult updating prohlem however.
Again, data may be deleted in the same manner as it was adled
above, In this case, however, cross references must also he
updated. For instance, assume that a programmer wishes to delate
textual information associated with A given IEN. The text nav he
deleted, but keyword references to the text must also bhe. This
will be don= by performing a second keyword extraction on the
text to be deleted. The keywords extracted will then be used as
search arguments for the keyword 1index recoris so that the
appropriate IEN pointers may be deleted.

The general concept for ESDP file updating as a result
of changes to source programs is to rerun Program Analysis on the
UOP containing the changed UOP, 01d 00P records will not he
erased at this time, Through the reconciliation process,
information associated with the 0ld UOP records will be linked to
the new UOP records. When the reconciliation has been completed,
the o0ld records will be Adeleted. Keyword references must he
updated during the reconciliation process. If text from an TEN
of the o01ld version of a record is to be moved to another TEN oOf
the new version, the keyword updating amounts to changing the IFN
pointers in all of the appropriate keyword records. TIf new t2xt
is typed 1in, keywords are extracted in the normal fashion. For

21

all deleted records, the keyword deletion is performed as in the
case of deleted text through incremental interrogation.

3 Keyword Pile. An experimental keyword extraction program is

now being tested. This program operates as follows:

(1) Responses to questions are subjected to
keyword extraction under the control of the CEL Progranm.

(2) Responses are edited to eliminate deleted
lines, to eliminate deleted characters (backspace and retype), to
eliminate carriage returns, and to convert all letters to upper

case. This is done to eliminate mismatches in the keyword list.
For instance, "Computer" without such editing would not match
with "computer" and similarly carriage return characters,

backspace characters, or delete <characters will eliminate any
possibility of an exact match.

(3) Each word 1in the response is compared with
words in a common word list. Common words are not stored as
keywords.

(4) Each keyword (i.e., not common word) is
stored and is tagged with the IEN associated with the question to
vhich this is a response. If the keyword 1is already recordeqd,
the IEN 1is added to a list of IEN's in which the word appeared.
In addition to the TEN, the keyword «could be tagged with 1its
position within the Tresponse. This would enable subsequent
retrieval based on position of keywords in a response.

4. Searching. Information in ESDP is indexed in four ways:

a. Program Element

One index to a piece of data is the particular elemant
(uoP, U0UOD, etc.) with which it is associated. This information
is obtained through interrogation for design documentation and
through program analysis for final documentation.

b. Keywords

Another index is the keyword index. The keywords are
extracted automatically from responses to interrogation
questions.

c. Data Names and Labels

These are character strings used in the program or the
program design being documented. They, too, serve as indexes to
the UOP or UOD records. ‘

d. Hierarchic Code

ESDP employs a hierarchical coding system and attaches
a code number to each element of data. This number 1s called an

22

Information Element Number (IEN). The structure of these
numerical codes is intended to classify any data collected by
ESDP about an object system of proqranms.

Searching of the ESDP files is requested from terminals
or ESDP progranms. The query language 1is basically the same
subset of PL/I as is used for executive programming. Again, the
IF statement 1is the core of the subset language. The user may
express complex Boolean relationships as the conditional
statements. For instance.

IF (AD> B) & (C = *1') (A + C=1= "7

is an example of a conditional statement. Here, A, B, and C arec
data base items, uniquely identified. The system must be capable
of so identifying data base elements and will do so through use
of symbol tables.

An additional feature of ESDP information retrieval is
the ability to specify a file as the disposition for retrieved
data. Thus, the user <can dynamically create files fron
information in other files. He may perform cyclic searches by
retrieving data, placing it in a buffer file, and then using the
retrieved elements as search criteria for another search.

Cyclic retrieval is defined as the use of information
retrieved from one guery as part of the statement of a suhseguant
query to the same or a different file, so that a cycle of query,
retrieval, query based on retrieval data, retrieval, etc., can be
set up.

Dynimic file creation also allows for creation of small
"customized" files for use only by a particular individual or
organization. These files would be organized for the particular
application at hand.

Outoputs of results from searches are highly flexible in
ESDP. A user may specify (1) mode of output ({printer, console,
etc.), (2) data manipulations (sorts, totals, other calculatioas,
etc.), and (3) formatting (page widths, spacing, titles, etc.)

The 1information retrieval function should be designed
to operate both as a subsystem of other programs and to service
directly queries submitted through on-line terminals or through a
background, or deferred, job queue.

Every effort should be made to integrate the guery
language with the Interrogation/Instruction executive lanquaqge,
using a common syntax and a common interpreter or compiler.
Probably, a compact form of query statement will be used by the
programs, with the human-written form translated 1into this
compact form. Programs ' calling information retrieval would
directly fill in this table, somewhat as a calling sequence. The
human user then has the options of writing out his query directly
in this compact language if he wishes and is adept enough,

23

writing out the gquery 1in a more natural form (not natural
lanquage, but a programming-like language) or building his query
gradually through a computer assisted, conversational process.

In regard to performance, while specifications have not
yet been developed, it seems that the following are required:

o) Records must be retrievable on the
obvious characteristics which are
usually unique identifiers: address,

sequence number within a file, value of
a key or sort field.

0 Records must also be retrievable on the
basis of Boolean combinations of these
or other record attributes, each

attribute (probably) being able to be
stated as one or more relationship
statements, as SALARY = 10000 or AGE
<40.

o Individual items, fields, arrays, sub-
records, etc., can be specified as the
information to be retrieved fronm a
record--the entire record need not be
retrieved in response to a query. Thus,
the burden of extracting the exact
information needed from a record 1is
placed upon the retrieval system, not
the calling program.

o) Information called for may be ordered to
be held in a buffer or temporary storage
area for later reference. In particular,
this requirement 1is 1imposed to make
cyclic retrieval possible.

o The requestor, whether a person or a
program, may specify the recipient of
the information, which need not be the
requestor. In other words, an IR system
user may call for the retrieval of
information and its presentation to sonme
other person, output device, or program.
Thus, the retrieval system can be used
as an internal message handling systen.

In ESDP the user will specify explicitly what are
usually implicit in a query--the precise data to be retrieved
{not the entire record containing what is wanted), the place to
store it (if other than tle printed page or a CRT console) and
the addressee, who is usually the requestor.

24

It should be noted that the requirements for a systen
responsive to both human requestors and programs, with one of the
using prograns being a query acquisition program that
communicates with the human user.

A feature that will be required of ESDP will be to
index nmnarrative interrogation responses to permit access by the
retrieval system on the basis of response content. There are
several reasonably well established techniques for doing this.
One is to use a list of "common" words (articles, the forms of
the verb to be, etc.), delete these from responses, truncate the
remaining words at five or six letters and use them as a keyword
index. Alternatively, a dictionary of system terms can bhe built
and this used to identify words in a response that ought to he in
the index to the response. This list must be constantly modifieqd
to be sure it is up to date. Another automatic technique that
might be useful is to require that a special character precede or
follow a dJdata element, program name, or other system label when
used in text. In this wvay, any cross reference in a response can
he readily identified.

More generally, the 1logic of computer assisted
interrogation gives us the following information about a
narrative documentation item, before it has heen elicited from
the programmer:

0 Subject of the question--name of UOP or
data element, particularly aspect being
questioned.

o] Structural relationship, for Cross-

referencing purposes, with other pro-
qrams or files.

These 1items, combined with keywords extracted from the response,
give the potential of a very rich keyword 1index for use in
querying or in automatic dissemination. The same items can he
used to form an index in each published report. These 1indexes
would, of course, be automatically modified if the Dbasic
documentation were modified, either through interrogqation or
program analysis.

We anticipat= that some number of standard queries will be
previously written and invoked by the wuser as he needs then.
Some of these gueries may be complete as stored and some may need
completion or assignment of values to parameters throuaqgh
interrogation.

25

This type of standard query should be guite easy to
implement. The majority of queries, however, will be
unanticipated. These will be processed through an 1interpreter
proaram designed especially to operate on queries expressed in
the CEL. The interpretive approach is dictated since compilation
of queries cannot be performed rapidly enough to permit an
efficient on-line systen.

Many information retrieval queries will be of a form in
which a single data file is used and a single IF statement is
suf ficient to decide upon record selection. Often, the key of
the record will be given so the desired record may be immediately
retrieved., TIf the key is not given, the implication is that each
record must be examined for its compliance with the query, a
process considerably shortened by the use of inverted indexes, if
they exist. Checking for the existence of these indexes, and
making use of them, is a function of the interpreter.

In a typical query, the program will have heen written
in skeleton form, and the remaining data is acquired at the time
of invocation. The items acquired are:

o Record selection criteria--a single TIF
statement, although containing any nunmn-
ber of clauses.

o The "THEN" functions--what to do with a
selected record, e.g., RETRIEVE items A,
B, C, retrieve A to B(1l,I) ("retrieve
item A and place it 1in record I of
Buffer File 1.")

o The ®"ELSE" functions--iteration 1lojgic
will be built into the original, but the
user can add functions, He may, for

example, choose to retrieve on the basis
of a false IF condition.

o Processing of retrieved output that has
been stored in a buffer, eg., SORT (Bl)
on B(1,1), i.e., sort file Bl on the
first field of a record.

o} Additional commands, such as DEFER,
SAVE, etc.

26

VI

PUBLICATIONS

There are several classes of publications, with fairly
important economic differences among them. There will be a class
of output for design notes and change notices. This class will
be characterized by large volume and high frequency of 1issue,
especially early in a system development cycle. These documents
must he disseminated fully and rapidly. There is no great neced
for many of the niceties of publication that are useful in other
forms of documentation. They can be printed at the consoles used
by the recipients, or they can be batch printed on a high-speed,
centralized printer and disseminated throuqh the organization's
regqular internal mail system.

As design and production progress, programmers,
designers and wmanagers will want fairly complete documents on
their own and closely related programs and files. These will he
used for ready reference, and possibly for making notes to be
nsed later, during interrogations. This class of documentation
is characterized by larger documents of lower frequency of issue,
but probably benefitting from more careful physical layout and
printing. They will, of course, change often, but many times the
holder of such reports can attach a change notice directly to
this report copy, or make a hand-written note thereupon. He nced
not reproduce the entire report every time there is a change to
> 5.

A third <class of documentation 1s the formal
documentation normally produced at the end of a project, or for
major progress or milestone reports. These are printed much less
often than the others, but require many printing features not
always available on computer-generated documents.

It appears, at this point, that the 1logical
capabilities represented by existing programs, such as FLOWCHART
[1] and Administrative Terminal System [27], will handle most of
these documentation problems.

ATS offers all needed features except ability to hanile
graphics. It offers a much wider <choice of type fonts when
printing at a terminal with changeable type elements, and the
ability to underline text. Variation 1in type fonts for
programming documentation 1is useful to help Adistinguish, for
example, hetween labels or data names and normal English usage,
as SPEED is a data item, but speed is a rate of motion.

AUTOCHART (4] enables the entry of flow charts and
tables. It is designed to accept manually prepared input, hence
should be able to interface smoothly with the interrogation
processor. The designer does his own flow chart layout. The
compensation for the extra work of doing this is a compact chart
organized in the most meaningful way, to the author. Tables and

27

charts can be modified without complete regeneration, using an
updating interrogation, as in CAINT.

28

VII

FILE PROCESSING

l. BRequirements. PFrom an operational viewpoint, ESDP imposes

the following storage/retrieval requirements:

a. Data stored on or transferred to bulk storage must
be directly accessible to satisfy a broad range of user query
requirements and data storage requirements from on-line consoles.

bis Large data base processing capabilities must be
provided in order not to restrict the size of user programming
systems.

c. Evolutionary file growth must be accommodated since
at the outset of the programming development cycle the ESDP files
are empty and evolve as the user's programming system develops.

(ot Highly variable record 1lengths must be allowed
since these are dictated by the varying characteristics of the
programs comprising the user's programming system.

e. The processing cannot rely on predetermined
knowledge of the distribution of search keys, used 1in accessing
data, since these are dictated by the symbol coding conventions
adopted for the user's programming system and by his natural
lanquage responses to interrogation.

&7 Certain files are directly related to others. For
example, keywords are related to the UOP in which they were used.
Therefore, access to one may necessitate access to the other.

The ESDP file processor addresses these requirements and attemnts
to provide a solution that effectively handles each requirement
within the total context. While this may not be the optimunm
solution for any given requirement, when considered hy itself, it
does cope with the totality of requirements 1in an effective
fashion.

A total file management or information processing
system was not considered to be an appropriate development hased
on ESDP requirements. The preferred approach was to develop a
set of generalized modules to perform discrete functions which
wvould be usable throughout the ESDP systen.

Experimental versions of the file processing routines
have been written in the PL/I 1lanquage. The physical file
processing uses the Basic Direct Access Method (BDAM) [5]) throuqgh
PL/I. All data sets are physically organized by regions, where a
region is defined as Aa° unit of storage, equivalent to a disk
track. This equivalence 1is based on the current PL/I
implementation and may vary as other storage devices are
supported in subhsequent implementations.

29

2. Rationale for ESDP Approach. The following discussion is
limited to accessing techniques for files where data or records
must be directly accessed. It excludes techniques which rely on
sequential data organization and on a total file scan. While the
latter have application in certain classes of retrieval problens,
this is not the case in the ESDP system, since we are dealing
with a large data base and a non-batched query/retrieval
environment.

The accessing problem is one of uniquely locating each
unit of data within a file. Two general techniques can be used
to perform this 1location function; namely, table look-up and
randomization techniques.

Let us consider randomization techniques first. These
are based on some arithmetic manipulation of the character codes
of the name or key for the data to be located. The manipulation
results 1in an address for the peripheral storage device at which
the desired data is stored. Numerous technigues Aare available
for randomizing or manipulating the character codes. Fach is
effective in a given application because it is tailored to the
peculiar characteristics of the names or keys used 1in the
application. However, no techniques exist which guarantee a
unique transformation in every case. To handle the problem of

non-unique transformations, so-called fchain! processing
techniques must be employed (€« guy hash tables). The
effectiveness of a technique 1in any given application is

dependent on how well it restricts the size of chains and on the
overflow procadures adopted for chain processing.

For the ESDP system, randomization techniques were
rejected as the bases of the file accessing mode. First, as
noted earlier, the names or keys used in ESDP file accessing are
dictated by the symbol coding conventions adopted for a user's
programming system and his natural language responses to
interrogation. They cannot be predetermined, No known
randomization technique exists which can produce satisfactory
results, given any key set.

Second, randomizing techniques are useful only for a
single access path to file data (i.e., access through a single
key set). Because of the nature of the data in the ESDP files,
multiple access paths must be available to the same data. Thus,
table look-up techniques would be required to handle the
secondary key sets and access paths.

Randomizing techniques are more effective 1in loosely
packed file situations. Efficiency drops sharply as denser
packing is used. The resultant increase in storage requirements
cannot be offset by comparable table look-up storaqge
requirements. Thus, this technique would unduly tax storage
regquirements. File mainte€nance also becomes a probhlem if
extensive chains develop.

30

The alternative to randomization is some form of table
look-up which is the method employed in the ESDP file processor.
Table look-up techniques employing indices have been used in many
other systems and are the basis of the index sequential accass
method in System/360. Essentially, a table entry is created for
each name or key used in accessing a file, and an address of the
appropriate file location is stored with the key. When the table
is searched, the required storage key can be obtained directly.
Various searching algorithms can be used depending on the
ordering of the keys in the table.

The most efficient searching techniques require an
ordered (typically alphabetic sort order) table based on key
characteristics. A major problem arises with these techniques
when applied to evolving tables or indices. Fither strict orier
is maintained by physically rearranging the 1index when new
entries are inserted or chaining techniques are used. With the
latter technique, new entries are not inserted in sequence bhut
stored separately and a reference inserted at the required point
in the sequence. To avoid extensive chain processing, file
raintenance of the indices is periodically required, with the
frequency of the period dictated by the index growth pattern.

To avoid this maintenance and reorqanization probhlean,
the ESDP file processor uses a different technique for index
building and searching, which 1is a take-off on existing list
processing ideas.

In the ESDP file system, the index 1is treated as a
group of entries which are ©physically strung together into a
list, not necessarily contiguously, and which are 1logically
ordered or sequenced by the use of pointers or address indicators
wvhich are appended to each entry. Because of this uncoupling of
the physical and logical ordering of the index (or any list), we
can eliminate the 1index reorganization problem, and with some
other simple techniques, the index maintenance problen.

A binary tree structure was selected to permit
efficient search strategies, based on binary search techniques.
The form of the index entry (or structure node) adopted for the
ESDP case is shown in Pigure 5. Here:

a. The Index Key Field contains the key or name useqd
to access file data. This field contains such elements as the
names of the (1) Units of Programming (UOP); (2) data variable
names; or (3) descriptor terms (i.e., keyvords).

h. The Low Sequence Pointer contains the address of
another index entry whose key is lower in sort sequence than the
key of the record being examined. Similarly, the High Sequence
Pointer contains the address of a record whose key is higher in
sort sequence than the key of the record being examined.

c. The Data Field contains any additional data that is
desired to be stored in the index. Por ESDP, this field could be

31

Index Key Field

Low Sequence Pointer High Sequence Pointer

Data Field

Figure 5. 1Index Entry

32

used for citation lists, disk addresses and allocation and
addressing controls.

This general form wvas defined to permit the
implementation of a single program to perform index building and
searching of a variety of indices, each of which had a different
svecific organization. As typical in list processing, an initial
pointer or 'anchor' is maintained that points to the first index
entry or head of the list.

3. Prototype ESDP 1Index Implementation. Typically, list
processing techniques have been applied to lists which can bhe
maintained in core memory. For the ESDP problem, the file sizes
and 1index requirements are too large to justify core resident
indices; thus, some different techniques had to be employed which
could operate with a disk resident index. First, 1indices were
seqmented and these segments were the units for storing and
retrieving from disk. The selected seqment size was set at the
track size of the disk unit used. The following PL/I structure

declaration defines the segment format usedl:

SEGMENT FORMAT

1 STRUCT,
2 ID BIT (8) /*¥Index Identifier */
2 ANC bhit (8) /*Next available entry pointer %/
2 MINSTRUCT (N),
3 KXEE CHAR (M), /*Index Field x/
3 LOW BIT (16), /*Lcw Sequence Pointer %/
3 HIGH BIT (16), /*¥High Sequence Pointer #*/
3 ENT CHAR (0), /*Data Pield */
3 ENT CHAR
where

N, M, O take on different values depending on the particular
index characteristics, such as size of search kXey, extent of
data field, and maximum number of entries per segment.

ID is a one byte code identifying all segments in the same
index.

ANC is a pointer that indicates which entry in the segment
can be used for the next index term to he stored. If the
value of ANC is zero then the segment has the maximum num-
ber of entries or is full.

Each index segment must be initializel before operation as
follows:

a. Each index field (KEE) is set to binary zero.
b. Each high sequence pointer is set to binary zero.
c. Each low sequence pointer is set with the =subscript

value of the next entry in the array (MINSTRUCT). LOW
(N) is set to binary zero.

33

d. ANC is given the value (g1l) (i.e., initially the
first segment entry is to be used for the first index
entry in the segment).

A generalized index search routine has been wvritten
which has multiple entry points depending on the number of
discrete indices. (At present, eight indices are maintained; six
corresponding to the six UOP levels, one for data definitions and
one for keywords.) Upon access, this routine reads the first
seqment of the specified 1index, which contains the anchor or
start of the index list. It begins comparing the passed search
key against the KEE's (stored keys) in the segment. If this is
the first entry in the index, then KEE (1) in seqgment one equals
binary 2zero and no match is found. The no match occurs whenever
the contents of KEE differ from the passed search key. If the
passed key and the entry in KEE match, then the routine returns
to the calling proqram and passes back the subscript value of the
matching entry and disk address of the index segment, <currently
in core memory.

When a no match <case arises, a check 1is made to
determine if the passed key is less than or greater than the
index entry (KEE) being compared. Then, either the low sequence
pointer (LOW) or the high sequence pointer (HIGH) is wused to
determine the next entry against which a comparison is to bhe
made. Before picking up this next entry the following checks
have to be made on the pointer value:

a. If it is equal to binary zero, then we are at a
terminal node, 1i.e., an entry for the passed key does not exist
in the index. 1In this case a zero subscript value 1is returneqd
that indicates no matching entry (terminal node) to which a 1link
must now be made. The back pointer will be either a negative or
a positive value, depending on whether the link should be made to
the terminal node's 1low or high sequence pointer, currently in
core memory. As usual, the disk address of the index segment is
also returned,

b. If it 1is 1less than a threshold value, then the
value is a subscript to an entry within the 1index segment,
currently in core memory. The threshold is current set at 25§
which is the maximum number of index entries permnitted imn a given
segment., The search program uses the subscript to pick up the
next entry and repeat the comparison operation.

c. If it is greater than the threshold, then the value
has a double meaning; namely, it contains the disk address of the
index segment in which the next entry can be found and the
subscript value of that entry within the segment. The search
program uses the disk to overwrite the current core resident
segment with the new segment. The subscript value is then used
to pick up the desired entry and repeat the comparison loop.

34

Thus, two returns from the search routine are possible,
either a match or a no match. 1In the match case, the calling
program performs whatever processing is required using the index
entry and rewrites the index segment to disk upon completion, if

the specified index entry has been modified. In the no-match
case, either an error condition exists or the calling program
wants to add 3 new 1index entry. In the former case, sone

appropriate error processing should be performed. In the latter
case, i.e., index entry load, the calling program is responsible
for finding an empty slot that can be used for the new iniex
entry. To do this, the ANC Field of the index segment 1is used
since it points to the next availahle slot in the seqgment.

Tf the ANC value for the index segment, currently in
core memory, is non-zero, then the new entry can he 1inserted 1in
the current segment and the ANC value is the subscript to this
available space. Before using the 1indicated entry space, the
calling program must replace the current ANC value by the value
of the LOW pointer in the indicated entry space. Thus, for
subsequent users, ANC will have an appropriate subscript value
and continue to point to the next available entry. The new entry
is initialized as required by the calling program and both LOW
and HIGH pointers are set to zero, making the new entry a
terminal node. The returned back pointer value is used to make
the necessary linkage with the last compared key to preserve the
logical ordering of the index.

When the value of ANC in the ~current core residant
segment cequals zero, then the current segment is full and cannot
hold a new index entry. Since the LOW pointer of the last entry
in each segment i1s initialized to zero, when this entry is used,
ANC will pick up a zero value., In this case, empty space must be
found in some other segment of the index. Segments of the inlex
are retrieved sequentially until a segment is found whose ANC
value 1is non-zero. Note, the starting point for segmant
retrieved 1is specified by a system parameter, like the anchor
pointer, which gives the disk address of the first segment of the
index which has empty space. As an index is initially built,
this address will <click up sequentially; however, whenever an
index entry is deleted, thus, creating a hole in the index, this
address will be reset to the seqgment from which the deletion was
made. Thus, empty space will be reused.

35

VIII

DEBUGGING SUPPORT

1. Introduction. We have described in Volume 3 of this report a
language designed to facilitate programming of conversational
processes. This language, <called the CAINT Executive Language
{CEL) is employed in writing executive programs to control the
logic of question selection and wording, response analysis, and
various other activities. CEL-written programs require
debugging, and ESDP 1is designed to include a support package
specifically tailored to assist the executive proqgrammer in
debugging.

2 Debugging_ Support Capabilities_. We define five basic
debugging capabilities: (1) halt, (2) display, (3) alter, ()
change, and (5) hegin., The capabilities will be presented by
commands of the same name, and it will be possible to embhed the
comnmands in CEL.

For exanple,
IF (Condition) THEN DISPLAY (Variable) ELSE HALT.
3. Conmnmands.

A. HALT

Halt the CEL program and continue with the next
sequential instruction when the start button on the user's
console is pressed.

b. DISPLAY

Display the <contents of named variables (in core or
external storage).

For example,
A =1; B=6; C= A+ B;
DISPLAY (C);

results in a printout of:
c =7

C. ALTER

Fnables the programmer to modify some area of core or
external storage.

For example,

36

Proqgqrammer types:
C =24 - B (continuing the above example)
C is set equal to -5.

d. CHANGE

Snables the programmer to change statements in the CEL
program being debugged.

There are three forms of CHANGE defined:

(1) CHANGE (DELETE (statement number) TO
(statement number))

(2) CHANGE (REPLACE (statement number) O
(statement number) WITH source code)

(3) CHANGE (INSERT AFTER (statement numbher)
source code)

4. Use of Dabugging Capabilities. Data value changes may he

traced throughout the execution of a progranm.
For exanple,
DISPLAY (X):

means display the current value of X every time X
changes value.

IF (Y > 5) & (Y <£10) THEN DISPLAY (X):
means display the current value of X every time X
chanqges only if Y is greater than 5 but less than 10. In other
words, rather than inserting this statement in the CEL progranm
every time that X 1is changed, the ©programmer can state the
condition and desired action once, and the command will bhe in
effect throughout the program execution.
Another option is deferral of printout.
For example,
DISPLAYD (X) ;

means record all value changes of X and print off-line.

A particular CAINT application might be a deferred display of all
the question (in segquence) output for a given run.

During a debug run some means of data base protection

would have to be provided. This might take the form of putting
the data base in a read-only mode for each debug avpplication.

37

This would mean that any area of the data base could be read, but
writing would be directed to a scratch file, and any attempts to
read "changed”" data base records would also be directed to the
scratch file (onto which they had previously heen written).

A typical CHANGE and ALTER situation might occur
following detection of a bhug.

A CHANGE command (for replacement, deletion, or
insertion of statements) could be used to attempt error
correction. An ALTER command could then be used to reinitialize
data variables to reasonable values for the point at which the
program is restarted (using the BEGIN command).

5« Methods of Implementation. There are two general methods to

support the CEL with the debugging capabilities described ahove:
compilation and interpretation.

Some pre-processing would be required to prepare a deck
for compilation so as to support the debugging capabilities
described above. This could be coupled with an interrogation
designed to elicit from the programmer the specific debugging
requirements for each program.

Consider a simple example of the kind of preprocessing
under discussion.

The programmer writes the following code in which the
numbers on the left are machine generated statement numbhers, to
be used by the programmer as operands of a CHANGE command.

S00100 Ll: DO;

S00200 IF UOP.NUMENS = @ THEN CALL OUT (°'NO MEMBERS',
S00400 UOPAD) ; ELSE CALL OUT (MEMLIST,NUMENS) ;
S00500 IF UOPAD = UOPEND THEN GO TO L2;

S00700 UOPAD = UOPAD + 1;

S00800 CALL NEXT (UOPAD) ;

500900 GO TO L1;

501000 L2: END

The following is an example of a dialoque that could
then take place:

MSG Type the number of each command to he used
l. HALT
2. DISPLAY
3's ALTER

RES 2

MSG Which variables are to be displayed?

38

RES UOP.NUMENS
MSG Which variables are to control the display of UOP.NUMENS?
RES UOP.NUMENS

MSG For which new values of UOP.NUMENS is UOP.NUMENS to be
displayed?

RES UOP.NUMENS > @
MSG Pre-processing has begun
MSG Compilation has begun

MSG At which statement do you want execution to begin? (Type
Number 1 - 10).

RRS 1
MSG Execution has begun
EEE.

The deck produced by the pre-processor looks as
follows:

L1L2: PROC OPTIONS (MAIN);

ZINCLUDE DATA (DCL1l); Includes declarations necessary to define
data base references in progranm.

YINCLUDE TEMP (CODE); Includes code to initialize variables 1in
support of DISPLAY. (This code was
generated as a result of the dialojue
pictured abhove.)

FINCLUDE PROG (CHECK) ; Includes this system (ESDP) program as
internal procedure. This proqram
supports the debugging capabhilities
described above.

LAB1 (1) :L1:DO; LABl1 (1) defines this statement as an
element in the 1label array LABl(n)
(where N = 10 in this case). Each
statement in the original will bhe
prefixed in this vay to allow
implementation of the BEGIN commandi.

LABL(2) :IF UOP.NUMENS = @
THEN

LAB1(3): CALL OUT (10 MEMBERS,

39

LAB1{4): ELSE CALL OUT (MEMLIST,
NUMENS) ;
CALL CHECK:
LAB1(5): IF UOPAD = UOPEND
THEN
LAB1(6): GO TO L2;
LAB1(7): UOPAD = UOPAD + 1;
CALL CHECK:
LAB(8y: CALL NEXT (UOPAD);
CALL CHECK;
LAB1(3): GO TO L1l;
LAB1(10): L2: END;
In summary:
The HALT command could have been enabled by the same
interrgation process which enabled the DISPLAY command. The
program can still be halted by the programmer by pressing the

stop button on the console.

The CHANGE command can be utilized following a halt by
means of a dialogue with the CHECK routine.

The DISPLAY cormmand has been selectively enabled
through interrogation.

The ALTER command could have been enabled by means of
interrogation.

The BEGIN command is supported by embedding the progranm
in a label array as shown.

The main differences between compilation and
interpretation are 1) interpretation vill effect some
implementation costs whereas the compiler is essentially free,
{2) interpretive program CHANGES can be made more rapidly,
because it is not necessary to recompile and linkage edit, and
{3) interpretive debugging commands can be entered at execution
time.

40

[2]

[3]

(43

[5]

IX

BIBLIOGRAPHY

H20-0293, IBM Corporation, White Plains, N.Y.

Application Description, Form H20-0129, 1IBM Corporation,

White Plains, N.Y.

Mills, H. D. and Michael Dyer, Evolutionary System for Data
Processing, Proceedings of IBM Real Time Systems Seminar,

Houston, Texas, Novemher 1966.

————___ 1BM 7090/94 Autoflow System User's and QOperator's

Manual, Applied Data Research, Inc., Washington, D. C.,
1967, unidier NASA Contract No. NAS5-10021.

Form C28-6535, IBM Corporation, White Plains, N.Y.

41

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classification of titla, body of abstract and indaxing annotation must be antered when tha overall report ls classliied)

1. ORIGINATING ACTIVITY (Corporata author) 28. REPORT SECURITY CLASSIFICATION
Center for Exploratory Studies UNCLASSIFIED
International Business Machines Corporation 2b. GROUP

Rockville, Maryland 20850 N/A

3. REPORT TITLE

EVOLUTIONARY SYSTEM FOR DATA PROCESSING
PROG RAMMING SPECIFICATIONS

4. DESCRIPTIVE NOTES (Typa of raport and Inclusiva dates)
None

5. AUTHORI(S) (First nama, middla Initlal, last nama)

Charles T. Meadow
Douglas W. Waugh

ferald F. Ganklin

6. REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
January 1968 47

8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)
FI19628-67-C~0254

ESD-TR-68-143, VoI. IV

b. PROJEC T NO.

c. 9b. OTHER REPORT NO(S) (Any other numbers that may be assignad
this raport)

d.

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited.

11. SUPPLEMENTARY NOTES 1 SPONSORI MILITARYLACTIYITY o
tommcncrgysfems ivision, Electronic Systems

Division, Air Force Systems Command, USAF,
L G Hanscom Field, Bedford, Mass. 01730

13. ABSTRACT

ESDP is a proposed system whose purpose is to acquire, store, retrieve, publish and disseminate
all documentation, exclusive of graphics, concerned with a large computer programming activity.
Documentation is deemed to consist, not only of final or formally published after-the-fact reports,
but of working files, design and change notices, informal drafts, management reports--in fact, the
entire recordable rationale underlying a programming system. Maximum attention has been con-
centrated on the means of acquiring and organizing documentation. Two major, complementary
approaches are proposed. The first is called Program Analysis and is a process of extracting
documentation directly from completed programs. The second is called Computer Assisted Interro-
gation and is a process of eliciting information directly from the programmer, through on-line
communication terminals. "The former provides canonical data about the program's structure. The
latter provides explanatory material about all aspects of the program, and in the absence of
canonical data, may provide tentative structural information as well. The conclusion of the study
group is that ESDP is a feasible concept with present-day technology and that it will materially
benefit using organizations in the production of programs and in guiding their evolution as
requirements change. Its value will be greater for larger organizations, whose internal communica-
tions difficulties tend to cause truly gigantic inefficiencies. lts implementation as a support
system for such projects would require a significant quantum of investment in order to produce

these benefits and is predicated on the use of a computer system dedicated solely to the use of
ESDP.

0
DD IFNoR\"es1473 Unclassified

Security Classification

