
§

ro a,
^ Q

co ai
i i—i a; u,

H
I n

Q H
CO CO
w ai

ESD-TR-68-143, Vol. IV

ESD RECORD COPY
RETURN TO

SCIENTIFIC & TECHNICAL INFORMATION f)lV..S ON
fTSTIt Rlln nine

EVOLUTIONARY SYSTEM FOR DATA PROCESSING

PROGRAMMING SPECIFICATIONS

Charles T. Meadow
Douglas W. Waugh
G erald F. Conklin
Forrest E. Miller

January 1968

ESD ACCESSION LIST
ESTI Call No.^ , AL 61Q8S
Copv No. / W /

cvs.

COMMAND SYSTEMS DIVISION
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G . Hanscom Field, Bedford, Massachusetts

This document has been
approved for public release and
sale; its distribution is
unlimited.

(Prepared under Contract No. FI9628-67-C-0254 by Center for Exploratory
Studies, International Business Machines Corporation, Rockville, Maryland.)

AD670?4

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

ESD-TR-68-143, Vol. IV
FSC 68-0671/

EVOLUTIONARY SYSTEM FOR DATA PROCESSING

PROGRAMMING SPECIFICATIONS

Charles T. Meadow
Douglas W. Waugh
Gerald F. Conktin
Forrest E. Miller

January 1968

COMMAND SYSTEMS DIVISION
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G . Hanscom Field, Bedford, Massachusetts

This document has been
approved for public release and
sale; its distribution is
unlimited.

(Prepared under Contract No. FI9628-67-C-0254 by Center for Exploratory
Studies, International Business Machines Corporation, Rockville, Maryland.)

FOREWORD

This report presents the results of a study of the specifications
for an information system intended to support the design, production
and maintenance of large computer programming systems. Called
Evolutionary System for Data Processing, or ESDP, it was begun as an
internal IBM project in 1965 by the Center for Exploratory Studies
of the Federal Systems Division and continued under Air Force
sponsorship during 1967 and early 1968.

This work has been performed under contract number F1962S-67-
C0254 for the Electronic Systems Division, U.S. Air Force Systems
Command. The project monitor was Mr. John Goodenough, ESLFE.

The authors wish to express their appreciation for the encourage-
ment and assistance provided by Dr. John Egan, formerly of ESD, and
their colleagues Dr. Harlan D. Mills and Mr. Michael Dyer.

This report is in four volumes: Volume 1, System Description;
Volume 2, Control and Use of the System; Volume 3, The CAINT Executive
Language and Instruction Generator; and Volume 4, Programming Specifica-
tions. This report was submitted on January 31, 1968.

This report has been reviewed and is approved.

SYMA R. MAYER J WILLIAM F. HEISLER, Col, USAF
Project Officer Chief, Command Systems Division

li

ABSTRACT

Scr>P is a pro
store, retrieve, pub
exclusive of qraphic
proarammina activity.
onlv of ^inal or forma
of workinn ^ i 1 e s , d
manaqement reports—in
iinlprlvirn a proqram
concentrated on the
documentation. Two ma
The first is called
£ii£i£iiis.il Jocumentati
second is railed CoTtpu
of S.liciti_n2 informs
on-line communication
data about the pr
exnlanatorv mi toria 1 a
absence o^ canonical
information is well.
ESOn is a feasible con
it will materially bo
of programs ind in
ch =i nge. Its value
whosp internal communi
gigantic inefficiency
for such projects w
investment in order
on the use of a comput
ESDP.

posed svstem whose purpose
lish and disseminate al
s, concerned with a

Documentation is deeme
lly published after-the-fa
esion and change notices,

fact, the entire reco
minq svstem. Maximum a

means of acquiring
jor, complementary aoproac
Proqram Analysis and

on directly from comnleted
ter Assisted Interrogation
tion directlv from the pr
terminals. The pormer pr
oqram's structure. The
bout all aspects of the pr
data, may provide tent
The conclusion or the st

cept with present-dav tech
nefit usinq organisations
quidinq their evolution
will be greater tor larq
cations difficulties tend
es. Tts implementation as
ould require a si m i fie
to produce these benefits
er system delicate] solelv

is to ac
1 document
large co

d to consis
ct reports
informal d

r 1 a b 1 e rat.
ttention ha
and o r q a

hes are pro
is a nroc

proqrams.
and is a p
oqrammer, t
ovides can
latter pr

oqram, and
ative stru
udy group i
noloqv and
in the prod
as requir

er orqaniza
to cause
a support

ant quantu
and is nred
to the u

quire,
at ion ,
mputer
t, not
, but
rafts,
i o n a 1 e
s been
nizinq
posed.
ess of

The
rocess
h r o u q h
on ical
ovi les
in the
c t u r a 1
s that

that
uc t i o n
e m e n t s
ti ons,
truly

systorn
m of
icato 1
se of

ill

Volume U

Droqramminq Specifications

I

SYSTEM DESCRIPTION 1

1. General Approach to Proqramming 1

?. hardware Assumptions 4

II

DATA BASE 5

1. Program Description File Set 5

2. Data Dpscription File Set 7

3. Program File Set 8

4. Graphic Coding File Set 8

5. Publication File Set 8

f>. Instruction Course File Set 9

7. Dissemination File Set 9

8. Index File Set 9

9. Buffer ^ile Set 9

ITT

PROGRAM ANALYSIS 10

1. General 10

?. Oneration of Program Analysis

1. Additional Requirements 16

TV

CONVERSATIONAL PROCFSSTNG I9

IV

INFORMATION RF^RIFVAL

1. ESDP Files

2. "ile Building and Maintenance

1. Koyvorrl File

4. Searching

20

20

20

22

22

VT

PUBLICATIONS 27

VII

FILE PROCESSING

1. Requirements

2. Rationale for ESDP Approach

3. Prototype ESDP Ind^x Implementation

29

29

29

33

3.

VIII

DEBUGGING SUPPOR'

Tntroduct ion

Debugging Support Capabilities

Commands

Use of D^buaaing Capabilities

Methods of Implementation

36

36

36

36

37

38

TX

BIBLIOGRAPHY 41

v

Figure ILLUSTRATIONS Page

1 General ESDP System Concept 2

2 A Typical Dictionary Entry 14

3 A Typical Parsing Table Entry 14

4 Classification of Data Usage by a Program 17

5 Index Entry 32

VI

I

SYSTEM DESCRIPTION

1. General A££roach to Programming. The general architecture
proposed for the ESDP system is that used for Operating
System/360-Oueued Telecommunication Access Method (OS-QTAM) (see
Figure 1). In such a system, terminals communicate with the
central processina unit via telephone lines and a multiplexor
channel. In the central processing unit, two or more programs
are operating asynchronously in separate partitions of high speed
memory under control of the OS supervisor.

In one partition, the Message Control Program plus some
additional QTAM code dispatches incoming and outgoing messages.
The Message Control Program makes use of core buffers (the number
and size beinq specified by the programmer) plus message queue
storage on a direct access storage device.

In the other partitions are the Message Processing
Proqrams. These programs perform all the ESDP processinq
functions. They receive messages from and transmit messages to
the Message Control Program via GET and PUT macro commands. When
a message has been received, an ESDP controller, one of the
Message Processing Programs, must first determine what activity
the sender is involved in. For instance, it must recognize
whether a message is a response to a guestion in interrogation
or, say, a query. Once this determination has been marie, some
type of housekeeping, depending on the particular message and
activity, is performed to initialize the ESDP functional
routines. Program control is then switched to the particular
module of programming reguired to perform the desired activity.
These modules interact with the system files and issue messages
back to the terminals via PUT commands.

In addition to providing the capabilities outlined
above, the operating system for ESDP must be concerned with the
following requirements: (1) More than one user terminal may be
communicating with any one program module at a time. This
requirement may best be met by assuring that the program modules
are reentrant. (Note that in our current experimental work wo
have used PL/I which produces reentrant code.) (2) Different
user terminals may be communicating with different proqrafa
modules at the same time. We feel that this requirement can
probably be met by a multi-tasking supervisor such as that now
used in OS/360 with Multiprogramming with a Variable Number of
Tasks (MVT). This will provide for a primitive form of time
sharing by activating tasks whenever an I/O operation occurs,
making use of a priority system for the tasks. For the system
described, this type of time sharing should suffice, since there
should be no periods of long processing, uninterrupted by I/O
commands. (3) More than one user terminal may be accessinq any
one data element at the same time. This will require that some
form of data base lockout be placed into the system.

> v V
(Terminals 1/

Communications
Lines

H
Computer

Partition
1

Message Control
Program

Message
I Work

Areas I

^p~A~
Partition
2-n

Message Processing
Programs

Message
Queues

ESDP
Files

Figure 1. General ESDP System Concept

The general concept of ESDP is for a teleprocessed
terminal-oriented system. The terminals themselves should
comprise the followinq:

a. A cathode ray tube display with keyboard entry.

lost of the conversational processes will be performed
through this device. Light pen capability and/or vector drawing
capability may be desired depending on the need for activities
such as production of graphics in the documentation. For the
strictly conversational documentation activities, generation of
an average-sized character set (e.g., 64 character set including
numbers and upper case letters) on the face of the CRT should
suf fice.

b. Hard copy printer.

It is often desirable to retain a hard copy of that
which has been displayed on the CRT. This can be accomplished
via a typewriter type printer (without keyboard), the printing
beinq activated by command from the keyboard associated with the
CRT.

c. Line printer

Lino printing should be centralized so that high volume
outputs can be generated in the machine room for subsequent
manual transmittal to the reguesting user.

d. Terminal polling

A round-robin polling system with priorities such as
that used by OTAM seems appropriate. Of course, if inefficiency
results, perhaps the priority scheme should be revised so as to
be based on the particular activity, for instance, rather than
simply the terminal identification.

It is anticipated that during hours when normal ESDP
documentation activity is light, other programs can be run that
are not under the general QTAM-ESDP set up. Examples of such
programs are:

on
Zii2 2i§^IiilE 2£0££1.1§~-Tt raaY ^e necessary to move data

the direct access storage devices in order to reuse spice
freed via deletion of records. This reorganizing is one tyne of
file processing that might be performed off-line. In addition,
there are normal utility functions such as disk oopyinq, disk
printing, etc., that could fit in this category.

£r§z£I22Ssgors--There may be some pre-processinq
desired for the CAINT Executive Language. This is particularly
true when debugging macros'are to be used. Such pre-processors
could operate off-line.

2- 2sLEd)f§.E2 A§§!i•£tions. Hardware has not been considered in
this study, except indirectly, when feasibility of attaining
various objectives was considered. There were, however, some
basic hardware assumptions underlying the study- These are:

a. Machine Utilization

A computing system will be dedicated to ESDP.

b. Machine Type

A System/360 computer with Operating System/360 was
used for the experimental programming in this project. This
choice of hardware, of course, is not mandatory. However, much
of the discussion in this report is based on S/360 with OS and,
therefore, uses that terminology.

II

DATA BASE

We foresee the need for several files, or, in the
terminology adopted herein, file sets. While it would he
possible to store most of the information to be described below
in one monolithic file, this breakdown recognizes differing
freguencies of file modification, different processes to be
performed on data, and different means of control of access.

1- Program Description File Set. This file set contains a
logical record for each unit of programming. Its organization
will bear a close resemblance to the outline of a conventional
program description, but there is no permanent standard and it is
expected and encouraged that the content and composition of this
file will be shaped by the users to fit their own needs.

The major subjects to be covered, in a generalized form
of the file are:

o Identification—of the program, programmer, date,
etc.

o Program Structure—in terms both of the
hierarchical structure of the program anl of the
branching, or control, structure.

o Data References—the data items named by the
program and the nature of their use.

o Logic Description--both symbolic and natural
language descriptions of what the program floes,
how, why.

o Management and Status Data-~inforraation relative
to the program as an item being produced, its
schedule, progress, problems, etc.

o Illustration References—references to flow charts
and tables to be composed by ESDP and to be
printed with this program description information.
Also, references to other graphics, used for
illustration, which are not able to be store!
within the ESDP computer.

Except for the identification section, for which no amplification
is necessary, these items are discussed below in greater detail.

a. Program Structure

This section would contain pointers to related UOP's.
There are two general categories of relationship: hierarchical
and control. Hierarchical pointers would indicate subordination

or superordination, and control pointers would indicate entry
points or predecessor and successor OOP's. Entries from, or
exits to, label variables would be treated as a special case,
with the variable representing a program switch which might be
given a form of UOP status. Also contained in this section would
be a codification of the type of branch control (whether
unconditional, such as a PL/I GO TO; or conditional, such as an
IP or DO and the variables that affect the branch. In addition,
there would be narrative explanations of the control logic, or
pointers to such explanations.

b. Data References

The exact extent to which data documentation should be
split or duplicated between the program and the data description
files depends on the philosophy of management of the object
system. At a minimum, this section of a program description file
must list the data elements that occur in the program, and must
give the nature of the usage, such as a control variable (a
variable that directly affects a branching decision), a computed
value (set by an assign or DO statement) or any of a number of
other categories of usage. The bulk of the actual description of
the data, as differentiated from the codification of the nature
of its use, will be carried in the Data Description File Set.

c. Logic Description

The essence of logic description is to tell what the
program does, how, and why. But each of these points is
subdividable and answerable on more than one level of
abstraction. Hence, there may be a large number of individual
items contained in this file. It must be emphasized that the
logic description is not restricted to narrative data only. Many
aspects of a program«s function can be codified.

d. Management and Status Data

Perhaps more than any other portion of the
documentation files, this will be the one most often changed to
suit individual user needs. The information to be collected and
the processing to be performed on it is largely a function of the
individual manager, who must satisfy his own reguirements for
information plus those of his higher management and thp
contractual reguirements for system documentation.

The obvious kind of information to be collected has to
do with progress in meeting schedules and milestones, manpower
assigned, problems being met or anticipated, and budget data.
Mostly, the information will be collected by interrogation, but
some, such as number and dates of compilation, program lengths,
etc., can be acguired automatically.

e. Illustration References

Wo may group illustration material into three classes:
flow charts or tables that are required according to the system
documentation plan, flow charts or tables volunteered by the
programmer or file documentor to augment some aspect of his
narrative, and other illustrative material that is volunteered,
but is not in flow chart or table form. The restriction on flow
chart and table form arises, of course, from the planned use of
standard graphic programs that will produce these configurations
easily, but cannot handle the full range of graphic input. Thus,
if a programmer wishes to input a logarithmic graph, or a diaqram
of two aircraft on a collision course, he will probably have to
draw these in the conventional manner, but include in the
machine-store 1 documentation, a reference to the illustration
copy.

Tn the program description file set will be storei only
pointers to the detailed illustration information, whether or not
stored within ESDP. We recommend this separation because these
files will be large, and, while they may be updated whenever the
program is, they will rarely be subject to information retrieval
searches in the same way as detailed data in the remainder of the
file. A user may want to retrieve the information that is
displayed on a chart, but he will not normally want to retrieve
the detailed FLOWCHART instructions that organize the display.

2. HsLta. Description File Set. The recommended approach for
documentation of data files is to creat° a data descriotion
record for each file or structure used in any program, with as
many working records as needed to give each user a chance to
document the data the way he prefers. Another version of the
descriptive record will be created and maintained by an
authorized COMPOOL, or data base, controller in whom will be
vested authority to make final decisions on data definitions and
attributes, and who can delete working records at will. His
expected mode of operation, then, should be to review his data
items periodically, look at the conflicting descriptions or
requests of the individual programmers, make his decision on
which version to accept or declare, and put the final decisions
into the permanent record.

Provision can be made, using the dissemination
services, to promulgate the data base controller's decisions
immediately to all programmers concerned.

The organization of the data description record will be
similar to that for a program. It will have the following major
headings:

o Identification

o Element description—the narrative and
other information about the item and its
use.

o Structure—primarily, this is used for
higher level structures in order to
define the subordinate structure.

o Using program references—pointers,
possibly some supporting text on what
effect the particular using program has
on the data.

o Illustration references

3. Program File Set. This file set will contain the text of the
programs being documented. In addition, consideration will be
given to storing, within this file set, program change
information, separate from the program, itself. This will permit
a record to be kept of all changes, and this will permit
programmers to make changes either to the latest version of a
program, any previous version, or both simultaneously. The
complete text of any version of the program could be retrieved on
request. Another possible class of information for this file set
is partially reduced program analysis data. This would be
intermediate output, produced during a program analysis run,
which could be saved to reduce the time required to process
change to the program.

a

**- Graphic Coding File Set. We recommend the use of a program
for the automatic production of flow charts and tables. In some
systems, such as FLOWCHART [1], graphics are assembled by the
issuance of commands on how to build them, in a manner similar to
computer programming. The Graphic Coding File Set would contain
these instructions.

The qraphic files may be updated separately from the
program or data files they illustrate, but this form of updating
should probably be restricted to changes in layout. Chanqes in
content or structure should be keyed to changes in the data or
programs being described, although the initiative for a change
may originate with either a program or data description change or
with a graphic change.

5- Publication File Set. This file set will contain partially
processed documentation, taken from any of the other files. Thp
preparation of copy for publication can be a time-consuminq
process. Hence, partially edited material should be retained in
machine readable form for reprinting or for selection for
inclusion in differently-organized documents. This form of
storage is used by the IBM Administrative Terminal System [2], a
text processinq system, a successor of which is recommended for
use in ESDP.

6- Instruction Course File Set. Instructional material produced
through ESDP olays a dual role. It is used in its own riant as a
system program, but it is also a form of documentation and
changes in it must be keyed to changes in the programs or data
being taught. Hence, instruction courses can be stored as
programs, but must have appropriate pointers back and forth to
the documentation from which they were derived.

7. Dissemination File Set. These files will contain the profile
and distribution lists needed to operate the internal ESDP
dissemination system on documentation and changes thereto.

8. Ini^2£ File Set. These ^iles are those indexes and inverted
indexes used by the information retrieval system to carry out its
functions. These are also dynamic files, which are subject to
frequent change as the documentation files change.

9. Buffer File Set. Buffer files are dynamically created files
and are for use by the information retrieval system.

Ill

PROGRAM ANALYSIS

1. general. A Proqram Analysis (PA) program has been produced
by IBM [3] as part of its own internally sponsored ESDP
activities. This program accepts input in PL/I, OS/160 Job
Control or OS/360 Linkage Editor languages and compiles a
canonical or structural data file descriptive of the hierarchical
and control structure of the proqrams and their usaqes of data.

Source Code Analysis is performed by a set of compiler-
like analyzers which are oriented to a particular language. The
number of analyzers is dependent on the make-up of the user's
programming system. The role of each analyzer is identical
regardless of the language, namely to map source code into the
UOP coordinate structure and generate the data records associated
with it. In this way, each analyzer, which is necessarily
language dependent, can effect a common interface with thp
system.

Three analyzers have been written, for OS/360 JOB
Control Language (JCL), OS/360 Linkaqe Editor Language, and
OS/360 PL/I Language. This sample was selected to permit
experimentation with programming systems written primarily in
PL/I, of which the analyzer, itself, is an example. He note again
that the treatment of run-time languages (e.g., JCL) as pro-
gramming languages is a critical point since it is key to the
automatic analysis of system-wide interactions.

Current compilers and assemblers now generate source
code listings and cross reference lists for data variables for a
single program at compilation time. However, this is ordinarily
the extent of their automatic capabilities. Additional
programming information on program interactions within a larger
system, rationale behind program logic and program groupings,
data flow through the system, and so on, are necessarily based on
interrogation-acguired documentation.

The analyzer parses the source program into elements
called Units of Programming (UOP). The current proqram produces
UOP's at the following levels:

JOB

LOAD MODULE

SOURCE MODULE (Compilation Unit)

CALL MODULE - Procedure Block

10

GROUP - BEGIN block
DO group
IF compound statement
ON compound statement

SEGMENT

For each UOP in a structure, a data record is created
which contains the appropriate structure, loqic and data usage
information. This structure and logic data of the individual UOP
records is also the mechanism for creating the total structure of
a program system or any of its major components.

To make the programmer aware of how his program is
structured, a revised program listing is generated, which
graphically depicts the coordinate structure and labeling for
this program. This revised listing is useful, not only as a
guide to the files, but also as a picture of program execution
which nay easily become obscure in the compiler generated
listing, particularly with free format languages where multiple
statements can be strung together in a single print line.

System-wide interactions of a program can be obtained
through the automatic analysis of the Object Module generated by
the compiler and the JCL deck that would be written for
execution.

object module analysis yields information regarding
program interaction (external procedure in PL/T terms) in a
system. This process consists, basically, of extractinq symbols
from the external symbol dictionaries of al] the object modules
involved in a given linkage editor run, detecting module cross-
references anl, discriminating between data references and branch
references

linked to
source
proqram...
debuqqed by

Within OS/360, the execution of a proqram would require
a JOB Control deck or program. The analysis would equate, within
the UOP records, the file declarations at the JOB level with ill
references to these files down to the SEGMENT level. In a more
complex case, where condition codes and multiple job steps were
defined, this same correlation of proqram units and data usage
would have added siqnificance.

2- 0E§E3.ti2S 2i EE22E§ffi AQ.§.Il§i§- The analysis of PL/T code is
performed in several phases. In Phase 1, PL/I source code is
read in, and blanks, comments, and constants are eliminated. The
remaining characters are translated throuqh use of a translation
table. The general effect of this translation is to replace the
source language string with numeric codes in such a way that

11

alphanumeric strings are grouped in the higher number codes,
special characters in the lower number codes, and operation codes
in the middle. This is done so that in future processing, simple
limit testing can be used on the codes to determine the type.

An output string is organized in which each statement
is given a statement number.

The statements are scanned and whenever labels, file
names, parameters, or condition names are encountered, a
dictionary entry is created, and a pointer to the dictionary
entry is stored with the statement.

When OOP defining statements (e.g., DO, BEGIN) are
encountered in the scan, entries are made in a parsing table.
Then, when statements are encountered that end OOP's {e.g., END),
the table is searched to determine which entry is closed. The
table then contains the statement numbers defining the limits of
the OOP's.

At the completion of Phase 1, the parsing table has
been filled, and the dictionary has been partially filled.

Phase 2 reformats the source text, indicating the
parsed units and statement numbers. The units are indicated in
such a way as to ease reading.

In Phase 3, DECLARE statements are analyzed. This is
done using an array of attribute masks. Each data attribute is
represented by a 32-bit mask (row). Each element, A(i,j)
represents the interaction of attributes i and j. If A(i,j) is
one, then the two attributes can co-occur. Zero means that they
cannot co-occur. For instance, EXTERNAL can co-occur with FIXED
but not with INTERNAL. Each attribute is looked up in the table
of masks and all of the masks are AND'ed together. The result is
a 32-bit string with ones representing the attributes of the
DECLARE'd data. Note that by starting with the assumption that
all attributes apply and then ruling out impossibilities,
defaulter! attributes are also depicted. Scope tables are
generated for the data and these plus the attribute masks are
added to the dictionary, which is now completed.

At this point in the Program Analysis process, two
internal tables have been built--the dictionary and the parsing
table. Their formats are described below.

a. Dictionary

(1) Bytes 1-2 are reserved for a hash chain
during the first three phases of analysis and for a data type
code during the latter phases.

(2) Bytes 3-6 contain the scope data for the
entry in terms of procedure and statement numbers.

12

(3) Bytes 7-8 contain for structures, pointers to
structure elements, and for labels, the statement number of the
label declaration.

(4) Bytes 9-28 contain the identifier as it
appears in the source code.

(5) Bytes 29-32 contain a hit table that defines
the unique attributes or characteristics of the entry-

(6) Bytes 33-40 are a set of offset values that
point to the overflow area. Note that certain PL/I attributes
carry value information, e.g., precision, bounds of dimensions,
file environments, etc. This value data is stored in the
overflow area and the offsets are used to delimit the start and
stop of various values.

(7) Bytes 40-119 contain any values associated
with attributes.

Figure 2 illustrates a typical dictionary entry.

b. Parsinq Table

To delimit UOP structures and keep track of !J0P
nesting, this table is generated during the analysis. Tt also is
delcared as an array of bit strings where each element represents
a sinqle UOP. The format of each element is as follows:

(1) Bit 1 - status switch used to determine if
UOP has been closed.

(2) Bits 2-9 - UOP level code where code runs
from 1 - 6, corresponding to JOB level to Segment level.

(3) Bits 10-73 contain the procedure name or
label on the including procedure.

(4) Bits 74-85 contain the statement number of
the first statement in the UOP.

(5) Bits 86-97 contain the statement number of
the last statement in the UOP.

(6) Bits 98-106 contain a dictionary pointer to
the label associated with the UOP, if any.

Figure 3 illustrates a typical parsing table entry.

13

Hash Scope Structure Data Name Attri- Table Over-
Chain Pointers butes of flow

Offsets Area

Byte"! 3 7 9 29 3 3 4 0

Fiqure 2. A Typical Dictionary Entry.

Including First Last
Switch Level Procedure Statement Statement Dictionary

Number Name Number Number Pointer

Byte 1 2 10 7U 86 98

Fiqure 3. A Typical Parsing Table Entry.

14

The string generated in Phase 1 is read in Phase '•», and
a new string is produced that is completely coded. Ml
identifiers are replaced with dictionary pointers.

Phase 5 determines data type for all data in the
dictionary and adds a data type code to the dictionary.

Phase 6 reads in the parsing table and reads in the
program statements, one at a time. From these it generates the
UOP records and with the additional input of the dictionary it
generates the trailer records. These are written out on tape.

The JCL cards are used by the JCLSCAN Program, and each
card is examined to determine if it is a JOB card, an EXEC card,
a DD card, or other. Cards in the other category are immediately
rejected. JOB cards are further examined for condition codes at
the JOB level. If they exist, they are stored on an analysis
list.

For EXEC cards, the program stores the job step name in
the analysis list and then determines if the name refers to a
cataloqued procedure. If it does, the name is marked as job
level. If it does not, the name is marked as load module level.
The EXEC card is then checked for JOB step parameters, and if
there are any, they are stored in the analysis list. The same
process is followed for JOB STEP condition codes.

For DD cards, the DSNAME is stored in the analysis list
along with any disposition parameters.

After all of the JCL cards have been read, the analysis
list is further processed, the process varyinq with the type of
JCL statement.

JOB - The OOP name is extracted from the job statement
label field. The entry and exit portions of the UOP are marked,
and if condition codes exist, subordinate OOP are marked as exit
points.

DD - A data reference entry is made in the UOP for the
DD.

EXEC - JOB STEPS become subordinate units to the JOB
UOP. The UOP names are the JOB STEP names. If J03 STEP
parameters exist, a data reference entry is made usinq a duumy
name. If JOB STEP condition codes exist, the subordinate
transfer table is marked accordinqly.

The Linkage Editor Analysis Program (LEAR) begins by
reading from the primary input stream. A test is made to
determine if the first entry in the stream is a linkage editor
command. If it is not^ the entry is processed as an object
module. If it is, another test is made to determine if the
command is an INCLUDE statement. INCLUDE statements effect
readings from secondary input streams. All other command types

15

are ignored. Object module processina continues in the primary
stream until an INCLUDE is found. Then, processing shifts to the
secondary stream. In the secondary stream, the first column of
the card image is checked for a blank (indicating command), a 12-
9-2 punch (indicating an object module), or any other (indicating
a load module). The first two are processed as previously
discussed and the third (load module) causes a load module
subordinate unit entry to be established.

Once all of the linkage editor object modules, load
modules and commands have been processed, a OOP record is formed.
This UOP is in the same format as a PL/I UOP.

3. Additional Reguirements. There must be added to the program
analysis implementation an incremental analysis capability. When
a programmer makes a change to an existing program, he should not
have to run the entire program through analysis again. This
process now takes an amount of time on the same order as a full
compilation, hence in a large system it could become a
significant drain on computer capacity if repeated often.
Tnstead, the approach recommended is to have ESDP store the
latest copy, and let the programmer make changes by use of ADD,
CHANGE, and DELETE commands, treating his stored program as a
file. In this way, PA need only analyze the changes and make
minimal modification to the canonical data file, and new
interrogations can be initiated only on those portions of the
program affected.

More detailed information than that produced by the
present PA program is needed for classifying the manner in which
data labels are used or referred to within the program text. For
a variety of reasons (e.g., making up more detailed
interrogations, assisting in test planning, assisting in
debugging, and providing better cross indexing of documentation),
we feel that data usage should be classified in as much detail as
possible. Furthermore, the information desired is available
through the program analysis function, but currently is discarded
rather than saved (this is also true of compilation). A
hierarchical classification code should be used for each
appearance of a data label. This code should reflect whether the
item is changed by this usage or not; whether it is changed by
being assigned a new value or having a new value read in:
whether it is used without being changed; whether when used in an
assignment statement, it is used as an item in itself, or an
index to another item, a control item, etc. A first
approximation to such a classification system is given in Figure
4, which also appeared in Volume 1.

16

Context of Appearance

1.1 Assignment Statement
1.1.1 Computed Value
1.1.2 Argument

1.2 Control Statement
1.2.1 Variable I/O Command
1.2.2 Branching or Transfer Command

1.2.2.1 Argument or condition statement (TFf
ON)

1.2.2.2 Iterative Control Variable (DO)
1.2.2.2.1 Initial index value
1.2.2.2.2 Increment
1. 2. 2. 2. 3 laximum value or limit

1.2.2.3 Variable address

1.3 Subroutine/Function/Macro Calling Seguence
1.3.1 Transmitted to SR/Function/Macro
1.3.2 Received from SR/Function/Macro

1.4 Data Declaration Statement (or other non-executable
statement)

1.5 Input/Output
1.5.1 Input

1.5.1.1 Input Control Variable
1.5.1.2 Data Element real in

1.5.2 Output
1.5.2.1 Output Control Variable
1.5.2.2 Data Element written out or transmitted

Change Status

2.1 Value Changed by Containing Statement
2.1.1 Value Directly Assigned by Assignment Statement
2.1.2 Value Directly Changed by DO Statement
2.1.3 Value Directly Changed by Variable I/O Statement

2.2 Value not Changed by Containinq Statement

Structural Role

3.1 Data Element is a Structure or Array

3.2 Index or Subscript
3.2.1 VALUE OF AN Index
3.2.2 Element of an Index Term

3.3 Scalar Item

Figure 4. Classification of Data Usage by a Program.

17

Another aspect of program analysis (or possibly of
information retrieval) to be borne in mind is that, as the
documentation files grow large, there will be inevitable errors,
such as programmers misnaming programs, submitting the wrong
version of a program for analysis, entering changes incorrectly
(resulting in an actual program that differs from what the author
thinks it is), etc. These are normal mistakes of any programming
project and, in a purely manual system they can be tolerated and
relatively easily reversed. The documentation file system and
the program analysis system must be so designed as to anticipate
such errors and, while it is not ESDP*s responsibility to detect
them, it should be possible within ESDP to correct them with
minimum difficulty.

18

TV

CONVERSATIONAL PROCESSING

A thorough description of the conversational language
and processing required is contained in Volume 3 of this report.
Programming of the conversational routines represents a
considerable share of the entire ESDP implementation effort. The
scope, technigues and other aspects of the programming required
should become evident from the discussion of the conversational
activities and language contained in that volume and therefore
will not be further discussed here.

19

V

INFORMATION RETRIEVAL

1- ISDP Files. The files handled in the ESDP system include the
following:

a. Program Description File Set

This file set contains a record for each HOP in the
object system. The information in the file may be derived
through program analysis, interrogation, or both with the source
being identified.

b. Data Description File Set

This file contains a record for each Unit of Data
(UOD) . Here, the information is obtained through interrogation
only. OOP and UOD are linked via pointers since the data are
referenced in UOP.

c. Index File Set

A file is build of keywords indicating for each the UOP
or UOD and IEN associated with the key word. The key words are
extracted automatically at the time that a response to a question
is entered luring interrogation. At that time, the UOP name of
the UOP currently the subject of the interrogation and the IEN
associated with the question are appended to all key words in the
response.

d. Buffer File Set

Provision is made in the ESDP concept for general file
handling capabilities. Programs that interpret file format
tables for file accessing will be included. In addition, file
building may be done on line as well as off line. The intended
use of the special files is as personalized subsets of the ESDP
data base. It is anticipated that this feature would be heavily
used by system managers to create, update, and search
personalized management information systems.

2. Eile Building, and Maintenance. Creation and modification of
UOP records and UOD records are planned in ESDP to match the
changes in the object system of programs. Records are created
whenever the system becomes aware of a new UOP or UOD. This
information may be acquired in any one of a number of ways:

a. Source Code Parsing

Program Analysis creates UOP's by parsing source
language code. UOP's created are named either by program label
or by a combination of containing UOP name and statement numbers.

20

h. Source Code References

References may be made in the source code to UOD or
other UOP not subject to Program Analysis. The appearance of
these references in source codinq will cause the creation of the
appropriate records and names will be taken from the source cole.

c. Interrogation

nOP or UOD may also be named by the programmer at a
console in the interrogation process. This can occur during
design interrogation or during interrogations performed after the
object system program has been subjected to program analysis.
Naming of these UOP's and UOD's is a simple process since* the
programmer assigns these.

Whenever changes to source code are submitted for
analysis or incremental interrogations are processed, changes to
data items in existing UOP or UOD records are likely to take
place. The changes can take the form of ADD, DELETE, or REPLACE
(DELETE and ADD). The way in which the system handles the file
updating will depend on the data elements to be changed and the
manner in which the requested chanqes are entered into the
system.

handle
UOD w
inform
inform
image
file.
and R
Again,
above.
update
textua
delete
will
text t
search
approp

ADD'e
d direct
hether o
ation .
at ion int.
of the rI0
Cross re
EPLACE's
data may

In th
d. For i
1 informa
d, but ke
be done
o be dele

argumen
riate IEN

d data
ly sin
r not
Thereto
o an ap
P/UOD r
ference
present
be del

is cas
nstance
tion as
yword r
by pe

ted. T
ts for
pointe

items deri
ce a full
all of

re, an A
propriate
ecord, and
s are adde
a more di

eted in th
e, howeve
, assume t
sociated w
eferences
rforming a
he keyword

the key
rs may be

vel from interrogation may be
record is created for each U0D or
the data item fields contain
DD amounts to storing the new
position in the core-resident
rewriting the record to the disk

d in the normal manner. DELETEVs
fficult updating problem however.
e same manner as it was added
r, cross references must also be
hat a programmer wishes to delete
ith a given IEN. The text, aay he
to the text must also be. This
second keyword extraction on th«^

s extracted will then be used as
word index records so that the
deleted.

The qeneral concept for ESDP file updating as a result
of changes to source programs is to rerun Drogram Analysis on the
UOP containing the changed UOP. Old UOP records will not be
erased at this time. Through the reconciliation process,
information associated with the old UOP records will be linker! to
the new UOP records. When the reconciliation has been completed,
the old records will be deleted. Keyword references must be
updated during the reconciliation process. If text from an IEN
of the old version of a record is to be moved to another TEN of
the new version, the keyword updating amounts to changing the IEN
pointers in all of the appropriate keyword records. If new text
is typed in, keywords are extracted in the normal fashion. For

21

all deleted records, the keyword deletion is performed as in the
case of deleted text through incremental interrogation.

3. Keyword File. An experimental keyword extraction program is
now being tested. This program operates as follows:

(1) Responses to guestions are subjected to
keyword extraction under the control of the CEL Program.

(2) Responses are edited to eliminate deleted
lines, to eliminate deleted characters (backspace and retype), to
eliminate carriage returns, and to convert all letters to upper
case. This is done to eliminate mismatches in the keyword list.
For instance, "Computer" without such editing would not match
with "computer" and similarly carriage return characters,
backspace characters, or delete characters will eliminate any
possibility of an exact match.

(3) Each word in the response is compared with
words in a common word list. Common words are not stored as
keywords.

(4) Each keyword (i.e., not common word) is
stored and is tagged with the IEN associated with the guestion to
which this is a response. If the keyword is already recorded,
the IEN is added to a list of IEN's in which the word appeared.
In addition to the IEN, the keyword could be tagged with its
position within the response. This would enable subseguent
retrieval based on position of keywords in a response.

4- Searching. Information in ESDP is indexed in four ways:

a. Program Element

One index to a piece of data is the particular element
(UOP, 00D, etc.) with which it is associated. This information
is obtained through interrogation for design documentation and
through program analysis for final documentation.

b. Keywords

Another index is the keyword index. The keywords are
extracted automatically from responses to interrogation
guestions.

c. Data Names and Labels

These are character strings used in the program or the
program design being documented. They, too, serve as indexes to
the UOP or (JOD records.

d. Hierarchic Code

ESDP employs a hierarchical coding system and attaches
a code number to each element of data. This number is called an

22

Information Element Number (IEN). The structure of these
numerical codes is intended to classify any data collected by
ESDP about an object system of programs.

Searching of the ESDP files is requested from terminals
or ESDP programs. The query language is basically the same
subset of PL/I as is used for executive programming. Again, the
IF statement is the core of the subset language. The user may
express complex Boolean relationships as the conditional
statements. For instance.

IF (A> B) 5 (C= »1') (A • C"1= '7')

is an example of a conditional statement. Here, A, B, and C are
data base items, uniquely identified. The system must be capable
of so identifying data base elements and will do so through use
of symbol tables.

An additional feature of ESDP information retrieval is
the ability to specify a file as the disposition for retrieved
data. Thus, the user can dynamically create files from
information in other files. He may perform cyclic searches by
retrieving data, placing it in a buffer file, and then using the
retrieved elements as search criteria for another search.

Cyclic retrieval is defined as the use of information
retrieved from one query as part of the statement of a subsequent
query to the same or a different file, so that a cycle of query,
retrieval, query based on retrieval data, retrieval, etc., can be
set up.

Dynamic file creation also allows for creation of small
"customized" files for use only by a particular individual or
orqanization. These files would be organized for the particular
application at hand.

Outputs of results from searches are highly flexible in
ESDP. A user may specify (1) mode of output (printer, console,
etc.), (2) data manipulations (sorts, totals, other calculations,
etc.), and (3) formatting (page widths, spacing, titles, etc.)

The information retrieval function should be designed
to operate both as a subsystem of other programs and to service
directly queries submitted throuqh on-line terminals or through a
backqround, or deferred, job queue.

Every effort should be made to integrate the query
language with the Interrogation/Instruction executive language,
using a common syntax and a common interpreter or compiler.
Probably, a compact form of query statement will be used by the
proqrams, with the human-written form translated into this
compact form. Programs ' calling information retrieval would
directly fill in this table, somewhat as a calling sequence. The
human user then has the options of writinq out his query directly
in this compact lanquage if he wishes and is adept enough,

23

writinq out the query in a more natural form (not natural
lanquaqe, but a proqramminq-lilce lanquaqe) or huildinq his query
qradually throuqh a computer assisted, conversational process.

In reqard to performance, while specifications have not
yet been developed, it seems that the followinq are required:

o Records must be retrievable on the
obvious characteristics which are
usually unique identifiers: address,
sequence number within a file, value of
a key or sort field.

o Records must also be retrievable on the
basis of Boolean combinations of these
or other record attributes, each
attribute (probably) beinq able to be
stated as one or more relationship
statements, as SALARY = 10000 or AGE
<U0.

o Individual items, fields, arrays, sub-
records, etc., can be specified as the
information to be retrieved from a
record—the entire record need not be
retrieved in response to a query. Thus,
the burden of extractinq the exact
information needed from a record is
placed upon the retrieval system, not
the callinq proqram.

o Information called for may be ordered to
be held in a buffer or temporary storage
area for later reference. In particular,
this requirement is imposed to make
cyclic retrieval possible.

o The requestor, whether a person or a
program, may specify the recipient of
the information, which need not be the
requestor. In other words, an IR system
user may call for the retrieval of
information and its presentation to some
other person, output device, or proqram.
Thus, the retrieval system can be used
as an internal message handlinq system.

In ESDP the user will specify explicitly what are
usually implicit in a query—the precise data to be retrieved
(not the entire record containinq what is wanted), the place to
store it (if other than the printed page or a CRT console) and
the addressee, who is usually the requestor.

24

It should be noted that the requirements for a system
responsive to both human requestors and programs, with one of the
usinq programs beinq a query acquisition proqram that
communicates with the human user.

A feature that will be required of ESDP will be to
index narrative interroqation responses to permit access by the
retrieval system on the basis of response content. There are
several reasonably well established techniques for doinq this.
One is to use a list of "common" words (articles, the forms of
the verb to be, etc.), delete these from responses, truncate the
remaininq words at five or six letters and use them as a keyword
index. Alternatively, a dictionary of system terms can be built
and this used to identify words in a response that ouqht to be in
the index to the response. This list must be constantly modified
to be sure it is up to date. Another automatic technique that
miqht be useful is to require that a special character precede or
follow a data element, proqram name, or other system label when
used in text. In this way, any cross reference in a response can
be readily identified.

More qenerally, the loqic of computer assisted
interroqation qives us the followinq information about a
narrative documentation item, before it has been elicited from
the proqrammer:

o Subject of the question—name of UOP or
data element, particularly aspect beinq
questioned.

o Structural relationship, for cross-
referencing purposes, with other pro-
grams or files.

These items, combined with keywords extracted from the response,
qive the potential of a very rich keyword index for use in
queryinq or in automatic dissemination. The same items can he
used to form an index in each published report. These indexes
would, of course, be automatically modified if the basic
documentation were modified, either through interrogation or
program analysis.

We anticipate that some number of standard queries will be
previously written and invoked by the user as he needs thQm.
Some of these queries may be complete as stored and some may need
completion or assignment of values to parameters throiqh
interrogation.

25

This type of standard query should be quite easy to
implement. The majority of queries, however, will be
unanticipated. These will be processed through an interpreter
proqram designed especially to operate on queries expressed in
the CEL. The interpretive approach is dictated since compilation
of queries cannot be performed rapidly enough to permit an
efficient on-line system.

Many information retrieval queries will be of a form in
which a sinqle data file is used and a single IF statement is
sufficient to decide upon record selection. Often, the key of
the record will be given so the desired record may be immediately
retrieved. Tf the key is not given, the implication is that each
record must be examined for its compliance with the guery, a
process considerably shortened by the use of inverted indexes, if
they exist. Checking for the existence of these indexes, and
making use of them, is a function of the interpreter.

In a typical guery, the program will have been written
in skeleton form, and the remaining data is acquired at the time
of invocation. The items acguired are:

o Record selection criteria—a single TF
statement, although containing any num-
ber of clauses.

o The "THEN" functions--what to do with a
selected record, e.g., RETRIEVE items A,
B, C, retrieve A to B(1,I) ("retrieve
item A and place it in record I of
Buffer File 1.")

o The "ELSE" functions—iteration logic
will be built into the original, but the
user can add functions. He may, for
example, choose to retrieve on the basis
of a false IF condition.

o Processing of retrieved output that has
been stored in a buffer, eg., SORT (Bl)
on B(l,l), i.e., sort file Bl on the
first field of a record.

o Additional commands, such as DEFER,
SAVE, etc.

26

VI

PUBLICATIONS

import
of ou
be cha
especi
must b
for m
forms
by the
centra
requla

There
ant econom
tput for
racterize<i
ally earl
e dissemin
any of the
of docuaen
recipient

lized pri
r internal

are se
ic dif
design
by la

y in a
ated f
nicet

tation
s, or
nter
mail

veral clas
ferences a
notes and

rge volume
system de

ully and r
ies of pub

They ca
they can b
and dissem
system.

ses of publications, with fairly
mong them. There will be a class
change notices. This class will
and high frequency of issue,
velopment cycle. These documents
apidly. There is no great need
lication that are useful in other
n be printed at the consoles used
e batch printed on a high-speed,
inated through the organization's

designe
their o
used f
used la
is char
but pr
printin
holder
this re
not re
it.

As
rs an
wn a nd
or re
ter, d
acteri
obably
g. Th
of sue
port c
prod uc

des
I m
clo

ady
urin
zed

be
ey w
h re
°py,
e t

ign an
anagers
sely re
ref ere

g inter
by larg
nefitti
ill, of
ports c
or mak

he enti

d
wi

late
nee,
roga
er d
ng
cou

an a
e a
re r

prod
11
d pr

an
tion
ocum
from
rse,
ttac
hand
epor

uctio
want
ogram
d pos
s. T
ents
more
chan

h a
-writ
t eve

n pr
fairly
s and
sibly
his cl
of low
caref

ge oft
change
ten no
ry tim

ogres
comp

files
for m
ass
er fr
ul ph
en, b

not
te th
e the

s,
lete
. Th
akinq
of d
equen
ysica
ut ma
ice
ereup
re is

proqramm
document
ese will
notes t.

ocumenta
cy of is
1 layout
ny times
directly
on. He
a chanq

ors,
s on

be
o be
t ion
sue,
and
the
to

need
e to

third class of documentation is the formal
documentation normally produced at the end of a project, or for
major proqress or milestone reports. These are printed much less
often than the others, but require many printinq features not
always available on computer-qenerated documents.

It appears, at this point, that the loqical
capabilities represented by existinq proqrams, such as FLOWCHART
[1] and Administrative Terminal System [2"), will handle most of
these documentation problems.

ATS offers all needed features except ability to handle
qraphics. It offers a much wider choice of type fonts when
printinq at a terminal with chanqeable type elements, and the
ability to underline text. Variation in type fonts for
proqramminq documentation is useful to help distinguish, for
example, between labels or data names and normal English usage,
as SPEED is a data item, but S£eed is a rate of motion.

AUTOCHART [4] enables the entry of flow charts and
tables. It is desiqned to accept manually prepared input, hence
should be able to interface smoothly with the interroqation
processor. The desiqner does his own flow chart layout. The
compensation for the extra work of doinq this is a compact chart
orqanized in the most meaninqful way, to the author. Tables and

27

charts can be modified without complete regeneration, using an
updating interrogation, as in CAINT.

28

VII

FILE PROCESSING

!• E23.iLi£^S§3ts- From an operational viewpoint, ESDP imposes
the following storage/retrieval requirements:

a. Data stored on or transferred to bulk storage must
be directly accessible to satisfy a broad range of user query
requirements and data storage requirements from on-line consoles.

b. Larqe data base processing capabilities must be
provided in order not to restrict the size of user programming
systems.

c. Evolutionary file growth must be accommodated since
at the outset of the programming development cycle the ESDP files
are empty and evolve as the user's programming system develops.

ci. Highly variable record lengths must be allowed
since these are dictated by the varying characteristics of the
programs comprising the user's programming system.

e. The processing cannot rely on predetermined
knowledge of the distribution of search keys, used in accessing
data, since these are dictated by the symbol coding conventions
adopted for the user's programming system and by his natural
language responses to interrogation.

f. Certain files are directly related to others. For
example, keywords are related to the UOP in which thoy were used.
Therefore, access to one may necessitate access to the other.

The ESDP file processor addresses these requirements and attemnts
to provide a solution that effectively handles each requirement
within the total context. While this may not be the optimum
solution for any given requirement, when considered by itself, it
does cope with the totality of requirements in an effective
fashion.

A total file manaqement or information processing
system was not considered to be an appropriate development based
on ESDP requirements. The preferred approach was to develop a
set of generalized modules to perform discrete functions which
would be usable throughout the ESDP system.

Experimental versions of the file processing routines
have been written in the PL/I language. The physical file
processing uses the Basic Direct Access lethod (BDA*1) [^1 through
PL/I. All data sets are physically organized by regions, where a
region is defined as a' unit of storage, equivalent to a disk
track. This equivalence is based on the current PL/I
implementation and may vary as other storage devices ^re
supported in subsequent implementations.

29

2. Rationale for ESDP Abroach. The following discussion is
limited to accessing techniques for files where data or records
must be directly accessed. It excludes techniques which rely on
sequential data organization and on a total file scan. While the
latter have application in certain classes of retrieval problems,
this is not the case in the ESDP system, since we are dealing
with a large data base and a non-batched guery/retrieva1
env ironraent.

The accessing problem is one of uniguely locating each
unit of data within a file. Two general technigues can be used
to perform this location function; namely, table look-up and
randomization techniques.

Let us consider randomization techniques first. These
are based on some arithmetic manipulation of the character codes
of the name or key for the data to be located. The manipulation
results in an address for the peripheral storage device at which
the desired data is stored. Numerous technigues are available
for randomizing or manipulating the character codes. Each is
effective in a given application because it is tailored to the
peculiar characteristics of the names or keys used in the
application. However, no techniques exist which guarantee a
unique transformation in every case. To handle the problem of
non-unique transformations, so-called 'chain* processinq
techniques must be employed (e.g., hash tables). The
effectiveness of a technique in any given application is
dependent on how well it restricts the size of chains and on the
overflow procedures adopted for chain processinq.

For the ESDP system, randomization techniques were
rejected as the bases of the file accessinq mode. First, as
noted earlier, the names or keys used in ESDP file accessing are
dictated by the symbol coding conventions adopted for a user's
programming system and his natural language responses to
interrogation. They cannot be predetermined. No known
randomization technigue exists which can produce satisfactory
results, given any key set.

Second, randomizing technigues are useful only for a
single access path to file data (i.e., access through a single
key set). Because of the nature of the data in the ESDP files,
multiple access paths must be available to the same data. Thus,
table look-up technigues would be required to handle the
secondary key sets and access paths.

Randomizing techniques are more effective in loosely
packed file situations. Efficiency drops sharply as denser
packing is used. The resultant increase in storage requirements
cannot be offset by comparable table look-up storage
requirements. Thus, this technique would unduly tax storage
requirements. File maintenance also becomes a problem if
extensive chains develop.

30

The alternative to randomization is some form of table
look-up which is the method employed in the ESDP file processor.
Table look-up techniques employing indices have been used in many
other systems and are the basis of the index sequential access
method in System/360. Essentially, a table entry is created for
each name or key used in accessing a file, and an address of the
appropriate file location is stored with the key. When the table
is searched, the required storage key can be obtained directly.
Various searching algorithms can be used depending on the
ordering of the keys in the table.

The most efficient searching techniques require an
ordered (typically alphabetic sort order) table based on key
characteristics. A major problem arises with these techniques
when applied to evolving tables or indices. Either strict order
is maintained by physically rearranginq the index when new
entries are inserted or chaininq techniques are used. With the
latter technique, new entries are not inserted in sequence but
stored separately and a reference inserted at the required point
in the sequence. To avoid extensive chain processing, file
maintenance of the indices is periodically required, with the
frequency of the period dictated by the index growth pattern.

To avoid this maintenance and reorganization prohlem,
the ESDP file processor uses a different technique for index
buildinq and searching, which is a take-off on existing list
processing ideas.

In the ESDP file system, the index is treated as a
group of entries which are physically strung toqether into a
list, not necessarily contiguously, and which are logically
ordered or sequenced by the use of pointers or address indicators
which are appended to each entry. Because of this uncouplinq of
the physical and logical ordering of the index (or any list), we
can eliminate the index reorganization problem, and with some
other simple techniques, the index maintenance problem.

A binary tree structure was selected to pemit
efficient search strategies, based on binary search techniques.
The form of the index entry (or structure node) adopted for the
ESDP case is shown in Figure S. Here:

a. The Index Key Field contains the key or name used
to access file data. This field contains such elements as the
names of the (1) Units of Programming (tJOP) ; (2) data variable
names; or (3) descriptor terms (i.e., keywords).

b. The Low Sequence Pointer contains the address of
another index entry whose key is lower in sort sequence than the
key of the record beinq examined. Similarly, the Hiqh Sequence
Pointer contains the address of a record whose key is hiqher in
sort sequence than the key'of the record beinq examined.

c. The Data Field contains any additional data that is
desired to be stored in the index. For ESDP, this field could be

31

Index Key Field

Low Sequence Pointer High Sequence Pointer

Data Field

Figure 5. Index Entry

32

used for citation lists, disk addresses and allocation an'1
addressing controls.

This general form was defined to permit the
implementation of a single program to perform index building and
searching of a variety of indices, each of which had a different
snecific organization. As typical in list processing, an initial
pointer or 'anchor' is maintained that points to the first index
entry or head of the list.

3- Prototype ESDP Index Implementation. Typically, list
processing technigues have been applied to lists which can be
maintained in core memory. For the ESDP problem, the file sizes
and index reguirements are too large to justify core resident
indices; thus, some different technigues had to be employed which
could operate with a disk resident index. First, indices ware
segmented and these segments were the units for storing and
retrieving from disk. The selected segment size was set at the
track size of the disk unit used. The following PL/I structure
declaration defines the segment format use!:

SEGMENT FORMAT

1 STRUCT,
2 ID BIT (8) /*Index Identifier */
2 ANC bit (8) /*Next available entry pointer */
2 MINSTRUCT (N) ,

3 KEE CHAR (M) , /*Index Field */
3 LOW BIT (16), /*Lcw Seguence Pointer */
3 HIGH BIT (16), /*High Seguence Pointer */
3 ENT CHAR (0), /*Data Field */
3 ENT CHAR

where
N, M, 0 take on different values depending on the particular
index characteristics, such as size of search key, extent of
data field, and maximum number of entries per segment.

ID is a one byte code identifying all segments in the same
index.

ANC is a pointer that indicates which entry in the segment
can be used for the next index term to be stored. If the
value of ANC is zero then the segment has the maximum num-
ber of entries or is full.

Each index segment must be initialized before operation as
follows:

a. Each index field (KEE) is set to binary zero.

b. Each high seguence pointer is set to binary zero.

c. Each low seguence pointer is set with the subscript
value of the next entry in the array (MINSTRUCT). LOW
(N) is set to binary zero.

33

d. ANC is given the value (J/1) (i.e., initially the
first segment entry is to be used for the first index
entry in the segment).

A generalized index search routine has been written
which has multiple entry points depending on the number of
discrete indices. (At present, eight indices are maintained; six
corresponding to the six UOP levels, one for data definitions and
one for keywords.) Upon access, this routine reads the first
segment of the specified index, which contains the anchor or
start of the index list. It begins comparing the passed search
key against the KEE's (stored keys) in the segment. If this is
the first entry in the index, then KEE (1) in segment one eguals
binary zero and no match is found. The no match occurs whenever
the contents of KEE differ from the passed search key. If the
passed key and the entry in KEE match, then the routine returns
to the calling program and passes back the subscript value of the
matching entry and disk address of the index segment, currently
in core memory.

When a no match case arises, a check is made to
determine if the passed key is less than or greater than the
index entry (KEE) being compared. Then, either the low seguence
pointer (LOW) or the high seguence pointer (HIGH) is used to
determine the next entry against which a comparison is to be
made. Before picking up this next entry the following checks
have to be made on the pointer value:

a. If it is egual to binary zero, then we are at a
terminal node, i.e., an entry for the passed key does not exist
in the index. In this case a zero subscript value is returned
that indicates no matching entry (terminal node) to which a link
must now be made. The back pointer will be either a negative or
a positive value, depending on whether the link should be made to
the terminal node's low or high seguence pointer, currently in
core memory. As usual, the disk address of the index segment is
also returned.

b. If it is less than a threshold value, then the
value is a subscript to an entry within the index segment,
currently in core memory. The threshold is current set at 255
which is the maximum number of index entries permitted in a given
segment. The search program uses the subscript to pick up the
next entry and repeat the comparison operation.

c. If it is greater than the threshold, then the value
has a double meaning; namely, it contains the disk address of the
index segment in which the next entry can be found and the
subscript value of that entry within the segment. The search
program uses the disk to ' overwrite the current core resident
segment with the new segment. The subscript value is then used
to pick up the desired entry and repeat the comparison loop.

34

Thus, two returns from the search routine are possible,
either a match or a no match. In the match case, the calling
program performs whatever processing is required using the index
entry and rewrites the index segment to disk upon completion, if
the specified index entry has been modified. In the no-match
case, either an error condition exists or the calling program
wants to add a new index entry. In the former case, some
appropriate error processing should be performed. In the latter
case, i.e., index entry load, the calling program is responsible
for finding an empty slot that can be used for the new iniex
entry. To do this, the ANC Field of the index segment is used
since it points to the next available slot in the segment.

If the ANC value for the index segment, currently in
core memory, is non-zero, then the new entry can he inserted in
the current segment and the ANC value is the subscript to this
available space. Before using the indicated entry space, the
calling program must replace the current ANC value by the value
of the LOW pointer in the indicated entry space. Thus, for
subsequent users, ANC will have an appropriate subscript value
and continue to point to the next available entry. The new entry
is initialized as required by the callinq program and both LOW
and HIGH pointers are set to zero, making the new entry a
terminal node. The returned back pointer value is used to make
the necessary linkage with the last compared key to preserve the
logical ordering of the index.

when the value of ANC in the current core resident
segment equals zero, then the current segment is full and cannot
hold a new index entry. Since the LOW pointer of the last entry
in each segment is initialized to zero, when this entry is used,
ANC will pick up a zero value. In this case, empty space must be
found in some other segment of the index. Segments of the iniex
are retrieved sequentially until a seqment is found whose ANC
value is non-zero. Note, the starting point for seqment
retrieved is specified by a system parameter, like the anchor
pointer, which qives the disk address of the first seqment of the
index which has empty space. As an index is initially built,
this address will click up sequentially; however, whenever an
index entry is deleted, thus, creatinq a hole in the index, this
address will be reset to the seqment from which the deletion was
made. Thus, empty space will be reused.

35

VIII

DEBUGGING SOPPOBT

1. Introduction. He have described in Volume 3 of this report a
language designed to facilitate programming of conversational
processes. This language, called the CAINT Executive Language
(CEL) is employed in writing executive programs to control the
logic of guestion selection and wording, response analysis, and
various other activities. CEL-written programs reguire
debugging, and ESDP is designed to include a support package
specifically tailored to assist the executive programmer in
debugging.

2. Debugging^ Support Capabilities^ He define five basic
debugging capabilities: (1) halt, (2) display, (3) alter, (4)
change, and (S) begin. The capabilities will be presented by
commands of the same name, and it will be possible to embed the
commands in CEL.

For example,

IF (Condition) THEN DISPLAY (Variable) ELSE HALT.

3. Commands.

a. HALT

Halt the CEL program and continue with the next
seguential instruction when the start button on the user's
console is pressed.

b. DISPLAY

Display the contents of named variables (in core or
external storage) .

For example,

A = 1; B = 6; C = A • B;

DISPLAY (C) ;

results in a printout of:

C = 7

c. ALTER

Enables the programmer to modify some area of core or
external storage.

For example.

36

Programmer types:

C = A - B (continuing the above example)

C is set egual to -5.

d. CHANGE

Enables the programmer to change statements in the CEL
program being debugged.

There are three forms of CHANGE defined:

(1) CHANGE (DELETE (statement number) TO
(statement number))

(2) CHANGE (REPLACE (statement number) TO
(statement number) WITH source code)

(3) CHANGE (INSERT AFTER (statement number)
source cole)

Hm Use of Debugging Capabilities. Data value changes may be
traced throughout the execution of a program.

For example,

DISPLAY (X) ;

means display the current value of X every time X
chanqes value.

IF (Y > 5) 6 (Y <10) THEN DISPLAY (X);

means display the current value of X every time X
changes only if Y is greater than 5 but less than 10. In other
words, rather than inserting this statement in the CEL program
every time that X is changed, the programmer can state the
condition and desired action once, and the commanil will be in
effect throughout the program execution.

Another option is deferral of printout.

For example,

DISPLAYD (X) ;

means record all value changes of X and print off-line.

A particular CAINT application might be a deferred display of all
the guestion (in seguence) output for a given run.

During a debug run some means of data base protection
would have to be provided. This might take the form of putting
the data base in a read-only mode for each debug application.

37

This would mean that any area of the data base could be read, but
writing would be directed to a scratch file, and any attempts to
read "changed" data base records would also be directed to the
scratch file (onto which they had previously been written).

A typical CHANGE and ALTER situation might occur
following detection of a bug.

A CHANGE command (for replacement, deletion, or
insertion of statements) could be used to attempt error
correction. An ALTER command could then be used to reinitialize
data variables to reasonable values for the point at which the
program is restarted (using the BEGIN command).

5. Methods of Implementation. There are two general methods to
support the CEL with the debugging capabilities described above:
compilation and interpretation.

Some pre-processing would be reguired to prepare a deck
for compilation so as to support the debugging capabilities
described above. This could be coupled with an interrogation
designed to elicit from the programmer the specific debugging
reguirements for each program.

Consider a simple example of the kind of preprocessing
under discussion.

The programmer writes the following code in which the
numbers on the left are machine generated statement numbers, to
be used by the programmer as operands of a CHANGE command.

S00100 LI: DO;
S00200 IF UOP.NUMENS = 0 THEN CALL OUT ('NO MEMBERS',
S00400 UOPAD); ELSE CALL OUT (MEMLIST,NUMENS);
S00500 IF UOPAD = UOPEND THEN GO TO L2;
S00700 UOPAD = UOPAD + 1;
S00800 CALL NEXT (UOPAD) ;
S00900 GO TO LI;
S01000 L2: END

The following is an example of a dialogue that could
then take place:

BSG Type the number of each command to be used

1- HALT

2. DISPLAY

1. ALTER

RES 2

MSG Which variables are to be displayed?

38

RES UOP.NUMENS

MSG Which variables are to control the display of OOP.NUMENS?

RES UOP.NUMENS

MSG For which new values of UOP.NUMENS is UOP.NUMENS to be
displayed?

RES HOP. NUMENS > J?

MSG Pre-processing has begun

MSG Compilation has begun

MSG At which statement do you want execution to begin? (Type
Number 1 - 10).

RES 1

MSG Execution has begun

Etc.

The deck produced by the pre-processor looks as
follows:

L1L2: PROC OPTIONS (MAIN) ;

^INCLUDE DATA (DCLl) ; Includes declarations necessary to define
data base references in program.

^INCLUDE TEMP (CODE); Includes code to initialize variables in
support of DISPLAY. (This code was
generated as a result of the dialogue
pictured above.)

^INCLUDE PROG (CHECK) ; Includes this system (ESDP) program as
internal procedure. This program
supports the debugging capabilities
described above.

LABI (1) :Ll:DO; LABI (1) defines this statement as an
element in the label array LABl(n)
(where N = 10 in this case). Each
statement in the original will be
prefixed in this way to allow
implementation of the BEGIN command.

LAB1(2):IF UOP.NUMENS = 0

THEN

LAB1(3): CALL OUT (10 MEMBERS,

39

LABI (4): ELSS CALL OOT (MENLIST,

NUMENS) ;

CALL CHECK:

LAB1(S): IF UOPAD = UOPEND

THEN

LABI (6) : GO TO L2;

LAB1(7): UOPAD = UOPAD + 1;

CALL CHECK:

LAB (8) : CALL NEXT (UOPAD);

CALL CHECK;

LAB1(9) : GO TO LI;

LAB1(10): L2: END;

In summary:

The HALT command could have been enabled by the same
interrqation process which enabled the DISPLAY command. The
program can still be halted by the programmer by pressing the
stop button on the console.

The CHANGE command can be utilized following a halt by
means of a dialogue with the CHECK routine.

The DISPLAY command has been selectively enabled
through interrogation.

The ALTER command could have been enabled by means of
interrogation.

The BEGIN command is supported by embedding the program
in a label array as shown.

The main differences between compilation and
interpretation are (1) interpretation will effect some
implementation costs whereas the compiler is essentially free,
(2) interpretive program CHANGES can be made more rapidly,
because it is not necessary to recompile and linkage edit, and
(1) interpretive debugging commands can be entered at execution
time.

40

IX

BIBLIOGRAPHY

[1] System/360 Flowchart 1360A-SE-2 2X]_ User^s Manual,
H20-0293, IBM Corporation, White Plains, N.Y.

[2] IBM_ lM0ZLii60_ Administrative Terminal Sy.st.em
A£Elication Description, Form H20-0129, IBM Corporation,
White Plains, N.Y.

[3] Mills, H. D. and Michael Dyer, Evolutionary System for Dita
Processing, Proceedings of IBM Peal Time Systems Seminar,
Houston, Texas, November 1966.

[4] IBM 7090/9U Autof low System Userls and 2£2E3.torls
Manual, Applied Data Research, Inc., Washington, D. C. ,
1967, under NASA Contract No. NAS5-10021.

[5] IBM Oger a t in<j System/160 Concept s and Facilities ,
Form C28-6535, IBM Corporation, White Plains, N.Y.

41

Security Classification

DOCUMENT CONTROL DATA -R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report Is classified)

1 ORIGINATING ACTIVITY (Corporate author)

Center for Exploratory Studies
International Business Machines Corporation
RockviHe, Maryland 20850

Za. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2b. GROUP

N/A
3 REPORT TITLE

EVOLUTIONARY SYSTEM FOR DATA PROCESSING
PROGRAMMING SPECIFICATIONS

4 DESCRIPTIVE NOTES (Type ol report and inclusive dates)

None
5- AUTHOR(S) (First name, middle Initial, last name)

Charles T. Meadow
Douglas W. Waugh
Gerald F. Canklin
Forrest E. Miller

6 REPORT DATE

January 1968
7a. TOTAL NO. OF PAGES

47
7b. NO. OF REFS

8». CONTRACT OR GRANT NO.

FI9628-67-C-0254
6. PROJ EC T NO.

9a. ORIGINATOR'S REPORT NUMBER(S)

ESD-TR-68-143, Vol. IV

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited,

SUPPLEMENTARY NOTES t SPONSORING MILI T»R>LAC 71 VITY . _
ommand Systems Division, Electronic bystems

Division, Air Force Systems Command, USAF,
LG Hanscom Field, Bedford, Mass. 01730

13. ABSTRAC T

ESDP is a proposed system whose purpose is to acquire, store, retrieve, publish and disseminate
all documentation, exclusive of graphics, concerned with a large computer programming activity.
Documentation is deemed to consist, not only of final or formally published after-the-fact reports,
but of working files, design and change notices, informal drafts, management reports—in fact, the
entire recordable rationale underlying a programming system. Maximum attention has been con-
centrated on the means of acquiring and organizing documentation. Two major, complementary
approaches are proposed. The first is called Program Analysis and is a process of extracting
documentation directly from completed programs. The second is called Computer Assisted Interro-
gation and is a process of eliciting information directly from the programmer, through on-line
communication terminals. I he former provides canonical data about the program's structure. The
latter provides explanatory material about all aspects of the program, and in the absence of
canonical data, may provide tentative structural information as well. The conclusion of the study
group is that ESDP is a feasible concept with present-day technology and that it will materially
benefit using organizations in the production of programs and in guiding their evolution as
requirements change. Its value will be greater for larger organizations, whose internal communica-
tions difficulties tend to cause truly gigantic inefficiencies. Its implementation as a support
system for such projects would require a significant quantum of investment in order to produce
these benefits and is predicated on the use of a computer system dedicated solely to the use of
ESDP.

DD FORM 1473 Unclassified
Security Classification

