D ess8/o0

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

AN ASSOCIATIVE PROCESSING SYSTEM
FOR CONVENTIONAL DIGITAL COMPUTERS

P. D. ROVNER
J. A. FELDMAN

Group 23

TECHNICAL NOTE 1967-19

21 APRIL 1967

LEXINGTON MASSACHUSETTS

PAGES
~ ARE
MISSING
IN
ORIGINAL

DOCUMENT

- . ~ N LS, e . Q VYIS T “3“:
'BSTRACT

A user-oriented system kaving both algebraic and aSSOciagive
f : : processing capabilities is presented in this report. ~The alge-- ?
braic capabilities are essentially those of ALGOL. The as- - »
sociative facilities are: B f
b o £
B , . S0 : bE
(1) A language for ne expression of associative
= _— retrieval requesis (the associative language). 1
SRR kS
" - (2) A scheme for the internal representation of ;’
Lo , a store of associations between items of in-
; ; : S formation (an associative information base).
(3) Processing routines for associative retrieval k .
requests. : ~ ’
i The associative language is independent of the structure of the ‘

associative information base., In the system presented here,
the associative information base is implemented via hash--
. coding techniques‘ The associative language is 1mp1emented

by extendmg an existing ALGOL system. o V
: This report consists of thiee sections:. Sec.I describes the) .
L high -level programming 1 nguage for the overall system; ' : =
: Sec. 1l outlines.the scheme for represent'mg an associative in=--
o formation base; and Sec.IIl summarizes the grocessing rou-
SR I rmes for assocxatwe retrieval requests.
\
3
B
L
L
;
0 . L . ‘~
Accepted for the Air Force ‘ . : : e
Franklin C. Hudson: . . RS
. Chief, Lincoln Laaboratory Qffice ,
. il k ' » ’ oo
ERUA 4 :\,»w‘»‘ua:r B L T I S T B B TS ':a.mu.va:%;.»,.fa-.uﬁ\Ar.m;\vw:'x«&%ff&mﬂw“«v‘iﬁtﬁw\w"'&ﬁmm :\“

J T P

e

b R

&

g

1II

,-‘ A A
S T VNG SRS
0 ;

s i T e R AL

moHHEUowe

iv,

CHONTENTS

Abstract

THE ASSOCIATIVE L.ANGUAGE LEAP
Introduotlon

Variables

Expréssions _

‘Language Formis Involving SET Expressions (SX)
Relational Lianguage Forms

“Associative Retrieval Descr1pt1ons

Associative FOR Statement

Conclusion

TNTERNAL REPRESENTATION FOR A STORE
‘OF ASSOCIATIONS

A. Introduction ’

'B. Representation Scheme

PROCESSING ASSOCIA"‘IVE RETRIEVAL REQUESTS

CONCLUSION

APPENDIX ‘A ~ Simple Example of an Assocmtive

FOR Statement

APPENDIX B - BNF Syntax of LEAP
APPENDIX C - Example of a LEAP Program
Bibliography.

iv

iii

PN

14

17
19
22
31

Lo S L I s I o I

5 M T AP R S TR B A e o oy L = 8 .(@,,.w.a,&m‘u_ L B e T S

AN ASSOCIATIVE PROCESSING SYSTEM
‘FOR CONVENTIONAL DIGITAL COMPUTERS

I. THE ASSOCIATIVE LANGUAGE, LEAPT

A. Introduction

There are three types of constructs in LEAP: algebraic, set-theoretic,
and associative. The algebraic operations available are essentially those of
ALGOL. In addition, the declarative and sequencing statements of ALGOL are
used in LEAP. The set-theoretic constructs include union, containment, etc.,

as well as certain sequencing rules for operating on the members of sets. The

associative .dperat‘ion‘s constitute an extension of AL |Feldman, 1965] to inclvde ‘
.associations between associations and nesting of statements.

‘Each identifier in a LEAP program will have a data type, as in ALGOL.
7o facilitate the expression of set-theoretic and associative operations, we

have added four new data types:

‘Standard ALGOL Data Types LEAP Additions

REAL ITEM

BOOLEAN SET

FRACTION o NAME)
INTEGER I.OCAL

Any of the additional data types may be qualified by an ALGOL dafa type (e.g.,
BOOLEAN SET, REAL ITEM, INTEGER LOCAL). ‘

B. Variablea

The ALGOL notion of "variable" (a location which takes on arithmetic or
Boolean values) has been extended in LEAP to include:

- (1) ITEMs:- Each variable of type ITEM has a unique interml aystem
name. This "internal ngme" is used to rep_reqent the ITEM in associative and

tLEAP: A ;_,_angu;gev for the f_):--:;:resudn of As.lochtive-groceduru'.

Y

e e T e iy e kT R e .
ROV q-[,‘a;m-;&gg:g)’“‘ N R Tt i g e R
) g SR B e R

Pttt S T LA A b B

L L L TS o b NN |

e s o

e St vy . et m

L
|
A
3.
i
b
4
A

set-thecoretic operations. in addition to an internal name, an I'TEM may or

may not have an arithmetic or Boolean vaiue. The algebraic operations in the

LEAP language manipulate arithmetic and Boolean values.

(2) SETs:— The value of a SET is an unordered set of ITEMs. Inter-

- nally, a SET element is‘r,epresented by its internal name.

(3) NAMEs:— NAME variaoles are used to pass an ITEM as a param-~- .

~ eter to a set-theoretic or associative operation. The value of a NAME variable
"is an ITEM. Within the system, the value of a NAME variable is represented

by its internal name.

(4) LOCALs:~ LOCALs are used within associative statements to

represent the results of an associative retrieval operation. This is the only

.use of LOCALs.

C. Expressions

In LEAP, an operation of any type which leaves a result will be called an

- "expression"; one which does not will be called a "statement." There are three

kinds of expressions in LEAP:

ALGOL An ALGOL expression has as its value
an arithmetic or Boolean number.

SET . A SET expression has as iis value an
unordered collection of ITEMs.

NAME A NAME expression hal as its value
an ITEM.

D. Language Forms Involving SET Expressions (SX)
A list of basic SET ianguage forms appears in Table 1. In addition, there

18 one sequencing stntement* whose form is

FOR <LOCAL>¢ "SX> DO <STATEMENT>

tNO’l‘E° Thil ltutement iza lpecill case of the aasociative FOR stntement.
which iu dlscuued in Sec.G below.

Y O G R O N SRRy s

TABLE 1 3
LIST OF BASIC SET LANGUAGE FORMS
Form : Result Name of Form
ITEM « SX Boolean Membership ’
SX CSX Booclean Containment :
SX = §X Boolean Set equality {»
SX ~ SX : SET Set subtraction ;
SX U SX SET Union]
SX N SX SET Intersection
|| sx Integer liorm ;
SX - SET variable Assignment
\
For each ITEM in the SET expression, the BODY of the FOR statement
is executed. On each iteration, the current ITEM is assigned to the LOCAL
variabie, which behaves like a NAME variable when used within the BODY.
E. Relational Language Forms
The relational operations in LEAP derive from the relation
(1) A.OszV
which is read "Attribute of Object is Value!" Typical statements include:
(2) MAKE PART . PICTURE3 z LINE2 |
ERASE END . LINE3 z POINT2
By‘leaving none, one, or two of the positions in (1) unspecified (by the use of
LOCALS), we indicate & "simple associative form" (SAF).Y Some examples are:
| (3) PART . PICTURE3 a X |
- W.LINE3zZ
_ ?Therefore. there are seven SAF's. L
B o
4
N . ‘ ‘ o *%
A‘L_k'.‘"Tﬂ"‘{ﬂb4 R e 4‘,:-\“» o by A S e i ~_M.l’ ey .:"1<»-jlunvp‘4ﬂﬁ\.qw<-"5‘«;\.;:-”;«.-\“-*“,; l‘ . v“.:-v LA * ,«,,”) 1‘,&1\&“% :

The identifiers involved in {3) are ITEM identifiers (PART, PICTURE3, LINE3)
and LOCAL identifiers (X, W, Z). The relational fac lity of LEAP is based on
operations on these simple associative forms.

The simple associa.ive form is used two ways in LEAP. In statements
like (2), it is used to specify tiie parameters of an operator. In constructs
like (3), it is used to assign the results of an associative retrieval operation

to a LOCAL (or LOCALSs). :
One way of combining SAFs-is by nesting. Nesting can occur in the Object
or Value position of a SAF. For example, if we know that

(1) ABOVE the SQUARE is a TRIANGLE
(ABOVE - SQUARE =z TRIANGLE)

and

(2) INSIDE the TRIANGLE is a LINE
(INSIDE - TRIANGLE s LINE)

then
(3) INSIDE . (ABOVE - SQUARE) = LINE

expresses the fact that inside the object which is abdve the sﬁuare there is a
line. In connection with nesting, it is convenient io add the notion of "associa-
‘tive term." There aré three basic associative terms: \

(1) A+ O meaning all Vs shch that A - Oz v, |
(2) A'V meaning all Os suchthat A - Oz V,
_aﬁd |) | |
3) A* O meanmg all Vs such that A 0 13 V or A V : O,

: Thus. the construrl
’ INSIDE (ABOVE . SQUARE)

o isa lpacmcltion of all objects which are lnlide of objects which are lbove or
below the square. These noutioas serve to mnke more anocutionn exprus- -

ible by a mmed SAF. ;

’ =
R

W LI B PIRENE L A T C JLER

A much more significant feature is the ability to use an entire SAF as the
Object or Value in an associative form. This may be expressed with the aid
of parentheses. For example,

REASON - (ABOVE - SQUARE z TRIANGLE)
= {\BELOW - TRIANGLE z SQUARE)

states that the reason that the triangle is above the square is that the square

is below the triangle. " This information would be difficult to express in terms
of simple associative forms. The use of this constrict also enables one to
express some relationships which are not triples, such as "the number of lines
in a square is four" Cne such statement would be

NUMBER -+ (PART - SQUARE z LINE) : FOUR

where NUMBER is an attribute which applies to all part-whole relationsh_ips;
The term "compound associative form" (CAF) will be applied to simple as-

sociative forms, nested simple associative forms, and associative forms in 3
which the Object or Value is a SAF. ' A

F.. Associative Retrieval Descriptions

A CAF in which & LOCAL is used is one form of an associative retrieval
description (ARD). Thg associative retrieval here consists of matching the _
association implied by the CAF against a stere of associations, and ,»:xgraciing
information from the store for each match thet is founc. The information ex-- ?
tracted is the ITEM whose position in .he ni~tched association is the'vsame"ai; _
the position of the LO(,M.. in the search nssociatinn. For example, in the CAF

PAR’? PIC’TURI:.B s X

X isa LOCM.. which =epreoems the set of ITEMs such thnt each is a PART
~of PICTURES.

. G Assocllﬂve F‘OR Statemem

For a powerful umvhtlve lungunge. one needs a langu.xge torm for com~ . |
' binh\g ARDs. The "anoclative_l?()ﬂ _stltement" has been developed for this - |

or o

. . Y .
R I L L e I R G (T R ALY RN

B SR EMOT TR R N .

TR IR

S TIPS R P, P e AT A 0 S35, AT

4 e e VIR

purpose. The LOCAIJ, is used as the link between the ARDs in an associative
FOR statement — the only statement in which LOCALSs meay occur. The use of

LOCALs corresponds to the use of free and constrained indeterminates in for- .

mal mathematics snd is discussed by Mendelson [1964]. The first occurrence

~of a LOCAL in an associative FOR statement is "free" and all subsequent uses

"constrained." For example, the following FOR statement creates the "defining

point" (DPT) relation for lines in a line drawing, given the start-point and

end-point relations. A point is a defining point of a line if it is either the start-

or end-point of the line.

FOR START : Xz Y

AND END - X = Z DO
BEGIN)

 MAKE DPT - X=Y;
. MAKE.DPT - Xz Z
E '_EﬁD; o

The part of the system which fdealrs" with run-time execution of the associative
FOR statement is quite sophisticated and will be described in detail in Sec, III.
The associative FUR statement has the following general form:

FOR <ARD> AND <ARD>...OR <ARD>...DO <STATEMENT>

An ARD may be a CAF in which LOCALS are used, the construct ‘<LOCAL> €
<SX> or any LEAP expression involving one or more LLOCALSs and having a
Boolean result. This implies that SET comparisons and ALGOL Boolean ex-

prasetois, including functions, may be used as ARDs. Appendix C contains
" examples of the FOR statement used to recognize structural relations in a

simple type of mechanical drawing.

H. Conclusion

Thus far, we have discussed LEAP almost as if it were three separate

. languages. Although the algebraic, sct-theoretic, and relational operations

R PR AR b

.

TYITET RS

e D e T .

4
£
4]

e L TR S TSI R T

R AR ST S o . % TP WO AW i1

AT IS UG SIS) iy

T dRt o daci

tezher 6
2
;

2

et n(r-r#*‘y,w X

-

L

are quite different, the language allows them to be combined in several ways,
as- shown in the following examples.

Any position in a compound associative form may be occupied by a SET
expression; this implies using each element of the corresponding SET in turu.

For example, if LINES is a SET identifier, the statement

MAKE PART . PICTURE®6 = LINES

will create a PART relation for each ITEM in the SET.
Any position in a CAF may also be occupied by a NAME expression; this
implies using the value of the NAME expression (an ITEM). For example, the

statement
MAKE PART - PICTURE®6 = (n LINES)T

will create an explicit PART relation between PICTURE®6 (an ITEM) and an
ITEM having as its value LINES (a SET).

The implementation of the LEAP language on the TX-2 computer has been
greatly facilitated by VITAL [Feldman, 1964}, a tiine-shared compiler-compiler
system. - The compiler-compiler accepts as input a formal specification of the
syntax and semantics of a language and yields as output a compiler for pro-
grams written in that language. Since the specifications of an ALGOL.-like
language had already been formalizec on this system, a relatively small effort
was reqguired to imbed the associative ‘lan‘gu;ge- in ALGOL. The Backus Normal
Form {(BNF) syntax of the associative language is prnsented in Appendix B
INTERNAL REPRESSNTATION F‘OR A STORE OF ASSOCIATIONS
A. Introduction

Within the computer. an auociation is composed of three "intvmal names"
(an internal name is & unique number. which is used to represent an ITE.M)

- An assncivion ia an mstance of .he basic auociative form

t"p" is an operator which yields a NAME éxpreulon. in this caée. tﬁe value

of the NAME expression is a npecial kind of ITEM - one having as its value
a SET. .

A o 7 RN B s AAEATY %Wmmmwmwwmqﬁ Al LR 2 s MP

]
.
o
3%
Ex
5
x
2

i e

an .:-_k'«ﬁﬁww)

A-Q:zV

meaning "Attribute of Object is Value." The three internal names composing
an association represent the Attribute, Object, and Value of the association.
A store of associations is simply a store of internal name triplets.

By leaving unspecified zero, one, or two positions in the basic associative
form, we indicate a simple associative form (SAF). There are seven SAF's.
We will call the use of a SAF in LEAP a simple associative retrieval request,
and we will consider the processing required by these seven requests as the
seven primitive associative tasks. The result of performing a primitive as-
sociative task takes one of three forms.

(1) Boolean:— 1f all three positions in the SAF are specified, the re-
sult is Boolean. In this case, the retrieval system must determine whether
or not the indicated internal name triple exists in the store.

(2) A Collection? of Internal Names:— If only one position in the SAF
is unspecified the result is a collection of internal names. Here, we desire
to find all internal names implied by the context of the unspecxfied position in
the SAF. The retrieval system must find each internal name triple in the store
which matches the SAF in its specified positions, and extract from it the in-
ternal name corresponding to the unspecified position in the SAF. The collec-
tion of internal names so ex: ract"d is the result.

‘ (3) A Collection of Internal Name Pairs;~ If two posittons in the SAF
‘are unspecified, the result is a collection of internal name pairs. Here, the
retrieval syétem must match on the one specified position, ind extract internal
 name peirs corresponding to the two unspecified positions. ‘The collection of
internal name pairs so extracted is the result.» '

B. Pepresentatton Sc‘teme

"This section_ outlines & scheme for the internal reﬁresénﬁﬁtlon ofa .stdre
of associa‘tiéns. ~ The scheme is based on h_uh‘.-’coding techniques and multiple.

tNO,T‘E: The "collection" is g_ll‘ktlnct from the "set" of Séc. L

ki o T i A *:;9:,‘;.-,:-““ fro-oa

(B g st g

v

O LR LIk HiRy .v»f‘?!%!‘i

represeniation of information on secondary storage. Three main criteria led
to the design: ‘
(1) The need for a partitioning scheme for very large
stores of associations.

(2) The desire to free the user from concern about the
structure of his store of associations.

(3) The need for fast performance of any of the seven
primitive associative tasks.
The first design criterion states the need for a partitioning scheme. If
the representation for a store of a'nssociationslr is too large to fit into core,
it must be divided into pieces (or "pages") and kent on bulk storage (magnetic

- drum, for example). In a time-sharing environment, it is desirable to parti-

tion a representation. even if it fits into core; overall system performance is
improved by having only relevant pages in high~-speed memory.
1f a representation is divided arbitrarily, however, performing a single

primitive associative task might require multiple secondary storage accesses.

This would cause slow response and large system overhead. Consequently,
we designed a representation such that any primitive associative task can be
fully performed within only one page. ‘A brief des'cription‘ of that representa-
tion follows, . 7

For those simple association retrieval requests having two unspecified
positions, the resulting collection of internal name pairs is found in a liSt in
the page determined by the one internal name that is speéitied and the position

“in which it occurs in the SAF. Thus, there are thrée types of pages: one for

cach position in the basic associative form (A. O3z V) Note that for each,
severnl internal names may indicate the’ same page. For those simple asso-
‘ciative retrieval requests having one unspecitied position. a page type and a
page are indicated by the internal name in one of the Specified posxtions. - The

scheme for decldlng ‘which of the two specmed posltions is used here dependn '

' t Henceforth tei-mgd the " r@prekéntauon »

L amdg e N LT
et e e

a B A e ~ P L RIS T . - . RO T -~ N Jut SRR

E o or which position is unspecified. The two specifiea internal names are hash-
coded, and the result specifies an address within the page at which a colléection
of internal names begins. ’

For the simple associative retrieval request in which all positions are
specified, any two internal names may be hash-coded, the indicated page set
up, and the thirq internal name used to search for a match in the collection
of internal names available at the hash-code address. The result is Boolean.

Since there are three cbpies of each triple in the representatioh, the up-

it R TR Y PRI i ek SRS P

date cost is large. This cost can be cut considerably by keeping track (for

it

each page) of additions and deletions, and by updating the page when it is next
brought into core to be queried.

The second design criterion is that the user should be free from co'nc’ernr
about the structure of his store of associations. Exiuting list-processing
systemsT [McCarthy, 1962] rely heévily on structural connections fo represent

 associations implicitly. Since the statement of association in LEAP is always
explicit, there is no need to impart externally apparent _struéture to a store
of associations. Indeed, the entire sysfem is strongly oriented toward dealing -

! with unstructured information. _
| The system makes use of the apparenfg'lack of struciure to org‘anize the 3
internal representation of information for its own convenience. For example, | -
N the collection of internal names which may result from evaluating a SET ex-

; | pression is available to the user as an unordered SET. Internally, however,
SETs are ordered by the internal names of their elements. This ordering
facilitates efficient system routines for manipulating SETs. If the system
were unable to recognize such an ordering, these routines would be signifi-
cantly slower. For example, consider the task of verifying that two SETs are
disjoint. If the SETs \are unordered, at most, m . n compérisons must be
made ("m" and "n" are the cardinalities of the SETs). If the SETs are or-
dered, however, the task requires, at most, M + N comparisons,.

L e L G 2 S i

t See various memoranda describing the CORAL language and data-structure
- system at Lincoln Laboratory.

10

S e P Pttt o 8 . v e e e R e e
e e e s e e ey

TP R

G e

A

TEA T RO M e \p o A s T

The third design criterion is ihe fast performance of any of the seven
primitive associative tasks. For any of these tasks, a single page access and
calculation of an address within the page dtrectly locates the desired informa-
‘tion. There is never a need for searching a property list.

There are known problems due to the non-uniqueness of the hash~code
scheme [Feldman, 1965 Mendelson 1964], but these do not scriously af1ect

-~

_performance ‘ . ' : S = L

. 1II. PROCESSING ASSQCIATIVE RETRIEVAL REQUESTS

" . Asan example of an associative retrieval request, we have ‘he following
associative FOR statement in the LEAP language (see Appendix A)

a

(1) FOR ABOVE :“‘SQUARE.z X
(2) AND INSIDE:X:=Y -
(3) DO = DELETE X, Y

In this example, X isa LOCAL which represents the collection of ITEMs
. that are above the square and contam another ITEM Y isal LOCAL wlnch
represents the collectton ‘of ITEMs that are msude the ITEMs ahove the

3

square.
An associative FOR statement has two parts: a group of associativere- :
" trieval descriptions that imply by context which internal names ere to be ex-
'tracted from the associative store, and a statement (the BODY),which ,descri’bes
how these irtternal names are to be used. These two parts are separated by
DO. The LOCAL is used in the associative FOR statement as a placeholder
for a collection of ITEVIS. Each associative retrieval description is said to
"constrain" the LOCALs oCeurrmg in it. The first time a particular LOCAL
occurs in the upper part of an agsociative FOR statement, it is termed "free -
~ The corresponding associative retrieval description is processed as if the |
position in which the LOCAL occurs were unspecified. The resulting collection
of ITEMs becomes attached to the LOCAL, which is then termed "constrained"
for the remainder of the statement. For brevity, we will call each such col-
lection of internal names & "bound set! Each constrained LQCAL indicates

14

A BTARE T TR oy e S

TR TR arppesy

o .) . ’ e
IEIRPPSIPNPIC . T B SN o al s e B as e S SR e s S s

-
TN g

g

L 0 TR T P s i S, PR

NPT

a unique bound sét. Each time the LOCAI occurs again in the upper part of
the associative FOR statement, it is szid to be further constrained; and the
indicated bound set is reduced by the requirement that all ITEMs which remain
in the bound set also satisfy the further constraint. See Example 1 in Appen~
dix A. Note that after ihe associative retrieval description on line (2) of the
example is processed, only two ITEMs remain in the bound set for X.

. The use of two or more LOCALS in the upper part of a FOR statement

1mp11es a relatlonshlp between ITEMS in the d1fferent bound sets. As an illus-

tration, conmder. Example 1 in Appendix A once again. After considering each
of the two e‘ssociative retrieval descriptions there, we have written down the

7 bound'sets. We will call a relationship beiween ITEMs in bound sets a "cor-

respondence. There are three correspondences after processing the second
associative retrieval description in the example:

£ 4
TRIANGLE LINE
RECTANGLE . LINE
RECTANGLE TRIANGLE

Each correspond ence is a set of values for the LOCALSs in the FOR statement

’for one 1terat10n of the BODY of the FOR statement.

When & bound set is further constrained, the correspondence tied to each
ITEM in the bound set is eliminated whenever the test on the ITEM fails. Thus,
there is an implicit constraint on other (not necessarily all) bound sets when-

~ever one bound set is constrained.

'The purpose of extracting correspondences, and thus bound sets, is to
execute the BODY of the FOR statement for each correspondence which satis-

fies all constraints. Statements within the BODY may change the store of as-

sociations perform standard ALGOL operations, or perform SET or other
LEAP operations.

- The principal means of expreasion of associative procedures in LEAP is
the associative FOR statement. The principal technique in the processing of-

"associative procedures is the extraction and use of corcespondences. There
_are two methods of processing:

12

R T L O R

o optet e 5 o

i i i ‘i

-

i

O P S kI S R

! i (1) IExtract a correspondence {rom- the associative store,
. , execute the BODY of the FOR statement, then return
= for the rnext correspondence, etc.t

(2) Extract all correspondences, then execute the BODY
of the FOR statement for each correspondence.

<‘_“‘<"‘z-‘ BERRL O c

The first method has the advantage that there is no need to keep an inter-

LT
S g

sk it LRI S i Sxdisz

mediate store of information. However, extracting a single entire corre-.
spondence requires obtaining one piece of information from each page indicated
L in the upper part of the FOR statement3 In general, this would require either
' keeping many pages in core, or doing multiple secondary storage accesses
for each correspondence extracted. , }

The second method has the advantage that a page need be brought into core
only once in executing an associative FOR statement. At that time, all rel-

evant information from that page may be extracted. This necessitates storing
and manipulating intermediate information, but it eliminates the need to do
multiple secondary storage accesses for each correspondence, or to hold in
core large quantitics of uninteresting information. Also, the facility to manip-

.,;,........,.,_m-ﬂm.v_

ulate stores of correspondences is a straightforward extension to this scheme.
An implementation of the second method has been designed. It uses a

LEAP-like scheme for the storzge of correspondences. The association be-

tween internal name, LOCAL, and correspondence is the basic element of

information. A preliminary investigation has indicated that this aisociative

correspondence storage scheme uses less memory space &nd facilitates easier

access to the correapondence information than ‘w,ould‘ a tree structure cor-

| respbndence storage scheme. Further study in this area is planned.

t Feldman's |1965| cystem used this teqhnlque to process ulociauve pro- |
cedures. However, his system operated outside of time-sharing, and with
the entire associative information base always resident in core. .

$1n an associative FOR statement, each associative retrieval description (ARD) .
may indicate several pages. In our example, the associative retrieval descﬂp- e
tions are SAF:. each of which indicates just one pue. -

13

i i b e e e e A G

o '“ﬁ*‘:é“?"u::'v"':‘ ,:—‘r o i ,:;:z/z".x:'. -,“ “"_'.‘v; o

51 R TR e TR T

ity @A oeeind i e N RS, 0 e, 4

-

e

e st VAR U ARt e S e i 11 R

i s v S Y D R S N

1V. CONCILUSION

The purpose of this report is to present our ideas on how to build a system
with a facility for representing and manipulating large, complex associative
information bases in a time-sharing environment. Several interesting topics
have either been ignored or dealt with briefly in the presentation. We will
mention some of these topics here, as an indication of our plans for future
research.

(1) Compile-T ime Techniques for Optimizing Associative FOR Statement
Processing:— The efficiency of extracting correspondences from the associa-
tive information base depends heavily on how the ARDs are ordered in the up-
per part of the FOR statement. Under certain conditions, an associative
FOR statement may be reorganized at compile time to increase processing

efficiency. Also, compile-time investigations can usually be made to deter-
mine which pages will be needed at run time.

(2) Run-Time Data-Type Checking:— If it is found desirable, later versions
of the system will have this facility.

- (3) Techniques for Representinga Store of Correspdndences:— ‘A prelim-
inary search for a suitable represehtation scheme‘,‘t‘or a store of correspond-
ences indicated the folléwing: those schemes which were des’igned to eliminate
redundancy, and thus save stdnge. ‘were 80 complex that (a) the extra storagp -
used for bookkeeping would be at least as large as the storage saved, and (b)
the routines to manipulate the representation would be significnntly more com=-

. plex than woild the routines to mnnipulate a simple representatlon.

" Therefore, simple’ rep*enntt.tion. based on hash-coding techniques. |

was designed to be very nmnnr to the ccheme for representing an arbitnry
- associative information bsse.. The relative advantages of hagh-coded vs struc-

tured representstions for stores of correspondences will be stadied further.

Anticlpated areas of upplication tor the LEAP system include the construc- s |
-tion of interactive aysteml. snd automated mtuul unmge work.. For ex-

ample, certain pnrtl of u system like Sketchpad [8utherland 1963] or Raphael'

”(19641 quesuon-mawermg program, could well be written in the LEAP unguue o

‘\

14

Natural language applications are best illustrated by the work of R. F. Simmons
[1966], who postulates the normalization of English text into subject-verb=-

nominal triples, or "kernels."

LR

[

e

e

13

TR TR b T R R R BRRE L e, 1o epomot YRS EREHOR Sa. E con IRTRRE I IRR I V

APPENDIX A
SIMPLE EXAMPLE OF AN ASSOCIATIVE FOR STATEMENT

Eyample A-1 — bound sets and correspondences resulting from processing an
associative FOR statement.

(1) FOR ABOVE - SQUARE = X
(2) AND INSIDE - X3 Y
(3) DO DELETE X |
After (1): | | | {

Correspondence Local X

1 HEXAGON

_ 2 TRIANGLE
3 o LINE

4 RECTANGLE

T Y bt 2 S et il

After (2)

Correspondence Local X Local Y

| 1 . TRIANGLE . LINE
: RECTANGLE LINE
‘* . RECTANGLE TRIANGLE

17

AR i
B ‘,‘- - T N ° ’

SELE e S PN R I R R e RO e e i e s ek
r. . . A LN S) PN e e - Paqwra & o ol O i~ D T N SRR T R

|3-23-7359] . : : ;

o Tow s wtm il o ikl
T
L e

Fig.A-1. Kelations between five ITEMs (HEXAGON, SQUARE, o
TRIANGLE, LINE, RECTANGLE). | | o

- 18

;. o 2 R BN e 17 K S SRR T R
|
{
. APPENDIX B
] BNF SYNTAX OF LEAP
; ' <KAF>: = <AI> « <AT> =z <AT>
<AI>: = <NM>|n<SET>|ANY
| <NM>: = <ITEM>|<LOCAL>|<SET>|<NAME>
- <AT>: = <AI>|<AT1>|<AE>|<BE>
- CAT1>: = <AF>|<AT> <AOF> <AT>
] <AOP>: = - | ' | * |
<AE>: = ||<SE>|<number>|<AV>|<NM1>|<NM1>|y<NM1>
‘ ~<AE>|<AF> <OP> <AE>
l.:.. <SE>: = <SET>| KIL>} | ¢ | <AT1>|y<NAME> |<SE> <SOP> <SE>|y<LOCAL>
<II>: = <ILA>|<IL1>, <IL>
E <IL1>; = <AE>|<NE>|<BE>|<ITEM>|<LOCAL>
;’ <NE>: =’1n<AE> |n<BE>| n<SE> | n<ITEM> | INTERNAL| n<LOCAL>|<NAME>
t <BE>: = <BN>| <NM1> | y<NM1>| n<BE>|<AE> <RL> <AE>|<BE> <BOP> <BE>|
1 o | <SE> <SRL> <SE>|<NE> = NE>| NM> ¢ <SE>
R <BN>: = <AV>|TRUE|FALSE "
zk - {A‘\/;>:. - (ALGOL variable) ‘
<NM1>: = <ITEM>|<LOCAL>|<NAME>
[<RL>: = (arithmetic relations;
\ <BOP>: = (Boolean operations)
. <SRL>: = (set relations)
it <soP> = Ul n | @
i , : <OP>: = (arithmetic operators)
19
' - . — —- . N

e il 3

S —

g

<AST>:

<EXP> -~ <IDENT> | PUT<AILA>INKNM2>
<EXP>:

<AE>|<BE>|<SE>|<NE>

<IDENT>: = <NM>|<AV>|y<NAME>

<NM2>: = <LOCAL>|<SET>|y<NAME>

<FST>:

il

FOR<COND>DO<BODY>

<COND>: <AF>| <COND> <AOR> <COND>

<BE>

<AOR>: = AND|OR

<BODY>: = (arbitrary block)

20

kR L e kT R RS

Y ‘!rgyw'mmmm A

i, TERMS IN BNF DESCRIPTION
AF associative form BN Boolean |
Al associative item \ AST assignment statement '
AT .8sociative term EXP expression §
AE arithmetic expression IDENT identifier g
BE Boolean expression FST assoviative FOR statement ?
NE NAME expression | cardinality of (norm of) »3
SE SET expression ~ not S '
AOP associative operators € a member of :
IL item list ¢ the empty set
II. NOTES ON BNF DESCRIPTION
y operates on ITEMs, LOCALSs, and NAMEs. For ITEM,
y yields the value of the ITEM; for LOCAL, y yields
the value of the current ITEM for which the LOCAL
stands; and for NAME, y yields the value of the ITEM
whose internal name is the value of the NAME variable.
n an operator which yields the internal name of the operand.
‘ ‘J L b_
‘ - i
24 .
| . ,,_;,_‘\‘T‘.»....,I,.,,‘M:,..,:M,,,‘,;m P i e ,......, ot et S i b s £ N &
b) ‘ o
:?""““!‘“ b s e e - . O o e e e st

APPENDIX C
EXAMPLE OF A L.EAP PROGRAM

As an example of the use of the LEAP language, we present a program

segment for recognizing structural relations in a simple type of mechanical
drawing. For our example, a drawing is allowed to consist of rectangles,
squeres, and dimension-line constructs. Each dimension-line construct must
conform to certain specifications about the size and position of its parts, and
about its relation to the rectangle or square being considered. These specifi-
cations are used in the recognition routines to determine whether a construct |
is to be recognized, marked as erroneous, or simply left unrecognized. There
are two phases to the example program: First is the recognition of legal and
illegal constructs, using geometrical criteria; second is the application of
sige and distance constraints tc the recognized constructs to further classify
them as legal or illegél. For example, the specification that the angle between

adjacent lines in a picture construct be 90° is appllied to all such constructs.

M
b

during the second phase of the program. The following is an example of a

1

"legal" picture.

Example C-1

T

22

" B O L T R v . W e s - . coee e e -y . “ T e P T oye

Bt 20

- S

N SRR JE UL VA VOO

When entered in the program, the information about a drawing consists

exclusively of associations in the following five forms: >
(1) LTYPE : <LINE> = DLINE
(2) START . <LINE> = <POINT>

(3) END * <LINE> = <POINT>

(4) HC - <POINT> = <VALUE> -

(5) VC . <POINT> = <VALUE>

The associations of form (1) indicate which lines are of type dimension line '
(DLINE); those of forms (2) and (3) indicéte which points are start or end -
péints of which lines; and those of forms (4) and (5) indicate the horizontal’ » i
and vertical coordinates of such points.

The progr:.m uses this initial information to generate a store of associa-
tions about the structure Sf the drawing, and about the -illegal consti*ucts found
This informatior is put into associations of the fol,lowing forms:

(6) DPT - <LINE> = <POINT
(1) DLARW : <DIMENSION LiNE>z <ARROW>:
(8) APEX -+ <ARROW> = <POINT> |
(99 ARWLINE - <ARROW> = <LINE>
' (10) TERMLINE . <ARROW> = <LINE>
(11) SUBPIC . PICTURE = <SUBPIC>
(12) DRAWINGPART - <SUBPIC> = <LINE>
(13) TLPL . <LINE> s <LINE> |
(14) DIMENSIONPART - <SUBPIC> = <DIMENSION LINE>
(15) TEST <#> . <GONSTRUCT> = FALSE
The associations of form (6) fepresent the LINE-DEFINING POINT‘re- ‘

& bty

2

Lt a2 i iy W A L R T

R T T Y

LR SR

lationship. Form (7) represents the relationship between an ARROW construct

23

T -

R S s

Ciaks AR AT 2 Y

; ,Hl;’mx ;v‘ 5‘5‘# gt ;' '

and a dimension line. Form (10) represents the relationship between an
ARROW construct and an ARROW terminal line. Form (13) represents the
relatibnship between an ARROW terminal line and the picture line with which
it is collinear.
‘The program is presented as a collection of routines which geacrate these
associations from the initial associations:

' DPT 5

‘ FOR START + X =Y

: AND END - X =z Z

DO MAKE DPT - X =z {¥, Z};
DLARW, APEX, ARWLINE

- | " FOR LTYPE * X z DLINE

AND DPT - X=Y

. Do
E BEGIN.
e o DPT'Y © {X} - St;
i - | ~ IF||St=2THEN
_ _ ~ BEGIN
| INTERNAL ~ NMV;
p MAKE DLARW . X = NMV;
i MAKE ARWLINE - NMV = S1 '
i ; ~ MAKE APEX - NMV = Y;
| E ‘ END;
1 ELSE MAKE TEST! - X = FALSE;
a END;
8
24

abniri S o oW TR SRR SR

AR T s S 5 -

TERMLINE
FOR
AND
AND
AND

DO

FOR
AND
DO

START - X z ANY

|| DPT ' DPT - X =1
APEX - W= Y

MIDPOINT X. Y}

MAKE TERMLINE . W = X;

APEX - X z ANY
~TERMLINE - X z ANY
MAKE TESTZ - X = FALSE;

SUBPIC, DRAWINGPART

e e R ST T 4 AN

i
;
)

Lt o A i,

START 'ANY @ LTYPE'ANY © TERMLINE - ANY ©ARWLINE - ANY - LINES;

TAG1 » FOR X € LINES DO

BEGIN

DPT ' DPT . DPT ' DPT . XSt

LINES (© St - LINES;
IF || S¢ 4 THEN

PP,

T,

BEGIN
 FOR Y ¢ S1 DO

IF || DPT'START. Y#Z_‘J“DPT'END_. Y2

THEN GO TO TAG2;
INTERNAL ~ NMV; |
MAKE SUBPIC . PIC s NMV,
' MAKE DRAWINGPART - NMV 5 S1;

s

3

3

4

1 b ux»,ﬁ;«-w‘“ ;

! i

. : 1

{

]

Y

SRR 4 cru - N e g e e e A e o A a4 OB A e o ol S el . . . D TIE T

.] B . N Lt
b Wit i it N0 - nmakiaiidicy &

B a2

Pt e AL AR e A r At B S

END
ELSE
TAG2 » MAKE TEST3 - S1 = FALSE;

GO TO TAG1;
END;

TLPL, DIMENSIONPART

FOR TERMINATE - Xz Y
AND DRAWINGPART - W = Z
DO
BEGIN
DIST {Y, 2} -~ TEMP;

IF (TEMP<TH1) A (TEMP>TH2) A COLIN {Y, Z} THEN

BEGIN
MAKE TLPL* Y = Z;
MAKE DIMENSIONPART - W 5 DLARW ' X'
END; - |
END; _
FOR TERMLINE - ANY s X
AND ~ TLPL - X & ANY
‘DO MAKE TEST4 - 'x s FALSE; .
TEST DIMENSION LINE CONSTRUCTS
 FOR ARWLINE: XY
 AND DLARW: Z1X

6

e 3 T RN S i e Y

& e B e e ¢ LR IR e

DO IF || (LNGTH {Y} - ARWL) > TH3 v
Il(||ANG {Z,Y} - ARWANG) > TH4

THEN MAKE TEST5 - X = FALSE
FOR TERMLINE . Xz Y
DO IF || (LNGTH {Y} — TLNLNGTH) > TH5
THEN
BEGIN
MAKE TEST6 * X : FALSE;
MAKE TEST7 - DLARW ' X = FALSE;

END;

TEST FOR 90° ANGLES IN SUBPICTURES

FOR DRAWINGPART . PIC = X

DO
BEGIN

DPT ' DPT - X - St;

FOR Y € St
_ CAND Z ¢ St
] DO o |
IF ~ (PERP {Y, 2} v PARL (y.‘z;)
- . THEN MAKE TESTS - X z FAIL;
~ END; |

" The procedures used in the example are

(n MIDPOINT {x Y}: Boolean result. Is point Y the
midpoim or line X? -

27

S SN SR P

““V:

(2)

(3)

(4)
(5)

(6)

(7)

DIST

COLIN

LNGTH
ANG

PERP

-PARL

{X,Y}:
{X,v}:

{X}:
{X,Y}:

{X, Y}:

{X, Y}:

The result is the distance between
line X and line Y.

Boolean result. Is line X collinear
with line Y?

The result is the length of line X.

The result is the angle between line
X and line Y.

Boolean result. 1Is line ¥ per-
pendicular to line Y? '

Boolean result. Is line X parallel
to line Y?

As an example, the procedure LNGTH is presented below:

REAL PROCEDURE LNGTH {X)

BEGIN
REAL T, T2;
(HC - END - X=HC + START - X) h2~T1;
(VC © END* X=-VC * START * X) h2 -T2,
RETURN SQRT {T1 + T2);
END.

[

i v o &l
N .

e M B i T

o v - - el e - o~ o :
. o it dttain L s i S :

e PR

[TRETNR

R s e

1.

PRI

3

A U et SR T 5.t 0" TR 0 TR i U S L ot e Y S > A

IMPLICATIONS OF TEST ASSOCIATIONS

TESTA
TEST2
TEST3
TEST4
TESTS

TESTé
TEST7

TESTS

This dimension line is missing an arrow.
This arrow does not have a terminal line.

This line is part of an illegal construct.

This terminal line does not correspond to a picture line.

This arrow has lines of the wrong length, or has parts
which form the wrong angle with the dimension line,

The terminal line on the end of this arrow is of the
wrong length.

This dimension line has an arrow for which TEST6
failed.

This subpicture is not rectangular.

29

fre

X

AT e e AR A

- . Berkeley, 1966.

BiIBLIOGRAPHY

Ellio!, R.W., "A Model for a I'act Retrieval System," doctoral thesis,
Univerrity of Texas, May 1965,

eldran, J.A., "Aspects of Associative Processing," Technical Note
1965-13, Lincoln Laboratory, M.I.T. (21 April 1965), DDC 614634,
H-644.

, "A Formal Semantics for Computer Oriented Lan-
guages," doctoral thesis, Carnegie Institute of Technology, 1964.

Forman, B., "An Experiment in Semantic Classification,” LRC~65-
WT-3, Linguistics Research Center, University of Texas (1)Jecember
1C65),

Fuller, R.G., etal., "Study of Associative Processing Techniques,"
RADC-TR-65-210, Rome Air Development Center, Griffiss Air Force
Base, New York (August 1965).

Fuiler, R.H., "Content Addressable Memory Systems," doctoral thesis,
University of California at Los Angeles, 1963, 2

Love, H.A., etal., "Associative Processing Techniques Study,” RADC-
TR-65-32, Rome Air Development Center, Griffiss Air Force Base,
New York (1 April 1965).

McCarthy, J., etal.,, LISP 4-5 Programmer's Manual (M.I.T. Press,
Cambridge, Massachusetts, 1962).

Mendelson, E., Introduction to Mathematical Logic (Van Nostrand,
Princeton, New Jersey, 1964), p. 300.

Kowell, A., "A Note on the Use of Scrambled Addressing for Associa-
tive Memories," unpublished paper (December 1962). ‘ »

Raphael, B., "SIR, A Computer Program for Semantic Information
Retrievai,” Proc. Fall Joint Computer Conf., San Francisco, California,
October 1964.

Rovaner, P.D., "An Investigation into Paging a Software-Simulated As~
‘soriative Memory System," Sc. M degree, University of California at

, &n unpublished paper on the Processing of Associative
~ Procedures (August 1965).

Simmona, R.F., Burger, J.F., and Long, R.E., "An Approach Toward
‘Answering English Questions from Text," Proc. Fall Joint Computer
"Conf.. San Francisco, California, 7-10 November 1966.

.‘Sutherland, i.E., "Sketchpad, A Man-Machine Communication System,"
Proc. Spring Joint Computer Conf., Detroit, Michigan, May 1963,

T o :,-\:»\ -~ - ~ wTy PTG S SR ch e v s Yoo a b N \'
E UNCL .
N Security Clussification
B r ——
L : COCUMENT CONTROL DATA - RRD
2] ? (Securlty clasaill ation of tille, dody of abatract and Indexing 1on must bé enterad whan the sversll repoct in clasaified) N
2 ' 1, ORIOINATING ACTiVITY (Corporate author) o 2a” ROPORT SECURITY CLASSIFICATION b
i E . ’ Unclassified
A Lincoin Laboratory, M.LT. 2. GRGUP . .
; E . . None) :)
* o 3. REPORT TITLE : i : j . .) -
ot Au Associative Processing System for Conventional Digita, Computers
d ; 4. DESCRIPTIVE NOTE3 (Type of report and incluaslve detes) '_‘ E
) Technical Note -
Do 3. AUTHORIS! (Laat name, hirst name, Initrel)
Loy |
Rovner, Paul D. Feldman, Jerome A. .o
6. REPORT DATE 7a. TOTAL NO. QF PAGES 7b. NO. OF REFS %
: 21 April 1967 o 36 : NS T - o
! 8a. CUNTRACT OR GRANT NO. i 9a. CRIGINATOR'S REFORT NUMBERIS) }
AF 19 (626)~5167 ‘ ; - ;
; b. PROJECT NO.) Technical Note 1967-19 ;
; " Order 691 . - ‘ s
! e & 9b. OTHER REPONT NO(S) (Any other numbers *het may be e
‘ P azsigned this report} E ..@
Do d . ESD-TR-67-242 - - ‘ :
; ; 10 AVAILABILITY/LIMITATION NOTICES i .
Pl Distribution of this document is anlimited. i
!)
‘(11, SUPPLEMENTARY NOTES . - 12. SPONSORING MILITARY ACTIVI‘TV T éi‘
b i} _ Advanced Rzsearch Projecis Agency, B |
' None . ' - 2 + - Department of Defense 3
¢ : . o)
i : o
13, ABSTRACT - By n
i o) 2
I A user-oriented system having both algebraic and associative processing capabilities is presented in this ?
- report. The algebraic capabilltles are essentially those of ALGOL. The associative facilities are: . : -;—3
i 2 .
4) : (1) A language for the expression of assoc!ativc retrieval requests (the associative :
language). . - 3
] -
v (2) A scheme for the internal representation of a store of associations bet\veen iwems Y
o of information (an associative information base). :;
g? i (3) Processing routines for associative retrieval requests. . 3
3 The associative language is independent of the structure of the associative information base. In the system - 3
L ; presented here, the associative information base is implemented via hash-coling techniques, The associative %
s "~ . language is implemented by extending an existing ALGOL system. . =
= This report conslsts of three sections: Sec.l describes the high-level programming language for the everall’ H
. system; Sec. Il cutlines the scheme for repiesenting an assoclative information base; and Sec. [t summarizes-
- the proceaslng routines for associative retrieval requests. . 3
E a1
: il
3 B \S
: 14, KEY WORDS 8
4 programming languages ’ assoclative information storage *
i digital coniputers ‘ and retrieval : v ¥
i i ’,5
- : - Vg
3 ; ’ \ .) é
- 32 ; UNCL ASSIFIED 3
| : : : Security Clanailication
L e e ¥ - - e IS 1R AR ; e R S U U, P ma:aww : :
y Co .) ' u .
. L
[e ot L P VUS VAU

