
MASSACIItHSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

AN ASSOCIATIVE PROCESSING SYSTEM
FOR CONVENTIONAL DIGITAL COMPUTERS

P. D. ROVNER

]. A. FELDMAN

Group 23

TECHNICAL NOTE 1967-19

21 APRIL 1967

LEXINGTON MASSACIIUSETTS

PAGES
ARE

MISSING
IN

ORIGINAL
DOCUMENT

BSTRACT

A user-oriented system 1aving both algebraic and associative

processing capabilities is presented in this report. The alge-

braic capabilities are essentially those of ALGOL. The as-

sociative facilities are: .7

(i) A language for re expression of associative
retrieval request, (the associative language).

(2) A scheme for the internal representation of
a store of associations between items of in-
formation (an associative information base).

(3) Proces.,ing routines for associative retrieval
requests.

The associative language is independent of the structure of the

associative information base. In the system presented here,

the associative information base is implemented via hash-

coding techniques. The associative language is implemented

by extending an existing ALGOL system.

This report consists of thi-ee sections: Sec. I describes the

high-level programming 1. nguage for the overall system;

Sec. II outlines the scheme Aor representing an associative in-

formation ba-se; and Sec. III summarizes the processing rou-

tines;for associative retrie, al requests.

Accepted for the Air Force
Fraftklin C. Hudson
Chief, Lincoln Laboratory Qffice

- ill

L zW

CONTENTS

Abstract iii

I. THE ASSOCIATIVE LANGUAGE, LEAP t

A. Intrcoduction I

-B. Variables !

C. Expressions 2

D. Language Forms Involving SET Expressions (SX) 2

E. Relational Language Forms 3

F. Associative Retrieval Descriptions 5

G. Associative FOR Statement 5

. . Conclusion 6

II. INTERNAL REPRESENTATION FOR A STORE
- -O,7, ASSOCIATIONS- 7

A. Introduction 7

Bý. Representation Scheme 8
III. PROCESSING ASSOCIATIVE RETRIEVAL REQUESTS II

i IV., CONCLUSION 14

APPENDIX A - Simple Example of an Associative
FOR Statement 17

APPENDIX B- BNF Syntax of LEAP 19

APPENDIX C - Example of a LEAP Program 22

Bibliography 31

-t

V -

AN ASSOCIATIVE PROCESSING SYSTEM

FOR CONVENTIONAL DIGITAL COMPUTERS

I. THE ASSOCIATIVE LANGUAGE, LEAPt

A. Introduction

There are three types of constructs in LEAP: algebraic, set-theoretic,

and associative. The algebraic operations available are essentially those of

ALGOL. In addition, the declarative and sequencing statements of ALGOL are

used in LEAP. The set-theoretic constructs include union, containment, etc.,

as well as certain sequencing rules for operating on the members of sets. The

associative operations constitute an extension of AL LFeldman, 1965] to include

,associations between associations and nesting of statements.

Each identifier in a LEAP program will have a data type, as in ALGOL.

To facilitate the expression of set-theoretic and associative operations, we

have added four new data types:

Standard ALGOL Data Types LEAP Additions

REAL ITEM

BOOLEAN SET

FRACTION NAME

INTEGER LOCAL

Any of the additional data types may be qualified by an ALGOL data type (e.g.,

BOOLEAN SET, REAL ITEM, INTEGER LOCAL.).

B. Variables

The ALGOL notion of ,"variable" (a location which takes on arithmetic or

Boolean values) has been extended in LEAP to include:

(1) ITEMs:- Each variable of type ITEM has a unique internal system

name. This "internal name" is used to represent the ITEM in associative and

tLEAP: A Language for the E:..Iresslon of Associative Procedures.

set-theoretic operations, in addition to an internal name, an ITEM may or

may not have an arithmetic or Boolean vame. The algebraic operations in the

LEAP language manipulate arithmetic and Boolean values.

(Z) SETs:- The value of a SET is an unordered set of ITEMs. Inter-

nally, a SET element is represented by its internal name.

(3) NAMEs:, NAME variables are used to pass an ITEM as a param-

eter to a set-theoretic or associative operation. The value of a NAME variable

is an ITEM. Within the system, the value Of a NAME variable is represented

by its internal name.

(4) LOCALs:- LOCALs are used within associative statements to

represent the results of an associative retrieval operation. This is the only

use of LOCALs.

C. Expressions

In LEAP, an operation of any type which leaves a result will be called an

t! "expression"; one which does not will be called a "statement." There are three

[kinds of expressions in LEAP:

ALGOL An ALGOL expression has as its value
an arithmetic or Boolean number.

SET A SET expression has as its value an
unordered collection of ITEMs.

NAME ANAME expression has as its value
an ITEM.

D. Language Forms Involving SET Expressions (SX)

A list of basic SET language forms appears in Table I. In addition, there
is one sequencing statement? whose form is

i :

FOR <LOCAL> € <SX> DO <STATEMENT>
ii

:i* ?NOTE: This statement is a specla• case of the aasociative FOR statement,
::'i which is d/scuosed in See. 0 b41ow.

:• •,

f

i.

{ ":

TABLE I

LIST OF BASIC SET LANGUAGE FORMS

Form Result Name of Form

ITEM , SX Boolean Membership

SX C SX Boolean Containment

SX SX Boolean Set equality

SX -SX SET Set subtraction

SX U SX SET Union

SX n SX SET Intersection

SX Integer Iorm

SX - SET variable Assignment

For each ITEM in the SET expression, the BODY of the FOR statement

is executed. On each iteration, the current ITEM is assigned to the LOCAL

variabie, which behaves like a NAME variable when used within the BODY.

E. Relational Language Forms

The relational operations in LEAP derive from the relation

(t) A. 0 = V

which is read "Attribute of Object is Value." Typical statements include:

(2) MAKE PART . PICTURE3 , LINEZ

ERASE END - LINE3 z POINT2

By leaving none, one, or two of the positions in (1) unspecified (by the use of

LOCALs), we indicate a "sirnple associative form" (SAF).t Some examples are:

(3) PART. PICTURE3 a X

W . LINE3 Z

tTherefore, there are seven SAFs.

3

The identifiers involved in (3) are ITEM identifiers (PART, PICTURE3, LINE3)

and LOCAL identifiers (X, W, Z). The relational fa(lity of LEAP is based on i

operations on these simple associative forms.

The simple associaAve form is used two ways in LEAP. In statements

like (2), it is used to specify tite parameters of an operator. In constructs

like (3), it is used to assign the results of an associative retrieval operation

to a LOCAL (or LOCALs).

One way of combining SAFs is by nesting. Nesting can occur in the Object

or Value position of a SAF. For example, if we know that

(i) ABOVE the SQUARE is a TRIANGLE

(ABOVE. SQUARE TRIANGLE)

and

(2) INSIDE the TRIANGLE is a LINE

(INSIDE TRIANGLE LINE)

then

(3) INSIDE. (ABOVE. SQUARE)s LINE

expresses the fact that inside the object which is above the square there is a

line. In connection with nesting, it is convenient to add the notion of "associa-

tive term." There are three basic associative terms:

(1) A • 0 meaning all Vs such that A - 0 V.

(2) A' V meaning all Os such that A . 0 V,

and

3) A* 0 meaningall Vs such that A • O V o.r A V 1O.

Thus, the construct

INSIDE • (ABOVE " SQUARE)

is a specification of all objects which are inside of objects which are above or

below the square. These notations serve to make more associations express-

ible by a nested SAP,

.4

A much more significant feature is the ability to use an entire SAF as the

Object or Value in an associative form. This may be expressed with the aid

of parentheses. For example,

REASON • (ABOVE . SQUARE = TRIANGLE)

(BELOW - TRIANGLE _ SQiJARE)

states that the reason that the triangle is above the square is that 'he square

is below the triangle. This information would be difficult to express in terms

of simple associative forms. The use of this constrilct also enables one to

express some relationships which are not triples, such as "the number of lines
in a square is four." One such statement would be

NUMBER • (PART • SQUARE = LINE) B FOUR 4

where NUMBER is an attribute which applies to all part-whole relationships.

The term "compound associative form" (CA F) will be applied to simple as-
sociative forms, nested simple associative forms, and associative forms in

which the Object or Value is a SAF.

F. Associative Retrieval Descriptions

A CAF in which a LOCAL is used is one form of an associative retrieval

description (ARD). The associative retrieval here consists of matching the

association implied by the CAF against a store of associations, and .:xtracting

information from the store for each match thet is foinre. The information ex-

tracted is the ITEM whose position in ,he notched association is the same as

the position of the LO1CAL in the search association. For example, in the CA F

PART • PICTURE3 • X

X isa LOCAL which •,epresents the set of ITEMs such thMt each is a PART
of PICTURE3.

0. Asatociattve FOR Statement

For a powerful associative hnguage, one nteeds a langiage form for com-.

bining ARDs. The "associative rOR statement" has been developed for this

A,
4'

sti

purpose. The LOCAL is used as the link between the ARDs in an associative

FOR statement - the only statement in which LOCALs may occur. The use of

LOCALs corresponds to the use of free and constrained indeterminates in for-

nmal mathematics ,nd is discussed by Mendelson [1964]. The first occurrence

of a LOCAL in an associative FOR statement is "free" and all subsequent uses

"constrained." For example, the following FOR statement creates the "defining

point" (DPT) relaton for lines in a line arawing, given the start-point and

end-point relations. A point is a defining point of a line if it is either the start-

or end-point of the line

FOR START. X Y

AND END- X=ZDO

BEGIN

MAKE DPT, X EY;

MAKE-DPT X Z

SEND;

The part of the system which deals with run-time execution of the associative

FOR statement is quite sophisticated and will be described in detail in Sec. III.

The associative F OR statement has the following general form:

FOR <ARD> AND <ARD>... OR <ARD>... DO <STATEMENT>

An ARD may b• a CAF in which LOCALs are used, the construct <LOCAL> c

S<9X> or any LEAP expression involving one or more LOCALs and having a

Boolean result. This implies that SET comparisons and ALGOL Boolean ex-

presoio.s, including functions, may be used as ARDs. Appendix C contains

examples of the FOR statement used to recognize structural relations in a

simple type of mechanical drawing.

I, Conclusion

Thus far, we have discussed LEAP almost as if it were three separate

languages. Although the algebraic, set-theoretic, and relational operations
ý4

6

Ii I

are quite different, the language allows them to be combined in several ways,

as shown in the following examples.

Any position in a compound associative form may be occupied by a SET

expression; this implies using each element of the corresponding SET in turin.

For example, if LINES is a SET identifier, the statement

MAKE PART . PICTURE6 =_ LINES
L!1

will create a PART relation for each ITEM in the SET.

Any position in a CAF may also be occupied by a NAME expression; this

implies using the value of the NAME expression (an ITEM). For example, the

statement

MAKE PARr PICrURE6 (n LINES)Y

will create an explicit PART relation between PICTURE6 (an ITEM) and an

ITEM having as its value LINES (a SET).

The implementation of the LEAP language on the TX-Z computer has been

greatly facilitated by VITAL [Feldman. 19641, a time-shared compiler-compiler

system. The compiler-compiler accepts as input a formal specification of the

syntax and semantics of a language and yields as output a compiler for pro-

grams written in that language. Since the specifications of an ALGOL-like

language had already been formalizec on this system, a relatively small effort

was required to imbed the associative language in A LGOL. The Backus Normal

Form (BNF) syntax of the associative lnguage Is presented in Appendix B.

UII. INTERNAL REPRESU&NTATION FOR A STORE OF: ASSOCIATIONS

A. Introdu•tior

Within, the computer, an association is composed of three "internal names"

(an internal name is a unique number.which is used to represent an ITEM).

An assnciation is an Instance of he basic associative form

t "R" is an operator which yields a NAME expression. In this case, the value
of the NAME expression is a special kind of ITEM - one having as its value
a SET.

A, O=.V

meaning "Attribute of Object is Value." The three internal names composing

an association represent the Attribute, Object, and Value of the association.

A store of associations is simply a store of internal name triplets.

By leaving unspecified zero, one, or two positions in the basic associative

form, we indicate a simple associative form (SAF). There are seven SAFs.

We will call the use of a SAF in LEAP a simple associative retrieval request,

and we will consider the processing required by these seven requests as the

seven primitive associative tasks. The result of performing a primitive as-

sociative task takes one of three forms.

(i) Boolean:- If all three positions in the SAF are specified, the re-

sult is Boolean. In this case, the retrieval system must determine whether

or not the indicated internal name triple exists in the store.

(2) A Collectiont of Internal Names:- If only one position in the SAF

is unspecified, the result is a collection of internal names. Here, we desire

to find all internal names implied by the context of the unspecified position in

the SAF. The retrieval system must find each internal name triple in the store

which matches the. SAF in its specified positions, and extract from it the in-
ternal name corresponding to the unspecified position in the SAF. The collec-

tion of internal names so excract-d is the result.

(3) A Collection of Internal Name Pairs:- If two positions in the SAF

are unspecified, the result is a collection of internal name pairs. Here, the

retrieval system must match on the one specified position, and extract int,'rnal

name pairs corresponding to the two unspecified positions. The collection of

internal name pairs so extracted is the result.

B. Representation Scheme

This section outlines a scheme for the internal representation of a store

of assqoiations. The scheme is based on hash-coding techniques and*multiple.

t NOTE: The "collection" iS distinct from the "set" of Sec. I.

8

J.,

representation of information on secondary storage. Three main criteria led

to the design:

(1) The need for a partitioning scheme for very large
stores of associations.

(2) The desire to free the user from concern about the
structure of his store of associations.

(3) The need for fast performance of any of the seven
primitive associative tasks.

The first design criterion states the need for a partitioning scheme. If

the representation for a store of associations is too large to fit into core,

it must be divided into pieces (or "pages") and kent on bulk storage (magnetic

drum, for example). In a time-sharing environment, it is desirable to parti-

tion a representation, even if it fits into core: overall system performance is

improved by having only relevant pages in high-speed memory.

If a representation is divided arbitrarily, however, performing a single

primitive associative task might require multiple secondary storage accesses.

This would cause slowresponse and large system overhead. Consequently,

we designed a representation such that any primitive associative task can be

fully performed within only one page. A brief descrilption of that representa-

tion follows.

For those simple association retrieval requests having two unspecified

positions, the resulting collection of internal name pairs is found in a list in

the page determined by the one internal name that is specified and the position

in which it occurs in the SAF. Thus, there are three types of pages: one for.

each position in the basic associative form (A • 0 a V). Note that for each.

several internal names may indicate the same page. For those simple asso-

ciative retrieval requests having one unspecified position, a page type and a

page are indicated by the internal name in one of the specified positionS. The

scheme for deciding which of the two specified positions is used. here depends

t Henceforth termed the "representation!

lI

or which position is unspecified. The two specified interhal names are-hash-

coded, and the result specifies an address within the page at which a collection

of internal names begins.

For the simple associative retrieval request in which all positions ar-e

specified, any two internal names may be hash-coded, the indicated page set 4

up, and the third internal name used to search for a match in the collection

of internal names available at the hash-code address. The result is Boolean. ,'
Since there are three copies of each triple in the representation, the up-

date cost is large. This cost can be cut considerably by keeping track (for

each page) of additions and deletions, and by updating the page when it is next

brought into core to be queried.

The second design criterion is that the user should be free from concern

about the structure of his store of associations. Exi,,ting list-processing

systemst [McCarthy, 19621 rely heavily on structural connections to represent

associations implicitly. Since the statement of association in LEAP is always

explicit, there is no need to impart externally apparent structure to a store

of associations. Indeed, the entire system is strongly oriented toward dealing

with unstructured information.

The system makes use of the apparent lack of structure to organize the

internal representation of information for its own convenience. For example,

the collection of internal names which may result from evaluating a SET ex-

pression is available to the user as an unordered SET. Internally, however,

SETs are ordered by the internal names of their elements. This ordering

facilitates efficient system routines for manipulating SETs. If the system

were unable to recognize such an ordering, these routines would be signifi-

cantly slower. For example, consider the task of verifying that two SETs are

disjoint. If the SETs are unordered, at most, m • n comparisons must be

made ("m" and "n" are the cardinalities of the SETs). If the SETs are or-

dered, however, the task requires, at most, M + N comparisons.

t See various memoranda describing the CORAL language and data-structure
system at Lincoln Laboratory.

to

The third design criterion is ihe fast performance of any of the seven

primitive associative tasks. For any of these tasks, a singie-page access and

calculatinr of an address within the page directly locates the desired informa-

tion. There is never a need for searching a property list.

There are known problems due to the non-uniqueness 6f thehash-code

scheme [Feldnian, 1965; Mendelson, 19641, but these do not seriously affect

performance.

III. PROCESSING ASSQCIATIVE RETRIEVAL REQUESTS

As an example of an associative retrieval request, we have .he following

associative FOR statement in the LEAP language (see Appendix A)-

(1) FOR ABOVE -SQUARE-- X

(2) AND INSIDE X Y

(3) DO DELETE X, Y

In this example, X is a LOCAL which represents the collection of ITEMs

that are above the square and contain.,another ITEM. 'Y is ,a'LOCAL which

represents the collection of ITEMs that are inside the ITEMs ahove the

square.

An associative FOR statement has two parts: a group of associative re-

trieval descriptions that imply by context which internal name's are to be ex-

tracted from the associative store, and a statement (the BODY) which describes

how these internal names are to be used. These two parts are separated by

DO. The LOCAL is used in the associative FOR statement as a placeholder

for a collection of ITEMs. Each associative retrieval description is said to

"constrain" the LOCALs occurring in it. The first time a particular LOCAL

occurs in the upper part of an associative FOR statement, it is termed "free;"

The corresponding associative retrieval description is processed as if the

position in which the LOCAL occurs were unspecified. The resulting collection

of ITEMs becomes attached to the LOCAL, which is then termed "constrained"

for the remainder of the statement. For brevity, we will call each such col-

lection of internal names a "bound set." Each constrained LOCAL indicates

*"o

Ia unique bound st Each time the LOCAL occurs again in the upper part of

the associative FOR statement, it is sF.id to be further constrained; and the

- indicated bound set is reduced by the requirement that all ITEMs which remain

in the bound set also satisfy the further constraint. See Example i in Appen-

dix A. Note that after the associative retrieval description on line (2) of the

example is processed, only two ITEMs remain in the bound set for X.

The use of two or more LOCALs in the upper part of a FOR statement

implies a relationship between ITEMs in the different bound sets. As an illus-

tration, consider Example I in Appendix A once again. After considering each

of the two associative retrieval descriptions there, we have written down the

bound sets. We will call a relationship between ITEMs in bound sets a "cor-
L •respondence." There are three correspondences after processing the second

associative retrieval description in the example:

X x.
TRIANGLE LINE.
RECTANGLE LINE
RECTANGLE TRIANGLE

Each correspondence is a set of values for the LOCALs in the FOR statement

for one iteration of the BODY of the FOR statement.

When a bound set is further constrained, the correspondence tied to each

ITEM in the bound set is eliminated whenever the test on the ITEM fails. Thus,

there is an implicit constraint on other (not necessarily all) bound sets when-

ever one bound set is constrained.

The purpose of extracting correspondences, and thus bound sets, is to

execute the BODY of the FOR statement for each correspondence which satis-

Ifies all constraints. Statements within the BODY may change the store of as-

sociations, perform standard ALGOL operations, or perform SET or other

LEAP operations.

The principal means of expression of associative procedures in LEAP is

the associative FOR statement. The principal technique in the processing of

associative procedures is the extraction and use of correspondences. There

are two methods of processing:

12

I

qrmh

(i) Extract a correspondence from the associative store,
execute the BODY of the FOR statement, then return
for the rnext correspondence, etc.t

(2) Extract all correspondences, then execute the BODY
of the FOR statement for each correspondence.

The first method has the advantage that there is no need to keep an inter-
mediate store of information. However, extracting a single entire corre-
spondence reruires obtaining one piece of information from each page indicated

in the upper part of the FOR statement.O In general, this would require either

keeping many pages in core, or doing multiple secondary storage accesses
for each correspondence extracted.

The second method has the advantage that a page need be brought into core
only once in executing an associative FOR statement. At that time, all rel-

evant information from that page may be extracted. This necessitates storing

and manipulating intermediate information, but it eliminates the need to do

multiple secondary storage accesses for each correspondence, or to hold in
core large quantitics of uninteresting information. Also, the facility to manip-

ulate stores of correspondences is a straightforward extension to this scheme.

An implementation of the second method has been designed. It uses a
LEAP-like scheme for the storLge of correspondences. The association be-

tween internal name, LOCAL, and correspondence is the basic element of

information. A preliminary investigation has indicated that this awisociative
correspondence storage scheme uses less memory space and facilitates easier
access to the correspondetice information than would a tree structure cor-

respondence storage scheme. Further study in this area is planned.

t F eldman's 119651 system used this technique to process associative pro-
cedures. However,. his system operated outside of time-sharing. and with
the entire associative information base always resident in core.

In an associative FOR statement, each associative retrieval description (ARD)
may indicate several pages. In our example, the associative retrieval descrip-
tions are SAFs, each of which indicates just one page,

13

IV. CONCLUSION

The purpose of this report is to present our ideas on how to build a system

with a facility for representing and manipulating large, complex associative

information bases in a time-sharing environment. Several interesting topics

have either been ignored or dealt with briefly in the presentation. We will

mention some of these topics here, as an indication of our plans for future

research.

(1) Compile-:ime Techniques for Optimizing Associative FOR Statement
Processing:- The efficiency of extracting correspondences from the associa-

tive information base depends heavily on how the ARDs are ordered in the up-

per part of the FOR statement. Under certain conditions, an associative

FOR statement may be reorganized at compile time to increase processing

efficiency. Also, compile-time investigations can usually be made to deter-

mine which pages will be needed at run time.

(2) Run-Time Data-Type Checking:- If it is found desirable, later versions

of the system will have this facility.

(3) Techniques for Representing a Store of Correspondences:- A prelim-

inary search for a suitable representation scheme for a store of correspond-

ences indicated the following: those schemes which were designed to eliminate

redundancy, and thus save storage, were so complex that (a) the extra storage

used for bookkeeping would be at least as large as the storage saved, and (b)

the routines to manipulate the representation would be significantly more com-

plex than would the routines to manipulate a simple representation.

Therefore. a simple rep-esentition, based on hash-coding techniques.

* was designed to be very similar to the scheme for representing an arbitrary

associative information base. The relative advantages of hash-coded vs struc-

tured representtions for stores of correspondences will be stadied further.

-Anticipated areas of application for the LEAP system include the construc-

tion of interactive systems, and automated natural language work. For ex-

ample, certain parts of a system like Sketchpad (Sutherland. 196)1 or Raphael's

[t964J question-"a"wering program, could well be written in the LEAP language.

I!1 ..

... .

tt

Natural language applications are best illustrated by the work of R. F. Simmons

119661, who postulates the normalization of English text into subject-verb-

nominal triples, or "kernels."

+ I

APPENDIX A

SIMPLE EXAMPLE OF AN ASSOCIATIVE FOR STATEMENT

Exarnple A-1 - bound sets and correspondences resulting from processing an

associative FOR statement.

(1) FOR ABOVE • SQUARE a X

(2) AND INSIDE • Xi Y

(3) DO DELETE X

After (t)t

_orresgondence Local X

I HEXAGON

2 TRIANGLE

3 UNE

4 RECTANGLE

After (Z),

Correpodene Local X Local Y

I TRIANGLE LINE

"RECTANGLE LINE

RECTANGLE TRIANGLE

I

17

Fig.A-i. Relations between five ITEMs (HEXAGON, SQUARE,
TRIANGLE, LINE, RECTANGLE).

t8V

APPENDIX B

L ENF SYNTAX OF LEAP

<AF>: = <Al> <AT> -=<AT>

<Al>: =<N M>In<SET>IANY

<NM>: =<ITEM> I<LOCAL> I<SET> I<NAME>
<AT>: = A1>l<AT1>l<AE>j<B3E>

<ATI>: =<AF>I<AT> <AOP> <AT>

<A OP>: =*'

<AE>: 1 I<SE> I<number> I<AV> I<NM1> I<NM1> Iy<NM1>

<SE>: <SET> 1<IIL>1 I O<AT1>ly<NAME> <SE> <SOP> <SE> I y(-LOCAL>

<ILI>: <AE>lI<NE>l<BE> l<ITEM>l <LOCAL>

<NE>: =n<AkE> In<BE> I n<SE> In<ITEM> I INTERNAL n<LOCAL> I<NAME>
<BE>: =<BN> I<NMI>lI y<NM1> I n<BE> i<AE> <RL> <AE>I<BE> <BOP> <BE>I

<SE> <SRL> <SE>I <NIE> <NE>I -NM> c <SE>

<BN>:<AV> ITRUE IFALSE

<AV>:(ALGOL va -riable)

<NMI- =<ITEM> I <LOCAL> I<NAME>
<RL: =(arithmetic relations'l

<flOP>: =(Boolean operations)

<SRL>: = (set relations)

<SOP>, =l U I 0l
<OP>:(arithmetic operators)

19

<AST>: <EXP> -. <lDENT> PUT<1blN<zNM2>

<Il)ENT>: = <NM> I<AV> I y<NAME>

<NMZ>: = <LOCAL>I <SET>Iv-<NAME>

<FST'>: =FOR<COND>DO'ZBODY>

(COND>: = <BE> I <AF>Il (COND> <AOR> (COND>

<AOR>: = AND IOR

<BODY>: =(arbitrary block)

20

TERMS IN BNF DESCRIPTION

AF associative form BN Boolean

Al associative item AST assignment statement

AT '.ssociative term EXP expression

AE arithmetic expression IDENT identifier

BE Boolean expression FST assoviative FOR statement

NE NAME expression II cardinality of (norm of)

SE SET expression not

AOP associative operators E a member of

IL item list the empty set

II. NOTES ON BNF DESCRIPTION

y operates on ITEMs, LOCALs, and NAMEs. For ITEM,
y yields the value of the ITEM; for LOCAL, 'y yields

the value of the current ITEM for which the LOCAL

stands; and for NAME. y yields the value of the ITEM

whose internal name is the value of the NAME variable.

n an operator which yields the internal name of the operand.

*1 at

APPENDIX C

EXAMPLE OF A LEAP PROGRAM

As an example of the use of the LEAP language, we present a program

segment for recognizing structural relations in a simple type of mechanical

drawing. For our example, a drawing is allowed to consist of rectangles,

squares, and dimension-line constructs. Each dimension-line construct must

conform to certain specifications about the size and position of its parts, and

about its relation to the rectangle or square being considered. These specifi-

cations are used in the recognition routines to determine whether a construct

is to be recognized, marked as erroneous, or simply left unrecognized. There

are two phases to the example program: First is the recognition of legal and

illegal constructs, using geometrical criteria; second is the application of

size and distance constraints to the recognized constructs to further classify

-them as legal or illegal. For example, the specification that the angle between

adjacent lines in a picture construct be 90° is applied to all such constructs

during the second phase of the program. The following is an example of a

"legal" picture.

Example C-I

ELL
2a

A . - - .- . -

When entered in the program, the Information about a drawing consists

exclusively of associations in the following five forms:

(1) LTYPE <LINE> E DLINE

(2) START . <LINE> S <POINT>

(3) END <LINE> <POINT>

(4) HC. <POINT>; <VALUE>

(5) VC • <POINT> <VALUE>

The associations of form (1) indicate which lines are of type dimension line

(DUNE); those of forms (Z) and (3) indicate which points are start or end

points of which lines; and-those of forms (4) and (5) indicate the horizontal-
and vertical coordinates of such points.

The program uses this initial information to generate a store of associa-
tions about the structure of the drawing, and about the illegal constructs found. .

This information is put into associations of the following forms:

(6) DPT <LINE> <POINT,

(7) DLARW • <DIMENSION LINE> <ARROW>-

(8) APEX-- <ARROW> <POINT> *

(9) ARWLINE • <ARROW> <LINE>

(10) TERMLINE <ARROW>-= <LINE>

(i) SUBPIC. PICTURE F <SUBPIC>

(12) DRAWINGPART. <SUBPIC> <LINE>

(13) TLPL. <LINE> <LINE>

(14) DIMENSIONPART , <SUBPIC> <DIMENSION LINE>

(15) TEST <#> 0 <QONSTRUCT> FALSE

The associations of form (6) represent the LINE-DEFINING POINT re-

lationship. Form (7) represents the relationship between an ARROW construct

23

Li;-' -..... .. *...•.. -~~

and a dimension line. Form (10) represents the relationship between an
*

ARROW construct and an ARROW terminal line. Form (i3) represents the

relationship between an ARROW terminal line and the picture line with which

it is collinear.

The program is presented as a collection of routines which ge.crate these

associations from the initial associations:

DPT

FOR STAR-1 X Y

AND END- X =Z

DO MAKE DPT. X fY,Z);

DLARW, APEX, ARWLINE

FOR LTYPE X E DLINE

AND DPT• X=-Y

DO

BEGIN

DPT'YEQ (x) si;

IF H S1 = 2 THEN

BEGIN

INTERNAL -" NMV;

MAKE DLARW • X a NMV;

MAKE ARWLINE ' NMV = S1

MAKE APEX NMV a Y;

END;

ELSE MAKE TESTI X a FALSE;

END;

24

TERMLINE

FOR START• X ANY

AND IIDPT DPT X =I

AND APEX. W Y

AND MIDPOINT IN. Y}

DO MAKE TERMLINE. W X;

FOR APEX• X ANY

AND - TERMLINE• X a ANY

DO MAKE TESTZ• X a FALSE;

SUBPIC, DRAWINGPART

START IANY e LTYPE ' ANY Q TERMLINE • ANY GARWUNE • ANY -. LINES;

TAGi ,FOR X c LINES DO

BEGIN

DPT' DPT ' DPT' DPT• X-"St

LINES Q St -. LINES,

IF II St 4 THEN

BEGIN

FOR Y St DO

IF II DPT'START - Y 2 V DPT'END. Y-2

THEN GO TO TAGZ;

INTERNAL - NMV;

MAKE SURPIC- PIC £ NMV;

MAKE DRAWINGPART NMV a Sit

25I

as!

END

ELSE

TAG2 . MAKE TEST3• Sl= FALSE;

GO TO TAGI;

END;

TLPL, DIMENSIONPART

FOR TERMINATE X Y

AND DRAWINGPART• W Z

DO

BEGIN

DIST (Y, Z) TEMP;

IF (TEMP<THI) A (TEMP>TH2) A COLIN (Y, Z) THEN

BEGIN

MAKE TLPL Y • Z;

MAKE DIMENSIONPART - W a DLARW "X

END;

END;

FOR TERM UNE ANY i X

AND-o TLPL• Xi ANY

-DO MAKE'TEST4. X a FALSE;

TEST DIMENSION LINE CONSTRUCTS

SFOR ARWLJNE• X IY

"AND DLARW ZIX

wa.6

!.

DO IF (LNGTH {Y} -ARWL) > TH3 V

IIIANG {Z, Y1 - ARWANG) > TH4

THEN MAKE TEST5. X FALSE

FOR TERMLINE • X = Y

DO IF II (LNGTH {Y) - TLNLNGTH) > TH5

THEN

BEGIN

MAKE TEST6• X FALSE;

MAKE TEST7 • DLARW' X FALSE;

END;

TEST FOR 90" ANGLES IN SUBPICTURES

FOR DRAWINGPART• PIC X

DO

BEGIN

DPT' DPT X -- SI;t:

FOR Y c St

AND Z SI

DO

IF - (PERP (Y. Z) v PARL (Y. Z))

THEN MAKE TEST8S X RFAIL;

END;

The procedures used in the example are

(I) MIDPOINT (X, Y): Boolean result. Is point Y the
midpoint of line X?

2?.

(2) DIST {X, Y}: The result is the distance between

line X and line Y.

(3) COLIN (X, Y}: Boolean result. Is line X collinear
with line Y?

(4) LNGTH {X): The result is the length of line X.

(5) ANG (X, Y): The result is the angle between line
X and line Y.

(6) PER? {X, Y}: Boolean result. Is line Y per-
pendicular to line Y?

(7) PARL (X, Y): Boolean result. Is lAine X parallel
to line Y?

As an ex:imple, the procedure LJNGTH is presented below:

REAL PROCEDURE LNOTH {X}

BEGIN

REAL TV, T2;

(HC ENT) X -HC STARTS X) 2-.TI;
(VC END X~-VC- START.X~-IZ

RETURN SQHT (Tt + TZ);

END.

i . za

IMPIC'ATIONS OF TEST ASS(OIATIONS

'r .,sr This dimension line is missing an arrow.

Ir .:ST 2 This arrow does not have a terminal line.

'rEST3 This line is part of an illegal construct.

TIE.ST4 This terminal line does not correspond to a picture line,
4

TEST5 This arrow has lines of the wrong length, or has parts
which form the wrong angle with the dimension line,

TEST6 The terminal line on the end of this arrow is of the
wrong length.

TEST7 This dimension line has an arrow for which TEST6
failed.

TEST8 This subpicture is not rectangular.

29

Bi BLIOGRAPHY

lllio,, R. W., "A Model for a Fact Retrieval System," doctoral thesis,
Univerity of Texas, May 1965,

Vcldri.nn, .1. A., "Aspects of Associative Processing," Technical Note
1965-13, Lincoln Laboratory, M.I.T. (21 April 1965), DDC 614634,
11-644.

", "A Formal Semantics for Computer Oriented Lan-
guages," doctoral thesis, Carnegie Institute of Technology, 1964.

Forman, B., "An Experiment in Semantic Classification," LRC-65-
WT-3, Linguistics Research Center, University of Texas (December
1c65).

Fuller, R. G., etal., "Study of Associative Processing Techniques,"
RADC-TR-65-210, Rome Air Development Center, Griffiss Air Force
Base, iNew York (August 1965).

Fuller, R. H., "Content Addressable Memory Systems," doctoral thesis,
University of California at Los Angeles, 1963.

Love, H.A., et al., "Associative Processing Techniques Study," RADC-
TR-65-32, Rome Air Development Center, Griffiss Air Force Base,
New York (I Apri) 1965).

McCarthy, J., etal., LISP 1-5 Progranmer's Manual (M.I.T. Press,
Cambridge, Massachusetts, 1962).

Mendelson, E., Introduction to Mathematical Logic (Van Nostrand,
Princeton, New Jersey, 1964), p. 300.

INwell, A., "A Note on the Use of Scrambled Addressing for Associa-
tive Memories," unpublished paper (December 1962).

Raphael, B., "SIR, A Computer Program for Semantic Information
Retrieval," Proc. Fall Joint Computer Conf., San Francisco, California,
October 1964.

Rovner, P. D., "An Investigation into Paging a Software-Simulated As,
soriative Memory System," Sc.-M degree, Unive-.'sity of California at
Berkeley, 1966.

an unpublished paper on the Processing of Associative
Procedures (August 1965).

Simmons, R. F., Burger, J. F., and Long, R. E., "An Approach Toward
Answering Elnglish Questions from rext," Proc. Fall Joint Computer
Conf.. San Francisco, California, 7-10 November 1966.

Sutherland, i.E., "Sketchpad, A Man-Machine Communication System,"
Proc. Spring .Joint Computer Conf., Detroit, Michigan, May 1963.

31

UNCLASSIFISDJ
Security Classuification

DOCUMENT CONTROL DATA -R&D

(Security classificatim o @f19(~. body. of abstract and jadezkl annotation must bE Misted witeft the oeverall tqpecl in damaeifle
1. ORIGINATING ACTiVITY (Cospotote agtho,) aCROPORT SEUIYCASPCTO

Unclassified
Lincoln Laboratory. M.I.T. 26. GOUPjR

3. REPORT TITLE

Azi Associative Processing S3ystemn for Conventional Digita. Comnputers

4. DESCRIPTIVE NOTE3 (Typo of report anid IflcltCive dais..)

Technical Note
S. AUTHOR(S) (Lost name, latat name,e Inithal)

Rovner, Paul D. Feldman. Jerome A. *-

0. REPORT DATE 7aTOTAL NO. 07 PAGES Fb. NO. 0F REFS -

21 April 1967 -6 16i j
Sn. CONTRACT OR GRANT NO. 9a. ORIGINAT ORIS REPORT NUMBERiSl

A F 19(6 28) -5167
b.PRJETIO Technical Note 1967-19t

Order 691 I
Sb. OTHER RiEPORT NO(S) (Any~ other ntinbera Phal Map beI zeidned this report)

d.. 1. ESD-TR-67-242 -

1 V AILABILI TY/ LIMITATION NOTICES

Distribution of this document is anlimiteid.

il. SUPPLEMENTARY NOTES 12I. SPONSORING MILITARY ACTIVITy

Advanced Reasearch Proje'cts Agency.

None ~~DepartmentaDens

13. ABSTRACT

A user-oriented system having both algebraic and assoclatve processing capabilitieff is presented in this
F ~report. The algasbraic capabilities are essentially those of ALGOL. The associative -facilities are: 4

(1) A language for the expression of associative retrieval requests (the associative
language).

(2) A scheme for the internal representation of a store of associations betwveen iLemis
of information (an associative information base).

(3) Processing routines fur associative retrieval requests.

The associative language is independent of the structure of the associative information basei. In the avsteni
presented here, the associative information base is implemented via hash-codting techniques, The associative
language is implemented by extending an existing ALGOL system.

This report consists of three sections: Sec.l describes the high-level programming language for the ctwerall'
system;, Sec. II outlines the scheme for repiesenting an associative Information ba~e; and Sec, III oummarixos
the processing routines for associative retrieval r~quests.

14. KEY WORDS

programming languages associative information storage

digital computers and retrieval

___________________32__________________________

