&W# 26

" DRAFT L~15-55 DRAFT
Memorandun &M-3536 Page 1 of ¢
r) T Division 6 = Lincoln Laboratory

-, Massachusetts Institute of Technoloegy

x Lexington 73, Massachusetts

. SUBJECT: DESIGN CONSIDERATIONS FOR ‘AN' EXPERIMENTAL COMPUTER

T° ~ _R& R Everett
From: W, A, Clark
’ i)ate:

Approxfe d:

Abstract: A preliminary logical design for a real-time=control computer,
with system capabilities approximating AN/FSQ—?, eliminates
buffer storage and centralizes control of input-output transfers,
High-speed transistor circuits and a random-access storage
system of 2,5 million to 5 million bits make possible signif-
icant simplifications in system logical design. Breakpoint -
operation similar to that of DYSEAC; but using many program
counters, promises great flexibility in the handling of terminal
equipment., This memorandum deals primarily with the features
of the multlple-program-counter system. ,

Introduction

, The design proposed here (I_‘x-i) is the first member of a
family of parallel, single-address computers for real-time control now
under study in .Group 63. This family has the following principal charac-
teristics: : '

1.) Surface-barrier transistor circuitry
2,) large core memory (2.5~5 million bits)
3.) Multiple program counter logic.

The TX-1 has been designed with the system capabllltles of the AN/FSQ-7
in mind but with no attempt to meet the detailed specifications of ‘the
'SAGE systems Tt is essentially a "bufferless" machine as opposed to the
FSQ-7 which provides buffer drums between the central machine and various
terminal devices. In the TX=-l, information passes more directly into
‘and out of the memory unit of the central computer.: All transfers of
information are programmed by means of minor sequences 'of read-in or
read-out operations which are executed on a "demand" basis during
interruptions of the major program or of one another. This method of
getting information in and out of the central computer, which requlres
the use of -an additional program counter for' each minor sequence, is the
d::.stinctlve feature in which the sysbem logical des:.gn of the -1

This document is issued for internal distribution and use only by and for Lin- The researchreported in this document was supported
coln ‘Laboratory personnel. It should not be given or shown to any other in- jointly by the Department of the Army, the Depart-
dividuals or groups -without express authorization. It may not be reproduced ment of the Navy, and the Department of the Air Force

in whole or in part thhout .permission in writing from Lincoln Laboratory. under Air Force Contract No. AF 19(122)-458.

DRAFT L/15/55 ‘ DRAFT.

Memorandum 6M=3536 ‘Page 2

differs significantly from that of the FSQ-7,

This note deals primarily with the features of multiple
program counter operation of the TX=l in a control application with
roughly the input-output requirements of the SAGE system. Where possible,
correspondence with equivalent features of the FSQ-7 will be pointed out,
However, not enough is known yet about the details of the transistor
circuit."building blocks" to permit the drawing of block diagrams of the
TX~1l in anything approaching final form, It is hoped that this summariza=
tion of some of the early thinking of the Group 63 Logical Design Section
will serve to stimulate further thought and comment,

Influence of lLarge Core Memory on Design

The fact that large ¢ore.arrays (256 x 266 x 36) are now
feasible for use in the central memory of the computer makes possible
two major simplifications in a system of FSQ-7 proportions which will be
realized in the TX=l:

1,) Consolidation of Auxiliary Storage

-In the FSQ=7, the storage of the program and associated
tables is distributed over 8 physically-independent

yet logically-equivalent drums, Consequently an
obvious logical simplification results from the lumping
together of this storage into fewer large core-arrays.
One 256 x 256 array is the equivalent of about 5 or 6
drums,

2,) Elimination of Separate Intermediate Buffer Storage

‘In the FSQ=7, one drum serves as a buffer of input
information; another 3 drums, output information. -
Of these output buffer drums, 2 hold information
for the display system and enable it to run at a
higher rate by redisplaying old information several
times between changes of data., All of this buffer
storage can be eliminated if provision is made to
address the central memory on an ®in-out break®":
basis, In the case of the display system, the central
memory must give up additional cycles for the redisplay
of old information, but this requirement is not a
limiting one at FSQ-7 rates,.
o The total storage capacity of the FSQ-7 including drums and
its internal core memory is about l,5 million bits, almost entirely in
32 bit words. This is roughly the equivalent of two 256 x 256 x 36 core
arrays.

'The TX=1 will be so designed that it can operate 2 independent
memory units concurrently, getting an instruction from one unit while -
the other unit is referring to the operand of the previous instruction,

DRAFT L4/15/55 DRAFT
Memorandum 6M=3536 Page 3

Thus, by arranging to store the program in one unit and the operating

data in the other, a significant increase in speed of operation is-
possible, This increase has been estimated to be about 70 percent, The
design will, of course, also permit the program and its operanda to be
stored in the same memory unit with a corresponding reduction in operating
speed in this mode,

The TX=1 System Design

- The "in-out break™ mentioned above is somewhat like that of
the FSQ-T. However, because.of the absence of large-scale buffering,
all terminal devices with critical timing requirements (for example,

" phone line receivers) must have a guarantee of access within certain time
limits, The fact that all devices time-share the same memory unit will
mean that one device will, in general, have to tolerate interruptions by
other devices with higher priority., This fact greatly devalues "block
transferst of information and furthermore makes it necessary for each
terminal device to "remember® what it was doing at the time of the
interruption, In the TX=1, this function of storage of memory addresses
during interruptions is handled partly by the use of index registers and
partly by means of additional program counters in a manner later described,
v

Figure 1 is a simplified block diagram of the TX=-l showing
only the principal information paths, The various terminal devices,
labeled T., T 09 etcs,, are shown as being connected to the central
computer %y busses for simplicity. Each device includes enough storage
to enable it to function between central memory accesses, The Memory
consists of one or more 256 x 256 arrays, depending on the intended
application of the computer and also includes a small toggle switch test
memory, The Arithmetic Element will be assumed to be essentially like,
that of the F3Q-7 in logical s?ructure for the purposes of this note.-"
- The Terminal Selector is, as the name implies, a device for
selecting one and only one terminal device and connecting it up to the
central machine, This selection is made at designated interruption points
in the program sequences. Some sort of priority system is implied such
that terminal devices with eritical timing requirements can be handled
along with devices of less urgency. A "demand chain® similar to those
appearing in the ‘terminal system of the FSQ-7 satisfies the general
priority requirement, In addition, an . ﬂln-out switch® is required to
permit the central machine to select terminal devices.directly, for
example, to switch Moff" units into the demand chain,

The Program Element consists of a set of .program counters
{one for each terminal device), a set of index registers, and an adder
(see Fig. 2)» To run a system of the size of SAGE, about 100 index
‘registers and somewhat fewer program counters might be required. These
might all be consolidated into one 256 register core-array with an
access time of ‘about l-microsecond and a.cycle time of half that of the
central memory, Such a consolidation would have the advantage that the
proportion of program counters to index registers is not fixed,

DRAFT L4/15/55 | - DRAFT
Memorandum 6M=3536 y Page I

The primary function of the Program Element is to supply
addresses to the Memory according to the requirements of the stored
program, These addresses come from either a program counter or the
.-adder register, The particular program counter in operation during any
given machine cycle depends on which terminal device has been selected
by the Terminal Selector, and the address it contains is indexed by one
each time it is used, in the usual way. The index register in use during
a given cycle depends, as in FSQ-7, on an index register number stored
with the instruction being executed., The contents of the designated
index register are added into an adder with the address-half of the
instruction being executed, and the sum is then sent to Memory as the
address of the operand designated by the instruction. Except for the
fact that the TX~-1l has several program counters and must select one of
them at a time for any given cycle, the Program Element operates in
essentially the same way as in FSQ=T.

To summarize: the word structure of a typical instruction,
add, which requires its operand base-address, K, to be modified by the
contents of index register j is

J add K

If index register j contains the number J, then the address of the
operand (addend) is J « K,

We can now focus attention on the multiple program counter
logic:

Multi-Sequence Operation

The TX=1 is a multi=sequence computer employing a set of
program counters, each one of which marks the progress in its own
sequence of instructions and is brought into operation at the request
of an external device with which it is associated, In this respect,
the TX-1l design is an extension of the 2-sequence DYSEAC of the
National Bureau of Standards,

The program operating in the TX-l can be thought of as: cone-
sisting of a major program sequence and several essentially independent
minor sequences, The major sequence is the large real-time control
program corresponding to the single program of a one=-sequence computer
like Whirlwind, Each minor sequence is devoted primarily to transferring
information between the computer and a corresponding terminal device,

These sequences are interleaved in time in an arbitrary
fashion, The timing will depend largely on the requirements of the
terminal devices themselves, However, interruptions in any sequence
can occur only at points designated by the sequence itself, These

See GM=31LL "The Multi-Sequence Program Concept" for a general
description of multiple program counter operation,

DRAFT 14/15/55 'DRAFT
Memorandum 6M=3536 Page 5

breakpoints are marked by the presence of a "one™ in a breakpoint bit
stored with each instruction. A sequence may thus retain control of

the computer by preventing interruption for as long as necessary to
carry out required transfers, communicate with other sequences, etc.

At each breakpoint the Terminal Selector selects the terminal device
with the highest priority and connects it to the computer for the next
computer cycle., Of course, the peak rate’ load of the entire terminal
system will determine the maximum intervals between breakpoints in the
sequences. The average input and output rates will limit the complexity
and length of the sequences. The overall average number of transfers
might require 10 to 15 percent of computer time at ant.icipated FSQ-? rates.

The illustrated instruction must then 1nclude an n.ndication
of the status of its breakpoint bit:

#j add K

where the asterisk will be taken %o mean that interruption is not
permissible and that the next instruction to be executed will come from
this same sequence,

Example of an In-Out Word Transfer

To illustrate a typical machine cycley consider the exarmple
shown in Fig, 3. Terminal device #2 requires its next word from Memory
and has been selected by the Terminal Selector as the subscriber w:.th the
highest priority.

The eycle begins (a) with the selection of the program counter
to be used during the cycle, in this case PC#2. The address 101, sub-
sequently indexed to 102, designates the next instruction to be exécuted
in sequence number 2 and is sent to Memory as shown in (b)e: This in=-
~ struction, 13 rdo L000, indicates that index register 13 is to be used '
to modify the address of the operand, and the address~base ;000 and index
register number are transferred to the Program Element (c). ~Inasmuch
as index register 13 contains the number 7, the address of the operand
becomes 4007 and this register is selected in Memory (d).r The Control
decodes the instruction rdo (read out) and transfers the contents of
register L1007, which happens to be 666, to ‘the in-out bus to which To
is connected (e), and the operation is complete., No asterisk appedrs
with the instruction in this example, and henpe a breakpoint is indicated.
Thus the next instruction in sequence 2, stored in register 102, will not
be executed until To next requests, and is granted,; control of the computer.
Eventually the sequence folds back on itself after a branch instruétion
which reséts program counter #2. Also, at some point in the” s’eQuénce
index register 13 is mdexed and sensed for overflow, and reset as
required.

Notice that reset values used in such a minor sequence may be
supplied by the major sequence., This permits the major sequence, for
example, to apportion internal storage among several input devices
according to need. Also, one sequence can détermine the progress of

DRAFT L/15/55 DRAFT
Memorandum 6M-2536 Page 6

another sequence by examining its program counter.

Examples of Minor Sequences

The following examples will help to illustrate some of the
ways in which minor sequences might be used. First, it is necessary to
describe the functions of the orders appearing in the examples: Most
of these are found in the FSQ-7 order code. K is the address of a
register in the central memory.) :

cad K: Clear accumulator and add in contents of K

aor K: Add one to contents of K (performed in AE)

fst K: Store Acc contents in K

branch K: Reset selected program counter to value K

kK rdx K: Read contents of index reg. K into reg. K

k ria K: Reset index reg. k to the value K

Js J, k bp: bpx K: If index reg. k is positive, reduce it by
amount j and branch to K. If index reg.
negative, ignore instruction.

bsn K: Branch to K if indicator in selected term:l.nal

device is set.

rdi K: Read word from selected terminal device to reg. K
7d0 K: Read word from reg. K to selected terminal device

Except for the three orders which make special use of index reg:u.sters,
any of the above may be prefixed by an 1ndex register nunber,

Example 1: Input device assigned registers 1000 to 1499 for
storing input data. Recycles if this assigned
zone exceeded., Uses index register 13; program
sequence stored in regs. 100-103,

100 13 rdi 1000
101 %1, 13 bpx 100
102 #13 ria L99
103 #branch 100

The program counter for this sequence starts at
101 when request for machine cycle is granted.-

If assigned zone is not exceeded, index reg. 13

is counted down by 1 and sequence branches to

100, reads in word, and gives up control (no
asterisk:on instruction in 100 indicates break-
point)s, Program counter ends up at 10l. If zone
was exceeded, index reg. 13 is reset to L99 before
word is read in.

D_RAFT DRAFT
Memorandum 6M-3536 Page 7'

: This example represents a minimum program-storage sequence.
Note that each read-in requires the execution of 2 instructions (except
when the zone is exceeded at which time i instructions are momentarily
required)., By expanding the sequence, the number of instructions per
read=in can be reduced to nearly 1 as the following example shows:

{Exal;ngle la: (Same requirements as Example 1.)
—>100 13 rdi 1003

101 13 rdi 1002

102 13 rdi 1001

103 13 rdi 1000

r—loh' #;, 13 bpx 100

105 313 ria 496

L—106 sbranch 100

Except for end-of-zone reset, this sequence uses 1.25 instruc~-
tions per read-in. The feature of expanding sequences in this manner
can, of course, generally be employed to reduce instruction time.

Note that if several input devices use the same program counter
in the sequence of example 1, then they all load data indiscriminately
into the one zone 1000-199. A-separate sequence for each results in
separate zones for each device,.

Example 2: Time of arrival to nearest t-seconds of input
data of example 1 is required.

—=200 13 rdx 1500
201 13 rdx 1501
203 13 rdx 1502
20, 13 rdx 1503

205 3#branch 200

Terminal device eensists of timer which reguests
machine cycle every t-seconds. ©OTurrent intra-

zone location read into 1500 on first cycle.
t=seconds later, current location read into 1501,
etc, These mark boundaries of data in the zone which
are within t-seconds of one another. In this case,
major sequence uses this information at least once
every lit-seconds.

DRAFT
Memorandum 6M-3536

Example 3:

Example li:

Examé le 5:

Example 5a:

Example 6:

DRAFT

Page 8

Contimuous, cyclic read-out (for example, to a
display system) of every 10th pair of regP.sters
in zone 5000 thru 5091, Index reg. #50 used.
+—>300 %50 rdo 5000
301 50 rdo 5001
f+<—302 %10, 50 bpx 300

303 #50 ria 90
L__304 #branch 300

Dynamic stop (imposed, for instance, by major -
sequence to shut off input device momentarily).

Loo br‘-a.nch hoo

Clock time to within t«-seconds required in index
register 20:

Eioo 1,20 bpx_500 _
(sresets, ete)
Terminal device consists of timer requesting cycle
every t~-seconds.
Cl_ock time to appear in register 6000.
500 *f'st 100,000
501 - -#aor 6000
502 . cad 100,000

| L 503 . soraneh 500

Same terminal device as in previous example.
Sequence starts in 503 with branch. Next instruc-
tion empties accunulator for use by this sequence.
Count is made in register 6000, accumulator :
restored on 502, and sequence gives up control
until next timing event.

Tnput devii:e'With parity on input word. Word is
to be read in only if parity indicator is set..

Count of failures to read in to appear in reg.

1900,

DRAFT | DRAFT

Memorandum 6M-3536 Page 9

| r-6°1 osp_606_
602 - #fst 100,000

603 #aor 1900
60l ead 100,000

605 sbranch 601

»-606 13 rdi 1000

[607 #1, 13 bpx 601

(#wesets, stc.)

Program counter for this sequence starts from 607.
If zone not exceeded, executes sense instruction
in 601: Branches to 606 if selected parity ine
dicator set, then reads in and gives up control.
If indicator not set, increases count in 1900,
restores accunmlator and gives up control at 605.

These examples illustrate the flexibility of the multiple sequence tech-
nique and should suggest other applications not mentioned here. An im-
portant application which needs study is the programmed generation of
displays., There is some hope that a display system like that of the
FSQ-7 might be simplified to a considerable extent by special display
sequences operating at different rates. ‘ ‘

This flexibility in handling terminal equipment is an extremely
important feature. The ultimate application of the machine in a control
system may be largely unknown and yet will not appreciably affect the
design of the central computer. By stressing the construction of computer
programs rather than terminal equipment a considerable gain in system
flexibility is achieved.

. Signed 4/
Wesley/A. Clark,{Jr.
WAC/md/3g

Drawings Attached:
Figure 1 - SA=62428
Figure 2 = SA=62li1)
Figure 3 - SA-62),58

SA 62428

Central _Computer | Terminal __ Systern

bR

= Arithmetic) : Termina)l Seiegfai“
N , 3
l3—— 1 Element

Memory Z? e b |

E

Program Ih-0ut , '
E:‘egnenf >0 suitch——<> Tl. § Tz TN

) = T
_ Program Element Bus ! 3 . »“

In-0Out Bus

]

Control

Ea B
A
4

o~
Y

Fiqure 1

S'me_liﬂed} Sys{em BlocK D'Laclimm of the TX-1

SA 6242 8_

WAL Clark 119} 55

SA 62414

. Index Rege. Program Counters !
! 0 : [R —
IdecReg® |2 — —2[]
) . ~ = <> 3 e . ' 2 R Ce
’ : 4. . - *
o ‘ a

Addrass Base

Memorj Adelvess A\ é
N <

> Pregram Element Bug

Figure 2

PY’OC] ram E l emerﬁ:

PRINT ISSUED
APR 91 1955

SA §24 4
WA Clark wla2ols

SA 62458

AU

Operand Address 4o07

+
N

ol

> AE e Tarrinal 59!‘1:‘-'5‘}: @ “ AE
Mem i 5 ; . Mevn
H —
PE T T2 ' Tw PE
i o
i fen, 4067
Pc #2 3 i
Cortrl —_ e . _ _ Contyel
, , Q
(@) Terminal Device 2 Selected (d) PE Aader Returns
¢} ; !
AE ‘6 S < 3 . AE
Meapn ‘ Mem
| -
PE . ! T , ‘ v : PE
1o} l { H 4007
? ; g
pc¥e ? ’ %
Control : Control 666
(b) Next Instruction Location to Meh'xor_y : (&) Contents
2 pc*z
i ! | Selacted
. AE 2%
= : [3
Mem A
13 r {
S =]
: i,
104 i 100 H
rdo 3 A o1 é}rdo@&?@} !
Pc ¥y § l;] 192 —
Condest J
Preqram

()

13 rdo 4000 Read from Memory

(Sequance #2)

| [

.
4004 ——im

:“lf_oc'/ bbb —

Oparanda

of 4007 Read Qut to T,

Figure 3

Example of In-Out
Word Transfer

;
7

v
SA 62458

WA, CLASx slaelss

