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Abstract: Boolean algebra is extended by adding to the Boolean or "instan-
taneous" transformations (not, and, or, etc,) a delay trans-
formation symbolized by "A." The behavior of digital devices
which contain feedback or delay (e.g., flip-flops) is described
in the extended symbolism. Logical networks containing fesedbaok
and delay are correlated with sets of equations, An operator
notation is introduced and used to simplify network equations,
.The technique is illustrated in the design of an accumulative
binary adder which makes essential use of feedback and delay.

1, Introduction

- We shall assume that the reader is familiar with the elements 1
of Boolean algebra and with its application to the design of logical nets™,
and shall go on to describe a simple extension of that algebra which
considerably widens its range of application, To clarify what we are
doing we shall first survey the kinds of logical nets to see which of them
are describable by Boolean algebra and which are not,

It will be simplest if at first we confine ourselves to clocked
nets, that is, to nets in which time may be regarded as a sequence of
distinct "moments", t = ..., -1, O, 1, 25 eoo o The history of any junction
(input, output or intermedlate poin'b) in such a net for the period 0St<n
would be written by stating the value, O or 1, of the signal at that
junction at t = 0, 1, 2, ce0y, N, We shall call such histories "messages"
and write them as strings of zeroes and ones between brackets., For
example, (01101) will be the message:

1. For introduction to Boolean algebra, see Serrell, "Elements of Boolean
Algebra...", Proceedlngs of the I.R.E,, Vol, 41, No. 10, pp.-1366-1380,
The term "logical net" is borrowed from Burks and Wright, "Theory of
Logical Nets®", Proceedings of the I.R.E,, Vol, L1, No, 10, pp. 1357-1365.
The term applles to digital computers, to sectlons of digital computers,
to relay nets, etc. Block diagrams (such as the ones in Fig, 2) and
sets of equations are both representations of logical nets,
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in whole or in part without permission in writing from Lincoln Laboratory. under Air Force Contract No. AF 19(122)-458.
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We shall use greek letters as variables for O and 1§ latin
letters will be variables for messages. Boolean functions will be repre-
sented by =("not"), &(®and®), v{"and/or") and ®(exclusive "or"), In Fig. 1
these functions are defined for O and 1 as arguments. Thus, U is defined
to be 1 and 0&1 is defined to be 03 but expressions like “oéOllO)” and
#(0110)&(1100)" are left undefined, We shall now remedy this situation,

Definition 1., -x or X is the result of applying ~ to each
component of X, . Xy is the result of applying & to the first component of
x and the first component of y, then to the second components, and so on.
Similarly for v and 8,

Then =~(0110) = (0 II0) = (1001),
(0110)&(1100) = (0&1 1&1 1&0 0&0) = (0100),
(0110)v(1100) = (Ovl 1vl 1vO Ov0) = (1110),
and so on;

The Boolean transformations operate only on contemporary digits
of messages. For example, v operates on the t = O digits of x and y to
produce the t = O digit of xvyj the t = 1 digit of xvy comes from the t =1
digit of x and the t = 1 digit of y, and so on. There is no transformation
made up solely of Boolean functions which operates, say, on the t = i digit
of one message and the t = i+l digit of another to produce the t = i*2
digit of the result, ILet us call a transformationw(10gically) ¥instan-
taneous" if the ith digit of the output message is always a function of
the ith digit(s) of the input message(s). A temporal transformation will
be defined as one in which the ith digit of the output message depends on
an earlier digit of at least one of the input messages. It is the temporal
transformations which involve "memory" or M#storage”.

Apparently the Boolean transformations are all instantaneous.
This means that the applicability of Boolean algebra to the design of
logical nets is restricted to instantaneous nets, that is, to nets which
effect instantaneous transformations. (A net will be called "instan-
taneous" in the logical sense when its actual delay is small compared to
the period of the clock, i.e,, the interval between t = i and t = i+l.)

In order to extend the applicability of Boolean algebra to
temporal nets, we shall add to it a delay transformation, A, Ax is the
result of delaying each digit of x by one clock-period, For example:

t | ..o =1 0 1 2 3
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The rule is¢ to obtain Ax, shift x one place to the right,

, A basic classification of logical nets is illustrated in Fig, 2.

- Note that there are no instantaneous, feedback nets., The reason for this
restriction can be seen by considering the effect of shorting out the
delay =~ element in the feedback net at the lower right of Fig, 2.
Suppose that the input is 1. What is the output? If the output is O
then so is the feedback input; but 1 @ 0 = 1, which contradicts the as-
samption that the output is O, Then the output must be 1, But then the
feedback input is 1, and 1 & 1 =.0, which contradicts the assemption that
the output is 1., Thus if ig;starrbagaous feedback nets are admitted without
restriction, contradictions arise,’ co

Both practically and theoretically, feedback nets are of great
importance; since all feedback nets are temporal, they cammot be described
by ordinary Boolean algebra, The rest of this paper will be devoted to
methods for synthesigzing feedback nets, using the algebra described be-
low, ; '

2, Binary Network Algebra

Let us adopt the convention that if x is a message and i is an
integer then x(i) is the t = i digit of x. For example, if x is the ?
message defined in the table above, x(0)=0 and Ax(0) = 1, Now we can
define Aas follows. '

%ﬁmmmz;(aﬂ(ﬂnwalL

Strictly speaking, definition 2 implies that we are thinking
of the messages as extending indefinitely to the left and right. If
this were not true and x were defined, say, only for non-negative values
of t, then definition 2, with t = 0, would say "(Ax)(0) = x(-1)",
This would leave Ax undefined for t = 03 A'x would be undefined for
both t+ = 0 and t+ = 1, and so on, In practice we shall solve this problem
by specifying a fawlvalues' of x to the left of ¥ = 0 when we expect to be
dealing with Ax, 4%, etc. i

The set of all binary messages is a Boolean algebra when x,
x&y, etc. are understood as in definition 1 above. The result of adding
the operator Ato the system will be called "binary network algebra¥,
-In the binary network algebra, A may be used-.with the Boolean operations
to produce such messages as (Ax + §F) & x, Further, A!ga be applied
repéatedly to produce A2x (= A( Ax) ), Mx (= A( L\xg ), ete, Transe
formations compounded out of A and the Boolean transformations in any
way will be called Mnetwork transformations" since they comprise exactly
the transformations.which can be implemented by logical nets,

" A never transforms different messages into the same messages

' Instantaneous feedback nets are discussed in greater detail in Burks
& Wright, op, cit,
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if x # y then Ax #¥ /Ay, In other words, A is a one-to-one transforma=
tion, This permits us to cancel "A® from both sides of "Ax = Ay" to
get a statement; ¥x = y¥; which is true if and only if the original.
statement is true, Bub.the situation is different for network transforma=
tions generally. Iransformations compounded out of 4 and Boolean trans=-
farmations are not. in general one=to=-one, and although we can always de=
duce "f(x) = £(y)* from "x = y", we cannot go in the other direction,

For example, let f£(x) = ./AX + X, X ® 55,00000000 (x(t) = 0 for all t)
and ¥ = ,.011111..0(y(t) = 1 for all t). x and y as defined above are
not changed by being shiftedsAx =x and Ay = yo Then f(x) = Ax & x
=X H X T ,,0,000000., and f(y) = AY & Yy*=y L 4 y = 00000000, o _Here
£(x) = £(y) but x # yo Sumarys if f is any network transformation,

"y = y* implies "f£(x) = £(y)"; but the converse is not generally true,
Network transformations are not in general one~to-one.

It should be noted that A is an isomorphism of the binary net-
work algebra with itself. This means that if f(X,Yyeses2) iS5 an expres=
sion built up by applying network operators to "x", "y",...,"z", then

f( A Xy AYsooes Azg = A.f(XJYs 00092)3 Lecan be.;"factoreg out", For -
example, A( 2\ xv 2°y) & /2= A(olxvay) & Az) =2((xvay) & z)o

A very important device for- the application of the binary net-
workgalgebra is the operator notation, For example, we shall write
"(AC $A)x" for * /\€x & Ax", In general, whenever a compount expression
is built up.by applying £ and .Boolean functions to a single variable, the
expression may be re-written in the form "(-=-=)x", where =~= is an opera=
tor. This sometimes requires the use of the two new operators defined
below, '

Definition 3, The identity operator, I: Ix = x,
Definition i, The complementation operator, N: Nx = X,

g For examples ~%(/-\ & I)x= (%2 &L )x = A% & Ax3
((ACEN)E& I)x=(2%N)x& x= (/A° x #X) & X,

It will sométimé's be convenient to have names for special mes~
sages. In particular, the constants 0 = 54,000,600 and 1 = 55.11lcs0
will be useful,

Definition 5. 0O is the message of which every component is 0s
for all t, 0(t) = Oo

Definition é, 1 is the message of which every component is 1s
for all t, 1 (tY = 1.

The "vectors" "Q" and 1" combine with latin letters in the same
way that the "scalars® "OW and "1W combine with greek letters, Note that
"x(t)%, "( A x)(0), etc,. count as scalars,

Scalars Vectors
0&a=0 0&x=0
Ova=a Ovx=x
0®%a=a 0¢x=x
-0=1 9=1
l&a=a l&x=x

ete T ete o
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As will be seen in the next section, the operator notation is
useful in suggesting simplifications of temporal transformations. In
particular, the following theorem will be useful.

Theorem 1, A% ® I = (A 8 1)2,
" Proof 28 Ix =A% 0 x., (A6 )%=
o) oDx=Q06I) Ax6x)=

Mpx®x) + Ipx®x) =4A%°x 0 Ax ® 2x ® x =

2%x0060x=0%0x.

The following generalization of theorem 1 can be proved by
induction,

Theorem 2, If n is a power of 2, A" e I = A+ TP,

Note that the operation of "application", symbolized by
juxtaposition of operators, obeys the associative and distributive laws,
but not the commtative law, If Oi is an operator, "0102x" is to be
interpreteds . 07(0ox). "070003x" is 01(02(0%;9), etc, But grouping does
not matters 01%0203) = (10905)03 = olozog. urther, application is
distributive on the right and left over &, v, ® and any other Boolean
function of two variables. For example:s 07(0p&03) = 0700&0703 and
(01&02)03 = 0703%0203., But application is not commutative: 0702 need
not be the same as 0201, For example, let O3 = N, O = Iva and x =
200001001001,0.4 » Then 0702x = ,.,010010010,., while 0201x =
000111111111 ,,. » :

3. Synthesis of a Feedback Net

Of all the temporal networks, feedback nets are the least
accessable to ordinary Boolean techniques. As an example of the appli=
cation of the binary network algebra to such nets we shall now synthesize
a binary adder which makes use of feedback to minimize equipment., It
will be seen that the operator notation is particularly helpful in
suggesting simplifications.

Fig, 3 is a first statement of the problem., The equations
shown there for K and 0” might be realized directly by an instantaneous
net such as the one shown in Fig., L., It should be noted that we have no
guarantee that physical devices corresponding to all the blocks in Fig, 4
are available, For example, it may be necessary to synthesize the & -
blocks out of =, & and v according to the identity,.® B = (&B)vE{&B).,
The statement of a synthesis problem fmust include a list of available .
"black boxes" or physical operators,

For purposes of this example we shall confine ourselves to the
physical operators shown in Fig, 5, These constitute a set adequate for
constructing a large class of logical nets (most of the Whirlwind computer
at M,I,T, uses just these packages), In Fig, 5, capital letters and solid
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arrowheads represent "dc levels," while small leters and open arrowheads
represent O,lusec, pulses, Thus Fig, 5 states some physical restriction
on nets compounded out of these physical operators., For example, it rules
out nets in which the (dc) output of a flip-flop is connected to the
(pulse) input of a delay line, In the case of the gate tube where the
inputs are electronically different from each other the dec input is
distinguished by a blacked-in corner. The puzzling statement "xvy =x8y"
in connection with the pulse mixer is a consequence of the requirement that
both inputs may not be pulsed at the same time (to avoid jitter) . In the
case of pulses, we interpret "1" as the presence of a pulse andV”as the
absence of a pulse., Then the requirement that the two inputs may not be
pulsed simultaneously is equivalent to eliminating the case in which both
inputs are 1, But as Fig. 1 shows,oC = B = 1 is the only case in which
o8 B differs from«(vB, Therefore, in networks which obey our restriction,
the action of the pulse mixer is equally well described by ® or v, Once
again, the restriction forbids us to construct networks in which both
inputs to the pulse mixer are 1 at the same time,

Note that two sorts of equations are given for each physical
operator, one of them in the notation of the binary network algebra and
the other in functional notation e.g., z = g(x,Y) = x&Y for the gate- ;
tube, The functional symbols refer specifically to the physical operators
in Fig, 5, Thus, "g(x,Y)" refers specifically to a pulse, the output of
a gate tube one of whose inputs is a pulse and the other a dec level,
"olx,¥)" is not a meaningful expression, since the "g" requires a capital
letter (dc level) as its second argumenti but "x&y" is an expression of
the binary network algebra and is not tied down to any specific physical
operator, x&y cannot be formed by a gate tube, but nevertheless it -is a
permissable expression. ‘

The flip=flop equation may be new to the reader. The physical
operator involved is the Eccles~Jordan multivibrator with the two inputs
tied together so that a pulse at the input, after a delay, complements
the output, In fact, another output is available from the plate of the
other tube, but this is not needed for our present purposes., In cases
where it is used, it would be given a separate designation, say "Z", and
would have the equation:

Z = Fi(x,Y) = =Y

The correctness of the flip-flop equation can be seen by considering two
casess (1) If x is not pulsed at time t, x(t) = O and "Y = A(x8Y)%:op
"Y(t+1) = x(t) ® Y(t)" becomes "Y(t+1) = 0 & Y(t) = Y(t)"; if x is pulsed
at time t, the equation becomes "Y(t+1) = 16Y(t) = Y(t)", Thus, if x is
not pulsed, Y remains unchanged, and if x is pulsed, Y is complemented.

We can now state the synthesis problem more fully: using the
physical operators of Fig, 5, we wish to design a logical net which
satisfies the equations of Fig. 3. Note that the equations in Fig. 3 do
‘not specify the relative times of occurrence of ¢, B, 3G~ and i»  These
may be logically simultaneous, as in the instantaneous adder (Fig., L) or,
as in:the adder which will now be synthesized, s~ and K, may occur some
number of clock periods after «, B, or ¥,
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Now we shall investigate case illustrated below

=B koo o

% b

where ~ and B appear at t = 0, the carry input (¥) and carry output (k)
occur at t = 1, and o, the sum~digitydoes not appear until t = 2, Many
other arrangements are possiblej e.g., we might investigate the case where
&, By, 7 and K, all appear at t = 0 and ™ occurs at t = 1, The reader should
imagine that the synthesis we are about to undertzke, using the timing
illustrated above, is part of a survey of solutions to the problem under
various assumptions as to the relative timing of signals, We shall not
attempt to justify here the selection of the specific timing chosenj for
present purposes, it is part of the data of the problem,

Now our adder, in context, is part of a digital computer and
must satisfy some electronic requirements on the inputs and outputs,
Suppose the adder's environment requires: B, > and A are to be O.lusec,
pulses and ~.and ;- are to bed &, levels; further,o_ and i are to time=-
share a single output terminal, These requirements are summed up in
Fig, 6, where pulse terminals have open arrowheads and lower case roman
letters as labels, and solid arrowheads and roman capitals indicate dc
levels., Note that we require that terminals ¢, b and k be quiescent
(no pulse = 0) except when !, B and J¢ oceur,

'So far we have been stating the problem. We have now reached
the point where the binary message algebra can be applied to the solution
of the problem, and it will be found that, as usual, the problem statement
has been more time consuming then its solution, ' ‘

First, to find the transformation for the sum we must determine
A as a binary message-function of A, b and ¢ such that - = <® 8 8 ) is
satisfied. Such a transformation can easily be found by translating
(delaying) A, b and ¢ so as to align =, B and ¥ with-, as follows,

t= [ 0 1 2 3 L

A= I c«é:¥ 2 g~ B -
A%h = 1{ , NS
2y = | B 0 o
ac = ! 0 a 0

Now, as the t = 2 column above testifies, the relation
8 =Ehe % 8 4c (1)

implies =X ® B ® ¥, so that (1) is suitable as a transformation for the
sum, But perhaps this transformation can be simplified. Let us try.
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The condition can be written
a =< ® B8O 4O any number of zeroes,

since in general, v ® O =, Then it cannot hurt if we add ab and Azc
to the right-hand side of (1), since both of these are O at t = 2,

t = 0 1 2 3 b

Ab = B0 0
L\.zc = 0 Q 0
We now have:
A=0%02%02c8 b0 %

which may be rearranged using the laws "x8y = y®x" and "x = y®x implies
x®y = z" to read:

22808 =220 b0 2% o0 (2)

Now (2) is somewhat more regular-looking than (1) and may for that reason
reducg to something simpler. This was the motivation for adding in4b
and 4%c, Using the operator notation, (2) may be rewritten:

(2% @ Ia=a((> ® D)b e (2 ® I)c)

s (a8 I) (b&c)

or, since 22eI=(n60 I)?,

n8 I =nL01I) (b8 c (3)

So far, (3) says the same thing as (2), but with this difference: it
suggests simplification by "cancelling" < ® I from both sides to yield

{68 DA =A(b8 c) (L)
or AA B A =AaADbS Ac
or A=A(AL®Db®c) (5)

which is much simpler than the transformation (1) with which we started,

But is the process which led from (1) to (5) legitimate? More
specifically is the cancellation of "\ ® T" from both sides of (3) allow-
able? Since \#I is not a one=to-one transformation (See Section 2) we
may may deduce (- I) x = ( +I)y from x = v but not vice=versa, 4
parently the cancellation of @I, which led from (3) to (5) says no
that (3) implies (5), but rather that (5) implies (3). But this is just
what we want, If (5) implies (3), then any net which implements (5)
must also implement (3). .
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More exactly, we already know that (3) together with the
boundary conditions A(Of =, b(0) = B, etc. is satisfied only by sets of
messages Ay, by, ci which have the property A;(2) =c- =cl® B ® , Since
(5) implies (3}, then all the sets of messages which satisfy (5) must
satisfy (3) as well, and therefore have the property that A3(2) =G, Now
the boundary conditions are:

t 0 1l 2
A =

b B 0 0
c 0 % 0

where A(1l) and A(2) are left open and all values of A, b and ¢ are left
open for t < 0 and t > 2. (5) can be stated:

A(t+1) = A(t) ® b(t) & c(t) (6)
Then A(1) = A(0) & b(0) & c(0)
=X 9 pBOO=X® B (n

A(2) = A(1) & (1) ® (1)
=X ®pPOOG)=XOBO ) (8)

Then any net which effects transformation (5) will give the
proper transformation for the sum., The process of finding such a net,:
using only the operators of Fig, 5 is shown in Fig. 7. We may represent
b ® ¢ by m(b,c) because b (= ...800...) and ¢ (= ...020..,) are never
both 1 at the same time., The pulsé output df the mixer is then applied
to the input of the flip-flop,.

Now we shall repeat this synthesis process on a compressed
scale to find a net which generates the carry.

K= (& € 8 B)) v L& B) (9)
The inputs and outputs are shown below:

A=(x %8B o)

b=(p 0 0)

e=(0 ¥ 0

k=(0 Kk 0)
To force k to be i(as defined in (9) above)at t = 1 we can use the transe
formationg :

k = (okA)va(A&b) (10)
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This transformation can be implemented as follows:
k = m(g(c,a), d(g(b,a))) (11)

Note that in each case, one input to the gate tube is a level and the other
is a pulse, as required. The input to the delsy line is the (pulse) output
of a gate tube. We must verify that the two (pulse) inputs to the mixer
are never both 1, The inputs are:

| t = " o -1 2 3
glc,A) = ckA = 0 &®ps O
d(g(b ,4)) =a(Akb) = &B 0 0

Now except at t = 1, there is apparently always one zero in the two rows,
within the range (0 € t £2) of our interest. At t = 1, this seems not
to be the case, but a closer examination shows that & @ B) & yand oc & B
cannot both be 1 (sinceoc& B = 1 only when o= B = 1; but with X = g = 1,
o® B = O and therefore (& 6 B) & &= 0)., ,

The net of Fig, 8 combines the nets for sum and carry.
4o Conclusion

The binary network algebra bears the same relation to logical
nets generally that Boolean algebra has to instantaneous nets. In the
synthesis of instantaneous nets by Boolean algebra, cost is minimized by
minimizing the number of occurrences of Boolean operators in the corres-
ponding equations. In the synthesis of temporal nets by the binary network
algebra, occurrences of "A" must be minimized as well,

The derivation of equation (5) from equation (1) in section 3
above is typical of one of the most important cases of minimization.
Consider the series of equations :

A =3 *AA ' ~ (12.1)
A =20 + A% + 2% , (12.2)
A =pa ¢+ Aza *'ABa' *'ABA (12.3)
A=pat ... *Ana';AnAww T . o (123)

where each equation is gotten from its predecessor by substituting

"aa *AA" for A", as permitted by equation (12.1). et us call the
highest exponent of A which occurs in an equation the "degree" of that
equation, The successive equations (12) have degrees 1,2,3,...,t and in
the sequence each equation implies all equations of higher degree, The
converse is not truej for example, .

A=Z30AK (13)



Memorandum 6M=-3083 Page 11

implies (12.2) but is not equivalent to (12,1)., Now by lowering the
degree of an equation we simplify the corresponding net, and in a synthesis
problem we may replace an equation by any other equation which implies it.,

This last statement requires some explanation. A network
equation E determines the output of the corresponding net as one of a
certain set 5 of messages. If e implies E, e determines the output as .
one of a set s of messages, where s is included in S, It may be that e
also implies E, where e! determines the output as a set s! different
from s but also included in S, This is the case when, for example, both
(12.1) and (13) imply (12.2). If a(0) = a(1) = A(1) =0, (12,1) determines
A(2) as 1 while (13) determines A(2) as O. But (12.2) is neutral on the
subject: it determines A(2) as equal to A(O), which may be O or 1 depending
on the value of A at t = 0. Thus, (12.2) is weaker or vaguer than either
(12.1) or (13). Confining our attention to t = 0, 1,2 we find that (12,2)
is satisfied by messages 000 and 101 equally. Replacing (12.2) by (12,1)
selects 000 as the actual messagej replacing it by (13) selects 101 as
the actual message. But if (12.25 is the sole problem-statement for the
sub=net under consideration we have been given freedom to choose either
000 or 101 as the actual message.

Further development of the logical network algebra should
provide stronger techniques for lowering the degree of equations such as
(12,2) and (12.3). In addition it is desirable to kunow when we have
reached an irreducible equation, that is, an equation whose degree cannot
be lowered. (12.1) and (13) are examples of irreducible equations: the
occurrences of 24\ in them cannot be eliminated (this would give an instan=-
taneous net), In addition there are equations such as A = a + A2A of
degree higher than 1 which are irreducible. A technique for recognizing
irreducibility would save effort wasted on attempts to lower the degree
of such equations by trial and error.
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y
= x@Py
| z =gl(x,Y)
GATE TUBE " z
| | Y . = x&Y
| y = d(x)
DELAY LINE x-aD—»:y
' , = Ax
| ' Y = F(x,Y)
FLIP - FLOP x Y
- ‘ = A(xPY)

FIG.5

PHYSICAL OPERATORS
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A=[a?Pa]

?_i.
k=[oxo] <€ fe— c=[oyo] .
. STAGE

1
b=[Boo ]

SUM: o = a@BDy
CARRY: k= [y& (a®B) ] v(a&B)

FIG. 6

PROBLEM STATEMENT
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A= A(A@bLb®c)

m(b,c)j
v
F- (A, mibe))

Cc

|

FIG. 7

FINDING A NET FOR THE SUM
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FIG.8

SINGLE STAGE OF
ADDER — ACCUMULATOR



