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Abstract 1 Boolean algebra is extended by adding to the ·Boolean or It instan­
taneous" transformations (not, and" or, ~~) a delay trans­
formation symbolized by ,,~o" The behaTior of digital devices 
which contain feedback or delay (e.g." flip-flops) 18 described 
in the extended symbolismo Logical networks containing. teeclbaolc 
and delay are correlated with sets ot equations. An operator' 
notation is introduced and used to simplify network'equatioDf. 
,The technique is illustrated in the design ot an accumulative 
binary adder which makes essential use of feedback and delay. 

Introduction 
1 

,We shall assume that the reader is famili~r with the elements 1 
of Boolean algebra and with its application to the design otlogical nets, 
and shall go on to describe a simple extension of that algebra which 
considerably widens its range ot application •. To clarif.y what we are 
doing we shall first survey the kinds of logi~al nets to see which of them 
are describaQLe by Boolean algebra and which are not. 

It will be simpiest if at firs,t we confine ourselves to clocked 
nets, that is, to ~ets in'whieh time may be regarded as a sequence of 
distinct "moments", t :: 00 OJ -1, 0, 1, 2, 001) 0 The history of any junction 
(input, output or intermediate point) fn such a net for the period O'S. t 1:n 
would be written by stating the value J 0 or 1, of the signal at that 
junction att :: 0, 1, 2, oOOJ no We shall call such histories "messages" 
and write them as strings of zeroes and ones between brackets. For. 
example, (01101) will be the message: 

1. For introduction to Boolean algebra, see Serrell, "Elements of Boolean 
Algebra .. 00" J Proceedings of the I.R.E., Vol. 41, No. 10, pp. ··1366-1380. 
The term "logical netil is borrowed from Burks and Wright, -"Theory ot 
Logical Nets", Proceedings £! the I.R.E., Vol. 41, No. 10, 'pp. 1357-1365. 
The term applies to digital computers, to sections of digital computers, 
to relay nets, etc. Block diagrams (such ·as the ones in Fig. ·2) and 
sets of equations are both repres~ntations of logical nets. 

This document is issued for internal distriblltion and use only 1ry and for Lin­
coln Laboratory persODnel, It should not be given or shown to any other in­
dividuals 01' groups without expreas authorization. It may not be reproduced 
in whole 01' in part without permission in writing from Lincoln Laboratory. 

The research rflported in thb document was supported 
jointly 1ry the Department of the Army. the Depart­
mentof the Navy. and the Department of the Ail' Force 
under Air Force Contract No, AI' 19(12Z)-458, 
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We shall use greek letters as variables for 0 and 1; latin 
letters will be variables for messages o Boolean functions will be repre­
sented by _(lInot-), &(Wand-), v("and/or") and t(exclusive lIorll) 0 In Fig. 1 
these functions are defined for 0 and 1 as argumentso ThusJ 0 is defined 
to be 1 and 0&1 is defined to be OJ but expressions like D-\OllO)1I and 
II (01l0)&(1lOO) " are left undefined. We shall now remedy this situation. 

Definition 1. -x or X is the result of applying - to each 
component of' x. : i&i is the result of applying & to the first component of 
x and the first component of y, then to the second components, and so ono 
$im11arly for v and tB 0 

Then -(OllO) III (0 I I '0) III (1001), 

(0110)&(1100) III (0&1 ]&1 ]&0 0&0) III (0100)" 

(OllO) .,(1100) III (Ovl 1 vl 1'YO 0v0) III (1110), 

and so on. 

The Boolean transformations oper.ate only on contemporar,r digits 
of messageso For example, v operates on the t III 0 digits of x and y to 
produce the t • 0 digit of xv.rJ the t III 1 digit of xvy comes from the t III 1 
digit of'- x and the t III l-c;iigitof Y:I and so on" There is no transformation 
made up solely of Boolean fUnctions whichoperates,-say, on the t = i digit 
of one message and the t - i+l digit of another to produce the t III i+2 
digit of the result. Let us . call a transformation (logically) "instan­
taneousD if the ith digit of the output message is al~s a function of 
the ~th_digit(s) of the input message(s) 0 A temporal transformation will 
be defined as one in which the i th digit of the output-message depends on 
an earlier digit of at least one of the input messages o It is the temporal 
transformationf! which. involve ,"Jrlem0rt':or -'.'st~ragen 0 

Apparently the ]bolean transformations 'are all instantaneous. 
This means that the applicability of Boolean algebra to the design o£ 
logical. nets is restricted to instantaneous nets, that is, to nets which 
effect instantaneous transformations o (A net td.ll be called Dinstan­
taneous" in-the logical sense when its actual delay is small compared to 
the period of the clock" iee o ', the interval between t = i and t = i+lo) 

In order to extend the applicability of Booleap algebra to 
temporal nets, we shall add to it a delay transformation, A. Ax is the 
result of delaying each digit of x by one clock-period. For example: 

t 000 -1 0 1 2 3 000 

x 00,0 1 0 1 1 oeo 000 

.4X o e-o .. 0·0 1 0 1 1 00. 
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The rule is g to obtain .6 x, sh,itt x one plhe to the right • 

. ,A basic classification of logical nets is' illustrated in Pil~ 2·. 
, Note that there are no instantaneous, teedbaok nets. The reason f'orthi. 

restriction can be seenby' considering the ettect ot shortiftlout the 
delq . element' in the teedbaok net at the lower right ot Fig. 2. 
Suppose that the input is 1. What is the output? It the outpUt 1s 0 
then 80 1s the f.edback inputJ but 1 • 0 • 1, whuh contradicts the &8-

8UJlption that the output il O. Then j,he, output must be 1. ·But then the 
feedbaok input is 1, and 1 .1-.0, whiehcontradiots the assamptioD tha~ 
the output is 1. Thus 1t instantareous f •• dbaok nets are admitted without. 
restriotion, . eontradietiona arise .. · .. .. 

Both praoticallY' and theoretiGally, teedback nets are ot great 
:Lm.portanceJs1nce all leedback neta are temporal, they cannot be d.escribed 
by ordinary Boolean algebra. The rest of this paper will be devoted to 
methods tor w.r.nthesiz1ng f.edback nets, using the algebra described be-
low. ~ . 

2. Binary Network Alsebra 

Let us adopt the convention that it x is a message and 1 is an 
integer then xCi) is the t == i digit ot x. For example, if x is the 
message defined in the table above, x(O)rO ancl 6.x(O) == 1. Now we can 
define 6as follows. 

Definition 20 ·(6x) (t) :: x(t - 1) .. 

Striotly speaking, detint tion 2 implies that we are thinking 
of the messages as exterrling indefinitely to the lett ani right. If 
this were not true and x were defined,,' say, only for non-negative values 
oft, then definition 2, with t ::: 0, W'O~d ray ft( 6X)(O) = x(-l) .. · .. 
This would leave 6X undefined for t == 0, LX x would be 'UJ1detinedfor 
both t = O.and t :: 1" and so on. In practice we shall solve this problem. 
by speCifying a few values' of x to tWa lett ot t = 0 when we eXpeot to be 

~. ~ 

dealing with llx, ti x" etc. -
The set ot all binary messages is a Boolean algebra when x, 

x8q,~. ·are understood as in definition 1 above 0 The result of adding 
the operator 6 to the system will be ·called "binary network algebra". 
In the binary network algebra, b. maz be used .. w1 th the Boolean operations 
to produce such messages as (~x +y) & Xo further, 6 waf be applied· 
repeatedly to produce !::lax ('!= 6 C 4x) ), 4 J x (- 6 (~x) ),etc. Trans­
formations compounded out of 6. and the Boolean transformations 1n anT 
way will be called "network transformations" since they comprise exaotl7 
the transformations -which can be implemented by logical nets 0 

~ never transforms different messages into the same messagei 

2 Instantaneous feedback nets are discussed in greater detail in Burks 
"Wright, op, cito 
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if x tf y then ~x r 6 Yo In other word$-, 6 is a one-to-one transforma­
tion o This penni ts us to canoel 01 fj." fran both sides of "L.\x :: 6. Y" to 
get a statement, tex = y", which is true if and only if the original .. 
statement is true 0 But .,the situation is different for network transforma­
tions generally. Transformations compounded out of 6. and Boolean trans­
formations are not, in general one-to-one, and although we can always'de­
duce nf(x} :: f{y)tt! from tlx = y"" we oannot go in' the other directiono 
For example, let f(x) :: ,,6x +x, x :: 000000001)0. (x(t) :: 0 for all t) 
and y =" 0 011111000 (y( t) :: 1 for all t) 0 x and y as defined above are 
not changed by being 6hiftedgLx == x and Day == Yo Then f(x) ::r:; . .6 x • x 
:=: x e' x ::: 00000000000 and fey) :: D y .. y == y • Y =. 0000000000. 0> _Here 
f(x) ::: fey) but x r/: yo .summarys if f is any network transformation,,. 
"x ::: yft implies "r(x) :::. f(y lit lJ but the converse is not generally true 0 

Network transformations are not in general one .... to-one o 

It should be noted that ~ is an isomorphism' of the binary net­
work algebra with itself () This means that if fex,y, .·oo,z} is an expres­
sion built UP' by applying network operators to "x", "y", ••• , "z"t' then 
r( f::::.. x,9 ~y, 00.8 .6Z~ ::: Df'(X"y, ooo,z)~ Dean be .. tI.ractore~ outttoo For . 
example.9 6{ l\XV' L~\ Y} &: L'fz::: 6 (L\(xv 6y) & 6. z) =~ ((xv6y) &,z)o 

A very important device for' .the application of the binary net­
work algebra is the o~erator notation. For example, we shall write 
t&({\ 2 t6)xR for t8 L~ x • 6x,·t. In general" whenever a compount expression 
is built up .. by applying 6 am.Boolean funotions to a single variable, the 
expression may be re-written in the form. ff( __ "')Xtt , where ...... - is an opera ... 
tor$ . This sometimes requires the use of the two new operators defined 
~l~~ . 

Definition 10 The identity operator" I: Ix == Xo 

'-Definition ko The complementation operator) N: Nx:: Xo 

a For examplea ~(6 ~ I)x= (~2 .~)x= "62x.-6xJ 
« 6. .. N)& Il x : (6.N)x.& x 1: (.6 x_. x) & Xo , 

,.. .. 
It will sometimes be convenient to have names for special. mes­

sagesI') In pa.rtieular~ the constants e == 00$000 0 00 and 1= o.~lllo.o 
will be useful ~ .- """ 

Definition ~o .Q is the message of which every component is 08 
for all t,9 . .Q(t) 1: 00- . 

De fin! tion 6. 1 is the message of which every component is 18 
for all t, 1. (t) :=: 1;' 

The "vectors" 'UQ98 and itltl!1 combine with latin letters in the slijlle 
way that the "scalars" ~'~O'i. and "liT.combine with greek letters o Note that 
"x(t)", "( 6 X)(O)"9 etc o , count as scalars o 

Scalars 

0&0:==0 

Ovct=a 

oect=a 
~O=l 

1 & a;, == « 
etc 

Vectors 

Q&x=Q 
Qvx=x 

Q,tx=x 

:2=1 
!&x=x 

etc" 
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As will be seen in the next section9 the operator notation is 
useful in suggesting simplifications of temporal' transf'ormations~ In 
particular, the following theorem will be useful. 

Theorem,!e 6 2 ', I .. (A • I)2o 

Proof - fA2 , 'I)x =~ 2xt x. ~'I)2x = 

Cb • I) ~ • I) x 118 ~ • I) fh. x • x) 118 

6(Ax , x) ... I0.x , x) :ill: ~2x ~ LXx: • e.x • x • 
2 '2 ' 

6 x • Q • x = ~ x • xo 

The following generalization of theorem 1 can be proved b,y 
induction 0 

Theorem £0 If n is a power of 2, jln + .I :ill: ~ + I)n 0 

Note that the operation of "application", symbolized b,y 
juxtaposition of operators, obeys the associative and distributive laws, 
but not the commutative lawo If 0i is an operator, "0102X" is to be 
interpretedg , 01(02X)" ",010203XI1 is 01(02 (03X ) )" etc o :&:t group~ng does 
not matter~ 0lt0203) = (0102)Ol II ~0203 0 Further, app1J.cation J.S 
distributive on the right'and left over &~ vI,' (8 and any o,ther Boolean 
function of two variables. For example~ 01\O~03):II 010~0103 and 
(Ol&02)03 :ill: °1°3&02030 But application is not commutative~ 0102 need 
not be the same as 02010 For example, let 01' 118 N, 02 • Iv~ and x = 
'000001001001. 0• 0 Then 0102X • 000010010010 00 • while 0201x • 
00.111111111000 0 

30 Synthesis 2! .! ~eedbac~ Net 

Of all the temporal networks, feedback nets are the least 
accessable to ordinary Boolean techniques. As an example of the appli­
cation of 'the binary network algebra to such nets we shall now synthesize 
a binar,y adder which makes use of feedback to minimize equipmento It 
will be seen that the operator notation is particularly helpful in 
suggesting simplifications. 

Fig. 3 is a first statement of the problem e The equations 
shown there for K. and cr m1glit be' realized directly by an instantaneous 
net such as the one shown in Figo 40 It should be noted that we have no 
guarantee that pnysical devices corresponding to all the blocks in Fig. 4 
are availableo For example, it may be necessary to syp.thesize the' . 
blocks out of -, & and v according to the ident1ty,0(.' ~ :1 ~J3)vf:(&jJ) 0 

The statement of a synthesis problem must include a list of available 
-black boxes" or physical operators~ 

For purposes of this example we shall confine ourselves to the 
physical operators shown in Fig. 5~ These constitute a set adequate for 
constructing a. large class ot logical nets (most of the Whirlwind computer 
at MoloTo uses just these packages). In Figo 5, capital letters and solid 
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arrowheads represent "Qc levels," while small leters and open arrowheads 
represent O&~sec& pulses. Thus Fig.'S states some physical restriction 
on nets compounded out of these physical operatorso For example, it rules 
out nets in which the (de) output of a flip-flop is connected to the 
(pulse) input of a delay line. In the case of the gate tube where the 
inputs'are electronically different from each other the de input is 
distinguished b,y a blacked-in corner. The puzzling statement "xv,y ~n 
in connection with the pulse mixer is a cons~quenee of the requirement that 
both inputs may not be pulsed at the same time (to avoid jitter). In the 
case of pulses, we- interpret ttl" as the presence of a pulse and ~~ as the 
absence of a pulse,ct Then the requirement that the two inputs may not be 
puls~d simultaneous~ is equivalent to eliminating the case in which both 
inputs are '10 But as Fig. 1, shows, 0(. = i3 = I is the only case in which 
,0<.' ~ differs from~vl3o Therefore, in networks which obey our restriction, 
the action of the pulse mixer is equally well described by • or v. Once 
again, the restriction forbids us to construct networks in which both 
inputs to t~ pulse mixer are 1 at the same time. 

Note that two sorts of equations are given for each physical 
operator, one of them in the notation of the binar,y network algebra and 
~he other in functional notation e.g., z • g(x,Y) III X&Y for the gate­
tube. . The functional symbols refer specifically to the physical opera tors 
in Fig. 50 Thus, IIg(X,Y)tI refers specifically tq a pulse, the output of 
a gat.e tube one of whose inputs is a pulse and the other a de ~evel. 
tlg{x$Y) II is not a meaningful expression, since the "g" requires a capital 
letter (de level) as its second argument,; but "x&yft is an expression ot 
the binary network algebra and is not tied down to any speciri~ physical 
Qperatoro x&y cannot be formed by a gate tube, but nevertheless it~is a 
permissable expression. 

The flip-flop equation may be new to the reader. The physieal 
operator involved is the E,ccles-Jordan multivibrator with the two inputs 
tied together so that a pulse at the input, after a delay, complements 
the output o In fact" another output is available from the plate of the 
other tube, but this is not needed for our present purposes. In eases 
where it is used~ it would be given a separate designation~ say liZ", and 
would have the equation': 

Z :I Ft(x,Y) :I _Y 
The correctness of the flip=flop equation can be seen by considering two 
ease~8 (1) If x is not pulsed at time t, x(t) = 0 and ny ~ A(xlY'":.:or 
"Y(t+l) := x(t) ., Y(t)tt becomes "Y(t+l) ::: 0 8 Y(t) :I YCt)"J if x is pulsed 
at time t, the equation becomes "Y(t"'l) == latY(t) := yCt)tI. Thus, if x is 
not pulsed, Y remains unchanged, and if x is pu1sed, Y is complementede 

We can now state the synthesis problem more fully: using the 
pbysical operators of Fig. 51 we wish to design a logical net· which 
satisfies the equations ot Fig. 3. Note that the equations ~ Fig. 3 do 
not specify the relative times of occurrence alec., 13, 2130- and Ko' These 
may be 10gicall3r Simultaneous, as in the instantaneous adder (Fig. 4) or, 
as in2 the adder which will now be synthesized, ~and K.. may occur some 
number of clock periods atter 0(, f3 ~ or 00 
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Now we shall investigate case illustrated below 

--<, A3 ;r, k-
---t-6 -~it--, ---tt-~ - t 

where ~/and ~ appear at t • 0, the carry input (oj and carr.y output (~) 
occur at t == 1, and:-.... " the swn"",digi t, does not appear until t = 2. Many 
other arrangements are' possible; e.g&, we might investigate the case where 
~ 13, 0 and !<vall appear at t = 0 and n- occurs at t = 1. The reader should 
imagine that the synthesis we are about to undertake, using the timing 
illustrated above, is part of a survey of solutions to the problem under 
various assumptions as to the relative timing of signals s We shall not 
attempt to justif,y here the selection of the specific timing chosen; for 
present purposes, it is part of the data of the problem. 

Now our adder, in context, is part of a digital computer and 
must satisfy some electronic requirements on the inputs and outputs o 

Suppose the adder ~ s environment requires: 13, rr and K are to be 0 .llJ.sec. 
pulses and "--'" and :.,)- are to be d ,n '. levels; further, 0(.; and 0"'- are to time­
share a single output terminal$ These requirements are summed up in 
Fig o 6, where pulse terminals have open arrowheads and lower case roman 
letters as labels, and solid arrowheads and roman capitals indicate dc 
levels 0 Note that we' require that terminals c, b and k be quiescent 
(no pulse = 0) except when (~ ~ and It occur. 

So far we have-been stating the problem. We have now reached 
the point where the bina~ message algebra can be applied to the solution 
of the problem, and it will be found that, as usual, the problem statement 
has been more time consuming than its solution, , 

First, to find the transformation for the sum we must determine 
A as a binary message-function of A, band c such that 0- = -.{ (9 ~ 8 a is 
satisfied 0 Such a transformation can easily be found by translating 
(delaying) A;} band c so as to align 0(, {3 and X" with c;--', as follows G 

t ::::i: ! 0 1 2 3' 4 I 

A?' r=~ m===;r' 
=;= =-;;:,::: =-g= -::' 

()'-' 

.2A g:g Q.( ? /.\ I 0 ...... 

~2b 
I 

:: 
f 

~ 0 ° 
AC == I 0 (] 0 

Now, as the t = 2 column above testifies, the relation 

A =~2 A (fj L).2b tB .Ac 

implies rr-- = oC 6) {3 ~ ~r; so that (1) is suitable as a transformation for the 
SUITloBut perhaps this transformation can be simplified~Let us try e 
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The condition can be written 

a- == 'JI~ e ~ ., 6 e any number of zeroes, 

since i11 general, \ .. ' • 0 == ':..,r. Then it cannot hurt if we add tlb and A 2c 
to the right-hand side of (1), since both of these are 0 at t == 2. 

t • 

II 

0 1 2 3 

Llb == ~ 0 0 

6
2c == 0 -, . 

"-

4 

o 

We now have: 

which may be rearranged using the laws "xfy == ytx" and tlx == ~x implies 
x$y == zft to read: 

(2) 

Now (2) is somewhat more regular-looking than (1) and may for that reason 
reduc~ to something simpler. This was ~he motivation for adding in ~b 
and D. c~ Using the operator notation, (2) may be rewritten: 

\~2 • I)A= D«D. t I)b e (6 e I)c) 

·!~(6 <e I) (b (8 c) 

or, since 6 2 • I == (~e I)2, 

0. e I)2A == I\(~ @) I) (b (8 c) 

So far, (3) s~s the same thing as (2), but with this difference: it 
suggests simplification by "cancellinglt ~ (I I from both sides to yield 

'(6 (I I)A == 6.(b <e c) (4) 

or 

or A ;: A(A 8 b 8 c) (5) 

which is much simpler than the transformation (1) with which we started& 

But i.s the process which led from (1) to (5) legitimate? More 
specifically is the cancellation O.r "_.\ ffl pI from both sides of (3) allow-
able' Since /\tt1 is not a one-toa.oone transformatio~ (See Section 2) we 
may may deduce. (,. $I) x :: ( -+ I)y from x =: y but not vice=versa 0 Ap­
parently the cancellation of . ,.II which led from (.3). to (5) says not 
that (.3) implies (5), but rather that (S) implies (.3 )... But this is just 
wha.t we want 0 If (5) implies (.3), then any net whioh implements (5) 
must also implement (3). 
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More exactg we already know that (J) together with the 
boundary conditions Aco5 .. Gt,b(O) = (3, etc. is satisfied only by sets of 
messages Ai' bi' 0i whioh have the property Ai (2) • a- • ol, !3 • 0. Since 
(5) implies (3), then all the sets of messages which satisfy (5) must 
satisfy (3) as well, and therefore have the property that Ai(2) • (So Nov 
the boundary conditions are: 

t o 1 2 

A ,~ 

b o o 

c o o 

where A(l) and A(2) are left open and all values of A, b and 0 are left 
open for t < 0 and t > 2. (5) can be stated: 

Then 

Aft+l) - ACt) , b(t) , c(t) 

A(l) = A(O) • b(O) , c(O) 

=~~'!3'0·«"!3 

A(2) ~ A(l) , bel) • c(l) 

·0(·1 ~ (8 01.1"- cG'!3 10 

(6) 

( 8) 

Then any net which effects transformation (5) will give the 
proper transformation for the sum. The process of' finding such a net, " 
using only the operators of Fig'. 5 is'shown in Fig. 7 .We may represent 
b • c by meb,c) because' b C- o •• pOO ••• ) and c (= ••• O~O ••• ) are never 
both 1 at the same time. The' pulse output bf tne'miXer is then-applied 
to the input of the flip-flop~ 

Now we shall repeat this synthesis process on a compressed 
scale to finq a net which generates the car~. 

k: = (0 & f<. e {3» v k& 13) (9) 

The inputs and outputs are shown below: 

A = (c<. C'X, {3 c;) 

b = Cp 0 0) 

o = (0 (( 0) 

k :; (0 Ie, 0) 

To force k to be 1t(as defiIied in (9) above)at t = 1 we can use the trans­
forma tion &' 

k = (c&A)v~(A&b) (10) 
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This transformation can be ,implemented as follows: 

(11) 

Note that in each case, one input to the gate tube is a level and the other 
is a pulse, as required. The input to the delay line, is the (pulse) output 
ot a gate tube. We must verity that the two (pulse) inputs to the mixer 
are never both 1. The inputs are: 

t -
gCc,A)· o&A. 

d(g(b.,lJ) • A(.A&b) , 

o 

o 

. 1 2 

o 

o 

3 

o 

Now except at t • 1, there is apparent~ always one zero in the tvo rows, 
within the range Co ~ t ,,2) of our interest. A~ t • 1, this seems not 
to be the case, but a closer examination shows that ~ I 13) & 0 and 0(. & p 
oannot both be 1 C since ~& ~ • 1 only when c<.... p • 1) but wi th ~ • p • 1, 
c(1 P • 0 and there tore Co( e (3) & (1"- 0). 

The net of Figa 8 combines the nets for sum and carry. 

40 Conclusion 

The binar,y network algebra bears the same relation to logioal 
nets generally that Boolean algebra has to instantaneous nets o In the 
synthesis ot instantaneous nets by Boolean algebra, cost is minimized by 
minimizing the number ot occurrences of Boolean operators in the corres­
ponding equations. In the synthesis ot temporal nets' by the binary network 
algebra, occurrences ot ''A" mst be minimized as well. 

The derivation ot equation (5) trom equation (1) in section 3 
above is typical or one of the most important cases of minimizatione 

-Consider the series ot equations 

A =.Aa +AA 

A = Aa + .6.2a + -A2A 

A = .6a + /J;.2a +-~a' .-63A 

(l2 0 1) 

(12.2) 

(12 0 3) 

where each equation is gotten from its predecessor by substituting 
t!6& +~n for "All, as permitted by equation (12.1) e Let us call the 
highest exponent of 6. which occurs in an equation the "degree" of that 
equation 0 The successive equations (12) have degrees 1,2,3, ••• ,t and in 
the sequence each equation implies all equatioQs of higher degree o The 
converse is not true; for example, 

A=6alAA 



Memorandum 6M-30B3 Page 11 

implies (12.2} but is not equivalent to (12.1). Now by lowering the 
degree of an equation we simplify the corresponding net, and in a synthesis 
problem we may replace an equation by any other equation which implies it~ 

This last statement requires some explanation. A network 
equation E determines the output of the corresponding net as one of a 
certain set S of messages o If e implies E, e determines the output as 
one of a set s of messages, where s is included in S. It may be that e f 

also implies E, where e' determines the output as a set s' different 
from s but also included in S. ·This is the case when, for example, both 
(12 0 1) and (13) imply (12&2). If a(O) = a(l) = A(l) = 0, (12.1) determines 
A(2) as 1 while (13) determines A(2) as O. But (12.2) is neutral on the 
subjectg it determines A(2) as equal to A(O), which may be 0 or 1 depending 
on the value of A at t = 0 0 Thus, (12.2) is weaker or vaguer than either 
(12.1) or (13)& Confining our attention to t = 0, 1,2 we find that (12.2) 
is satisfied by messages 000 and 101 equally. Replacing (12.2) by (12.1) 
selects 000 as the actual message~ replacing it by (13) selects 101 as 
the actual message e But if (12.2) is the sole prOblem-statement for the 
sub-net under consi.deration we have been given freedom to choose either 
000 or 101 as the actual message. 

Further development of the logical network algebra should 
provide stronger techniques for lowering the degree ot equations such as 
(12 0 2) and (12.3)", In addition it is desirable to know when we have 
reached an irreducible equation, that is, an equation whose degree cannot 
be lowered o (12.1) and (13) are examples of irreducible equations: the 
occurrences of /..\ in them cannot be eliminated (this would give an instan­
taneous net). In addition there are equations such as A = a + 6 2A of 
degree higher than 1 which are irreducible. A technique for recognizing 
irreducibility would save effort wasted on attempts to lower the degree 
of such equations by trial and error. 
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