APPROVED FOR PUBLIC RELEASE. CASE $06-11044^{\prime}$.

$\begin{aligned} & 634.5 \\ & \ln _{0} 1.200 .2 n_{3} \end{aligned}$	3 Note E-423	Poge 2 of 15
	```R20, oct this ruving Gorvonechan!ems Latorefory Measechuset%e Iastifuto of Techrology Cambilge, Masumbkagevt6```	
SupJECT:	SYEBCTION SYSTYMS FOR M	
$90:$	William Yo Papian	
Fron:	Eobert R. Piveretit	
Date:	Avgust 7, 1.951	
Abstract:	Several core-selecting systers can be devis gelection ration than the atendard j-dimena zelection railice result in reducad etoraca the cost of considerably increased complexi circuite.	of ofer botter arrey, Inproves time bit ez the driver

## INTRODUCTION

A atorage gystem using a 3 -dinensional array of magnetic cores has been under study in the laboratory for some time 1,2 It 1.8 nssumed that the sader is familiar with the sybtern as described in the above raferences.

Very promising progees hea been made, especinily recently. It is efill esgentially true that nether the steel nor the coremic cores zov avallable present a satisfactory solution to the storage problem:
a. The steel cores heve the proper roctangularity but switch too slowiy.
b. The coremic cores swith replaly trit exe not sufficiently rectangular.

Boin situations can be improved if the ratio of selecting to дon-selecting $\mathrm{H}^{\circ} \mathrm{a}$ can be increased.

1. Re.187, "Disitai Informstion Storsge in Thres Dimensions Using Mognotic Gores" by J. W. Forrester.
2. R-192, "A Colncident Current Magnetic Memory Unit" by W. No Papian

## APPRQ4ED FOR PUBLIC RELEASE. CASE 06-1104.

Engineering Note Rolll3
a. For the steel cores the non-seliztirg $H$ car rentin as is and the felecising $H$ increased t: decrease the switching time.
b. For the cerami cores the awitining H can remada as is and the ronmbelecting $H$ reducet. to improve signiln-noiso ratio, otc.

The switching system described by JWF is simple, elegant and "best possible" z-dimeneional in a sense to de defined later, Honetheless it aopears worthwila to consider switching aystems that reesit in improzel selcceing ratios even though they may result in more selecting equiprant.

A EaDinengionai Systom with a 3:2 Selceting Retio
A 2-dimensicial system can se arranged to êtvo a $3: 1$ selecting ratic. The currents to be applied in the two coordipates are as follows when $H$ is the drive required to gwith in



Comparing this systom with the present on described in R-187:

X $\mathbf{Y} \quad \mathrm{H}_{X} \quad \mathrm{H}_{Y} \quad \mathrm{H}$

## APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6325
Engivernang Nose E-413
Page 3

## 32 3noxatunal 2:\%

The wirtue of the last megioned ayater mperis what wotics coorifineto is adled.


x	$Y$			${ }^{4}$	$\mathrm{Cl}_{2}$	
0	0	0	0	0	-	E
0	0	1	0	0	0	
0	1	0	0	${ }^{4}$	\%	
2	0	0	$+\frac{1}{2}$	$\bigcirc$	$\frac{1}{5}$	
0	1	1.	0	+ $\frac{1}{2}$	0	$\frac{1}{2}$
1	0	1	$4 \frac{1}{3}$	0	0	5
1	1	0	+ $\frac{1}{2}$	+	- 1	+
1	1	1	+ $\frac{1}{2}$	+ $\frac{1}{2}$	0	1


 by a negative H.

There 16 no Gquivalent iuhibition schene for the 3 il systers. This lack is a serious resificifion aince the minimam usable sultcilng nysigiz for a parallel computer is 3-dimensional. The absolute minimm is 2 dinensfonsl, one dinenston along the digits in a register, this other alorg the regisbers. for large numbers of registeris the register solections whech ie onedimensional, becozee pzohibitive. Note that digit columa
 colum. The present 3 -dimensionel system is satisfactory from this point of view since it allove selecting nay combination of cores along the 2 exis and not just one.

A 3-dimensionat sybter allows 2 -dimensional selection of the register number thus reducing the number of drivers to a reasonable sevel for moderate storage capacities. Por very large storage capacities it may be dosirable to go to 4 - or moredimensional 昭stene. This poseibilitar lies well in the ruture.

## APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Figineering Note E 山i3 $\quad$ Pego in

## N-Dhmeneional Switching

We will consider the problem of gelacting a aingle olement fros an nodimensional array of such elemants. The selection will be mado in et following manner:

1. The selection will be rade by n independent linear selectione, one in each coordinate.
2. Each linear selection will be of an n-l cifmeneiondi-a:ras.
3. Each element will be at the intersection of $n$ selecting lesdis one for each coordinate.
4. The particular gelecting arrangenent that regults in maziads ing the ratio of selecting to non-selecting switcining signals will be cefined as a "beat-poseible" nodinenelonel switching system.
(These restrictions hold for what mey be terned "nor-medund ant" seloction aystems. Some aystems with "redundart" selection are deseribed in the next section.)

Let the selecting amplitude ( $\mathrm{H}_{\mathrm{M}}$ in Fapian's Eerminology) be taken here as wiliy drive, and let of the iargest non-selecting amplisud at any core. Now consider a selected core, and then unselect it in ore coozdinate only; according to restriction (1), above, the other coordinates remain unaffected. Since unselecting insi remove a part of the selecting amplitude at least equal to $1-\mathrm{d}$, unselecting ia $n$ coordinates will rerove at least $n(l-p)$. As stated, the remaining amplituce of $1-n(1-p)$ wust not exceed $p$ in amplitude; It must not therefore be less than $o p$ eince negatim: diaturbance is as bed as positive disturbance. Then:

$$
\begin{aligned}
& 1-n(1-0) \geqq-p \\
& 1-n+(n+1) p \geqq 0 \\
&(n+1) p \geqq n-1 \\
& p \geqq \frac{n-1}{n+1} \\
& p_{M i n}=\frac{n-1}{n+1} \\
&\left(\frac{1}{2}\right)_{M a x}=\frac{n+1}{n-1}=R_{M a \pi}=\text { Marimm Selecting Ratio } \\
& \text { A tabulation of R Max }
\end{aligned}
$$

## APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

5345
Rngineoring Note Ralis

n	$B_{M a x}=\frac{n+j}{n i j}$	$p_{M 1 n}=\frac{n-1}{n+1}$
	3	$1 / 3$
2	2	$1 / 2$
3	$5 / 3$	$3 / 5$
4	$3 / 2$	$2 / 3$
5	$7 / 5$	$5 / 7$
6		

The present systam has a $p$ or $1 / 2$ anc is "best-possibie" 3-dimensional but not "best-possible" 2odimensionel. The 3:1 system described above is "best-possible" 2-dinensional.

A 4-dimensional aystem accorilng to the above critexion woulu be, for exanple:

## Coordinates

	$x_{1}$	$x_{2}$	$x_{3}$	$x_{4}$
H	$=+.4$	+.2	$\pm .2$	$\pm .2$
or $H$	+.4	+.4	-4	$\pm .2$

These two systems are equivalent; of the two, the latter is preferable since the driving equioment is simolified.

In general for an nodimensionel system the coordinate values are:

$$
\begin{aligned}
& x_{1} \quad x_{2} \quad x_{3} \ldots \ldots \ldots \ldots \ldots x_{n} \\
& H=\quad+\frac{2}{n+1} \pm \frac{1}{n+1} \quad \pm \frac{1}{n^{+1}} \ldots \ldots \ldots \ldots \ldots .+\frac{1}{2+1} \\
& \text { or } \left.H=+\frac{2}{n+1}+\frac{2}{n+1}-\frac{2}{n+1} \ldots \ldots \ldots \ldots \ldots \ldots-\frac{2}{2+1} \text { ( } n \text { odd }\right) \\
& \div \frac{1}{i 2+1}(n \text { even })
\end{aligned}
$$

## Redundant Selection - 2-dimensional

If the restrictions mentioned at the head of the previous section are disregarded, it is possible to devise selection systoms that will five selection ratios higher than 3il. If a ratio of $M$ is desired, a system is needed in which the selected element lies at the intersection of M lines or planes or other configurations which must not otherwise intergect. Since the intersection of just two of these define the element, the

## APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Engineezing late y.ind. 3
$50 \mathrm{c} \cdot \mathrm{c}$
the other Naz 2 igures are redunient. Moreover, if is in general nong. ic tc apply plus or mirus voltages to the fisores and thas obtali bette: than an to 1 belection rasio.
 18 selected at the 3ntersection of one horleontel mad one verijcais no -othemise-intersecting lines. A thind दroun of notionthersiseoinierso: 1ne lines are the diagonals.


4	V	Diagones
03	00	00
00	01	32
00	80	20
00	21	01.
01.	00	02
01.	01	00
0.	10	21
01.	11	20
10	00	30
20	01.	01
10	20	$\infty$
10	11	11
11	$\bigcirc$	11
11.	01	20
1.1	10	01
11.	11	00

Ths diagoizal line cannot be chosen arbitrarily but is a function of tho horizontal and vertical lines alreacly chosen. See the table.

The diagonal column nay be easily derived from the horisontinl and vertical columas by (in this enge) suistracting the vertical from the horizontal modulo 4. A ohygicel orocedure for thiz derivation novid be:

1. Set the diagonal decoder by the horlzontal addres? dizitig.
2. Add the complement of the vertical address.
3. Add 2 (corrects for $9^{\circ} s$ complement).

## APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Fingtimerthe Nota Edil3
'0Go ?

 the selected alement of a and non-selacting anplituies of as nout $1 . / 3$.

A better syatem is posgible. All unselectel alaments in thet horizontel and vertical 2ines must be intersected by tae non-chasea diaponel lines (they do not intergect with the chosen liagonal and the diagonel lines pass througn all ohementa). Therefore, a nogative alzzel? on the non-chosen diagonals will recince the non-relecting anplifudas. As a result:

a coordis	chorea	+ 2/5
" :	non-chosen	0
Y "	chosen.	+2/5
1 "	ano chosen	0
Dasonal	choser	+ $3 / 5$
*	non-chosen	- $2 / 5$

The largest non-selecting arolituds is $1 / 5$ resulting in $a$ selecting ratio of 5:1.

There are other 2-dimensional reaundant systens. Throath the selected elenent may be drawn a large number of lines of differant slupss (the nomior depends on the size o. the array) all of which ofll pass theona 1/n th oif the elenents, but not ail of which are non-intersscting with ore chosen groups of selecting lines. As an exarrole -- for an array with even n, linee with slope of 3 (up 3 rows for each column) will intezaect wish A. $X$, and diagonal lines only at the mitually eelected element. Rules sain ve worket out for choosing such lines. The resulting selecting ratios ere $2 \mathrm{~m}-1: 1$ where m is the number of group of lines.

Redundant line selection is also possible in 3 or mo: $\boldsymbol{z}$ dimension: arrays but a selection anong en $n \backsim 1$ dimensional arroy of lines is necessar in each sroup.

In 3 dimensions, the groups could be the 3 coordineties plus the 4 major diagonals. The selected element will be at the intersection o: 7 lines. By a method analogous to that described above a selecting ratio of 13:1 may be achieved. The necessary selecting equipment is very complicator and inefficient.

## APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

```
6345
```

Engingatiag Note 2-423 Rege B

## Redundant jeloction - 3 Dimensiongs

Redurdant selection is not necesearliverestricted to erount cif 1inos. Groupg of nol dimensional figures mey be ueed in an noeimonsionsi system.

In 3 dimangions a Sourtio nlane gkeved with respect io the puef 3 may be used. This plene should intersect with mere than one yber plana only at the selectod oiement. A plene intersecting tise other 3 eit 4, vu ilil.e tize reoulrenents.


Appilod Siennis
Selacted slement I
Intersection of any 2 planes $+1 / 3$
All planes excert at intorgections 0

All other elemexts $\quad \sim 1 / 3$
Although this is a z-dimensional gystem it has the disadvencage that only a single olement can be selected and not an arbitrary groun of elements along one dimension.

Redundant selacting 3 dimensional systeme using more than if planes can be devised. The methods can be extended to any number of dimenaions。

## APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

632.5
zinernearing Hote E-423

## tacs 9

## The ordindir Problem

Any reforence to the form of storege tand consideration has two paris:

1. A "read" or "write minus", the two beinc equivalent.
2. A "write plus" in selocted columas.

Since tho read is destructive en rewiste niua in the colvinns thet readout plus is necessary.

Since ariting minus requires signals of opnosite polarity on rid plenes fron those required whon writing plus, white maus must be cerricc out at a different time than urite piug. This difference can most convenicn $1 y$ be obtadned by writing minue or clearing all column prior to the write plus. This write minas is equivalent to reading. It vould be poselbice to write manus only in the colvms that are to end up ninus but there secns littie advantage to such complication.

## 3-Dimensional Driving

The chosen drivers in the $X$ and $Y$ dinensions alwaye first write minus and then write plue without exceotion. The dirivers in the $Z$ or digit dimension, which are inhibiting drivers, never divive plus (inhibsit minus) since all colums are alway writion negativo. Selected $Z$ dimension drivers drive negative driviag the waite plus of the cycle to inhibit the column that are not being written plus.


## APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6845
Engineoring Note Eo4l3 Sage io

These wevoforns an be obtained vith singie tubes. The driving sections need not even be pueh-pull.

As a firat opproximation a normally "ON" tube may be ubed with an LC circuit in the plate. An inooming negative gate long enough to $\dot{c} l \mathrm{la}$ one complete sine wave on tho plate is then aplied to the grid. Clipping would be neoded to quare up the waveform. It may prove dosirable to uso doublesended drivers to hold constant jalise ourrents.

A driver of the $X, Y$ kind will bo called an Entyge driver for sequence-type.

A driver of the $Z$ kind will be called an 0-type driver for one-shot type.

A driver which must put out both plus and cinus signnly bve not in fixed order will be called an n-type driver for non-aequas: ac type. Such a driver would have to be double-ended and $2 a$ probebly more complicated than an s-type driver.

A bestopossible 3-dimensional storage of $n^{2}$ registers each $d$ digits long requires

2n sotype drivers nd cores/driver
d O-type drivers 8
$n^{2} \quad n \quad n$
2-Dimensional Driving
Consider now a storage made out of bost possible 2-dimensional
arrays. One such array will be needed for each digit column.
The chosen X-coordinate drivers Sirat drive negative to mrito minus but drive „ositive only in the digit columns to be writton plus. It: seems reasonable, however, that such a driver should be no mors complicater than an s-type, the complication appearing in the control circuits. The

## APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Kingineoring Note hu413
Yew 15

 is orovided on each columen need:
nd. s-tyoe ériverz n coseg/driver
nd n-type drivers n "
If an s-type driver requires 3 lubes

" O-type	$"$	$n$	2 iubee
"			
rotype	$n$	$n$	4 iubes

 each then -

The 3-dimensional array requires $64 \times 3=192$

$$
+16 \times 2=\frac{32}{224 \text { tubes }}
$$

The 2-dimensional array requires 3584 tribes
This is a substantial price to pay for the inprovod selectom retio. No conaideration has beea given to the fact thet the zeinenstona drivers drive nors cores and therefore must be larger than the 2 dime:alo: 12. dxivens. This size differanco partially compengates for the different complexity of the two syoteras.

Portunately it 18 not recosaary to eo to complete agvaration of
 solect $i$ ons in all. columas at once. This arrangement requires

nd	8-bype drivere	If cores/driver
n	n-type drivers	nd "

For the hypothetical storage we now need 1669 tubes.
It is possible to omit the n-type drivers comsletely by blasiug the entire 3 - 1 imensional array with a eingle $1 / 3 \mathrm{H}$ a-type driver, olua whot writing mimas, and aims when writing plus. Both $x$ ond $y$ drivers can then bs a-type also. The gane number of $x$ and $y$ drivers as before are requirad.

## APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Engineering Note Em43 Sac lit

2 Dimensionel Redundent

This system requires 3 signals in each column, $x, y$ and diagonelo TWo of these can be s-type with an amplitude of $2 / 5 \mathrm{H}$, the other is $n$ berc with an amplitude of $1 / 5 \mathrm{H}$. A bisaing driver guch as mentioned above can be uged with another set of s-tyoe drivers instead of the notypas. In elibez event only the $\pm 1 / 5 \mathrm{can}$ be common to all columns. The requizemente are:

2nd	s-type	2nd	g-type			ve
$n$	n-type	n	s-type	$n d$	*	"
		1	s-tyoe	${ }^{2}$	n	n

For the hypothetical storage we now need 3200 tubeg.

## 3-Dimensional Redundant

Any two planes can be common to all columns, the oiners $\pi a .8 \%$ be separate. There will be a 3 -dinensional array in each columa. Therefcre we require:
$\begin{array}{ll}2 n^{2 / 3} \text { s-type } & n^{4 / 3} \text { a cores/driver } \\ 2 n^{2 / 3} \text { dn-type } & n^{4 / 3}\end{array}$
The array should be cubical, 1.9., 512, 4096, 32768, otc. regisisers. It may well be that this type of syatem will be important for very large amounts of storage where todimensions arrays become desirable but whers the $5: 3$ awitching ratio of the true 4 -dimensional sygtem may be unworkabie.

Considering a storage of $16^{3}=4096$ registers of i6 digits each, we require:

32 s-type $=32 \times 3=96$ tubes 4096 cores/driver
512 n-type $=512 \times 4=2048$ tubes cores/driver 2144 tubes total

The 2-dimensional best-possible requires 4288 tubeg for this sise storage or twice as many.

The 3-dimensionsl best-possible requires 416 tubes or about ones fifth as many.

## APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Engineering Note E. 413
Pe ns

## Conclugione

It appears possible, at a substantial co at in increaseũ camp as of the associated circuitry, to effectively improve the overacting chorectie 1atsics of any core material by improving the selecínin ratio. Some ref. tests a $a$ de by W. N. Pepin show that the responses time of a steel coze ats approximately halved by using a $3: 1$ ratio instead of 2:1 end may be waived again by going to 5\%. Some of the recent steel cores are almost fact enc for tube in whirlwind at 2:2. The decision as to whether to $u .30$ one of the more complicated systems mast wait until more information on cores character. latices and driver design become available.

R.RR:bmb

```
cc: J.W. Forrester
 N.H. 'faylor
 S.H. Dodd
 &.L. Best
 D.A. Buck
 B.Widrowitz
 E. Painestock
 C.L. Cordermen
 J.A. O'Brien
 B.S. Rich
```

