
Hula: An Efficient Protocol for Reliable Delivery of Messages

Umesh Maheshwari
Technical Report MIT-LCS-TR-720

MIT Laboratory for Computer Science
umesh@lcs.mit.edu

July 1997

Abstract

We present a new protocol for reliable delivery of messages
over a network that might lose, duplicate, reorder, or arbi-
trarily delay packets. It is the first protocol that guaran-
tees exactly-once and ordered delivery on a connection while
avoiding precursory handshakes. Avoiding handshakes re-
duces the overhead for sending small, intermittent messages
as in remote procedure calls and protocols like HTTP. Like
other practical protocols, it permits discarding information
for idle connections.

The protocol works by combining existing handshake-
based and time-based protocols. It uses loosely synchro-
nized clocks to avoid handshakes. A handshake is executed
only upon an unexpectedly long packet delay or clock skew.
Thus, unexpected conditions degrade performance but do not
compromise reliability. The resultant protocol has the reli-
ability of handshake-based protocols and the efficiency of
time-based protocols.

1 Introduction

Reliable delivery of messages is useful for many facilities
such as remote procedure calls and file transfer. These facili-
ties require that messages be delivered exactly once and in the
order they were sent. Often, such delivery must be provided
using an underlying network that may lose,duplicate, reorder,
or arbitrarily delay packets; the Internet is a well-known ex-
ample of such a network. Many protocols have been designed
for this purpose, such as TCP [Pos81], Birrell and Nelson’s
RPC [BN84], Delta-t [Wat89], and SCMP [LSW91], but they
fall short of either reliability or efficiency.

In particular, protocols that guarantee reliable delivery over
unreliable networks with unbounded delays require an ex-
change of mutual information, called a handshake, before
two processes can communicate [Tom75, Bel76]. The hand-
shake delays communication and consumes resources. This
cost is amortized over the messages sent between the com-
municating processes until they discard mutual information.
The cost is acceptable when sending large messages or a
large number of messages, as in transferring large files or

in a remote login session. However, the cost is significant
when sending a few small messages at a time as in remote
procedure calls [BN84] and in protocols such as HTTP used
in the Web. The increasing use of these facilities makes it
important to avoid initial handshakes.

On the other hand, some time-based protocols avoid hand-
shakes by making assumptions about the time characteristics
of the underlying network, but they fail when those assump-
tions do not hold. For example, some protocols assume that
no copy of a packet may be present in the network after its
maximum lifetime has passed [FW78, BN84, Wat89]. If a
duplicate packet survives for longer, these protocols might de-
liver duplicate messages. Another protocol relies on loosely-
synchronized clocks at hosts and bounded packet delay so
that old information can be discarded [LSW91]. If clock
skews or packet delays are longer, this protocol might reject
valid messages.

Thus, existing time-based protocols do not guarantee re-
liable delivery in a network where packet delays or clock
skews may vary unexpectedly. The Internet is such a net-
work: packet delays vary geographically with distances and
physical links, and also temporally with network congestion.
Mobile computing increases this variance since processes
may change locations and there may be periods of poor con-
nectivity between them. At the same time, the use of the
Internet for critical applications such as electronic commerce
increases the need for a reliable protocol.

In essence, handshake-based protocols are pessimistic
since they assume that delays and clock skews cannot be pre-
dicted. Thus, they are reliable but inefficient. On the other
hand, time-based protocols are optimistic since they assume
upper bounds on packet delays and clock skews. Thus, they
are efficient but unreliable.

This paper presents a new protocol, Hula, that has the reli-
ability of handshake protocols, and efficiency close to that of
time-based protocols. This protocol has two parts. The first
part uses the synchronized-clock protocol to classify packets
as either new, duplicate, or suspected. A packet is suspected
only when it seems to have arrived too late; this might happen
because of an unexpected delay or an unexpected clock skew.
The second part checks whether a suspected message is new
or duplicate using a handshake. (Hula stands for “Handshake

1

Upon Late Arrival.”) The handshake ensures reliability but
is executed infrequently. Thus, if time-based assumptions
do not hold, performance degrades but correctness is not
affected.

Like other practical protocols designed for large networks,
Hula allows processes to discard mutual information when
they are not communicating actively. In addition, Hula pro-
vides control over the interval for which communicating pro-
cesses maintain mutual information. It exposes a contin-
uum of tradeoff between discarding mutual information and
avoiding handshakes. In fact, the handshake protocol can be
viewed as an extreme case of Hula when mutual information
is discarded as soon as possible.

Also, like other practical protocols, Hula tolerates host
crashes while maintaining a weaker form of reliable delivery.
Specifically, Hula might lose messages upon a crash, but it
does not duplicate or reorder messages. This is known as “at-
most once” delivery, as opposed to “exactly-once” delivery.

The rest of this paper is organized as follows. Section 2 de-
fines the problem and the underlying system more precisely.
Section 3 describes existing protocols since our protocol is
based on them. Section 4 describes the new protocol. Sec-
tion 5 contains our conclusions and indicates directions for
future work.

2 The Model

We use the simple model shown in Figure 1. An application
that uses reliable delivery is called a process and the under-
lying system that provides this service is called the host. We
assume that each process has a globally unique id for commu-
nicating with other processes. To send a message, a process
passes the message and the id of the remote process to its
host. The host uses the network to exchange packets with the
remote host. A packet may carry a message or some control
information or both. Eventually, the remote host passes the
message to the remote process.

(message)

Sender

Ok/Err

Network

Process

Receiver

Process

Host Host

Send Receive
(message)

packetpacket

Figure 1: The model.

This paper ignores issues such as full-duplex transfer,
flow control, and fragmentation and reassembly of messages.

While these issues are important in a transport protocol, pre-
viously known solutions can be applied to our protocol.

2.0.1 Requirements

Here we specify the safety, fault-tolerance, liveness, and per-
formance requirements for a reliable-delivery protocol.

Safety. Reliable delivery means that messages sent by one
process to another must be received exactly once and in the
order they were sent. We say that a reliable connection exists
between the two processes.

Fault-tolerance. A host might crash and lose the informa-
tion stored in volatile memory, but it retains the information
stored in stable memory such as the disk. It is expensive to
guarantee reliable delivery across host crashes, because that
requires logging information on stable storage every time
a message is sent or received [LLSA93]. Therefore, we
weaken the reliability requirement upon crashes. When a
host S crashes, the last message sent by a process on S might
be lost. When host R crashes, the last messages sent to a
process on R—until R recovers—might be lost. Because of
this possibility, it is desirable to inform the sender process
whether or not its last message was successfully delivered to
the receiver. Therefore, the sender host returns an Ok or Error
to the sender process. However, it is impossible to provide an
accurate acknowledgement to the sender unless information
is updated stably every time a message is delivered. There-
fore, in practice, there might be two discrepancies:

False positives An Ok is returned for a message not delivered
to the receiver process.

False negatives An Error is returned for a message delivered
to the receiver process.

Usually, false negatives are considered the lesser evil [Bel76,
LLSA93]. Thus, our safety and fault-tolerance requirements
are as follows:

� As long as there is no crash: exactly-once and ordered
delivery.

� Upon a crash: possible loss of messages and false neg-
ative acknowledgements until recovery.

Note that when the sender crashes, the crash serves as an
implicit Error for unacknowledged messages.

Liveness. A message sent by a process must be eventually
received by the receiver unless one of the hosts crashes. Fur-
ther, after coming back from a crash, a process must be able
to resume reliable delivery eventually.

Performance. The protocol must not require the hosts to
maintain information about a connection when the associ-
ated processes are not communicating actively, i.e., when the
connection is idle for an arbitrarily long period. We say that
a connection is open at a host if the host has stored some
information about it; otherwise, we say that the connection
is closed. A connection table in each host maps open con-
nections to the associated information. A host may close a

2

connection heuristically or on a directive from the communi-
cating process. In the absence of either, the host may close a
connection after every message sent. A connection between
two processes may be opened and closed many times, but
we regard the open intervals as different phases of the same
connection. The safety requirement is that messages sent on
a connection must be delivered exactly once and in order—
even if they were sent in different phases, since phases are
merely a performance optimization.

If a protocol required the hosts to maintain connection
information, i.e., if it did not allow hosts to close and re-
open connections, the connection table would grow very large
due to processes such as Web servers and clients, which
communicate with many other processes in their lifetimes.
A big connection table is undesirable because the connection
table must be accessed whenever a packet is sent or received
and indexing a large table is inefficient. If the table is paged
out to disk, disk accesses would overwhelm packet delays.

2.0.2 Underlying Support

The network may delay, lose, duplicate, or reorder packets.
We assume that corrupt packets are detected using checksums
and are rejected. Further, if a packet is sent repeatedly, an
un-corrupted copy of it is eventually received by the remote
host. We also assume that a crashed host eventually recovers.

Sites are equipped with clocks that are loosely synchro-
nized. Low overhead protocols such as the Network Time
Protocol are already in use for synchronizing clocks within
100 milliseconds [Mil88]. The clock survives host crashes.
It is fast enough that it ticks at least once between successive
messages sent. For current systems, a 1 �s tick would suffice.
Also, the clock is slow enough and has enough bits such that
its wrap-around period is much longer than the maximum
expected delivery time or lifetime of packets. At 1 �s tick, a
64-bit clock would suffice for foreseeable future. Therefore,
we ignore all problems related with wrap-around.

2.0.3 Notation

To describe various protocols, we consider messages sent by
a process on host S, the sender, to a process on host R, the
receiver. The information at S for this connection is denoted
by s, and that at R is denoted by r. A connection s has a state,
s.state, which may be CLOSED, and additional fields when the
state is not CLOSED. The current clock values at S and R are
denoted by S.t and R.t.

The directives at the process-host interface are Send, Re-
ceive, Ok and Error. In addition, either the sender process or
some heuristic within S issues the directive Close as a hint to
close the connection.

Each packet contains a label identifying the kind of packet
and some fields; it is denoted as label[f1, : : : , fn]. Each
packet also contains the ids of the communicating processes
to identify the connection, but we do not show these fields
explicitly.

We describe each protocol using a state machine. For each
state, we give the possible transitions using a notation similar
to Dijkstra’s guarded command language. The transition,
input!actions, means that it is enabled on the given input and
results in the given actions. An input may be a packet received
with specified label and fields or an input directive from the
process. An action may be updating the connection, sending
a packet, or an output directive to the process. Consider the
following example for transitions from STATE1:

s.state = STATE1
Send(d) ! s.data := d, s.state := STATE2
pkt1[s.i, j] ! s.j := j
other[i] ! pkt2[i]
* ! pkt3[s.i]

This code means that four transitions are possible when s is
in state STATE1. The first transition is enabled on receiving
the directive Send; it results in storing the associated data in
s.data and switching s.state to STATE2. The second transition
is enabled on receiving pkt1[i, j] but only when i matches
s.i. It results in setting s.j to j. The packet label other in the
third transition matches any packet not matched by previous
transitions. This transition sends pkt2[i], where i is the first
field in the packet received. The fourth transition has the
special input *, which means it is enabled periodically. It
results in sending the packet pkt3[s.i] repeatedly. If a packet
arrives for which there is no matching input, it is ignored.

3 Background

This section describes existing protocols for reliable delivery
since our protocol is based on them.

3.1 Stenning’s Protocol

Stenning’s protocol is the simple basis for reliable delivery
[Ste76]. S stamps each message sent on a connection sequen-
tially, while R accepts a message only if it has the expected
stamp. S sends a message repeatedly until it receives an
acknowledgement with the same stamp from R.

ack[i]M
SG

msg[i, data]

A
C

K

S R

ST
A

Y

Figure 2: Stenning’s protocol (time increases downward).

Figure 2 illustrates the protocol. The connection at S has
two states: STAY and MSG. The stamp of the last message
sent on s is stored in s.i. The state machine for s is given
below.

3

s.state = STAY

Send(d) ! s.i := s.i+1, s.data := d, s.state := MSG

s.state = MSG

* ! msg[s.i, s.data]
ack[s.i] ! Ok(), s.state := STAY

The state machine for the connection at R is given below.
The stamp of the last message received on r is stored in r.i.
Initially, r.i and s.i are set to the same value, say, zero.

r.state = ACK

msg[r.i, d] ! ack[r.i]
msg[r.i+1, d] ! r.i := r.i+1, Receive(d), ack[r.i]

The problem with this simple protocol is that it does not
allow hosts to close and re-open a connection: S must remem-
ber s.i and R must remember r.i. Also, it does not handle host
crashes.

3.2 Handshake-based Protocols

Handshake-based protocols allow hosts to close a connection
and re-open it by sending extra packets to re-initialize mutual
information. The most common handshake protocol is the
one by Tomlinson [Tom75]. This protocol sends four packets
when a connection is opened to send a single message. Bel-
snes added a fifth packet to the protocol to provide the crash
semantics specified in Section 2, i.e., to avoid false positive
acknowledgements. Figure 3(i) shows a slightly modified
version of Belsnes’s protocol. TCP uses a similar proto-
col [Pos81, JBB92], but it differs operationally because of
duplex transfer, because TCP is meant to transfer a stream of
bytes rather than messages, and because of the possibility of
sequence numbers wrapping around.

sync[i, j]

msg[i, j, data]

M
SG

A
C

K
SY

N
C

C
L

SD

S R

C
L

SD

init[i]

IN
IT

ack[i]

close[i]

C
L

SD

C
L

SD

ST
A

Y

close[i+1]

ack[i+1]

msg[i+1, j, data]

A
C

K

M
SG

sync[i, j]

msg[i, j, data]

M
SG

SY
N

C

S R

init[i]

IN
IT

ack[i]

A
C

K

(i) sending one message (ii) sending two messages

Figure 3: The five-packet handshake protocol.

A generic packet in this protocol has the format [i, j, data],
where i and j are stamps generated by S and R respectively.

When a host opens a connection, it generates a stamp using its
clock. The clock acts as a shared initializer for all connections
at the host and avoids the need to remember connection-
specific information while the connection is closed.

When a single message is sent during a phase, the connec-
tion at S goes through states INIT, MSG, and CLOSED. We have
extended the protocol by adding a state, STAY, which allows
the sender process to send more messages before closing the
connection. Each additional message results in two more
packets (msg and ack); this is illustrated in Figure 3(ii). The
state machine for the connection at S is given below. Transi-
tions that represent corrective steps due to the unreliability of
the underlying system are marked with y. Thus, the best-case
behavior of the protocol is given by transitions not marked in
this way. We do not explain the transitions in words due to
lack of space; we urge the reader to read the code below.

s.state = CLOSED

Send(d) ! s.i := S.t, s.data := d, s.state := INIT

yother[i] ! close[i]

s.state = INIT

* ! init[s.i]
sync[s.i, j] ! s.j := j, s.state := MSG

yother[i] ! close[i]

s.state = MSG

* ! msg[s.i, s.j, s.data]
ack[s.i] ! Ok(), s.state := STAY

yclose[s.i] ! Error(), s.state := CLOSED

s.state = STAY

Send(d) ! s.i := s.i+1, s.data := d, s.state := MSG

Close() ! close[s.i], s.state := CLOSED

ysync[i, j] ^ i6=s.i ! close[i]

The state machine for the connection at R, denoted by r,
works as follows.

r.state = CLOSED

init[i] ! r.i := i, r.j := R.t, r.state := SYNC

ymsg[i, j, d] ! close[i]

r.state = SYNC

* ! sync[r.i, r.j]
msg[r.i, r.j, d] ! Receive(d), ack[r.i], r.state := ACK

yclose[r.i] ! r.state := CLOSED

r.state = ACK

* ! ack[r.i]
close[r.i] ! r.state := CLOSED

msg[r.i+1, j, d] ! Receive(d), r.i := r.i+1

This protocol has the desired crash semantics. Upon re-
covery from a host crash,all connections at the host are closed
due to loss of information. Further, the protocol ensures that
these connections will be closed at peer hosts and that neg-
ative acknowledgements are sent as needed. For a formal
proof of correctness of this protocol, see [LLSA93].

4

3.3 Time-based Protocols

Time-based protocols allow hosts to discard connection infor-
mation based on assumptions about the underlying network.
There are two kinds of such protocols. The first assumes that
packets do not linger in the network for longer than some
maximum lifetime and discards connection information after
this period [BN84, Wat89]. However, if duplicate messages
linger in the network for longer, this protocol might accept
them. The second kind of time-based protocol assumes that
hosts have loosely synchronized clocks and that packets are
delivered within some period [LSW91]. We describe this
protocol below because our protocol uses it.

The synchronized-clock protocol is illustrated in Figure 4.
S stamps the message packets with its clock. R remembers the
stamp of the last message received on the connection until the
stamp is older than the current time at R by more than a chosen
�. The maximum stamp associated with any connection
so closed is remembered in a variable, max closed. If R
receives a message packet on a closed connection, it checks
the stamp. If the stamp is above max closed, the packet must
be new and is accepted. Otherwise, the packet is likely to be
a duplicate and is rejected. This protocol assumes that the
sum of the maximum packet delay (including retransmission)
and the maximum clock skew between hosts is less than �.
Otherwise, a new message that seems to arrive too late might
be rejected.

ack[i]M
SG

L
IN

G
E

R

C
L

SD

S R

msg[i, data]

C
L

SD

Figure 4: A time-based protocol.

Below, we have modified the protocol slightly from its
original description to provide an explicit negative acknowl-
edgement when a message might have been lost. The con-
nection at the sender works as follows.

s.state = CLOSED

Send(d) ! s.i := S.t, s.data := d, s.state := MSG

s.state = MSG

* ! msg[s.i, s.data]
ack[s.i] ! Ok(), s.state := CLOSED

yclose[s.i] ! Error(), s.state := CLOSED

The connection at the receiver works as follows.

r.state = CLOSED

msg[i, d] ^ i > max closed ! Receive(d), ack[i]
r.i := i, r.state := LINGER

ymsg[i, d] ^ i � max closed ! close[i]

r.state = LINGER

msg[i, d] ^ i > r.i ! Receive(d), ack[i], r.i := i
ymsg[r.i, d] ! ack[i]
r.i < R.t–� ! max closed := max(r.i, max closed),

r.state := CLOSED

If host R crashes, all connections at R are closed. In or-
der not to accept a packet after the crash that is stamped
below any packet accepted before the crash, R maintains
a stable variable, max received, such that max received �
msg.i for any msg packet accepted. When R receives a msg
packet such that msg.i > max received, it must not accept
msg before updating max received stably. To avoid updat-
ing max received frequently, R stores a higher value than
required. The prescribed value is R.t+�, where � depends on
the desired frequency of stable updates.

After a crash, R avoids the risk of accepting duplicates by
setting max closed to max received. This means that mes-
sages whose stamps are lower than the value of max received
stored before the crash are not accepted, even though they
might be new. There is a tradeoff for �: The larger it is,
the less frequently is max received updated, but the more the
messages that must be rejected upon recovery from a crash.

4 Hula

The Hula protocol has two parts. The first uses the
synchronized-clock protocol to classify messages as either
new, duplicate, or suspected. The second part checks if a
suspected message is in fact duplicate using a handshake.
Section 4.1 describes the basic protocol in the absence of
host crashes, Section 4.2 describes how remote procedure
calls may be conducted using Hula, and Section 4.3 extends
the protocol to deal with host crashes.

4.1 The Basic Protocol

In the synchronized-clock protocol, the receiver accurately
identifies a message packet as new or duplicate, except when
the connection is closed and the packet is stamped less than
or equal to max closed. In Hula, these packets are called
“suspected duplicates” and are treated differently from pack-
ets that are known to be duplicates for sure. Specifically, the
receiver host treats a suspected message packet as the open
packet in the handshake protocol. That is, it buffers the mes-
sage without delivering it to the receiver process, and sends
a sync packet to the sender. It delivers the buffered data only
upon receiving a valid packet that correctly responds to the
sync packet. Figures 5(i) and (ii) show the packets sent to
handle a non-suspect and a suspect message respectively.

Because of the clock protocol, Hula executes a handshake
only when packet delays or clock skews are unexpectedly
large. Hula could alternatively use the maximum-lifetime
protocol, which does not use synchronized clocks. However,
any message sent after a sufficient gap since the last message

5

ack[i]M
SG

A
C

K

C
L

SD

close[i]

S R

close[i]

S R

C
L

SD

M
SG

SY
N

C
A

C
K

ack[i]

C
L

SD

C
L

SD
V

A
L

ID

L
IN

G
E

R

L
IN

G
E

R

msg[i, data]
msg[i, data]

(ii) A suspect message(i) A non-suspect message

sync[i, j]

valid[i, j]

Figure 5: The Hula protocol.

on the connection would be “suspected new” and would re-
quire a handshake to check if it is in fact new. Therefore, if
Hula used the maximum-lifetime protocol, it would execute
handshakes more frequently.

Whether or not a connection is opened with a handshake,
Hula requires an explicit close packet as in the five-packet
protocol. Unlike the five-packet protocol, Hula requires this
packet even if host crashes were not an issue. The close
packet ensures that the receiver will not close the connection
until the sender has received the ack.

msg[i,data]

M
SG

lost
ack[i]

R

L
IN

G
E

R

msg.i <= maxclosed

msg[i, data]

V
A

L
ID

C
L

SD
SY

N
C

valid[i, j]

sync[i, j]

msg.i > maxclosed

S

Figure 6: Incorrect execution in the absence of close.

Figure 6 illustrates what might go wrong if the receiver
were to close the connection after sending the ack. When
S first sends msg[i, data], R finds that msg.i > max closed.
So R accepts it and sends ack[msg.i], but the ack is lost.
After some time, S sends msg[i, data] again. However, in the
meantime, R closed r, and now msg.i � max closed. Now,
R suspects msg and sends sync[i, j]. S then sends valid[i, j],
which causes R to accept msg again.

The state machine for the connection at the sender is pre-
sented below. As in the extended five-packet protocol, it in-
cludes a STAY state to allow S to send more than one message

before closing the connection. Figure 7 shows the state dia-
gram for s. In this diagram, transitions are labeled as “input /
actions”. For simplicity, it does not show the actions related
to updating the connection’s fields and corrective transitions.
Corrective transitions are marked by y in the code.

MSG

VALIDATE

CLOSED

STAY

Send(d) /

/ valid[i, j]

/ msg[i, d]

sync[i, j] / ack[i] / Ok()

Close() / close[i]

ack[i] / Ok()

Send(d) /

Figure 7: State diagram for Hula sender.

s.state = CLOSED

Send(d) ! s.i := S.t, s.data := d, s.state := MSG

yother[i] ! close[i]

s.state = MSG

* ! msg[s.i, s.data]
ack[s.i] ! Ok(), s.state := STAY

sync[s.i, j] ! s.j := j, s.state := VALIDATE

yother[i] ! close[i]

s.state = VALIDATE

* ! valid[s.i, s.j]
ack[s.i] ! Ok(), s.state := STAY

s.state = STAY

Send(d) ! s.i := s.i+1, s.data := d, s.state := MSG

Close() ! close[s.i], s.state := CLOSED

ysync[i, j] ^ i6=s.i ! close[i]

The connection at the receiver works as follows. Figure 8
shows the state diagram.

SYNC

valid[i, j] /
accept buffer

accept

CLOSED

ACK msg.i > r.i

old /

close[i] /

no /

/ sync[i, j]

/ ack[i, j]

no /
buffer

yes / accept

msg[i, d] /

msg.i < maxclosed LINGER

close[i] /

msg[i, d] /

yes / acceptmsg[i+1,d] /

Figure 8: State diagram for Hula receiver.

6

r.state = CLOSED

msg[i, d] ^ i > max closed ! Receive(d),
r.i := i, r.state := ACK

msg[i, d] ^ i � max closed ! r.buf = d, r.i := i,
r.j = R.t, r.state := SYNC

yvalid[i, j] ! close[i]

r.state = ACK

* ! ack[r.i]
close[r.i] ! r.state := LINGER

msg[r.i+1, d] ! Receive(d), r.i := r.i+1

r.state = LINGER

msg[i, d] ^ i > r.i ! Receive(d), r.i := i, r.state := ACK

r.i < R.t–� ! max closed = max(r.i, max closed),
r.state := CLOSED

r.state = SYNC

* ! sync[r.i, r.j]
valid[r.i, r.j] ! Receive(r.buf), r.state := ACK

yclose[r.i] ! r.state := CLOSED

4.2 Remote Procedure Calls

As mentioned, an important use of reliable delivery is in
executing remote procedure calls, or RPCs [BN84]. An RPC,
say from S to R, involves a call message from S to R and a
reply message from R to S. Although, this paper does not
discuss duplex transfer using Hula, an isolated RPC can be
performed using three packets as shown in Figure 9. The first
contains the call message from S to R, the second contains
the reply from R to S and provides the ack for the first, and
the third closes the connection and provides the ack for the
reply from R to S.

close[i]

msg[i, reply]

S R

msg[i, call]

Figure 9: Executing an RPC.

4.3 Crash Recovery

The protocol described so far does not tolerate crashes of
the receiver host, R. Upon recovery, all connections at R are
closed and R might then accept a message already accepted
before the crash. As in the clock protocol, R maintains a sta-
ble variable, max received, such that max received � msg.i
for any msg packet accepted. When R receives a message
such that msg.i > max received, it must update max received
stably before accepting the message. After a crash, R sets
max closed to max received. However, this alone is not suf-

ficient to avoid duplicate delivery in Hula because packets
timestamped below max closed may be accepted if their val-
idation succeeds. Thus, the scenario shown in Figure 10 is
possible. (This is similar to the the scenario in Figure 6.)

msg[i,data]

M
SG

lost
ack[i]

crash

msg.i <= maxclosed

msg[i, data]

V
A

L
ID

C
L

SD
SY

N
C

valid[i, j]

sync[i, j]

msg.i > maxclosed

S R

A
C

K

Figure 10: Incorrect execution when receiver crashes.

Hula solves this problem by keeping another variable,
max crashed, which is at least as high as the stamp of any
packet accepted before the last time the host crashed. By defi-
nition, this variable is simply the value of max received at the
last crash. After a crash, a host sets both max crashed and
max closed to max received. Thereafter, max crashed re-
mains the same, while both max closed and max received ad-
vance as needed. Any message stamped below max crashed
is not accepted. Instead, R returns a close packet for such
messages. On receiving the close packet, S returns a negative
acknowledgement to the sender process. Changes to the state
machine are shown below.

r.state = CLOSED

msg[i, d] ^ i � max crashed ! close[i]
msg[i, d] ^ max crashed < i � max closed

! r.buf = d, r.i := i, r.j = R.t, r.state := SYNC

msg[i, d] ^ max closed < i � max received
! Receive(d), r.i := i, r.state := ACK

valid[i, j] ! close[i]

s.state = MSG

: : :

close[s.i] ! Error(), s.state := CLOSED

s.state = VALIDATE

: : :

close[s.i] ! Error(), s.state := CLOSED

In the state machine described above, R ignores packets
stamped above max received. Since S keeps retransmitting
the message and R increases max received periodically, the
message is finally accepted. An obvious optimization here is
that R can buffer the message and send a packet to the sender
to stop retransmitting.

7

4.4 Comparative Discussion

Figure 11 tabulates the level of reliability provided by various
protocols in two cases: when there are no crashes and upon
crashes. Belsnes showed that two different four-packet pro-
tocols could be constructed with different crash semantics
[Bel76]. His five-packet protocol has the desirable prop-
erty that it is reliable while there is no crash and only loses
messages or causes false negative acknowledgement upon a
crash. Protocols that close connections after the maximum
lifetime of packets might duplicate messages if packets out-
live the expected maximum [FW78]. The synchronized clock
protocol might lose messages if packets arrive late, or seem
to arrive late because of clock skews [LSW91]. Finally, Hula
provides the same reliability as the best handshake protocol.

Protocol In absence of crash Upon crash

4-pkt handshake Reliable & false -ve ack Loss & false -ve ack

4-pkt handshake Reliable Loss & false +ve ack

5-pkt handshake Reliable Loss & false -ve ack

max pkt-lifetime Duplication Loss & false -ve ack

sync. clock Loss & false -ve ack Loss & false -ve ack

Hula Reliable Loss & false -ve ack

Figure 11: Reliability of various protocols.

All protocols might lose messages upon crashes. A po-
tential question is whether it is worthwhile selecting a pro-
tocol that might fail only upon a crash over another proto-
col that might fail, additionally, when packets are delayed.
The selection is justified for the following reasons. First,
crashes can often be prevented using reliable hardware and
software at the end hosts, but it is difficult to guarantee re-
liable network performance because the network is a heav-
ily shared resource. Second, software techniques such as
warm reboots [CNC+96], or hardware techniques such as
non-volatile RAM [BAD+92] can be used to prevent loss of
connection information upon crashes. If such techniques are
used, protocols that fail only upon losing connection infor-
mation will be highly reliable.

Figure 12 tabulates the number of packets exchanged to
deliver a single message. The counts shown are achieved
in the best case, i.e., when the underlying network does not
lose packets or delay them unexpectedly. The packets are
categorized as foreground packets if they must be sent before
the message is delivered to the remote process (including the
packet bearing the message), or background packets if they
are sent later. Foreground packets contribute to the latency of
message delivery, while background packets contribute only
to resource utilization and can often be piggybacked on other
packets. The handshake protocols require three foreground
packets, while purely time-based protocols and Hula require
only one.

Hula requires only one more background packet than pre-
vious time-based protocols. Furthermore, Hula is about as
efficient as the time-based protocols for an important class

Protocol Foreground Background

packets packets

4-pkt handshake 3 1

5-pkt handshake 3 2

sync. clock 1 1

Hula 1 2

Figure 12: Number of packets sent in the best case.

of applications: RPC. As mentioned before, Hula performs
an isolated RPC using three packets. Purely time-based pro-
tocols must also either employ the third packet, close, or
buffer the reply message for a conservatively long interval.
Therefore, most time-based protocols do use three packets
[BN84, LSW91]. If a number of RPCs are executed succes-
sively, Hula as well as these protocols use only two packets
for each RPC except for the last one.

Hula allows a host to control the number of connections
that are kept open in the LINGER state. In particular, a host
might reduce � arbitrarily to close more connections with-
out compromising reliability. Previous time-based protocols
would fail increasingly frequently on reducing �. A host
might want to close connections in order to reduce the size of
the connection table, say, for efficient access or for keeping
the table within a small non-volatile RAM. The performance
of Hula degrades gracefully as � is reduced, since more mes-
sages would require a handshake. In fact, when � is reduced
to zero, Hula degenerates to the handshake protocol since the
LINGER state is eliminated.

5 Conclusions

The Hula protocol provides reliable delivery of messages over
an underlying network that might lose, duplicate, reorder, or
delay messages. It retains the best features of handshake-
based and time-based protocols and avoids their pitfalls. It
has the reliability of handshake-based protocols: messages
are delivered exactly once and in the order sent (in the ab-
sence of host crashes). Further, its efficiency is close to that
of time-based protocols since it avoids handshakes. This
is particularly advantageous for sending small intermittent
messages, as in RPC and protocols like HTTP, where the
overhead of handshakes can be significant. Hula executes a
handshake only when a message packet seems to arrive too
late—either because of an unexpectedly long packet delay
or an unexpectedly large clock skew. Such handshakes en-
sure that reliability is not compromised when the network or
clocks behave unexpectedly. Handshakes also allow hosts
to reduce the period for which inactive connections must be
kept open. When this period is minimized, Hula degenerates
to a purely handshake-based protocol.

These benefits come at the cost of only one more back-
ground packet than a purely time-based protocol. Further,

8

even this disadvantage is masked in an important applica-
tion: executing an RPC, in which case both Hula and purely
time-based protocols send three packets.

Below we indicate some important directions for future
work on Hula. First, while we have provided informal ar-
guments for the correctness of our protocol, it needs to be
proven more formally. (The five-packet handshake proto-
col and the synchronized clock protocol have been proven to
satisfy their specifications [LLSA93].) Second, Hula needs
to be extended to incorporate common features of transport
protocols such as full-duplex transfer and fragmentation of
messages. Finally, a simulation or a real implementation
is necessary to measure performance gains from using this
protocol.

Acknowledgement

The author is grateful to Butler Lampson for encouraging
discussions. David Murphy provided useful comments on
an earlier draft of this paper. This research was supported
in part by the Advanced Research Projects Agency of the
Department of Defense, monitored by the Office of Naval
Research, contract N00014-91-J-4136.

References

[BAD+92] M. Baker, S. Asami, E. Deprit, J. Ousterhout,
and M. Seltzer. Non-volatile memory for fast,
reliable file systems. In Proc. Architectural Sup-
port for Programming Languages and Operating
Systems (ASPLOS), pages 10–22, October 1992.

[Bel76] D. Belsnes. Single message communication.
IEEE Transactions on Communications, 24(2),
Feb. 1976.

[BN84] A. D. Birrell and B. J. Nelson. Implementing
remote procedure calls. ACM Transactions on
Computer Systems, 2(1), Feb. 1984.

[CNC+96] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock,
G. Rajamani, and D. Lowell. The rio file cache:
Surviving operating system crashes. In Proc. Ar-
chitectural Support for Programming Languages
and Operating Systems (ASPLOS), Oct. 1996.

[FW78] J. G. Fletcher and R. W. Watson. Mechanisms for
a reliable timer-based protocol. In Proc. Symp.
Computer Network Protocols, Feb. 1978.

[JBB92] V. Jacobson, R. Braden, and D. Borman. TCP
extensions for high performance. Network-
Working-Group RFC 1323, May 1992.

[LLSA93] B. Lampson, N. Lynch, and J. Søgaard-
Andersen. Correctness of at-most once message

delivery protocols. In Proc. Conf. Formal De-
scription Techniques, Oct. 1993.

[LSW91] B. Liskov, L. Shrira, and J. Wroclawski. Effi-
cient at-most-once messages based on synchro-
nized clocks. ACM Transactions on Computer
Systems, 9(2):125–142, May 1991.

[Mil88] D. L. Mills. Network time protocol (version 1)
specification and implementation. Internet RFC
1059, July 1988.

[Pos81] J. Postel. Transmission control protocol. Internet
RFC 793, Sept. 1981.

[Ste76] N. V. Stenning. A data transfer protocol. Com-
puter Networks, 1(2):99–110, Sept. 1976.

[Tom75] R. S. Tomlinson. Selecting sequence numbers.
ACM SIGCOM/SIGOPS Interprocess Communi-
cations Workshop, 9(3):11–23, July 1975.

[Wat89] R. W. Watson. The delta-t transport protocol:
Features and experience. In Proc. 14th Conf. Lo-
cal Computer Networks, pages 399–407. IEEE,
Oct. 1989.

9

