Combining diagrammatic and symbolic reasoning

Konstantine Arkoudas

October 4, 2005

Abstract

We introduce a domain-independent framework for heterogeneous natural deduction that combines diagrammatic and sen-
tential reasoning. The framework is presented in the form of a family of denotational proof languages (DPLs). Diagrams
are represented as possibly partial descriptions of finite system states. This allows us to deal with incomplete information,
which we formalize by admitting sets as attribute values. We introduce a notion of attribute interpretations that enables
us to interpret first-order signatures into such system states, and develop a formal semantic framework based on Kleene’s
strong three-valued logic. We extend the assumption-base semantics of DPLs to accodomodate diagrammatic reasoning by
introducing general inference mechanisms for the valid extraction of information from diagrams and for the incorporation

of sentential information into diagrams. A rigorous big-step operational semantics is given, on the basis of which we prove
that our framework is sound. In addition, we specify detailed algorithms for implementing proof checkers for the resulting
languages, and discuss associated efficiency issues.

1.1 Introduction

Diagrams have been recognized as valuable representational and reasoning tools at least since the days of
Euclid. Their utility is often thought to stem from the fact that diagrams have structural correspondences with
the objects or situations they represent—they aralogical representations the celebrated terminology

of Sloman (Sloman 1971), dromomorphic representatioms the terminology of Barwise and Etchemendy
(Barwise and Etchemendy 1995a). In more plain terms, a diaggaemblesvhat the diagram depicts, in
contrast to sentential—or “Fregean” (Sloman 1971)—descriptions. This was noticed at least as far back as the
19th century, when Charles Peirce observed that a diagram is “naturally analogous to the thing represented”
(Peirce 1960).

Consider, for instance, the task of descibing some human face. We could perhaps describe the face with
a collection of English sentences, or with a set of sentences in some formal language. But such a description
is likely to be excessively long and complicated, and hence not particularly iIIumin@iﬂgdrawing ora
picture of the face, on the other hand, will be much more perspicuous, as well as significantly more compact
than any sentential representation. Of course, some diagrams are better than others. A talented artist will
produce a drawing that is a much more accurate depiction than the scrawlings of a 5-year-old. A digital picture
will be even more accura@So, as Hammer observes (Hammer 1995), being an analogical or homomorphic
representation is not a distinguishing feature of diagrams in general, but rather a distinguishing fegaacke of
diagrams.

This ability of (good) diagrams is in turn often thought to derive from the fact that diagrams are two-
dimensional objects, and therefore spatial relationships in the diagram can directly reflect analogous relation-
ships in the underlying domain, an observation made a while back by Russell (Russell 1923). A classic example
are maps. We can represent the streets of a city graphically, with a map, or sententially, e.g., by a collection
of assertions expressing the various intersections and so forth. The graphical representation is without doubt a
more intuitive and effective description because its spatial structure is similar to the actual layout of the city;
this analogical correspondence is lost in the sentential representation. As another example, consider a map of
a lake and try to imagine a sentential description of it. Stenning and Lemon (Stenning and Lemon 2001) trace
this discrepancy to the fact that sentential languages derive from acoustic signals, which are one-dimensional
and must therefore rely on a complex syntax for representation, something that is not necessary in the case of
diagrams.

IFractals (Manbelbrot 1982) might be able to yield compact representations for some complex shapes such as coastlines, etc., but the
equations generating the fractals would be no more homomorphic to the corresponding shapes than other sentential descriptions.

?In the limiting case, of course, the ultimate representation of an object is the object itself; in that case we have a perfect isomorphism
between the representation and the object represented.

Nevertheless, it is important to keep in mind that two-dimensionality by itself is neither a necessary nor a
sufficient condition for being a diagram. For instance, as Hammer (Hammer 1995) points out, a representation
of a picture by a two-dimensional array of numbers encoded under some encryption scheme does not classify as
a diagram; there is no structural similarity between the representation and that which is being represented. And
by making sufficiently clever conventions, one can very well construct intuitive one-dimensional diagrams.
E.g., the following string expresses the fact that the stretch of road between Park Avenue/35th Street and
Park Avenue/36th is two-way, whereas that between Park Avenue/36th and Park Avenue/37th is one-way and
proceeds from right to left:

Park/35th <==> Park/36th <== Park/37th

Owing to their representational power, diagrams are extensively used in a very wide range of fields. To note
just a few examples, witness free-body, energy-level and Feynman diagrams in physics (Veltman 1995), arrow
diagrams in algebra and category theory (Pierce 1991), Euler and Venn diagrams in set theory, function graphs
in calculus and analysis, planar figures in geometry, bar-, chart- and pie-graphs in economics, circuit, state and
timing diagrams in hardware design (Johnson, Barwise and Allwein 1996), UML diagrams in software design
(Rumbaugh, Jacobson and Booch 1999), higraphs in specification (Harel 1988), visual programming languages
(Chang 1990) and visual logic and specification languages (Agusti, Puigsegur and Robertson 1998, Hirakawa,
Tanaka and Ichikawa 1990, Ogawa and Tanaka 2000), transition graphs in model cheé&kagl,(Bidoit,

Finkel, Laroussinie, Petit, Petrucci and Schnoebelen 2001), ER-diagrams and hypergraphs in databases (Fagin,
Mendeizon and Uliman 1982), semantic networks in Al, graphical user interfaces (GUIs) such as Xerox Parc’s
“Magic Lenses” (Bier, Stone, Pier, Buxton and DeRose 1993), and so on. As the capability of computers to
store and manipulate diagrams improves, their use is likely to increase.

Diagrams are not without drawbacks. While they often excel in depicting particular, concrete objects or
situations, they are usually not as good for describing general, abstract structures and relationships. Roughly,
the smaller and more concrete the class of models captured by a diagram, the more successful the diagram
is likely to be. Spatial constraints tend to pull diagrams toward over-specificity, and end up limiting their
generality and expressiveness as a result. To take an extreme example, diagrams cannot express tautological or
contradictory informatiorf]

Expressive limitations can lead to incorrect inferences. It is known that Euler circles (Euler 1768), for
instance, are unsound. This follows from Helly’s theorem in convex topology (Eggleston 1969). A simple
illustration of the problem, due to Lemon and Pratt (Lemon and Pratt 1997), is the following: consider four
setsA, B, C, andD, any three of which have non-empty intersections:

ANBNC #0;
BNnCND#0;
ANCND#0.

These are three perfectly consistent premises. But any Euler diagram that tried to depict them graphically would
lead to the incorrect conclusion that all four sets have a non-empty intersection (i.d.th&nN C N D #

), which does not follow from the premises. This is a consequence of a special case of Helly’s theorem,
which states that if any three out of four convex regions have a non-empty intersection then all four must have
a non-empty intersection. Similar negative results hold for other diagrammatic ways of depicting sets and
relationships between them, such as Englebretsen’s linear diagrams (Englebretsen 1992); see Lemon’s article
(Lemon 2002) for a thorough discussion.

3pjerce diagrams can be viewed as a counterexample, but those rely on so many ad hoc conventions that they cannot be said to be
analogical representations.

The complexity of diagrammatic reasoning is another issue. Roughly, there are two types of diagrammatic
inference. In one of them, exemplified by Euler circles and Venn diagrams, inference is carried out by drawing
appropriate diagrams and then reading off the appropriate bits of information from the constructed picture.
This type of diagrammatic inference is summarized by the slogan “If you can draw it, it Iﬁldst.he second
type of diagrammatic inference, exemplified in systems such as Hyperproof and in ounawnikference is
carried out in a more traditional sense, by deriving new diagrams from diagrams that are given as “premises,”
or by extracting sentential information from given diagrams. Computational complexity issues have been
rigorously investigated for the former, but not for the latter. E.g., for the former, it has been realized that results
obtained in studying the complexity of topological inference (Grigni, Papadias and Papadimitriou 1995) have
a direct bearing on the complexity of drawing diagrams such as Euler circles, and hence on the first type of
diagrammatic reasoning. For instance, it has been shown that propositional reasoning with Euler sets is NP-
hard, even though reasoning about the same domain can be done polynomially using other representations
(Lemon 2002). In the present work, it will be seen that even thoM@nZ proofs (Arkoudas n.d.a) can be
checked for soundness @(n log n) time in the worst case (whereis the size of the proof), checkingWp
proofs can take exponential time, although it should be noted that in our case most of the complexity derives
from dealing with unknown (incomplete) information. It would appear, therefore, that visual inference, at least
in some cases, can be significantly more expensive than corresponding sentential r@soning.

For these and other reasons, researchers have concluded that logical reasoning framework$etust be
erogenerou®r hybrid (Barwise and Etchemendy 1995a, Myers 1994): they must support both diagrammatic
and sentential modes of representation and reasoning, allowing users to freely combine the two. In the attempt
to formulate a generic framework for heterogeneous reasoning, one naturally confronts the question of what
type of diagrams to use. As Barwise and Etchemendy correctly observe (Barwise and Etchemendy 1995a), it
would be impossible to construct a domain-independent framework for diagrammatic reasoning that relied on a
specific type of diagrams. What makes a class of diagrams appropriate—i.e., good analogical representations—
for certain problems might make them inappropriate for others. In the example of Barwise and Etchemendy,
at different times electrical engineers use state diagrams, circuit diagrams, and timing diagrams to represent
and reason about hardware as needed by the appropriate viewpoint at hand (control, logic gates, or timing,
respectively). There is no single type of diagram that is uniformly appropriate.

Nevertheless, we observe that much of what we do when we reason with or about diagrams does not depend
on how diagrams are drawn or even on what they mean. In this paper we identify what is common in a great
variety of instances of diagrammatic reasoning, and proceed to factor it out and extrapolate it into general
principles. In the resulting framework, the type of diagrams used may vary from application to application,
but the principles by which we reason with and about diagrams remain the same. This is not unlike other
separations that are familiar from traditional, sentential logic: our vocabulary might vary from application to
application (we have different constant, relation, and function symbols as dictated by the problem domain), and
the interpetation of the atomic formulas that we can build from that vocabulary will also vary, but the general
principles by which we reason with such formulas do not change.

4For instance, to check the validity of a syllogism with a Venn diagram, all we have to do is draw a figure that represents the premises
of the syllogism. When done, the picture itself will tell us whether or not the conclusion follows; nothing further needs to be done. Hence,
inference in such cases stops with the representation of the premises. In customary reasoning, by contrast, inference aftér tegins
premises have been represented. This is related to the noticreafdes(Shimojima 1996) in diagrammatic reasoning.

5There are alternative viewpoints, however. Al researchers have put forth the notimddénowledge basg&therington, Borgida,
Brachman and Kautz 1989, Levesque 1989), in which deductive retrieval can be performed particularly efficiently. Such knowledge bases
consist only of ground sentences, ground inequalities, and universal quantifications. Etherington et al. (Etherington et al. 1989) claim that
“the notion of vivid representations ... corresponds well to the kind of information expressed in pictures” and that “much of the information
we gain (i.e., perceptually) occurs naturally in vivid form.” Likewise, Levesque (Levesque 1989) states that “perhaps the main source of
vividly represented knowledge is pictorial information.” If that is indeed the case, one would expect pictorial reasoning to be efficient.
Lemon (Lemon 2002), however, argues that such claims fail to take into account the type of spatial constraints that limit the expressiveness
of diagrammatic representations.

1.2 Notation

For any setsd andB, A \ B denotes the set-theoretic differencedéind B:
A\B={zx€ A|z ¢ B}.

We write (a; b) for the ordered pair that hasandb as its first and second component, respectively. For any
n > 0 objectszy, ..., z,, [x1 - z,] is the list that hag; as itsith element. Given a list. = [€1 - x,] and
1€ {1,...,n}, we write L(i) to denotez;. Further, for any suclh and object:, we define

Podz,L)={ie{l,...,n} |z =2;}.

Accordingly, if z does not occur it thenPogz, L) = 0. If Ais a set, themd* is the set of all lists of elements
of A.

The empty list[] is a sublistof every list; no non-empty list is a sublist §f while a list of the form
L =[xy zo---x,] is a sublist of a list of the fornl’ = [y1 ya - - yum] iff (1) 21 = y1 and [z ---2,] is @
sublist of[ys - - - ym]; Or (2) 1 # y1 and L is a sublist offys - - - Y]

For any setd, we write P, (A) for the set of all finite subsets of. Whenn is a positive integerA™
denotes the cartesian product

/_L
AX--- XA,

i.e., the set of all lists of length with elements drawn fronAE] Given a (partial) functiorf : A— B and
elementst € A, y € B, f[z — y] denotes that function from to B which mapse to y and agrees witlf on
every otherr’ € A. More precisely:

(f\A{(z; f()}) U{(z;y)} if fisdefined for;
fullzy)} otherwise.

.
ForA’ C A, f | A’ denotes the restriction df on 4’, i.e.,

FrA ={(x;9)| f(x)=y andz € A'}.
Finally, for an arbitrary relatio® C A; x --- x A,,, D(R) denotes the s€t4,, ..., A,}.

1.3 Attribute structures and systems

Definition 1: An attribute structure is a pairA = ({41,...,Ax}; R) consisting of a finite collection of
setsAy,..., A, called attributes; and a countable collectio® of computable relations, witth(R) C
{Ay,..., Ay} foreachR € R.]

An attribute structure is thus a type of regular heterogeneous algebraic structure (Meinke and Tucker 1992,
Wechler 1992) (without any operators) whose carriers are called “attributes” for reasons that will become clear
soon. We will tacitly assume tha@ includes the identity relation on each attributg {(a;a) | a € A4;}.

We assume that there is a unidabel /; attached to each attributé; of a structured. A label will serve
as an alias for the corresponding attribute. Further, when the relatichsua immaterial, we identifyd with
its attributes. We can then writd simply asl; : A1, ...,[l; : Ax, wherel; is the label of4;. The number of
attributesk is thecardinality of A, denoted by.A|. We say thatA is finite iff every attribute ofA is finite.

bwith A1 = A.

Definition 2: Let A be any attribute structure. Aattribute system based onA, or A-system for short, is a
pair
S=({s1,---,8.};A)

consisting of a finite numbet > 0 of objects sy, ..., s, and.A. An attribute of.4 may include some (or all)
of the objectssy, ..., s,,. If that is the caseS$ is calledautomorphic. We refer to the produat - |.4| as the
system’spower. [|

When A is obvious from the context or immaterial, we drop references to it and speak simply of “systems”
rather than A-systems.”

Example 1: Consider a system consisting of a clagkvith two attributes, hours and minutes:
({c};hours: {0, ...,23}, minutes: {0,...,59}).

Another system based on the same attribute structure might consist of two elaukdc,, perhaps indicating
New York and Tokyo times, respectively:

({c1,ca};hours: {0, ..., 23}, minutes: {0, ...,59}). m
Example 2: Consider a system comprising the nodes of a three-element linked list, each with two attributes,
adatafield consisting of a Boolean valuedr f) and anextfield consisting of another node or the null value:
({n1,n2,n3}; data: Bool, next: {ny,ng, ng, null}),
whereBool = {t,f} andnull is a special token distinct frofy1, no, n3}. This is an automorphic systemm

Example 3: Consider a blocks-world system consisting of three bla¢k®, andC, and a single “position”
attribute, where a position is either a block or the floor:

({4, B,C};pos: {A, B,C,floor});
andfloor is distinct fromA, B, andC'. This system is also automorphic. |

Example 4: Consider a Hyperproof (Barwise and Etchemendy 1995b) system consisting of four blocks and
three attributes: a pair of integefs j) with 0 < 4,5 < 9 indicating a grid location; a size (small, medium, or
large); and a shape (cube, tetrahedron, or dodecahedron):

({b1,b2,b3,bs};l0C: {1,...,8}% size: {small mediumlarge}, shape: {cube tet dodegd) ™

Definition 3: A stateof a systemS = ({s1,...,sn},{41,...,4x}) is a set of functions = {d1,...,0x},
where eacld; is a function from{sy, ..., s, } to the set of all non-empty finite subsets4, i.e.,

8i i {51, 8n}t— Poo(A4;) \ 0.

We refer to each; as the state’'ascription into A;. An ascriptiond; is avaluation if it maps every object to
a singleton, i.e., ifd;(s;)| = 1 for everyj = 1,...,n. We may thus view a valuation as mapping every object
to a unique attribute value. ¥orld w is a state in which every ascription is a valuation.]

ni n2 ns

Figure 1.1: A linked list world.

A system that is based on a finite attribute structure has

k
H ol Ai|=1)" _ o(X i (1Ail=1)")

i=1

states, where is the number of objects aridthe number of attributeE] To simplify notation, wherb is a
valuation that maps an objestto a singleton{a}, we write §(s) = a instead ofdé(s) = {a}. Further, we
will often use the label; of an attributeA; to denote the corresponding ascription ilta That is, we are
overloading the label symbols: sometinigsvill stand for the attributed; and sometimes, in the context of
a given state, it will stand foé;, the state’'s (unique) ascription intd;; the context will always make our
intentions clear. As an additional convention, given a statéthe form described in Definitidr 3, an attribute
(label)!; and an object;, we writeo(1;, s;) for d;(s;), i.e., the value of the ascriptiah for the objects;.

Our notion of systems and states is similar to the corresponding notions in the model checking field (Clarke,
Grumberg and Peled 1999¢Bard et al. 2001), where a system is represented by a collection of variables and a
state of a system is modeled by an assignment of a value (drawn from an appropriate domain) to each variable.

Example 5: Consider the single-clock system of Exanigle 1:
({c};hours: {0, ...,23}, minutes: {0,...,59}).
A stateo; of this system is given by the following two valuations:
o1 : hourqc) = 15, minutesgc) = 47,

indicating a time of 3:47 p.m. This is a particular world of the clock system. Using the aforementioned
convention, we can also write:

o1(hours ¢) = 15, 01 (minutesc) = 47.

Suppose we know that it is between 2:30 and 3 past midnight, but do not know exactly how many minutes
past 2:30 it is. This state of knowledge can be captured by the following state:

oy hourqc) = 2, minutegc) = {31,...,59}.
This state can also be expressed by writing

oa(hours ¢) = 2, oa(minutesc) = {31,...,59}.
Complete lack of information about the time is represented by the state:

hours= {0,...,23}, minutegc) = {0,...,59}.

7Our term “system state” corresponds roughly to what Barwise et al. (Barwise and Etchemendy 1995b) refer to as “situation.” Our
notion is much more general, as will be seen.

Example 6: Consider the linked-list system of Example 2. The state
data(n) = t,data(ns) = f,data(ns) = t,nex{n,) = nz, nex{ny) = ns, nex{nz) = null
depicts the world shown in Figure]1.1. The state
data(n,) = {t,f}, data(ns) = {t,f}, data(ng) = f,nex{ny) = ne, next(nz) = {n1,n3}, nexins) = null

depicts a system in which we do not know the data fields of the first and second nodes, we know that the next
field of the second node is eithey or ng, and we have fixed values for the remaining nodes and attribmtes.

Example 7: Consider the blocks world system of Examjple 3. The state
pogA) = B, pog B) = floor, pogC) = floor
depicts the blocks world shown in Figure[1.2. The state
pogA) = {A, B, C,floor}, pog B) = {A, B, C,floor}, poqC) = {A, B, C,floor}
signifies complete lack of information about the positions of the blocks.]

Example 8: Consider the Hyperproof system of Examjple 4. The state

loc(b1) = (1,1) sizgb;) = {small mediun} shapgbi) = cube
loc(b2) = (5,3) sizgb) = small shapégbs) = tet
loc(bs) = (2,6) sizgbz) = large shapgbs) = {tet dodeg
loc(bs) = {(7,1),(7,2),...,(7,8)} sizgby) = medium shapéby) = dodec
should be self-explanatory at this point.]

We might think of system states as mental models of situations, representing various states of knowledge
ranging from completely specific to completely general.

Definition 4: Consider a syster¥ = ({s1,...,8,};l1: A1,...,lx : Ax). We say that a state’ of S is
an extensionof another such state, written o’ C o, iff ¢’(l;,s;) C o(l;,s;) for everyi = 1,...,k and
j=1,...,n.[| We callo’ aproper extensionof o, denoteds’ o, iff o' C o ando Z o’ [

Hence,c’ is a proper extension aof iff ¢/ C o and there is at least one attribut@and objects such that
a'(l,s) C o(l, s). Worlds do not have any proper extensions.
Consider, for instance, the system of Exanfiple 1:

({c1,c2};hours: {0,...,23}, minutes: {0,...,59}).

The state
hours(c;) = {13,14},
minute$(c;) = {55}, (1.1)
hours(cy) = {6,7},
minute$(cz) = {9,10},

8The terminology sounds somewhat paradoxical, since an extension of a state is one thafessigusibute values to each system
object, thereby making our knowledge of the system more specific. This is similar to the terminology of object-oriented class hierarchies,
where we say that “human” is an extension of “mammal” to mean that the former is in fact a subset of the latter.

Figure 1.2: A blocks world.

is an extension of the state

hourge;) = {13,14,15},

minutegc;) = {55}, (1.2)
hourdce) = {6,7},

minutegcy) = {9,10,11}.

The set of all states & is arranged into a rich partial order corresponding to the join (union) semi-lattice

(POO(AI)\@) XKoo X (POO(Ak)\(Z))'

We do not have a lattice because the meet of two states might not exist. This is related to the proviso of
Definition[3 that ascriptions must map system objectadn-emptysets of attribute values, and ultimately
stems from the expressive limitations of pictures. Given that diagrammatic ambiguity is part and parcel of our
system, a join operatat on diagrams is fairly natural: for any attributand objects, we set

(o1 Uo2)(,s) =01(l,8) Uoa(l, s).

This is precisely the least upper bound of the two states w.r.t. the orderirBut a meet operaton would
indicate conjunction, and conjoining diagrams with contradictory information is not pictorially meaningful.
For instance, if an objecthas a round shape in diagramand a square shapedf:

o1(shapes) = round
os(shapes) = square

then what is the shape efis o1 M 05? If we were to define meets as
(o1 Mo2)(l,s) =01(l,s) Noa(l,s)

then we would haver; M oo(shapes) =), an impossible state of affairs. This is why some researchers
have argued that diagrams are essentially an impoverished form of sentential representations (Sober 1976).
Sententially, we can very well construct a formula that asserts

shapés) = roundA shapégs) = square

but, diagrammatically, we canndtaw a square circle. This, in turn, is due to the fact that negation is not
diagrammatically meaningful. If we had a negation operatan diagrams then conjunction could be defined
simply aso; Moy = —(01 Uos). But negating a diagram could of course take us to the empty set if the starting
value comprised the entire attribute space.

If we admitted a special “null diagram” indicating an inconsistent state, then we could define complemen-
tation and indeed joins and meets on diagrams, and we would obtain not just a lattice but a Boolean algebra
isomorphic to sentential logic. Indeed, a mappiigfrom states to first-order sentences can be defined in
a straightforward way, assuming we have chosen some binary predicate syifooleach attributé and
appropriate constant symbols for the attribute values and system objects. We set:

n

M@)= NN\ V Al

i=1 [l€EL a€l(s;)

wheresy, ..., s, are the system objects aridhe set of all labels. E.g., the conjunction of the four senteces

[hourg(cq1, 13) V hourgcy, 14)] A minutegc;, 55)
[hourgcs, 6) V hourgcs, 7))] A [minuteges, 9) V minuteges, 10))

would correspond to the stafe ([L.1). The mappifigvould then be a homomorphism:

M(—a) = ﬁM(O’)
M(O’ll_|0'2) =]\/[(Ul)VM(O'Q)
M(O'1|_|02) = M(O’l)/\M(O'Q)

1.4 Interpreting first-order languages into system states

Consider a first-order vocabula¥y= (C, R, V) consisting of a set of constant symb@tsa set of relation sym-
bolsR, with eachR € R having a unique positive arity; and a set of variablesAn attribute intepretation

of 3 into an attribute structurel = ({I; : 41,...,l; : Ax}; R) is a mappingl that assigns, to each relation
symbol R € R of arity n:

1. arelationR! € R of some aritym, called therealization of R:
R C Ay x---x A,
(where we might have: # n); and

2. alist of m pairs
[(lil)j1)7) (lzmvjm)]
called theprofile of R and denoted bfProf (R), with 1 < j, < nforeachz =1,...,m.
As will become apparent soon, an attribute interpretation differs from a normal interpretation in that atomic
formulas over system objects are “compiled” via profiles into atomic formulas over selected attribute values of
(some of) those objects. Accordingly, an atomic statement concerning system objects must be understood as

an atomic statement concerning certain attribute values of those objects.
In what follows, fix a sighatur& = (C, R, V), an attribute structure

A={l1: A, ol Al R)

and an attribute intepretatianof X into A.

Suppose now that we are given dnsystemS = ({s1,...,s,};A4). We define econstant assignment
as a partial functiop from C to {s1, ..., s, }; while avariable assignmentis a total functiony from V to
{s1,...,sn}. We writeDom(p) for the domain of a constant assignment.e., the set of all and only those
constant symbols for whichis defined. A total constant assignment will usually be writtep,agith the hat
indicating that the mapping is total. We will say that two constant assignmerasd p, have aconflict iff
there is some € Dom(p,) N Dom(p,) such thap, (c) # p,(c). Therefore, ifDom(p,) O Dom(p,) thenp,
andp, have a conflict iffp; 2 ps.

FormulasF overX. are defined as usual, with a ternbeing either a variable or a constant symbol. We
omit definitions of standard notions such as free variable occurrences, alphabetic equivalence, etc. The set of
variables that occur free in a formufais denoted bV (F'). We regard alphabetically equivalent formulas as
identical. A sentence is a formula without any free variable occurrences. For any, teendefine”X asp(c)
if ¢ is a constant symbeland asy(v) if ¢ is a variablev. Sincep is a partial function{”* may be undefined.

By a named statewe will mean a pair(o; p) consisting of a state and a constant assignmemt We
say that a named state’; p’) is anextensionof a named statés; p), written (¢’; p') C (o; p), iff o’ is an
extension obr (i.e.,o’ C o) andp’ D p (viewing the partial functiong andp’ as sets of ordered pairs). Note
thatC is covariant on the state components but contravariant on the constant assignments. Weg saythat
is aproper extensionof (o; p), written (o’; ") T (o3 p), iff (o/;p') C (0; p) and eithers’ = o or p’ D p.
Further,(o’; p') is afinite extensionof (c; p) iff (¢/;p’) C (o3 p) and the difference’ \ p is finite. We write

o0 o0

(o';p") C (o3 p) (or (0/;0") C (03 p)) to indicate thato'; p’) is a finite extension (respectively, a finite proper
extension) of(c; p). A named statéo; p) will be called aworld iff ¢ is a world (every ascription of is a
valuation) andp is total.[ﬂ As before, worlds do not have any extensions(dif, o) C (o; p) we might say
that (¢’; p’) is obtainable from(o; p) by thinning, or conversely, thafo; p) is obtainable from(¢”’; p’) by
widening. By anassumption bases we will mean a finite set of formulas. éontextis a pairy = (3; (o; p))
consisting of an assumption bagend a named statgr; p). Note that since the identity relation on each
attribute is required to be decidable (by the computability proviso of Defirifion 1), the relatismiecidable
as well.

Lemma 1: The relation C is a quasi-order on named states, i.e., it is reflexive and transitive.

We will now show how to assign a truth value—or an “unknown” token—to any forrmiulgiven a named
state(o; p) (of an A-systemS = ({s1,...,s,};.A)) along with a variable assignmegt This is done by
formally definining a mapping](g; 0)/x from the set of all formulas to the three-element set

{true, false unknown}

as follows.
First consider an atomic formul&(t¢y,...,t,), where R is a relation symbol of arityr» and profile
[(lil ,jl), ey (limajm)]- We set
true if Vo €Ly (t9%) -V aum €L, (157%) . R (0, ..., cm);
I, p)/X(R(th <o ta)) =4 false itV ar €liy(#0%) Y am €y, (t7%) . -Ri(ay,...,om); (1.3)

unknown otherwise.

In the first two cases above we tacitly assume—in the interest of readability—t;p.agma; defined for every
x=1,...,m. If not, then the value of(g; p)/X(R(tl, ..., tn)) isunknown.

Note that the occurrences of the symban the right-hand side df (1.3) occur as part of our metalanguage
and should not be confused with object-level occurrencesiof ViviD formulas. We will continue to use

9This also overloads the term “world”: sometimes it refers to a state and sometimes to a named state. Again, the context will always
disambiguate the use.

10

object-level symbols in different capacities without explicitly calling attention to the distinction; the context

will always clarify the use.

Sentential combinations of formulas are interpreted according to the strong three-valued Kleene scheme

(Kleene 1952). For instance:

true if I(U;p)/X(Fl) = true andl(g;p)/X(Fg) = true;
(F1 A Fp) =< false if I(U;p)/X(Fl) = falseor o, p)/X(Fg) = false
unknown otherwise.

Los p)/x

Finally, quantified formulas are evaluated as follows:

true if I(U;p)/X[UHSi](F) = true foreveryi € {1,...,n};
I(U;p)/X(VU .F) = false if I(O’;p)/x[w—»si](F) = falsefor somei € {1,...,n};
unknown otherwise.
and
true if 1, p)/X[UHSi](F) = true for somei € {1,...,n};
I, p)/x(ﬂv .F)y=<¢ false if es p)/X[UHSi](F) = falsefor everyi € {1,...,n};

unknown otherwise.

(1.4)

1.9)

(1.6)

The following result is proved by a straightforward induction on the structuié. df is the three-valued-
logic version of the standard coincidence theorem of universal algebra and logic, which states that two variable
assignments that agree on the free variables of a forfiadee indistinguishable for the purposes of determin-

ing the truth value of".
Lemma 2: If x,(v) = x,(v) for every variable v that has a free occurrence in F', then
Lo p) 1, (F) = Lo), (F):
Lemma 3 (No unknowns in worlds): For every world (w; p), variable assignment x, and formula F,
T(w;)¢ (F) # unknown.
Le., in a world every formula is either true of false.
PROOF. A straightforward induction on the structure bf
Lemma 4 (Thinning preserves truth values): If (¢’; p’) C (o; p) and

(5. p)/x (F) # unknown

then I(o’;p’)/x(F) = I(g;p)/X(F)'

PrROOFE By structural induction orF'. For the basis case, suppose thdt an atomic formuldR(t, . .

whereR has a profilg(l;,, j1), - . ., (li,,, jm)]. From [1.3), the assumption

(5. p)/x (F) # unknown

entails that the termg’*, ..., ¢/ are all defined, and further, that either

Vai € lil (té)ix) - Ya, € lim (t;’f) . RI(OQ, Ceey Oém)

11

N ,tn);

(1.7)

or
Vg €L, (t9%) -V am €L, (t7%) . <R (a1, ..., o). (1.8)

. . . / / .
Sincet?”X, ..., % are all defined angd’ is a superset of, the terms/, *X, ..., "X are also defined. Further,
sinces’ C o, we have

Ly (85,%) © 1y (87,7%), - 0, (85%) S, (85 7%),

and since) ,
P X _ 1PX P X _ 1P:X
b =t =t
we have) ,
U, (t87%) Sl (5%), - 1, (%) C L, (897,

Jm Jm
Hence it follows that if[(L]7) is the case then

Vay €U, (t9%) -V am €l (t7X). R (an,...,am), (1.9)
and thereford . 1)\ (F) = Lo, py), (F) = true; while, if) is the case, we have

Vo €1, (t%) Y am €], (15) . ~R' (o,), (1.10)
and thereford /. p')/X(F) = I(4; p)/x (F)) = false The inductive cases are straightforward.]

Example 9: Consider the signatu®; = (Cgjock Relocks Velock) Where the set of constant symbols is
Celock = {C1,C2,...}
the set of variables ¥¢jgck = {X1, X2, . . .}, and the set of relation symbols is
Relock = {PMAM Ahead, Behind },

with PM AMunary andAhead, Behind binary.
Consider now the attribute structure

Clock= (hours: {0,...,23}, minutes: {0,...,59}; { R, Ra, R3, R4}),
whereR; C hours Ry C hours
R3 C hoursx minutesx hoursx minutes

R4 C hoursx minutesx hoursx minutes
defined as followsR; (h) < h > 11, Ra(h) & h < 11,
R3(h1,mq1, ha,ma) < hy > ha V (hy = ha Ay > ms),
and
Ry(hy,my, ha,ma) < hy < hs V (hy = ha Amy < ms).

We define an interpretatiohof X, into this attribute structure by specifying a unique relation (in the struc-
ture) and a unique profile for each symbolRgge. In particular, we sePM = R, AM = R,,Ahead’ =
Rs3,Behind ! = R, and:

Prof(PM = [(hours1)];
Prof(AM = [(hours1)];
Prof(Ahead) = [(hours1), (minutes1), (hours2), (minutes2)];
Prof(Behind) = [(hours 1), (minutesl), (hours 2), (minutes2)].]

12

Example 10: Consider the systerf{c1, ¢ }; Clock), whereClockis the attribute structure of Examgle 9. Let
o be the following state of this system:

hourc;) = {9,13},
minutegc;) = 12,

hourdc) = 8,
minutegcs) = 27,

and letp be the partial constant assignment that mapgo ¢; andc, to co. We claim that the sentence
Ahead (cy,c2) is true in(o; p) for any variable assignment Indeed, consider an arbitragy Recalling the
profile of Ahead, definition [1.3) tells us that in order to have

(5. p)/x(Ahead(cy, Cc2)) = true

we must haveR(aq, as, as, aq) for all

a; € hourdc!* =¢y) ={9,13},
az € minutegc)X = ¢1) = {12},
a3 € hourdchH* = c¢y) = {8},

as € minutegchH™ = co) = {27},

i.e., we must havérs (9,12, 8,27) andR3(13, 12, 8, 27). Both of these hold according to the definition/®f,
since9 > 8 and13 > 8.

As another example, the sentef®qc,) A =PMc,) evaluates tanknown in (o; p), despite being patently
inconsistent, because, intuitively, (&; p)we do not know whether, is prior to midnight or after it (one pos-
sibility is 9, which is a.m., and the other is 13, which is p.m.). Theref@h¢) evaluates tainknown, hence
-PMc,) also evaluates tanknown, and therefore their conjunction evaluatesit.known as well. It is in-
structive to see why, precisegMc) evaluates tainknown. Recall that the interpretation &Mis the unary
relation Ry, which holds of a given houi iff 4 > 11; and that the profile oPMis [(hours 1)]. Accordingly,
for PMc) to be true in(c; p) (and arbitraryy), we must haveR; (a;) for all

a; € hourdc!™ = ¢;) = {9,13},

i.e., we must have > 11 and13 > 11, which is clearly false. Likewise, fdMc) to come oufalsein (c; p)
andy, we must have-R; (9) and—R; (13), which is also false. Accordingly,

I(5; p)/x(PMC1)) = unknown

by (1.3). =

The following is a direct consequence of the finite size of the ascription values, the finite number of system
objects, and Lemnq 2.

Lemma 5: I(J; 0)/x is computable for any named state (o; p) and variable assignment x.
Definition 5: A world (w; p) satisfies a formulaF w.r.t. a variable assignmeptiff
I

w; p)/x(F) = true.

13

We denote this by writindw; p) =, F'. Likewise, we say that a worltw; p) satisfies a named statéo; p)
iff (w;p) C (o;p). This is denoted byw;p) = (o; p). We say thatw; p) satisfies a contexty = (3; (o; p))
w.r.t. a giveny, written (w; p) =y v, iff (w;p) =y F foreveryF € gand(w;p) = (o; p). Finally, we say that
a context~ entails a formula F, written~ = F, iff (w;p) =, v implies (w; p) =, F for all worlds (w; p)
and variable assignments Likewise,v entails a named statdo’; p’), written~y = (o’; p’), iff, for all worlds
(w; p) and variable assignments we have(w; p) = (o'; p’) wheneverw; p) =y 7.]

Lemma 6 (Weakening): If (3; (o;p)) = F then (3U 3'; (03 p)) = F; and if (3;(0;p)) = (0;p') then
(BUB(0;0) = (075 0).

Lemma 7: If (8; (3 p)) |= (0”5 p") and (B; (0”; p')) |= F then (3; (03 p)) |= F.

PrROOF. Pick any world(w; p) and variable assignmegtand suppose that

(w; p) Fx (85 (05))- (1.11)
Then, by the assumptidip; (c; p)) E (o'; p'), we conclude
(w;p) = (0’5 0). (1.12)
From [1.11) and (1.32) we infer
(w; p) =x (B; (075 p")- (1.13)
Finally, (1.13) and the assumpti@fi; (o’; p')) |= F imply (w; p) = F. n

Lemma8: (5; (03 p)) = (03 p).
Lemma 9: (B U {false}; (o;p)) = (o’; p').
PrROOF Pick any world(w; p) and variable assignmegt and assume
(w; p) Fx (B U {false}; (o5),
so that(w; p) =y false But, by definition,
I

w;)/ (false) = false,

and the contradiction entitles us to infer; p) = (o’; p'). |
Lemma 10: If (3; (05 p)) = (05 p') and (o'; p') T (0”; p") then (B; (03 p)) = (0”5 p").

PrROOF Pick any world(w; p) and variable assignmegtand suppose that

(w; p) Ex (B; (035 p)), (1.14)
so that
(w; p) C (03 p) (1.15)
and
I(w; ﬁ)/X(F) = true (1.16)

for all F € 3. From the assumptiof; (c;p)) = (0’;p') and [1.14) we obtaitiw; p) = (¢’; p’), which
is to say(w; p) C (o’; p'). Finally, (w;p) C (¢’;p), the assumptiofio’; p') C (¢”; p”") and Lemm4 [yield
(w; p) E (0" p"), 1.8, (w; p) |= (" p"). =

14

Corollary 11 (Widening is sound): If (o; p) C (¢’; p’) then (53; (o; p)) |E (075 p').
PROOF By Lemma$,(0; (7: p)) = (0: p), hence, by Lemmia1Qp: (o p)) = (o' ') n
Next we formalize the important notion of alternative extensions.

Definition 6: Let 1,04 be proper extensions of a state We say that, is analternative extensionof o
with respect tary, writtenAlt(o, 01, 02), iff there is an attributé and an object such that:

1. o1(l,s) Ca(l,s);
2. o3(l,8) =0o(l,8)\ o1(l,s); and
3. for all attributed’ and objects’, if I’ # [or s’ # sthenoy (I, s") = o(',).]

It follows immediately that if such an atribute and object exist, they must be unique.

As a simple example, consider a system consisting of one objeith two attributes, color and size, and
suppose that stipulatesed, green andblue as the possible color values ofindlarge, medium andsmall
as its possible size values; and supposedhaixtendss by limiting the color values of to greenandblue
and its size temall:

sizds)

color(s)

.

large
medium

color’(s) sizé(s)

What counts as an alternative extensiom of.r.t. o1 ? Considering thai, essentially states that the color«of
is either green or blue and that its size is small, we could differ from it in one of the following respects:

Color of s Sizeof s
{red} {large, medium}
{red} {small}

{green blue} | {large, medium}
{red} {large, medium}

That is, we could either choose to (1) disagree with the color, and either disagree or agree with the size (the
latter choice is immaterial in light of the first disagreement), resulting in the top two rows of the table above, or
(2) disagree with the size and either agree or disagree with the color (again, this being immaterial), which leads
to the third and fourth rows. Given that set memberhip represents disjunctive information, we can collapse the
first two and last two possibilities, obtaining:

Colorof s Sizeof s
{red} {small, large, medium}
{red, green blue} {large, medium}

15

These are the only two alternative extensions @i.r.t. ;. In general, given an arbitrary extensienC o,

we can effectively construct all alternative extensions @f.r.t. o;. There aren such extensions, where is

the number of attribute-object pairs (or a.o. pairs for sh@rty) such that (I, s) # o(l, s), or equivalently,

such thatr (I, s) C o(l, s); i-e., the number of pairs of attributes and objects whose corresponding ascription
values changed in going fromto o;. We can generate the alternative states by taking the complement of the
ascription value of each such pairdn B (clause 2 of DefinitionE]6) while reverting the other — 1 pairs to
their o values (clause 3 of Definitidr] 6).

We stress that in determining the alternative extensionswfr.t. o, we only consider those objects and
attributes that are changed by. We ignore those ascription assignments that remain the same in going from
o to 1. As another example, there are two states that are alternative extension$ of (1.2) wir.t. (1.1). In one of
them we keep the originddoursvalues ofe; ({13, 14, 15}) but complement theninutesvalue ofc, to obtain
{11}; while in the other alternative we keep the originahutesvalue ofcs ({9, 10, 11}) but complement the
hoursvalue ofc; to obtain{15}. In both cases theminutesof ¢; andhoursof ¢ remain the same as in the
original state[(1.2), as neither of them was modifiedby] (1.1).

Lemma 12: If w,o’ C ¢ and w £ o’ then there is some ¢’ C o such that Alt(o,c’,0"”) and w C ¢”. In
words: if a world w and a state o’ both extend o and w does not extend o', then there is an alternative
extension o'’ of o w.r.t. o' such that w extends o"'.

PrROOE Since bothy’ andw are extensions af, we have
a'(l,s) Co(lys) (2.17)

and
w(l,s) Co(l,s) (1.18)

for every attributd and system object Further, sincev IZ ¢, there exist an attribute and an object; such
thatw(l;,s;) € o’(l;, s;), i.e., there is some attribute valuesuch that

a e w(l,s;) (1.19)
and
add(l;,s;). (1.20)
Moreover, sincev is a world we havev(l;, s;) = {«}. From [1.19) and (1.18) we infer
acoa(ls,s;). (1.21)
From [1.21),[(Z.200), an@ (1.1L7) we obtain
o' (l;,85) Co(ls, s5). (1.22)
Now defines” C ¢ as follows:
o"(ls,85) = o(li; s5) \ o' (li, 55) (1.23)

while for every attributé and objects such that # [; or s # s;, set
o (l,s) =0o(l,s). (1.24)

It follows by construction (specifically, from (1.p2), (1|23), apd (1.24)) tato, o', o). Further,w C o”.
To see this, consider any attributand objects. Either! = [; ands = s;, or not. In the former case we have
w(l,s) = {a}, so from [1.2B),[(1.91), anfl (1.20) we conclude o (I, s), hencew(l,s) C ¢”(l,s). In the
latter casew(l, s) C o”'(1, s) follows from (1.24) and[(1.18). m

10The complement with respect to the corresponding ascription vakie in

16

We now generalize the foregoing notion of alternative extensions so that it obtains w.r.t. to several states instead
of just one. We will see that the new definition (Definit[dn 9 below) subsumes the one given above.

Definition 7: A list of m > 1 a.0. pairs[(l1;s1) - - - (Lin; $m)] is homogeneousff [, = --- = [,,, ands; =
<o = 8, €., iff all m pairs are identical. []
Definition 8: Letoy,...,0, T o, m > 1. Alist of m a.o0. pairsL = [(I1;51) - - - (Im; Sm)] Spansthe states
o1,-.-,0, With respect tar iff

O'Z‘(li, Si) C O'(li, 51)

for everyi = 1,...,m. In addition, we say thak properly spansoy,..., o, W.rt. o iff for every sublist
[i1 -+ 4ms] OF [1 --- m] suchtha{L(iy) - - - L(in)] is homogeneous we have

m/
Uaij(lijusij) CO'(ZZ'I,SZ'I).
j=1

Equivalently,L. does not properly spary, . .., o, With respect tar iff for some such sublist we have
oi(liy,80,)U---Uoy ,(li ,,865,,) =0, 8i,)- [

Note that every list of length one that spansw.r.t. o (for oy = o) does so properly. That is why the definition
below is a proper generalization of Definitioh 6.

Definition 9: Let o1,...,0,,0' C o, m > 1. We say thats’ is an alternative extension ofo w.r.t.
Oly .., Om, Written Alt(o, {o1,...,0m},0"), iff there is a listL = [(I1;51) - -+ (Im; Sm)] Properly spanning
o1,---,0m W.I.t. 0 such that for every attributeand objects we have

a'(l,s) =o(l,s)\ U oi(l,s).
iePog(I; s), L)

We writeA({o1,...,0m},0) for the set of all alternative extensionsofv.r.t. oy, ..., om. [

Therefore, to compute all alternative extensions @f.r.t. o1, .. ., o, we need to compute all lists of a.0. pairs
that properly span+, ..., o,, W.r.t. o. We will present algorithms for both tasks shortly, but we first turn to an
example that will help to clarify these definitions.

Example 11: Suppose we have two objects and sy, and two attributes, color and size, with color having
three possible values: red, green and blue (abbreviated R, G, and B); and where size has three possible values:
small, medium, and large (ab. S, M, and L). Suppose further that the starting sads follows:

Color(s;) = {R, B}
Sizds,) = {S, M, L}
Color(s2) ={R, B,G}
Sizdsy) = {M, L}

Now consider the following three proper extensiong of

17

o1 09 o3
Color(s;) ={B} A Color(s;) = {R, B} Color(s;) ={R} F
Sizds;) = {S,M} B Sizds;) ={L} D Sizds;) = {S, M, L}
Color(sy) = {B,G} C | Color(se) ={R,B,G} | Color(ss) ={R, B,G}
Sizdsy) = {M, L} Sizdsy) = {L} E Sizdsy) = {M, L}

We have used the labels—F to mark those a.o. pairg; s) for which states; properly extends, i.e., such
thato;(1,s) C o(l, s). The following lists of a.0. pairs span, o2, andos w.r.t. o:

Ly = [(Color; s;) (Sizes;) (Color;s1)] (corresponding té\-D-F)
L, = [(Color; s1) (Sizess) (Color; sy)] (A-E-F)
L3 = [(Sizes;) (Sizes;) (Color;s;)] (B-D-F)
L, =[(Sizes;) (Sizesy) (Color;sy)] (B-E-F)
L; = [(Color; s2) (Sizes;) (Color; sy)] (C-D-F)
Lg = [(Color; s2) (Sizess) (Color; sy1)] (C-E-F)

These are the only lists that spap, o2, andos w.r.t. . From these, only 4, L5, and Lg do so properly.l,
does not span, o2, andos properly (w.r.t.o) becausgl 3] is a sublist ofi1 2 3] such thafL;(1) L1(3)],
namely[(Color; s;) (Color; s1)], is homogeneous and yet

o1(Color, s1) Uos(Color, s;) = {R, B} ¢ o(Color, s;) = {R, B}.
L, fails for the same reason. Faég, [1 2] is a sublist of/1 2 3] such that
[Ls(1) Ls(2)] = [(Sizes1) (Sizesy)]
is homogeneous but
o1(Sizesy) Uoo(Sizes;) = {S,M,L} ¢ o(Sizesy) = {S, M, L}.

Accordingly, we have a total of three alternative extensionswfr.t. o1, o2, andos, corresponding td.4, Ls,
andLg:

os (B-E-F) o5 (C-D-F) o (C-E-F)
Color(s;) = {B,G} | Color(s;) ={B,G} | Color(s) = {B,G}
Sizés,) = {L} Sizds;) = {S, M} | Sizds,) ={S, M, L}
Color(sy) = {R,B,G} | Color(sz) = {R} Color(sz) = {R}
Siz€sy) = {M} Sizdsy) = {M, L} Sizdsy) = {M}

so that
A({Ulv 02, JS}a U) = {J4v 05, 06}'

Thus each alternative state is uniquely determined by the corresponding list that properly spanandos
w.r.t. o. Specifically, the ascription values of each alternative state are obtained by “flipping” (complementing)

18

the corresponding ascription valuescobn the relevant coordinates of the respective spanning list. For coor-
dinates (a.0. paird); s) that are not in the spanning li&t the original values of are retained, since in those
cases we haveoq(/; s), L) =) and hence

O'(Z,S)\ U Ui(las) ZO'(Z,S).
icPogq(l;s), L)
Intuitively, this ensures that every alternative state has a maximal disagreement with each extensiormof
The following algorithm computes the set of lists that properly span states. , o,, W.r.t. o:

1. Let ® be the set of all a.o. pairs for the system at hand. The size of this set will equal the power of the
system.

2. Let ¥ be the set obtained frod™ by filtering out all those list$§(l1; s1) - - - (Lin; s)] fOr which
Jie{l,...,m} .ol s:) =o(li, s;).
Thatis,
U ={[(l1;81) - (l;m; sm)] € D™ | 04(l;,8:) T o(ls,s;) fori=1,... ,m}.
ThusW is the set of all and only those lists that span. . ., o, W.r.t. .

3. From W, filter out all those lists that do not properly span ..., o, W.r.t. o, and return the result. To
determine whether ali$tly; s1) - - - (lin; $m)] in ¥ properly spans+, . .., o, W.r.t. o, do the following:

e Let f be a function that maps a.o. pairs to sets of positive integers. Initially,«sef p . () for any
a.0. pairp.

o LetP — (.
e Fori=1,...,m:
[fllissi) = fliys:) U{a}];
P— PU {(l,, Si)}.
e For each pai(l; s) € P: if
U oi(l,s) =0
icf (15 8))
returnfalse else continue.
e Returntrue.
With this algorithm, we can easily compuwé{o,...,0.,},0) as follows:
1. Let ¥ be the set of all and only those lists of a.o. pairs that properly span. , o,, W.r.t. o.
2. LetX « 0.
3. Foreach listL. € ¥:

e Let o’ be the unique state such that for drgnds,

o'(l,s) = o(l,s)\ U ai(l,s).
icPog(l; s), L)

19

e X —XU{o'}
4. ReturnX.

The reader will verify that the more general definition of alternative state extensions subsumes the former
notion in the following sense:

Lemma 13: Alt(o,0’, ") iff Alt(o, {c’'}, o).
The following result generalizes Lemina 12.

Lemma l4: Ifoy,...,0m,w C o and w £ o; for everyi = 1,...,m, then there is some ¢’ C o such that
Alt(o,{o1,...,0m}, o) andw C o’.

PROOF. By assumption, we have

Vis.w(l,s) Co(l,s); (1.25)
Vie{l,...,m}.Vis.0i,s) Co(l,s). (1.26)

Further, for eachh = 1, ..., m there is some a.o. p&(t;; s;) such that
w(l27 Si) .g Ui(li7 Si)a

meaning that there is some attribute valyesuch that

w(li, Sl) = {Oéi} (127)
and
From [1.27) and (1.25) we infer
Vie{1,...,m}.04,‘€0'(li,si). (129)

Hence, from[(1.28) andl (I.p6) we conclude
V’LE{].,7m}O'2(l“Sz) CU(ZZ,SZ) (130)

Therefore, the list
L= [(l1;81) - (Im; 5m)]

spansoy,...,o0, W.I.t. . Moreover, it does so properly. To see this, consider any subjist - i,,| of
[1---m]suchthaflL(iy)--- L(im)] is homogeneous, so that
(liyssi) == (li,,;5i,,)
and hence
w(li17si1) == w(lim/asim/)7

which is to say
Qi = =05 . (131)

m

Now suppose, by way of contradiction, that

m’

U O'ij (lij,sij) = O'(Zil,Sil). (132)
j=1

20

From [1.27) and (1.25) we conclude
w(liy, si,) = {ou, } Colliy, i),
so that
ai, € o(liy, 8y)- (1.33)
Hence, by[(1.32),

’

m
a;, € U 04 (lij75’ij)7

Jj=1

which means that there is some {1, ..., m'} such that
Qg € O (lij; Si;) (134)

From (1.28) we gety;, & i, (li;,si;). But, by [1.31),0i, = a;, henceay, & i, (li;,si;), contradict-
ing (1.34). Thereforel spansry, ..., 0., W.I.t. o properly.
Now defines’ C o as follows: for anyi ands,

o'(l,s) = o(l, s) \ U oi(l,s). (1.35)
icPoq(l; s), L)

By constructionAlt(o, {o1,...,0m},0’). Further, we havev C ¢’. To prove this, we need to show that
w(l, s) C o'(l, s) for all I ands. To that end, consider arbitratyands. Either(l; s) occurs inL or not. If not,

thenPog((I; s), L) = @ and hence, fron{ (1.35)/(1,s) = o(l,s), sow(l,s) C o’(l, s) follows from (1.25).
Suppose, by contrast, th@dt s) occurs inL, so that

Po((l;), L) = {1, -, im'}

for somem’ such thatl < m’ < m. From [1.28),

Vi€ {1,...,m'}.o¢ij ¢Uij(lij,sij). (136)
But
gy =w(liy, 84), .0, =w(ls, ,, 8),
and since
(lil ; 51'1) == (lim/) Sim/) = (lv 5)3 (137)
we geta;, = --- = «; ,. Accordingly, [1.36) yields

Vie{l,....m'} . a; &oy,(li,si,),
which, by virtue of [(1.3]7), becomes
Vie{l,....m"} . o5, €oi(l,s). (1.38)
It follows from (1.38) that ,
o, & O ai,(l,s),
Jj=1

21

or, equivalently,

o, & U oi(l, s). (1.39)
iePoq(l; s), L)
However,
o, € o(liy,84,) =0(l,s), (1.40)
and hence we infer fronj (T.B9), (1]40), apd (1.35) that
a;, € d'(l,8). (1.41)

But, from (1.37)w(l;,, s:,) = w(l, s), which is to sayw(l, s) = {a, }. We have thus shown that, in this case
too,w(l,s) C o'(l,s).]

We now extend the notion of alternative extensions to named states.

Definition 10: Let (g1;01),- -+ (Tm; pm)s (075 0") c (o;p), m > 1. We say thato’; p’) is analternative
extensionof (o; p) W.r.t. (015 01), - - -, (Om; p,y), Written

Alt((o; p), {(015 1) -5 (m; p) 35 (075 07)),
iff Dom(p’) = Dom(p,) U --- U Dom(p,,,) and there is a subsstC {1,...,m} such that:
1. p’ conflicts withp; iff < € S; and
2. if S#{1,...,m} thenAlt(o,{o; | i € {1,...,m}\ S}, o).]

Owing to the first condition, if such a subsgtC {1,...,m} exists then it is uniqgue. When = 1 we might

write Alt((o; p), (013 p1), (0'; p)) instead ofAlt((c; p), {(015 1)} (73 "))
The following algorithm computes all alternative extensionsoofy) W.r.t. (o1;01), - -+, (Om; P):

1. Letp!,...,p), k > 1, be all and only the constant assignmentfam(p,) U - - - U Dom(p,,,) that are
supersets op. Note that there aré = n? such assignments, wheneis the number of system objects
and

d = |[Dom(p,) U -+ U Dom(p,,)] \ Dom(p).

2. LetR = 0.
3. Foreachy},i=1,...,k, do the following:

o LetX; C {o1,...,0,} consist of all and only those states, j € {1,...,m} such that, does
nothave a conflict witlp;, meaning thap; 2 p;.

o Letd, = A(El,U)
o SetR— RU{(do';p}) | 0’ € ®;}.
4. ReturnR.

The algorithm is rather naive in that it may duplicate some work in the process of compufihgo) for the
variousi. Memorizing intermediate results and buildiAgY:;, o) incrementally could improve its efficiency.

Lemma 15: If (01;01), -+, (Om; Pp) C (o5p),m > 1, (w;p) C (o;p), and

then there is (o'; p') € (o p) such that Alt((a p), {(043p1), - - -, (i p) }. (073 9')) and (w;) T (0;).

22

PROOF. The following holds by assumption:

Vie{l,....m}. wZo;V p2Dp;. (1.42)

Define
S={ie{l,....m}|p2Dp;} (1.43)

and let
p' =71 [Dom(p;) U~~~ U Dom(p,,)]; (1.44)

so that
p2p 2p. (1.45)

It follows by construction that
Dom(p’) = Dom(p,) U --- U Dom(p,,)

and
Vie{l,....m}.p D p,=i€S,
which is to say thap’ has a conflict withp, iff ¢ € S. At this point there are two caseS:= {1,...,m} or
S c {1,...,m}. Inthe first case, we must have
p 2 p, (1.46)
forif o’ = p then, from[(1.44)p, = --- = p,, = pand hence D p, foralli = 1,...,m, sincep C p by
assumption. But, fron (1.43)i € {1,...,m} . p 2 p, would entailS = (), contradicting the suppositiofi =
{1,...,m} (recall thatm > 1). Defines’ = w. Then(o’; o) C (o p) by {L.43), and indeett’; o) (o p)
by (1.46) and[(1.44). In additiorw; p) C (o’; p’) follows fromw T w and [1.45).
By contrast, suppose thatc {1,...,m}, so that
{1,....,m}\ S #£0. (1.47)

From the definition of5 and [1.42) we infer

Vie{l,....m}}\S.wlio;. (1.48)
From [1.48) we can infer that

Vie{l,....m}\S.o;Co, (1.49)
for otherwise there would be somie= {1,...,m} \ S such that; [¢ ando; C o, and hence; = ¢. But

w C o = o; contradicts the assumptian [Z o;. Further, we can infew C o, for, in light of (1.47),w = o
would contradict[(1.49), given that worlds do not have any proper extensions. Therefore, by Lemma 14, there
exists a state

cdCo (1.50)

such thatilt(o, {o; | i € {1,...,m} \ S},0’) and
wC o (1.51)
From) an5) we conclude’; p') © (o; p). Further, by construction,

Alt((o; p), {(o1;01)s 5 (Tm3 P} (75 07)),
while (w; p) C (o’; p’) follows from (1.57) and[(1.45). This concludes the case analysis.]

23

Corollary 16: If (o'; p’) c (o5 p), (w; p) C (o3 p), and (w; p) L (0'; p") then there is some

o0

(0" p") E (o5p)
such that Alt((o; p), (0'; p'), (¢”; p")) and (w; p) E (o”; p").
We end this section by introducing the following notion of state entailment:

Definition 11: Suppose thatoi; p;), ..., (om; p,) C (0;p) and lets be any assumption base. We say that
(o3 p) entails(o1;py), - . ., (Om; pp,) WLL B, Written(o; p) IEg {(013 1), - - -, (ms o)}, iff fOr every (o”; o)

such that
Alt((a;p), {(01:p1), - -+ (Omipm)}: (075 0))
there is soméd’ € 3 such that, for ally,

I(o";p/)/x(F) = false n

Whenn = 1 we drop the braces and write; p) lI-3 (01; p;) instead of(o; p) -5 {(o1; 1) }-

This definition captures the intuition that any world which extends the &aje and satisfies the formulas
in 8 must also extend one of the states; p,), in the sense that any alternative way of extendingp) will
end up falsifying some element ¢f (Of course if there are no alternative ways of extendingy) then the
entailment holds vacuously, everdf= ().) This is formally demonstrated by the proof of Lemma 17 below.

Determining whether or ndv; p) llFg {(o1; p;), - .-, (om; p,,) } IS decidable; we present an algorithm for
it which makes use of an auxiliary functigrthat takes a formul# and a named state; p) and returndrue
or false To computey(F, (o; p)):

1. Let)y, ..., be all distinct functions fronV(F') to the set of system objec{s1, ..., s,}. (There
arek = nlFV(F)l such functions.)

2. Letx4,...,x; be arbitrary variable assignments such that
Vie{l,....,k}.x; | FV(F) = 1;.

3. If Lioip)/x; = falsefor everyi = 1,. .., k then returrtrue, else returrfalse

Xi
The algorithm for determining; p) k5 {(o1; p1), - - -, (om; p,,) } CaN NOW be stated thus:
1. For eacho’; p’) such thatAlt((c; p), {(o1;p1), - -, (Gmipm) > (075 0))):
e If 3F € 3. g(F,(o';p)) then continue, else retufalse
2. Returntrue,
The algorithm clearly hinges oy whose correctness in this context depends on Lefiima 2.

Lemma 17: If (o; p) kg {(o1;01), - - - s (Oum; P,y } then for all worlds (w; p) and variable assignments x, if

(w; D) Ex (B; (05 p))

there is some i € {1,...,m} such that (w;p) = (04; p;).

24

PROOF. Assuming

(@:p) g {(o1; 1), -5 (Omi Py)} (1.52)
pick any world(w; p) and variable assignmegtand suppose thatv; p) = (8; (o; p)) So that
(w;) C (03 p) (1.53)
and
VFeg. I(wy/ﬁ)/X(F) = true. (154)

By way of contradiction, suppose that there isir@ {1, ..., m} such tha{w;p) = (o;;p,), i.€.,
Vie{l,...,m}. (w;p) £ (0i; p;).
By Lemmg I}, there is some
(0/;0') C (o p)
such that

Alt((a;), {(01501)5 -+ (O3 p) }5 (075 0")) (1.55)

and
(w; p) E (o';p). (1.56)

But then, by Definitiof I1 andl (1.55) it follows that there is some

Gep (1.57)
such that
I(J/;p/)/X(G) = false, (1.58)
and hence, from the Thinning Lemma (Lemma 4) in tandem With [1.56)and (1.58), we obtain
Lw;p)/x(G) = false,
which contradicts (1.54) in view of (1.57). |

Corollary 18: If (o; p) lIFg (0’5 p') then (B; (o; p)) = (075 p').

1.5 A family of diagrammatic natural deduction languages

We now introduce WD, a family of natural deduction languages in the DPL tradition (Arkoudas 2000) that
combine sentential and diagrammatic reasoning. A concrete instance1of i¥ obtained by specifying a
vocabularyy: = (C, R, V), an attribute structurel = ({l1 : A1,...,l : Ax}; R), and an interpretatiof of R

into A. We assume in what follows that, .A, and] have been fixed. The terms and formulas of the language
are defined as described in Secfior] 1.4. We wiife/v] to denote the formula obtained fromby replacing
every free occurrence afby the termt (taking care to renamg' if necessary to avoid variable capture). The
following result is readily proved by induction on the structurg-of

Lemma 19: Ifb € {true, false},

Lo p)jxtv s 5] (F) = b
and v’ does not occur in F' then
I(U; p)/x[v — 8] (£ [/v]) = b.

25

1.5.1 Abstract syntax

There are two syntactic categories of proofs, sentential and diagrammatic. Sentential deductions are used to
derive formulas, while diagrammatic deductions are used to derive diagrams. We will see that the two can be
freely mixed, and indeed that their structures are mutually recursive. We use thellettetk\ to range over
sentential and diagrammatic deductions, respectively. The symhall range over the union of the two. The
abstract syntax (Reynolds 1998) of both proof types is defined by the grammars below:

D =

D =

RuleApp

assumer' D

F by D

;D

pick-any x D

pick-witnessw for 3z . F D

specializeVzy - - x, . Fwith ¢t1,...,t,

ex-generalizedz . F from ¢

cases fromFy, ..., Fy: (o1;p1) — Di| -+ | (on;p,) — Dn
observe F

;A

claim (o; p)

(o3 p) by thinning with Fy,... F,

(o3 p) by widening

(o3 p) by absurdity

cases fromFy, ..., Fy: (o1501) — Ar] - | (onspn) — An
casesl} V Fy. Fi — Ay | Fy — Ay

pick-witnessw for 3z . F A

D|A

where the syntax of inferencale applicationss as follows:

RuleApp

= claim F

| true-intro

| modus-ponenst = G, F
| modus-tollensF = G,-G
| double-negation——F
| absurd F,-F

| leftand F A G

| right-and I A G
| both F,G

| left-either F,G

| right-either F,G

| casesiy, V Iy, FA = G, F» = G
| leftiff F < G

| right-iff FF < G

| equivF = G,G = F

26

The composition operator “;” associates to the right by defaul®) sd0,; D3 stands for
D1; (D2;D3)

rather than®; ©-); ©3. Parentheses dregin-end pairs can be used to change the default grouping.

We define® [t/x] as the deduction obtained from by replacing every free occurrence of the variable
by the termt, taking care to perforna-conversion as necessary to avoid variable capture. The definition is
given by structural recursion:

(D1;D2) [t/z] = Di[t/z]; D2 [t/x]
((o; p) by thinning with Fy,..., F,) [t/x] = (o;p) bythinningwith Fiy [t/z], ..., F, [t/x]
(cases fromFh, .. ., Fy: _ cases from#Fy [t/z], ..., Fy [t/z]:
(01;0) = Al [(onip,) = An)[t/a] — (oup) = Acft/a]| - | (onspn) — Ant/a]
(casesF, V Fi: _ casesF) [t/xz] V Fy[t/z]:
F1 — Al ‘ F2 — Ag)[t/w] - F1 [t/l’] — Al [t/ﬂ | F2 [t/x] — AQ [t/x}

(pick-witnessz for Jy . F A)[t/z] pick-witnessx for (Jy . F)[t/z] A

(pick-witnessw for Iy . F A)[t/z]
(Whenz # w)

(pick-any z D) [t/x]

(pick-any y D) [t/z]
(whenz # y)

pick-witnessw for (3y. F)[t/z] At/z]

pick-any z D

pick-any y D [t/z]

We omit the defining equations for the sentenimk-witness, which is handled like the diagrammatic
pick-witness and for the remainingases from which is treated like the one above. The definition for the
other forms is straightforward and can be found elsewhere (Arkoudas 2000). In all cases we assume that the
deduction has beamrenamed away from the given tetm

1.5.2 Evaluation semantics
Our formal semantics is given by axioms and rules that establish judgments of the form
yED~s F

and
v E A~ (05p)

which are read as:

“In the contexty, deductionD (A) derivesF (respectively(o; p)).”

The semantics of most sentential deductions are straightforward generalizations of the stéa@tard
semantics (Arkoudas n.d.a). We illustrate here with the axiontefoiand and the rule fomssume omitting
the rest:

(BU{F ANG};(o;p)) Fleft-and F A G~ F

27

[Thinning

(BU{F1,...,Fn};(o;p)) F (¢/;0") by thinning with Fy, ..., F, ~ (¢’;p)
provided(c; p) Ir¢py ... 1,y (075 07)

[Widening

(B;(o3p)) = (075 p") by widening ~ (o'; p")
provided(c; p) C (o'; ')

[Absurdity
(B U {false}; (05 p)) - (o' p') by absurdity ~ (o'; ')

[Diagram-Reitaratiofh

(B; (o5 p)) = claim (a; p) ~ (o5 p)

(BU{FL, .-, Fie}i (01501)) F A1~ (075 0')

(BUAFL, ..., Fp}; (on;p,)) FAn~s (0’5 0) [C1]
(BU{F1,...,Fr};(o;p)) FcasesfromFy, ..., Fx: (o1501) — A1] -+ | (on;pp) — Ap~ (¢'50")
prOVidEd((ﬂ P) IH_{FI,Fk} {(Ul;pl)v cee (UWJpn)}

(BU{FLV Fy, F1}i(oip)) E Qi ~ (0 p) (BU{F1LV Fy, Fo}i(0ip)) E Do~ (0/ip)) [(y)
(BU{F1V F3;(0;p)) FcasesFy V Fo F| — Ay | Fo— Ag~s (0'5p)

Bi(gip) D~ F (BU{F}i(oip)) EA~ (05p") D, A]
(8;(030)) F D; A~ (a5 0)

) (Bilasp))ED~F [A; D]
FA;D~ F

(Bs(a:p)) E A~ ()50
(8; (935 0))

Bi(o:p)) E A1~ (o13p1) (Bi(o1ip1)) = Az~ (02ip0) [A;A]
(85 (03 p)) F A1; Ao~ (023 p3)

Bilgp) D1~ F (BU{Fi}i(0ip)-Da~ s [p; D]
(B; (03 p)) - D15 D2~ Fp

(BU{3z . F Flz/z]};(0;p) F Alz/w]~ (0';p) [ElVA]

(BU{ZFz.F};(o;p)) - pick-witnessw for 3z . F A~ (o';p)
providedz is fresh

Figure 1.3: Formal semantics of diagrammatic deductions

28

(BU{F};(0;p)) FD~ G
(B; (0;p)) FassumeF D~» F =G

The only new sentential forms aodserve cases from and A; D. We will discuss the last two later; the
semantics obbserveare as follows:

[Observé
(3; (03 p)) - observeF ~ F

provided thatl ., , ,, (F") = true for all x

The side condition is computable because of Lefima 5 and because, by [émma 2, we need only be concerned
with the free variables of". In fact usuallyF’ is a sentence (it has no free variables) and hence we only need
to consider one (arbitrary) variable assignment.

We now turn to the semantics of the various/i¥ constructs for case analysis. There are four types of
case reasoning iniViD ;

Sentential-to-sentential: In this type of reasoning we note that a disjunctianv F; holds and that a formula
G is entailed in either case. That entitles us to conclGdeThis is captured syntactically as a rule
application:

casest VvV F5, F1 = G, Fy = G.

The semantics of such rule applications carry over fobff?£ unchanged, since there is no diagram
manipulation involved:

(ﬁU{Fl VvV) By =G, By jG};(O’;p)) Fcasest| V Fo, F1 =G, Fo =G~ G

Sentential-to-diagrammatic: Here we note that a disjunctidf, Vv F5 holds and proceed to show that a cer-
tain diagram(c; p) follows in either case. This is captured by the syntax form

casest| V Fy. I} — Ay | Fy — AQ,

which is classified as a diagrammatic deduction&'a since the end result is a diagram. The semantics
of this form are given by rule,], shown in Figuré¢ 1J3.

Diagrammatic-to-sentential: We note that on the basis of the present diagram and some foriulas , F),
in the assumption base, onerof> 0 other system statés; p;), . .., (ox; p,,) Must obtain, and proceed
to show that a formul&’ can be derived in every one of theseases. This entitles us to inféy, provided
of course that the diagrammatic cases are indeed exhaustive. This form of reasoning is captured by the
form
cases fromFy, ..., Fy: (o1;5p1) — D1| -+ | (on;p,) — Dn.

This is classified as a sentential deduction, since the end result is a foFmitesemantics are shown
in Figure[1.4. The caveat that the diagrafos; p,), . . ., (o,; p,,) form an exhaustive set of possibilities
on the basis of7, . . ., Fj, and the current diagram is formally captured by the proviso

(0:0) Iy, my (013 1), - (o pn)
Diagrammatic-to-diagrammatic: This is similar to the above mode of reasoning, with the exception that

instead of deriving a formul&' in each of then cases, we derive a diagram. Therefore, syntactically,
following each of then cases we have diagrammatic deductidvs. .., A, (rather than sentential

29

(6U{F17aFk}a(alvpl))}_Dl/\f)F

(6U {Fla"'aFk}; (U7L;p71,)) }_Dn/\" F

[C5]
(BU{Fy,..., F}; (o;p)) - cases fromFy, ..., Fy: (01;0,) — D1

provided(; p) IFp, ...y {(01:p1), - -5 (onipn)}

Figure 1.4: Semantics of diagrammatic-to-sentential case reasoning.

deductionsDq, ..., D, as we did above), and the entire form is classified as a diagrammatic deduction,
since the final conclusion is a diagram. The following syntax form is used for such deductions:

cases fromFy, ..., Fy: (o1;p1) — Ar] - | (on;p,) — Ap.
The corresponding semantics are given by rale][shown in Figuré 1]3.
Likewise, there are four types of deduction sequencing:

1. Dq; Do, where a sentential deducti@h is composed with another sentential deducfisn This form is
classified as a sentential deduction, since the end result is a formula (the concluBign it semantics
are given by rule P; D] of Figure[I.3. They are isomorphic to the regular composition semantics of
NDL, since there is no diagram manipulation involved.

2. D; A, where a sentential deductidnis composed with a diagrammatic deduction. This form is classi-
fied as a diagrammatic deduction since the end result is a diagram—the conludioh$emantics are
prescribed by rulelD; A]. Observe that the conclusion 8fbecomes available t4 (e.g., the conclusion
of D could be a disjunction and might be a diagrammatic case analysis of that disjunction).

3. A; D, where a diagrammatic deductidnis composed with a sentential deduction. This form is clas-
sified as a sentential deduction since the end result is a formula (the conludin kk$ semantics are
given by rule A; D]. Conclusion threading here is also intuitiv@:will be evaluated in the system state
resulting from the evaluation ak. E.g., D might be anobservededuction that points out something
that can be seen in the diagram derivedy

4. Aq; Ag, where a diagrammatic deductidy is composed with another diagrammatic deduction
This form is of course classified as a diagrammatic deduction, since the end result is a diagram (the
conlusion ofA5). Its semantics are given by rul&[A]. The same principle of conclusion threading
applies here:A, is evaluated in the system state resulting from the evaluatiah,pfthe assumption
base is threaded through unchanged.

Theorem 20 (Soundness)Ify F D~ F theny = F; and if v+ A~ (0;p) theny = (o3 p).

PROOF. We proceed by induction on derivation Ien@We will omit most sentential forms, as those have
been proved sound elsewhere (Arkoudas 2000).

1170 be perfectly precise, we are proving the statement: “For all positive integensl for ally, D, A, F, and(o; p), if there exists
a derivation of lengtim of the judgmenty - D ~ F' then~ |= F; and if there exists a derivation of lengthof v - D ~» F then
7 [(0; p)- Itis readily seen that this statement implies Thegren 20.

30

The basis cases correspond to the axioms of our semantics. In what follows we will treat the diagrammatic
axioms Pbservé [Absurdity, [Diagram-Reitaratiof, [Widening, and [Thinning.

e [Observé In this caseD is of the formobserve F' and we need to show that
(B;(o5p) EF

whenever(3; (o; p)) - D ~ F. To that end, consider an arbitrary wofld; p) and variable assignment
X and suppose thatv; p) = (5; (o; p)), so that

(w; p) E (a5 p). (1.59)
By the side condition of@bservé, it must be that
Loy p))y (F)) = true,
and hence, fron] (1.%9) and Lemfna 4,

Liw; p)/x (F) = true,

which is to say(w; p) =, F. We have thus shown thétv; p) |=, (3; (0; p)) implies (w; p) =y F' for
any (w; p) andy, which establishe§s; (o; p)) = F.

e [Thinning: Here A is of the form
(¢’;p') by thinning with F,... F,
and we need to show that if

(BU{F1,....,Fo,};(o;0) EA~ (05 p) (1.60)
then
(BULEL, ..., Fu};(03p) F (075 0). (1.61)
From [1.60) and the side condition aftjinning we obtain

(050) I-ipy, .m0y (075 07),

and hence, by Corollafy 1&{F1,...,F,}; (c;p)) E (o/;p'). Now (1.67) follows from weakening
(Lemmd$).

e [Widening: Here A is of the form
(¢’; p") by widening
. From the side con-

and we must show thdp3; (o; p)) = (o’; p') whenever(s; (o; p)) - o)
= (p') follows from

~ (o';
dition of [Widening we infer (c; p) C (¢’; p'), and now the deswe(ﬁ (o3 p))

Corollary[1].

e [Diagram-Reitaratioft Here the result follows directly from Lemnja 8.

b

e [Absurdity: Here A is of the form
(o'; p’) by absurdity

and we need to show
(8 U {false}; (a3 p)) = (05 p')
whenever(3 U {false}; (o; p)) = A~ (o’; p'). This follows from Lemm@o.

31

e [C1]: Here A is of the form
cases fromFy, ..., Fy: (o1501) — Ay | -+ | (on;p,) — An.
Consider any assumption bgsand named statés'; p), (¢’; p'), and assume that
(BU{FL, ..., Fi}i(05p) E A~ (0 p'). (1.62)

We need to show
(BU{FL,.... Fi}i(o3p) E (o' 0). (1.63)
From [1.62) and(;] we infer

Vie{l,...,n} . (BU{F1,...,F.}; (05 p;) F Ai~ (' p') (1.64)
and
(0:0) Ir(ry,.. ey {(o13p1), -5 (Ons pp) b (1.65)
Pick any world(w; p) and variable assignmegtand suppose that
(w;p) Ex (BU{FL, ..., FL.}; (03 p)) (1.66)
so that
(w;p) FEx {F1s- -5 Fic}; (03 p))- (1.67)

From), Lemma 17, anfl (1]67) we conclude thatp) |= (o;; p;) for somej € {1,...,n}. By
the inductive hypothesid, (1.64) yields

(BU{F,.... Fy}i(ogip5)) E (0'50'), (1.68)
and since

(w;p) Ex (BU{FL, ..., Fr}i (055 p5)),
it follows from (1.68) that(w; p) = (o”;).

e [C5]: Here A is of the form
casest’ vV Fy, Fi — Aq ‘ F— Ay

and, assuming

(BULFLV 2} (05 p)) B A~ (o' p'), (1.69)
we need to show
(BU{FLV Fo}i (05 p)) = (075 0). (1.70)
To that end, consider an arbitrary wofld; p) and variable assignmegtsuch that
(w;p) Fx (BU{FLV F2}; (03 p)) (1.71)
so that
I(w;ﬁ)/x(Fl) = true (172)
or
T 3) /¢ (F2) = true (1.73)

32

(note that this inference would not be sanctioned in a weak three-valued Kleene logic). Noy frgm (1.69)
and [C>] we get

(BU{FLV Fy, F1};(05p) F AL~ (075 0) (1.74)
and
(BU{FLV Py, Fo}i (03p)) F Ag~ (075 0). (1.75)
Inductively, [1.74) and (1.75) respectively yield
(BU{FLV Fy, Fi};(035p)) = (075 0) (1.76)
and
(BU{FLV Fy, Fo}; (03p)) = (075 0'). 1.77)

Now if (L.72) holds then, fronf (1.71), we have
(w;p) Ex (BU{FLV F, F1}; (03 p)),
and hencéw; p) = (o’; p') follows from (1.76); while if (1.7B) holds then
(w;p) x (BU{FLV Fa, Fa}; (03 p)),
and hencéw;p) = (o’; p’) follows from (1.77). Thereforguw; p) = (¢'; p’) holds in either case.
[C3]: Here A is of the form

cases fromFy, ..., Fy: (o1;p1) — Di| -+ | (on;p,) — Dn.

Pick anyg, F, and(o; p), and suppose that

so that
Vie{l,...,n}. (BU{F1,...,Fy};(0sp;)) F Dy~ F (1.79)
and
(0:0) Iy, my (013 1), (o pn) b (1.80)
We need to shows U {F1,..., Fi}; (o;p)) = F. To that end, pick anyw; p) andy and assume that
(w; D) Ex (BUA{FL, ..., Fii}; (03 p))- (1.81)

It follows that
(w;p) Ex ({F1s ..., Fi}i (03 p)),

and hence by Lemnﬁ]l? a.80) we conclude(thap) C (o;; p;) for somej € {1,...,n}. Induc-
tively, from (1.79), we infer
(BU{FL..... FiY:(0:0,)) F F. (1.82)

But from (w; p) C (05 p;) and [1.81) we get

and thereford (1.82) yieldsv; p) = F.

33

e [EI/A]: In that case the deduction is of the form
pick-witnessw for 3z . F A

and assuming that

(BU{3x.F};(o;p)) F pick-witnessw for 3z . F A~ (o';p), (1.83)
we need to show
(BU{3 . F};(05p)) = (o5 0). (1.84)
To that end, consider arfyv; p) andy such that
(w;p) Ex (BU{T . F};(0:p)) (1.85)

From [1.8B) and the [EL] rule we infer that, for some fresh variable
(BU{Za. F,F[z/a]}; (0:p) F A [z/w]~ (o' 0). (1.86)
From [1.86) and the inductive hypothesis we obtain
(BU{3z. F F(z/z]};(0;0)) = (0’5 0). (1.87)
From [1.8%) and (I]6) we conclude that there is some system ctgech that
Tw;p)/xla — 5] (F) = true.

Therefore, from Lemmfa 19,

[(w;ﬁ)/x[z — 3] (F'[2/z]) = true,

and since: does not occur i U {3 = . F'}, we also have (by (1.85) and Lemfria 2):

VGepu {E' x . F} . I(w;ﬁ)/x[sz}(G) = true.
Hence,
(w;ﬁ) ':)dz — 9] puU {El x.FF [Z/x}}v (188)
and sincgw; p) C (; p) (from (1.85)), we conclude that
(waﬁ) ':)dz — 5] (6 U {El x.FF [Z/JZ]}, (U; P)) (1.89)

Finally, from [1.89) and (1.§7) we obtaimw; p) = (¢'; p').

e [D; Al]: Here the deduction is of the ford; A, and assuming that

(B; (05p)) F D; A~ (0’5 '), (1.90)
we need to show
(B (a;p) E (05 0). (1.91)
Pick any(w; p) andy and suppose that
(w;p) Ex (B (a3 p))- (1.92)

34

From [1.90) and thel]; A] rule we infer that, for somé”,
(85 (03 p)) F D~ F, (1.93)
(BU{F};(05p)) = A~ (o' 0"). (1.94)

From [1.93) and the inductive hypothesis we obtgif(c; p)) = F, which, in tandem with[(1.92),
yields

(w;7) Fx F.
Therefore,
(w;p) Fx (BU{F}; (03 p)). (1.95)
Now (1.94) and the inductive hypothesis give
(BU{F};(03p)) = (0'50), (1.96)

and finally [1.95) and (1.96) produce the desitedp) = (o'; o).
[A; D]: Here the proof is of the forrd\; D and assuming that

(B;(o5p)) = A; D~ F, (1.97)

we need to shows; (o; p)) = F. Accordingly, consider any worl¢w; p) and variable assignmeit
such that

(w;p) Fx (B; (03 p))- (1.98)
From [1.97) and the/; D] rule we conclude that, for sonfe’; p'),
(B; (03p)) E A~ (0'5p") (1.99)
and
(B; (0;p")) F D~ F. (1.100)

From [1.99) and the inductive hypothesis we g&t(c; p)) = (o”; '), s0 [1.98) yields
(w;p) = (0';p")
and hence
(w; D) E=x (85 (" p')). (1.101)

But from (1.100) and the inductive hypothesis we get(c’; p')) = F, which, along with|(1.101),
entails(w; p) =y F.

[A; Al: Here the deduction is of the forfy; A,. Assuming
(B;(o3p)) F AL Ay~ (023 py), (1.102)

we must show(3; (o; p)) | (o2; py). Pick any(w; p) andyx such that

(w;p) Ex (B; (03 p))- (1.103)

From [1.10R) and rule/; A] we infer that, for soméo; p,),
(B; (03)) F Ar~ (015 p1); (1.104)
(B; (013 p1)) Ao~ (025 p3).- (1.105)

35

From [1.10#),[(1.105), and the inductive hypotheses we get
(B; (a5p) E (015 p1); (1.106)
(8 (a1;1)) [(923 p2)- (1.107)
From (1.108) and (1.106) we inféw; p) = (o1; p;), SO that
(w;p) Fx (B; (15 p1)),
which in tandem with[(1.107) yields the desir@d; D) = (02; p5).

This completes the case analysis and the induction.]

Example 12: Consider the WiD language obtained by fixing the clock signature, attribute structure and in-
terpretation of Example9. Now consider a system of two cleglkendc, to which we will give the names;
andc, (recall thatc; andc, are constant symbols of the signature, so this is a constant assignmerith
need only be partial). Now let be the state depicted by the following picture:

Cq Co

Intuitively, this state signifies that we know the precise time displayed i§§:45 am). We are also sure of the
minute value of; (28), but not of its hour value, which could be either 4, 5, or 6. Now suppose that we are
further given the premis@head (c1, c5), indicating that the time displayed hy is ahead of that displayed
by Co.

From these two pieces of information, one diagrammatic and the other sentential, we should be able to
infer the following diagram, call it':

Cq Co

Thatis, we should be able to conclude the exact timg adince, given that; is ahead o, the hour displayed
by it cannot possibly be 4 or 5; it must, therefore, be 6. We can do thisviib Wvith the following one-line
proof:

(¢'; p) by thinning with Ahead (cq,C32).

This deduction, when evaluated in the contédhead (c1,C2)}; (0; p)), will result in the state (diagram)
(¢’; p). More formally, we have the following judgment:

({Ahead(c1,C2)}; (0;p)) F (o5 p) by thinning with Ahead(c,C2) ~ (¢';p)

by virtue of
(05 p) IF(Ahead (c,.c.)y (075 P)- (1.108)

Note thatp does not change in the resulting state.
To establish|(1.108) rigorously, we must show that for all named state’) such that

Alt((o; p), (0'5 p), (0”5 p"))

36

we have
I(U//;pu)/x(Ahead (cq,C2)) = false

for all variable assignmentg, according to Definitio 1. Given that the assignmgrdoes not change,
it follows from Definition[1Q that we must have’ = p and henceAlt(o,o’,”’). Now there is only one
alternative extension” of o w.r.t. ¢/, obtained fromo by complementing théoursvalue ofc; in ¢’ with
respect to the corresponding valuesin

" : hourge;) = {4, 5}.
It is straightforward to verify that

Iiorr, py/x(Ahead(cy, cz)) = false

for all x. [|

1.6 Representing arbitrary graphs

Graphs (including trees, lists, etc.) are very widely used as diagrammatic depictions of structured data. In this
section we present a way of modeling arbitrary graphs in our framework as system states. These ideas will be
put to use in the example of Section]1.7.

Consider an arbitrary finite grapi = (N; E), whereN is a set of nodes anll C N x N a set of
directed edges. Typically we wish to attach a value to each nodelNV, so we assume we have a function
data: N — V that maps each node to some element of a set of valueSor the purposes of drawing the
graph, we also assume that the children of every node are ordered from left to right, i.e., we assume there is
a functionchildren : N — N* (arbitrary lists can be chosen if the ordering is immaterial for displaying the
graph). Consider, for instance, the graph:

ni

n2 n3

HereN = {ni,na2,n3} andE = {(n1,n2), (n1,n3)}. The values attached to the nodes are natural numbers.
So we can represent the graph by the functideisandchildrenas mentioned above, where

data(n;) = 5, data(ns) = 3, data(ns) = 3

and
children(n,) = [nq, ng], children(ns) = [], children(ns) = [].

This is similar to the “adjacency list” representation of graphs (Cormen, Leiserson and Rivest 1990).
Any graphG = (N; E) where the nodes take values from a Begives rise to systems of the form
Sn = (N; Ay), whereAy is an automorphic attribute structure of the form

Ay = (id : N, children: N* data: V;R).

Here the attributeshildren anddataare as discussed abovd,is the identity function onV, and D(R) C

{N, N*, V} for each relationk € R (the precise contents & will vary). The graphG itself can be repre-
sented as a world of the systefr;. “Incomplete” graphs where the values and/or children of some nodes are
not precisely known can be represented by partial states of such systems.

37

[5832]

N

[58] [32]

/NN

(5] 8] [3 (2]

N

[58] [23]

N7

[2358]

Figure 1.5: The call graph resulting from the application of MergeSort to the list [5 8 3 2].

1.7 Another example: the Mergesort puzzle

In this section we present a more involvet/N language by way of a puzzle. In its general form, the puzzle

can be described as follows. The output of an algorithm is displayed at the bottom of a diagram depicting a call
graph for a particular run of the algorithm. Some sentential information might also be given in addition to the
diagram. The objective is to infer what input(s) could possibly have resulted in the given call graph, or, more
precisely, what inputs are consistent with the given information (the call graph and the sentences). Inference
is mostly performed diagrammatically, by deriving a sequence of successive call graphs, by performing case
analyses involving such graphs, etc. It will be seen that such graphical proofs are considerably more compact
and intuitive than sentential analogues. In the next section we illustrate the puzzle informally with Mergesort,
while in Sectiorj 1.7]2 we formalize it rigorously as an instance fo.

1.7.1 Guessing the input of Mergesort

Mergesort is a popula? (n log n) sorting algorithm. The algorithm works according to the divide-and-conquer
paradigm (Cormen et al. 1990): it successively halves the given list until the original input has been broken into
one-element pieces, which are trivially sorted; this is the dividing phase. The small lists are then repeatedly
combined into larger and larger sorted lists, until we finally obtain the correct sorted permutation of the original
input. This is the conquering phase, which turns on the fact that once we have two sorted lists, say [2 8] and [1
3 5], we can efficientlymergethem to get another sorted list, in this case [1 2 3 5 8].

For example, Figurg 11.5 depicts the call graph obtained by applying Mergesort to the input list [5 8 3 2].
Note that the graph is a DAG (directed acyclic graph). Diverging edges on the top half represent recursive
applications of Mergesort to the left and right halves of the input (dividing phase); while converging edges on
the lower half represent calls to the merging procedure (conquering phase). We make the convention that when
the input list is of an odd lengthn + 1, we take the firsth, elements as the left half and the remaining- 1
elements as the right half.

The call graph for an application of Mergesort is completely and unambiguously determined once the input
listis given. However, things are more interesting in the reverse direction. Clearly, there is no way of retrieving
the input list from the output alone, since the inverse of a sorting function is a relation, not a function—any
one ofn! initial permutations could result in the same sortedlement list. But if, in addition to specifying

38

the output, we also constrain the call graph of the algorithm by sprinkling some tidbits of information on it or
by specifying some sentential information along with it, then we may be able to infer the original input, or at
least narrow it down to relatively few possibilities.

As a simple example, suppose you are told that the output of Mergesortis [1 2 5 8]. At this point there
is not much of interest you can conclude—there dre- 24 possible inputs that could produce this output.

But suppose you are further told that the corresponding call graph is as shown in[Figure 1.6, where we have
attached labelsV; to each node of the graph for easy reference. We w¥ite= ? to indicate that we do

not know anything about the list that should appear at ndgewe write N; O {z1,...,z;} to indicate

that the numbers, ...,z occur in the said list (though in unknown order, and possibly in tandem with
other numbers); and/; = [z, ---] to indicate that we know the exact value of the list in question to be

[x1 -+ xx]. From the diagram of Figu@.G along with what we know about Mergesort, we can conclude that
the original input was either [25 8 1] or [5 2 8 1].

The proof consists of two parts: first we derive a sequence of six increasingly detailed diagrams from the
initial diagram of Figur¢ 1]6, each extending the previous one, culminating with a diagram in which we know
the exact values of all the lists except thoseat N», N, andN; this part of the proof appears in Figiire]1.7.

We then perform an exhaustive case analysis by observing that there are only two possibilities at this point: the
lists of N, and N5 are (a) [2] and [5], respectively; or else they are (b) [5] and [2], respectively. In the first case
we can deduce that the input list was [2 5 8 1], while in the second case we can deduce that it was [5 2 8 1].
Therefore, we can infer that the input list was either [25 8 1] or [5 2 8 1].

Let us analyze the proof in more detail, beginning with the first part shown in Higdre 1.7. That part consists
of six steps, labeled (1) through (6). The new information extracted by each step appears in red for enhanced
clarity. We discuss each step below:

e Step (1) infers thafVg must contain the number 8. This follows because we know that 8 occu¥s in
but not in N;; and that, sincéVg and N; converge inNy, a number can occur itV iff it occurs either
in Ng or in Ny (this holds because converging edges indicate list merging).

e Step (2) infers that the list appearing in not¥g must be precisely8]. We already know from the
previous step that 8 occurs in the said list. Now if the list had any additional elements, its length would
be greater than one, and hence it would be longer thamivthist, which we know to have only one
element. But this cannot be the case becadisand N; are the left and right halves of th€; list, and

N1 = ‘7

N
AA

4=7 Ns=7 Ne=?7 N;=

AVAVA

Ng =7 No D {8}
Nio=[1258]

Figure 1.6: A partially unknown MergeSort call graph resulting in the output [1 2 5 8].

39

=7 0 2 {8} s="7 Ny 2 {8}
Nio=[1258] Nio=[1258]
N1 =7 Ny =7
/\ /\
Ny =7 N3 =7 Ny =7 N3 =7

Figure 1.7: First part of a graphical proof solving an instance of the Mergesort puzzle.

40

Figure 1.8: Case 1 (out of 2) following the derivation of Figurg 1.7.

every time a listL is split into two halves, the left half is always either of the same length as the right
half (if L has even length) or else it is shorter by onel(ifias odd length); it cannot possibly be longer.
Hence, theVg list must be the one-element list [8].

e Step (3) infers that théVy list must be [1 8]. This follows because tiA& list represents the result of
mergingNg and N7, whose precise values are both known at this point.

e Step (4) infers that thé&/s list must be [8 1]. This follows because we already know the left and right
halves of N5 to be [8] and [1], respectively.

e Step (5) infers that théVs list must contain 2 and 5. This holds by virtue of the principle mentioned
above in connection with step (1): whénand L’ converge inL”, any number occurs ia” iff it occurs
either inL or in L’. Therefore, since we know that 2 and 5 occuiify but not in Ny, they must occur
in Ng.

41

Figure 1.9: Case 2 (out of 2) following the derivation of Figurg 1.7.

e Step (6) infers that th&/y list must be precisely [2 SEWe already know that it must have at least these
two elements. If it had more than two elements, théR would have to have at least five elements,
given that (a)Ny is the result of mergindVg and Ng, and that (b)Ng has two elements. BuY;q has
four elements, therefore 2 and 5 must be the only two elemen¥s deaving [2 5] and [5 2] as the only
two possibilites. But the second possibility cannot hold, siNgenust be sorted (recall that only sorted
lists get merged). Hence, thé; list must be [2 5].

At this point we do not have sufficient information to determine unique values foNthand V5 lists.
However, we can narrow things down to two possibilities: eitNgrand N5 are [2] and [5], respectively; or
else they are [5] and [2]. These are the only two alternatives that are concistetNanth2 5], given thatNg
represents the result of merging andN5. The reasoning in each case is as follows:

12The result of this step does not appear in Fi 1.7 for space reasons, but it is shown as the common starting point of the subsequent
case analysis in Figufe }.8 and Figpirg 1.9.

42

Case 1: In that case (Figure 11.8), we proceed to infer that the valug.ahust be [2 5], sincéV, and N are
the left and right halves aW,. And then, since we know botN, and N3 we can determine the value of
the inputV; to be [2 5 8 1].

Case 2: In that case (Figurie 1.9), we deduce that the valu&pfmust be [5 2], for the same reason we cited
in the preceding case. Similarly, we can then conclude that the input list must be [5 2 8 1].

We are now entitled to infer that the original input list must be either[258 1] or [5 2 8 1].

1.7.2 Formalizing the puzzle as an instance of Mp
There are three steps to obtaining a particular instancevab Y
1. Specify an attribute structurd.
2. Specify a vocabulary..
3. Specify an interpretation of the relation symbolsbinto A as discussed in Sectipn 1.4.

In the following three sections we carry out these steps in detail for the Mergesort puzzle.

Specifying the attribute structure

Let Nodebe the universe of nodes and l&t be the set of all finite sequences (lists) of integers. An appropriate
attribute structure for the Mergesort puzzle is the following:

.A]u = (Id : NOde children: Nodé“,data: Z*; {Rl,RQ,R37R4,R5,R6,R7} U {RL | L e Z*})

where the relation®;, . .., R, Ry, are as follows:

e R; C Nodée x Nodex Node with
Ri([n1 ... ng],n,n’) & {n,n'} C {ny,...,nx}.
e R; C Nodex Nod€ x Nodé€', with

!

Ro(n,[ny ... ng),[n} ... nl) ene{n,...,nep 0 {nf,....nl,}

Rs C Z* x Z* x Z*, with
Rs([x1 ... gl [y1 - Ynly |21 oo 2Zm)) Sz s @) =[y1 -« Yn 21 -+ Zm)s

i.e., iff [x; ... xx] is the concatenation ¢f; ... y,] and[z1 ... zn,].

Ry C Z* x Z*, with
Ry([z1 - zg),[y1 -+ yn]) ©n € {kk+1}.

R5 C Z*, with
R5([[L‘1 $k])<:>1'1 < Tyl fori = 1,...,]€—1,

i.e., iff [x; ... xy] is sorted.

43

e Ry C Z* x Z* x Z*, with
Re([x1 ... k), [y1 - ynly (21 - zm]) e {zr, o yaet ={y1, -, ynt U {21, ..., 2m }
o R; CZ* x Z* x Z*, with
Re([x1 -+ xkls[yr -« nl[z1 -0 Zm]) ©k=n—+m.
e Ry C Z*, with
Rigy oy - ynl) &1 oozl = [y1 - ynl-

Note that we have infinitely many unary relatiaRg, parameterized b¥;. Each such relation takes an arbitrary
list of integersL’ and tests for the equality/ = L

To make things concrete, Figdre 1.11 presents an implementation of this attribute structure in SML.
Specifying the vocabulary

We have seven relations symbagteak , valley , append , union , andsumare ternaryhalves is binary;
andsorted is unary. In addition, for each list of integefswe have a unary relation symbedl ;. We use
N1, N, ... as constant symbols ang, v, . .. as variables.

Specifying the interpretation

The interpretation of the relation symbols is shown in Figure]1.10.
More intuitive explanations follow:

e peak (vy, vo, v3) holds iff nodesy; andwvs are both children of;:

U1

V2 U3

e valley (v1,v9,vs) holds iff vy andwvs are both parents of;:

Symbol | Arity | Realization Profile
peak 3 Ry [(children 1), (id, 2), (id, 3)]
valley 3 Ry [(id, 1), (children, 2), (children 3)]
append 3 Rs [(data 1), (data 2), (data, 3)]
halves 2 Ry [(data 1), (data 2)]
sorted 1 Rs [(data 1)]
union 3 Rs [(data 1), (data 2), (data 3)]
sum 3 R [(data 1), (data 2), (data 3)]
val 1 Ry, [(data 1)]

Figure 1.10: The interpretation of the Mergesort puzzle vocabulary.

44

U1 V2

o

v

append (v1, v, v3) holds iff the list attached to node (i.e., thedatafield of v) is identical to the
concatenation of the lists attached to nodgandvs, respectively.

halves (v1,vy) holds iff the lengths of the lists attached to nodesandv, are approximately equal;
more precisely, iff the length of the, list is either equal to or one more than the length ofithést.

sorted (v;) holds iff the list attached to nods is sorted.

union (vy,v2,v3) holds iff the list attached to nodg contains all and only those elements that occur
either invy or invs (or in both).

sum(v1, ve, v3) holds iff the length of the; list is equal to the sum of the lengths of theandus lists.

val 1 (v1) holds iff the list attached to nods is identical toL. We writeval (v, L) as an abbreviation
forval 1 (v1).

datatype Nat = zero | succ of Nat;
datatype Node = node of Nat;
fun member(x,L) = Listexists (fn y => x = vy) L;
fun subset(L1,L2) = Listall (fn x => member(x,L2)) L1;
fun R1(L,n1,n2) = member(nl,L) andalso member(n2,L);
fun R2(n,L1,L2) = member(n,L1) andalso member(n,L2);
fun R3(L1,L2,L3) = L1 = L2@L3;
fun R4(L1,L2) = let val lenl = length L1
_ val len2 = length L2
" len2 = lenl orelse len2 = lenl + 1

end;

fun R5([]) = true
R5(x::L) = R5(L) andalso Listall (fn y => x <= vy) L;

fun R6(L1,L2,L3) = let val L = L2@L3

in
subset(L1,L) andalso subset(L,L1)
end;

fun R7(L1,L2,L3)

length(L1) = length(L2) + length(L3);

Figure 1.11: SML code implementing the attribute structure of the MergeSort puzzle.

45

1.7.3 The formal proof

The following Horn clauses are all the axioms we need for solving Mergesort puzzles. Their meaning should
be clear in light of the foregoing interpretation.

Y v1,v9,vs . peak (v1, ve, v3) = halves (vq,v3) halves-axiom
YV vy, vg,v3 . valley (vy,vs,vs3) =sorted (vy) Asorted (vy) Asorted (vs) sorted-axiom
Y v1,v9,v3 . valley (vi,ve,vs3) V peak (vi,ve,v3) = union (vi,ve,vs) union-axiom
Y v1, va,v3 . peak (v, ve, v3) = append (v, va, v3) append-axiom
YV v1,v9,vs . valley (v1,v2,v3) = sum(vy, ve, v3) sum-axiom
Now letnodg,...,nodg, be ten nodes from the universe of all nodesde In combination with the

attribute structured,,, these ten nodes constitute a system. The diagrams shown in [Figure 1.7[Figure 1.8 and
Figure[1.9 depict specific named states of this system. Consider, for instance, the starting diagram, at the upper
left corner of Figur?. This represents a named s$tate), where the partial constant assignmgeiig

Ni; — nodg, Ny, — node, ..., Nig — nodgg (1.109)

(with p(N;) undefined for > 10); while the two ascriptionshildrenanddataare as follows (théd ascription
is defined in the obvious way):

childrenlnodeg) = [node node]
childrenlnode) = [node]
children(noday) = [

and
datanode) = {[,[1],[2],[5),18],[12],[15],...,[851],...,[1258]}
datalnodey) = {[8],[18],[81],[28],...,[681],[2518],...}
datalnodag) = {[1258]}.

Observe the equation faata(nodg). At this point we do not know anything about what list appears at
nodg (a complete lack of knowledge signified by the inscriptién= 7), so the data field afiodg is entirely
unconstrained: it contains all possible lists of length four obtained by permutations of four objects taken four at
atime (P(4,4) = 4! = 24 total); plus all possible lists of length three obtained by permutations of four objects
taken three at a time&{(4, 3) = 24 total); plus all possible lists of length two obtained by permutations of four
objects taken two at a tim&>(4, 2) = 12), plus all possible lists of length one (4), plus the empty list, for a
sum total of 24 + 24 + 12 + 4 + 1 = 65 different lists. Ttataascription maps every “questionmark node”
(e.g., the nodes labeled Bys or Ng) to the same set of 65 lists. Hereafter we will denote this set of 65 lists by
L. By contrast, thelataascription fornode (the node labeled byy) is subject to the constraint that all list
values must contain 8, so this narrows down the possibilities to a total of 24 + 18 + 6 + 1 = 49. Further down,

46

72 by thinning with union-axiom
73 by thinning with halves-axiom
74 by thinning with union-axiom sorted-axiom
75 by thinning with append-axiom
76 by thinning with union-axiom
77 by thinning with sum-axiomsorted-axiom
cases fromunion-axiom halves-axiom
73 — T9 by thinning with append-axiom
T10 by thinning with append-axiom
observeval (Ni,[2581])Vvval (N,[5281])
712 — 713 by thinning with append-axiom
714 by thinning with append-axiom
observeval (Ny,[2581])Vval (Ny,[5281])

Figure 1.12: Formal WiD proof solving the Mergesort puzzle of Sectjon 1,7.1.

the value ofdatafor nodg, is completely determined—the singletéfi 2 5 8]}.E] The named system state
corresponding to any of the diagrams shown in connection with the Mergesort puzzle is likewise defined. The
childrenascription and the constant assignment remain the same in every case; widtatvedue is specified

in accordance with the preceding conventions.

Extracting the appropriate system state from a given diagram can be viewed as the task of computing a
parsing functiony that takes a concrete two-dimensional representation and produces an abstract syntax tree
for it. Conversely, reconstructing a diagram from the underlying system state can be seen as computing an
“unparsing” functiony) that proceeds in the reverse direction, rendering system states graphically. As with
customary parsing and unparsing, we have

P(o(d)) = d and ¢(¢(0)) = o (1.110)

for all diagramsi and system states where the first identity is understood to obtain up to topological equiva-
IenceE‘] From a practical standpoint, most of the effort required to buildvab/language would be alloted to
the implementation of these two functions. In the case of the Mergesort puzzlej both) can be computed
efficiently—in low polynomial time—using standard graph-theoretic algorithms.

Finally, Figure[1.IP shows the formaliD proof that solves the Mergesort puzzle discussed in Sec-
tion[1.7.1. We conclude with a detailed analysis of this proof.

First, we need a simple lemma:

YV v, vq,v3 . valley (v, vs,v3) = union (vy,ve,v3) Asum(vy, va, v3) [lemma

drastically. For instance, we know that at the top node only lists of length four could appear—or, in general, only lists of the exact same

length as the unique list that appears at the bottom node representing the output. Further, we know that if any node has enitelists of

as possible values, then the left and right children can respectively only have lists of eri@thand [n /2] as possible values, and so

on. In this manner cardinality constraints would propagate down the graph and significantly curtail the valuemtfakeription. This

would be important for an efficient implementation of the Mergesort puzzle, but it is not necessary for our present purposes.
14piagrammatic identity in general can be a vague notion (e.g., when exactly can we say that two drawings depict the same mountain

range?) and this is part of the reason why logicians and mathematicians have had a skeptical attitude towards diagrams (Quine’s dictum

“No entity without identity” (Quine 1969) comes to mind). Nevertheless, there are many cases where we can formulate rigorous necessary

and sufficient conditions for two diagrams to be considered identical, using topological or other extensional notions.

47

This can be derived from our five axioms in a few lines ofi¥, by some elementary sentential reasoning; we
leave the derivation to the reader.

Next, letoy, . .., o6 be the system states corresponding to the six diagrams that appear irj Fijjure 1.9 starting
from the top left corner and proceeding clockwise, so thatepresents the graph to the left of the arrow
indicating theith step. Likewise, let,...,019 andoy1, ..., 014 be the states corresponding to the diagrams
of Figureg[1.8 and Figule 1.9, respectively. For ary 1, ..., 14, we write; to denote the named state;; p),
wherep is the constant assignmept (1.109).

Recalling that composition is right-associative, we see that the proof in ffigufle 1.12 is a sententiél,proof
as itis of the form

D=Ay;-- ;A6 D,

i.e., a composition of six diagrammatic stefs, . .. , Ag followed by a sentential deductidd’ of the form
cases fromFy, ..., Fy: (o1501) — D1| -+ | (on;p,) — Dn,
a diagrammatic-to-sentential case analysis. The starting point for the proof is the context

11 = (B1571)s (1.111)

where(; contains the five universally quantified clauses of our axiomatization and the aforementioned lemma.
This is the context in which the entire prabfwill be evaluated.
Let us why the first steg\,, the diagrammatic inference

7o by thinning with union-axiom

succeeds. According to the semantics of thinning (Fifure 1.3), this step will be valid provided that

71 IIF{union-axiom 725

i.e., provided that; entailsr, with respect tainion-axiom This means that every alternative way of extending
71 W.r.t. 75 must falsifyunion-axiom(for an arbitrary variable assignment). More precisely, it must be the case
that for every named state= (o; p) such thatlt(r, 72, 7) we have

14, p)/x (Union-axion) = false (1.112)

for all . Pick any suchr. Sincer; andr,; share the same constant assignmerihe only wayr can be an
alternative extension af; w.r.t. 75 is if we haveAlt(oy, 02, 0) (Definition). The only state that qualifies

as such an alternative is the one that is identical;texcept that thelataascription mapsode; to the set of

all lists in £ that donot contain 8. It is easy to see th 12) holds in that state. Indeed, consider an arbitrary
>§1. By (1.5),union-axiomwill be false in(c; p) andy if there are some nodemde, , node,, andnode, such

that

I(O_; p)/Xlv1—node, ,@Hnodq?,ngnodqa](Va“ey (v1,v2,v3) V peak (vi,v2,v3) = union (vi,v2,v3)) = false

Let these three nodes Ib@de), node, andnode,, respectively (i.e., the nodes labeled Ny, Ng and V7).
For these nodes we clearly have:

I(5; p) /x[v1—node va—node, vs—node] (valley (v1,v2,v3) V peak (vi,v2,v3)) = true

(since the nodes form a valley) and yet

I(a;p)/x[lenod@,uQ»—»node;7v3Hnode,](Union (v1,v2,v3)) = false (1.113)

48

(1.113) holds because fewverylist L in the datafield of node in o and for every listL’ in the datafield of
node in o and every list.” in thedatafield of node in o, we have

-Rg(L,L', L"),

the reason being that every sutftontains 8 but no such” contains 8 (becausdata(node;) in o contains
only one list value, [1]) and no such’ contains 8 (by virtue of being an alternative extension @f w.r.t.
0'2).

It is important to note that in practice these three nodes would be discovered automatically by exhaustive
search. Specifically, the system would evaluate the forranian-axiomin the named statés; p)and an
arbitrary variable assignmepttﬁ to determine if it comes ouflse Now a universally quantified formula
such asunion-axiomis evaluated in a givery by binding the universally quantified variable to successive
system objects and recursively evaluating the body in the updatdfithe body comes outalse for some
system object, the whole formula is deenfalde. If the body itself is another universally quantified formula
then we have more choice points and possible backtracking. In the worst case for the puzzle example, the
evaluation ofunion-axiomwill need to examing 0 = 1000 difference possible assignments of variables to
objects, since the system comprises 10 nodes and the formula has three universally quantified variables. In
such a worst-case scenario, the bodyunifon-axiomwould be evaluated for each of the 1000 node triples.

For most of these tripleginion-axiomwould come ouunknown because there is not enough information to
enable a definitive judgment. Consider, for instance, the evaluation of the bodyoofaxiomin the triple

X[v1 — nodg, vy — node, vz — node].

While it is true thatode , node;, andnodg form a peak, we have

I (s, p)/x[v1>—>n0da,vy—»ﬂOdQ,vanOd%](unlon (v1,v2,v3)) = unknown

because, i, the realization ounion , Rg, holds for some list values in the corresponddaga fields of
nodg, node andnodg and does not hold for others (sge {1.3)).

In this particular example we have 10 system objects and the most populous attribute value has 65 elements,
so a formula such asnion (vy, v, v3) could, in theory, take up t65° = 274, 625 evaluations to settle. Com-
bined with the 1,000 triple possibilities dictated by three universal quantifiers, we could look at the non-trivial
number of274, 625, 000 evaluations. However, in practice atomic formulas suchrasn (v, vs, v3) would
be settled speedily because for most node assignments we would getserand somdalsevalues, quickly
leading to anunknown result. So even the worst case of 1000 different evaluations is not computationally
formidable.

Nevertheless, we observe that the user can always improve the efficiency of the proof checking by providing
more information in the proof—information that guides the searh in the right direction. For example, we could
replace the first step

7o by thinning with union-axiom

by the following sequence of steps:

specializeunion-axiomwith Ny, Ng, N7;

observevalley (Ng, Ng, N7);

right-either peak (Ng, Ng, N7) v valley (Ng, Ng, N7);

modus-ponengeak (Ng, Ng, N7) V valley (Ng, Ng, N7) = union (Ng, Ng, N7),
peak (Ng,Nﬁ,N7) \/valley (NQ,N(;,N7);

79 by thinning with union (Ny, Ng, N7)

15This is legitimate by virtue of Lemn{q 2.

49

Here we focus directly on the three nodes of interest by citingn (Ny, Ng, N7) as the justification of
the thinning step, instead of citing the universally quantifiagbn-axiom By eliminating the three universal
quantifiers, we avert the need to evaluate the bodyrén-axiomover all possible triples of nodes. The
tradeoff is a typical manifestation of the usual tension between brevity and efficiency: a very brief proof takes
large steps whose verification can be difficult because it requires search; whereas a detailed proof takes small
steps that are easy to check because they involve little or no search. We can always buy efficiency at the expense
of consiceness.

Returning to the proof, let us examine the second step:

73 by thinning with halves-axiom

As with the previous application of thinning, this step is valid only if

T2 HF{halves-axiorynTi‘>v

meaning that any named state= (c; p) that is an alternative extensionofw.r.t. 3 must falsifyhalves-axiom
As before, because the constant assignment does not change, the only way we dli(have,) is if we
haveAlt(os, 03, 0). And given that ino, the datafield of node contains all and only those lists that contain
8, o is an alternative extension ef w.r.t. o3 iff it is a list in £ that contains 8 and has length greater than one,
e.g., [2 5 8]. But in that statiealves-axionis falsified (withnode;, node, andnode; providing the counterex-
ample peak), hence the thinning step is sanctioned. Similar rationales justify the next four thinning steps. We
encourage the reader to work through them rigorously.

We come finally to the case analysis, which turns on the claim that from thesstated on the basis of the
lemma, there are only two possible statgsando,,. Symbolically,

(U7§ p) ”"{lemma} {(Us;P)a (012§ P)} (1.114)
Consulting Definitiori 11, we see that (1.114) holds iff for every; p') such that
Alt((o7; p), {(0s; p), (0125 p) }, (03 0")) (1.115)

we havel . ., (lemmg = falsefor all x. Again, because the constant assignment does not ch (1.115)
holds iff
Alt(o7,{0s, 012}, 0”) (1.116)

(by Definition[10).

Now there are two alternative extensionsogfw.r.t. {os,o12}: one, call ito4, in which we keep the
{[2], [5]} value ofnode, steady but complement it farode;; while the other, call iz, is one in which we
complement thelatavalue ofnode, in o7 and retain thelatavalue ofnode. The relevant parts of both states
can be depicted graphically as follows:

L Ny =7? L N=7
. N o N
Ny =A{[2],[5]} Ns=L\{[2],[5]} Ny =L\{2],[5]} Ns = {[2],[5]}
N N
Ng = [2 5] Ng = [2 5]

A routine calculation will confirm that both possibilities falsify the cited lemma.

50

1.8 Related Work

We have derived much inspiration from the seminal work of Barwise, Etchemendy, and others on Hyperproof
(Barwise and Etchemendy 1995b). One of the chief contributions of Hyperproof was its emphasis on incom-
plete information and its ability to reason about ambiguous (partially determined) situations. These choices are
not only pedagogically sound, since there are many types of reasoning p@emﬁich students are given
an incomplete sketch and are asked to fill in the gaps by way of inference; but they are also apt design choices
for visual reasoning systems in general, since oftentimes the information that agents extract from a perceived
image is incomplete, either because parts of the image are visually unclear or because they are not sure how to
interpret thenff”]

Important differences betweenwb and Hyperproof include the following:

1. Hyperproof is specifically built for reasoning about simple blocks worldsviDy by contrast, is a
domain-independent framework.

2. Hyperproof’s treatment of incomplete information is limited and ad hoc. For instance, although a dia-
gram can signify that the size of a block is unknown, it has no way of indicating that it is, say, large or
medium but not small. By contrast)Wb’s mechanism for handling incomplete diagrammatic informa-
tion via arbitrary sets of values is completely general.

3. VIvID is based on the key DPL ideas of representing assumption scope with context-free block structure
and formalizing the denotation of a proof as a function over assumption bases. These two ideas have
several advantages for formalizing Fitch-style natural deduction (Arkoudas 2000, Arkoudas n.d.a). The
standard Fitch practice—adopted by Hyperproof—of capturing assumption scope by drawing nested
vertical lines might be viable for pedagogical purposes but would not scale to realistic proofs any more
than using vertical lines to represent lexical scope in programming languages (instead of the usual begin-
end pairs or curly braces) would scale to realistic programs.

4. ViviD has a formal big-step evaluation semantics in the style of Kahn and Plotkin (Kahn 1987, Plotkin
1981). This is not to say that Hyperproof does not have precise semantics or that its semantics cannot
be formally defined; only that it does not draw on the same techniques from the field of programming
language theory. We stress that this is not an issue of mere stylistic differences in presentation. Casting a
formal semantics in a style such as we have used carries significant advantages, especially in metatheo-
retic investigations, where many arguments take the form of neat induction proofs on derivations (witness
our soundness proof). In general, such a semantics is an invaluable tool for ressomingroofs in
the system, and for evaluating the correctness of algorithms that manipulate sucﬂfﬂ;roofs.

5. Because it is based on DPLsb could be extended from its present form as a proof-checking frame-
work into a Turing-complete programmable system allowing the user to formulate arbitrary tawgibs (
od9 combining diagrammatic and sentential inference steps, in such a way that the soundness of the
methods would be guaranteed by the formal semantics of the language (see (Arkoudas n.d.c) for an ex-
ample of how such extensions are actually performed). It is not at all clear how Hyperproof could be
made programmable, let alone in a way that would guarantee soundness.

16E.g., in logical and analytical reasoning problems of standardized tests such as GRE or LSAT.
17As Konolige and Meyers (Myers and Konolige 1995) put it:

When generating maps from perceptual input, noise or faulty sensors may both cause objects of interest to go undetected
and leave analogical relations only partially determined.

18For instance, very efficient proof-simplification algorithms that were developel 9 (Arkoudas n.d.b) were made possible—and

proven sound—owing to the formal operational semantics of the language. The same ideas could be incorporated into VIVID, resulting in
general principles and procedures for eliminating redundant reasoning from diagrammatic proofs.

51

6. Hyperproof is proprietary; WD is in the public domain. The difference is not without practical ramifi-
cations. The open design ofiwb enables highly modular implementations because it exposes a sharp
separation between the purely graphical tasks of diagram parsing and unparsing on one hand and the
system’s syntax, semantics, and underlying diagrammatic inference procedures on the other. The latter
are fixed once and for all and proven sound. All one needs to do in order to implement a specific instance
of VIvID is fix a class of diagrams and provide a diagram parser (compiling diagrams into system states)
and unparser (rendering system states graphically). Hyperproof is much more of a monolithic black box,
and any attempt by third parties to build Hyperproof-like systems for other domains would have to resort
to reverse engineering.

The work of Konolige and Myers on “reasoning with analogical representations” (Myers and Konolige
1995) is somewhat similar in spirit to our research, in that it seeks to formulate domain-independent principles
of diagrammatic reasoning. However, they do not provide any linguistic abstractions for performing such
reasoning. Rather, they outline a set of data structure operations (which they call “the integration calculus”) that
can be used to integrate diagrammatic inference into existing reasoning systems, and which can be described
as a programming interface. By contrast, we have introduced a specific, precisely defined family of languages
for heterogeneous natural deduction, with novel syntax forms and formal semantics. Further, our method
for dealing with what they call “structural uncertainty” (incomplete diagrammatic information) is much more
general. Finally, our system is strictly more powerful in that it can perform diagrammatic case reasoning; their
integration calculus does not have that capability.

DiaMOND (Jamnik 2001) is a system for checking diagrammating proofs of certain types of arithmetic
theorems. The system is designed to reason exclusively aboyt natural numbers, and specifically with universally
guantified identities of the formw --- . s = t, wheres andt are terms built from the numerals1,2,.. .,
variables, and operators such as addition, multiplication, etc. A typical example is the identity asserting that
the sum of the first odd natural numbers is?, symbolically written as

> 2i-1=n (1.117)
i=1

Diagrammatic proofs are only given for particulastancef the theorem, e.qg., fof (1.1]17) one might give a
diagrammatic proof forn = 4, establishing that + 3 + 5 + 7 = 42 = 16. A diagrammatic proof of such a
concrete identity is given by representing both terms (1 + 3 + 5 + 748nds diagrams, and then rewriting

both diagrams to a common form. This clearly depends on the system’s ability to represent concrete numeric
terms by suitable diagrams. This is possible and indeed intuitive for certain types of termsi?Ean, be
represented asdax 4 square matrix of dots:

and likewise for any:2. It is not so easy for other terms, however, and indeeDND currently cannot even
express some arithmetic theorems.

After the user has successfully carried out several diagrammatic proofs of such concrete instances of the
identity in question, the system uses inductive learning techniques in an attempt to automatically extrapolate a
schematic proof algorithm capable of taking any numband proving the identity for that particular number.

If successful, the schematic proof algorithm then needs to be proved correct in a metatheoretic framework. This
is probably the most problematic step of the process, as the problem is undecidable in general. We are thus

52

faced with the somewhat odd consequence that even thouwghoRD is only a proof checker and not a proof
finder, it might nevertheless still fail to yield a verdict. Therefore, it might make more sense to incorporate
abstraction devices into the diagrams in a disciplined way, and attempt from the outset to give diagrammatic
proofs of the general form of the theorem, instead of insisting on dealing with concrete diagrams only.

GROVER (Barker-Plummer and Bailin 1992) is a theorem-proving system that uses diagrams to guide
the proof search. The system consists of a conventional (sentential) automated theorem prover (ATP), &,
augmented with a diagram processor. The diagram processor examines the given diagrams and, based on
the extracted information, it constructs an appropriate proof strategy for &. Its authors report having used the
system to obtain automatic proofs for the diamond lemma, as well as for thédectBernstein theorem of ZF.

Both are non-trivial results; the Sdider-Bernstein theorem, in particular, has a quite sophisticated sentential
proof that is far from even the current state-of-the-art in ATP technology. In their view, a diagram represents a
trail of the objects that are involved in the proof, along with key properties of and relation among such objects.
This is an interesting view of diagrams, but it differs from the (more rigorous) sense in which diagrams are used
in systems such as Hyperproof omib , where diagrams are essentially used as visual premises and inference
rules are applied to them in the usual step-by-step fashion.

Anderson and McCartney (Anderson and McCartney 2003) present IDR, a system for representing and
computing with arbitrary diagrams. A diagram is viewed as a tesselation of a finite two-dimensional planar
area, with each tile having a unique triple of numbgrs k associated with it, indicating a value in the CMY
(Cyan, Magenta, Yellow) color scale. Apart from the spatial relationships between the tiles, the meaning of
a diagram is captured mainly via tile coloring, with different colors (or shades of gray) representing different
types of information. They introduce a set of operations on diagrams, each of which takes a number of input
diagrams of the same dimension and tessellation and produces a new diagram in which the color value of atile is
some function of the color values of the corresponding tiles of the input diagrams. Among other applications,
IDR has been used to solve thequeens problem diagrammatically, to induce correct fingerings for guitar
chords, and to answer queries concerning cartograms of the USA. The system is more concerned with diagram
computation rather than with inference; there are no general notions of entailment, soundness, etc. IDR is also
not heterogeneous. It is exclusively diagrammatic, in that all the available operations are applied to diagrams,
not to combinations of diagrams and symbolic information.

1.9 Conclusions

A cursory reading of this paper might leave one asking: “So where are the diagrams? All | see are sets and
lists and functions and so on—the usual sentential stuff.” Indeed, as Greaves (Greaves 2002) correctly states:

Diagrammatic representations can be recognized by the extent to which the geometric properties
of the components of the representation are relevant to their interpretation, and the ways in which
these properties impact the reasoning methods which are licenced by the overall theory.

But our theory revolves around attribute structures, system states, etc., and has ostensibly little to do with
“geometric properties” of any kind.

There is nothing odd about that. Our theory is a logical analysis of the computational and information-
theoretic aspects of certain types of diagrammatic reasoning. It is not itself a piece of diagrammatic reasoning,
nor does it need to be. A mathematical analysis of visual inference does not itself need to be visual any more
than a mathematical analysis of acoustics needs to be musical, or any more than a mathematical analysis of
heat needs to be hot.

Still, one might wonder whether any representation of diagrams by set-theoretic structures is not bound
to lose something of the essentially pictorial nature of diagrams. Perhaps, but the issue is rather orthogonal

53

to our concerns. Our analysis is mostly motivated by engineering concerns and is therefore given with a
view to building robust, efficient, usable systems that permit perspicuous heterogeneous proofs combining
diagrammatic and sentential reasoning.

In summary, we have introducedwb, a family of denotational proof languages (DPLs) that combine
sentential and diagrammatic reasoning in a Fitch-style natural deduction framewark.id/based on the no-
tion of attribute systems, and on the use of Kleene’s strong three-valued logic to interpret first-order signatures
into attribute structures. To obtain a particular instancelefd/, we need only specify an attribute structure, a
signature, and an interpretation of the signature into the structure.

We have not discussed how diagrams would be concretely represented within the proof text. That is an
interface issue, not an issue of abstract syntax or semantics. One possibility would be to give names to diagrams
and then have those names appear in the proof text, but with hyperlinks. If a user clicks on such a link, a picture
depicting the corresponding diagram would pop up, and the user could view or edit the diagram as necessary,
save it as another diagram, etc. Of course, as we have already stressed, how diagrams are drawn depends on
the specific application domain at hand,; it is completely separate from all other aspects of the language. This
modularity could be put to good use, e.g., an implementationrabVcould be designed as an SML functor
(Paulson 1996) that will take an attribute strucutethe interpretation of a signatubeinto A; and a drawing
module that can draw an arbitradrsystem; and will output a parser and an interpreter, i.e., a proof checker
for the instantiated language.

Introducing names brings up another possibility. As it stands, an implementatiorviof Would be a
type« DPL, i.e., a proof checker: it would accept a proof combining sentential and diagrammatic steps and
would either pronounce it sound or else point out a reasoning error. If we introduce unrestricted naming and
computation, we can make these into typ®PLs (Arkoudas n.d.c, Arvizo n.d.), capable not only of proof
checking but of arbitrary proof search as well. It would be very interesting to see what types of methods can
be written in such a setting for the purpose of automating diagrammatic inference, and exactly what type of
formal soundness guarantee we might be able to provide.

Another important issue is efficiency. Depending on the system we are working with, we may need ex-
ponential time in the size of the attributes to check whether an application of a rule such as thinning is valid.
This is due solely to the size of the attributes and is orthogonal to how “large” are the steps taken by the user.
Even if the user takes a very small step, say to exclude one possible value from a set thereof, we may still
need to explore exponentially many subsets. Two possibilities for ameliorating this issue are: (a) representing
sets of attribute values by binary decision diagrams (BDDs) (Bryant 1992), and (b) symbolic evaluation. For
(a), it is hoped that a compact representation of the relevant subsets might speed up rule checking. There are
standard techniques for representing an arbitrary suisgftany finite setS by a BDD, basically by encoding
the characteristic function &’ as a Boolean function (Huth and Ryan 2000). With symbolic evaluation, we
may be able to prune very large parts of the search tree if we incorporate a modest degree of domain knowl-
edge into the search process. For instance, if we determine that &tjme;) of a clocke; is not ahead of
some clockey, there is no point in trying other possible tim@s,, m}) of ¢; if h{ < hy orif h} = hy and
m) < m;. Sophisticated techniques for performing symbolic predicate evaluation (similar to the symbolic
evaluation methods in model checking (Clarke et al. 1999)) could have a significant payoff.

54

Bibliography

Agusti, J., Puigsegur, J. and Robertson, D. S.: 1998, A visual syntax for logic and logic prograidwuimg|
of Visual Languages and Computift), 399-427.

Anderson, M. and McCartney, R.: 2003, Diagram processing: Computing with diaghatifisjal Intelligence
1451-2), 181-226.

Arkoudas, K.: 2000Denotational Proof Language$’hD thesis, MIT, Department of Computer Science,
Cambridge, USA.

Arkoudas, K.: n.d.a, Type-DPLs. MIT Al Memo 2001-25.

Arkoudas, K.: n.d.b, Simplifying proofs in Fitch-style natural deduction systems. Accepted for publication in
the Journal of Automated Reasoning, December 2004.

Arkoudas, K.: n.d.c, Type> DPLs. MIT Al Memo 2001-27.
Arvizo, T.: n.d., A virtual machine for a type-denotational proof language. Masters thesis, MIT, June 2002.

Barker-Plummer, D. and Bailin, S. C.: 1992, Proofs and pictures: Proving the diamond lemma with the
GROVER theorem proving systeriyorking notes of the AAAI Spring Symposium on Reasoning with
Diagrammatic Representation&merican Association for Artificial Intelligence, Cambridge, MA.

Barwise, J. and Etchemendy, J.: 1995a, Heterogeneous inglcGlasgow, N. Narayanan and N. H. Chan-
drasekaran (edsDiagrammatic ReasoningMIT Press, Cambidge, USA, pp. 211-234.

Barwise, J. and Etchemendy, J.: 199Byperproof: for MacintoshCSLI Publications.

Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L. and Schnoebelen, Ph.: 2@0&éms
and Software Verification. Model-Checking Techniques and T8pisnger.

Bier, E. A., Stone, M. C., Pier, K., Buxton, W. and DeRose, T. D.: 1993, Toolglass and magic lenses: The
see-through interfac€omputer Graphic27(Annual Conference Series), 73—-80.

Bryant, R. E.: 1992, Symbolic Boolean Manipulation with Ordered Binary-Decision Diagra@id, Comput-
ing Survey®4(3), 293-318.

Chang, S.-K. (ed.): 199®rinciples of Visual Programming Systen®sentice Hall, New York.
Clarke, E. M., Grumberg, O. and Peled, D. A.: 198&del checkingMIT Press.

Cormen, T., Leiserson, C. and Rivest, R.: 19@®o0duction to AlgorithmsMIT Press.

55

Eggleston, H. G.: 1969 onvexity Cambridge University Press.

Englebretsen, G.: 1992, Linear diagrams for syllogisms (with relationsisfre Dame Journal of Formal
Logic 33(1), 37-69.

Etherington, D. W., Borgida, A., Brachman, R. J. and Kautz, H. A.: 1989, Vivid knowledge and tractable
reasoning: preliminary repofroceedings of IJCAI-89, 10th International Joint Conference on Atrtificial
Intelligence Detroit, US, pp. 1146-1152.

Euler, L.: 1768, Lettrea une Princesse d'Allemagn&cademie Imperiale des Sciences

Fagin, R., Mendeizon, A. and Ullman, J.: 1982, A simplified universal relation assumption and its properties,
ACM Transactions on Database Systeft®), 343-360.

Greaves, M.: 200ZThe Philosophical Status of DiagrantSSLI Publications, Stanford, California.

Grigni, M., Papadias, D. and Papadimitriou, C. H.: 1995, Topological inferdPreeedings of the 14th
International Joint Conference on Artificial Intelligence, Montrgaph. 901-905.

Hammer, E. M.: 1995, 0ogic and Visual InformationCSLI Publications, Stanford, California.
Harel, D.: 1988, On visual formalism&€ommun. ACM1(5), 514-530.

Hirakawa, M., Tanaka, M. and Ichikawa, T.: 1990, An iconic programming system, HI-VISUZHE Trans-
actions on Software Engineeririg(10), 1178-1184.

Huth, M. R. A. and Ryan, M. D.: 200Q,0gic in Computer Science: Modelling and Reasoning about Systems
Cambridge University Press, Cambridge, England.

Jamnik, M.: 2001Mathematical Reasoning With Diagrapn@SLI Publications, Stanford, California.

Johnson, S. D., Barwise, J. and Allwein, G.: 1996, Towards the rigorous use of diagrams in reasoning about
hardware,in G. Allwein and J. Barwise (eds),ogical Reasoning with Diagram®xford University
Press, pp. 201-223.

Kahn, G.: 1987, Natural semantiddroceedings of Theoretical Aspects of Computer ScielPassau, Ger-
many.

Kleene, S.: 1952ntroduction to metamathematiddorth-Holland, Amsterdam.

Lemon, O.: 2002, Comparing the Efficacy of Visual Language®). Barker-Plummer, D. I. Beaver, J. van
Benthem and P. S. di Luzio (ed$Yords, Proofs, and Diagram€&SLI Publications, Stanford, California,
pp. 47-69.

Lemon, O. and Pratt, I.: 1997, Spatial Logic and the Complexity of Diagrammatic Reasbtaokine Graph-
ics and Visiorg(1), 89-109.

Levesque, H. J.: 1989, Making believers out of compuierg, Mylopoulos and M. L. Brodie (edsAtificial
Intelligence & Databaseaufmann Publishers, INC., San Mateo, CA, pp. 69-82.

Manbelbrot, B.: 1982The Fractal Geometry of Natur®V/. H. FFreeman and Company.

Meinke, K. and Tucker, J. V.: 1992, Universal algebreS. Abramsky, D. M. Gabbay and T. S. E. Maibaum
(eds),Handbook of Logic in Computer Science: Background - Mathematical Structures (Volume 1)
Clarendon Press, Oxford, pp. 189-411.

56

Myers, K. and Konolige, K.: 1995, Reasoning with analogical representafiodsGlasgow, N. Narayanan
and N. H. Chandrasekaran (ed3)agrammatic ReasonindMIT Press, Cambidge, USA, pp. 273-301.

Myers, K. L.: 1994, Hybrid Reasoning Using Universal Attachmémtificial Intelligence67, 329-375.

Ogawa, T. and Tanaka, J.: 2000, CafePie: A Visual Programming System for Cafeé&BJAn Approach to
Industrial Strength Algebraic Formal Methadslsevier Science, pp. 145-160.

Paulson, L. C.: 1996ML for the working programmer2nd edn, Cambridge University Press, Cambridge,
England.

Peirce, C.: 1960The collected papers of C. S. Peir¢¢arvard University Press.

Pierce, B. C.: 1991Basic Category Theory for Computer Scientigtsundations of Computing, MIT Press,
Cambridge, Massachusetts.

Plotkin, G. D.: 1981, A structural approach to operational semariResearch Report DAIMI FN-1€om-
puter Science Department, Aarhus University, Aarhus, Denmark.

Quine, W. V. O.: 1969, Speaking of objecBntological Relativity and Other EssgySolumbia University
Press, New York.

Reynolds, J. C.: 1998 ,heories of Programming Languagé&sambridge University Press.

Rumbaugh, J., Jacobson, |. and Booch, G.: 1988,Unified Modeling Language Reference ManAaidison-
Wesley.

Russell, B.: 1923, Vaguenedgs,stralasian Journal of Philosophy and Psycholdgp4—92.

Shimojima, A.: 1996, Operational constraints in diagrammatic reasoimiig, Allwein and J. Barwise (eds),
Logical Reasoning with Diagram®©xford University Press, pp. 27-48.

Sloman, A.: 1971, Interactions between philosophy and Al: The role of intuition and non-logical reasoning in
intelligence Proceedings of the Second International Joint Conference on Atrtificial Intelligence

Sober, E.: 1976, Mental representatiofgnthes@3, 101-148.

Stenning, K. and Lemon, O.: 2001, Aligning logical and psychological perspectives on diagrammatic reason-
ing, Thinking with DiagramsKluwer.

Veltman, M.: 1995, Diagrammatica: the Path to Feynman Rules, VolCaofbridge Lecture Notes in Physics
Cambridge University Press.

Wechler, W.: 1992Universal Algebra for Computer Scientis&pringer-Verlag.

57

	Introduction
	Notation
	Attribute structures and systems
	Interpreting first-order languages into system states
	A family of diagrammatic natural deduction languages
	Abstract syntax
	Evaluation semantics

	Representing arbitrary graphs
	Another example: the Mergesort puzzle
	Guessing the input of Mergesort
	Formalizing the puzzle as an instance of VIVID
	Specifying the attribute structure
	Specifying the vocabulary
	Specifying the interpretation

	The formal proof

	Related Work
	Conclusions

