
A Combined Pointer and Purity Analysis for Java Programs

Alexandru Sălcianu and Martin Rinard
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

{salcianu, rinard}@csail.mit.edu

ABSTRACT
We present a new method purity analysis for Java programs.
A method is pure if it does not mutate any location that ex-
ists in the program state right before method invocation.
Our analysis is built on top of a combined pointer and es-
cape analysis for Java programs and is capable of determin-
ing that methods are pure even when the methods do heap
mutation, provided that the mutation affects only objects
created after the beginning of the method.

Because our analysis extracts a precise representation of
the region of the heap that each method may access, it is
able to provide useful information even for methods with
externally visible side effects. In particular, it can recog-
nize read-only parameters (a parameter is read-only if the
method does not mutate any objects transitively reachable
from the parameter) and safe parameters (a parameter is
safe if it is read-only and the method does not create any
new externally visible paths in the heap to objects transi-
tively reachable from the parameter). The analysis can also
generate regular expressions that characterize the externally
visible heap locations that the method mutates.

We have implemented our analysis and used it to ana-
lyze several data structure implementations. Our results
show that our analysis effectively recognize a variety of pure
methods, including pure methods that allocate and mutate
complex auxiliary data structures. Even if the methods are
not pure, our analysis can provide information which may
enable developers to usefully bound the potential side effects
of the method.

Keywords
Static analysis, purity analysis, effect inference

1. INTRODUCTION
Methods in object-oriented languages often update the

objects that they access, including the “this”/”self” ob-
ject. Accurately characterizing these updates is important
for many tasks. Many program analyses, for example, need
to understand how the execution of invoked methods may
affect the information that the analysis maintains [15,17,20].
Accurate side effect information is also useful for program
understanding and documentation [16, 23]. The knowledge

This research was supported by DARPA Contract F33615-00-C-1692,
NSF Grant CCR-0086154, NSF Grant CCR-0073513, NSF Grant
CCR-0209075, and the Singapore-MIT Alliance.

MIT CSAIL Technical Report, MIT-CSAIL-TR-949, May 2004

that a method is pure, or has no externally visible side ef-
fects, is especially useful because it guarantees that invo-
cations of the method will not inadvertently interfere with
other computations. Researchers in a variety of fields have
identified method purity as a useful concept. For example,
when model checking Java programs [10,11,35], it is impor-
tant to know that methods are pure because this informa-
tion allows the model checker to reduce the search space by
removing irrelevant interleavings.

This paper presents a new method purity analysis for Java
programs. This analysis is built on top of a combined pointer
and escape analysis that accurately extracts a representa-
tion of the region of the heap that each method may access.
Our analysis conservatively tracks object creation, updates
to the local variables and updates to the object fields. This
information enables our analysis to distinguish objects allo-
cated within the computation of the method from objects
that existed before the method was invoked. It also allows
the analysis to recognize captured objects whose lifetime is
contained within the lifetime of their allocating method.

Therefore, our analysis can check that a method is pure,
in the sense that it does not mutate any object that exists in
the pre-state, i.e., the program state right before the method
invocation; this is also the definition of purity adopted in
the Java Modeling Language [23]. This definition allows
a method to perform mutation on newly allocated objects
and/or construct objects and return them as a result.

Our analysis applies a more flexible purity criterion than
previously implemented purity analyses, e.g., [8], that con-
sider a method to be pure only if it does not perform any
writes on heap locations at all, and does not invoke any
impure method. The increased precision of our analysis
enables pure methods to use important programming con-
structs such as iterators and complex auxiliary data struc-
tures.

Purity Generalizations
Even when a method is not pure, it may have some useful
generalized purity properties. For example, our analysis can
recognize read-only parameters; a parameter is read-only if
the method does not write the parameter or any objects
reachable from the parameter. It can also recognize safe
parameters; a parameter is safe if it is read-only and the
method does not create any new externally visible paths in
the heap to objects reachable from the parameter.

The read-only and safe parameter properties do not con-
sider the (unknown) aliasing from the calling context. E.g.,
if a method is invoked in a context where a read-only pa-
rameter is aliased with a non-read-only parameter, mutation

1

can occur on the object pointed to by the read-only param-
eter, through the non-read-only alias. This is the common
approach in detecting and specifying read-only annotations
for Java [2].

A program verifier should use both the safe parameter
information inferred by the analysis and the aliasing infor-
mation at the call site. Here is an example scenario: a type-
state checker, e.g., [15], is a tool that tracks the typestate
of objects; one important application is checking complex,
finite state machine-like API usage protocols. The typestate
checker can precisely track only the state of the objects for
which all aliasing is statically known. Each time such an ob-
ject is passed as a safe parameter, the typestate checker can
rely on the fact that the method call does not change the
state of the object, and it does not introduce new aliasing
to the object. As the typestate checker knows all aliasing
to the tracked object, it can check that the tracked object
is not aliased with any object transitively reachable from a
non-safe argument at the call site. This example illustrates
the use of safe parameter information for increasing the ef-
fectiveness of other static analyses.

Finally, our analysis is capable of generating regular ex-
pressions that completely characterize the externally visible
heap locations that a method mutates. These regular ex-
pressions identify paths in the heap that start with a pa-
rameter or static class field and end with a potentially mu-
tated object field. This side effect information can provide
many of the same benefits as a purity analysis because it
enables other program analyses and developers to usefully
bound the potential effects of the method.

Contributions
This paper makes the following contributions:

• Purity Analysis: We present a new analysis for find-
ing pure methods in unannotated Java programs. Un-
like previously implemented purity analyses, we track
variable and field updates, and allow mutations on
newly allocated data structures. Our analysis there-
fore supports the use of important programming con-
structs such as iterators in pure methods.

• Supporting Pointer Analysis: We show how to
place this purity analysis on top of an underlying
pointer analysis. We use an updated version of the
Whaley and Rinard pointer analysis [36]. The updated
version retains the ideas of the original analysis, but
is better structured in order to allow the analysis cor-
rectness proof from [31].

• Experience: We present our experience using our
analysis to find pure methods in a number of bench-
mark programs. We found that our analysis was able
to recognize the purity of methods that 1) were known
to be pure, but 2) were beyond the reach of previously
implemented purity analyses because they allocate and
mutate complex internal data structures.

• Read-Only/Safe Parameters: Our analysis detects
read-only parameters; the execution of the method
does not mutate objects reachable from these param-
eters. The analysis can also detect safe parameters,
i.e., read-only parameters such that the execution of
the method does not produce any new externally vis-
ible heap paths to the objects reachable from these
parameters.

• Write Effect Inference: We show how to use the
results of our analysis to generate regular expressions
that conservatively approximate heap paths to all ex-
ternally visible locations that an impure method mu-
tates.

Paper Structure: Section 2 illustrates the execution of our
analysis on an example. Section 3 presents the mathematical
notations we use in this paper, and Section 4 describes the
representation of the analyzed programs. Section 5 gives
a formal presentation of our analysis, and Section 6 shows
how to interpret the analysis results. Section 7 presents
experimental results. Section 8 discusses some related work,
and Section 9 concludes.

2. EXAMPLE

2.1 Example Overview
Figure 1 presents sample Java source code that imple-

ments a singly linked list in class List; the list implemen-
tation uses list cells of class Cell. Our lists support two
operations: add(e) adds object e to a list, and iterator()
returns an iterator over the list elements.1 We also define
a class Point for modeling bidimensional points, and two
static methods that process lists of Points. Main.sumX(list)
returns the sum of the x coordinates of all points from list,
and Main.flipAll(list) flips the x and y coordinates of all
points from list.

Method sumX iterates over all the list elements, by repeat-
edly invoking the next() method on the list iterator. The
method next() is impure, because it mutates the state of
the iterator; in our implementation, it mutates the field
cell of the iterator. However, the iterator is an auxil-
iary object that did not exist at the beginning of sumX.
As we present in this section, our analysis is able to in-
fer that sumX is pure, in spite of the mutation on the it-
erator. Our analysis is also able to infer that the impure
method flipAll mutates only locations that are accessible
in the prestate2 along paths that match the regular expres-
sion list.head.next*.data.(x|y).

2.2 Intuitive Description of the Analysis
For each method m and for each program point inside

m, the analysis computes a points-to graph that models the
part of the heap that the method m accesses up to that
program point. The nodes from the points-to graphs model
heap objects: the inside nodes model the objects created by
the analyzed method, the parameter nodes model the objects
passed as arguments, and the load nodes model the objects
read from outside the method. The analysis uses edges to
model heap references; each edge is labeled with the field
it corresponds to. We write 〈n1, f, n2〉 to denote an edge
from n1 to n2, labeled with the field f; intuitively, this edge
models a reference from an object that n1 models to a node
that n2 models, along field f. The analysis uses two kinds
of edges: the inside edges model the heap references created
by the analyzed method, while the outside edges model the
heap references read by the analyzed method from escaped
objects. An object escapes if it is reachable from outside
the analyzed method (e.g., from one of the parameters);

1Normally, the classes Cell and ListItr would be implemented as
inner classes of List; for simplicity, our examples uses a flat format.
2We use the term prestate to denote the state of the program right
before the execution of an invoked method.

2

1 class List {
2 Cell head = null;
3 void add(Object e) {
4 head = new Cell(e, head);
5 }
6 Iterator iterator() {
7 return new ListItr(head);
8 }
9 }

10
11 class Cell {
12 Cell(Object d, Cell n) {
13 data = d; next = n;
14 }
15 Object data;
16 Cell next;
17 }
18
19 interface Iterator {
20 boolean hasNext();
21 Object next();
22 }
23
24 class ListItr implements Iterator {
25 ListItr(Cell head) {
26 cell = head;
27 }
28 Cell cell;
29 public boolean hasNext() {
30 return cell != null;
31 }
32 public Object next() {
33 Object result = cell.data;
34 cell = cell.next;
35 return result;
36 }
37 }
38
39 class Point {
40 Point(float x, float y) {
41 this.x = x; this.y = y;
42 }
43 float x, y;
44 void flip() {
45 float t = x; x = y; y = t;
46 }
47 }
48
49 class Main {
50 static float sumX(List list) {
51 float s = 0;
52 Iterator it = list.iterator();
53 while(it.hasNext()) {
54 Point p = (Point) it.next();
55 s += p.x;
56 }
57 return s;
58 }
59
60 static void flipAll(List list) {
61 Iterator it = list.iterator();
62 while(it.hasNext()) {
63 Point p = (Point) it.next();
64 p.flip();
65 }
66 }
67
68 public static void main(String args[]) {
69 List list = new List();
70 list.add(new Point(1,2));
71 list.add(new Point(2,3));
72 sumX(list);
73 flipAll(list);
74 }
75 }

Figure 1: Sample Code for Section 2.

parameter /
load nodes
inside edges /

variable references

inside nodes

outside edges

Legend

P1this

W = {〈P1, x〉, 〈P1, y〉}

a. Point constructor

P3d

P4n

P2
next

data
this

W = {〈P2, data〉, 〈P2, next〉}

b. Cell constructor

Figure 2: Analysis results for two simple methods:
the constructors of Point and Cell. In each case,
we present the points-to graph at the end of the
corresponding method, and the set W of externally
visible modified abstract fields.

otherwise, the object is captured. An outside edge always
ends in a load node.

For each method, the analysis also computes a set of mod-
ified abstract fields. An abstract field is a field of a specific
node, i.e., a pair of the form 〈n, f〉.

The analysis examines methods starting with the leaves
of the call graph. The analysis examines each method m
without knowing m’s calling context; instead, the analysis
computes a parameterized result that it later instantiates to
take into account the aliasing relation at each call site that
may invoke m.

Section 5 contains a complete, formal presentation of the
analysis.

2.3 Analysis of the Example
Figure 2.a presents the analysis results for the constructor

of the class Point. The analysis uses the parameter node P1
to model the object that the parameter this points to. The
analysis records the fact that the Point constructor mutates
fields x and y of the parameter node P1.

Figure 2.b presents the analysis results for the constructor
of the class Cell. The analysis uses the parameter nodes P2,
P3, and P4 to model the objects that the three parameters,
this, d, and n, point to. The analysis uses inside edges to
model the references that the Cell constructor creates from
P2 to P3 and P4. The constructor of Cell mutates the fields
data and next of the parameter node P2.

Figure 3.c presents the analysis results for the method
List.add(Object e). The method reads the head field of
the this parameter. The analysis does not know what
this.head points to in the calling context. Instead, the anal-
ysis uses the load node L1 to model the loaded object and
adds the outside edge 〈P5, head, L1〉. Next, the method al-
locates a new Cell, that we model with the inside node
I1, and invokes the cell constructor with the arguments I1,
P6, and L1. Based on the points-to graph before the call,
and the points-to graph for the invoked constructor (Fig-
ure 2.b), the analysis maps each parameter node from the
Cell constructor to one or more corresponding nodes from
the calling context. In this case, P2 maps to (i.e., stands for)
I1, P3 maps to P6, and P4 maps to L1. The analysis uses the
node mapping to incorporate information from the points-to
graph of the Cell constructor: the inside edge 〈P2, data, P3〉
translates into the inside edge 〈I1, data, P6〉. Similarly, we
have the inside edge 〈I1, next, L1〉. As P1 stands for I1, the

3

L1

e P6

P5

I1

head

head

next

data

this

W = {〈P5, head〉}

c. List.add

P7

head

cell

P8

this

W = {〈P7, cell〉}

d. ListItr constructor

L2P9
cell

this

e. ListItr.hasNext

L3

L5

L4P10this
cell

next

cell

data

W = {〈P10, cell〉}

∗

f. ListItr.next

L6

P11

I2

head

cell

this

∗

g. List.iterator

Figure 3: Analysis results for several other simple
methods. We use the same conventions as in Fig-
ure 2. In addition, we use an asterisk (“*”) to
mark nodes returned from the analyzed method.

analysis knows that the two fields of I1 are mutated. How-
ever, I1 represents a new object, that did not exist in the
prestate; hence, we can ignore the mutation of I1. Finally,
the analysis adds an inside edge from P5 to I1, and records
the mutation on the field head of P5.

Similarly, the analysis examines four other simple meth-
ods and obtains the information from parts d, e, f and g of
Figure 3.

The analysis of method Main.sumX(list) starts with for-
mal parameter list pointing to the corresponding param-
eter node P12. The method sumX calls list.iterator() to
obtain an iterator over the list. The analysis takes the anal-
ysis result for the iterator() method (Figure 2.g), maps
P11 to P12, and produces the points-to graph after the call,
shown in the lower half of Figure 4.h. The local variable
it points to the node I2 returned from iterator(). Next,
the analysis iterates over the loop from lines 53-56 until it
reaches a fixed point.

Figure 4 presents the inter-procedural analysis for the call
to next(), in the first iteration over the loop body. Initially,
the analysis maps the parameter node P10 to the actual ar-
gument I2. The analysis matches the callee outside edge
〈P10, cell, L3〉 with the inside edge 〈I2, cell, L6〉 from be-
fore the call, and maps L3 to L6. This ilustrates a key
element of our analysis: maching outside edges (read op-
erations) against inside edges (write operations) to detect
the nodes that load nodes stand for. Figure 4.i presents
the points-to graph after the call: the outside edges from
L3 generated two outside edges from L6; we also put local
variable p to point to the returned node L4.3 The analysis
detects the mutation on 〈I2, cell〉, but, as usual, it ignores

3The attentive reader may be confused by the absence of an outside
edge from I2 in Figure 4.i. The inter-procedural analysis is more
complex than we present in this simple example. In particular, as
we explain in Section 5.3, the inter-procedural analysis has an in-
ternal step that simplifies the resulting points-to graph by removing
unnecessary edges and nodes.

L6

L3
cell data

next

L4

L5

P10

cell

P12list

I2 cell

head

it

∗

callee ListItr.next

sumX before call

W = {〈P10, cell〉}

h. Node Mapping.

L6
data

L4

L5

P12

I2 cell

head

cell

next

p
list

it

i. Points-To Graph After the Call.

Figure 4: Inter-procedural analysis for the call to
ListItr.next from line 54, in the first iteration over
the loop from lines 53-56.

all mutation on inside nodes. Section 5.3 contains a com-
plete, formal presentation of the inter-procedural analysis.

Figure 5 presents the inter-procedural analysis for the call
to next(), in the second iteration over the loop body. The
analysis proceeds as in the first iteration, except that we
now have more edges and mappings. Figure 5.k presents the
resulting points-to graph after the call. As L3 maps to L5
(among other nodes), the callee outside edge 〈L3, next, L5〉
generates the “loop” outside edge 〈L5, next, L5〉. Loop edges
occur during the analysis of methods that construct/traverse
recursive data structures.

Future iterations over the loop body do not produce new
information. The analysis of Main.flipAll(list) proceeds
almost identically to the analysis of Main.addX(list), ob-
tains the same points-to graphs, but detects mutations on
the fields x and y of the node L4.

2.4 Analysis Results
For the method Main.sumX, the analysis did not detect

any mutation on the only parameter node P12, or on any
of the load nodes reachable from it. Therefore, the analysis
guarantees that the method sumX is pure. On the other
hand, the analysis detects that the method Main.flipAll
is not pure, due to the mutations on the node L4 that is
transitively loaded from the parameter P12. In addition, the
analysis is able to conservatively describe the set of modified
locations.

In the points-to graph from Figure 5.k, the outside edges
model the references read from nodes reachable from the
parameters. Furthermore, as the method flipAll does not
create any head, next, and data references, it reads only
references that exist in the prestate. Therefore, to describe

4

L6
data

L4

L5

L3
cell data

next

L4

L5

P10

cell

P12

I2

head

cell

next

p

cell

list

it

∗

callee ListItr.next

sumX before call

j. Node Mapping.

L6
data

L4

L5

P12

I2

head

cell

p

cell

next data

next

list

it

k. Points-To Graph After the Call.

Figure 5: Inter-procedural analysis for the call to
ListItr.next from line 54, in the second iteration
over the loop from lines 53-56.

the set of locations that the method flipAll modifies, it
suffices to describe the paths from P10 (the only param-
eter) to L4, along outside nodes. These paths are gener-
ated by the regular expression head.next*.data. Hence,
flipAll may modify only the prestate locations reachable
along a path that matches list.head.next*.data.(x|y).
Section 6.2 explains how to compute the regular expressions
automatically.

2.5 Using the Analysis Results
Knowing that Main.sumX(list) is pure allows us to propa-

gate information about list across calls to Main.sumX(list).
It also allows us to freely use sumX in assertions and specifi-
cations.

Even if Main.flipAll(list) is impure, we know that it
modifies only locations covered by heap paths that match
the regular expression list.head.next*.data.(x|y).
Therefore, we can still propagate information across calls to
flipAll, as long as the information refers only to other lo-
cations. For example, as none of the list cells matches the
aforementioned regular expression (by a simple type reason-
ing), the list spine itself is not affected, and we can propagate
non-emptyness of list across calls to flipAll.

3. GENERAL MATHEMATICAL NOTATIONS
This paper uses the following notations: “{a0, a1, . . . , ak}”

represents the set of distinct elements a0, a1, . . . , ak; ∅ de-
notes the empty set and] denotes the disjoint set union
operator. For any set A, P(A) is the set of all subsets of A,
i.e., P(A) = {B | B ⊆ A}. “{ai 7→ bi}i∈I” denotes a partial

function f such that f(ai) = bi, ∀i ∈ I, and f is undefined
in the other points; in particular, “{}” denotes a partial
function that is not defined in any point. If f : A → B
is a function from A to B, a ∈ A, and b ∈ B, “f [a 7→ b]”
denotes the function that has the value b in the point a,
and behaves exactly like f in the other points of the do-
main A. If µ ⊆ A × B is a relation from A to B, and
a ∈ A, µ(a) = {b | 〈a, b〉 ∈ µ}. Furthermore, if S ⊆ A,
µ(S) =

⋃
a∈S µ(a).

4. PROGRAM REPRESENTATION
We present our analysis in the context of a small but non-

trivial subset of Java. It is straightforward to extend the
analysis to handle the full Java language.

A program consists of a set of classes, Class, and a set
of methods, Method . Each method has a list of parame-
ters, a set of local variables, and a body consisting of a
list of instructions. Method m has k = arity(m) param-
eters: p0, p1, . . . , pk−1; the first parameter p0 is the “this”
parameter. Var denotes the set of all local variables and
parameters. For simplicity, we suppose that all parameters,
local variables, object fields and return values have object
type; in the analysis implementation, it is straightforward to
ignore parameters, local variables, etc. of primitive values.

Each class C ∈ Class has a set of fields fields(C) =
{f0, f1, . . . , fq−1}. Some fields are static, i.e., attached to
a class C, not to a specific instance of C; static fields act
as global variables. We distinguish between static and non-
static fields by using different instructions for manipulating
them.

Figure 6 presents the statements from the programs we
analyze. We suppose that prior to the analysis, each appli-
cation is preprocessed to contain only these statements.

An IF instruction may alter the normal control flow by
branching to a specific address in the same method. A CALL
instruction “vR = v0.s(. . .)” calls the method named s from
the class C of the object pointed to by v0. The parame-
ter passing semantics is call-by-value. Although we did not
give any mechanism for calls to native methods, the analy-
sis handles the more general case of unanalyzable calls, i.e.,
calls to methods whose code is unavailable or too expensive
to analyze.

In Java, threads are instances of the class
java.lang.Thread; a thread is started by calling a special
native method (java.lang.Thread.start()) on the thread
object. The body of the newly started thread is the run
method of the thread object. Equivalently, in our language,
we start a thread by executing the THREAD START in-
struction “start v”.

CFGm denotes the control flow graph of method m. CFGm

contains an arc from label lb1 to label lb2 for every lb1 and
lb2 that might be consecutive on an execution path inside
method m. CFGm has an isolated entry point entrym , and
a single exit point exitm . Given a label lb from a method
m, pred(lb) is the set of direct predecessors of lb in CFGm ,
and succ(lb) is the set of direct successors of lb in CFGm .

We assume that we have a conservative call graph CG :
for a given CALL at label lb , CG(lb) contains all methods
that may be called by that CALL.

In our representation, exceptions are handled explicitly:
e.g., there is a null pointer check before each pointer deref-
erence; if we detect an exceptional condition, we allocate
an appropriate exception object and we transfer the control
to the appropriate exception handler (if any), or to the end

5

Statement Name Statement Format Informal Semantics

COPY v1 = v2 copy one local variable into another
NEW v = new C create a new object of class C; all fields of the new object are

initialized to null
NEW ARRAY v = new C[k] create an array of k references to objects of class C; all array

cells are initialized to null
STORE v1.f = v2 store a reference into an object field
STATIC STORE C.f = v store a reference into a static field
ARRAY STORE v1[i] = v2 store a reference into an array cell
LOAD v1 = v2.f load a reference from an object field
STATIC LOAD v = C.f load a reference from a static field
ARRAY LOAD v2 = v1[i] load a reference from an array cell
IF if (. . .) goto at conditional transfer of control to address at from the same

method (the condition is irrelevant for our analysis; we just sup-
pose it has no heap side effects)

CALL vR = v0.s(v1, . . . , vj) call method named s of object pointed to by v0

RETURN return v return from the currently executed method with the result v
THREAD START start v start the thread pointed to by v

Figure 6: Relevant Statements in the Analyzed Program.

of the current method (otherwise). There is a check after
each call, to propage the exception thrown from the invoked
method.

5. ANALYSIS PRESENTATION
The analysis processes individual methods from the ana-

lyzed program, from the leaves of the call graph to the main
method. During the analysis of method m, the scope of the
analysis is the method m plus the methods it transitively
calls. For each program point inside m, the analysis com-
putes a points-to graph that models the heap at that point.
More specifically, for each label lb from method m, the anal-
ysis of m computes the points-to graph ◦A(lb) for the pro-
gram point right before lb , and the points-to graph A◦(lb)
for the program point right after lb . In addition, for each
method m, the analysis computes the set W m that contains
all the externally visible abstract fields mutated by m. An
abstract field is a pair 〈n, f〉 that models a mutation of the
field f of the parameter/load node n; since we are interested
only in externally visible mutations, we ignore mutations on
inside nodes (an inside node models objects allocated by the
current invocation of the analyzed method).

We express the analysis of method m as a set of standard
dataflow equations:

◦A(lb) =

{
Gm

init if lb = entrym⊔{A◦(lb′) | lb′ ∈ pred(lb)} otherwise
A◦(lb) = [[lb]](◦A(lb))

In the above equations, Gm
init is the points-to graph for the

beginning of method m, and [[lb]] is the transfer function
attached to the label lb .

Each transfer function [[lb]] takes the points-to graph for
the program point right before lb , and produces the points-
to graph for the program point right after lb . At the begin-
ning of the analysis of method m, W m = ∅. The transfer
function [[lb]] may have the side effect of adding a few new
elements to the set W m .

The rest of this section is organized as follows. Section 5.1
defines the abstractions used by the analysis. Section 5.2
presents the intra-procedural analysis, i.e., the initial points-
to graph Gm

init and the transfer functions [[lb]] for labels lb

n ∈ Node = INode] PNode] LNode] {nGBL}

nI
lb ∈ INode inside nodes

nP
m,i ∈ PNode parameter nodes
nL

lb ∈ LNode load nodes

〈n, f〉 ∈ AField = Node × Field ; abstract fields

I ∈ IEdges = P(Node × Field ×Node)
O ∈ OEdges = P(Node × Field × LNode)
L ∈ LocVar = Var → P(Node)

G ∈ PTGraph = IEdges ×OEdges×
LocVar × P(Node)

Figure 7: Sets and notations used by the analysis.

that do not correspond to analyzable CALLs. Section 5.3
presents the inter-procedural analysis, i.e., the transfer func-
tions [[lb]] for labels that correspond to analyzable CALLs.
Section 5.4 gives a high-level description of an algorithm that
computes the least fixed point of the analysis equations.

5.1 Sets and Notations
Figure 7 presents the sets and the notations that we use

in the analysis presentation.
The analysis uses nodes to model objects from the ana-

lyzed program. We introduce one inside node nI
lb for each

label lb that corresponds to a NEW or an ARRAY NEW
instruction. nI

lb models all objects created by the analyzed
scope by executing the instruction from label lb .

There is one parameter node nP
m,i for each formal param-

eter pi of the analyzed method m. For a given invocation
of a method, a parameter node models a single object: the
object pointed to by the actual argument.

Some LOAD instructions read references from escaped ob-
jects, i.e., objects accessible from outside the analyzed scope.
As the analysis examines each method once, without know-
ing its calling context, the analysis does not know what the

6

other parts of the program may have written in the fields
of the escaped objects. Instead, for each label lb that cor-
responds to a LOAD/ARRAY LOAD statement that reads
from escaped objects, the analysis introduces a load node
nL

lb ; nL
lb models the objects read at label lb from escaped

objects.
The parameter/load nodes are essential for our ability to

analyze m without knowing the heap at the point where
m is called. In the presence of complete information about
the calling context, the inside nodes would be enough for
modeling the heap. A parameter/load node n is a place-
holder for the inside nodes associated with the objects that
n models. For each call to method m, the inter-procedural
analysis computes a node mapping that disambiguates these
placeholders, according to the current calling context.

The special node nGBL models objects that may be accessed
by the entire program. We use it to model objects that are
read from a static field and objects returned by unanalyz-
able CALLs.

An abstract field is a pair 〈n, f〉; it conservatively repre-
sents the field f of all objects that n models.

A points-to graph G ∈ PTGraph is a tuple G =
〈I, O, L,E〉, consisting of a set of inside edges I, a set of
outside edges O, an abstract state of local variables L, and
a set of globally escaped nodes E.

The edges from the points-to graph model the points-to
relation between objects. The inside edges from I model the
heap references created by the analyzed scope. The outside
edges from O model the heap references read by the analyzed
scope from escaped objects. An outside edge always ends in
a load node.

Arrays are just a special kind of objects, and are modeled
by nodes too. If an array has elements of a non-primitive
type, the values stored in the array cells are addresses of
objects. We use edges to represent these heap references.
We do not distinguish between individual array cells: the
special field [] represents all cells of an array.

L models the state of the local variables of the analyzed
method: L(v) is the set of nodes that the local variable v
may point to. To keep track of the objects returned from
an analyzed method m, we introduce a special variable vret :
L(vret) is the set of nodes that m might return.

The last component of a points-to graph, E, contains: 1)
the nodes whose address is stored in static fields, 2) the
nodes that correspond to started threads, and 3) the nodes
passed as arguments to unanalyzable CALLs. These nodes
escape the analyzed scope: they are potentially reachable
from the entire program; we say that they escape globally.

Other escaped nodes include the parameter nodes, the re-
turned nodes, and the special node nGBL (nGBL models the ob-
jects returned from unanalyzable CALLs and/or read from
a static field). In addition, any node reachable from an
escaped node along a path of inside and/or outside edges
escapes too. Formally,

Definition 1. Given a points-to graph G = 〈I, O, L,E〉,
let e(G) be the following boolean predicate on nodes: e(G)(n)
is true iff n is reachable from a node from PNode ∪L(vret)∪
E∪{nGBL}, along a (possibly empty) path of edges from I∪O.
If e(G)(n), n escapes from G. Otherwise, n is captured in
G.

The ordering relation between sets (e.g., I, O, E) is the

set inclusion; the associated join operation is the set union.
For elements from the set LocVar , we use the classic ele-
mentwise ordering between functions: L1 v L2 iff ∀v ∈ Var ,
L1(v) ⊆ L2(v). The associated join operation is L1 t L2 =
λv. (L1(v) ∪ L2(v)). Points-to graphs are ordered compo-
nentwise:
〈I1, O1, L1,E1〉 v 〈I2, O2, L2,E2〉 iff I1 ⊆ I2, O1 ⊆ O2,
L1 v L2, and E1 ⊆ E2. 〈PTGraph,v〉 is a join semi-lattice
with the join operator

〈I1, O1, L1,E1 〉 t 〈I2, O2, L2,E2 〉 =
〈 I1 ∪ I2, O1 ∪O2, L1 t L2, E1 ∪ E2〉

and the least element ⊥PTGraph= 〈∅, ∅, λv.∅, ∅〉.
5.2 Intra-procedural Analysis

The points-to graph for the beginning of m is:

Gm
init = 〈∅, ∅, {pi 7→ nP

m,i}0≤i≤k−1, ∅〉
where p0, p1, . . . , pk−1 are the k parameters of m. Each pa-
rameter pi points to the corresponding parameter node nP

m,i;
Gm

init is otherwise empty. At the beginning of the analysis
of m, the method-wide set W m of mutated abstract fields is
initialized to be empty.

Figure 8 presents the transfer functions associated with
the labels from the analyzed program; Figure 10 presents
an informal graphic representation for some of the transfer
functions.

The transfer function [[lb]] takes as argument the points-to
graph for the program point just before label lb and returns
the points-to graph for the program point right after lb . [[lb]]
may also have the side effect of adding a few new elements
to W m , if the instruction from label lb mutates a field of one
or more nodes. We define the functions [[lb]] on a case by
case basis, based on the instruction from label lb . Figure 8
does not cover the case of an analyzable CALL; we study
this case later in Section 5.3.

As a general rule, assignments to variables are destructive,
i.e., assigning something to v “removes” all the previous
values of L(v), while assignments to node fields are non-
destructive4: assigning something to n1.f does not remove
the existing edges that start from n1. The reason is that a
node might represent multiple objects and so, updating n1.f
might not overwrite the edge 〈n1, f, n2〉 because the update
instruction and the edge might concern different objects.

The two special labels entrym and exitm do not corre-
spond to any concrete instruction. The transfer function for
them is naturally the identity function. This is also the case
for the labels that correspond to IF, or some other instruc-
tion that does not manipulate pointers.

A COPY instruction “v1 = v2” makes v1 point to all the
nodes that v2 might point to. As previously mentioned, the
analysis “forgets” the previous value of L(v1). The transfer
function for a label lb that corresponds to a NEW instruc-
tion “v = new C” makes v point to the inside node attached
to the label lb , nI

lb . Notice that object creation does not
generate any effect in our analysis: we are interested only in
mutation on the objects from the prestate, i.e., objects that
existed at the beginning of the method.

For a STORE instruction “v1.f = v2”, the analysis intro-
duces an f-labeled inside edge between each node pointed to
by v1, and each node pointed to by v2. The analysis also
updates the set W m to record the mutation on the field f
of all non-inside nodes pointed to by v1. The case of an

4An equivalent term is “weak updates.”

7

Instruction from
label lb

[[lb]](〈I, O, L,E〉) Set of abstract fields
added to W m

v1 = v2 〈I, O, L [v1 7→ L(v2)] ,E〉 ∅
v = new C 〈I, O, L

[
v 7→ {nI

lb}
]
,E〉 ∅

v = new C[k] 〈I, O, L
[
v 7→ {nI

lb}
]
,E〉 ∅

v1.f = v2 〈I ∪ (L(v1)× {f} × L(v2)) , O, L,E〉 (L(v1) \ INode)× {f}
v1[i] = v2 〈I ∪ (L(v1)× {[]} × L(v2)) , O, L,E〉 (L(v1) \ INode)× {[]}
C.f = v 〈I, O, L,E ∪ L(v)〉 {〈nGBL, f〉}
v1 = v2.f process load(G, v1, v2, f, lb) ∅
v1 = v2[i] process load(G, v1, v2, [], lb) ∅
v = C.f 〈I, O, L [v 7→ {nGBL}] ,E〉 ∅
if (. . .) goto at 〈I, O, L,E〉 (unmodified) ∅

Case 1: analyzable call — studied later in Section 5.3.

vR = v0.s(v1, . . . , vj) Case 2: unanalyzable call

〈I, O, L [vR 7→ nGBL] ,E ∪
⋃j

i=0 L(vi)〉
∅

return v 〈I, O, L [vret 7→ L(v)] ,E〉 ∅
start v 〈I, O, L,E ∪ L(v)〉 ∅

Figure 8: functions [[lb]], lb ∈ Label . [[lb]] takes the points-to graph G = 〈I, O, L,E〉 for the program point right
before label lb , and produces the points-to graph for the program point after lb . See Figure 10 for an informal
graphic representation of some of the transfer functions.

process load(〈I, O, L,E〉, v1, v2, f, lb) =
let A = {n ∈ Node | ∃n1 ∈ L(v2), 〈n1, f, n〉 ∈ I}

B = {n ∈ L(v2) | e(G)(n)} in
if (B = ∅)

then 〈I, O, L [v1 7→ A] , E〉
else 〈I, O ∪ (B × {f} × {nL

lb}), L
[
v1 7→

(
A ∪ {nL

lb}
)]

, E〉

Figure 9: process load . Its arguments are, in order, the points-to graph before the load (G = 〈I, O, L,E〉),
the variable v1 we load into, the variable v2 we load from, the loaded field f, and the label lb of the LOAD
instruction “v1 = v2.f”. It returns the points-to graph after the instruction.

1

2 does not escape

2 2

2 2

2 3 2

1

v2v2

v

v1.f = v2

v1

v2

f
v1

v2

f

f

where is the inside node for this statement

if

f

v1 v1

v1

if escapes; is the load

node for this statement

v2

f
v2

f

f v1

v1 = v2.f

v2

f
v2

Statement Before After Statement Before After

v1 = v2

v1v1

vv = new C

Figure 10: Informal graphic representation of the transfer functions for non-call statements. We use con-
tinuous circles for all types of nodes, continuous lines for the inside edges, and dashed lines for the outside
edges. We use bold circles/lines for potentially new nodes/edges.

8

ARRAY STORE instruction “v1[i] = v2” is similar, except
that we use the special field [] that models the references
coming from all the cells of the array. The analysis records
the mutation on the special field [] for all concerned nodes.
For a STATIC STORE “C.f = v,” we add all nodes pointed
to by v to the set of globally escaped nodes E, and we record
a mutation on the static field f.

The transfer function for a LOAD instruction “v1 = v2.f”
uses the auxiliary function process load from Figure 9. After
the instruction, v1 points to all nodes pointed to by f-labeled
inside edges starting from nodes in L(v2); in Figure 9, we
collect these nodes in the set A. If we load from nodes that
escape the analyzed scope, i.e., B 6= ∅ in Figure 9, v1 also
points to the load node nL

lb . In this case, the analysis intro-
duces an f-labeled outside edge from every escaped node we
read from to nL

lb . Later, when we analyze calls to m, we use
these outside edges to detect the nodes that the placeholder
nL

lb stands for. The transfer function for an ARRAY LOAD
instruction is identical, except that it uses the special field
[].

An unanalyzable CALL “vR = v0.s(v1, . . . , vj)” makes
its arguments reachable from unanalyzed parts of the pro-
gram. Therefore, the analysis adds all nodes pointed to by
v0, . . . , vj to E, the set of globally escaped nodes. Also,
in the points-to graph after the unanalyzable CALL, vR

points to the special node nGBL that models objects poten-
tially reachable from the entire program. Similarly, for a
START THREAD instruction “start v”, the analysis adds
all nodes pointed to by v to E. Finally, for a RETURN in-
struction “return v”, the special variable vret is set to point
to the returned nodes.

5.3 Inter-procedural Analysis
Consider a CALL instruction at label lb , “vR = v0.s(v1,

. . . , vj)”, and let callee ∈ CG(lb) be one of the possible
callees. The inter-procedural analysis uses the points-to
graph G before the CALL and the points-to graph Gcallee =
◦A(exitcallee) for the end of callee, and computes a points-
to graph for the program point after the CALL, valid in
the case when callee is called. If there are several possi-
ble callees, we conservatively join the points-to graphs com-
puted for each of them.

The inter-procedural analysis has four steps:

1. We compute a mapping relation µ′ ⊆ Node × Node
that maps nodes from Gcallee to nodes that appear in
the final graph; µ′ disambiguates as many parameter
and load nodes as possible.

2. We use the mapping µ′ to combine G and Gcallee . An
important aspect of this step is that each node n from
Gcallee is projected through the mapping µ′, i.e., intu-
itively, n is replaced with the nodes from µ′(n).

3. We simplify the resulting points-to graph by removing
superfluous load nodes and outside edges.

4. We use the information about the abstract fields mu-
tated by the callee (i.e., the set W callee) to update the
set W m of abstract fields mutated by m.

We describe these steps in the next paragraphs.

Construction of the Node Mapping
We start by computing a “core” mapping µ that disam-
biguates as many parameter and load nodes from the calee as

n4

n1 n2

n3

f

f

n2n1

n3

n
n5

f

f
n4

a. Constraint 2 b. Constraint 3 for
µ(n1) ∩ µ(n3) 6= ∅

f
outside edge existing mapping

f
inside edge new mapping

Figure 11: Graphic representation of Constraint 2
and Constraint 3.

possible. Let G = 〈I, O, L,E〉, and Gcallee =
〈Icallee , Ocallee , Lcallee ,Ecallee〉. We define µ as the least fixed
point of the following constraints:

L(vi) ⊆ µ(nP
callee,i), ∀i ∈ {0, 1, . . . j} (1)

〈n1, f, n2〉 ∈ Ocallee , 〈n3, f, n4〉 ∈ I, n3 ∈ µ(n1)
n4 ∈ µ(n2)

(2)

〈n1, f, n2〉 ∈ Ocallee , 〈n3, f, n4〉 ∈ Icallee ,
(µ(n1) ∪ {n1}) ∩ (µ(n3) ∪ {n3}) 6= ∅,

(n1 6= n3) ∨ (n1 ∈ LNode)
µ(n4) ∪ ({n4} \ PNode) ⊆ µ(n2)

(3)

Constraint 1 maps each parameter node nP
callee,i to the

nodes pointed to by vi, the ith argument passed to callee;
these are the nodes from the set L(vi). The other two con-
straints extend the mapping by matching outside edges (i.e.,
references read by LOAD instructions) against inside edges
(i.e., references created by STORE instructions).5

Constraint 2 handles the case when the callee reads ref-
erences created by the caller. It matches an outside edge
〈n1, f, n2〉 ∈ Ocallee from the callee against an inside edge
〈n3, f, n4〉 ∈ I from the caller, in the case when n1 might
represent n3, i.e., n3 ∈ µ(n1). Figure 11.a presents a graphic
representation of this situation. As n1 might be n3, the out-
side edge read from n1 might be the inside edge 〈n3, f, n4〉,
and the load node n2 might be the node n4. Hence, the
analysis maps n2 to n4, i.e., n4 ∈ µ(n2)

Constraint 3 matches an outside edge from the callee
against an inside edge from the callee, i.e., from the same
scope. This constraint deals with the aliasing present in the
calling context. Consider an outside edge 〈n1, f, n2〉 ∈ Ocallee

and an inside edge 〈n3, f, n4〉 ∈ Icallee . Figure 11.b presents
a graphic representation of the case where n1 and n3 might
represent the same node n5. In this case, n2 might be n4.
Therefore, we enforce n4 ∈ µ(n2). Also, as n4 is a node
from the callee, it might be a node placeholder that repre-
sents some other nodes. Therefore, node n2 might represent
not only n4 but also the nodes represented by n4. The anal-
ysis updates the mapping to record this too: µ(n4) ⊆ µ(n2).
The same reasoning is valid if n1 might represent n3, i.e.,

5A real implementation would use Constraint 1 to initialize the map-
ping and would next iterate only over constraints 2 and 3 until a fixed
point is reached.

9

n3 ∈ µ(n1), or n3 might represent n1, i.e., n1 ∈ µ(n3).
Constraint 3 unifies these three cases in a single condition:

(µ(n1) ∪ {n1}) ∩ (µ(n3) ∪ {n3}) 6= ∅
The third part of the precondition, “(n1 6= n3) ∨ (n1 ∈
LNode)”, reduces the applicability of Constraint 3, and avoids
fake mappings. The correctness proof from [31] shows that
this condition does not prevent the analysis from detecting
all real mappings.

We compute the final mapping µ′ by extending the “core”
mapping µ with a mapping from each non-parameter node
to itself:

∀n, µ′(n) = µ(n) ∪ ({n} \ PNode)

µ′ maps nodes from Gcallee to nodes that appear in the
points-to graph after the call. Inside nodes model objects
created by the analyzed scope and should appear in the
points-to graph after the call; for inside nodes, µ′ is the
identity relation. We already know all the nodes that the
parameter nodes stand for. Hence, the parameter nodes
are unnecessary in the resulting points-to graph, and the
map extension ignores them. This is also the reason why
in Constraint 3, instead of µ(n4) ∪ {n4} ⊆ µ(n2), we use
µ(n4) ∪ ({n4} \ PNode) ⊆ µ(n2): as we do not want the
callee parameter nodes to appear in the resulting points-to
graph, we avoid creating mappings to them.

Unlike parameter nodes, load nodes are generally not fully
disambiguated. Each load node is a placeholder for the
nodes that a specific LOAD instruction loads from an es-
caped node. That escaped node might remain an escaped
node even in the points-to graph after the CALL. In a first
phase, we preserve all load nodes. We show later in this
section how to remove some of them.

Combining the Points-to Graphs
After we obtain the node mapping µ′, we use it to com-
bine the points-to graph G before CALL with the points-to
graph Gcallee for the end of callee. We obtain the points-to
graph after the CALL, valid if callee is called. Formally, we
construct the points-to graph G2 = 〈I2, O2, L2,E2〉 defined
by the following equations:

I2 = I ∪
⋃

〈n1,f,n2〉∈Icallee

µ′(n1)× {f} × µ′(n2)

O2 = O ∪
⋃

〈n,f,nL〉∈Ocallee

µ′(n)× {f} × {nL}

L2 = L
[
vR 7→ µ′(Lcallee(vret))

]

E2 = E ∪ µ′(Ecallee)

The above equations require some explanation. The heap
references that existed before the call might exist after the
call too. Hence, all inside edges from G appear in the points-
to graph after the call. In addition, if callee created the heap
edge 〈n1, f, n2〉, where n1 may be any node from µ′(n1), and
n2 may be any node from µ′(n2), then callee might have
created any of the inside edges from the set µ′(n1) × {f} ×
µ′(n2). All these edges appear in the points-to graph after
the call, as well.

Similarly, the set of outside edges after the call is the union
of the set of outside edges right before the call, O, and the
semi-projection through µ′ of the outside edges from the end

of callee: we project only the start node of an outside edge,
the target remains unmodified. Here’s why: an outside edge
〈n, f, nL

lb 〉 from the callee models the action of loading the
field f from the escaped node n, action done by the LOAD
instruction at label lb ; the load node nL

lb models the objects
read in that instruction. As n may be any of the nodes from
µ′(n), the read operation may take place from any of these
nodes, hence the need for projecting the node n. However,
nL

lb has the same meaning: it models the objects read in the
instruction at label lb . Hence, the analysis does not project
nL

lb through µ′.
The abstract state of the local variables after the call

is similar to the state L before the call, except that now
vR — the local variable that receives the value returned from
the callee — points to the nodes returned from callee, i.e.,
µ′(Lcallee(vret)). The projection is necessary because some
of the returned nodes may be placeholders from callee that
µ′ disambiguates. Finally, the set of globally escaped nodes
is the union of the set of directly escaped nodes before the
call, E, and the set of nodes that directly escape in callee,
µ′(Ecallee).

Points-to Graph Simplification
We simplify the points-to graph for the program point after
the call by removing all captured load nodes (together with
all adjacent edges), as well as all outside edges that start in
a captured node.

Intuitively, a load node is a placeholder for the (unknown)
nodes loaded from an escaped node. There is no need for a
load node when we load from captured nodes: as only the
analyzed scope access a captured node, the analysis knows
all the nodes loaded from it. If a points-to graph G contains
a captured load node nL

lb , all the nodes that we loaded nL
lb

from6 are captured too. Therefore, we can remove all cap-
tured load nodes. Similarly, we can remove all outside edges
that start from a captured node.

Modified Abstract Fields
We update the set W m of modified abstract fields from the
caller m by adding to it all elements from the following set:

⋃

〈n,f〉∈W callee

((µ′(n) \ INode) ∩ N)× {f}

where N is the set of nodes that appear in the simplified
points-to graph. We use the mapping µ′ to project each node
modified by the callee. As usual, we ignore inside nodes; we
also use the set intersection “∩ N” to ignore nodes that have
been removed by the points-to graph simplification.

5.4 Analysis Algorithm
As we prove in [31], all transfer functions are monotonic.

For each analyzed program, the number of nodes we can
define is bounded: we have one parameter node for each
formal parameter, one inside node for each NEW instruc-
tion, at most one load node for each LOAD instruction, etc.
By consequence, PTGraph is finite and there is no infinite
ascending chain in 〈PTGraph,v〉. Hence, we can solve the
dataflow equations with an iterative fixed point algorithm.

We recommend using a variant of the “Iterating Through
Strong Components” algorithm [30, Chapter 6]. Our algo-
rithm contains an outer loop for the inter-procedural analy-
sis, and nested inside it, an inner loop for the intra-procedural

6I.e., the nodes that point to nL
lb through some outside edge.

10

analysis.
The inter-procedural computation processes the strongly

connected components of the call graph, i.e., the groups
of mutually recursive methods,7 in increasing topological
order, i.e., from the leaves of the call graph to the main
method. For each such set of mutually recursive meth-
ods, the algorithm uses a worklist to iterate over the set
of methods until it reaches the least fixed point. At the
beginning of the processing for a strongly connected compo-
nent, the worklist contains all the methods from that com-
ponent. In each iteration, the algorithm takes a method
from the worklist and calls the inner computation, i.e., the
intra-procedural computation, to analyze the method. If the
points-to graph for the end of the method changed, all the
possible callers of the method that are in the current strong
component are added to the worklist. The inter-procedural
computation for a component terminates when the worklist
is empty.

The intra-procedural computation is similar to the inter-
procedural computation: it processes the strongly connected
components of the control flow graph for the analyzed
method in decreasing topological order, i.e., from the begin-
ning of the method toward its end, and iterates over each
component by using a worklist.

Complexity: Let n be the size of the analyzed program.
The analysis computes points-to graphs for O(n) program
points. The height of the lattice of points-to graphs is
O(n2

anf), where na, the number of nodes, and nf , the total
number of fields, are both O(n). Most transfer functions can
easily be implemented in polynomial complexity. The only
difficult operation is the construction of the inter-procedural
node mapping. However, notice that the inter-procedural
analysis monotonically computes mappings of at most n2

a el-
ements. Therefore, the worst-case complexity is big, at least
O(nn4

anf), but still polynomial in the size of the program.
In practice, we have used this pointer analysis to analyze all
SpecJVM applications, stack allocate captured objects, and
remove synchronization on thread-local objects [36].

6. USE OF ANALYSIS RESULTS
After the analysis terminates, for each analyzable method

m, we can use the points-to graph G = 〈I, O, L,E〉 for the
end of m, and the set W m of modified abstract fields to infer
method purity, write effects, read-only parameters and safe
parameters. We explain each such application in the next
paragraphs.

6.1 Method Purity
To check whether m is pure, we compute the set A of

nodes that are reachable in G from parameter nodes, along
outside edges. We also compute the set B of all globally
escaped nodes, i.e., nodes that are reachable from E∪{nGBL};
these are the nodes that are potentially reachable, and hence
mutated, from the entire program, e.g., by native methods,
hemce, we cannot guarantee anything about them.

The method m is pure iff for any node n ∈ A, 1) n does
not escape globally (n 6∈ B) and 2) no field of n is mutated,
i.e., there is no field f such that 〈n, f〉 ∈ W m .

For constructors, we can follow the JML convention of
allowing a pure constructor to mutate fields of the “this”
object: it suffices to ignore all modified abstract fields for
the parameter node nP

m,0 that models the “this” object.
7In practice, many of these groups are singletons.

6.2 Write Effects
We can infer regular expressions that describe all the

prestate locations modified by m as follows: we construct
a finite state automaton F with the following states: 1) all
the nodes from the points-to graph G, 2) an initial state
s, and 3) an accepting state t. Each outside edge from G
generates a transition in F , labeled with the field that labels
the outside edge. For each parameter pi of m, we create a
transition from s to the corresponding parameter node, and
label it with the parameter pi. Also, if nGBL appears in G,
we create a transition from s to nGBL and label it with the
empty string.8 For each mutated abstract field 〈n, f〉, we
add a transition from n to the accepting state t, and label
it with the field f.

In addition, for each globally lost node n (see above), we
add a transition from n to t, and label it with the special
field REACH. If P is a heap path (i.e., a series of fields,
separated by dots, starting in a parameter or a static field),
P.REACH matches all objects that are transitively reachable
from an object that matches P.

The regular expression that corresponds to the constructed
automaton F describes all modified prestate locations. We
can use automaton-minimization algorithms to try to reduce
the size of the generated regular expression.

Note: The generated regular expression is valid if G does
not contain an inside edge and a load edge with the same
label. This condition guarantees that the heap references
modeled by the outside edges exist in the prestate (the regu-
lar expressions are supposed to be interpreted in the context
of the prestate). An interesting example that exhibits this
problem is presented in [32]. If this “bad” situation occurs,
we conservatively generate a regular expression that covers
all nodes reachable from all parameters, with the help of the
REACH field. In practice, we found that this case is very
rare: most of the methods do not read and mutate the same
field.

6.3 Read-Only Parameters
A parameter pi is read-only iff none of the locations tran-

sitively reachable from pi is mutated. To check this, we
compute the set S1 that contains the corresponding param-
eter node nP

m,i, and all the load nodes reachable from nP
m,i

along outside edges. Parameter pi is read-only iff there is
no abstract field 〈n, f〉 ∈ W m such that n ∈ S1.

6.4 Safe Parameters
A parameter is safe if it is read-only and the method m

does not create any new externally visible heap paths to an
object transitively reachable from the parameter.

Suppose pi is a read-only parameter. To detect whether pi

is also safe, we compute, as before, the set S1 that contains
the corresponding parameter node nP

m,i, and all the load

nodes reachable from nP
m,i along outside edges. Because pi

is a read-only parameter, none of the nodes from S1 escapes
globally or is mutated.

We also compute the set S2 of nodes reachable from the
parameter nodes and/or from the returned nodes, along in-
side/outside edges. Notice that S2 contains all those nodes
from G that may be reachable from the caller after the end
of m. Therefore, to create a new externally visible path to
an object transitively reachable from pi, one needs to create
an edge that starts in an object modeled by a node from S2

8In an automaton, such a transition can always be performed, without
consuming any input.

11

and ends in an object modeled by a node from S1. Hence,
parameter pi is safe if there is no inside edge from a node in
S2 to a node in S1.

7. EXPERIENCE

7.1 Implementation
We implemented our analysis in the MIT Flex compiler

infrastructure [1], a static compiler for Java bytecode. To in-
crease the analysis precision (i.e., prevent edges that do not
correspond to any heap references), we manually provide the
points-to graphs for several common native methods. Also,
we attach type information to nodes, in order to prevent
type-incorrect edges, and avoid inter-procedural mappings
between nodes of conflicting types.

7.2 Checking Purity of Data Structure
Consistency Predicates

We ran our analysis on several benchmarks borrowed from
the Korat project [3,27]. Korat is a tool that generates non-
isomorphic test cases up to a finite bound. Korat’s input
consists of 1) a type declaration of a data structure, 2) a
finitization (e.g., at most 10 objects of type A, and 5 objects
of type B), and 3) repOk, a pure boolean predicate written
in Java that checks the consistency of the internal repre-
sentation of the data structure. Given these inputs, Korat
generates all non-isomorphic data structures that satisfy the
repOk predicate. Korat does so efficiently, by monitoring the
execution of the repOk predicate and back-tracking only over
those parts of the data structure that repOk actually reads.

Korat relies on the purity of the repOk predicates but
cannot statically check this. In general, writing repOk-like
predicates is considered good software engineering practice;
during the development of the data structure, programmers
can write assertions that invoke repOk and check the consis-
tency of the data structure at runtime. Of course, program-
mers do not want assertions to change the semantics of the
program, other than aborting the program when it violates
an assertion. Therefore, the use of repOk in assertions pro-
vides additional motivation for checking the purity of repOk
methods.

We analyzed the repOk methods for the following data
structures:

BinarySearchTree Binary tree that implements a set of com-
parable keys.

DisjSet Array-based implementation of the fast union-find
data structure, using path compression and rank esti-
mation heuristics to improve efficiency of find opera-
tions.

HeapArray Array-based implementation of the heap (prior-
ity queues) data structure.

BinomialHeap and FibonacciHeap Dynamic data structures
that also implement heaps, but differ in complexity for
certain operations.

LinkedList Implementation of doubly-linked lists in the Java
Collections Framework, a part of the standard Java li-
braries.

TreeMap Implementation of the Map interface using red-black
trees.

HashSet Implementation of the Set interface, backed by a
hash table.

Classic textbooks on algorithms and data structures, e.g.,
[12], present a detailed algorithmic description of all these
data structures. LinkedList, TreeMap, and HashSet are
from the standard Java Library. The only change the Korat
developers performed was to add the
corresponding repOk methods. We present the repOk method
for BinarySearchTree in Appendix A. The source code for
the other repOk methods has similar complexity. As the
example from Appendix A shows, the repOk methods use
complex auxiliary data structures: sets, linked lists, wrap-
per objects, etc. Checking the purity of these methods is
beyond the reach of simple purity checkers that prohibit
pure methods to call impure methods, or to do any heap
mutation.

The first problem we faced while analyzing the data struc-
tures is that our analysis is a whole-program analysis that
operates under a closed world assumption: in particular, it
needs to know the entire class hierarchy in order to infer the
call graph. Therefore, we should either 1) give the analysis
a whole program (clearly impossible in this case), or 2) de-
scribe the rest of the world to the analysis. In our case, we
need to describe to the analysis the objects that can be put
in the data structures. The methods that our data structure
implementations invoke on the data structure elements are
overriders of the following methods:

java.lang.Object.equals
java.lang.Object.hashCode
java.util.Comparable.compareTo
java.lang.Object.toString

We call these methods, and all methods that override
them, special methods. We specified to the analysis that
all special methods are pure. Moreover, these methods do
not introduce new externally visible aliasing: any new ex-
ternally visible path requires either creating an edge from
the prestate (thus violating purity), or creating a path from
a returned object. The methods hashCode, equals, and
compareTo return primitive data, not objects; the method
toString returns an immutable java.lang.String that, we
assume, cannot generate new aliasing.

Therefore, the aforementioned special methods (and their
overriders) are pure, and do not create new externally vis-
ible paths. Hence, the analysis can simply ignore calls to
these methods (even dynamically dispatched calls).

We ran the analysis and analyzed the repOk methods for
all the data structures, and all the methods transitively
called from these methods. The analysis was able to ver-
ify that all repOk methods mutate only new objects, and
are therefore pure. On a Pentium 4 @ 2.8Ghz with 1Gb
RAM, our analysis took between 3 and 9 seconds for each
analyzed data structure.

Of course, our results are valid only if all of the special
methods are indeed pure. Our tool tries to verify that this is
indeed true for all special methods that the analysis encoun-
tered. Unfortunately, some of these methods use caches for
performance reasons, and are not pure. For example, sev-
eral classes cache their hashcode; other classes cache more
complex data, e.g., java.util.AbstractMap caches its set of
keys and entries (these caches are nullified each time a map
update is performed).

12

Fortunately, our analysis can tell us which memory loca-
tions the mutation affects. We manually examined the out-
put of the analysis, and checked that all the fields mutated
by impure special methods correspond to caching.

7.3 Discussion
From a theoretical point of view, our analysis is sound.

However, in order to analyze complex data structures that
use the real Java library, we had to sacrifice soundness to
obtain a practical tool. More specifically, we had to trust
that the caching mechanism used by several classes from the
Java library is sound, i.e., it is just a performance issue. We
believe that making reasonable assumptions about the un-
known code in order to check complex known code is a good
tradeoff. As our experience shows, knowing why exactly a
method is impure is very useful in practice: this feature al-
lows us to identify (and ignore) benign mutation related to
caching.

7.4 Pure Methods in the Java Olden Benchmark Suite
We also ran the purity analysis on all the applications

from the Java Olden benchmark suite [6,7]. Table 1 presents
a short description of the applications we analyzed. They
are all standalone applications. On a Pentium 4 @ 2.8Ghz
with 1Gb RAM, the analysis time ranges from 3.4 seconds
for TreeAdd to 7.2 seconds for Voronoi. In each case, the
analysis processed all methods, user and library, that may
be transitively invoked from the main method.

Table 2 presents the results of our purity analysis. For
each application, we counted the total number of methods
(user and library), and the total number of user methods.
For each category, we present the percentage of pure meth-
ods, as detected by our analysis. Following the JML conven-
tion, we consider that constructors that mutate only fields of
the “this” objects are pure. As the data from Table 2 shows,
our analysis is able to find large numbers of pure methods
in Java applications. Most of the applications have simi-
lar percentages of pure methods, because most of them use
the same library methods. The variation is much larger for
the user methods, ranging from 31% for Power to 89% for
Perimeter.

8. RELATED WORK
Modern research on effect inference stems from the sem-

inal work of Gifford, Lucassen, and Jouvelot on type and
effect systems [19,26]. Most of the previous work on effect in-
ference was done in the context of type systems and/or type
inference, and mostly for functional languages. In contrast,
we apply dataflow analysis techniques for purity checking of
Java programs. Still, there are many common techniques,
e.g., the construction of inter-procedural node mapping from
our algorithm has a flavor of the unification algorithm used
in type inference.

Although the original work of Gifford and Luccasen was
motivated by applications in program parallelization, most
of the current work on effects is done in the context of pro-
gram specification and verification. Two very popular such
projects are the Java Modeling Language (JML) [23], and
the Extended Static Checker for Java (ESC/Java) [17].

JML is a Behavioral Interface Specification Language for
Java, used as a common specification language in many re-
search projects [5]. The annotations provided by the user
are used for static program verification [34] or for generat-
ing runtime assertions. Methods can be invoked from the

Application Description

BH Barnes-Hut N-body solver

BiSort Bitonic Sort

Em3d
Models the propagation of electromag-
netic waves through three dimensional
objects

Health Simulates a health-care system

MST
Computes the minimum spanning tree
in a graph using Bentley’s algorithm

Perimeter
Computes the perimeter of a region in a
binary image represented by a quadtree

Power
Maximizes the economic efficiency of a
community of power consumers

TSP
Solves the traveling salesman problem
using a randomized algorithm

TreeAdd
Recursive depth-first traversal of a tree
to sum the node values

Voronoi
Computes a Voronoi diagram for a ran-
dom set of points

Table 1: Applications from the Java Olden Bench-
mark Set.

Application All Methods User Methods
count % pure count % pure

BH 264 55% 59 47%
BiSort 214 57% 13 38%
Em3d 228 55% 20 40%
Health 231 57% 27 48%
MST 230 58% 31 54%
Perimeter 236 63% 37 89%
Power 224 53% 29 31%
TSP 220 56% 14 35%
TreeAdd 203 58% 5 40%
Voronoi 308 62% 70 71%

Table 2: Percentage of Pure Methods in the Java
Olden benchmarks. For each application, we present
the total number of user and library methods, the
percentage of them that are pure, the number of
user methods, and the percentage of pure user meth-
ods.

JML annotations, provided they are pure. JML also al-
low the user to specify “assignable” locations, i.e., loca-
tions that a method can mutate [29]. Currently, the purity
and assignable clauses are either not checked at all or are
checked using very conservative analyses: a method is pure
iff 1) it does not do I/O, 2) it does not write any heap field,9

and 3) it does not invoke impure methods [22].
ESC/Java is a tool for checking properties of Java pro-

grams. ESC/Java requires annotations in a specification
language that is almost identical to JML. ESC/Java uses
a theorem prover to do modular checking of the provided
annotations. While checking a method body, ESC/Java as-
sumes that the callers of the method satisfy their specifica-
tion. Since ESC/Java also checks these callers, it ensures
that all methods satisfy their specifications. A major source

9Constructors are treated in a special way.

13

of unsoundness in ESC/Java is the fact that the tool uses
purity and modifies annotations, but does not check them.

There are two categories of approaches to solve this prob-
lem: the first category relies on user-provided annotations;
the second category, including our approach, relies on pro-
gram analysis. An interesting approach from the first cat-
egory is the work of Leino et al. on data groups [21, 24].
Other approaches in this category use region types [14, 33]
and/or ownership types [4, 9] to specify effects at the gran-
ularity of regions, respectively at the granularity of owner-
ship boundaries. In general, annotation based approaches
are well suited for modular checking; they also provide ab-
straction mechanisms to hide representation details.

The analysis-based approach is appealing because it does
not require additional user annotations. Even in situations
where annotations are desired (e.g., to facilitate modular
checking), static analysis can still be used to give the user
a hint of what the annotations should look like. We briefly
discuss two related static analyses.

ChAsE [8] is a syntactic tool designed by Cataño and
Huisman for modular checking of JML assignable clauses.
For each method, the tool traverses the method code and
collects write effects, using the assignable clauses from the
specification of the invoked methods. Although lightweight
and useful in many practical situations, ChAsE is an un-
sound syntactic tool; in particular, unlike our analysis, it
does not keep track of the values / points-to relation of vari-
ables and fields, and ignores all aliasing.

Spoto and Poll [32] propose an abstract interpretation [13]
based static analysis that detects mutated locations. Their
paper [32] contains compelling evidence that a static analysis
for this purpose should propagate not only the set of mu-
tated locations, but also information about the new values
stored in those locations; otherwise, the analysis results are
either unsound or overly-conservative. Our analysis uses the
set of inside edges to keep track of the new value of pointer
fields. Unfortunately, we are unaware of an implementation
of the analysis of Spoto and Poll.

The Fugue [15] protocol checker is another tool that could
benefit from the use of our analysis. Fugue tracks the cor-
rect usage of finite state machine-like protocols. Fugue re-
quires user annotations in a rich type system that specifies
the state of the tracked objects on method entry/exit. All
aliasing to the tracked objects must be statically known.
Many library methods 1) do not do anything relevant to the
checked protocol, and 2) are too tedious to annotate. In
addition, to promote code reuse, Fugue attempts to support
library methods that work with both 1) tracked objects, and
2) objects whose aliasing may not be fully known at compile
time. Therefore, Fugue tries to find “[NonEscaping]” param-
eters that are equivalent to our safe parameters. The current
analysis/type checking algorithm from Fugue is very conser-
vative as it does not allow a reference to a “[NonEscaping]”
object to be stored in fields of locally captured objects (e.g.,
iterators).

Model checking of Java programs [10, 35] could also ben-
efit from our analysis. For example, the interleavings of
two pure methods from two distinct threads are irrelevant.10

10For this to be true, we also have to treat synchronizations as memory
writes.

The model checker can use this information to reduce the
search space. Corbett [11] uses a related shape analysis to
reduce the finite state models of multithreaded Java pro-
grams by identifying thread-local objects. Interleavings of
operations on thread-local objects are irrelevant.

Ernst and Birka [2] proposed Javari, i.e., “Java with ref-
erence immutability”, an extension to Java that allows the
programmer to specify read-only parameters (called const
in Javari). A type checker then checks the programmer an-
notations. Read-only annotations for parameters are a great
documentation asset, and can catch many practical bugs
related to unintended mutation. To cope with caches in
real applications, Javari allows the programmer to declare
mutable fields. Such fields can be mutated even when they
belong to a const object. Of course, the mutable annota-
tion must be used with extreme caution. We encountered
the same problem when analyzing real Java programs: many
methods are impure simply because they use caching for
performance issues. To make the tool practical, we expose
the mutation on caches to the programmer, and allow the
programmer to judge whether this mutation is allowed or
not. Our tool could be a perfect companion for Javari: one
can imagine using our tool to infer the read-only parame-
ters for legacy code. A programmer can then refine these
annotations and/or do small program changes to increase
the number of read-only parameters.

Other researchers, e.g. [18, 28], have already considered
the use of pointer analysis while infering side effects. How-
ever, unlike previous analyses, our analysis uses separate
abstractions (the inside node) for the objects allocated by
the current invocation of the analyzed method. Therefore,
our analysis focuses on prestate mutation, and supports pure
methods that mutate newly allocated objects.

9. CONCLUSIONS AND FUTURE WORK
Recognizing method purity is important for a variety of

program analysis and understanding tasks. We present the
first implemented method purity analysis that is capable
of recognizing pure methods that mutate newly allocated
objects, including encapsulated objects that do not escape
their creating method. Because this analysis produces a
precise characterization of the accessed region of the heap,
it can also recognize generalized purity properties such as
read-only and safe parameters.

Our experience using our implemented analysis indicates
that it can effectively recognize many pure methods. It
therefore provides a useful tool that can support a range of
important program analysis and software engineering tasks.

The most important future work direction concerns mak-
ing the analysis better suited to the analysis of incomplete
programs and libraries; to make this possible, one should
have a specification for the missing parts of the program.
The assignable clauses from JML are not sufficient: ac-
cording to [32], we have to specify (in an abstract way) not
only the mutated locations, but also the new aliasing created
by the mutation. The points-to graphs contain this informa-
tion, but they are too hairy to be used as a specification lan-
guage. In Section 7, we used an ad-hoc solution in order to
analyze consistency predicates for data structures; however,
a more systematic solution is required. Ideally, the specifi-
cation language should respect abstraction boundaries, i.e.,
it should not reveal private implementation details.

14

Acknowledgements
The authors would like to thank several people whose help
made this paper possible. Darko Marinov and Viktor Kun-
cak provided many research suggestions; Darko also gave us
the Korat testcases. Suhabe Bugrara wrote a regular ex-
pression Java package, and Brian Demsky proof-read parts
of the paper.

10. REFERENCES

[1] C. Scott Ananian. MIT FLEX compiler infrastructure
for Java. http://www.flex-compiler.lcs.mit.edu.

[2] Adrian Birka. Compiler-enforced immutability for the
Java language. Technical Report MIT-LCS-TR-908,
MIT Laboratory for Computer Science, June 2003.
Revision of Master’s thesis.

[3] Chandrasekhar Boyapati, Sarfraz Khurshid, and
Darko Marinov. Korat: Automated testing based on
Java predicates. In Proc. International Symposium on
Software Testing and Analysis, pages 123–133, July
2002.

[4] Chandrasekhar Boyapati and Martin C. Rinard. A
parameterized type system for race-free Java
programs. In Proc. 16th Annual ACM Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, 2001.

[5] Lilian Burdy, Yoonsik Cheon, David Cok, Michael D.
Ernst, Joe Kiniry, Gary T. Leavens, K. Rustan M.
Leino, and Erik Poll. An overview of jml tools and
applications. Technical Report NII-R0309, Computing
Science Institute, Univ. of Nijmegen, March 2003.

[6] Brendon Cahoon and Kathryn S. McKinley. Data flow
analysis for software prefetching linked data structures
in Java. In Proc. 10th International Conference on
Parallel Architectures and Compilation Techniques,
2001.

[7] Martin C. Carlisle and Anne Rogers. Software caching
and computation migration in Olden. In Proc. 5th
ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 1995.

[8] Nestor Cataño and Marieke Huismann. ChAsE: a
static checker for JML’s assignable clause. In Proc. 4th
International Conference on Verification, Model
Checking and Abstract Interpretation, volume 2575 of
LNCS, January 2003.

[9] Dave Clarke and Sophia Drossopoulou. Ownership,
encapsulation and the disjointness of type and effect.
In Proceedings of the 17th ACM conference on
Object-oriented programming, systems, languages, and
applications, pages 292–310. ACM Press, 2002.

[10] James Corbett, Matthew Dwyer, John Hatcliff, Corina
Pasareanu, Robby, Shawn Laubach, and Hongjun
Zheng. Bandera: Extracting finite-state models from
Java source code. In Proceedings of the 22nd
International Conference on Software Engineering
(ICSE), June 2000.

[11] James C. Corbett. Using shape analysis to reduce
finite-state models of concurrent java programs.
Software Engineering and Methodology, 9(1):51–93,
2000.

[12] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Cliff Stein. Introduction to Algorithms
(Second Edition). MIT Press and McGraw-Hill, 2001.

[13] Patrick Cousot and Radhia Cousot. Abstract
interpretation: a unified lattice model for static
analysis of programs by construction or approximation
of fixpoints. In Proc. 4th POPL, 1977.

[14] Karl Crary, David Walker, and Greg Morrisett. Typed
memory management in a calculus of capabilities. In
Proc. 26th ACM POPL, 1999.

[15] Robert DeLine and Manuel Fähndrich. Typestates for
objects. In Proc. 18th ECOOP, June 2004.

[16] Brian Demsky and Martin Rinard. Role-Based
Exploration of Object-Oriented Programs. In Proc.
2002 International Conference on Software
Engineering, 2002.

[17] Cormac Flanagan, K. Rustan M. Leino, Mark
Lilibridge, Greg Nelson, James B. Saxe, and Raymie
Stata. Extended Static Checking for Java. In Proc.
ACM PLDI, 2002.

[18] Michael Hind and Anthony Pioli. Which pointer
analysis should I use? In Proc. International
Symposium on Software Testing and Analysis, 2000.

[19] Pierre Jouvelot and David K. Gifford. Algebraic
reconstruction of types and effects. In Proc. 18th ACM
POPL, 1991.

[20] Viktor Kuncak, Patrick Lam, and Martin Rinard.
Role analysis. In Proc. 29th POPL, 2002.

[21] Viktor Kuncak and K. Rustan M. Leino. In-place
refinement for effect checking. In Second International
Workshop on Automated Verification of Infinite-State
Systems (AVIS’03), Warsaw, Poland, April 2003.

[22] Gary T. Leavens. Advances and issues in JML.
Presentation at the Java Verification Workshop,
January 2002.

[23] Gray T. Leavens, Albert L. Baker, and Clyde Ruby.
Preliminary design of JML. Technical Report 96-06p,
Iowa State University, 2001.

[24] K. Rustan M. Leino, Arnd Poetzsch-Heffter, and
Yunhong Zhou. Using data groups to specify and
check side effects. In Proc. ACM PLDI, 2002.

[25] Barbara Liskov and John Guttag. Program
Development in Java: Abstraction, Specification, and
Object-Oriented Design. Addison-Wesley, 2000.

[26] John M. Lucassen and David K. Gifford. Polymorphic
effect systems. pages 47–57. ACM Press, 1988.

[27] Darko Marinov, Alexandr Andoni, Dumitru Daniliuc,
Sarfraz Khurshid, and Martin Rinard. An evaluation
of exhaustive testing for data structures. Technical
Report MIT-LCS-TR-921, MIT CSAIL, Cambridge,
MA, September 2003.

[28] Ana Milanova, Atanas Routev, and Barbara G.
Ryder. Parameterized object sensitivity for points-to
and side-effect analyses for Java. In Proc.
International Symposium on Software Testing and
Analysis, July 2002.

[29] Peter Mueller, Arnd Poetzsch-Heffter, and Gary T.
Leavens. Modular specification of frame properties in
JML. Technical Report TR 02-02, Iowa State
University, February 2002.

[30] Flemming Nielson, Hanne Riis Nielson, and Chris
Hankin. Principles of Program Analysis.
Springer-Verlag, 1999.

[31] Alexandru Salcianu. Pointer analysis and its
applications to Java programs. Master’s thesis, MIT
Laboratory for Computer Science, 2001.

15

[32] Fausto Spoto and Erik Poll. Static analysis for JML’s
assignable clauses. In Proc. 10th Workshop on
Foundations of Object-Oriented Languages, 2003.

[33] M. Tofte and L. Birkedal. A region inference
algorithm. Transactions on Programming Languages
and Systems, 20(4), July 1998.

[34] J.A.G.M. van der Berg and B.P.F. Jacobs. The LOOP
compiler for Java and UML. Technical Report
CSI-R0019, Computing Science Institute, Univ. of
Nijmegen, December 2000.

[35] Willem Visser, Klaus Havelund, Guillaume Brat, and
SeungJoon Park. Model checking programs. In Int.
Conf. on Automated Software Engineering, 2000, 2000.

[36] J. Whaley and M. Rinard. Compositional pointer and
escape analysis for Java programs. In Proceedings of
the 14th Annual Conference on Object-Oriented
Programming Systems, Languages and Applications,
Denver, CO, November 1999.

APPENDIX

A. EXAMPLE repOk

Figure 12 contains an example repOk method for a bi-
nary search tree that implements a set. Each object of
the class BinarySearchTree represents a binary search tree.
The size field contains the number of nodes in the tree.
Objects of the inner class Node represent nodes of the trees.
The elements of the set are stored in the info fields. The
elements must implement the interface Comparable, which
provides the method compareTo for comparisons.

In this example, repOk checks if the input is a valid binary
search tree with the correct size. First, repOk checks if the
tree is empty. If not, repOk checks that there is no sharing
in the underlying graphs of nodes reachable from root along
the left and right fields. It then checks that the number
of nodes reachable from root is size. It finally checks that
all elements in the left (right) subtree of a node are smaller
(larger) than the element in that node.

The method isTree uses a breadth-first traversal to check
if the underlying object graph is a tree. This traversal keeps
a set of visited nodes and a workList of nodes that still
need to be traversed. Notice that the nodes are put in the
set using the Wrapper class. We need this class because the
standard java.util.Set compares the elements using their
equals methods, whereas we want to compare the nodes in
the set using comparison by object identity, ==. The use
of the wrapper class is a typical way [25] to achieve this
behavior.

Our analysis finds that all three auxiliary methods–isTree,
numNodes, and isOrdered–are pure, and also that repOk is
pure. It is easy to establish that numNodes and isOrdered
are pure, because they do not update any heap location.
However, isTree writes several heap locations: it modifies
the visited set and the workList list. Additionally, it cre-
ates Wrapper objects for putting the nodes as elements of
the set. Our analysis is precise enough to determine that all
mutation occurs on new objects.

import java.util.*;

class BinarySearchTree {
Node root; // root node
int size; // number of nodes in the tree

static class Node {
Node left; // left child
Node right; // right child
Comparable info; // data

}

static final class Wrapper {
Object o;
Wrapper(Object o) {

this.o = o;
}
public boolean equals(Object o) {

if (!(o instanceof Wrapper)) return false;
return this.o == ((Wrapper)o).o;

}
public int hashCode() {

return System.identityHashCode(o);
}

}

boolean repOk() {
// checks that empty tree has size zero
if (root == null) return size == 0;
// checks that the input is a tree
if (!isTree()) return false;
// checks that size is consistent
if (numNodes(root) != size) return false;
// checks that data is ordered
if (!isOrdered(root, null, null)) return false;
return true;

}

boolean isTree() {
Set visited = new HashSet();
visited.add(new Wrapper(root));
LinkedList workList = new LinkedList();
workList.add(root);
while (!workList.isEmpty()) {

Node current = (Node)workList.removeFirst();
if (current.left != null) {

// checks that the tree has no sharing
if (!visited.add(new Wrapper(current.left)))

return false;
workList.add(current.left);

}
if (current.right != null) {

// checks that the tree has no sharing
if (!visited.add(new Wrapper(current.right)))

return false;
workList.add(current.right);

}
}
return true;

}

int numNodes(Node n) {
if (n == null) return 0;
return 1 + numNodes(n.left) + numNodes(n.right);

}

boolean isOrdered(Node n, Comparable min, Comparable max) {
if ((min != null && n.info.compareTo(min) <= 0) ||

(max != null && n.info.compareTo(max) >= 0))
return false;

if (n.left != null)
if (!isOrdered(n.left, min, n.info))

return false;
if (n.right != null)

if (!isOrdered(n.right, n.info, max))
return false;

return true;
}

/* binary tree methods */
}

Figure 12: Code for Appendix A: binary search tree
implementation with repOk method.

16

