
LABORATORY FOR ~~
COMPUTER SCIENCE ~ lt1i

MIT/LCS{fR-581

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

CACHE PERFORMANCE OF
GARBAGE-COLLECTED

PROGRAMMING LANGUAGES

Mark B. Reinhold

September 1993

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

.c...•,.,.., for c ••• 111* t '.itiellee'

M.......,e•a .Mati••4',Mn
545 ••••h• t!

c

CiMl&eh .. 11•0.t
Garb ... Oa:l~:d•t Pt 8Uil' IJ ill. ltr .J .. 11

Mark B. R•tiald

Teduaicll .,,.,. 111
s.,. , ,,,,

Copyright © 1993, Massachusetts Institute of Technology. All rights reserved.

This report is a revised version of the author's doctoral dissertation of the same
title, which was supervised by Professor John V. Guttag and submitted to the
Department of Electrical Engineering and Computer Science of the Massachusetts

Institute of Technology in August 1993.

This research was supported by the Advanced Research Projects Agency of the
Department of Defense, monitored by the Office of Naval Research under contracts

N00014-89-J-1988 and N00014-92-J-1795.

Author's current address: NEC Research Institute
Four Independence Way
Princeton, NJ 08540
mbr@research. nj. nee. com

Abstract

As processor speeds continue to improve relative to main-memory access times,

cache performance is becoming an increasingly important component of program

performance. Prior work on the cache performance of garbage-collected program

ming languages has either assumed or argued that conventional garbage-collection

methods will yield poor performance, and has therefore concentrated on new collec

tion algorithms designed specifically to improve cache-level reference locality. This

dissertation argues to the contrary: Many programs written in garbage-collected

languages are naturally well-suited to the direct-mapped caches typically found in

modern computer systems.

Using a trace-driven cache simulator and other analysis tools, five nontrivial,

long-running Scheme programs are studied. A control experiment shows that the

programs have excellent cache performance without any garbage collection at all.

A second experiment indicates that the programs will perform well with a simple

and infrequently-run generational compacting collector.

An analysis of the test programs' memory usage patterns reveals that the

mostly-functional programming style typically used in Scheme programs, in com

bination with simple linear storage allocation, causes most data objects to be

dispersed in time and space so that references to them cause little cache inter

ference. From this it follows that other Scheme programs, and programs written

in similar styles in different languages, should perform well with a simple gener

ational compacting collector; sophisticated collectors intended to improve cache

performance are unlikely to be effective. The analysis also suggests that, as lo

cality becomes ever more important to program performance, programs written

in garbage-collected languages may turn out to have a significant performance

advantage over programs written in more conventional languages.

Key words and phrases: Cache memories, dynamic storage management, garbage

collection, programming-language implementation, Scheme.

v

Acknowledgements

Without John Guttag's enthusiasm, encouragement, and advice, my graduate ed
ucation likely would have ended five years and one degree earlier. John frequently
saved me from sinking in a sea of too-detailed thoughts, usually by reminding me
to think about the big picture but, at least once, by simply insisting that it was
time to start writing. He brought the keen eye of an English major to my prose,
and proved an invaluable coach in the hunt for a research job. I learned much of

what I know about garbage collection while trying to explain it all to John; I hope
that I managed to teach him half as much about garbage collection as he taught

me about doing research.
Bert Halstead and Butler Lampson were ideal thesis readers, asking incisive

questions at just the right times. Helpful comments came from many others, includ
ing Alan Bawden, Mark Day, Steve Garland, Daniel Jackson, David Kranz, Scott
Nettles, Nate Osgood, Jim O'Toole, Tim Shepard, Ellen Spertus, Raymie Stata,

Yang-Meng Tan, Mark Vandevoorde, Carl Waldspurger, and Jeannette Wing.
Several existing software systems were essential to this work. David Kranz

answered questions about the internals of the T system and helped me port ORBIT

to big-endian MIPS machines. Josh Guttman spent an afternoon demonstrating
IMPS and helped me get it running at MIT. Mark Hill provided his cache simulator,

TYCHO, which I used to validate my own cache simulator. Tom Simon contributed

the NBODY code.
This document was prepared with Donald Knuth's TEX system, a source of

both programming frustration and typographical delight. The graphical style as
pires to the standards set by Edward Tufte's wonderful books on visual design;
most of the graphs were created with Jim Plank's JGRAPH program.

Finally, I thank my dear friends in Bryn Mawr, for warm company and good

movies; my siblings, for making me laugh and making me think; and my parents
and grandparents, for giving me life and helping to make this work possible.

Arlington, Massachusetts

September 1993

MBR

1

1. Introduction

A key feature of modern programming languages such as Lisp, Smalltalk, CLU,

and ML is an automatically garbage-collected heap. The primary advantages of

garbage collection are correctness and productivity: A garbage collector relieves

the programmer from having to worry about manual storage deallocation and the

associated dangers of dangling pointers and storage leaks. In terms of programming

effort, the cost of correctly using manual deallocation is significant. For one lan

guage without garbage collection, it has been estimated that programmers spend

about 403 of their time solving problems related to manual deallocation [62].

A further advantage of garbage collection is that, in some situations, it can

actually improve program performance. For example, garbage collectors have long

been used to improve the performance of programs by improving their virtual

memory performance. This is done by designing the collector to move data objects

so that most working data is kept in physical memory. The cost of running such

a collector is usually smaller than the improvement that is achieved by reducing

the program's page faults [23]. In some systems, collectors of this kind are often

crucial to good program performance [49, 66].

This dissertation considers the problem of implementing garbage-collected lan

guages in relation to a different part of the memory hierarchy, namely the cache.

One of the most significant trends in computer technology involves the relative

speeds of processors and main-memory chips: Processors are getting faster, by a

factor of 1.5 to 2 per year, while the speed of main-memory chips is improving only

slowly [27, 28]. This widening gap has motivated hardware designers to seek im

proved performance by inserting one or more high-speed cache memories between

the processor and the main memory. A cache miss on current high-performance

machines costs tens of processor cycles; if the current trend continues, a miss on

such machines will soon cost hundreds of cycles. Thus cache performance is be

coming an increasingly important component of program performance.

Given that garbage collectors are capable of improving virtual-memory perfor

mance by rearranging data objects, it is natural to ask whether they could improve

cache performance by similar means. This possibility has been investigated by sev

eral researchers, who have studied collectors designed to move data objects so that

most working data is kept in the cache [75, 79]. Because caches are so much smaller
than main memory, such collectors must be invoked frequently if they are to be
effective. While the cost of running such an aggressive collector may be signifi

cant, the hope is that it will be smaller than the improvement that is achieved by

reducing the program's cache misses.

2 CHAPTER 1

Prior work on the cache performance of garbage-collected programming lan

guages either assumes or argues that programs written in such languages will have

poor cache performance if little or no garbage collection is done. In contrast, the

primary claim of this dissertation is that many such programs are naturally well

suited to the direct-mapped caches typically found in high-performance computer

systems. Complex and costly means for improving cache performance, such as

aggressive garbage collection, are unlikely to be either necessary or effective.

Overview. The investigation begins in Chapter 2 with a simulation-based study of

five nontrivial, long-running Scheme programs, compiled and run in a high-quality

Scheme system. The primary metric of program performance is total running time,

as measured in processor cycles. Running time thus includes cycles used to execute
instructions as well as cycles in which the processor is stalled, e.g., waiting for a

cache miss to be serviced.

First, a control experiment is performed to determine the extent to which the

cache performance of these programs can be improved. The experiment shows that

the programs have excellent cache performance without any garbage collection at

all: They spend less than five percent of their total running time, on average,

waiting for cache misses. Improving cache performance hardly seems necessary;

no improvement method that imposes significant runtime costs of its own could be

effective. Aggressive garbage collection is likely to be one such method.

In practice, limitations on physical memory require that some sort of garbage

collection be done in order to ensure good virtual-memory performance. The results

of the control experiment suggest that a good collector for the test programs is one

that collects infrequently, in order to take advantage of the programs' naturally

good cache performance, but frequently enough to minimize virtual-memory page

faults. This hypothesis is tested in the second experiment, which shows that, in

most cases, the programs perform well with a simple, efficient, and infrequently

run compacting collector. In the remaining cases, they should perform well with a

simple and infrequently-run generational compacting collector.

The results of Chapter 2 are limited to just the five test programs. In order
to support generalizations to other Scheme programs and to programs in other

garbage-collected languages, Chapter 3 establishes a connection between the man

ner in which the test programs use memory and their measured cache performance.

Like many garbage-collected languages, Scheme encourages a mostly-functional
style of programming. Two important consequences of this style are that most

data objects have very short lifetimes, and most are only referenced a few times.

These properties, in combination with the object allocator's linear sweep through

memory, cause most objects to be dispersed in time and space so that references

INTRODUCTION 3

to them cause little cache interference. The few objects for which these properties

do not hold are usually referenced in such a way that they more often improve

cache performance rather than degrade it. Hence Chapter 3 concludes that the

test programs have good cache performance because their memory behaviors are

naturally well-suited to direct-mapped caches.

Chapter 4 builds upon the results of Chapter 3. First, three means by which

the performance of the test programs might be improved are presented; none of

these methods have significant runtime costs. Then it is argued that the behav

ioral properties leading to good cache performance should hold for other Scheme

programs, and are likely to hold for programs in other garbage-collected languages.

The conclusions of Chapter 2 and the performance improvements discussed ear

lier in Chapter 4 are thereby generalized. The chapter closes by conjecturing that

garbage-collected languages may have a significant performance advantage over

more conventional languages on fast computer systems.

Finally, Chapter 5 summarizes the results, reviews prior work, and discusses

topics for future work.

4

2. Measurements of cache performance

This investigation is based upon studies of the cache performance and memory
behavior of five nontrivial Scheme programs. After describing the programs and
delimiting the cache design space, this chapter focuses on two cache-performance
experiments.

The first is a control experiment. Before considering methods by which cache
performance might be improved, it is appropriate to determine how much im
provement is possible. This is done by measuring the cache performance of the
test programs when run without any garbage collection at all. If this experiment
were to show that the programs have poor cache performance without collection,
then some method of improving cache performance would be called for.

In fact, the control experiment shows that the opposite is true: When run
without garbage collection, the test programs have excellent cache performance.
Seeking improved cache performance hardly seems necessary. There is so little

room for improvement that no improvement method with significant runtime costs

of its own could be effective.
In practice, it is not possible to run programs with an unbounded amount of

physical memory, so some sort of garbage collection must be done in order to ensure
acceptable virtual-memory performance. The results of the control experiment

suggest that a good collector is one that collects rarely, in order to approximate

the non-collection case and thereby take advantage of the programs' naturally good
cache performance, yet often enough to minimize virtual-memory page faults.

This hypothesis is tested in the second experiment, which measures the cost of

running the test programs in a modest amount of memory with a simple, efficient,
and infrequently-run compacting collector. The results show that, in most cases,
the programs perform well with this collector; in the remaining cases, they should
perform well with a simple and infrequently-run generational compacting collector.

The direct-mapped caches considered in this investigation are limited to cer
tain write policies, and it is assumed that the memory system is capable of handling
the write activity of the test programs. The final section of the chapter discusses
and justifies these decisions.

5

2.1. Test programs

The test programs are written in Scheme, a lexically-scoped dialect of Lisp that
supports first-class procedures [1, 60]. The primary reason for choosing Scheme was
the availability of both a high-quality implementation, namely the Yale T system,
and a set of realistic test programs. The T system contains one of the best Scheme

compilers currently available [39, 40, 58, 59]. T has been in production use for

several years, and has been used by many people to write nontrivial programs.
Measurements of Scheme programs should be relevant to other modern pro

gramming languages. Scheme programs are typically written in a mostly-functional
style: Data objects are rarely modified after being created, and programmers are
encouraged to create and use data structures freely. Scheme does not, however,
enforce a particular style or methodology as do, e.g., CLU and ML [43, 45]. The
core linguistic constructs of Scheme are similar, if not identical, to those of many
garbage-collected languages. Because of Scheme's expressive power, it can effi

ciently support constructs that have no direct counterpart in the language, e.g.,

CLU iterators.

The five test programs and their input data are:

ORBIT, the native compiler of the T system, compiling itself;

IMPS, an interactive theorem prover [21], running its internal consistency

checks and then proving a simple combinatorial identity;

LP, a reduction engine for a typed >.-calculus [2, 61], typechecking a com
plex, non-normalizing >.-term and then applying one million ~-reduction

steps to it;

NBODY, an implementation of Zhao's linear-time three-dimensional N

body simulation algorithm [65, 76], computing the accelerations of 256
point-masses distributed uniformly in a cube and starting at rest; and

GAMBIT, another Scheme compiler [22], quite different from ORBIT, com
piling the machine-independent portion of itself.

These programs represent several different kinds of applications and programming

styles.

6 CHAPTER 2

The programs vary in size, but each allocates many megabytes of data and
runs for billions of instructions:*

Lines Bytes Insns Refs

ORBIT 15,332 94.4M 3.68E9 l.03E9 Scheme compiler

IMPS 42,119 41.lM 4.13E9 l.09E9 Theorem prover

LP 2,981 58.6M 2.21E9 .64E9 >..-calculus reducer

NBODY 857 126.lM 2.43E9 .63E9 N-body simulator

GAMBIT 15,004 l06.9M 7.35E9 2.00E9 Scheme compiler

The first column shows the size of each program, measured in lines of Scheme source

text. The remaining columns show the number of bytes allocated, the number of

instructions executed, and the number of data references made by each program

when run, without garbage collection, on its input data. These program runs are

significantly longer than those used in previous studies of the cache performance

of garbage-collected languages [75, 79].
The programs were compiled and run in version 3.1 of the T system running

on a MIPS R3000-based computer [33]. Because all measurements are based upon

simulations, the internal details of this machine are unimportant.

The test programs, with their respective inputs, are all non-interactive. The

performance of interactive garbage-collected programs depends not only upon pro

gram and collector behavior, but upon the cost, in instruction cycles and cache

misses, of kernel context switches and user interactions. A study of the cache

performance of such programs is beyond the scope of this work.

2.2. Cache design parameters

The portion of the cache design space considered in this investigation is limited in

several ways.
Only direct-mapped caches are considered. Because they are the simplest

to implement, direct-mapped caches have faster access times than other types

of caches [30, 56]; they are therefore the most common type of cache in high

performance computers.

Only one level of caching is considered; no attempt is made to measure the

performance of memory systems with multi-level caches. The results reported here

are expected to extend to the two- and even three-level caches that are becoming
common. An informative analysis of multi-level cache performance, however, re-

*The single letter 'K' denotes a multiple of 210 , the single letter 'M' denotes a multiple of 220 , and
the single letter 'G' denotes a multiple of 230 . The single letter 'B' stands for 'byte.' The notation
'aEb' abbreviates 'ax lOb'.

MEASUREMENTS OF CACHE PERFORMANCE 7

quires a more sophisticated memory-system simulator than that employed here, so

a thorough investigation is left to future work.

A wide range of cache sizes is considered, from 32KB to 4MB. This range

includes current typical sizes for single-level off-chip caches (32-64KB) and for

second- or third-level caches in multi-level systems (1-4MB).

The cache-block size ranges, in powers of two, from 16 to 256 bytes. Most

Scheme objects are just a few words long, so, at most sizes, a cache block typically
contains many Scheme objects. Main memory will often be discussed in terms of

memory blocks, which are assumed to be the same size as cache blocks. The fetch

size, i.e., the unit of transfer between the cache and main memory, is also assumed

to be equal to the block size.

Only a write-miss policy of write-validate is considered [31]. This policy should

perform better than any other for garbage-collected programs; it will be discussed

further in §2.5.

Finally, only data-cache performance is studied. Instruction caches are ex

pected to perform reasonably well for Scheme programs, but an investigation of
instruction-cache performance is beyond the scope of this work.

2.3. Cache performance without garbage collection

The control experiment measures the cache performance of the five test programs

when run without garbage collection. The results will be described in terms of

cache overheads, which measure the temporal costs of cache activity relative to the

programs' idealized running times.

In a computer system, the time spent by the processor waiting for the memory

system is not a function of misses per reference, but of misses per instruction

cycle and the number of cycles required to service each miss, which may not be

constant. The situation is further complicated by stalls due to other components of

the memory system, such as the main memory, write buffers, and virtual-memory

translation-lookaside buffers. Thus, to obtain precise figures on the temporal cost

of cache misses requires an elaborate simulation of the entire memory hierarchy as

well as the relevant parts of the processor pipeline [10, 56].

The cache simulator constructed in the course of this investigation is inca

pable of such accuracy. In this chapter, cache overheads are calculated under the

assumption that the memory system is capable of handling the write activity of the

test programs without imposing significant additional costs. Thus cache overheads

include only the direct cost of servicing read misses, i.e., the cost of fetching mem

ory blocks in response to load instructions; the cost of handling stores is ignored.

In §2.5, it will be argued that properties of practical memory systems and of the

8 CHAPTER 2

programs themselves imply that the write overheads of the test programs should
be small.

The time required to service a read miss by fetching the target memory block
into the cache, i.e., the miss penalty, depends upon details of the main-memory
system and upon the block size. In particular, the miss penalty varies directly

with the block size, since more time is required to transfer larger blocks in a given
memory system. The miss penalties used in the calculation of cache overhead are
taken from the high-performance main-memory system studied by Przybylski [56,
§3.3.2]. This memory has an address setup time of 30ns, an access time of 180ns,
and a transfer time of 30ns for each 16 bytes transferred. Thus a transfer of n

bytes requires 30+180 + 30 x fn/161 nanoseconds. The recovery time, i.e., the
time required between successive memory transactions, is 120ns; it is ignored in
these calculations.

Two hypothetical processors are considered. The slow processor, representing

currently-available workstation-class machines, has a cycle time of 30ns (i.e., a

33 megahertz clock); the fast processor, representing high-performance machines
available in the near future, has a cycle time of 2ns (a 500 megahertz clock).
With these cycle times, the miss penalties for the various block sizes, measured in
processor cycles, are:

Block size

Slow penalty

16 32

8 9

64 128 256 (bytes)

11 15 23 (cycles)
Fast penalty 120 135 165 225 345

The hit time, i.e., the time required to access a block that is already in the cache,
is assumed to be one cycle for both processors. Thus, if a reference hits in the

cache, the processor does not stall.
The cache overhead of a program is the amount of time spent waiting for read

misses expressed as a fraction of the program's idealized running time, in which no

misses occur and one instruction completes in every cycle. That is,

Mprog x P
Dcache = I '

prog

where Mprog is the total number of read misses during the program run, P is the

miss penalty, in processor cycles, and Iprog is the total number of instructions
executed by the program. The more familiar metric of cycles per instruction [10]

is one plus the overhead of each cache in the memory hierarchy.

MEASUREMENTS OF CACHE PERFORMANCE 9

With these assumptions and definitions in hand, the cache overhead for the

test programs, run without garbage collection, can be calculated:

1.000-:

0.001-:

32K 64K 128K 256K 512K lM
Cache size (bytes)

+ Fast
o Slow

-- 256B
--- 128B

64B
32B
16B

2M

There are two sets of curves in this graph, one for each of the hypothetical pro
cessors. The height of a data point shows the average cache overhead, across all

programs, for the given block size, cache size, and processor speed. (Separate cache
overheads for each program are shown on the following page.)

For the slow processor, even a small 32KB cache has a cache overhead of less
than five percent when the block size is 16 bytes. For the fast processor, a lMB

cache is required in order to achieve a similar overhead, but fast machines are
expected to have caches at least that large. Caches in such machines may employ
larger block sizes, but, with a sufficiently large cache, it is still possible to achieve

an overhead of less than five percent. For both processors, smaller block sizes
always yield superior performance.

The control experiment has revealed, then, that when run without any garbage
collection at all, the test programs have excellent cache performance. There is so lit
tle room for improvement-five percent or less-that it is unclear whether improv

ing cache performance should even be a priority. More significant improvements
in overall program performance might be attained by improving other aspects of
the hardware, the language system, or the programs themselves. No method for
improving cache performance that imposes a significant overhead of its own could

be effective.

10

32K

0.0011

32K

0.0101

0.0011

32K

-
0.0011

32K

Average

4M
Cache size (bytes)

ORBIT

4M

LP

4M

4M

+ Fast
o Slow

-- 256B
--- 128B
- - - 64B
----32B
------ 16B

0.0011

32K

-
0.0011

32K

CHAPTER 2

IMPS

NB ODY

4M

MEASUREMENTS OF CACHE PERFORMANCE 11

2.4. Program performance with a simple collector

The second experiment measures the cost of running the test programs with a

modest amount of memory and a simple, efficient, and infrequently-run compact

ing collector. This collector performs well in most cases; a simple generational

compacting collector should perform well in the remaining cases.

Garbage-collection overhead. During a program run, a garbage collector imposes

both direct and indirect costs. Directly, the collector itself executes Ige instructions

and causes Mge cache read misses. The magnitude of Ige depends upon the amount
of work done by the collector; that of Mge depends upon the collector's own memory

reference patterns.

Indirectly, there are two ways in which the collector affects the number of

misses that occur while the program is running. Each time the collector is invoked,

its memory references remove some, or possibly all, of the program's state from

the cache; when the program resumes, more cache misses occur as that state is

restored. The collector can also move data objects in memory, which may improve

(or degrade) the objects' reference locality, thereby decreasing (or increasing) the

program's miss count. These effects are together reflected in ~Mprog, which is the

change in the program's miss count relative to Mprog, its miss count when run in

the same cache without garbage collection. If the collector improves the program's

cache performance by more than enough to make up for the cost of restoring the

program's cache state after each collection, then ~Mprog will be negative.

The collector can also cause the program to execute ~Iprog more instructions.

This occurs in the T system because hash-table keys are computed from object

addresses. Because the collector can move objects, each table is automatically

rehashed, upon its next reference, after a collection. The cost of rehashing, in

instructions and in cache misses, is usually small.

When run with a given collector, the garbage-collection overhead of a program

is the sum of these temporal costs, expressed as a fraction of the program's idealized

running time. That is,

(Mge + ~Mprog) X P + Ige + ~Iprog
Oge= I '

prog

where Pis again the miss penalty, in processor cycles, and Iprog is the total number

of instructions executed by the program. Because ~Mprog can be negative, it is

possible for Oge to be zero or negative, which will be the case if the collector
improves the program's cache performance by more than enough to pay for its own

running cost.

12 CHAPTER 2

The combined cache and garbage-collector overhead is simply Oeaehe +Oge·

Because Oge can be negative, it is possible for the combined overhead to be zero,
although this would require an impossibly perfect collector that executes no in
structions, causes no cache misses, eliminates all of the program's cache misses,
and does not cause the program to execute any extra instructions. The goal of
methods such as aggressive collection is to achieve an overhead that is sufficiently
negative to counter Oeaehe significantly.

A simple collector. The garbage collector used in this experiment is a straight
forward implementation of Cheney's algorithm for copying compacting collection,
which is perhaps the simplest practical collection technique known [14].

Cheney's method uses two memory areas of equal size, sometimes called semis

paces. At any given time, one semispace acts as the new area, while the other is
the old area. The heap is contained entirely within the new area, and objects are
allocated linearly in the new area from a contiguous run of free memory. When the
free memory is exhausted, a collection is performed. The collector first exchanges,
or flips, the roles of the areas; it then copies all live (i.e., non-garbage) objects
from the old area into a contiguous portion of the new area in a breadth-first man
ner. Cheney's algorithm avoids the need for a recursion stack during the copying
process by using pointers into the new area to distinguish between copied objects
that can still point to uncopied objects from those that cannot.

Although the collector requires two areas, it is not necessary that both always
fit within the available physical memory. Between collections, only one area need
be resident. The old area is accessed randomly during a collection, but the new
area is accessed linearly as live objects are copied into it and scanned. Thus, for
reasonable performance during a collection, enough physical memory is required to
hold the old area, a portion of the new area, and whatever working space is required
by the collector. As long as the virtual-memory system can handle the temporary
increase in memory demand, few page faults should occur. What faults remain
can be reduced further by arranging for the collector to advise the virtual-memory
system of its expected usage patterns [17].

Like the definition of Oeaehe' the definition of Oge above does not include the
cost of handling memory writes. The Cheney collector allocates and initializes
memory in a linear fashion, just as a program does. Therefore the argument that
write overheads should be low, in §2.5, applies to the collector itself as well as to
the test programs.

MEASUREMENTS OF CACHE PERFORMANCE 13

Program performance. When run with the Cheney collector, configured to use 16MB
semispaces, the garbage-collection overheads (Oge) of three of the five test programs
are fairly low:

0.077-

_ ... -+········+

0.05-

~- ~.'.'-o-: -"""' - ~ t=-· :.: .:. . .: ·g .. --· -· o - · · · · - · -a
~--l:t-------:8·· : e ---~----~

- G- - - - -G- - - - --0- - - /- -0- - - - -<>- - - - -<>- - - - -0- - - - -0

0.00-

-0.027-
32K

+- +
64K 128K 256K 512K

Cache size (bytes)
lM

+ Fast
o Slow

ORBIT

······ NBODY

--GAMBIT

2M 4M

The overheads for IMPS and LP, discussed below, are not shown here.
This graph shows data for 64-byte blocks; overheads for other block sizes are

similar. There is one set of curves for each of the hypothetical processors; in each
set, there is one curve for each of three of the test programs. The height of a
data point shows the measured collection overhead for a program when run with
the Cheney collector in a cache of the indicated size. With the slow processor, all
overheads are less than four percent; with the fast processor, overheads are usually
higher, reaching a maximum of 7.7%, but are still acceptable.

For each program, the variations in collection overheads are due to the number
of cache misses caused by the collector itself and to the collector's effect upon the
program's miss count. Even this simple collector might improve a program's cache
performance by compacting live data objects in memory, so another source of
variation is the extent to which this type of improvement occurs. For a given cache
size and processor speed, the cache overheads differ because of these factors and
because the amount of work done by the collector is program-dependent, being a
function of the number of live objects at the time of each collection.

For one program, garbage-collection overhead is negative in two cases, indicat
ing a significant improvement. These negative overheads are not, however, due to

14 CHAPTER 2

a general improvement of the program's reference locality by the collector. When

run without collection, the program in question, NBODY, has a few memory blocks
that thrash in sufficiently small caches. That is, the memory blocks map to the

same cache block, and they are referenced in such a way that they cause many

misses. The Cheney collector happens to move the objects involved, thereby elim

inating the thrashing behavior and significantly reducing the number of misses.

This improvement is not as noticeable in a 32KB cache because there are so many

more misses in a cache of that size to begin with; it does not occur in caches larger

than 128KB because these memory blocks map to different cache blocks in larger

caches. In §4.1, methods for eliminating thrashing that do not involve a garbage
collector will be presented.

The previous graph only shows garbage-collection overhead data for ORBIT,

NBODY, and GAMBIT. IMPS suffers from a more extreme case of the thrashing

behavior just described, so its overheads are highly variable. When thrashing does

not occur, the overheads for IMPS are comparable to those shown above.

Overheads for LP are not shown because they are uniformly 40% or higher.

LP creates a large data structure that grows monotonically in size until the end of

its run. Thus, unlike the other programs, the amount of work done by the Cheney

collector in successive collections increases, since it must copy this structure each
time. A simple generational collector would avoid this problem [4, 42]; although

it would impose costs beyond those of the Cheney collector, the work avoided by

not repeatedly copying long-lived structures should more than counter those costs.
Like the Cheney collector, a generational collector should be run infrequently in

order to take advantage of the programs' naturally good cache performance.

The collection overhead of an aggressive garbage collector is likely to be signif

icantly higher than that of an infrequently-run generational collector. As proposed

by Wilson et al. and by Zorn, an aggressive collector is essentially a generational

collector with a new-object area, or first generation, that is sufficiently small to fit

mostly or entirely in the cache [75, 79]. An aggressive collector will thus incur all

the costs of an ordinary generational collector, including the overheads of manag

ing several generations and of detecting and updating pointers from old objects to

new objects. An aggressive collector will spend more time copying objects from

the new-object area, for more frequent collections leave less time for new objects

to become garbage before being copied to the next generation. It seems likely that
this added copying cost will be significantly larger than the meager improvement

in cache performance that is possible. Thus, even if an aggressive collector could

reduce cache overhead to zero, it would be unlikely to pay for its cost over that of

an infrequently-run generational collector.

MEASUREMENTS OF CACHE PERFORMANCE 15

2.5. Cache write policies and write overhead

In this investigation, only caches with a write-miss policy of write-validate are

considered. The first part of this section reviews the possible write-miss policies
and argues that write-validate policies, or some equivalent mechanisms, are likely
to become common.

In this chapter, for the purpose of calculating cache overhead, it was assumed

that the memory system is capable of handling the write activity of the test pro

grams without imposing significant temporal costs. The justification of these deci

sions requires understanding write-hit policies and the relationship between write
activity and available memory bandwidth. The second part of this section re
views the possible write-hit policies and argues that the write overheads of the test
programs should be small.

Write miss policies. A write miss occurs when the target of a store instruction is
a memory block that is not in the cache.* When designing a cache, the first choice

to be made in deciding how to handle write misses is whether or not to fetch the

target memory block into the cache. If a fetch-on-write policy is used, then a write
miss will stall the processor while the target block is fetched into the corresponding

cache block. If it is decided that a write miss will not trigger a fetch, then there is
another choice to be made, namely whether or not to allocate the cache block to
the target memory block. If the cache block is allocated, then the resulting policy
is called write-validate. If the cache block is not allocated, the resulting policy is
called either write-around or write-invalidate, depending upon whether or not data

is written to the cache in parallel with the tag check; with both policies, the stored

data is sent directly to main memory, so a future load of that data will cause a

read miss and an ensuing fetch.
A write-validate policy requires that a validity bit be associated with each

word in a cache block. When a write miss occurs, the cache block is allocated to
the target memory block by setting the tag bits, but the contents of the memory
block are not fetched into the cache.** The stored data is written into the cache
block and the validity bits associated with that data are set; all other validity bits
in the cache block are cleared. If every word in the memory block is written before
it is read, then the original contents of the block will never be fetched.

Jouppi has demonstrated that, for programs written in conventional languages,
a write-validate policy always outperforms fetch-on-write and write-invalidate, and
usually outperforms write-around [31]. In particular, for his test programs a write-

*The following discussion of write policies is based in part upon a recent paper by Jouppi [31].

**If the write-hit policy is write-back, then the prior contents of the cache block are flushed to
memory at this time.

16 CHAPTER 2

validate policy eliminates, on average, roughly one-third of the cache misses seen

with fetch-on-write. Write-validate works well because it avoids useless fetches, and

because recently-written data is usually referenced sooner than the prior contents

of the cache block containing that data.

For programs written in garbage-collected languages, a write-validate policy

should be superior for the same reasons. Because of allocation activity, useless

fetches can be a significant problem for such programs. This is especially true

when objects are allocated linearly from a contiguous run of free memory, which is

the case when no garbage collection is done or when a compacting collector is used.

When an object is allocated, its component words are initialized in ascending order
of address. If the object contains the first word of a memory block, then a type

of write miss called an allocation miss occurs when that word is initialized. With

a fetch-on-write policy, the miss will cause the contents of the memory block to

be fetched. The information retrieved by this allocation fetch will never be used,

however, because every word in heap memory is initialized before it is read.

The other three write policies avoid allocation fetches, but write-around and

write-invalidate are incapable of taking advantage of the high temporal and spa

tial locality of object references. It will be seen in Chapter 3 that most heap

memory blocks are not referenced after their associated cache blocks are required

for newer memory blocks. Thus it is more likely that a program will read a recently

allocated memory block than an older block that happens to map to the same cache

block. With a write-around or write-invalidate policy, the first load from any heap

memory block will cause a read miss; with a write-validate policy, the first load

from a recently-allocated block is likely to hit in the cache. Since references to

recently-allocated blocks are expected to be more common, write-validate should

outperform both write-around and write-invalidate.

MEASUREMENTS OF CACHE PERFORMANCE 17

For the Scheme test programs, a write-validate policy easily outperforms a
fetch-on-write policy. If a fetch-on-write policy is used, then, when the test pro
grams are run without garbage collection, allocation fetches become a significant
fraction of all fetches as the cache size increases and as the block size decreases:

0.94-

0.8-

0.6-

32K 64K

0

128K 256K 512K

Cache size (bytes)

.o·

/

/
,JJ

/

lM

_.o 16B
o· 0 32B

o----
/ ,0 64B

/

p'
/

128B

256B

2M 4M

This graph contains one curve for each block size, and one data point for each
combination of cache and block sizes. For a given cache size, the average allocation

fetch fraction increases as the block size decreases because the number of allocation
misses depends inversely upon the block size; e.g., if the block size is halved,
there will be (approximately) twice as many allocation misses. In larger caches,

allocation fetches can easily account for half or more of all fetches.*

An alternative way to avoid most useless fetches is to use a cache-block

allocation instruction, first described by Radin [57] and apparently reinvented, in
the context of garbage-collected languages, by Peng and Sohi [53]. Given a mem
ory block address, this instruction allocates the associated cache block but does
not fetch the contents of the memory block. Such an instruction has appeared in
a number of machines [19, 32, 48], but it is not an ideal solution. A cache-block
allocation instruction can be costly to use correctly, since all old data in the cache
block must be known to be useless. For a garbage-collected language, this implies

that the instruction can only be invoked when the first word of a block is allocated;

*Due to limitations of the cache simulator, this graph underestimates, probably only slightly, the
actual fraction of allocation fetches.

MEASUREMENTS OF CACHE PERFORMANCE 19

with the cache sizes being considered, but an overhead of less than ten percent is
attainable with a 2MB cache.

With a write-validate policy, the cache overhead for a given cache size varies
inversely with the block size for the block sizes under consideration. In contrast,
the above graph shows that, with a fetch-on-write policy, larger blocks have an in

creasing advantage as the cache size increases. This is because smaller blocks entail
more allocation fetches and because, in larger caches, more misses are allocation

misses, regardless of the block size.

Write hit policies and write overhead. A write hit occurs when the target of a store
instruction is a memory block that is already in the cache. There are two ways to

handle write hits. With a write-through policy, the stored data is written both to
the cache block and to main memory. With a write-back policy, the stored data is
written only to the cache block; the contents of the cache block are written back to

memory later, when the cache block is allocated to a different memory block. Each

policy has its own advantages. A write-through policy is simpler to implement,

can provide higher bandwidth into the cache, and has other advantages important
to on-chip caches [31]. A write-back policy, in contrast, can exploit the reference

locality of stores in order to reduce write traffic to main memory.
Whatever the write-hit policy, if memory-write transactions occur too fre

quently, the processor will stall while waiting for them to complete. The remainder
of this section argues that because stores in the test programs have high temporal

and spatial locality, the overhead of the write traffic generated by a write-back
cache should be small, even when the Cheney collector is used.

Among the memory areas in the T system, most stores are to the procedure

call stack:

Stack
Static
Heap

ORBIT

71.36
2.75

25.87

IMPS

90.24
1.49

8.26

LP

71.05
4.47

24.47

NB ODY

59.34
15.55
25.09

GAMBIT

87.54 3
1.63

10.81

It will be seen in Chapter 3 that the stack is a highly local structure, with most
stack references occurring in a small contiguous group of memory blocks. Most

references to static memory are also confined to a small, though noncontiguous,
set of blocks, so most static stores are likely to be similarly concentrated. A write
back policy will therefore be best for stack and static references since it will not
require a memory transaction every time a frequently-referenced memory block
is modified. Because such blocks tend to reside in the cache, they will rarely be

written back to memory.

20 CHAPTER 2

Stores to the heap are uniformly spread through heap memory. In the mostly

functional programming style typically used in Scheme programs, data objects are

usually written only once, when they are initialized.* As a consequence, most heap

stores are initialization stores to newly-allocated memory blocks; non-initialization

stores to older heap blocks are rare. This is evident when the above heap-store

percentages are separated into initialization and non-initialization stores:

Init
Non-init

ORBIT

20.93

4.94

IMPS

7.56

0.69

LP

22.55

1.91

NB ODY

25.08

0.01

GAMBIT

9.86 3
0.94

Objects are allocated linearly in memory, so all initialization stores to a given

memory block occur close together in time. The Cheney collector copies objects to

the new area in essentially the same manner, so the store behavior of the programs

is not much different when they are run with this collector. A write-back cache will

coalesce initialization stores so that each block is likely to be written to memory

only once, some time after its last initialization store. The same effect could be

achieved by augmenting a write-through cache with either a coalescing write buffer

or an auxiliary write cache [31]. Such an arrangement, however, would probably
not be as effective at reducing the write traffic due to stack and static stores, which

tend to be concentrated in a small number of different blocks.

With a write-back cache, initialization stores should not generate excessive

write traffic. Once the first word of a memory block has been initialized, the block

will be flushed from the cache and written to main memory only when its cache

block is allocated to some other memory block. Chapter 3 will show that most
cache blocks see little interference in the test programs, which suggests that most

newly-allocated memory blocks will only be flushed when their cache blocks are

next allocated for an even newer block. Thus the rate at which heap blocks are

written back to memory is likely to be closely related to the object-allocation rate.

The cache simulator is incapable of measuring the relationship between the
heap-block write-back rate and the allocation rate. The write overhead due to

initialization stores in an improbable near-worst case, however, can be estimated.
Suppose that a program repeatedly allocates exactly one block of data and then

immediately references some other block that shares the same cache block, thereby

flushing the newly-allocated block. Let B be the block size, in words, and let D be

the minimum delay, in cycles, between successive writes. At least one instruction

is required to initialize each word in a block, so once the write buffer, if any, is full,

the processor will repeatedly spend B cycles initializing a new block and at most

*Actually, the T runtime system initializes most objects twice, in rapid succession.

MEASUREMENTS OF CACHE PERFORMANCE 21

D - B cycles waiting for a write transaction to complete. The write overhead of
this hypothetical reference pattern is

W x (D-B)
Oistore :::; -----

lprog

where W is the total number of words allocated and lprog, as before, is the total
number of instructions executed by the program.

Assume that, for a given processor speed and block size, the write latency D
is equal to the miss-penalty time shown on p. 8.* Then for the test programs, the
write overhead of this reference pattern for the hypothetical slow processor is zero
for blocks sizes of 64 bytes or larger, since more time is spent initializing each block
than is required between successive writes; for 16- and 32-byte blocks, Dis at most

twice B, and Oistore is well under one percent. For the fast processor, Oistore is
usually less than ten percent:

"Cl
o;I
Q.)

..c:
Q.)

>

0.4 -

~ 0.10 -
.µ
•>:::
:;:
Q.)
rn

~ 0.05 -
I

.µ
rn
0
:;:
.'..
o;I
Q.)

z

0.01-

+.

16 32

- - - ORBIT

--- IMPS

---- LP

--- NBODY

-- GAMBIT

+.

- -+-

--+

64 128 256

Block size (bytes)

This graph contains one curve for each program; each data point shows the value

of Oistore for the indicated block size. The estimated write overheads for this near
worst case are small; because memory blocks are actually allocated in a much more
sedate manner, the actual write overheads due to initialization stores should be at

most a few percent.

*In fact, the write latency is usually smaller [56, p. 30].

22

2.6. Conclusion

This chapter has established two key facts about the Scheme test programs.

First, they have excellent cache performance when run without any garbage

collection at all; improving cache performance hardly seems necessary. Further

more, any method for improving cache performance that imposes a significant

overhead of its own will not be effective; such a method will not be able to re

cover its own running cost, let alone improve the overall performance of the client

program.

Second, for these programs, the overhead of a simple, infrequently-run com

pacting collector is acceptably low in most cases. An infrequently-run generational

compacting collector should yield good performance in the remaining cases.

These results apply only to the five test programs. In order to generalize these

results to other programs, and to other programming languages, the next chapter

analyzes the memory behavior of the programs in order to understand why their

cache performance is so good.

23

3. Analysis of memory behavior

The first experiment reported in Chapter 2 established that the test programs
have excellent cache performance when run without a garbage collector or any

other mechanism that might improve reference locality. This chapter explains that
observation by analyzing the memory behaviors of the test programs in the same

context. The analysis will establish that, when run without garbage collection, the
test programs have good cache performance because their memory behaviors are
naturally well-suited to direct-mapped caches. In Chapter 4, the measurements

and conclusions of the analysis will be used to identify three methods by which the
test programs' performance might be improved, and the analysis will be generalized
to other programs and other programming languages.

The conclusions of the analysis are not limited to the idealized setting of a
program running without a garbage collector. Chapter 2 argued that the test

programs will perform well with infrequently-run compacting collectors, which can
take advantage of the programs' naturally good cache performance. The memory

behavior of a program running with such a collector will differ from the idealized

case in two ways. First, it will be interrupted, albeit rarely, by collector invocations.
Second, the collector may move objects in memory; as was argued in Chapter 2,
these actions will have significant effects only if they happen to eliminate thrashing.
Aside from these differences, the program's memory behavior should be similar to
that of the idealized case. In particular, in the long intervals between collections,

objects will be allocated linearly from a large free-memory area, approximating the

idealized case of linear allocation from an unbounded area.
Some foundations must be laid before proceeding with the analysis. After

defining the notion of memory behavior, the memory layout of the Scheme system

being studied will be briefly described. A plot of the cache misses that occur during
part of a program run will be examined in order to develop a visual idea of the
connection between memory behavior and cache activity. Finally, a coarse-grained
unit of time and a notion of interference in the cache between memory blocks will
be defined.

The analysis will then show that most memory blocks in the test programs
have very short lifetimes and are not referenced many times. These facts, together
with the object allocator's linear sweep through memory, imply that most memory

blocks are spread through time and space in such a way that references to them
cause little cache interference. Nearly all other blocks are not very active and are
also not referenced many times, so they too cannot cause significant interference.
Long-lived and frequently-referenced blocks, called busy blocks, are very rare, and
turn out to improve cache performance more often than they degrade it.

24 CHAPTER 3

3.1. Memory behaviors, memory blocks, and memory areas

The memory behavior of a program run is a record of the program's computational
actions with respect to main memory. Memory behaviors include allocation actions

as well as read and write actions, and therefore contain more information than
simple address traces. In general, a memory behavior also includes instruction

references; these are unnecessary here, however, since the analysis only seeks to
explain data-cache performance.

The analysis of memory behaviors is carried out in terms of fixed-size memory
blocks. Scheme objects might seem a more natural unit, but blocks, not objects,
are the fundamental unit of transfer in practical memory systems. For simplicity,
the cache- and memory-block size is fixed at 64 bytes; other block sizes will be

discussed at the end of the chapter. Most Scheme objects are comparatively small,
so a 64-byte block typically contains a handful of objects.

Memory in the Yale T system is divided into four contiguous areas, which the
analysis will consider in turn.*

The dynamic area contains data objects created by programs as they run. The

allocation pointer contains the address of the next available word in the dynamic

area, and is incremented by each allocation action. When a program is run without
collection, the allocation pointer starts at the base of the dynamic area and grows
upward, without bound, until the end of the run. When a compacting collector

is used, the allocation pointer starts at the base of the new-object area and grows
upward until the end of the area is reached, at which time the collector is invoked.

The static and loaded-data areas are similar, and will sometimes together be
referred to as the static/loaded areas. The static area contains data structures and
code for the compiler, library, and runtime system, and is identical for all program

runs. The loaded-data area contains data and code loaded from files, or created,
before the program starts running; it thus typically contains the program itself.**
Because instruction references are ignored, code objects are only referenced as they
are loaded or created.

Finally, the stack area contains the procedure call stack. Call frames are

contiguous and usually quite small, on the order of several words each.
A block is considered active if it is referenced at least once. Active blocks are

distinguished from inactive blocks because programs typically touch only a small

fraction of the compiler, library, and runtime-system data in the static area. While

all blocks in other areas are active, most static blocks are inactive.

*Strictly speaking, this is true only when the garbage collector is disabled; when the collector is
enabled, dynamic and loaded objects are spread among several areas.

**All program measurements begin at the first instruction executed by the T system, so they include
the loading process.

ANALYSIS OF MEMORY BEHAVIOR 25

In the test programs, most active memory blocks are dynamic:

ORBIT IMPS LP NB ODY GAMBIT

Dynamic 99.39 70.54 98.75 99.73 98.13 %
Static 0.45 0.74 0.44 0.11 0.26
Loaded 0.14 28.71 0.79 0.15 1.54
Stack 0.02 0.01 0.02 0.00 0.08

ORBIT has few active loaded blocks because it is the T system's compiler, and
therefore resides in the static area. The loaded-block percentage for IMPS is large
because IMPS is a large system; that for NBODY, in contrast, is small because the
program itself is small but it allocates much memory, more than any of the other
programs.

While most active memory blocks are dynamic, most references are to non
dynamic blocks:

ORBIT IMPS LP NB ODY GAMBIT

Dynamic 20.27 11.64 13.24 16.60 12.80 %
Static 41.70 24.46 16.25 43.03 29.02
Loaded 0.25 25.81 40.27 3.95 11.95
Stack 37.73 37.95 30.23 34.49 46.22

There is no obvious connection between the number of references in a non-dynamic
area and the number of blocks in that area. In particular, the stack area in each
program accounts for at least 30% of all references, yet it contains hardly any
blocks.

26 CHAPTER 3

3.2. Cache miss patterns

When cache misses are plotted as a function of time, vanous patterns become
apparent:

t· -•• -:~-·---- -·.

. . ..
;, . ~- : -- . : :. :- .:;. -. -. --

·- ! .3.. -· ~- -~-- ~ .. i.. - ,_
~--:~~.,.....,,. ~ ---. ~-"···' ~ - - ·--:-:::--· :';"'~-- ~~--·--:-~·-::--·

... ..

-:-~--~.:_,-='-.'.~~:__, __

--~·-.:;!::. '.'. ::' . - -
-·- ··-·· ~- :'-

Time (x 1024 refs)

The horizontal x axis of this plot is calibrated in data references, which are the

fundamental time unit of the analysis; there are 1024 references for each dot width.

On the vertical y axis, there is one dot width for each of the 1024 blocks of a 64KB,

64B-block direct-mapped cache. A dot is shown at (x, y) if at least one miss

occurred in cache block y during the x th 1024-reference interval. This plot shows

cache misses for the first 1,784,831 references of a short run of ORBIT.

The most prominent pattern is that of the diagonal stripes, which are due
to allocation misses. When an object is allocated, the allocation pointer is first

incremented by the new object's size; then the component words of the new object

are initialized in ascending address order. Each time one of these initialization

stores reaches a new dynamic memory block, an allocation miss occurs, flushing

the cache block and allocating it to the newly-allocated block. A direct-mapped

cache maps a memory block to a cache block by taking the memory block's index

modulo the cache size (in blocks), so the allocation pointer continually sweeps the

cache from one end to the other, leaving a trail of allocation misses.
The slope of an allocation-miss stripe at a given point in time reflects the

program's allocation rate, relative to its reference rate, at that time. The partial

run shown in the plot is typical in that the allocation rate usually changes slowly,

ANALYSIS OF MEMORY BEHAVIOR 27

but sometimes changes quickly. For example, the nearly vertical segment in the

lower part of the second full stripe indicates that the allocation rate is very rapid
for a short time; this is probably due to the allocation of one or a few large objects.

For each cache block, time is divided by its allocation misses into a sequence
of allocation cycles. An allocation cycle begins at each allocation miss in a block,
and ends just before the next allocation miss in that block.*

The length of an allocation cycle depends inversely upon the prevailing alloca
tion rate between its defining allocation misses. When the allocation rate is faster,

cycles are shorter; when the rate is slower, cycles are longer:

II
& i;-

I
'/..,;, ,§

°' ~ ~ Co

(

~ shorter -7 longer

I
The length of an allocation cycle depends directly upon the size of the cache,

as does the total number of cycles that occur in a cache block during a program run.
When the cache size is halved, the allocation pointer has half as many blocks to

traverse before it revisits a cache block. Thus each allocation cycle is split into two
shorter cycles, and the cycle count of each cache block is (approximately) doubled.
Conversely, when the cache size is doubled, pairs of adjacent cycles are combined
into longer cycles, and the cycle count of each cache block is (approximately)
halved.

*For simplicity, the partial cycles at the beginning and end of a program run are ignored.

28 CHAPTER 3

Allocation cycles in 64KB caches are typically several hundred thousand to
two million references in length:

1.0 - ,------·---;.--_;,~ - - ~--

, I /,,.
I /

// I
I / I .!

I
"'

/I
Cl)

/. I u
;>, I u II I 4-< /' 0

1,1 I
~ I .s II

-<-"
0.5-

I' I u
1! I ro

<t:: II I
Cl)

11 I
-~ I -<-"

- - - ORBIT
ro I I I
~ I, I --- IMPS
s I I,,_.. ---- LP ;:J i y u ------ NB ODY

I I' -- GAMBIT
1/ I

4' '
,,.;_ I . .--::- '

0.0- - ·_::--:-:._ - - - __,

I I I I I I I I I I I
16K 32K 64K 128K 256K 512K lM 2M 4M 8M 16M

Cycle length (references)

This plot shows, for each test program, the cumulative frequency distribution of

the lengths of its allocation cycles in a 64KB, 64B-block cache. A point on one of

the curves indicates, in its y value, the fraction of allocation cycles with lengths no
greater than its x value. Since each test program runs for at least one-half billion

references, most allocation cycles are quite short, around a thousandth or less of
the total program running time. Even the longest allocation cycles, which are few
in number, account for less than a hundredth of the total running time.

That allocation cycles in a 64KB cache are small relative to total program
running times makes them a useful coarse-grained unit of time. If the activity of a
memory block is confined to a few 64KB-cache cycles, then its activity is confined
to a few short intervals of time. This is true in 64KB caches and in all larger caches,

since each allocation cycle in a larger cache contains a power-of-two sequence of
64KB-cache cycles.

ANALYSIS OF MEMORY BEHAVIOR 29

3.3. Interference

Intuitively, cache misses occur when memory blocks interfere with each other as
they compete to use the same cache block. That several memory blocks map to

one cache block, or collide, does not imply any interference, let alone significant
interference. For example, if the references to each memory block occur in large,

non-overlapping groups, then there will be little interference, and therefore few
misses, in the shared cache block. On the other hand, if the memory blocks are

referenced in a round-robin fashion then there will be maximal interference, i.e.,

the blocks will thrash, since every reference will cause a miss.

To establish a connection from memory behavior to cache performance, a
precise definition of interference is required:

Memory block a is said to interfere with block b if there exists a reference
to block a that can cause block b to be removed from the cache before

the final reference to b occurs.

Interference is an asymmetric relationship: It is possible for a to interfere with b,
but for b never to interfere with a. This simplifies the analysis, for it allows memory
blocks to be studied alone, or in classes, as sources of interference. If interference
were a symmetric relationship, then the analysis would be complicated by having
to consider pairwise combinations of memory blocks or classes of blocks.

If a memory block is removed from the cache before its final reference, a miss

will occur the next time it is referenced. This type of miss is called a restora

tion miss, so as to be distinguished from the allocation misses that occur when
newly-allocated memory blocks are initialized. Unlike allocation misses, restora
tion misses always trigger memory fetches.

The definition of interference captures the fact that, relative to the goal of
eliminating restoration misses, interference from one block is just as bad as inter
ference from many blocks. For example, suppose that block b is referenced at times

ti and t2. If a block colliding with bis referenced between t1 and t2, then b will be
removed and a restoration miss for it will occur at t2 . If multiple colliding blocks

are referenced during this interval, then still only one restoration miss will occur
at t2. To eliminate the restoration miss for b requires eliminating all references
to other blocks during the interval; if a reference to just one other block remains,
b will still be removed from the cache. Therefore the definition of interference
is carefully worded so that if a interferes with b, it is not guaranteed that b will
actually be removed by a reference to a; it is guaranteed, however, that b will be
removed by a reference to a if no reference to another block does so. To eliminate
all restoration misses for b requires eliminating all interference with b.

32 CHAPTER 3

The extent to which multi-cycle blocks can interfere with one-cycle blocks and

with blocks in other areas is limited by the fact that nearly all multi-cycle blocks are

only active in a few 64KB-cache allocation cycles. The relative inactivity of multi

cycle blocks can be seen by comparing, for the dynamic blocks in each program, the
cumulative frequency distribution of their lifetimes with that of their active-cycle

counts, where the active-cycle count of a block is just the number of allocation

cycles in which it is active. The most striking example is GAMBIT, which has more

long-lived blocks than the other programs:

"' ~
u
0

::0
u

·~
~

"O
4-<
0
;::::
.s
+o
u
ell

.,':::
Q.)

.~ ,_,
ell

"5 s
;:I

0

1.0-

0.9 -

0.8 -

0.7-

0.6-
1

1

I

I

I

I

Active cycles

I

I

I
2

I
I

I

I
4

I
8

Lifetime

I I I I I I I I
16 32 64 128 256 512 lK 2K

Allocation cycles

The solid lifetime curve is similar to those in the previous graph, but block lifetimes

are here measured in 64KB-cache allocation cycles instead of data references. A
point on the dashed active-cycle curve shows, in its y value, the fraction of dynamic

blocks whose 64KB-cache active-cycle counts are no greater than its x value.* Every

dynamic block is active in at least one cycle, namely its initial allocation cycle, so

the two curves start at the same point.
The early, steep rise in the active-cycle curve, as compared to the lifetime

curve, implies that even though there are a substantial number of blocks with

lifetimes that span many allocation cycles, nearly all of these blocks are only active

in a few cycles. For example, about 953 of all dynamic blocks have lifetimes of no
more than 80 cycles, but the same fraction is active in no more than 4 cycles.

*Unlike the lifetime distributions in the previous graph, the bin size in these distributions is 1.

ANALYSIS OF MEMORY BEHAVIOR 33

For the other test programs, the difference between the two distributions is

smaller:

1.0 -

0.6
I
1

1.0-

I
I

-1

0.6 -
I
1

I

I

(

I

I

I

I
4

I
4

I

,
I

ORBIT

I I I I I
16 64 256

I I I I I
16 64 256

I
2K

LP

I
2K

1.0

0.6 -
I
1

1.0-

0.6-
1
1

I
4

I
4

I I I I I
16 64 256

IMPS

I
2K

NB ODY

I I I I I
16 64 256

I
2K

The differences between the curves for these programs are smaller because the pro

grams have fewer long-lived dynamic blocks to begin with. In each case, however,

nearly all multi-cycle blocks are only active in a few allocation cycles.

ANALYSIS OF MEMORY BEHAVIOR 35

To summarize the behavior of dynamic memory blocks: The cyclic sweep of
the allocation pointer distributes dynamic blocks both spatially, throughout the

cache, and temporally, within each cache block. Most, and sometimes nearly all,
dynamic blocks are one-cycle blocks and therefore cannot interfere with each other;
if no other blocks interfere with them, then they will be allocated, live, and die
entirely in the cache. The remaining multi-cycle blocks are dispersed in the cache

by the allocation pointer, and so are unlikely to collide with each other. Nearly
all multi-cycle blocks are only active in a few allocation cycles, which limits the
extent to which they can interfere with other dynamic blocks or with blocks in
other areas. Finally, the interference created by dynamic blocks is further limited

by the fact that most dynamic blocks, regardless of lifetime, are referenced just a

few times.
This section has analyzed the behavior of the memory area containing most

of the blocks in each program; the next three sections consider the memory areas

that account for most references.

ANALYSIS OF MEMORY BEHAVIOR 37

reference counts meet or exceed this threshold are to the left of the cross in each
curve above.

The high vertical positions of the busy-block crosses in all of the curves show
that busy blocks account for many, and sometimes nearly all, program references.
In the test programs there are between 59 and 155 busy blocks; thus busy blocks
are but a small fraction of all active memory blocks:

ORBIT IMPS LP NB ODY GAMBIT

Active blocks 1,554,207 678,048 964,333 1,998,866 1,757,276
Busy blocks 119 110 155 59 104

Static 82 56 17 43 32
Loaded 1 20 48 12 18
Stack 36 34 90 4 54

There are no busy dynamic blocks in these programs, but there is no reason why
other programs could not have such blocks. ORBIT has just one busy loaded block,
but then ORBIT has few loaded blocks anyway.

3.6. Static and loaded blocks

The static and loaded-data areas contain similar sorts of objects with similar behav

iors, so they will be analyzed together. Static/loaded blocks are arranged within
their respective areas in an essentially random fashion, so they are uniformly dis
tributed throughout the cache. Thus one static/loaded block is about as likely as
any other to collide with some other block.

A few static/loaded blocks are busy blocks. Most busy blocks probably contain
closures for frequently-called procedures, but a few are artifacts of the T system
itself. In all of the test programs, the few busiest static/loaded blocks contain
a 49-word vector internal to the T runtime system. This vector accounts for an

average of 6. 7% of all program references. It contains the allocation pointer and

the limit pointer, which points to the word immediately following the dynamic
area.* In every allocation action, the allocation and limit pointers are read and the
allocation pointer is written. The runtime-system vector also contains pointers to
frequently-called internal routines; among these are routines for object allocation
and for uncommon types of procedure calls. The pointers to the procedure-call
support routines are sometimes more frequently referenced than the allocation and

limit pointers; this is the case for ORBIT, IMPS, and GAMBIT. Compared to the

*When the garbage collector is enabled, a collection is triggered whenever the requested allocation
would cause the allocation pointer to reach or exceed the limit pointer.

38 CHAPTER 3

allocation and limit pointers and the internal-routine pointers, the other words in

the runtime-system vector are seldom referenced.

Nearly all static/loaded blocks are not busy blocks, and their behaviors are

similar to those of multi-cycle dynamic blocks. Most static/loaded blocks are
only active in a few 64KB-cache allocation cycles, as is shown by the cumulative

frequency distributions of their active-cycle counts:

"' 1.0- - - - --;::. -:-----~---==--=---- -...>:: JC'- -

" u ~ - .--::.

0 ~ -,;

------:0

~---/ /

_/

---- ---- / / --0 / / <:J / --0 / /
cd / -b 0

::::::__ 0.8- /
,::; !-' /
+-" I cd
+-"

"' <ll /

:> /

·_;:: /

u /
cd

0.6-
/

'-+--< /
0 / - - - ORBIT
~ /

.9 /
--~IMPS

+-"
u ---- LP cd

._.:; ---- -- NB ODY
<ll
:> 0.4- -- GAMBIT ·_;::
cd

;:;
s
;:l
u

I I I I I I I I I I I I
1 2 4 8 16 32 64 128 256 512 lK 2K

Allocation cycles

This graph is much like the separate graphs of active-cycle curves for multi-cycle

dynamic blocks presented earlier (p. 32), except that lifetime curves are not shown

and the curves for all programs are presented in a single graph.

Compared to the active-cycle curves for multi-cycle dynamic blocks, one curve

for the static/loaded blocks starts at a lower point and does not grow as quickly.

Thus, in that program, ORBIT, static/loaded blocks tend to be active in a few more

cycles than multi-cycle dynamic blocks. Even in ORBIT, however, the activity of

most such blocks is confined to a small part of the total program running time.

Therefore most static/loaded blocks cannot be a significant source of interference

in any of the test programs.

ANALYSIS OF MEMORY BEHAVIOR 39

Most static/loaded blocks are not referenced many times, which also limits

the amount of interference they can create:

0.6 -

w
~
u
0

::0
0.4-"d

<J.)

"d
ro
0

.:::::::_
.'.::;,
ro,
w

4-<
0 0.2-
>::::

.s,
u
ro

µ..

0.0-
I

1 32 lK 32K lM 32M

Reference count

Like multi-cycle dynamic blocks, most static/loaded blocks are referenced fewer

than 64 times. In contrast, however, a significant number of blocks have reference
counts greater than lK. Because there are so few blocks in the higher sample bins,

the solid average line is not visibly raised above zero.

40 CHAPTER 3

3.7. Stack blocks

In all of the test programs, the stack exhibits high temporal and spatial local

ity. Nearly all stack references are concentrated in a small contiguous group of

extremely busy blocks:

~
'"" b.O
0

'"" p,
'-H
0

.§ 0.2-
-1-0
u
ro

<!:1
ill
> ·-g

;::;
s
;:J

u
0-

.r~ --- ---
:,
:11 (- 0.30

I
0

I

I

I

I
512

Offset from stack base (blocks)

- - - ORBIT

--- IMPS

---- LP

NB ODY

-- GAMBIT

I I

0.46

I
lK 1.3K

This graph shows, for each program, the cumulative distribution of stack references

over stack block addresses. The x axis is calibrated in 64-byte blocks from the base

of the stack, which is placed at the origin. A point on a curve shows, in its y value,

the fraction of all program references that are to the stack block at its x value or

to any stack block logically below that block. The x value of the endpoint of each

curve is the maximum stack size, while the y value of the endpoint is the fraction

of all references that are stack references.

The sharp upward jump at the start of each curve indicates the presence of a

few extremely busy blocks at the lower end of the stack; the nearly horizontal final

segments imply comparatively little activity in higher blocks in the stack. Thus

the call stack is only rarely deeper than about one hundred blocks.

In most of the test programs, the stack fits entirely within the cache. As can
be seen in the graph, the stack in one program, GAMBIT, reaches 1.3K blocks, while

the others remain well under lK. Thus stack blocks interfere with each other only

in GAMBIT, and then only in the two smallest caches being considered, namely 32

and 64KB; in no case do busy stack blocks interfere with each other.

ANALYSIS OF MEMORY BEHAVIOR 41

3.8. From behavior to performance

Having described various properties of the test programs' memory behaviors in
terms of each memory area, a connection can now be made from these properties
to measured cache performance. In order to do this, consider how the activity
that takes place in a single cache block determines that block's independent, local

performance.
A cache block will see references to one new dynamic memory block at the

start of each allocation cycle; this block is likely to be a short-lived, one-cycle block.
A cache block may also see references to a few multi-cycle dynamic blocks, a few

non-busy static/loaded blocks, and perhaps a non-busy stack block; these blocks

are likely to be active in only a small number of allocation cycles. All of these

memory blocks, short-lived or otherwise, are non-busy, and so will be referenced
relatively few times.

A cache block might also see references to one or more busy blocks. The

number of busy blocks that map to a cache block places it, roughly, at either end
of a range of local performance:

Worst case: Two or more busy blocks map to the cache block. Because

busy blocks are so frequently referenced, they may thrash, making the

cache block's local performance quite bad. Thrashing memory blocks are

visible as horizontal stripes in cache miss plots (p. 26).

Best case: Exactly one busy block maps to the cache block. Every ref
erence to another memory block might entail two misses, namely one to
reference the other block and another to restore the busy block. But the
sheer number of references to the busy block will generate enough hits to
far outweigh these misses, so the cache block's local performance will be
very good.

There are few busy blocks relative to the number of cache blocks, even in a small
cache, so they are unlikely to collide and thrash. Moreover, it is often the case that
many busy blocks are in the stack area, where they do not collide. Therefore the

best case is expected to be more common than the worst case.
Most cache blocks will not have any busy blocks mapped to them. Each such

less-referenced cache block will see references only to non-busy blocks, which are
not likely to create much interference. Its local performance should therefore fall
between the best and worst cases above. The performance of a less-referenced
cache block may approach that of the worst case, but it cannot be better than the
best case. Less-referenced cache blocks have too few references, and therefore too

few hits, to compete with those that contain exactly one busy block.

42 CHAPTER 3

The effect of a cache block's local performance on the overall global perfor
mance of the cache depends upon the total number of references that it sees. Thus
most cache blocks, accounting for relatively few references, will have a small effect
on the cache's global performance; the worst- and best-case cache blocks will play
a much more significant role. The positive effect of the best cases should more
than outweigh the negative effect of the worst cases.

The local performance of cache blocks, the relationship between local and
global performance, and the balancing of worst- and best-case cache blocks is
illustrated in the following graph of cache activity in ORBIT:

0.246-

0.100-:

Cum. misses --
Cum. references

Cache blocks, in ascending reference-count order

-rO
1023

In this graph, the 1024 cache blocks of a 64KB, 64B-block cache are arranged on
the x axis in ascending reference-count order; the least-referenced cache block is
on the left, while the most-referenced cache block is on the right.

The dotted and dashed curves, associated with the right-hand scale, are the
cumulative distributions among cache blocks of misses and references, respectively.
As in Chapter 2, only restoration misses are shown; allocation misses are ignored.
A point on the dotted curve indicates, in its y value, the fraction of all misses
that occur in the x th least-referenced cache block or to cache blocks referenced
no more times than that block; similarly, the dashed curve accumulates cache
block reference counts. The reference and miss curves grow quickly only toward
the right-hand side of the graph; thus, unsurprisingly, most misses occur in the
most-referenced cache blocks.

ANALYSIS OF MEMORY BEHAVIOR 43

The dots are associated with the left-hand logarithmic miss-ratio scale. There

is one dot for each cache block; its height records the local miss ratio of that block.

Dots in the upper quarter of the graph have bad local performance, while those in

the lower quarter have good local performance. Some of the less-referenced cache
blocks perform badly, but the local miss ratios of most of these blocks fall into the

central half of the graph. The hundred or so most-referenced cache blocks have

local miss ratios ranging from very bad, corresponding to the worst case, to very

good, corresponding to the best case.

Finally, the solid cumulative miss-ratio curve shows the significance of each

cache block's local performance to the global performance of the cache. A point

on this curve indicates, in its y value, what the miss ratio of the cache would be if

only cache blocks at and prior to its x value were being considered. The change in

the y value at some point, relative to that of the preceding point, reflects the effect

of the local performance of the cache block at that point upon the cache's global

performance. The height of the endpoint of the curve is the global miss ratio of

the cache.

Because most cache blocks do not account for many references, the cumulative

miss ratio does not change significantly until it reaches the more-referenced cache

blocks. At that point, however, it becomes more volatile, with worst- and best

case cache blocks pulling it up and down, respectively. The best-case cache blocks

prevail in the end, pulling the cumulative miss ratio down and more than making

up for the worst cases. Because of the logarithmic miss-ratio scale, the final drop

in the curve may appear small, but in fact it falls from 0.027 to 0.017, a factor of

about 1.6.

44 CHAPTER 3

A similar pattern usually holds, with variations, for the other test programs.
For example, NBODY exhibits a more pronounced concentration of references and
misses in the last few cache blocks, but again the best cases prevail:

0

~
'""' C1.l
C1.l

0.566-:

0.100-::

ll
.'1
.'I
,'I

. : I

. : I

:: I

: I
; I

I I
: I

::@ 0.010 ?' '-c;;0~:':':;'.':.·:::.:::;:~;,~~:"';:;!~~~f ~;:'~\,;;.y~~'i, i
• . .~ .-. I

J • ~~~
- M OOf 00 0 ••• ··.·.·,· •• o 0 r .. ·.: ·... : .·.,.,

·_ -.. ·· ;' /.
/

--
0.001-:: ------

- -- _.- =-- ;_- ;,.;_· =-- :..: :.:.- --,----

0
Cache blocks, in ascending reference-count order

One cache block performs quite badly in NBODY, with a local miss ratio of 0.566,
but its effect on the global miss ratio, while visible, is small because it does not
see a large number of references.

ANALYSIS OF MEMORY BEHAVIOR 45

In some programs there are no worst-case cache blocks, so the best-case blocks

just improve the cache's global performance over that of the less-referenced cache

blocks. This occurs in LP:

0.237-

0.100-:

0.001 -:

,..- - .:----;;_:_- :_--

0

Cache blocks, in ascending reference-count order

;- 1

."I
."I

;.
,.

I .

. I
. :: .. I

:·1 .. .
1.:_. .. .

·I"

rO
1023

46

An exception to the pattern occurs in IMPS:

0.972--=

0.100-:

0
·-g
,...

:. ·. ··.··." .
. ·:.. .. ·· ..

. '··· · · :· .'·
, ·::. ·.,

CHAPTER 3

~1
I

"' "' ~ 0. 010 : : _, - .
-· · .. :~: . . "·~·· .. ~:···

.. : ·. , .. ·
·

',•'
. : . ;-.~ :. __ :: :·. !' ·_ ... ·.

·i.,

.I'
::. I ..

0.001-:

, --- -:-.---. -- --:'". -

0

. I
I . ..;°

. ' . ., -.,,. . ·:-··-
. / ,'".

,,.,.·/ .' .
;.. .

rO
1023

Cache blocks, in ascending reference-count order

The initial jump in the cumulative miss-ratio curve for IMPS shows that the few

least-referenced blocks have very good local performance, but these blocks account

for so few references that they have only a minuscule effect on the global miss ratio.

More importantly, the large jump near the end of the cumulative miss-ratio curve

is caused by a single cache block with a truly terrible local miss ratio of 0.972.

This cache block sees references to a busy stack block and a busy loaded block in
almost perfect alternation, resulting in vigorous thrashing. The global miss ratio

could be improved dramatically by eliminating this thrashing; techniques for doing

so will be presented in Chapter 4.

ANALYSIS OF MEMORY BEHAVIOR

A more notable exception to the pattern occurs in GAMBIT:

0.318-::

"' ~ 0.010-::

/
/

--
0.001-:: ---------------r=-----

o
Cache blocks, in ascending reference-count order

.i.f
1. . .

I. ::

/ "" /

ol"'" 1

rO
1023

47

Like LP, there are no worst-case cache blocks in GAMBIT. Most of the less
referenced blocks, however, perform badly, with typical local miss ratios roughly
an order of magnitude higher than those seen in the other programs. As a conse
quence, the dotted cumulative-miss curve for GAMBIT is nearly diagonal, indicating
that misses are spread throughout the cache rather than being concentrated in the
most-referenced cache blocks. In the end, though, the best-case cache blocks again
pull the global miss ratio down to a more satisfactory level.

The local miss-ratio data for GAMBIT show that less-referenced cache blocks
do not always have good local performance. In GAMBIT, this may be due to the fact
that the program has many long-lived dynamic blocks. The dynamic-block lifetime
curve for GAMBIT (the solid curve in the graph on p. 30), contains a significant
jump between 16M and 32M references. If these long-lived blocks are referenced
around the same time, perhaps in a linear fashion as GAMBIT produces object code
in its final assembly phase, they could cause many cache misses.

The preceding graphs show the activity of the test programs in small, 64KB

caches. As was seen in Chapter 2, the cache performance of the test programs
improves dramatically as the cache size increases. With more cache blocks, busy
memory blocks are less likely to collide; thus the worst case becomes less common
and the best case becomes more common. Also, allocation cycles double (ap
proximately) in length each time the cache size doubles; thus even more dynamic

---------- ~~--

48 CHAPTER 3

blocks will tend to be one-cycle blocks, improving the local performance of the

less-referenced cache blocks.

These trends can be seen by comparing the cache-activity graphs for ORBIT
running in 64KB and 128KB caches:

0.259-: rl

0.100 =

0. 010 ~~~~f &(~'.~'ij(:::~:·~'<,'~;k
0.001 =

64KB

... / :- "':
/ · ..

r

rO
1023

0.259-:

0.100 =

128KB

rO
2047

In the larger cache, more of the most-referenced cache blocks have good local

performance. The performance of the less-referenced cache blocks is also improved,

as they are more tightly clustered about the cumulative miss-ratio curve, which is

lower than that of the smaller cache.

IMPS, which thrashes in a 64KB cache, exhibits a dramatic improvement in a

128KB cache:

0.9721
:1

. I

: • ~ :: ~~g,s;#;;<;~{:Tu;f ,~~'i4~-~(:)};
0.0011

0.000 "1! - -- -:. r--. -- . -
0

64KB

. : . i:;
:- . I ;'.

,/ >.' ~·:·:

rO
1023

0.972 ~

0.100 ~

0.000 "1! ---~ ----~-~-~-~-
r
0

128KB

rO
2047

Not only has thrashing been eliminated, but, as with ORBIT, both the less- and

most-referenced cache blocks exhibit improved local performance.

The analysis has only considered 64-byte blocks. Most objects in Scheme
programs are smaller than even 16-byte blocks. If smaller blocks were used, the

objects responsible for causing blocks to be long-lived or busy would affect a smaller

fraction of all memory blocks. Thus, performing the behavioral measurements at

a smaller block size should reveal stronger extremes in various properties. For

50

4. Applications and extensions of the analysis

Thus far, only five Scheme test programs have been studied. Chapter 2 established
that they have good cache performance without any garbage collection at all, and
that a simple compacting collector performs well in most cases. Chapter 3 estab
lished that the programs' good cache performance follows from natural properties
of their memory behavior.

This chapter applies the results of Chapter 3 to devise ways in which the
performance of the test programs might be improved; it then goes beyond the

test programs to generalize the analysis, and therefore the prior results, to other

programs and other programming languages.

4.1. Improving program performance

As mentioned earlier, a simple way to improve a program's performance is to
improve its cache performance by using a larger cache. The measurements and
analysis of Chapter 3 suggest three other possibilities: Relocate objects to reduce
interference, use the memory hierarchy more carefully, and decrease the allocation

rate. None of these methods impose significant runtime costs.

Relocate objects to reduce interference. The cache-activity graph for IMPS (p. 46)
and, to a lesser degree, that for NBODY (p. 44), revealed that busy-block thrashing
can be a significant source of misses in small, 64KB caches. The performance of

both programs could be improved by eliminating this thrashing; in terms of the
cache-activity graphs, all large upward jumps in the cumulative miss ratio curves

would be eliminated.
That thrashing occurs in two of the five test programs suggests that it might

occur in many other programs, at least in smaller caches. While thrashing is less
likely in larger caches, it is still possible. The remainder of this subsection sketches

a method for reducing interference by eliminating thrashing.
The fundamental idea is to first identify all busy objects, by gathering profile

information on object reference counts, and then permanently relocate these ob
jects to new addresses so that they do not collide in the cache. While conceptually
straightforward, realizing this goal requires careful engineering.

In the Scheme system used in this investigation, namely the MIPS implemen
tation of the T system, when and how an object is relocated depends upon the
type of memory in which it resides. Objects in the linked area must be relocated
when the system load image is constructed. Dynamic and loaded objects must be
relocated at runtime, as they are created. The stack can only be relocated once,

when the system starts.

51

These differences suggest that the target machine's cache be divided into three

regions, one for each of these groups. Arrange for the lower portion of the stack

area to map into the stack's cache region; since the stack is usually small, most
stack references should fall within this region. Allocate two reserved memory areas,
one for linked objects and one for dynamic and loaded objects, such that each area
maps exactly into its corresponding cache region. Eliminating thrashing is then
a simple matter of relocating busy objects into these reserved areas in a linear

fashion. There are usually few busy objects, so even in small caches it should be
possible to choose sufficiently large regions. Regions chosen for a small cache will

work in all larger caches, so this optimization need not be performed for every
expected cache size.

It seems likely that some linked objects in the Scheme library and runtime
system will be busy in most programs; thus it may suffice to relocate them just
once, based upon profile data gathered from a large set of programs. For a specific

program, dynamic and loaded objects can be relocated by means of a special al
location primitive that allocates objects in the appropriate reserved memory area.
Calls to the ordinary allocator must be replaced by calls to this special allocator

wherever busy objects are created.

This method can be taken further to not only eliminate thrashing, but to

reduce the remaining interference caused by busy objects. To do so requires that

the profile data also include information about the times at which each object is
referenced. Then busy objects can be relocated so that those that are referenced
together tend to be placed in the same memory block. As this enhancement requires

significantly more profile data, it may only be worth doing for linked data objects.

The idea of using profile information to statically relocate data so as to im
prove program performance in a memory hierarchy was first explored by Hatfield
and Gerald in the context of virtual-memory systems [26]; Stamos studied similar

methods for relocating objects in Smalltalk [67]. McFarling, Pettis and Hansen, and
Samples have described profile-based methods for statically improving instruction
cache performance [44, 54, 63], and at least one contemporary commercial compiler

system provides a tool for that purpose [47].

Use the memory hierarchy more carefully. A second way to improve program per
formance is to seek ways in which the language implementation-i.e., the compiler
and runtime system-might make more efficient use of the memory hierarchy. The
T system provides a good example of an opportunity for this method.

As mentioned in §3.6, a few words in an internal runtime-system vector ac

count for 6. 73 of all references, on average, in the test programs. The ORBIT

compiler uses only 27 of the 32 registers in the MIPS architecture; three of the

52 CHAPTER 4

remaining five are reserved for the operating system and the c library, leaving two

registers free. It would be straightforward to place two of the busy runtime-system

words in these registers. For example, assigning the allocation pointer and the

limit pointer to registers would speed up every allocation operation by at least 3
instructions, since it would no longer be necessary to load both pointers and up

date the allocation pointer. The improvement would be even more significant if

eliminating these memory references were also to reduce the amount of interference

created by references to the runtime-system vector.

Counter-intuitively, this improvement could actually increase both miss ratios

and cache overheads. Miss ratios are likely to increase because references to the

allocation and limit pointers probably hit in the cache most of the time; removing

these references will decrease both the total number of misses and, to a greater

degree, the number of references. Cache overheads may increase because, while a

program will have fewer misses, it will also execute fewer instructions. Nonetheless,

overall performance, as measured by total program running time, should improve.

Decrease the allocation rate. The analysis of memory behavior showed that having

a large number of one-cycle dynamic blocks is important for good cache perfor
mance. Absent other interference, one-cycle blocks will be allocated, live, and die

entirely in the cache. The number of one-cycle blocks can be increased by increas

ing the lengths of allocation cycles, which can be done by decreasing the allocation

rate. While the allocation rate could be decreased by using a more imperative pro

gramming style, a better approach is to use a compiler that employs static-analysis

methods to enable optimizations that decrease the allocation rate.

One way that a compiler can decrease the allocation rate is to convert heap

allocations into stack allocations. This is already done to some extent by the T

system's compiler, ORBIT, which analyzes procedure closures to determine when

they can be allocated on the stack instead of in the heap [39]. Good Lisp compilers

use stack allocation for floating-point numbers [11, 68]; a more general analysis can

be used to stack-allocate other small objects [13, 51].

Stack-allocation optimizations must be used with care: The number of cache
misses incurred while referencing objects in the stack must not be larger than the

number of misses avoided by increasing allocation-cycle lengths. There is no way
for a compiler to guarantee this property, since that requires knowing too much

about the runtime behavior of the program being compiled. In practice, however,

judiciously used stack-allocation optimizations usually yield a stack that tends to
be resident in the cache. In fact, the cache misses avoided by referencing cache

resident stack-allocated objects that would otherwise be in the heap may be more

significant than the misses avoided by increasing allocation-cycle lengths.

APPLICATIONS AND EXTENSIONS OF THE ANALYSIS 53

For example, the stack optimizations performed by ORBIT work well in a
cache. It was seen in §3. 7 that the stack has very high spatial and temporal
reference locality in ORBIT-compiled programs, since most stack activity occurs in

a few busy stack blocks. As long as these busy blocks do not thrash, they will
tend to reside in the cache. If these blocks were not busy, however, and yet were
referenced with moderate frequency over long periods of time, then they would not
tend to be cache-resident; the cyclic sweep of the allocation pointer would flush

them once per allocation cycle. Therefore stack-allocation optimizations should

only be used when there is reasonable certainty that the stack will retain its high

reference locality.
The ability of carefully used stack-allocation optimizations to improve cache

performance by converting heap allocations into stack allocations leads to:

Conjecture 1. Stack allocation can be faster than garbage collection.

Appel has argued for the reverse proposition, namely that garbage collection can
be faster than stack allocation [3]. Appel observes that the overhead of a copying

garbage collector depends not upon the amount of garbage it reclaims, but upon
the amount of live data it must copy during each collection. Since this latter

quantity is approximately constant in many programs, collection overhead can be
made arbitrarily small by increasing the amount of physical memory available for
the heap, which will decrease the collection frequency. The overhead of managing a

stack, in contrast, is fixed. Stack frames are usually not large, and there is no way to
avoid the instructions that push and pop each frame. Therefore garbage collection

can be made cheaper than stack allocation by using more physical memory.
Appel's argument assumes that the cost of accessing memory is constant, but

this is not true in memory systems with caches. If cache misses have a significant

cost, the instructions required to manage a stack that tends to reside in the cache
may be cheap compared to the misses incurred while referencing objects that reside

in the heap.
A case in point is Appel's implementation of Standard ML [5]. Any implemen

tation of ML is likely to have high allocation rates, if only because ML encourages

a highly-functional programming style [52]. In Appel's implementation, allocation
rates are made higher still by his decision to allocate procedure-call frames in the
heap rather than on a stack. This strategy has a number of advantages. Heap
allocating call frames simplifies the compiler, which need not analyze closures to
determine when they can be stack-allocated. Using heap-allocated call frames also
admits a particularly simple implementation of the call-with-current-continuation

primitive; with a more conventional call stack, intricate support from the runtime

54 CHAPTER 4

system is required for this operation to be efficient [15, 29]. Despite these ad

vantages, Conjecture 1 suggests that the cache performance of Appel's ML system
might be improved considerably by modifying the compiler to allocate call frames
on a stack.

Aside from stack-allocation optimizations, a second way to decrease the allo
cation rate is to eliminate some heap allocations altogether. This goal has been
investigated in the context of pure functional languages [24, 73], and could per

haps be adapted to languages such as Scheme and ML, which tend to be used in a
functional style.

This section has shown three ways in which the performance of the five Scheme
test programs might be improved; the results of the next section will make these
methods applicable to a wider range of programs.

4.2. Generalizing the analysis

In Chapter 3, the memory behaviors of the test programs were analyzed to explain

why their cache performance is so good. In this section, the analysis will be

generalized to other programs and to other languages.

According to the analysis of Chapter 3, a program will have good cache per
formance if it satisfies the following three properties:

(1) The program has few busy memory blocks;

(2) The program has many short-lived dynamic blocks that are referenced
just a few times;

(3) Nearly all other blocks are only active in a few allocation cycles, and are

also referenced just a few times.

None of these properties are specific to the test programs, therefore they should
hold for other Scheme programs written in a similar, mostly-functional style. More
over, none of these properties are specific to Scheme, hence:

Conjecture 2. Properties (1)-(3) above hold for programs written in a
mostly-functional style in garbage-collected languages other than Scheme.

Reasoning about other programming styles leads to:

Conjecture 3. Properties (1)-(3) above hold across a range of program
ming styles in garbage-collected languages.

APPLICATIONS AND EXTENSIONS OF THE ANALYSIS 55

This conjecture is based upon the intuitive observation that, across programming
styles, allocation rates vary inversely with object lifetimes.

Recall that the number of one-cycle dynamic blocks depends upon the cache
size, the allocation rate, and the lifetimes of dynamic blocks; the lifetimes of dy
namic blocks, in turn, depend upon the lifetimes of the objects in those blocks.
In a programming language that encourages a more functional style than Scheme,

e.g., ML, the allocation rate is higher, but object lifetimes are shorter. Therefore
ML programs may also have a large number of one-cycle dynamic blocks.* There is
no reason to believe that ML programs will have substantially more busy blocks,
and the highly-functional style suggests that there will be even fewer multi-cycle

non-busy blocks. Thus it is plausible that properties (1)-(3) will hold for ML

programs.
Toward the other end of the functional-imperative spectrum, in a program

ming language that encourages a more imperative style than Scheme, e.g., CLU,

object lifetimes are longer, but allocation rates are lower. Therefore CLU programs

may also have a large number of one-cycle dynamic blocks. In this case, how
ever, it is less clear that properties (1) and (3) will hold. The more imperative
style suggests that CLU programs may have more multi-cycle, non-busy blocks

that are active in many cycles. Thus the sharp distinction between busy and non

busy blocks that was observed in Chapter 3 may not be seen in CLU programs.

Nonetheless, properties (1)-(3) may hold in languages that encourage a slightly
more imperative style than Scheme.

4.3. Programming styles and cache performance

These considerations of programming style lead to a final conjecture:

Conjecture 4. Allocation can be preferable to mutation.

That is, on machines where cache performance can significantly impact program
performance, the performance of programs written in a mostly-functional style in a

linearly-allocating, garbage-collected language may be superior to that of programs
written in an imperative style in a language without garbage collection.

The intuitive argument for this conjecture is as follows. Allocation activity
is like a wave that continually sweeps through the cache; the allocation pointer
defines the crest of the wave. A program written in a mostly-functional style rides
the allocation wave, just as a surfer rides an ocean wave. The program loads
data from old dynamic blocks in front of the wave's crest; there is a good chance
that these blocks are still in the cache, since the vast majority of dynamic blocks

*It may be necessary to stack-allocate procedure-call frames in order to achieve this.

56 CHAPTER 4

are one-cycle blocks and there is little interference from most other blocks. The
program then computes on this data and stores the result, usually in new dynamic
blocks just behind the crest; it is highly likely that these blocks are still in the

cache, since they were just allocated.
The work involved in copying data from old dynamic blocks to new ones,

together with the accompanying cost of eventually running a garbage collector,

may seem wasteful. An imperative style, however, will have other costs. In place of

garbage-collection costs will be the costs of allocation and deallocation operations,

which could be significant in terms of both instructions executed and cache misses
incurred.

More importantly, a program written in an imperative style will not benefit

from the naturally good cache performance that is implied by properties (1)-(3)
above. In an imperative program, whether two data objects interfere in the cache,
or even thrash, is usually a matter of chance. There are static-analysis methods
for improving the cache performance of specific types of imperative programs;

e.g., an optimization called blocking can improve the cache performance of matrix
computations [25, 41]. It seems unlikely, however, that methods will be found for
improving the cache performance of a wide class of imperative programs, especially

a class that includes programs that make use of many small and short-lived data
objects.

Proponents of garbage-collected programming languages have long argued

their case from standpoints of correctness and programmer productivity. It is plau

sible that such languages may also have a significant performance advantage on
machines where cache performance is an important part of program performance.

APPLICATIONS AND EXTENSIONS OF THE ANALYSIS 57

4.4. Conclusion

This chapter has applied the measurements and analysis of Chapter 3 to show

three ways in which the cache performance of the test programs could be im

proved. These methods involve relocating objects to reduce interference, making

more careful use of the memory hierarchy, and decreasing the allocation rate; none

of these optimizations impose significant runtime costs.

This chapter has also extended the analysis of Chapter 3, arguing that it

should apply to other Scheme programs, to programs written in different languages

but in a similar style, to programs written in languages that encourage an even

more functional style, such as ML, and perhaps even to languages that encourage a

somewhat more imperative style, such as CLU. There are, therefore, good reasons

to believe that the results of Chapter 2, as well as the performance-improvement

methods discussed in this chapter, are widely applicable.

58

5. Summary and conclusion

Inexorable trends in computer technology are making cache performance an in

creasingly important part of program performance. Prior work on the cache perfor

mance of garbage-collected languages has either assumed or argued that programs
written in these languages will have poor cache performance if little or no garbage

collection is done. This dissertation has argued to the contrary: Many such pro

grams are naturally well-suited to the direct-mapped caches typically found in high

performance computer systems. This conclusion is supported by measurements of

the cache performance of five nontrivial Scheme programs, by a qualitative analysis

of how the programs' memory behaviors determine their cache performance, and

by considerations of how programming style determines memory behavior.

The control experiment, reported in Chapter 2, revealed that the programs

have excellent cache performance without any garbage collection at all. On two

hypothetical processors, one slow and one fast, each coupled with caches of typical

sizes and a realistic high-performance memory system, the programs spend less

than five percent of their total running time, on average, waiting for cache misses

to be serviced. With so little room for improvement, seeking better cache perfor

mance hardly seems necessary; human effort might be better spent improving other

performance aspects of the hardware, the language system, or even the programs

themselves. Moreover, no method for improving cache performance that imposes

significant runtime costs of its own could possibly be effective. Aggressive garbage

collection is likely to be such a method.

In practice, some garbage collection must be done in order to ensure good

virtual-memory performance. The second experiment described in Chapter 2

showed that when the test programs are limited to a modest amount of mem

ory, they perform well, in most cases, with a simple, efficient, and infrequently-run

compacting collector. In the remaining cases, they should perform well with a sim

ple and infrequently-run generational compacting collector. An infrequently-run

compacting collector yields good program performance because it can collect often

enough to minimize virtual-memory page faults, yet rarely enough to keep garbage
collection overhead low. Moreover, by collecting infrequently and allowing objects

to be allocated linearly from a large contiguous memory area, it approximates

the idealized case of no collection and thereby takes advantage of the program's

naturally good cache performance.

In Chapter 3, a connection was established between the memory behavior of
the test programs and their measured cache performance when run without garbage

collection. The mostly-functional programming style typically used in Scheme

programs implies that most data objects, and therefore most memory blocks, have

59

very short lifetimes and are referenced only a few times. The linear sweep through

memory of the allocation pointer naturally disperses these short-lived blocks in

time and space so that they rarely interfere in the cache. Most blocks with longer

lifetimes can create only a limited amount of interference, for they are active in

only a few allocation cycles and, like short-lived blocks, are referenced only a few

times. The few long-lived blocks capable of significant interference, the busy blocks,

are referenced so often, and collide in the cache sufficiently rarely, that they more

often improve, rather than degrade, overall cache performance. Therefore the test

programs have good cache performance because they are naturally well-suited to
direct-mapped caches.

Even though Chapter 2 showed that the cache performance of the test pro

grams is not desperately in need of improvement, Chapter 4 described three meth

ods by which it might be improved anyway. While some of these techniques are

not simple to implement, all are practical and none require a sophisticated garbage

collector or impose significant runtime costs.

Finally, Chapter 4 reconsidered the behavioral properties leading to good

cache performance that were identified in Chapter 3. It was argued that these

properties should hold for other Scheme programs and for programs written in

different languages but in a similar, mostly-functional style. These properties are

also likely to hold for programs written in languages that encourage a more func

tional style, and they may hold for programs written in languages that encourage

a somewhat more imperative style.

Therefore the results of the previous chapters are likely to apply to a wide

range of programs in a variety of garbage-collected languages. Such programs will

have good cache performance because their memory behaviors are naturally well

suited to direct-mapped caches. The best memory-allocation strategy will be linear

allocation; the best garbage-collection strategy will be one of infrequent compacting

collection. Complex and costly means for improving cache performance, such as

aggressive garbage collection, are likely to be neither necessary nor effective.

The remainder of this chapter reviews prior work and discusses topics for

future work.

5.1. Prior work

Improving the performance of garbage-collected programming languages is a goal

of long standing. In relation to memory hierarchies, this goal has motivated the de

sign of garbage collectors that improve program performance by improving virtual

memory performance. Fenichel and Yochelson [23], elaborating upon an idea due

to Minsky [46], described the first copying compacting collector designed specifi-

60 CHAPTER 5

cally to reduce page faults. Their method was further extended by Cheney [14],
who devised an elegant and significant space optimization, and by Baker [6], who
invented an incremental variant of Cheney's algorithm. The next major advance
was generational garbage collection, due to Lieberman and Hewitt [42], which ex
ploits natural properties of programs to reduce collection pause times and further

improve virtual-memory performance. Generational collection is now widely ac

cepted, having been implemented in many different language systems [4, 7, 12, 18,
49, 64, 66, 69, 72].

In contrast with the work done on virtual-memory performance, only recently
has serious attention begun to be paid to the cache performance of garbage
collected languages. Peng and Sohi seem to have been the first to realize that cache
performance could be improved by exploiting natural properties of programs [53].

Wilson, Lam, and Moher originally suggested that a generational garbage collec

tor might be designed specifically to improve cache performance [7 4, 75]; their

work was taken further by Zorn [79]. Important work in this area has also been
done by Koopman, Lee, and Siewiorek [36, 37]; as they are concerned with the
performance of combinator-graph reduction, an implementation technique for lazy
functional languages [55], their work will not be reviewed in detail here.

The remainder of this section summarizes the work of Peng and Sohi, Wil
son et al., and Zorn, and compares it to the investigation presented here. Some

of these authors' conclusions are contrary to those of the present work, but the
apparent contradictions are due either to significant differences in the classes of

machines studied or to statements that are, in fact, unjustified.
The earliest published study of the data-cache performance of a garbage

collected language is that of Peng and Sohi [53], who measured eight small Lisp
programs running on a simulated machine similar to the Symbolics 3600 Lisp ma
chine [50]. As in the present work, they measured programs when run without

garbage collection in order to understand intrinsic program behavior. Their mea
surements of dynamic memory-block lifetimes are quite similar to those shown
in §3.4; they also measured inter-reference times, which were not measured here.

Peng and Sohi observed the ability of a cache-block allocation instruction to im

prove cache performance by eliminating allocation fetches, as noted in §2.5, and
measured this improvement. They also developed two further optimizations; one
reduces memory traffic by eliminating write-backs of cache blocks that contain only
garbage objects, while the other improves cache performance further by means of a
replacement strategy that reuses blocks containing garbage objects before reusing
blocks containing live objects.

Peng and Sohi's work was pioneering, but it is limited in a number of ways.
Their second two optimizations achieve near-zero miss and memory-traffic ratios

SUMMARY AND CONCLUSION 61

for their test programs, but require both custom hardware and a collector capable
of detecting garbage quickly. The latter requirement can only be met by aggressive
collection or by reference-counting, which has serious drawbacks of its own [16].
Peng and Sohi did not consider the hardware and software costs of implement
ing such strategies. More generally, they only measured the performance of small
caches, from 512B to 64KB, and they only considered references to dynamic mem

ory, assuming that some other mechanism would cache stack references. Combined

with the fact that they simulated a machine designed specifically for Lisp rather

than a more conventional architecture, these limitations imply that their conclu
sion, namely that garbage-collected programs are likely to perform poorly with
direct-mapped caches, is not widely applicable; in particular, it does not contra
dict the results of the present work.

Wilson, Lam, and Moher were the first to study the interactions between gen
erational garbage collection and cache performance [74, 75]. Observing that gen
erational collectors can improve the performance of virtual memories by cyclically

reusing a modest amount of memory on a relatively small time scale, they reasoned
that this idea could also be applied to improve the performance of caches. While

intuitively appealing, this reasoning does not obviously hold when the fundamen
tal differences between virtual memories and caches are considered; in particular,
virtual memories typically employ a least-recently-used replacement policy, while
practical caches are direct-mapped or perhaps set-associative with a small set size.
Nonetheless, thus was born the notion of what has here been called 'aggressive
garbage collection.'

To test this idea, Wilson et al. measured the miss ratios of four Scheme pro
grams running with a generational collector in direct-mapped, two-way, and four

way set-associative caches. Their measurements show that cache performance is
much better when the cache is large enough to hold most of the memory used by

the collector; their data also shows that set-associative caches have better perfor
mance, in most cases, than direct-mapped caches of the same size.

Taken alone, these results are not surprising. In their conclusion, however,

Wilson et al. state:

If a large enough cache is available, software techniques can decrease miss ratios ap
preciably by keeping the youngest generation in cache, and reducing its footprint by
reusing a creation region at every cycle, rather than simply alternating between two
semispaces. [75, p. 41].

The experiment described in their paper does not provide evidence for this asser
tion. Wilson et al. only measured the performance of a single aggressive collector;
to support the above conclusion requires comparing an aggressive collector with
an infrequently-run semispace collector. Therefore the results of the present work,

62 CHAPTER 5

including the observation that infrequent compacting collection should suffice for

good cache performance, are not contradicted by the data of Wilson et al.

Beyond this unsupported conclusion, the work of Wilson et al. is limited in

other ways. They ran their test programs in a byte-coded implementation of

Scheme [34], rather than in a system with a true compiler. The programs them

selves are relatively small, executing tens of millions of byte-code instructions and

allocating several megabytes of data. Finally, Wilson et al. only measured miss ra

tios, making no attempt to account for the temporal costs of garbage collection and

cache activity, and they did not consider caches with write-miss policies capable

of eliminating allocation fetches.

More recently, Zorn, expanding upon results presented in his doctoral disserta

tion, went beyond Wilson et al. to compare the cache performance of two different

generational garbage collectors [78, 79]. Zorn implemented both a noncompacting

mark-and-sweep collector, which moves objects only when they are advanced from

one generation to the next, and a more traditional copying collector. He measured

the simulated data-cache performance of four large Lisp programs running with

these collectors. Each program allocates between 15E6 and 82E6 bytes of data and

makes tens of millions of data references, although only the first twenty million

references of each program were used. Measurements were made with the collec

tors' youngest generations set to sizes ranging from 128KB to 2MB, so in all cases

the collectors were aggressive.

Zorn's main experimental results are that larger cache sizes lead to lower

miss ratios, that the mark-and-sweep collector achieved lower miss ratios than the

copying collector, and that only the copying collector benefited significantly from

two- and four-way set-associative caches.

None of Zorn's experimental results are inconsistent with those of the present

work, but one conclusion and a related conjecture are contrary to the results

presented here. Zorn states that he has shown that "even the cache locality of

garbage-collected Lisp programs can be improved substantially" [79, p. 39], but

his experimental data does not justify this assertion. Zorn did not perform a con

trol experiment, running the programs without garbage collection to see whether

their cache performance needed improvement in the first place, nor did he measure

the performance of the programs when run with a non-aggressive collector.* From

the conclusion that the cache performance of garbage-collected programs can be

improved, Zorn goes on to conjecture that aggressive collection will be an effective

*Zorn claims that the cache performance of a program using a collector that is invoked after
every 2MB of allocation will closely approximate the non-collection case [79, p. 19]. This claim is
implausible, for it completely ignores the cost of running the collector and the potential negative
effect of collection upon the program's cache state.

SUMMARY AND CONCLUSION 63

means for improving program performance. Since neither the conclusion nor the

conjecture are justified, they do not contradict the results of the present work.

A further defect of Zorn's work is that, like Wilson et al., he does not con

sider the temporal costs of garbage collection and cache activity; rather, he only

compares the miss ratios of programs running with different collectors. Because

miss ratios are only a partial characterization of program performance, this flaw

undermines his comparison of collectors. It is possible for one collector to have a

lower miss ratio than another but execute many more instructions, so it is essen

tial to also measure the collectors' costs in terms of instructions executed, and to

relate the miss ratios to those costs. Moreover, Zorn does not discuss the impact

of allocation fetches on cache performance, and he does not consider write policies

capable of eliminating allocation fetches.

In summary, then, known prior work on the cache performance of garbage

collected languages is limited in a number of ways. Among these limitations are

assumptions of custom hardware, measurements of relatively small programs, and

measurements of language implementations based upon interpreters rather than

compilers. The more recent prior work has failed to consider cache write policies

capable of eliminating allocation fetches, which are a significant fraction of all

fetches in large caches. No prior work has measured program performance in a

way that correctly accounts for the temporal costs of cache misses and garbage

collection. Finally, and most importantly, claims made in prior work about the

necessity and efficacy of aggressive garbage collection are not justified by the data

presented.

5.2. Future work

The four conjectures of Chapter 4 are good starting points for further research.

The first conjecture, that stack allocation can be faster than garbage collec

tion, can be tested by studying the performance of programs compiled by a Scheme

compiler modified to heap-allocate procedure-call frames, and the performance of
programs compiled by an ML compiler modified to stack-allocate call frames.

In principle, the second conjecture, that the properties of memory behavior

that yield good cache performance hold for programs written in a mostly-functional
style in garbage-collected languages other than Scheme, and the third conjecture,

that these properties hold across a range of programming styles, are not difficult

to test. In practice, however, using the tools developed in the course of this work
to measure the memory behaviors of programs running in other language systems

will require significant programming effort. Nonetheless, this line of investigation

should yield interesting results.

64 CHAPTER 5

The third conjecture suggests that even languages that usually require manual
deallocation might benefit from linear allocation and infrequent garbage collection.

Many programs in more conventional languages use the heap in a manner similar
to that of Scheme programs: Most objects are small and short-lived [20, 77]. Thus
a linear allocation strategy might yield superior cache performance compared to

the strategies usually employed in implementations of such languages, which are
typically optimized to conserve memory space and processor time [35, 38]. Linear

allocation requires some sort of garbage collection; while complete collection is
impossible for languages such as c, Bartlett has devised compacting collectors

that require only minor program modifications [8, 9]. So an interesting experiment
would be to modify a set of c programs to use Bartlett's collector and compare
their performance with that of the original versions.

The fourth conjecture, that allocation can be preferable to mutation, is in
herently difficult to test empirically. Such a test requires the direct comparison

of different programming styles, and is thus more in the domain of software en
gineering than of language implementation. Perhaps the easiest way to test this
conjecture is to simply wait. If the proponents of each style keep working on better

compilers, then eventually one style may prove superior.

A final question is whether the cache performance of programs written in other
programming styles can be explained in terms of their memory behaviors, as was
done for the Scheme test programs in Chapter 3. Given a means of generating
reference traces, producing cache-activity graphs similar to those shown in Chap
ter 3 is straightforward. Except for special classes of programs such as matrix

computations, however, it is not clear that there will be a small and identifiable
set of behavioral properties that suffice to explain measured cache performance.

SUMMARY AND CONCLUSION 65

5.3. Final exhortations

To hardware designers: A mechanism for avoiding allocation fetches, such as a
write-miss policy of write-validate, is crucial to the good performance of garbage
collected languages. It is already known to be important to more traditional lan

guages; the present work provides one more justification.

To language implementors: Non-interactive programs are likely to perform well
with linear allocation and a simple, infrequently-run generational compacting col

lector, even when cache performance is a concern. If you must push cache perfor
mance to the limit, it is probably best to apply static methods rather than pursue

complex runtime methods.

To language designers: Do not give up on garbage-collected languages that encour
age a mostly-functional programming style. In the long run, as locality becomes
ever more important to program performance, they may prove to have a significant

performance advantage.

66

References

[1] Harold Abelson, Gerald Jay Sussman, and .Julie Sussman. Structure and Interpretation of
Computer Programs. MIT Press, Cambridge, Massachusetts, 1985.

[2] Luigia Aiello and Gianfranco Prini. An efficient interpreter for the lambda-calculus. Journal
of Computer and System Sciences, 23(3):383 424, December 1981.

[3] Andrew W. Appel. Garbage collection can be faster than stack allocation. Information
Proce8sing Letters, 25(4):275-279, June 1987.

[4] Andrew W. Appel. Simple generational garbage collection and fast allocation. Software
Practice and Experience, 19(2):171-183, February 1989.

[5] Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[6] Henry G. Baker, Jr. List processing in real time on a serial computer. Communications of
the ACM, 21(4):280-294, April 1978.

[7] S. Ballard and S. Shirron. The design and implementation of VAX/Smalltalk-SO. In G.
Krasner, editor, Smalltalk-80: Bits of History, Words of Advice, pages 127-150, Addison
Wesley, 1983.

[8] Joel F. Bartlett. Compacting Garbage Collection with Ambiguous Roots. Research Re
port 88/2, Digital Equipment Corporation Western Research Laboratory, Palo Alto, CA,
February 1988.

[9] .Joel F. Bartlett. Mostly-Copying Gar·bage Collection Picks Up Generations and C++. Tech
nical Note 12, Digital Equipment Corporation Western Research Laboratory, Palo Alto, CA,
October 1989.

[10] Anita Borg, R. E. Kessler, Georgia Lazana, and David W. Wall. Long Address Traces
from RISC Machines: Generation and Analysis. Research report 89/14, Digital Equipment
Corporation Western Research Laboratory, Palo Alto, CA, September 1989.

[11] Rodney A. Brooks, Richard P. Gabriel, and Guy L. Steele Jr. An optimizing compiler
for lexically scoped LISP. In Symposium on Compiler Construction, pages 261 275, ACM,
1982.

[12] Patrick J. Caudill and Allen Wirfs-Brock. A third generation Smalltalk-80 implementa
tion. In Norman Mcyrowitz, editor, Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 119-130, ACM, September 1986.

[13] David R. Chase. Safety considerations for storage allocation optimizations. In Conference
on Programming Language Design and Implementation, pages 1 10, ACM, June 1988.

[14] C. J. Cheney. A nonrccursive list compacting algorithm. Communications of the ACM,
13(11):677-678, November 1970.

[15] William D. Clinger, Anne H. Harthcimcr, and Eric M. Ost. Implementation strategics for
continuations. In Conference on Lisp and Functional Programming, pages 124 131, ACM,
July 1988.

[16] Jacques Cohen. Garbage collection of linked data structures. ACM Computing Surveys,
13(3):341-367, September 1981.

[17] Eric Cooper, Scott Nettles, and Indira Subramanian. Improving the performance of SML
garbage collection using application-specific virtual memory management. In Conference
on Lisp and Functional Programming, pages 43-52, ACM, June 1992.

67

[18] Robert Courts. Improving locality of reference in a garbage-collecting memory management
system. Communications of the ACM, 31(9):1128-1138, September 1988.

[19] Eric DeLano, Will Walker, Jeff Yetter, and Mark Forsyth. A high speed superscalar PA
RISC processor. In IEEE Computer Society International Conference, pages 116-121, IEEE,
February 1992.

[20] John DeTreville. Heap Usage in the Topaz Environment. Technical Report 63, Digital Equip
ment Corporation Systems Research Center, Palo Alto, CA, August 1990.

[21] William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. IMPS: An interactive
mathematical proof system. In M. E. Stickel, editor, Tenth International Conference on
Automated Deduction, pages 653-654, Volume 449 of Lecture Notes in Artificial Intelligence,
Springer-Verlag, 1990.

[22] Mark Feeley and James S. Miller. A parallel virtual machine for efficient Scheme compila
tion. In Conference on Lisp and Functional Programming, pages 119-130, ACM, 1990.

[23] Robert R. Fenichel and Jerome C. Yochelson. A LISP garbage-collector for virtual-memory
computer systems. Communications of the ACM, 12(11):611-612, November 1969.

[24] Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A short cut to deforestation.
In Functional Programming Languages and Computer Architecture, 1993. To appear.

[25] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press,
1989.

[26] D. J. Hatfield and J. Gerald. Program restructuring for virtual memory. IBM Systems
Journal, 10(3): 168-192, 1971.

[27] John L. Hennessey and David A. Patterson. Computer Architecture: A Quantitative Ap
proach. Morgan Kaufmann, Palo Alto, CA, 1990.

[28] John L. Hennessy and Norman P. Jouppi. Computer technology and architecture: An evolv
ing interaction. IEEE Computer, 24(9):18-29, September 1991.

[29] Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Representing control in the presence
of first-class continuations. In Conference on Programming Language Design and Imple
mentation, pages 66-77, ACM, June 1990.

[30] Mark D. Hill. Aspects of Cache Memory and Instruction Buffer Performance. Ph.D. thesis,
Computer Science Division, University of California at Berkeley, November 1987. Available
as UCB/CSD Technical Report 87 /381.

[31] Norman P. Jouppi. Cache write policies and performance. In International Symposium on
Computer Architecture, pages 191-201, IEEE, May 1993.

[32] Norman P. Jouppi, Jeremy Dion, David Boggs, and Michael J. K. Nielsen. MultiTitan:
Four Architecture Papers. Research Report 87 /8, Digital Equipment Corporation Western
Research Laboratory, Palo Alto, CA, April 1988.

[33] Gerry Kane. MIPS RISC Architecture. Prentice-Hall, Englewood Cliffs, NJ, 1988.

[34] Richard Kelsey and Jonathan Rees. A tractable scheme implementation. Submitted for
publication, September 1993.

[35] Donald E. Knuth. Fundamental Algorithms. Volume 1 of The Art of Computer Program
ming, Addison-Wesley, Reading, Massachusetts, second edition, 1973.

68

[36] Philip .J. Koopman, .Tr., Peter Lee, and Daniel P. Siewiorek. Cache performance of combi
nator graph reduction. In Proceedings of the International Conference on Comp11ter Lan
g11ages, pages 39-48, IEEE, New Orleans, March 1990.

[37] Philip .J. Koopman, .Tr., Peter Lee, and Daniel P. Siewiorek. Cache behavior of combinator
graph reduction. ACM Transactions on Programming Langnages and Systems, 14(2):265-
297, April 1992.

[38] David G. Korn and Kiem-Phong Vo. In search of a better Malloc. In Proceedings of the
S11mmer USENIX Conference, pages 489-506, 1985.

[39] David A. Kranz. Orbit: An Optimizing Compiler for Scheme. Ph.D. thesis, Yale University,
New Haven, Connecticut, February 1988.

[40] David A. Kranz, Richard Kelsey, .Jonathan A. Rees, Paul Hudak, .Tames Philbin, and Nor
man I. Adams. Orbit: An optimizing compiler for Scheme. In Symposi11m on Compiler
Constrnction, pages 219-233, ACM, .Tune 1986.

[41] Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf. The cache performance and op
timizations of blocked algorithms. In Conference on Architectural Support for Programming
Langnages and Operating Systems, pages 63-74, ACM, April 1991.

[42] Henry Lieberman and Carl Hewitt. A real-time garbage collector based on the lifetimes of
objects. Communications of the ACM, 26(6):419-429, .June 1983.

[43] Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, .J. Craig Schaffert, Robert
Scheifier, and Alan Snyder. CLU Reference Man11al. Volume 114 of Lecture Notes in Com
puter Science, Springer-Verlag, Berlin, 1981.

[44] Scott McFarling. Program optimization for instruction caches. In Conference on Architec
t11ral S11pport for Programming Lang11ages and Operating Systems, pages 183-191, ACM,
April 1989.

[45] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT Press,
1990.

[46] Marvin L. Minsky. A LISP Garbage Collector Algorithm Using Serial Secondary Storage.
Memo 58, MIT Artificial Intelligence Laboratory, Cambridge, MA, October 1963.

[47] MIPS Computer Systems, Inc. MIPS Langnages Programmer's G11ide. Sunnyvale, CA,
September 1988. Order number 02-00035.

[48] MIPS Computer Systems, Inc. MIPS R4000 Microprocessor User's Manual. Sunnyvale,
CA, 1991.

[49] David A. Moon. Garbage collection in a large Lisp system. In Conference on Lisp and
Functional Programming, pages 235-246, ACM, 1984.

[50] David A. Moon. Architecture of the Symbolics 3600. In International Symposium on Com
puter Architecture, pages 76-83, IEEE, .Tune 1985.

[51] Young Gil Park and Benjamin Goldberg. Escape analysis on lists. In Conference on Pro
gramming Language Design and Implementation, pages 116-127, ACM, .June 1992.

[52] Laurence C. Paulson. ML for the Working Programmer. Cambridge University Press, 1992.

[53] Chih-.Jui Peng and Gurindar S. Sohi. Cache Memory Design Considerations to Support
Languages with Dynamic Heap Allocation. Technical Report 860, Computer Sciences De
partment, University of Wisconsin at Madison, .July 1989.

REFERENCES 69

[54] Karl Pettis and Robert C. Hansen. Profile guided code positioning. In Conference on Pro
gramming Language Design and Implementation, pages 16-27, ACM, June 1990.

[55] Simon L. Peyton Jones. The Implementation of Functional Programming Languages.
Prentice-Hall, London, 1987.

[56] Steven A. Przybylski. Cache and Memory Hierarchy Design: A Performance-Directed Ap
proach. Morgan Kaufmann, Palo Alto, CA, 1990.

[57] George Radin. The 801 minicomputer. In Conference on Architectural Support for Pro
gramming Languages and Operating Systems, pages 39-47, ACM, March 1982.

[58] Jonathan A. Rees. The T Manual. Computer Science Department, Yale University, New
Haven, Connecticut, fourth edition, January 1984.

[59] Jonathan A. Rees and Norman I. Adams. T: A dialect of Lisp or, Lambda: The ultimate
software tool. In Conference on Lisp and Functional Programming, pages 114-122, ACM,
1982.

[60] Jonathan A. Rees and William Clinger. Revised3 report on the algorithmic language Scheme.
ACM SIGPLAN Notices, 21(12), December 1986.

[61] Mark B. Reinhold. Typechecking Is Undecidable When 'Type' Is a Type. Technical Re
port 458, MIT Laboratory for Computer Science, Cambridge, Massachusetts, December
1989.

[62] Paul Rovner. On Adding Garbage Collection and Runtime Types to a Strongly-Typed,
Statically-Checked, Concurrent Language. Technical Report CSL-84-7, Xerox Palo Alto Re
search Center, July 1985.

[63] A. Dain Samples and Paul N. Hilfinger. Code Reorganization for Instruction Caches. Techni
cal Report 88/447, Computer Science Division, University of California at Berkeley, October
1988.

[64] Patrick M. Sansom and Simon L. Peyton Jones. Generational garbage collection for Haskell.
In Functional Programming Languages and Computer Architecture, 1993. To appear.

[65] Thomas D. Simon. Optimization of an O(N) Algorithm for N-body Simulations. Bache
lor's thesis, Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, December 1991.

[66] Patrick G. Sobalvarro. A Lifetime-based Garbage Collector for LISP Systems on General
Purpose Computers. Bachelor's thesis, Department of Electrical Engineering and Com
puter Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, Septem
ber 1988.

[67] James W. Stamos. Static grouping of small objects to enhance performance of a paged
virtual memory. ACM Transactions on Computer Systems, 2(2):155-180, May 1984.

[68] Guy L. Steele Jr. Fast arithmetic in MacLISP. In Proceedings of the MACSYMA Users'
Conference, pages 215-224, 1977.

[69] George S. Taylor, Paul N. Hilfinger, James R. Larus, David A. Patterson, and Benjamin G.
Zorn. Evaluation of the SPUR Lisp architecture. In International Symposium on Computer
Architecture, pages 444-452, IEEE, 1986.

[70] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire,
Connecticut, 1983.

70

[71] Edward R. Tufte. Envisioning Information. Graphics Press, Cheshire, Connecticut, 1990.

[72] David Ungar. The Design and Evaluation of a High Performance Smalltalk System. Ph.D.
thesis, Computer Science Division, University of California at Berkeley, February 1986. Also
available as an ACM Distinguished Dissertation from the MIT Press, Cambridge, MA.

[73] Philip L. Wadler. Deforestation: Transforming programs to eliminate trees. Theoretical
Computer Science, 73:231-248, 1990.

[74] Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. Caching Considerations for
Generational Garbage Collection: A Case for Large and Set-Associative Caches. Technical
Report UIC-EECS-90-5, Software Systems Laboratory, University of Illinois at Chicago,
Chicago, IL, December 1990.

[75] Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. Caching considerations for genera
tional garbage collection. In Conference on Lisp and Functional Programming, pages 32-42,
ACM, 1992. An earlier version appeared as [74].

[76] Feng Zhao. An O(N) Algorithm for Three-dimensional N-body simulations. Master's thesis,
Department of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, October 1987.

[77] Benjamin Zorn and Dirk Grunwald. Empirical Measurements of Six Allocation-Intensive C
Programs. Technical Report CU-CS-604-92, Department of Computer Science, University
of Colorado at Boulder, July 1992.

[78] Benjamin G. Zorn. Comparative Performance Evaluation of Garbage Collection Algorithms.
Ph.D. thesis, Computer Science Division, University of California at Berkeley, December
1989. Available as UCB/CSD Technical Report 89/544.

[79] Benjamin G. Zorn. The Effect of Garbage Collection on Cache Performance. Technical Re
port CU-CS-528-91, Department of Computer Science, University of Colorado at Boulder,
May 1991.

