
LABORATORY FOR
COMPUTER SCIENCE

MIT/LCS{fR-563

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

A CONSTRUCTIVIST
APPROACH TO ARTIFICIAL

INTELLIGENCE REEXAMINED

Robert Matthew Ramstad

January 1993

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

A Constructivist Approach to Artificial Intelligence

Reexamined

by

Robert Matthew Ramstad

Submitted to the Dept. of Electrical Eng. and Computer Science
on July 8, 1992, in partial fulfillment of the

requirements for the degrees of
Master of Science

and
Bachelor of Science

Abstract

"Made-Up Minds: A Constructivist Approach to Artificial Intelligence", a Ph.D.
thesis by Gary Drescher (MIT, Computer Science, September 1989) and a book pub
lished by MIT Press (1991) describe a learning system which controls a simulated
robot and gathers information about causes and effects for various actions within the
software simulated world the robot inhabits. Beliefs about causality in this world
are constructed through a learning process driven by the continuous updating of s
tatistics. Each belief, or schema, held by the system has an associated reliability
factor, and the system is able to iteratively improve both the reliability and scope
of its knowledge base by revising and strengthening previously held beliefs on the
basis of new statistically significant information. At any point in time, the amount
of knowledge acquired by the system can be determined by direct examination of the
schema structures.

Unfortunately, Drescher's system is computation- and hardware-intensive. This
report documents the reimplementation of this learning system from the ideas in the
thesis and book alone, using Common LISP and a UNIX workstation. Execution
of the reimplementation code indicates that Drescher's results are implementation
independent and directly attributable to the ideas in his published works. Results
not discussed in Drescher's works were also discovered.

Thesis Supervisor: Ronald L. Rivest
Title: Professor, Dept. of Electrical Eng. and Computer Science

Thesis Supervisor: Bruce A. Foster
Title: Principal Software Engineer, Digital Equipment Corporation

Keywords

schema mechanism, constructivism, learning by experience, learning by statistics,

knowledge acquisition, artificial intelligence

Important Note

This technical report is not the complete thesis submitted to MIT. Rather, it repre

sents the original document less appendices. Pages 101 through 288 are not included,

and references to these pages are made in the table of contents and elsewhere in the

document.

The complete thesis in PostScript form and other related files (LISP source code,

etc.) can be acquired through anonymous FTP to theory.lcs.mit.edu. After pro

viding a valid email address as the password, do "cd pub", "cd ramstad" and "get

READ ME". The README file explains the contents of the various archives.

Please contact the author at ramstad@theory.lcs.mit.edu if this procedure does

not work.

Acknowledgments

I'd like to acknowledge the help of my thesis supervisors, Professor Ronald Rivest,

MIT, and Bruce Foster, Digital Equipment Corporation, for their assistance, cooper

ation and patience throughout all phases of this thesis. The assistance of the VAX

LISP group at Digital Equipment Corporation was invaluable in the early going,

particularly the help of Paul Anagnostopoulos (macros), Jeff Piazza (dark secrets of

LISP compilers), Walter van Roggen (code optimization) and Richard Wells (general

Common LISP). Professor Pattie Maes and the MIT Media Lab Music and Cognition

group have been a great bunch of people to work with over the last year. I'd like

to thank Kevin O'Toole, the VI-A program staff and Marilyn Pierce for assistance

throughout with various bits of thesis paperwork and administrative red tape. Robyn

Kozierok, MIT Media Lab and Al Lab, assisted me greatly with an unbiased and frank

opinion of a draft of this thesis. My fraternity, Beta Theta Pi, has been and continues

to be a very important influence on my life, and the brothers of the MIT chapter have

been instrumental in helping me keep things in focus over the years. Allison Nelson

helped me through some of the worst times when I had been working on the thesis for

a while and I was frustrated with the slow progress of the work. Last, but not least,

I'd like to thank my mom Sheryl and sister Kristina for all their support - "Why

don't you just get a job, Bob?". All of these people were instrumental in keeping me

sane on the long road to the completion of this work.

I would also like to thank my favorite musical artists: David Bowie, Yes, King

Crimson, The Who, Peter Murphy / Bauhaus, acoustic Neil Young, Talking Heads,

Shriekback and especially The Grateful Dead. Their work has enriched my life and

probably improved my code as well. (I usually listen to music when I program, it

seems to keep me better focused on the task at hand.)

Contents

1 Introduction

1.1 Motivation for work .

1. 2 Sources

1.3 The microworld

1.4 The schema mechanism .

1.4.1 Schemas

1.4.2 Constructing new schemas via marginal attribution

1.4.3 Goal-directed actions

1.4.4 Synthetic items

1.4.5 Control

1.4.6 Summary of schema mechanism

1.5 Performance .

2 Implementation

2.1 Differences between this work and Drescher's .

2.1.l Goal-directed actions

2.1.2 Value.

2.1.3 Control

2.1.4 Overriding conditions .

2.1.5 Microworld

2.1.6 Schema mechanism

2.1.7 Reconciling different sources

2.1.8 Piagetian influence

5

13

15

16

17

22

23

24

29

30

31

33

33

35

35

35

36

37

38

38

39

40

40

2.2 Design decisions 41

2.3 Description of reimplementation code 42

2.3.1 Microworld 42

2.3.2 Schema mechanism 43

3 Results 59

3.1 Test runs 59

3.1.l Output . 60

3.1.2 Analysis program 61

3.2 Drescher's results and schema categories 61

3.2.1 Initial schemas .. 62

3.2.2 Grasping schemas . 62

3.2.3 Coarse visual field shifting schemas 62

3.2.4 Visual field shift limit schemas . 64

3.2.5 Foveal region shift schemas . 64

3.2.6 Detail shift schemas 65

3.2.7 Visual network schemas 66

3.2.8 Hand movement network schemas 67

3.2.9 Negative consequence schemas . 68

3.2.10 Hand to body schemas 69

3.2.11 Seeing hand movements via coarse visual items 69

3.2.12 Seeing hand movements via detailed visual items 69

3.2.13 Further results of the CM2 implementation . 71

3.3 Results confirming Drescher's work 71

3.4 Further results of the reimplementation . 72

3.4.1 Shifting the gaze to see the body 78

3.4.2 Using the body as a visual position reference . 78

3.4.3 Hand network constraint schemas 79

3.4.4 Visual network constraint schemas 79

3.4.5 Coarse visual shift constraint schemas . 79

6

3.4.6 Detailed visual shift constraint schemas

3.4. 7 Coarse to detailed visual shift constraint schemas

3.4.8 Detailed to coarse visual shift constraint schemas

3.4.9 Detailed to coarse visual shift schemas .

80

80

80

80

3.4.10 Seeing objects in different visual regions 81

3.4.11 Hand to body constraint schemas 81

3.4.12 Hand movement against object 82

3.4.13 Backward hand movement against body 82

3.4.14 Hand movement from coarse visual to foveal region schemas 82

3.4.15 Support data from test runs . 83

4 Analysis, Discussion and Conclusions 89

89

94

97

98

A

4.1 Test run evidence confirms Drcscher's results .

4.2 Analysis of all results

4.3 Performance . . .

4.4 Future directions

Source code

A.l Microworld simulator

A.2 Schema mechanism .

A.3 Support for fixnum math

A.4 Support for float math

A.5 Result analysis

B Output

B.1 Partial output from sample run

B.2 Sample output from analysis program .

Bibliography

7

101

102

131

231

233

235

269

270

281

289

List of Figures

1-1 The hand can move within a 3x3 area in the area in front of the body. 18

1-2 The visual field is 5x5 and can assume nine different orientations, for

a total visual region of 7x7. 18

1-3 Five foveal regions in the center of the visual field (front, back, right,

left and center) provide detailed visual information. 19

1-4 The two objects in the microworld circulate in a clockwise direction

among a series of four contiguous home positions. 21

1-5 A sample microworld situation. The hand and the left object are in

view, while the right object is out of view. 22

1-6 A basic schema. 24

1-7 A bare schema for the grasp action. 25

1-8 The extended result of the bare schema /grasp/ detects that /grasp/hgr

should be spun off. 25

1-9 The extended context of the schema /grasp/hgr discovers that tactl

improves its reliability and therefore tactl/grasp/hgr is spun off.

1-10 Two schemas which predict two items separately can not chain to a

schema which has both items in its context: a schema with a conjunc-

tive result is required.

2-1 The initial state of the microworld.

9

26

28

44

3-1 Shifting the gaze often causes an object which is within the visual field

to appear at a new coarse visual item location. For example, the left

hand object in this figure is moved from vf04 to vf14 when the glance

is shifted to the left.

3-2 The detailed visual appearance of an object often shifts from one foveal

region to another when a gaze action is taken. The hand in this figure

is shifted from the rear foveal region to the center foveal region when

63

the gaze is shifted to the rear. 65

3-3 Shifting the hand results in the hand moving to a new position. 68

3-4 Shifting the hand when it is visible often causes a transition to a new

coarse visual item (and possibly to a new foveal region).

3-5 Through a large series of schemas, the reimplementation code learns

that there are three different objects which each can appear in specific

70

regions of the microworld. 81

10

List of Tables

1.1 The primitive actions 19

1.2 The primitive items . 20

1.3 Rules for determining synthetic item state. 32

2.1 Simple datatypes defined and used by the schema mechanism code. 45

2.2 Rules for using counters to detect statistically relevant occurrences. 48

2.3 Compound datatypes defined and used by the schema mechanism code. 49

2.4 Rules for extended context statistics.

2.5 Rules for extended result statistics. .

2.6 Notes on some of the functions in schema.lisp

3.1 Further results of Drescher's CM2 implementation, part one.

3.2 Further results of Drescher's CM2 implementation, part two.

3.3 Statistics for Drescher 's classifications, test runs 1-7.

3.4 Statistics for Drescher's classifications, test runs 8-14.

3.5 Statistics for Drescher's classifications, test runs 15-20.

3.6 Statistic summary for Drescher's classifications.

3. 7 Statistics for new classifications, test runs 1-7 ..

3.8 Statistics for new classifications, test runs 8-14.

3.9 Statistics for new classifications, test runs 15-20 ..

3.10 Statistic summary for new classifications.

11

51

53

57

72

73

74

75

76

77

84

85

86

87

Chapter 1

Introduction

"Made-Up Minds: A Constructivist Approach to Artificial Intelligence", a Ph.D. the

sis by Gary Drescher (MIT, Computer Science, September 1989) [Dre89] and a book

published by MIT Press [Dre91], describe a learning system which gathers informa

tion about causes and effects while controlling a simulated robot which exists within a

microworld (a software simulated world). The system he proposes, the schema mech

anism, is novel in a number of ways. It falls firmly in the category of systems which

learn from experience -- it learns without any outside assistance. Claims have been

made that these systems are "crucial to achieve successful behavior in complex, dy

namic, unpredictable environments" [Mae92, p. 5] and as such they are particularly

interesting systems to study. This system constructs beliefs about causality in the

microworld through a learning process which is driven by the continuous updating of

statistics. Each of these beliefs has an associated reliability factor, and the system

is able to iteratively improve both the reliability and scope of its knowledge base

by revising and strengthening previously held beliefs on the basis of new statistical

ly significant information. The use of reliability factors and the iterative nature of

improvement in the knowledge base are different from the methods found in many

other learning systems, where the focus is usually on discovering facts about causality

which are 100% reliable by exhaustive analysis of all possibilities within the problem

domain itself. Also, the schema mechanism manipulates, stores and modifies schemas

which represent beliefs and are easily understood by humans without using math-

13

ematical analysis tools. While many connectionist systems also have the ability to

iteratively improve the reliability and scope of their knowledge bases, the derivation

of the rules represented by the final configuration of the system is difficult. On the

other hand, the final configuration of a schema mechanism run can be examined by

a person and the highly reliable schemas can be analyzed directly to determine the

amount of knowledge acquired by the system.

The schema mechanism provides control to a software simulated robot with body

and hand which lives inside a microworld. Given a variety of possible actions and

a vector of sensor data, the schema mechanism both attempts to reach states of

high value (a quantitative measure of the desirability of a given state, based both

upon the state itself and the range of states easily reachable from that state) and

engages in behavior designed to improve its knowledge of the microworld. The schema

mechanism is able to engage in a form of planning by constructing and maintaining

schemas - structures which can be used to predict the result of taking a specified

action in the current situation. The collection of schemas and certain other specialized

structures comprises the knowledge the system has at each time step.

The results in the original thesis are startling. The original CM2 implementation

of the schema mechanism, with virtually no initial knowledge about the microworld,

manages to construct many reliable schemas. These rules include: how to grasp an

object, how to move the hand from one position to an adjacent one, how to move

the glance orientation from one position to an adjacent one, how to move an object

closer to the center of the visual field so as to see its details, and then, through the

construction of goal-directed actions, how to move the hand to any position, how to

move the glance orientation to any position, how to move any object so as to see

its details, and so on. In fact, the system appears to gain some idea of the concept

of objects (through the construction of synthetic items), as well as some intermodal

coordination (i.e. schemas which relate one sense to another, for example, schemas

which indicate that moving the hand results in seeing the hand at the new loca

tion). The CM2 implementation was extremely successful in acquiring a large body

of knowledge about the microworld. It is also notable that the progression of learning

14

exhibited by the program closely matches the progression postulated by Piagetian

child development theory, where the concept of "schemata" was first analyzed.

1.1 Motivation for work

The CM2 implementation is relatively time-inefficient, and is also computation and

hardware-intensive, utilizing over four thousand processors on a CM2 Connection

Machine. A better implementation, in addition to dealing with these problems, might

actually be able to learn more - the results of both [Dre91] and [Dre89] are clearly

constrained by available memory.

Another purpose served by a new implementation is that of verification of the

ideas in the original thesis. It is unclear if the results of the CM2 implementation

are solely due to the design as detailed in [Dre91], or perhaps partially due to

various specific unknown aspects of the implementation. In other words, the ideas in

[Dre91] and [Dre89] may not be sufficient to account for all of the results generated

by the implementation. Obviously, in any system of great complexity, seemingly

minor implementation decisions may have unforeseen effects on the execution of the

program. A new implementation can give concrete evidence that any system built as

specified in the original thesis is capable of achieving comparable results.

This thesis documents the reimplementation of this learning system from the ideas

m [Dre91] and [Dre89]. Where these two sources conflict, [Dre91] takes precedence.

Where the description of the schema mechanism was not sufficiently detailed, the

author of the original thesis was consulted. This document is organized as follows:

• Chapter 1: Motivation for work, overview of the schema mechanism.

• Chapter 2: Modifications and additions to the ideas in [Dre91] and [Dre89]

and documentation of the new implementation.

• Chapter 3: Results from multiple executions of the new implementation.

15

• Chapter 4: Further analysis of the results described in chapter 3, comparison

of the results found by each implementation. Suggestions for future experimen

tation with the schema mechanism.

Perhaps the most important goal of this project, however, is to encourage other

researchers to experiment with the concepts embodied in the original thesis. To this

end, the new implementation is written in Common LISP and executes on a general

purpose UNIX hardware platform and was designed with efficiency in mind. It is

hoped that making the system available to researchers in a form which can easily be

understood, executed and modified will assist the utilization of these ideas in future

research.

1.2 Sources

Gary Drescher has published many different works on the schema mechanism, notably

a recent book from MIT Press titled "Made-Up Minds" [Dre91] and his Ph.D. thesis

[Dre89]. Every attempt has been made to be consistent with [Dre91], as it is the most

recent major work. However, the reimplementation effort started before [Dre91] was

published, and therefore [Dre89] was also heavily used. Both sources are useful for

interpreting the other and therefore both are very valuable. Gary Drescher was also

gracious enough to answer many questions via private electronic mail and telephone,

which also assisted in constructing what hopefully is an accurate view of the schema

mechanism. I freely borrowed (and condensed) from each of these sources as necessary

while writing this overview - it is based primarily on the material in [Dre89] but

agrees with [Dre91] in all major respects. If a deeper explanation is desired, I

suggest reviewing the original sources, particularly [Dre91, section 1.1 (general),

section 6.1 (microworld) and chapters 3 and 4 (schema mechanism)] and [Dre89,

section 1.2 (general), section 3.1 (microworld) and section 3.2 (schema mechanism)].

The overview presented here definitely emphasizes those parts of Drescher's schema

mechanism which were implemented in detail, and glosses over parts of his system

which were not implemented. The following chapter contains a detailed discussion of

16

the differences between this account, the accounts in [Dre91] and [Dre89] and what

was actually implemented.

1.3 The microworld

The microworld is a separate system which is intended to be a primitive model of the

real world. The area of the microworld is modeled as a 2 dimensional 7x7 grid - all

vision is from a birds-eye viewpoint. Objects can be placed anywhere within the 7x7

area, but only one object can exist at any single coordinate position - objects are

uniform in size, and cannot rotate.

The microworld is inhabited by a simulated robot with body, single hand and

visual system which can perform actions in the microworld. The initially supplied

primitive actions allow shifting of the visual region, movement of the hand, and

grasping and ungrasping of objects. Each of these actions may or may not change

the state of the microworld -- in particular, actions which would take the hand or

glance orientation beyond the allowable range have no effect. The hand can move

within a 3x3 area near the body (see figure 1-1). Similarly, there are nine glance

orientations which allow viewing of any particular 5x5 area within the 7x7 microworld

(see figure 1-2). The primitive actions are designed to correspond roughly with the

actions available to a stationary infant, and are further described in table 1.1 [Dre89,

adapted from table 3.1, p. 66].

The simulated robot receives feedback on the current state of the microworld

through roughly one hundred and forty primitive items - items which can be on or

off (binary) and are directly related to conditions in the microworld. These primitive

items include indications of hand position, indications of glance orientation, coarse

visual information (an object is present within the visual region of the robot), detailed

visual information (when an object is near the center of the visual region, see figure 1-

3), tactile indications of the presence of an object (when an object is adjacent to the

hand or body), detailed tactile information (when an object is to the left of the hand),

detailed taste information (when an object is in front of the body), and indications as

17

hand confined
to this region (3x3)

I
I
I

,---------1----1
I

. I

,-~-L-.1
I I
r ·1
I I
r ·1
I ~ I '------- ..

L------------...J

Figure 1-1: The hand can move within a 3x3 area in the area in front of the body.

visual field center confined
to this region (3x3)

potentially visible
region (7x7) I
\ I
\ I

,-~-------l----1
I I I

,-~-l-
1 I

1· I

I I
r I
I I
~-.:,..._-· __

I
I
I
I
I
I
I
I
I
I

I I
L ____________ ...J

Figure 1-2: The visual field is 5x5 and can assume nine different orientations, for a
total visual region of 7x7.

18

• handf, handb, handr, handl: These actions move the hand incrementally
forward, backward, right or left.

• eyef, eyeb, eyer, eyel: These actions shift the glance orientation incrementally
forward, backward, right or left.

• grasp: This action closes the hand, grasping any movable object which is im
mediately to the left of the hand (near its "fingers") unless the hand was already
closed. Once closed or grasping an object, the hand remains in that state for
three time units, unless explicitly opened in the interim. Moving the hand
moves any grasped object.

• ungrasp: This action opens the hand, releasing any object that had been
grasped.

Table 1.1: The primitive actions

Figure 1-3: Five foveal regions in the center of the visual field (front, back, right, left
and center) provide detailed visual information.

to whether or not the hand is closed and (possibly) grasping an object. The primitive

items are further explained in table 1.2 [Dre89, adapted from table 3.2, p. 67].

There are two objects in the world, each of which occasionally (at an average of

every 200 time units) moves between a series of four contiguous home positions in

a clockwise direction - see figure 1-4. The right object is out of the range of the

hand and therefore cannot be grasped. The left object can, of course, be grasped

and moved about. Both objects are often seen by the simulated robot due to their

proximity to the body.

19

• hpOO, ... ,hp22: Haptic-proprioceptive (hand position) items, one for each pos
sible hand position, the hand is confined to a 3x3 area (see figure 1-1). Position
(0,0) is in the lower left corner of the range; in figure 1-5, the hand appears at
position (2,1) which corresponds to item hp21. In figure 1-1 the hand appears
at hplO.

• vpOO, ... ,vp22: Visual-proprioceptive (visual position) items, one for each pos
sible glance orientation. Coordinate designates the position of the center of the
5x5 visual field, using same conventions as for hand position; in both figure 1-5
and figure 1-2, the glance is oriented at vpOl.

• vfOO, ... ,vf44: Coarse visual-field items, one for each of 25 glance-relative co
ordinate positions. Position (0,0) is in the lower left corner of the current visual
field; in figure 1-5, the body appears at vf30 while the hand appears at vf42.

• fovfOO, ... ,fovf33; fovb00-33; fovl00-33; fovr00-33; fovx00-33: Visual
details corresponding to each of five foveal regions: front, back, left, right and
center. See figure 1-3. Each has sixteen arbitrary details. In figure 1-5 the left
object is in the front foveal region.

• tactf, tactb, tactr, tactl: Coarse tactile items, one for each side of the hand:
front, back, right, left.

• bodyf, bodyb, bodyr, bodyl: Coarse tactile items, one for each side of the
body: front, back, right, left.

• textO, ... ,text3: Detailed tactile items, denoting arbitrary textural details of
an object touching the left edge (i.e. "fingers") of the hand.

• tasteO, ... ,taste3: Detailed taste items, designating arbitrary surface details
of an object touching the front edge (i.e. "mouth") of the body /head.

• hcl: Hand closed.

• hgr: Hand closed and grasping something.

Table 1.2: The primitive items

20

range of home positions

r · l I . I
I I I I ----· ----·

L ____________ ...J

Figure 1-4: The two objects in the microworld circulate in a clockwise direction among
a series of four contiguous home positions.

The microworld uses three different coordinate systems, m1crospace, body and

glance relative. In each case, the X axis (first position in the coordinate pair) runs

left to right while the Y axis (second position) runs bottom to top. This is traditional

first quadrant Cartesian coordinate notation [SESA86, p. 92]. Microspace relative

coordinates reference the 7x7 world directly where the lower left hand corner is posi

tion (0,0) and the lower right hand corner is position (6,0). Body relative coordinates

are often used when referring to the center 3x3 area in the microworld. The lower

left corner of this area is microspace coordinate (2,2) which is defined as body rela

tive coordinate (0,0). (Translation from microworld to body relative coordinates is

accomplished by subtracting 2 from each microworld coordinate; similarly, body rel

ative to microworld coordinate translation is accomplished by adding 2 to each body

relative coordinate.) Glance relative coordinates are used when referring to the 5x5

area centered around the current glance orientation. The center of the 5x5 glance

relative area is defined as glance relative coordinate (2,2) with the lower left corner

of this area defined as glance relative coordinate (0,0).

21

1------------1
I

._ ____ _

I
L ____________ .J

Figure 1-5: A sample microworld situation. The hand and the left object are in view,
while the right object is out of view.

In figure 1-5 the glance is oriented at body relative visual position (0,1) and the

hand is at body relative hand position (2,1). The body is visible via the coarse visual

field items at glance relative position (3,0), the hand at (4,2), and the left object at

(2,3). The right object is not visible. The detailed visual information for the left

object is present in the front foveal items. If the hand were in body relative hand

position (1,2) adjacent to the left object, it could grasp it. The right hand object is

currently out of reach. See table 1.2 for more examples using the various coordinate

systems.

It is important to note that the names given to each primitive action and item are

for purposes of human readability only. The microworld system provides a series of ten

functions corresponding to the ten primitive actions and a series of functions which

return the status of each of the primitive items. The schema mechanism begins with

absolutely no knowledge about which actions and items are related to one another.

1.4 The schema mechanism

The schema mechanism, by utilizing the simulated robot in the microworld, attempts

to acquire knowledge about its domain through analysis of its experiences. In the

22

appropriate situations, the system can create three different types of structures to

Pmbody acquirPd knowledge: schemas, synthetic items and goal-directed actions.

1.4.1 Schemas

Each schema expresses a specific belief about causality in the microworld and is

defined by a context, action and result. The context defines the microworld pre

conditions under which the schema can be activated. If a schema is activated, its

corresponding microworld action is executed. The result indicates those elements

of the microworld state which should change when the schema is activated (context

satisfied and action executed) - in some sense, indicating what the effects of the

action are when performed in the given context. Essentially, each schema expresses

the context-dependent results of a given action.

The context and result can be single items or conjunctions of items, or be empty.

For Pach includPd item, the context and result indicate if it is positively or negatively

included. A context is considered satisfied if each included item matches the current

state of the microworld - if an item is positively included, it must be on in the

current microworld state, and similarly for negative inclusion and off. A schema

is considered applicable if its context is satisfied and no overriding conditions exist.

(Overriding conditions are detected by a schema's extended context, see section 2.1.4

for more details.) If a schema is applicable and its action is taken, the schema has

been activated. The result obtains if each item included in the result matches the

state of the microworld after taking the action - if a schema is activated and its

result obtains, the schema is said to succeed. Note that both primitive and synthetic

items (discussed later) can be included in a context or result - however, synthetic

items can also be in an unknown state, which for purposes of satisfying a context or

achieving a result does not match positively or negatively included items.

A schema is notated in the form context/action/result, where negated items are

indicated by a - and conjunctions of items are constructed by placing f3 signs between

the items (by convention, the f3 can be omitted in the case of items with single letter

names). For example, the schema in figure 1-6 is p-qr/a/xy.

23

~aG
context action result

Figure 1-6: A basic schema.

A schema is not a rule which indicates that the action should be performed when

the context is satisfied; the schema just indicates what would happen if the action

was performed. Nate also that the results indicated by a schema are by no means

guaranteed - a reliability measure, which indicates how often the result obtains when

the schema is activated, is kept by each schema. Schemas may exist with arbitrarily

low reliability - as a particular result does not necessarily follow with regularity,

schemas cannot be thought of as rules. The notion of a rule also usually includes the

notion that a given action should not be performed unless the preconditions are met.

In this learning system, each action can be performed at any time - each schema

merely asserts what happens when the action is performed when all context conditions

are satisfied. The context therefore should not be considered a prerequisite for the

performance of the action. It is also possible that items not included in the result

will change state - the result is not necessarily exhaustive. Finally, a particular

schema says absolutely nothing about what might happen if its action is taken when

its context is not satisfied.

1.4.2 Constructing new schemas via marginal attribution

The system begins with a set of ten bare schemas, one for each primitive action. A

bare schema has an empty context (one with no items), and therefore can be activated

at any time. A bare schema also has an empty result, and therefore does not make

any prediction whatsoever as to changes in the microworld state due to taking the

indicated action (see figure 1-7).

As the system executes, a technique known as marginal attribution is used to dis

cover statistically important context and result information. This information is then

24

grasp

context action result

Figure 1-7: A bare schema for the grasp action.

l
t~~te3
hcl
hgr

Figure 1-8: The extended result of the bare schema /grasp/ detects that /grasp/hgr
should be spun off.

used to fine-tune existing schemas by creating modified versions of them. Marginal

attribution succeeds in greatly reducing the combinatorial problem of discovering re

liable schemas from an extremely large search space without prior knowledge of the

problem domain.

Result spinoffs

Many different results may occur from the execution of a given action. For every bare

schema, this facility tries to find result transitions which occur more often with a

particular action than without it. For example, my hand ends up closed and grasping

an object much more often when the grasp action is taken than with any other action.

Results discovered in this fashion are eligible to be included in a result spinoff - a

new schema identical to its parent, but with the relevant result item included (see

figure 1-8). The marginal attribution process can only create result spinoffs from bare

schemas.

Specifically, each bare schema has an extended result - a structure for holding

result correlation information. The extended result for each schema keeps correlation

information for each item (primitive or synthetic). The positive-transition correlation

is the ratio of the number of occurrences of the item turning on when the schema's

action has been taken to the number of occurrences of the item turning on when the

25

l 1t~~tr tactl
bodyf

Figure 1-9: The extended context of the schema /grasp/hgr discovers that tact! im
proves its reliability and therefore tactl/grasp/hgr is spun off.

schema's action has not been taken. Similarly, the negative-transition correlation is

the ratio of the number of occurrences of the item turning off when the schema's

action has been taken to the number of occurrences of the item turning off when the

schema's action has not been taken. Note that an item is considered to have turned

on precisely when the item was off prior to the action and on after the action was

performed and similarly for turning off. The correlation statistics are continuously

updated by the schema mechanism and weighted towards more recent data. When one

of these schemas has a sufficiently high correlation with a particular item, the schema

mechanism creates an appropriate result spinoff - a schema with the item positively

included in the result if the positive-transition correlation is high, or a schema with

the item negatively included in the result if the negative-transition correlation is

high. These simple statistics are very good at discovering arbitrarily rare results of

actions, especially when the statistics of the non-activated schemas are only updated

for unexplained transitions. A transition is considered explained if the item in question

was included in the result of an activated schema with high reliability (above an

arbitrary threshold) and it did, in fact, end up in the predicted state.

Context spinoffs

For schemas which have non-negligible results, the marginal attribution attempts to

discover conditions under which the schema obtains its result more reliably. To extend

the example, my hand ends up closed and grasping something much more often if I

can feel an object touching the left edge of my hand before I close my hand with the

grasp action. This information is used to create context spinoffs - duplicates of the

parent schema, but with a new item added to its context (see figure 1-9).

26

Schemas with non-empty results have an extended context. For each item, this

structure keeps a ratio of the number of occurrences of the schema succeeding (i.e.

its result obtaining) when activated with the item on to the number of occurrences of

the schema succeeding when activated with the item off. If the state of a particular

item before activation of a given schema does not affect its probability of success, this

ratio will stay close to one. However, if having the item on increases the probability

of success, the ratio will increase over time. Similarly, if having the item off increases

the probability of success, the ratio will decrease. If one of these schemas has a

significantly high or low ratio for a particular item, the schema mechanism creates

the appropriate context spinoff - a schema with the item positively included in the

context if the ratio is high, one with the item negatively included if the ratio is low.

There is an embellishment to the process of identifying context spinoffs. When a

context spinoff occurs, the parent schema resets all correlation data in its extended

context, and keeps an indication of which item (positively or negatively included)

was added to its spinoff child. In the future, when updating the extended context

data for the parent schema, if that item is on (if positively included in the spinoff)

or off (if negatively included in the spinoff) the trial is ignored and the extended

context data is not modified. This embellishment means that the parent schema has

correlation data only for those trials where there is no more specific child schema, and

it encourages the development of spinoff schemas from more specific schemas rather

than general schemas.

Redundancy is also reduced by a further embellishment. If at a particular moment

in time, a schema has multiple candidates for a context spinoff, the item which is on

least frequently is the one chosen for a context spinoff. The system keeps a generality

statistic for each item which is merely its rate of being on rather than off - it is

this statistic which is used when deciding between multiple spinoff possibilities. This

embellishment discourages the development of unnecessary conjunctions when a single

specific item suffices [Dre89, p. 104].

parent schema, but with a new item added to its context (see figure 1-9).

26

Figure 1-10: Two schemas which predict two items separately can not chain to a
schema which has both items in its context: a schema with a conjunctive result is
required.

Conjunctive contexts and results

The context can be iteratively modified through a series of context spinoffs to include

more and more conjuncts in the context. For a variety of reasons, but primarily to

avoid combinatorial explosion, a similar process for result conjunctions is undesirable

[Dre89, pp. 105-6]. The marginal attribution process therefore requires that result

spinoffs occur only from bare schemas, and only one relevant detail can be detected

and used as the result for the spinoff schema. However, conjunctive results are nec

essary if schemas should be able to chain to a schema with a conjunctive context.

(The goal-directed action facility in particular depends greatly on the detection of

chains of reliable schemas where each schema has a result which satisfies the context

of the next schema in the chain. See figure 1-10.) This problem is solved by adding a

slot to the extended result of each bare schema for each of the conjunctions of items

which appear as the context of a highly reliable schema. Statistics are kept for these

in the same fashion as those kept for single items, and if one of these conjunctions is

often turned on as the result of taking a given action, a result spinoff occurs which

includes the entire conjunction in the result. Effectively, this process is able to pro

duce schemas with conjunctive results precisely when such schemas are necessary for

chaining.

28

Summary of marginal attribution

Schemas created by the marginal attribution process are designed to either encapsu

late some newly discovered piece of knowledge about causality in the microworld

(result spinoff) or to improve upon the reliability of a previous schema (context

spinoff). By continuously creating new versions of previous schemas, the system

iteratively improves both the reliability and the scope of its knowledge base. It is

interesting to note that once created, a schema is never removed from the system.

Rather, it may be supplanted by one or more spinoff schemas which are more useful

due to higher reliability and greater specifity.

1.4.3 Goal-directed actions

Schemas of arbitrarily high reliability can be thought of as rules in that if the context

is satisfied, taking the indicated action reliably produces the given result. Therefore,

once a number of reliable schemas have been produced, it becomes fairly simple to

reach a given goal through planning. Over time, the system becomes able to chain

various schemas together to produce a variety of desired results. For any desired

result, the mechanism can create a goal-directed action, an action which is designed

to produce the given result. These new abstract actions give the mechanism an ability

to bring about a desired result through a number of intermediate actions, and to treat

this process as if it were a single discrete action.

In [Dre89], a goal-directed action is created whenever a particular item or con

j unction is highly accessible - when, at each clock tick, there is usually some chain

of reliable schemas which starts with an activatible schema and ends in a schema

with the item or conjunction positively included in the result. [Dre91] creates a goal

directed action whenever a result spinoff has a unique result. The reimplementation

uses the method from [Dre89] as it reduces the proliferation of many actions early

on, but the method in [Dre91] is simpler, less compute-intensive and seems more

cognitively realistic.

29

When a goal-directed action is created, a bare schema is constructed which has the

new goal-directed action and an empty context and result. The marginal attribution

algorithm will then attempt to build reliable schemas which utilize the goal-directed

action and encapsulate knowledge about the goal-directed action. (For more details

about goal-directed actions see [Dre89, section 3.4.2].)

[Dre91] and [Dre89] use composite action where I have chosen to use the term

goal-directed action. An informal discussion group concluded that composite is a word

overloaded with meaning - in particular, it suggests the treatment of a specific series

of actions as a single action as in the mathematical operation of composition where

one constructs a new function by defining it as the result of the sequential use of

two separate named functions [SESA86, p. 134]. It was therefore proposed to use the

term goal-directed action instead, which is more precise in meaning, as a goal-directed

action will activate whichever series of schemas will most likely achieve the desired

goal state -- it does not activate the same series of schemas each time it is executed.

1.4.4 Synthetic items

There are certain concepts that the primitive items are unable to express, for example,

that a particular object is present at a particular location while the glance orientation

is such that the object is out of view. The schema mechanism contains a facility for

building synthetic items - items which, when on, indicate that a particular unreliable

schema, if activated, would succeed. Suppose a schema /move glance orientation to

vp01/fovf02 is very reliable if the left hand object in the microworld is in the correct

position (see figure 1-5, if the glance orientation is at vp01 and the left hand object

is in the indicated position, it is in the forward foveal region, and could turn fovf02

on). However, this object spontaneously moves between four different positions and

so, on average, is only in the correct position about one-fourth of the time. Notably,

this schema, if activated and successful, will continue to be very reliable for some

period of time (equal to the duration that the object remains in that position), even

though on average it is normally not very reliable. To discover such situations, the

schema mechanism keeps a local consistency statistic which indicates how often the

30

schema succeeds when its last activation was successful. If a schema is unreliable

but highly locally consistent, the mechanism constructs a synthetic item - an item

which, when on, indicates that the schema (its host schema), if activated, would

succeed. Effectively, such an item, when on, predicts what the result of activating the

host schema would be. For a variety of reasons (see [Dre91, section 4.2.3]), synthetic

items are fundamentally very different from primitive items and express concepts

which are inexpressible through any conventional combination of primitive items.

Primitive items get their state directly from the microworld. On the other hand,

the schema mechanism itself must maintain and update the state of all synthetic

items. The rules the mechanism uses to determine the state of a given synthetic item

are summarized in table 1.3. The use of synthetic items effectively allows the schema

mechanism to invent new concepts - concepts which are not expressed well by the

microworld or cannot be expressed by conjunctions of boolean values at all.

1.4.5 Control

The CM2 implementation cycles between periods where schemas are chosen for ac

tivation on the basis of their value, and periods where the system is emphasizing

experimentation with recently created schemas [Dre89, section 3.2.2]. The primary

goal of the reimplementation of the schema mechanism is to validate the results found

in [Dre91] and [Dre89]. There is no analysis of the ability of the CM2 implementation

to find and obtain states of high value in either source, rather, the results present

ed are the structures (schemas, goal-directed actions and synthetic items) which the

system built in a reference run. As goal-seeking behavior is not documented in the

results of either source, and this reimplementation is an attempt to verify the results,

the reimplementation detailed in this thesis does not need to cycle between periods of

goal-seeking and experimentation, and therefore doesn't. The reimplementation also

does not make use of any notion of value (see [Dre89, pp. 78-83] for a discussion

of value). Rather, the reimplementation merely selects one of the currently defined

actions at random at each time step. As there are bare schemas for each action, and

bare schemas are always activatible, each action is always selectable, and so picking

31

• Host schema activated: If the host schema for a synthetic item is activated,
the item is turned on if the schema succeeded. If the schema failed, the item is
turned off.

• Host schema overridden: If the host schema is context overridden, the syn
thetic item is turned off. For purposes of updating the synthetic item state, a
schema is considered overridden if an item is correlated by its extended con
text at least 75% in the direction opposite the current state of the item. See
section 2.1.4 for more details.

• Context spinoff: Context spinoff schemas may be created from the host sche
ma in an attempt to improve the reliability of the host schema. These spinoff
schemas have the same action and result as the host schema. Whenever a re
liable schema is applicable, its parent schema is checked to see if it is a host
schema. The fact that a reliable schema with the same action and result is
applicable implies that the host schema would succeed if activated, and there
fore the synthetic item is turned on. If a reliable schema is applicable, but
overridden, its parent schema is not checked.

• Result predictions: If a reliable schema which contains a synthetic item in
its result is activated, the mechanism assumes that the schema succeeded, and
turns the item on (if positively included) or off (if negatively included).

• Local consistency: When the mechanism turns a synthetic item on or off
for any of the reasons listed here, the item stays in that state for the length
of the expected duration for that transition. (The schema mechanism keeps
two statistics for each synthetic item: average duration the item stays on once
turned on, and a similar statistic for off.) If that period of time ends without
the item being turned on or off by the mechanism, the item is placed in the
unknown state.

Host schema evidence has the highest priority when determining the state of a syn
thetic item, as a synthetic item is defined in terms of success or failure of its host
schema. Context and result evidence have the next highest priority - if they dis
agree, the synthetic item is placed in the unknown state. Local consistency evidence
has the lowest priority.

Table 1.3: Rules for determining synthetic item state.

32

from all actions randomly is perfectly acceptable. This also has the nice side effect

of ensuring that all actions are exercised roughly equally.

1.4.6 Summary of schema mechanism

Each of these facilities has an important role. While the marginal attribution tech

nique is a powerful and central part of the system, it can only perform induction from

what is already known. Goal-directed actions give the system the ability to abstract

the details away from a process which is designed to bring about a desired result,

while synthetic items allow the system to invent useful and arbitrarily complex con

cepts. Together, these two abilities enable the system to discover and define concepts

and procedures of its own ~. contributions to the knowledge base which could not be

made by marginal attribution.

1.5 Performance

While the marginal attribution algorithm is fairly compute intensive, especially as

the number of schemas increases, it is not intractably inefficient. See [Dre89, sec

tion 3.3] for a discussion of the architecture of the CM2 implementation (a parallel

machine). This implementation completed its reference run in roughly one day of

real time. The reimplementation, somewhat simplified but running on a DECSta

tion 5000/120 with 16 megabytes of memory and using Lucid LISP 4.0, completes a

reference run in slightly more than two days of real time. The schema mechanism

and microworld, while complicated, are not so compute intensive as to make them

cognitively implausible.

33

Chapter 2

Implementation

2.1 Differences between this work and Drescher's

2.1.1 Goal-directed actions

(Note: the term goal-directed action is used in this work wherever Drescher's works

would use the term "composite action". See section 1.4.3.)

While Drescher's work discusses goal-directed actions at some length, they do

not seem to be vital for accounting for many of the results he found. In particular,

his work does not include statistics for how the system behaves or performs when

engaging in goal seeking behavior.

The reimplementation is focused on evaluating the accuracy of the results present

ed in [Dre91] and [Dre89]. This primary goal, combined with a desire to finish this

work in a timely fashion and some technical problems surrounding storage of goal

directed action controller data in reasonable amounts of memory, led to a decision to

leave most of the goal-directed action ideas unimplemented.

In particular, the reimplementation uses the method in [Dre89] for determining if

a goal-directed action should be created. When a new goal-directed action should be

created, the reimplementation merely displays a message to this effect. The reimple

mentation does not create bare schemas for the new goal-directed action, and there

fore none of the schemas created by the reimplementation pertain to goal-directed

35

actions. The reimplementation does not create goal-directed action structures, does

not update them, and cannot activate them.

In the reimplementation, only positive items or conjunctions (with items which are

positively or negatively included) are eligible to be the goal of a goal-directed action.

Having a negated conjunction as a goal would be fairly useless, as it is equivalent to

a disjunction of negated items, which is something the system doesn't work with or

understand. A goal which is the negation of a single primitive item may be useful in

some rare cases, but generally, goal-directed actions which turn a given item on are

more useful. The reimplementation currently supports only positive single items, but

could very easily be modified to support goal-directed actions which have negated

items as the goal. In fact, some support for this is already in place, but it seemed

fairly unimportant to finish given that the goal-directed action execution code is

incomplete.

With the limited implementation of goal-directed actions, some other statistics

and structures are no longer necessary. In particular, duration and correlation statis

tics for schemas are no longer kept ~ each primitive action has a duration equal to

one clock tick and schemas are never activated for their result due to a simplified

control mechanism (see section 2.1.3), so neither statistic is needed.

However, many of the structures and code required for finishing the im plementa

tion of goal-directed actions are in place in the code, and with an inspired solution

to the memory problem noted above, the code could be finished fairly easily.

2.1.2 Value

Drescher's work describes a system whereby various items are given delegated and

instrumental value, and the schema mechanism, when engaging in goal seeking be

havior, tries to reach states which have high value. As there is no analysis of the

ability of the CM2 implementation to find and obtain states of high value in either

source and no goal seeking behavior in the reimplementation, the notion of value is

not necessary for the reimplementation and therefore omitted. With no notion of

36

value, there can be no notion of the cost of a schema, and therefore this statistic is

not maintained either. (See [Dre89, pp. 78-83].)

2.1.3 Control

Drescher's work indicates that the schema mechanism should cycle between periods

of goal seeking behavior and periods of behavior designed to generate more knowl

edge about the world [Dre89, section 3.2.2]. Goal seeking behavior is brought about

primarily through the activation of schemas which have goal-directed actions and

therefore encourage the bringing about of a desired result through the explicit acti

vation of a series of schemas. The schema mechanism selects a schema for explicit

activation when it is applicable and contains a number of desired results.

As mentioned above, however, the reimplementation does not support the creation

or execution of goal-directed actions. Therefore, at each time step, the reimplemen

tation must only choose between the ten primitive actions which are provided by

the microworld. In addition, the reimplementation never needs to activate a specific

schema for its result, due to the lack of goal-seeking behavior and no notion of value,

the system can activate any applicable schema at each time step. Therefore, the

reimplementation does not select a particular schema for explicit activation. Rather,

at each time step, one of the ten primitive actions is selected and executed. As there

are bare schemas for each action, and bare schemas are always eligible for activation,

each action is always selectable, and so picking from all actions randomly is perfectly

acceptable. This also has the nice side effect of ensuring that all actions are exercised

roughly equally. All schemas which share the selected action and have a satisfied

context are considered activated. Drescher's distinction between explicit and implicit

activation is unnecessary, as there is no process of selecting a particular schema for

explicit activation in this implementation.

37

2.1.4 Overriding conditions

[Dre89, p. 106] specifies that a schema which is applicable can not be explicitly acti

vated if an overriding context condition occurs. Due to the simplified control system of

the reimplementation, this distinction is unnecessary. The control system implement

ed does not select a schema for explicit activation and therefore the reimplementation

does not look for overriding conditions when picking an action to execute.

(Note for future implementors: in a private electronic mail message, Gary Drescher

indicated that the CM2 implementation was designed to override a schema when an

item is correlated by its extended context at least 50% in the direction opposite the

current state of the item. Example: if the extended context of /a/x indicates that

the counter for item p is at least halfway to the value which would force creation

of a context spinoff with p positively included, and p is negative at the start of this

cycle, then /a/x is suppressed - but it is still considered applicable and if action

a is taken by another schema, it will be considered implicitly activated for purposes

of updating its statistics. On the other hand /a/x cannot be selected for explicit

activation, because of the overriding condition.)

2.1.5 Microworld

There are some minor differences in the microworld from that described in [Dre91,

section 6.1]. In particular, the two objects are not in precisely the same position, and

an arbitrary decision was made to have both objects rotate clockwise among their

home positions (this wasn't specified in the original sources).

Hand motions require that the destination square for the hand is empty - if

the hand is currently grasping an object, the destination square for the object must

be empty also. Note, however, that when the hand moves left, the hand ends up

occupying the former position of the grasped object, and vice versa for movements to

the right. Again, this was not specified in the original sources.

[Dre91, table 6.2] labels the haptic and visual proprioceptive items as having their

origin at position (1,1) while the other items using a 2D representation (such as the

38

visual field items) have their origin at (0,0). This is confusing, and in fact [Dre89]

uses a (0,0) origin for all 2D items. The microworld items are precisely as described

in [Dre91, table 6.2] except that all (1,1) based 2D items have been translated to (0,0)

based systems, for example, hp and vp items now range from (0,0) to (2,2) instead of

from (1,1) to (3,3).

In the reimplementation, if the hand is closed, it is automatically opened after

three time units pass. This is different than either [Dre91] or [Dre89], and was changed

to show that the precise value of the duration is not important.

2.1.6 Schema mechanism

Gary Drescher answered many questions via private electronic mail and phone conver

sations. Most of the answers served to illuminate material which was already present

in his work - these answers were used in writing the explanations of the microworld

and schema mechanism in chapter 1.

One detail which was not adequately explained in either [Dre91] or [Dre89] was

precisely when, in the order of events, the system is supposed to randomly move

objects and open the hand if it's been closed for more than a given clock tick duration.

Gary Drescher explained that part of the job of the mechanism is to differentiate

between transitions which are caused by the execution of an action and those which

are completely external. Therefore, on each cycle, the system selects an action to

perform, executes the action, calls the clock-tick function (which randomly moves

the objects and opens the hand if necessary, as well as incrementing the clock) and

then takes the statistics needed by the schema mechanism. The results of calling the

clock-tick function are considered to be part of the effect of executing the action

on this particular occasion - its effects are attributed to the selected action. (As

it turns out, the statistics kept by the schema mechanism are fairly immune to this

source of noise in the data.)

39

2.1. 7 Reconciling different sources

[Dre91] and [Dre89] contradict one another occasionally. In each case, the reimple

mentation is based upon [Dre91]. Some examples from the microworld sections of

each source:

• m [Dre91] there are 9 possible hand positions in a 3x3 area, while in [Dre89]

there are 25 possible hand positions in a 5x5 area

• in [Dre91] there are 9 possible gaze orientations in a 3x3 area, while in [Dre89]

there are 25 possible gaze orientations in a 5x5 area

• in [Dre91] when the hand is closed it remains closed for 2 time units, while

in [Dre89] it remains closed for 20 time units (note that the reimplementation

actually keeps the hand closed for a total of 3 time units, just to show this is a

non-critical value, but this value is intentionally similar to that given in [Dre91])

Again, in all cases, the reimplementation is based on the account in [Dre91] except

for the creation of goal-directed actions as noted in section 1.4.3 where the reimple

mentation uses the accessibility method given in [Dre89].

2.1.8 Piagetian influence

As a reimplementation of major portions of Drescher's work and an investigation into

the reliability of his results, this work does not directly reference the psychologist

Jean Piaget in any major fashion. Piagetian ideas are clearly the driving influence

in Drescher's work and the milestones postulated by Piaget are used as a benchmark

for the success of the CM2 implementation. For a discussion of the progression

postulated by Piaget and some of his theories see [Dre91, chapter 2]. His ideas are

the underpinnings of this work and Drescher's works - without his observations and

contributions to child psychology, the results found in these works would be much

less interesting.

40

2.2 Design decisions

The reimplementation work began with a number of important goals in mind. Speed

of the code was considered to be quite important, as multiple test runs were desired

to give statistical validity to the results. The readability and usability of the code

was also a significant goal. Finally, the system had to execute on a general-purpose

UNIX platform. These parameters led to a number of key decisions:

• The microworld was implemented and tested separately, to make the system

more modular and easier to understand.

• A set of macros were developed to increase the speed of the math computa

tions through LISP declarations without making the code in the rest of the

reimplementation unreadable (see appendix sections A.3 and A.4).

• As the schema mechanism code is pretty complicated, an effort was made to use

data abstractions whenever possible to increase the readability and usability of

the code. In each case, an effort was also made to ensure that the use of these

data abstractions would not drastically reduce the speed of the program.

• When necessary, tradeoffs were made to save memory at the expense of ad

ditional computational overhead. The speed of the program may have been

reduced, but from informal benchmarking, it was determined that virtual mem

ory paging with the larger structures was similarly slow. The result is code

which can run well on machines with fairly modest amounts of memory.

Given the complexity of the schema mechanism, it was inevitable that the reim

plementation code would be computation and time intensive, but the final version of

the code is not intractably so. It also, thanks to the constant development of better

UNIX platforms, can be used as the basis for future work which is more computation

and memory intensive without switching to a different platform.

It is notable that the final version of the code seems to have achieved a reasonable

balance between these design goals.

41

There are some differences, largely omissions, between the reimplementation and

the original sources, as noted above in section 2.1. An incomplete implementation

of goal-directed actions, no concept of value and the simplified control mechanism

are all different than that proposed by Drescher. However, the marginal attribution

algorithm and the notion of synthetic items are completely implemented, and these

account for the majority of the results reported in [Dre91] and [Dre89].

2.3 Description of reimplementation code

2.3.1 Microworld

The microworld is implemented as a completely separate unit (in its own LISP pack

age) with an interface consisting of 141 functions which can be called to get each

primitive item status, 10 functions which are primitive actions (i.e. may change the

item status), a clock-tick function (occasionally randomizes object position, auto

matically ungrasps the hand after 3 time units) plus a function which initializes the

world and a function which changes the initial random number generator seed.

The microworld supports the definition and initial placement of world objects.

Each world object has 16 t or nil visual characteristics, 4 t or nil tactile character

istics, and 4 t or nil taste characteristics. Each object also has a flag indicating if

the object is movable or not -- only a movable object can be grasped by the hand.

Currently, the only immobile objects are the body and hand.

The state of the microworld is kept internally through a handful of special vari

ables. Nothing other than status messages or the values tor nil are returned by any

routine. A primitive item function which returns t indicates to the schema mechanism

that the item is currently on, while nil indicates the item is off.

The primitive actions arc implemented as described in section 1.3. Hand and

glance motions work if the resulting position is within the designated area. Hand

motions further require that the destination square for the hand is empty - if the

hand is currently grasping an object, the destination square for the object must be

42

empty also. Note, however, that when the hand moves left, the hand occupies the

former position of the grasped object, and vice versa for movements to the right,

so only one vacant square is required for hand movements in either the left or right

direction regardless of if the hand is grasping an object or not. Grasping only succeeds

in picking up an object if the hand is not currently closed and the object to the left of

the hand is movable - whenever the hand is closed, it is automatically opened after

3 calls to clock-tick.

The clock-tick function always checks to see if the grip should be undone, and

at random intervals averaging 200 clock ticks moves all of the non-grasped movable

objects to their next home position. It also increments the clock and returns the new

value. Because of this use of random numbers (and the modified control system which

selects between each of the ten primitive actions at random at each time step), the

random number generator start is saved, and new random number generator seeds

can be created and saved. This facilitates the ability to repeat a given test run.

The microworld can be initialized (with the current random seed) by calling the

ini t-microworld routine, which zeros the clock, opens the hand, places the hand at

body relative position (1,1), glance orientation at body relative position (1,1), places

the body in the customary microworld position (3,1), and puts two generic objects

into the world as well (the initial state of the world is shown in figure 2-1).

2.3.2 Schema mechanism

The schema mechanism code (see appendix section A.2) is nearly four thousand lines

long. It was therefore essential to keep the code as organized as possible. Data

abstraction was the major strategy used throughout to combat complexity. Macros

were utilized to implement the data abstractions in a fashion which would keep the

time cost at execution minimal. (The use of macros forced simpler datatypes to be

defined earlier in the code than more complex data types to avoid compiler warnings.)

In addition, with an ambitious program with many complicated algorithms, it is

vital to be able to debug sections of the program separately and together. A series

of constants and macros are defined at the start of the file. By changing a given

43

,------------1
I
I
I
I
I
I
I
I
I
I
I
I

a 0

L ____________ _J

Figure 2-1: The initial state of the microworld.

constant from nil to t and recompiling the program, execution of the program will

send the indicated detailed output to the output file. When a constant is nil, all code

relating to output for that particular section of the program is eliminated entirely via

the macros. This setup gives a great amount of flexibility, as data can be observed

as desired without affecting the speed of the program when no output or minimal

output is desired.

To aid in the discussion of the code, simple datatypes are defined as datatypes

which are made up of LISP datatypes and at most one other simple datatype. On

the other hand, compound datatypes are made up of LISP datatypes and multiple

simple datatypes. Each of the major structures of the schema mechanism has a

corresponding compound datatype. Each of the compound datatypes also has an

array which stores all the created instances of that type.

Simple datatypes

Flags are a simple datatype which can be either true or false. Flag-records and

flag-arrays are defined to support storage and manipulation of many flags at the

same time. In particular, flag-arrays have some specialized functions which support

inclusive ORing of two flag-arrays (flag-array-ior) and comparing two flag-arrays

to see if all the flags which are true in one flag-array are also true in another flag-

44

• flag: Flags can either be true or false.

• flag-record: Flag-records contain 24 flags, each of which can be either true or
false. They are used only to help define the flag-array datatype.

• flag-array: Flag-arrays contain a number of flags equal to the length of the
array times 24. They are used to store large amounts of true/false data in a
very compact way.

• state: States can be on, off or unknown.

• state-record: State-records contain 12 states, each of which can be on, off or
unknown. They are only used to help define the state-array datatype.

• state-array: State-arrays contain a number of states equal to the length of the
array times 12. They are used to store large amounts of state data in a very
compact way.

• counter: Counters are used to keep extended context and extended result
correlation data. They have a toggle flag, a value which ranges from 0 to 15
and a positive flag which indicates the sign for the value.

• counter-record: Counter-records contain 4 completely separate counters and
are used to help define the counter-array datatype.

• counter-array: Counter-arrays contain a number of counters equal to the
length of the array times 4. They are used to store large numbers of counters
in a compact way.

• rate: Rates keep track of how often something occurs.

• weighted-rate: Weighted-rates keep track of how often something occurs,
weighted towards more recent trials.

• average: Averages keep a fixnum value which indicates the average of all the
values passed to it via average-update since it was first initialized. They are
fairly accurate except for rounding error and are used to keep average durations
for synthetic items.

Table 2.1: Simple datatypes defined and used by the schema mechanism code.

45

array (flag-array-included-p). These specialized functions help simplify a number

of complicated routines. Flags are implemented as 0 (off) or 1 (on) and flag-records

are fixnums which hold 24 flags. Flag-arrays are simply arrays of fixnums. This

representation allows 10 fixnums to contain 240 flags, a big memory savings over

using the LISP symbols t or nil (where 240 atoms consume as much space as 240

fixnums in Lucid LISP 4.0) and an implementation which is under a lot more control

of the programmer as opposed to using bit vectors. In particular, the specialized

functions take advantage of fixnum comparison operations which are much faster

than the corresponding bit vector operations, as 24 flags can be compared at once

rather than one at a time, and array initialization is faster as well.

States can be on, off or unknown. As with flags, state-records and state-arrays are

defined to store multiple states and help simplify complex algorithms. Functions for

state-arrays include methods to copy the on or off states in a state-array into a flag

array (state-array-copy-pos/neg-flag) and generation of a human-readable string

for state-arrays which represent conjunctions of items (state-array-get-print

narne), as well as also supporting inclusive ORing of two state-arrays (state-array

ior) and comparing two state-arrays to see if all the states which are on/off in

one state-array are also on/off in the other state-array (state-array-included-p).

State-arrays are used often, especially to represent conjunctions of items and schema

contexts. States are implemented as 2 (on), 1 (off) or 0 (unknown). One trick which

is used occasionally is a both state (represented as 3) which includes both on and off

states, is impervious to inclusive ORing when using state-array-ior and matches

both on and off states when using state-array-included-p. Similar to flags, state

records are represented as fixnums which hold 12 states, and state-arrays are arrays

of fixnums. A simple representation would have each state as a fixnum, whereas

this method uses 1 /12th of the memory and again supports quicker algorithms for

specialized operations on state arrays.

Rates and weighted-rates are used to keep track of how often something occurs.

Weighed-rates are weighted towards more recent occurrences, while standard rates

are not. Averages keep the average value of all the values given to them since they

46

were created. These three datatypes are used occasionally, again largely to simplify

sections of code.

The spinoff detection machinery requires a lot of statistics to be kept in the ex

tended context and extended result of each schema. To keep the memory demands

reasonable, the counter method detailed in [Dre89, page 109-11] was used. Each

counter has a toggle flag, a value which ranges from 0 to 15 and a positive flag which

indicates the sign for the value. The toggle flag is used for purposes of alternating

between trials which can give positive evidence for a particular correlation and those

which can give negative evidence.

The standard way of utilizing counters is to use them to track whenever an event

occurs and tabulate statistics to see if either a) having a particular item on or off helps

the result to obtain (extended context) or b) taking a particular action helps an item

to transition from on to off or from off to on (extended result). Counters are explicitly

designed to help gather these statistics. The rules for modifying counter values are

summarized in table 2.2. An example might help explain these rules. A counter starts

at zero, sign positive. On this trial, the event being tabulated occurs. The sign stays

the same, the value is incremented to two. On the next trial, the desired transition

does not occur, and the value is therefore decremented. As the resulting value cannot

be lower than zero, the value is set to zero, and the sign is still positive as zeros are

considered positive. On the next trial, the desired transition does not occur again,

so the value is decremented again. The value ends up at two but the sign is now

negative. Further negative evidence with the desired transition not occurring will

continue to increment the value, eventually maximizing the value at 15 with the sign

negative. However, a series of positive evidence trials will decrement the value back

to zero, switching the sign to positive, and then increment the value, maximizing

the value at 15 with the sign positive. Note that this scheme always exerts pressure

towards zero due to the fact that the increment (+2) is smaller than the decrement

(-3), which protects against maximization of a counter value due to random noise.

The toggle is used to either a) alternate between trials with the item on or the item

off (extended context) or b) alternate between trials with the schema's action taken

47

positive occurred counter modification
YES YES increment
YES NO decrement
NO
NO

YES decrement
NO increment

• To increment a counter, add two to its value.

• The maximum value is 15.

• To decrement a counter, subtract three from its value.

• If the value for a counter is non-zero and it is decremented, the resulting value
can not be lower than zero.

• If the value for a counter is zero and it is decremented, the sign is set negative
and the value becomes two (equal to one correlation in the negative direction).

• A value of zero always has the sign set positive.

Table 2.2: Rules for using counters to detect statistically relevant occurrences.

and those with a different action taken (extended result). Alternating between the

two types of trials ensures that the counter accurately reflects the significance of the

item in question, as it could otherwise be overwhelmed by a series of trials with a

particular item on or a series of trials with a given action taken repeatedly.

The simple datatypes are presented here in a distinct order. Flags and states are

very simple notions to grasp. Rates, weighted-rates and averages are only slightly

more complex. Each of these five datatypes could find uses in other programs. The

most complex of all the simple datatypes is the counter datatype, mostly because

the extended statistics algorithm which uses counters is difficult to understand and

demands particular behavior from the counters.

Compound datatypes

The compound datatypes use a variety of different datatypes, both LISP datatypes

and simple datatypes as defined above, to represent structures which the schema

48

• schema: Each schema structure represents a schema which has been discovered
by the schema mechanism or is part of the initial repertoire of the mechanism,
with all the added data required for various statistics. Schemas are created in an
attempt to encapsulate some bit of knowledge about causality in the microworld
and as a springboard to further development of more complicated schemas.

• item: Each item represents an item which is either primitive and given to
the schema mechanism initially, or a synthetic item which is constructed by
the schema mechanism itself in response to a schema which is highly locally
consistent but unreliable.

• conj: Each conj represents a conjunction of items. Conjs are constructed by the
schema mechanism when a schema with a conjunctive context becomes highly
reliable, and they support the construction of schemas with conjunctive results.
No two conjs can exist with the same conjunction of items, the system never
creates duplicate conjs.

• syn-item: Each syn-item represents a synthetic item, and stores extra infor
mation which is not part of the the item datatype. A synthetic item has two
associated data structures, an item which stores the standard information for
an item, and a syn-item which stores information particular to synthetic items.
The state of a synthetic item is not determined by the microworld, rather, it is
determined by the schema mechanism itself, and certain specialized statistics
are required to support this.

• action: Actions are used to connect a human-readable string to each primitive
action. (If goal-directed actions were fully implemented, the structure would be
similar to that for synthetic items: two data structures defined for each goal
directed action, an action structure which has a string and a function to call
to execute the goal-directed action, and a specialized structure which supports
everything necessary for the execution of the goal-directed action.)

Table 2.3: Compound datatypes defined and used by the schema mechanism code.

49

mechanism uses. The most complicated of these is the schema datatype which is

used to store blank schemas which the system starts out with as well as all schemas

which it creates during execution.

Each schema has a context, an action and a result which define the schema and

never change. Schemas are never duplicated, each one is unique. A schema claims that

if its context is satisfied, taking the indicated action yields a specified result (with

a given reliability factor). Each of these three parts are stored within the schema

datatype. If the context is empty, the flag context-empty is set true. Otherwise the

context for the schema is stored in the context-array, which can represent conjunctions

of items as well as single items. To simplify certain parts of the algorithm, if the

context is a single item, the context-single flag is set true, and if a conjunction has

been created for the context (the schema is very reliable), the context-conj flag is set

true and the conjunction number is stashed in the context-item slot for the schema.

The result part of the schema is stored somewhat similarly. If the result is empty,

the result-empty flag is set true. If the result is a conjunction, the result-conj flag

is set true and the result-item slot holds the conjunction number. Otherwise the

result-item slot gives the item number for the result, and if the item is negated, the

result-negated flag is set true (conjunctions are never negated).

If the action-gd flag for a particular schema is true, the action for the schema

1s a goal-directed action and the action-item slot contains the index for the goal

directed action. Otherwise, if the action-gd flag is false, the action-item slot contains

an index for a standard action. The action slot contains a function which, when

executed, performs the action and modifies the state of the microworld. (The action

slot is not set for goal-directed actions, due to the incomplete implementation of goal

directed actions, goal-directed actions cannot be selected for execution. Also, this

implementation does not select a schema for explicit activation, rather, it chooses

between all the available actions at each time step, so this slot is unnecessary. It is

provided merely for support for later development of the system.)

Synthetic items can be defined for each schema. For each schema, if the syn

item flag is true, the reifier slot gives the synthetic item index for the synthetic item

50

toggle
ON
OFF

item
ON
OFF

toggle state = item state

result obtains?
YES
YES
NO

counter modification
event occurred, toggle toggle
did not occur, toggle toggle
toggle toggle

Table 2.4: Rules for extended context statistics.

created for the schema. First-tick is used to store a clock tick time used in updating

the on and off-durations for the reifying synthetic item. If the syn-item flag is false,

no synthetic item has been created for this particular schema.

The schema mechanism requires a number of statistics to be kept for each schema.

Many of these statistics deal with various situations when a schema is activated

(context satisfied and action taken). The reliability of a schema indicates how often

the result obtains when the schema is activated (i.e. how often the schema succeeds)

and is biased towards more recent trials by using the weighted-rate functions.

If the result of a schema is non-empty, its extended-context looks for items which,

when ON or OFF before the action is taken, affect the probability of success. The

system keeps track of both positive and negative correlations for each individual item

via a series of counters, one per item. When a schema is activated (context satisfied

and action taken), the counter for each item in its extended context is updated ac

cording to table 2.4. For each item, the system uses the counter toggle to alternate

between taking statistics with the item on before the action is taken and with it off.

In this scheme, the single counter for each item will go maximally positive if having

the item on before the action is taken makes the result occur more reliably, and the

counter will go maximally negative if having the item off is relevant. (See table 2.2

for an explanation of precisely how the counter values are updated.) A maximized

counter indicates that the schema may be chosen as the parent of a spinoff schema.

(If the schema has a goal-directed action, it also keeps a similar set of correlations

in its extended-context-post slot but with respect to the value of items after the goal

directed action is executed. These statistics are used to determine items which need

to have their state sustained for the duration of the execution of the goal-directed

51

action [Dre91, section 4.1.6, pp. 80-81]. As mentioned earlier, goal-directed actions

are not currently executable, and therefore updating of the extended-context-post

statistics is not yet implemented, but the structure already exists to support future

program development.)

On the other hand, if a schema has an empty result, its extended-result slot looks

for item transitions which appear to be caused by the activation of the schema. The

system keeps separate positive and negative transition correlations for each item as

well as positive transition correlations for conjunctions which represent the contexts

of reliable schemas. It alternates between trials with and without the activation of

each schema, for each trial, extended statistics for the current schema and item are

only taken if the state of the counter toggle for that item matches the activation of the

schema. The rules for updating the counters for each schema are explained fully in

table 2.5. A counter will become maximally positive if its item undergoes a transition

more often when the schema is activated than when it is not. (For more detail, see

table 2.2 which explains exactly how counters are updated.)

The extended-context and extended-result counters indicate when a given spinoff

schema should be created. The extended-context for a given schema will have a

maximally positive or maximally negative counter which indicates which item should

be positively or negatively included in a context spinoff schema. The extended-result

for a given schema will have a maximally positive counter in either the positive

transition or the negative transition statistics which indicates which item should be

positively or negatively included in a result spinoff schema.

As mentioned before, schemas are never duplicated. A group of three structures,

context-children, result-children and result-conj-children, keep the mechanism from

accidentally duplicating an existing schema without having to search through all the

schemas checking for duplicates whenever a new spinoff schema is proposed. For

example, when a context spinoff occurs, the parent schema notes that the item was

spun off (positively or negatively) and makes a similar notation in its new child. No

schema descended from either schema will ever attempt to spinoff another context

52

Result transition statistics for an item are only taken when:

• The item was (off for positive transition statistics, on for negative transition
statistics) at the end of the last cycle.

• Each schema which was not activated this cycle only updates statistics for
items which were not explained by the activation of a reliable schema (i.e. the
transition must not have been predicted).

• If the schema was activated, the counter toggle for the item must be true, and if
the schema was not activated, the counter toggle for the item must be false. This
forces the statistics to alternate between trials when the schema was activated
and those when the schema was not activated.

Positive transition statistics:

item
OFF ::::} ON
OFF ::::} ON
OFF ::::} OFF

activated
YES
NO

Negative transition statistics:

item
ON ::::} OFF
ON ::::} OFF
ON ::::} ON

activated
YES
NO

predicted
don't care
NO

predicted
don't care
NO

positive counter modification
event occurred, toggle toggle
did not occur, toggle toggle
toggle toggle

negative counter modification
event occurred, toggle toggle
did not occur, toggle toggle
toggle toggle

Table 2.5: Rules for extended result statistics.

53

schema with that item added. (The context-children slot also supports deferral of

taking extended context statistics to a more specific child schema. See section 1.4.2.)

To save memory, a data slot holds many important status bits in a compressed

form. The applicable, overridden and activated flags are used by the toplevel control

code to keep track of the status of the various schemas. Marked is a flag used by

the update accessibility routines to keep track of which schemas have already been

visited by the algorithm. Succeeded-last is a flag which indicates that the schema

succeeded the last time it was activated and is used to help keep local consistency

data. Lc-consy (short for local-consistency) is a rate used to keep the probability of

successful activation given that the previous activation was successful. If lc-consy is

high, the lcly-cons (short for locally-consistent) flag is set true, a synthetic item is

created for the schema, the reifier slot of the schema is set so as to point to the new

synthetic item, and the schema mechanism begins to keep track of the on and off

duration for the synthetic item.

For purposes of data abstraction, a series of macros are defined for each of the flags

and rates which are compressed into the data slot. These macros make it appear as if

each flag and rate were defined as their own slots by following the standard Common

LISP naming conventions for structures. The use of these macros also makes the code

much more readable.

The item structure is used to store information about each primitive and synthetic

item. The print-name string, the syn-item-p flag, and code if primitive or syn-item

index if synthetic define the item and never change. A synthetic item is indicated by

having syn-item-p true. A primitive item has its code slot bound to the appropriate

microworld function (see ini t-i tern) which returns the state for the item. On each

clock tick, the state as returned by the code function is placed in the current-state slot,

with the old value placed in the last-state slot. (For synthetic items, the mechanism

itself determines the state of the item at each time step, and likewise the the current

state is placed iu the current-state slot and the old value moved to the last-state slot.)

Generality is the rate of the item being on rather than off and is used when selecting

between more than one possible context spinoff schema. When many context spinoffs

54

are possible for a given schema, the system picks the "most specific" item, which is

defined as the one which is on less frequently. This is the item with the least generality.

Accessibility is the rate of being reachable by a reliable chain of schemas beginning

with an applicable schema, highly accessible items have goal-directed actions created

with them as the goal. The gd-created-p flag indicates if a goal-directed action has

in fact been created with this item as a goal.

Conjunctions of items (primitive or synthetic) are stored in conj structures (short

for conjunction). The items included in a given conj are stored in an item-array (a

state-array) with a corresponding pair of positive/negative-flag-arrays which have a

flag set if that item is included positively /negatively in the item-array. An inclusion

array indicates which other conjs are included by a particular conj. Example: the

conj a & b & c would include the conjs a & b and a & c in addition to others. The

flag arrays and the inclusion-array are used to speed up certain algorithms required

by the system. Highly accessible conjunctions are eligible to be the goal of a goal

directed action, the data slot for each conj keeps appropriate statistics to support

this. Finally, the state of each conjunction is computed at each clock tick and placed

in the current-state slot, while the old value is moved to the last-state slot.

Synthetic items arc used to designate validity conditions of unreliable schemas

which are locally consistent. The unreliable schema which causes creation is called

the host-schema, while the synthetic item is the schemas "reifier". Synthetic items

are included as items in the item array and are treated 100% as if they were primitive

items, they can be in the context and result of schemas and conjunctions. However,

the state of a synthetic item is determined by the schema mechanism rather than by a

call to a microworld function. Certain extra data is needed to support the mechanism

determining the state directly. This data is stored in a syn-item structure. The host

schema slot contains the index into the schema array for the host schema. Item-index

is the index into the item array for the entry for this synthetic item. Maybe-state is

used by the routines which calculate the state for the synthetic items ~ it is merely

a place to stash an intermediate value before deciding what the current value is. On

duration and off-duration are the lengths of time the synthetic item tends to stay

55

on or off once placed in that state respectively. Set-time is the clock tick when the

item was last modified, while unknown-time is the clock tick when the item should

be automatically set unknown.

The action datatype is simply a way of relating human readable print names with

a series of functions which are called to execute a given action. It isn't even a LISP

structure, rather, it is a pair of arrays which have the same relative indexing.

The rest of the code

It is notable that even with the complexity of the algorithms required for the

schema mechanism that of approximately 3800 lines of code, roughly 1800 lines are

used to implement the datatypes referenced above. A solid grip of all of the datatypes

is essential before the remainder of the implementation code makes sense. The re

maining code is precisely what would be expected based on the description of the

algorithms in chapter 1 and the datatypes as described above and should be fairly

understandable. Some comments on some of the more unusual and complex functions

are in table 2.6.

The main function run ties the whole system together. Everything is initialized,

and a loop is entered which saves the output from each 50 clock ticks into a different

file. For each clock tick, the system first shows the state of the microworld. Applicable

schemas are marked, accessibility of items and conjunctions is updated and goal

directed actions are created. (In the current implementation, goal-directed actions

aren't fully supported, and so the system merely outputs a message indicating that

the given goal-directed action would have been created.) An action is selected at

random and executed, and the microworld clock-tick function is called. The state

of all items and conjunctions is then updated. Schemas which were applicable and

shared the executed action are then marked activated. The state of the synthetic

items is then updated. Each schema is marked to indicate if its result obtained, and

this data is used to update the reliability factor for each schema. Predicted results

are noted, and this information is used in updating the extended statistics for each

schema. Note that the extended statistics are taken afterthe microworld clock-tick

56

• schema-update-print-name: This function takes a schema which has a con
text, action and result defined as described in the schema datatype code and
in this document and sets its print-name slot to a human-readable description
of the schema. This function is somewhat sensitive and will break or produce
unusual results if the flags referenced in the schema datatype code are not set
correctly.

• init-everything: An unusual thing about this function is the selector argu
ment, which selects between three different microworlds. 0 selects the standard
microworld, 1 selects a microworld with only the left hand microworld object
and 2 selects a microworld with only the right hand object. This supports more
than one type of test run. This function also takes a random state filename as
an argument which allows the system to begin from a different random number
generator seed for different test runs. The main run function and the batch files
for the test runs take advantage of these two arguments.

• update-accessibility: This function is extremely complicated and requires a
lot of convoluted computations. It is also heavily commented. Note that [Dre91]
does not use this method to decide when to make a goal-directed action. [Dre91]
uses a simpler method which just creates a goal-directed action for each item
or conjunction which appears as the result of a schema. See section 1.4.3. The
method implemented here finds items which are accessible through a path of
. 75 reliability forward from any currently applicable schema. The maximum
length of a path is 5 schemas and the reliability of a path is the product of
the reliabilities of each schema on the path. Also, only positive accessibility is
important, as the program is finding items and conjunctions which it wants to
make composite actions for, and negative conjunctions don't make sense (they
would be equivalent to disjunctions), while negative items aren't very interesting
as goals (and also would proliferate much too easily).

• syn-item-update-state: The functions which implement the synthetic item
state algorithm are fairly complicated, but a good grasp of the datatypes and
the material in table 1.3 should serve to illuminate the code.

• run: As mentioned above in ini t-everything, this function takes a selec
tor and a random state filename as an argument, which it passes on to the
ini t-everything function. It also takes a string prefix which is concatenated
with a continuously increasing three digit number to produce a series of output
filenames for each fifty clock ticks.

Table 2.6: N ates on some of the functions in schema.lisp

57

I !JEUJ,111 L.11.lllQ.J!lt UIJ JM. lklL J)IAJ ·. JJJWS!Jbl h . <· .. ~. l!I, ...

function baa been caHecl, tlaey are exp]l!ded to. Ilia ltfa •.• Nl:ft tt. er.:..ef the action

and random el"ecta c•11d i. .._ c~•matl11 •. · ll:JIJ &M .,. •• may .add

one new schema, aay IWl8W of acmj9adifMt1 •w.nuMti_.tl_. IJ)'atMtic items
'

at the end of each clock tick.

57

Chapter 3

Results

3 .1 Test runs

[Dre91] and [Dre89] each have results which are drawn from a single reference run.

For this work, the reimplementation code was executed twenty times with a different

random number seed each time in a desire to get more statistically significant proof of

the ability of the schema mechanism to acquire large amounts of knowledge about the

microworld. The various test runs also serve to demonstrate that certain categories of

knowledge seem to form regardless of the order in which various actions are performed.

Each test run was ran until 10000 clock ticks went by, or the space for schemas

(3600 schemas maximum) or conjunctions (200 maximum) was exhausted. Many of

the test runs ended before clock tick 10000. However, all made it to at least clock

tick 7000 before terminating due to saturation and most made it much farther than

that. Two test runs made it to clock tick 10000, eight were terminated when they

ran out of conjunction space, and ten ran out of schema space. (See the first few lines

in tables 3.3, 3.4 and 3.5 for the last clock tick that data was saved for each test run

and the reason for early termination if the test run ended before clock tick 10000.)

The reference runs in [Dre91] and [Dre89] terminate when all of the available

memory is exhausted. The CM2 implementations also utilize a number of separate

processors in parallel, where each processor designates a schema or goal-directed

action. [Dre89, p. 94] indicates that the reference run from this source was limited to

59

a total of roughly 3600 schemas due to hardware, while [Dre91, p. 105-6] indicates

that the reference run from this source was limited to roughly 7400 schemas.

When using a single UNIX workstation, there is the option of using virtual mem

ory and there are no complications involving dividing up structures among physical

processors. Given enough time and patience, and a big enough hard disk for memory

paging, substantially more than 7400 schemas can be supported by the reimplemen

tation code. The lower number of 3600 schemas was chosen and used due to the

desire to perform a series of test runs, especially as the running time for each clock

tick in a single processor serial implementation increases linearly with the number

of schemas. It was deemed unreasonable to spend more than the forty CPU-days

required to execute the twenty test runs.

3.1.1 Output

The output file from each test run lists the schemas, synthetic items and goal-directed

actions which were built and the clock tick when they were built. The program also

checks through all of the schemas every 50 clock ticks, and outputs the number of

each schema which is highly reliable. An abridged output from a reference run is

in appendix section B. l. It has the reliability data removed and is only the output

from the first 2300 clock ticks. When the reliability data is included and the test run

complete, the output from a test run is a formidable amount of information to wade

through and understand, as it can run over one megabyte in length. On the other

hand, with one line per structure built by the program and a space-saving tradeoff for

reliability of schemas (just outputting the schema numbers of those above .9 reliability

each 50 clock ticks, as opposed to outputting some continuous reliability measure or

outputting the actual reliability numbers for all schemas each 50 clock ticks), this

output is basically as minimal as it can possibly be and still summarize most of the

important things which happened during a given test run.

60

3.1.2 Analysis program

An analysis program was written which reads in an output file from a test run

and analyzes it, selecting certain schemas, categorizing them and calculating certain

statistics for each category. By using this program, all twenty test runs were held

up to a consistent amount of scrutiny within a constrained amount of time. Another

benefit of using the analysis program was that certain regularities among the various

test runs were made obvious, many of which would have probably been obscured if the

raw output files had been analyzed by hand. The code for this program is in appendix

section A.5, and sample output from the program in in appendix section B.2.

Of course, this approach brings along with it the potential for abuse, as it is

possible that the program itself is obscuring schemas which are important by not

outputting schemas which do not fit a category and are not highly reliable. As used

in this work, the analysis program has been extremely useful and there have been

no perceived negative effects. Indeed, the major purpose of the analysis program is

to establish a focus on the schemas which belong to various categories or are highly

reliable and therefore worthy of further investigation.

All analysis of the output file did not concern structures which contained goal

directed actions or synthetic items, as goal-directed actions weren't fully implemented

in the reimplementation, and the synthetic items mentioned in Drescher's results

reference a goal-directed action. (See 3.2.13.)

3.2 Drescher's results and schema categories

In the result sections of [Drc91], Drescher identifies a number of schemas which he

feels are notable and display a significant amount of learning on the part of the

schema mechanism. The analysis program discussed above in section 3.1.2 indenti

fies schemas which belong to these categories, among other things. The following

sections summarize these categories and the results found by the original CM2 imple

mentation. A more detailed treatment of this material can be found in [Dre91, pp.

119-141]. Note that some of the examples below are taken directly from Drescher's

61

work, and therefore may reference coordinates which only make sense in the CM2

implementation.

3.2.1 Initial schemas

Both the CM2 implementation and the reimplementation start out initially with ten

bare schemas, one for each primitive action. These schemas are /hand//, /handb/,

/handr/, /handl/, /eye//, /eyeb/, /eyer/, /eye!/, /grasp/ and /ungrasp/.

3.2.2 Grasping schemas

The first schema built by the CM2 implementation is /grasp/he!. This schema asserts

that taking the grasp action results in the hand being closed. This schema is reliable,

despite an empty context, as the result follows unconditionally from the action. The

marginal attribution process builds this schema quickly because the result occurs

only when the grasp action is taken. A similar schema, /grasp/hgr, indicates that

the grasp action often leads to grasping an object. However, this action is unreliable,

and the CM2 implementation eventually builds tactl/grasp/hgr which indicates the

importance of having an object to the left of the fingers. A schema is classified as

a grasping schema by the analysis program if it has either grasp or ungrasp as its

action.

3.2.3 Coarse visual field shifting schemas

A series of schemas built by the CM2 implementation connect the various coarse

visual items to one another via the incremental gaze actions. A typical schema is

v/04/eyeljvfl 4. The full complement of these schemas indicate that if an object is

seen at a particular position, shifting the gaze will result in that object appearing at a

specific adjacent position (depending on which direction the glance action was taken

in). Note that the two coarse visual items must relate correctly to one another, for

example, moving the glance to the left causes a given object to shift to the right. (See

figure 3-1.) There are a total of eighty such schemas, twenty for each glance action,

62

,------------1
I
I
I
I
I
I
I
I
I
I
I
I

or-

~~

[~1 ___ _1 C) I

0

J
L ____________ ...J

eye I

,------------1
I

r
I

D
r
I

L ____________ ...J

Figure 3-1: Shifting the gaze often causes an object which is within the visual field
to appear at a new coarse visual item location. For example, the left hand object in
this figure is moved from vf04 to vf14 when the glance is shifted to the left.

which together form a network which elaborates the spatial relationships between the

various elements of the coarse visual field. The CM2 implementation builds fifty-five

of these schemas in its reference run [Dre91, p. 123].

The CM2 implementation also builds twenty-four schemas that concern the special

case of moving the image of the body. A typical schema of this type is vp11/eyeljvf30

where the image of the body appears at vf20 when the glance orientation is vpl 1.

(Again, see figure 3-1, the image of the body shifts from vf20 to vf30 through the

gaze action, but it is just as valid to use vp11 as an appropriate context.)

The analysis program catagorizes any schema with the format vf ?? /eye? /vf ??

(using the traditional UNIX notation where "?" indicates a position occupied by any

single character and "*" is used to represent any number of characters concatenated

together, including zero characters) as a coarse visual shift schema provided that the

two items and action relate correctly to one another as discussed above, and the two

63

items are not identical. It categorizes any schema with the format vp??/eye?/vf?? as

a schema which sees the body via coarse visual items provided that the image of the

body when the gaze is oriented at vp ?? appears at a position which relates correctly

to the action and the coarse visual item.

The coarse visual shifting schemas are reliable except when either a) the gaze

is already at the extreme orientation for the gaze shifting action or b) the object

happens to move as a result of a call to the clock-tick function after the action has

been taken and before the statistics are updated.

3.2.4 Visual field shift limit schemas

The coarse visual shift schemas referenced above are unreliable when the gaze is al

ready in an extreme orientation. In response, the mechanism builds a few schemas

like -vp018vf04/eyel/vf14 which relate the importance of not having the glance ori

entation at an extreme position. For example, in figure 3-1, moving the gaze to the

left works to shift the object from vf04 to vfl4. However, if the action eyel was taken

again, none of the coarse visual items would shift at all because the glance is already

oriented maximally to the left at vpOl. The schema -vp018vf04/eyel/vf14 and others

like it are built in response to this inconsistency. There are a very large number

of these schemas, the CM2 implementation just begins to learn about them in the

reference run [Dre91, p. 123]. The analysis program categorizes a schema as one of

this type if it has the form -vp??&vf??/eye?/vf??, the coarse visual items relate cor

rectly to the incremental glance action and are not identical, and the visual position

item represents an extreme where taking the glance action would not change the gaze

orientation.

3.2.5 Foveal region shift schemas

In a similar fashion to the coarse visual field shifting schemas, the mechanism discov

ers a number of schemas which deal with the shifting of objects within the detailed

foveal regions. fovbl 1/eyeb/fovx12 is a typical schema which is built by the mech-

64

eyeb

,------------1 ,------------1

a 0

L ____________ _J

Figure 3-2: The detailed visual appearance of an object often shifts from one foveal
region to another when a gaze action is taken. The hand in this figure is shifted from
the rear foveal region to the center foveal region when the gaze is shifted to the rear.

anism. Many visual details tend to co-occur between objects, and therefore this

schema is just as valid as the more obvious fovb12/eyeb/fovx12. Of course, if the

mechanism later sees an object which doesn't have both detail 11 and detail 12, the

reliability of the first schema may drop, and the second more obvious schema may be

built. The analysis program classifies schemas as this type if they have the format

fov??'? /eye? /fov'?'?'? and that the two different foveal regions relate correctly to one

another through the indicated gaze action. (See figure 3-2.)

3.2.6 Detail shift schemas

Tht> mechanism also discovers the relationship between the coarse visual field items

and the detailed foveal regions. In particular, the system builds a number of schemas

such as vf21 / eyeb /J ovx 12. These schemas relate a particular coarse visual field posi

tion with an eye movement which brings the visual details of the object to a particular

65

foveal region. Note that since fovbl 1 is never on unless v/21 is on, the mechanism

will never create fovbl l/eyeb/fovxl 2 once it has created v/21/eyeb/fovxl 2 due to the

deferral to a more specific schema discussed in section 1.4.2.

A schema is considered to be a detail shift schema by the analysis program if it has

the format vf??/eye?/fov??? or the format vf??&fov???/eye?/fov???. The coarse

visual item (and the initial foveal region, if the schema is of the second format) must

also relate correctly with the given eye movement and final foveal region.

Figure 3-2 illustrates a number of schemas of this type. vf21/eyeb/fovx12 indicates

that shifting the glance to the rear moves the hand into the center foveal region.

vf20/eyeb/fovb03 is similar, but the body is initially only visible in the coarse visual

region, as opposed to the previous example where the details of the hand were already

initially apparent in the fovb items. Many of the schemas of this category indicate how

to shift the gaze so as to make the details of a given object apparent. Finally, a schema

like vf21&fovbll/eyeb/fovx12 may be formed by the mechanism if vf21/eyeb/fovx12

has been created and the schema mechanism sees sees some objects which do not have

visual detail 11 or 12 moving from v/21 into the center foveal region. These schemas

improve on the reliability of their predecessors by constraining which objects have

f ovx 12 on when moved to the center foveal region.

3.2. 7 Visual network schemas

Incremental shifting of the glance changes the glance orientation in a specific and

reliable way. vpll/eyeb/vplO is a typical schema built by the system in response to

this regularity. Figure 3-2 illustrates an example of a successful activation of this

schema. These schemas form a lattice which shows the spatial relationship between

each of the visual proprioceptive items.

The system also builds schemas such as v/20/eyeb/vpl 0 because of the continuous

relative position of the body; the body appears at v/20 when vpl 1 is on. The schema

vf20&vpl l/eyeb/vpl 0, which explicitly relates the two visual proprioceptive items,

is built later by the mechanism. Figure 3-2 shows a situation where both of these

schemas are also successfully activated.

66

The CM2 implementation reference run builds 17 of the 24 vp??/eye?/vp?? sche

mas, and seven pairs of vf??/eye?/vp?? and corresponding vf??&Jvp??/eye?/vp??

schemas. Note that the CM2 results do not include schemas where the vp items did

not change. The analysis program recognizes schemas of all three formats as belong

ing to this category provided that the various items relate correctly to one another

and to the gaze action taken, but also accepts schemas where the vp items are iden

tical, provided that the gaze is in an extreme position where taking the indicated

gaze action does not change the gaze orientation. This increases the number of pos

sible vp ?? /eye? /vp ?? schemas to 36, and also increases the number of possible pairs

placed in this category. These schemas are included in this category because they

encapsulate valuable information about the limits of the possible gaze orientations.

3.2.8 Hand movement network schemas

Similarly, the mechanism builds a series of schemas which relate the various haptic

proprioceptive items to one another. hplO/handl/hpOO is a typical schema. The

system may build schemas like tasteO/handl/hpOO instead in situations where the

hand is immediately in front of the body before taking the hand action. The tasteO

item always occurs with hplO as tasteO is a detail indicating what the hand "tastes

like" when in front of the body, and the system makes an arbitrary decision as to

which of the two items is included in the context spinoff. Figure 3-3 illustrates both

of these schemas.

[Dre91, p. 127] does not clearly indicate if schemas like hpOO/handl/hpOO, where

the hand is at an extreme orientation and doesn't actually move, are to be considered

part of this network. If they are included, there are a total of 36 schemas, 9 for each

incremental hand action. The analysis program includes these schemas in the hand

network category; all schemas of the format hp??/hand?/hp?? are included provided

that the hand position items relate correctly to one another and the incremental hand

action. If the items are identical, they must indicate an extreme position where the

given hand action does not change the position of the hand.

67

hand I

1------------1

I
I"
I
r
I

I
·1

I
·1

I
...:........ - ~ - =--- - ·~

L ____________ ...J

1------------1
I
I
I
I
I
I
I
I
I
I
I
I

.

ar _____ p
I
I"
I r .
I~

I
·1
I

·1

I

L ____________ ...J

Figure 3-3: Shifting the hand results in the hand moving to a new position.

The CM2 implementation builds all of the schemas in the haptic proprioceptive

network in its reference run, with the exception noted earlier where two schemas of

the form taste'? /hand? /hp?? are built instead of the corresponding hp?? /hand? /hp??

schema. The analysis program considers these schemas to be part of this classification,

as well as bodyf/hand? /hp?? and tactb/hand? /hp??, provided that the hand motion

and resulting hp item indicate that the hand was, in fact, immediately in front of the

body at hp 10 before the action was taken.

3.2.9 Negative consequence schemas

Taking a glance action or hand motion action changes the current position of the hand

or gaze orientation (unless the hand or gaze is already at an extreme position). [Dre91,

pp. 126-7] shows /eyelj-vf23, /eyel/-vp33 and /handb/-hp12 as representative sche

mas of this type. However, [Dre89, pp. 138-9] shows the schemas vf23/eyef/-vf23,

vp12/eyel/-vpl2 and hp34/handb/-hp34, which is actually a fairly radical difference

68

in definition. The analysis program accepts a schema as a member of this category

if it has a hand or eye action and has a result which is the same as its context, but

negated. In other words, the analysis program is looking for schemas of the type

described in [Dre89] for this category.

3.2.10 Hand to body schemas

The schema mechanism also learns that when the hand is near the body, it can

be brought immediately in front of the body, which affects the taste and coarse

tactile sensations felt by the body and hand. Schemas such as hp11/handb/taste2,

hpl 1/handb/bodyf and hpl 1/handb/tactb are formed by the CM2 implementation to

represent this knowledge. These schemas are similar to those which are in the hand

network, just as the hand position in front of the body can be referenced to the hand

positions around it through hand motions, the inverse can be done as well. The

analysis program accepts any schema with the format hp'?'?/hand'?/(taste'? or tactb

or bodyf) as a member of this classification provided that the initial hand position

and incremental hand action result in the hand being in front of the body at hpl 0.

3.2.11 Seeing hand movements via coarse visual items

When the hand is moved and is currently visible, the transitions taken by the various

coarse visual items lead to the formation of schemas such as vf21/handf/vf22. (See

figure 3-4.) These schemas are unreliable, as the object appearing at a given coarse

visual field position doesn't necessarily have to be the hand. The analysis program

considers schemas of the format vf?'? /hand? /vf'?'? to be members of this class provided

that the two coarse visual items are not identical and they relate to one another and

the incremental hand action correctly.

3.2.12 Seeing hand movements via detailed visual items

When the hand starts out in one of the foveal regions, however, the schema mechanism

can easily discern between the hand and other objects. A large number of schemas

69

handf

,------------1

a o
IJl~
~J.
J_J?L~

L ____________ _J

,------------1

a

L ____________ _J

Figure 3-4: Shifting the hand when it is visible often causes a transition to a new
coarse visual item (and possibly to a new foveal region).

70

such as fovb22/handf /fovxl 0 form to relate two foveal regions to one another through

a hand movement. Over time, the CM2 implementation adds details which allow the

mechanism to discern between the hand and other objects which appear in the various

foveal regions to the context. This process eventually culminates in the formation of

schemas like Seelland@21/handf/Seelland@22 where Seelland@21 is shorthand for a

series of visual details which serves to distinguish the hand from all other objects.

(Position 21 corresponds to the rear foveal region and the fovb visual detail items,

while position 22 corresponds to the center foveal region and fovx visual detail items.)

The analysis program classifies schemas of the format fov'?'?'?*/hand'?/fov'?'?'?* in this

category provided that the foveal regions referenced by the first item in the context

and result relate correctly to one another and the hand action.

3.2.13 Further results of the CM2 implementation

Drescher's CM2 implementation accomplishes a number of other interesting mile

stones in its reference run, which are summarized in tables 3.1 and 3.2. Again, each

example in the table is taken directly from Drescher's work, and therefore may refer

ence coordinates which only make sense in the CM2 implementation. By a notational

convention, if an item or conjunction of items appears in the action position for a

schema, the schema has a goal-directed action with the goal of turning each of those

items on (if positively included) or off (if negatively included).

The reimplementation code is unable to verify any of these further results, as each

of them requires executable goal-directed actions in order to form.

3.3 Results confirming Drescher's work

The results of analyzing the twenty test runs for the schemas discovered and cat

egorized by Drescher are shown in tables 3.3, 3.4 and 3.5. This data is further

summarized in table 3.6. Discussion of this data and conclusions can be found in

chapter 4. Note that these tables only concern the categories detailed in section 3.2.l

through section 3.2.12. In particular, the structures found by Drescher which utilize

71

• Touching what is seen: The mechanism creates a series of schemas such as
fovf02/SeeHand@22/tactf which are reliable and give the mechanism the ability
to touch an object which is seen through a series of incremental hand actions.

• Seeing what is touched: Similarly, tactf/SeeHand@32/vf33 forms, which
gives the mechanism the ability to shift the gaze so as to bring the hand and
the touched object into view.

• Moving the hand into view: vp23/hp23/SeeHand@22 is one of a number of
schemas which relate various gaze orientations with the ability to see the details
of the hand by shifting it to a given orientation.

• Shifting the gaze to see the hand: A network of schemas such as
hp33/vp3.63/SeeHand@22 relate various hand positions with the ability to see
the hand by shifting the gaze to a specific orientation.

Table 3.1: Further results of Drescher's CM2 implementation, part one.

goal-directed actions and are detailed in tables 3.1 and 3.2 cannot be duplicated by

the reimplementation, as goal-directed actions are not fully supported by the reim-

plementation.

3.4 Further results of the reimplementation

The lack of executable goal-directed actions limits the ability of the reimplementation

to verify all of the results shown in Drescher's work. However, this does not keep the

system from generating many interesting schemas which were not discussed in either

[Dre91] or [Dre89].

The analysis program was initially designed to find and categorize only those

schemas discussed in section 3.2.1 through section 3.2.12. It also displayed all schemas

which were not categorized and had been quite reliable during their life span. By

manually examining a number of these lists of schemas, additional categories were

added to the analysis program. This process was iterated a few times until categories

existed in the analysis program for most of the schemas that were understandable,

deemed interesting and occurred in multiple test runs. This process was by no means

72

• Persistent positional palpability: (Try saying that three times fast!) The
synthetic item [/hp23/tactl], when on, indicates that there is a palpable object
at body relative position 1,3. A series of these synthetic items serve as a map
for touchable objects.

• Persistent positional visibility: The synthetic item [/vp21/vf14] indicates,
when on, that there is a visible object at microworld position 3,5. Again, a
series of these synthetic items serve as a map for visible objects.

• Persistent identity details: The system also generates synthetic items which
can identify certain objects, such as [/hp23/text0] and [/hp02/text3] which
denote two different unique objects if textO and text3 do not co-occur between
the two objects. Similarly, [/vp23/fovr10] and [/vp23/fovr20] may form and
allow the system to tell the difference between two different objects which can
both appear at the same position at different points in time (such as the hand
and either of the microworld objects).

• Inversely indexed persistence: The schema mechanism, for many synthetic
items like [/hp23/text0], also builds [/text0/hp23]. To the extent to which
textO is unique, this serves as an inverse index, where the first structure could
be thought as a map indicating what was adjacent to hp23, the second structure
is a map which says where a specific object is located.

• Coordinating visible and palpable-object representations: The cre
ation of various synthetic items culminates in the creation of schemas such as
[/hp23/tactl}/vp23/fovl33 and [/vp23/fovl03}/hp23/tactl. The first schema re
lates that if the world is in the state where an palpable object is at body relative
position 1,3, moving the gaze orientation to vp23 will bring the palpable object
into view. The second schema is analogous, but in the other direction, stating
that a visible object can be touched.

• Relational items: Synthetic items such as [/vf02/vf1 OJ relate the position of
one object to another, as opposed to the other synthetic items discussed earlier
which relate objects to the frame of reference of the body.

Table 3.2: Further results of Drescher's CM2 implementation, part two.

73

test run II 51
total clock ticks 9850 9350 9050 9350 7000 9250 8500

schema saturated yes yes yes yes
conj saturated yes yes yes

0: initial 10 10 10 10 10 10 10
reliable 10 10 10 10 10 10 10

1: grasping 8 7 7 7 2 7 8
reliable 6 6 6 6 2 6 6

2: vf/eye/vf shift 51 40 40 43 30 42 43
reliable 49 36 36 36 30 40 40

3: vf shift limit 16 10 3 7 0 6 5
reliable 6 7 2 5 0 5 4

4: fov /eye/fov shift 282 112 153 161 174 156 318
reliable 164 68 115 78 129 117 220

5: vf/eye/fov 198 131 128 124 98 121 162
reliable 171 114 106 104 75 95 125

6: visual network 63 56 59 46 40 47 43
reliable 49 52 51 40 36 43 34

7: hand network 38 41 36 41 25 36 42
reliable 34 36 34 34 24 31 35

8: x :=:} -x 0 0 0 0 0 0 0
reliable 0 0 0 0 0 0 0

9: hand to body 15 16 15 15 12 20 15
reliable 14 15 15 15 12 20 11

10: seeing hand move vf 1 2 1 3 1 2 0
reliable 1 0 1 2 1 1 0

11: seeing hand move fov 103 26 129 36 28 73 39
reliable 79 21 106 20 28 42 30

Table 3.3: Statistics for Drescher's classifications, test runs 1-7.

74

test run II 9 I 10 I 11 I 12 I 13 I
total clock ticks 8950 8350 9500 8250 8900 8550 10000

schema saturated yes yes yes
conj saturated yes yes yes

0: initial 10 10 10 10 10 10 10
reliable 10 10 10 10 10 10 10

1: grasping 8 7 7 4 7 7 8
reliable 7 6 5 3 6 6 7

2: vf /eye/ vf shift 46 44 44 36 45 48 42
reliable 39 39 41 32 42 43 40

3: vf shift limit 9 6 8 0 7 4 3
reliable 8 5 6 0 6 3 3

4: fov /eye/fov shift 222 310 257 188 242 311 116
reliable 157 216 181 138 161 222 78

5: vf/eye/fov 135 155 208 127 183 182 132
reliable 118 124 173 112 143 160 119

6: visual network 56 42 54 47 62 49 59
reliable 51 32 44 41 51 39 51

7: hand network 36 32 38 33 34 36 40
reliable 28 28 30 29 29 33 38

8: x =} -x 0 0 0 0 0 0 0
reliable 0 0 0 0 0 0 0

9: hand to body 8 15 20 15 15 16 14
reliable 7 15 18 15 12 14 12

10: seeing hand move vf 0 1 0 3 1 0 1
reliable 0 1 0 3 1 0 0

11: seeing hand move fov 13 32 18 124 44 27 102
reliable 7 26 11 95 38 20 81

Table 3.4: Statistics for Drescher's classifications, test runs 8-14.

75

test run II 15 I 16 I 11 I 18 I 19 I 20 I
total clock ticks 9550 8200 10000 8800 8200 8700

schema saturated yes yes yes
conj saturated yes yes

0: initial 10 10 10 10 10 10
reliable 10 10 10 10 10 10

1: grasping 6 4 7 6 8 8
reliable 5 3 5 5 7 8

2: vf/eye/vf shift 35 40 40 42 36 38
reliable 34 37 38 38 34 38

3: vf shift limit 6 1 6 5 0 7
reliable 5 1 4 4 0 6

4: fov /eye/fov shift 147 79 163 302 223 267
reliable 84 47 118 201 169 211

5: vf/eye/fov 120 121 115 162 140 127
reliable 103 95 104 127 120 116

6: visual network 58 45 59 57 51 54
reliable 54 40 51 48 49 43

7: hand network 42 41 46 37 36 40
reliable 37 34 39 33 31 35

8: X => -X 0 0 0 0 0 0
reliable 0 0 0 0 0 0

9: hand to body 15 14 15 15 13 11
reliable 15 11 15 14 12 11

10: seeing hand move vf 0 0 2 4 1 1
reliable 0 0 1 1 1 1

11: seeing hand move fov 24 71 32 86 106 3
reliable 15 52 27 57 69 3

Table 3.5: Statistics for Drescher's classifications, test runs 15-20.

76

category II min I max I median I mean I
0: initial 10 10 10 10.0

reliable 10 10 10 10.0
1: grasping 2 8 7 6.65

reliable 2 8 6 5.55
2: vf/eye/vf shift 30 51 42 41.25

reliable 30 49 38 38.1
3: vf shift limit 0 16 6 5.45

reliable 0 8 4 4.0
4: fov /eye/fov shift 79 318 188 209.15

reliable 47 222 138 143.7
5: vf/eye/fov 98 208 131 143.45

reliable 75 173 116 120.2
6: visual network 40 63 54 52.35

reliable 32 54 44 44.95
7: hand network 25 46 37 37.5

reliable 24 39 33 32.6
8: x :=} -x 0 0 0 0.0

reliable 0 0 0 0.0
9: hand to body 8 20 15 14.7

reliable 7 20 14 13.65
10: seeing hand move vf 0 4 1 1.2

reliable 0 3 1 0.75
11: seeing hand move fov 3 129 36 55.8

reliable 3 106 28 41.35

Table 3.6: Statistic summary for Drescher's classifications.

77

exhaustive, and it is certain that there are significant schemas built by the system

that are not mentioned in this paper.

3.4.1 Shifting the gaze to see the body

These schemas are similar to the ones which form part of the visual network, but

instead of indicating what the resulting gaze orientation is likely to be if an object

(most likely the body) is present at a given location and the gaze moved, they indicate,

from a series of gaze orientations, which gaze movements will bring the body into

view, and where it will be seen. A typical schema built by the reimplementation

is vp11/eyeljvf30 (illustrated by figure 3-1). The format recognized by the analysis

program is vp??/eye?/vf?? where the elements of the schema must relate correctly

to one another and the object seen by the coarse visual item must be the body for it

to be included in this category.

Another related, but separate category, contains schemas which bringing the body

into detailed view from a given gaze orientation. A typical schema is vp11/eyeb/fovb20

(illustrated in figure 3-2). The analysis program uses a similar format and has similar

requirements for this category as it does for the prior category.

3.4.2 Using the body as a visual position reference

These schemas do the opposite indexing as the previous category, as when the body

is seen in a foveal region and recognized, moving the gaze in a given direction will

result in a specific final gaze orientation. A typical schema is fovb20/eyer/vp20.

This category also includes schemas with the foveal item negated, as long as

the visual position item is also negated, as in the schema -fovb20/eyef/-vpl 1. This

schema is actually a very strong statement, as it indicates if fovb20 is off, moving

the gaze forward will never result in a gaze orientation of vpl 1. In other words, this

schema says that fovb20 is always on whenever the gaze is oriented at vpl 0, as opposed

to the less constrained schema fovb20/eyer/vp20 which merely says that if fovb20 is

on, and the gaze is moved right, the resulting gaze orientation makes vp20 on. This

78

second schema, even if highly reliable, admits the possibility of the existence of other

schemas with the same action and result and completely different context items. The

first schema, if highly reliable, makes a very strong statement about the conditions

required to reach the result state.

The analysis program recognizes schemas of either format fov'?'?'?/eye'?/vp'?? or

-fov'?'?'? /eye'? /-vp '?'? as belonging to this category provided that the items relate

correctly to one another and the object seen is, in fact, the body.

3.4.3 Hand network constraint schemas

Distinctly related to the hand network schemas, these schemas indicate which transi

tions are not possible. A typical schema is -hp21/handl/-hp11. Again, these schemas,

when reliable, make stronger statements about the microworld than the previously

discussed hand network schemas. In particular, this schema says that hpl 1 is only

reachable through a hand! action if the hand is at hp21 before the action is taken.

Schemas which belong to this category must satisfy precisely the same requirements

as for the hand network schemas, except that both items are negated.

3.4.4 Visual network constraint schemas

A similar set of constraint schemas exist for the visual network. -vp02/eyeb/-vp01 is a

schema which is built by the reimplementation and included by the analysis program

in this category. The analysis program looks for schemas which match the format

-vp'?'?/eye'?/-vp'?'? and have the correct relationship between the various components.

3.4.5 Coarse visual shift constraint schemas

-vf'?'?/eye'?/-vf'?'? schemas, if the coarse visual items relate correctly between one

another and the gaze action, are placed in this category by the analysis program.

These schemas give an alternate perception of the coarse visual field shift network

described earlier. -vfl 1/eyef/-vfl 0 is a typical schema built by the reimplementation

79

which indicates that vf10 cannot be turned on by the eyef action if vf11 is off before

the action is taken.

3.4.6 Detailed visual shift constraint schemas

These schemas give a different description of the foveal region shift network described

earlier. If the foveal regions relate to one another through the gaze action correctly,

the analysis program puts all schemas of the format -fov???/eye?/-fov??? in this

category. -fovx01/eyeb/-fovf01 is a typical schema, however, the two details need not

be identical. (Note: this category appears as category 24 in tables 3. 7, 3.8 and 3.9,

not in the same order as these categories are presented here.)

3.4.7 Coarse to detailed visual shift constraint schemas

-vf31/eyer/-fovb10 is a typical member of this category. The analysis program looks

for schemas which match this format and have a gaze action which moves the object

at a given coarse visual coordinate to a foveal region.

3.4.8 Detailed to coarse visual shift constraint schemas

-fovr02/eyef/-vf31 is a typical member of this category. The analysis program looks

for schemas which match this format and have a gaze action which moves the object

in a given foveal region to a specified coarse visual coordinate.

3.4.9 Detailed to coarse visual shift schemas

Strangely enough, neither [Dre91] nor [Dre89] report any schemas of the format

fov??? /eye? /vf??, even though the development of these schemas occurs in parallel

with the coarse to detailed visual shift schemas which were reported in these sources.

Figure 3-1 illustrates a situation where the schema fovb02/eyel/vf31 has been activat

ed and successful due to the shifting appearance of the hand. The analysis program

has the same requirements for membership in this category as for the preceding one,

except that the items are not negated.

80

1------------1

r.;---1 ,---1
1D I I 01

1-1-1--1 I
I I I I I I --1-- --T-

l I
I~ I
I~ I
L...------~

L ____________ _J

Figure 3-5: Through a large series of schemas, the reimplementation code learns
that there are three different objects which each can appear in specific regions of the
microworld.

3.4.10 Seeing objects in different visual regions

The reimplementation builds a number of very reliable schemas which match one of

the formats vp'?'?/eye'?/vf'?'?, vp'?'?/eye'?/fov'?'?'?, -vp'?'?/eye?/-vf?? or -vp'??/eye?/

-fov'?'?'?. Examined separately, each schema makes some statement describing where

objects appear in the microworld. Taken together, these schemas seem to describe

which areas of the microworld each object may appear in. In particular, the left hand

and right hand objects are each constrained to be at one of four microworld positions,

and the hand is constrained to be in one of nine microworld positions. (The body

is, of course, immobile and is only seen in one position.) These three regions where

the three movable objects can be seen are effectively separated and defined by the

series of schemas defined by the mechanism. (See figure 3-5.) The analysis program

accepts schemas which match any of the four formats provided that the components

relate to one another correctly.

3.4.11 Hand to body constraint schemas

The hand position in front of the body is only reachable from certain hand positions.

-hp20/handlj-taste1 is a typical schema which belongs to this category. The analysis

81

program has the same requirements for these schemas as it does for the hand to body

schemas, except that the context and result items must be negated.

3.4.12 Hand movement against object

The reimplementation learns that an object which is felt by the hand cannot be pushed

out of the way and indicates this knowledge by building the schemas

ta ctr /handr/tactr, tactl/handljtactl, tactb/handb/tactb and tact/ /hand/ /tactf The

system also builds schemas which have various text? items substituted in positions

where the tact/ makes sense, as the former items are detailed versions of the latter

coarse item.

These schemas work even when the hand is grasping an object. If the hand is

moving left, the object moves with the hand, and the tact/ or text? item is still on

after the action is taken. If the hand is moving in any other direction, the object in

that direction still blocks the movement of the hand.

The analysis program recognizes each of the four schemas noted above, plus vari

ations where a text? item is substituted for a tact! item.

3.4.13 Backward hand movement against body

Similarly, the reimplementation learns about situations where the hand is in front of

the body and moved backward against it. A series of schemas of the format (taste?

or tactb or bodyf)/handb/(taste? or tactb or bodyf) are created which represent the

various items which are on whenever the hand is in front of the body. Schemas which

match this format are placed in this category by the analysis program.

3.4.14 Hand movement from coarse visual to foveal region

schemas

[Dre91] and [Dre89] mention discovery of vf?? /hand? /vf?? and fov??? /hand? /fov??

schemas by the CM2 implementation, but they do not mention the construction of

vf?? /hand? /fov??? schemas. This category is included for completeness, and contains

82

those schemas which match this format ud have tile cem11d ~pa between

components.

3.4.15 Support data from teet nma

The twenty test runs were alao ana.lyaed for the catapiee alMtilecl ia thia section. The

data gathered is preeented in tables 3. 7, S.8 aad U It •• ... mviaed in table 3.10.

Discussion of this data and CGllduaioaa cu be fo1tM ia ••,:pt• 4.

83

test run II 21 31 51
total clock ticks 9850 9350 9050 9350 7000 9250 8500

12: vp/eye/vf body 17 14 16 18 12 11 12
reliable 16 12 16 15 11 10 11

13: vp/eye/fov body 31 37 27 47 25 24 25
reliable 29 35 20 47 25 20 25

14: fov body /eye/vp 8 6 12 10 5 11 9
reliable 7 4 7 6 5 9 8

15: hp required for hp 10 5 12 5 11 12 6
reliable 10 5 11 5 10 11 6

16: vp required for vp 5 6 6 7 6 7 9
reliable 5 6 6 7 6 7 9

17: vf required for vf 22 26 29 27 25 30 29
reliable 20 22 27 23 21 26 26

18: vf required for fov 71 78 101 84 102 115 91
reliable 61 70 97 68 86 108 77

19: fov required for vf 18 28 35 23 26 12 26
reliable 12 21 28 11 20 9 22

20: fov /eye/vf 77 50 46 53 40 58 61
reliable 54 38 34 33 37 41 43

21: visual regions for objects 53 71 50 45 102 57 51
reliable 43 62 43 31 90 54 41

22: hp required for body 5 4 5 5 5 0 5
reliable 5 4 5 5 5 0 5

23: hand against object 8 7 7 6 1 6 8
reliable 6 6 7 5 1 5 4

24: fov required for fov 64 142 197 136 182 68 75
reliable 50 109 142 95 129 56 60

25: hand against body 20 24 22 15 17 12 22
reliable 12 19 19 10 13 9 12

26: hand movement vf <¢:? fov 44 25 37 61 8 53 15
reliable 30 20 34 40 3 33 10

Table 3.7: Statistics for new classifications, test runs 1-7.

84

test run II 81 9 I 10 I 11 I 12 I 13 I
total clock ticks 8950 8350 9500 8250 8900 8550 10000

12: vp/eye/vf body 15 13 15 13 20 11 16
reliable 11 13 11 11 15 9 15

13: vp/eye/fov body 36 25 25 25 47 24 36
reliable 32 21 25 24 45 23 29

14: fov body /eye/vp 6 9 8 9 9 7 8
reliable 4 6 4 5 8 6 6

15: hp required for hp 8 11 8 11 11 7 6
reliable 8 9 8 11 10 7 6

16: vp required for vp 7 6 8 5 5 6 5
reliable 7 6 8 5 5 6 5

17: vf required for vf 23 26 26 24 27 21 29
reliable 22 25 23 24 23 18 23

18: vf required for fov 85 96 65 75 79 71 82
reliable 70 89 56 73 73 54 64

19: fov required for vf 32 16 43 10 23 19 45
reliable 21 12 32 8 17 16 31

20: fov /eye/vf 54 61 43 45 63 63 35
reliable 43 46 30 36 48 45 26

21: visual regions for objects 51 102 66 95 67 70 74
reliable 44 84 52 84 40 49 50

22: hp required for body 9 5 0 5 5 4 5
reliable 9 5 0 5 5 4 5

23: hand against object 8 3 3 2 8 7 7
reliable 5 1 1 2 8 6 7

24: fov required for fov 148 122 135 81 147 104 209
reliable 93 86 78 71 109 70 147

25: hand against body 8 17 15 20 19 10 24
reliable 6 12 8 17 13 3 21

26: hand movement vf {::} fov 39 9 29 41 24 16 49
reliable 17 3 22 32 15 13 27

Table 3.8: Statistics for new classifications, test runs 8-14.

85

test run II 15 I 16 I 17 I 18 I 19 I 20 I
total clock ticks 9550 8200 10000 8800 8200 8700

12: vp/eye/vf body 16 9 17 15 14 13
reliable 14 7 15 15 13 11

13: vp/eye/fov body 35 22 31 45 37 4
reliable 34 22 26 45 37 4

14: fov body/eye/vp 14 11 8 8 8 8
reliable 11 10 2 7 7 7

15: hp required for hp 6 6 5 11 6 7
reliable 6 6 5 8 6 7

16: vp required for vp 7 9 6 7 6 7
reliable 7 9 6 7 6 7

1 7: vf required for vf 34 30 30 30 36 34
reliable 31 28 30 25 34 31

18: vf required for fov 108 124 122 85 98 110
reliable 100 109 99 58 77 100

19: fov required for vf 26 29 38 32 53 40
reliable 20 25 27 22 37 31

20: fov /eye/vf 54 37 38 47 29 49
reliable 41 23 31 33 20 42

21: visual regions for objects 47 62 62 29 41 70
reliable 43 48 46 19 32 59

22: hp required for body 5 5 5 5 5 9
reliable 5 5 5 5 5 9

23: hand against object 7 6 6 3 7 8
reliable 7 6 6 2 7 7

24: fov required for fov 111 223 134 36 207 161
reliable 85 165 95 21 166 131

25: hand against body 24 10 23 18 12 18
reliable 22 9 18 12 11 12

26: hand movement vf {::} fov 17 46 39 63 31 29
reliable 11 42 21 51 25 15

Table 3.9: Statistics for new classifications, test runs 15-20.

86

category // min / max / median / mean /

12: vp/eye/vf body 9 20 14 14.35
reliable 7 16 12 12.55

13: vp/eye/fov body 4 47 27 30.4
reliable 4 47 25 28.4

14: fov body /eye/vp 5 14 8 8.7
reliable 2 11 6 6.45

15: hp required for hp 5 12 7 8.2
reliable 5 11 7 7.75

16: vp required for vp 5 9 6 6.5
reliable 5 9 6 6.5

17: vf required for vf 21 36 27 27.9
reliable 18 34 24 25.1

18: vf required for fov 65 124 85 92.1
reliable 54 109 73 79.45

19: fov required for vf 10 53 26 28.7
reliable 8 37 21 21.1

20: fov /eye/vf 29 77 49 50.15
reliable 20 54 37 37.2

21: visual regions for objects 29 102 62 63.25
reliable 19 90 46 50.7

22: hp required for body 0 9 5 4.8
reliable 0 9 5 4.8

23: hand against object 1 8 7 5.9
reliable 1 8 6 4.95

24: fov required for fov 36 223 135 134.1
reliable 21 166 93 97.9

25: hand against body 8 24 18 17.5
reliable 3 22 12 12.9

26: hand movement vf {:} fov 8 63 31 33.75
reliable 3 51 21 23.2

Table 3.10: Statistic summary for new classifications.

87

Chapter 4

Analysis, Discussion and

Conclusions

4.1 Test run evidence confirms Drescher's results

Drescher, in [Dre91], discusses results which are found by the CM2 implementation

which this paper splits into 22 different categories. Of these categories, 10 are unable

to be built by the reimplementation code, due to the fact that the reimplementation

does not fully implement goal-directed actions. The other 12 categories formed the

basis of the analysis program.

Table 3.6 summarizes the results of analyzing all twenty test runs for these 12

schema categories. As a whole, the test runs support the results found by Drescher

in 11 of the 12 categories.

All twenty test runs built /grasp/he! and further, each built /ungrasp/-hcl. 19

build /grasp/hgr, and 18 of these build tactl/grasp/hgr. Each of these schemas is

mentioned by Drescher, and this is excellent verification of these results.

Beyond these results, 16 test runs have one or more schemas of the form

text? /grasp/hgr which have the ability to discern between various objects, as the

body is immobile and cannot be grasped successfully, and tactl/grasp/hgr is there

fore not very reliable. 17 test runs build /ungrasp/-hgr, which is closely related to

/grasp/hgr and /ungrasp/-hcl.

89

There was another interesting result, too, one which is not very intuitive.

-hcl/grasp/hcl is built in 9 test runs. This schema indicates the prerequisite that

the hand cannot be already closed when the grasp action is taken for it to become

closed reliably, as very occasionally, if the hand is closed and the grasp action taken,

the call to clock tick forces the hand open as the number of consecutive clock ticks

with the hand closed is three. This indicates how good the marginal attribution al

gorithm is, actually, as this schema indicates understanding the necessity of opening

the hand first if one wants to close the hand and keep it closed for a while reliably.

All twenty test runs build at least 30 reliable coarse visual item shifting schemas.

The coarse visual item shift limit schemas, however, are quite a bit more rare. In

three of the twenty test runs, not a single shift limit schema was formed. This is

probably due to the fact that, in order to form, the system must both repeatedly

try to shift the gaze from a particular extreme position in a particular direction, and

the object which is seen via the coarse visual item must be in the same position. In

detail, to have vf11/eyer/vf01 spinoff -vp20&vf11/eyer/vf01, the system must believe

that creating a child schema with -vp20 added will make a more reliable version of

this schema. The marginal attribution algorithm, to come to this conclusion, must

see a series of trials which alternate between having vp20 on and off with the parent

schema activated (i.e. vfl 1 on and eyer action taken). The series of trials must be

at least fifteen in length with at least eight vp20 off trials where the result obtains

and at least seven vp20 on trials where the result does not obtain in order to have

the system decide it is a significant context item in the negative direction. These are

a pretty serious group of requirements, which is most likely why not very many of

these schemas are built in each test run.

While the CM2 reference run builds a total of 79 coarse visual field schemas

(including those that reference a visual position to the position of the body), the

test runs, on average, only built 41 such schemas. This discrepancy may be due to a

misunderstanding. Neither [Dre91] or [Dre89] specify if schemas like vfOO/eyel/vfOO

should be included in this category. The analysis program requires that the two items

be different and related to one another correctly via the gaze action in order to be

90

placed in this category, which eliminates schemas such as the one above. Another

possibility is that the alternation between random and goal-directed behavior in the

toplevel control loop for the CM2 implementation might serve to bias the system

towards discovering more about coarse visual items, as they are some of the first

goal-directed actions built, there would be a natural bias towards these types of

actions.

Massive numbers of foveal shift schemas are built in the reimplementation test

runs. A number of these schemas are unreliable, as the system does not know which

details co-occur between objects, and has to discover this. However, most of the test

runs also have a number of schemas such as fovf01&fovf02/eyef/fovx32 where the

system is clearly trying to improve the reliability of the result by defining precisely

which object is meant by the context. As the body can only appear in the rear foveal

region (fovb items), it cannot be referred to by this schema, and in fact, as it cannot be

shifted into any other foveal region, it can never be the subject of a schema of this type.

Interestingly enough, of the three other objects in the world, only two objects satisfy

the context when in the front foveal region, and these two objects both have detail

32 on, so this schema is reliable provided that the gaze isn't oriented at an extreme

position. This is an improvement on its parent schema, fovf01/eyef/fovx32, whose

context is satisfied by every object in the microworld but whose result only follows

reliably for two objects. This process of iterative additions to the context eventually

culminates in schemas with contexts which match only those objects which have the

particular visual detail referenced in their results. fovrOO&fovr02/eyer/fovx03 is a

good example, as its context can only be satisfied by the hand (as the body cannot

appear in the right foveal region) and the hand has visual detail 03. Context items

may also be negated, for example, fovlOl &-Jovl20/eyeljfovxl 1 has a satisfied context

when either the hand or the right hand object is in the left foveal region. Again,

both objects have visual detail 11 on, and so further identification of each object

is unnecessary. As noted earlier, however, a good number of intermediate schemas

which are unreliable due to incorrect detail relationships must be built in order to

build reliable schemas with more specific contexts. All visual shift schemas may also

91

be unreliable due to the fact that they do not take into account the limits of the gaze

orientation, as mentioned earlier.

Every test run also has a number of schemas which concern shifting an object from

a coarse visual item position into a foveal region. While most of these schemas in each

test run are of the format vf??/eye?/fov???, at least one in each test run includes

a detailed foveal item added to the context, such as vf12f:Jfovl00/eyeljfovx12. The

context in this schema, to improve reliability, discerns between the two objects which

can appear at vfl 2, the hand and the left object, where the hand has both details

00 and 12 and the left hand object has neither. Through this series of schemas the

system is again relating precisely which objects have the various visual detail items

on. However, most of these schemas deal with the more common situation where the

details of the object are not apparent until the object is shifted into a foveal region.

In these situations, the schemas which are most reliable are those which have a visual

detail result which is shared among all of the objects which can appear in that foveal

reg10n.

The numbers reported for the visual network schemas in table 3.6 don't quite

match with those reported in [Dre91], where 17 visual network schemas and 7 pairs

of schemas which relate a coarse visual item seeing the body (and visual position,

for the other schema in the pair) to a given visual position were described with non

identical visual position items. As mentioned earlier, however, the analysis program

accepts schemas where the two visual position items are identical as long as they

are at an extreme where the gaze action will not change the gaze orientation, which

definitely increases the number of schemas belonging to this category.

To get a better idea of what the numbers in the table for this category represent,

the first test run was examined directly. The analysis program found 63 visual network

schemas in the first test run. 19 schemas were traditional visual network schemas as

reported in [Dre91] such as vp12/eyer/vp22, where the two visual position items are

different from one another. There were a number of schema pairs as discussed in

[Dre91], however, many of these pairs covered material which was already adequately

covered by other schemas. Only one schema pair was found which effectively added

92

a segment of the network which was m1ssmg. A total of another 5 schema pairs

were found, but they did not add anything new to the network. 12 schemas were the

complete set of limit schemas such as vpOO/eyel/vpOO. 7 schemas dealt with seeing the

body when at an extreme gaze orientation, such as vf31/eyel/vp00 where the glance

orientation doesn't change. Another 5 schemas combined these two ideas together,

adding coarse visual information to limit schemas, such as vp21 &vfl O/eyer/vp21,

where the body appears at vflO when the gaze is oriented at vp21. This brief analysis

indicates that the system did, in fact, succeed in acquiring a substantial body of

knowledge about the visual position network. A quick analysis of a few of the other

test runs again yielded data which supported an estimate of roughly 80% of the 24

possible visual position schemas are built in each test run. Similarly, roughly 80% of

the hand position network is constructed in each of the test runs.

The system was very good at building schemas which relate information about

how to move the hand to the body. In most cases, the system built over 75% of the

20 possible schemas of the form hp??/hand?/(taste? oT tactb OT body/). (20 schemas

are possible as the hand has three taste details and can be moved in four different

directions.) In two of the twenty test runs, the entire group of schemas is built.

The test runs rarely built schemas which related the situation where the move

ment of the hand was seen via the coarse visual items. [Dre91 J makes it clear that

these schemas were uncommon in its reference run. This, coupled with the fact that

the system was able to see the hand move in other modes, leads to the conclusion

that the lack of vf'?'? /hand? /vf?? schemas in the test runs is not notably unusual. In

particular, the schema mechanism was usually successful in finding a number of sche

mas which related the hand shifting between various foveal regions. The formation of

these fov??? /hand? /fov??? schemas seemed to be very dependent on the particular

test run, however. These schemas will not form if the hand is rarely moved around

in the foveal regions. A more likely reason for a lack of these schemas is that the

hand, when in a foveal region, was often in an extreme position and the hand action

didn't result in a new hand position. When the system was successful in finding these

schemas in a given test run, it even built schemas such as fovx01 &fovx03/handl/fovl32

93

where the context accurately picks the hand out of all objects which can appear in

the center foveal region.

One category was basically not confirmed by the reimplementation, that of negated

consequence schemas. In this particular case, [Dre91] and [Dre89] disagreed in what

was expected to form a negated consequence schema, and the more constrained format

of x/(eye? or hand?)/-x shown in [Dre89] was used. Not a single schema of this format

was found in any of the test runs. However, examination by hand showed that many

schemas of the format given in [Dre91] were formed, in fact, for many of the schemas

in the other categories, /(eye? or hand?)/-x schemas are required precursors to the

formation of the appropriate child schemas.

4.2 Analysis of all results

The division between Drescher's results and those which were discussed in section 3.4

is an artificial one. With the massive amounts of data, and Drescher's interest in

spending most of his time explaining and discovering the most complex structures

the CM2 implementation built in its reference run, it is likely that the CM2 imple

mentation did build some of each of the schemas first discussed in this work, but

that their significance wasn't commented upon. However, these schemas give a much

stronger body of proof of the ability of the marginal attribution algorithm to find and

codify regularities in the microworld.

With the more detailed results given above, it's clear that the system has a good

grasp of how the hand actions work. (Apologies for the awful pun ... I just couldn't

restrain myself.) In particular, the -hcl/grasp/hcl schema, built in nine of the twenty

test runs, shows an unexpectedly pure insight into the mechanics of the microworld.

The microworld, if the hand is closed, keeps a count and only allows the hand to

remain closed for three time units. The extended context of /grasp/he! keeps track

of each item to see if it helps predict the successful activation of the schema. In

particular, it is determined that hcl has the peculiar effect of needing to be off in

order for the result of having hcl on occur more reliably. This is precisely because

94

occasionally, when hcl is on and the grasp action taken, taking the action doesn't

change the situation at all, and the call to clock tick which occurs after each action is

taken results in the hand being opened, as it has been closed for three clock ticks. The

system learns that the hand ends up closed most reliably when it is open immediately

before the grasp action is taken. To amplify this, if the system had a goal of ending up

with the hand closed, it would have the knowledge necessary to recommend opening

the hand first, and then closing it, which reliably gives the desired result.

By any reasonable measure, the system clearly understands the relationships be

tween its various visual items and the glance actions. In every test run, it generates

hundreds of schemas which relate coarse visual items to one another, detailed visual

items to one another, coarse visual items to detailed visual items, and vice versa. It

also learns how to relate sensed visual positions (through the visual proprioceptive

items or from seeing the body at a given coarse visual item position or detailed foveal

region) to other visual positions through glance actions. Each of these relationships

also explore the abilities and limits of the visual system, through indications of how to

view the visual details of an item by shifting the gaze since the foveal area is limited,

as well as through schemas which indicate the limits of the gaze orientation.

These relationships are further strengthened by groups of constraint schemas.

These schemas, first discussed in this work, help to define the various networks dis

cussed in the preceding paragraph by indicating the items required for a given transi

tion to take place. Each test run found a number of constraint schemas corresponding

to each of the types mentioned above - -vf'?'?/eye'?/-vf'?'?, -fov'?'?'?/eye'?/-fov'?'?'?,

-vf '?'?/eye'? /--fov'?'?'?, -fov '?'?'?/eye'? /-vf '?'? and -vp '?'?/eye'? /-vp '?'?. These schemas in

dicate, in a very strong way, which transitions involving visual items are impossible

in the microworld, given certain situations. -vfl 1/eyef/-vfl 0 stands in contrast with

its relative vfl 1/eyef/vfl 0, as the first schema, if reliable, indicates that none of the

other coarse visual items have anything to do with the state of vfl 0 when the eyef

action is taken; if vfl 1 is off, then vfl 0 always ends up off. Essentially, when this

schema is reliable, it makes a statement about all 25 of the visual items at once, as

24 of the items are apparently unrelated to achieving the result, and only one item is

95

related to the result. The second schema, when reliable, still admits the possibility of

other schemas with different contexts which do not include vfl 0 and are also reliable.

These constraint schemas are a major development by the schema mechanism; when

taken along with all other related schemas, they indicate an understanding which

seems to go beyond any sort of simple cause and effect nature.

Similarly, but more simply, the system has a substantial body of knowledge about

the relationship between hand position and the hand actions, as well as between hand

positions and the position of the body. The system learns both hp??/hand?/hp??

and constraining -hp??/hand?/-hp?? schemas, effectively representing a network

which relates the various hand positions to one another through the hand actions.

Gaps in this network are filled in by relationships between hand positions and tactile

feedback from having the hand in front of the body. The system, by exploiting these

relationships, is able to move the hand to the body if it is in an adjacent position.

It is also able to predict which position the hand will end up in after it is moved

when the system can feel the hand in front of the body through the tactile items. It

is also able to understand the constraints involved, as the tactile feedback unique to

having the hand in front of the body can only be achieved by moving the hand into

the correct position; no other situation can satisfy these constraints.

The system also gains the ability to understand that pushing its hand against an

object which it can feel is futile; the object does not move. In the case of pushing

against the body, the system also learns that the hand does not change position and

remains in front of the body, as well as learning precisely which items are on when

the hand is in front of the body.

The abilities of the system aren't just relating the senses and actions having to

do with a particular faculty to one another. It is able to, and in fact does, relate

the visual and hand systems to one another. vf??/hand?/vf??, fov???/hand?/fov???

vf?? /hand? /fov??? and fov??? /hand? /vf?? schemas all form to indicate the visible

result of a hand motion.

The system also learns a lot about objects in the microworld. It can predict where

the image of the body will appear in response to a given gaze movement from schemas

96

such as vp??/eye?/vf?? and vp??/eye?/Jov???. It also can use the visual perception

of the body as a way of determining the current gaze orientation. fov???/eye?/vp??

schemas can give this reliably when the foveal detail item is one which is included

only by the body. In addition, the system effectively creates a map of the microworld

with an understanding of the regions in which each object can appear. This map is

created over time, and is represented as a series of vp??/eye?/vf??, vp??/eye?/fov???

and their corresponding constraint schemas which collectively indicate which objects

(and with which detail items) appear at each region of the microworld. The body

location schemas mentioned earlier are similar and can be thought of as a special case

where the object is restricted to a one unit area and therefore does not move.

In summary, the system displays an incredible amount of understanding about the

world, creating a large body of knowledge merely by observing what happens when

actions are taken. This is especially notable when it is remembered that the system

starts out with virtually no information about the microworld whatsoever, just a set

of blank schemas, one for each action. It does not know which items relate to one

another or to a particular action; the names by which each of these is referred to

in this paper is merely a series of names which are given to the items and actions

by convention and are only human readable. The system itself discerns between

items strictly by item number and between actions by action number. Given this

impoverished start, its accomplishments are even more notable.

4.3 Performance

Direct examination of the timing data generated when executing the test runs in

dicates that the length of time required to process each clock tick increases linearly

with the number of schemas in the system. This is most likely largely due to the

serial implementation of the system, as each schema must be updated in sequence

throughout the process. A parallel implementation may be able to achieve substan

tially better performance if carefully coded. The current implementation finishes a

test run to 10000 clock ticks in roughly 2 1 /2 days of CPU time on a DEC Station

97

5000/120 with 16 megabytes of memory. However, as has been noted earlier, faster

UNIX workstations which run Lucid LISP already exist and will continue to be devel

oped. Indeed, if the current code was ran on the fastest available UNIX machine, it

would probably finish in roughly 12 hours, as an estimate. This is one big advantage

enjoyed by this implementation - as better hardware and Common LISP software

becomes available, this system can take advantage of it without requiring anything

but minor changes.

In addition, it is almost certain that a clever algorithm designer could find ways

of improving the speed of certain crucial portions of code by combining various steps,

building new data structures to speed up certain portions of the algorithm, or perhaps

even coming up with a completely different but functionally equivalent algorithm.

4.4 Future directions

This work, while begun as an attempt to verify Drescher's results, is now incredibly

open-ended. The possibilities for future work based upon this one are endless, perhaps

even more so as the implementation uses Common LISP and future researchers are

strongly encouraged to use and modify the code which is included in appendix A for

this purpose.

These suggestions are by no means exhaustive, and range approximately from the

simple to the complex.

• Run the code on a faster UNIX workstation with more memory, and see if the

system learns more in a longer test run.

• Find more schema categories and add them to the analysis program, see which

of them show up in most or all of the test runs. See if there is a strong corre

spondence between what schemas are built in a given category and which are

built in another category; it is entirely possible that there are inter-category

dependencies, and this hasn't been examined at all.

98

• Try running the code with fewer primitive items in the microworld, and see how

this affects the types and numbers of the schemas built. Do the same with a

richer microworld with more primitive items. Try decreasing or increasing the

number of possible gaze orientations or hand positions.

• Improve the analysis program so the system can compare test runs to see exactly

which schemas were built in every test run. Use this data to further refine the

categories and the overall impression of what knowledge the system learns about

the microworld. Also use this data to develop a full picture of when the system

develops each category.

• Analyze the microworld rigorously, deciding which regularities should be able

to be learned and how complex learning each of the regularities should be (i.e.

how often is there a counterexample, and how often does the given situation

occur?) Give a theory for which categories should exist, and in which order they

should be created. See if the mechanism can build all of these categories, and if

other categories are discovered, use this to redo the analysis of the microworld.

• Figure out a good way of storing the controller data required for execution of the

goal-directed actions. Complete the implementation of goal-directed actions,

remove the accessibility tests and instead use the method given in [Dre91] to

decide when a new goal-directed action should be built.

• With goal-directed actions complete, make them executable, adding appropriate

controls to make sure the system does not favor one set of actions over another.

See if the rest of Drescher's results can be verified. If not, why not?

• Analyze the algorithms used in the system and redesign them for greater effi

ciency.

99

Bibliography

[Dre86] Gary Drescher. Genetic ai - translating piaget into lisp. Technical Re
port A.I. Memo No. 890, Massachusetts Institute of Technology Artificial
Intelligence Laboratory, February 1986.

[Dre89] Gary Drescher. Made-Up Minds: A Constructivist Approach to Artificial
Intelligence. PhD thesis, Massachusetts Institute of Technology Artificial
Intelligence Laboratory, September 1989.

[Dre91] Gary Drescher. Made-Up Minds: A Constructivist Approach to Artificial
Intelligence. MIT Press, Cambridge MA, 1991.

[Mae92] Pattie Maes. Slides from 4.996: Modeling and building autonomous agents.
(lecture given on the 19th), March 1992.

[SESA86] Douglas Smith, Maurice Eggen, and Richard St. Andre. A Transition
to Advanced Mathematics. Brooks/Cole Publishing, Monterey CA, 2nd
edition, 1986.

289

