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Micron-Scale Display Technology 

I. Introduction 

Phillip Alvelda 1 

NE43-810 
alvelda@ai. mit. edu 

The primary objective of this current research project, is to design, fabricate, and test a micron­
scale liquid crystal-based virtual display. The intended application for this device is a small hand­
held or eyeglass-mounted display for systems such as. a portable "pen-mounted oscilloscope" 
(tricorder?) or heads-up type eyeglasses. Note that the design requirements for this system are 
quite different from those of similar spatial light modulators fabricated for optical computing 
applications where focal lengths are typically much longer. As such, several additional 
psychophysical effects were considered when optimizing the display design for visual inspection. 

In spite of several complications due to the addition of a liquid crystal surface, the low-mass and 
static power dissipation characteristics of CMOS processes are shown to be quite usable as an 
active electronic back-plane diplay driver. The final version of this prototype single-chip display 
is expected to have a resolution of approximately 1000 x 1000 pixels on a 1 centimeter die. 

Several preliminary designs for VLSI display sub-circuits will be presented, and the architecture 
of the first-generation prototype awaiting fabrication through MOSIS will be discussed. 

II. Background 
A simple display can be fabricated by depositing an appropriate liquid crystal on the top of an 
active CMOS backplane, and then sealing it with a cover glass whose inside surface has been 
coated with a transparent conductor such as indium-tin-oxide. In equilibrium, the liquid crystal 
sandwiched between the CMOS die and the coverglass assumes a particular orientational order 
which when illuminated, is opaque. When a voltage is applied by the CMOS circuitry to a pixel 
pad underneath the liquid crystal, the electric field re-aligns the LC molecules in an orientation 
which is transparent. Since the Aluminum MET AL2 used in the pixel pads is a good diffuse 
reflector, simply shining a light on an array of appropriately addressed pixels produces an image. 

Unfortunately since each pixel can range in size from 10 to 50 microns across, it produces a very 
tiny image that is difficult to see without magnification. A quality microscope can provide a nice 
image, but is rather inconvenient to lug about attached to one's eyeglasses. On-the-other-hand, a 
simpler, more light-weight optical system introduces considerable distortion. 

Several companies have begun compensating for this distortion in "virtual-reality" displays by pre­
processing the image data in real-time to pre-warp the image data before it is "distorted" by a 
smaller optical system. Obviously, a real-time image processing computer is not yet typically 
light-weight and would severely limit the portability of such a system. The solution demonstrated 
in this project, is a VLSI pixel array which is designed to approximate the inverse of the optical 

1This work is supervised by Tom Knight for DARPA. 
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distortion function of a typical small lens system 
without additional processing simply by appropriate 
layout and scaling of the pixel elements. 

III. The Pixel Array 
For the preliminary device design, 324 pixels were 
positioned in a precise 18 x 18 array tailored to exactly 
account for the distortions introduced in the LEEP 
optical system (See Figure). Ray tracing experiments 
through the actual optics resulted in a Distortion 
function which was monotonically increasing with 
radius from the optical axis. Therefore, there exists an 
inverse function which can negate this nonlinear 
distortion. A third-order polynomial fit to the 
distortion function data provided an approximation to 
the inverse function: 

D-1(r)=r+Kr 3 K=0.32 
1 1 l ' 

This radially symmetric function would then be used to 
position and scale the individual pixels of the display. 
Since the array is very regular, albeit of peculiar and 
specific form, a silicon compiler was used to 
implement a scalable architecture, where multi-size 
chips can be auto ''instanced and routed" with the late­
binding specification of only a few parameters such as 
ARRAY_WIDTH, PACKING_DENSITY, etc. And 
while the L language from mentor has some of these 
features, it does not have any built-in trigonometric 
functions or floating-point math functions (i.e. 

exponentials, logs, sin, cos, etc ... ). This Auto-Chip Figure 2.0 LEEP Distorion Function. 
generator will also be presented. 

Other issues which will also be discussed : 
• Polygon generation for transformed pixel arrays 
• Pixel Jitter and Anti-Aliasing 
• Light-sensitivity and shielding 
• Failure modes and redundancy 
• Device Interface 

References: 
[l] Burns, D., Microcircuit Analysis Techniques using Field 

effect Liquid Crystals, Proc. SPIE Volume 1256, 1987. 
[2] Channin, D., Liquid Crystal Techniques for Observing 

Integrated Circuit Operation, IEEE Transactions on 
Electron Devices, October, 1974. 
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Optimization of Loops for Dynamic 
Dataflow Machines 

Boon Seong Ang 1 

NE43-205, hahaha@abp.lcs.mit.edu 

Using the Id language, Monsoon has successfully 
demonstrated the concept of dynamic dataflow 
execution. Programs that are difficult to par­
allelize explicitly show considerable parallelism 
when compiled [3] and run on Monsoon. How­
ever, run time statistics show that considerable 
overhead is incurred compared to Von Neuman 
code executing on uniprocessors. Loops, in par­
ticular, are expensive. 

We pursued several compilation techniques for 
loops that produce Monsoon code using fewer dy­
namic instructions than previous methods. We 
first focused on producing good code for se­
quential loops, which usually form the innermost 
loops and have the biggest impact on run time. 
We found two new compilation schema with sig­
nificantly lower overhead. We also implemented 
strip mining of k-bounded loops, which weakens 
data-dependence and thus increases parallelism; 
and the lifting of allocation of reusable storage, 
including frames and certain heap objects, out 
of loops. We are currently collecting run time 
statistics and comparing these with C/Fortran 
code running on MIPS R3000. 

In a sequential loop, only one iteration of the loop 
executes at any one time. From an implemen­
tation point of view, the loop requires only one 
frame, and passing values from one iteration to 
the next need not occur across the network. We 
thus expect the code for sequential loop to be 
much more efficient than k-boundeif loops. 

Implementing sequential loops is tricky. As the 
tags of tokens from different iterations destined 
for the same instruction are the same, tokens 
from different iterations could be confused. The 
compiler must ensure that this cannot happen by 
adding artificial data-dependence to the dataflow 

1 Supervisor: Arvind. Funding is provided in part by 
the Advanced Research Projects Agency of the Depart­
ment of Defence under Office of Naval Research contract 
NOOOH-89-1-1988 

2 See [2] for a definition of sequential and k-bounded 
loop. 

Figure 1: Culler's Sequential Loop Schema 

graphs. Culler[2] gave one such schema that uses 
two barriers. This is shown in Figure 1. 

This schema, however, is very expensive. Con­
sider this simple loop that computes the suma­
tion of 1 to n: 

{for i <- 1 to n do 
next s = s + i; 

finally s}; 

Under Culler's schema, each iteration takes 22 
tokens 3 . 

With the new schema shown in Figure 2, we 
can ensure no confusion occurs. Self gating, as 
shown in the figure, is unnecessary for a nexti­
fied variable4 that is strict in itself , a situation 
encountered often in real code. This can be deter­
mined by the compiler. Under the new schema, 
our summation example takes only 12 tokens per 
iteration. 

The implementation of sequential loops on Mon­
soon can be further improved by observing that 
mechanisms that support fine grain parallelism 

3 Each token takes one cycle. 
i A nextified variable is a variable that is updated each 

iteration. 
& A nexified variable is strict in itself if computation of 

its nezt value always requires its current value. 
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Figure 2: New Sequential Loop Schema 

and synchronization, such as switching at loop 
iteration boundaries, and synchronization with 
nextified variable are not needed in sequential 
loops. Instead, we synchronize at the iteration 
level. The values of nextified variable are passed 
via memory locations instead of tokens. We call 
this Frame Based Nezified Variable optimization. 
With this schema, the summation example takes 
only 7 tokens per iteration. 

Strip mining breaks the data dependence be­
tween iterations of a FOR loop when all the up­
dates to nexified variables are of some simple 
form, such as incrementing or decrementing a 
nexified variable by a constant amount each it­
eration. This can be extended to include opera­
tions that are both commutative and associative 
and whose resulting values are not used withi~ 
the loop but merely returned from it. 6 

Strip mining of a k-bounded FOR loop converts 
it into a pair of doubly nestled loops. The outer 
loop executes k iterations in parallel while the 
inner loop, which does the original work, is se­
quential. 

Strip mining has two big advantages: 

• It allows us to use the sequential loop 
schema, which is much cheaper then the k­
bounded loop schema, while offering parallel 
execution of the loop. 

6 Overflow, underflow and precision in the case of float­
ing point operations may ca.use some problems. 

• It breaks the coupling between the k frames 
of a loop, allowing each to proceed inde­
pendently at full speed. Previously, if one 
of the k frames resided on a PE that was 
busy executing other work, the entire loop 
stalled. With strip mining, once the k se­
quential loops are started, a frame on a busy 
PE will not affect the execution on the other 
(k - 1} frames. 

Allocation of reusable storage can be lifted out of 
loops. Certain resources allocated within a loop 
are only needed over one loop iteration, for in­
stance, frames for procedure invocation and loops 
nestled within the outer loop. Instead of allocat­
ing and deallocating once per iteration, we can 
do so just once for each frame of the loop. Once 
frame allocation is lifted out, some other initial­
ization code, such as storage of loop constants7 

can also be lifted out. 

The same idea can be applied to heap objects 
with life-times of a constant number ofloop iter­
ations. Such examples, which abound in Id code 
doing iterative numerical computation, can eas­
ily be detected at compile time. As before, we 
can recycle those heap objects once they become 
"garbage". 

We expect the optimizations outlined here to pro­
duce efficient Monsoon code from loops written 
in Id. So far, results are encouraging. [1) contains 
a detail report of this work. 

References 

[1] B. S. Ang. Optimization of Loops for Dy­
namic Datafiow Machines. MS thesis, MIT, 
Cambridge MA, Under preparation. 

[2] D. E. Culler. Managing Parallelism and Re­
sources in Scientific Datfiow Programs. PhD 
thesis, MIT, Cambridge MA, Jun 1989. 

[3] J. E. Hicks. Id Compiler Back End for ETS 
and Monsoon. CSG Memo 310, MIT Lab. for 
Comp. Sci., Cambridge MA, Jun 1990. 

7 A loop-constant is a variable that is computed outside 
the loop, and remains constant over the entire loop. 
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Virtual I\rfemory for Data-Parallel Cornputing 

Lars E. Bader Thomas H. Carmen 
leb@theory.lcs.mit.edu thc@theory.lcs.mit.edu 

MIT Laboratory for Computer Science 
Cambridge, MA 02139 

Some applications that are well-suited to data­
parallel computing, such as large finite-element prob­
lems, must sometimes process more data than will 
fit in the RAM of even the largest parallel computer. 
Consequently, the data typically resides on a disk ar­
ray and is brought into RAM as needed. 

To support such applications, we have designed a 
virtual-memory system for a data-parallel machine. 
Our system manages the disk I/0 efficiently and re­
moves the burden of planning disk I/O from the ap­
plication programmer. In this report, we focus on the 
issues of data layout, page-replacement policy, and 
permutation routing. 

Our virtual-memory model lays out vectors across 
processors and across a set of disks organized into 
blocks of records. The parallel machine has P pro­
cessors, D disks, and E records per disk block. A 
track consists of a set of blocks at the same location 
on each disk, and it contains ED records. Vectors 
are organized by track on disk and by track image 
in RAM. Each parallel 1/0 operation transfers E 
records between each disk and RAM, with ED/ P 
records transferred per processor. 

Significant data-parallel operations fall into three 
general categories-elementwise operations, scans, 
and permutations-but the performance of only scans 
is affected by how vectors are laid out. As shown 
in Figure 1, vectors can be laid out in row-major, 
column-major, or blocked fashions. 

Our system uses blocked layout because it is a good 
compromise in limiting the number of scans across all 
the processors and the number of disk I/Os. Letting 
N be the number of records in a vector, S be the time 
required to scan once across the P physical proces­
sors, A be the time to perform an arithmetic opera­
tion, and IO be the disk I/O time, the scan times for 
the different vector-layout methods are the following: 

• With row-major layout, 

This research was supervised by Professor Charles E. Leis­
erson and wa.s supported in part by the Defense Advanced 
Research Projects Agency under Grant N00014-91-J-1698. 

• With column-major layout, 

• With blocked layout, 

N,(N N) N 
Tblocked = ED!::>+ 2 p +ED - 2 A+2 ED IO. 

Scans for blocked layout require only one physical 
scan per disk track and hence are faster than for 
row-major layout. Specifically, Tblocked :::; Trow when 
A :::; S and N 2': ED 2': 2P, which holds for vec­
tors larger than a track since ED » P and S » A. 
With blocked layout, scans read each track only once, 
rather than twice, as is the case with column-major 
layout. Hence, scans are faster with blocked layout. 
Specifically, Tblocked :::; Teal when S :::; IO - A and 
N ;::: ED, which holds for vectors larger than a track 
because IO » S »A. 

The paging system manages vectors based on their 
size, with tracks treated as pages. When vectors 
fit in RAM, we want the system to be roughly as 
fast as a 11011-VM system. If we were to treat all 
tracks equally under LRU replacement, then accesses 
of large vectors could result in all small vectors be­
ing paged out of RAM. In fact, an LRU scheme may 
be pointless for very large vectors, such as those that 
exceed the RAM size. Observe that the first track 
accessed for such a vector may be paged out by the 
time the last track is accessed, and thus accessing 
each track yields a page fault. Our system partitions 
RAM into two halves, with separate LRU replace­
ment. One half holds only tracks of large vectors 
(more than one track), and the other half holds only 
tracks containing small vectors (at most one track). 
\i\'ith this scheme, accesses to large and small vectors 
do not interfere with each other's paging behavior. 
The paging system may be made yet more efficient 
by distinguishing between large vectors with size less 
than the large-vector RAM, for which LRU replace­
ment may reduce disk references, and those that are 
larger than the large-vector RAM, for which LRU re­
placement does not improve paging performance. 

Our paging system is optimal when vectors are ac­
cessed in a stack-like fashion. Performance for large 
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Figure 1: Three different ways to lay out vectors on a disk array, indicating the mapping of vector elements to 
processors Po, P1, ... , P1. Each 4 x 8 rectangle delimits a track. (a) Row-major layout. If a vector spans more than 
one track, it occupies a contiguous set of N / B D tracks, as shown. (b) Column-major layout, shown for 64 elements 
per processor. (c) Blocked layout. It can be viewed as a transpose within each track of the row-major layout, so that 
the ordering is column-major within each track. 

vectors and small stack-based vectors is competitive. 
For those data-parallel languages that tend to have 
stack-like accesses, good performance results. In ad­
dition, our method is competitive if locations of small 
vectors are fixed on pages. A system with the ability 
to relocate small vectors, however, may outperform 
our paging method. 

Our system supports permutation operations, pro­
viding special routines for some types of permuta­
tions that can be performed faster than general per­
mutations. RAM is cleared to provide work space for 
large permutations, which are expensive. For gen­
eral permutations, we sort N target addresses us­

. t 1 cl' t h' h . e ( N lgN ) mg ex erna ra 1x sor , w 1c uses BD lg(M/BD) 

parallel I/Os. The optimal sorting and permuta-

t . b d. 8 ( N lg(N/B)) II l I/0 I. d 10n oun IS BD Ig(M / BJ para e s, ac 11eve 

by the more complicated algorithms of \litter and 
Shriver and also Nodine and Vitt.er. Some classes 
of permutations that can be done faster than gen­
eral ones are monotonic routes, mesh communi­
cation, bit-permute/complement (BPC) pennuta­
tions (which include matrix-transpose, bit-reversal, 
vector-reversal, hypercube, and matrix-reblocking 
permutations), and bit-matrix-multiply /complement 
(BMMC) permutations (which include Gray-code 
permutations). Monotonic routes require only one 
read per source track and one write per destination 
track. Storing the mesh so that each track holds a 
submesh, the elements on ea.ch track in a. mesh per­
mutation are destined for either the same track or one 
other, requiring 8(N /ED) parallel I/O's. We have 
implemented Carmen's algorithm [1] for BPC permu­
tations, and we have found that it provides a signif­
icant speedup over the external radix-sort met.hod. 
Mesh and BMMC permutations a.re not yet implc-

mented specially. 
There are three ways to incorporate special per­

mutations into the virtual-memory system. First, 
we can treat them a.s general permutations. Sec­
ond, we can provide linguistic constructs for them, 
avoiding the overhead of generating target addresses 
and enabling direct calls to special code. For exam­
ple, the source language we use includes a pack in­
struction, which performs a type of monotonic route. 
Third, we can detect them at run time and call spe­
cial code. Currently, we detect BPC permutations 
at run time by forming a candidate bit permutation, 
using j(lg(N/B) + 1)/Dl parallel I/Os, and then ver­
ifying that it describes the given permutation, using 
at most N/BD I/Os. 

Our system uses the compiler for the source lan­
guage NESL and the interpreter for the stack-based 
intermediate language VcoDE developed by Blelloch 
et al. Our virtual-memory system is a complete im­
plementation of CVL, which is the machine interface 
for VcoDE. Rather than implement it on a real data­
parallel machine, we have chosen for convenience to 
simulate it on workstations, which allows us to gen­
erate machine-operation statistics that might be dif­
ficult to determine on a real ma.chine. The simulator 
is written in about 7500 lines of C. 

References 

[ l] Thomas H. Cormen. Fa.st permuting in disk ar­
rays. In Proceedings of the 1992 Brown/MIT Con­
ference on Advanced Research in VLSI and Par­
allel Systems, pages 58-76, 1992. Conference ver­
sion is an extended abstract; full paper to appear 
in Journal of Parallel and Distributed Computing. 
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The Optimal Synthesis of VLSI Array Architectures 
From Algorithmic Descriptions 

Donald G. Baltus1 

The capabilities of VLSI technology now allow many al­
gorithms to be realized monolithically using application­
specific array architectures. While early work in this area 
involved finding and describing architectures to solve spe­
cific problems, more recent research has been directed to­
wards the development of systematic methodologies for 
synthesizing array architectures from high-level algorith­
mic descriptions2 . This paper describes the array synthe­
sis system DESCARTES3 which is being developed by 
the author at MIT. As compared with other work in this 
area, DESCARTES is applicable to a wider class of algo­
rithms and is the only system of its kind that incorporates 
systematic and exhaustive architectural exploration into 
the synthesis process. 

The input to DESCARTES is essentially a set of affine 
recurrence equations. Many important algorithms includ­
ing those in the areas of digital signal processing, graph 
theory, and matrix computation can be described using 
such recurrences. The target implementation space is a 1-
or 2-dimensional mesh of application-specific processing 
elements. Neither the processors nor their interconnec­
tions need be uniform throughout the array. For a given 
input description, DESCARTES generates a set of pos­
sible RTL-level implementations. The synthesis process 
includes an architectural exploration phase which guaran­
tees that all legal designs which optimize a user-specified 
temporal objective function are generated. A simple 
matrix-vector product example will be used throughout 
the paper and is described below. The associated depen­
dency graph (DG) is shown in Figure 1. 

3 

1 ~ i ~ 3, x(i) = L a(i,J) * b(j) 
j=l 

Since algorithms are mapped onto a class of architec­
tures with well defined structural and interconnection 
characteristics, important implementation-level costs can 
be accurately predicted at the architectural level. More 
specifically, the structured nature of the target architec­
ture allows spatial relationships between computations to 
be seen at the architectural level. This information in 
turn allows communication costs to be accurately mod­
eled and incorporated into the design exploration process. 

1 MIT Rm. 36-881 (don@rle-vlsi.mit.edu). This research is su­
pervised by Prof. Jonathan Allen and is funded by Analog Devices 
and IBM. 

2 A survey of different techniques can be found in [1] while infor­
mation on more recent work can be found in [2] and [3]. 

3 DESCARTES stands for Design Environment for Systematic 
Cross-Level ARchiTectural Exploration and Synthesis. 
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Figure 1: The Data Dependency Graph 

While the ability to accurately predict implemen­
tation-level characteristics is essential for effective 
performance-directed synthesis, the availability of these 
predictors complicates the tasks of architectural explo­
ration and synthesis. If communication costs are ignored, 
the problems of scheduling and of allocation can be solved 
in isolation. If communication delay is modeled as a func­
tion of relative spatial locations, however, the scheduling 
and allocation tasks become more closely linked and must 
be solved together. 

The problem of combined scheduling and allocation is 
approached by casting the problem of architectural explo­
ration as the problem of exploring different embeddings 
of the nodes of the data dependency graph into a space­
time lattice. For each node, the location in one dimen­
sion designates the time at which the computation takes 
place while the location in the other dimensions desig­
nates the spatial location where the computation will be 
performed4

• 

Clearly not all embeddings in the space-time lattice 
are valid. More specifically, the nodes must be embedded 
such that causality and communication delay constraints 
are satisfied, such that processor functionality constraints 
are satisfied, and finally such that bandwidth and I/0 
constraints are met. 

Architectural exploration is thus reduced to the prob­
lem of exploring different embeddings that satisfy the con­
straints outlined above. Each embedding represents a dif­
ferent architecture. If each node of the dependency graph 
can be embedded independently, however, the problem 

4 While the space-time lattice is typically 2- or 3-dimensional, 
techniques have also been developed for mapping higher­
dimensional lattices onto 1- or 2-dimensional target array 
architectures. 



of architectural exploration becomes computationally in­
tractable. The number of possible embeddings is expo­
nentially related to the problem size and there is no guar­
antee that any regularity that existed in the original al­
gorithm specification will be preserved as that algorithm 
is mapped into the implementation space. 

This problem is solved by grouping similar nodes and 
moving the members of each such group together during 
architectural exploration. A group of similar nodes cor­
responds to a subset of the dependency hierarchy whose 
elements are identical in all aspects except index location. 
Since similar nodes necessarily correspond to references of 
the same array variable, a set of spatial relationships is 
inherently defined among the members of each group. 

Architectural exploration involves mapping each such 
group into the space-time lattice in a way that ensures 
that the spatial relationships established within each 
group are maintained. Affine transformations are used 
to perform this mapping5 . The use of these transforms 
provides a constrained moved set for the architectural ex­
ploration, ensures that desired spatial relationships are 
preserved, and finally guarantees that the schedule asso­
ciated with each group will be an affine function of spatial 
location. The node groupings for the example and one set 
of affine mappings is shown in Figure 2. 

A b x 

Figure 2: Similar Node Groupings and One Affine Em­
bedding in Space-Time 

Efficient architectural exploration is achieved by sepa­
rating the scheduling and allocation aspects of the search. 
The different characteristics of scheduling and allocation 
make a partitioned search much more efficient than a 
naive exploration of different embeddings. While the ef­
fect is the same as a combined exploration, the search is 
structured in a way that allows the scheduling and allo­
cation phases to be performed largely independently. 

5 An affine transform is a vector function of the form f(x) = 
Ax+ b where A is an S x R matrix and bis a constant vector. Since 
in this context the function must map ZR -+ Z 5 , A is restricted to 
be an integer matrix and b is restricted to be in zs. 

The embedding constraints outlined above are first 
translated into constraints on the scheduling problem. 
The scheduling problem is then efficiently solved as an in­
teger linear programming (ILP) problem. A user-defined 
delay function serves as the cost to be optimized. Fi­
nally, for each optimal schedule, consistent embeddings 
in the space-time lattice are explored. Since very few 
optimal schedules are typically found, full exploration of 
the space-time lattice need only be performed a limited 
number of times. The combined search efficiently and 
exhaustively explores an important subset of all possible 
affine embeddings and returns all designs which optimize 
the user-defined objective function. For the matrix-vector 
example, a set of 4 (symmetric) optimal schedules is found 
after exploring less than 100 partial designs. Each such 
schedule has 2 associated consistent embeddings. Corre­
sponding RTL implementations (obtained after localiza­
tion and projection of the embedded DGs) are shown in 
Figure 3. 

Figure 3: Two RTL-Level Implementations6 

DESCARTES is implemented in Common Lisp and is 
operational through the embedding phase. Final map­
ping to RTL has not yet been implemented. The program 
has derived architectures for image and signal processing 
as well as non-numeric applications, and it efficiently ex­
plores design spaces in excess of 1012 points. 
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In a multithreaded computation, the dynamic scheduling of threads dramatically impacts both 
the running time and memory usage. The effect of dynamic thread scheduling is most apparent 
in systems that support nonstrict semantics such as dataflow and futures, because threads execute 
based on the availability of data. The effect is also apparent when threads can stall due to the long 
latency of remote loads or loads from shared memory. In light of this dynamic behavior, a scheduler 
trying to execute a computation quickly often tries to expose as much parallelism as possible by 
keeping as many threads active as possible. Unfortunately, each active thread makes a claim on 
memory for an activation record, and therefore aggressively trying to expose parallelism may place 
excessive demands on memory capacity. We consider the problem of dynamically scheduling threads 
to expose sufficient parallelism for optimal speedup while not exposing more parallelism than the 
memory system can handle. 

To formalize our goals, we consider the time and space used to execute a multithreaded compu­
tation with one processor. We assume the processor executes a single instruction at each time step, 
so the execution takes time T1 equal to the total number of instructions executed. In considering 
the space usage, we only count the memory used for stack-based storage, and we assume each acti­
vation record takes unit space. Therefore, the execution takes space S1 equal to the maximum stack 
depth. With p processors, Brent's Theorem guarantees that any scheduling policy that uses proces­
sors in a greedy fashion (never idling a processor unnecessarily) executes in time TP :::; Ti/ p + T 00 , 

where T 00 is the running time in an execution with an infinite number of processors. This bound 
is within a factor of two of optimal, since both Ti/ p and T 00 are lower bounds on the running 
time. We consider a p-processor execution with TP proportional to Tifp + T00 to be time efficient. 
What about space? What should we consider to be space efficient? When a processor executes 
a particular thread, it requires a context equivalent to the contents of the stack at the time that 
thread was executed in the single-processor execution. Therefore, we allow each processor to use 
as much memory as the single processor used, and we consider a p-processor execution with space 
usage SP proportional to S1p to be space efficient. 

We would like a scheduling algorithm that can execute any multithreaded computation efficiently 
in both time and space, but our first result states that no such algorithm exists. In particular, for 
any number p of processors, there exists a multithreaded computation such that any schedule with 
TP :::; a(Tifp + T00 ) and SP :::; (J(S1p) must have a(J = f!(.../[';/p). In other words, there exists 
a multithreaded computation for which any schedule giving efficient space usage must give poor 
speedup and any schedule giving efficient speedup must require excessive space usage. 

In light of this lower bound result, we consider scheduling algorithms for special cases of mul­
tithreaded computations. We give efficient scheduling algorithms for computations having a strict 
semantics for procedure invocation, and we use this result to give a technique for handling nonstrict 
procedure invocation. This latter result requires some care, since when space is bounded, invoking 

This research was supervised by Professor Charles E. Leiserson and was supported in part by the Defense Ad­
vanced Research Projects Agency under contract N00014-91-J-1698 and by a National Science Foundation Graduate 
Fellowship. 
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procedures before their parameters have been computed can actually result in running times that 
are slower than when procedures always wait for their parameters. 

We derive these results from our model of a multithreaded computation as a directed acyclic 
graph in which each node represents a unit length task and each edge represents an ordering between 
two tasks; see Figure 1. The size of the computation (the number of tasks) is T1 • Any execution 
of the computation must observe the ordering imposed by the edges: for any pair of tasks u and v, 
if there is a path from u to v, then task u must execute before task v. We define the computation 
depth as the length of the longest path in the computation, that is T w 

Figure 1: A multithreaded computation. Continue edges are dashed, spawn edges are thick, and 
data edges are thin. The threads are shaded. This computation has size T1 = 21, tree depth S1 = 3, 
and computation depth T00 = 12. 

We partition the edges of the computation into three types. The continue edges impose the 
intra-thread ordering - these are the dashed edges in Figure 1 that form each thread (shown 
shaded) into a linear order. The spawn edges represent the invocation of a thread by some task 
in another thread. Collapsing each thread into a single node and connecting the threads by the 
spawn edges produces a rooted tree of arbitrary degree called the invocation tree. We define the 
tree depth of the computation as the depth S1 of the invocation tree. Lastly, the data edges enforce 
the ordering required by producer/consumer relationships. If task u computes a value x and task 
v uses x, then a data edge from u to v ensures that task v executes after task u. 

Our scheduling algorithms are all based on depth-first priority, where the depth of a task is the 
depth of its thread in the invocation tree. With a global depth-first priority queue, the resulting 
synchronous algorithm efficiently schedules multithreadcd computations having strict procedure­
invocation semantics. For this global depth-first algorithm we show Tp = O(Ti/p + T00 ) and Sp = 
O(S1p). By incorporating a randomized load-balancing technique, we replace the global queue 
with p local queues - one per processor - to produce a semisynchronous algorithm. For strict 
computations, we show that this local depth-first algorithm has a guaranteed space bound of 
SP= O(S1plgp) and a high-probability time bound ofTP = O(T1/p+T00 lgp+ (lgT1 )(1gp)). This 
time bound for the semisynchronous algorithm gives linear speedup (with a small constant factor) 
whenever two conditions hold: The computation is reasonably large compared to the number 
of processors (Ti/ lg T1 = n(p lg p) ), and the average available parallelism has at least lg p slack 
(Ti/T00 = n(plgp)). For these reasonably large and parallel multithreaded computations, if the 
memory capacity scales sufficiently to incorporate lgp slack, the local depth-first algorithm almost 
surely executes with linear speedup. 
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Introduction 

We're working on a massively parallel SIMD com­
puter for early vision tasks. We call this VLSI-based 
very fine-grained malleable architecture the Clay ma­
chine. The central idea of the architecture is to max­
imize the number of bits transformed in each cycle. 
To do this we place as many processors on a chip as 
possible. We believe we can produce a chip which can 
transform 3200 bits per cycle. In contrast, a CM-2 
processor chip operates on 16 bits, and a conventional 
RISC processor on at most 64 bits at once. 

The Clay architecture consists of one-bit processors, 
connected in a mesh-with-bypass network. The indi­
vidual components are mostly conventional, and the 
architecture could easily be misinterpreted as yet an­
other bit-serial mesh machine. The distinctions are 
subtle, but result in a significant performance advan­
tage over bit-serial systems. 

The key observation is that typical bit-serial proces­
sor elements (PEs) dedicate much more silicon area 
to memory than to processing. The idea of the Clay 
architecture is to replace a single PE with a large 
memory by several of PEs with smaller memories, 
and allocate a PE to each bit of a word. As a result, 
the entire data word can be transformed in parallel, 
increasing the performance by a factor equal to the 
word length, with only a small increase in area. Con­
sider a PE with 512 bits of memory and a minimal 
one-bit ALU whose area equals that of 32 memory 
bits. A group of 16 smaller PEs with 32 bits of mem­
ory each, requires only twice the area of the original 
PE, while delivering as much as 16 times the perfor­
mance. 

We call this data organization distributed bit-parallel 
(DBP), as each data word is distributed among a 
group of PEs, and is operated on in parallel. Such a 
group operating on a single word is called a cluster. 
Cluster organization is purely a software construct, 
and the PEs can be grouped to manipulate data of 
various word sizes. 

Architecture 

The core of the architecture is the small, massively 
replicated processing element. Each PE contains 64 
bits of dual-ported memory arranged in two banks, 
two 3-input AL Us, and 4 NEWS communication reg­
isters. Each ALU can access two bits from its associ­
ated memory bank and one from the other bank. In 
effect, this the first "super-scalar" bit-serial proces­
sor. 

The PEs are connected in a circuit-switched mesh­
with-bypass network. The bypass enhancement to 
the mesh allows the powerful capabilities of binary 
tree embedding and one-to-many broadcast, and only 
minor circuitry is required for its implementation. A 
slight delay is still incurred at each bypassed PE due 
to this circuitry. As a result, communication time is 
still proportional to distance but the constant is suf­
ficiently small so that local communication occurs in 
unit time. 

Arithmetic Algorithms 

This subsection describes some important arithmetic 
operations: shi:ft, accumulate, compare, add, and 
multiply. The first two use only nearest-neighbor 
connections; compare uses the bypass to broadcast; 
add uses the bypass to embed trees. 

Acknowledgments: This work is conducted under the direction of Professor Thomas Knight Jr. This research is supported in part 
by the Defense Advanced Research Projects Agency under contract N00014-87-K-0825 and the National Science and Engineering 
Research Council of Canada. 
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A cluster is organized in row-major order, as shown 
above. Every fourth PE in a row is connected to the 
PE one row below and four columns to the left. As 
long as the horizontal dimension of the cluster is four, 
logically adjacent bits are also electrically adjacent. 
Throughout all these algorithms, the cluster can be 
considered to be organized as a line. 

Shift. The simplest DBP arithmetic operation is 
the shift. Each processor simply replaces its bit with 
a neighbor's. In the case of logical shifts, the MSB 
or LSB must be cleared; for arithmetic shifts the 
MSB must be retained, which requires an extra cycle. 
Since the clusters are rectangular, shifts by a multiple 
of the row size are fast since the bits need only move 
vertically. Thus, a shift by 9 can be accomplished by 
two vertical shifts by 4, followed by a conventional 
horizontal shift by 1. 

Accumulate. The sum of a sequence of n numbers 
can be evaluated in 8( n) cycles with the carry-save 
adder (CSA) technique, which computes the sum and 
carry bits separately for each addition. The com­
putation is purely local, and therefore independent 
of word size. Many computations which are usually 
thought of as additions can be reformulated as accu­
mulations. As a result, the speed of operations such 
as region summing, counter updating, or multiplica­
tion is improved. 

Compare. The comparison algorithm takes advan­
tage of the bypass capabilities of the network. It is 
based on the observation that the most significant 
differing bit (MSDB) between two words determines 
which word is greater. Thus, A> B when the MSDB 
is 1. The algorithm is straightforward: all PEs with 
identical bits bypass themselves and then send the 
value of their bit of A up to the MSB. If the MSB 
receives a 0, then A is smaller then B, otherwise A is 
greater. 

Add. The idea of the well-known logarithmic-time 
algorithm is to "look-ahead" at the carry by com­
puting the eventual carry into each one-bit adder. It 
turns out that the carry ck into the adder computing 
bit k can be expressed as Ck+1 = 9k +Pk Ck, where 9k 
is the generate bit and Pk is the propagate bit. The 
computation of p and g can be expressed in parallel 
prefix form, and the carry can thus be computed in 
logarithmic time. 

Communication Algorithms 

Inter-cluster operations on the Clay architecture are 
much faster than on conventional bit-serial grid ar­
rays. The bypass mechanism allows logarithmic-time 
algorithms by embedding a regular binary tree in the 

mesh of clusters. These algorithms operate very ef­
ficiently since data is communicated over the wide 
data bus formed by a cluster. 

Routing Operation The well-known bitonic sort 
algorithm operates efficiently on the architecture, and 
can be used as the building block for a routing prim­
itive. A sort can implement routing by using the 
destination cluster ID as the sort key. A full bitonic 
sort of records with a 16-bit key and a 16-bit datum 
on a 64K processor machine requires approximately 
30,500 cycles. For technologically and financially fea­
sible machine sizes, the algorithm can operate faster 
on the Clay mesh than on a bit-serial hypercube ar­
chitecture due to the wider data path and faster local 
operations. 

Scan Operations The parallel prefix operator can 
be implemented efficiently on any network that al­
lows embedding of binary trees. Since the mesh-with­
bypass architecture provides a fast broadcast capa­
bility, it can implement the Ladner-Fischer parallel 
prefix algorithm. Unlike tree-based scan algorithms, 
which perform an up-sweep to propagate information 
from the leaves to the internal nodes, and then a 
down-sweep to send global information down to the 
leaves, the LF algorithm performs only a forward 
sweep. As a result it is both faster, and consumes 
less memory storage than tree-based scans. 

Conclusion 

Based on a preliminary processor design, we estimate 
that 1600 PEs can fit on a single IC implemented in 
a 1.0 micron technology. Since each PE is very sim­
ple, requiring approximately 8 gate delays per cycle, 
clock rates of 125 MHz should be easily attainable. 
A summary of expected performance of a single IC 
on various computations is shown below. 
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Operation 8-bit 16-bit 32-bit 
MOPS MOPS MOPS 

Add 1670 700 360 
Shift 12500 6250 3125 
Accumulate 8300 4150 2075 
Move 8300 3125 1040 
Compare 3600 1390 480 
Multiply 32 
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Process migration has been used to improve load bal­
ancing, overall performance, and availability [Dou90). 
The vast majority of work in this area involves the mi­
gration of Unix processes in distributed systems. This 
paper examines the problems of thread and object mi­
gration in homogeneous multiprocessors. 

After comparing migration in distributed systems and 
multiprocessors, we discuss the issues involved in migrat­
ing idle objects, followed by the additional problems for 
migrating objects with active threads. We then intro­
duce a novel invariant that reduces the impact of mi­
gration on normal-case (non-migrating) code. We also 
present two novel mechanisms for frame migration, dis­
cuss their performance, and summarize our current sta­
tus. 

1 Migration in Multiprocessors 
The primary goal of a migration mechanism is min­

imal impact on the performance of objects that do not 
migrate. We expect migration to be rare but helpful; 
migration is useful primarily for active long-lived ob­
jects that would provide less competition for resources 
if moved elsewhere. For example, if two such objects 
share a processor it is worthwhile to move one of them 
to an idle processor. 

A fundamental concept is the notion of location trans­
parency, which is the property that the same code can 
run on any processor. Code that uses addresses spe­
cific to the current processor is not location transparent. 
Its addresses must be translated into corresponding ad­
dresses on the new host. 

With the exception of Emerald [JLHB88], all of the 
previous work on migration assumes either a global ad­
dress space with caching, hardware support for virtual 
memory, or both. We can make neither of these assump­
tions, both of which lead to solutions that provide loca­
tion transparency for free. We also can not assume the 
existence of hardware tags or full/empty bits, although 
we will exploit them when available. 

2 Migrating Idle Objects 
For objects without active threads, there are two con­

cerns, migrating the data and ensuring that all refer­
ences to the object remain valid. Moving the data is 
quite simple; the only complication is translating any 
local addresses. 

*Eric Brewer is supported by an Office of Naval Research Fel­
lowship, and is a member of Bill Weihl's Parallel Software Group. 
Additional support provided by the National Science Foundation, 
grant CCR-8716884; by DARPA, Contract N00014-89-J-1988; and 
by an equipment grant from Digital Equipment Corporation. 
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The primary problem involves references to the object. 
References that are local addresses become invalid when 
the object moves, thus all such addresses must be located 
and updated. We use a combination of residence checks 
and globally unique object identifiers (OIDs). Thus, a 
local invocation consists of a residence check followed 
by a dereference of the local address. If the object is 
not resident, the caller computes the object's new home 
from its OID and performs a remote invocation. The 
techniques presented so far are well established and have 
been implemented in Emerald [JLHB88). Unlike Emer­
ald, we will (essentially) eliminate the residence check on 
architectures with tag bits by causing a trap on access 
to objects that are no longer local. 

3 Migrating Active Objects 
The addition of active threads severely complicates 

migration; in particular a method must be able handle 
the migration of its object in the middle of the code, not 
just at the beginning or end. 

The last item we borrow from Emerald is the Object­
Frame Invariant: an object and a frame for a method of 
that object must be in the same address space. This in­
variant allows the code of the method to access the object 
using pointers and without using residence checks. With­
out this invariant, the normal-case performance would 
deteriorate severely. 

A corollary of this invariant is that methods cannot 
directly access the slots of another object. 1 ·without this 
corollary, if a method had pointers to three objects and 
one of them changed address spaces, then the frame and 
the other two objects would also have to move. This 
could lead to a severe domino effect. Thus, a method 
directly accesses the slots of "self", but indirectly ac­
cesses the slots of other objects so that it need not be 
in the same address space. Relaxing this invariant is an 
area of future research; e.g., an object can directly access 
another if it "pins down" the object during the accesses. 

4 Migration Points 
W'e introduce a novel invariant: An object cannot mi­

grate unless all of its threads are at migration points. A 
migration point is simply a point in the code at which 
the object is allowed to migrate. This invariant improves 
performance because code can assume that its object will 
not migrate between migration points, so it can use point­
ers arbitrarily in these regions. Such pointers become 
invalid across migration points if the object migrates. 

1 In some languages, methods can access the slots of objects of 
the same type (in addition to "self"). 



An implication of this invariant is that migration may 
be delayed. To prevent unbounded delay, we ensure that 
migration points are relatively frequent. For example, 
all synchronization points are migration points so that if 
a method gets blocked due to synchronization, its object 
is free to migrate. 

In general, crossing a migration point requires verify­
ing that the object has not migrated, and migrating the 
frame if it has moved. The challenging part of migra­
tion points is reducing the cost of crossing one when the 
object does not migrate. 

The first approach to this problem is to hide the ver­
ification of no movement in the first pointer dereference 
after the migration point. Thus, if the object has not 
migrated the dereference behaves normally, while if the 
pointer is invalid a trap occurs that updates the state of 
the method to reflect the new home of the object. 

The trap code is fairly complicated. First, it must de­
duce the intended object and the offending frame. Next, 
it uses a hash table to locate the fix-up block for that 
migration point. A fix-up block is a piece of code that 
knows the layout of the frame and the register usage at 
the point of the trap. The first thing the fix-up block 
does is move the frame to the new host. It then adjusts 
the values of saved registers and pointers in the frame 
that contain local addresses to contain the correct ad­
dresses for the new host. Finally the fix-up block jumps 
to the instruction that caused the trap, which causes the 
method to restart from the failed dereference. Since all 
of the local addresses have been updated the code con­
tinues without a hitch. 

The fix-up block is generated automatically by the 
compiler. The current plan is to generated a specialized 
fix-up block for each migration point, although it may 
be possible to generate one fix-up block per method. 

5 Frame Patching 

On some architectures, it is not possible to force a 
trap on the next access to a location. For such architec­
tures, we propose an alternative mechanism called frame 
patching. The first point to note is that when an ob­
ject (locally) decides to migrate, all other frames on the 
processor are suspended, since only one frame runs at a 
time. Each frame has a saved program counter, called 
its return instruction pointer or rip. 

The basic idea behind frame patching, shown in Fig­
ure 1, is to update the rip of all of an object's frames so 
that they point to a fix-up block. Since each frame must 
be at a migration point for the object to migrate, there 
is a valid fix-up block for every such rip. Thus, when 
the frame becomes active it will execute the fix-up block 
before continuing with the rest of the method. As before 
the fix-up block ensures that all local pointers have the 
correct value for the new host. 

Finally, we have developed algorithms that perform 
frame patching lazily, thus allowing the cost to be spread 

y: 
jal fib 
add $2,4 
SW $2,4($sp) 
jr $31 

bra y 

1) get rip 

2) locate fix-up block 

3) adjust rip 

Figure 1: This figure depicts a portion of a stack with 
the rip for the middle activation record being updated 
to point to the corrsponding fix-up block. 

out over time and amortizing some of the cost across 
multiple migrations. 

6 Conclusion 
vVe are currently generating the code required to sim­

ulate migration points, fix-up blocks and frame patching. 
The PROTEUS simulator will allow us to determine the 
effectiveness of these options both in terms of the cost 
of migration and the impact on non-migrating objects. 
Open questions that we hope to resolve include how long 
an object should live before it is considered for migration, 
how frequent migration decisions should be, and what is 
the right information on which to base those decisions. 

This work examines migration in distributed-memory 
multiprocessors and addresses different problems than 
those of Unix-based migration. The contribution of this 
work includes the development of migration points, fix­
up blocks, and frame patching. 

The invariants we define, combined with low-cost 
mechanisms for the common case that objects do not 
migrate, should lead to a run-time system that com­
bines the resource-balancing benefits of migration with 
the high performance of direct access to the fields within 
an object. 
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Studies have shown that increasing the size 
and/or associativity of traditional cache de­
signs becomes less effective as the size and as­
sociativity of the cache increase. In particular, 
once a cache has reached 32-128K of memory 
in size, and four-way set-associativity, the de­
crease in average memory access time gained 
by increasing the size or associativity of such 
a cache becomes extremely small. 

This abstract describes four proposals for 
improving the performance of a cache memory 
without increasing its size or associativity1 In 
order to determine the effectiveness of imple­
menting these proposals, a trace-driven simu­
lator was implemented which took instruction 
traces of program execution on a RlSC Sys­
tem/6000 computer as inputs and predicted 
the number of cycles that would be required 
to execute the program that generated the 
trace if it were run on an actual machine. The 
SPEC benchmarks were selected as the source 
of the traces to be simulated. Approximately 
100,000,000 instructions were traced from each 
of the ten SPEC benchmarks, resulting in ap­
proximately 1 billion instructions being simu­
lated to test each of the methods. 

The first method studied was a prefetch-

1This work was carried out at IBM's Yorktown and 
Hawthorne research sites, while I was an intern at IBM 
as part of the VI-A program. Funding was provided 
by the salary paid me by IBM and other personal re­
sources. Tom Knight supervised this research. 

ing strategy that made use of the expected 
behavior of the load with update and store 
with update instructions that are implemented 
in the POWER architectures. These instruc­
tions calculate the address for a memory ref­
erence by adding an offset to the contents 
of a register, and then store the result of 
that computation back in the register, making 
them very useful in cases where a succession 
of equally spaced memory locations are to be 
read. Based on this predicted use of these in­
structions, it was theorized that implementing 
a system to prefetch the data that would be re­
quired if a given instruction of this type were 
executed a second time after fetching the data 
required for the first execution would improve 
performance. Unfortunately, simulations pre­
dicted that this modification would result in 
a performance degradation of about 43, pre­
sumably because much of the prefetched data 
was removed from the cache before being used. 

The second proposal involved allowing the 
cache to interrupt the process of bringing a 
cache line into memory to satisfy a miss which 
occurred while the line was being fetched. 
Since the RISC System/6000 fetches the da­
tum required to satisfy a cache miss first from 
the main memory, this results in not fetch­
ing data that will probably be used in order 
to fetch data that is definitely needed more 
quickly. This resulted in a 2.93 improvement 
in performance overall, although performance 
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was reduced by 3.6% on the "dnasa7" bench­
mark. 

Another idea involved the use of a "load 
history table" to store data about how of­
ten cache lines are used before being replaced 
in the cache. Whenever a load or store in­
struction is executed, the load history table is 
checked to determine if that instruction has 
been executed before, and whether or not the 
cache line referenced by that instruction the 
last time it was executed was used enough to 
merit bringing the entire line into the cache. 
The use of a load history table was found to 
increase the performance of the machine by 
slightly more than 4%, depending on the size 
of the history table, and to improve the perfor­
mance of the machine on all of the tests that 
were run. 

The final proposal that was examined was 
the use of a "victim cache", as proposed by 
Jouppi2 • A victim cache is a small buffer of 
cache lines that is used to store cache lines that 
have been thrown out of the main cache, so 
that they may be accessed more quickly than if 
they were returned to the main memory. This 
reduces the performance impact of reducing 
the associativity of the main cache. The sim­
ulations that were run assumed that the 64K, 
four-way set-associative cache that is currently 
implemented in the RISC System/6000 was 
replaced with a direct-mapped cache contain­
ing the same amount of memory and a victim 
cache of varying size, with a one-cycle penalty 
being incurred when a needed line was con­
tained in the victim cache. Going from a set­
associative to a direct-mapped cache reduced 
the performance of the machine by approxi­
mately 8%. Adding a victim cache resulted in 
a machine with performance .5%-1.1 % better 

2 Norman P. Jouppi. Improving direct-mapped 
cache performance by the addition of a small fully­
associative cache and prefetch buffers. In Proceeding• 
of the 11th Annual Sympo1ium on Computer Archi­
tecture, pages 364-372, 1990 

than that of the original machine, making the 
use of direct-mapped caches attractive because 
of the shorter access times that are possible 
with such a cache. 

Increasing the size or associativity of the 
cache in a machine like the RISC System/6000 
produces only very minor improvements in 
performance. ( .2% performance improvement 
from doubling cache size, and .05% improve­
ment from doubling associativity) All of the 
proposals that were found to improve the per­
formance of the machine resulted in greater 
performance improvements than traditional 
methods of improving cache performance, and 
should require less hardware investment, sug­
gesting that methods such as these should 
be considered in order to improve the perfor­
mance of future architectures. 
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Multi-threaded Compilation of Id Programs 

Y onald Chery1 

MIT Computation Structures Group 
NE43-202 

yonald@whopper.lcs.mit.edu 

I am currently implementing compiler analysis techniques [5] [6] for compiling Id, a non­
strict functional language [2], which is expected to dramatically improve code performance 
for multi-threaded machines such as Monsoon [4] and *T [l]. 

Instead of values communicated via tokens flowing along arcs between instructions, the 
multi threaded model views computational progress as the run-time scheduling of interacting, 
multiple instruction sequences called threads, each of which is identified and scheduled at 
compile-time [3]. These threads make use of the context frame to pass data between instruc­
tions as is done in von-N eumann machines. Communicating values across threads sharing a 
context is also done using frame locations. The creation and initial execution of threads is 
accomplished through the use of fork and join instructions, which start new threads and 
synchronize the completion of threads, respectively. Such a computational model efficiently 
executes programs which yield long threads with little required synchronization. 

In contrast, Id makes finding long threads difficult due to non-strictness. Consider the 
following example from [5] in figure 1. The figure shows the definition and two different 
invocation of procedure f (each in a "letrec" block of mutually recursive bindings). 

{ a = f yy 3· { a = f 3 yy; 
def f x y = J 

(x + 2) (y + 3); 
yy = tail a· yy = head a· 

cons J J 

} } 

(a) (b) (c) 

Figure 1: Use of non-strictness in Id programs 

Depending on the invocation, the multiplication can either precede the addition (as in 
figure lb) or vice-versa (as in figure le). As a result, both sub-expressions must be evaluated 
in separate threads and scheduled at run-time. 

The compiler analysis techniques implemented provide improved methods for group­
ing instruction into larger partitions (code DA G's which ultimately become compiled as 
threads through standard code generation techniques), reducing the control flow depen­
dencies between partitions, and performing global analysis that can be extended for doing 
inter-procedural analysis. 

1 Research supported by GEM Masters Fellowship and through ONR Grant No. N00014-89-J-1988 and 
supervised by Professor Arvind. 
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Local partitioning consists of repeated, alternating passes of grouping instructions within 
a dataflow program graph2 basic block according to their input and output dependencies 
until no further progress can be made. Global analysis consists of propagating information 
across basic block boundaries to improve the partitioning of a caller or callee block. Local 
partitioning and global analysis are alternated until no further improvements can be made. 

Once partitioned, dataflow arcs between partitions are converted to control flow arcs 
by inserting frame-store and frame-fetch instructions in the producing and consuming 
partitions, respectively. Redundant control flow arcs in the partitioned graph correspond 
either to fanout trees in the original dataflow program graph or from multiple values being 
communicated between two partitions. Removing these redundant arcs reduces the amount 
of forking and joining performed at run-time. 

Current work involves developing a new compiler intermediate representation to better 
expose control flow and support global analysis. Preliminary results using test cases shows 
these techniques to be successful in identifying large partitions. This research is intended 
for eventual use in the Id Compiler for *T, a multi-threaded hybrid von-Neumann/dataflow 
machine currently being developed by CSG and researchers at Motorola Cambridge Research 
Center. 
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Frame Memory Management for the Monsoon Processor1 

Derek Chiou2 

Multiprocessor architectures require some sophisticated, yet fast memory management primitives to sup­
port procedure calls in high level languages. These primitives serve two intertwined purposes - allocation 
of activation area, called a contezt or a frame, for an iteration of a procedure, and, since a pointer to 
a frame contains a processor number, distribution of work across the nodes of the multiprocessor. We 
describe an activation frame memory management system, its implementation, and results. 

1 Activation frames on Monsoon 

Allocating and deallocating frames for parallel computing is not as easy for sequential computing. Since 
a procedure may have multiple outstanding calls to other procedures, we wind up with a tree of activation 
frames. Parallel frame allocation is a mix between stack and heap allocation on a sequential computer. 
A full implementation of a parallel frame manager would essentially be a heap manager, including all of 
the associated complexity. We simplify the problem by restricting the number of different sizes a frame 
can be to allow the frame allocator to run much more quickly. This constraint greatly simplifies the code 
of our frame manager, thus increasing its speed. 

Monsoon[2] takes the position that a single frame must exist on a single processor. Thus, work is 
divided between processors at a procedural level. The frame allocator will, therefore, partition work 
across processors by how it handles requests for frames. We consider load distribution/balancing as an 
important part of frame allocation. 

2 Frame managers for Monsoon 

Over the course of the past year, we have examined many different frame managers. We have two 
currently being researched. One has been heavily optimized by code duplication to avoid unnecessary 
run-time evaluation. The other is far more complicated since it implements a deferred coalescing buddy­
system. All frame managers are written in MONASM[3], our assembly language, for optimal speed. 

Both frame managers use approximately the same algorithm, quick-fit, for frame allocation. When a 
frame is requested, the correct quick-list is checked for a frame. If there are no frames on the correct 
quick-list, the algorithm attempts to allocate a frame from the tail of the frame memory. If there is not 
sufficient memory in the tail to allocate a frame of the desired size, the algorithm looks for a frame larger 
than the desired size. If a frame of a larger size is not found, behavior between the two frame managers 
differs. The first frame manager, rtsinlined , will return an error and halt the machine while the other 
frame manager, rtscoale1ee , will attempt to coalesce the frames. Both frame managers do remote frame 
management, that is, the processor on which a frame resides manages that frame. If processor P; desires 
a frame from Pi, Pi must send a request for a frame to Pi. 

1 Supervisor: Prof. Gregory M. Papadopoulos. Funding is provided in part by the Advanced Research Projects Agency 
of the Department of Defense under Office of Naval Research contract N00014-89-J-1988. 

2 Office: NE43-203. Email: derek@abp.lcs.mit.edu 
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Program lpe 2pe 4pe 8pe 

GAMTEB 1 1.96 3.86 7.44 
PARAFFINS 1 1.95 3.52 5.52 
SIMPLE 1 1.87 3.48 6.21 
MATRIX-MULTIPLY 1 1.99 3.87 7.23 

Table 1: Speedup on Monsoon Hardware 

3 Load distribution and parallelism 

As noted earlier, load distribution is an important part of frame allocation. Load distribution is the 
partitioning of work to different processors and is a significant problem for parallel machines. The think­
ing in our group has been that dataflow exposes so much parallelism that a simple and approximately 
random load distribution scheme, though it might be somewhat unbalanced, should be able to keep all 
processors reasonably busy. 

On this thinking, and after experimenting with a few other options, we arrived at a simple round-robin 
scheme to distribute work across all the processors. Every processor has its own set of round-robin 
counters and each frame size has its own round-robin counter. The load balancing scheme works well 
with all of the benchmark programs we have run so far. 

4 Current Results and Future Work 

We have been running an early version of rtsinlined on Monsoon hardware and simulators for several 
months. It is very robust and easy to use. Its speedup performance is shown in Table 1. GAMTEB and 
MATRIX-MULTIPLY speed up very nicely. SIMPLE seems to lock up the machine on anything but 
modest loop bounds, strangling the amount of parallelism we can exploit and destroying our speedup. 
We are looking into this problem. Currently, we feel that there is a lack of parallelism in PARAFFINS, 
limiting its speedup. rtsinlined is about 30% faster than its earlier version. Frame management 
overhead is completely dependant on the program being run. It ranges from virtually nothing for 
MATRIX-MULTIPLY to around 13% for SIMPLE and GAMTEB and about 30% for PARAFFINS. 

We believe that we have achieved the objective of building an efficient frame manager for Monsoon. 
Future work includes evaluating the performance of the frame manager for larger machine configurations 
and exploring further modifications to the frame manager for additional speed. 
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As the number of components in large-scale multipro­
cessors becomes large, the fault tolerance of such ma­
chines becomes increasingly important. We examine 
methods of reconfiguring a multiprocessor which has 
suffered faults in its interconnection network. We con­
centrate upon the decision of which processing nodes 
should be used and which nodes should be shut down. 
Due to their high fault-tolerance, we focus upon archi­
tectures which use multipath multistage interconnec­
tion networks (multipath MINs). Multipath networks 
have multiple paths between any input and any out­
put. The routers used to construct these networks 
are characterized by radiz and dilation. The radix of 
a router refers to the number of logical directions the 
router switches to. The dilation of a router refers to 
the number of redundant channels in each of these 
channels. 

An important multipath MIN is the randomly-wired 
multibutterfly, shown in Figure 1. Multibutterflies 
have been shown, in theory, to possess substantial 
fault tolerance and performance (Upf89]. Leighton 
and Maggs [LM92] used a fault-propagation reconfig­
uration algorithm to prove that no matter how an 
adversary chooses k routers to fail, there will be at 
least N -O(k) inputs and N -O(k) outputs between 
which permutations can be routed in O(log N) router 
cycles, for an N x N network. 

However, these asymptotic results do not guarantee 
that fault-propagation is a practical algorithm for 
reconfiguration. In fact, the algorithm initially ap­
peared too conservative to use in practice. Fault­
propagation centers upon the following recursive def-
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inition of a blocked router: a router is blocked if it is 
faulty or if any of its logical directions leads to only 
blocked routers. This definition of blocking is prop­
agated stage-by-stage backward from the last stage 
to the first stage of the network. Any processing 
node which is connected to only blocked routers is 
shutdown in the reconfiguration. Fault-propagation is 
conservative because it discounts the utility of blocked 
routers. A blocked router is not necessarily useless. 
It may still have many usable channels. 

We compared fault-propagation to a non-conservative 
multi-hop algorithm. The multi-hop algorithm shuts 
down processing nodes only when absolutely neces­
sary - when a node has no surviving input or out­
put connections to the network. To allow communica­
tion between all nodes, a multi-hop system must allow 
messages to be routed through intermediate destina­
tions. Figure 2 shows our simulation results for both 
reconfiguration strategies. Our results show that the 
the conservative fault-propagation criterion produces 
the best performance. Synchronization requirements 
of applications make it critical to eliminate nodes with 
poor network connections. 

Further details of our work are available in [CK92]. 
We examine another class of multipath networks, 
the mazimal-fanout networks. We present an O(nt) 
lower time bound for a worst-case permutation these 
networks. We further show how a randomized ap­
proach avoids this worst case. We show empirically 
that maximal-fanout networks perform just as well as 
randomly-wired multibutterflies. 

for routing around faults in multibutterfl.ies and 
randomly-wired splitter networks. IEEE Tro.n111.ction1 
on Computing, 41(5):1-10, May 1992. 

[Upf89] E. Upfal. An O(log N) deterministic packet routing 
scheme. In l11t Annuo.l ACM S71mpo1ium on Theory 
of Computing, pages 241-250. ACM, May 1989. 
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A randomly-wired four-stage multibutterfly connecting 16 endpoints. Each component in the first three 
stages is a radix-2, dilation-2 router. To prevent any unique critical paths between endpoints, the last stage 
is composed of radix-2, dilation-I routers. The multiple paths between a selected pair of endpoints are 
shown in bold. 
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Left: The number of processor nodes lost after reconfiguration is plotted against the number of uniformly 
distributed router failures for randomly-wired multibutterflies. At 25 percent network failure, only about 
10 percent of the nodes are lost. 
Right: The average time to route a particular task is plotted against the number router failures. The node 
lou only curve is a reference line which plots the performance degradation due solely to the reduced number 
of processors. The next two curves show the performance of the multi-hop and fault-propagation algorithms 
on multibutterfly-based systems. While the multi-hop system degrades significantly, the fault-propagation 
system suffers very little additional performance degradation due to loss in network bandwidth. 

Figure 2: Node Loss and Performance under Network Failure 
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With the standardization of Test Access Ports 
(TAPs) and boundary-scan techniques in IEEE-
1149.1-1990 [Com90], vendors are beginning to make 
components with scan-based TAPs readily available. 
Nonetheless, the facilities offered by TAP interfaces 
such as the IEEE-1149 standard are not well-suited 
for fault-tolerant system architectures. The singular 
and serial nature of the scan path exposes a criti­
cal single point of failure in the testability system. 
Architects are forced to either use a few, long serial 
scan chains or use many short scan chains. The for­
mer allows a fault in a scan path to affect a large 
number of components while the latter requires sig­
nificant wiring for the control of many scan paths. 
Furthermore, standard TAPs provide no facilities for 
bringing small portions of the system into test-mode 
while leaving the remainder of the system in normal 
operation. In fault-tolerant architectures where the 
system can function without all components on-line, 
these all-or-nothing testing modes can be inconve­
nient. 

We have developed three simple additions to stan­
dard scan practices which allow scan techniques to 
be utilized effectively in a fault-tolerant setting. The 
basic techniques introduced are: 

1. Multi-TAP scan architecture - each component 
is given multiple Test Access Ports allowing the 

component to be accessed from any of several 
scan paths. Figure 1 shows the basic scan ar­
chitecture for a dual-TAP component. 

2. Port-by-port selection - each channel on a com­
ponent can be independently disabled. 

3. Partial-external-scan - each channel can be 
scanned in boundary-test mode independently 
of the operation of other channels on the same 
component. 

When combine these additions provide a scan archi­
tecture which is well adapted for a large class of fault­
tolerant systems. In particular, the additions allow: 

1. Minimized impact of scan path faults on system 
diagnosability 

2. Minimally 
diagnosis 

intrusive in-operation fault-

3. In-operation reconfiguration for: 

• fault-masking 

• repair 

These additions and the capabilities they provide are 
developed in [DeH92]. 

Acknowledgments: This work is conducted under the direction of Principal Research Scientist Thomas Knight Jr. This research is 
supported in part by the Defense Advanced Research Projects Agency under contract N00014-91-J-1698. This material is based upon 
work supported under a National Science Foundation Graduate Fellowship. Any opinions, findings, conclusions or recommendations 
expressed in this publication are those of the author and do not necessarily reflect the views of the National Science Foundation. 
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Serializing Parallel Programs 
(Abstract) 

Michael D. Ernst 1 

Programmers would like to be able to write a single 
program for both parallel and serial computers. Ilistor- Source: 

ically, the focus has been on parallelizing serial code. 
x, 

In this paper, we argue that the reverse~-serializing 

parallel code-is both more natural and more efficient. 
We introduce and evaluate three methods for serial­
izing parallel code-unrolling, loop common expression 
elimination, and finite differencing-and compare them 
to parallelization. A II three methods are hosed on a 
form of common subexpression elimination across loop 
boundaries. 

An algorithm's fastest implementation depends cru­
cially on the target architecture. Fast serial algorithms 
resist parallelization or vectorization because of depen­
dences between loops which were introduced to reduce 
the tot.al work done by the program. Parallelization 
requires detection and removal of these dependences 
in order to permit loop iterations to execute concur­
rently. The maximally parallel implementation of an 
algorithm achieves the greatest speedup on a parallel 
machine with sufficiently many processors, but it. may 
he inefficient. when run on a machine with too few pro­
cessors. Work may be repeated on several processors 
in order to avoid dependences and permit the proces­
sors t.o operate independently. Efficient serialization re­
quires t.he elimination of this redundant computation. 

When the parallelism in the problem exceeds that 
avoilable in the hardware, the best implementation is 
a hybrid pRrallel/serial one which breaks the problem 
into pieces, then uses a fast serial algorithm to evaluate 
each of the pieces. The programmer should not be bur­
dened with this task, since he usually cannot know how 
many processors his program will he run on. Furt.her­
mor<', specifying two different algorithms is error-prone, 
particularly when the programmer must direct their in­
teraction. The transformations described in this paper 
take care of those details. 

We choose to serialize parallel code rather than the 

1 Author's address: 1\-!IT Laboratory for Computer Sci­
ence, 54.5 Technology Square, Cambridge, MA 02139. Email: 
m ernst ©theory. ks. mit.edu. 

This research was supervised by Charles L<"is,,rson and sup­
port.eel by a National Defense and Science Graduate Fellowship 
and by Defense Advanced Research Project Agency contract 
NOOOJ 4-91-.l- 1698. 
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Figure 1: The five-clement example, a Jacobi-like win­
dow sum operation. 

for i = 2 to n-3 
ne~x[i] = (x[i-2] + x[i-1] + x[i] 

+ x[i+1] + x[i+2]) I 5 

Figure 2: Elementwise (data-parallel) implementation 
of the window sum. Each result array element can be 
computed in parallel. 

reverse because we can obtain better performance on 
parallel computers and, often, on serial ones as well. An 
equally important motivation is that explicitly parallel 
programs written in a high-level fashion (for instance, in 
the data-parallel paradigm) tend to be easier to write, 
read, and debug than serial ones, and are much simpler 
than arbitrary parallel programs 

A one-dimensional .l acobi-like relaxation problem 
will be used as an example t.o demonstrate the three 
methods. The input is a vector of numbers, and the 
goal is to compute, for each i, the average of the five 
nearest values (those with indices i - 2 to i + 2). This 
computation is graphically depicted in figure 1, in which 
a line between a source and result array element in­
dicates that the result array element depends on the 
source array element. 

The first method is to unroll the loop and perform 
ordinary common subexpression elimination; figure 3 
shows that 6 result clements can be computed with 12 
additions, for an average cost of 2 operations per ele­
ment. Finding a good unrolling is difficult in its own 
right: unrolling by one clement less or more would in­
crease the cost per element to 2.2 or 2.3, respectively. 
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R, R3 

Figure 3: The five-element sum after unrolling to ex­
pose six iterations and finding the optimal set of com­
mon subexpressions. 

Figure 1: When loop common expressions are taken 
into account., computations performed by previous iter­
ations help the current iteration. ·when computing the 
next set of four results, the sum 55 + 56 can be reused 
in the same place that 51 + 5 2 occupy in this diagram, 
resulting in a savings of 1 operation per 1 elements. 

The best unrolling can be quite large, resulting in code 
size explosion. Another difficulty is that finding the op­
timal set of common subexpressions is NP-complete (1]. 

The second method is to use loop common expres­
sions, which are expressions that can be used by more 
than one loop iteration. Iteration i arranges its compu­
tations so as to help iteration i + 1, possibly resulting in 
slightly increased costs for iteration i, relative to order­
ing its computations in the greediest way. Any extra 
cost is offset by the fact that iteration i - 1 has done 
the same thing, relieving iteration i of some work it 
would otherwise have to do. See figure 4 for an ex­
ample. This method performs well and may require 
fewer temporaries and less interprocessor communica­
tion than the other methods, but its per-result opera­
tion count is usually slightly higher. 

The third method is an extension of the method of 
finite differencing [2, 3]. The difference between the 
values computed by two loop iterations is added to a 
previous result to produce a new one. Such a strategy 
is worthwhile when, given the final result for iteration 
i, it is easier to undo some work and then compute 
result i + 1 than to compute it from the intermedi­
ate results that were used in computing result i. (This 
method is never worthwhile in straight-line code.) See 5 
for an example of such code; figure 6 shows the com­
putation performed. This transformation can only be 

runningsum = x[O] + x[1] + x[2] + x[3]; 
for (i = 2; i <= n-3; i++) 

{ runningsum = runningsum + x[i+2]; 
newx[i] = runningsum I 5; 
runningsum = runningsum - x[i-2]; } 

Figure 5: Running sum implementation of the five­
element sum. 

s. Sr 

Figure 6: Diagram of the operations performed by the 
running sum implementation for each result element. 
Unlike the other two methods, no unrolling is required 
and after the initialization code, it requires 2 operations 
per element. 

performed if the operation (addition, in our example) 
is commutative and has an inverse; all three methods 
require associativity. This method can suffer from nu­
merical instability if the operation docs not have an 
exact inverse-few computer implementations of arith­
metic operators do-but it requires very little unrolling 
and its operation count is quite low. 

Two of these methods have been implemented and 
show great promise; an implementation of the third is 
underway. Each is best in a particular set of circum­
stances, and speedups ranging to ten times have been 
observed for certain problems. For typical programs, 
the speed improvement is more modest, but still no­
ticeable. 
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This abstract describes the J compiler, a systems language compiler for the J-Machine. The J-Machine 
is a fine-grain concurrent computer comprised of up to 65536 36-bit Message Driven Processors (MDP) 
which communicate through a low latency network [1]. The J language is modeled after the C programming 
language with additional syntax to provide support for accessing primitives in the underlying architecture. 
The main goal for the J compiler is to provide a systems programming language for the J-Machine by 
supporting access to the underlying hardware. The language should allow efficient communication without 
imposing a high runtime overhead. A secondary goal is compatibility with the C language; in the future, 
the compiler should run most C programs on a single processor with little or no modification. 

Language Enhancements 

The J language provides many enhancements to the C language to allow full accessibility to the underlying 
hardware. The most prominent feature of the language is the function declaration. 

A function may be declared as a subroutine, fault handler, or handler. A subroutine is a function which 
is executed immediately on the same processor as its caller. This is useful for executing procedure calls 
without suspending the current thread. A fault handler allows the programmer to set up a function which 
will be executed when a fault occurs (e.g. a type fault). Handlers are functions which execute on a different 
node. Handlers may be invoked either synchronously or asynchronously. A synchronous function invocation 
suspends the current thread until a reply message is received from the callee; an asynchronous invocation 
continues executing the current thread concurrently with the callee. If a thread tries to use the result 
of an asynchronous call then a fault occurs, suspending the thread until the result is received. Function 
declarations themselves may be specified as synchronous or asynchronous to allow certain optimizations to 
be performed. For example, a function declared as asynchronous void need not reply to the caller. 

Other enhancements in the language include tags to support tagged words, multiple return values, seg­
ment descriptors, and priority function invocations. 

Implementation 

Compilation consists of parsing, type checking, code generation, and optimization. Parsing and type checking 
are similar to existing compilation techniques. The output of the parser is a syntax tree. The type checker 
decorates the tree with types and similar annotations. Code generation transforms the syntax tree into a 
complex intermediate code similar to complex J described in [3]. This intermediate language resembles the 
MDP instruction format, except that a symbolic register set is used, and operands are not as restricted. 
Code generation is followed by a series of optimizations, including copy propagation, constant folding, dead 
code elimination, and peephole optimization. Next, registers are allocated and spill code introduced. The 
complex intermediate language is then transformed to a simple intermediate language using legal MDP 
operands. Finally, several MDP-specific transformations are performed, such as send folding and long branch 
calculation. Following optimization, MDP assembly code is emitted. 

Rules 

The rules language allows the J compiler to be maintained easily without writing any source code. Each rule 
maps a pattern of instructions on the left hand side to another set of instructions on the right hand side. A 

1 William Dally both supervised and contributed to this work. The research described in this paper was supported in part 
by the Defense Advanced Research Projects Agency under contracts N00014-88K-0738 and N00014-87K-0825 and in part by a 
National Science Foundation Presidential Young Investigator Award, grant MIP-8657531, with matching funds from General 
Electric Corporation and IBM Corporation. 
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set of instructions only matches if each instruction in the left hand side matches instructions inside a basic 
block. Each instruction pattern contains patterns specifying both an operator and its operands. Operators 
model MDP instruction opcodes. Operator patterns may be literal, matching only a particular operator, 
or an identifier, preceded by a question mark, which match any operator. Examples of operator patterns 
are ADD and ?op. Similarly, operand patterns may be literal or identifiers. Operand identifier patterns may 
also contain a predicate, represented by a letter preceding the operand, which specifies that the pattern can 
match only certain operands. For example, R?op1 will only match register operands. Other examples of 
operand patterns are A?op3, ?reg, and 32. Finally, escape clauses back to the compiler allow more general 
rules to be formed. 

Examples of rules are shown in Figure 1. Rule (1) is a typical peephole optimization rule. Rule (2) is a 
general rule, stating that an immediate in the first operand should be switched with a register in the second 
operand if the operator is associative. This rule is needed since only registers are allowed in the first operand 
position in many MDP instructions. Finally, Rule (3) exhibits a rule to help fold SEND instructions. Most 
optimizations in the compiler are performed by rules. The rules language provides an effective mechanism 
for transforming the intermediate language, and is instrumental in maintaining MDP specific optimizations. 

(1) 

(2) 

(3) 

Related Work 

MUL ?op1, 1, ?op2 ==> MOVE ?op1, ?op2 

?op I?op1, R?op2, R?op3 is_assoc ?op 
==> 
?op R?op2, I?op1, R?op3 

SEND 
SEND 
==> 
SEND2 

?a, ?priority 
R?b, ?priority 

?a, R?b, ?priority 

Figure 1: Examples of rules 

Concurrent Smalltalk [2], the most substantial programming system for the J-Machine, has been suggested 
as a systems language, although a large fraction (up to 70%) of program execution is typically consumed by 
the accompanying runtime system. Additionally, the Id language introduces dataflow computation to the 
J-Machine (3]. 

Future Effort 

Currently, the J compiler produces assembly code for a suite of several tests. This suite is executed on 
the hardware regularly, typically on 8x8xl cubes. Several areas for further effort in the compiler include 
additional functionality, better optimization, standard libraries, debugging, and profiling. Several groups 
are interested in using the J language as a programming environment or as a back end to other languages. 
Finally, a collaboration among the different programming systems to develop a single back end would focus 
the optimization effort and produce more efficient and uniform object code for the J-Machine. 
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Introduction 

The Telemedia, Networks and Systems group is in­
volved in the design and the deployment of a dis­
tributed video system. Host workstations, display 
units, and cameras are to be interconnected by a 
high-speed broadband network, called VuNet [3). 
This is a Local Area Network (LAN) that will sup­
port Asynchronous Transfer Mode (ATM), a new 
communications standard set by the CCITT for the 
Broadband Integrated Services Network. In VuNet, 
data will travel in fixed-size (53-byte) packets called 
cells. 

The functionality of the Coprocessor Host In­
terface Chip is to transfer cells between an R3000-
based Decstation 5000, and VuNet. Typically, host 
interfaces to ATM networks have been designed so 
that the network has to be addressed via a memory­
mapped standard 1/0 bus [1, 4). With the copro­
cessor host interface, however, the network appears 
to reside in the registers of a tightly-coupled copro­
cessor. It is expected that this interface will provide 
an increased throughput over our Turbochannel­
based interface, currently being used. 

Functional Description 

In basic terms, the chip acts upon the coprocessor 
instructions that it receives from the MIPS R3000 
processor system. These instructions can be loads 
and stores between the coprocessor's registers and 
main memory, or moves between the coprocessor's 
registers and the CPU registers. Other instructions 
allow the user to set control registers on the chip, 
or to carry out internal data transfers within the 

*This work is being supervised by Prof. David Tennen­
house. This work is part of the Aurora Project, which is 
funded by DARPA and NSF through the auspices of CNRI. 
Initial design work on this project was done by David Mar­
tin, then a VI-A student in the Telernedia, Networks and 
Systems group. 
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Figure 1: Functional Block Diagram 

chip. 

The block diagram in Figure 1 illustrates the 
various modules in the coprocessor. The chip con­
sists of cell buffers, a register file 1 [2), control reg­
isters, a status register, a decoder unit, a timing 
generator, and memory drivers. 

To send a cell into the network, the CPU would 
read the status register of the chip, to determine 
whether there is room in the output cell FIFO. 
Then the CPU can load the cell directly into the 
coprocessor register file from main memory, in 32-
bit word chunks. Next, the CPU would issue an 
instruction that transfers the entire cell from the 
chip's register file to an output cell FIFO on the 
chip in one cycle. Then, it is upto the network to 
clock the data out from the FIFO. While an ATM 
cell is 53 bytes, the coprocessor FIFOs can be pro­
grammed to deal with cells of upto 64 bytes. 

In the opposite direction, the network would 
clock a cell into an input cell FIFO of the chip. The 

1 The cell buffers and register file were already designed 
by Jason Hickey at Bellcore for his cell engine chip, and those 
same designs were used for this project too. The use of these 
designs influenced parts of the design of the coprocessor chip. 
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non-empty cell FIFO would then cause the chip to 
generate an interrupt signal. The CPU would then 
react to the interrupt by transferring an entire cell 
(upto 64 bytes) from the chip's input cell FIFO to 
the chip's register file. And finally, the CPU would 
issue a number of store instructions to transfer the 
data in 32-bit chunks from the coprocessor register 
file to the R3000 main memory. 

Chip Description 

There are four cell buffers on the chip, which can 
be configured to be input or output FIFOs. Each 
cell buffer can hold up to four 64-byte cells. The 
register file consists of 64 32-bit registers, and has 
one 32-bit read port, one 32-bit write port, and one 
512-bit read/write port, which allows an entire 64-
byte cell to be transferred to (or from) a cell buffer 
in one cycle. 

The decoder unit is responsible for decoding the 
instruction coming from the CPU and generating 
the appropriate signals for the other parts of the 
chip. The memory drivers interface to the system 
bus of the MIPS R3000. This bus is 32-bits wide, 
bidirectional, and multiplexed between instruction 
and data values. The timing generator is respon­
sible for buffering the clock signal to the various 
parts of the chip, and handling CPU stalls. 

This chip is currently being fabricated by VTI 
in 1.2 micron technology. The die size is 7.6mm by 
5.2mm, and the packaging used is a 223-lead high­
performance ceramic pin grid array. 

Performance 

It is hoped that this coprocessor-based interface will 
increase the bandwidth in and out of the worksta­
tion, compared with the Turbochannel-based inter­
face currently in use in our group. This increase is 
expected for several reasons. One reason is that the 
coprocessor will be directly attached to the R3000's 
internal system bus, which is a high bandwidth bus 
(32 bits at 40MHz). 

Another reason for performance improvement 
is the potential gain from avoiding cache misses. 
When reading values from the Turbochannel inter­
face, a cache miss is bound to occur, since data com­
ing from the network is not already in the cache. 

However, with the coprocessor interface, the val­
ues will be read from the coprocessor register file, 
which is not memory mapped, thereby bypassing 
the cache. 

Further, the R3000 instruction set allows words 
to be written directly between a coprocessor's reg­
isters and main memory. In the case of the Tur­
bochannel interface, however, data has to be moved 
via the CPU's general registers. Thus, in the co­
processor interface, a fewer number of instructions 
need to be issued by the CPU, thereby increasing 
the bandwidth. 

Initial Measurements 

Some initial measurements were taken, which com­
pared the bandwidth of the Turbochannel interface 
with the coprocessor interface. Since the coproces­
sor is still being fabricated, data was written to 
and from the floating point coprocessor's registers. 
These measurements show that the bandwidth in­
creased by a factor of about 2.1 (throughput in­
creased from 128 Mbps to 275 Mbps) in the trans­
mit direction, and by a factor of about 4.8 (through­
put increased from 56 Mbps to 271 Mbps) in the 
receive direction. 
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We have examined two aspects of network interface 
design which can dramatically affect the cost of inter­
processor communication: the acceleration of frequent 
operations via simple hardware mechanisms, and the 
physical placement of the network interface with respect 
to the processor. Our performance study demonstrates 
the importance of these features [HJ92]. 

The hardware mechanisms we consider are those 
in NIC [HJ91a][HJ91b], a network interface chip which 
we have designed and extensively simulated at the RTL 
level. The basic NIC architecture consists of 14 inter­
face registers, an input message queue, and an output 
message queue. Of these 14 registers, five output regis­
ters contain the words of the message being composed; 
five input registers contain the words of a received mes­
sage; and the rest provide control and status informa­
tion (such as current queue sizes). 

In addition to accessing the interface registers, the 
processor communicates with NIC via several com­
mands. The SEND command composes a message from 
the five output registers and appends it to the output 
queue for sending. The NEXT command removes the 
message at the front of the input queue and places its 
values in the five input registers. 

Three hardware mechanisms accelerate the han­
dling of messages in NIC: encoded message types, fast 
reply and forward modes, and hardwired message inter­
pretation. 

Encoded Message Types: Each message must 
somehow identify the message handler to be invoked 
when the message arrives at its destination. Typically, 
the id of the handler is specified in a separate word of 
the message. This word has to be generated and stored 
in the interface. To avoid this overhead, we allow the 
id's of frequently invoked handlers to be encoded into 
a four-bit type field. This type field is automatically 
specified as part of each SEND command. 

Fast Reply and Forward Modes: When a pro­
grammer decides to reply to a message, some fields of 
the message to be sent are already in input registers. In 
a typical network interface the programmer will have to 
explicitly move these fields into the output registers. To 
avoid this overhead, we have implemented two special 

1 This work is being supervised by Prof. Greg Papadopou­
los. This report describes research done at the Laboratory of 
Computer Science of the Massachusetts Institute of Technology. 
Funding for the Laboratory is provided in part by the Defense Ad­
vanced Research Projects Agency under Office of Naval Research 
contract N00014-89-J-1988. 

modes of the SEND command, the reply mode and the 
forward mode. When one of these modes is used, the 
SEND command composes an outgoing message using 
certain input registers in place of certain output regis­
ters. 

Hardware Message Interpretation: Once a 
message arrives at its destination, the programmer must 
somehow interpret the message. In a typical network in­
terface, the programmer will have to check the status 
register to find out if there are any exceptional condi­
tions and if a message has arrived, read the type of the 
arrived message, use the type to compute the instruc­
tion address of the handler for that message, and finally 
jump to that handler. We have reduced this overhead 
to one or two instructions by precomputing the address 
of the handler into a special interface register. 

In addition to the hardware mechanisms, the effi­
ciency of a network interface is affected by the physical 
placement of the network interface registers with respect 
to the processor. We consider three different placements 
in our study: inside an off-chip cache, inside an on-chip 
cache, and inside the processor's register file. If the reg­
isters are mapped into a cache, as in NIC, each reading 
or writing of an interface register will consume processor 
cycles. In our performance study, we have assumed two 
delay slots for reading via a load from an off-chip cache 
and no delay slots for reading via a load from an on­
chip cache. SEND and NEXT commands can be sent 
simultaneously via the low bits of load and store ad­
dresses. On the other hand, if the interface registers are 
included in the processor's register file, reading or writ­
ing an interface register no longer takes a separate in­
struction. Moreover, the SEND and NEXT commands 
can be incorporated into the unused bits of every triadic 
instruction. 

In our performance study, we have analyzed two 
parallel programs using each of the three network inter­
face placements both with and without our hardware 
mechanisms. The first program, a 100 by 100 matrix 
multiply, subdivides matrices into 4 by 4 blocks and 
computes their products. The second program gener­
ates every distinct paraffin isomer, a hydrocarbon, up 
to size 14 [AHN88]. Both programs have been written 
in the non-imperative subset of the Id [Nik90] program­
ming language and compiled for the TAM [CSS+91] pro­
gramming model, a relatively fine-grain programming 
model. 

Figure 1 shows the dynamic number of RISC in­
structions for the two programs under each network in­
terface model. We have computed these numbers by 
using a software simulator of TAM to get the dynamic 
instruction counts. We then replaced the dynamic count 
of each TLO instruction by the appropriate number of 
RISC instructions. Each bargraph in Figure 1 is di­
vided into two components. The clear, top compo­
nent corresponds to the total number of instructions 
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Figure 1: Dynamic instruction counts for 100 by 100 matrix multiply and 14 paraffins using the six different 
network interface implementations. 

executed in order to send, dispatch, and process mes­
sages. Although some of the instructions inside message 
handlers do perform useful work, such as memory allo­
cation or queueing of deferred read requests, most of 
these instructions can be considered network interface 
overhead. The shaded, bottom component corresponds 
to the remaining instructions, ones which are not in­
volved in communication. 

The data in Figure 1 leads to several insights. First, 
communication has a first-order effect on the these fine­
grain parallel programs. Although the dynamic fre­
quency of executing a high-level message sending in­
struction is relatively low, 9% and 11 %, more than half 
of all the RISC instructions are dedicated to commu­
nication. In addition, hardware optimizations of the 
network interface appear more important than the ac­
tual placement of the interface. Even existing proces­
sors could considerably lower their communication costs 
by attaching an optimized interface, such as NIC, on 
their external cache bus. Most importantly, the gains 
achieved by using a register-based, hardware assisted 
network interface are substantial. The cost of commu­
nication decreases, on average, by a factor of two and 
one half as we optimize the network interface and incor­
porate it into the register file. 
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Introduction 
An important impediment to writing efficient parallel software is the difficulty of crafting the code to efficiently 
map data and control structures to a computer's architecture in order to exploit locality or reduce contention for 
critical resources such as storage or network bandwidth. The best implementation of a module may differ de­
pending on hardware architecture, the module's interface to other modules in the program, and the resources 
available when it is used, thus making writing general-purpose libraries difficult. Much of this information is 
difficult to predict when the program is being written, so the programmer often does not have the information 
necessary to decide which is the best representation for a program structure. 

AIDA (Accelerated Implementations of Data Abstractions) is a new language and environment that allows the 
programmer to specify alternative implementations of a module and provides the computer with considerable 
latitude about choosing implementations based on compile-time and run-time information. The language per­
mits a range of representation annotations and hints for the compiler. A major goal of this work is the definition 
of efficient abstraction mechanisms for MIMD parallel computers-one should be able to define general abstrac­
tions such as a generic sort routine and have the system customize their data and control representations to 
best fit their usages. 

Some methods of choosing sequential data representations have been explored before in SETL [7], LIBRA [3], 
[6], and [5]. Whereas these systems aimed at making programming easier with some loss of efficiency, AIDA's 
emphasis is on letting programmers generate more efficient modular programs than they could using standard 
techniques. Parallel programming is more difficult than sequential, and the wider information gap between 
what the computer can determine about a parallel program and what the programmer knows provides an oppor­
tunity for representation optimizations. Unlike FORTRAN optimizers such as [4], AIDA is focused on optimiz­
ing complex data structures and symbolic code. 

Example 
The Pentomino program (see the figure) illustrates 
several kinds of data structure choices. There are several 
important data and control structures in this program 
which can have multiple representations: 

• The twelve pieces and their orientations: lists of(x.r) 
square coordinates or 60-bit bitmaps 

• A board with partially placed pieces: a 6x10 array of 
piece numbers or, for some uses, simply a 60-bit 
bitmap. The border (marked with light gray) is espe­
cially interesting in guiding the search, but it is a 
bulky data structure (including some information not 
shown in the figure). When expanding a placement, 
the system has a choice of rebuilding the border data 
structure or incrementally modifying the existing one; 
which one depends on implementation details such as 
whether the process to search the new position is local 
or remote and how expensive it is to ship the border 
data structure to it. 

• The search tree. This control/data structure is cre­
ated and destroyed as the search proceeds. The 
search must switch from breadth-first at the higher 
levels to depth-first at the lower levels to avoid ex­
hausting memory. 

This research is supervised by W. Dally and supported by an 
ONR fellowship, by DARPA under contracts N00014-88K-0738 
and N00014-91-J-1698, by Air Force Systems under contract 
F19628-92-C-0045, and by a NSF Presidential Young 
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Pentominoes and one solution 
The pentomino program finds all 2339 possible arrange­
ments of the twelve pentominoes in a 6X1 O rectangle. 
The pentominoes can be rotated or flipped over. 

The pentomino solver does an exhaustive depth-first 
search with pruning, placing pieces one at a time. At any 
particular time the search picks a square along the 
boundary (light gray) of the already placed pieces and ex­
pands the search tree one level by trying to fit each of the 
remaining pieces so that it covers that square. The 
search uses a heuristic that tries to pick the boundary 
square with the smallest number of matches; if there is a 
boundary square with no matches, that search branch can 
be abandoned immediately. 



The AIDA Language 
AIDA is based on a statically typed version of Concurrent Smalltalk [2], an imperative parallel programming 
language based on object-oriented programming and futures. AIDA is highlighted by the following constructs: 

• The (choose altl alt2 ... altn) statement lets the compiler or run-time system choose, at its discretion, 
which of the alternative statements to execute. This statement is useful when there are several ways to 
perform a function, none of which is clearly superior when the program is written. altl and alt2 could, for 
instance, be two sort algorithms, one of which is more appropriate for tightly localized data, the other of 
which is better for data spread throughout a parallel computer. choose statements can be linked and anno­
tated to make several choices dependent on one another. 

• Multiple representations of a data type. A data type such as a set or array can have multiple representa­
tions. The compiler and run-time system choose a particular representation, for which the programmer can 
provide hints (stating a preference for a particular implementation, limiting the size of an array, etc.). 

• Variants of a representation of a data type. Some data structure variables can be declared optional; the 
system will drop them if they are not needed (this interacts well with choose statements which can either 
access these instance variables or calculate the values in some other manner if the data structure variables 
are not available). 

• Transformers and coercers that convert one object representation into another at run-time. For instance, 
one representation of a set can be transparently transformed into another, and a general array variant can 
be coerced into a fixed-length one. The (transform obj) statement provides a hint to the system that it 
might be worthwhile to revise the representation of obj's data at this point in the program. 

• Annotations for optimizing hierarchical combination of data structures (inclusion, local or remote pointers, 
etc.) and for passing arguments to functions. 

• Annotations for optional data-driven synchronization. Rather than using return values to signify that a 
function is done, control flow can be synchronized using auxiliary counters or presence bits. This avoids the 
need to create, save, restore, and synchronize on contexts, which can be the most expensive operations on 
fine-grained parallel computers [2]. 

AIDA is designed to efficiently support both sequential machines and MIMD parallel computers such as the J­
Machine [l]. The code generated for them will be very different, and the programmer can use the choose and 
data representation facilities to specify both sequential and parallel algorithms in cases where the best ones dif­
fer. The system will decide whether to bring all data to one node and use the sequential algorithm or whether to 
run the algorithm in parallel; such decisions often depend on what the rest of the program is doing. 

AIDA makes choices by using compiler inference, heuristics, and programmer hints where possible to determine 
the sizes of data structures and operations performed on them. Where a choice cannot be made at compile-time, 
AIDA tries the various alternatives at run-time and collects statistics on them to make the choices. 

At this time we are in the process of implementing AIDA with a J-Machine as the target architecture. 
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Computation Migration in Parallel Systems 

1 Introduction 

Wilson Hsieh* 
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We describe a language feature with which a programmer can control the location of computation in a parallel 
object-oriented language; we hope that this will lead us to develop automatic methods for deciding where com­
putation should occur. The Prelude language [1], a parallel object-based language, provides instance methods, 
class methods, and free-standing procedures; the execution of class methods and procedures (we shall refer to 
both as procedures) is not tied to the location of any object. The common paradigm is to have a procedure 
execute at a single location; when a procedure makes an instance method call, the call occurs at the object that 
it is invoked upon, and control then returns to the procedure. 

We provide the programmer with an annotation for instance method invocations (the annotation occurs at 
the point of call) that specifies that the calling procedure migrates with the instance method call; in other words, 
when a procedure invokes the specified instance method, it then finishes executing where the method executes. 
We call this "computation-migration" (or "continuation-passing") because the continuation that represents the 
"rest of the procedure" is passed along with the instance method call. Computation migration can be viewed 
as a generalization of tail recursion; a tail-recursive call consists of passing a continuation at the last call within 
a procedure. 

Computation migration saves messages, as illustrated in Figure l. A procedure on processor 1 calls two 
instance methods on objects on processor 2, the second of which calls an instance method on processor 3; the 
procedure then calls an instance method on processor 3. Without computation migration, this sequence of 
calls takes eight messages: four call/return pairs. With computation migration, the sequence of calls takes 
only four messages. This has several effects: it may reduce the load on the network (depending on the size 
of a continuation message); and it should reduce the overall latency of the procedure, since less time is spent 
handling message interrupts and there are fewer network transit times in its execution path. 

There is a tradeoff involved in deciding when to make a call using computation migration; not every call 
should use it, for several reasons. A continuation message will tend to be larger thari a simple call message, 
since the state of the procedure must be sent; using computation migration for all calls could increase rather 
than decrease the network load. In addition, it would be inefficient to migrate a procedure to a processor that 
is heavily loaded. 

2 Alternatives 
It is possible to explicitly code a continuation-passing structure in some languages (for instance, in Concurrent 
Aggregates [2]). However, this would be done by adding procedures that represent the execution of a continu­
ation. For example, consider a procedure p, where p calls x.foo with computation migration. In order for the 
programmer to achieve the specified behavior, he would have to add a method x.foo2 that performs x.foo and 
then executes the rest of p. This can required substantial amounts of complex code. It also breaks abstraction 
boundaries, as the design of an object's interface must take into account any computation migration that the 
object may be involved in. Finally, without tail recursion some extra messages would still be required. 

3 Implementation 
We would like to implement computation migration as a manipulation of stack frames at runtime: the appro­
priate data would be passed to the destination processor, where the stack would be set up; the call would be 

*Supervised by Professor William E. Weihl. Supported in part by the National Science Foundation under Grant CCR-8716884, 
by the Defense Advanced Research Projects Ag=cy (DARPA) under Contract N00014-89-J-1988, by an equipm=t grant from 
Digital Equipment Corporation. 
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Figure 1: The picture to the left shows a sequence of calls made without computation migration; the picture 
to the right shows the same sequence of calls with computation migration used twice. Solid arrowheads in­
dicate instance method calls; blank arrowheads indicate returns from those calls; a dashed arrow indicates a 
continuation-call. 

executed by jumping into the code for the procedure. However, the current Prelude compiler produces C code, 
so we do not have sufficient control of the actual code generation. Our current implementation of computation 
migration is thus handled by creating a special continuation procedure for each continuation call; instead of 
using the same code for the continuation, we execute this new procedure at the destination, where the arguments 
of the procedure are the live variables at the point of the continuation call. Although this solution is inefficient 
in terms of code space, it allows us to measure the performance gains of computation migration. Preliminary 
results show that using computation migration can dramatically improve performance. 

4 Conclusions 
Our current design and implementation only handles a simple form of migration: the "rest of the procedure" can 
move to another processor - a single stack frame moves. We are also investigating annotations that will allow 
the programmer to move partial frames (execute part of a procedure remotely, and then return) or multiple 
frames. Finally, when we gain more experience using computation migration, we will investigate having the 
compiler decide when to use computation migration. 
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1 Introduction 

As multiprocessor sizes scale and computer architects tum to in­
terconnection networks with non-uniform communication laten­
cies, the lure of exploiting communication locality to increase 
performance becomes inevitable. Models that accurately quantify 
locality effects provide invaluable insight into the importance of 
exploiting locality as machine sizes and features change. In [4 ], 
we present and validate such a model. This abstract provides 
a brief overview of that modeling framework and presents two 
interesting results obtained thereby. First, one can show that ex­
ploiting communication locality provides gains which are at most 
linear in the factor by which average communication distance is 
reduced when the number of outstanding communication transac­
tions per processor is bounded. Second, we obtain rough upper 
bounds on the performance improvement available on a particu­
lar architecture by exploiting locality to minimize communication 
distance. 

2 What is Locality? 

Applications often take advantage of communication locality to 
realize performance gains. Communication locality is a property 
of both applications and architectures. Application locality (or 
algorithmic locality) is that which is present in the organization 
of an application, independent of architectural details. Architec­
tural locality represents the ability of an architecture to exploit 
application locality. 

Two components contribute to application locality. The first, 
temporal locality, represents the effect of decreasing the commu­
nication frequency between application threads. Applications that 
minimize inter-thread communication by maximizing data reuse 
tend to exhibit good temporal locality. The second component, 
physical locality, represents the effect of affinity in the commu­
nication patterns amongst an application's threads. Applications 
tend to have good physical locality to the extent that their inter­
thread communication graphs have relatively low bisection width 
and high diameter. An application in which all distinct pairs of 
threads communicate equally has no physical locality. 

While the modeling framework discussed herein can be used 

•The research reported on herein was supervised by Professor Anant Agarwal 
and funded in part by NSF grant # MIP-9012773 , in part by DARPA contract 
# N00014-87-K-0825, and in part by a NSF Presidential Young Investigator Award. 
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Figure 1: Combined modeling framework. 

to reason about both temporal and physical locality effects, this 
research focuses on the latter. Numerous researchers have demon­
strated the importance of the former; compilation techniques for 
increasing temporal locality continue to be an active area of re­
search [5, 6]. 

Multiprocessor systems built around interconnection networks 
with non-uniform communication latencies can exploit physical 
locality in applications by mapping application threads to proces­
sors such that average communication distances are lower than 
would result from mappings which ignore the locality available 
in the network. 

3 A Framework for Modeling 

This section provides a brief overview of the aforementioned mod­
eling framework; a more detailed treatment can be found in [ 4 ]. 

The modeling framework (Figure 1) consists of three individ­
ual component models: an application model describes processor 
behavior in terms of abstract communication transactions, a trans­
action model describes the resources required to satisfy said com­
munication transactions, and a network model characterizes the 
behavior of the underlying interconnection network. The applica­
tion and transaction models are combined to obtain a node model 
which describes the behavior of individual multiprocessor nodes 
as seen by the interconnection network. The final combined model 
is obtained by joining the node and network models. These mod­
els are joined such that applications effectively receive feedback 



from the network and only inject messages at rates appropriate to 
the message latencies they actually observe. 

One novel aspect of the modeling framework is the simplic­
ity of the application and node models. Essentially, each model 
has only two parameters; these parameters correspond directly 
to computational grain size (computation-to-communication ratio) 
and latency sensitivity (ability to tolerate increases in communi­
cation latency). It is straightforward to show that this latency 
sensitivity parameter is sufficient to describe a wide range of la­
tency hiding/tolerating techniques (e.g. multithreaded processors, 
relaxed memory consistency models, prefetching). 

The network model used in this research is that for packet­
switched k-ary n-dimensional torus networks with separate unidi­
rectional channels in both mesh directions presented by Agarwal 
in [l]. This model assumes that messages are wormhole routed 
according to an e-cube routing scheme [3]. 

We obtain the combined model by using the node and network 
models to provide feedback to one another so that individual nodes 
"back off' as message latencies increase, injecting messages into 
the network at rates appropriate to the message latencies they 
actually observe. Combining the node and network models pro­
duces a polynomial quadratic in the average per-node message 
injection rate. This quadratic is easily solved to obtain the pre­
dicted message injection rate predicted. Other values of interest 
(e.g. channel utilization, average inter-transaction issue time) are 
obtained by substituting this predicted value into the appropriate 
model equations. 

4 Bandwidth vs. Latency 

As machine sizes scale, applications with little physical locality 
place increasing bandwidth demands on interconnection networks. 
Increases in application bandwidth requirements in turn cause con­
tention effects to become more pronounced. Using the framework 
described above, one can demonstrate that under a reasonable set 
of assumptions about application and processor behavior, the im­
pact of contention effects is bounded, even for very large machines 
and communication-intensive applications that induce heavy net­
work loads. 

Using the combined model, one can show that as machine 
sizes scale and average communication distance increases, the av­
erage time it takes a message to travel a single network hop (Th) 
approaches a limiting value which depends only on average mes­
sage size, latency sensitivity of the application and node models, 
and network dimension-independent of machine size. Intuitively, 
Th approaches this limiting value because of the linkage between 
application and network behavior. If each node can only have 
some finite number of communication transactions out~tanding, 
increasing transaction latencies cause transaction issue rates to 
fall. This negative feedback keeps processors from loading in­
terconnection networks to a point where communication latencies 
become unbounded. 

The fact that Th approaches this limiting value implies that av­
erage communication latency is linear in communication distance. 
This, in turn, has a profound impact on the potential benefit of 
exploiting physical locality. Any gain due to exploiting physi­
cal locality is bounded by the degree by which communication 

latencies are reduced. Since communication latencies are linear 
in communication distance, reducing average communication dis­
tance by some factor x can only provide performance gains which 
are linear in x. 

5 Exploiting Physical Locality 

Intuition dictates that application performance should benefit from 
thread-to-processor mappings that reduce overall communication 
distance. The more physical locality present in an application, the 
greater the gains possible through reducing communication dis­
tances. Using the modeling framework discussed above, one can 
obtain rough upper bounds on the potential benefit of exploiting 
physical locality. While some benefit is available, it is somewhat 
less than one might initially expect. For an architecture like the 
MIT Alewife machine [2] organized as a two-dimensional torus, 
exploiting physical locality provides no more than a factor of two 
or so performance improvement for a 1,000 processor machine; 
with a million processors, the upper bound increases to roughly 
50. 

An examination of the factors leading to this less-than-expected 
impact indicates that it is primarily due to the relatively high ratio 
of communication bandwidth to computation speed in that archi­
tecture. In fact, using the modeling framework, the degree to 
which various factors (e.g. fixed communication overheads, use­
ful work, etc.) contribute can be quantified. Such a breakdown 
allows identification of the phenomena that lead to the apparent 
disparity. Recomputing the gains for architectures with progres­
sively slower networks confirms this fact showing that larger gains 
are possible when processors are faster relative to the speed of the 
interconnection network. 
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Given an undirected k-regular graph G = (V, E) and a subset X of V, we define the expansion of X 
to be the ratio IN!lfll, where N a(X) = { w E V : 3v E X, ( v, w) E E} is the set of neighbors of X. 
Graphs whose all subsets of size lying in a given range have large expansion are called expanders 
graphs. 

Expander graphs are widely used in Computer Science, in areas ranging from parallel and 
distributed computation to complexity theory and cryptography. The range of the subsets whose 
expansion is relevant and the magnitude of the expansion needed depends on the nature of the 
application. For example, in the design of the AKS sorting circuit, we need expanders of fixed 
degree and such that subsets of size t::IVI have expansion at least 1 ~·, where £ is a small fixed 
positive constant. The depth of the resulting circuit is proportional to the degree of the expander. 
In other applications, like the construction of non-blocking networks, we need a family of fixed 
degree bipartite expanders where the expansion of linear-sized subsets is at least ~. Indeed, this 
guarantees that a constant fraction of any small subset have unique neighbors. 

It is not hard to show that random k-regular graphs, are good expanders: their expansion 
coefficient is k - 1 - £, where £ is an arbitrarily small positive constant. However, the naive and 
only known method to calculate the exact expansion coefficient of a graph takes an exponential 
amount of time. 

The best known technique to calculate lower bounds on the expansion in polynomial time relies 
on analysing the second eigenvalue of the graph. The smaller the second eigenvalue, the higher 
expansion we get. This technique shows that random regular graphs have provable expansion at 
least k/4. It also shows that Ramanujan graphs, which been constructed explicitly by Lubotzky, 
Phillips and Sarnak in 1986 and independently by Margulis in 1987, have expansion at least k/4. 
Ramanujan graphs and random graphs are known to have optimal second eigenvalue (up to a 
1 + o(l) factor). In a previous work, Kahale [1] improved the lower bound on the expansion of the 
LPS-M and random graphs to 3

8
1:(1- o(l)). More recently, Kahale [2] improved this bound to Hl -

o(l)). Moreover, he essentially showed that the k/2 bound is the best bound any technique based 
on the second eigenvalue can yield by exhibiting a family of graphs with asymptotically optimal 
second eigenvalue and linear expansion only k/2. As an application of the improved expansion of 
Ramanujan graphs, we can build explicit selection networks of asymptotic size (3 + t::)nlog2 n, for 
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Figure 1: The graph G,..+2 in the neighborhood of u in the case k = 3. The dotted edges are those 
belonging to E - E'. 

any E > 0, improving upon the bound 6nlog2 n that was previously known. A selection network is 
a network of comparators that classifies a set of n numbers, where n is even, into two subsets of 
n/2 numbers such that any element in the first set is smaller than any element in the second set. 

2 A family of k-regular graphs with asymptotically optimal second 
eigenvalue and expansion k/2 

In the following, we explicitly construct such a family. From Margulis and LPS, we know that 
we can explicitly construct an infinite family of Ramanujan graphs Hn on n vertices whose girth 
is at least (4/3 + o(l))log,1:_ 1 n. The girth of a graph is the length of its shortest cycle. Let 
Hn = (V, E) be an element of the family and u E V be a vertex of Hn. Since the girth of Hn 
is large, the graph Hn looks like a regular tree in the neighborhood of u. Let u 1, ... , u,1, be the 
neighbors of u and let 111 , •.• , 111,: be k vertices distinct from u and such that ( ui, 11i) E E. Consider 
the k-regular graph Gn+2 = (V', E'), where u', 11' are external vertices, V' = V U { u 1

, 11
1

} and 
E' = EU {{ u', u 1}, •• ., { u', u1,:}} U {{ 111

, 111}, •• ., { 11
1

, 111,:}} - {{ u1, 111}, .. ., { u.1:, 111,:}}. Figure 1 shows 
the graph Gn+2 in the neighborhood of u in the case k = 3. In [1], we show that the second 
largest eigenvalue of the graphs (Gn) is 2.Jk=i + o(l), and so it is asymptotically optimal. As a 
consequence the linear expansion is at least k/2. On the other hand, the expansion of the subset 
{ u, u'} is clearly k/2, and so the linear expansion of the family (Gn) is equal to k/2. 
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EFFICIENT TECHNIQUES FOR INDUCTANCE EXTRACTION OF 
COMPLEX 3-D GEOMETRIES* 

MATTAN KAMONt 

This abstract describes combining a mesh anal­
ysis equation formulation technique with the 
GMRES matrix solution algorithm to acceler­
ate the determination of inductances of complex 
three-dimensional structures. Results from FAS­
THENRY, our 3-D inductance extraction pro­
gram, demonstrates that the method is more than 
an order of magnitude faster than the standard 
solution techniques for large problems [1]. 

Inductance extraction involves the determina­
tion of the c x c frequency dependent impedance 
matrix, Zc, where c is the number of conduc­
tors. From the impedance matrix, the resistance 
and inductance matrices are easily extracted. One 
approach to computing the frequency dependent 
impedance matrix associated with the terminal be­
havior of a collection of conductors involves first 
approximating each conductor with a set of piece­
wise straight conducting sections. The volume of 
each straight section is then discretized into a col­
lection of parallel thin filaments through which 
current is assumed to flow uniformly [2, 3]. The in­
terconnection of these current filaments can be rep­
resented with a planar circuit, where the n nodes 
in the circuit are associated with connection points 
between conductor sections, and the b branches 
in the circuit represent the current filaments into 
which each conductor section is discretized. The 
system is assumed to be in sinusoidal steady-state. 

Determining column i of Zc involves determin­
ing the terminal voltages that result from setting 
the current in conductor i to 1 and the rest to 0. 
To determine these voltages, one must 'solve' the 
circuit described above. To begin, since each of 
the filaments, or branches, can be approximated 
by infinitely thin straight wires, one can compute 
directly the branch impedance matrix zb to give 

(1) 

where Vi is the vector of voltages across each 
branch and h is the vector of branch currents. The 
usual approach is then to apply Kirchoff's current 
law and force the sum of the current to be zero at 
each node. This set of equations can be written as 

(2) Ah= I, AtVn =Vi 

• This work was supervised by Prof. Jacob K. White 
and supported by DARPA contract N00014-91-J-1698, an 
NSF Fellowship, and grants from IBM and Digital Equip­
ment Corporation. 
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where I, is the vector of source currents into each 
node A is called the incidence matrix, and Vn 
is th~ vector of reference node voltages. These 
equations can be combined to give 

(3) 

The right-hand side, I, is known and is mostly 
zeros except for the nodes corresponding to the 
conductor carrying a current of 1. To determine 
a column of the final impedance matrix, Zc, we 
need only solve for Vn and extract the appropriate 
voltages. 

In most programs, the dense matrix problem in 
(3) is solved with some form of Gaussian elimina­
tion, and this implies that the calculation grows 
as b3 . For complicated packaging structures, b can 
exceed ten thousand, and solving (3) with Gauss­
ian elimination can take days, even using a high 
performance scientific workstation. 

The approach to calculating the frequency de­
pendent inductance and resistance matrix de­
scribed above has some disadvantages if (3) is to 
be solved with an iterative method. It is difficult 
to apply the iterative method, because the matrix 
AZ,;- 1 At contains z,;- 1

, which can only be com­
puted by forming the dense matrix Zb, and then 
somehow inverting it. 

Another approach to generating a system of 
equations for the currents and voltages in the net­
work representing the conductor system discretiza­
tion is to use Kirchoff's voltage law, or mesh anal­
ysis. KVL implies that the sum of branch volt­
ages around each loop in the planar circuit must 
be zero. These equations can be represented as 

(4) MVi = V. 

where V, is the vector of source voltages inside each 
loop and Im is the vector of mesh currents. These 
yield 

(5) 

In this case, in order to find column i of the final 
admittance matrix, Ye = z; 1 , one must solve for 
Im given V.. This time, V. will be 1 volt for the 
mesh corresponding to all of conductor i and 0 
volts for all other meshes. 

Notice that (5) does not involve Zi: 1
, so to 

speed up the computation, FASTHENRY uses the 
conjugate-residual style iterative method, GMRES 
[4]. Such methods have the general form shown 
below in Algorithm 1 for solving Ax = b. 
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Filaments per Size of Solution time, Solution time, 
conductor section MZMt (m) direct inversion preconditioned GMRES 

1 35 0.0003 0.007 
2 210 0.339 0.147 
4 560 8.02 1.08 
6 910 35.9 3.08 
9 1435 135 7.85 
12 1960 344 14.4 

TABLE 1 

Execution time comparison for the 95-pin package example. Execution times are in IBM RS6000/540 CPU minutes. 

ALGORITHM 1 (GMRES ALGORITHM FOR 
SOLVING Ax = b). 

guess :r: 0 

:for k = 0, 1, ... until converged { 
Compute the error, rk = b - A:r:k 

Find :r:k+l to minimize rk+l 

based on :r:i and Ti, i = 0, ... , k 
} 

The iterative algorithm can be accelerated by 
multiplying both sides of (5) by a preconditioner, 
which is a good approximation to (M ZbMt)- 1 . 

For FASTHENRY, this preconditioner is formed 
by directly inverting block diagonals of M ZbMt 
and using those to form a block diagonal matrix 
as the preconditioner. Each block is chosen to cor­
respond to only the meshes for a given conductor. 

For a sample pin package from Digital Equip­
ment Corporation (Figure 1), FASTHENRY with 
the preconditioned iterative algorithm proved 
much faster than direct inversion (See Table 1). 
As expected, the solution time for direct inver­
sion grew with m3 but preconditioned G MRES 
grew only as m 2 . For this small problem with 
only twelve filaments per section, the iterative al­
gorithm is already more than 23 times faster than 
direct inversion. 

FIG. 1. Half of a pin-connect structure. Thirty-five 
pins shown. 

Future work using multipole algorithms will ex­
ploit the fact that the off-diagonal elements of zb 
are the partial inductances generated from inte­
grals of -k [5]. Such methods will avoid forming 
and storing most of the entries in the dense ma­
trix M ZbMt, and reduce the cost of calculating 
matrix-vector products required for the GMRES 
procedure to order b operations. 
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Concurrent computers become increasingly attractive for transaction processing applica­
tions as throughput requirements continue to increase. Parallelism must be incorporated in all 
aspects of database management system (DBMS) design. In particular, logging information 
should be distributed amongst several disk drives, lest a single disk drive constitute a serial 
bottleneck. 

"Hot spot" objects are items in the database which are frequently updated. To ensure that 
hot spot objects do not limit the maximum throughput for the entire system, a DBMS must 
offer high throughput on each object. A transaction must first acquire an exclusive lock on an 
object before it can update it. This lock serializes modifications by independent transactions, 
but limits the rate at which successive transactions can access the object. 

When a transaction has finished its work and wants to commit its updates, it makes a 
request to the DBMS; this request is called a precommit. The DBMS appends a COMMIT 
record for the transaction to the log. The DBMS waits until all log records have been written 
to nonvolatile disk storage before it finally commits the transaction. A simple DBMS does 
not allow a transaction to release any locks until after it commits, but this limits throughput 
on any object to the rate at which blocks can be written to disk. 

Previous researchers have proposed the precommitted transaction technique so that disk 
I/O does not limit throughput on hot spot objects. A transaction tJ's locks are all released 
immediately after the transaction precommits. A subsequent transaction t2 can see tl's up­
dates even though tl has not yet committed, in which case it becomes dependent on t1 to 
eventually commit. The DBMS cannot commit t2 until after it has committed tl. 

When log records are serially ordered in a single log stream, it is not difficult to ensure 
that tl commits before t2 because tl's log records will be written to disk before those of t2. 
In a highly parallel setting, the DBMS may direct the log records from transactions tl and t2 
to different log streams. Unless the DBMS regulates the order in which blocks in different log 
streams are written to disk, it is possible for all t2's log records to be written to disk before 
those of tl. Recovery after a crash might incorrectly restore the updates by t2 while annulling 
those of tl. 

To prevent such anomalies, previous researchers have proposed that the DBMS regulate 
the order in which COMMIT log records are written to disk. This solution is awkward be­
cause it introduces dependencies amongst log streams which would otherwise be independent. 
Furthermore, a cyclic dependency amongst log streams would jeopardize the consistency of 
the log information on disk, and so the DBMS must prevent the formation of cycles. 

1 Faculty Supervisor: William J. Dally 
This research was supported in part by an NSERC 1967 Postgraduate Scholarship, by the Defense Advanced 
Research Projects Agency under contracts N00014-88K-0738 and N00014-91-J-1698 and in part by a National 
Science Foundation Presidential Young Investigator Award, grant MIP-8657531, with matching funds from 
General Electric Corporation, IBM Corporation and AT&T. 
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An alternative approach [1] is to explicitly record dependency information in the log, so 
that it is unnecessary to regulate the order in which records are written to disk at different 
streams. When a transaction t precommits, a PRECOMMIT record is immediately directed 
to some log stream. The PRECOMMIT identifies any previous transactions on which t de­
pends; it also identifies data objects (that were updated by t) for which the associated log 
records have not yet been written to disk. The PRECOMMIT record can be written to disk 
at any time. Mter a crash, a recovery program can examine the dependency information in 
PRECOMMIT records to determine which transactions actually committed (i.e., had all de­
pendencies satisfied) prior to the crash. To make recovery more efficient, a separate COMMIT 
log record is written for each transaction after it finally does commit. 

Figure 1 illustrates an example in which there are four log streams. Data log records, 
which record updates to objects in the database, are directed to the top two log streams. 
Transaction log records record when transactions begin, precommit, commit and abort; they 
are directed to the bottom two log streams. 
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Figure 1: Explicit Representation of Dependencies for Transactions 

Preliminary analyses confirm the feasibility of this technique. Experimentation and eval­
uation of a working implementation on the J-Machine are goals for future work. 
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Abstract 

As science and technology advance, researchers are faced with larger and more 
challenging problems. Often the number of calculations required to solve these problems 
places great demands on computing resources and can require greater computational 
power than currently exists. Thus, when new systems become available, it is important 
for researchers to have some measure of the performance, cost effectiveness, and 
usefulness of these machines. Benchmark codes provide a means of testing a machine's 
performance on certain applications. 

One application which places great demands on the performance of a computer is 
the simulation of radiation transport. This project involves writing a Monte Carlo 
simulation of radiation transport for benchmarking Intel's iPSC2, iPSC860, and 
Touchstone Delta Machine. Since a significant number of Los Alamos National Laboratory 
researchers use their computers to perform tasks that are very similar to those performed 
by the benchmark radiation transport code, the results of this project will help those 
scientists to evaluate the usefulness of Intel's line of parallel supercomputers. 

The simulation of radiation transport is important. Scientists and engineers are 
very interested in simulating particle transport within objects with which they are 
working. For example, such a simulator would be very useful to engineers involved in the 
design of a nuclear reactor. Through simulation of neutral particle transport one can 
determine statistics regarding energy, weight, velocity, position, and flux of particles 
with respect to position, as that particle travels through an object of an arbitrary 
geometry and composition. Simulation is performed using standard Monte Carlo 
techniques [1] based on probability distributions for the type and frequency of particle 
interactions. The amount of data used to calculate the probability distributions for the 
various media specified in a Monte Carlo radiation transport problem can be very large 
(up to 80 Megabytes). 

Intel's iPSC2, iPSC860, and Touchstone Delta Machine are message passing 
computers. The Touchstone Delta [2] is the most recent of these machines and possesses 
528 numeric nodes, each of which has up to 16 Megabytes of memory. (See figure 1.) 
Thus, the machine has a total memory of approximately 8.4 Gigabytes, and its peak speed 
is 42.2 Gigaflops for 32-bit floating-point operations. Message overhead is very large on 
all of these machines, and the ratio of processor speed of the nodes to the communication 
speed is highest on the Touchstone Delta. As a result, it is necessary to minimize 
communication between the nodes in order to approach to maximum performance. This 
restriction limits the types of problems that can take advantage of the computing power of 
this machine. 

As mentioned above, some Monte Carlo radiation transport simulation problems 
can require up to 80 Megabytes of data. Since the node memory is only 16 Megabytes, 
some communication among the nodes is necessary. In order to develop an approach 

1. Thesis Supervisor: Prof. Gregory M. Papadopoulos. This project was initiated and 
directly supervised by Mr. Olaf Lubeck, a research scientist at Los Alamos National 
Laboratory in the C3 Group. Partial funding for this work was provided by Los Alamos 
National Laboratory. MIT and Oakridge National Laboratory provide computing resources. 
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that minimizes this communication, we devised several strategies based on the fact that 
the data can be divided according to energy levels; As a particle travels through a 
material it loses energy, and only the data for its current energy level is required to 
simulate its transport. 

In the first approach the host of the parallel machine stores the entire data set in 
memory. The broadcast of the data set to the nodes is divided into phases according to 
energy ranges. Each node contains two buffers. One buffer is used in current calculations 
while the other is filled by the host. This masks message latency with the tracking of 
particles. Each node tracks all of its assigned particles until the energy level of all 
particles have dropped below the lower bound of the current data set energy range. In the 
meantime, the host broadcasts the data set for the next energy range to the alternate 
buffer at each node. This process continues until all particles have been absorbed. 

The second approach creates a pipeline among several processors which each have 
one energy range of the data set. Particles are fed through the pipeline, passing to the 
next node when their energy level falls below the energy range of the current node. 
However, movement of particles through the pipeline is expensive because it requires 
communication. 

The last major approach creates groups of processors that share data and stores a 
permanent energy range division of the data at each node as in the last method. However, 
each node also caches a current energy range of data in its memory. Nodes in a group 
would send requests to other nodes for a copy of required energy ranges and reply to 
similar requests for copies of their own permanent data. 

Currently, implementation of the first approach is nearing completion. The coding 
challenge involved in each of these approaches is very similar. Thus, once one 
implementation is complete, others will follow quickly. Results of performance analysis 
will be compared to tests of versions of the Monte Carlo radiation transport simulation 
running on other machines, including an ID implementation on the Monsoon Dataflow 
machine and a Fortran version run on a Cray. 
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The notion of a "counting network" was recently introduced by Aspnes, Herlihy, and Shavit [1], 
where it was shown that such networks can be simulated efficiently on an asynchronous shared memory 
machine to implement counters, producer/consumer buffers, and synchronization barriers. The counting 
network provides a means for the processors of a parallel machine to obtain successive values from a 
counter. These values can then be used to obtain unique keys to various resources shared by the 
processors, to allocate tasks evenly among the processors, or to synchronize processors when necessary. 

One solution to the counting problem is to use a single shared Fetch-and-Increment variable that 
is incremented each time a processor makes a request. This can lead to high memory contention 
when a large number of processors are making requests simultaneously. Counting networks provide a 
means by which this contention can be significantly reduced and thus allow for a much higher degree 
of concurrency. More specifically, a number of shared variables are used to implement a single counter 
in such a way that contention is reduced and a processor incrementing the counter need only access a 
small number of memory locations, thus providing fast response time and high throughput. 

Counting networks are modelled after sorting networks [3] in that they are composed of 2-input 2-
output components called balancers (rather than comparators). A balancer takes in tokens along both 
input wires and, acting like a toggle, outputs these tokens alternately along the top and bottom output 
wires (see Figure 1 ). As in the case of a comparator in a comparator network, balancers are used to 
construct a balancing network with an arbitrary number of input wires (and an equal number of output 
wires) called a balancing network. A counting network is a balancing network such that regardless of 
how many tokens are input on each input wire 

1. The number of tokens output on one output wire is within one of the number of tokens output on 
any other output wire. 

2. The number of tokens output on any output wire W is at least as great as the number output on 
any output wire located below W. 

The counting network can be implemented in software on a shared memory machine by associating a 
memory location with each balancer [1]. 

An important measure of the efficiency of a counting network is its depth. This is because the depth 
of the network is equal to the number of memory locations that a processor must access before its 
increment request has been fulfilled. In this paper, we present a number of constructions for counting 
networks of small depth. 

*Supported by the Defense Advanced Research Projects Agency under Contracts N00014-87-K-825 and N00014-89-J-
1988, the Air Force under Contract AFOSR-89-0271, and the Army under Contract DAAL-03-86-K-0171 

!Supported by NSF Research Initiation Award CCR-9111591, and Texas Advanced Research Program (TARP) Award 
#003658480. 
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Aspnes, Herlihy, and Shavit [1] provide two O(lg2 n )-depth families of n-input counting networks by 
proving that the balancing network isomorphic to Hatcher's bitonic sorting network [2] and isomorphic 
to the balanced periodic sorting network of Dowd, Perl, Rudolph, and Saks [4] are counting networks. 
Later, Klugerman [6] gave an O(lg n lg lg n )-depth construction. 

Our main result is a proof of the existence of an O(lg n)-depth counting network where n is the 
number of input wires. This result answers the question posed in [1], which asks whether such an 
optimal-depth counting network exists. The technique used to obtain this result involves constructing 
a set of networks N* such that for any fixed input sequence I, if a network N is chosen uniformly 
at random from N*, then N will count I with extremely high probability. "Good" networks are 
then chosen non-uniformly from N• and are used to construct a deterministic counting network with 
logarithmic depth. The other result in this paper is an explicit construction of a counting network of 
depth O(c1g•nlgn) (for some positive constant c), which represents an improvement over previously 
known constructions. 
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1.0 Basic SPMD Compilation Strategy 

The Single Program Multiple Data (SPMD) model 
of compilation is a straightforward approach suitable 
for a wide range of scientific applications written in 
Fortran targeted to massively parallel MIMD architec­
tures. According to this model the data is distributed 
across the processors and all processors execute the 
same code, possibly following different control paths. 
The computation is generally an alternating sequence 
of local computation and interprocessor communica­
tion. 

The basic SPMD compilation strategy is character­
ized by the following four rules: 

1 - Alignment: 
Directives specify alignments of objects. 

2 - Scalars: 
Scalars are "owned" by all processors. 

3 - Control fl.ow: 
Every processor knows the global fl.ow. 

4 - Intermediate operations: 
The "owner" of the LHS performs operation on the 

RHS. 

Although these rules simplify compilation they 
place significant limits on performance. We show be­
low how analyzing where objects should live (Section 
2) and analyzing how they arrive there (Section 3) im­
proves on these rules. 

2.0 Alignment 

This section discusses how compiler determination 
of the alignment of objects improves on the four SPMD 
compilation rules. 

2.1 Alignment of Source Objects 
Data optimization creates a graph among the tex­

tual occurrences of objects in the source. An edge be­
tween two occurrences implies a "preference" to align 
those occurrences. If such occurrences are not aligned, 
motion is required to align them. 

Two types of preferences are required for objects in 
assignment statements: 

1 This rese&rch is BUpervised by W.J. Dally and supported 
in part by the Defense Advanced Research Projects Agency 
under contracts N00014-88K-0738 and N00014-9lJ-1698, by 
Air Force Systems under contract F19628-92-C-0045 and by 
a National Science Foundation Presidential Young Investigator 
Award, grant MIP-8657531, with matching funds from General 
Electric Corporation, IBM Corporation, and AT&T. 

• the identity preference requires alignment of a defi­
nition with the use of the defined value (driven by data 
dependence analysis). 

• the conformance preference requires alignment of 
an operation with its operands. 

When preferences conflict, some preference cannot 
be honored, and the semantics must be maintained by 
communication. Since preferences are honored one by 
one in order of cost, 2 the communication that results 
from conflicts tends to be outside of loop nests. 

Instead of performing alignment by directives as in­
dicated by the SPMD rule 1, processing the preference 
graph performs alignment of source objects automat­
ically. 

2.2 Scalars 
One possible result of conformance preference pro­

cessing is called dynamic alignment, for example in 
a(k) + b(j ,k) the vector a aligns with the jth row 
of the matrix b. As j changes, the alignment of a 
changes. 

If a scalar is used in an expression with an array 
section in a loop, for example, s + a(j) within a loop 
on j, then s is dynamically aligned with respect to j. 
Based on this analysis, the scalar s is not required to 
live in all processors as it would in the SPMD approach 
based on rule 2. This analysis determines where each 
scalar will live. 

2.3 Control Flow 
In the code 

i:f s then 

a(1:20) = b(1:20) + c 

even if there are tens of thousands of processors, only 
those few involved in the assignment actually need to 
know the value of s. Optimization of the alignment of 
control variables to improve over the SPMD rule 3 is 
supported by an additional preference: 

• the control preference requires alignment of an op­
eration with the value that controls it (driven by con­
trol dependence analysis). 

In the code above the control variable is scalar and 
the operation it controls has one dimension. The con­
trol variable may well be an array and may or may 
not be the same shape as the operation. If the con­
trol variable is not the same shape as the operation it 
controls it will be dynamically aligned. 

lThe cost used here is an estimate of the run time cost if 
communication is required to align data. 
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Control preferences are incorporated into the pref­
erence graph and are processed by the data optimizer 
with conformance and identity preferences. 

2.4 Intermediate Operations 
Consider the code fragment: 

a(i,j,k) = b(i,j) + c(i) 

within i, j and k loops. According to SPMD rule 
4, for each iteration of the loop, the processor hold­
ing an element of a will receive an element of b and 
an element of c. Both the plus and the assignment 
are performed there. However, we can improve per­
formance by allowing the location of the intermediate 
operation to be determined by the dynamic alignment 
that results from conformance preference processing. 
c is dynamically aligned with respect to j aligning 
with each column of b. The sum, a two dimensional 
object, is therefore computed in the location of its b 
operand. This sum is then dynamically aligned with 
respect to k for the assignment. 

3.0 Communication 

The analysis above determines where scalars, array 
sections, control variables and intermediate operations 
will live at each point in the program, but how and 
when they will arrive there is a separate question. 

The communication required depends on how the 
object is used and on other code in the same loop 
nest. A dynamically aligned scalar, for example, will 
fall into one of the following communication categories: 

• privatized - no communication. The value in each 
location is independent. 

• replicated - parallel prefix communication. The 
value in each location is identical. 

• hopping - one message from one processor for each 
iteration. The value in each location is determined 
from the value in the previous location. 

• acanned - parallel prefix operation. The value in 
each location is computed by a simple associative op­
eration on the value in the previous location. 

• implicitly dutributed - no communication. The 
scalar appears as the subscript of distributed arrays 
and is not explicitly available. 

Dynamically aligned sections, whether they appear 
as explicit operands, as the result of intermediate op­
erations or as control variables, also fall into the above 
communication categories.3 The communication cat­
egory for an intermediate is determined by the cate­
gories of its operands. 

4.0 Example 

Consider the example in Figure 1. 

3 Notice that a scalar appears to be a section when it is dy­
namically aligned. 

do i = 
do j = 

do k = 
if control-expr(i,j,k) then 

c = ••. 
a(i,j,k) = j * b(i,j) + c 

enddo 
enddo 

enddo 

Figure 1: Dynamic Alignment Example 

In the SPMD model, the value of the control expres­
sion is communicated to all processors at each itera­
tion. c is communicated to all processors each time it 
is redefined. j is communicated to all processors each 
time it is redefined. One value of b is moved to one 
element of a once for each iteration. 

In the data optimization model, c is hopping with 
respect to all three loop indices since its value may 
or may not be redefined from it previous value in its 
previous location. Therefore c is communicated from 
one processor to another single processor at each it­
eration. j is implicitly distributed and requires no 
communication. j * b(i,j) is computed in the pro­
cessors owning b(i ,j) without communication. The 
product is be dynamically aligned with respect to k. 
This product is not modified and so is replicated with 
respect to k. The result of the plus is also dynamcially 
aligned with respect to k and since it can be computed 
only upon arrival of c, it is also considered hopping. 
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1 Motivation 

Researchers in parallel computing generally agree that 
it is important to support a shared-address space pro­
gramming model, where programmers see a global space 
of data objects without having to worry about explicit 
data placement and code scheduling. Thus, much re­
search has been geared toward implementing this model 
directly on shared-memory or message-passing hard­
ware. Unfortunately, each has its disadvantages, as well 
as its advantages. 

In a message passing architecture, each processor has 
its own private address space, so that a global address 
space must be synthesized by software which performs 
object location and renaming, and which explicitly dis­
patches messages to fetch remote data. This can be 
prohibitively expensive in the general case. However, 
in those cases when the compiler has sufficient infor­
mation to manage data statically, it can bypass these 
software layers and take complete advantage of the di­
rect, point-to-point messaging facilities which are di­
rectly supported by the hardware. 

In contrast, shared-memory architectures support a 
global address space directly in hardware. Data loca­
tion and renaming are performed directly in hardware, 
as is the launching of requests for remote data. How­
ever, scalability concerns require the introduction of 
non-uniform memory access latencies and caching to 
bolster system performance in the face oflarge network 
latencies. Caching, in turn, implies replication and a 
concomitant need for cache-coherence. The drawback 
to this approach is that all communication proceeds 
through reads and writes to shared memory; conse­
quently, even communication which is explicitly char­
acterized by the compiler or runtime system still suffers 
the overheads of cache-coherence. 

Consequently, the MIT Alewife machine [1] pro­
vides hardware support for a shared-address space 
while at the same time supporting a message facility 
as efficient as those found in contemporary message­
passing architectures. Alewife supports a shared­
address space through a combination of hardware and 
low-level software, including a scalable cache-coherence 

*This work was conducted by the Alewife Research Group, 
supervised by Professor Arrant Agarwal. The abstracted research 
was funded by DARPA contract #N00014-87-K-0825 and by by 
NSF grant #MIP-9012773. 
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Figure 1: Packet Descriptor 

mechanism [2]. The unique feature of Alewife is that 
the efficient message-passing mechanism needed to im­
plement a shared-address space is made available to sys­
tem software and user code via a simple interface. This 
permits compilers and runtime systems to bypass the 
shared-memory mechanism and use explicit messages 
when doing so is known to be more efficient. 

2 Interface 

Use of message-passing in a multiprocessor typically 
produces two classes of message traffic: 

1. Remote Procedure Invocation, involving short mes­
sages with values that are derived from processor 
registers, and 

2. Block Data Transport, involving the transfer of 
large blocks of data directly from memory at the 
source into memory at the remote. 

The first arises from remote procedure calls, runtime­
system management, and software-assisted dynamic 
cache-coherence[2]. Since these messages are quite short 
(of the order of two to sixteen words), their support 
requires an extremely efficient interface, both for the 
transfer of data from registers, and for the launching 
of the resulting message. The second type of message 
traffic arises during data and object distribution, block 
1/0, and software queuing of network messages. To sup­
port it efficiently, some form of direct-memory-access or 
DMA must be available. 
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Figure 2: Pipeline Diagram for Simple Message Launch 

The Alewife machine handles both of the above 
through a single, low-overhead interface[3]. Its net­
work interface permits messages to be sent through 
a two phase process: describe then launch. A mes­
sage is described by writing directly to registers on the 
network-coprocessor, or Communications and Memory­
M anagement Unit (CMMU). These writes proceed at 
the same speed as cached writes. As shown in Figure 1, 
the resulting descriptor can be up to 16 words long, and 
consists of a variable number of explicit operands, which 
will be placed at the head of the message, followed by 
a number of address-length pairs, describing data to be 
taken directly from memory and concatenated to the 
end of the packet. The first word of a packet must have 
a special format, the remaining words are software de­
fined. 

Once a packet has been described, it is then launched 
via an atomic, single-cycle, coprocessor instruction. 
The encoding of this instruction specifies both the num­
ber of explicit operands and the total length of the 
descriptor1

. Both the user and supervisor are permitted 
to send messages, although user-code is prevented from 
launching "machine critical" messages2 . To provide 
atomicity between user and system code, a descriptor­
length register keeps track of the number of message­
descriptor registers which have been written since the 
last message launch; interrupt code which must send 
messages can save and restore the user's descriptor. 

For efficient reception of messages, the Alewife inter­
face provides a 16-word, sliding window into the net­
work input queue. On reception of a message, the 
CMMU interrupts the processor while making the first 
16 words of the packet visible in the reception window. 
The processor can examine words within this window 
by reading coprocessor registers; as with the output in­
terface, these reads complete at the speed of a cached 
memory access. 

Once the processor has examined the packet, it can 
execute a special coprocessor storeback instruction to 
remove data from the window. User-code may dispose 
of user-generated messages. Encoded directly in store­
back instruction are two separate fields. First, is the 
number of words to be simply discarded from the head 
of the window. Second, is the number of words (follow­
ing those discarded) to be stored to memory via DMA. 

1 Note that the current implementation of the Alewife machine 
requires an even number of operands 

2 A set of message opcodes, including those used for cache­
coherence, are reserved for use by the supervisor. 

If this option is chosen, the processor must write the 
starting address for DMA to a special controller regis­
ter before issuing the storeback instruction. Multiple 
storeback instructions can be issued for a single packet 
to scatter it to memory. Note that either of these store­
back fields can contain a special "infinity" value which 
denotes "until the end of the packet". 

3 Implementation 

Figure 2 shows the pipelining for a simple, two-operand 
message launch. Part of the latency here is the result of 
three-cycle stores in SPARC; a more aggressive proces­
sor design would complete each store in a single cycle. 
The end of the E stage for the launch instruction is the 
point at which the message is committed to the net­
work. The W stage of the launch is required for the 
coprocessor interface, while Q1 and Q2 represent inter­
nal queueing cycles. 

The Alewife-1000 CMMU has been completely imple­
mented, and is in the final stages of testing. It consists 
of a lµ, 3-layer metal, hybrid gate-array. Of the 14mm 
x 14mm die, the network interface described above 
consumes approximately 10mm2 for random logic, and 
4.5mm2 for RAM. These numbers are pre-layout, sta­
tistical estimates. 
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Closing the Window of Vulnerability 
in Multiphase Memory Transactions 

John Kubiatowicz, David Chaiken, and Anant Agarwal* 

NE43-629 

kubitron@masala.lcs.mit.edu 

Multiprocessor architects have begun to explore sev­
eral mechanisms such as prefetching, context-switching 
and software-assisted dynamic cache-coherence, which 
transform single-phase memory transactions in con­
ventional memory systems into multiphase operations. 
Multiphase operations introduce a window of vulnera­
bility in which data can be lost before it is used either 
through protocol invalidation or cache conflicts. Los­
ing data introduces damaging livelock situations. This 
abstract summarizes the work described in [1], which 
discusses the origins of the window of vulnerability and 
proposes an architectural framework that closes it. The 
framework is implemented in Alewife, a large-scale mul­
tiprocessor being built at MIT. 

One of the major thrusts of multiprocessor research 
has been the exploration of mechanisms that provide 
ease of programming, yet are amenable to cost-effective 
implementation. To this end, a substantial effort has 
been expended in providing efficient shared memory 
for systems with large numbers of processors. Many 
of the mechanisms that have been proposed for use 
with shared memory, such as rapid-context switching, 
software prefetch, fast message-handling, and software­
assisted dynamic cache-coherence enhance different as­
pects of multiprocessor performance; thus, combining 
them into a single architectural framework is a desir­
able goal. 

Many of the mechanisms associated with shared 
memory attempt to address a central problem: access 
to global memory may require a large number of cycles. 
To fetch data through the interconnection network, the 
processor transmits a request, then waits for a response; 
thus, data accesses are split-phase. The request may be 
satisfied by a single memory node, or may require the 
interaction of several nodes in the system. In either 
case, many processor cycles may be lost waiting for a 
response. 

To tolerate long access latencies, architects have 
proposed a number of mechanisms such as prefetch-

*This work was conducted by the Alewife Research Group, 
supervised by Professor Anant Agarwal. The abstracted research 
was funded by DARPA contract #N00014-87-K-0825 and by by 
NSF grant# MIP-9012773. 
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Figure 1: A basic multiphase transaction. 
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ing, weak consistency, multithreading, and software­
enforced coherence. All are variations on a central 
theme: they allow processors to have multiple out­
standing requests to the memory system. A processor 
launches a number of requests into the memory system 
and performs other work while waiting for responses. 
This ability reduces processor idle time and allows the 
system to increase its utilization of the network. 

In a traditional shared-memory multiprocessor, re­
mote memory requests can be viewed as split-phase 
transactions, consisting of a request and a response. 
The time between request and response may be com­
posed of a number of factors, including communica­
tion delay, protocol delay, and queueing delay. Since a 
simple single-threaded processor can typically make no 
forward progress until its requested data word arrives, 
it spins while waiting. When the data word arrives, 
the processor consumes the data immediately, possibly 
placing it in the local cache. 

Rather than spinning, a processor might choose to do 
other useful work. A processor with context-switching, 
for instance, might switch to another context; a system 
with high-availability interrupts might execute service 
routines. Once we free the processor from spinning, 
however, we introduce a third phase of data transac­
tions, namely access (see Figure 1). The time between 
response and access, labeled as Phase 11, reflects the 
fact that the processor does not consume data imme­
diately upon its arrival. During this period, the data 
must be placed somewhere, perhaps in the cache or a 
temporary buffer. Note that a simple split-phase trans­
action can be seen as a degenerate multiphase transac­
tion, with zero cycles between response and access. 

The period between the response and access phases 
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of a primary data transaction is crucial to forward 
progress. Should the data be invalidated or lost due 
to cache conflicts during this period, the transaction is 
terminated before the requesting thread can make for­
ward progress. Consequently, the period between re­
sponse and access is a window of vulnerability. Closing 
the window of vulnerability involves ensuring forward 
progress for multiphase memory transactions. 

The consequences of lost data are more subtle and 
perilous than simple squandering of memory resources. 
There exist scenarios in which processors repeatedly at­
tempt to initiate transactions, only to have them can­
celed during the window of vulnerability. In certain 
pathological cases, individual processors are prevented 
from making forward progress by cyclic thrashing situ­
ations. While such situations may be rare, they are as 
fatal as any other infinite loop. 

The window of vulnerability is also opened by a class 
of mechanisms that circumvent the shared memory in­
terface, in order to facilitate the efficient use of crit­
ical multiprocessor resources. These mechanisms in­
clude fast I/O, interprocessor messages, synchroniza­
tion primitives, and extensions of the memory system 
through software. All may be supported by providing 
processors with complete access to the interconnection 
network, and designing processors to be able to service 
asynchronous events rapidly (in tens of cycles). Since 
the ability to handle asynchronous messages quickly 
is crucial to system performance, processor interrupts 
that invoke message handling are high priority events. 
Unfortunately, such high-availability interrupts widen 
the window of vulnerability by extending the period 
of time that a processor must delay the completion of 
memory transactions. 

This research identifies the livelock and deadlock 
problems associated with the window of vulnerability, 
and specifies an architectural framework that solves 
those problems. A combination of multiphase mem­
ory transactions and the mechanisms associated with 
shared memory may be implemented using an approach 
called associative thrashlock. Using this approach, the 
system keeps track of pending memory transactions in 
such a way that it can dynamically detect and eliminate 
pathological thrashing behavior. The framework con­
sists of three major components: a small, associative 
set of transaction buffers that keep track of outstand~ 
ing memory requests, an algorithm called thrashwait 
that detects and eliminates livelock scenarios that are 
caused by the window of vulnerability, and a buffer 
locking scheme that prevents livelock in the presence of 
high-availability traps. 

What is the appropriate amount of hardware re­
quired to close the window of vulnerability? It is pos­
sible to imagine architectures that take completely dif-

ferent approaches to solving the problems associated 
with multiphase memory transactions. For example, 
the Alewife architecture forces contexts to poll until 
they complete their outstanding transactions. Alterna­
tively, a system could eliminate the window of vulnera­
bility inherent in a polling model by signaling or reen­
abling a context immediately when its memory access 
completes. Such is the case in dataflow or message­
passing architectures. Polling has a smaller hardware 
cost and optimizes for the common case when average 
remote access latency is shorter than polling frequency. 
This is true precisely when the window of vulnerability 
is long. Signaling is less sensitive to remote access la­
tency, but introduces additional hardware complexity. 
System parameters or philosophy determine whether 
polling, signaling, or a hybrid approach is most appro­
priate. 

The associative thrashlock framework provides an in­
expensive solution to the window of vulnerability prob­
lem in a polled system. The framework allows the use 
of caches to reduce the bandwidth required from the 
interconnect, and it permits processors to store just 
enough information to recreate the pipeline state of a 
context when necessary. Instead of closing the window 
of vulnerability by brute force, the Alewife architec­
ture dynamically detects the situations that can lead 
to deadlock and livelock. Only when these relatively 
rare situations arise does the system close the window. 
The fundamental architectural trade-off pits hardware 
expense and complexity against exceptional events that 
are uncommon, but potentially fatal. 
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The Connection Machine Model CM-5 Supercomputer is a massively parallel computer system designed to offer 
performance in the range of 1 teraflops (10 12 floating-point operations per second). The CM-5 obtains its high 
performance while offering ease of programming, flexibility, and reliability. The machine contains three communication 
net\rnrks: a data network, a control network, and a diagnostic network[l]. This abstract describes the organization of 
the data network and how it contributes to the design goals of the CM-5. 

The basic architecture of the Ci.\1-5 data network is a fat-tree. Figure l(a) shows a bi11a.ry fat-tree. Unlike a 
computer scientist's traditional notion of a tree, a fat-tree is more like a real tree in that it gets thicker further from 
the leaves. Processing nodes, control processors, and I/O channels are located at the leaves of the fat-tree. (For 
convenience, we shall refer to all of these network addresses simply as processors.) 

The C:\1-5 data network uses a 4-ary fat-tree, rather than a binary fat-tree. Figure l(b) shows the interconnection 
pattern. The network is composed of router chips, each with 1 child connections and either 2 or 4 parent connections. 
Each connection provides a link to another chip with a raw bandwidth of 20 megabytes/second in each direction. 
(Some of this bandwidth is devoted to addressing, tags, error checking, and congestion.) By selecting at each level of 
the tree whether 2 or 4 parent links are used, the bandwidths between nodes in the fat-tree can be adjusted. Flow 
control is provided on every link. Messages travel up the tree by an adaptive random strategy until they reach a least 
common ancestor of the source and destination; Then messages travel down the tree following a determistic path. 

The rest of this abstract describes three interesting issues: reflected in the design of the C.\1-5 data network. 

• the fetch deadlock problem which is solved in the Cl'vl-5 by using a split network, 

• the router done problem, which is solved by Kirchoff counting, and 

• the timesharing problem which is solved by all-fall-down mode. 

Fetch Deadlock Problem 

The network has a contract with processors that guarantees all messages are delivered. The contract says, "The data 
network promises to eventually accept and deliver all 1nessages injected into the network by the processors and the 
processors promjse to eventually eject all messages from the net work when they are delivered to the processors." The 
data network is acyclic from inputs to outputs, which precludes deadlock from occurring if this contract is obeyed. To 
sencl a message, a processor writes the destination processor address and data to be sent to a memory-mapped outgoing 
FIFO in its network interface. The processor then checks whether the message was accepted by the network. If not, 
which may occur because flow control information indicates that the network has not removed enough of a previous 
message from the outgoing FIFO, the processor can try again later. The processor may not block when attempting 
to put a message into the network, however, because that would violate the contract. Instead, the processor must 
attempt to receive any messages that have arrived. In the current implementation, the processor is involved in all 
transactions with the network. 

Although the simple contract above can implement the sending of data through the network in a deadlock-free man­
ner, it is not strong enough to allow some communication protocols to be implemented straigliiforwardly. For example, 
suppose each processor wishes to fetch a value from another processor, and the processors have finite buffer space. One 
processor may receive requests for data from many processors, bL1t unfortum1tely, be unable to send responses because 
its outgoing FIFO to the data network is busy. The outgoing FIFO will eventually free, according to the contract, but 
only if the processor continues to accept delivery of messages from the network. A naive implementation of the fetch 
protocol might break the contract and deadlock the system. 

The CJ\I-5 solves the fetch deadlock problem in a simple fashion requiring no bookkeeping and only constant buffer 
space. Each processor has 2 outgoing and 2 incoming FIFO's in its interface to the data network: a left port and a 
right port. The topology of the network is such that all links reachable from the left port are unreachable from the 
right port and vice versa. Thus, the data network is really two independent, interleaved networks. To implement the 
round-trip protocol, requests can be sent on the left side of the network, and responses returned on the right side. If 
a processor cannot send a response on the right side and his constant-size buffer is full, he stops recci ving on the left 
side. Since any processor requesting data !tas a place to put it, hO\\'ever, the processors can satisfy the contract on the 

1 Bradley C. Kusznrnul is a consultant to Thinking l\Jachines Corporation and a graduate student in the i'v!IT Laboratory for Computer 
Science \\·here he is being superYised by Charles E. Leiscrson. 
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Figure 1: (a) A binary fat-tree. Processors are located at the leaves, and the internal nodes are switches. The hierarchical nature of 
a fat-tree can be exploited to give each user partition a dedicated subnetwork which cannot be interfered with by any other partition's 
message traffic. 
(b) The interconnection pattern of the CM-5 data network. The network is a 4-ary fat-tree in which each internal node is made up of 
several router chips. Each router chip is connected to 4 child chips and either 2 or 4 parent chips. 

right side and the responses will eventually clear out. Because the responses on the right side will eventually clear out, 
a processor can a.lways eventually accept every request that arrives on the left side, and thus the processors satisfy the 
contract on the left side. Consequently, deadlock cannot occur. 

In fact, deadlock cannot occur even if responses are sent on both sides of the data network, as long as requests 
are sent on one side only. The data network requires no more than two sides, even when there are many intermediate 
destinations, because such a communication pattern can be broken into a collection of round trips. 

Router Done Problem. 

The router-done operation is a r:>pecialize<l reduction that lets the processors know when communications involving the 
data network are complete. In the data-parallel programming model, this operation is often required so that processors 
know when it is safe to proceed to the next data-parallel operation. 

The basic idea behind the implementation of router-do11e is "Kirchoff's current law." \Vhen all processors have 
completed sending their messages and the number of messages that entered the data network equals the number that 
haYe left, the routing cycle is complete. The network interfaces keep track of the number of messages that enter 
and leave the data network. After a processor has completed sending all its messages, it pushes a message into the 
outgoing router-done FIFO. v\'hen all processors have sent messages into their outgoing FIFO's, the control network 
continually monitors the difference between the total number of messages put into the data network and the number 
removed from the data network. vVhen this number becomes zero, each processor receives a message in its incoming 
router-done FIFO informing it that the data network is done routing messages. Using this "Kirchoff" method has 
the additional benefit that if a hardware error causes messages to be lost or created, the error can be detected and 
signaled, either by a failure of the router-done operation to complete on the one hand or by the unexpected arrival of 
a message after the router-done operation has completed on the other. 

Timesharing Problem 

Each user partition in the CM-5 system is capable of being run in either a batch or a timesharing mode. The 
requirement for timesharing raises the issue of what should be clone with messages that are in transit in the routing 
network when a user's timeslice bas expired and another user must be given access to the partition. The system cannot 
afford to \Vait until the user completes his communication, since the communication may not terminate for a very long 
time, and it in fact may not ever complete if the user has deadlocked himself. 

This problem of swapping users is solved in the GM-.5 by putting the data network into all-fall-down mode. Instead 
of trying to route messages to their destinations, the network misroutes each one down through the network so they 
are distributed evenly among the processing nodes. In the worst case, each node receives only a small number of 
misdirected messages, even if all were headed for the same destination processor. The all-fall-down messages are 
then saved in memory with the user's state. When the user's task is resumed, the system resends them to their 
true destinations. Even if a timeshared user deadlocks, this context-switching mechanism precludes him from unduly 
affecting the other users who are sharing his partition. 
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Alpha-beta search is an example of a very good serial algorithm for searching m1rumax trees, which are used 
to model two-player adverserial games. Even though it looks like minimax tree search ought to be highly parallel, 
researchers have had difficulty finding an algorithm that achieves good parallel speedup. We have been exploring a 
new parallel algorithm for minimax tree search, and our results look very promising. 

Figure l(a) shows the standard sequential alpha-beta search algorithm. Note that f3 is a loop-invariant in the 
body of the loop, and that if /3 is infinite, then the loop will execute for each child regardless of what the subsearches 
produce. 

Alpha-beta search works the best when the tree is searched in the right order. A be8t-ord(:rcd tree is one in which 
the first child is always the best (or sufficiently good to produce a cutoff). Figure l(b) shows Knuth's critical tree[I] 
for a uniform tree of degree 3 and height 4. The critical tree can be thought of as the proof tree that the tree is 
best-ordered, since to prove that the tree is best-ordered, the critical tree must be traversed. 

This abstract describes two algorithms: Om non-strict parallel alpha-beta search uses non-strict procedure appli­
cation to implicitly take advantage of the critical tree. Our non-strict algorithm achieves very good parallel speedup, 
but seems to have very poor space complexity. Our strict parallel alpha-beta algorithm makes explicit use of the 
critical tree; We have some good theoretical space and time bounds for our strict parallel algorithm. 

Non-strictness gives parallel speedup 

Our first algorithm makes use of non-strict procedure application, supported, for example, by the Id programming 
language. Non-strict application allows a procedure to start executing before all of its arguments are present. For 
example, in the alpha-beta algorithm, observe that if we search a node, we will always search that node's first child, 
regardless of what the values of n and f3 are. Also observe that if f3 = oo then it does not matter what the values 
returned by the subsearches are (as long as they are finite values); All of the children will be searched. In fact, if, at 
the root, a = -oo and /3 = oo, non-strict procedure application will expand precisely the critical tree. 

Non-strict application will expand the tree in parallel, but the "max" operations and the comparisons of results 
returned by subsearches form a serial dataflow graph of depth equal to the number of nodes in the tree. We use 
a technique that we call fa8t minima1: /ookahrnd to propagate a bound for the values of a node up the tree. For 
example, if you know that search ( c0 ) :S -v, then you know that you can achieve at least v at this node by choosing 
c0 . (Remember that search( co) gives the value of c0 from your opponent's point of view. Thus an upper bound on 
the value of co from your opponent's point of view is a lower bound on the value of c0 from your point of view.) If 
you know that search(ci) ~ -v; for each i, then you know that search(n) :S max; Vi. 

Our algorithm expauds the tree in parallel using a left-biased globally synchronous strategy. The parallel compu­
tation consists of a sequence of phases. Duriug each phase, we expand the leftmost cP nodes that want to expand, 
where P is the number of processors and c is some small constant, such as c = 10. We push the computation as far 
as we can without expanding any more uodes, and then we synchronize and start another phase. 

Our non-strict algorithm achieves good parallel speedup. Simulations for machines up to tens of thousands of 
processors indicate speedups to withiu GO% of linear speedup if the search trees are at least an order of magnitude 
larger than the number of processors. These simulations were done on synthetic game trees and on real chess trees. 

However our non-strict algorithm apparently uses an unbounded amount of space. This happens when some 
subtree of the search becomes serialized for a while and the processors start expanding part of the tree further to the 
right. The newly expanded nodes produce a bound on the values of their nodes, but the nodes cannot be deallocated 
because we may discover lat.er that we ueed to further expand the partially evaluated tree. I.e., some nodes get stuck 
where they have no more work to do, but. they can not be deallocated. The number of stuck nodes can be very large, 
especially in real chess trees. It is very difficult to analyse the space requirements of algorithms that use non-strict 
procedure application. 

For best-ordered trees, our globally syuchronous algorithm apparently achieves very good space bounds, approx­
imately cdh nodes per processor, with a variation that is related to P. 

We run out of memory with a left-biased asynchronous version of our algorithm. Our asynchronous variation 
assigns each node of the tree to a processor. On each time step, each processor expands the leftmost node in its local 

1 This work is being supervised Ly Prof. Charles E. Leiserson, arnl is supportecl in part Ly the DARPA contracts N00014-89-J-1988 
and N00014-91-J-1698 
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procedure search (n, ct, (J) 
int b,s; 
b := -oo; 
if leaf?(n) then return staticeval( n); 
for c; in children(n) 

s := -search(c;, -{3, -u); 
ifs ~ f3 then return .s; 
b := max(b, s); 
a := max(u, s); 

endfor; 
return b; 

end search; 
(a) 

2 

2 2 2 2 2 2 2 2 3 3 3 3 3 3 

(b) 

Figure 1: (a) The standard serial alpha-beta search procedure, expressed in the negamax form; The recursive call changes signs and 
the order of the argunients, and inverts the sign of the result. The node n is being searched with bounds alpha and beta. If value(n) <=a 
or {3 < value(n), we do not need an exact value for n - any returned value outside of (a, (i) is interpretted as "foil low" or "fail high". 
Note that {3 is a loop invariant and that if {3 = oo, the loop will execute over all the children of node n .. 
(b) The critical tree for a uniform tree of height h = 4 and degreed= 3 with dr"/ 21 + dlh/ 2J - 1 = 17 leaves. The nodes down the left 
spline are type 1 nodes. The "other" children of type 1 nodes a1·e type 2 nodes. The first child of a type 2 nude is a type 3 node. All of 
the children of a type 3 node are type 2 nodes. The remaining subtrees below type 2 nodes are nut in the critical tree; They are hopefully 
pruned during alpha-Leta search. In a Lest-ordered tree, exactly the critical tree is examined Ly alpha-beta search. 

collection of nodes. In this case the variatioll ill the number of frames needed grows witli N, the number of nodes in 
the tree, which is a large number. The variation causes us to run out of memory in some nodes. 

The non-strict algorithm is currently implemented and running (out of space) on a Connection Machine CM-5 
supercomputer. 

Strict parallel alpha-beta search 

We are currently examining a new algorithm which (~xploits some of the ideas from our non-strict algorithm, but 
which should have practical space requirements. The main idea is to strictify the computation, without substantially 
reducing the parallelism. Most of the parallelism was achieved by computing the bounds on the value of the nodes 
without knowing the precise values of u all(l {3. We create new procedures that explictly search for a bound, based 
on the empirical evidence that in chess tn~es, the first. node considered is usually a good enough move to achieve 
cutoff (failing high). 

To evaluate a node for all exact value, evaluate the first child for an exact value v, and then evaluate all of the 
other children, in parallel, to prove that. they are worse than v. One variation on this algorithm simply searches the 
first child of type 2 nodes and all the childre11, in parallel, of type 3 nodes. If the proof fails for some child c;, then 
re-search c; for an exact value. 

Our strict parallel alpha-beta search may do some extra work, because it may perform re-searches on certain 
subtrees several times. \Ve have several bou11ds on the amount of extra work that might be done. 

• For best-ordered trees, our algorithm does exactly the same amount of work as serial alpha-beta. 

• For worst-ordered trees, our strict algorithm does at most a factor of 2 more work than serial alpha-beta. 

• For any uniform tree of degree d aud depth h, we do at most a factor of 2 extra work if his even, and at most 
a factor of d/2 extra work if h is odd. 

• We believe that there is a variation on the algorithm that does at most a factor of h/2 extra work for any tree 
(but we have not shown this). 

It has been shown that the left-biased globally-syncluonous scheduling strategy will achieve very good space 
bounds. 

We are still working on our highly parallel alpha-beta algorithm, and it. looks very promising. 
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The ever-increasing demands for high performance in real-time signal processing and scientific compu­
tations have led to novel computer architectures, among which are array processors [5]. Many research 
efforts have been devoted to systematically mapping high-level descriptions (such as recurrence equations 
and dependency graphs) to array processors (e.g. [2] [6]). 

As with other logic synthesis methods, although the circuits produced by these design methodologies 
can sometimes be shown to be correct-by-construction, an independent verification is necessary to ensure 
the correctness of the final design [4]. In this paper we present a strategy for automatically generating and 
verifying sufficient correctness properties for synchronous array processors. The targeted circuits are array 
processors designed from localized, highly regular dependency graphs (DGs), such as in [6]. For example, 
Figure 1 shows a specification-implementation pair of an array processor for computing Gaussian elimination 
on a 3 x 3 matrix and a 3-vector. 

As in [1], we will take correctness to mean that the implementation is in j'.1-relation with the specification, 
and we express sufficient correctness conditions as past-tense CTL formulae which can be verified by symbolic 
model checking using binary decision diagrams (BDDs) [3]. The method presented in [1] is not directly 
applicable to the verification of array processors, although we would like to use a compositional strategy for 
array processors, too, because it greatly reduces the complexity of verification. Unlike microcoded processors, 
array processors cannot readily be divided into datapaths and control circuitries. Each processing element 
(PE) in an array processor has its local control and local datapath, and interacts with its neighbors. In 
addition, since array processors perform special purpose computations, they are usually attached to a host 
computer, from which they receive data streams. The host computer sends data to the array processor only 
when computations need to be done in it, and the array processor may simply remain idle when it does not 
receive any data from its host computer. In some sense the control signals from the host computer reside in 
the data streams. This makes the separation of control circuitries and datapaths even more difficult. 

This problem can be remedied by constructing an array of controllers that are connected in the same 
manner, and an auxiliary machine, which is created solely for the purpose of verification. It usually consists 
of a counter which keeps a timing reference, and some logic that generates control signals abstracted from 
a typical data stream. For example, in the Gaussian elimination processor in Figure 1, the control signals 
would be one of the following: marker (represented as an asterisk), "nothing" (represented by a dot), or 
datum. 

The sufficient correctness conditions for the controllers are then as follows: 

1. Each PE receives a marker at the time indicated by the schedule in the specification. This ensures 
that the connection between the PE are correct. 

2. Each PE asserts correct control vectors at relevant time points. 

This work is supervised by Professor Srinivas Devadas. It is supported in part by the Defense Advanced Research Projects 
Agency under contract N00014-91-J-1698. 
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Figure 1: Dependency Graph and Implementation for Gaussian elimination 

3. In each PE, the result of a computation needed for the next one is not corrupted until it is used. 

CTL formulae representing these conditions can be automatically derived from the dependency graph. 
These formulae are verified on the composite finite state machine (the auxiliary machine and the array of 
controllers). Because each PE is not active for all time points during an instance of computation, we restrict 
the traversal of the FSM to the set of states where the value of the counter in the auxiliary machine is 
between the minimum and the maximum of the schedules assigned to the PE. 

We will present the results for several examples in the talk at the workshop. 
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1 Introduction 

Dynamic load balancing can have a dramatic effect on 
the performance of irregular parallel programs. Vari­
ous schemes have been proposed for load balancing such 
programs. In this research, we consider the implementa­
tion of two kinds of load balancing techniques on large­
scale multiprocessors: self-scheduling of DOALL loops 
and the task queue model in which processes dynami­
cally insert and remove tasks from a shared queue. 

The notion of shared counting is central to each of 
these load balancing problems. Processes must coop­
erate to assign successive values from a given range: 
either loop indices or slots in a queue. A common prob­
lem faced by load balancing algorithms is contention at 
the shared counter. A good implementation should re­
duce contention and allow high levels of concurrency. In 
this research, we consider the following techniques for 
counting: (1) spin locks with exponential backoff, (2) 
Anderson's "queue" locks, (3) software combining trees 
[2], and (4) "bitonic" counting networks (1]. (See (4] for 
a study of the locking techniques.) 

This research makes the following contributions. 
Each of the counting techniques we consider has been 
independently proposed as a way to alleviate contention 
in highly concurrent systems. Here, for the first time, 
they are compared directly on a realistic large-scale 
distributed-memory multiprocessor. Moreover, this 
work is the first systematic experimental exploration of 
counting network performance on a distributed memory 
machine. 

In the rest of this abstract, we will briefly describe the 
experiments that we ran, and present a small sample 
of results that we obtained. More details about the 
counting techniques and results can be found in [3]. 

•Based on joint work with Maurice Herlihy and Nir Shavit. 
Faculty Supervisor: Prof. Anant Agarwal. 
The research reported here was supported in part by NSF Exper­
imental Systems grant # MIP-9012773, and in part by DARPA 
contract # N00014-87-K-0825. 

2 Experiments and Results 

We ran a series of simple benchmarks on a simu­
lated 64-processor Alewife machine, a cache-coherent 
distributed-memory machine supporting the shared­
memory programming model. The experiments were 
run on an accurate cycle-by-cycle simulator for the 
Alewife architecture. A sample of results from these 
experiments is presented in Figure 1 and described be­
low. 

Counting Benchmark In this benchmark, 64 threads 
increment a shared counter 32 times each for a total of 
1024 increments. This provides a simple baseline for 
comparing counting techniques. 

The first graph shows that at high levels of concur­
rency the counting network and combining tree outper­
form both spin locks and queue locks. This supports the 
intuition that as concurrency increases, locks need to be 
distributed to avoid the detrimental effect of contention. 
The measurements also show that both combining trees 
and counting networks scale at about the same rate. 
This is an encouraging result for counting networks be­
cause software combining trees are considered the best­
known method for updating a shared counter without 
explicit hardware support for combining. 

Self-Scheduling Benchmark To model self-scheduling, 
n processes execute 2048 increments on a shared 
counter. Between each increment, each process pauses 
for a duration randomly chosen between 0 and 1000 cy­
cles. The increment models a process obtaining an iter­
ation, and the random pause represents the execution 
of that loop iteration. 

The second graph compares the performance of spin 
locks, combining trees, and counting networks on this 
benchmark. We see again that spin locks do not scale 
beyond a certain number of processors. Both the com­
bining tree and counting network allow speedups on the 
benchmark all the way up to 64 processors. 
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Figure 1: Elapsed times of benchmarks measuring the scalability of techniques for concurrent counting. 

Task-Queue Benchmark For this benchmark, n pro­
cesses repeatedly ( 1) dequeue a task from a shared 
queue, (2) pause for a duration randomly chosen from 
a uniform distribution between 0 and 1000 cycles, then 
(3) enqueue a new task. The queue itself consists of a 
buffer, a head counter indicating the first full slot, and 
a tail counter indicating the first empty slot. A process 
dequeues a task by atomically incrementing the head 
counter and removing one task from the corresponding 
buffer slot. Enqueues are performed analogously. The 
benchmark halts when 1024 tasks have been dequeued 
and executed. 

The third graph shows that the combining tree and 
counting network of width 16 have equivalent perfor­
mance at low levels of concurrency. We also see that the 
counting network of width 8 has the best performance 
at low levels of concurrency, i.e., when the arrival rate 
of increment requests is low. 

At higher levels of concurrency, the counting network 
outperforms the combining tree and scales less errati­
cally. The reason for this is that the combining tree is 
sensitive to the arrival times of increment requests at a 
node. If two arrivals at a node do not arrive sufficiently 
close enough to each other, combining does not occur 
and the opportunity for parallelism is wasted. 

3 Con cl us ions 

Although the two locking techniques are known to 
scale well on small-scale, bus-based multiprocessors, our 
experimental results show that their performance de­
grades in a distributed memory machine as the level of 

concurrency increases. This degradation occurs because 
counting using locks is inherently sequential. 

Both counting networks and combining trees substan­
tially outperform the locking methods by both reducing 
contention and taking advantage of concurrency. We 
also found that combining trees are sensitive to vari­
ations in the inter-arrival times of increment requests, 
thus making counting networks an attractive choice for 
implementing concurrent counting. 

References 

[1] J. Aspnes, M.P. Herlihy, and N. Shavit. Count­
ing Networks and Multi-Processor Coordination. In 
Proceedings of the 23rd Annual Symposium on The­
ory of Computing, May 1991. 

[2] J.R. Goodman, M.K. Vernon, and P.J. Woest. Ef­
ficient Synchronization Primitives for Large-Scale 
Cache-Coherent Multiprocessors. In Proceedings of 
the 3rd ASPLOS, pages 64-75. ACM, April 1989. 

[3] Maurice Herlihy, Beng-Hong Lim, and Nir Shavit. 
Low Contention Load Balancing on Large-Scale 
Multiprocessors. In Proceedings of the 4th Annual 
Symposium on Parallel Algorithms and Architec­
tures, June 1992. 

[4] John M. Mellor-Crummey and Michael L. Scott. Al­
gorithms for Scalable Synchronization on Shared­
Memory Multiprocessors. A CM Transactions on 
Computer Systems, 9(1):21-65, February 1991. 

31-2 



AN IMPLICIT PARTICLE METHOD FOR MONTE CARLO DEVICE 
SIMULATION• 

JENNIFER LLOYD! 

This abstract presents a new method for integrating the semiclassical motion equations 
applied to transient Monte Carlo semiconductor device simulation. 

Ensemble Monte Carlo simulation entails tracking the evolution of a system of particles 
in space and time. This motion, in the abscence of collisions and magnetic fields, is described 
by the semi-classical motion equations: 

(1) 

(2) 

where r is the position of a particle, k is the wavevector, his Planck's constant, £n(k) describes 
the band structure of the semiconductor, q is the magnitude of the electronic charge, and E 
is the electric field on the particle. These equations are typically discretized with an explicit 
time-integration scheme, so that the electric field used to compute the particle positions is 
based on a calculation at the current timestep (1, 2]. 

ALGORITHM 1 (IMPLICIT DIRECT-FORCE ALGORITHM). 

Initialize particle positions, rf, velocities vf. 
For k = 1 to number_oLtimesteps of size h 

For i = 1 to number_oLparticles N 
Compute explicit position, r;(t + h) = r;(t) + hv;. 

For j = 1 to number_oLrelaxation_iterations 
For i = 1 to number_oLparticles N 

For n = 1 to number_of_Newton_iterations 
Compute E; contribution from the doping charge. 

Compute E; contribution from the mobile charges. 

Compute Jacobian matrix and Newton right hand side. 

Compute position update, 8;, using Newton. 

Update position, r;(t + h) = r;(t + h) + 8;. 
For i 1 to number_oLparticles N 

Update velocity, v;(t + h) = v;(t) - f,; [E;(t) + E;(t + h)]. 

FIG. 1. The implicit Monte Carlo algorithm using direct force electric field calculations. 

Another approach is to instead discretize the motion equations with an implicit multistep 
method, so that the electric field used to compute the new particle position is a function of the 
electric field at the next timestep. Assuming a parabolic band structure and particle effective 
mass m•, so that k = v ~, the motion equations become: 

(3) 
h 

1·;(t + h) = r;(t) + 2 [v;(t) + v;(t + h)] 

• This work was supervised by Prof. Jacob K. White and supported by DARPA contract N00014-91-J-1698 
and NSF contract MIP-8858764 A02. 

t Research Laboratory of Electronics, Dept. of Electrical Engineering and Computer Science, Massachu­
setts Institute of Technology, Cambridge, MA 02139. E-mail: jen@rle-vlsi.mit.edu 
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(4) 
hq 

v;(t + h) = v;(t) - - [E(r1(t) · · · rn(t)) + E(r1(t + h) · · · rn(t + h))] 
2m 

when integrated with the energy-preserving trapezoidal method. This set of equations is 
implicit and non-linear, and must be solved at each timestep for each particle. Since there 
is a non-linear system of equations associated with each particle, a Gauss-Seidel relaxation 
is used to iterate for the particle position updates at each timestep. Within the relaxation 
scheme, the update for each particle requires solving a three-dimensional problem for which a 
Newton's method is employed. The algorithm for the new computation is given in Figure l. 
The combined relaxation/Newton technique used to solve the implicit problem is robust, and 
converges within a few iterations of the relaxation (combined with 1 Newton iteration.) 

The rationale for using an implicit instead of an explicit method is that the implicit method 
captures the fact that for large timesteps the particle's electric field will change over the 
timestep period. Using an explicit method, the electric field used to determine the particle's 
movement can easily be incorrect. On the other hand, an implicit method makes a correction 
to this error by using the average electric field over the time-step, thus making it more un-likely 
that a particle will ever get too close (and see a large force from) another particle. 

For simulations of an ensemble of particles, our results indicate that implicit methods 
show less timcstcp dependence and more accuracy than explicit methods. This is seen by 
examining the normalized average temperature of the ensemble over the simulation time, as 
shown in Figure 2 for both an implicit and an explicit method. Using the explicit method, the 
total energy of the system grows without bound for large timesteps, although for small enough 
timesteps, the solution will approach that of the ideal solution. However, by using an implicit 
method, the total energy of the system remained stable over time, so that the temperature is 
bounded. 

Additionally, increasing the number of simulation particles does not change the stability 
of the time-integration problem, but does smooth out the variations in the simulation results 
(e.g. temperature and current.) A rather large number of particles is actually required to 
accurately simulate these systems, although a small number of particles can be used to show 
trends in the numerical methods. 
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FIG. 2. Simulation results showing the temperature growth over time with both explicit and implicit 
sinrnlations, respectively, for several timestep sizes (in seconds). 
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Fault-Tolerant Sorting Circuits 
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We study fault-tolerant sorting circuits under 2 types of fault models in both adversary and random cases. 
A passive-faulty comparator outputs 2 numbers in the wrong order iff the 2 numbers are input in the wrong 
order. A destructive-faulty comparator outputs 2 numbers in the wrong order independent of the input 
order. A circuit is called random-fault-tolerant if it works (reasonably) well with probability at least 1- ,J0 

for some constant a (so-called high probability) even when each comparator is independently faulty with a 
constant probability. A circuit is called k-adversary-fault-tolerant if it works (reasonably) well as long as the 
total number of faulty comparators is smaller than or equal to k. We will use N to denote the total number 
of inputs to a circuit. 

1 Previous Work on Fault-Tolerant Sorting Circuits 

Yao and Yao [6] were the first to study fault-tolerant sorting circuits under passive fault model. An easy 
and natural way to derive passive-fault-tolerance is to replicate each comparator for sufficiently many times. 
The most interesting and natural question is if one can do anything better. For the adversary passive faults, 
previous work [4] [5] [6] focused on how to tolerate only constant number of faults effectively. When k is 
not a constant, the simple replication technique implies a trivial O(log N + k log N) upper bound on the 
depth of k-adversary-passive-fault-tolerant sorting circuit, but no one knew if there existed any such circuit 
with o(log N + k log N) depth. For the random passive fault, Yao and Yao asked what is the optimal size 
of a random-passive-fault-tolerant circuit for sorting or merging. The trivial O(N log N) and O(N log2 N) 
(achieved by replication) remained the only bounds for Yao and Yao's question on both sorting and merging, 
even though many authors had been working on this subject. In other words, like in the adversary case, no 
one knew if one could do anything better than the simple replication. 

Assaf and Upfal (1] introduced the destructive fault model. Under both passive and destructive fault models, 
they studied the random-fault-tolerant sorting problem in a more powerful network model other than the 
classical circuit model. The main reason they switched to that model is that the classical circuit can not 
sort everything exactly to the correct position with a good probability when destructive faults are allowed. 
(Please note that the replication technique does not work under destructive faults.) In fact it was showed 
in [3] that under destructive fault model, in any circuit of any depth, with high probability at least one 
output is O(log N) away from its correct position. Leighton, Ma and Plaxton [3] took another approach 
to study random-destructive-fault-tolerant sorting circuits. They restricted their attention on the circuit 
model, but instead of insisting that the faulty circuit be an exact sorting circuit, they only required that the 
faulty circuit be a near-sorting circuit which should output every item to within O(log N) (optimal) from 
its correct position. They showed an O(log3 N) upper bound and an O(log2 N) lower bound on the depth of 
such near-sorting circuits. (For the upper bound, they need to assume that the fault probability is sufficiently 
small.) They left open the question that if O(log2 N) is indeed the tight bound. For the passive fault, they 
constructed an O(log N log log N) depth circuit which sorts any given permutation (but not necessarily all 
permutations) with high probability. This is a very important progress on Yao and Yao's question, but does 

"Some of the results a.re joint work with Yuan Ma's advi11<>r Profeuor Tom Leighton. Thia research is 1111pported in part by 
MIT Applied Mathematica Fellowship. 
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not answer it since that question is on the passive-fault-tolerant sorting (or merging) circuit which works on 
all (possible) input permutations. 

2 New Results 

(1) We show that the work of [3] on passive fault actually implies an O(logNloglogN) depth random­
passive-fault-tolerant merging circuit. This settles Yao and Yao's open question on merging to within an 
O(log log N) factor. 

(2) We build a random-destructive-fault-tolerant-near-sorting circuit with the optimal 6(log2 N) depth. As 
in [3], we need to assume that the fault probability is sufficiently small in order to prove the upper bound. 
This answers a question which was left open in [3] and posted again in [2]. 

(3) We construct a k-adversary-passive-fault-tolerant sorting circuit of O(k log log N +log N) depth. Note 
that fl( k + log N) is an easy lower bound on the depth of such circuit. Hence our circuit has the optimal 
O(logN) depth when k = O(logNfloglogN). On the other hand, when k = O(N°) for some constant a, we 
have another construction which achieves the optimal O(k) depth. These two results are the first k-adversary­
passive-fault-tolerant sorting circuits of optimal depth for non-constant k. Also we have a new construction 
of so-called correction-network which can be used to tolerate constant number of faults effectively. Even 
though the construction in [5] is already asymptotically optimal, our construction is simpler and of fewer 
number of comparators. 

( 4) We construct a k-adversary-destructive-fault-tolerant near-sorting circuit of 0( k log(N / k)) depth and 
show that this is indeed optimal. Here near-sorting means to output everything to within (optimal) k away 
from its correct position. The key of this result is an interesting lower bound proof which gives a lot of 
insight on the structure of any destructive-fault-tolerant sorting circuit and somehow motivates our other 
work on destructive fault model. No result was previously known on adversary destructive fault. 

Our results are summarized in the following table. 

passive destructive 
random O(log N log log N) 8(log7 N) 

(for merging circuit only) (when fault probability is small) 
adversary O(k log log N +log N) G(k log(N/k)) 

The bounds on the depth of fault-tolerant circuits. The bound under 
random-passive fault is for merging circuit, the rest are all for sorting or near-sorting circuit. 
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Reduced-Latency Memory Assignment 
for Multiprocessor Caches 
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Multiprocessors that support a shared-memory programming model provide the abstraction of a single 
coherent memory that is equally easily and equally efficiently accessible by multiple processors. Typically, the 
shared-memory abstraction is implemented by a large amount of physical memory that is accessed through 
a network. In bus-based machines, the memory is implemented as a single module accessed over the bus, 
while in most large-scale machines the memory is physically distributed among all the processing nodes. 
Virtually all machines that support the shared-memory programming abstraction provide local caches at 
each processor. Caches automatically replicate memory locations close to the processor and avoid expensive 
network traversals for most memory accesses. In this paper we are concerned with compile-time techniques 
that can be used to achieve better performance by improving cache utilization. Specifically, we investigate 
the problem of assigning data blocks to memory in a way that will minimize the impact of collisions in direct­
mapped multiprocessor caches. We characterize the problem in precise mathematical terms and present an 
efficient procedure for finding approximate solutions to it. The procedure incorporates a new technique, grey 
coloring, that reduces latency in the presence of collisions by distributing cache misses among processors. 

Today, most large caches are direct-mapped. In a direct-mapped cache, each line in the main memory 
corresponds to a unique entry in the cache memory. If the cache has a total of S lines, this entry is specified 
by the log2S low order bits of the line's address in the main memory. The problem with a direct-mapped 
cache is that if a processor's working set includes two or more locations in the main memory that correspond 
to the same entry in the cache, then there is a conflict that leads to cache misses. Whenever a miss occurs, 
the processor must wait for a line to be read from main memory into the cache, and consequently, as the 
number of misses in each individual cache increases, the overall latency of a computation also increases. 

In this paper we are concerned with the problem of minimizing the impact of cache conflicts. We deal 
with conflicts between blocks of data, as opposed to conflicts between individual cache lines, because data 
blocks allow a compiler to exploit the locality of reference exhibited by most programs. Specifically, we 
are given a set D of memory-resident data blocks and a set C of direct-mapped caches. In each cache we 
must store a subset of D, and each cache can hold up to k data blocks. A data block may have to be 
stored in multiple caches. We want to find an assignment of the data blocks to the main memory such 
that the maximum number of conflicts in any cache is minimized. Consider, for example, the execution of a 
parallel program running on three processors PO, Pl, and P3, as illustrated in Figure 1. Assume processor 
PO accesses data blocks a and b, Pl accesses data blocks b and c, and P2 accesses c and d. In addition, 
assume that each processor accesses an identical code segment :z: 1 and that no more than three data blocks 
can fit in any cache. The memory assignment shown in Figure l(a) results in conflicts between band c in the 
cache associated with processor Pl. There exists a conflict-free assignment, however, which is illustrated in 
Figure l(b). We show by reduction from graph k-colorability that even the restricted problem of finding a 
conflict-free assignment is NP-complete. Thus, we try to find approximate solutions to the general memory 
assignment problem using efficient heuristic techniques. 

Our basic strategy is illustrated in Figure 2. Data blocks a, band c have been assigned in memory without 
cache conflicts as shown in Figure 2(a). If some data block dis accessed by caches CO and Cl, however, no 
conflict-free assignment is possible. In this case, either PO or Pl will have to wait until the l lines of the data 

Marios Papaefthymiouis supervised by Prof. C. E. Leiserson. This research was supported in part by NSF under grants MIP 
9012773 and 9115797-CCR and in part by the Defense Advanced Research Projects Agency monitored by the Office of Naval 
Research under grants N00014-91-J-1698 and N00014-89-J-1988. Authors' e-mail addresses are marios©theory .lcs .mit. edu, 
agarval@lcs.mit.edu, guttag©lcs.mit.edu. 
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(a) (b) 

Figure 1: (a) A conflicting assignment. (b) A conflict-free assignment. 

co C1 C2 co C1 C2 

(a) (b) 

Figure 2: (a) A situation where a conflict-free assignment is impossible if, for example, caches CO and Cl 
access a data block d. Any non-overlapping assignment of d in memory will result to l conflicting lines in 
some cache. (b) A partially overlapping assignment obtained after grey coloring. The maximum number of 
misses in any cache is at most l/3 lines. 

block are read from the main memory. By allowing data blocks to partially overlap, however, we can find 
an assignment that results to at most l/3 conflicting lines per cache as shown in Figure 2(b). Our procedure 
operates in two phases and runs in O(D3

) steps. We begin by encoding the dependencies among the data 
blocks in a conflict graph G, such that a coloring of G with k colors yields automatically an assignment of 
memory locations to the data blocks. The first phase of our strategy computes a k-coloring for a maximal 
subset of G. If G does not have any particular structure that allows us to color it efficiently, we apply a 
minor variation of the general graph-coloring scheme that is used in the context of register allocation for 
sequential processors. Any vertices that are left uncolored correspond to unassigned blocks, which are placed 
in memory during the second phase of our procedure. The goal of this phase, which we call grey coloring, 
is to insert the unassigned blocks in a way that minimizes the number of conflicts in any single cache. The 
key idea is to place blocks in such a way that they straddle cache slots. Since cache slots contain parts of 
multiple blocks, they can be thought of as having a mixture of colors, hence the name grey coloring. 
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Systems often develop performance bugs that 
go unidentified for long periods of time. By per­
formance, I mean some measure of resource usage 
in the system. A performance bug is a failure 
of the system to meet the performance expec­
tations of its implementors. Performance asser­
tion checking is an approach and a related set 
of tools for performance debugging and testing 
that addresses the problem of uncovering perfor­
mance bugs in a timely fashion [1]. The key idea 
is to have implementors write down their perfor­
mance expectations precisely, and in a way that 
permits automatic checking. Information about a 
program's execution that is relevant to its perfor­
mance is captured in a monitoring log, generated 
when the program runs. The user of the tools 
writes a performance specifi.cation, consisting of 
a set of performance assertions which are predi­
cates that are expected to hold for the monitoring 
log. The specification is expressed in the PSpec 
performance specification language. 

Performance assertions provide a means of fil­
tering large quantities of performance data to fo­
cus attention on the data that indicate potential 
problems in a system. This is useful for several 
kinds of performance-related activities: 

• Performance regression testing: once the 
performance of a program is understood, it 
can be captured with a set of performance 
assertions. When the system is changed, the 
assertions can be rechecked to ensure that 
the performance still meets expectations. 

• Continuous system monitoring: performance 
assertions can be checked routinely during 

*This research was supervised by Prof. William E. 
Weihl and was supported by the NSF under grant CCR-
8716884, by DARPA under contract N00014-89-J-1988, and 
by Digital Equipment Corporation. 
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normal system use to determine whether 
performance is meeting expectations and 
whether workloads satisfy the assumptions 
that were made during system design. 

• Performance debugging: successively more 
detailed performance assertions may be help­
ful for pinpointing the location of perfor­
mance problems in the system. 

In addition, the act of writing performance asser­
tions forces an implementor to think clearly and 
precisely about the performance of the system. 

The PSpec language is based on the notion of a 
monitoring log as a sequence of primitive compo­
nents called events. An event has a type (name), 
a list of named, numeric-valued attributes, and, 
possibly, a timestamp. A specification writer 
identifies the event types o( interest for a par­
ticular specification; these events have a direct 
correspondence with the events appearing in a 
monitoring log. 

While events contain useful information, of­
ten it is necessary to work with subsequences of 
events in a log when writing assertions. For ex­
ample, we may be interested in writing assertions 
about the elapsed time between two events that 
delimit an operation in the program, or we may 
be interested in checking whether some particu­
lar event occurs during an operation (perhaps a 
cache hit during a file system read operation). For 
this reason the PSpec language has the notion of 
an interval. 

An interval corresponds to a subsequence of a 
log starting at some start event, ending at some 
end event, and including all events in the log 
between them. Like events, all intervals are of 
some named interval type. Just as an event type 
has named attributes, an interval type has named 
metrics that record values of interest (not neces-



sarily numeric) for intervals of the type. Metrics 
are computed from the events that comprise an 
interval. While the set of event types available in 
a specification is determined by the contents of a 
log, the specification writer has complete freedom 
to declare whatever interval types and associated 
metrics are of interest, using the available event 
types. 

Performance assertions in PSpec are then pred­
icates over the set of events and intervals in a log. 

As an example of a performance specification, 
suppose we would like to write an assertion about 
the time during which interrupts are disabled on 
any processor in a multiprocessor. In particu­
lar, suppose we would like to express the asser­
tion that "interrupts are disabled for at most 
50 cycles." Figure 1 shows how we can do this 
in PSpec. First, we introduce events, IntOff 
and IntOn, corresponding to the disabling and 
enabling of interrupts on a processor. Each of 
these events has a timestamp and an attribute, 
pid, recording the processor number. Using these 
event types, we define an interval type corre­
sponding to an interval in a log during which in­
terrupts are disabled. We declare an interval of 
type IntDisabled to start with an event of type 
IntOff and to end with the next event in the log 
after the start event of type IntOn where the pro­
cessor id of the end event matches the processor 
id of the start event. Each IntDisabled interval 
is declared to have a metric, time, whose value 
is obtained by subtracting the timestamp of its 
start event from the timestamp of its end event. 
Then we can express the desired assertion using 
this interval type. The assertion, shown in the 
figure, can be read as: "for all intervals i of type 
IntDisabled in the log, the value of the time 
metric for i is at most 50 cycles." 

Performance specifications and monitoring logs 
are input to two tools. The first, a checker pro­
gram, takes a performance specification and a 
monitoring log from a program run, and reports 
which assertions failed to hold for the run. The 
second, a solver program, takes a specification 
with symbolic constants whose values are un­
known and a monitoring log from a program run, 
and estimates values for the unknowns using lin­
ear regression based on the data in the log. The 
output of the solver is the specification with the 

timed event IntOff (pid); 
IntOn (pid) ; 

interval IntDisabled = 
s: IntOff, 
e: IntOn where e.pid = s.pid 

metrics 
time = timestamp(e) - timestamp(s) 

end IntDisabled; 
assert {t i IntDisabled 

: i.time <= 50 eye}; 

Figure 1: Example performance specificiation. 

unknowns bound to their estimated values, which 
can then be input to the checker. 

The generation of monitoring logs can be ac­
complished with whatever monitoring tools are 
available for the system whose performance is of 
interest. The PSpec notion of a log is fairly gen­
eral. To make the PSpec tools work with a new 
log format, one need only implement the mod­
ule that presents this simple log abstraction and 
which understands the log format. 

The PSpec language design is currently in its 
second iteration. I implemented both the checker 
and solver for an earlier version of the language, 
and used the tools to write and check perfor­
mance specifications for pieces of the language 
run-time system of Prelude, the new parallel pro­
gramming language being developed in the Large­
scale Parallel Software Group at MIT. The ex­
periments with Prelude were interesting on two 
counts. They led to ideas for the redesign of 
the PSpec language, to make it more general 
and more useful. Also, several performance bugs 
in the Prelude run-time were found by checking 
some simple performance assertions concerning 
the amount of time that interrupts are disabled 
and the amount of time required to send mes­
sages between processors; the Prelude implemen­
tors were unaware of these bugs prior to the ex­
periments. 
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The NuMesh is a novel approach for constructing 
scalable heterogeneous multiprocessor systems via a 
standardized interface as embodied in the Commu­
nications Finite State Machine (CFSM). A topology, 
with large-scale implementation strategy and mechan­
ical packaging, has been chosen for the NuMesh that is 
isomorphic to the crystal structure of diamond. This 
paper presents a proposed architecture for the newest 
revision of the CFSM which includes support for single­
cycle static routing and low-latency dynamic routing. 

A three-dimensional four-neighbor topology is con­
structible from rectangular printed circuit boards on 
which four connectors have been placed, one at each 
edge with opposite-edge connectors facing in the same 
direction, one pair facing up, the other facing down. 
When stacked appropriately, these modules form a 
three-dimensional tetrahedral mesh with interesting 
logical and physical characteristics. Logically, the lat­
tice is isotropic and homogeneous; physically, it con­
tains horizontal channels running the extent of the 
mesh and a complex air path from upper to the lower 
faces. This topology is, as far as we know, unique to 
computer science, and minimal in the number of ports. 

The CFSM Rev2 architecture centers around a five­
port 32-bit crossbar controlled by five synchronous but 
loosely coupled programmable finite state machines 
(FSMs). Each of the FSMs is associated with an 1/0 port: 
four are designed to support the inter-CFSM routing, 
while the fifth is intended to interface to a local pro­
cessing element. Further, each has a small register file, 
wired-or General Outputs with which communications 
between FSMs is effected, and similar Control Outputs 
and Inputs over which negotiations between neighbor­
ing nodes occur. The FSMs support three classes of 
instructions: dispatch on condition (such as data pres­
ence, General Output, etc.), set registered value (such 
as crossbar connection), and assert signal for n cycles 
(such as write enable to the output register, or load 
program RAM). 

The two-port register file (one read, one write) con­
tains the program counter (PC) and instruction register 
(IR) to provide easy access to the control path from the 
data stream and vice versa. All registers may be read 
onto the crossbar or read from it; register RO drives 
the output port. Each register, save the PC and IR, 
are decrementable counters with all-zeros detection. 
These last two features allow increased code density 
by directly implementing looping constructs. 

The 1/0 ports are bidirectional, save for the Con­
trol Inputs and Outputs. Because there is only one 
transmitter-receiver pair on each line, pad and con­
nector design is tightly constrained and can be highly 
optimized. Special circuitry is included to insure that 
two neighbors never simultaneously drive their com­
mon 1/0 lines. 

By placing part of the control path in the data 
path, a strong limitation of previous revisions is over­
come, namely the inability to have the data stream af­
fect the control stream. Specifically, it is now possibile 
to embed control information within the data stream. 
This could be used, for example, to send a section 
of code as routing information within the header of a 
message, or, in other terms, to send the complete pair 
of a Turing machine and its input as a message. 

Many communication modes can be efficiently sup­
ported on the Rev2 architecture. Although the stan­
dard NuMesh model relies heavily on static routing, 
careful consideration has been given in the design of 
CFSM Rev2 toward supporting low latency dynamic 
routing. Taken in increasing order of complexity: Fully 
synchronous static routing takes 1 cycle per node; syn­
chronous fanin (single reader, time-multiplexed writ­
ers) and fanout (single writer, multiple readers) takes 
1 cycle; asynchronous static-graph routing takes 2 or 
3 cycles; limited-decision dynamic routing takes 2 cy­
cles per comparison with 2 cycles of overhead; fully­
dynamic routing based on run-time conditions are un­
predictable by nature and therefore no evaluations can 

1 The author is a member of Team NuMesh, a part of the MIT Computer Architecture Group. This research is supervised by Professor 
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be made. 
The architectural design has been completed. Cir­

cuit schematics are anticipated by September 1992; 
Functional silicon within a year. 
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NUMERICAL STUDIES OF VORTEX DYNAMICS IN JOSEPHSON JUNCTION 
ARRAYS* 

JOEL R. PHILLIPSt 

In the past decade there has been considerable 
interest in the physics of artificially fabricated 
Josephson junction arrays. In particular such 
arrays provide a useful model system for high­
T c superconductors[6]. In this paper we describe 
the numerical study of vortex excitations in a 
Josephson junction array. 

A Josephson junction may be fabricated by sand­
wiching a thin insulating layer between two super­
conductors. The junction may support a supercur­
rent of 

h =le sin cP 

where the gauge-invariant phase difference cjJ con­
tains a contribution from the quantum-mechanical 
phases of the superconducting islands, and from the 
magnetic field. An array of Josephson junctions 
consists of a regular lattice of islands of supercon­
ductor connected by Josephson junction. 

A vortex is an excitation in the phase ( cjJ) con­
figuration of the array. The definition of a vortex 
is that, in the absence of magnetic fields, the sum 
of the phase differences around any loop formed by 
the junctions of the array is 271" times the number of 
vortices contained by the loop. The magnetic field 
contributes a term 

2e 
<I>­

h 

to the loop-sum of the phases, where <I> is the 
flux through the loop. Thus, the system can be 
considered as a sort of nonlinear circuit, with phase 
analogous to voltage. Vortices and magnetic fields 
act as voltage sources. 

Vfe can analyze this network using mesh 
analysis[l]. We use the mesh matrix M to express 
the "voltage law" 

where the Kronecker delta indicates the number n 
of vortices in a cell, and cjJ is now to be understood 
as the vector of phase-differences. 

• This work was supervised by Prof. J. K. White and 
Prof. T. P. Orlando. J. Phillips acknowledges support from 
an NDSEG fellowship. 

I Dept. of Electrical Engineering and Computer Science, 
Massachusetts Institute of Technology, Rm 36-886, Cam­
bridge, MA 02139. E-mail: jphill@rle-vlsi.mit.edu 

We further define a vector of mesh currents Im 
which are related to the branch (junction) currents 
by 

The next question is the computation of the 
magnetic flux <I>. We separate this into two parts, 
the flux from an externally applied field <I>ext and 
the flux <I>ind induced by the currents in the array. 
The flux <I>;nd can be calculated given the current 
distribution 

where the matrix L is the standard partial­
inductance matrix[4]. We can interpret the matrix 
L as a set of dependent "voltage" sources; every 
junction i contributes a voltage L;j I; across junc­
tion j. The matrix M LMT will generally be dense, 
as the mesh current in every cell contributes to the 
flux through every other cell. This fact will present 
the main computational difficulty in these calcula­
tions. 

We can now write the full system of equations to 
be solved 

These nonlinear equations are solved using New­
ton's method. The computation can be reduced to 
solving a series of linear systems of the form 

M(D+L)MTx=b 

where L is the partial-inductance matrix previously 
discussed, and Dis a diagonal matrix. This (dense) 
linear system could be solved using direct Gaussian 
elimination, which, for an N x N array, would 
have memory requirements growing as N 4 and 
computation time growing as N 6

• The memory 
requirements of forming M LMT make the study 
of arrays of more than moderate (N '.'.:::'. 40 - 50) 
size impractical on a typical scientific workstation 
when a direct method is used to solve the equations. 
The obvious alternative is a conjugate-residual type 
iterative method[2], which will not require storage 
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ALGORITHM 1 (CONJUGATE-RESIDUAL AL­

GORITHM FOR SOLVING Ax= b). 

guess x 0 

repeat { 
Compute the error, rk = b - Axk 
Find xk+l to minimize rk+l 

k = k + 1 

} until rk small 

of the matrix, only the computation of matrix­
vector products. 

The conjugate residual algorithm can be acceler­
ated by applying it to the transformed problem 

PAx =Pb 

If the preconditioning matrix P is close to A- 1
, 

the conjugate residual algorithm will converge in 
few iterations. If in addition the cost of computing 
P is small, the resulting algorithm will be fast. 

Catv~~~ a/_ i:mt.iul;al.e--i"aidual a.lpilhm 
10• ---~--~--~--~-~ 

FIG. 1. Effect of preconditioner on conjugate-residual 
algorithm. Dashed line shows convergence of preconditioned 
problem 

To motivate the selection of an effective precon­
ditioner, consider the case of weak self-field effects, 
where the clements of L are significantly smaller 
than those in D. It is found upon inspection that 
the system of equations 

MDMTx = b 

is structurally identical to the five-point finite­
difference discretization of Poisson's equation. 
Since such a system can be very efficiently solved by 
use of the fast Fourier transform[5], we suspect it 
would make an effective preconditioner. For mod­
erate self-field effects (<l>ind small), this precondi­
tioner speeds up the computation by roughly a fac­
tor of five, as can be seen in Figure l. 

Once we have obtained vortex solutions to the 
network equations, physically relevant quantities, 
such as the vortex energy as a function of position, 
driving current, and external field, can be easily 
obtained. A typical single-vortex solution is shown 
in Figure 2. 

FIG. 2. Vortex in array with externally applied field. 
Self-field effects are observed in the screening currents flow­
ing at the edges. 

To model dynamics of vortices, we must add 
time-dependent terms to the Josephson current 
relation 

. d2¢ d<P 
lb= le Sill </J + {J dt 2 + fdt 

After time-discretization, the addition of these 
terms will only modify the numerical values of the 
entries in the matrix D, so that the numerical issues 
are essentially unchanged. 

Future numerical work will focus on using a 
fast multipole algorithm[3] to compute the matrix­
vector products in the conjugate-residual algo­
rithm. This algorithm should allow simulations to 
be performed in time linear in the number of mesh 
elements. 
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An Iterative Approach for the Solution of the Boltzmann Transport 
Equation for Semiconductors 
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One of the major concerns in the design and fab­
rication of ultra-short-channel semiconductor devices 
(with channel lengths as short as a few hundred 
nanometers) is the effect of the high electric fields that 
are generated in the device. The steeply graded elec­
tric field profile imparts very high energy to carriers 
(electrons and holes) in a narrow region of the de­
vice. These energetic carriers can have a number of 
deleterious effects on device performance and reliabil­
ity. These phenomena are usually addressed under 
the rubric of hot carrier effects and are primarily a 
reliability issue. For example, in a MOSFET which 
undergoes hot carrier degradation, device parameters 
such as threshold voltage, transconductance and cur­
rent can change substantially over the device lifetime. 
Thus a circuit designed with certain nominal MOS­
FET parameters may fail if the device characteristics 
change significantly as a result of device operation. 
Hot carrier effects are also a major design constraint 
on optimizing the design of short-channel devices as 
the device performance can be traded-off for greater 
immunity to hot carrier degradation. 

Computer programs that simulate the behavior of 
semiconductor devices have been successfully used to 
design and optimize devices for a number of years. 
Unfortunately almost all such programs are incapable 
of correctly simulating the hot carrier effects outlined 
above as they only solve for average quantities such as 
electron concentration and average velocity and en­
ergy but provide no details about the high energy car­
riers. This failure stems from the simplified physics 
which is incorporated in these programs. 

The underlying mathematical description for trans­
port in semiconductors is the Boltzmann transport 
equation (BTE): 

Faculty Supervisor: Prof. Jacob White 

This work was supported by the Defense Advanced 
Research Projects Agency contracts N00014-87-K-825 and 
MDA972-88-K-008, and grants from I.B.M. 

Figure 1: Steady state distribution from an arbitrary 
initial distribution. 

Solution of the BTE yields the distribution func­
tion, f, for the carriers (electrons and holes) in mo­
mentum (k) and real space (r) given a field, F and 
the knowledge of the scattering mechanisms to be in­
cluded in the right hand side and denoted by the scat­
tering operator, S. Then all physical quantities of 
interest, such as electron density, current, energy etc. 
can be determined from the distribution function. As 
the BTE in general is an integro-differential equation 
(the scattering operator involves integrals of f in k­
space) in six-dimensions and time it is extremely dif­
ficult to solve. Thus, only an approximate solution is 
obtained in device simulation programs. For detailed 
solutions the BTE has been solved using a Monte­
Carle method [1]. This approach is stochastic in na­
ture and is equivalent to calculating the detailed path 
of tens of thousands of electrons over the simulation in­
terval. The Monte-Carlo method can in principle yield 
the detailed distribution function but is extremely ex­
pensive computationally. Moreover, rare events such 
as high energy phenomena are very difficult to com-
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pute due to the stochastic nature of the Monte-Carlo 
method. 

An alternative to the above approaches is the di­
rect solution of the BTE. One way of doing this is 
to write the BTE as a purely integral equation [2]. 
This form can be thought of as separating the car­
rier transport into two problems: scattering and free­
flight. The scattering operator involves an integral in 
momentum space only, while the free-flight operator 
updates the distribution function in real space after 
integrating over a time step, 1/r. Due to the implicit 
nature of the integral equation, it can only be solved 
using an iterative approach, where the iterations cor­
respond to stepping in time. Thus, given an initial 
distribution function, first the scattering operator is 
used to generate a new function, g, which incorporates 
only the effects of the scattering: 

1.6~-~--,----,.--~--.----~--,-----, 

vz(cm/a) 110' 

n (k) - rfn (k)+j S(k' k)fn (k')dk' -Jn (k) j S(k k')dk' . . . . . . . . 
g - ' ' Figure 2: The m1tial and final d1stnbut1on of F1g.l 

(2) plotted as a function of Vz for a fixed Vp. 

This new function is then used as the right hand side 
of Eqn. 1 which can then be integrated to give: 

(3) 

which results in a new distribution function corre­
sponding to its evolution in time. For the steady state 
case the iterations will converge and the (n-l)th and 
nth iterations will coincide. To include variation in 
real space the second equation can be modified and 
requires an integral in real space also. 

For the homogeneous case (i.e. with no spatial vari­
ation) the above equations have been implemented 
in a simple simulator. Only the two most impor­
tant types of scattering are currently included: acous­
tic phonon (elastic) and optical phonons (inelastic). 
Starting from an arbitrary initial distribution with no 
applied fields the distribution function should reach 
its equilibrium value after a few time steps as shown 
in Fig. l. 

In this figure the distribution function is plotted 
assuming cylinderical symmetry, thus f is considered 
to be a function of Vz and Vp. The top half of the 
figure shows the initial distribution function which was 
chosen to be a prism shape whereas the bottom half 
shows the distribution function after some time steps. 
Clearly the distribution is now much more isotropic 
and has roughly a gaussian shape. This is more clearly 
visible in Fig. 2 where the distribution function is 
plotted as a function of Vz for a fixed Vp. 

The effect of an applied field is shown in Fig. 3 
where we start from the the distribution obtained in 
Fig. I and turn on a constant electric field in the z 
direction. The distribution function after a few time 
steps is shifted along the direction of the applied field 
(ignoring the sign of the electronic charge). 

Currently the program is being used as a test-bed 
to identify the features that are critical in generating 
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Figure 3: Effect of an applied field on the distribution. 

a direct solution to the BTE. Further work will in­
clude spatial variation and will require the solution of 
Poisson's equation consistently with the BTE. Also, 
extensions to higher dimensions as well as more effi­
cient representations for the distribution function such 
as basis function expansions are being studied. 
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Edge-Triggering vs. Level-Clocking 

Keith H. Randall Marios C. Papaefthymiou 

MIT Laboratory for Computer Science 
Cambridge, MA 02139 

Synchronous circuits that implement clocked storage elements using level-sensitive latches, instead of 
the more conventional edge-triggered latches, are becoming increasingly popular. An edge-triggered latch 
updates its state on the rising edge of its clock input and directly supports the abstraction of a storage element 
that is synchronized by the tick of a clock. The operation of level-sensitive latches is somewhat different. 
While the clock input of a level-sensitive latch is low, the latch maintains its value from the last time the clock 
was high. While the clock input of the latch is high, however, the latch becomes transparent and allows data 
to flow unimpeded from the input to the output. Level-clocked circuits have the potential to operate faster, 
in theory, than edge-triggered circuits. In this paper, we develop a methodology for comparing edge-triggered 
and level-clocked implementations of synchronous circuits, and we investigate under what circumstances and 
to what extent we can achieve this theoretical improvement in practice. Our experiments indicate a tradeoff 
between the speedups achieved by level-clocking and the degree of pipelining in a circuit. Specifically, edge­
triggering is just as good as level-clocking for circuits with either too few or too many pipeline stages. When 
the degree of pipelining is between the two extremes, however, the benefits oflevel-clocking begin to emerge. 
We give a heuristic to identify the circuits that are likely to improve by level-clocking. We observe, based 
on our experiments, that circuits with more uniform delays tend to improve more by level-clocking. We also 
observe that there is no apparent advantage to clocking level-clocked circuits with asymmetric phases. 

Implementation ease has made edge-triggered circuits particularly popular among designers. Level­
clocked circuits have the potential to operate faster than edge-triggered circuits, however, because they 
allow computations to extend beyond a single clock cycle. The potential of level-clocked circuits to operate 
faster than edge-triggered circuits comes at the cost of increased complexity both at the design and at the 
implementation level. The operation of level-clocked circuits is not as intuitive as that of edge-triggered 
circuits, and it is more difficult to argue about their timing. Additional layout difficulties arise due to the 
multiple clocks that must be distributed across the chip. It is virtually impossible to quantify these dif­
ficulties. Our work, however, aims at providing the circuit designer with information that allows him to 
decide whether the switch to a level-clocked circuit is probably worth the additional effort, or whether more 
conventional solutions work just as well. 

Our methodology for comparing edge-triggered and level-clocked circuits consists of the following three 
steps. First, we retime the edge-triggered circuit so that it achieves the minimum period possible. Subse­
quently, we convert the edge-triggered circuit into a level-clocked circuit by replacing each edge-triggered 
latch by a pair of level-sensitive latches that are clocked on opposite phases of a two-phase, nonoverlapping 
clock. We retime this level-clocked circuit in order to achieve the minimum period possible when the active 
times of the two clocking waveforms are equal. Finally, we further retime the level-clocked circuit while 
simultaneously tuning the active times of the two clocking waveforms, so that we achieve the minimum 
period possible under any retiming and under any two-phase, nonoverlapping clock. We repeat these three 
procedures for pipelined versions of the original circuit. Each pipelining of the original circuit is obtained 
by multiplying the initial number of latches on its edges by an integer constant. We also apply our three 
procedures on pipelined versions of the original circuit with more uniform delays. We vary the original gate 
delays, that were assigned by the lib2 library in sis, by raising them to the same power p < 1. As p 
decreases, the gate delays approach 1, and the clock period depends on the propagation delay along more 
paths in the circuit. 

A sample of our experimental results for the circuit mult16a from the MCNC benchmark is illustrated 
in Figure 1. The data points were obtained for the original gate delays, and for gate delays obtained by 

This research was supervised by Prof. C. E. Leiserson and supported in part by the Defense Advanced Re­
search Projects Agency under Grant N00014-91-J-1698. Authors' e-mail addresses are randall@theory .lcs .mit. edu., 
marios@theory.lcs.mit.edu 
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Figure 1: Relative speedup achieved by level-clocking over edge-triggering as a function of the ratio 
dmax/ Rmax· Data were obtained on the circuit mult16a from the MCNC benchmark. 

raising the original gate delays to the powers p = 0.6 and p = 0.2. For each circuit, the figure shows the 
relative speedup achieved by level-clocking over edge-triggering as a function of the ratio dmax/ Rmax, where 
dmax is the maximum gate delay and Rmax is the maximum ratio of total gate delay and total number of 
latches around the cycles in the circuit. Higher values of the ratio dmax/ Rmax correspond to higher degrees 
of pipelining of the original circuit. A relative speedup of 16% is achieved with the original gate delays and 
pipelining of the original circuit by a factor of three. A 28.5% speedup is obtained for p = 0.2 and pipelining 
by a factor of five. For all three delay configurations, the maximum speedup is obtained when the maximum 
gate delay dmax is almost equal to the maximum delay-to-latches ratio Rmax in the circuit. 

Our experiments indicate that edge-triggering is just as good as level-clocking for low degrees of pipelining 
in the circuit. As we increase the degree of pipelining, however, the benefits oflevel-clocking begin to emerge. 
When we increase the degree of pipelining after a certain point, then the advantages of level-clocking suddenly 
disappear, and edge-triggering becomes again as good. Our experiments also indicate that the advantages 
of level-clocking are more apparent in circuits with more uniform propagation delays. We give a heuristic 
criterion that identifies whether a circuit is likely to improve with level-clocking, by examining the maximum 
gate delay dmax and the maximum delay-to-latches ratio Rmax in the circuit. According to our criterion, the 
closer dmax is to Rmax the more likely it is for the circuit to improve by level-clocking. Our criterion agrees 
with our experimental results. Moreover, the advantage of level-clocking disappears suddenly precisely when 
dmax exceeds Rmax· In our experiments, we observed no instance where simultaneous retiming and tuning 
led to faster level-clocked circuits than retiming with symmetric clocks. 

Our work should not be viewed only as a practical demonstration of the potential speedups that can be 
achieved by level-clocking over edge-triggering. We have also presented a criterion, expressed in terms of the 
characteristic parameters dmax and Rmax of a circuit, for identifying circuits that are likely to improve by 
level-clocking. Moreover, our empirical results suggest a design style for generating circuits that are likely 
to be faster when level-clocked. These circuits will be designed with standard cells of uniform delay, and 
the delay-to-latches ratio around their cycles will be roughly equal to the longest gate delay. The original 
design can be edge-triggered, a domain where design is more simple and intuitive. The final level-clocked 
circuit will be generated automatically using the tools that have been developed for optimizing level-clocked 
circuits. 
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WAVEFORM FREQUENCY-DEPENDENT OVER.RELAXATION FOR 
TRANSIENT TWO-DIMENSIONAL SIMULATION OF MOS DEVICES* 

MARK REICHELT! 

This abstract presents a new waveform frequency-dependent overrdaxation algorithm and 
its application to solving the diffen;ntial-algebraic system generated by spatial discretization 
of the time-dependent semiconductor device equations. 

Device transient simulation is usually performed by numerically solving the coupled 
Poisson and time-dependent ekctron and hole current-continuity equations with a low-order 
implicit time-integration sd1P11ie, combined with a Newton or relaxation method to solve 
the generated sequence of nonlinear algebraic equations [l]. Another approach is to apply 
WR and standard ovcrrclaxation acceleration (WSOR) to the equation system, as given 
in Algorithm l [4, 2, 3]. Though fast and parallelizablc, the ordinary WSOR algorithm 
can unfortunately produce oscillatory results, even with a carefully chosen overrelaxation 
parameter, as illustrated in Figure 1. 

ALGORITHM 1 (ORDINARY WSOR). 

guess u 0
, n°, p 0 waveforms at all nodes 

for k = 0, 1, ... until converged 
for each node i 

k+l k+I k+l solve for 1l; , n; , P; waveforms 
(like Gauss-Seidel WR): 

f ( k+l k+l k+l k) 
li 11i ini 1Pi 1uj 

d k+l f ( k+l k+l k k) (iiP; + 3, 11; ,P; ,uj,Pj 

overrelax 117+1
, n;+i, 1{+1 waveforms 

k+l . k+1 [ k+l kl 
;I:; <-- X; +(Y · X; -X; 

0 

0 

() 

FIG. 1. The ordinary wavtform SOR a.lgorithm for device simulation and a plot of the electron 
concentration v.<. time at a channel node of the karD example, showing the WSOR frequency amplification. 

To derive a more reliable acceleration, the effect of each iteration of Gauss-Seidel WR can 
be represented abstractly as 

(1) xk+i = F(xk) where F: C 1 --+ C1, 

C 1 is the space of continuously differentiable functions, and xk(t) = [uk(t), nk(t), pk(t)f. 
Then if ~k(t) = xk+l(t) - xk(t) is small, a linearization of equation (1) followed by Fourier 
transformation yields 

(2) 

where G(w) is the Fourier transform of the linearized F. The WR algorithm can then be 
aco;lerated in the frequency domain by overrclaxing: 

(3) 

• This work was supervised by Prof. Jacob K. White and Prof. Jonathan Allen and supported by DARPA 
contract N00014-9J-J-1 mJ8, NSF contract MIP-8858764 A02, and a grant from IBM. 
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Inverse transformation yidds the following time-domain overrelaxation expression: 

(4) 

With this waveform frequency-dependent successive overrelaxation algorithm (WFD­
SOR) [5], instead of multiplying the delta in the time domain by a constant parameter a as 
in ordinary WSOR, the delta in the frequency domain is multiplied by a frequency-dependent 
overrelaxation parameter a(w). The rationale for this approach is that different frequency 
components of x converge at different rates. ln practice, the frequency-dependent overrelax­
ation parameter a(w) is computed as follows: 
Step 1 Perform enough initial Gauss-Seidel (GS) WR iterations so that the largest eigenvalue 

1( w) of the GS WR operator dominates convergence at each frequency. 
Step 2 Estimate the largest magnitude eigenvalue 1(w) of the GS WR operator with the 

[~k(w))*~k-l(w) 
Rayleigh quotient: 1(w) = [~k(w)]* ~k(w) 

2 
Step 3 Compute the overrdaxation parameter: a(w) = -1-+-J~1-_-1-(-w_)_ - 1 

Figure 2 shows the convergence of WR, WSOR and WFDSOR for a typical simulation 
with 25G fixed timestepti and 64 initial WR iterations. Ordinary WSOR, with parameter 
chosen for frequency 0 (DC), div('fges, while the frequency-dependent overrelaxation algorithm 
WFDSOR convergc:s rapidly (I 0 orders of magnitude in 256 iterations). 
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FIG. 2. An c.7:amplc simnlation set 1tp and a plot of convergence (terminal current error vs. iterntion) for 
Wll (dashed), ordinary WSOR (dotted), and frequency-dependent WFDSOR {solid). The horizontal dashed 
line represents an acnua.cy of 0.1 percent. 
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Design of a Multithreaded Processor Architecture 
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Multithreading has long been recognized as a solution to the latency problem in multiprocessor systems. 
It allows processors to tolerate the long and unpredictable latencies of communication and synchronization 
operations. With the widening gap between processor and memory speeds, long memory access latencies 
are now being encountered even on uniprocessor systems. Therefore, today, multithreading appears to be 
an attractive solution even for uniprocessor systems. 

Several multithreaded machines have been built, the most prominent among them being the HEP, HORl­
ZON, and the MONSOON. An evaluation of these architectures reveals two principal shortcomings: First, 
they perform at or near their rated performance only when a large number (at least 8) of concurrent 
instruction streams are available. Second, the hardware cost of these architectures, in terms of silicon area 
and bandwidth requirements, is very high. More recent projects such as the TAM project at Berkeley 
[3] and the ALEWIFE [1] and *T [2] projects at MIT suggest that multithreading can be achieved on 
(possibly slightly enhanced) stock processors. Thread-switching, scheduling, synchronization, and context 
swapping can all be effectively accomplished in software. This class of machines (termed "multithreaded 
stock processors") are attractive for two reasons: First, they use commodity processors, which keep better 
pace with technology than specially designed processors. Second, multithreaded stock processors deliver 
adequate performance on programs with low levels of parallelism. However, they do incur significant 
thread-switching and context-switching overhead. Further, they inherit several limitations of conventional 
single-thread processors. We believe that these factors will limit the performance of multi threading in the 
long run. 

We present a new rnicroarchitecture that significantly reduces the overhead associated with multithreading 
and, at the same time, can overcome performance limitations imposed on single-threaded processors by 
the processor-memory interface. 

First we present a scheme for caching contexts (Fig. 1) in a multi-window register file that essentially 
eliminates context-switching costs. The register set is configured as a conventional cache with activation 
frames direct-mapped onto register windows. Register names in instructions denote offsets in the frame. 
The operand fetch unit of the processor maintains a scoreboard to keep track of the availability of frame 
values in the register set and fetches unavailable ones implicitly on demand. Coupled with a split data/frame 
cache, this mechanism masks context switching costs very effectively - at the expense of a somewhat longer 
pipeline. 

Next, we evaluate performance implications of the most basic choices in the design of multithreaded 
processors with a simple queueing model. The choices are along two dimensions: (1) the processor pipeline 
organization and (2) the definition of threads. 

"This research was supervised by Prof. Arvind and supported in part by DARPA under Grant N000014-89-J-1988 
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Figure 1: Context Switching Mechanism 

• Processor Pipeline: Multithreading may be implemented on a single-threaded pipeline or on a 
multithreaded pipeline. A single-threaded pipeline is defined as one where the processor pipeline 
contains only one thread at a time. A multithreaded pipeline, on the other hand, may contain more 
than one threads at any time. 

• Thread Definition: Threads, in turn, can be defined dynamically or statically. Dynamically defined 
threads suspend on dynamic events such as cache misses and synchronization failures. In the static 
case, points of suspension are defined by the compiler. For example, the compiler may chose to 
suspend threads on all references to data memory, on references to non-local data memory, on all 
branches and other transfers of control, etc. 

The model indicates that the paradigm of statically defined threads on multithreaded pipelines is the one 
most amenable to high cache rn.iss ratios, long pipelines and long memory access latencies. 
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This work [4) presents a quick means of approximating performance parameters of multistage, mul­
tipath networks for parallel computers. The networks modeled are dilated networks like the randomly­
wired multibutterflies described in [2). The bandwidth and probability of successful message transmission 
in such networks cannot be calculated by the methods of Patel [3] or Kruskal and Snir [l], because those 
methods are specific to Banyan networks: they assume that the loads on channels entering a switch are 
independent, whereas in multipath networks these loads are correlated. 

Equations that yield the probability of loading on the output channels in terms of the input loading 
probabilities and switching probabilities have been found and are described in [4]. Consider a switch 
in a multipath network, shown in Figure l. Because of the possible correlation of channel loads in a 
multipath network, in order to calculate the probability of some output configuration { L = /} of the 
switch S, we calculate the joint probability mass function of the loads on the channels C11 , ... , C;w, 
subsets of which are independent given their input loads. 

The resulting equations are solved recursively across the stages of the network to find the loading 
probabilities on output channels of the final stage. The equations are of the form 

P{ Lell = /ell' ... 'Le,w = le,w} = 

L P{ Le,, =/ell, ... , Le,.=lciu I Lnll = lnll, ... , LB,r = ln,r} · 
la 11 , . . 1 la 11 

P{ Le., = le,,, ... , Le,w = le,w I Ln,, = In", ... , Ln,, = In.,} · 

P{Lnll = ln 11 , ••• , Ln., =In.,} (1) 

For networks with oblivious routing and stochastic concentration, for an M x N, dilation [{ switch, 
the conditional probabilities in Equation ( 1) are of the form 

P{L1,1=11,1, ... ,LN,k =lN,k I Le,= le,, ... ,LeM = leM} = 

(IIN _1 ) '°' ( L~!1 le, ) d1 d, ... dN (2) 
. (K) ~ d1, ... ,dN ql q2 qN 
t bt di)"')dN 

Here q1 , q2 , ... , qN are the switch's probabilities of switching in each direction, calculated from the 
addressing probabilities. Also b; = L:= 1 l;, 9 , and the sum is over the N-tuples d1 , ... , dN such that for 

each d;, min (d;, I<)= b;, and L~i d; = L~i le,. 

Acknowledgments: The research described in this abstract was conducted under the direction of Professor Thomas F. 
Knight, Jr. at the M.I.T. Artificial Intelligence Laboratory. The research was supported in part by the Defense Advanced 
Research Projects Agency under contract N00014-87-K-0825. The author was supported in part by the Charles Stark 
Draper Laboratory under a Draper Fellowship. 
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Figure 1: Channels referred to in Equation (1). The recursive step arises because in order to find the probability 
of an output loading configuration of the switch S, we condition on the loads on its input channels C11 , ... , C;w. 
No subset of C11, ... , C;w need have mutually independent loads in a multipath network, but the loads on the 
subset of channels from each switching element are independent given the message loads on the input channels 
Bu, ... ,Bit· 

Because of the summation in Equation ( 1), there are in the general case an exponential number of 
these equations (although in the specific case of a Banyan network, these equations reduce to Patel's 
equations). A program has been written to evaluate them and make simplifications based on indepen­
dence that can be determined from the network graph. The program can be used for small networks 
and on special cases with limited path redundancy, but an approximation method is necessary for larger 
examples. 

A Monte Carlo approximation method can be used to estimate the desired probabilities, rather than 
solve for them exactly. It can be shown that, if B1, ... , Em are the input channels and 01, ... , Om the 
output channels of some number k of final stages of the network, then if we generate tuples /81 , ... , ln= 
randomly in accordance with the probability mass function P{Ln, = ln,, ... ,Ln= =/nm}, 

(3) 

is an unbiased estimator of P{ Lo, = lo,, ... , Lon = Ion}. The correlated random variates ln
1

, ••• , lnm 
are easily generated by a method described in [4], and Equation 3 can be evaluated exactly if k is chosen 
carefully. Where k = 1, the scheme always yields an estimate in polynomial time. 

The resulting approximation scheme will always have lower variance than the obvious hit-or-miss 
direct simulation technique, and so achieves a given error bound in fewer iterations. A program that 
uses this estimation technique to calculate performance parameters for multipath networks has been 
written, and on typical examples achieves given error bounds in about 1/9 the number of iterations 
required under direct simulation. 
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1 Introduction and Description 

As parallel machines grow in scale and complexity, latency 
tolerance of synchronization faults and remote memory ac­
cesses becomes increasingly important. One method of tol­
erating this latency is multithreading the processor and 
rapidly context switching between multiple threads. Anal­
yses show[2] that fast context switching between a few (3-
4) processor-resident threads is adequate when the laten­
cies being tolerated are short compared to the total run 
lengths of all the resident threads. If this condition is not 
met (which is often the case for synchronization latencies), 
many more threads are needed. Because hardware costs 
limit the number of processor-resident threads, fast switch­
ing between a large number of threads is difficult to achieve. 

This paper proposes a mechanism for fast switching be­
tween a large number of threads. The basic idea is to im­
plement a few (say, 3) threads in hardware, but attempt to 
provide a larger supply of threads to switch among by con­
tinually unloading stalled threads from the register file and 
loading runnable threads into it. Dribbling registers (D­
registers) facilitate fast context switching and the ability to 
hide the latency of loading and unloading context state1

• 

D-registers, inspired by Sites' dribble-back registers for 
multiple register window architectures[5], optimize utiliza­
tion of the processor under loads in which run lengths are 
short and wait times are long (relative to the run lengths). 
In this regime, register file designs often provide ineffi­
cient performance since loading is frequent and many cy­
cles are wasted in loading rather than used for execution. 
D-registers alleviate time wasted on loading/unloading by 
amortizing these cycles with useful processor execution cy­
cles. 

On-chip instruction caches decrease traffic to off-chip 
memory, providing long periods in which the cache/data 
pathway goes unused (in RISC processors the number of 
non-load/store instructions and hence the number of free 
memory bus cycles can approach 703[4]). D-registers use 
these free cycles to load context information concurrently 
with program execution. This is accomplished by adding 1 
read/write port to the (typically three) ports already exis­
tent in the multiple register set register file. Data accesses 

*This work was supervised by Professor Anant Agarwal. 
The abstracted research was funded by DARPA contract 
#N00014-87-K-0825. 

1 A more thorough discussion is presented in [6] 
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Figure 1: Load Latencies for Dribbling and Multiple 
Register Set Designs 

to the register file occur through the three normal ports, 
and the dribble port unloads stalled context information 
and loads ready context information concurrently with the 
normal data accesses. 

By continually polling the register file contents for stalled 
contexts after a dribble finishes, D-registers reduce the effec­
tive latency of a load as figure 1 illustrates, and attempt to 
keep the register file full of runnable threads. The dribbler 
only unloads threads stalled due to synchronization faults, 
since cache miss latencies are short enough to be tolerated 
by context switching. 

Analytical models and simulation show that processor 
utilization approaches unity for typical workload parame­
ters. 

2 Analytical Model 

We can model the processor utilization in a system that 
employs D-registers by using a simple queueing model. The 
register file is modeled as a queueing server in which register 
frames are added at some rate by the dribbler, and register 
frames are consumed at some other rate by an execution 
process that causes synchronization faults. A register frame 
is added into the queueing server the moment the dribble of 
a frame completes. Similarly, a register frame is considered 
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to be consumed the moment a synchronization fault occurs. 
The utilization of the processor is the fraction of the time 
the register file is busy, and is simply the utilization of the 
queueing server. 

Let the service rate or consumption rate be U: 1/U is 
the average time between synchronization faults, i.e., the 
average run length. Let the arrival rate be L, i.e., 1/L is the 
time between completions of dribble operations. In other 
words, L is the probability that a dribble completes on a 
given cycle, and a process is added. The utilization, p, of 
the queueing server is given by 

L 
p= u· (1) 

p has a maximum of 1. That is, if the rate of synchronization 
faults is less than the rate of dribbling, then in the steady 
state, there will be no idle time. This formula only ap­
plies when L ~ U. For L > U p should approach 100% since 
dribbles furnish runnable threads more frequently than syn­
chronization faults consume them. This formula assumes 
infinite register file size; in practice, a register file size of 3 
or 4 resident contexts is sufficient to approximate this con­
dition. 

Validation against experimental data shows that the 
model agrees to within 10%. [6] presents a more exten­
sive model including load/store instruction considerations, 
and shows a comparison of simulation and model. 

3 Experimental Framework 

In order to evaluate the effectiveness of D-registers and to 
validate the model, three functional trace-driven simulators 
for each of three different register file models were written. 
These models include 

1. Single Register Set: only one context is stored in the 
register file at any given time. Cache misses cause 
idling until satisfaction of the request, and on each 
synchronization fault the resident context is unloaded 
and replaced with a runnable thread. 

2. Multiple Register Set[l]: multiple hardware contexts 
enable support of many threads concurrently. Con­
text switching is used to hide cache miss latencies and 
synchronization fault latencies. If all resident contexts 
are already stalled by (large-latency) synchronization 
faults, one of the stalled contexts is unloaded and a 
runnable thread is loaded. 

3. Context Cache[3): The Context Cache treats the reg­
ister file as a fully-associative cache, so a context 
load/unload involves loading only the registers re­
quired for the current instruction, rather than loading 
each register of the context. 

The workload parameters used to synthesize traces to 
drive the simulators include (1) the number of runnable 
threads, (2) the number of hardware contexts (or resident 
registers in Context Cache), (3) the number of registers in 
a context, (4) the frequency of synchronization faults and 

load/store operations, (5) the cache hit rate on load/store 
operations, (6) the synchronization fault latency and cache 
miss latency, and (7) the lengths of the individual threads. 
Although real program traces are not run through the sim­
ulators, the parameters specified above are taken from real 
parallel applications[ 4). 

4 Results 

D-registers provide significantly higher utilization than the 
multiple register set design, nearly doubling it in some cases. 
Utilization increases under typical workload parameters and 
a cache miss rate of 9% from 50% with multiple register sets 
to 90% with the addition of dribbling registers. D-registers 
provide slightly lower processor utilization (40% vs. 50%) 
than the Context Cache for very small runs between syn­
chronization faults (about 30 cycles), because not all reg­
isters in the context are used, but with D-registers all are 
still loaded (thus resulting in wasted register loads): since 
this region is the intended operating region for the Context 
Cache, such performance is expected. As run lengths in­
crease (approaching the average time between dribble com­
pletions, or about 60 cycles), D-registers outperform the 
Context Cache (90% vs. 70%). In addition, experimen­
tal results show that processor utilization remains virtually 
constant with increasing numbers of contexts, thus validat­
ing the model's assumption of infinite register file size. 
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Introduction 

The Threaded Abstract Machine (TAM) mod­
el was designed to allow efficient execution of 
fine-grained programs on machines with min­
imal hardware support [1]. Fine-grained exe­
cution is desirable because it hides the latency 
that occurs in large parallel computers. I de­
veloped two different ways of compiling TAM 
code to run on the J-Machine. In this abstract 

' I use the straightforward translation scheme 
as the basis for a comparison of the J-Machine 
to the CM-5, which also has a TAM imple­
mentation, and I compare the two translation 
schemes for the J-Machine. 

TAM 

When a program is compiled for TAM, each 
procedure is divided into a set of threads and 
inlets. Threads encode the body of the pro­
cedure, while inlets are message handlers. A 
thread can be either synchronizing or non­
synchronizing. If it is synchronizing, it has an 
entry count which must reach zero before the 
thread can run. Each thread is comprised of 
instructions such that once a thread begins, it 

0 This research we.s supervised by Prof. William 
J. Dally and we.s supported in part by the Defense 
Advanced Research Projects Agency under contracts 
N00014-88K-0738 and N00014-87K-0825, by a Na­
tional Science Foundation Presidential Young Inves­
tigator Award, grant MIP-8657531, with matching 
funds from General Electric Corporation and IBM 
Corporation, and by a National Science Foundation 
Graduate Fellowship. 

can always complete without waiting for data 
[2]. When a procedure is invoked, a frame 
is allocated for the storage of arguments, lo­
cal variables, entry counts, and a remote con­
tinuation vector (RCV). The RCV lists which 
threads are ready to run. A software queue 
is maintained of frames whose RCVs are non­
empty. 

When a frame is removed from the queue, 
its RCV becomes the local continuation vector 
{LCV), and a specially-designated entry thread 
is run, which loads frequently-used frame slots 
into registers. Threads are executed from the 
LCV until it is empty, at which time the ezit 
thread runs, storing register values into the ap­
propriate frame slots. When a thread com­
putes a data value or control information on 
which another thread depends, it forks the 
thread. When a non-synchronizing thread is 
forked, a pointer to the thread is placed in the 
LCV. When a synchronizing thread is forked, 
it is only placed in the LCV if decrementing 
its entry count yields zero. A similar opera­
tion, post, is used within inlets, which places 
the target thread in the RCV. 

The only language that is currently com­
piled to TAM is Id. TAM supports I-struct­
ures and M-structures. 

Comparison to the CM-5 

To judge how well the J-Machine sup­
ports fine-grained parallelism, we compared 
a straightforward implementation of TAM on 
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TAM Mechanism Straightforward Implementation Flattened Implementation 
inlet priority 0 message handler priority 0 message handler 
post from inlet placement of thread in RCV jump directly to thread 
activation of frame message from background to entry thread n/a 
entry thread background priority code, which jumps not used 

to threads within procedure 
threads background priority code priority 0 code 
exit thread sequence of code run at background priority not used 
fork from thread jump or push onto LCV jump or push onto CV 
system routines priority 0 message handlers priority 1 message handlers 

Table 1: Mapping of TAM Constructs to the J-Machine 

the J-Machine, to the CM-5 implementation. 
It highlighted the following architectural dif­
ferences: 

Network Interface On the J-Machine, 
messages can be of almost unlimited length 
and are sent directly from the processor. This 
proved superior to the CM-5, on which mes­
sages are limited to 5 words and are sent 
by system calls operating on memory-mapped 
queues. Additionally, the CM-5 needed to poll 
to check for incoming messages, while the J­
Machine's Message-Driven Processor (MDP) 
has hardware dispatch. 

Tags To our surprise, the MDP's cfuture 
tag provided little benefit in implementing I­
structures and M-structures. 

Conventional Architectural Features 
Due to the J-Machine's longer cycle time, 
shortage of registers, and lack of a cache, its 
performance was inferior to the CM-5's. 

A Flattened Translation Strategy 

While the J-Machine supports TAM well in 
a straightforward way, the MDP's strengths 
and weaknesses make a different model more 
efficient. Table 1 compares the two ways of 
translating TAM code. Because the MDP does 
not have a cache and is short on registers, it 

does not benefit from TAM's two-level hier­
archy in which threads from the same proce­
dure are grouped together. A model that flat­
tens this hierarchy was implemented, where, 
instead of storing a posted thread in a RCV, 
the thread is executed immediately after the 
inlet that posted it. By relying more heavily 
on the MDP's hardware message queues and 
dispatch mechanism and exposing the code 
to further optimizations, greater efficiency is 
achieved, although the risk of queue overflow 
is increased. On a sample program (paraffins 
with an argument of 10), the flattened imple­
mentation required 77% the instructions of the 
straightforward implementation. 
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1 Introduction 
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In this paper we present Hindsight, a debugger for parallel programs. Hindsight is designed to handle non­
deterministic errors common in MIMD programs. Hindsight assumes that a program execution is composed of 
threads, which are in turn composed of a set of atomic code blocks. Threads communicate by exchanging messages. 
Hindsight helps programmers fix errors caused by atomic code blocks that execute in a different order than the 
programmer intended. It does not address races in parallel programs in which the execution of atomic code blocks 
overlap erroneously. This approach addresses the harder of the two problems, as Miller and Netzer [NM88] point 
out: detecting races is relatively easy (see Emrath and Padua [EP89] for an example), but correcting out-of-order 
atomic code blocks is NP-hard. 

2 Nondeterministic Errors 
A nondeterministic error is caused by timing differences. These differences change the order in which atomic code 

block execute. Such changes can produce unpredictable results, but the underlying problem is an incorrect order of 
execution of atomic code blocks. The atomic code blocks can execute out of order because they are underconstrained. 
To fix the program, the programmer must add constraints. 

3 Related Work: Debuggers that Provide Just Replay 
To handle nondeterministic programs, many debuggers for parallel systems record a log file. The log file contains 

a history of the order in which an execution's synchronizing events take place. The debugger can use the log file to 
rerun an execution in the same order as occurred in the logged execution. This reexecution is normally called replay 
[Mel89). During replay, a programmer can examine program state on any node using sequential debugger features. 
Using this approach, a programmer is suppossed to be able to debug nondeterministic programs. 

Unfortunately, a programmer who uses replay to debug parallel programs cannot verify if a fix is correct. To see 
why that is true, consider a debugging scenario for a nondeterministic bug. The programmer uses replay to examine 
the program and decides what the bug is and how to fix it. Next, he changes the source code to fix the bug and 
recompiles the program. Finally, the programmer runs the new program, which obtains the correct result. Now we 
are unsure of what has happened: did the change fix the error, or did it merely change relative timings enough to 
hide the error for now? The programmer has no way of knowing which possibility actuaily occurred. 

4 Hindsight 
Hindsight allows the programmer to reorder concurrent atomic code blocks. It starts from the premise that the 

programmer suspects that the program lacks constraints. The programmer then adds the constraints necessary to 
obtain the desired ordering by specifying the order in which a set of concurrent, atomic code blocks will execute.1 

The user may not add or subtract atomic code block executions because the source code is not modified. Hindsight 
checks whether the reordering violates control dependencies. If none are violated, then the modified execution is 
replayed. A design with similar goals was presented by Goldberg et al. [GGLS91). 

Figure 1 shows a sample reordering using Hindsight. In one thread of the original execution, the atomic code 
block executions {A, B, C} are underconstrained. The programmer suspects that this ordering could be causing the 
problem, so he chooses to reorder atomic code blocks in that thread. He specifies a new ordering for that subset 
of atomic code blocks, {C, A, B}. Hindsight then replays the portion of the computation that happened before 
[Lam78) the reordering so that the system is in the same state just before the start of the reordering as in the original 

*Supervised by both Professor William E. Weihl and Al Davis. E-mail: weihl@lcs.mit.edu, adavis@hplald.hpl.hp.com. 
Supported by an National Defense Science and Engineering Graduate Fellowship. Supported in part by the NSF under grant 
CCR-8716884, DARPA under contract N00014-89-J-1988, and by an equipment grant from DEC. 

1 Multiple sets may be reordered at the same time. We explain the one-set case here for simplicity. 
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Figure 1: A sample reordering using Hindsight. The user reorders atomic code block executions, {A,B,C}, to 
{C,A,B}. Hindsight replays the modified ordering through the end of the reordering. 

execution. Then Hindsight controls execution so that the new ordering, {C, A, B}, occurs. Hindsight replays the 
parts of other threads that execute concurrently with the reordering so that different results are not obtained due to 
different orderings of concurrent threads, whereas we want to isolate the effects of the reordering. 2 Then, Hindsight 
releases control of atomic code block executions because the state has hopefully changed due to the reordering; thus, 
the original log is no longer valid. When the program finishes, the programmer has three choices. If the ordering 
did not produce the correct results, then the programmer may use the original logs to try another reordering. If the 
ordering produced the correct results, then the programmer can either change the source code to produce that new 
ordering, called the target ordering, or use the logs recorded during replay of the reordered execution to fix another 
nondeterministic error. 

The specific contributions of this work include: 

• Allowing programmers to fix nondeterministic errors with certainty that the error has not been hidden by 
changed timing. 

• Providing a platform on which to build a testing tool that can exercise different orderings. Such a tool was 
called for by Taylor et al.[TLK92]. 

5 Conclusion 
We are currently implementing Hindsight. A one-node version works on simple test cases; we expect to finish 

testing a multi-node debugger by the end of this summer. · 
Hindsight simplifies testing for and debugging of nondeterministic errors due to unanticipated orderings of atomic 

code blocks. Hindsight's ability to reorder thread executions differentiates it from traditional debuggers which 
provide only replay. Replay is inadequate because the programmer cannot determine if code changes fix a bug or 
if relative timing differences hide it. Thus, Hindsight provides a tool for testing and debugging nondeterministic 
programs that is absent from current systems. 
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of the ACM SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debugging, ACM SIGPLAN Notices, 
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of ACM/ONR Workshop on Parallel and Distributed Debugging 1991, pages 251-253, 1988. 
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2 However different orderings of concurrent threads is useful for testing. 

45-2 



Exploiting Algorithmic Locality in Water* 

Bradford T. Spiers t 
Large-Scale Parallel Software, MIT LCS 

btspiers@lcs.mit.edu 

Donald Yeungt 
Alewife Research Group, MIT LCS 

piano@lcs.mit.edu 

June 12, 1992 

1 The Water Application 
Water is an N-body moleculer dynamics simulation 

which appears in the SPLASH benchmark suite [1). As-
. suming quasi-statics, atomic-level interactions between 

water molecules situated in three-dimensional space are 
computed using Gear's sixth-order predictor-corrector 
method [2]. Under the influence of these interactions, 
the Water application simulates the trajectories of the 
molecules using Newtonian equations of motion for a 
user-specified number of time-steps. 

In the Water application, the force that a molecule 
exerts on other molecules has a limited radius of influ­
ence, so only molecules that are situated within some 
cutoff radius of one another are allowed to interact. An 
algorithm that is oblivious to the relative locations of 
molecules must consider all possible pairs of molecules 
even if most of them are too far apart to influence 
each other. However, an algorithm that is cognizant of 
such spatial information can consider only those pairs 
of molecules that are close enough to interact and can 
therefore significantly reduce the amount of extraneous 
computation. 

The original ipmlementation of Water appearing in 
the SPLASH benchmark does not exploit the algorith­
mic locality inherent in the Water application. Our 
study provides an implementation of Water that takes 
advantage of algorithmic locality. We evaluate the per­
formance gains of our implementation over the original 
implementation and identify some important issues. 

2 Analysis 
The following expression represents the amount of 

work that each processor must perform in the original 
implementation of the Water application. In all expres­
sions, n denotes the number of molecules and p denotes 
the number of processors. 

"This work was supervised by Anant Agarwal 
!Supported by an National Defense Science and Engineering 

Graduate Fellowship. Supported in part by the NSF under grant 
CCR-8716884, DARPA under contract N00014-89-J-1988, and by 
an equipment grant from DEC. 

lSupported in part by NSF grant# MIP-9012773, in part by 
DARPA contract # N00014-87-K-0825, and in part by an NSF 
Presidential Young Investigator Award 
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(~) [n ~ 1] => 0 ( :2) (1) 

In the original implementation, each processor is re­
sponsible for n/p molecules, and for each molecule, in­
teractions with every other molecule in the simulation 
must be considered. There is a factor of 1/2 because 
when the interaction for a pair of molecules is com­
puted, a solution for both molecules is obtained. As the 
order of complexity indicates, the total work done in 
the entire simulation grows as the square of the prob­
lem size. 

In comparison, the equivalent expression for our 
modified implementation is as follows. 

Again, each processor is responsible for n/p 
molecules. The difference in our implementation is that 
the simulation space is divided into p regions, one for 
each processor, and each processor is responsible for all 
the molecules which are situated in its region. Proces­
sors no longer have to consider interactions between all 
possible pairs of molecules; instead, only the interac­
tions between molecules residing in regions which are 
close together in space need to be computed. These in­
teractions can be divided into two components. The 
first represents the interactions between all possible 
pairs of molecules residing in the same region. This 
term is similar to the expression for the original im­
plementation and contains a factor of 1/2 for the same 
reason given above. The second component represents 
the interactions with all the molecules in near-neighbor 
regions. In our implementation, the number of near­
neighbor regions for a given region is thirteen. The 
order of complexity indicates that the total amount of 
work done in the entire simulation grows as the square 
of the problem size divided by p. Therefore, we expect 
our implementation to be faster by a factor of p over 
the original implementation. 
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Figure 1: The original Water application with good 
load-balance. 
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Figure 2: Our modified version of the Water application 
with poor load-balance. 

3 Experimental Results 
We conducted our experiments on Proteus, a simula­

tor written by Brewer and Dellarocas [4). We configured 
Proteus to simulate an 8x8 mesh with end-around con­
nections, no caches, and an analytically modeled net­
work. Proteus assumes that each node is a RISC pro­
cessor which executes every instruction in one cycle. 

Although our analysis predicts a speedup of p, this 
outcome is not reflected in our simulation results. As 
Figure 1 and Figure 2 illustrate, our modified version of 
Water achieves a speedup of only 1.5. The theoretical 
speedup is not obtained because of load-imbalance: the 
original application, shown in Figure 1, displays almost 
perfect load-balance, while our modified version, shown 
in Figure 2, shows large load-imbalance. This difference 
is clear when looking at the largest contributors to an 
iteration time, the procedures poteng and interf Our 
analytical analysis assumes that we can divide the work 
evenly, but that is possible only if the molecules are 
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distributed in a perfectly uniform manner. 
We expect that the problem of load-imbalance will 

be much less severe when the problem size is increased 
sufficiently. The load-imbalance that we observe in our 
simulations is due to statistical fluctuations in the num­
ber of molecules assigned to each processor. Because 
water has a constant density, this statistical effect will 
become less significant when the problem size increases. 

4 Conclusion and Future Work 
In our study, we have demonstrated that an imple­

mentation of the Water application that exploits algo­
rithmic locality affords good performance gain over one 
that does not. Theoretical analysis predicts a speedup 
of p over the original implementation. Actual simu­
lations show performance gains as well though they 
are far less substantial due to load-imbalance. Load­
imbalance will always be a problem for executions with 
small to medium problem sizes; however, the effect of 
load-imbalance will be less detrimental to performance 
when the problem size is sufficiently large. One area 
for future work will be to identify the point at which 
load-imbalance becomes negligible. 

Although the primary benefit from exploiting al­
gorithmic locality comes from minimizing extraneous 
computation, there is also another benefit, namely lo­
cality of data reference. Assuming an architecture that 
can exploit data locality (such as NUMA architectures), 
the assignment of molecules to processors based on their 
spatial locations can greatly reduce the amount of inter­
processor communication. This, however, comes at the 
expense of good load-balance, as is discussed above. 
In fact, for the Water application, locality and load­
balance are conflicting goals. One can be improved at 
the expense of the other, but both cannot be achieved 
simultaneously. In future work, we plan to investigate 
this tradeoff and try to understand how each affects the 
performance of the Water application. 
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The evaluation of game trees is a central problem in Artificial Intelligence. A typical game 
tree (also called a MIN/ MAX tree) is rather large, so fast algorithms are essential if we are to make 
progress in computer aided game playing. Any algorithm that can hope to play in "real-time" 
must use some pruning techniques to avoid searching the whole tree. Many researchers have 
proposed pruning strategies for this problem and a number of good sequential search algorithms 
have been developed, most notably the a-/3 algorithm. In spite of the fact that parallel computers 
offer a promising approach for speeding up game tree search, less is understood about the 
complexity of parallel algorithms for this problem. We will show that part of the difficulty in 
parallelizing a-{3 search arises from an inherent lack of locality. We will then give an algorithm 
that employs scaling to partially overcome this difficulty. We will show that the number of 
bits needed to represent the range of leaf values is a measure of how hard the problem is to 
parallelize. 

We will focus on the case when wish to exploit small amounts of parallelism. By small we 
mean that if the tree has height h, we will use O(h) processors. As a starting point, we consider 
the problem of evaluating AND/OR trees. We will describe an algorithm by Karp and Zhang [1] 
for evaluating AND/OR trees that, on a tree of height h, gets n(h) speedup using h processors. 
The key idea for this algorithm is that if an AND-node has its first input evaluate to 0, all the 
other inputs to that AND-node can be ignored. Further, this is the only type of pruning that 
can occur. Thus all pruning is based on local information, namely the value of a node's siblings. 

Karp and Zhang originally believed that this algorithm could be extended to work for general 
game-tree search. We will show that there are substantial obstacles to overcome in extending 
this approach to MIN /MAXtrees. 

15 

Figure 1: A (shallow) cutoff in a-{3 search. Squares are MAX-nodes and circles are MIN-nodes. 

In a-/3 search, the pruning is not necessarily local. We illustrate the idea with the example 
in Figure 1. MAX-node a has a child of value 15, hence it's value must be at least 15. The 
only way that the value of MIN-node b can affect the value of a is if it is more than 15. But b 
has a child that is 10 and hence can have a value of no more than 10. Thus the value of the 
subtree rooted at c has no effect on the value of a and does not need to be evaluated. In fact, 

1 Support provided by NSF PYI Award CCR-89-96272 with matching support from UPS and Sun, by an AT&T 
Bell Laboratories Graduate Fellowship, and by DARPA Contract N00014-89-J-1988. 
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Figure 2: A (deep) cutoff in a-/3 search. Squares are MAX-nodes and circles are MIN-nodes. 

the node being cut off does not need to be so close to the nodes that cause it to be cutoff, as 
the example in Figure 2 shows. Here, the value of the subtree at e does not affect the value of 
a. This creates difficulties for parallel algorithms because work done by one processor may turn 
out to be unnecessary due to some pruning that occurs far away in the tree and much later in 
time. 

We will give a new algorithm for the problem of evaluating a MIN /MAX tree in parallel based 
on the idea of scaling. We will reduce the problem of evaluating a MIN /MAX tree to the problem 
of evaluating a series of AND/ OR trees. 

Our algorithm provably achieves O(h/1) speedup using h processors, where I is the number 
of bits needed to represent the range of possible leaf values. While this is not quite optimal 
speedup, we have implemented a simulation of this algorithm and run it on a number of randomly 
generated trees. The interesting thing to note is that when the number of bits is small, we get 
close to optimal speedup, and that when the number of bits is large, the speedup seems to be 
somewhat better than (h/J), particularly for larger h. In other words, the incremental cost 
of adding the 25th bit is less than that of adding the 4th bit. This is because the predicted 
sequential running time of a subproblem is much less that the predicted sequential running time 
of the original problem. When we execute many iterations, this serves to increase the effective 
speedup. 

This approach gives one solution to the problem that the information needed to prune may 
arrive after a node has been evaluated. Since we do not now how to disseminate enough exact 
information about node values, in our algorithm we disseminate approximate information about 
the node values. In other words, when a node is evaluated in an iteration, it does have some 
information about all the left siblings of its ancestors. By the final iteration it has all the 
information that sequential a-/3 would have. So by focusing on obtaining inexact information 
about many nodes as opposed to exact information about fewer nodes, we are able to get better 
provable bounds on the algorithm's performance. 
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We have constructPd a compiler that uses partial evaluation to achieve outstandingly efiicient parallel 
object code from very high-level data independent source programs. On several important scientific 
applications, our compiler attains parallel execution and overall performa.nce equivalent to or better than 
the best observed results from the manual restructuring of code. Although partial evaluation ha,s been 
used successfully to compile efficient serpJCntial code for uniprocessor machines, this effort represents one 
oft he fi1·st a,t tempts to capitalize on partia,l evaluation's ability to expose low-level pa,rallclis m. N c~w static 
schPcluling techniques arc usPd to utilize the fine-grained parallelism on a multiprocessor machine. The 
compiler accepts ordina,ry Scheme programs as source, and generates code for the Supercomputer Toolkit, 
a parallel computer with 8 VLIW processing nodes, by mapping the computation graph resulting from 
partial evaluation onto the Toolkit's architecture. 

The compiler has been evaluated on two different highly abstracted programs written in Scheme 
which simulate n-hody problems which are important in the fields of celestial mechanics and particle 
physics. The results reveal that it is possible to automatically achieve a factor of 6.2 speedup on an eight­
processor configuration of the Supercompnter Toolkit over a highly optimized uni-processor version of the 
program. (The uni-processor version is executing a floating point operation in over 903 of the cycles.) 
The compiler's speedup is impressive because the target architecture (the S11percomp11ter Toolkit) has 
extremely low bandwidth, essentially allowiug each processor to send a value once every 8 cycles on 
average, with a latency of 6 cycles. Our results also reveal that although the static scheduling techniques 
work well for computers the size of the Supercomputer Toolkit, they do not scale well to larger machines. 

By reconstrncting the data dependencies of the computation expressed by a program, partial evaluation 
succeeds i11 "exposing the low levrl parallelism in a computation by eliminating inlwrently sequential data­
strncture references." [1] Furthermore, elimination of data-independent branches produces huge basic 
blocks of easily parallelizable straight-line code. Huge basic blocks make it feasible to use fine-grained 
parallelism to spread the execution of a basic block across multiple processors, rather than assigning each 
basic block to an individual processor. 

Currently work is being pursued in three areas. One area is the modification of the static scheduling 
technique so that it will scale well to computers with more processors. The second area is extending 
the compiler to handle data-dependent branches. The last area is the pursuit of optimizations possible 
only because the fine grain computation gra,ph is available at compile time. An example of this would be 

*This work is supervised by Prof. Hal Abelson a.ncl Prof. Gerry Sussman and supported in part. hy the Advanced Research 
Projects Agency of the Department of Defense under Office of Naval Research contract N00014-89-J-.1202 and by the National 
Science Foundation under grant number MIP-9001651. 
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to deduce that it is faster to compute a value on the processors which require the value rather than to 
compute the value 011 one processor and then send the value to the rest of the processors. 
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Figure 1: Parallelism profile of Stormer integration. 

SPEEDUP VS PROCESSORS 
N·body Storm.r lol.gralor 

I/ 

I I l l 4 !'I 6 1 I I 10 ll ll 13 U 

PROCESSORS 

Figure 2: Speedup graph of Stormer integrntion. 

[l] A. Berlin, "Partial Evaluation Applied to Numerical Computation", in proceedings of the 1990 ACM Confer­
ence on Lisp and Functional Programming. Also see "A Compilation strategy for numerical programs based 
on partial evaluation," MIT Artificial Intelligence Laboratory Technical Report TR-1144, July, 1989. 

(2] R. Surati, "A Parallelizing Compiler Based on Partial Evaluation" S.B. Thesis, MIT, 1992. 
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There has been great interest in exploiting the speed of parallel and pipelined machines in order 
to accelerate sparse matrix factorization. This task is difficult due to the irregular structure 
of most sparse matrices, which demands a complex sequence of instructions and data access 
in order to properly match the source and target row elements during a row update. In the 
following, we discuss the 0 2 SA technique, which combines scheduling and storage allocation 
techniques to enhance multiprocessor efficiency. 

The Scatter-Gather approach, used in the YSMP code [1], proposes a solution to the 
matching problem by scattering the elements of a target row into a vector of size n. Computers 
with pipelined indirect addressing could then perform the source-target match in constant time. 
After all the updates to a given target row are finished, its elements can be gathered back in 
a dense vector. Figure 1, which depicts the processor utilization for the factorization of a 
test matrix, suggests that the Scatter-Gather method exhibits poor performance on a parallel 
machine. 

The 0 SA representation of a sparse matrix [2] is an effective solution to the source-target 
element matching problem during update operations. The row sparsity is exploited to share 
the memory efficiently, by overlapping the scattered rows into a single linear array. The rows 
are shifted by some offset in such a way that the nonzero elements of one row would fill-up the 
nonused elements of another. During the update, elements llij of the source row are accessed 
sequentially, and the corresponding column indices j are simply added to the target row k 
offset to compute the address of the matching target element llkj· This technique allows more 
concurrency, as shown in Figure 1. 
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Figure 1: Processor Utilization for Test Matrix(Dram) 

1 Faculty supervisors: Prof. Jacob White and Prof. William Dally. This work was supported in part by the 
CNPq-Brazil under contract 205541-88. 7. 
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We are also interested in exploiting the locality of reference for high execution speed in 
each individual processor. In order to achive this objective, we must restrict the number of 
active target rows per processor, keeping them in a small, very fast cache. Figure 1 shows the 
processor utilization for different cache sizes, n (or Scatter-Gather), 2n, 4n and so on. OSA 
corresponds to the limit case, where the entire OS A-form matrix fits in the cache. 

Instead of restricting the active set to R target rows, we envision the cache space as a 
dynamic OS A structure, which evolves with the execution of the sparse matrix decomposition. 
In the beginning of the factorization, hundreds of small rows are scattered and overlapped, 
fitting in a small cache of size n, allowing a large degree of freedom to the scheduling mechanism, 
which in turn allows a high degree of parallelism. A small cache, on the other hand, allows 
a very high execution speed in each processing element. After all the updates to a target 
row are finished, its elements are gathered back in a dense vector and possibly other targets 
can be scattered in the cache. The factorization proceeds in this fashion, dynamically trading 
available cache space for concurrency. We call this technique Overlapped-overlapped Scatter 
Array (0 2SA). The solid line in Figure 1 depicts the estimated processor utilization for the 
0 2 SA technique. It achieves almost the same degree of parallelism as the 0 SA case, but using 
a very small cache, comparable to the size required by the Scatter-Gather technique. 
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Figure 2: 0 2 SA Representation of a Matrix 

Figure 2 shows the 0 2SA evolution for of a small test matrix. The algorithm starts with 
rows 3 and 5 scattered in the array, and row 8 is only scattered after their processing is finished. 
This example illustrates the adaptive utilization of the cache space, depending on the structure 
of the rows and the scheduling heuristic. 
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Project NuMesh is an experimental, highly scalable interconnect designed to replace the 
backplane bus as a major hub of digital communication [3]. AN uMesh system consists of a grid 
of interconnected modules, each possessing a network interface and a processing element [2]. 
Computational flexibility is achieved by maintaining a standard network interface throughout 
the system while varying processing elements as computing needs change. 

A N uMesh processing element based on the Spare architecture, the N uSparc Element, has 
been designed and implemented. This element addresses a need for greater general-purpose 
computational support in NuMesh systems and provides a mechanism for straightfoward access 
to large quantities of low-cost, volatile storage. A parallel configuration of these processing 
elements will be used to judge the NuMesh as a digital interconnect. 

The NuSparc Element logically consists of four distinct subsystems: a processing unit, a 
data storage unit, a status unit, and a network interface unit. These units communicate with 
each other through an industry-standard, sixty-four bit channel referred to as Mbus. Due to 
space constraints a non-coherent version of the Mbus protocol is used. 

A Spare CPU consisting of an integer unit, a floating point unit, a cache/memory controller, 
and 64 kbytes of cache memory serves as the NuSparc processing unit. CPU chip dies are 
enclosed in a 256-pin multi-die package manufactured by Ross Technology [1]. The CPU operates 
at clock speeds up to forty MHz. 

The data storage unit consists of a DRAM controller and either eight or thirty-two Mbytes 
of DRAM. Block data transfers of thirty-two bytes may be made between DRAM and cache 
storage. The DRAM data path is enhanced with parity signals to provide for error detection. 

NuMesh network status may be obtained from the status unit. Status signals indicate the 
availabilty of network data and bandwidth. The network interface unit may be used by the 
NuSparc Element to transact data with a NuMesh network interface. Data exchanged with the 
network interface is held by first-in, first-out (FIFO) storage. 

The NuSparc Element may operate asynchronously with respect to other processing elements 
in a NuMesh system. Communication between these elements must be coordinated in software. 
Software implementations based on common computational models such as shared memory and 
message passing are planned for the near future. 

An operational NuSparc Element is under analysis at the MIT Laboratory for Computer 
Science. A comprehensive NuSparc software environment is currently being developed. Future 
plans call for the consolidation of several NuSparc Element units into a single VLSI package. 

1This research is supervised by Professor Stephen A. Ward. Partial support has been provided by Amp 
Incorporated, AT&T, Cypress Semiconductor, LSI Logic Corporation, and Sun Microsystems. 
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A universal network is a network that can simulate any 
other network which uses the same resources with only a 
small slowdown. In this context, a fault-tolerant universal 
network is a network that can simulate any other network 
which uses the same resources, even after both networks 
have undergone the same amount of damage. We study 
universal networks in which the measure of resources is 
the layout area required for the network. 

The Fat-Tree network introduced by Leiserson can be 
tailored to be area-universal. This means that a Fat-Tree 
laid out in a square of area A can simulate any other net­
work laid out in the same area with 0 (log A) slowdown. 
Once we obtain such a result, we need not overly concern 
ourselves with the suitability of the Fat-Tree for specific 
tasks, such as image processing or matrix multiplication, 
since we know that it can perform almost as well as any 
special purpose network of the same size. We propose a 
new area-universal network, show that it has some fault 
tolerance properties, and obtain some impossibility re­
sults that imply that a much more fault-tolerant universal 
network cannot be constructed. 

Our goal is to design a network which is almost as ef­
ficient and fault tolerant as any other network laid out in 
the same area. We would like our network to be area­
universal, and to retain its universality even after it is 
damaged. That is, we require that the remaining undam­
aged parts of the network will be area universal for the 
remaining undamaged layout area (see Figure 1). Un­
fortunately, this goal is too ambitious, and we prove it 
impossible to achieve. 

Our proposed network, the mesh of ladders is con­
structed from n ladders (see Figure 2) laying horizontally 
one above the other, and n vertical ones, laying side by 
side (see Figure 3). The vertical ones, called column 

•Supervised by Charles E. Leiserson. This research was supported 
in part by the Defense Advanced Research Projects Agency under 
Grant N00014-91-J-1698. 

N R 

Figure 1: We require that the universal network N be able 

to continue to simulate the network R even after both have 

undergone similar damage. 

ladders, share the leaves with the horizontal row ladders. 
This network is similar to Leighton's mesh of trees net­
work, with the trees replaced by ladders, which are very 
similar to X-trees. 

The advantage of the ladder over a tree is that on a 
binary tree, a message traveling from node i to node j 
to the right of it may be moving left at times. There is 
a very simple routing rule on the ladder that avoids this 
problem. Therefore the ladder has some fault-tolerance 
- if a message needs to be routed between two leaves, 
and the part of the ladder between them is intact, then 
it is possible to route the message. Let us now assume 
that faults happen in blocks, or squares, whose side is the 
same side as the width of the ladder in the mesh of lad­
ders. This assumption meshes well with the universality 

l.1.I.1.l.1.l.1.l 
Figure 2: A layout of a ladder graph. The gray nodes are 

called leaves, and the smaller black nodes are routing nodes. 
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ROW LADDERS 

COLUMN LADDERS 

Figure 3: A sketch of a mesh of ladders with 5 row and 5 

column ladders. 

arguments. Our network can simulate the other network 
with a small slowdown any other network that suffered 
a slightly worse damage. By following the layout of the 
wires in the simulated network, it is possible to simu­
late any network in a fault tolerant manner. If the mesh 
of ladders cannot deliver a message because a ladder is 
damaged, then the wire carrying the message in the orig­
inal network is damaged too, and the simulated network 
also cannot deliver the message. The slowdown is small 
only for network layouts in which the number of bends 
in each wire is small however, since whenever there is a 
bend in a wire, we need to switch the message from a row 
ladder to a column ladder or vice versa. 

We come short of our goal at two points. One is the 
assumption that faults happen in blocks, and the other is 
that our network is not fault-tolerant and area-universal 
over all networks, but only over networks with a small 
number of bends in each wire. We have been able to 
prove that both points cannot be overcome by any other 
network. Regarding the first point, we show that under 
the assumption that an area universal network must ex­
hibit the same I/0 behavior as the simulated network, no 
area universal network exists that can fit in a sufficiently 
narrow rectangle. Thus, if we allow any shape of damage 
to occur, we might be left with such a shape, a narrow 
rectangle. But since there is no area universal network in 
such a shape, it cannot be that the remaining parts of our 
network can simulate any other network in the same area. 

The impossibility result relies on the following lemma. 

Lemma 1 Let G be a graph with n nodes and diameter at 
most n 1

-' for somefix,ed 1/2 < E < 1, and assume n 2: 
n 0 for some constant n 0 • Then G contains a subgraph 
T which is homeomorphic to a complete binary tree of 

height (E - ~) logn = n(logn). 

G cannot be laid out in an area in which its subgraph T 
cannot be laid out. Using a result of Leiserson that shows 
that a complete binary tree cannot be laid out in a narrow 
rectangle, and showing that an area universal network in 
a narrow rectangle must have a small diameter, we obtain 

a contradiction. 
The other and more general impossibility result is ob­

tained in a different way, which is based on combinatorial 
counting arguments. We count the number of possible 
faults, and the number of ways of overcoming faults in 
a given network. We find out that there are more faults 
then ways to overcome them, and hence there must be 
some faults that the network cannot tolerate while still 
being able to simulate any other network with a small 
slowdown. Again we assume that the I/0 behavior of the 
simulated network has to be preserved. This result is ex­
pressed in the a theorem in the form of a tradeoff between 
the number of faults, the size of faults, and the smallest 
slowdown that can be achieved. 

Theorem 2 Let the functions p, t, b, 8 satisfy 

1. p(n)Iog8(n) < t(n)Iogt(n)and 

2. t(n) ~ 4b('n) 

for all n > n 0 for some constant n 0 . For any network 
layout N in an area of n x n with maximum degree 8 ( n), 
there is a way of damaging at most 16t2 

( n) blocks of 

size b( n) x b( n) each and a network R laid out in the 
same n x n area, such that N takes more than p( n) time 
to simulate a step of R, under a geometric mapping of 

terminals. 
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1 Overview 
Multithreading is an important technique for toler­

ating latency in multiprocessor systems. Support for 
multiple contexts and rapid context switching permits 
high latency operations such as remote memory refer­
ences and synchronization events to be overlapped with 
computation, which improves processor utilization. 

This paper presents a new mechanism that efficiently 
supports multiple variable-size processor contexts with 
minimal hardware support. It adheres to the RlSC phi­
losophy [Pat85] by maintaining a simple processor ar­
chitecture and relying upon the compiler and runtime 
system to manage the allocation and use of contexts. 

Instead of statically dividing contexts in hardware, 
the division of the register file into contexts is managed 
in software. Because the size of contexts is not dictated 
by the hardware, the register file can be organized into a 
collection of contexts with varying sizes. This provides 
considerable flexibility in the use of the register file to 
support multithreading. 

Since the optimal number of contexts needed to 
maximize processor utilization is application-dependent 
[Saa90], this flexibility provides an opportunity for sig­
nificant performance improvements. For example, the 
register file can be divided into a small number of large 
contexts, as is conventionally done in hardware. Al­
ternatively, the register file can be divided into a large 
number of small contexts, providing support for many 
fine-grain threads. Finally, the register file can also be 
divided into a diverse combination of context sizes, sup­
porting a mix of both coarse and fine-grain threads. 

2 Hardware Support 
A register relocation mask (RRM) is maintained in a 

special hardware register that can be set via a special 
LDRRM instruction. The RRM register requires flg n l bits 
for a processor architecture with n general registers. 

RISC architectures typically employ a fixed-field de­
coding scheme in which register operands are always 
specified at the same location within an instruction 
[Pat90]. During every instruction decode, a bitwise OR 
operation is performed with each of the instruction's 
register operand fields and the RRM, yielding relocated 

"Supervised by Professor William E. Weihl. E-mail: 
carl@lcs.mit.edu. MIT office: NE43-521a. Supported in part by 
an AT&T USL Fellowship, the NSF under grant CCR-8716884, 
DARPA under contract N00014-89-J-1988, and by an equipment 
grant from DEC. 
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Figure 1: Register Relocation Hardware 

register operand fields. After the instruction decode 
phase, no additional work needs to be performed. 

The only other hardware change that may be neces­
sary is to widen the internal paths that carry the reg­
ister operands specified by an instruction. This is be­
cause a relocated register operand requires flg n l bits 
to address the entire register file, while an original reg­
ister operand may only be able to address a smaller 
portion of the register file, due to limitations on the 
width of a machine instruction. Such a constraint on 
the number of addressable registers would also place an 
upper bound on the size of a single context, which we 
will denote by Smax. 

3 Software Support 
3.1 Context Allocation 

A context can be allocated with size 2k registers, 
for any k ~ 0. However, the maximum context size 
is limited to Smax by the number of address bits used 
for register operands. Also, the minimum context size 
should be large enough to maintain some state other 
than a program counter. For example, practical context 
sizes for an architecture with 256 registers and 6-bit 
register operands would be 4, 8, 16, 32, and 64 registers. 

Context allocation is performed entirely in software, 
and is thus extremely flexible. One option is to parti­
tion the register file statically into contexts (with identi­
cal or differing sizes) for a particular application, mak­
ing allocation and deallocation extremely cheap. An­
other option is to partition the register file dynamically 
into contexts of varying sizes as needed. 

As a proof of concept, we have coded general-purpose 
dynamic context allocation and deallocation routines 
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for a RISC architecture with 128 registers. The imple­
mentation employs simple shift and mask operations to 
binary search an allocation bitmap. General-purpose 
allocation executes in approximately 25 RISC cycles 
in the worst case, and general-purpose deallocation re­
quires only 2 RISC cycles. 1 

3.2 Context Switching 
After a scheduler has chosen the next thread t to 

run, it performs a context switch tot's loaded context: 

• Store the current program counter in a register as-
sociated with the current context.2 

• Execute a LDRRM to switch to t's context. 

• Jump to the program counter stored in t's context. 

If t is not associated with any loaded context, then 
it must first be loaded as described below. 

3.3 Context Loading 
The runtime system can provide separate context 

load (and unload) routines for each supported context 
size s. Each routine would simply load (or unload) all 
registers numbered 0 to s - 1. The RRM automatically 
provides the necessary relocation for the active context, 
or can be explicitly loaded to specify another context. 

3.4 Compiler Support 

Compilers can essentially generate code as usual, and 
may assume that the available registers are numbered 
from 0 to Smax -1. Although the compiler is permitted 
to use all Smax registers, many threads will require fewer 
registers. 

For each thread, the compiler must inform the sched­
uler of the number of registers that the thread requires. 
By guaranteeing not to use any additional registers, the 
compiler - not the hardware - is responsible for ensur­
ing protection among thread contexts. 

4 Extensions and Future Work 
We have also devised a related approach to multi­

threading that requires no hardware support, and can 
be used with many existing processors. The basic idea 
is to have the compiler generate multiple versions of 
code that use disjoint subsets of the register file. Thus, 
register relocation is effectively performed statically at 
compile-time. This scheme has the obvious disadvan­
tage of code expansion. However, the restrictions on 
context sizes no longer apply, and any partitioning of 
the register file is possible. 

Another interesting issue is the tradeoff between im­
proving processor utilization and exacerbating cache 
interference as the number of contexts is increased 

1 IT an operation such as the J-machine's FFB instruction is 
available that can find the first bit set in a word [Noa92], then 
general-purpose allocation can be performed in fewer than 10 
RISC cycles. 

2 It may be convenient to adopt a convention of always storing 
the PC in a fixed register relative to a context, such as register 0. 
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(Aga91]. We are currently investigating methods for 
adaptively limiting the number of contexts at runtime. 

5 Related Work 
A number of processor architectures that include 

multiple hardware contexts have been proposed. Finely 
multithreaded processors, exemplified by the Denelcor 
HEP [Smi78], execute an instruction from a different 
thread on each cycle. Coarsely multithreaded proces­
sors, such as APRIL [Aga90], execute larger blocks of 
instructions from each thread, and typically switch con­
texts only when a high-latency operation occurs. Our 
register relocation mechanism supports coarse multi­
threading, but permits a more flexible organization of 
the register file by managing contexts in software. 

A completely different approach is the Named State 
Processor [Nut91], which replaces a conventional regis­
ter file with a context cache. The context cache binds 
variable names to individual registers in a fully associa­
tive register file, and spills registers only when they are 
immediately needed for another purpose. Since our reg­
ister relocation mechanism supports variable-size con­
texts, it permits a binding of variable names to contexts 
that is finer than conventional multithreaded proces­
sors, but coarser than the context cache approach. 

6 Conclusions 
We have presented a new mechanism that efficiently 

supports multiple variable-size processor contexts with 
minimal hardware support. Simple register relocation 
hardware, combined with software support, provides 
significant flexibility in the use of the register file to 
support multithreading. We are currently investigating 
software methods to adaptively control the number of 
loaded contexts and optimize performance. 
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As the number of processors that are connected 
together to form multiprocessors grows, efficiently 
supporting a shared memory programming model 
becomes difficult. We have designed PHD, a hi­
erarchical directory-based cache coherence proto­
col, to allow shared-memory support for systems 
containing massive numbers of processors. We 
have created an analytical model of the protocol 
in order to study the behavior of the protocol on 
machine configurations too large to simulate. 

The Protocol for Hierarchical Directories (PHD) 
supports a shared memory model by synthesizing 
a global shared memory from the local memories 
of processors. Two of the global primitives of the 
protocol are modeled: read and write. The pro­
tocol is designed to work on a tree (the hierarchy); 
this tree is mapped onto the actual multiproces­
sor topology. 

Read-only copies of blocks may be stored in the 
caches of any number of processors. To find a 
block, a processor asks its parent for a copy. The 
parent must know which ofits children has copies. 
If none do, it forwards the message upwards. Oth­
erwise, it forwards the read message to any child 
processor which already has the block. Read op­
erations can therefore be satisfied locally. 

Write operations involve finding all of the copies 
of a block in the system and deleting them. Only 
the nodes in the smallest subtree completely con­
taining all copies of the block are involved in the 
write process. The owner of the block transfers 
ownership to the node requesting the write. Ac­
knowledgments of deletion from all of the nodes 
which previously had copies are combined, and 

1 William Dally both supervised and contributed to this 
work. The research described in this paper was supported in 
part by the Defense Advanced Research Projects Agency un­
der contracts N00014-88K-0738 and N00014-87K-0825 and in 
part by a National Science Foundation Presidential Young In­
vestigator Award, grant MIP-8657531, with matching funds 
from General Electric Corporation and IBM Corporation and 
by a Office of Naval Research Graduate Fellowship, grant 
N00014-90-J-1778. 

Figure 1: Every node in the hierarchy is modeled 
as a finite state machine. 

exactly one acknowledge message is sent to the 
node requesting the write. 

In the model, we follow average read and write 
requests and determine how far up the hierarchy 
they must travel in order to be satisfied. From the 
average read and write heights, we can approx­
imately determine the average number of mes­
sages sent in order to satisfy read and write re­
quests. 

The inputs to the model include the number of 
levels in the tree hierarchy, the radix of the tree, 
the frequency of writes in the memory request 
stream, and the type of sharing which occurs. As­
sociated with each type of sharing are additional 
parameters which allow us to approximate the 
average sharing characteristics. 

The model includes a finite state machine at ev­
ery node, as shown in Figure 1. This machine 
models the state of a single cache block. The 
FSM, shown enlarged in Figure 2, contains only 
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Figure 2: Every node in the hierarchy is modeled 
by a separate copy of this finite state machine. 

two states: valid and invalid. A node with its 
FSM in the invalid state has no copy (if it is a 
leaf node), or no descendants with copies (if it is 
not a leaf node). By definition, the top node of the 
tree is always in the valid state. 

A leaf node in the invalid state transitions to 
valid if it makes a read or write request. It tran­
sitions from valid to invalid if any other node 
makes a write request. This transition corre­
sponds, in the actual protocol, to the write in­
validate which the leaf would eventually receive. 
This FSM is identical to the one Anant Agarwal 
proposed in [1]. 

The transitions for a node in the interior of the 
tree are similar to that for the leaf node. The 
transition from invalid to valid occurs if a descen­
dant leaf node makes a request. The transition 
from valid to invalid occurs if a non-descendant 
leaf node makes a write request. 

We consider the accesses occurring to the address 
under consideration from the point of view (POV) 
of one leaf node and all of its ancestors in the tree. 
We designate those nodes as POV nodes. 

From the previously described system, we can cal­
culate the probabilities that nodes in the hierar­
chy will have copies of the address. We can use 
these probabilities to directly calculate the aver­
age read and write heights. 

Three applications are being studied. One is a 
uniform reference pattern, meaning that every 
processor is equally likely to reference a partic­
ular piece of data. The second is a basic relax­
ation, where in an iteration every point in an 
n-dimensional mesh updates its own value by a 
function of the value of its 2n neighbors. The 

third application attempts to simulate groups or 
clusters of processors working on data. Clusters 
are said to own data. The processors within a 
given cluster are made more likely to reference 
data owned by the cluster than data owned by 
other clusters. This model is similar to the one 
proposed by Qing Yang, in [2]. 

We have written a trace-driven simulator to model 
the operation of the PHD. We use synthetic ad­
dress traces matching the three applications as 
input to the simulator. The output statistics from 
the simulator are then compared to the predic­
tions of the model, in order to verify the model. 
Once the model has been fully characterized, we 
will be investigating the behavior of the protocol 
for machine sizes we cannot simulate. 
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Introduction 

In many parallel computers with hypercube networks, the 
processors can communicate simultaneously along all the 
wires connected to them. Often the software that these 
machines run use only a few hypercube dimensions at a 
time. Many hypercube algorithms arc leveled: they use 
only one dimension at a time (see for instance [2]). A 
programming language may allow the programmer to specify 
communication in a mesh, but along only one mesh axis at 
a time. If the mesh is embedded into the hypercube using 
Gray codes, then only a few hypercube dimensions are used 
at a time. If the mesh or leveled hypercube algorithm is 
embedded into the host hypercube in the straightforward 
way, much of the machine's bandwidth will be unused. 

There are embeddings that better utilize the machine's 
bandwidth; each guest edge is simulated by multiple paths 
of wires in the host, so the communication throughput of the 
guest edges is larger than that of a host wire. We will say that 
the guest edges are accelerated. At one extreme, embeddings 
that accelerate the edges of a cycle have been worked out 
[1]. The cycle embeddings can be composed to make a 
mesh embedding. This paper concentrates at the opposite 
extreme, and gives embeddings which accelerate the edges 
of a hypercube, assuming only one guest dimension is used 
at a time. If only one mesh axis is used at a time, then in 
some cases the above cycle and hypercube embeddings can 
be combined to make a better mesh embedding [3]. 

Before proceeding, I would like to point out that this paper 
is primarily of theoretical interest. In practice, communi­
cation throughput is significant when there are many more 
virtual processors than physical processors. But in this case, 
many leveled algorithms can be made to better utilize the 
machine's wires with pipelining techniques. It is surprising, 
however, that embedding a hypercube algorithm into a hy­
percube in the straightforward way can be suboptimal when 
the algorithm uses one dimension at a time. 

•Supervised by Charles E. Leiserson. This research Wi" sup­
ported in part by the Defense Advanced Hescarch Projects Agency 
under Contracts N00014-87-0825 and NOUU14-Vl-J-JG~J8, and in 
part by an ONR-NDSEG follmvship. 

An Example 

There is an embedding £3 which accelerates each edge of 
the hypercube Q3, assuming that only one guest dimension 
is used at a time. Recall that the nodes of the n-dimensional 
hypercube Q,. are labeled by a string of n address bits. There 
is an edge between two nodes if their addresses differ by one 
bit. In this paper all edges are undirected. 

An embedding E : G '---' H bijectively maps the guest 
vertices of graph G to the host nodes of graph H. An 
embedding also maps each guest edge to a network of host 
wires which simulate that edge. 

The node map or embedding E3 is given by 

c (b b b ) _ {b1bob,, b, + b1 + b0 = 2; 
c.3 2 1 o -

b,bibu, otherwise, 

where b2b 1 bu are the guest address bits and E3 (b 2 b1b0 ) are 
the host address bits. The networks for the dimension-0 guest 
edges are shown in Figure 1. Each individual dimension-0 
edge is simulated by a host network which transmits 3/2 
packets per unit time. Furthermore, the host graph is able to 
simulate each of these edges simultaneously. Informally we 
will say that E3 accelerates dimension 0 by 3/2. 

The host networks for the other guest edges are easily 
constructed because of symmetry in the node map. We 
may cyclically shift the guest address bits, apply £3 , and 
shift the bits back; the node map would remain unchanged. 
To get the networks that simulate guest edges crossing 
other dimensions, we may shift the address bits so that the 
edges cross dimension 0, take the appropriate dimension-0 
networks, and shift the address bits back. 

If E : Q" '---' Q11 is an embedding for which each guest 
edge is simulated by a host network that can transmit a 
packets per unit time, we will say E has acceleration a. If 
for each dimension d, the host hypercube can simultaneously 
simulate all guest edges crossing dimension d, then E will 
be called a lcvtlcd embedding. 'Therefore £3 is a leveled 
embedding with acceleration 3/2. 

There is a different leveled embedding E6 : Q6 '---' Q6 

which has acceleration 2. Embedding Ea has the additional 
property that no host wire is multiplexed between guest 
edges. This embedding is described in [3]. 
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Figure 1: The flow networks simulati11g the dimeusion-
0 guest edges. The edges (000, 001), (010, 011), and 
(110, 111) are each simulated by a host. pat.Ii of length 
one (carrying one packet per unit. time) and t.wo addi­
tional paths of length three (each carrying one-quart.er 
packet per unit time). The edge (100, 101) is simulated 
by three paths of length three (each earring one-half 
packet per unit time). 

Asymptotics 

Leveled embeddings can be composed with one another to 
make new embeddings. The following theorems are proved 
in [3], I simply state them here. 

Theorem 1 If E 1 : QP <----+ QP and E1. : Qq <----+ Qq 
are leveled embeddings with accdaation <L 1 and a1., th en 
E2 ® E1 is a leveled embedding from Q pq to Qpq with 
acceleration a1a2. If E1 and E1. don't rnultqJ/rx tht host 
wires, then neitha doc~ E 4 ® E1. 

By repeated application of Theorem 1, using a leveled 
embedding E : Qp <----+ Qp with acceleration n, we get 
for n = pm a leveled embedding from Q 11 into Qn with 
acceleration am = n 10

g" ". For general fl we lose a log 
factor. 

Theorern 2 If E : Qp <----+ Qp 1s levdul with accefrrn­

tion a, then for each n thne 1s a lcut:lul nnbcdding En 
from Qn into Qn with accdaation n ( (ll/ log n )10gP (j). 
If E does not multiplex host wires, then 11nthn does En-

In particular, there is a leveled embedding from Q,. into 
Qn which does not multiplex host wires and has acceleration 

n ((n/logn)10go 2 ) = w(n° 386
). Thenexttheoremprovides 

an upper bound on the accleration of any leveled embedding. 

Theorem 3 If E : Qn <----+ Qn is a leveled embedding, 
then E accderatcs Qn by at most O(n/logn). 

Practical Hypercubes 

Table 1 gives the acceleration ot'the "best" leveled embed­
ding I have found for Qn, where n is not too large. One 
leveled embedding is considered "better" than another if 
it has higher acceleration; the multiplexing of host wires is 
ignored by this metric. This table also gives an upper bound 
on the acceleration of any leveled embedding for Qn. Each 
of these upper bounds is in fact also an upper bound on the 
amount by which any single dimension can be accelerated. 

n a u n a u 
I I l 11 2 4.33 
2 I 1 12 2.25 4.67 
3 1.5 1.5 13 2 5 
4 1.5 2 14 2 5.33 
5 1.5 2.33 15 2.25 5.67 
6 2 2.67 16 2.25 6 
7 2 3 17 2 6.33 
8 2 3.33 18 3 6.67 
9 2.25 3.67 19 2 7 

JO 2 4 20 2.25 7.33 

Table 1: As a function of n, a is the acceleration of the 
"best" leveled embedding for Q" I have found, and u is 
an upper bound on this acceleration. 
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"What are the Grand Challenge Problems in Supercomputing Technology?" 

1 Introduction 

Panel Discussion 

Moderator: Eric Brewer 
Scribe: David Chaiken 

In 1900, David Hilbert proposed twenty-three problems covering all areas of mathematics that guided 
the field for decades. These problems served a driving force for mathematicians, providing instant 
fame (and fortune) to the people who could solve them, or even parts of them. The goal of this panel 
session was to propose several grand challenge problems, similar in spirit to those of Hilbert[l ]: 

[A] problem should be difficult in order to entice us, yet not completely inaccessible, lest 
it mock at our efforts. It should be to us a guide post on the mazy paths to hidden truths, 
and ultimately a reminder of our pleasure in the successful solution. 

To this end, six graduate students were asked to identify some of the long-term goals in the field of 
supercomputing technology. A summary of each of their talks follows, in order of presentation. 

2 Panel Talks 

2.1 Carl Waldspurger: Portable Resource Management 

Optimizing the performance of a parallel application is hard even when a programmer disregards 
the proliferation of different architectures. When faced with the task of moving from one parallel 
system to another, the task becomes nearly impossible. Providing the abstraction mechanisms that 
will allow programmers to easily migrate applications over a range of parallel architectures is a 
significant problem to solve. 

While there is no cohesive "big picture" that addresses the portability problem, a huge literature 
on computational resource management exists. Static analysis by compilers promises to address the 
problem in a large class of programs, but this technique is inadequate for data-dependent applica­
tions. Dynamic feedback mechanisms implemented in runtime systems provide automatic resource 
management, but they tend to impede human control when it is necessary. Some systems leave the 
multidimensional resource allocation problem to the programmer, thereby permitting human control, 
but forcing the programmer to perform tasks that might be done automatically. (For example, virtual 
memory relieves programmers of the dreaded overlay problem.) 

In order to make parallel applications portable, it will be necessary to develop language constructs 
that allow programmers to express performance tradeoffs without having to write low-level resource 
allocation. The first step is to develop a uniform model of parallel computation that incorporates both 
tasks and resources into a coherent framework. Using this model, the cost of consuming each resource 
should be quantified in terms of uniform, abstract units that may be used for a variety of different 
architectures. Allowing the programmer to express the contention between tasks for resources is a 
critical feature of this framework. The key to developing this abstraction lies in balancing the amount 
of human control (expressivity) with the level of detail that programmers must address (transparency). 
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2.2 Mike Klugerman: Fault Tolerance 

Given the goal of massively parallel systems, a simple calculation shows that fault tolerance is a 
problem that must be solved. Consider the failure rate of a system as a whole. If we make the 
(optimistic) assumption that a single processor will fail at the rate of 10 - 5 failures per hour, then a 
machine with one million (10 6 ) processors will incur a rate of 10 failures per hour. In order to build 
this machine with a reasonable failure rate, it should be able to tolerate faults in up to 10% of its 
processors (105). The resulting failure rate for the system would then be 10-4 failures per hour. 

Two key problems must be solved to achieve fault tolerance: Maintaining data integrity and fault 
tolerant routing. Maintaining data integrity involves preserving the state of memory in the presence 
of hardware failures. Checkpointing provides integrity by periodically copying memory to stable 
storage. This offline technique tends to waste time that could be spent doing processing. Replication 
of data using redundant hardware maintains integrity in an online fashion - at the expense of the 
extra hardware required to implement the scheme. The challenge in maintaining data integrity is to 
reduce the amount of replication that is required to tolerate faults. 

Fault tolerant routing involves maintaining connections between working parts of a system, even 
when some of the components of the system fail. Theorists understand the behavior of routing 
algorithms under the assumptions of worst case or random failure models. Unfortunately, these types 
of models do not correspond to the behavior of real-world systems, which generally do not encounter 
worst case scenarios but do suffer from correlated faults. Solutions to the fault tolerant routing problem 
require a better understanding of the correlations between failures in real systems. 

2.3 Mark Reichelt: Sparse Matrices 

The problem of solving Ax = b efficiently on a parallel supercomputer has not been solved completely. 
While efficient algorithms exist for solving dense matrices, an efficient parallel algorithm for sparse 
matrices does not exist. Sparse matrices, which have only a small number (0(1)) of elements per row 
of A (and lots of zeros), occur naturally in a large number of applications. 

For certain types of sparse matrices with special structures, it is possible to use iterative techniques 
to solve the related system of equations. These techniques take advantage of the structures of certain 
problem domains, which are reflected in the pattern of non-zero elements in the associated sparse 
matrices. Unfortunately, each of these iterative techniques requires special synchronization, error cal­
culation, and termination conditions. No existing iterative technique will work for all sparse matrices. 
In addition, the iterative techniques that do work for special structures tend to take a long time to 
run. 

It is possible to use a parallel algorithm for dense matrices to solve sparse matrices. However, this 
method is not efficient because an fast sequential algorithm for sparse matrices exists. That is, the best 
serial solution for dense matrices requires O(N 3 ) steps, while the parallel algorithm takes O(N log N) 
steps on O(N 2 /logN) processors. This yields an efficiency of O(N3 /((NlogN)(N2 /logN))) = 0(1). 
In contrast, the sequential algorithm for solving sparse matrices requires only O(N 15 ) steps, yielding 
an efficiency of 0(1/ N 15) when using the parallel algorithm for dense matrices. As a result, scientists 
who require solutions to sparse systems of equations challenge us to develop better parallel algorithms. 
Until we develop faster algorithms, they will opt for fast sequential implementations. 

2.4 Madhu Sharma: Scheduling for Locality 

Over the last decade, two critical problems in parallel processing have been solved. First, the issue 
of expressing and identifying parallelism has been addressed by a number of parallel languages with 
constructs that reveal implicit parallelism, allow non-strict evaluation, and permit synchronization 
between processes. Second, the problem of tolerating communication latency has been solved by a 
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host of mechanisms, such as prefetching, relaxed memory models, and multithreading. 

Today's challenge is to deal with the principal performance bottleneck in parallel architectures: 
communication bandwidth. In order to utilize this resource most efficiently, systems must minimize the 
bandwidth requirement of applications by maximizing the locality of communication. Current systems 
do not perform this task well. While some combinations of languages, compilers, and mapping 
schemes achieve limited success in maximizing the locality for programs with regular communication 
patterns, they do not allow for the dynamic effects associated with fine-grain parallel execution. Even 
for applications with regular communication patterns, cache hit rates remain low and demand on the 
processor interconnect remains high. 

The problem that needs to be solved is constructing schedulers that effectively manage fine-grain 
parallel activity. Such schedulers should maximize both locality of reference in caches and communi­
cation locality between processors. In order to achieve this goal, it might be necessary to incorporate 
a model of locality into parallel languages, thereby allowing systems to take advantage of the pro­
grammer's vantage point. 

2.5 Rich Lethin: The Hardware Creativity Crisis 

"The Hardware Creativity Crisis" is a challenge to change our way of thinking about developing 
computer systems, rather than identifying a particular problem to solve. The current methodology 
for doing hardware research stifles creativity. Today's researchers are locked into a pattern of making 
incremental improvements in existing architectures or building new systems that are compatible with 
old ones. The process of tuning systems with stock benchmarks (e.g. SPECmarks) and then using the 
same benchmarks to guide the development of the next generation of computers results in an inces­
tuous cycle: if we set out to build a better VAX, then that is exactly what we will build. Furthermore, 
by binding ourselves to the current generation of CAD tools, we confine ourselves to a single design 
method and to a previous generation of technology. 

Instead of attempting to build yet another CDC 6600 in the latest-and-greatest technology, re­
searchers should balance theory and tuning. We should focus on the fundamental building blocks 
of computer systems, avoid excessive performance tuning, construct prototypes quickly, and draw 
real conclusions from our prototypes. More "dark horse" projects, in the spirit of neural networks 
and hardware implementations of genetic algorithms, would be healthy contributions to the creative 
process. 

2.6 Kirk Johnson: Communication is the Crux 

The grand challenge in high performance supercomputing is effectively delivering the 
cost/performance advantages promised by parallel systems to the end user. The obstacle to this 
goal is the difficulty of programming large-scale parallel systems due to the problem of managing 
communication and synchronization costs. Current systems take one of two approaches to this prob­
lem: explicit or implicit control of communication. Explicit control, required by message passing models 
of computation, allows programmers to manage communication directly and results in architectures 
that are easy to build. However, demanding the programmer to take control complicates the job of 
developing applications. Implicit control, offered by shared memory models, simplifies the job of 
programming but results in architectures that are harder to build. The lack of human control also 
makes it harder to manage communication and synchronization. 

In order to manage communication effectively, we need to develop hybrid models of parallel 
computation with the benefits of implicit control and the power of explicit control. For example, 
shared memory systems could be augmented with communication annotations that allow a system 
to exploit information about an application from the programmer as in the work on "Cooperative 
Shared Memory" at Wisconsin [2]. This approach would require architectures (such as Alewife) that 
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efficiently support both message passing and shared memory models. New programming systems 
should also allow the programmer to express the structure and costs of communication at a high-level. 

3 Open Discussion 

Early in the discussion following the panelists' presentations, the participants decided that for an 
engineering discipline, it is impossible to propose grand challenges in the spirit of Hilbert's problems. 
Rather than identifying problems that have distinct solutions, the panelists proposed long term goals 
that may be satisfied to a lesser or greater extent but will always leave room for improvement. Several 
themes emerged during the presentations and the ensuing discussion. 

Balancing human control and automatic resource management. Several of the panelists discussed 
the unresolved tradeoff between the ease of programming and the efficiency of parallel applications. 
This tradeoff impacts every aspect of parallel system research from models of computation to pro­
gramming languages to hardware mechanisms. One participant suggested that our expectations might 
be too high for the efficiency of automatic systems. As in the sequential world, the user might have to 
sacrifice some efficiency in order to gain convenience. A good example is the efficiency I convenience 
tradeoff implicit in uniprocessor compiler analysis. Another participant wondered if the sequential 
model of computation is fundamental to human thinking. In this case, it will never be easy for 
programmers to write applications for large-scale parallel architectures. 

Communication bandwidth is a principal bottleneck. Of all of the resources that must be managed 
through direct human control or by automatic mechanisms, communication bandwidth received the 
most attention. Judging by the emphasis of the panelists, developing methods for efficiently allocating 
this resource will be critical to the acceptance of large-scale parallel systems. 

The role of universities in supercomputing research. Research groups in universities can not com­
pete with the work being done in industry, nor should they try. Companies are very good at turning the 
incremental improvement crank and generating the latest and greatest VAX implementation. Industry 
also produces far more polished, production-quality software than do universities. The participants 
generally agreed that universities should not duplicate the efforts of industry. 

The group disagreed on the exact role that universities should perform. Some students saw no 
problem with assisting industry by developing new analysis techniques or by proposing small changes 
to existing systems. Others argued that universities should provide the force to move research out of 
local minima by demonstrating the benefits of radically different approaches to supercomputing (as 
they did with the Connection Machine and VLIW architectures). 

Portability. While it would be beneficial to have a standard model of parallel computation and a 
single language that could be supported by many parallel architectures, no consensus on the structure 
of the model or the constructs in the language exists. Several of the panelists proposed research that 
could be done in the area of portable language constructs. These ideas (and more) must be evaluated 
before reaching the goal of portability. At the current stage of research, diversity is important to the 
evolution of languages and models of computation. In the long term, the most viable programming 
methods should dominate the current field of candidates. 

Building a user community. We can interpret Mark Reichelt's challenge in the context of a broader 
user community. There are a large number of users who have applications that are large enough to 
benefit from the cost/performance tradeoffs available from large-scale parallel systems. However, the 
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state of the art of parallel algorithms has not yet reached the same stage as sequential algorithms. 
Since efficient parallel algorithms have not yet been found for many problems, potential users do not 
have sufficient motivation to migrate their applications to parallel systems. 

Unfortunately, this situation poses a Catch-22: in order to make parallel systems efficient and 
easy to program, researchers need a variety of significant applications to study. On the other hand, 
users will not develop such applications until parallel systems are efficient and easy to program. This 
problem is critical to the future of research in supercomputing and led to an answer to the question, 
"What should we be doing at MIT?" The only confident answer from the group (besides increasing 
graduate student salaries) was to "open the doors [of Tech. Square] to real people who need FLOPs." 
Our research groups need better communication with potential users, especially those within MIT 
itself. 
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