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Abstract 

This thesis explores using busses in communication architectures and control structures. First, 
we investigate the organization of permutation architectures with bussed interconnections. We 
explore how to efficiently permute data among VLSI chips in accordance with a predetermined set 
of permutations. By connecting chips with shared bus interconnections, as opposed to point-to
point interconnections, we show that the number of pins per chip can often be reduced. The results 
are derived from a mathematical characterization of uniform permutation architectures based on 
the combinatorial notion of a difference cover. Second, we explore priority arbitration schemes that 
use busses to arbitrate among n modules. We investigate schemes that use lg n :::; m :::; n busses 
and asynchronous combinational arbitration logic. The standard binary arbitration scheme uses 
m = lg n busses and arbitrates in t = lg n time. We present the binomial arbitration scheme that 
uses m =lg n + 1 busses and arbitrates in t = ~lg n time. We generalize binomial arbitration to 
achieve a bus-time tradeoff m = O(tn 111). The new schemes are based on data-dependent analysis 
and can be adopted with no changes to existing protocols. Third, we examine the performance of 
binary arbitration in a digital transmission line bus model. We show that arbitration time depends 
on the arrangement of modules. For general arrangements, arbitration time grows linearly with 
number of busses, while for linear arrangements, arbitration time is constant. 
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arbitration with busses, binomial arbitration, bussed interconnections, busses, difference cover, 
generalized binomial arbitration, permutation architecture, priority arbitration, VLSI. 
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Abstract 

This thesis investigates several aspects of the organization of digital systems that employ bussed 
interconnections. The thesis focuses on two application domains for busses: communication 
architectures and control mechanisms, and explores the capabilities of busses as interconnection 
media, computation devices, and transmission channels. 

Chapter 1 discusses the significance of bussed interconnect in digital systems, provides some 
background on busses, and describes the problems addressed in this thesis. 

In Chapter 2 we investigate the organization of permutation architectures that employ 
bussed interconnections. We explore the problem of efficiently permuting data stored in VLSI 
chips in accordance with a predetermined set of permutations. By connecting chips with shared 
bus interconnections, as opposed to point-to-point interconnections, we show that the number 
of pins per chip can often be reduced. For example, we exhibit permutation architectures with 
r v'nl pins per chip that can realize any of the n cyclic shifts on n chips in one clock tick. 
When the set of permutations forms a group with p elements, any permutation in the group 
can be realized in one clock tick by an architecture with 0( Jplgp) pins per chip. When 
the permutation group is abelian, we show that 0( y'P) pins suffice. These results are all 
derived from a mathematical characterization of uniform permutation architectures based on the 
combinatorial notion of a difference cover. We also consider uniform permutation architectures 
that realize permutations in several clock ticks, instead of one, and show that further savings 
in the number of pins per chip can be obtained. 

Chapter 3 explores efficient utilization of busses for implementing arbitration mechanisms. 
We investigate priority arbitration schemes that use busses to arbitrate among n modules in a 
digital system. We focus on distributed mechanisms that employ m busses, for lg n :S m :S n, 

and use asynchronous combinational arbitration logic. A widely used distributed asynchronous 
mechanism is the binary arbitration scheme, which with m = lg n busses arbitrates in t = lg n 
units of bus-settling time. We present a new asynchronous scheme - binomial arbitration -
that by using m = lg n + 1 busses reduces the arbitration time to t = ~lg n. Extending this 
result, we present the generalized binomial arbitration scheme that achieves a bus-time tradeoff 
of the form m = O(tn11t) between the number of arbitration busses m, and the arbitration 
time t (in units of bus-settling time), for values of 1 :S t S lg n and lg n S m S n. Our schemes 
are based on a novel analysis of data-dependent delays. Most importantly, our schemes can be 
adopted with no changes to existing hardware and protocols; they merely involve selecting a 
good set of priority arbitration codewords. 
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In Chapter 4, we examine the performance of priority arbitration schemes presented in 
Chapter 3 under the digital transmission line bus model. This bus model accounts for the 
propagation time of signals along bus lines and assumes that the propagating signals are always 
valid digital signals. A widely held misconception is that in the digital transmission line model 
the arbitration time of the binary arbitration scheme is at most 4 units of bus-propagation delay. 
We formally disprove this conjecture by demonstrating that the arbitration time of the binary 
arbitration scheme is heavily dependent on the arrangement of the arbitrating modules in the 
system. We provide a general scenario of module arrangement on m busses, for which binary 
arbitration takes at least m/2 units of bus-propagation delay to stabilize. We also prove that 
for general arrangements of modules on m busses, binary arbitration settles in at most m/2 + 2 
units of bus-propagation delay, while binomial arbitration settles in at most m/ 4 + 2 units of 
bus-propagation delay, thereby demonstrating the superiority of binomial arbitration for general 
arrangements of modules under the digital transmission line model. For linear arrangements of 
modules in increasing order of priorities and equal spacings between modules, we show that 3 
units of bus-propagation delay are necessary for binary arbitration to settle, and we sketch an 
argument that 3 units of bus-propagation delay are also asymptotically sufficient. 

Finally, Chapter 5 provides some concluding remarks and identifies directions for further 
research on systems with bussed interconnections. 

Keywords: arbitration, arbitration protocol, asynchronous arbitration, binary arbitration, 
binomial arbitration, bus-propagation time, bus-settling time, bus-time tradeoff, bussed inter
connections, busses, cyclic shifter, data-dependent delays, difference cover, digital transmission 
line, generalized binomial arbitration, linear arbitration, permutation architecture, permutation 
set, priority arbitration, signal propagation, uniform architecture, VLSI. 

Thesis Supervisor: Charles E. Leiserson 
Title: Associate Professor of Computer Science and Engineering 
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Chapter 1 

Introduction 

This thesis investigates several aspects of the organization of systems with bussed interconnec

tions. Busses are used in many electronic and computer systems for a variety of applications, 

including broadcasting information, realizing communication patterns, implementing system 

primitives, and performing computations. Busses come in all shapes and sizes and connect 

modules at various system levels. Busses are the backbone of many digital systems and play a 

vital role in numerous architectures. 

Busses are desirable in many systems due to their simplicity, modularity, reliability, and 

monitoring capabilities. Busses constitute shared media to which connected modules can listen 

and onto which they can broadcast. Busses offer scalable-cost interconnect, standard module 

interface, and configuration flexibility. Bussed organizations are easy to control and monitor, 

and provide a high level of reliability at moderate cost. 

Busses. have been extensively researched in the electrical engineering and computer science 

literature (see references). Various aspects of busses have been investigated, including the 

physical and electrical characteristics of the media, interconnection topologies, communication 

protocols, and algorithmic techniques, among others. Bussed interconnections are still not fully 

understood, however, and their capabilities are not fully exploited. Due to the widespread use 

of busses for applications in electronic and computer systems, it is important to develop a better 

understanding of the organization and capabilities of systems with bussed interconnections. In 

this thesis, we investigate several organizational aspects of digital systems that employ bussed 

interconnections and demonstrate how to use busses more efficiently for implementing several 

11 



12 CHAPTER 1. INTRODUCTION 

system functions. Although the results of this thesis are presented with computer systems and 

computer busses in mind, they are not limited to these settings and are applicable to general 

systems that employ communication over shared media. 

This thesis is organized as follows. In this chapter, we discuss several issues of bussed 

interconnections that are relevant to our work and describe the problems addressed in this 

thesis. The body of the thesis focuses on two application domains for shared interconnect: 

communication architectures and control mechanisms, and examines the capabilities of busses 

as interconnection media, computation devices, and transmission channels. In Chapter 2, we 

investigate the organization of permutation architectures that employ bussed interconnections. 

Chapter 3 explores how to implement priority arbitration mechanisms efficiently on busses 

that exhibit fixed settling delay. In Chapter 4, we examine the performance of some priority 

arbitration schemes under the digital transmission line model. Finally, Chapter 5 presents 

some concluding remarks and directions for further research concerning systems with bussed 

interconnections. 

1.1 Bussed interconnections 

Busses are shared communication media. Many digital systems employ one or more busses 

to communicate among system modules. Busses enable several devices sharing the same in

terconnection medium to communicate, in contrast with point-to-point wires that establish 

communication only between pairs of devices. 

Several technologies of shared interconnect can be classified as busses, including broadcast 

radio channels, electrical wires, and optical fibers. The focus of this thesis is on electrical 

busses, which· are used by most computer systems. Extensive surveys and tutorials on the 

characteristics of electrical busses appear in (16, 22, 40, 57, 82, 88]. Discussion of other shared 

communication media can be found, for example, in [12, 61, 78]. In this section, we briefly 

introduce and discuss several issues of electrical busses that are important for the development 

of this thesis and we comment on their relevance. We present these issues in a somewhat 

bottom-up manner. 

Bus driving technologies. There are several standard technologies for driving digital 

signals onto an electrical bus. One common bus-driving technology is the tri-state driver, where 
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a device driver applies either a logic level of 0, a logic level of 1, or disables its output terminal 

and leaves it floating (see [22, 62, 88]). Tri-state drivers consume little power, but can only 

be used when it is guaranteed that at all times no more than one device drives the bus, while 

all other devices disable their drivers. This requirement must be met, since otherwise devices 

may fight each other, resulting in high-current spikes, intermediate voltage levels on the bus, 

and possible component failure. Another common bus-driving technology is the open-collector 

driver, where an external pullup drives the bus to a default logic level and device drivers can 

pull the bus down to express the nondefault logic value (see [22, 40, 88]). The open-collector 

technology allows the bus to implement a wired-OR logic function, since several devices can 

pull the bus down simultaneously, resulting in the OR of the logic values applied. (Another 

technology for implementing wired-OR is to charge and discharge a VLSI bus line that is treated 

as a large capacitor (see [62, 83]).) In this thesis, we explore both tri-state and open-collector 

drivers. The results of Chapter 2 can use either tri-state or open-collector busses, while Chapters 

3 and 4 make use of open-collector busses. 

Bus signal propagation. A bus, being a physical element, has several physical and 

electrical characteristics. The propagation of a signal on a bus takes time, which depends 

on the length, material, shape, temperature, and other physical properties of the bus and its 

environment. A high-speed bus is modeled as an analog transmission line with associated 

impedance that depends on the inductance, the capacity, and the length of the bus (see [5, 40]). 

Most computer systems, however, use the digital abstraction, which specifies certain discrete 

voltage levels for representing logic values. Digital signals driven onto a bus require time to 

propagate and to resolve various transient effects before the bus reaches a valid logic level. 

In designing digital bus primitives and protocols, careful attention must be given to modeling 

the bus appropriately and to allowing enough time for the bus to settle before the logic value 

that it carries can be reliably used. In this thesis we use the digital abstraction of busses. 

In Chapter 2, busses are used as interconnection media and we assume that sufficient time is 

allocated for signal propagation along a bus. In Chapters 3 and 4, busses may be driven by 

multiple modules and may carry transient signals. Chapter 3 assumes that the bus-settling time, 

denoted by Thus, is accounted for, while Chapter 4 analyzes the effects of signal propagation 

along idealized digital transmission lines with bus-propagation time of Tp. 
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Number and functionality of bus lines. Bussed systems vary considerably in the 

number of bus lines they use and in their functionality. A single bus line can only implement 

one communication transaction at any given time and its performance, therefore, degrades 

when the number of modules connected to it increases; the latency of a bus with n modules 

is 0(n) and its throughput is 0(1/n). However, many bussed systems use a single bus line 

for serial communication when the cost associated with multiple lines is too high or when the 

functionality of the bus does not justify multiple lines (see [16, 22, 61, 88]). Most backplane bus 

systems, on the other hand, use a collection of bus lines to provide high bandwidth connections 

between system modules (see [16, 22, 40]). Such systems use parallel communication to transfer 

several bits concurrently, thereby reducing the time that the bus system is occupied by any 

given transaction. In addition, several multiplexing techniques enable multiple transactions 

over the same collection of bus lines by using time sharing or frequency sharing of the busses. 

Another common method for enhancing system connectivity and performance is the use of 

multiple busses to establish concurrent and independent communication channels among system 

modules or subsets of them (see [10, 13, 30, 54, 64, 69, 70, 73, 77]). In this thesis, we focus 

on multiple and parallel bus lines. Chapter 2 uses multiple busses to establish concurrent and 

independent communication channels among subsets of modules and Chapters 3 and 4 explore 

how to efficiently employ parallel bus lines that are shared among all system modules. 

Bus timing disciplines. To control the behavior of a complex digital system, one of 

several timing disciplines is used (see [22, 62, 88]). There are two orthogonal dimensions to 

distinguish between timing disciplines: synchronous vs. asynchronous and global vs. local. In 

a synchronou~ system, there is a systemwide notion of time, generally established by using sys

tem wide clock signals, that is used for timing and coordinating transactions. Bus transactions, 

in a synchronous system, start at some clock edge and finish at a subsequent clock edge, taking 

an integral multiple of clock cycles to complete. An asynchronous system, in contrast, does not 

time operations but rather coordinates them through the use of hand-shaking protocols. Bus 

transactions, in an asynchronous system, can start and finish at any time and their duration 

is self determined. In globally timed systems each operation takes a fixed and predetermined 

amount of time, while in locally timed systems modules can control the duration of different 

operations by using several control signals. These two orthogonal dimensions of classifying 
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timing disciplines give rise to four general classes of timing disciplines: Synchronous Globally 

Timed (SGT), Asynchronous Globally Timed (AGT), Synchronous Locally Timed (SLT), and 

Asynchronous Locally Timed (ALT). The choice between these timing disciplines depends on 

the purpose, performance, and cost of the designed system. In this thesis, we focus on the SGT, 

AGT, and ALT timing disciplines. The architectures of Chapter 2 use the synchronous globally 

timed discipline, while Chapters 3 and 4 explore asynchronous globally timed and asynchronous 

locally timed mechanisms. 

Bus arbitration and mastership. Since a bus is shared among several system mod

ules, situations may arise where the bus is simultaneously requested by more than one module. 

To allocate the bus to one module at a time, an arbitration/access mechanism is required 

that determines the mastership of the bus. Numerous arbitration/access mechanisms have 

been developed, including daisy chains, priority circuits, polling, token passing, and carrier 

sense multiple access protocols (see [12, 16, 22, 40, 57, 61, 78, 82, 88]). A distinction is of

ten made between centralized arbitration/access mechanisms, where bus arbitration and access 

are determined by a central controller, and distributed arbitration/access mechanisms, where 

arbitration and access processes are carried out simultaneously by all system modules. Cen

tralized controllers are generally simpler, operate fast, and are more flexible in their assignment 

procedures. Distributed controllers, on the other hand, are usually more reliable, require less 

dedicated wiring and communication, and are easier to monitor and expand. Many tightly 

coupled systems, such as SIMD parallel machines and high-performance architectures, use cen

tral control mechanisms, while more loosely coupled systems, such as multiprocessor systems 

and data communication networks, employ distributed arbitration/access mechanisms. In this 

thesis, boih centralized and distributed control mechanisms are explored. The permutation ar

chitectures described in Chapter 2 use a centralized bus mastership procedure, while Chapters 

3 and 4 investigate distributed arbitration mechanisms with busses. 

Bus transactions. Busses can be used to implement several types of communication 

transactions that can be characterized by the sets of modules involved. The most common 

types of bus transactions are one-to-one, where a single module transmits data intended for 

a single receiver, and one-to-many (broadcast), where a single module sends information to 

multiple receivers. The receiver (receivers) of bus transactions are typically identified by their 
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address or through external control. Two other types of transactions, which are less frequently 

implemented on busses, are the many-to-one (converge) and many-to-many (multicast) commu

nication patterns. In these transactions, several modules may try to transmit information con

currently over the same media, which requires some means of combining or selecting among the 

different requests. This thesis investigates some of these bus transactions. Chapter 2 deals with 

realizing permutations (one-to-one transactions) over bussed interconnections, while Chapters 

3 and 4 use broadcast (one-to-many transactions) and multicast (many-to-many transactions) 

over wired-OR busses. 

1.2 Focus and contribution of this thesis 

Bussed interconnections are used for many applications in electronic and computer systems. 

This thesis focuses on two application domains for busses: communication architectures and 

control mechanisms, and examines the capabilities of busses as interconnection media, compu

tation devices, and transmission channels. The following subsections describe the contribution 

of the thesis chapters and put the results of this thesis in perspective. 

1.2.1 Communication architectures 

The interconnection network of a digital system, which connects the system modules to each 

other, has a profound impact on the system's capabilities, performance, size, and cost. Several 

interconnection schemes have been heavily studied and are used in many systems, including 

point-to-point wires, multistage interconnection networks, and shared busses. Because of the 

costs associated with wiring and packaging, it is generally desirable to minimize the number of 

wires in a system and the number of connections per module. 

Chapter 2 of this thesis investigates how busses (multiple-pin wires) can be em ployed to 

efficiently realize certain communication patterns among modules in a digital system. We 

concentrate on the problem of efficiently permuting data stored in VLSI chips (modules) in 

accordance with a predetermined set of permutations. We show that by connecting modules 

with shared bus interconnections, as opposed to point-to-point interconnections, the number of 

pins per module can often be significantly reduced. 
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Much research has focused on implementing permutations and various other communication 

patterns on different interconnection networks. By using point-to-point wires, for example, any 

communication pattern can be realized in one communication cycle. For rich and diverse 

communication patterns, however, full point-to-point interconnections tend to use many wires 

and many connections per module, since any two modules that need to communicate must 

share a wire. (See [60, 83] for VLSI costs of point-to-point interconnection schemes.) Multistage 

interconnection networks have also been heavily investigated for the purpose of realizing general 

communication patterns and more specifically for routing permutations (see [6, 7, 27, 32, 37, 

52, 53, 55, 74, 75, 86]). Many multistage interconnection networks exhibit logarithmic number 

of stages and constant number of connections per module. However, the savings in the number 

of pins per module come at the expense of realizing permutations in logarithmic number of 

communication cycles and the use of a considerable amount of switching hardware. The use of 

busses as the interconnection infrastructure for realizing communication patterns has also been 

examined by several researchers (see [10, 13, 30, 64, 73, 77]). In this thesis we demonstrate that 

bussed interconnections can be employed for realizing general classes of permutations in one 

communication cycle, with considerably small number of pins per module, and with virtually 

no switching and controlling hardware. 

In Chapter 2, we exhibit bussed permutation architectures for many classes of permutation 

sets. For example, we present permutation architectures that with 0( yn) pins per module can 

realize any of the n cyclic shifts on n modules in one communication cycle. Our results are 

derived from a mathematical characterization of uniform permutation architectures based on the 

combinatorial notion of a difference cover. We extend our discussion to permutation groups and 

show that when the set of permutations forms a group with p elements, any permutation in the 

group can be realized in one communication cycle by a uniform architecture with 0( Jplgp) pins 

per module. Furthermore, when the permutation group is abelian, we show that 0( .JP) pins per 

module suffice. We also consider uniform permutation architectures that realize permutations 

in several communication cycles, instead of one, and show that further savings in the number 

of pins per module can be obtained. Finally, we identify many permutation networks that can 

benefit from our methodology of using difference covers for designing uniform architectures, 

including hypercubes, multidimensional meshes, and shuffle-exchange networks. 
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1.2.2 Control mechanisms 

Large digital systems use control mechanisms for several functions, including establishing timing 

disciplines, triggering events, and sequencing transactions. The complexity of a large digital 

system generally calls for the separation of the control mechanisms from the communication 

and computation structures. Description of control mechanisms for digital systems appear in 

[20, 88], for bus systems in [16, 22, 40, 57, 82], and for communication networks in [12, 61, 78]. 

Chapter 3 of this thesis explores the problem of arbitrating among modules in a digital 

system. Many arbitration mechanisms have been developed that use daisy chains, central

ized priority circuits, polling mechanisms, token passing schemes, and carrier sense multiple 

access protocols, among others (see [12, 16, 22, 40, 45, 46, 57, 61, 78, 82, 88]). We focus on 

distributed priority arbitration mechanisms, where contention is resolved using predetermined 

module priorities and arbitration processes are carried out in a distributed manner by sys

tem modules. Distributed priority arbitration mechanisms are used in many modern systems, 

including numerous multiprocessors and data communication networks. Specifically, we inves

tigate arbitration mechanisms that employ dedicated arbitration busses and use asynchronous 

globally or locally timed combinational logic. Several other studies of bus-based arbitration 

mechanisms appear in [3, 22, 23, 24, 47, 71, 79, 80, 81]. 

In Chapter 3, we examine distributed asynchronous priority arbitration mechanisms that 

arbitrate among n modules using m arbitration busses, for lg n ~ m ~ n. A widely used 

distributed asynchronous mechanism is the binary arbitration scheme [79], which with m = lg n 

busses arbitrates in t = lg n units of time. We present a new asynchronous scheme - binomial 

arbitration ---: that by using m = lg n + 1 busses reduces the arbitration time to t = ! lg n. 

Extending this result, we present the generalized binomial arbitration scheme that achieves 

a bus-time tradeoff of the form m = 0(tn11t), between the number of arbitration busses m 

and the arbitration time t (in units of bus-settling delay), for values of lg n ~ m ~ n and 

1 ~ t ~ lg n. Our schemes are based on a novel analysis of data-dependent delays. Most 

importantly, our schemes can be adopted with no changes to existing hardware and protocols; 

they merely involve selecting a good set of priority arbitration codewords. We also investigate 

the capabilities of general asynchronous priority arbitration schemes that employ busses and 

present some lower bound arguments that demonstrate the efficiency of our schemes. 
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1.2.3 Transmission lines 

The speed of information transfer through a communication medium is bounded by several 

physical properties of the medium. Different media such as radio broadcast channels, electrical 

wires, and optical fibers have different propagation speeds, but they can all be modeled essen

tially in the same manner. In any communication system, the information sent by a module 

requires time to propagate and reach other modules. Communication protocols must, therefore, 

account for signal propagation by incorporating appropriate time intervals. 

In Chapters 3 and 4, we investigate how propagation delays of digital signals on electrical 

busses can influence the design of communication protocols. The propagation of a signal on 

an electrical bus depends on the length, shape, and other properties of the bus. A high-speed 

bus is modeled as an analog transmission line with associated impedance that determines the 

propagation speed of signals along it (see [5, 40]). Most computer systems, however, use the 

digital abstraction, which specifies certain discrete voltage levels for representing logic values. 

When designing communication protocols for electrical busses, signal propagation delays must 

be accounted for, as done, for example, in Ethernet [63]. A common method of dealing with 

different and unpredictable propagation delays on a shared medium is to allow sufficient time 

for the propagation of signals from the furthest module in the system and for the settlement of 

the communication medium. This approach is explored in Chapter 3, where the time required 

by bus-based arbitration mechanisms to stabilize is measured in units of bus-settling delay. 

The unit of a bus-settling delay is an upper bound on the time that an electrical bus resolves 

various transient effects and reaches a valid logic value. In Chapter 4, on the other hand, we 

investigate a more elaborate model of a bus as a digital transmission line, which takes into 

account propagation of signals along a bus line but ignores the analog nature of the signals. 

In Chapter 4, we examine the performance of priority arbitration schemes presented in 

Chapter 3 under the digital transmission line bus model. This bus model accounts for the 

propagation time of signals along bus lines and assumes that the propagating signals are always 

valid digital signals. A widely held misconception is that in the digital transmission line model 

the arbitration time of the binary arbitration scheme is at most 4 units of bus-propagation delay. 

We formally disprove this conjecture by demonstrating that the arbitration time of the binary 

arbitration scheme is heavily dependent on the arrangement of the arbitrating modules in the 
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system. We provide a general scenario of module arrangement on m busses, for which binary 

arbitration takes at least m/2 units of bus-propagation delay to stabilize. We also prove that 

for general arrangements of modules on m busses, binary arbitration settles in at most m/2 + 2 

units of bus-propagation delay, while binomial arbitration settles in at most m/ 4 + 2 units of 

bus-propagation delay, thereby demonstrating the superiority of binomial arbitration for general 

arrangements of modules under the digital transmission line model. For linear arrangements of 

modules in increasing order of priorities and equal spacings between modules, we show that 3 

units of bus-propagation delay are necessary for binary arbitration to settle, and we sketch an 

argument that 3 units of bus-propagation delay are also asymptotically sufficient. 



Chapter 2 

Bussed Permutation Architectures 

This chapter explores the problem of efficiently permuting data stored in VLSI chips in accor

dance with a predetermined set of permutations. By connecting chips with bussed interconnec

tions, as opposed to point-to-point interconnections, we show that the number of pins per chip 

can often be reduced. For example, for infinitely many n, we exhibit permutation architectures 

with r v'nl pins per chip that can realize any of the n cyclic shifts on n chips in one clock 

tick. When the set of permutations forms a group with p elements, any permutation in the 

group can be realized in one clock tick by an architecture with 0( Jp In p) pins per chip. When 

the permutation group is abelian, we show that 0( y'P) pins suffice. These results are all de

rived from a mathematical characterization of uniform permutation architectures based on the 

combinatorial notion of a difference cover. We investigate properties of difference covers and 

describe procedures for designing efficient difference covers for many classes of permutation sets. 

We also consider uniform permutation architectures that realize permutations in several clock 

ticks, instead of one, and show that further savings in the number of pins per chip can be ob

tained. Our methodology of using difference covers for designing efficient uniform architectures 

is applicable to a wide range of permutation networks, including hypercubes, multidimensional 

meshes, and shuffle-exchange networks. 

This chapter describes joint research with Joe Kilian and Charles Leiserson [48) and [49). 
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2.1 Introduction 

The organization of communication among chips is a major concern in the design of an electronic 

system. Because of the costs associated with wiring and packaging, it is generally desirable 

to minimize the number of wires and the number of pins per chip in an architecture. Much 

research has focused on point-to-point and multistage interconnections (see [6, 7, 27, 37, 75, 86]). 

In this chapter, we investigate how busses can be employed to efficiently implement various 

communication patterns among a set of chips. Other studies of bussed interconnection schemes 

for realizing communication patterns can be found in [10, 11, 13, 30, 54, 64, 77). 

Perhaps the simplest example of the advantage of bussed interconnections is the use of 

a single shared bus to communicate between any pair of chips connected to the bus in one 

clock tick. Communicating between any pair of chips in one clock tick can be implemented 

with two-pin wires, but any such scheme requires G) wires and n - 1 pins per chip, where n 

is the number of chips in the system.1 Of course, a two-pin (point-to-point) interconnection 

scheme may be able to implement more communication patterns, but if we are only interested 

in communication between individual pairs, the additional power, which comes at a high cost, 

is wasted. 

An example that better illustrates the ideas in this chapter comes from the problem of 

building a fast cyclic shifter (sometimes called a barrel shifter) on n chips. Initially, each chip c 

contains a one-bit value fc. The function of the shifter is to move each bit fc to chip c+s (mod n) 

in one clock tick, where s ca.n be a.ny value between O a.nd n - 1. 

Any cyclic shifter that uses only two-pin wires requires at least G) wires and n - 1 pins per 

chip in order to shift in one clock tick because each chip must be able to communicate directly 

with each oft.he other n - 1 chips. Using busses, however, we ca.n do much better. Figure 2-1 

gives an architecture for a cyclic shifter on 13 chips which uses 13 busses a.nd only 4 pins per 

chip. To realize a shift by 8, for example, each chip writes its bit to pin 3 and reads from pin 1. 

The reader may verify that all other cyclic shifts among the chips are possible in one clock tick. 

(In Section 2.4, we give a general method for constructing such cyclic shifters based on finite 

projective planes.) 

1 Unless otherwise specified, we count only data pins in our analysis and omit consideration of the pins for 
control, clock, power, and ground since they are needed by all implementations. 
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Figure 2-1: A cyclic shifter on 13 chips that uses 13 busses. Each chip has 4 pins, and each bus has 4 
chips connected to it. This cyclic shifter is based on the difference cover {O, 1, 3, 9} for Z13. 

The cyclic shifter of Figure 2-1 has the advantage of uniformity. All chips have exactly the 

same number of pins, and to accomplish each of the 13 permutations specified by the problem, 

all chips write to (and read from) pins with identical labels. For all busses, the number of pins 

per bus is 4, which is the same as the number of pins per chip. Moreover, the connections 

between chips and busses follow a periodic pattern. The uniformity of the architecture leads to 

simplicity in the control of the system. Four control wires from a central controller are sufficient 

to determine each of the 13 shifts-two wires for specifying the number of the pin on which to 

write, and two for the pin to read-which is the minimum possible. Thus, our control scheme 

uses the minimum number of control pins, and the on-chip decoding logic is straightforward 

and identical for all the chips. 

Cyclic shifters for general n can be constructed using an idea from combinatorial mathe

matics related to difference sets [43, p. 121]. (See also [14, 34, 38, 56, 66].) 

Definition 1 A subset D ~ Zn of the integers modulo n is a. difference cover for Zn if for all 

s E Zn, there exist di, d; ED such thats= di - d; (mod n). 

That is, every integer in Zn can be represented as the difference modulo n of two integers in 

D. For example, the set D = {O, 1, 3, 9} is a difference cover for Z13, since 
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0 0-0 

1 = 1-0 

2 = 3-1 

3 = 3-0 

4 0-9 

5 1-9 

6 9-3 

7 = 3-9 

8 9- 1 

9 = 9-0 

10 0- 3 

11 = 1-3 

12 = 0 - 1 , 

where all subtractions are performed modulo 13. 

Given a difference cover for Zn with k elements, a cyclic shifter on n chips with n busses and 

k pins per chip can be constructed. Suppose D = {do, di, ... , dk-I} is a difference cover for Zn· 

In the cyclic shifter, chip c connects via its pin i to bus c +di (mod n ), for all c = 0, 1, ... , n - 1 

and i = 0, 1, ... , k - 1. To see that any cyclic shift on the n chips can be uniformly realized, 

consider a cyclic shift bys. Since Dis a difference cover for Zn, there exist di, d; E D such that 

s =di - d; (m~d n). To realize the shift bys, ea.ch chip writes to pin i and reads from pin j. 

Chip c therefore writes onto bus c +di, and bus c +di is read by chip ( c +di) - d; = c + s. No 

collisions occur because ea.ch bus has exactly one pin labeled i and one pin labeled j connected 

to it, as can be verified. 

The remainder of this chapter explores permutation architectures, the properties of multiple

pin interconnections, and related combinatorial ma.thematics. In Section 2.2, we define a per

mutation architecture, introduce the notion of uniformity, and prove some basic properties of 

architectures that employ busses to realize arbitrary sets of permutations. Section 2.3 defines 
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the notion of a difference cover for a set of permutations, relates it to the notion of a uniform 

permutation architecture, and proves some properties of difference covers. In Section 2.4, we 

show how to build cyclic shifters that are provably efficient. Section 2.5 investigates how to 

design small difference covers for any set of permutations that forms a finite group. In Sec

tion 2.6, we extend the discussion to uniform architectures that realize permutations in more 

than one clock tick. Several applications and extensions of bussed permutation architectures 

are discussed in Section 2. 7, as well as further research and some questions left open by our 

research. 

2.2 Permutation architectures 

In this section we formally define the notion of a permutation architecture, and we make precise 

the notion of uniformity. We also prove some basic properties of permutation architectures that 

realize arbitrary sets of permutations. The definitions in this section are somewhat intricate 

and tedious, and are indicative of the difficulties faced in the design of efficient permutation 

architectures. In the next section, however, we use these definitions to show that reasoning 

about uniform permutation architectures is essentially equivalent to reasoning about difference 

covers, a simpler and more elegant mathematical notion. The remainder of this chapter then 

uses the simpler notion. 

For convenience, we adopt a few notational conventions. We use multiplicative notation 

to denote composition of permutations. The inverse of a permutation 11' is denoted by 11"-1 . 

Composition of functions is performed in right-to-left order, so that 11"111"2 is defined by 11"111"2X = 
7r1(7r2(x)) .• The identity permutation on n elements is denoted by In, or by I if the number 

of elements is unimportant. For a permutation set 4>, we denote by 4_>-l the set of all the 

inverses of the permutations of 4>, i.e., 4>-1 = {<P-1 : </> E 4>}. For two permutation sets 4> and 

111, the notation 4>1{1 is used to denote the permutation set { </>t/J : </> E 4> and t/J E 111}. We use the 

notation [n] to denote the set of n integers {O, 1, ... , n - 1}. 

2.2.1 What is a permutation architecture? 

We begin by formally defining the notion of a permutation architecture. 
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Definition 2 A permutation architecture is a 6-tuple A = (C, B, P, CHIP, BUS, LABEL) as 

follows. 

1. C is a set of chips; 

2. B is a set of busses; 

3. P is a set of pins; 

4. CHIP is a function CHIP : P - C; 

5. BUS is a function BUS : p - B; 

6. LABEL is a function LABEL : p - N, where if x, y E P, x "I y, and CHIP(x) = CHIP(y), 

then LABEL(x) "I LABEL(y). 

The set C contains all the chips in the architecture, and the set B contains all the busses. 

Which chips are connected to which busses is determined by the pins they have in common; 

the set P contains all the pins. The function CHIP determines which pins belong to which 

chips. Similarly, the function BUS determines which pins are interconnected by which bus. The 

function LABEL names the pins on the chips by natural numbers such that all pins on a given 

chip have distinct labels, which we shall sometimes call pin numbers. 

Our formal definition of a permutation architecture omits several subsystems that techni

cally should be included, but whose inclusion is not germane to our study. These subsystems 

include a control network that specifies what permutation is to be performed and clocking 

circuitry for synchronization. Our focus is on the structure of the bussed interconnections for 

permuting the data, and thus our definition encompasses only this aspect of the architecture. 

We now define what it means for a permutation architecture to realize a permutation. 

Definition 3 A permutation architecture A= (C, B, P, CHIP, BUS, LABEL) realizes a permuta

tion 11" : C - C if there exist two functions WRITE1!" : C - P and READ1!" : C - P, such that 

for any chips c, Ct, c2 E C, we have: 

1. CHIP(READ1!"(c)) = CHIP(WRITE1!"(c)) = c; 
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3. c1 -::/: c~ implies Bus(wRITE'll"(ci))-::/: BUS{WRITE11"(c2)). 

The architecture uniformly realizes 11" if, in addition: 

We say that a permutation architecture realizes a set IT of permutations if it realizes every 

permutation in IT. We say that it uniformly realizes IT if it uniformly realizes every permutation 

inn. 

Intuitively, for a permutation 11", the functions WRITE'll" and READ'll" identify the write pin 

and the read pin for each chip. Condition 1 makes sure that each chip writes and reads pins 

that are connected to it. Condition 2 ensures that the bus to which chip c writes is read by 

chip 11"( c ). Condition 3 guarantees that no collisions occur, that is, no two data transfers use 

the same bus. The architecture uniformly realizes a permutation (Conditions 4 and 5) if all 

chips write to pins with the same pin number and read from pins with the same pin number, 

as in the cyclic shifter from Figure 2-1. 

Our definition of a permutation architecture implies that "complete" permutations are to be 

realized, that is, every chip sends exactly one datum and receives exactly one datum. Moreover, 

an interconnection is required even when a chip sends a datum to itself. Since no collisions occur, 

the number of busses in the architecture must be at least the number of chips. This observation 

leads directly to the following theorem. 

Theorem 1 In any permutation architecture that realizes some nonempty permutation set IT, 

the avemge number of pins per bus is at most the avemge number of pins per chip. 

Proof. Let .A= (C, B, P, CHIP, BUS, LABEL) be a permutation architecture for IT. The average 

number of pins per chip is IPI / ICI, and the average number of pins per bus is IPI / IBI. Condi

tion 3 of Definition 3 says that for any permutation 11" E IT, any two distinct chips are mapped 

to distinct busses. Consequently, we get that IBI ~ ICI, which proves the theorem. • 

Under the assumption that no interconnection is needed for a chip to send data to itself, 

Theorem 1 is no longer applicable. A similar theorem can be proved for this model, however, 
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which involves the number of fixed points in the permutations realized by the architecture. 

Specifically, suppose the architecture realizes a set IT of permutations. Define the rank of a 

permutation 7r E IT as RANK(7r) = i{c EC: 7r(c) '/; c}j, and define the rank of the permutation 

set IT as RAN K(II) = max,..en RANK( 71" ). The analogue to Theorem 1 states that the ratio 

between the average number of pins per bus and the average number of pins per chip is at most 

ICI /RANK(II). 

2.2.2 Uniform permutation architectures 

In any architecture A that uniformly realizes a permutation set II, the number of pins that are 

actually used to uniformly realize II is the same for all chips, and additional pins on a chip 

are unused. Furthermore, the number of busses used in realizing any permutation 71" E II is 

equal to the number of chips. These observations lead to the following definition of a uniform 

architecture. 

Definition 4 A uniform permutation architecture for a permutation set II is a permutation 

architecture A= {C,B,P,cHIP,BUS,LABEL) such that: 

1. A uniformly realizes II; 

2. j{x E P: CHIP(x) = ci}j = j{x E P: CHIP(x) = c2}i for any two chips ci,c2 EC; 

3. IBI = ICI; 

4. if x"" y and LABEL(x) = LABEL(y), then BUS(x)"" BUS(y). 

Thus, all the chips in a uniform permutation architecture have the same number of pins (Con

dition 2), the 11.umber of busses is equal to the number of chips (Condition 3), and the labels of 

the pins on any bus are distinct (Condition 4). 

The following theorem demonstrates that any permutation architecture that uniformly re

alizes some permutation set II can be made into a uniform architecture for II. 

Theorem 2 Let A= {C, B, P, CHIP, BUS, LABEL) be a permutation architecture that uniformly 

realizes the permutation set II, and let k be the smallest number of pins on any chip in C. Then 

there is a uniform architecture A'= {C',B',P',cH1P',Bus',LABEL') for II with at most k pins 

per chip. 
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Proof. We construct the uniform architecture A' from the permutation architecture 

A in two steps. First, we construct an intermediate permutation architecture 

A" (C", B", P", CHIP", Bus", LABEL") by removing extraneous pins from chips in A such 

that all chips end up with the same number of pins per chip and such that each pin plays a role 

in uniformly realizing II. Then, the busses of A" are reorganized to produce the architecture 

A' in such a way that the number of busses in A' is equal to the number of chips. We assume 

that the permutation set II is nonempty, since otherwise the theorem is trivial. 

In the first step, we remove pins that are unused in uniformly realizing II. Since A uniformly 

realizes II, each permutation 7r E II can be associated with a distinct pair ( i, j) of pin labels 

corresponding to the labels that all chips write to and read from in order to realize 7r. A pin is 

unused if its label does not appear in any of these IIII pairs. Removing the unused pins results 

in the architecture A" in which all chips have the same number of pins, since each chip has 

exactly one pin for each label used in uniformly realizing II. The permutation architecture A" 

uniformly realizes II, and furthermore, each pin is used in uniformly realizing some 7r E II. If 

we let s denote the number of pins per chip in A", then we haves~ k, since originally at least 

one chip had k pins and no pins were added. 

In the second step, we reorganize the busses of A" to produce the uniform architecture A' in 

which the number of busses is equal to the number of chips. For any permutation architecture 

that realizes a nonempty permutation set, the number of busses is never smaller that the number 

of chips. Assume without loss of generality that C" = [n), B" = [m), and range( LABEL") = [s]. 

The theorem is proved if the architecture A" uses only n = IC"! busses, but in general, the 

architecture might use m > n busses. 

We define a collection of mappings W = {'I/Jo, 'ljJ1 , •.. , t/J,,_ 1}, where for each 0 ~ i ~ s - 1, 

the mapping tPi : [ n] -+ [ m) is defined to be tPi ( c) = b if a.nd only if chip c E C" is connected 

via its pin number i to bus b E B". The elements of W a.re indeed mappings since each chip 

has a pin numbered i for each 0 ~ i ~ s - 1. The mappings are injective (one-to-one), since 

otherwise two pins with the same pin number would be connected to the same bus, and both 

pins could not be used to uniformly realize permutations, thereby violating the construction 

of A" in the first step. The collection W is a multiset, since it may be that two different pin 

numbers i :f. j define the same mapping (i.e., tPi = tPi ). The key idea is that any permutation 
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is implemented by each chip writing to pin i and reading from pin j, thereby employing the 

mapping 1/Ji to write data from the n chips to n distinct busses, and the inverse of the mapping 

1/Jj to read data from the same n busses back to the n chips. 

We now show how to reorganize the busses of A" in order to construct a uniform architecture 

A'. We partition 1li into l equivalence classes 1li0 U 1li1 U · · · U 1lf 1_1 such that 1/Ji and 1/Jj are 

in the same equivalence class Wr, if and only if range('lj;i) = range('l/Jj)· This partitioning has 

the property that if 11" E II, then there exists an r such that 1r = 1/Jj11/Ji where 1/Ji, 1/Jj E Wr. 

(Recall that the inverse of an injective mapping 'ljJ : [n] --+ [m] is defined as the mapping 

'lj;- 1 : range(l/'.i)--+ [n] such that if 1/'.i(c) = b, then 1/)-1(b) = c.) For each 0 ~ r ~ l - 1, pick a 

bijection (one-to-one, onto) fr : range(l/'.i)--+ [n], where 'ljJ is any mapping in Wr. (We can pick 

a bijection, since 1/) is injective, which implies I range( 'ljJ )I = n.) We define the architecture A' 

by C' = C", B' = [n], P' = P", CHIP'= CHIP", LABEL'= LABEL", and for any pin x E P' such 

that tPLABEL'(x) E Wr, we define BUS'(x) = fr(Bus"(x)). 

The architecture A' has exactly s pins per chip and satisfies IB'I = IC'I = n, thereby 

satisfying Conditions 2 and 3 of Definition 4. We show Condition 4 holds by considering any 

two pins x and y with LABEL'(x) = LABEL'(y) = i. We have Bus'(x) = fr(Bus"(x)) and 

Bus'(y) = fr(Bus"(y)) for some fr as defined in the previous paragraph. Since fr is an injective 

mapping and because Condition 4 of Definition 4 holds for A", we then have x f:. y implies 

Bus'(x) f:. Bus'(y). 

It remains to show that Condition 1 of Definition 4 holds, that is, that A' uniformly realizes 

II. Consider any permutation 1r E II. Since A" uniformly realizes II, there exists a pair of pin 

labels ( i, j) sui;h that 1r is realized in A" by each chip writing to its pin numbered i and reading 

from its pin numbered j. We use the same pin labels (i,j) to realize the permutation 1r in A'. 

Conditions 1, 4, and 5 of Definition 3 are immediately satisfied. To verify Conditions 2 and 3 

we use the following observation. In architecture A" chip c is connected via its pin labeled h to 

bus 1/Jh(c), while in architecture A' it is connected to bus fr(tPh(c)), where 1/Jh E Wr. Condition 

2 now holds since 1r = 1/'.i;11/'.ii = Ur1/Ji)- 1(Jrl/'.ii). Condition 3 holds since frtPi is a permutation 

on [n]. We therefore conclude that A" is a uniform architecture for II with at most k pins per 

chip. • 
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2.2.3 Some properties of uniform architectures 

From the definition of uniform permutation architectures one can derive several structural 

properties of these architectures. The next theorem provides a lower bound on the number of 

pins per chip in any uniform architecture for a permutation set II. 

Theorem 3 Let A = (C, B, P, CHIP, BUS, LABEL) be a uniform permutation architecture for a 

permutation set II. Then the number of pins per chip in A is at least JfTIT. 

Proof. Because architecture A realizes II uniformly, we can associate each 7r E II with a pair 

( i, j) of pin numbers such that 7r is realized by each chip writing to its pin labeled i and reading 

from its pin labeled j. Since A is uniform, each chip has exactly IPI / ICI pins, and the number 

of such pairs is (IPI / ICl)2 • No two permutations can be associated with the same pair, and 

thus, we have (IPI / ICl)2 2: IIII or IPI / ICI 2: ./!TIT. • 
Another observation made by Fiduccia [28] involves the maximal number of chips reachable 

in one clock tick from any given chip in a uniform architecture. (See also [48, p. 308].) 

Theorem 4 Any uniform permutation architecture with k pins per chip has exactly k pins per 

bus, and each chip is connected to at most k( k - 1) other chips. 

Proof. If there is a bus with more than k pins, then two pins on the bus must have the 

same label, contradicting Condition 4 of Definition 4. Now, since for uniform architectures the 

number of busses is equal to the number of chips, each bus must have exactly k pins. Moreover, 

since any chip is connected to at most k different busses (via its k pins), each of which is . 
connected to no more than k - 1 other chips, the number of neighbors of a chip is at most 

k(k - 1). • 
A permutation architecture can often nonuniformly realize many more permutations than 

the square of the number of pins per chip. As an example, consider a "crossbar" architecture 

of n chips and n busses where each chip is connected to each bus. This architecture can 

nonuniformly realize all n! permutations, which is much greater than n2
, the square of the 

number of pins per chip. In Section 2.7.3 we discuss some of the capabilities of nonuniform 

permutation architectures. 
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2.3 Difference covers 

In this section, we present our main theorems which establish the relationship between differ

ence covers for permutation sets and uniform permutation architectures. We also prove some 

theorems concerning the design of general difference covers and difference covers for Cartesian 

products of permutation sets. Finally, we present an alternative representation for difference 

covers called substring covers based on similar notions in the literature of difference sets. 

2.3.1 Difference covers and uniform architectures 

We first provide a generalization of Definition 1 to arbitrary sets of permutations. 

Definition 5 A difference cover for a permutation set II is a set CI> = { </>o, </>i, ... , </>k-1} of 

permutations such that for each 7r E II there exist </>i,</>j E CI> such that 11" = </>j1</>i· 

Equivalently, we can use our product-of-sets notation to say that CI> is a difference cover for II 

if cf>- 1 cf> 2 II. 

The following theorems show how difference covers and uniform architectures are related. 

Theorem 5 describes how to design a uniform architecture for a permutation set II when a 

difference cover for II is given. Theorem 6 presents a construction of a difference cover for a 

permutation set II from a uniform architecture for II. 

Theorem 5 Let II be a permutation set, and let cf> be a difference cover for II such that ICI>I = k. 

Then there exists a uniform architecture for II with k pins per chip. 

Proof. Let CI>= {</>o,</>1, ... ,</>k-d, and assume that II is a set of permutations on n objects. 

We construct a permutation architecture for II with n busses and k pins per chip. We name 

the chips and busses of the architecture by natural numbers, and the pins by pairs of natural 

numbers. The architecture .A = (C, B, P, CHIP, BUS, LABEL) is defined as C = [n], B = [n], 

p = [n] x [k], CHIP(c,i) = c, LABEL(c,i) = i, and BUS(c,i) = </> LABEL(c,i)(CHIP(c,i)) = </>i(c). 

That is, chip c is connected via its pin number i to bus </>i( c ). 

To see formally that this architecture uniformly realizes II, let 11" E II be a permutation, and 

let </>i, </>j E CI> be elements of the difference cover for II such that 11" = </>j1</>i· Define the write 

function for 11" as WRITE,..(c) = (c, i) and define the read function for 11" as READ,..(c) = (c,j). 
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(Note that i and j are always in the range 0 through k - 1.) We now verify that the five 

Conditions of Definition 3 are satisfied. Condition 1 holds since for any chip c E C we have 

CHIP(WRITE1!"(c)) = CHIP(c, i) = c, and CHIP(READ1!"(c)) = CHIP(c,j) = c. Condition 2 is 

satisfied since for any chip c E C we have 

BUS(WRITE1!"(c)) = BUS(c, i) 

</>; ( c) 

</>j</>jl </>;( c) 

= </>j{7r(c)) 

BUS(7r(c),j) 

BUS( READw( 7r( c ))). 

Condition 3 holds because if sus(WRITE""(c1)) = sus(WRITEw(c2)) for any two chips c1, c2 EC, 

then we have </>;(c1) = </>;(c2), which implies that c1 = c2, since</>; is invertible. Conditions 4 

and 5 both hold since LABEL{WRITE1!"(c)) = i and LABEL{READ1!"(c)) = j for all chips c E c. We 

therefore conclude that the architecture A uniformly realizes II. The architecture is uniform, 

but Theorem 2 obviates the need to show this fact. • 

Given a difference cover of small cardinality, Theorem 5 says we can construct a uniform 

architecture with few pins per chip. In fact, the reverse is true as well, as the following theorem 

shows. 

Theorem 6 Let 11 be a permutation set, and let A be a uniform architecture for II with k pins 

per chip . .Then 11 has a difference cover CI> such that l<I>I ~ k. 

Proof. Given a uniform architecture A= {C,B,P,cHIP,BUS,LABEL) for the permutation set 

11, where k is the number of pins on each chip, we construct a difference cover CI> for 11 as 

follows. Assume without loss of generality that C = B = [n] and range(LABEL) = [k]. For 

each pin number i, where i = 0, 1, ... , k - 1, we define </>; by </>;( c) = b if and only if chip c is 

connected via its pin number i to bus b. We now define the difference cover CI> to be the set 

CI> = { </>o, </>i. ... , <l>k-d· (The set CI> may have less than k elements, since some permutations 

may be repeated among the </>; 's.) 
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To see that t is a difference cover for II, consider any permutation 11" E II. Since A 

uniformly realizes 11", there exists a pair of pin labels ( i, j) such that 11" is realized by each 

chip writing to its pin numbered i and reading from its pin numbered j. The labels i and j 

satisfy i = LABEL(WRITE11'(c)) and j = LABEL(READ11'(c)) for all chips c E c, as follows from 

Conditions 4 and 5 of Definition 3. Conditions 1 and 3 of Definition 3 imply that <Pi and <Pi are 

both permutations, and therefore there are ¢>h, </>1 E cP such that ¢>h = <Pi and <P1 = <Pi. Finally, 

Condition 2 of Definition 3 implies that 11" = <Pj1</>i = ¢>/1¢h, which proves that cP is indeed a 

difference cover for II. • 
2.3.2 Designing difference covers 

Theorems 5 and 6 show that uniform architectures and difference covers are very closely related. 

Thus, when designing a uniform permutation architecture for a set of permutations, it suffices 

to focus on the problem of constructing a good difference cover for that set. 

We first present a simple theorem that demonstrates that any arbitrary permutation set II 

has a difference cover of size at most IIII + 1. 

Theorem 7 Let II be an arbitrary permutation set on n elements. Then II has a difference 

cover of size at most III! + 1. 

Proof. Define cP =II U {in}· For any 11" E II, we have 11" = 1;;111", where 11",ln E cP. Therefore, 

<I> is a difference cover for II, and It! :$ IIII + 1. • 
Theorem 7 presents a naive construction of a difference cover for an arbitrary permutation 

set II. In general, the bound of Theorem 7 cannot be improved without specific knowledge about 

the structure of the permutation set involved. In [30], Fiduccia describes how to construct a 

permutation set II of arbitrary size, for which no difference cover of cardinality !III exists. This 

shows that the construction of Theorem 7 is optimal for general permutation sets. 

Specific knowledge about the structure of a permutation set can indeed be helpful in ob

taining a small difference cover for it. In Sections 2.4 and 2.5, we investigate the construction of 

difference covers for cyclic groups of permutations and for groups in general. Here, we examine 

permutation sets formed by Cartesian products. 
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Definition 6 Let II1 be a set of permutations from X 1 to Xi. and let II2 be a set of permu

tations from X 2 to X2. The Cartesian product II = II1 x II2 is the set of permutations from 

X1 x X2 to X1 x X2 defined as II= {(1r1, 1r2): 11"1 E IIi, 1r2 E II2}· Operations on the elements 

of II are performed componentwise. 

The Cartesian product II1 x II2 is isomorphic to the Cartesian product II2 x IIl. The 

Cartesian product II = IIl x II2 is an abelian permutation set if and only if both IIl and II2 

are abelian permutation sets. 

The next two lemmas provide bounds on the size of difference covers for Cartesian products 

of permutation sets. 

Lemma 8 Let II1 be a permutation set on n1 objects, and let II2 be a permutation set on n2 

objects. Then the Cartesian product II = II1 x II2, which is a permutation set on nl · n2 objects, 

has a difference cover of size III1I + III2I· 

Proof. Let~ be the union of {(1r}1,In2 ): 1r1 E IIl} and {(Inp1r2): 11"2 E II2}· Ea.ch permu

tation 1r = ( 1ri, 11"2) E II, can be represented as ( 7ri, 1r2) = ( 11"}1, In2 )-
1 · (In11 1r2), where both 

( 1r11 Jn2 ) and (In 1 , 1r2) a.re in ~- Thus ~ is a difference cover for II, and the size of~ is exactly 

• 
Lemma 9 Let II 1 be a permutation set on n1 objects with a difference cover ~ 1 , and let II2 

be a permutation set on n 2 objects with a difference cover ~2 • Then the Cartesian product 

~ = ~1 x ~2 is a difference cover for II = II1 x II2· 

. 
Proof. For each 1r = ( 7ri, 7r2) E II, there exist </>i11 </>j1 E ~1 such that 1r1 = </>ii 1 </>ip and 

there exist </>;2 ,</>i2 E ~2 such that 1r2 = </>j/</>i2 • We then have (7ri,7r2) = (</>ii1</>ip</>j/</>i2 ) = 
(</>jp</>)2)-1(</>ip</>i2 ), where both (</>ip</>i2 ) and {</>jp</>j2 ) are in~= ~1 x ~2. and hence~ is a 

difference cover for II. • 
To demonstrate both the use of difference covers and of Lemma 9, we present in Fig

ure 2-2 a uniform permutation architecture due to Fiduccia. [28] for realizing shifts m 

a two-dimensional array. The architecture uniformly realizes the permutation set II 

{I, N, E, S, W, NE, SE, NW, SW} of eight compass directions plus the identity I. We introduce 
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two permutation sets Il1 = {I, N, S}, Il2 = {I, E, W}, and corresponding difference covers 

~1 = {I, N} and ~2 = {I, E}. The Cartesian product Il1 x Il2 is Il, and the set of permutations 

~ = ~1 x ~2 = {I, E, NE, N} is a difference cover for Il. 

Figure 2-2: A uniform architecture due to Fiduccia [28] based on the difference cover {I, E, NE, N} for 
the permutation set II= {I, N, E, S, W, NE, SE, NW, SW}. 

2.3.3 Substring covers: an alternative notation 

We conclude this section by defining the notion of a substring cover for a permutation set Il, 

which is equivalent to the notion of a difference cover. (A similar notion for difference sets is 

well known in the literature (14, 66].) 

Definition 7 An ordered list E = (u0 , ui, ... , O'k-l) of permutations is a substring cover for a 

permutation set n if 

1. 0"00"1 • • ·O'k-1 =I, and 
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2. for all 7r E II, there exist 0 ~ i, j ~ k -1 such that 7r = O'iO'i+l · · · O'j, where the arithmetic 

in the indices is performed modulo k. 

The substring cover :E is a list of permutations such that all the permutations in II can be 

represented as a composition of a substring of permutations of :E. The following two theorems 

show that the notions of a substring cover and a difference cover are equivalent. 

Theorem 10 Let II be a permutation set on n elements, and let :E be a k-element substring 

cover for II. Then II has a difference cover <I> with at most k elements. 

Proof. Given a k-element substring cover :E = (0'0 , 0'1 , •.. , O'k-l) for II, a difference cover <I> 

with at most k elements can be constructed. For each 0 ~ i ~ k - 1 we define <Pi = 0"00'1 · · · (ji. 

Ha permutation 7r can be represented as 7r = O'iO'i+l • • • (ji, then 7r = ¢-;!1 <Pi. By construction, 

the difference cover <I> has at most k elements. • 
Theorem 11 Let II be a permutation set on n elements, and let <I> be a k-element difference 

cover for II. Then II has a substring cover :E with k elements. 

Proof. Given a k-element difference cover <I> = { ¢0 , <Pi. ... , <!>k-d for II, we build a substring 

cover :E for II by defining <Ji = ¢-;_\<Pi for all 0 ~ i ~ k - 1. The product <Jo<J1 • · · <Jk-1 yields 

the identity permutation. For each 7r E II, if 7r = ¢i
1 </>j, then 7r = <Ji+1<Ji+2 • • ·<Jj. Therefore E 

is a substring cover for II with k elements. • 
Referring back to the example of the eight compass directions, we present a substring 

cover for the permutation set II= {I,N,E,S, W,NE,SE,NW,SW}. The substring cover :E = 

(S, E, N, W) is constructed from the difference cover <I> = {I, E, NE, N} that was used in the 

architectu;e of Figure 2-2. Each of the eight compass directions can be realized as a substring 

of the list E = (S, E, N, W). 

As another example, consider the permutation set II = {I, N, E, S, W} of the shifts in a 

2-dimensiona.l array corresponding to the four compass directions. This permutation set has 

a difference cover <I> = {I, SE, S} and a corresponding substring cover :E = (N, SE, W). Con

sequently, there is a uniform architecture for realizing the four compass directions with three 

pins per chip, as has been observed by Feynman [36, pp. 437-438]. Figure 2-3 presents a 

uniform architecture based on the difference cover <I> = {I, SE, S} for the permutation set 

II= {I, N, E, S, W}. 
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Figure 2-3: A uniform architecture due to Feynman [36) based on the difference cover {I, SE, S} for 
the permutations set II = {I, N, E, S, W}. 

2.4 Cyclic shifters 

. 
This section describes uniform architectures for realizing cyclic shifts among n chips in one 

clock tick. We first present a difference cover of size 0( Jn) for the set of all n cyclic shifts on 

n elements, and we give an area-efficient layout for the corresponding permutation architecture 

suitable for implementation as a printed-circuit board. When n can be expressed as n = 

q2 +q+1, where q is a power of a prime, we improve the bound on the size of a difference cover 

for all cyclic shifts on n elements to the optimal value of r Jnl. Finally, we prove that for any 

cyclic shifter that operates in one clock tick (even a nonuniform one), the average number of 

pins per chip is at least r vnl. 
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2.4.1 General difference covers for cyclic shifts 

The first permutation architecture for cyclic shifters that we present is based on the construction 

in the following theorem. 

Theorem 12 The set of n cyclic shifts on n elements has a difference cover of size at most 

2 r vnl - i. 

Proof. Since the set of n cyclic shifts on n elements forms a group, and since this group is 

isomorphic to the group Zn, we shall construct a difference cover D for Zn. For convenience, 

let m = r y'nl. Define two sets A= {O, 1, ... , m - 1} and B = {O, m, 2m, ... , (m - l)m}, and 

let the difference cover D be defined by D = A U B. Each element s E Zn can be realized as 

s = b- a (mod n), where a EA and b EB by taking a= m - (s mod m) and b = rs/ml· m, as 

can be verified. The size of the difference cover D is 2m - 1 = 2 r y'nl - 1, since the element 0 

occurs in both A and B. • 
The difference cover constructed in the proof of Theorem 12 corresponds to an architecture 

with a regular, area-efficient layout, as shown in Figure 2-4. The n chips of the architecture 

are laid out in an array consisting of m = y'n rows, each containing y'n chips. (For simplicity, 

we assume that n is a square.) Each chip has pins 0, 1, ... , m - 1 on the top side, and pins 

m, m + 1, ... , 2m - 1 on the left side. Each bus consists of one vertical segment and one or two 

horizontal segments. Each wiring channel consists of m = ,/Ti tracks, where each track is used 

to lay out segments of busses. When n is not a square, a cyclic shifter on n chips can be laid 

out in a similar fashion, with each wiring channel having at most 2 f v'nl tracks. The side of 

the layout is therefore 0( n ), since there are r v'nl chips and r vnl wiring channels along the 

side. Th~area of the layout is 0( n2 ), which is asymptotically optimal since any architecture 

that can realize any of the cyclic-shift permutations in one clock tick requires area !l( n2 ) [83, 

p. 56]. 

Remark. The bound of 2 fvnl - 1 pins per chip can be improved to (v'2 + o(l))y'n, as 

was observed by Mills and Wiedemann [68]. See Section 2.7.4. 

Occasionally, it is desirable to implement a subset of the cyclic shifts on n elements. The fol

lowing corollary to Theorem 12 shows that when the shift amounts form an arithmetic sequence, 

a small difference cover exists. 
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Figure 2-4: A layout for a cyclic shifter with n = 16 chips. Each chip and each bus has 7 pins. Each 
bus is constructed of one vertical segment and either one or two horizontal segments. 

Corollary 13 Let a, b, and p be integers modulo n. For each r E (p], define 11'"r to be the 

permutation on [n] that maps each c E [n] to c +a+ rb (mod n). Then the permutation set 

{ 7r r : r E (p]} has a difference cover of size 2 f y'P l · 

Proof. As in the proof of Theorem 12, we construct two sets A and B whose union is the 

desired difference cover. The sets are A = {O,b,2b, ... ,{m- l)b} and B = {a,a + mb, 

a+ 2mb, ... , a+ (m - l)mb}, where m = f v'Pl· • 
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2.4.2 Optimal difference covers for cyclic shifts 

Returning to the problem of implementing all n cyclic shifts on n elements, the following 

theorem demonstrates that for certain values of n, the optimal r v'nl bound can be obtained. 

Theorem 14 The set of n cyclic shifts on n elements has a difference cover of size f fol if 

n = q2 + q + 1, where q is a power of a prime. 

Proof. As in the proof of Theorem 12, the problem is equivalent to that of constructing a 

difference cover D for Zn. When n is the size of a projective plane ( n = q2 + q + 1, where q is a 

power of a prime), this problem is equivalent to the problem of constructing a difference set. The 

difference set we give is due to Singer; a proof of its correctness is given in Hall [43, p. 129]. Let x 

be a primitive root of the Galois field GF(q3 ), and let F(y) be any irreducible cubic polynomial 

over the Galois field G F( q). We construct a difference cover D for Zn from the set [ n] by choosing 

those i E [n] such that the power xi can be written in the form xi= ax+ b (modF(x)) for 

some a,b E GF(q). • 

The construction of a uniform architecture based on a projective plane can be interpreted 

as follows. The n points of the projective plane correspond to the n chips, and the n lines of the 

projective plane correspond to the n busses. Each line contains q + 1 points, which means that 

each bus is connected to q + 1 chips. Each point is incident on q + 1 lines, which means that 

each chip is connected to q + 1 different busses through its q + 1 pins. For example, Figure 2-1 

demonstrates a uniform architecture based on the projective plane of size 13. 

Theorems similar to Theorem 12 (but without application to architecture) appear in the 

combinatorics literature: see, for example, [56]. Bus connection networks based on projective . 
planes have also been studied by Bermond, Bond, and Sea.le [11] a.nd by Mickunas [64], who 

observed that projective planes can be used to construct hypergraphs of diameter one. 

2.4.3 Lower bound for cyclic shifters 

Uniform architectures for cyclic shifters based on projective planes achieve the minimal number 

of pins per chip among all uniform cyclic shifters. We now prove a lower bound off vnl on the 

average number of pins per chip for any permutation architecture that realizes all the cyclic 

shifts. This lower bound applies to all permutation architectures, including nonuniform ones, 
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and shows that uniform cyclic shifters based on projective planes are optimal among all cyclic 

shifters that operate in a single clock tick. 

Theorem 15 Let A = (C, B, P, CHIP, BUS, LABEL} be a permutation architecture for the n 

cyclic shifts on n chips. Then the average number of pins per chip is at at least r v'nl. 

Proof. The average number of pins per chip is IPI /n. We shall prove that IPI 2'.: n r vnl which 

implies the theorem. We adopt the following conventions for notational convenience: 

1. The set of busses is B = {b0 , b1 , ••• , bm_1}. We denote by ki the number of pins connected 

to bus bi, that is, ki = l{x E P: BUs(x) = bi}I. 

2. The busses that have at least r vnl pins each are indexed first, that is, if there are T 

busses With at least r Vnl pins each, then ki 2'.: r Vnl for i = 0, ... , T - 1 and ki < r Vnl 
for i = r, ... , m - 1. 

The thrust of the proof is to count the number of distinct data transfers when the architec

ture realizes each of the n - 1 nontrivial shifts in turn. (The identity permutation is a trivial 

shift.) Each chip can be mapped to each other chip by one of the cyclic shifts, i.e., the cyclic 

shifts form a transitive group of permutations. Considering only the n-1 nontrivial shifts, there 

are exactly n( n - 1) distinct data transfers that must be implemented through interconnections 

in the architecture. 

We compute an upper bound on the number of distinct data transfers that the busses can 

implement. Each of the first r busses bo, ... ,br-I can be employed to realize at most one 

distinct data transfer in each of the n - 1 nontrivial shifts. Thus, at most r( n - 1) distinct data 

transfers can be carried out by the first r busses. Any other bus bi, where r ~ i ~ m - 1, can 

realize at most ki(ki - 1) distinct nontrivial data transfers, since it has only ki pins connected 

to it. Thus, the total number of distinct data transfers that the busses can realize is 

m-1 

r( n - 1) + L k;( k; - 1) , 

which must be larger than n( n - 1) if all nontrivial shifts are to be realized. Hence, we have 

m-1 

L k;(k; - 1) 2'.: (n - r)(n - 1) . 
i=r 
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We can use this inequality to bound the number of pins on all busses with fewer than r fol 
pins. We have ki - 1 $: r fol - 2 for i = r, ... , m - 1, and thus 

1=r 

l m-1 

rfol _ 2 ~ ki(ki -1) 

(n-r)(n-1) 
rfo1 - 2 

> 

> (n-r)fv'nl. 

We now bound the total number of pins in the architecture from below. We have 

which proves the theorem. 

i=O 

r-1 m-1 

L:ki +I: ki 
i=O 1=r 

> rrv'nl+(n-r)fv'nl 

= n rv'nl. 

2.5 Difference covers for groups 

• 

In this section we show that small difference covers for abelian and nonabelian permutation 

groups exist. Specifically, for any abelian permutation group II with p elements, we apply the 

decomposition theorem for finite abelian groups and the results for cyclic shifters in Section 2.4, 

and we show the existence of a difference cover of size 0( v1f> ), which is optimal to within a con

stant factor. For a. genera.I permutation group II with p elements, we give a greedy construction 

of a difference cover with 0( y'plgp) elements. Finkelstein, Kleitman, and Leighton [31] have 

recently improved our result for general groups to 0( v1f> ). 

2.5.1 Abelian groups 

We first show that if a permutation set forms an abelian group with p permutations, then a 

difference cover of size 0( yp) can be constructed. 

Theorem 16 For any abelian group II with p elements, there exists a difference cover ~ of 

size at most 3yp. 
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Proof. Assume without loss of generality that p > 1. By the decomposition theorem for finite 

abelian groups (58, p. 133], any abelian group II is isomorphic to a cross product of cyclic groups 

where P1P2 ···Pk = p, and each Pi ~ 2. Let i be the unique index such that P1P2 · · · Pi-1 $ vlf> 
and Pi+1Pi+2 ... Pk < vlf>' and let m = r vlf> I P1P2 ... Pi-1 l · using the argument of Theorem 12, 

we first construct a difference cover for Zp; from the union of two sets A; and B;, where jA;I $ m 

and jB;I $ l.Pi/mJ, such that each element of Zp; can be expressed in the form b- a (modp;) 

or a - b (modp;), where a EA; and b EB;. 

We now construct a difference cover for II :::::: Zp1 x ZP2 x · · · x Zp1c from the union of two 

sets A and B, where 

and 

That AU B is a difference cover for II follows from essentially the same argument a.s is used in 

Lemma 9. The size of the difference cover AU B is !Al + IBI. The size of A is 

IAI = P1P2 ... Pi-1 IA; I 

< P1P2 · · ·Pi-1m 

< P1P2 · · "Pi-1 f y'P/P1P2 · · "Pi-1l 

< y'P + P1P2 · · · Pi-1 

$ 2y'p. 

Similarly, the size of B is 

IBI IB;I Pi+iPi+2 ... Pk 

< tp;/ m J Pi+iPi+2 · · ·Pk 

< (pif r JP 1 P1P2 ... Pi-11) Pi+1Pi+2 .. ·Pk 

$ (P1P2 · · · p;f JP) Pi+iPi+2 · · ·Pk 

= y'P. 

Consequently, the size of the difference cover for II is at most 3JP. • 
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2.5.2 General groups 

The next theorem gives a method for constructing small difference covers for general groups of 

permutations. 

Theorem 17 Let II be an arbitrary group with p elements. Then II has a difference cover cl> 

of size at most J2p ln p + 1. 

Proof. We construct a difference cover incrementally starting with a partial difference cover 

cl>1 = {I}. At each step of the construction, we select an element cPi+i E II such that 

jcI>i1 (cI>i U {<Pi+d)j maximizes jcI>i1 (cI>i U {1l'})j over all 7!' E II. We then define the new partial 

difference cover as cl>i+l = cl>i U {<Pi+d· 

The analysis of this construction is in three parts. We first determine a lower bound on the 

number of elements of II that are not covered by the partial difference cover cl>i but are covered 

by cl>i+i · We then develop a recurrence to upper bound the number of elements of the group 

II that are not covered at the ith step. Finally, we solve the recurrence to determine that the 

number k of iterations needed to cover all elements in II is at most J2p ln p + 1. 

We first determine how many new elements of II are covered when cl>i is augmented with 

cPi+1 to produce cl>i+l, for i 2:: 1. Let the set ~i be the set of elements that are not covered by 

the partial difference cover cl>i, which can be defined as ~i = II - cl>i1cl>i. Consider triples of 

the form (¢, 6, 7!'} such that <P E cl>i, 6 E ~i, 7!' E II, and </>6 = 7!'. Observe that for any fixed 

7!' E II and 6 E ~i, there is at most one triple of the form (¢, 6, 7!'} in the set of triples, namely 

(7!'6-1 ,6,7!') when 7r6-1 E •i· For a fixed 7r, the number of triples (¢,6,7!'} in the set of triples 

is a lower bound on the number of elements covered by cl>i U { 1r} but not by cl>i, since we have 

6 = q,-11r·and 6 E ~i = II - •i1cl>i. For each <PE •i and 6 E ~i, there is exactly one triple 

in the set of triples, and thus there are exactly lcI>il · l~il triples. Since there are at most III! 

distinct permutations appearing as the third coordinate of a triple, the permutation cPi+i that 

appears most often must appear a.t lea.st lcI>il · l~il / IIII times, a.nd hence a.t lea.st this many 

elements a.re covered by •i+i that are not covered by cl>i. 

We ca.n now bound the number of elements not covered by cl>i+l in terms of the number of 

elements not covered by cl>i by 
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When we obtain 16.kl < 1 for some k, the partial difference cover ~k is a difference cover for II 

because Llk is empty. Thus, ~k is a difference cover when 

k-1 ( ') p II 1 - !... s 1, 
i=l p 

or equivalently, when 

k-1 ( ') ln p + L ln 1 - !... $ 0. 
j=l p 

Using the inequality ln(l + x) $ x, we have 

lnp+ ~ln (1- i) 
j=l p 

k-1 . 

< lnp-E!... 
j=l p 

1 k-1 

lnp- - "Li 
p i=l 

< lnp-(k-1)2 
2p 

< 0. 

Thus, ~k is a difference cover when k ~ J2PliiP + 1. • 
This proof of Theorem 17 provides a construction which can be implemented as an deter

ministic, polynomial-time algorithm with O(p2 lg p) algebraic steps. We could also have proved 

the theorem by relying on the result of Babai and Erdos [4] that any group has a small set of 

generators, but this method would have produced only an existential (nonconstructive) result. 

Finkelstein, Kleitman, and Leighton [31] have recently improved our result for general groups 

to 0( .jP ). Their proof uses a folk theorem [25] that every simple group of non prime order p 

has a subgroup of size at least .jP. The folk theorem is proved by checking each type of group 

in the classification theorem [39, pp. 135-136]. 
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2.6 Multiple clock ticks 

In this section, we discuss uniform permutation architectures that realize permutations in sev

eral clock ticks. By using more than one clock tick, further savings in the number of pins per 

chip can be obtained. We first generalize the notion of a difference cover to handle multiple 

clock ticks. We then describe a cyclic shifter on n chips with only O(n1/ 2t) pins per chip that 

operates in t ticks. 

2.6.1 The notion of at-difference cover 

We first generalize the notion of a difference cover to handle realization of permutations in t ~ 1 

clock ticks. 

Definition 8 A t-difference cover for a permutation set IT is a set • of permutations such that 

(•-1•)t 2 IT. 

Using a t-difference cover • for the permutation set IT, any permutation 7r E IT can be 

expressed as the composition oft differences of permutations from •· The next lemma relates 

t-difference covers to permutation architectures that uniformly realize permutations in t clock 

ticks, for general values oft. 

Lemma 18 Let• be at-difference cover with k elements for a permutation set IT. Then there 

is a permutation architecture with k pins per chip that uniformly realizes IT in t clock ticks. 

Proof. We define the permutation set E = •-1•. Let A= (C,B,P,cHIP,BUS,LABEL} be th~ 

permutation architecture, based on the difference cover~. that uniformly realizes E. Hence, the 

permutati~n architecture A can uniformly realize any <J E E in one clock tick. Each permutation 

7r E IT can be expressed as 1r = <1t-i<1t-2 ···<Jo, where <Ji E E for 0 $ i $ t - 1, since we have 

Et = ( •-1 • )t 2 IT. In order to realize 7r in t clock ticks, the permutation architecture A 

uniformly realizes <Ji in clock tick i for 0 $ i $ t - 1. • 
2.6.2 Constructing t-difference covers for cyclic shifters 

Lemma 18 claims that the problem of uniformly realizing a permutation set IT in t clock ticks 

can be reduced to finding a permutation set E such that Et 2 IT, and then finding a difference 
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cover for 'E. The great advantage of using more than one clock tick is in the further savings 

in the number of pins per chip. The following theorem, for example, describes a construction 

of at-difference cover of size O(n112t) for the set of cyclic shifts on n objects. This result can 

be used to build a uniform architecture on n chips with only O(n1/ 2t) pins per chip that can 

realize any cyclic shift on the n chips in t clock ticks. 

Theorem 19 For any n ~ 1 and t ~ 1, the pennutation set of all the n cyclic shifts on n 

objects has at-difference cover of size O(n112t). 

Proof. For the purpose of the proof, we denote the permutation set of all the n cyclic shifts 

on n objects by IIn. (We remind that IIn ~ Zn.) We first treat the case for those n such that 

there exists an integer m satisfying n1/t s ms 4n1/t and gcd(m, n) = 1. We then use this case 

to extend the proof to all values of n. 

Since gcd(m,n) = 1, there exists an m-1 E Zn such that m · m-1 = 1 (modn). For each 

r E [m], define the permutation <Ir : [n] -+ [n] as <Ir(c) = m-1 (c + r) (mod n), and define the 

permutation a~ : [n] -+ [n] as a~(c) = mt-1 (c + r) (mod n). Next define the permutation set 

E = {a r} U {a~}. The set {a r} is an arithmetic sequence of cyclic shifts on n elements (as in 

Corollary 13) followed by the fixed permutation corresponding to multiplication by m-1 , and 

thus {ar} has a difference cover of size 0( Vffi). Similarly, the set {a~} has a difference cover of 

size O(fo). Combining the two difference covers for {ar} and {a~}, we get a difference cover 

<P of size O(fo) = O(n1/2t) for 'E. 

We now show the inclusion 'Et 2 IIn. Let 7r E IIn be a permutation of a cyclic shift by 

s. We express the shift amount s E [n] as s = s0 + s1 m + ···+St-I mt-1, where Si E [m] for 

0 s i s t - 1. The permutation 11" can be described as 

11"(c) c + s (mod n) 

c +so+ s1m + · · · + St-imt-t (mod n) 

= mt-I (st-1 +m-1 (st-2+···+m-1 (so+c))) (modn) 

which proves that 11" E Et. Hence, we get the inclusion Et ~ IIn, which together with the fact 

that there is a difference cover <P of size 0( n 1/ 2t) for 'E, proves the theorem for the case when 

there exists an integer m satisfying n I/t s m s 4n I/t and gcd( m, n) = 1. 
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Such an m need not exist for every n and every t, however. We can overcome this difficulty 

by factoring n = n1 n2 such that n1 consists of no even-indexed primes (3, 7, 13, ... ) and n2 

consists of no odd-indexed primes (2, 5, 11, ... ). Since we have gcd(n1, n2) = 1, we can use the 

Chinese remainders theorem to express Zn as a Cartesian product Zn ~ Zn1 x Zn2 • We let m1 

be the first even-indexed prime at least as large as n!/t, and let m2 be the first odd-indexed 

prime at least as large as n~/t. Bertrand's postulate [44, p. 343] guarantees that for every x, 

there is a prime between x and 2x, which means mi E fn}'t,4n}'tJ for j = 1,2. (Tighter bounds 

are possible.) 

We can now use the previous construction to construct at-difference cover ~I of size 0( n~ 12t) 

for Zn1 , which is isomorphic to IIn1 , and a t-difference cover ~2 of size 0( n~/2t) for Zn2 , which 

is isomorphic to IIn2 • Using the same technique as in the proof of Lemma 9, we can construct 

a t-difference cover of size 0( n~/2t) · 0( n~/2t) = 0( n 112t) for Zn1 x Zn2 ~ Zn ~ IIn. • 

One can rather straightforwardly use Corollary 13 to obtain a t-difference cover of size 

O(tn112t). Based on the representation of the shift amount s = s0 + s1 m +···+St-I mt-I, one 

can come with t separate difference covers, each of size 0( n112t), for the t separate sequences 

of arithmetic shifts by { sm i : s E [ m]} for 0 ~ i ~ t - 1. Theorem 19 avoids the extra factor 

of t by constructing only one such difference cover and using its elements for each one of the t 

differences. 

2. 7 Applications and extensions 

This sectiob contains some additional results on permutation architectures and difference cov

ers. We describe efficient uniform architectures that can realize the permutations implemented 

by various popular interconnection networks, including multidimensional meshes, hypercubes, 

and shuffle-exchange networks. We extend the lower bound technique of Section 2.4.3 to general 

permutation sets. We examine nonuniform permutation architectures, and adapt some com

binatorial results in the literature to apply to permutation architectures. Finally, we describe 

directions for further research and some related work brought on by an earlier version (48] of 

this research. 



50 CHAPTER 2. BUSSED PERMUTATION ARCHITECTURES 

2.7.1 More networks 

By using busses, many popular interconnection networks can be realized with fewer pins than 

conventionally proposed. Here, we mention a few. 

The permutation architectures for realizing compass shifts on two-dimensional arrays can 

be extended in a natural fashion to d-dimensional arrays. For the d-dimensional analogue 

of the shifts {I, N, E, S, W}, there is a uniform architecture that uses only d + 1 pins per 

chip to implement the 2d + 1 permutations. For the d-dimensiona.l analogue of the shift~ 

{I, N, E, S, W, NE, SE, NW, SW}, there is a uniform architecture with only 2d pins per chip that 

implements all 3d shifts. (These results were independently obtained by Fiduccia [29, 30].) 

A Boolean hypercube of dimension d is a degenerate case of a d-dimensional array. Only 

d + 1 pins per chip are required by a permutation architecture that uses busses, whereas 2d pins 

per chip are needed if point-to-point wires are used. (To realize a swap of information across 

a dimension in one clock tick, each chip requires two pins for that dimension: one to read and 

one to write.) It is interesting to mention that in the case of the d-dimensional hypercube, the 

permutation set consists of d permutations of swapping data across each of the d dimensions. 

For this case, Fiduccia [30] shows that d + 1 pins per chip is the lea.st possible. 

A permutation architecture that implements the permutations Shuffle, Inverse Shuffle, and 

Exchange can be constructed with three pins per chip instead of the usual four. This can be 

done by taking the set of three permutation: Identity, Shuffle, and Exchange, which forms 

a difference cover for the desired permutation set. Furthermore, we can also implement the 

Shuffle-Exchange and Inverse Shuffle-Exchange permutations in one clock tick as well. 

2.7.2 Average number of pins per chip 

Theorem 15 presents a lower bound on the average number of pins per chip in any cyclic shifter 

that operates in one clock tick. The following theorem is a natural extension of Theorem 15 for 

a general set of permutations. 

Theorem 20 Let II be a permutation set on n objects with p permutations and with total 

of T nontrivial data transfers, and let A = (C, B, P, CHIP, BUS, LABEL) be any permutation 

architecture for realizing IT. Then the average number of pins per chip is at least T /n,/P. 



2. 7. APPLICATIONS AND EXTENSIONS 51 

Proof. As in the proof of Theorem 15, we prove that IPI ~ T / ..;P which implies the theorem. 

We make similar notational conventions: 

1. The set of busses is B = {b0 , bi, ... , bm-1}. We denote by ki the number of pins connected 

to bus bi. 

2. The r busses that have at least ..;P pins each are indexed first, that is ki > .jP for 

i = 0, ... , r - 1 and ki < y'P for i = r, ... , m - 1. 

We count the number of distinct data transfers that can be accomplished by each bus. Each 

of the first r busses can be employed to realize at most p out of the T nontrivial data transfers, 

since it can be used at most once for each of the p permutation. Any other bus bi, where 

r ~ i ~ m - 1, can realize at most k;(ki - 1) out of the T nontrivial data transfers, since it has 

only ki pins connected to it. We need to have }:~;1 ki( ki - 1) ~ T - rp, which implies 

T- rp 

i=r vP 

The number of pins in the architecture can now be bounded as follows: 

i=O 
r-1 m-1 

= l:k; +I: ki 
i=O a=r 

• 
Theorem 20 demonstrates that uniform architectures can achieve the optimal number (to 

within a constant factor) of pins per chip for certain classes of permutation sets. When there 

are relatively few permutations that are responsible for many nontrivial data transfers, the 

average number of pins per chip is high. The set of cyclic shifts is an example of this kind of 

permutation set. 
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2. 7 .3 Non uniform architectures 

When the uniformity condition on permutation architectures is dropped, one can do much better 

in terms of the number of pins per chip. The complexity of control may increase substantially, 

however, due to the irregular communication patterns and the number of possible permutations 

realizable for some of the architectures. Nevertheless, from a mathematical point of view, 

nonuniform architectures are quite interesting. 

In fact, nonuniform architectures have been studied quite extensively in the mathematics 

literature in the guise of partitioning problems. For the problem of realizing all n! permu

tations on n chips, a result due to de Bruijn, Erdos, and Spencer (84, pp. 106-108] implies 

that 0( y'nlg7i") pins per chip suffice. The nonuniform architecture that achieves this bound is 

constructed probabilistically, however. It is an open problem to obtain this bound deterministi

cally. The best deterministic construction to date is due to Feldman, Friedman, and Pippenger 

(26] and uses 0( n213 ) pins per chip. 

2.7.4 Further research 

We list a few of the problems that have been left open by our research. We also describe briefly 

some further work brought on by an earlier version (48) of this research. 

In Section 2.4 we described a difference cover of size 2 f vnl - 1 for the cyclic group Zn, 

and proved that when n is the order of a projective plane, there is a difference cover of size 

f v'nl. It seems reasonable that any cyclic group Zn might actually have a difference cover of 

size yn + o( yn ), but we have been unable to prove or disprove this conjecture. Mills and 

Wiedemann [67] have computed a table of minimal difference covers for all the cyclic groups of 

cardinality up -to 110. For any value of n up to 110, the difference cover they find has at most 

f v'nl + 2 elements. In [68], they provide a "folk theorem" that establishes a stronger upper 

bound for the general case than 2 r vnl - 1. 

Theorem 21 The set of n cyclic shifts on n elements has a difference cover of size 

( v'2 + o(l))y'n. 

Sketch of proof. [68] Let q be the smallest prime such that I = q2 + q + 1 ~ n/2. We have 

q = (1 + o(l)).fii72, since for large x, there exists a prime between x and x + o(x). Let 



2. 7. APPLICATIONS AND EXTENSIONS 53 

{ d0 , di, ... , d9} be a difference cover for Z1 chosen as in Theorem 14. It can be verified that the 

set {do, d1, . .. , d9 } U {do + l, d1 + l, ... , d9 + l} forms a difference cover for Zn· • 

Another interesting problem related to cyclic shifters involves finding an area-efficient VLSI 

layout of the cyclic shifter based on projective planes. In section 2.4 we presented an area

efficient layout using a difference cover whose size is twice the optimal size. Is there a good 

layout for the pin-optimal design? 

To implement cyclic shifters that operate in t clock ticks, we showed how to construct a 

t-difference cover for Zn of size O(n112t). A simpler construction achieves the bound O(tn112t). 

Theorem 15 gives a lower bound of f vnl on the average number of pins per chip for a cyclic 

shifter that operates in one clock tick. It may be possible to prove a lower bound of fl( n 1/ 2t) on 

the average number of pins per chip when an architecture operates int clock ticks, but we were 

unable to extend the argument. We were also unable to extend either of these constructions 

to give good t-difference covers for groups, either general or abelian. It would be interesting 

to know whether a general (or an abelian) group of permutations with p permutations has a 

t-difference cover of size O(tp1/ 2t), for any t ~ 1. 

We have concentrated primarily on permutation sets that have good structure, specifically 

group properties. In general, when the permutation set has no known structure, the best possi

ble upper bound is given by Theorem 7 of Section 2.3.2. It would be interesting to identify other 

structural properties of permutation sets besides group properties that allow small difference 

covers to exist. 
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Chapter 3 

Priority Arbitration with Busses 

This chapter explores how busses can be used to efficiently implement arbitration mechanisms. 

We investigate priority arbitration schemes that use busses to arbitrate among n modules in 

a digital system. We focus on distributed mechanisms that employ m arbitration busses, for 

lg n $ m $ n, and use asynchronous combinational arbitration logic. A widely used distributed 

asynchronous mechanism is the binary arbitration scheme, which with m = lg n busses arbitrates 

in t = lg n units of time. We present a new asynchronous scheme - binomial arbitration -

that by using m = lg n + 1 busses reduces the arbitration time to t = ! lg n. Extending this 

result, we present the generalized binomial arbitration scheme that achieves a bus-time tradeoff 

of the form m = 0( tn1ft) between the number of arbitration busses m, and the arbitration time 

t (in units of bus-settling delay), for values of lg n $ m $ n a.nd 1 $ t $ lg n. Our schemes 

are based on a novel analysis of data-dependent delays and generalize the two known schemes: 

linear arbttration, which with m = n busses achieves t = 1 time, and binary arbitration, which 

with m = lg n busses achieves t = lg n time. Most importantly, our schemes can be adopted 

with no changes to existing hardware and protocols; they merely involve selecting a good set 

of priority arbitration codewords. We also investigate the capabilities of general asynchronous 

priority arbitration schemes that employ busses a.nd present some lower bound arguments that 

demonstrate the efficiency of our schemes. 

This chapter describes research that appeared partially in [50] and [51]. 

55 
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3.1 Introduction 

In many electronic systems there are situations where several modules wish to use a common 

resource simultaneously. Examples include microprocessor systems where a decision is required 

concerning which of several interrupts to service first, multiprocessor environments where several 

processors wish to use some device concurrently, and data communication networks with shared 

media. To resolve conflicts, an arbitration mechanism is required that grants the resource to 

one module at a time. 

Numerous arbitration mechanisms have been developed, including daisy chains, priority 

circuits, polling, token passing, and carrier sense protocols, to name a few (see [12, 16, 22, 

40, 57, 61, 78, 82]). In this chapter we focus on distributed priority arbitration mechanisms, 

where contention is resolved using predetermined module priorities and arbitration processes are 

carried out in a distributed manner by participating system modules. In many modern systems, 

and especially in multiprocessor environments and data communication networks, distributed 

priority arbitration is the preferred mechanism. 

Many distributed arbitration mechanisms employ a collection of arbitration busses to im

plement priority arbitration. To this end, ea.ch module is assigned a unique arbitration priority, 

which is an encoding of its name. An arbitration protocol determines the logic values that a 

contending module applies to the busses, based on the module's arbitration priority a.nd on logic 

values on the busses. After some delay, the settled logic values on the busses uniquely iden

tify the contending module with the highest priority. In particular, the asynchronous binary 

arbitration scheme, developed by Ta.uh (79], gained popularity and is used in many modern 

bus systems, such a.s Futurebus (17, 81], M3-bus [21], S-100 bus [35, 80], Multibus-II [40], 

Fastbus [41], and Nubus [89]. Other priority arbitration mechanisms that employ busses are 

described in [12, 16, 22, 24, 47, 57, 61, 78, 82]. 

The a.synchronous binary arbitration scheme arbitrates among n modules in t = lg n units 

of time, using m = lg n wired-OR (open-collector) arbitration busses.1 The technology of open

collector busses is such that the default logic value on a bus is 0, unless at lea.st one module 

applies a 1 to it, in which case it becomes a 1. Open-collector busses, thus, OR together the logic 

1 Throughout this chapter we count only arbitration busses that are used for encoding the priorities. Several 
additional control busses are used by all schemes and are therefore not counted. 
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values applied to them, with some time delay called bus-settling delay. In asynchronous binary 

arbitration, ea.ch module is assigned a. unique (lg n )-bit arbitration priority. When arbitration 

begins, competing modules apply their arbitration priorities to the m = lg n busses, each bit 

on a separate bus; the result being the bitwise OR of their arbitration priorities. As arbitration 

progresses, each competing module monitors the busses and disables its drivers according to 

the following rule: if the module is applying a 0 (that is, not applying a 1) to a. particular bus 

but detects that the bus is carrying a. 1 (applied by some other module), it ceases to apply all 

its bits of lower significance. Disabled bits are re-enabled should the condition cease to hold. 

The effect of this rule is that the arbitration proceeds in a.t most lg n stages from the most 

significant bit to the least significant bit. Ea.ch stage consists of resolving another bit of the 

highest competing binary priority, which leads to a. worst-case arbitration time of t = lg n (in 

units of bus-settling delay). 

For example, consider a. system of n = 16 modules that uses m = lg 16 = 4 arbitration 

busses, with the 16 arbitration priorities consisting of all the 4-bit codewords {0000, 0001, 

0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111}. Figure 

3-1 outlines an asynchronous binary arbitration process among four such modules c2 , cs, c9 , 

and c10, with corresponding arbitration priorities 0010, 0101, 1001, and 1010. The arbitration 

process begins by the competing modules applying their arbitration priorities to the busses. 

The open-collector busses, therefore, compute a. bitwise-OR of the four arbitration priorities. 

After one unit of bus-settling delay (stage 1 ), bus b3 settles to the logic value 1, where it will 

remain for the duration of the arbitration. By the a.hove rule, ea.ch of modules c2 and c5 disables 

its last three bits because they ea.ch apply a. logic 0 to bus b3 that now carries a. logic 1. In the 

meantime; however, ea.ch of modules c9 and c10 disables its last two bits, because of the logic 

1 they detect on bus b2. At the end of stage 2, therefore, bus b2 settles to the logic value 0, 

where it will remain for the rest of the process. As a result, modules c9 and c10 now re-enable 

their two low order bits (stage 3), because the conflict they previously detected on bus b2 had 

disappeared, which results in bus b1 settling to a. logic 1 at the end of stage 3. Finally, in stage 

4, module C9 ceases to apply its last bit, because of the logic value 1 it now detects on bus 

b1, which results in bus bo settling to a logic 0 at the end of stage 4. This arbitration process 

required t = lg 16 = 4 stages to complete. 
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Stage 1 Stage 2 Stage 3 Stage 4 

C2 Cs C9 C10 OR C2 Cs C9 C10 OR C2 Cs C9 c,o OR C2 Cs C9 c,o OR 

Bus b 3 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 

Bus b 2 0 1 0 0 1 

~ ~ 
0 0 0 

~ ~ 
0 0 0 

~ ; 
0 0 0 

Bus b, 1 0 0 1 1 I I 0 0 1 1 0 1 1 

Bus b 0 0 1 1 0 1 0 1 0 1 BJ 0 0 

Figure 3-1: Asynchronous binary arbitration process with 4 busses. The competing modules are c2, 

cs, cg, and C10, with corresponding arbitration priorities 0010, 0101, 1001, and 1010. Bits in shaded 
regions are not applied to the busses. The arbitration process takes 4 stages. 

In this chapter we show that the asynchronous binary arbitration scheme can in fact be 

improved. We introduce the new asynchronous binomial arbitration scheme, that uses one 

more arbitration bus in addition to the lg n busses of binary arbitration, but, most surprisingly, 

reduces the arbitration time to ! lg n. In asynchronous binomial arbitration, we use (lg n + 1 )

bit codewords as arbitration priorities and follow the same arbitration protocol of asynchronous 

binary arbitration. Our binomial arbitration scheme guarantees fast arbitration by employing 

certain codewords that exhibit small data-dependent delays during arbitration processes. For 

example, by using the following set of 5-bit codewords {00000, 00001, 00010, 00011, 00100, 

00110, 00111, 01000, 01100, 01110, 01111, 10000, 11000, 11100, 11110, 11111} as arbitration 

priorities, we can arbitrate among 16 modules using 5 busses in at most 2 stages. Figure 3-2 

outlines an asynchronous binomial arbitration process among four such modules ci, c6, en, and 

c12, with corresponding arbitration priorities 00001, 00111, 10000, and 11000 from the above 

set of arbitration priorities, that completes in 2 stages. It turns out that for any subset of the 

above 16 codewords, the corresponding arbitration process never takes more than 2 stages. In 

Section 3.3, we show how to design a good set of codewords for general values of n by using 

binomial codes as arbitration priorities. 

The remainder of this chapter explores priority arbitration schemes that employ busses 

to arbitrate among n modules. In Section 3.2 we discuss distributed priority arbitration and 
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Stage 1 Stage 2 

C1 Ca C11 c12 OR C1 Ca C11 C12 OR 

Bus b 4 O O 0 0 

Bus b 3 O O O 1 

Bus b 2 o 1 O o 
Bus b, o 1 O o 
Bus b 0 0 0 

I'.'"'" "'."" 

<> 0 0 

A i ~ o o Vi . 
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Figure 3-2: Asynchronous binomial arbitration process with 5 busses. The competing modules are 
c1, c6, cu, and c12, with corresponding arbitration priorities 00001, 00111, 10000, and 11000. Bits in 
shaded regions are not applied to the busses. The arbitration process takes 2 stages. 

formally define the a.synchronous model of priority arbitration with busses. Section 3.3 describes 

the two known a.synchronous schemes: linear arbitration and binary arbitration, and presents 

our new a.synchronous binomial arbitration scheme, which with m =lg n + 1 busses arbitrates 

in t = ~lg n units of time. In Section 3.4 we extend binomial arbitration and present the 

generalized binomial arbitration scheme that achieves a spectrum of bus-time tradeoff of the 

form m = 0(tn1lt), between the number of arbitration busses m and the arbitration time t, for 

values of 1 ~ t ~lg n and lg n ~ m ~ n. The established bus-time tradeoff is of great practical 

interest, enabling system designers to achieve a desirable balance between amount of hardware 

and speed. In Section 3.5 we investigate general properties of a.synchronous priority arbitration 

schemes tJiat employ busses and present some lower bound arguments that demonstrate the 

efficiency of our schemes. Several extensions and discussion of the results of this chapter are 

presented in Section 3.6, a.s well as directions for further research. 

3.2 Asynchronous priority arbitration with busses 

In this section we discuss priority arbitration and formally define the a.synchronous model of 

priority arbitration with busses. The definitions in this section model typical implementations 

of asynchronous priority arbitration mechanisms that employ busses. 



60 CHAPTER 3. PRIORITY ARBITRATION WITH BUSSES 

Arbitration is the process of selecting one module from a set of contending modules. In 

asynchronous priority arbitration with busses, each module is assigned a unique arbitration 

priority - an encoding of its name - which is used in determining logic values to apply to the 

busses during arbitration. An arbitration protocol determines the logic values that a competing 

module applies to the busses, based on the module's arbitration priority and potentially also on 

logic values on other busses. The beginning of an arbitration process is generally indicated by a 

system-wide signal, usually called REQUEST or ARBITRATE. The resolution of an arbitration 

process is the collection of settled logic values on the busses at the end of the process, which 

should uniquely identify the competing module having the highest arbitration priority. 

Throughout this chapter we use the following notations and assumptions. The set C = 

{co, c1,. .. , Cn-i} denotes the n system modules (chips), which are assumed to be indexed in 

increasing order of priority. The m wired-OR (open-collector) arbitration busses are denoted 

by B = { bo, bi, ... , bm-l }, where the busses are indexed in increasing order of significance 

(to be elaborated later). The set P = {Po, pi, . .. , Pn-i} consists of n distinct arbitration 

priorities (in increasing order of priority), with Pi being the arbitration priority of module Ci· 

Arbitration priorities are only a convenient mechanism of encoding the modules' names, and in 

many asynchronous schemes the arbitration priorities are m-bit vectors that competing modules 

apply to the m busses during arbitration. When necessary, we denote the bits of an arbitration 

priority p by p(o), p(l), p(2), ••• , in order of increasing significance. We assume that each module 

is connected to all busses and can thus read from and potentially write to any bus. All modules 

follow the same arbitration protocol in interfacing with the busses and reaching conclusions 

concerning the arbitration process. Finally, we assume that only competing modules apply 

logic values to the busses; noncompeting modules do not interfere with the busses. All our 

assumptions are standard design practice in many systems. 

3.2.1 Acyclic arbitration protocols 

In asynchronous priority arbitration with busses, we restrict the arbitration process to be purely 

combinational by requiring that the arbitration logic on all the modules together with the ar

bitration busses form an acyclic circuit. Using combinational logic with a.synchronous feedback 

paths may introduce race conditions and metastable states, which can defer arbitration indef-
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initely (see [2, 62, 72]). The acyclic nature of the arbitration logic imposes a partial order on 

the busses, corresponding to partitioning the busses according to their depth in the arbitration 

circuitry. This partial order can be extended to a linear order, by having busses at a given 

depth succeed busses of greater depth, and by arbitrarily ordering busses of the same depth. 

With a linear order on the busses in mind, the acyclic nature of the arbitration circuitry can 

be characterized as follows: logic values on higher indexed busses may be used to determine 

logic values on lower indexed busses, but not vice versa. We formalize this idea in the following 

definition of an acyclic arbitration protocol. 

Definition 9 Let P be a set of arbitration priorities. An acyclic arbitration protocol of size m 

for Pis a sequence F = Um-i. ... , /i,/o) of m functions, fj : P x {O, l}m-l-j - {O, 1}, for 

j = 0, 1, ... , m - 1. 

In asynchronous priority arbitration with busses, every module has arbitration circuitry that 

implements the same acyclic arbitration protocol, but with the module's unique arbitration 

priority as a parameter. The m arbitration busses are linearly ordered from bm-1 down to bo, 

in accordance with the acyclic nature of the circuit. Informally, function fj takes an arbitration 

priority p E P and m - 1 - j bit values on the highest m - 1 - j busses bm-l through bj+i, 

and determines the bit value that a competing module c with arbitration priority p applies 

to bus bj, for j = 0, 1, ... , m - 1. Collectively, an acyclic arbitration protocol F of size m 

can be interpreted as a function F : P x {O, l}m - {O, l}m, that determines the sequence of 

m logic values that a competing module c with arbitration priority p applies to the m busses 

when detecting a. certain configuration of logic values on the m busses. (Notice that not every 

function from {O, l}m to {O, l}m constitutes an acyclic arbitration protocol of size m; it has to 

satisfy the·requirements of Definition 9.) 

An arbitration process among several contending modules consists of the modules indepen

dently applying logic values to the m busses, according to an acyclic arbitration protocol F of 

size m, until all the busses reach stable logic states. Since a.cyclic arbitration protocols have 

no feedback paths, it is guaranteed that any arbitration process among contending modules 

will terminate after a finite number of steps. To formally define and analyze arbitration pro

cesses, however, we first need to discuss some means of measuring the time for asynchronous 

arbitration mechanisms with busses. 
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3.2.2 Bus-settling delay: a unit of time 

Measuring the arbitration time of asynchronous mechanisms is somewhat problematic. We 

follow a standard approach taken in many bus systems (see [16, 22, 23, 40, 42, 80, 81]) and 

measure the arbitration time in units of bus-settling delay. The time unit of bus-settling delay, 

typically denoted by Tbus, is the time it takes for a bus to settle to a stable logic value, once its 

drivers have stabilized. This time includes the delays introduced by the logic gates driving the 

bus, the bus propagation delay, and any additional time required to resolve transient effects. 

In effect, we model an open-collector bus as an OR gate with delay Thus• the time it takes for 

the output of the gate to stabilize on a valid logic value, once its inputs have reached their final 

values. This approach models the situation in many bus systems rather accurately. 

High speed busses are commonly modeled as analog transmission lines, where it takes finite 

amount of time for signals to propagate through the bus and bring the bus to a stable logic 

value. Since busses carry analog signals, the logic value on a bus cannot be used (and in fact 

is undefined) before the bus reaches a stable digital value. In addition, the response time of 

logic gates driving the busses and several transient effects need to be considered. In particular, 

the effect of the wired-OR glitch on bus-settling time and the use of special integration logic at 

module receivers to reduce this effect (see [5, 18, 42, 81]) indicate that the logic value on a bus 

may not be used before a unit of time, bus-settling delay, passes. 

Some authors carry out a more elaborate analysis of high speed busses, where they take 

into account distances between modules on the bus and impose certain restrictions on the 

ordering of modules. Taub [79, 80, 81], for example, assumes a geographical ordering of modules 

by increasing priorities and equal distances between modules on a bus. Counterexamples to 

Taub's analysis, where these requirements are not met, were found [3, 87]. In Chapter 4, we 

introduce and use a digital transmission line model for a bus that takes into account distances 

and signal propagation. In this chapter, however, our model for the settling of a digital bus 

makes no restricting assumptions and is applicable to wide classes of systems, where priorities 

and module locations are not fixed or predetermined. 

Using our model of a wired-OR (open-collector) bus as a delay element that exhibits a delay 

of Thus, we can now model an arbitration process as a sequence of applications of an acyclic 

arbitration protocol, where each such application completes in one Tb118 time. 
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3.2.3 Arbitration processes 

We next formally define the notion of an arbitration process of an acyclic arbitration protocol 

on a set of competing arbitration priorities. We characterize the arbitration process by the 

collection of the logic values on them busses at the end of each computation stage. We use Vj[l] 

to denote the logic value on bus bj at the end of the lth computation stage, for j = 0, 1, ... , m-1 

and 1 = 0, 1, .... Without loss of generality, we assume that an arbitration process begins with 

all busses being in logic value 0. 

Definition 10 Let P be a set of arbitration priorities, F be an acyclic arbitration protocol of 

size m for P, and Q C P be a set of competing arbitration priorities. The arbitration process 

of F on Q is the successive evaluation of 

Vj[Oj = 0 , 

Vj[l + 1] = v /j(p, Vm-dl], ... , Vj+1[l]) , 
pEQ 

for j = 0, 1, ... , m - 1 and l = 0, 1, .... We say that the arbitration process takes t stages if 

t ~ 0 is the smallest integer for which vi[t] = Vj[t + 1], for j = 0, 1, ... , m - 1. The resolution 

of the arbitration process is the stable configuration of values ( Vm-1[t], ... , v1[t], vo[t]). 

Definition 10 characterizes an arbitration process as a sequence of successive applications 

of the acyclic arbitration protocol F to the set of competing arbitration priorities Q and the 

configuration of the m busses. The arbitration process terminates when no more changes in 

the state of the busses occur, at which point a resolution is reached. One can verify that any 

arbitration process of an acyclic arbitration protocol F of size m takes at most m stages. This 

is the case &eca.use at each computation stage of an arbitration process of an acyclic arbitration 

protocol, at least one more bus stabilizes on its final value. 

A better upper bound for the number of stages taken by arbitration processes can be given 

by the depth of the a.cyclic arbitration protocol. As discussed above, the acyclic nature of the 

arbitration logic imposes a partial order on the busses. We can therefore statically partition 

the m busses into d levels, such that the computation for a bus in a certain level uses only 

the values of busses in previous levels. More formally, given an acyclic arbitration protocol F 

of size m, we can simultaneously partition the m functions of F into d nonempty disjoint sets 
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Fa, F1, ... , Fd-1, and the m husses of B into d corresponding sets Bo, B1, ... , Bd-1, such that 

fj E Fh if and only if b; E Bh, for 0 $ j $ m - 1, and 0 $ h $ d - 1. The partition must 

have the property that the computation of a function f; E Fh depends only on the arbitration 

priorities and on values of busses in sets B0 , B 1 , .•. , Bh-l · The depth of an acyclic arbitration 

protocol F of size m is defined as the smallest d, for which a partition as above exists. The 

depth of an acyclic arbitration protocol is never greater than its size, since placing each bus in 

a separate level satisfies the requirements of the above partition and the number of levels in 

this partition is the size of the protocol. The next theorem shows that any acyclic arbitration 

protocol of depth d reaches a resolution after at most t = d computation stages. 

Theorem 22 Let P be a set of arbitration priorities, F be an acyclic arbitration protocol of 

size m for P, and d be the depth of F. Then, for any subset Q C P of competing arbitration 

priorities, the arbitration process of F on Q takes at most d stages. 

Proof. By induction on d, the depth of the acyclic arbitration protocol F. 

Base case: d = O. For depth d = 0, there are no arbitration busses and the claim holds 

immediately for arbitrary Q. 

Inductive case: d > O. Given an acyclic arbitration protocol F = Um-l, ... , fi, Jo} of size 

m and depth d for P, we can partition F = Ut~ Fh and B = LJ~~~ Bh as discussed above. 

Without loss of generality, we assume that the last level consists of the r functions and busses 

with indices 0, 1, ... , r - 1. The first d - 1 levels of F constitute a.n acyclic arbitration protocol 

F' = u~~~ Fh = Um-1, ... ' !r+b fr} of size m - r and depth d - 1 for P. By induction, the 

arbitration process of F' on Q takes at most d - I stages. That is, for any r $ j $ m - I and 

l ;::: d - 1, we have v;(l] = v;(d - I]. In addition, according to the acyclic arbitration protocol 

F, we also hav~ that for any 0 $ i $ r - 1 and k;::: d > 0, 

Vi[k] = v fi(p, Vm-1[k - 1), ... , Vr[k - 1]) 
pEQ 

= v fi(p, Vm-1[d - l], ... , Vr(d - 1]) 
pEQ 

= Vi[d) , 

because the dth level depends only on busses bm-l down to br and because k - 1 ;::: d - 1. This 

proves that the arbitration process takes at most d stages. • 
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Theorem 22 shows that the number of stages that an arbitration process takes is bounded 

by the depth of the acyclic arbitration protocol F. This bound represents a standard static 

approach in the analysis of delays in digital circuits, namely, that of counting the number 

of gates on the longest path from the inputs to the outputs. In later sections of this chapter, 

however, we introduce and use a novel dynamic approach of bounding the number of stages that 

an arbitration process takes by a careful analysis of the data-dependent delays experienced in 

the arbitration circuits. In doing so, we exhibit arbitration schemes that guarantee termination 

of any arbitration process in a circuit of size and depth m after a fixed number of stages t, for 

values of t in the range 0 ~ t ~ m. 

3.2.4 Asynchronous priority arbitration schemes 

To complete the definition of asynchronous priority arbitration schemes, we need to introduce 

the notion of an interpretation function. Suppose we have a set of arbitration priorities P and 

an acyclic arbitration protocol F of size m for P. An interpretation function for P and Fis a 

function WIN: {O, l}m -+ P, such that for any Q C P, with p E Q being the highest arbitration 

priority in Q and ( Vm-1' .•• , vi, v0 ) being the resolution of the arbitration process of F on Q, 

we have WIN( Vm-1, ... , vi, v0 ) = p. Informally, the function WIN interprets the resolution of 

any arbitration process of F by identifying the highest competing arbitration priority. We are 

now ready to define an asynchronous priority arbitration scheme for n modules, m busses, and 

t stages. 

Definition 11 An asynchronous priority arbitration scheme for n modules, m busses, and t 

stages is a triplet A( n, m, t) = (P, F, WIN) , where 

1. P is a set of n arbitration priorities; 

2. Fis an acyclic arbitration protocol of size m for P; 

3. WIN is an interpretation function for P and F; 

such that for any Q C P, the arbitration process of F on Q takes at most t stages. 

Definition 11 emphasizes the role of the arbitration priorities, which are just a mechanism 

to distinguish between different modules. It will become apparent, however, that careful design 
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of the codewords used as arbitration priorities has a significant impact on the arbitration time. 

In the next Section, for example, we demonstrate that by using the set of (lg n + 1 )-bit binomial 

codes as arbitration priorities, we can achieve an arbitration time oft = ! lg n. 

3.3 Asynchronous priority arbitration schemes 

In this section we first describe two commonly used asynchronous priority arbitration schemes: 

linear arbitration, which with m = n busses arbitrates in time t = 1, and binary arbitration, 

which with m =lg n busses arbitrates in time t =lg n. We then present our new asynchronous 

scheme, binomial arbitration, which with m = lg n + 1 busses arbitrates in time t = ! lg n. 

3.3.1 The linear arbitration scheme 

This scheme uses m = n busses and arbitrates among n modules in t = 1 stages. To arbitrate, 

contending module Ci applies a 1 to bus bi, for 0 ~ i ~ n - 1, and does not interfere with other 

busses. This translates to module Ci having an n-bit arbitration priority Pi, such that PF) = 1 

if i = j and p~i) = 0 otherwise. After t = 1 units of time, all the busses stabilize on their final 

values, and the module with a 1 on the bus with the highest priority is recognized as the winner. 

This scheme can also be implemented with tri-state busses, since at most one module writes to 

any given bus. The scheme is also known as decoded arbitration and is used in a number of bus 

systems and interrupt arbitration mechanisms (see [22, 24, 57, 82]). 

Formally, we define this scheme as LINEAR(n,n, 1) = {P,F, WIN}, where 

2. F = Un-1, ... , fi, Jo), where fj(p, Vn-1 ... , Vj+i) = p(i), for j = 0, 1, ... , n - 1; 

3. WIN( Ok 1 a)= Ok 1 on-l-k = Pn-1-k, for 0 $ k ~ n - 1 and any a E {0, l}n-l-k. 

Notice that although the size of the acyclic arbitration protocol of LINEAR is m = n, its 

depth is only d = 1, which according to Theorem 22 implies that the asynchronous linear 

arbitration scheme takes at most t = 1 stages to arbitrate. 
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3.3.2 The binary arbitration scheme 

This scheme uses m = flg n l busses and arbitrates among n modules in t = flg n l stages. The 

arbitration priority Pi of module Ci is the binary representation of i, for 0 $ i $ n - 1. To 

arbitrate, contending module c drives its binary priority p onto them busses, from p(m-l) (the 

most significant bit of p) onto bus bm_ 1 , down to p(o) (the least significant bit of p) onto bus 

b0 ; the result being the bitwise OR of the binary priorities of the competing modules. During 

arbitration, each competing module c monitors the busses and disables its drivers according to 

the following rule: let p(1) be the /th bit of the binary priority p, and let v1 be the binary value 

observed on bus b1, for 0 $ I $ m - 1. Then if p(I) = 0 and v1 = 1, module c disables all its bits 

pU) for j <I. Disabled bits are re-enabled should the condition cease to hold. After t = flg nl 

units of time, all the busses stabilize on their final values, and the module whose arbitration 

priority appears on the busses is the winner. This scheme was developed by Taub [79], and is 

also known as encoded arbitration (see [16, 22, 40, 80, 81]). 

Formally, we define this scheme BINARY(n, flgnl, flgnl) = (P,F,wrn) as follows. For 

simplicity of notation we use m = flg n l · 

1. P = {Pi = fm-1 • · ·f1fo where fm-1 • · • f1 fo is the binary representation of i, for 

i = 0, 1, ... , n - 1}; 

2. F = Um-1, ... , /i, /o), where 

fj(p,vm-1 · . . ,Vj+l) = { O. 
p(J) 

for j = 0, 1, ... , m - 1; 

3. WIN( a)= a, for any a E {O, l}m. 

if Vi~;i!1 (p(I) = 0 /\ V/ = 1) ' 
otherwise, 

Notice that the size m and the depth d of the acyclic arbitration protocol of BINARY are 

equal, specifically m = d = flg n l · This can be verified by noticing that the computation 

for each bus bj, where 0 $ j $ m - 1, takes into account values on busses b1, for j < I $ 

m - 1. This implies, according to Theorem 22, that the asynchronous binary arbitration 

scheme takes at most t = m = r1g n l stages to arbitrate. On the other hand, it has been 

shown in [22, 23, 80, 81, 88] that there are examples where a binary arbitration process takes 
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exactly flg n 1 stages. (Figure 3-1 presents such an example for n = 16 modules, m = pg n l = 4 

busses, and t = m = 4 stages.) These examples consist of arbitrating among bad subsets 

of arbitration priorities, where at each stage the binary value of exactly one more bit of the 

highest competing binary priority is resolved. The asynchronous binomial arbitration scheme, 

presented next, guarantees fast arbitration by employing only certain codewords that exhibit 

small data-dependent delays. 

3.3.3 The binomial arbitration scheme 

This scheme uses m = flg n + l l busses to arbitrate among n modules in t = ft lg n l stages. 

This scheme's acyclic arbitration protocol and interpretation function are identical to those of 

the binary arbitration scheme, and thus the same hardware can be used. The only difference 

is that binomial codes are used as arbitration priorities rather than all the 2m possible m-bit 

codewords of binary arbitration. Alternatively, with m busses, this scheme can arbitrate among 

2m-l modules in t = f Hm -1)1 stages. We next describe the binomial codes and begin by 

defining the interval-number of a binary codeword. 

Definition 12 The interval-number of a binary codeword pis the number of intervals of con

secutive l's or O's that it contains, disregarding leading O's. 

Thus, for example, the interval-number of 001011 is 3, the interval-number of 0000 is 0, and 

the interval-number of 10101010 is 8. In general, an m-bit binary codeword p with interval

number r, has the form p = omo1m1 omqm3 ... am•, where c E {0,1}; m0 2'. O; mi> 0 for 

1 :S j :S r; and L:i=o mi = m. We next define the binomial codes of length m. 

Definition 13 The set of binomial codes of length m, denoted by D( m ), is the set of all the 

m-bit binary codewords that have interval-number at most f t(m - 1)1. 

The binomial codes of length m are in fact all the m-bit codewords, that, after deleting 

leading O's have at most ft( m - 1) l intervals of consecutive l's or O's. For example, the 

binomial codes of length 4 is D(4) = {0000, 0001, 0010, 0011, 0100, 0110, 0111, 1000, 1100, 

1110, 1111}, consisting of 11 codewords that have interval-number at most 2. As another 

example, the binomial codes that were used in the Section 3.1 (the example of Figure 3-2) are 



3.4. GENERALIZED BINOMIAL ARBITRATION 69 

D(5) = {00000, 00001, 00010, 00011, 00100, 00110, 00111, 01000, 01100, 01110, 01111, 10000, 

11000, 11100, 11110, 11111}, consisting of the 16 codewords oflength 5 with interval-number at 

most 2. For general values of m, Corollary 24 in Section 3.4 shows that there are at least 2m-l 

binomial codes of length m. By taking m = f1g n + ll, this translates to at least 2rtgn+ll-1 ~ n 

binomial codes, which means that there are enough arbitration priorities for n modules. 

Formally, we define this scheme BINOMIAL( n, ~g n + 1 l , r ! lg n l) = (P, F, WIN) as follows. 

We use m = pg n + 1 l and t = r ! lg n l for simplicity of notation. 

1. P = D(m); 

2. F = Um-1, ... , Ji. /o), where 

fj(p, Vm-1 · · ·, Vj+i) = { O . 
p(J) 

for j = 0, 1, ... , m - 1; 

3. WIN(a) =a, for any a E {O,l}m. 

if V/~::;!1 (p(I) = 0 /\ V/ = 1) ' 

otherwise , 

It remains to show that the asynchronous binomial arbitration scheme indeed arbitrates 

among n modules in at most t = r ! lg n l stages. Notice that a standard static analysis of the 

arbitration circuitry, as given for example in Theorem 22, does not give the desired result, since 

both the size and the depth of the acyclic arbitration protocol F of binomial arbitration are m = 

d = f1g n + 11 · In Section 3.4, we use a novel dynamic approach of analyzing the data-dependent 

delays experienced in arbitration processes, and prove the correctness of the asynchronous 

binomial arbitration scheme as a special case of the generalized binomial arbitration scheme. 

3.4 Generalized Binomial Arbitration 

In this section we extend the ideas of the asynchronous binomial arbitration scheme by pre

senting the genemlized binomial arbitmtion scheme that with m busses and in at most t stages 

arbitrates among n = l::=o (7) modules. By Stirling's approximation, the asymptotic bus-time 

tradeoff of generalized binomial arbitration is m ~ ~tn1 1t. This bus-time tradeoff is of great 

practical interest, enabling system designers to achieve a desirable balance between amount of 
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hardware and speed. The performance of generalized binomial arbitration is based on analysis 

of data-dependent delays. 

3.4.1 Generalized binomial codes 

We first extend Definition 13 by defining the set of generalized binomial codes of length m and 

diversity r. 

Definition 14 The set of generalized binomial codes of length m and diversity r, denoted by 

G( m, r ), is the set of all m-bit binary codewords that have interval-number at most r. 

Generalized binomial codes serve as arbitration priorities for the generalized binomial ar

bitration scheme. The next lemma determines the cardinality of the set of the generalized 

binomial codes of length m and diversity r. 

Lemma 23 The set G( m, r) contains Et=O (7) distinct codewords. 

Proof. To simplify the counting, we take all the codewords in G( m, r) and append a 0 at their 

beginning. This results in a set of (m + 1)-bit words, that begin with a 0 and have at most 

r switching points from a consecutive interval of O's to a consecutive interval of l's and vice 

versa. The number of such words is L:f=o (';i), since for any 0 ::; l ~ r there are exactly (7) 

possibilities of choosing l switching points out of m possible positions. • 

Corollary 24 There are at least 2m-l binomial codes of length m. 

Proof. By our notation, the set D(m) of binomial codes of length m, is defined by D(m) = 
G(m, f !(m -1·)1). According to Lemma 23, we have 

rt(m-ln (m) 
ID(m)I = L 

1 l=O 

This sum includes the first f !( m - 1) l + 1 binomial coefficients, which constitute at least a half 

of all the m + 1 binomial coefficients (7). Since the binomial coefficients are symmetric, that is, 

(7) = (m~I), the above partial sum is at least a half of the full sum, which is 2m. We therefore 

conclude that !D(m)I ~ ! ·2m = 2m-l. • 
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3.4.2 The generalized binomial arbitration scheme 

This scheme uses m busses and arbitrates in at most t stages, for 0 ~ t ~ m. With the m and t 

parameters determined, this scheme can arbitrate among at most n = I:f=o (';') modules. The 

acyclic arbitration protocol and the interpretation function of this scheme are identical to those 

of the binary arbitration scheme of Section 3.3.2, and thus the same hardware can be used. The 

only difference is that generalized binomial codes from G( m, t) are used as arbitration priorities. 

Formally, we define this scheme GENERALIZED-BINOMIAL(n, m, t) = (P, F, WIN), where 

n = I:f=o ("(), as follows. 

1. P = G(m, t); 

2. F = Um-1, ... , f1, Jo), where 

{ 

0 if V~j.!. 1 (p(I) = 0 /\ V/ = 1) , 
fj(p, Vm-1 ... , Vj+i) = . 

p(J) otherwise , 

for j = 0, 1, ... , m - 1; 

3. WIN( a)= a, for a E {O, l}m. 

The idea behind generalized binomial arbitration is that the interval-number of the highest 

competing arbitration priority bounds the number of arbitration stages. In binary arbitration, 

where all the 2m possible m-bit codewords are used, there are arbitration processes that can take 

as many as m stages, where at each stage one more bit of the highest competing arbitration pri

ority is resolved. For generalized binomial arbitration, however, we select codewords that have 

at most t intervals of consecutive 1 's or O's. The following theorem uses data-dependent analysis 

to argue that any arbitration process takes at most r stages, where r is the interval-number 

of the highest competing arbitration priority, by showing that at each stage the arbitration 

process resolves at least one more interval of consecutive bits, rather than a single bit. 

Theorem 25 Consider a generalized binomial arbitration process on m busses. Let Q be the 

set of competing arbitration priorities, p be the highest arbitration priority in Q, and r be the 

interval-number of p. Then afters stages, for any s ;:::: r, bus bj carries the logic value pU), for 

O~j~m-1. 
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Proof. We prove the theorem by induction on r for arbitrary values of m. We use the notation 

Vj[k] to denote the logic value on bus bi at the end of stage k, for j = 0, 1, ... , m - 1 and 

k = 0, 1, .... 

Base case: r = O. The codeword p consists of m consecutive O's, that is, pU) = 0 for 

j = 0, 1, ... , m - 1. Since p is the highest arbitration priority in Q, then any q E Q must also 

have qU) = 0 for j = 0, 1, ... , m - 1. By our assumption that all the m busses are initially in 

logic value 0, and since according to the acyclic arbitration protocol no module ever applies a 

1 to any of these busses, the m busses remain in logic value 0 forever. In other words, after s 

stages, for any s ~ r = 0, we have Vj[s] = Vj[O] = 0 = pU), for j = 0, 1, ... , m - 1, which proves 

the claim. 

Inductive case: r > O. The codeword p has m bits and interval-number r, and is thus of 

the form p = omo1m 1 om21m3 • • ·bmr, where b E {0,1}; mo~ O; mi> 0 for 1 S j s r; and 

LJ=O mi = m. We first concentrate on the first r - 1 intervals of p, and define the set R of 

reduced codewords of length ih = m - mr = L:j::;;i mi, by ignoring the last mr bits of the 

codewords of Q. One can verify that p, the reduced version of p, is the highest codeword in 

R, because we discarded the mr least significant bits of codewords in Q. Furthermore, the 

interval-number of p is r - 1, since the last interval of p of the form bmr was ignored. By 

applying the claim inductively with ih busses, the set of competing arbitration priorities R, 

and the highest arbitration priority p of interval-number r - 1, we find that after r - 1 stages 

the most significant ih = m - mr busses stabilize to the bits of p. That is, for any k ~ r - 1, we 

have Vj[k] = Vj[r - 1] = pU) = pU), for mr s j s m - 1. We now consider the last mr busses, 

bmr-1 • ... , b1, bo. There are two cases to consider: 

b = 1 The rth interval of p is an interval of mr consecutive 1 's, that is, p(i) = 1 for i = 
0, 1, ... , mr - 1. After k stages, for any k ~ r - 1, the most significant m - mr busses 

carry the bits of p, and therefore there is no l in the range 0 s ls m - 1, with v1[k] = 1 

and p(I) = 0. As a result, the module with arbitration priority p applies all its last mr 

consecutive 1 's. Therefore, for any s ~ r and i = 0, 1, ... , mr - 1, we have vi[s] = v;[r] = 
1 = p(i), since the busses implement a wired-OR in one stage. 

b = 0 The rth interval of p is an interval of mr consecutive O's, that is, p(i) = 0 for i = 
0, 1, ... , mr - 1. Since pis the highest arbitration priority in Q, then for any arbitration 
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priority q E Q, q # p, there must exist an I in the range mr :::; l :::; m - 1, with p(l) = 1 

and q(l) = O. After k stages, for any k ~ r - 1, the most significant m - mr busses 

carry the bits of p, and therefore any module with arbitration priority q # p disables 

at least its last mr bits. As a result, for any s ~ r and i = 0, 1, ... , mr - 1, we have 

vi[s] = Vi[r] = 0 = p(i), because the busses implement a wired-OR in one stage and no 

module applies a 1 to busses bo through bmr-I anymore. 

Thus, after s stages, for s ~ r, the m busses carry the corresponding bits of p. • 
The following corollary shows that by taking G( m, t), the generalized binomial codes of 

length m and diversity t, as arbitration priorities, we guarantee that any arbitration process 

completes in at most t stages. 

Corollary 26 Consider GENERALIZED-BINOMIAL(n, m, t), the generalized binomial arbitra

tion scheme. For any subset of arbitration priorities Q c G( m, t), the corresponding arbitration 

process takes at most t stages. 

Proof. Let p be the highest arbitration priority in Q. Since the interval-number of pis at most 

t, Theorem 25 guarantees that the arbitration process on Q, with p as the highest arbitration 

priority, takes no more than t stages. • 
3.4.3 Tradeoff of generalized binomial arbitration 

The generalized binomial arbitration scheme achieves a bus-time tradeoff of the form n = 
I:~=O (';1), which by Stirling's formula exhibits asymptotic behavior m ~ ~tn1 1t. Figure 3-3 

demonstrates this bus-time tradeoff for a system with n modules. The horizontal axis represents 

m, the number of arbitration busses used, which varies from m = lg n tom = n. The arbitration 

time t, measured in units of bus-settling delay (arbitration stages), is marked on the vertical 

axis. The arbitration time varies between t = 1 to t = lg n stages. Generalized binomial 

arbitration reduces to binary arbitration with m = lg n busses, to binomial arbitration with 

m = lg n + 1 busses, and to a modified version of linear arbitration (see Section 3.5.2 for the 

canonical form of linear arbitration) with m = n busses. 

Figure 3-3 demonstrates that neither linear arbitration nor binary arbitration efficiently 

utilize the resources. For example, increasing the number of busses used in binary arbitration by 
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Figure 3-3: Bus-time tradeoff of the generalized binomial arbitration scheme for n modules, using 

lgn ~ m ~ n busses and 1 ~ t ~ lgn stages. 

one, results in speeding up the arbitration process by a factor of 2, as exhibited by our binomial 

arbitration scheme. On the other hand, allowing another time unit over linear arbitration 

enables reducing the number of busses from n to approximately $. 

Notice, however, that in order to achieve another factor-of-2 improvement in the arbitration 

time, adding another constant number of busses to the lg n busses is not enough. Asymptot

ically, as n grows without bound, we need to use more than (1 + f)lgn busses, for f > 0.232, 

in order for tke sum E~=O (';'), with t = l lg n, to be at lea.st n. This can be verified by 

Stirling's formula, since when m is greater than lg n but smaller than 1.232 lg n, and when 

t = ~lg n < m/4, the sum of the first m/4 binomial coefficients (';'), for 0 ~ l ~ m/4, does 

not exceed n. This demonstrates that our binomial arbitration scheme, which uses lg n + 1 

busses, exhibits a most economic balance, much more so than the binary arbitration scheme. 

Other authors [23] have also discovered that by excluding certain codewords, the arbitration 

time of binary arbitration can be reduced. Here, however, we give the first general scheme that 

provides a full spectrum of bus-time tradeoff. 
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3.5 Properties of asynchronous priority arbitration schemes 

In this section we discuss properties and capabilities of general a.synchronous priority arbitration 

schemes with busses, which were defined in Section 3.2.4. We first describe several properties 

and assumptions regarding a.synchronous priority arbitration schemes with busses. We then 

define a canonical form for acyclic arbitration protocols that is easier to analyze and reason 

about than arbitrary acyclic arbitration protocols. Finally, we focus on the bus-time tradeoff 

of general synchronous priority arbitration schemes and present some lower bound arguments 

that demonstrate the efficiency of our schemes. 

3.5.1 General properties and assumptions 

Asynchronous priority arbitration schemes that employ busses arbitrate among contending 

modules by having the modules read logic values from the busses and apply logic values to the 

busses, according to an underlying acyclic arbitration protocol. For an a.synchronous priority 

arbitration scheme A = (P, F, WIN) that employs m busses, the acyclic arbitration protocol Fis 

a sequence of m functions, each responsible for applying a binary value to a separate bus, based 

on the competing module's arbitration priority and on logic values on higher indexed busses. 

The acyclic nature of the arbitration protocol F guarantees termination of any arbitration 

process in at most t = m stages, as was formally discussed in Section 3.2.3. We are also 

interested, however, is a.synchronous priority arbitration schemes that arbitrate in t stages, for 

any value of t in the range 0 ~ t ~ m. 

The configurations of the m arbitration busses play a fundamental role in the analysis of 

arbitration processes. A configuration of the m busses at any given time is simply the m-bit 

vector of logic values on the busses. We denote a general configuration on the m busses by 

v = (vm-t.···,vi.vo), and for arbitration processes we use v[k] = (vm-1[k], ... ,v1[k],vo[k]), for 

k 2: 0, to denote the configuration of the m busses at stage k. We assume that any arbitration 

process starts from a "clean" configuration of all O's, that is, Vj[O] = 0 for j = 0, 1, ... , m - 1. 

An acyclic arbitration protocol F of size m can be thought of as a function that maps an 

arbitration priority p and a configuration v to an m-bit vector u that a contending module c 

with arbitration priority p applies to the m busses, when detecting the configuration v. When 

convenient, we use the vector notation F(p, v) = u to describe this situation. 
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For an asynchronous priority arbitration scheme, A( n, m, t) = (P, F, WIN) , on n modules, 

m busses, and t stages, any arbitration process on a subset Q C P takes at most t computation 

stages. There may be, however, certain arbitration processes that take less than t stages, but it 

is guaranteed that after t stages, the busses are always stable. Since A = (P, F, WIN) implements 

priority arbitration and since there are n modules in the system, there must be at least n distinct 

winning configurations, each being mapped by the interpretation function WIN to a unique 

arbitration priority Pi, which identifies module Ci as the winner of an arbitration process. Some 

modules may have more than one winning configuration, as is the case for example with the 

linear arbitration scheme of Section 3.3.1, but each module must have at least one. Because the 

number of intermediate and winning configurations in arbitration processes is hard to track, 

it is difficult to analyze the behavior of arbitration processes. In Section 3.5.2, we show how 

to translate arbitration protocols into a canonical form, which has the same arbitration power, 

but is easier to analyze. 

3.5.2 Canonical form for arbitration protocols 

In an arbitration process of an asynchronous priority arbitration scheme with busses, the com

peting module c with the highest arbitration priority p should direct the arbitration process 

to a winning configuration v that identifies it, that is, WIN( v) = p. This should be the case 

no matter which of the modules with arbitration priorities smaller than p participate in the 

arbitration process. For competing module Ci with arbitration priority Pi, therefore, there may 

be as many as 2i different arbitration processes that module Ci should win, corresponding to 

all possible subsets of the modules { c0 , c1 , ... , Ci-d participating in the arbitration process. 

To simplify the analysis of arbitration processes, we introduce a canonical form of arbitration 

protocols, which has the same arbitration power, but is easier to analyze. 

Definition 15 Let P = {Po, pi, ... , Pn-d be a set of n distinct arbitration priorities and let 

F = Um-1 1 ••• ,fi,/0) be an acyclic arbitration protocol of size m for P. We say that Fis in 

canonical form, if for any configuration v = ( Vm_ 1 , ••• , v1 , v0 ), for any j = 0, 1, ... , m - 1, for 

any i = 0, 1, ... , n - 1, and for any 0 ~ k ~ i, we have 
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Definition 15, in effect, defines a canonical acyclic arbitration protocol as one that maps 

any arbitration priority p and configuration v to an m-bit vector u that "shadows" any activity 

of arbitration priorities of lesser priority that p. The definition guarantees that if a module 

applies a 0 to a certain bus in response to some configuration v of the busses, then no module 

with lesser priority applies a 1 to that bus in response to the same configuration v. In other 

words, for any arbitration priorities p and q, with p being of higher priority than q, and for any 

configuration v, them-bit vector F(p, v) is never component-wise smaller than them-bit vector 

F( q, v ). In analyzing arbitration processes of canonical acyclic arbitration protocols, therefore, 

it is sufficient to focus only on the behavior of the highest competing arbitration priority p, 

since the protocol for p always "shadows" the behavior of smaller arbitration priorities. We 

call an a.synchronous priority arbitration scheme canonical if its acyclic arbitration protocol 

is canonical. We typically denote that an arbitration scheme or an arbitration protocol are 

canonical by putting a bar over them, as in A or F. Analyzing canonical a.synchronous priority 

arbitration schemes is an easier task. The next theorem demonstrates that analyzing canonical 

asynchronous priority arbitration schemes is also general enough. 

Theorem 27 Let A( n, m, t) = (P, F, WIN) be an asynchronous priority arbitration scheme 

on n modules, m busses, and t stages. Then there is also a canonical asynchronous priority 

arbitration scheme A(n, m, t) = (P, F, WIN) on n modules, m busses, and t stages. 

Proof. To define the canonical a.synchronous priority arbitration scheme .A= (P, F, WIN), we 

need only define the canonical acyclic arbitration protocol F; the arbitration priorities P and· 

the interpretation function WIN are identical to those of A. We define F = Um-1, ... , ]1, Jo) 

as follows: For any configuration v = ( Vm-l, .•. , v1 , v0 ), for any j = 0, 1, ... , m - 1, and for any 

i = 0, 1, .. . ,n - 1, we define 

I 

fi(p;, Vm-1' ... , Vj+i) = v /j(p/, Vm-1' •.. , Vj+i) . 

l=O 

In fact, we define the m-bit vector that module c; with arbitration priority Pi applies to the m 

busses under protocol F in response to a configuration v, to be the bitwise OR of the m-bit 

vectors that modules co, c1, ... , c; with corresponding arbitration priorities Po, p1 , ... , p; apply 

to the m busses under protocol Fin response to the same configuration v. 
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To show that .A= (P, F, WIN) is a canonical asynchronous priority arbitration scheme on n 

modules, m busses, and t stages, we first notice that Pis a set of n distinct arbitration priorities, 

as required. The arbitration protocol F = (J m-l, ... , ]1 , Jo) is acyclic, since by definition, each 

function fj, for j = 0, 1, ... , m - 1, takes an arbitration priority p E P and m - 1 - j bit values 

(vm-1, ... ,vj+1) and produces one bit, as required. Furthermore, F = (fm-1, ... ,]1,Jo) is in 

canonical form, since for any configuration v = ( Vm_ 1, ... , v1, vo), for any j = 0, 1, ... , m - 1, 

for any i = 0, 1, .. ., n - 1, and for any 0 :S k :S i, we have 

fj(pi, Vm-1, .. ., Vj+I) = 0 

' 
=::::} v /j(p1, Vm-1' .. ., Vj+i) = 0 

l=O 

k 

=::::} v /j(p1, Vm-1,. .. , Vj+i) = Q 
l=O 

=::::} fj(pk,Vm-1,. . .,Vj+1) = 0, 

as required by Definition 15. We then have that F is a canonical acyclic arbitration protocol 

of size m for P. 

We now argue that for any Q C P, the arbitration process of F on Q takes at most t 

stages. Let Pi E Q be the highest arbitration priority in Q. Because F is in canonical form, 

the arbitration process of F on {Pi} is indistinguishable from the arbitration process of F on 

Q. (Under F, arbitration priority Pi always "shadows" the activity of Q.) By our definition of 

F, the arbitration process of F on {p;} is an exact simulation of the arbitration process of F 

on {Po.Pi. .. .,pi}, which by definition of A takes at most t stages. We then conclude that the 

arbitration process of F on {Pi} takes at most t stages, which also means that the arbitration 

process of F ~n Q takes at most t stages. 

Last, we verify that the function WIN is indeed an interpretation function for P and F. Let 

Q C P be a set of competing arbitration priorities and let Pi E Q be the highest arbitration 

priority in Q. Let v be the resolution of the arbitration process of Fon Q. As argued above, 

v is also the resolution of the arbitration process of F on {Pi}, which is the resolution of the 

arbitration process of F on {Po, Pl, .. ., Pi}· Since Pi is also the highest arbitration priority in 

{Po,Pi. .. .,p;}, and since WIN is an interpretation function for P and F, we have wIN(v) =Pi, 

which implies that WIN is also an interpretation function for P and F. 
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This completes the proof that A = (P, F, WIN) is a canonical asynchronous priority arbi-

tration scheme on n modules, m busses, and t stages. • 
Theorem 27 shows that canonical acyclic arbitration protocols have the same arbitration 

power as other acyclic arbitration protocols. The proof transforms an acyclic arbitration pro

tocol F into a canonical acyclic arbitration protocol F, by having module Ci with arbitration 

priority Pi be paranoid and always assume that all the modules c0, c1, ... , Ci-1 with arbitra

tion priorities Po, p1, ... , Pi-I also participate in its arbitration processes. Under protocol P, 

then, module Ci responds to any configuration by simulating the combined responses of modules 

co, c1, ... , Ci to the same configuration under protocol F. 

For example, transforming the asynchronous linear arbitration scheme of Section 3.3.1 to 

canonical form, results in a scheme where to arbitrate, contending module Ci applies a 1 to 

busses bi, ... , bo, and does not interfere with other busses. After t = 1 units of time, all the 

busses stabilize on their final values, and the module with a 1 on the highest indexed bus is 

recognized as the winner. Formally, this scheme is derived from LINEAR(n, n, 1) = (P, F, WIN), 

and is defined as CANONICAL-LINEAR(n,n, 1) = (P,F, WIN), where 

1. P={pi=on-l-i 1 Oi: for i=O,l, ... ,n-1}; 

2. F = (/n-1, ... ,/i,/o), where for j = O,l, ... ,n - 1 and i = 0,1, ... ,n - 1, we have 

fj(Pi, Vn-1 · · ·, Vj+I) = 1 if j ~ i and fj(Pi, Vn-1 ... , Vj+i) = 0 if j > i; 

3. WIN( Ok 1 o:) =Ok 1 on-l-k = Pn-1-k, for 0 ~ k ~ n - 1 and any o: E {0, l}n-l-k. 

We use the canonical forms of arbitration protocols for analysis purposes only. In practice, 

there may be several drawbacks to using canonical forms of acyclic arbitration protocols, due 

to their ov·erly paranoid behavior. The advantage of canonical forms arises in investigating the 

computational power of asynchronous priority arbitration schemes with busses. When analyzing 

an asynchronous priority arbitration scheme for n modules, there may be a need to investigate 

all possible 2n arbitration processes, corresponding to the 2n possible subsets of competing 

modules. For a canonical asynchronous priority arbitration scheme on n modules, however, 

there are exactly n different arbitration processes to analyze, and there are exactly n reach

able winning configurations. This is the case since for canonical protocols, higher arbitration 

priorities always "shadow" the activity of smaller arbitration priorities. 
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3.5.3 The bus-time tradeoff 

Analytically, the simplest way to define the optimal bus-time tradeoff of asynchronous priority 

arbitration schemes is to fix m, the number of arbitration busses used, to fix t, the number 

of arbitration stages allowed, and to investigate the largest number of modules that can be 

arbitrated by some asynchronous priority arbitration scheme with m busses in at most t stages. 

Formally, we define R( m, t), for m ~ 0 and t ~ 0, as the smallest integer, such that any 

A( n, m, t) = (P, F, WIN) , an asynchronous priority arbitration scheme for n modules, m busses, 

and t stages, satisfies n ~ R( m, t). Theorem 27 implies that in investigating R( m, t), it suffices 

to focus only on canonical asynchronous priority arbitration schemes with m busses and t stages. 

We take advantage of this fact when convenient. The following lemma shows that the value of 

R( m, t) is well defined for any m ~ 0 and t ~ 0. 

Lemma 28 For any m ~ 0 and t ~ 0, we have R( m, t) ~ 2m. 

Proof. Let A( n, m, t) = (P, F, WIN) be a canonical asynchronous priority arbitration scheme 

on n modules, m busses, and t stages. With m busses there are no more than 2m possible 

configurations of binary values on the busses, but there must be exactly n distinct resolutions 

of arbitration processes of .A. We must then have n ~ 2m. Since this bound holds for arbitrary 

canonical asynchronous priority arbitration schemes, we also have R( m, t) ~ 2m. • 
Lemma 28 states that no more than 2m modules can be arbitrated with m busses. Given 

enough time, we can arbitrate among exactly n = 2m modules, as the following lemma implies. 

Lemma 29 For any m ~ 0 we have R(m,m) = 2m. 

Proof. The asynchronous binary arbitration scheme of Section 3.3.2 arbitrates among n mod

ules, using m = lg n busses and t = m = lg n stages. Said another way, with m busses and in 

t = m stages, exactly n = 2m modules can be arbitrated. Combining this with the result of 

Lemma 28, we have R( m, m) = 2m. • 

From Lemmas 28 and 29 it follows that there is no advantage in using more units of time 

than the number of busses. We summarize this observation in the following theorem. 

Theorem 30 For any t ~ m ~ 0 we have R( m, t) = 2m. 
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The next theorem shows that R( m, t) is monotonicly nondecreasing in both m and t. 

Theorem 31 For any m ? 0 and t ? 0 we have 

1. R(m+l,t)?R(m,t), 

2. R(m,t+ 1)? R(m,t). 

Proof. Increasing the number of arbitration busses or the number of arbitration stages cannot 

decrease the number of modules that can arbitrate. We show this by describing how to simulate 

any asynchronous priority arbitration scheme A( n, m, t) = (P, F, WIN) by a scheme with more 

busses or time. 

1. Define A'( n, m + 1, t) = (P', F', WIN') as follows. The arbitration priorities P' = P 

are unchanged. If F = Um-t.····fi,fo) then define F' = u:n,f:n-1,····f{,f~), where 

Jj = fi-1 for j = 1, 2, ... , m, and fMp, v) = 0 for any p E P' and v E {O, l}m. Finally, 

we define WIN'( Vm, Vm-1, ••• , Vi, vo) = WIN( Vm, Vm-1, ... , vi) for Vj E {O, 1} and j = 

0, 1, ... , m. Informally, the asynchronous priority arbitration scheme A' simulates A on 

the first m busses and ignores the last bus. Since this simulation method works for 

arbitrary asynchronous priority arbitration schemes, we then have R( m + 1, t) ? R( m, t). 

2. Since A( n, m, t) = (P, F, WIN) arbitrates among any Q C P in at most t stages, it also 

arbitrates in at most t + 1 stages, which shows that R( m, t + 1) ? R( m, t). • 

We now turn to investigate R( m, t), for values of m ? t ? 0. The next lemma investigates 

the case t = 0. 

Lemma 32 For any m ? 0 we have R( m, 0) = 1. 

Proof. With t = 0 stages and m busses to arbitrate, for any value of m ? 0, the reading of 

the busses after t = 0 stages consists of m zeros. It then follows that we can arbitrate among 

at most one module, that is R(m,O) = 1 for any m? O. • 

We next investigate R( m, t) for the case t = 1. The following theorem demonstrates that 

any canonical asynchronous priority arbitration scheme with m busses can be in at most m + 1 

different configurations after t = 1 stages. 
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Theorem 33 Let A( n, m, t) = (P, F, wrn) be a canonical asynchronous priority arbitration 

scheme on n modules, m busses, and t stages. Let U = { u : u = F(p, om) for p E P} be the 

set of all possible responses of modules of A to the initial configuration v = om. Then we have 

IUI $ m + i. 

Proof. For convenience of analysis, we refine the definition of U. Corresponding 

to P {Po, Pt, ... , Pn-d, the set of responses U is a set of m- bit vectors U = 
{ u; : u; = F(p;,Om) for i = 0, 1, ... , n - 1}. Each m-bit vector ui EU, is the response of p; 

under F to the configuration v = om. Since F is a canonical acyclic arbitration protocol and 

since the arbitration priorities are indexed in increasing order of priority, we must have that for 

any 0 $ k $ i $ n - 1, the m-bit vector u; has a 1 at component j if the m-bit vector Uk has a 

1 at component j, for j = 0, 1, ... , m - 1. This implies, by the pigeonhole principle, that there 

cannot be more than m + 1 such m-bit vectors in U, or that IUI $ m + 1. • 

Armed with Theorem 33, we can now show that R(m, 1) = m + 1. 

Lemma 34 For any m :2: 0 we have R(m, 1) = m + 1. 

Proof. From Theorem 33 it follows that any canonical asynchronous priority arbitration 

scheme A(n, m, 1) = (P, F, WIN) on n modules, m busses, and t = 1 stages, can reach at most 

m + 1 distinct resolutions. For any such canonical asynchronous priority arbitration scheme, 

A, there must be exactly n resolutions, which implies that n $ m + 1. Since this bound holds 

for arbitrary A, we then also have 'R( m, 1) $ m + 1. 

With t = 1, our generalized binomial arbitration scheme of Section 3.4.2 achieves n = 
2=~~6 (';1) = (~) + ('~) = 1 + m. We therefore conclude that R(m, 1) = m + 1. • 

We next generalize Theorem 33, by showing that any canonical asynchronous priority arbi

tration scheme with m busses and t stages can be in at most (m;1)s! different configurations 

after 0 $ s $ t stages. 

Theorem 35 Let A( n, m, t) = (P, F, WIN) be a canonical asynchronous priority arbitration 

scheme on n modules, m busses, and t stages. Let U[OJ = {om} be the set of the initial 

configuration of m bits of 0, and let U[s], for 1 $ s $ t, be the set of possible configurations of 

A afters stages. Then, for any 0 $ s $ t, we have IU[s]I $ (m;1)s!. 
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Proof. We prove the theorem by induction on s. For convenience of analysis, we first refine 

the definition of U[s], for 0 $ s $ t. 

Due to the canonical nature of the a.synchronous priority arbitration scheme .A, there are 

exactly n distinct arbitration processes to analyze, each corresponding to a different module 

c; being the highest priority module arbitrating. We begin by defining the sequence of con

figurations that module c; with arbitration priority p; generates if c; is the highest priority 

module that arbitrates. For any 0 $ i $ n - 1, we define u;[OJ = om and we inductively define 

u;[s) = F(p;, u;[s - 1]), for values of s 2: 1. The canonical nature of the acyclic arbitration 

protocol F guarantees that the m-bit vector u;[s] is the configuration of the m busses after 

s stages, when module c; is the highest priority module arbitrating, no matter which of the 

modules c0 , ci, ... , c;_ 1 also arbitrates. The set U[s] of all possible configurations of .A after s 

stages, for any s ~ 0, can now be defined as 

n-1 

U[s] = LJ { u;[s]} 
i=O 

This is the case because if module c; is the highest priority module arbitrating, then the con

figuration of the m busses afters stages is ui[sJ. 

We now prove the theorem by induction on s. For the cases= 0, we have U[OJ = {om} and 

IU[OJI = 1 = (mci1)0!. Fors= 1, we have from Theorem 33 that IU[l]l $ m + 1 = (mi°1)1!. We 

now assume that for s - 1 we have IU[s - l]I $ (';!/)(s - 1)!, and show that IU[s]I $ (m;1)s!. 

The set of possible configurations of the m busses after s - 1 stages is U[s - 1]. Each 

configuration u E U[s - 1) defines an equivalence class, Cu = {c; : u;[s - 1] = u}, of all the 

modules Ci that bring the busses to configuration u after s - 1 stages. (Correspondingly, we 

define Pu ~ {p; : u;[s - 1] = u}, for each u E U[s - 1].) This definition implies that for any 

u E U[s -1], the configuration of them busses afters -1 stages is u if and only if some module 

c; E Cu is the highest priority module arbitrating. Furthermore, for each u E U[s - 1] (or for 

each c; E Cu), the first s-1 busses bm_1 , bm-2, ... , bm-a+I have stabilized on the first s - l bits 

of u. The modules in Cu have only the last m - s + 1 busses bm-•• bm-a-1, ... , bo to which they 

can apply new values at stage s. Focusing on the last m - s + 1 busses, an argument similar to 

that of the proof of Theorem 33 shows that there are at most m - s + 2 different responses of 

modules in Cu during stages. Said formally, for any u E U[s - I] we have 
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LJ { F(p, u)} ~ m - s + 2 . 
pEPu 

That is, any configuration u E U[s - 1] can develop to no more than m - s + 2 configurations 

during stages. By definition, we have 

U[s] = 

which implies 

IU[s]J < 

< 

= 

u LJ {F(p,u)}, 
uEU[a-1] pEPu 

IU[s - l]I · (m - s + 2) 

( 7 ~ 
1
1
) ( s - 1) ! · ( m - s + 2) 

(m+ 1)! ( 2) -'------'---- · m - s + 
(m - s + 2)! 

(m+ 1)! 
(m-s+l)! 

(m: l)s!, 

which completes the proof of the theorem. • 
Theorem 35 demonstrates that any canonical asynchronous priority arbitration scheme with 

m busses and t stages can be in no more than (m;1)s! different configurations after s stages, 

for any 0 ~ s ~ t. The result of Theorem 35 implies the following theorem. 

Theorem 36 For any m ~ t ~ 0, we have 'R.(m, t) ~ (mi1)t!. 

Proof. Let A( n, m, t) = (P, F, WIN) be a canonical asynchronous priority arbitration scheme 

on n modules, m busses, and t stages. From Theorem 35 we have that the number of possible 

configuration; that .A can be in after t stages in at most (mi1)t!. We then have n ~ (mi1)t!, 

because .A has exactly n resolutions. Since this discussion holds for arbitrary .A, we conclude 

• 
The preceding analysis provides several nontrivial bounds for the bus-time tradeoff of gen

eral asynchronous priority arbitration schemes. These bounds were obtained by analyzing the 

canonical forms of such schemes. We conjecture, however, that the bounds of Theorem 35 and 

of Theorem 36 are not tight in general, and that the tight bound for the bus-time tradeoff is 

'R.( m, t) = L:~=O (';1), exhibited by our generalized binomial arbitration scheme. 
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3.6 Discussion and extensions 

This section contains some discussion, additional results, and directions for further research on 

priority arbitration with busses. 

3.6.1 The k-ary arbitration scheme 

The linear arbitration and binary arbitration schemes of Section 3.3 use n-ary and binary 

representations, respectively, of module priorities. We can also use radix-k representation of 

module priorities, for other values of k, to arbitrate among n = kt modules in t units of 

time, using m = tk busses. We sketch the a.synchronous k-ary arbitration scheme here due 

to its simplicity and because it generalizes the linear and binary arbitration schemes rather 

straightforwardly. This scheme exhibits a bus-time tradeoff of the form m = tn11t, which is a 

factor of e worse than the asymptotic bus-time tradeoff exhibited by our generalized binomial 

arbitration scheme of Section 3.4.2. 

Asynchronous k-ary arbitration, for 2 $ k $ n, can be described as follows. Each module is 

assigned a unique k-ary arbitration priority consisting oft radix-k digits. We divide them = tk 

busses into t disjoint groups, each consisting of k busses. During arbitration, competing module 

c applies the t radix-k digits of its arbitration priority p to the t groups of busses, using linear 

encoding of its digits on each group of k busses. As arbitration progresses, competing module 

c monitors the t groups of busses and disables its drivers according to the following rule: let 

p(l) be the Ith radix-k digit of p and d1 be the highest index of a bus in the Ith group of busses 

that carries a 1. Then if p(I) < d1, module c disables all its digits pU> for j < l. Disabled 

digits are re-enabled should the condition cease to hold. Arbitration proceeds in t stages, each 

of which consists of resolving the value of another radix-k digit of the highest competing k-ary 

arbitration priority. 

The a.synchronous k-a.ry arbitration scheme combines the ideas of the asynchronous binary 

protocol with linear encoding of arbitration priorities, to achieve an intermediate bus-time 

tradeoff, m = tn11t. The acyclic arbitration protocol of k-ary arbitration is of size m = tk, but 

its depth is only d = t. The analysis of k-ary arbitration is a static one, similar to the analysis 

of binary arbitration. Implementing the a.synchronous k-ary arbitration scheme, however, may 

require a different circuitry for arbitration in radix k. Our generalized binomial arbitration 
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scheme, besides achieving a better bus-time tradeoff, is also immediately implementable on 

any arbitration circuitry of binary arbitration, which is the most commonly used asynchronous 

priority arbitration scheme with busses. 

3.6.2 Bus-time tradeoff of asynchronous priority arbitration 

In Section 3.5.3, we proved that any asynchronous priority arbitration scheme on n modules, 

m busses, and t stages, satisfies n ~ (mi 1)t!. Our generalized binomial arbitration scheme of 

Section 3.4.2 achieves a better bus-time tradeoff of the form n = L~=O (1;1). There is still a 

gap between the upper and the lower bounds on the bus-time tradeoff of asynchronous priority 

arbitration schemes. We conjecture that the bus-time tradeoff exhibited by the generalized 

binomial arbitration scheme is optimal for our model of asynchronous priority arbitration with 

busses, but we were unable to prove or disprove it. Using the notation of Section 3.5.3, we 

conjecture that 'R(m, t) = L~=O (7), for any m? 0 and t? 0. 

3.6.3 Synchronous priority arbitration schemes 

In this chapter we discussed the asynchronous model of priority arbitration with busses and 

presented several asynchronous schemes. Considering synchronous priority arbitration scheme 

that use clocked arbitration logic, one can show that a synchronous version of k-ary arbitration 

achieves a bus-time tradeoff of the form m = n1ft. (Variants of this scheme are used in 

synchronous communication protocols (see [45, 71]). In synchronous priority arbitration, busses 

can be reused on successive clock cycles, which enables a better bus-time tradeoff than that of 

asynchronous priority arbitration, in that there is no multiplicative factor oft in the bus-time 

tradeoff m = n11t. 

For synchronous priority arbitration schemes, a related arbitration model can be defined. 

In this model it is possible to prove that the tradeoff m = 0( n1/t) is optimal. The proof utilizes 

the result of Lemma 34 that with m busses at most n = m + 1 modules can be arbitrated in 

t = 1 stages. Using synchronous priority arbitration in t stages, one cannot do any better than 

arbitrating among at most n = (m + l)t modules, which implies the optimality of the tradeoff 

m = 0(n1ft) exhibited by the synchronous version of k-ary arbitration. 
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3.6.4 Resource tradeoffs 

Resource tradeoffs of the form m = 0(tn11t), based on multiway trees and the special class of 

binomial trees, are discussed in [8) for a variety of problems such as parallel sorting algorithms, 

searching algorithms, and VLSI layouts. Asynchronous priority arbitration with busses can in 

fact be considered a.s a selection process on trees. Asynchronous k-ary arbitration corresponds 

to a selection process on regular trees of branching factor k, while asynchronous generalized 

binomial arbitration corresponds to a selection process on the more economical "modified bi

nomial trees" of [8]. 

3.6.5 Directions for further research 

In this chapter we investigated a model for the settling of a digital bus that assumes a unit 

of time (bus-settling delay) for the bus to stabilize to a valid logic value. There are several 

situations, such as electrical transmission line, radio channels, and optical fibers, however, 

where a different analysis based on distances and directions may be required. In Chapter 4 we 

examine the performance of priority arbitration schemes in a more elaborate model of a bus as 

a digital transmission line. 

The busses in the arbitration mechanisms investigated serve a.s a shared memory into which 

modules write and from which they read. These busses/memory implement the OR function 

of the values written to them. There might be some interest in other logic functions that 

busses/memory can implement. One interesting case would be memory cells that can compute 

the majority function on 0/1 values written into them. 

Our work has concentrated on analyzing the data-dependent behavior of arbitration mecha

nisms that .use fixed module priorities. There are several mechanisms that do not use determin

istic module priorities or that arbitrate by using randomized protocols. It would be interesting 

to extend our a.nalysis to these more flexible or randomized schemes. 

Finally, the domain of data-dependent analysis has not been heavily investigated. There are 

many interesting circuits that exhibit faster performance than implied by the static measure 

of their depth. A more systematic approach for data-dependent analysis would prove to be 

a valuable tool for circuit designers. There has been some focus on the structure of delay

insensitive codes [85], for example, but not on data-dependent performance of logic circuits. 
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Chapter 4 

Priority Arbitration on Digital 

Transmission Busses 

This chapter examines the performance of priority arbitration schemes presented in Chapter 

3 under the digital transmission line bus model. This bus model accounts for the propaga

tion time of signals along bus lines and assumes that the propagating signals are always valid 

digital signals. A widely held misconception is that in the digital transmission line model the 

arbitration time of the binary arbitration scheme is at most 4 units of bus-propagation delay. 

We formally disprove this conjecture by demonstrating that the arbitration time of the binary 

arbitration scheme is heavily dependent on the arrangement of the arbitrating modules in the 

system. We provide a general scenario of module arrangement on m busses, for which binary 

arbitration takes at least m/2 units of bus-propagation delay to stabilize. We also prove that 

for general arrangements of modules on m busses, binary arbitration settles in at most m/2 + 2 

units of bus-propagation delay, while binomial arbitration settles in at most m/4 + 2 units of 

bus-propagation delay, thereby demonstrating the superiority of binomial arbitration for general 

arrangements of modules under the digital transmission line model. For linear arrangements of 

modules in increasing order of priorities and equal spacings between modules, we show that 3 

units of bus-propagation delay are necessary for binary arbitration to settle, and we sketch an 

argument that 3 units of bus-propagation delay are also asymptotically sufficient. 

89 
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4.1 Introduction 

The nature of signal propagation through a communication medium has a significant impact 

on the design of communication protocols for that medium. In any communication system, 

the time required for a signal sent by a given module to reach another module depends on the 

propagation speed of signals in the communication medium, the distance between the modules, 

and the directionality of signal propagation. Although different communication media may 

have different signal-propagation speeds, qualitatively they can be modeled in similar ways. 

Communication protocols must account for signal propagation delays by allowing enough time 

for information to disseminate through the system. 

In this chapter we investigate the effects of signal propagation delays through bus lines 

on the performance of priority arbitration schemes presented in Chapter 3. For high-speed 

signals, a bus acts like an analog transmission line with associated impedance that affects the 

propagation delays (see (5, 22, 40, 88]). A complete characterization of signal propa.ga.tion on 

analog transmission lines involves several transient effects such as reflections, superposition, 

and attenuation of signals. Analyzing the performance of communication protocols in such 

detailed analog models is a rather difficult task, however, and to make such analyses tractable 

a digital transmission line model for a. bus is commonly used. This model accounts for the 

propagation delays of signals along a bus, assumes that the propagating signals are always 

valid digital signals, and ignores reflections, superposition, and attenuation of signals. The 

digital transmission line model is a model of an idealized digital bus, which ignores the delays 

caused by the analog nature of signals on electrical busses and focuses on the delays that arise 

from signal propagation along bus lines. 

Several researchers studied the performance of the asynchronous binary arbitration scheme 

of Section 3.3.2 in the digital transmission line bus model. Ta.uh (79, 81] investigated the 

maximal propagation delay of signals in the binary arbitration scheme, under the assumptions 

that modules a.re linearly arranged in increasing order of priorities and that they are equally 

spaced on the bus lines. Taub showed that in such situations 4 units of bus-propagation delay 

are sufficient for the binary arbitration scheme to settle, no matter how many bus lines are 

involved. However, Taub claimed tha.t such a.n arrangement of system modules exhibits a worst

case scenario and concluded that 4 units of bus-propagation delay are always sufficient for the 
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binary arbitration scheme on any number of bus lines. Empirical counterexamples to Taub's 

claim were found [3, 87], which consist of arranging system modules in certain arrangements 

that require more than 4 units of bus-propagation delay for binary arbitration to settle. In [3], 

for instance, Ashcroft, Rivest, and Ward provide a specific example of arranging n = 4 modules 

on m = 7 bus lines, such that 5 units of bus-propagation delay are required for the binary 

arbitration scheme to stabilize. Other such empirical examples were found that contradict 

Taub's hypothesis for general cases. In this chapter, we identify the flaw in Taub's hypothesis, 

provide tight upper and lower bounds on the time (in units of bus-propagation delay) required 

by binary arbitration for general arrangements of modules, and reexamine linear arrangements 

of modules in increasing order of priorities. 

In the remainder of this chapter, we investigate the binary arbitration scheme in the digital 

transmission line bus model. Section 4.2 discusses some issues of signal propagation on electrical 

transmission lines and describes the digital transmission line model of a bus. In Section 4.3, we 

formally disprove Taub's conjecture by providing a general scenario of module arrangement on 

m busses, for which binary arbitration takes at least m/2 units of bus-propagation delay. We 

also prove that for arbitrary arrangements of modules on m busses, binary arbitration settles 

in at most m/2 + 2 units of bus-propagation delay, while binomial arbitration from Chapter 3 

settles in at most m/ 4 + 2 units of bus-propagation delay, thereby demonstrating the superiority 

of binomial arbitration for general module arrangements in the digital transmission line model. 

Section 4.4 examines linear arrangements of modules in increasing order of priorities and equal 

spacings between modules on the bus lines. In such arrangements, we show that 3 units of bus

propagation delay are necessary for binary arbitration to settle, and we sketch an argument 

that 3 units of bus-propagation delay are also asymptotically sufficient. Finally, in Section 4.5, 

we discuss the results of this chapter and indicate directions for further research. 

4.2 Busses as transmission lines 

In this section we discuss the transmission line nature of electrical busses. We first describe 

some of the analog issues of electrical bussed transmission lines, which affect the design of many 

bus systems and protocols. We then present the digital transmission line model of a bus, which 

serves as a low-level digital abstraction of a bus. 



92 CHAPTER 4. PRIORITY ARBITRATION ON DIGITAL TRANSMISSION BUSSES 

4.2.1 Analog issues of bussed transmission lines 

The electrical tra.nsmission of signals on a bus line is an analog phenomenon, although the 

digital abstraction of logic design tries to hide the analog nature of signal transmission. The 

nature of signal transmission on a bus line includes the propagation speed of signals, reflections 

of signals, superposition of wave forms, voltage glitches and spikes, and signals attenuation, 

among others. Here we briefly discuss some of these phenomena. 

The propagation of signals on a bussed transmission line is a time-consuming rather than 

an instantaneous event. The speed of signal propagation on a bus is determined by various 

physical and geometrical properties, such as the material, shape, temperature, and electrical 

properties of the bus in its environment. The length of a bus line determines the maximal 

duration that a signal needs to propagate through the bus, which is termed bus-propagation 

delay. However, there are other factors that affect the validity of digital signals that propagate 

on a bus line, thereby affecting the propagation speed of digital signals on the bus. 

A bus has a characteristic impedance that depends on its geometrical and physical proper

ties. This characteristic impedance is computed in terms of the inductance, capacity, and length 

of the bus (see [5, 40]). Impedance discontinuities along the bus, such as at connectors or at its 

ends, cause reflections of a fraction of each wave form passing through them. Reflected signals 

generate standing waves and noise on the bus line, which complicate the transfer of digital data. 

Signal reflections and termination can be considerably reduced by careful engineering of the 

bus and its connectors, but such fine tuning is rather complex and expensive. 

A transmission line can simultaneously propagate numerous wave forms at different locations 

and in either direction. Different wave forms pass through each other without interference to 

create the spatial and temporal sum of the propagating wave forms. This phenomenon is known 

as the superposition principle. Superposition of valid digital signals may cause non-valid digital 

voltage levels at various places on a bus. The effect of superposition of signals is especially 

problematic with open-collector bus drivers, where several signals, applied by different modules, 

may be traveling on the bus in different directions. A discussion of wired-OR glitches, which 

result from superposition of signals on open-collector busses, appears in [42]. 

The number of modules connected to a bus line and the distances between modules play 

an important role in the propagation of signals on the bus. Electrical signals traveling on a 
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bus line experience some attenuation, which depends on the distance traveled and the driver's 

power. If several modules drive the bus to the same logic level, the bus may reach this level 

faster than if only one module drives the bus. In addition, the length of the bus and the number 

of modules on it determine the power at which modules should drive electrical signals onto the 

bus to guarantee that the signals driven are at valid digital levels. 

As a consequence of all the analog complications in driving digital signals onto bus lines, 

most bus systems strive for engineering simplicity at the cost of reduced bus performance. In 

Chapter 3 we discussed a bus model that assumes that the voltage level on a bus may not 

be a valid digital value before a unit of bus-settling delay, TbUA, passes. In this chapter we 

introduce another bus model, the digital transmission line model, which attempts to capture 

the transient nature of traveling digital signals on a bus line and ignores the analog phenomena 

of signal reflections, waveform superposition, and voltage glitches and spikes. Very careful 

design and engineering of a bus can reduce much of the analog phenomena on transmission 

lines with the exception of the finite propagation speed of signals. 

4.2.2 The digital transmission line bus model 

The digital transmission line model accounts for propagation delays of digital signals along 

bus lines, which depend on the distances and the directions that signals travel. This model 

abstracts over the analog nature of reflected, superposed, and attenuated signals, by assuming 

that the propagating signals are always valid digital signals. The digital transmission line model 

is a model of an idealized bus, which enables examining certa.in inherent properties of bussed 

systems (see for example [3, 23, 79, 80, 81, 87]). A careful design of high-speed bus lines can 

result in a good approximation to this idealized model (see [5, 17, 81)). 

In the digital transmission line bus model, we make the following assumptions. The system 

consists of n modules that are arranged along m parallel bus lines. The m bus lines all have 

the same length L. Each of the n modules is connected to all the m bus lines at the same 

spatial location, that is, at the same distance from the beginning of each bus line. Under these 

assumptions, the distance between two modules on the bus lines is well defined; it is the distance 

between the modules as measured on any of the m bus lines. There is a module at each of 

the two ends of the bus lines, such that the distance between the two furthest away modules is 



94 CHAPTER 4. PRIORITY ARBITRATION ON DIGITAL TRANSMISSION BUSSES 

exactly L and no other two modules are at distance L from each other. 

Each module can drive digital signals on any of the m bus lines. All the m busses have the 

same signal propagation speed, which we denote by V. Signals driven on a bus line propagate 

at the same speed and in both directions on the bus. A signal that a module drives on any bus 

line, therefore, can not be noticed at distance d away from that module before time t = d/V 

passes. The time it takes for a signal to travel the whole length L of a bus line is Tp = L/V 

and is termed the bus-propagation delay. For simplicity, we assume that the signal propagation 

speed V is V = 1. This enables identifying a distance d on the bus lines and the time t that it 

takes for a signal to travel this distances d, since t = d/V. With this assumption we also have 

that Tp = L. 

In the digital transmission line model, we assume that signals propagation on bus lines is 

a digital phenomenon that exhibits no analog behavior. There are no reflections of signals or 

of fractions of signals anywhere on the bus lines. The bus lines are terminated properly and 

signals reaching either end of a. bus line simply disappear. Digital signals that meet on a bus 

line superpose in a logic OR manner according to the wired-OR nature of the bus medium, that 

is, at any given point on a bus line the resultant level measured is always the logic OR of the 

digital signals passing there. No signal spikes, glitches, or attenuation are experienced; signals 

are always at valid digital levels. Signals on parallel bus lines do not interfere with each other, 

that is, there is no "cross talk" between bus lines. Finally, we assume that modules do not 

experience any gate delays in driving signals on bus lines; the only delays considered are the 

propagation delays of digital signals along bus lines. In spite of its abstract characterization 

of bus lines, the digital transmission line model is a useful tool for investigating the effects of 

signal propaga.tion delays on the performance of various protocols. 

4.3 General arrangements of modules 

In this section, we investigate the arbitration time of the binary arbitration scheme for general 

arrangements of modules. A widely held misconception is that in the digital transmission 

line model the arbitration time of binary arbitration is at most 4 units of bus-propagation 

delay. Here, we formally disprove this conjecture by demonstrating that the arbitration time 

of the binary arbitration scheme depends on the arrangement of the arbitrating modules in 
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the system. We first provide a scenario of module arrangement on m busses, for which binary 

arbitration takes at least m/2 units of bus-propagation delay to settle. We then prove that for 

any arrangement of modules on m busses, binary arbitration stabilizes after at most m/2 + 2 

units of bus-propagation delay. Finally, we relate these results to the binomial arbitration 

scheme and demonstrate that it settles in at most m/4 + 2 units of bus-propagation delay. 

4.3.1 Lower bound for binary arbitration 

To prove the lower bound on the arbitration time of binary arbitration with m bus lines in the 

digital transmission line model, we describe a scenario for arranging a selected set of arbitrating 

modules on the m bus lines. We assume that all the arbitrating modules start their arbitration 

process simultaneously and follow the binary arbitration protocol, which is described in Section 

3.3.2. We remind that this protocol states that each module applies its arbitration priority to 

the m bus lines, and that if a module applies a logic 0 to a certain bus line but detects that 

the bus line carries a logic 1, then the module disables all its bits of lower significance for as 

long as the conflict on that bus line remains. This rule guarantees that after sufficient delay 

only the bits of the highest arbitration priority are applied to the m bus lines. Until this time 

delay passes, however, there may be many modules applying and disabling low-order bits, which 

may generate many transient digital signals on the bus lines. The system stabilizes when all 

the transient signals on all the bus lines have disappeared. Our lower bound scenario arranges 

selected modules on the m bus lines in such a way that there is a sequence of m/2 transient 

signals, each of which is stimulated by its predecessor in the sequence, that travel from side to 

side on the m bus lines. This has the effect of delaying system settlement until at least m/2 

units of bmi-propagation delay pass. 

Our lower bound scenario partitions the selected arbitrating modules into two sets, which 

we shall denote by A and B. The set A of modules is located at the very far right end of 

the m bus lines and the set B of modules is located at the very far left end. The distances 

between modules inside each set are very small compared to the distance between the two sets. 

The distance between the two sets (between the leftmost module in the right set A and the 

rightmost module in the left set B) is almost the whole length L of the bus system. This has 

the effect that arbitration inside each of the two sets settles much faster than even the time 
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required for a signal to propagate from one set to the other. (These distances and delays will 

be discussed in more detail towards the end of this subsection.) Figure 4-1 illustrates this high 

level partitioning of the selected arbitrating modules into sets A and B. 
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Figure 4-1: High level partitioning of the selected arbitrating modules into sets A and B. With a 
parameter d (to be determined later), the total length of set A is 9d/4, the total length of set B is d/2, 
and the distance between the two sets is almost L, such that d <: L. 

Inside each of the sets A and B, modules are organized in linear order of priorities, with 

priorities increasing from left to right in set A and from right to left in set B. Each set by itself 

settles rather fast, due to its relatively short total length. However, the arbitration priorities 

in the two sets are selected in such a way that they interact with each other. Initially, when 

arbitration begins, a special "wave form" is generated by modules in set A on 2 top bus lines 

and is propagated towards set B. This special "wave form" arrives at set B after the arbitration 

in set B have already settled and causes some temporary confusion there. As a result, a similar, 

reflected, and ~hrunk-by-2 "wave form" is generated by modules in set Bon the next 2 bus lines 

and is propagated ha.ck towards set A, where it causes a similar temporary confusion. This, 

in turn, results in a similar, reflected, and again shrunk-by-2 "wave form", which is generated 

by modules in set A and is now propagated back towards set B on the next 2 bus lines. This 

ping-pong of "wave forms" lasts for m/2 iterations, since each such iteration utilizes 2 distinct 

bus lines. The duration of ea.ch such iteration is almost Tp, since this is the time required by 

any "wave form" to propagate from set A to set B or vice versa. The arbitration process of the 

whole system is therefore not completed before ( m/2)Tp time passes. 
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We now describe the "ping-pong wave forms" that propagate back and forth between the 

sets A and B. Each "ping-pong wave form" is the combination of two signals traveling together 

in the same speed and direction on two consecutive bus lines. Odd-indexed "ping-pong wave 

forms" are generated by modules in set A and propagate towards set B (from right to left), 

while even-indexed "ping-pong wave forms" are generated by modules in set B and propagate 

towards set A (from left to right). The first "ping-pong wave form" is spontaneously generated 

by set A when arbitration begins. The ith "ping-pong wave form", for 1 < i ~ m/2, is generated 

as a result of receiving the ( i - 1 )st "ping-pong wave form". In general, the ith "ping-pong 

wave form", for 1 ~ i ~ m/2, can be described as follows: 

• a 1-signal of duration 2d/2i on bus line bm-2i, and 

• a 0-signal of duration 4d/2i on bus line bm-2i-I· 

Figure 4-2 illustrates the ith "ping-pong wave form". The parameter dis the distance between 

the modules generating the first "ping-pong wave form" and will be discussed later. 
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Figure 4-2: The ith "ping-pong wave form" on two consecutive bus lines. This wave form propagates 
from right to left, that is, i is assumed to be odd. For even i, this wave form should be reflected. 

We now turn to describe the relative arrangement of modules inside the sets A and B, which 

is responsible for the "ping-pong wave forms" phenomenon. For simplicity, we focus first on the 

structure of set B, which is somewhat simpler than that of set A. The location of modules in 

set B and their relative distances from each other are of primary importance. The modules in 

set B are responsible for receiving the odd-indexed "ping-pong wave forms" (first, third, etc.) 

coming from the right, and for generating the even-indexed "ping-pong wave forms" (second, 

fourth, etc.) that propagate to the right. To examine the generation of the second "ping-pong 

wave form", for example, we need to describe the location and priorities of three modules in set 
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B. These three modules with arbitration priorities p1 , p2 , and P3 are illustrated in Figure 4-3. 

Module P3 is at the left end of the bus system, module p2 is at distance d/4 from the left end 

of the bus system, and module p1 is at distance d/2 from the left end of the bus system. (The 

parameter d, to be reminded, is related to the duration of the first "ping-pong wave form".) 

Furthermore, module p1 is the only arbitrating module (in both sets A and B) with a 1 on bus 

bm-4i no other arbitrating module has a 1-bit on this bus. The space between modules Pl and P2 

contains no other arbitrating modules. The space between modules p2 and P3 may contain other 

arbitrating modules for generation of future even-indexed "ping-pong wave forms". However, 

each arbitrating module in the space between p2 and p3 must agree with p2 and p3 on their 

high order bits, as illustrated in Figure 4-3. 
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0 0 Busb~ ... 
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.f Bus b m-s __,. ....,. 

' ' '-- '--

d/4 d/4 

Figure 4-3: The arrangement of the three modules in set B that are responsible for receiving the first 
"ping-pong wave form" and for generating the second "ping-pong wave form". The space between Pl and 
p2 contains no other arbitrating modules. The space between p2 and P3 may contain other arbitrating 
modules for generation of future even-indexed "ping-pong wave forms". 

We next examine how the arrangement of the three set-B modules, illustrated in Figure 

4-3, receives the first "ping-pong wave form" and generates the second "ping-pong wave form". 

We assume that the first "ping-pong wave form", which propagates from right to left, arrives 

at the location of module p1 at time t. This first "ping-pong wave form" consists of 2 left

traveling signals as follows: a 1-signal of duration don bus line bm-2 accompanied by a 0-signal 

of duration 2d on bus line bm-3 (see Figure 4-2). In the following discussion, we keep track of 

right-traveling wave forms generated on bus lines bm_4 and bm_5 , as detected at the location 

of module p1 , starting at time t + d. 
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We first concentrate on the wave form generated on bus line bm_4 at the location of P1 

after time t + d. Notice that the left-traveling 1-signal on bus line bm_2 (one part of the first 

"ping-pong wave form") arrives at module p1 at time t, is of duration d, and thus it leaves 

module p1 at time t + d. At time t + d/2 the leading edge of this signal arrives at module 

p3, and at time t + 5d/4 the trailing edge of this signal leaves module P2 (see Figure 4-3). 

Therefore, in the time interval (t + d/2, t + 5d/4), all modules between P2 and P3 disable their 

bits on the bus lines below bm_2 • Specifically, this causes a right-traveling 0-signal on bus line 

bm-3, originated at module PJ, which arrives at module p1 at time t + d. This right-traveling 

0-signal on bus line bm-3 is terminated at time t + 5d/4 at the location of module p2, since the 

signal on bus bm-2 passes p2 at that time. However, at the location of pi, the right-traveling 

0-signal on bus bm-3 is detected until time t + 5d/4 + d/4 = t + 3d/2 (it takes time d/4 for the 

change at P2 to reach Pt). In addition, the left-traveling 0-signal on bus line bm-3 (the other 

part of the first "ping-pong wave form") guarantees that no 1-signal arrives on this bus from 

the right until time t + 2d. The result of all the above discussion is that between time t + d 

and time t + 3d/2 the digital values on bus lines bm-l through bm-3 at the location of Pt agree 

with the bits of priority Pt· Consequently, module p1 generates a 1-signal on bus line bm-4 in 

the time interval (t + d, t + 3d/2), which propagates both left and right and is of duration d/2. 

The right-traveling portion of this signal is one part of the second "ping-pong wave form". 

We now concentrate on the wave form generated on bus line bm_5 at the location of p1 after 

time t + d. The discussion in the previous paragraph about the right-traveling 0-signal on bus 

line bm-3 is also applicable to bus line bm_5 , since the modules between P2 and P3 disable all 

their bits below bus bm-'J· Therefore, there is a right-traveling 0-signal on bus bm_5 between 

time t + d and time t + 3d/2. However, the 1-signal on bus bm_4 , generated by module Pt 

between time t + d and t + 3d/2, propagates both to the left and to the right. The left-traveling 

portion of this 1-signal on bus bm_4 arrives at modules to the left of p1 just as the left-traveling 

1-signal on bus bm-2 leaves those modules. Consequently, modules to the left of p1 continue 

to disable their bits on bus bm_5 for at least another d/2 time, which is the duration of the 

1-signal that module P1 generates. As a result, we have a right-traveling 0-signal on bus line 

bm-5 in the time interval (t + d, t + 2d), which is the other part of the second "ping-pong wave 

form". The right-traveling signals on bus lines bm_4 and bm_5 leave set B at time t +don their 
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way towards set A, where a similar, reflected, and shrunk-by-2 process occurs. 

The structure of set A is almost identical to that of set B. The only difference is that the 

first "ping-pong wave form" is spontaneously created by modules in set A when the arbitration 

process begins. Figure 4-4 illustrates the five set-A modules that are responsible for the first 

and the third "ping-pong wave forms". Modules p4, p5, and p6 spontaneously create the first 

"ping-pong wave form" on bus lines bm_2 and bm_3 • To see that, we concentrate on the left

propagating wave forms detected at the location of module p4 immediately after arbitration 

starts. When arbitration begins, module p4 generates a 1-signal on bus line bm- 2 for a duration 

of d, since after time d the I-signal that module p5 generates on bus line bm-l disables module 

p4 forever. Also, when arbitration begins, bus line bm-J at the location of p4 carries a 0-signal 

for a duration of 2d, until the 1-signal from module p6 arrives from the right to the location of 

module p4. The combination of the signals on bus lines bm_2 and bm_3 is the first "ping-pong 

wave form" that propagates towards set B. Modules p6 , J>7, and p8 are responsible for the third 

"ping-pong wave form" on bus lines bm-s and bm-?· The arrangement of these modules is a 

shrunk-by-2 mirror image of the arrangement of set B. 
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Figure 4-4: The arrangement of the five modules in set A that are responsible for creating the first 
"ping-pong wave form", and for receiving the second "ping-pong wave form" and generating the third 
"ping-pong wave form". The spaces between p4 and p5 , between p5 and P6, and between P6 and P1 

contain no other arbitrating modules. The space between p7 and p8 may contain other arbitrating 
modules for generation of future odd-indexed "ping-pong wave forms". 
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The scenario for module priorities and placement continues in a recursive fashion. For 

example, the region in set B, which is responsible for the fourth "ping-pong wave form", is a 

shrunk-by-4 image of the modules in Figure 4-3. The three new modules are placed in total 

space of d/8 from the left end of the bus lines, with the leftmost module of the three coinciding 

with the module already there. The leftmost module on the bus lines, thus, has the following 

string ( 10r/2 as its arbitration priority. Formally, for the generation of the (2k )th "ping-pong 

wave form", we place a module with priority (10)2k- 1 1010m-4k-l at distance d/2 2k from the 

left end, and another module with priority (10)2k- 1010m-4k at distance 2d/22k from the left 

end. Similar recursion is applied to the structure of the right set A. 

We now discuss the design parameters d, L, Tp, and the duration of the arbitration process. 

The parameter d is the spacing between the modules that generate the first "ping-pong wave 

form", and the parameter L is the length of a bus line. The total length occupied by the two 

sets A and B combined is no more than 3d, which leaves a distance of at least L - 3d between 

the two sets for "ping-pong wave forms" to travel back and forth. The arbitration scenario, 

thus, consists of m/2 iterations, each of which takes at least ( L-3d)/ L units of bus-propagation 

delay. To maximize the arbitration time, we need to minimize the value of d. If the system 

design is such that there is no lower limit on the distance between modules, then d could be 

made as small as desirable and the arbitration process would take m/2 units of Tp. If, however, 

modules are required to be equally spaced on the bus lines, then the following analysis shows 

that the lower bound of m/2 units of Tp is asymptotically attainable. 

Suppose that Ll is the spacing between any two consecutive modules on the bus lines. To 

enable m/2 iterations of the lower bound scenario, the duration of the last "ping-pong wave 

form" must be at least .::l. Alternatively, we must have Ll = 2-(m/2- 1)d, or d = 2m/2- 1.::l. 

However, c;;n m bus lines there are 2m modules, which implies L = (2m - l)Ll. The ratio 

(L - 3d)/ Lis then at least 1 - l/(2m/2- 2), which approaches 1 as m increases. This indicates 

that asymptotically almost the full length of the bus lines is traveled in each iteration. We 

summarize this discussion in the following theorem. 

Theorem 37 There is a scenario of module arrangement on m bus lines, such that under the 

digital transmission line bus model, the binary arbitration scheme asymptotically requires at 

least m/2 units of bus-propagation delay to settle. 
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4.3.2 Upper bound for binary arbitration 

In this subsection, we prove that for any arbitrary arrangement of modules on m busses, binary 

arbitration stabilizes after at most m/2 + 2 units of bus-propagation delay. This upper bound 

is derived by concentrating on the number of 0-intervals in the highest competing arbitration 

priority and on the relative locations of arbitrating modules. We first define the number of 

0-intervals of a codeword. 

Definition 16 The number of 0-intervals of a binary codeword pis the number of intervals of 

consecutive O's that p contains, disregarding the leading O's. 

The nature of the binary arbitration protocol is such that an interval of consecutive same 

bits of a codeword can be regarded as a basic unit. For an interval of consecutive l's this is 

the case, since such interval cannot be interrupted in the middle (there is no 0-bit there where 

1-signals can penetrate). An interval of consecutive l's it thus either applied as one unit or 

entirely disabled. An interval of consecutive O's can be interrupted in the middle, but then it 

has the effect of disabling all the bits below that interval, no matter where inside the interval 

the interruption occurs. In a binary arbitration process, the number r of 0-intervals of the 

highest competing priority is related to the arbitration time, as the next theorem implies. The 

theorem also relates the arbitration time to L, the length of the bus lines. This connection is 

rather important, as the proof relies on the fact that arbitration among modules that are close 

on the bus lines terminates faster than among far away modules. 

Theorem 38 Consider a binary arbitration process on m bus lines of length L under the digital 

transmission line bus model. Let Q be the set of arbitrating priorities, p be the highest priority 

in Q, and r be. the number of 0-intervals of p. Then the arbitration process settles after at most 

(r+2)L time, that is, there are no more transient signals on any bus line after time t = (r+2)L. 

Proof. Since the number of 0-intervals of the highest competing arbitration priority p is r, 

then p is of the form p = Oko 111 ok1112ok2 •• - l 1rokr 11r+1 where k0 > O· l · k · > 0 for 1 < 1· < r· ' - ' )' ) - - ' 
lr+l ~ O; and ko + lr+1 + E}=o(lj + kj) = m. In the following discussion, we ignore the ko 

leading O's since the first k0 bus lines carry O's throughout the arbitration process. For notation 

simplicity, we then assume that k0 = 0. We now prove the theorem by induction on r for 

arbitrary values of L. 
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Base case: r = 0. The codeword p consists of m consecutive l's, that is, p = 1 m. This interval 

of m consecutive l's propagates together on the m bus lines, and after at most one unit of 

bus-propagation delay all bus lines have settled forever. Arbitration in this case takes no more 

than L time, which does not exceed ( r + 2)L time. 

Base case: r = 1. The codeword p has the form p = 111 ok1 112 . The first interval of 11 

consecutive l's propagates together on the first 11 bus lines, and after at most one unit of 

bus-propagation delay all these Ii bus lines settle to l's forever. As a result, any module that 

has some 1-bits in the second interval of k1 bus lines, disables these bits after at most one 

unit of bus-propagation delay. Therefore, after at most two units of bus-propagation delay, the 

second interval of k1 bus lines settles to O's forever. Consequently, after at most two units of 

bus-propagation delay, module pre-enables its last interval of 12 consecutive l's forever, which 

brings the bus lines to stable state after at most three units of bus-propagation delay. (See 

Section 4.4.1 for a proof that this scenario is indeed possible.) Arbitration in this case takes no 

more than 3L time, which does not exceed ( r + 2)L time. 

Inductive case: r > 1. The codeword p has the form p = 111 Qk1 112 ok2 • • • 11r+1 • We define the 

set Q of all arbitrating modules in Q that have their first 11 + k1 bits identical to those of p, 

that is, Q = { q E Q : q = 111 ok1 · ·} We focus on possible 1-signals sent by other arbitrating 

modules (from Q - Q) in the second interval of p, that is, the interval of k1 consecutive O's. 

There are three cases to consider: 

(a) There are no arbitrating modules with 1-bits in the second interval of p. In this case the 

first three intervals of p, which have the form 111 ok1112 , behave like one uninterrupted 

interval that could be replaced by an interval of Ii+ k1 + 12 consecutive l's with no change 

in tne behavior. The number of 0-intervals remained to be considered is now r - 1. By 

induction, such arbitration processes take at most ((r-1)+2)1 < (r+2)L. 

(b) There is an arbitrating module q E Q - Q with a 1-bit in the second interval of p, and 

there is another arbitrating module p' E Q, such that q is physically between p and p' on 

the bus lines (see Figure 4-5). Let d1 be the distance of q from p and let d2 be the distance 

of q from p'. Without loss of generality, we assume that di < d2. (This also implies that 

di < L/2, since otherwise di+ d2 > L ). Then the 1-signal that module q generates in the 

0-interval of p has duration di (it is disabled by module p after time di). This 1-signal 
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completely disappears from the system after at most one unit of bus-propagation delay, 

since both its right-traveling and left-traveling portions go over the corresponding ends of 

the bus lines after at most time L. Consequently, not only is module q disabled after one 

unit of bus-propagation delay, but also the effects that it caused in the system are gone 

and the modules of Q are re-enabled after that time. By induction now, the modules of 

Q complete the arbitration after at most ( ( r - 1) + 2)L time, which with the extra unit 

of time L for disabling modules like q give an arbitration time of at most ( r + 2)L. 
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Figure 4-5: An interrupting module q on the first 0-interval of the highest arbitration priority p. There 
is another module p' with the same first two intervals asp on the other side of q. 

(c) There is an arbitrating module q E Q - Q with 1-bits in the second interval of p, and 

all the modules in Q are on the same side of q (see Figure 4-6). Let p' be the module 

in Q that is closest to q and let d be the distance between p' and q. The 1-signal that 

module q generates in the 0-interval of p has duration d, since it is disabled by module 

p' after time d. However, this 1-signal may take another time L to completely disappear 

from the system, since it may be the case that module q is at the very end of the bus 

lines. Therefore, after at most d + L time the effects that modules like q cause are gone 

and the modules of Q are re-enabled after that time. Notice, however, that the modules 

of Q have cleared the first 0-interval of p, so that there are r - 1 more 0-intervals of p 

to consider. In addition, notice that the the modules of Q are located in a bus-region of 

length at most L - d. By induction now, the modules of Q, on the reduced region of the 

bus lines, complete the arbitration after at most ((r - 1) + 2)(L - d) = rL - rd+ L - d 

time. To this time we need to add the extra d + L time required to eliminate modules 

like q. Finally, we add another d units of time to allow the final signals of p to propagate 
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beyond the region of length L - d and to cover the full length of the bus lines. The total 

time is, therefore, (rL- rd+ L-d) +(d+ L)+d = rL- rd+ 2L = (r+ 2)L- rd~ (r+ 2)L, 

as required. 
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Figure 4-6: An interrupting module q on the first 0-interval of the highest arbitration priority p. All 
the arbitrating modules with the same first two intervals asp are on the same side of q. 

We conclude that any binary arbitration process on bus lines of length L, with p, the highest 

competing arbitration priority, having r 0-intervals, completes after ( r + 2 )L time. • 
Theorem 38 bounds the arbitration time of any binary arbitration process by ( r+2)L, where 

r is the number of 0-intervals in the highest arbitrating priority and L is the length of the bus 

lines. With m bus lines to arbitrate, the number of 0-intervals of any arbitration priority is no 

more than m/2. In addition, we assume that L = Tp, where Tp is the bus-propagation delay. 

These observations imply the following corollary. 

Corollary 39 For any binary arbitmtion process on m bus lines under the digital tmnsmission 

line bus m?'1el, arbitmtion settles in at most m/2 + 2 units of bus-propagation delay. 

4.3.3 Lower and upper bounds for binomial arbitration 

Binomial arbitration uses the same arbitration protocol as binary arbitration. The results of 

the preceding subsections, which provided lower and upper bounds on the arbitration time of 

binary arbitration, are, therefore, directly applicable to binomial arbitration as well. 

A lower bound scenario, similar to that of Theorem 37, can be applied to the binomial 

arbitration scheme. The only difference is that the binomial arbitration priorities have no 
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more than m/4 0-intervals, where "ping-pong wave forms" can penetrate and cause temporary 

confusion. This implies the following corollary. 

Corollary 40 There is a scenario of module armngement on m bus lines, such that under the 

digital tmnsmission line bus model, the binomial arbitmtion scheme asymptotically requires at 

least m/ 4 units of bus-propagation delay to settle. 

The upper bound for binomial arbitration is derivable from Theorem 38. Since for binomial 

arbitration on m bus lines any arbitration priority has at most m/2 intervals, the number of 

0-intervals in any priority is no more than m/ 4. This implies the following corollary. 

Corollary 41 For any binomial arbitmtion process on m bus lines under the digital tmnsmis

sion line bus model, arbitmtion settles in at most m/4 + 2 units of bus-propagation delay. 

4.4 Linear arrangements of modules 

In this section we examine linear arrangements of modules in increasing order of priorities with 

the modules equally spaced on the bus lines. For such arrangements, we show that 3 units of 

bus-propagation delay are necessary for binary arbitration to settle. We also sketch an argument 

that indicates that 3 units of bus-propagation delay, rather than the 4 claimed in [79, 8I], are 

asymptotically sufficient for binary arbitration. 

4.4.1 Lower bound for binary arbitration 

To demonstrate a lower bound of 3 units of bus-propagation delay on the arbitration time of 

binary arbitration, we present an arrangement of two modules as in Figure 4-7. The arbitration 

priority p of the module on the left side is I m-20I and the arbitration priority q of the module 

on the right side is om- 210. We use d to denote the distance between modules p and q. When 

arbitration begins module q sends its I-bit towards module p during the time interval (0, d), 

since after time d the high order bits of p disable the I-bit of q. At the location of p, the 

I-signal on bus bi is detected during the time interval ( d, 2d), which causes p to disable its 

last bit of I during that time interval. Only after time 2d, module p re-enables its last bit of 

I, but it takes slightly more than time d for this change to propagate throughout the system. 
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The arbitration time, therefore, is at least 3d. The reader may verify that if Ll is the distance 

between consecutive modules on the bus lines, then the distance between modules p and q in 

Figure 4- 7 is d = (2m - 5 )Ll. The total length of the bus lines is L = (2m - 1 )Ll, and thus the 

ratio d/ L asymptotically approaches 1. This shows that the arbitration time of 3d approaches 

3 units if bus-propagation delay asymptotically, as m increases. 
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Figure 4-7: Linear arrangement of2 modules very close to the two ends of the bus lines. The arbitration 
process on this arrangement asymptotically takes 3 units of bus-propagation delay. 

4.4.2 Upper bound for binary arbitration 

We now sketch an argument that indicates that the arbitration time of binary arbitration can 

be shown to be close to 3 units of bus-propagation delay. The argument involves inspection of 

several cases and only a high-level description of it is presented here. With m bus lines there 

are 2m modules and the total length of the bus system is L. We partition the modules into 

2k subregions, each of length L/2k, according to the first k bits of their arbitration priorities. 

By inspecting each of the 2k subregions, one can verify that if the highest priority is in a 

given subregion, then after at most 2 units of bus-propagation delay all the possible transient 

signals sent by modules in lower-priority subregions have disappeared. This leaves only the 

subregion under inspection, whose length is L/2k, for the rest of the arbitration, which we shall 

analyze recursively. In addition, after the arbitration is completed on the inspected subregion 

of length L/2k, at most another 1 - I/2k units of bus-propagation delay are required for the 

bit-signals of the highest priority to spread throughout the bus lines. If we let T( n) denote the 

maximal time required by binary arbitration on n modules, then we get the following recurrence: 
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T( n) = 2 + T( n/2k) + (1- l/2k), which solves to give T( n) = 3 + 2/(2k -1). Now, as k increases 

(there are more cases to inspect), the maximal arbitration time can be shown to asymptotically 

approach 3 units of bus-propagation delay. 

4.5 Discussion and extensions 

In this section, we discuss the results of this chapter and indicate directions for further research. 

4.5.1 Discussion 

In this chapter, we investigated how the finite propagation speed of signals on bussed transmis

sion lines affects the performance of the priority arbitration schemes of Chapter 3. We formally 

disproved Taub's conjecture by providing a general scenario of module arrangement on m busses, 

for which binary arbitration takes at least m/2 units of bus-propagation delay. We also proved 

that for any arrangement of modules on m busses, binary arbitration settles in at most m/2 + 2 

units of bus-propagation delay, while binomial arbitration settles in at most m/4 + 2 units of 

bus-propagation delay. This demonstrates the superiority of binomial arbitration for general 

arrangements of modules under the digital transmission line model. For linear arrangements of 

modules in increasing order of priorities and equal spacings between modules, we showed that 

3 units of bus-propagation delay are necessary for binary arbitration to settle, and we indicated 

that 3 units of bus-propagation delay are also asymptotically sufficient. System designers and 

engineers may wish to reconsider the use of Taub's assumptions and analyses, since different 

arrangements of system modules exhibit substantially different behavior. 

4.5.2 FUrtber research 

Several directions for extending the results of this chapter are listed. 

• Average-case arbitration time of binary arbitration for arbitrary and linear arrangements. 

• Linear arrangements of modules with arbitrary spacings between modules. 

• The performance of binomial arbitration for linear arrangements of modules. 

• Models of bussed transmission lines that characterize other aspects of the media. 



Chapter 5 

Conclusion 

Bussed interconnections are extensively used in many digital systems. Investigating the charac

teristics, capabilities, and organization of bussed systems are the subject of ongoing research. In 

this thesis, we focused on two application domains for busses: communication architectures and 

control mechanisms, and examined the capabilities of busses as interconnection media, compu

tation devices, and transmission channels. This chapter presents some concluding remarks and 

motivates further research on bussed interconnections, in general, and on each of the aspects of 

bussed systems that this thesis explored, in particular. 

5 .1 Bussed interconnections 

Busses are shared communication media. A single bus can only implement one communication 

transaction at any given time and thus constitutes a scarce resource that must be utilized intel

ligently. Much research is directed at investigating techniques and mechanisms that can enrich 

the bandwidth of a bus. Several techniques, such as time multiplexing, frequency multiplexing, 

spatial multiplexing, and angular multiplexing have been suggested for some communication 

media, such as radio channels and optical communications (see [12, 13, 78]). Some of these 

techniques have also been applied to electrical busses, but a more thorough exploration of bus 

multiplexing techniques is required. 

Busses enable communication among several system modules, in contrast with point-to-point 

wires that establish communication only between pairs of modules. This property of busses 

109 
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may or may not be desirable, depending on the application. On busses, any communication 

transaction, whether a one-to-one or a broadcast, can be detected by all system modules, while 

point-to-point wires feature privacy of communication. Busses require sophisticated controlling 

mechanisms and protocols to enable sharing and to support sequencing of transactions, while 

controlling the communication with point-to-point wires is somewhat more straightforward. 

Busses, however, offer simple, standard, and scalable communication channels, which are the 

desired features of many digital systems. 

Bus technology is more complicated than the technology of direct communication channels. 

Signal propagation on busses is a complex phenomenon that is ignored or poorly dealt with in 

many systems. Bus driving technologies use special drivers for transmitting signals along busses. 

Most digital systems employ the digital abstraction and ignore the analog nature of busses. But 

even with the digital abstraction, some analog issues of busses may still be noticeable, such as 

effects of signal reflections, transient glitches, and analog noise. To overcome these issues, most 

digital busses are slowed down until they work properly. As a result, digital communication 

over busses tend to be slower than the communication over direct channels. These penalties 

can be minimized by careful engineering of the electrical bus in its intended environment. 

5.2 Communication architectures 

Many schemes have been suggested as the interconnection infrastructure for supporting various 

communication patterns in digital systems, including point-to-point wires, multistage inter

connection networks, and bussed interconnections. In Chapter 2, we investigated how busses 

(multiple-pin wires) can be employed to efficiently realize certain classes of permutations among 

modules in a digital system. We demonstrated that by connecting modules with bussed inter

connections, as opposed to point-to-point wires, the number of pins per module can often be 

significantly reduced. 

Our bussed approach to realizing permutations compares favorably with both the point

to-point and the multistage-interconnect approaches. Bussed permutation architectures realize 

general classes of permutations in one clock cycle, exhibit small number of pins per module, 

and use virtually no switching hardware. Point-to-point architectures, for comparison, can 

support any communication pattern in one clock cycle, utilize no switching hardware, but use 
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many pins per module. Multistage interconnection architectures, as another alternative, realize 

general classes of permutations, exhibit a constant number of pins per module, but operate in 

multiple clock cycles and use a considerable amount of switching hardware. We conclude that 

bussed interconnections constitute an attractive alternative as a communication architecture. 

It would be interesting to study other classes of communication patterns that can be efficiently 

implemented on bussed interconnections. 

Several theoretical studies of systems with bussed interconnections use hypergraphs to model 

such systems. The topology of a system with bussed interconnections can be modeled as a 

hypergraph, much as the topology of a system with point-to-point wires can be modeled as a 

graph. (See [9] for definitions and basic properties of graphs and hypergraphs.) In systems 

with bussed interconnections, system modules are modeled as hypergraph nodes and the busses 

(multiple-pin wires) are modeled as hyperedges. This analogy enables many graph-theoretic 

results to be interpreted in the domain of architectural design, as was done for instance in 

[10, 11, 13, 30, 48, 49, 64, 73, 77]. We believe that more research in this direction would be 

fruitful. 

The problem of realizing permutations on uniform architectures in several clock cycles 

presents an interesting direction for further exploration. Our research have demonstrated that 

cyclic shifts, for example, can be uniformly realized in t clock cycles by uniform architectures 

with 0( n 112t) pins per module. It would be interesting to develop a pin-time tradeoff for general 

classes of permutations on bussed architectures, similar to the tradeoff exhibited by multistage 

interconnection networks and point-to-point wires. An advantage of generalized pin-time bussed 

interconnections, over multistage interconnection networks, would be the avoidance of special 

switching hardware. 

5.3 Control mechanisms 

Numerous digital systems use busses for implementing many control mechanisms. Busses are 

useful media for broadcasting control signals and for performing various systemwide protocols. 

In Chapter 3, we explored how busses can be efficiently used for arbitration. We focused on 

distributed asynchronous priority arbitration schemes and demonstrated that by using data

dependent analysis, certain popular mechanisms can be significantly improved. 
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In Chapter 3, we investigated bussed priority arbitration mechanisms under a standard 

digital bus model that assumes a time unit of bus-settling delay for a bus to stabilize to a valid 

logic value. A more elaborate bus model that takes into account distances between modules and 

signals propagation was examined in Chapter 4. In both of these bus models, the superiority of 

the binomial arbitration scheme over the binary arbitration scheme was established. Analyzing 

these arbitration schemes in an analog model of bus lines, which models various transient effects, 

would probably be a difficult task. However, simulating the analog behavior of these arbitration 

schemes could be a tractable goal. 

On a more general note, the domain of data-dependent analysis of digital systems has not 

been investigated much in the past. The results of our work demonstrate that a careful analysis 

of the delays experienced in existing systems, may result in an improved performance of such 

systems without changing them. A more systematic approach to analyzing data-dependent 

delays in digital systems will prove as a valuable tool for digital circuit designers. 

5.4 Transmission lines 

In Chapter 4 we introduced and examined a digital transmission line model for a bus. In fact, 

transmission lines exhibit analog behavior, but for the purposes of digital computation they 

can be modeled as digital devices. The transmission line model enables a bus line to carry 

multiple transactions at different locations simultaneously. This feature of a bus is utilized in 

other shared media, such as radio channels and optical communication, but mostly is ignored 

in electrical busses. It would be interesting to explore ways for using the transmission line 

properties of electrical busses as well. 

The design of digital communication protocols over busses should be a careful engineering 

task, since high-speed busses are in effect analog transmission lines. Many bus systems work 

properly only because the busses are slowed down until their analog behavior can be neglected 

and the digital functions are correctly performed. However, ignoring the analog nature of 

busses results in severe limitations to the performance of many bussed systems. It would be 

interesting to investigate other models of transmission lines that capture somewhat more of the 

analog behavior of this media. 
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