
LABORATORY FOR
COMPUTER SCIENCE

MIT/LCS{fR-536

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

ALGORITHMS FOR EXPLORING
AN UNKNOWN GRAPH

Margrit Betke

March 1992

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Algorithms for Exploring an Unknown Graph

by

Margri t Betke

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 1991

@ Massachusetts Institute of Technology 1991

Signature of Author _________________________ _

Department of Electrical Engineering and Computer Science
December 19, 1991

Certified by ____________________________ _

Ronald L. Rivest
Professor of Computer Science

Thesis Supervisor

Accepted bY----------------------------~
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

Algorithms for Exploring an Unknown Graph

by

Margrit Betke

Submitted to the Department of Electrical Engineering and Computer Science

on December 19, 1991, in partial fulfillment of the

requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

Abstract

We consider the problem of exploring an unknown strongly connected directed graph. We use
the exploration model introduced by Deng and Pa.pa.dimitriou [DP90]. An explorer follows the
edges of an unknown graph until she has seen all the edges and vertices of the graph. The
explorer does not know how many vertices and edges the graph has, or how the vertices are
connected. At ea.ch vertex the explorer can see how many edges a.re leaving the vertex, but she
does not know where they lead to. She chooses one such edge and explores it by traversing it.

Deng and Papadimitriou [DP90] have shown that the graph exploration problem for graphs
that are very similar to Eulerian graphs can be solved efficiently. They introduce the notion of
deficiency for such graphs to measure the "distance" from being Eulerian and give algorithms
that solve the exploration problem for deficiency-one and bounded deficiency graphs.

We review and discuss the problem of exploring an unknown Eulerian graph. Deng and
Papadimitriou [DP90] give an algorithm that traverses all the edges in an Eulerian graph. We
rederive this algorithm starting from Hierholzer's algorithm that finds an Eulerian tour in an
Eulerian graph.

We carefully describe and analyze an algorithm for deficiency-one graphs that combines the
two algorithms that Deng and Papadimitriou [DP90] give for this problem. The analysis of the
algorithm is based on the analysis of their algorithms. We also briefly discuss the problem of
exploring a graph of general deficiency.

Thesis Supervisor: Ronald L. Rivest

Title: Professor of Computer Science

Keywords: Machine Learning, Graphs, Map-Ma.king

2

Contents

1 Introduction

1.1 The Problem

1.2 The Thesis with a View to the History of the Problem

2 The Exploration Model

2.1 The Partial Graph

2.2 Basic Operations .

2.3 Efficiency Measurements .

3 Exploring an Eulerian Graph

3.1 Eulerian Graphs

3.2 The Eulerian Algorithm

4 Deficiency-d Graphs

4.1 Definitions

4.2 Properties of Deficiency-d Graphs .

5 An Algorithm for Deficiency-One Graphs

5.1 Outline of the Algorithm.

5.2 The Finish Procedures .

5.3 The Reach-ps Procedure

5.4 The Deficiency-One Algorithm

5.5 Summary

3

6

6

8

11

11

13

17

19

19

21

25

25

26

30

30

31

42

52

63

... ~- ~---~- ---~ -- < ·-- (". - ,~ ~ - ,..,~ ·- "'

• ;.~(.- ,..~ ., .. - • " "'- ~ - - -, ""'--~ ,- - ~ ~ - - .,, - • .., , - • -~''< ~ .. '. - -~-*'"" ". - . .._;} ~ ... --,. ~~~

1··· .

e G1•1..iD1•1I••• ,, ..
e.1 -.1.1Mtn•1 \ 111111.1.,rf!ll&L.ll n II

'· .. - -_,-

e.2 , ~ • •-•16- •.••••.••. ~ ••••.• ~ .•• ~ • • • . . . • • •

I·.· ..
I

I.

Acknowledgements

Thanks go first to my adviser, Ron Rivest. I a.m grateful to Ron for giving to me a start on

resarch, for being an encouraging teacher, and for arranging my financial support. It is fun to

work with Ron. Thanks also go to Charles Leiserson for being an exemplary teacher who cares

for his students.

Thanks to Christos Papa.dimitriou and especially Xia.otie Deng for long and helpful discus

sions a.bout their research.

Thanks to many friends in the theory group at MIT. Thanks for Be Hubbard for all her

help. Special thanks to my current and former office- and roommates. I have always been able

to count on their support.

I owe the largest part of my gratitude to my family for their love and support. Thanks to

my parents Wilfried and Ludmilla Betke, my sister Elisa.beth, and my brother Ulrich.

Finally, I am grateful for the generous financial support provided by the Friedrich-Ebert

Stiftung, the NFS (grant CCR-8914428), the ARO (grant N00014-89-J-1988) and the Siemens

Corporation.

5

Chapter 1

Introduction

1.1 The Problem

Consider the problem of a robot exploring its environment. The robot is equipped with sensors

like a camera or sonar that provide information about the robot's environment. Imagine that

the robot can identify rooms in a building using its sensors. The robot needs a good model

of its environment to perform its various tasks. To obtain this model on its own, the robot

walks through the building and determines its floor plan. In each room the robot must make a

decision about which door it wants to leave the room by. The robot does not know where the

exit leads to until it follows it. The robot explores the building until it learns the floor plan of

the building.

We model the problem of a robot exploring its environment as a graph exploration problem:

The explorer follows the edges of an unknown graph until it has seen all the edges and vertices

of the graph.

In this thesis, we study strategies that an explorer - we call her Sacajawea 1
- follows to solve

the graph exploration problem. The robot problem introduced above can be modeled with an

undirected graph. In this thesis, we are mainly concerned with directed graphs. We assume

that Sacajawea cannot simply turn around and go back the way she came from. For example,

1 Sacajawea was an Indian princess who guided Lewis and Clark in their explorations of the Northwest
territories.

6

directed graphs can be used to model the one-way streets in a city. Sacajawea drives around

the city following an exploration algorithm until she has learned the map of the city. The fact

that Sacajawea cannot "back up", i.e., she can only follow the streets in one direction, makes

the process more difficult.

Another application of the graph exploration problem is the "subway problem": Sacajawea

tries to come up with the subway map of a city by riding the trains from one station to another

until she has taken every possible train out of every station.

Before Sacajawea starts exploring the environment she does not know how many locations

(vertices) and how many paths between the locations (edges) she will encounter. Therefore, the

vertex set and edge set of the graph that models the environment are initially unknown to her.

The learning process begins at a start vertex. At each stage of the learning process Sacajawea

has a current model of the environment. Sacajawea knows at which vertex she is; she can see

the "name" of the vertex. Sacajawea also knows the name of the edges that are going out of

the current vertex, but she does not know where they lead to. Sacajawea chooses one such

edge and explores it by traversing it. Traversing an unknown edge means that her model of the

environment improves. She adds the explored edge to her model. Her current vertex is then

the vertex that the explored edge leads to.

When Sacajawea is at a vertex, she can not see how many unexplored edges are going into

the vertex. She only knows which of the edges that she has traversed so far are going into this

vertex.

We assume that the graph is finite, because only a finite number of locations in Sacajawea's

environment can be learned in a finite amount of time. We also assume the graph to be strongly

connected. If it was not strongly connected, the Sacajawea would eventually enter a strongly

connected component and could not get out and learn more than that component of the graph.

Other information about the structure of the graph may be available a priori to her.

We measure the work that the exploration involves in terms of the number of edges traversed.

Any "thinking" on the Sacajawea's part is for free. Traversing the mental model is cost-free;

traversing edges in the real graph is what costs. It is easy to design algorithms that run in

polynomial time in the number of vertices and edges of the graph. A strategy in which the

7

explorer tries to get from every vertex to every other vertex takes polynomial time in number of

vertices in the graph. Therefore, it is crucial to consider the efficiency with which the explorer

can visit every vertex and traverse every edge.

1.2 The Thesis with a View to the History of the Problem

The problem of a building robot that learns from experience is a major objective in the machine

learning research. A number of researchers addressed the problem of inferring the structure of

a finite environment from experience using various approaches.

The approach of modeling the environment as a deterministic finite-state automaton has

been well studied by the machine learning community. Kearns and Valiant (KV89] show that

learning by passively observing the behavior of an unknown automaton is hard. Angluin

[Ang86] shows that learning by actively experimenting with it is also hard. However, she gives

an algorithm that is combination of active and passive learning which identifies the automaton

in time polynomial in the size of the automaton and the length of the longest counterexam

ple. She assumes that the learner has a means of resetting the automaton to some start state.

livest and Schapire [RS89] show how to remove this assumption, so that the robot can learn

the environment in one continuous experiment.

In this thesis we use the graph model of the environment that we described above, and

that Deng and Papadimitriou [DP90] introduce. This graph model is easier for the learner

than the finite-state machine model because the learner now learns the identity of each vertex

she visits, rather than just learning the output value at each such vertex. Since it is easy

to design algorithms that run in polynomial time in the number of vertices and edges of the

graph, we compare an algorithm that solves the graph exploration problem to the optimal off

line algorithm, which is the algorithm that traverses all edges in a strongly connected directed

graph as efficiently as possible (using good luck or prior knowledge of the graph). The ratio of

the on-line to the off-line cost is called the competitive ratio.

The off-line problem is known as the Chinese Postman Problem and was proposed by Mei-ko

Kwan in [Kwa62]. Edmonds and Johnson [EJ73] solve the Chinese Postman Problem for an

undirected graph by performing an all-pairs shortest path computation, solving a minimum

8

weight matching problem, and finding an Eulerian tour in an (Eulerian) graph. Since the mini

mum weight perfect matching problem is solvable in polynomial time, it follows that the Chinese

Postman Problem is also solvable in polynomial time. Edmonds and Johnson also address the

problem in which some of the edges in the graph are directed and some are undirected. They

show that the Chinese Postman Problem for directed graphs can be solved in polynomial time

using an algorithm that solves the network flow problem.

Deng and Papadimitriou [DP90] give an algorithm that traverses all edges in an Eulerian

graph. (They are essentially restating Hierholzer's algorithm [Hie73] that finds an Eulerian tour

in an Eulerian graph.) In Chapter 3 of this thesis, we show how Hierholzer's algorithm can be

implemented to solve the graph exploration problem for Eulerian graphs.

Deng and Papadimitriou's major contribution [DP90] is that they realize that the graph

exploration problem for graphs that are very similar to Eulerian graphs can be solved efficiently.

They use a parameterization that they call deficiency to express how similar a graph is to an

Eulerian graph. The competitive ratio of the graph exploration problem is therefore only

dependent on the deficiency of the graph, not on the number of vertices or edges that the

graph has. In Chapter 4, we carefully prove properties of graphs of deficiency-d that Deng and

Papadimitriou assume in their algorithms.

Deng and Papadimitriou show a lower order bound of 0(d2 /lg d) for the competitive ratio of

the graph exploration problem for graphs of deficiency d. A proof due to Elias Koutsoupias [DP]

increases the lower bound to O(d2/4). Deng and Papadimitriou give two algorithms that solve

the graph exploration problem for graphs with deficiency one. We combine both algorithms

and show in great detail how this deficiency-one algorithm can be implemented, and why it

leads to a competitive ratio of four. The analysis of our algorithm is also based on Deng and

Papadimitriou's ideas.

In the final chapter, we discuss the graph exploration problem for graphs with general

deficiency d.

It is apparent that this thesis is based heavily on the seminal work of Deng and Papadim

itriou. The original objective our this research was to simplify and extend their work. However.

9

we found their algorithms a.nd proofs to be exceedingly terse, so we decided instead to provide

this careful a.nd detailed re-derivation a.nd analysis of their algorithms for the deficiency-one

case. (We have also combined their two algorithms into one, and provide numerous miss

ing details a.nd arguments.) While we ha.d thoughts about doing something similar for their

deficiency-d algorithm, we found this to be too complicated for the time we had available (and

indeed, some of the arguments and details required for a complete understanding still elude us).

It remains as an interesting open problem, we feel, to find a simple algorithm and analysis for

the genera.I deficiency-d case.

10

Chapter 2

The Exploration Model

We call the explorer's model of an unknown graph during the exploration the "partial graph".

The notion of a partial graph was introduced by Deng and Papadimitriou [DP90]. We discuss

implementation issues and define some basic operations that we use heavily in the algorithms

later. We also describe how we measure the efficiency of the graph exploration algorithms.

2.1 The Partial Graph

The environment to be learned is modeled by a. directed graph G = (V, E), where the vertex

set V is a. finite set and the edge set E is a. binary relation on V. The model also includes a

start vertex s.

For each stage of the learning process the explorer's mental model for the parts of the graph

that she has visited so far is described by a partial graph:

The out-degree od{v) of a vertex v is the number of edges directed away from v. When a

vertex v is first visited, the out-degree of v is apparent to the explorer. The partial out-degree

pod{v) of a vertex v is the number of outgoing edges of v in the partial graph. The partial

out-degree of a vertex is at most as large as the out-degree: pod(v) ~ od(v).

11

The in-degree id(v) of a vertex vis the number of edges directed into v. The partial in-degree

pid(v) of a vertex v is the number of edges in the partial graph that are directed into v. The

partial in-degree of a vertex is be at most as large as the in-degree of the node: pid(v) ~ id(v).

In general, we use the word "partial" to refer to the partial graph.

At each point in time during the learning process, the explorer is at a current node c E VP.

Initially, the current vertex is the start vertex s, and the partial graph Gp is

Gp=({s},0).

At each stage, the explorer can either take an unexplored edge out of c, or she can follow an

explored edge out of c. The first step is applicable if pod(c) < od(c), the second if there is an

edge (c, v) E Ep.

The learning process terminates when the whole graph is explored, i.e., when the partial

graph equals the actual graph.

The graph G is assumed to be finite and strongly connected. The partial graph, however,

need not be strongly connected throughout the exploration. The explorer may not be able to

get to every vertex in the partial graph using only edges in the partial graph. This complicates

any exploration strategy that we describe in the following chapters.

An edge is either explored or unexp/o~d. Initially all edges are unexplored. An edge is

explored when the explorer traverses it for the first time. The explorer knows of the existence

of an unexplored edge (v, w) if she has reached the vertex v. The explorer does not know

anything about vertex w until she has reached vertex w. When the explorer explores an edge,

she adds it to the edge set Ep of the partial graph.

We say that the explorer discovers a vertex when she reaches it for the first time. Whenever

the explorer discovers a. vertex, she adds it to the vertex set VP of the partial graph. Having

discovered vertex v, the explorer can "see" how many edges are leaving vertex v, so she can

determine the out-degree of v. The partial out-degree of v is initially zero. Whenever the

12

explorer explores an edge out of v, the partial out-degree is incremented by one. Eventually all

edges out of v are explored, and we say that v is "finished."

A vertex is either finished or unfinished; a vertex is finished if and only if all of its outgoing

edges are explored. Initially, therefore, all vertices are unfinished. This claim depends on the

assumption that the graph is strongly connected, and so each vertex has nonzero out-degree

(except the trivial case that G = (V, 0)).

We want to keep track of the order in which the explorer traverses the edges of the grnph.

We use "paths" to remember which edges the explorer has taken through the graph.

We define a path x "'-> y from a. vertex x to a. vertex yin G to be a. sequence < v0 , vi, ... , vk >

of vertices such that x = v 0 , y = v1:, and (vi-i, vi) E E for i = 1, 2, ... , k. The path may also

be denoted v0 -+ Vi -+ •.. -+ V1:. We call vertex v 0 the head of the path, node V1; the end of

the path, and edge (v0 , vi) the first edge on the path. The empty path starting and finishing at

vertex v is denoted < v >.

We say that the explorer traverses path v0 -+ Vi -+ • • • -+ v1;, if she follows the edges

(v;_i.vi) EE for i = 1,2, .. . ,k to get from v 0 to V1:.

If the explorer traverses a sequence of unexplored edges and stops in a finished vertex, we

call the path that is formed by the visited vertices a walk.

2.2 Basic Operations

We use the following notation to denote basic operations on paths like concatenation and taking

the prefix or suffix of a. pa.th:

• AB denotes that path B is appended to path A.

• A[.. i] stands for the prefix < A[O], ... , A[i] > of path A.

• A[i ..] denotes suffix <A[i], ... ,A[l.A]>, where I.A is the length of path A.

• A[i .. j] means the portion < A[i], ... , A[j] >of path A.

13

We describe the implementation of the exploration algorithms in pseudocode. We use pseu

docode that is very much like Pascal or C. We provide comments following the symbol "1>".

We call the following strategy for the exploration greedy: Whenever the explorer has a choice

whether to follow an edge that she has never traversed before or to follow an already traversed

edge, she takes the never traversed edge.

Deng and Papadimitriou [DP90] point out that the exploration algorithms that they give

are greedy. However, the explorer does not follow this greedy strategy throughout Deng and

Papadimitrou's algorithms. We choose to distinguish carefully the parts of the algorithms

that use the greedy approach described above from the ones that do not. We call the greedy

exploration an exploration during a walk. Deng and Papadimitrou introduced the notion of a

walk. We define walks as follows.

To take a walk from a vertex v means that the explorer starts at v and greedily traverses

unexplored edges until she arrives at a finished vertex. If v is initially finished, then the walk

has zero length and she arrives at v. If she takes a walk from v and arrives back at v, then she

is said to loop. If she does not loop, then she gets stuck at some vertex w 1" v. If she takes a

walk from a finished vertex v, the walk is defined to be the empty path < v >.

The procedure WALK takes the graph G, the partial graph GP, and a start vertex v as input.

Following procedure WALK, the explorer takes a walk from vertex v until she gets stuck in some

finished vertex. The procedure WALK returns path P that traversed during the walk.

WALK(G,Gp,v)
1 c ~ v C> c is the current node.
2 create an empty path P where P[O) = c C> c is the first vertex of path P = < c >
3 while c has an unexplored outgoing edge (c, x)

4
5
6

do explore (c, x)
append x to path P

7 return path P

C> while pod(c) < od(c)
C> include (c, x) in Gp

C> The new current vertex is x.

The condition in line 3 can be checked by comparing the out-degree of c with its partial

out-degree. If the partial out-degree of c is smaller than its out-degree, then c is unfinished and

there is an edge (c, x) to some unknown vertex x. In line 4 exploring the edge (c, x) means that

14

the explorer traverses edge (c, x) and arrives at vertex x. The partial graph is updated with

edge (c, x).

Consider a strategy with the property that whenever the explorer starts traversing unex

plored edges she continues doing so until she gets stuck. An algorithm that always follows this

strategy is called walk-based. The difference between a walk-based and a greedy algorithm is

that in a greedy strategy, the explorer chooses an unexplored edge whenever she visits an unfin

ished vertex. A walk-based algorithm can have instructions like move along path P. Following

this instruction, the explorer would not leave path P to follow an untraversed edge, if P has

an unfinished vertex as required. A greedy algorithm, by contra.st, would leave P at the first

unfinished vertex.

To try to finish v or work on v given that the explorer is at v means to take a walk from v.

If the explorer loops, then v is now finished and the explorer has succeeded in finishing v. If

the explorer gets stuck somewhere else, then v may or may not be finished.

If P is a path v0 __,. v1 __,. ... __,. vn, then to work on P or try to finish P (given that the

explorer is at v0) means to try to finish v0 , then (assuming that she loops) to traverse the edge

(v0 , vi) to Vi, then try to finish v1 , and so, until she tries to finish Vn. If the explorer tries to

finish v;, and she takes a walk of the form

that finishes v; (by looping), then that walk is understood to be inserted into the path P before

the explorer tries to finish it; it is as if the original path were:

Vo __,. V1 __,. ••• __,. V; __,. W1 __,. W2 __,. ••• __,. Wm __,. V; __,. V;+1 __,. ... __,. Vn;

the next vertex to try to finish after v; is finished is w1 , and so on. We call the operation of

inserting the walk w1 __,. w2 __,. ••• -+ Wm into path P splicing the walk into the path.

If the explorer never gets stuck while working on a path P, then she has succeeded in finishing

each vertex in the path, and so we say the path is finished. A path containing unfinished vertices

15

is itself said to be unfinished. If the explorer tries to finish P and gets stuck at a vertex x when

taking the walk from v;, vi -:f x, then P is only partially finished. The initial segment from v0

to vi-l is finished, and the final segment from vi to Vn is (probably) unfinished. We say that

the explorer created path V; ~ x while taking a walk from v;.

If the explorer then wants to finish the final segment of P, she must get back from x to v;

first. We say that she needs to relocate. In the following algorithms, we must specify how to

do each such relocation and ensure tha.t it is feasible.

The procedure WORK-ON implements the operation work on a path. It takes the graph

G, the partial graph GP, and a. path P a.s an input. The procedure returns a boolean variable

new-path-flag that is true if the explorer took a walk from a some vertex P[i] on path P and

got stuck in a vertex v such that v -:f P[i]. The procedure also returns the index i, so that

relocation to finish the final segment of P is possible, and it returns the path that is created

during the walk. If new-path-flag is false, then i is the index of the last vertex on P, and the

path that is returned is the la.st walk that is taken from P[i].

WORK-ON(G, Gp, P)
1 path-finished +-- new-path-flag +-- False
2 i +-- 0
3 repeat W+-WALK(G,Gp,P(i])

C> P[i] is current vertex on path P

4 if explorer at vertex P[i] I> W is a loop back to P[i]
5 then splice W into P at index i
6 if every vertex on P is finished
7 then path-finished +-- True
8 else traverse edge (P[i], P[i + 1])
9 i+-i+l

10 else new-path-flag +-- True I> explorer is at a partial source or sink
11 until path-finished or new-path-flag
12 return new-path-flag, walk W, and index i.

The explorer starts working on path P beginning at vertex P[O] which is the head of path

P in line 2. The explorer takes a walk from a vertex P(i] on path P until she gets stuck. If

the created walk Wis a loop which means that the explorer is back at vertex P[i] (line 4), the

walk W is spliced into path P (line 5) at index i. If the explorer finishes a node, she traverses

edge (P[i], P[i + 1]) (line 8) and works on the next vertex, the new P[i] of the path (line 3).

16

If every vertex on path P is finished (line 6), the boolean variable path-finished is set True,

and the procedure WOR.K-ON(G, Gp, P) terminates having finished path P.

If work on some vertex c does not end at c, but in some vertex v, v '::/:- c, the proce

dure WORK-ON terminates having created a new path W =< P[i], ... , v >. The portion

< P[O], ... , P[i - 1] > of path Pis finished. The portion < P[i], ... , P[lp] >,where P[lp] is the

end of path P, is not finished in general.

2 .3 Efficiency Measurements

Our goal is to explore the whole graph efficiently. We measure the work in terms of the number

of edges traversed. The trace of an edge is the number of times it has been traversed (i.e., the

number of times it was traced over). The smaller the sum of the traces of all edges in the graph

is, the more efficient we say the exploration is.

The optimal off-line cost is the number of edges that the explorer traverses to cover every

edge of the graph if the explorer had a priori a map of the graph and could plan the most

efficient route.

The off-line problem is the same as the "Chinese postman problem" proposed by Mei-ko

Kwan (Kwa62]. There are different approaches to solve the Chinese postman problem that take

into account if the graph is directed or undirected (EJ73].

The depth-first-search algorithm, e.g. [CLR90], can be applied to the undirected case.

In an undirected graph the explorer can go back where she came from. The depth-first-search

algorithm relies on this property that the explorer can back up. The depth-first-search algorithm

is an off-line algorithm that can be understood as an on-line exploration. The on-line algorithm

corresponds to what an explorer can really do. It requires that its decisions can only be based

on what it has seen so far (and maybe coin flips). Since the depth-first-search algorithm has

this property, it can be used to explore an undirected graph. The running time of the depth

first-search algorithm is O(V + E). Thus, an undirected graph can be explored in O(E) time.

We give a trivial lower bound for the problem of exploring an unknown graph: Any strategy

17

!~~•d!!,i,~~Jf!;~t>!~'lt!ftl),J..,~11t11-I1,:t1..,1~!1!%.ll'lftJllJ.1!1tC"1'~''":l.9'!L . ..,iillf1-.fW111i-l .. ifl!Jl.~41J)Jl,llitliJll!l~Jlf,?.,llftt'tll"'.ffll'9-ltlP,!citl
I - , ' - . • . • - • . --- _-,. -~·: • , • - , ; - -._ • , • , , •' , . - . • . . - , ' • -- ...• ,

to explore a gr.,a ..._ O(E) time, .. _,. ia tile paph llu to be traverted once

wlleaiiia_,b.-.

The rMio of tile ..u.e to tM 11-- ralio. h ia ued to

anal)'setlaedi6ra&•••••11 Ill

off-he m.....i.

18

Chapter 3

Exploring an Eulerian Graph

As we mentioned in the introduction, the explorer may a priori have some information about

the structure of the graph. In the following chapter, we study the case that the explorer has

some additional information about the degree of the vertices in the graph: she knows that the

strongly connected, directed graph is Eulerian.

Deng and Papadimitriou [DP90] make the observation that the properties of an Eulerian

graph lead to an efficient algorithm for the graph exploration problem. This observation is

important, because it can be generalized to graphs that are very similar to Eulerian graphs.

Deng and Papadimitriou [DP90] invent the notion of deficiency based on this observation.

In the this chapter, we show how an algorithm due to Hierholzer [Hie73] that finds the Euler

tour of an Eulerian graph can be applied to solve the graph exploration problem for Eulerian

graphs.

3.1 Eulerian Graphs

An Euler tour of a strongly connected, directed graph G is a cycle that contains every edge of

G exactly once. We call a. graph that contains an Euler tour an Eulerian graph. If the path that

the explorer traverses during a walk is a loop, then the pa.th is a cycle. If this cycle contains

every edge in the graph, the walk is an Euler tour.

Lemma 1 If the out-degree of every vertex in a graph is equal to its in-degree, then every initial

walk taken from a start vertex s in the graph is a loop.

19

Proof: During the walk, vertex s has one more outgoing than incoming traversed edge. Every

other vertex v, v # s, has the same number of traversed incoming and outgoing edges after the

explorer has visited the vertex. The explorer cannot get stuck in v, because for every unexplored

incoming edge, there is an unexplored outgoing edge, since the indegree of v equals its out degree.

Since vertex s has one more incoming than outgoing untraversed edge, the explorer can only

get stuck in vertex s. D

Theorem 2 (Hierholzer) A directed graph is Eulerian iff the graph is connected and the out

degree of every vertex is equal to its in-degree.

Proof:

(==>) When a vertex vis visited during an Euler tour, one incoming and one outgoing edge of

v are traversed. Since no edge is traversed more than once, visiting a vertex x times during the

Euler tour means that the vertex has x incoming and x outgoing edges. Its in- and out-degree

is x. When an Euler tour is started at a vertex s, s has one more traversed outgoing edge

than traversed incoming edge during the Euler tour. Since the Euler tour is a cycle, the last

traversed edge of the Euler tour is an incoming edge of s. Therefore, the start vertex has equal

in- and out-degree, too.

(<¢:=) A walk started at a vertex s cannot end at any other vertex than s as shown in Lemma 1.

In general, however, the path traversed during this walk is not an Euler tour, because we

may not have traversed every edge in the graph. Since the graph is connected, one of the

untraversed edges must come out of a vertex that is visited during the walk. Assume that

the first such vertex on the cycle created by the initial walk is v and the untraversed outgoing

edge is (v, w). Vertex v that has both traversed outgoing and incoming edges, and untraversed

outgoing and incoming edges.

We change the walk at v to make the path an Euler tour: we traverse (v, w) and then follow

only untraversed edges if there are any. Before a vertex z is visited during the walk from v it

has the same number of untraversed incoming and untraversed outgoing edges. After vertex z is

visited, the number of untraversed edges that lead into and out of z is smaller, but the number

of untraversed incoming edges is the same as the number of untraversed outgoing edges. Vertex

20

vis the only vertex with one more outgoing traversed edge than incoming traversed edge when

the walk starts. Therefore, the walk continues until the la.st unexplored incoming edge of v is

traversed. Since v then does not have any untraversed outgoing edges, we get stuck at v.

We splice this walk into the cycle that was created during the initial walk and follow the path

until we reach another vertex v' that has an outgoing untraversed edge. We start another walk

along untraversed edges until we get back to vertex v'. Following this procedure, we encounter

every untraversed edge of the graph and splice the path on which this edge is into the initial

cycle. When every untraversed edge that emanates from a vertex visited on one of the walks is

considered, no untraversed edges are left in the graph, because the graph is connected. So the

final cycle (after all the other walks are spliced in) is an Euler tour. D

3.2 The Eulerian Algorithm

We restated Hierholzer's theorem, because the proof is constructive, and provides a strategy

for an efficient algorithm for finding the Euler tour of an Eulerian graph. The algorithm can

be applied directly to the exploration problem as follows.

The explorer takes a walk from the start vertex until she gets stuck. Then she traverses the

path created by the walk again and starts to take walks from every unfinished vertex; these

walks are spliced into the initial walk. Since the graph is Eulerian, she is guaranteed to loop

whenever she takes a walk (Lemma 1). Therefore eventually every vertex in the path is finished

and the whole graph is explored.

Given a graph G and a start vertex s, EULER.IAN-EXPLORATION traverses every edge in the

graph at least once and returns the explored graph.

EULERIAN-EXPLORATION(G, s)
1 path P - WALK(G,Gp,s)
2 i - 0 C> explorer is at P[O]
3 while end of path P not reached yet
4 do P' - WALK(G,Gp,P[i]) C> explorer takes a walk from vertex P[i]
5 if P' not an empty path
6 then splice P' into P at P[i]
7 explorer traverses edge (P[i], P[i + 1])
8 i-i+l
9 return GP

21

Given a sta.rt vertex s, the explorer takes a wa.lk on s until it gets stuck in s. We call the

path that is created by this initial wa.lk P. The head of P is s, so the explorer takes a walk

on s in line 4. The wa.lk creates an empty path P', since the explorer got stuck in s before.

Whenever taking a wa.lk on a vertex creates an empty path, the vertex is already finished.

The first time line 7 is executed, the explorer traverses the first edge e = (s, v) on P, and

the index i is incremented. Then the explorer takes a walk from vertex v = P[l]. This walk

may not be empty. If a path P' is created by the wa.lk, it is spliced into P at P[l] (line 6).

The exploration is finished when the end of pa.th P is reached. Note that path P is then an

Eulerian tour.

Note that algorithm to explore an Eulerian graph can also be implemented using the pro

cedure WORK-ON that is defined in section 2.2.

EULERIAN-EXPLORATION'(G, s)
1 path P +- WALK{G, Gp, s)
2 (new, Newpath, i) +- WoRK-ON(G,Gp,P)
3 return Gp

Procedure WORK-ON implements the while-loop of EULERIAN-EXPLORATION. Both im

plementations of the Eulerian exploration problem assume that every walk taken during the

exploration loops. We show below why we can make this assumption when exploring Eulerian

graphs. Thus, WORK-ON never returns new= True in line 2 of EULERIAN-EXPLORATION'.

We only call it because of its side-effects on the partial graph. If we insert the text of

procedure WORK-ON without the lines that a.re needed to check if a walk is not a loop,

procedure EULERIAN-EXPLORATION' would look very much like EULERIAN-EXPLORATION -

only that the while-loop is implemented a.s a repeat-loop. Therefore, correctness of proce

dure EULERIAN-EXPLORATION' follows directly from the correctness of procedure EuLERIAN

EXPLORATION.

Theorem 3 EULERIAN-EXPLORATION correctly explores an Eulerian graph and traverses each

edge of the graph at most twice.

Proof: The correctness of the Eulerian algorithm follows from the arguments in the proof of

Theorem 2.

22

Any walk taken in an Eulerian graph creates a cycle, because the out-degree of every vertex

is equal to its in-degree. If the first cycle created in line 1 of EULERIAN-EXPLORATION is an

Euler tour, the algorithm forces the explorer to traverse the cycle once more, taking empty

walks from every vertex on the cycle. When the cycle is traversed completely, the algorithm

terminates, and all edges of the graph are traversed.

If the path P created in line 1 of EULERIAN-EXPLORATION is not an Euler tour, some edges

of the graph have not been explored. At least one of these edges is an outgoing edge of an

unfinished vertex on P, because the graph is connected. The algorithm forces the explorer to

take a walk from every vertex on path P. Every walk from a vertex P[i] on path Pends in P[i],

because P[i] is the only vertex with one more outgoing traversed edge than incoming traversed

edge during the walk (see proof of Theorem 2 (<=)). If a walk from P[i] is empty, the explorer

traverses the next edge of the path, i is incremented, and the next walk is taken from the next

vertex P[i] on P.

A walk from P[i] is empty if P[i] is a finished vertex. No more work is needed on a finished

vertex, therefore, index i is incremented, and a walk is taken from the next vertex on the path.

Thus, the explorer will eventually work on all unfinished vertices on the initial path P.

Any path P' that is created by a walk is spliced into P, so that every unfinished vertex on

P' will also be worked on.

The end of path P is reached after working on every unfinished vertex on path P. Thus,

when the algorithm terminates, all the vertices in the graph that are connected to path P by

unexplored edges at some point during the exploration are spliced into path P and therefore

finished. Since the graph is connected, every vertex is considered and therefore, the whole graph

is explored (see also proof of Theorem 2 (<=)).

Every edge in the graph is traversed once when it is explored, and once when it is traversed

as an edge on pin line 7 of EULERIAN-EXPLORATION'.

An edge cannot be on path P twice, because it is only inserted into P when it is explored,

i.e., traversed for the first time. Thus, every edge in the graph is traversed at most twice. D

The off-line cost for traversing an Eulerian graph is E; the on-line cost for exploring an

Eulerian graph is at most 2E. Thus, the competitive ratio for exploring an Eulerian graph is

23

bounded a.hove by 2. Deng a.nd Pa.pa.dimitriou [DP90] show that this bound is tight by giving

the graph illustrated in Figure 3-1. The cycle Co in the graph contains many edges. The cycles

C11 ••• , C4 only contain three edges. If the explorer does not find the Euler tour during an

initial wa.lk, she has to follow the "expensive" cycle C0 in order to get to the cycles C11 ••• , C4 •

Figure 3-1: Graph tha.t Deng a.nd Pa.pa.dimitriou use to show the lower bound for the Eulerian
exploration problem.

24

Chapter 4

Deficiency-cl Graphs

In the previous chapter we described how the property of being Eulerian gives a very efficient

algorithm for exploring a graph. An Eulerian graph is a very special kind of graph. In the

following, we generalize the a priori information that the explorer has about the structure of

the graph: we allow different out- and in-degrees of the vertices of the graph, but we keep a

bound on the sum of these differences. We call this sum the deficiency of the graph, a notion

introduced by Deng and Papadimitriou (DP90]. The more deficient a graph is, the farther it is

from being Eulerian.

4.1 Definitions

The graph has deficiency d if the sum, over all vertices, of the absolute value of the difference

of the out-degree and the in-degree is equal to 2d. The deficiency can vary between 0 (for an

Eulerian graph) and IEI.

A vertex v is said to be balanced if id(v) = od(v). A vertex is said to be partially balanced

(in the partial graph), if pid(v) = pod(v).

A vertex v is a sink if id(v) > od(v). A vertex v is a partial sink if pid(v) > pod(v). We

say the sink is discovered (to be a sink) when its partial in-degree exceeds its out-degree. If

more edges are later discovered into v, then v remains a partial sink, and its partial deficiency

pid(v) - pod(v) increases.

25

A vertex v is a source if id(v) < od(v). A vertex v is an partial source if pid(v) < pod(v).

Since the partial in-degree can increase over time, a partial source may cease to be a partial

source when it becomes partially balanced. It may later even become a partial sink.

4.2 Properties of Deficiency-d Graphs

Recall that during a walk-based algorithm whenever the explorer starts traversing unexplored

edges she must continue to do so until she gets stuck.

Lemma 4 A partial sink is a sink if the graph is explored by a walk-based algorithm.

Proof: If v is a partial sink, then pid(v) > pod(v). This means that the explorer came into v

by traversing pid(v) incoming edges, but left v on only pod(v) outgoing edges. Thus, at lea.st

one outgoing edge of v is traversed twice. In a walk-based algorithm this can only happen if

all outgoing edges a.re explored, and the explorer was not able to take an unexplored outgoing

edge. We have pod(v) = od(v), and therefore,

id(v) ~ pid(v) > pod(v) = od(v).

Since id(v) > od(v), v is a sink. D

Lemma 5 In a walk-based algorithm, a walk from an unfinished vertex u in G either ends in

u (loops} or ends at either a sink of G or a partial source of Gp.

Proof: Assume that the explorer takes a walk from vertex u and gets stuck in vertex v. If

v = u, the walk created a loop. We show that if v :f. u, v is either a sink or a partial source.

We distinguish the two cases that pid(v) > pod(v) and pid(v) :::; pod(v) after the walk.

If pid(v) > pod(v) after the walk, then v is a partial sink after the walk. Since the graph is

explored by a walk-based strategy, it follows from Lemma 4 that the partial sink v is a. sink.

Thus, the explorer got stuck in a sink of G.

If pid(v) :::; pod(v) after the walk, then the partial in-degree of v must have been strictly less

than the partial out-degree of v before the walk. This follows from the following observations.

The partial in- and out-degree of v increases by one whenever v is traversed during the walk.

26

Vertex v must ha.ve ha.d a.t lea.st one unexplored incoming edge e before the wa.lk started. After

traversing this edge e during the walk, the explorer is stuck in v. Thus, the partial in-degree

after the walk is increased by one more tha.n the partial out-degree is increased. See Figure 4-1.

Figure 4-1: After taking a walk, the explorer is stuck in a vertex v whose partial in-degree is
smaller than its partial out-degree. Edges that a.re explored before the wa.lk are illustrated with
a straight line, and edges that are explored after the wa.lk a.re illustrated with a dotted line.

If pid(v) < pod(v) before the walk, then vertex v must have been a partial source before the

walk. D

Lemma 6 A graph of deficiency d has at most d sinks and d sources.

Proof: First let us note that the set of vertices of any directed graph v exclusively consists of

balanced vertices, sinks, and sources. Also,

L: (od(v)- id(v)) = L: (id(v)- od(v)) (4.1)
,., .. ,.euveV 1int1 vEV

for any directed graph v. For the ha.la.need vertices of a. directed graph, we ha.ve

(od(v)- id(v)) = 0 (4.2)
balanced v EV

For a graph with deficiency d, we have

d = ! L: lid(v)- od(v)I,
2

11EV

(4.3)

by definition. This mea.ns tha.t

L (id(v)- od(v)) + L (od(v)- id(v)) = 2d. (4.4)
1in/u 11EV IOtif'CU t1EV

27

It follows from (4.1) tha.t

L (od(v)- id(v)) = d, (4.5)
1oureea t1EV

and

L (id(v)- od(v)) = d. (4.6)
1ini:1 t1EV

Since at most d sources can attribute to the sum in equation (4.5), and at most d sinks to

the sum in equation (4.6), it follows that a graph with deficiency d has at most d sinks and d

sources. D

Lemma 7 The partial graph of a graph of deficiency d has at most d partial sources and d

partial sinks during a walk-based exploration.

Proof: It follows from Lemma 4 that in a partial graph that is explored by a walk-based

algorithm every partial sink is a sink. Since there a.re at most d sinks in the graph, there are

at most d partial sinks in the partial graph.

We know from equation (4.1) tha.t

(pod(v) - pid(v)) = (pid(v)- pod(v)) (4.7)

for the partial graph. Lemma 4 tells us that

pod(v) = od(v), (4.8)

if v is a partial sink. This gives us the following relation between the partial graph and the

unknown graph for a vertex v that is a. partial sink:

pid(v) - pod(v) pid(v)- od(v)

< id(v) - od(v)

28

(4.9)

(4.10)

Equation (4.9) follows from (4.8), and inequality (4.10) follows from the fact that pid(v) :::;

id(v). We conclude that

(pod(v)- pid(v)) =
partial 1oure., t1EV,

<

<

(pid(v) - pod(v))
partial 1inJ.111EV,

L (pid(v) - pod(v))

L: <id(v) - od(v))
1inJ:111EV

d

(4.11)

(4.12)

(4.13)

Equation (4.11) follows from Lemma 4, equation (4.12) from inequality (4.10), and equa

tion (4.13) from equation (4.6). Since at most d partial sources can contribute to

L (pod(v)- pid(v)),
partial 1ouree111EV,

it follows that the partial graph has at most d partial sources during a walk-based exploration.

0

In this chapter we have shown properties of deficiency-d graphs. In particular, we described

properties of the partial graph of a graph that is explored by a walk-based strategy. We use

these properties in the correctness proofs in the following chapter.

29

Chapter 5

An Algorithm for Deficiency-One

Graphs

In this chapter we discuss a.n algorithm tha.t explores a.n unknown gra.ph G of deficiency zero or

one. The algorithm is a. combination of two algorithms due to Deng and Papadimitriou (DP90].

The analysis of this algorithm is based on the analysis that Deng and Pa.pa.dimitriou give for

their algorithms.

A graph with deficiency one has one source and one sink. Given the start vertex s, the

algorithm DEFICIENCY-ONE explores the whole graph without any prior information on whether

the deficiency is zero or one. Each edge in the graph is traversed at most four times during the

exploration.

5.1 Outline of the Algorithm

The DEFICIENCY-ONE algorithm solves the problem of exploring an unknown graph of deficiency

one or zero, given a start vertex s. DEFICIENCY-ONE is directly based on the EuLERIAN

EXPLORATION algorithm. Like the Eulerian algorithm, DEFICIENCY-ONE uses the technique of

taking walks, and working on the created paths. In a graph of deficiency one, there is only one

source and one sink (as shown in Lemma 6). During a walk-based exploration, the explorer

loops, or gets stuck at the sink or at the partial source (Lemma 5). Whenever the explorer gets

stuck, she must relocate (see the definition in section 2.2) and traverse a. finished path until she

30

reaches an unfinished vertex from where she starts to take a new walk.

We show that after a.n initial pha.se, the pa.ths of the partial graph that need to be fin

ished and the pa.ths that a.re traversed for relocation a.re connected in a certain configuration

throughout the exploration. Once the partial gra.ph reaches this structure, we call the procedure

FINISH, and explore the whole graph by calling FINISH recursively.

To get to the point where we can use FINISH, we must dea.l with several initial cases of

the partial graph. DEFICIENCY-ONE determines if the graph ha.s deficiency zero or one. If

the deficiency is one, DEFICIENCY-ONE distinguishes the cases where the partial source ps is

reachable from the current node, a.nd where it is not. If psis not reachable, we call the procedure

REACH-PS that chooses the paths to be worked on with the goal to make the partial source

reachable as soon a.s possible. Once ps is reachable, procedure FINISH is called.

5.2 The Finish Procedures

The procedure FINISH is called once the pa.rtia.l gra.ph contains a certain structure that we call

a FINISH-structure. FINISH continues the exploration by working on the unfinished paths of

the FINISH-structure. If the explorer gets stuck in a. partial source, the partial graph contains

a FINISH-structure again and FINISH can be called recursively.

The FINISH-structure consists of five paths A, B, C, D, a.nd E (see Fig. 5-l(a.)). The explorer

is at vertex D[O]. The paths A, B, C, and D form a. cycle, i.e., the la.st vertex on path A. is

the first vertex of pa.th B, the la.st vertex on B is the first vertex on C and so on. Path E is

connected to the cycle by its first vertex: E[O] is the same vertex a.s B[O]. Since there are two

paths starting at the same vertex a, where a= B[O] = E[O], a is the partial source of the partial

graph. Paths A a.nd C a.re finished. To stress this property of A a.nd C, we use the notation A

and C to indicate that A a.nd C a.re finished paths. The FINISH-structure of the partial graph

is illustrated in Figure 5-l(a.). We illustrate the finished pa.ths with a zigzag line.

We call a FINISH-structure reduced if its cycle only consists of two paths A and B where

the last vertex on Bis A[O] and the la.st element on A is B[O]. Note that the reduced F1N1s11-

31

-A E

(b)

Figure 5-1: (a) The FINISH-structure of a partial graph. (b) The reduced FINISH-structure.

structure is a FINISH-structure where paths C and Dare empty. The reduced FINISH-structure

of the partial graph is illustrated in Figure 5-l(b).

First we define a procedure FINISH which works on a partial graph that contains a FINISH

structure. Later we define a procedure FINISH-R which works on a partial graph that has a.

reduced FINISH-structure.

The input of the procedure FINISH consists of the graph G, the partial graph G,, and five

paths A, B, C, D, and E that describe the unfinished paths in G, and how they are connected.

FINISH calla procedure Woa.K-ON on path D which means that the explorer tries to finish pa.th

D first. Depending on the outcome of the work on D, either procedure FINISH-R, or procedure

FINISH is called recursively. FINISH is called recursively on an input of five paths that describe

a. FINISH-structure.

32

FINISH(G,Gp,A,B,C,D,E) C> Input illustrated in Fig. 5-l(a)
1 (new,, Newpath i,) +- WoR.K-oN(G, Gp, D)
2 if new is false C> Pa.th fJ is finished
3 then move to B[O] along pa.th A C> See Fig. 5-3(a)
4 Gp+- FINISH-R(G,Gp, C> See Fig. 5-3{b)
5 C fJ A, C> new A is concatenation of paths C, fJ, and A
6 B, C> new B is old B
7 E) C> new Eis old E
8 else C> stuck a.t B[O] while taking a. walk from D[i], see Fig. 5-2
9 Gp +- FINISH(G, Gp,

10 t fJ[.. i],
11 J![i ..],
12 A,
13 B,
14 Newpath E)
15 return Gp

C> new A= C and finished prefix D[.. i] of D
C> new B = unfinished prefix D[.. i]
C> new C = old A
C> new D = old B
C> new E = concatenation of Newpath and E

When the procedure FINISH is called, the explorer starts out working on path D. Lemma 5

says that the explorer either loops, or gets stuck at a sink or source when working on a path.

Since the sink is found before FINISH is called, the explorer cannot get stuck at a sink during

the execution of FINISH.

Thus, the explorer can either get stuck a.t the partial source B[O] while ta.king a. walk from

some vertex D[i] on path D, or finish D. Figure 5-2 illustrates the situation in which the

explorer gets stuck at node B[O] while working on D.

(a.) (b)

Figure 5-2: (a.) Partial graph after getting stuck a.t vertex B[O] while working on D in line 8 of
FINISH. (b) FINISH-structure of recursive call of FINISH in lines 9 to 14 of FINISH.

Procedure WoR.K-ON returns the pa.th Newpath which is the new unfinished path in the

partial graph that is created during the walk from D[i]. The explorer is at the old partial

source B(O].

33

In the following, we show tha.t the partial graph now has a FINISH-structure again, so that

FINISH can be called recursively.

Since vertex D[i] is the new partial source in the graph, it takes on the function of vertex

B[O] in the new FINISH-structure that is input to the recursive call of FINISH in lines 9-14.

When the explorer gets stuck a.t B[O] while working on path D, Dis not finished completely.

The portion D[i ..] =< D[i], ... , D[lo] >,where D[lo] is the end of path D and D[l0] = A[O], is

unfinished. It takes on the function of pa.th Bin the following recursive call of FINISH (line 11).

The finished prefix D[.. i] =< D[O], ... , D[i] > of D is appended to path C and takes on the

function of path A in the recursive call of FINISH (line 10).

Path B takes on the function of path D in the recursive call of FINISH (line 13); it is the

path that the explorer will work on next.

The concatenation of paths E and Newpath takes on the function of path E in the recursive

call of FINISH (line 14). The renaming of paths described above is illustrated in Figure 5-2(b).

Notice that paths A, B, C, D and E form a FINISH-structure again.

Since the number of unexplored edges in the graph reduces every time we call FINISH

recursively in line 9 and work on path D, D is eventually finished at some point during the

execution of FINISH. See Figure 5-3(a). Then the explorer moves a.long path A, and procedure

FINISH-R is called recursively.

FINISH-R takes a reduced FINISH-structure as an input. In lines 4, 5, 6, and 7 of the

procedure FINISH, the input for the ca.11 of FINISH-R is defined. The concatenation of paths C,

D, and A takes on the function of path A in FINISH-R. Paths Band E remain the same. We

illustrate how the pa.rtia.l graph in FINISH looks like when FINISH-R is called in Figure 5-3(b).

'V

t.,,,.,,..,..A~llJf---E--!» E

('4) (b)

Figure 5-3: (a.) Partial graph after path Dis finished in line 2 of FINISH. (b) FINISH-structure
of recursive call of FINISH-R in lines 4 to 7 of FINISH.

34

In the following, we define the procedure FINISH-R which is a. simpler version of the pro

cedure FINISH. The inputs of the procedure FINISH-Ra.re the graph G, the partial graph GP,

and three paths A, B, and E that form the reduced FINISH-structure of a partial graph.

FINISH-R(G,Gp,A,B,E) C> Input is illustrated in Fig. 5-l(b)
1 (new, Newpath ,i) - WoRK-ON(G,Gp,B)
2 if new is false C> Path B is finished. See Fig. 5-5

C> Path E is the only unfinished path in the graph.
3 then move to E[O] along A
4 (new, Newpath , i) - WoRK-oN(G, Gp, E)
5 if new is false C> Path E is finished.
6 then return Gp C> The grnph is explored.
7 else C> stuck at E[O] while taking a walk from E[i]. See Fig. 5-6
8 move to E[i] along E
9 GP - FINISH-R(G, Gp, C> See Fig. 5-6

10 E[.. i], C> new A is finished prefix of E
11 Newpath, C> new B = Newpath
12 E[i ..]) C> new E is suffix of old E
13 else C> stuck at B[O] while taking a walk from B[i]. See Fig. 5-4
14 move to B[i] along B
15 GP - FINISH-R(G,Gp, C> See Fig. 5-4
16 AB[. .i], C> new A is old A and finished prefix B[.. i],
17 B[i ..], C> new B is unfinished suffix of B
18 Newpath E) C> new E = Newpath and E

When the procedure FINISH-R is called, the explorer starts out working on path B. We

know by Lemma 5 that the explorer either loops, or gets stuck at the partial source when

working on path B.

Thus, the explorer can either get stuck at the partial source B[O] while taking a walk from

some vertex B[i] on path B, or finish B. We illustrate the situation in which the explorer gets

stuck at node B[O] while working on Bin Figure 5-4(a).

In the following, we show that the partial graph now contains a reduced FINISH-structure

again, so that FINISH-R can be called recursively.

Since vertex B[i] is the new partial source in the graph, it takes on the function of vertex

B[O] in the new reduced FINISH-structure that is input of a recursive call of FINISH-R.

When the explorer gets stuck at B[O] while working on path B, Bis not finished completely.

The portion< B[i], ... , B[l8] >,where B[/8] is the end of path Band B[/8] = A[O], is unfinished.

It takes on the function of path Bin the following recursive call of FINISH.

35

N

A
E

(ca.) (b)
Figure 5-4: Partial graph after getting stuck at vertex B[O] while taking a walk from B[i] in
line 13 of FINISH-R. (b) FINISH-structure of recursive call of FINISH-R in lines 15 to 18 of
FINISH-R.

The finished portion < B[O], ... , B[i] >of Bis appended to path A and takes on the function

of path A in the recursive call of FINISH.

Path Eis appended to the created path Newpath; the new Eis< B[i], ... , E[O], ... , E[LE] >,

where IE is the length of path E. This path takes on the function of path E in the recursive

call of FINISH. The renaming of paths described above is illustrated in Figure 5-4(b). Notice

that paths A, B, and E form a reduced FINISH-structure again.

Path B is eventually finished a.t some point during the execution of FINISH-R. See

Figure 5-5(a). Then the explorer moves to E[O] along pa.th A, and starts working on path

E. See Figure 5-5(b). Paths A and B a.re not needed for relocation anymore. We circle the

portion of the FINISH-structure that can be discarded (from the FINISH-structure, but not from

Gp) with a dotted line in our figures.

I E
I ' ~

' I
J

(a.)
I

I... -- - """!' (b)

Figure 5-5: Partial graph (a) after path fJ is finished in line 2 of FINISH-R and (b) when
procedure WORK-ON is called in line 4.

The explorer can either get stuck a.t the partial source E[O) while ta.king a. walk from some

vertex E[i] on path E, or finish E. If the explorer gets stuck in E[O] (see Fig. 5-6(a)), it

traverses E until she reaches E[i] and calls procedure FINISH-R recursively. The first formal

parameter A of FINISH-R which is input to the recursive call in line 9 is the finished portion

36

E[.. i] =< E[O], ... , E[i] > of path E. The second parameter B is the path Newpath that has

been created after the explorer took a walk from E[i]. The third parameter Eis the unfinished

suffix of path E. The partial graph that is input to the recursive call of procedure FIN IS H-R is

illustrated in Figure 5-6(b).

E

(a.) (b)

Figure 5-6: (a) Partial graph after getting stuck at vertex E(O] while taking a walk from vertex
E[i] (line 7 of FINISH-R). (b) FINISH-structure of recursive call of FJNISH-R in lines 9 to 12 of
FINJSH-R.

If the explorer finishes path E, every path that is part of the FINISH-structure is finished.

Then procedure FINISH-R returns the partial graph Gp to its caller in line 6. We show below

that the returned partial graph Gp is the same as graph G.

Assume that during the exploration of a graph of deficiency-one we have the following

situation. The sink v of the graph has been found, i.e., v E GP, and the partial graph contains

a FINISH-structure. The edges on the finished paths A and C of the FINISH-structure have

been traversed at most twice and the edges on the unfinished paths B, D, and E at most once.

Every edge in the partial graph that is not on a path that is part of the FINISH-structure has

been traversed at most four times and is on a finished pa.th. Every unexplored edge has not

been traversed at all. We call this situation the input assumptions of procedure FINISH.

Now assume that we have the following situation during the exploration of a graph of

deficiency-one. The sink v of the graph has been found, i.e., v E Gp, and the graph contains a

reduced FINISH-structure. The edges on A of the reduced FINISH-structure have been traversed

at most three times and the edges on the unfinished paths B and E at most once. Every edge

in the partial graph that is not on a path that is part of the reduced FINISH-structure has

been traversed at most four times and is on a finished pa.th. We call this situation the input

assumptions of procedure FINISH-R.

37

In the following lemma, we show that if procedure FINISH is called on a partial graph for

which the input assumptions of FINISH hold, then the input assumptions of FINISH hold for any

recursive calls of FINISH. We also show that FINISH-R is called correctly on a partial graph for

which the input assumptions of procedure FINISH-Rare satisfied.

Lemma 8 Assume that procedure FINISH is called on a partial graph for which the input as

sumptions of FINISH hold. Then procedure FINISH continues to explore the graph and calls

either procedure FINISH on a partial graph for which the input assumptions of procedure FINISH

hold, or procedure FINISH-R on a partial graph for which the input assumptions of procedur·e

FINISH-R hold.

Proof: We have argued above that the work on path D in line 1 of FINISH ends in only two

cases of the partial graph, and we have shown that for both cases the partial graph contains a

(reduced) FINISH-structure, so that either FINISH is called recursively, or FINISH-R is called.

Every relocation in FINISH in line 3 is done along the loop that consists of paths A, B, C,

and D. Therefore, every relocation is possible.

It remains to show that the trace of every edge in the partial graph satisfies the input

assumptions for the recursive call of FINISH and the call of FINISH-R.

Every edge in the graph is traversed once when it is explored. So every edge that is explored

during the execution of the procedure FINISH is traversed once when it is explored. FINISH calls

procedure WORK-ON on the unfinished path D of the FINISH-structure, so the explorer traverses

edges on D a second time. Any edge in the partial graph, whether it is explored before or during

the execution of FINISH, is traversed additional times only when the explorer must relocate.

Every edges that is part of the FINISH-structure of the partial graph is also part of the new

FINISH-structure of the partial graph in when procedure FINISH is called recursively in lines 9-14

of FINISH.

Since the input assumptions were satisfied when FINISH is called, i.e., the edges on D have

been traversed at most once, the trace on the edges of the prefix of D is two after line 8. Since

D is appended to a finished path (with edge traces= 2) in the FINISH-structure of the recursive

call of procedure FINISH in lines 9-14, FINISH has an input that satisfies the input assumptions

of FINISH.

38

In the following, we consider the case tha.t the explorer relocates during the execution of

the procedure FINISH. There is only one relocation in procedure FINISH which is in line 3.

Consider the partial graph after relocation in line 3 of FINISH. The edges on path A are

traversed for the third time since the exploration has started. See Figure 5-7. For every path

in the Figure, we illustrate the trace of the edges on the pa.th.

E

l.

Figure 5- 7: Partial graph after relocating in line 3 of FINISH.

Line 3 of FINISH can only be executed once during the exploration of the graph, because once

path D is finished, we do not call FINISH recursively a.gain. The partial graph after relocation

in line 3 conta.ins a reduced FINISH-structure where the trace of the edges on paths B and Eis

one, on paths C and Dis two, and on pa.th A is three. The concatenation 6 DA is input path

A of FINISH-R. Edges on this pa.th have been traversed at most three times and every edge

that has been part of the FINISH-structure when FINISH was called is now part of the reduced

FINISH-structure. Therefore, the input assumptions of FINISH-R are satisfied. D

Lemma 9 Assume that procedure FINISH-R is called on a partial graph for which the input as

sumptions of FINISH-R hold. Then procedure FINISH-R continues to explore the graph and calls

procedure FINISH-R on a partial graph for which the input assumptions of procedure FINISH-R

hold.

Proof: We have argued above that the work on path B in line 1 of FINISH-Rends in only

two cases of the partial graph, and we have shown that for each case the partial graph contains

a reduced FINISH-structure, so that either case FINISH-R is called recursively. In both cases,

the necessary relocation is possible, because it is done along the loop that consists of paths A

and B. We have shown above in which cases the work on B a.nd on E in FINISH-Rends, and

39

that the recursive calls of FINISH-R in lines 9-12 and lines 15-18 have an input which contains

a reduced FINISH-structure.

It remains to show that the trace of every edge in the partial graph satisfies the input

assumptions of the recursive calls of FINISH-R. As in Lemma 8, we argue that every edge

that is explored during the execution of the procedure FINISH-R has been traversed once, and

every edge on path B that is finished during the execution of the procedure FINISH-R has been

traversed twice. Any edge in the partial. graph, whether it is explored before or during the

execution of FINISH-R, is traversed additional. times only when the explorer relocates. Every

edge in the partial graph that has been traversed four times al.ready (and is therefore not

part of the reduced FINISH-structure when FINISH-R is called initially), is not traversed during

relocation. This observation follows from the fact that only edges that are part of the reduced

FINISH-structure of the partial graph are traversed during relocation.

Relocation happens in lines 3, 8, and 14 of FINISH-R. We illustrate the partial graph before

and after the line 14 is executed in Figure 5-8.

E

Figure 5-8: Partial. graph before and after line 14 of FINISH-R is executed.

We call the vertex that is B[O] the first time that line 13 of FINISH-R is executed a 11 the

vertex that is B[O] the second time line 13 is executed a2 , and the vertex that is B[O] the jth

time line 13 is executed a;. Notice that ai, a2 , ••• , a;, ... are all vertices on the original path

B. Relocations after getting stuck at a1 when taking a wal.k from a2 involves traversing edges

on a1_.. a2 for the third time. In general, relocations after getting stuck at partial source a;

involves traversing ai_.. ai+i · Since ai_.. a;+i and ai+l_.. a;+ 2 are different portions of the

original. path B, no edge on Bis traversed more than once for relocation in line 14 of FINISH-R.

We call the property that the partial. source moves closer to A[OJ every time the explorer

40

gets stuck in some partial source ai and only traverses ai "'-+ ai+l to relocate ''the partial source

moves cheaply down a path." See Figure 5-9.

Figure 5-9: Partial graph with a partial source that is "moving cheaply down the path."

Once the explorer reaches A[O], the cycle that consists of A and B is finished. The relocation

that is needed to get to E[O] in line 3 of FINISH-R involves traversing the edges on the cycle

from A[O] to E[O] again. Thus, the edges on the cycle have been traversed at most four times

when the work on path E is started. See Figure 5-lO(a).

Notice that any further call of F!NISH-R means that relocation is needed along path E, but

not along cycle B[O] "'-+ B[O]. Indeed, the cycle is no longer part of the reduced FINISH-structure

of the partial graph after line 3 FINISH-R, as illustrated in Figure 5-lO(b). Thus, the input

assumptions for the recursive call of FINISH-R in lines 9-12 are satisfied.

2

r ,
' \

- -

J

\
I

Figure 5-10: Partial graph before and after relocation in line 3 of FINISH-R.

E

Work on E ma.y stop when the explorer gets stuck at E[O] while ta.king a walk from some

vertex E[i] on E. In this situation the property that the partial source moves cheaply down

path E[O] "'-+ E[i] holds and the edges on E[O] "'-+ E(i] "'-+ E[O] a.re traversed at most four times

before they are not part of the FINISH-structure anymore. See Figure 5-11. D

41

' I
e

r
I

- -
E

- ,_,
Figure 5-11: Partial graph after relocating in line 8 of FINISH-R for the first and second time.

Lemma 10 Procedure FINISH-R returns the explored graph.

Proof: Procedure FINISH-R returns the partial graph in line 6 after the work on path E in

line 4 is finished. We argued above tha.t paths A a.nd iJ a.re finished already. It follows from the

input assumptions of procedure FINISH-R tha.t every pa.th in the graph that is not contained

in the FINISH-structure of the input to FINISH-R is finished.

Assume that G,, is not explored completely. Then there is either an unfinished vertex x on

some path G,, or there is an undiscovered vertex w in G (v E V - V,,). Since all the paths in

G,, are finished, the assumption tha.t there exists a.n unfinished vertex x immediately leads to

a contradiction.

In the following, we show that the assumption that there is an undiscovered vertex w in

G also leads to a contradiction. We use the strong connectivity of G that to argue that w is

connected to the rest of the graph. There exists a pa.th from a. discovered vertex stow. (There

is at lea.st one discovered vertex in a. partial graph - the start vertex.) Therefore, there exists

an edge that leads from a discovered vertex a to an undiscovered vertex b on this path. Vertex

a is on some path in G,,. Note tha.t a is unfinished, because edge (a, b) is unexplored. Since the

paths in G,, are all finished, we ha.ve a. contradiction. D

Procedure FINISH returns the partial graph tha.t is returned by FINISH-R. Therefore, pro

cedure FINISH also returns a. graph that is explored entirely.

5.3 The Reach-ps Procedure

Before the exploration of a graph of deficiency one leads to a partial graph that contains a

FINISH-structure, the partial graph ma.y ha.ve the property that the explorer cannot reach the

42

partial source by traversing edges in the partial graph. We mentioned in Chapter 2 that the

partial graph may not be strongly connected during the exploration, although the graph is

strongly connected. We say that the partial source is not reachable for the explorer.

The procedure REACH-PS tells the explorer how to work on the reachable part of the partial

graph until the partial source is also reachable.

When REACH-PS is called, the partial graph is assumed to have one of the structures illus

trated in Figure 5-12(a) or (b). The explorer is at sink v when REACH-PS is called.

c

(Cl.)

Figure 5-12: The partial graph that is an input to procedure REACH-PS is of one of these forms:
(a) GP has four nonempty paths, (b) paths A and Bare empty.

The input of the procedure REACH-PS consists of the graph G, the partial graph Gp, and

four paths A, B, C, and b that describe the unfinished paths in Gp and how they are connected.

Paths A and B may be empty, as in Figure 5-12(b).

The procedure REACH-PS consists of two parts. The first part is a repeat-loop that is used

to force the reachability of the partial source by working on the reachable parts of path C until

the partial source C[O] is reachable.

The second part of REACH-PS determines how to continue the exploration of the graph,

once the partial source is reachable. We distinguish the case that the explorer gets stuck at

C[O], and the case that a. vertex on pa.th B is reached during a walk while working on C. We

show that in each case the partial graph has a. FINISH-structure, so the procedure FINISH is

called to finish the exploration of the graph.

43

REACH-PS(G,Gp,A,B,C,D) C> See Fig. 5-12 for input Gp
1 i - le C> i=length of C
2 repeat j - i
3 move to vertex C[i] where i is the smallest index such that C[i] is reachable from C[j]
4 S - SUBPATH{C, i,j)
5 (new,Newpath,k) - WoRK-ON{G,Gp,S)
6 until C[O] is reachable

C> See Fig. 5-14 for current partial graph Gp
7 E - A[O] C> Create a. new empty pa.th E
8 if stuck a.t C[O] while ta.king a. walk from S[k)

9

10
11
12
13
14
15
16
17
18
19
20
21
22

C> new= true. See Fig 5-14(a).
then Gp+- FINISH(G,Gp, C> See Fig. 5-15

S(k] C> new A = prefix of S
Newpath B C> new B =old B appended to Newpath
A C> new C is old A
C[.. i), C> new D = suffix of C
S[k ..]) C> new E = unfinished suffix of S

else C> Vertex B[m] on B is reachable, < C[i], ... , C[j] >is finished. See Fig 5-14(b).
move to B[m]
Gp - FINISH(G,Gp,

A,
B[.. m],
<B[m]>,
B[m .. J,
C[.. i])

C> new A = old A
C> new B =prefix <B[O), ... B[m)>
C> new C is empty pa.th with vertex B[m]
C> new D = suffix of B
C> new E =prefix old <C[O], ... C[i]>

23 return Gp

The procedure REACH-PS works a.s follows. In lines 1-6 the partial source is ma.de reachable

by working on different portions C[i] ,._... C[j] of path C. In lines 7-14 the input paths for the

FINISH-procedure a.re defined. For simplicity, we first assume that the repeat-loop is executed

only once.

Note that the vertices on paths A a.nd B a.re distinct from the vertices on paths C and

fJ, because otherwise the explorer could reach the partial source C[O] and REACH-PS would

not have been called. However, there is at least one vertex on fJ (other than D[O]) that is

also on pa.th C, because otherwise there would not be a. connection from path D to the rest of

the graph G. We know that this cannot occur, because the graph to be explored is strongly

connected. Thus, there is a. vertex C[i] on C that the explorer can reach from D[O]. Among the

reachable nodes C[i],C[i1,C[i'1, ... on C, we pick in line 3 the vertex C[i] with the smallest

index (i.e., i < i' < i" ...).

44

While the explorer works on the portion S = C(i] ._ D(O] of pa.th C in line 5 of REACH-PS,

she ma.y get stuck a.t C[O], and the repeat-loop is left. See Figure 5-13(a.).

The explorer may also finish the portion S = C[i] ._ D[O] of path C, and may ha.ve spliced

a walk through a. vertex B[m] on pa.th B into S. Since C[O] is the same vertex as B[O], there

is a. path from D[O] to C[O], and the partial source C[O] is reachable and the repeat-loop is

terminated. See Figure 5-13(b).

(o..) (b)

Figure 5-13: Partial graph after the repeat-loop is executed only once before it is left: (a.) stuck
at C[O] while working on portion C(i] ._ D[O] of pa.th C; (b) C[O] is rea.cha.ble after C[i] ._ D(O]
is finished

Now we consider the more general ca.se tha.t the repeat-loop is executed more than once.

Finishing pa.th C[i] ._ D(O] ma.y result in the ca.se tha.t the partial source C[O] is not reachable.

Then index j is updated with index i, and a. new C[i] on the portion C[O] ._ C[j] of path C is

found whose index i is smaller than j. We use the sa.me argument a.s a.hove to show that vertex

C[i] exists (or the explorer gets to path B): Since G is strongly connected, path C(j] ._ D[O]

and path D are connected to the rest of the partial graph. Thus, there must be a vertex v

on C[j] ._ D(O] that connects this portion of C to some unfinished part of Gp. This vertex v

cannot be on path A, because A is finished. If vis on B, the loop is left. If the loop is executed

more than once, v must be on some unfinished part of C. If there are several such vertices v,

the vertex C(i] with the smallest index ion pa.th C is chosen.

Working on C(i] ._ C(j] may result in making C(O] reachable or repeating the loop. The

loop is left eventually, because the unfinished portion of C is finite, so that the index i becomes

smaller every time the loop is executed, until C[O] is reachable. See Figure 5-14.

45

N
A ((0) er.:) S(k) C [j) 'JI [o)

(6)
Figure 5-14: Pa.rtial gra.ph a.fter the repea.t-loop is executed several times before it is left:
(a) stuck a.t C[O] while working on portion C[i]....,.. C[j] of pa.th C;(b) C[O] is reachable after
C[i] --... C[j] is finished

In the following, we show that the pa.rtial gra.ph has a. FINISH-structure when the repeat

loop is left. Assume that the condition in line 8 of REACH-PS is true, the explorer is at the

partial source C[O], and the pa.rtial graph looks like the gra.ph in Figure 5-14(a). Note that

we ca.n distinguish eight different pa.ths, four of them unfinished. The finished paths are A,

D, the prefix C[i]....,.. S[k] of S, and pa.th C[j]--... C[lc], where le is the length of path C and

C[/c] = D[O]. We disca.rd pa.ths D a.nd C[j]--... C[lc]. The unfinished paths of the partial graph

are B, the prefix C[O]--... C[i] of C, the suffix S[k]--... C[j] of S, and the path Newpath from

S[k] to C[O] that was created during the last walk. See Figure 5-15(a).

s c •. 1c1 .sr lr..J

B

(0.) (1:,)

Figure 5-15: (a.) Pa.rtial gra.ph a.fter getting stuck a.t C[O] (line 9 of REACH-PS). (b) FINISH
structure of the input pa.ths to procedure FINISH in lines 10-14 of REACH-PS.

We concatenate the Newpath with path B to obta.in a. new path that we call B. Now we

have a cycle of four paths: B, A, C[O]--... C[i], a.nd C[i) = S[O] S[k). When we rename path

A to be C, < C[O], ... C[i] > to be D, a.nd < S[O] ... S[k] > to be A, we see that the partial

graph conta.ins a FINISH-structure consisting of this cycle a.nd pa.th < S[k] ... C[j) > as path £.

The explorer is at vertex D[O]. See Figure 5-15(b). Thus, the procedure FINISH in called on a

46

valid input a.nd ca.n continue to explore the graph.

If the partial graph on which procedure REACH is called looks like the graph in Figure 5-

16(a) where paths A a.nd B a.re empty, the input paths of procedure FINISH in line 9-14 of

REACH-PS form a valid FINISH-structure in which path C is empty. See Figure 5-16(b).

\

I
I

((I.) -(~)
Figure 5-16: (a) Partial gra.ph with empty paths A a.nd Bin line 8 of REACH-PS. (b) FINISH

structure of G, that is input to procedure FINISH in lines 9-14.

Now assume that the condition in line 8 of REACH-PS is false. Pa.th S is finished a.nd the

explorer is at C[j). There is some vertex B[m) on path S that the explorer ca.n move to a.nd

finish exploring the graph by calling FINISH in line 17 of REACH-PS. We show that the input

paths to procedure FINISH in lines 17-22 of REACH-PS form a proper FINISH-structure.

Vertex B[m) takes on the function of D[O) in the FINISH-structure, so the suffix B(m .. J of

B takes on the function of path D. Input path C is defined to be an empty pa.th containing

vertex B(m]. The prefix B(.. m) of B takes on the function of B, a.nd the subpath C(Q] C[i]

of C ta.kes on the function of E.

er;) a~);~
•

eict'\J S
-....

""' ,.., ' v <J>Co:)') » C ,

-----' '

I
)

- .,/ (h)
Figure 5-17: (a) Partial graph with finished path Sin line 16 of REACH-Ps.(b) FINISH-structure
tha.t is input to procedure FINISH in lines 17-22 of REACH-PS.

If the partial graph on which procedure REACH is called hu empty paths A a.nd B i.e.,A =
B =< C[O) >, (see Figure 5-18(a)), then the input paths to procedure FINISH in lines 17-22 of

REACH-PS form a valid FINISH-structure in which A,B,C a.nd D a.re empty paths. The vertex

reachable vertex B(m] that is found in line 15 of REACH-PS is B(O] = C(O]. See Figure 5-18(b).

47

CCo) cc;.) cCo) crp

(a..)

E
<€.(o~

-::~::13

Figure 5-18: (a) Partial graph with empty paths A and Bin line 16 of REACH-PS. (b) FINISH
structure of input to FINISH in lines 17-22 of REACH-PS.

Assume that during the exploration of a graph of deficiency-one we have the following

situation. The sink v of the graph has been found, i.e., v E Gp, and the graph has the proper

input structure to procedure REACH-PS as illustrated in Figure 5-12. The edges on the finished

paths A and b have been traversed at most twice and the edges on the unfinished paths B and

C at most once. Every edge in G that is on a path that is not part of the input structure of

REACH-PS has not been explored, and therefore not traversed at all. We call this situation the

input assumptions of procedure REACH-PS.

In the following lemma, we show that if procedure REACH-PS is called on a partial graph

for which the input assumptions of REACH-PS hold, then the input assumptions of FINISH hold

for any calls of FINISH during the execution of REACH-PS.

Lemma 11 Assume that procedure REACH-PS is called on a partial graph for which the input

assumptions of REACH-PS hold. Then procedure REACH-PS continues to explore the graph and

calls procedure FINISH on a partial graph for which the input assumptions of procedure FINISH

hold (as defined in section 5.2).

Proof: The correctness of procedure REACH-PS follows from the fact that during the execution

of the repeat-loop the partial source becomes reachable, and that then the partial graph has

indeed a FINISH-structure, so that calling the procedure FINISH succeeds in exploring the whole

graph.

We showed above that there exists a vertex C[i] on the prefix C[O] ..._.... C[j] of C, where

0 $ i < j, that is reachable. Since index j is updated with index i in line 2 of REACH-PS, the

number of vertices between C[O] and C[j] on path C decreases every time the repeat-loop is

executed. Thus, eventually partial source C[O] becomes reachable. We also showed above that

48

the partial graph contains a FINISH-structure, so that it is proper to call procedure FINISH in

lines 9-14 and lines 17-22.

It remains to show that the trace of every edge in the partial graph satisfies the input

assumptions for the call of FINISH.

Every edge that is explored during the execution of the procedure REACH-PS is traversed

once when it is explored. REACH-PS calls procedure WoR.K-ON on the reachable portion of path

C, so the explorer traverses edges on C a. second time. Any edge in the partial graph, whether

it is explored before or during the execution of REACH-PS, is traversed additional times only

when the explorer must relocate.

In the following, we discuss how often the edges in G, a.re traversed for relocation during

the execution of the procedure REACH-PS. There are two relocations in procedure REACH-PS

which are in lines 3 and 16.

When the explorer moves from D(O] to C(i] during the first execution of the repeat-loop,

she traverses edges on D for the third time (relocation in line 3 of REACH-PS).

If the explorer gets stuck at the partial source C(O] while ta.king a walk from vertex S[k] on

S = C(i]"""' D(O], the partial graph contains a FINISH-structure where S(k] is the la.st vertex on

path E. Thus, in any recursive call of FINISH, the explorer need not traverse path D anymore.

If the explorer finishes pa.th S = C[i]"""' D(O], index i is renamed j, and the explorer moves

to a new vertex C(i] on path C that has a smaller index than the former index i. This relocation

involves traversing the prefix of path D to get to the former C(i] which is now C(j], and from

there along S to the new C(i]. Some of the edges on D are traversed for the fourth time, and

some of the edges of S a.re traversed for the third time. See Figure 5-19.

If the explorer gets stuck a.t the partial source C(O] while taking a walk from vertex S(k]

on S = C(i] """' C(j] the second time line 5 of REACH-PS is executed, again the partial graph

has a FINISH-structure where S(k] is the la.st vertex on pa.th E. Thus, in any recursive call of

FINISH, the explorer need not traverse path Dor any edge on C that has been traversed three

times already.

If the explorer does not get stuck at the partial source after line 5 of REACH-PS is executed

for the second time, and the partial source is still not reachable, a new vertex C[i] (third C[i])

is determined in line 2 of REACH-PS, and the explorer moves to it in line 3 of REACH-PS. This

49

OJ
CC.4)

Figure 5-19: Traversals of edges on path C and fJ after line 3 of REACH-PS is called for the (a)
first and (b) second time.

relocation does not involve any traversal of path fJ anymore. The explorer follows the path

first C[i] "'-+ D[O] (=path S the first time the loop was executed) to the second C[i], from there

she follows path second C[i] "'-+ first C[i] until she reaches the new (third) C[i]. The prefix of

path first C[i] "'-+ D[O] is traversed for the fourth time, the prefix of path second C[i] "'-+ first

C[i] for the third time. See Figure 5-20.

n
f __ , ::!
•

Figure 5-20: Traversa.ls of edges on path C after the second relocation in line 3 of REACH-PS.

In general, any edge on C or that is explored from a vertex on C is traversed at most four

times during the repeat-loop: once when the edge is explored, once when the portion of C on

which the edge lies is finished, and twice for relocation to a portion of C that is "closer" to the

partial source C[O]. See Figure 5-21.

If a vertex B[m] on S becomes reachable after the repeat-loop is executed several times, the

relocation to B[m] involves the same portions of C that would have been traversed if B[m] were

a new C[i). Therefore, no edge on C has been traversed more than four times after relocation

in line 16 of REACH-PS. See Figure 5-22.

If the explorer gets stuck in C[O) while taking a walk from some vertex S[k) on path S, the

50

f - ·- = =· . >s - 'L- - t·- .•.. ·- ,][} ~v a ... n;«o UV ne+c• v4 _

Sf.&. .,.._ Sfl. ')..& ~ "l"Oi),.& IJ+- J

Figure 5-21: Traversals of edges on pa.th C a.fter k relocations in line 3 of REACH-PS.

--- ---- -. ._... ~ , . -..
1--- - - - -

Figure 5-22: Traversa.ls of edges on pa.th C a.fter a. vertex B(m] is reachable. The repeat-loop
has been traversed several times.

edges on S(k] - D(O), and b a.re not pa.rt of the FINISH-structure of the partial graph, so they

a.re not traversed in recursive calls of FINISH. See Figure 5-23.

- -,_ -- -.. -

Figure 5-23: Travena.ls of edges on pa.th C a.fter getting stuck at C[O]. The repeat-loop has
been traversed several times.

Before the repeat-loop terminates, the edges on paths A and B have not been traversed at

all during the execution of REACH-PS, because they were not reachable. The second pa.rt of

the procedure (lines 7-23) renames pa.ths, the explorer does not move a.long paths A and B,

so no edges on A and B a.re traversed. Therefore, edges on pa.ths A and B a.re traversed at

51

most twice, when FINISH is called in lines 9-14 and 17-22. We have shown above that the paths

whose edges have been traversed four times are not part of the input to the procedure FINISH.

Thus, the trace of every edge in the partial graph satisfies the input assumptions for the call of

FINISH. As we have shown a.hove, any relocation during FINISH does not involve edges that are

not part of the input FINISH-structure, so the edges on the discarded path fJ are not traversed

anymore.D

Lemma 12 Procedure REACH-PS returns the explored graph.

Proof: Procedure REACH-PS returns the partial graph in line 23 after procedure FINISH

returns. We argued a.hove that the input assumptions to FINISH a.re satisfied, when FINISH

is called in lines 9-14 and lines 17-22. It follows by lemma 10 that the graph returned by

REACH-PS is explored. D

5.4 The Deficiency-One Algorithm

After having introduced the procedures FINISH and REACH-PS we define the algorithm

DEFICIENCY-ONE that explores a. graph of deficiency zero or one by calling the basic oper

ations WALK and WORK-ON and the procedures FINISH and REACH-PS. DEFICIENCY-ONE

takes an input graph G and a start vertex s and returns the partial graph GP after G is ex

plored. The partial graph G11 that is returned by the DEFICIENCY-ONE algorithm is equal to

the graph G.

In the DEFICIENCY-ONE algorithm, the explorer starts exploring the graph from vertex s

until she either finishes exploring the whole graph if the graph has deficiency zero, or until

she gets stuck in the sink of a. deficiency one graph. In the following implementation, the

procedures SINK-CASE or LOOP-CASE are called depending on the structure of the partial

graph of a. deficiency-one graph.

52

DEFICIENCY-ONE(G, s)
1 P - WALK(G,Gp,s)
2 if path P is a. loop
3 then (new, Newpath, i) - WoRK-ON(G,G11 ,P)
4 if new = false C> no new pa.th is created, P is finished; deficiency-zero.
5 then return GP C> Graph is explored.
6 elseif stuck at sink P[m] on path P

C> Graph is a. deficiency-one graph; see Fig. 5-25(a)
7 then G11 - FINISH(G,G11, C> See Fig. 5-25(b)
8 P[.. i], C> new A = prefix of P
9 P[i .. m], C> new B = portion < P[i], ... P[m] > of P

10 < P[m] >, C> new 6 is empty path with vertex P[m]
11 P[m ..], C> new D =suffix of P
12 Newpath) C> new E = Newpath
13 else C> stuck at sink that is not on pa.th P; see Figure 5-24(b).
14 GP - LOOP-CASE(G, G11 , P,Newpath, i)
15 else C> Path Pis not a. loop; explorer stuck a.t a vertex v, v :/; P[O]; see Figure 5-24(a.).
16 determine smallest index i such that v = P[i]
17 Gp - SINK-CAsE(G,G11,P,i)
18 return Gp

~:: fCo)

10..+li f'
(a..)

Figure 5-24: Partial Graph after the sink is found: (a.) Pis not a. loop and SINK-CASE is called
in line 9 of DEFICIENCY-ONE, (b) path Pis a loop and work on P ends in sink v on path
Newpath

The DEFICIENCY-ONE algorithm works as follows. The explorer starts with a walk from

start vertex s in line 1. If the first walk from the start vertex s in line 1 is a loop, the graph

is either a deficiency-zero or a deficiency-one graph. If the graph has deficiency zero, which

means that it is a Eulerian graph, working on the path created by the walk is sufficient to

finish exploring the whole graph (lines 3- 5). If the graph has deficiency one, working on the

path created by the walk ends in getting stuck in the sink v of the graph. This is illustrated in

Figure 5-24(b).

Line 6 of the DEFICIENCY-ONE algorithm checks if the explorer got stuck in some vertex

53

P[m] on path P or in a vertex not on path P, but only on path Newpath. The partial graphs

that may result a.fter work on path P in a deficiency-one graph are illustrated in Figures 5-

24(b) and 5-25(a). Figure 5-25(a) shows a partial graph in which the walk on vertex P[i] ended

in some node P[m] on path P. Figure 5-24(b) shows a partial graph in which the walk on

vertex P[i] ended in some node on path Newpath. In the case that the sink is on path P, the

DEFICIENCY-ONE algorithm determines index min line 6 and calls procedure FINISH.

(()._)

Figure 5-25: (a) Partial graph of line 6 of procedure DEFICIENCY-ONE: the walk from vertex
P[i] ended in P[m] on path P (b) Partial Graph that is input to procedure FINISH in line 7-12
of procedure DEFICIENCY-ONE.

In the following, we show that the partial graph contains a FINISH-structure, and the input

assumptions for FINISH (as defined in Section 5.2) are satisfied. Note that the loop that is

formed by path P can be interpreted as the cycle A, B, C and D in a FINISH-structure, where

P[. .i] =< P[O], ... , P[i] > takes on the function of path A, P[i .. m] = P[i], ... , P[m] > the

function of path B, < P[m] > the function of path C, and P[m ..] =< P[m], ... , P[O] > the

function of path D. Since Newpath is attached to P[i] = B[O], it is a. valid path E in the

FINISH-structure. The explorer is at P[m] = D[O]. Thus, the partial graph contains a FINISH

structure on which procedure FINISH is called in lines 7-12 of the DEFICIENCY-ONE algorithm.

The input to FINISH in lines 7-12 is illustrated in Figure 5-25(b). During the walk in line 1

of DEFICIENCY-ONE the edges on P are traversed once; during the work on P in line 3 of

DEFICIENCY-ONE the edges on Pare traversed again, and the edges on Newpath are traversed

once. Thus, the trace of edges on path A of the FINISH-structure is two and the trace of edges

on B, D and E is one. Path C does not contain an edge. It follows that the input assumptions

for FINISH are satisfied when procedure FINISH is called in lines 7-12 of DEFICIENCY-ONE.

The procedure LOOP-CASE is called in line 14 of procedure DEFICIENCY-ONE to continue

exploring a deficiency-one graph if the explorer is not stuck on path P, but on path N ewpath. We

first define procedure LOOP-CASE before we continue describing algorithm DEFICIENCY-ONE

54

and the procedure SINK-CASE.

The inputs of the procedure LOOP-CASE are the graph G, the partial graph Gp, the cyclic

path P, the path Newpath that is created during a walk from a node P[i] on P, and the index i.

The trace of the edges on the suffix P[i ..] of P and on Newpath is one and the trace of the edges

on the prefix P[.. i] of Pis two. Procedure LOOP-CASE works on the suffix of Newpath and calls

either FINISH or REACH-PS depending on the outcome of this work. The input of procedure

LOOP-CASE is illustrated in Figure 5-26{a). In the following implementation of procedure

LOOP-CASE, the prefix of Newpath that ends with the sink of the graph is called path S, and

the suffix of N ewpath is called pa.th T. See Figure 5-26(b).

p(o) v= rr•1 Ne.wr'-~ Ck J 7C .. ~1

Q ~1 I r·1 1, 1

fVt.i.,:i rt-t- '?[~-.]
(Cl} (b)

Figure 5-26: (a) Partial Graph that is input to procedure LOOP-CASE (b) Partial graph before
work on path T starts in line 4 of procedure LooP-CASE.

55

LOOP-CASE(G, G,, P, Newpath, i)
C> Explorer is stuck at sink v. See Figure 5-26(a)

1 Determine smallest index k such that v =Newpath[k]
2 S +- Newpath[.. k] C> Sis prefix of Newpath
3 T +- Newpath[k ..] C> Tis suffix of Newpath
4 (new, W,q) +- WoRK-ON(G,G,,T)
5 if stuck at P[i] while taking a walk from vertex T[q]

e> See Fig. 5-27.
6
7
8
9

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26

then G, +- FINISH(G, G,,
T[.. q], C> new A = prefix of P
W P[i..], C> new B =suffix of Pis appended to path W
P[.. i], C> new C =prefix of P
S, C> new D = path S
T[q ..]) C> new E = suffix of T

else C> cycle T is finished
if some vertex P[r] is now on T

C> See Fig. 5-28(a).
then move to P[r] along T

G, +- FINISH(G, G,,
P[.. i],
P[i..r],
< P[r] >,
P[r ..],
S)

C> See Fig. 5-28(b)
C> new A = prefix of P
C> new B =portion< P[i], ... P[r] >of P
C> new C is empty path with vertex P[r]
C> new D = suffix of P
C> new E = S

else C> partial source still not reachable, see Fig. 5-29
G, +- REACH-PS(G, G,,

P[.. i], C> new A = prefix of P
P[i..], C> new B = suffix of P
S, C> new C = S
T) C> new fJ = T

27 return G,

Procedure LOOP-CASE works as follows. In line 4 of LOOP-CASE, the explorer starts working

on cycle T. If the explorer gets stuck at the partial source P[i] while taking a walk from a

vertex T[q] on T, procedure FINISH is called. The input to procedure FINISH is illustrated in

Figure 5-27. The input paths to procedure FINISH are the finished prefix T[.. q] of T as input

parameter A, prefix P[.. i] as input parameter C, unfinished path S as parameter D, and

the unfinished suffix T[q ..] of T as parameter E. Parameter B is the new created walk W

concatenated with the unfinished portion P[i] P[O] of P. The explorer is at vertex P[i] = S[O]

which takes on the function of D[O] in the FINISH-structure of the partial graph. The edges on

P[i ..], E = T[q ..] and D = S are not traversed in lines 1-5 of LooP-CASE, so the trace of these

56

edges is still one a.s at the time of the call of LooP-CASE. The edges on A = P[.. i] are also not

traversed during the execution of LOOP-CASE, so the trace is still two a.s at the time of the call

of LooP-CASE. Newpath[k ..] = T ha.s been traversed once when the explorer starts to work on

it in line 4 of LOOP-CASE. After the explorer is stuck at P[i], the trace of the edges on prefix

T[.. q] is two. Thus, the input assumptions of procedure FINISH are satisfied when FINISH is

called in lines 6-11.

PL.n i s

(Cl. J
Figure 5-27: (a) Partial Graph after explorer gets stuck at P[i] while taking a walk from
T[q]. (b) FINISH-structure of partial graph and trace of edges that satisfy input assumptions of
procedure FINISH in lines 6-11 of procedure LooP-CASE.

If the explorer does not get stuck in the partial source while working on path T, she finishes

path T, and moves to path P if there is a vertex P(r] that is also on the finished path T (lines 12-

14 of LOOP-CASE). See Figure 5-28. Vertex P[r] cannot be on the finished prefix P[.. i] of P,

because the vertices on P[.. i] are finished before the vertices on path T are discovered. The

partial graph has a FINISH-structure, in which the finished prefix P[.. i] = < P[O], ... P[i] > of P

takes on the function of A, the portion P[i .. r] =< P[i], ... P[r] > of P takes on the function of

B, C is the empty path at vertex P[r], the unfinished suffix P[r ..] =< P[r], ... P[O] > of P takes

on the function of D, and S the function of E. Since the explorer is at P[r], this is a valid input

to procedure FINISH that is called in lines 15-20 of procedure LOOP-CASE. The trace of the

edges on paths B, D, and E is one and the trace of edges on A is two, since the edges are not

traversed during the execution of LOOP-CASE. The trace of the edges on T is two after work

in line 4 and three after the relocation in line 14. Path T is not part of the FINISH-structure,

so the input assumptions of procedure FINISH are satisfied, when it is called in lines 15-20.

If the explorer finishes T and still cannot reach path P, procedure REACH-PS is called in

lines 22-26 of LOOP-CASE. The input paths to REACH-PS are the finished prefix A of P, the

unfinished suffix B of P, and paths S and T as illustrated in Figure 5-29. The trace of the

edges on paths B, and C is one and the trace of edges on A and b is two. Therefore, the input

57

(o..)

Figure 5-28: (a) Partial Graph after pa.th Tis finished and some node P[r] is on Tin line 13
of procedure LooP-CASE. (b) FINISH-structure of partial graph and trace of edges that satisfy
input assumptions of procedure FINISH in lines 15-20 of procedure LooP-CASE.

assumptions of procedure REACH-PS as stated in Section 5.3 are satisfied. Procedure REACH-PS

starts working on pa.th S until pa.th B becomes reachable.

Pf .. L) c

(o..) (b)

Figure 5-29: (a.) Partial Graph before procedure REACH-PS is called in line 22-26 of pro
cedure LooP-CASE.(b) Partial Graph tha.t is input to procedure REACH-PS in line 22-26 of
LOOP-CASE.

Now we continue describing algorithm DEFICIENCY-ONE and define the procedure SINK -

CASE that is called in line 17 of the DEFICIENCY-ONE algorithm.

If the first walk from the start vertex s in line 1 is not a. loop we know that the explorer got

stuck at the sink v as illustrated in Figure 5-24(a). The explorer ma.y have traversed vertex v

several times before she got stuck in v. Therefore, vertex v ma.y occur several times on path.

We choose to consider the first occurrence of vertex v on pa.th P. This is vertex P[i], where

i is the smallest index of the vertices on pa.th P such tha.t P(i] = v. Procedure SINK-CASE is

called in line 17 of DEFICIENCY-ONE to handle the case where path P ends in the sink.

The input to procedure SINK-CASE is the initial walk P, which the explorer takes from the

start vertex, and which ends in the sink of the graph. The edges on pa.th P have been traversed

once. The input of the procedure SINK-CASE is illustrated in Figure 5-24(a.).

58

SINK-CASE(G, Gp, P, i)
1 Q - P[i ..]

I> Path Pis not a loop, stuck at P[i]; see Fig.5-24(a.).

2 (new, Newpath, j) - WoRK-ON(G,Gp,Q)
3 if stuck at P[O] while taking a. walk from some vertex Q[j]

C> See Fig.5-30.
4
5
6
7
8
9

10
11
12
13
14
15
16
17

then Gp - FINISH(G, Gp,
Q[.. j], C> new A= prefix of Q
Newpath, C> new B = Newpath
< P[O] >, C> new C is empty pa.th with vertex P[O]
P[.. i], C> new D = prefix of P
Q[j ..]) C> new E = suffix of Q

else C> path Q is finished, new = false
E - P[.. i]
A,B-<P[O]>
if P[O] on Q

then move to P[O] C> See Fig. 5-31(a.).
Gp - FINISH-R(G, Gp, A, B, E)

else C> P[O] not reachable from Q, see Fig.5-31(b).
GP - REACH-Ps(G,Gp,A,B,E,Q)

18 return Gp

Procedure SINK-CASE works as follows. The suffix of path P which is a. loop from vertex P[i]

back to P[i] is called Qin line 1. The explorer starts working on pa.th Qin line 2 of SINK-CASE.

The work either ends in getting stuck in the partial source P[O] a.fter which procedure FINISH

is called in lines 4-9, or the suffix of Pis finished. If the work ended in the partial source P[O],

the procedure WoRK-ON(G, GP, Q) in line 2 returns new =true. A new walk Newpath from

some vertex Q[j] to P[O] has been created. This is illustrated in Figure 5-30(a). Procedure

FINISH is called on the partial graph in which the finished prefix < Q[O], ... , Q[j] >of Q is input

parameter A, the last walk ta.ken from Q[j] is input parameter B, partial source P[O] is empty

input path C, the unfinished prefix < P[O], ... , P[i] >is input para.meter D, and the unfinished

suffix < Q[j], ... , Q[O] > of Q is input parameter E. The partial graph has a. FINISH-structure

as illustrated in Figure 5-30(b). Thus, it is a. valid input to procedure FINISH in lines 4-9 of

procedure SINK-CASE.

During the work in line 2 of procedure SINK-CASE, the trace of edges on Q[.. j] = A is

increased by one. Every other path that is part of the FINISH-structure is traversed only once.

Thus, the input assumptions of procedure FINISH a.s stated in Section 5.2 are satisfied.

If the work on path Q ends without getting stuck in the partial source P[O], path Q, which

59

P(o) PCi)

"' A

(1)
Figure 5-30: ((a) Partial Graph after work on Q ended in the partial source P[O] (line 3 of
SINK-CASE). (b) Partial Graph that is input to procedure FINISH in lines 4-9 of SINK-CASE.

is the suffix of P, is finished. Then either the procedure FINISH-R is called if the partial

source is reachable, or the procedure REACH-PS is called if the partial source is not reachable.

FINISH-R is called on a partial graph that has a FINISH-structure that consists of two empty

paths A and B at vertex P[O], and path E which is the unfinished prefix of P (line 11). The

input assumptions of procedure FINISH-R as stated in Section 5.2 are satisfied, because path

Q, whose edges are traversed three times, is discarded, and path E is only traversed once. See

Figure 5-31(a).

Procedure REACH-PS is called on a partial graph that contains two empty paths A and

B, the unfinished path E, and the finished path Q (line 17 of SINK-CASE. After the work in

line 2 of SINK-CASE, edges on Q = b have been traversed twice. The edges on P[.. i] = Care

not traversed during the execution of SINK-CASE. Thus, the input assumptions of procedure

REACH-PS as stated in Section 5.3 are satisfied. The input to procedure REACH-PS is illustrated

in Figure 5-31(b).

E c
<PCo'f> cro)
- ,.. fl

- "': p

Figure 5-31: Partial Graph after path Q is finished. (a) Input to FINISH-R in line 15 of
SINK-CASE. (b) Input to REACH-PS in line 17 of SINK-CASE.

Procedure SINK-CASE returns the explored graph to the calling procedure DEFICIENCY-ONE.

60

Theorem 13 Given the input of a start vertez s and a deficiency-d graph G, where d ~ 1, the

algorithm DEFICIENCY-ONE ezplores G corTeetly and no edge in the graph is traversed more

than four ti mu during the ezploration.

Proof: To prove the correctness of the DEFICIENCY-ONE algorithm, we show that DEFICIENCY

ONE and the procedures LooP-CASE and SINK-CASE consider all the possible initial cases how

the explorer may get stuck while taking walks. We have shown above that relocation is possible

whenever needed during the algorithm. We use the correctness of the procedures FINISH and

REACH-PS to argue that the DEFICIENCY-ONE algorithm returns a correctly explored graph.

DEFICIENCY-ONE is a walk-based algorithm. This means that whenever the explorer sees

an unexplored edge during a walk, the explorer takes it. We know from Lemma 5 that the

explorer loops or gets stuck at a partial source or sink during a walk-based exploration.

Lemma. 4 says that a partial sink is a. sink if the graph is explored by a walk-based algo

rithm. Therefore, any partial sink in which the explorer gets stuck during the execution of

DEFICIENCY-ONE is a sink in graph G.

Taking the initial walk on the start vertex s, the explorer either gets stuck in s (line 2 of

DEFICIENCY-ONE), because it loops to the partial source s, or she gets stuck in the sink v

(line 15 of DEFICIENCY-ONE). In both cases, the explorer does not relocate, but starts working

on a path that is headed by the vertex in which the explorer gets stuck. Any following walk may

loop and end in the vertex where the explorer started from. In this case the explorer traverses

the next edge on the pa.th she is working on. ff the walk does not loop ha.ck to the vertex where

she started, the explorer either gets stuck at a. partial source or the sink of the graph.

We know from Lemma. 6 that a. graph of deficiency one has at most one sink. Therefore,

once the explorer gets stuck in the sink during the initial walk P, any following walk can only

be a loop or end in a. partial source of the graph. By Lemma. 7 there is at most one partial

source in G,. Therefore, we only have to consider the cases that the explorer gets stuck in the

partial sources= P[OJ in line 3 of procedure SINK-CASE and the case that every walk on path

Q is a. loop, so that Q is finished when the explorer is stuck (line 10 of procedure SINK-CASE).

If the initial walk P from the start vertex s does not end in the sink of the graph, but in s,

61

then there is no partial source in Gp, so every following walk is either a loop or ends in the sink

of the graph. If every following walk is a loop, the graph does not have a sink. The graph has

deficiency zero a.nd is completely explored after the work on the initial walk. If the graph has

deficiency one, the work on the initial walk in line 3 of DEFICIENCY-ONE ends in the sink of the

graph. Aga.in by Lemma 6 we know that once the explorer gets stuck in the sink of the graph,

any following walk can only be a loop or end in the partial source of the graph. Therefore,

we only consider the cases that the explorer gets stuck in the partial source P[i] in line 5 of

procedure LOOP-CASE and the case that every walk on path Tis a loop, so that T is finished

when the explorer is stuck (line 12 of procedure LOOP-CASE).

We have shown above that the procedures FINISH, FINISH-R, and REACH-PS are called

on a partial graph for which the input assumptions of FINISH, FINISH-R, and REACH-PS are

satisfied, respectively.

We know from Section 5.2 that the procedures FINISH and FINISH-R finish exploring a

deficiency-one graph given a partial graph that has a FINISH-structure. If the partial source

in a partial graph is not reachable, we know from section 5.3 that the procedure REACH-PS

explores the graph until the partial source is reachable a.nd then calls procedure FINISH. It

follows from Lemma 10 that the graph that is returned by procedure FINISH is explored. Thus,

we conclude that the algorithm DEFICIENCY-ONE explores a deficiency-one graph correctly.

Thus, we conclude that no edge in the graph is traversed more than four times during the

exploration of a deficiency-one graph by the algorithm DEFICIENCY-ONE. D

The off-line cost for traversing a deficiency-zero graph is IEI (see Chapter 3). Adding

an imaginary edge between sink and source into a deficiency-one graph makes an Eulerian

multigraph. Therefore, there exists a.n Euler tour. Removing the imaginary edge from this tour

gives an Eulerian path that is a path that contains every edge at least once. Thus, the off-line

cost for traversing a graph of deficiency one is also IEI.
Theorem 13 states that the on-line cost of exploring a graph of deficiency one is at most

41£1. Thus, the competitive ratio for the algorithm is four.

62

5.5 Summary

In this chapter we presented the algorithm DEFICIENCY-ONE that solves the problem of ex

ploring an unknown graph of deficiency one or zero. The algorithm has a competitive ratio

of 4, which means that the costs of the algorithm are at most four times higher than the costs

of the off-line solution.

The DEFICIENCY-ONE algorithm is a. walk-based strategy. After an initial walk, the algo

rithm distinguishes a "loop-" and a "sink-case" depending on the outcome of the initial walk.

The cases are handled by procedures LOOP-CASE and SINK-CASE which call the procedures

REACH-PS, FINISH, and FINISH-R. Procedure REACH-PS is called if the initial partial source

is not reachable from the sink. After the partial source is reachable, procedure REACH-PS

calls procedure FINISH. Procedures FINISH and FINISH-R finish exploring the graph by calling

themselves recursively.

63

Chapter 6

Exploring General Deficiency

Graphs

In this thesis, we have carefully proven properties of graphs of deficiency-d which we have

used in the deficiency-one algorithm. The deficiency-one algorithm is a combination of Deng

and Papadimitriou's algorithms [DP90] a.nd its analysis is based on Deng a.nd Papadimitriou's

ideas. The deficiency-one algorithm is interesting in its own right. However, it is important

to understand the exploration problem for the deficiency-one case so that the more general

exploration problem for deficiency-d graphs can be addressed.

Deng and Papadimitriou give a de:ficiency-d algorithm [DP90] They claim a 0(d") upper

bound on the competitive ratio of their algorithm. We found their analysis proof for this

algorithm to be quite terse and difficult to understand. We feel that it remains as an interesting

open problem to find a simple algorithm and analysis for the general deficiency-d case. Since

the lower bound for the exploration problem for de:ficiency-d graphs is O(d2 /4) and the gap to

the 0(d") upper bound is rather large, it is an interesting open problem to find an algorithm

that has a competive ratio of 0(d'"), for any fixed m.

6.1 Deng and Papadimitriou's Deficiency-d Algorithm

In the following, we give a brief description of a general deficiency-d algorithm. A deficiency-d

graph has d sinks. In the deficiency-one algorithm, the explorer can only get stuck in a sink

64

once, because the graph only has one sink. Whenever the explorer gets stuck afterwards, she

gets stuck at a partial source. During the exploration of a general deficiency graph, however,

the explorer may get stuck in partial sources and sinks in an arbitrary order.

Deng and Papadimitriou [DP90] define a path for each walk that ended in a sink; the walk

that ended in the ith sink is called path Pi. The explorer tries to finish the unfinished path

in the graph with the highest index i. If she gets stuck, she must move back to the path from

where she took the walk. This leads to many relocations, 80 that the number of traversals per

edge in the graph cannot shown to be polynomial in the deficiency d.

The reason why Deng and Papadimitriou choose an algorithm in which the explorer relocates

to the pa.th with the highest index is based on the following observation. The partial graph is

not necessarily strongly connected, 80 every time the explorer creates a. new path PJ:, she may

not be able to get ha.ck to path P; from where she took the walk. However, she can reach edges

on path P. which is the pa.th with the highest index in the partial graph. Therefore, she can

resume exploring the graph by working on the reachable portions of pa.th P •.

The procedure that is used to explore the graph if the paths with the lower indices a.re not

reachable from a. newly discovered sink is essentially the REACH-PS procedure that we defined

for deficiency-one graphs in section 5.3.

The analysis of a. deficiency-d graph is difficult, because it involves a very careful proof of

how often every edge in the graph is traversed during al.I the relocations that are performed.

The work on a path is interrupted when the explorer gets stuck in a. new sink. When she

resumes working on the path later, the path may have several finished and unfinished portions.

She may then have to traverse finished portions of the path during some later work on that

pa.th. Therefore, the major task in an analysis of a deficiency d algorithm is not only to show

how often every edge in the graph is traversed during al.I the relocations, but also how often

every edge is traversed during any work on the path that contains the edge.

We have shown for the deficiency-one case that some finished parts of the partial graph can

be "discarded", i.e., the explorer never traverses these parts a.gain during the exploration. To

show that paths can be discarded from the partial graph in the general deficiency case is much

more difficult, because of the more complicated connectivity properties of a deficiency-d graph.

65

6.2 Open Questions

As mentioned above, the exploration problem for deficiency-d graphs has not been solved with

an algorithm which has a competitive ratio that is polynomial in the deficiency of the graph.

Deng a.nd Papadimitriou 's introduction of the deficiency of a graph is a very useful, because it

gives a parameterization for the graph exploration problem. Are there other parameterizations

of the problem that lead to efficient algorithms?

In the graph model hat Deng a.nd Papadimitriou (DP90] introduce the explorer can only

"see" how ma.ny edges are going out of a vertex, but not how many edges are coming in. If we

change the model so that the explorer knows the number of in-coming edges, does this extra

information lead to better algorithms? Are any other changes to the exploration model useful?

As discussed in the introduction, our ultimate goal is the exploration of a real-world environ

ment. The real world is very complicated, so we restrict ourselves to abstractions of the world.

We believe that before we can approach a real-world problem, we need to be able to solve the

theoretical problem. In this thesis, we presented a step towards the goal of understa.nding the

theoretical problem. As we described above, there are still many open questions - should the

graph model be changed; what are the most efficient algorithms to solve the graph exploration

problem using the model Deng and Papadimitriou (DP90] proposed? The more is found out

a.bout the theoretical problem, the easier it will be to address the very difficult problem of

exploring a real-world environment.

66

Bibliography

[Ang86] Dana Angluin. Learning regular sets from queries and counter-examples. Techni

cal Report YALEU /DCS/TR-464, Yale University Department of Computer Science,

March 1986.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to

Algorithms. MIT Press/McGraw-Hill, 1990.

[DP] Deng and Papadimitriou. private conversation.

[DP90] Xiaotie Deng and Christos H. Papadimitriou. Exploring an unknown graph. In Pro

ceedings of the 31st Symposium on Foundationa of Computer Science, volume I, pages

355-361, 1990.

[EJ73] Jack Edmonds and Ellis L. Johnson. Matching, Euler tours and the Chinese Postman.

Mathematical Programming, 5:88-124, 1973.

[Hie73] Carl Hierholzer. Uber die MOglichkeit, einen Linienzug ohne Wiederholung und ohne

Unterbrechung zu umfahren. Math. Ann., 6:30-32, 1873.

[KV89] Michael Kearns and Leslie G. Valiant. Cryptographic limitations on learning boolean

formulae and finite automata.. In Proceedings of the Twent11-First Annual ACM Sym

poliwn on Theory of Computing, pages 433--444, Seattle, Washington, May 1989.

[Kwa62J Meiko Kwan. Graphic programming using odd a.nd even points. Chinue Math.,

1:273-277, 1962.

67

[&Sii) L. &. .. ,, 1· .. , . ,

1111•= la 1' 11118 ••fr/* ••••A ••111f 1.ufum •,._,of
Q 19•l U ... IUllll••H1• It;;--·

•

