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Abstract 

Two protocols used for learning under the pac-learning model introduced by Valiant 
are learning from random examples and learning from membership queries. Membership 
queries have also been used to efficiently and exactly learn a concept class C that is too 
difficult to pac-learn using random examples. We ask whether using membership queries­
in conjunction with or instead of random examples-can serve a new purpose: helping 
to reduce the total number of examples needed to pac-learn a concept class C already 
known to be pac-learnable using just random examples. We focus on concept classes that 
are dense in themselves, such as half-spaces of R", rectangles in the plane, and the class 
I= {[O, a]: 0 :$a< 1} of initial segments of [O, 1]. 

The main results of this thesis are: 

1. Adding the option of using membership queries cannot significantly reduce the total 
number of examples needed to pac-learn a dense-in-itself concept class C; 
fl((l/£)1n(l/6)) random examples are still required to pac-learn C, where£ and 6 are 
the usual pac-learning parameters. Interestingly, this bound holds for any unknown 
probability distribution, unlike the "standard" proof (due to Ehrenfeucht, Haussler, 
Kearns, and Valiant [12]), which holds only for a particular distribution constructed 
by an adversary. 

2. Even if the unknown probability distribution is known to be "smooth", at least 
(1/4£)ln(l/6) examples are required to pac-learn C from random examples (only). 

3. For the special case of learning half-spaces of an n-dimensional unit simplex, if the 
probability distribution is smooth and examples can be chosen as well as drawn ran­
domly, then the number of examples required to pac-learn decreases significantly, to 
n2(lg(s/£) + 4), and the computational complexity is O(n7 s/£). 

Portions of this thesis are joint work with Ron Rivest. 

Thesis Supervisor: Ronald L. Rivest 

Title: Professor of Electrical Engineering and Computer Science 

Keywords: Pac-learning, Queries, Drawing examples, Choosing examples 
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Chapter 1 

Introduction 

1.1 Overview 

In 1984, Valiant published A Theory of the Leamable [18). His paper introduced a model 

of learning that has come to be known as probably approximately correct learning, or pac­

learning for short. As proposed by Valiant, a good learning algorithm should, after viewing a 

certain number of labeled examples, output a hypothesis that with high probability classifies 

almost all unseen examples correctly. Valiant 's model has been widely embraced, and many 

interesting classes have been shown to be efficiently lea.rnable under the pac-model. (The 

notion of efficiency is addressed in more detail later). 

In spite of the fact that the pac-model leads to efficient learning algorithms, however, 

the most traditional implementation of the model imposes restrictions on the way learning 

can be done, and these restrictions potentially drive up the number of labeled examples, 

in other words the amount of information, the learning algorithm needs to obtain in order 

to compute a hypothesis. This thesis asks the following question: can altering several 

of the pac-learning restrictions reduce the number of examples the learning algorithm, or 

equivalently the learner, needs to obtain in order to compute a hypothesis? 

In the standard pac-model, the learner has no choice over what examples are obtained. 

Additionally, the learner knows nothing about the probability distribution under which the 

learning is learning: in particular, any probability distribution is possible. In Chapter 2 we 

consider what additional efficiency can be gained in Valiant 's model if the learner has some 

control over what examples it receives. We prove a negative result: in spite of having some 

choice over what examples are obtained, the number of examples the learner must obtain 

in order to compute a hypothesis is within a constant factor of the number of examples the 

learner must obtain in the standard pac-model. 

In Chapter 3, we ask whether there is an increase in efficiency if the learner knows ahead 

of time that certain probability distributions (for instance, extremely skewed distributions) 

are disallowed. Here we show a positive result: if the learner knows that certain probability 
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distributions are not possible, then giving the learner some control over what examples it 

may obtain can lead to a substantial decrease in the number of examples needed in order 

to compute a hypothesis. 

In Chapter 4, we state conclusions and open problems. 

We continue this chapter by presenting some standard machine learning definitions, an 

introduction to pac-learning, and some new definitions. In light of our definitions and the 

introduction to pac-learning, we then discuss the learning models and main results of this 

thesis. 

1.2 Standard Machine Learning Definitions 

We consider the problem of learning an unknown concept, called the target concept, from 

examples. The examples are drawn from a space X, called the sample space. For instance, 

we may have X = {O, l}n or X =Rn. In this thesis we focus on continuous sample spaces, 

such as Rn. We use the terms learner and learning algorithm interchangeably. 

A concept c is a subset of the sample space X. For x E X, we say that x E c is a 

positive instance (or positive example) of a concept c, and that x rJ. c is a negative instance 

(or negative example) of a concept c. We also use functional notation, writing c( x) = 1 

for positive examples of a concept c and c( x) = 0 for negative examples; we call c( x) the 

label or classification of x (by c). The unknown target concept is denoted c •. A hypothesis 

concept is denoted c. 

For instance, if X = Rn, an example of a concept is a half-space defined by an n - !­

dimensional hyperplane. Such a hyperplane splits Rn into two half-spaces. The subset of 

Rn consisting of the points on the hyperplane and all points on one side of the hyperplane 

(that is, one of the half-spaces) is considered to be the concept. Each of these points is a 

positive example of the concept, and each point on the other side of the hyperplane is a 

negative example of the concept. 

A concept thus is a set of points. Observe that the set, which is potentially infinite, 

can, for concept classes of interest here, be represented by a finite set of parameters. For 

instance, a half-space is a set with an infinite number of points; it can be represented, 

however, by a hyperplane using a finite number of real-valued parameters. 

We assume that there is a probability distribution D defined on the sample space X. 

There are then two ways to obtain examples. First, the learner can draw examples from 

X according to probability distribution D. Here we say that the learner is learning from 
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random examples. In this case, the learner has no choice over what examples it obtains. 

Second, the learner may also, in some cases, make a membership query arbitrarily in X, 

in which case the learner is also learning from membership queries. Making a membership 

query is also called choosing an example. With a membership query, the learner can ask 

about any point x, even if x is in a set that D assigns zero probability. 

We assume that the learner is told c. ( x) for any example x obtained, so that the learner 

knows whether x is a positive example or a negative example of the target concept. We say 

that the learner sees examples in a set S if it either draws a random example from S or 

makes a membership query in S. 

A concept class C is the set of all concepts of a particular type. For instance, the set of all 

half-spaces in Rn (each half-space defined by an n - 1-dimensional hyperplane) is a concept 

class. Another concept class is the class I= {[O, a]: 0 ~a< 1} of initial segments of [O, l]. 

We assume that the learner knows a priori the particular concept class C of which the target 

concept c. is a member. However, it is not a requirement that the hypothesis concept that 

the learner outputs come from this same concept class C. In fact, our proofs do not depend 

on the assumption that the learner outputs some member of C as an approximation to c •. 

Given two concepts c and c', let c Efl c' denote the set ( c - c') U ( c' - c) of points that 

are classified differently by c and c'. This set of points on which c and c' disagree is called 

the symmetric difference of c and c'. Given two concepts c and c', we are not interested in 

simply the size of the symmetric difference. Rather, we are interested in the probability of 

the symmetric difference. 

More formally, we define the distance dv between concepts c and c' (with respect to 

probability D) as 

dv(c, c') = D(c Efl c') , 

the probability that c( x) ofi c' ( x) for a point x randomly drawn according to D. That is, 

dv( c, c') is the probability that c and c' disagree on the classification of a randomly drawn 

point. Another way to think about this is that dv( c, c') measures the probability associated 

with the symmetric difference of c and c'. 

Now, given a target concept c. and another concept c, we wish to measure the distance 

dv( c, c.) between the target concept and c. In this case, distance represents the error (again 

in a probabilistic sense) of concept c with respect to target concept c •. More formally, we 

define the error rate of a concept c (with respect to the distribution D and the target 

concept c.) to be dv( c, c.). Thus, the error rate of a concept c measures the probability 

associated with the symmetric difference of c. and c. We remark that potentially the 
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symmetric difference of the target concept and c can be a very large set and yet the error 

rate dD( c, c.) can be very sma.11, provided that there is little or no probability associated 

with the symmetric difference of c. and c. 

Under some probability distributions, it is in fact possible that the symmetric difference 

of two concepts c and d is non-empty, and yet has zero probability. In other words, although 

the two concepts do disagree on some set of points, there is no probability weight on these 

points. In this case, although the two concepts are not the same {that is, they do not classify 

a.11 points the same), the error rate dD(c,d) equals zero. Thus we note that in general dD 

defines only a bounded pseudometric on C, for any probability distribution D. For dD to 

be a proper metric, it must be the case that for any incorrect concept c there is a positive 

probability dD( c, c') of drawing a random example that demonstrates that c is incorrect. 

If we were to consider only those probability distributions such that c =:/= c' implies that 

dD(c,c') > 0, then dD would be a bounded metric on C. (In this thesis we do not state the 

conditions on measurability that may be required to make our claims go through. See, for 

example, Ben-David et al. [6] and Blumer et al. [9] for discussion.) 

Often, the hypothesis space of a concept class is uncountably infinite. For instance, the 

concept class I has an infinite hypothesis space: there are infinitely many initial segments 

[O, a] of [O, 1]. The notion of the VC dimension of a hypothesis space offers a way of 

measuring such an infinite space. More specifica.lly, the VC dimension is a combinatorial 

parameter of the hypothesis space. Haussler gives a very clear definition of VC dimension 

[13]: 

"The VC dimension of a hypothesis space H, denoted VCdim( H), is defined 

to be the maximum number d of instances that can be labeled as positive and 

negative examples in a.11 2d possible ways, such that each labeling is consistent 

with some hypothesis in H [10) [19)." 

In other words, the VC dimension is equal to the largest number m of points, such that for 

each element of the power set of the m points, the following holds: there exists a hypothesis 

in the concept class, such that each of the points in this particular element of the power set 

is classified as positive, and the remaining points (from the original set of m points) which 

are not in this element of the power set are classified as negative. For example, the VC 

dimension of the class I is 1. 
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1.3 Pac-learning Definition 

The core idea of pac-learning is that a learning algorithm should compute with high prob­

ability a hypothesis concept that is accurate to a given error rate. That is, the learner's 

goal in the pac-learning model is not to exactly identify the target concept, but rather to 

compute a hypothesis concept such that with high probability the hypothesis concept agrees 

with the target concept on almost all examples in the sample space. Thus we have Valiant 's 

notion of probably approximately correct [13] [18]. 

In the case of "batch" learning (used in the models of this thesis), the learner first sees 

all examples, and then computes the hypothesis concept. In the case of "online" learning, 

the learner may recompute a hypothesis concept after each example seen. In either case, it 

is not sufficient for an algorithm simply to compute and output a hypothesis consistent or 

close to consistent with all examples seen thus far; the learner should have confidence that 

with high probability almost all future examples will be classified correctly. 

1.3.1 Pac-learning error rate 

A pac-learning algorithm is given as part of its input an error parameter £, which specifies 

the maximum error rate acceptable (this relates to being approximately correct), and a 

confidence parameter b, which specifies the degree of certainty that the hypothesis will 

classify all unseen examples to within the specified error rate£ (this relates to being probably 

approximately correct). 

More formally, let c represent the hypothesis concept computed by a run of a pac-learning 

algorithm. To pac-learn successfully, the algorithm, given input parameters£ and b, must, 

for all probability distributions D, with probability at least 1 - {J compute a hypothesis c 
such that the error rate dv ( c.' c) < £: 

Pr(dv(c.,c) < £) > 1-b. (1.1) 

In Valiant 's original definition, dv ( c., c) may be less than or equal to c For the sake of 

simplicity, we assume that the error rate must be strictly less than L 

We can now define computational complexity in pac-learning. 

1.3.2 Pac-learning complexity 

Valiant's goal was to encourage computer scientists to study complexity in learning theory 

via "precise computational models of the learning phenomenon"[18]. Valiant delineates 
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two components of such learning models, which describe frameworks for learning target 

concepts: (1) a protocol for receiving information about the target concept, and {2) an 

algorithm for computing a hypothesis concept based on this information. 

We define sample complexity to be the number of examples the learner needs to see 

to compute a hypothesis concept. Then complexity in learning theory, as proposed by 

Valiant, is measured as a function both of sample complexity {related to {1) above), and of 

computational, or time, complexity, that is, how much computing a learning algorithm must 

do to output a good hypothesis concept (related to {2) above). The goal in pac-learning is 

to use only polynomial sample and time complexity to learn a target concept. This thesis 

focuses in particular on issues related to sample complexity. 

For a pac-lea.rning algorithm to have polynomial sample complexity, it must have sample 

complexity polynomial in 1/£, 1/6 and the length of the input. For a pac-learning algorithm 

to have polynomial time complexity, it must take time polynomial in the number of examples 

received to compute a good hypothesis. 

In sum, in order for a pac-learning algorithm to be computationally efficient as defined 

by the pac-learning model, two conditions need to hold: 

1. The number of examples obtained, that is, the sample complexity, should be polyno­

mial in 1/£, 1/6, and the length of the input. 

2. The time taken by the algorithm to compute a. good hypothesis, that is, the compu­

tational complexity, should be polynomial in the number of examples received. 

Henceforth, when we refer to pac-learning, we will be referring to computationally effi­

cient pac-learning, unless otherwise noted. 

We make an assumption that f. is sufficiently small. It is always true that 

1/f. ~ -1/ln(l - f.). 

For f. < .39841, however, it is also true that 

1/( 4£) ~ -1/ ln{l - 2£). 

We thus assume f. is less than .39841; this assumption allows us to express our non­

asymptotic lower bounds in the more standard form as a function of 1/£. For instance, 

in Theorem 2 we substitute the weaker lower bound m > (1/4£)ln(l/6) for the stronger 

m > (-1/ln(l - 2£))1n(l/6), where mis the number of examples obtained. 
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1.3.3 Protocols for obtaining examples 

Given the pac-learning model, there a.re numerous ways in which the learner can obtain 

information about the target concept. 

In the most traditional form of pac-lea.rning (used, for example, by Blumer et al. [8] 

and Valiant [18]), the protocol for receiving information is for the learner to draw random 

examples according to a ~ed but unknown probability distribution on the sample space. 

(By unknown probability distribution, we mean unknown to the learner.) When the learner 

requests a sample point, the learner receives ha.ck an example drawn according to this 

unknown probability distribution. The example is labeled as either a positive or negative 

example of the concept. Any probability distribution on the sample space is possible. Since 

the complexity bounds must hold no matter what the unknown probability distribution is, 

this type of learning is also called distribution-free learning. 

A second protocol is to obtain information through queries. A model in which the 

learner asks for information is called learning using queries. Although touched upon by 

Valiant [18], learning using queries was left largely unnoticed until Angluin published Type.s 

of Queries For Concept Leaming [1] in 1986. In her paper, Angluin defines a wide variety 

of protocols for receiving information about the target concept. The protocols all have in 

common the fact that they allow the learner more control over what examples are seen. For 

instance, the learner can choose a particular example and ask whether it is in the target 

concept; this is called making a membership query. In general, the goal in learning by query, 

in contrast to pac-learning, is to achieve exact learning, that is, to find the exact target 

concept. 

This thesis looks at models in which information is obtained by both drawing and choos­

ing examples. 

1.4 New Definitions 

1.4.1 Dense-in-itself concept classes 

We are interested in the sample complexity necessary to pac-learn what we call a dense-in­

itself concept class C. 

Definition 1 A concept class C is called dense in itself if for all concepts c E C, for all 

/ > 0, and for all finite measures µ on X, there is another concept c' E C (that is, c' I- c) 

such that µ( c ED c') < /. 
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A measure is similar to a probability distribution, in that it assigns weight to a sample 

space. However, in a probability distribution all the weight must sum to 1; in a finite 

measure, the weight can sum to any finite value. 

The existence of dense-in-itself concept classes is easily proved using techniques by Ben­

David, Benadek, and Mansour in A Parametrization Scheme For Classifying Models of 

Learnability [7). They first define a notion CovD(A, B), such that one set of concepts A 

covers another set of concepts B with respect to a given probability distribution D, if for 

every£ > 0 and b E B, there exists an element a E A such that dD(a,b) < £. That is, 

for every b E B, we can always find an a E A such that the probability of the symmetric 

difference of a and bis less than £. Note that as they define it, a and b may be the same 

concept. 

We modify their definition to handle the case when A and B are the same concept class. 

In particular, we adapt their notation, and say that a set C is dense in itself if Cov~D(C, C), 

where Cov~D(C,C) means that for every£> 0 and c EC, there exists an element c' EC, 

c =I c', such that dD( c, c') < £. Observe here the extra specification that the two concepts c 

and c' cannot be the same. In sum, to make the analogy from their definition of CoVvD(A, B) 

to our definition Cov~D(C, C) of dense-in-itself, we add two conditions: the concept classes 

A and B must be the same, and the two concepts a and b must be different. 

Ben-David et al. also define the notion Cov5 (A, B). By definition, Cov5 (A, B) holds if 

"for every b E B there exists a sequence {ai : i E N) of elements of A such that limi .... 00 ai = 
b" [7). That is, for every point :z:, there are only a finite number of concepts in the infinite 

ai sequence that disagree with b on their classification of :z:. Observe that the notion 

Govs( A, B) depends solely on the nature of the sets A and B and is independent of any 

probability distribution. 

We define an analogous notion CovHC, C), similar to Cov5 (A, B), except again for the 

two conditions that the concept classes A and B must be the same, and that each of the 

concepts a, must differ from b. 

The notion Gov~( C, C) applies to the concept classes that we consider. For instance, 

for the concept class of rectangles in the plane, we can think of a series of rectangles, each 

one containing the one before it, such that the series of rectangles converge to the last 

rectangle in the sequence, which is the target rectangle b. Similarly, we can think of a series 

of hyperplanes that are all parallel to and increasingly close to a target hyperplane (where 

close is measured by perpendicular distance to the hyperplane). 

Ben-David et al. prove that Cov5 (A, B) implies COVvD(A, B). Their proof, essentially 

without modifications, also shows that Cov~(C,C) implies Co~D(C,C). Thus since the 
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concept classes we consider have the property Cotls(C,C), the concept classes we con­

sider have the property Cov~D( C, C). Recalling that if a concept class has the property 

Co~ D ( C, C), then the class is dense in itself, we have that the concept classes we consider 

are dense in themselves. Some examples of concept classes that are dense in themselves are 

half-spaces in n-dimensional space, rectangles in the plane, and the concept class I. 

Recall that, by definition, a dense-in-itself concept class is guaranteed to contain, for 

any finite measure µ and concept c, a concept c' E C, c :/; c', such that the measure µ of the 

symmetric difference of c and c' is arbitrarily small. Now the probability measure error rate, 

which is defined in Section 1.1, is a valid candidate for measure µ above, since error rate 

is a finite measure. Thus, substituting in the above definition error rate for µ and target 

concept c. for c, we have: for any given dense-in-itself concept class C and arbitrary target 

concept c., we are guaranteed that there exists a concept c' with error rate (dD(c., c')) of 

arbitrarily small size. For example, if we are given a target concept c. and wish to ensure 

that the error rate of c. and some other concept is less than 10-5 , a dense-in-itself concept 

class guarantees us that there exists a concept c' such that (dD(c.,c') < 10-6
). 

The following lemma provides a key property of a dense-in-itself concept class. 

Lemma 1 For every algorithm A that pac-leams a dense-in-itself concept class C usmg 

random examples and membership queries, and every f., 6, target concept c. in C, f3 > O, 

and probability distribution D, there exists a concept c in C - { c.}, such that 

Pr( A( f., 6) sees examples in c. $ c) < f3 • 

Proof: Let S = c. $ c. Assume A runs under probability distribution D. We prove the 

lemma using Definition 1. Our strategy is to show that the probability measure 

Pr(A(€,6) sees examples inc.$ c) 

is bounded above by the measure of the expected number of points that algorithm A( f., 6) 

sees in S. Then, since by definition of dense in itself we can make the measure of the 

expected number of points that algorithm A( f., 6) sees in S as small as we like, it follows 

that we can make Pr( A( f., 6) sees examples in c. $ c) as small as we like too. 

We define µ(S) to be the expected number of points that algorithm A( f., 6) sees in S: 

µ(S) = E(number of points A(£, 6) sees in S) . (1.2) 

Then µ is a measure defined on X. Let Pi equal the probability that A(£, c) sees i examples 

in S. Then 
00 

Pr( A(£, c) sees any examples in S) = L: Pi 
i=l 
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00 

< L:iP; 
i=l 

= µ(S). 

Since by the definition of dense in itself we can find a concept c that allows us to make 

µ(S) as small as we like (where S varies according to which c is chosen), the lemma follows. 

I 

1.4.2 Smooth probability distributions 

In the original definition of the pac-learning model, all probability distributions are possi­

ble. One can speculate that the fact that learning must be done under such a model drives 

up sample complexity. For instance, the fact that the fixed but unknown probability dis­

tribution could be extremely skewed may force the algorithm to obtain far more examples 

than it might have to obtain if it had some information ahead of time about the probability 

distribution. 

We therefore consider whether having some advance knowledge about the nature of the 

probability distribution might, in fact, lower the number of samples the algorithm needs to 

obtain. Thus we look at the sample complexity necessary to pac-learn a concept class C 

under a smooth probability distribution. 

Definition 2 A probability distribution defined on Rn is called smooth if there exists an 

s ~ 0, such that for all a ~ O, the probability associated with a region of volume a is ::; sa. 

In other words, for every smooth probability distribution, there is an upper bound on 

the amount of probability that can be associated with any region, and this upper bound is 

in direct proportion to the size of the region. For instance, for the concept class I, the value 

sa is an upper bound on the probability of a region of length a. Similarly, in n-dimensional 

space, the value sa is an upper bound on the probability of a region of volume a. Observe 

that under a smooth probability assumption, certain highly irregular distributions are not 

possible. For instance, there is a limit to how much probability weight can be found in a 

very small region, and there can be no probability weight assigned to a point. 

1.5 Pac-learning Background 

Some pac-learning history will help the reader view our results in light of past work. 

We recall that pac-learning imposes two complexity requirements: (1) the sample com­

plexity, which is the number of samples drawn, must be polynomial in the length of an 

13 



input instance and in the inverse of the error and confidence parameters, and (2) the com­

putational complexity, which is the computational time to find a good hypothesis {with 

good defined using the £ and 6 parameters), must be polynomial in the number of examples 

received. 

The first classes shown to be pac-learnable under the distribution-free model were all 

classes of Boolean functions (18]. These classes-such as k-DNF and k-CNF-all have finite 

sample space, for example, {O, l}n. In 1986, Blumer et al. extended the notion of what 

classes could be learned under the distribution-free pac-learning model to include classes 

in Euclidean n-dimensional space, such as half-spaces and hypercubes (8]. Significantly, 

concept classes in Euclidean n-dimensional space, in contrast to classes of Boolean functions, 

have uncountably infinite sample space: the sample space is Rn. (Observe, however, that a 

representation of the concept, for instance, a defining hyperplane, can be specified finitely 

with a finite number of real-valued parameters.) Blumer et al. gave upper and lower 

polynomial bounds on sample complexity for these classes, and described polynomial-time 

algorithms to learn certain Euclidean n-dimensional classes [8]. 

In fact, a wide variety of concept classes have been shown to be learnable with both 

polynomial sample and time complexity. Examples of such classes include monomials over 

n Boolean variables [18], and, for constant k, k-DNF [18], k-CNF [18], and k-decision-lists 

[15] [17]. 

To a large extent, however, the time and sample complexity requirements are separable. 

In 1986 Blumer et al. [8] showed that a concept class has polynomial sample complexity if 

the VC dimension of the family of the concept class grows polynomially, and that if the VC 

dimension of a family of concept classes grows faster than polynomially, then the concept 

class is not pac-learnable (8]. 

There have also been significant results in the area of computational complexity. Two 

of the results mentioned here are based on differing definitions of the pac-learning model: 

one in which the hypothesis concept must come from the same concept class as the target 

concept, and one in which the hypothesis concept may come from a different class than the 

target concept. 

In 1986, Pitt and Valiant [16] showed that given a pac-learning model in which the 

output hypothesis concept must come from the same concept class as the target concept, 

the computational complexity to pac-learn certain concept classes is not polynomial. They 

proved that if finding a consistent hypothesis from the same class as the target concept 

class is NP-hard, then the given concept class is not pac-learnable unless RP= NP. For 

instance, they showed that since finding a consistent 2-term DNF hypothesis for the 2-term 
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DNF concept class is NP-hard, 2-term DNF is not pac-learnable, assuming RP f NP. 

Kearns and Valiant proved computational complexity results for the pac-learning model 

in which the hypothesis concept may come from a different concept class than the target 

concept. They showed that even if the output hypothesis can come from a class outside 

the target concept class, the computational complexity to pac-learn certain concept classes 

is not polynomial. This result depends on certain complexity-theoretic cryptographic as­

sumptions. Thus Kearns and Valiant showed that certain classes have polynomial sample 

complexity but not polynomial time complexity. Examples of such classes are Boolean 

formulas and finite automata [14]. 

Even when a class is pac-learnable, however, the traditional distribution-free model 

of pac-learning places certain restrictions on the ways in which a learner can learn, and 

these restrictions potentially drive up the sample complexity. For instance, the learner is 

restricted to receiving examples at random according to a fixed but unknown probability 

distribution: the learner has no choice over the particular examples seen. Additionally, the 

upper bounds for sample complexity must hold no matter what probability distribution the 

examples are drawn under: the bounds are worst case and so must hold even for extremely 

unusual distributions. These limitations in the traditional pac-learning model have caused 

researchers to look at ways of varying the model. 

One of the principle means of varying the model is to allow the learner to ask queries, or 

questions, of various sorts. Angluin and others have shown that numerous concept classes 

that are not pac-learnable using the traditional model of drawing examples can be exactly 

learned in polynomial time under various query models. An example of such a class is the 

class of regular languages [1] [2]. Examples of classes that the membership-query model 

in particular can be used to learn are monotone DNF, monotone CNF [3] [18], read-once 

Boolean formulas [4], and the union of two half-spaces[5]. In sum, the extra power inherent 

in the query model has proven sufficient to learn classes that are not pac-learnable under 

the random example model. 

1.6 The Results of this Thesis 

This thesis examines two variations on the standard distribution-free model. 

The first way we vary the model is to allow the learner to choose examples as well as 

draw random examples. Here, we combine the traditional pac-learning protocol of drawing 

random examples with the membership-query protocol of choosing examples to propose new 

models for learning using queries. 
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The second way we vary the model is to give the learner some advance knowledge about 

the probability distribution. We propose a model in which the learner knows a priori that 

the probability distribution is smooth. Since a smooth probability distribution is one that 

guarantees a specified upper bound on the amount of probability that can be associated 

with any region, certain distributions, such as extremely skewed distributions, are ruled 

out. 

There are two key ways our new models differ from other query models. First, research 

on learning using queries has focused on learning classes that do not have polynomial com­

putational complexity, and so are too hard to learn under the pac-model. This thesis looks 

at classes already known to be pac-learnable, and so which are already known to have 

polynomial sample complexity. The issue addressed then is not whether the given concept 

class has polynomial sample complexity, but rather whether using membership queries in 

conjunction with random examples can reduce the sample complexity of the concept class. 

Second, most research on query models has focused on exactly identifying target concepts 

from classes with finite sample space. This thesis, however, looks at pac-learning classes 

which may have uncountably infinite sample space. So whereas membership queries are 

traditionally used to help exactly identify a concept from a finite class of concepts, we ask 

whether membership queries can help pac-learn (that is, approximately rather than exactly 

learn) a potentially infinite, even uncountable, concept class. 

In Chapter 2, we show that under the distribution-free pac-learning model, the power to 

both choose and draw random examples cannot significantly reduce sample complexity. In 

contrast, in Chapter 3, we show that under a model in which the learner has some limited 

information about the nature of the probability distribution, the power to both choose and 

draw examples does lead to a significant reduction in sample complexity. In Chapter 4, we 

state conclusions and open problems. 

One of our main results thus is that for traditional pac-learning models, membership 

queries do not help: the sample size required to pac-learn a dense-in-itself concept class if 

the learner can both choose and draw examples is within a constant factor of the sample size 

needed if the learner can just draw examples. Significantly, this lower bound is established 

for all probability distributions (as long as the probability distribution is unknown to the 

learner), not just for one worst-case probability distribution. On the other hand, we get 

significant results in favor of membership queries if the learner knows a priori that the 

probability distribution is smooth: if the learner can only draw examples, then the lower 

bound on sample complexity for pac-learning many concept classes does not improve, but 

if the learner can both choose and draw examples, then the sample and computational 
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Chapter 2 

A Lower Bound When Both Drawing and 
Choosing Examples 

Up until now, when we have referred to pac-learning, we have meant the traditional model 

of pac-learning, in which the protocol for obtaining information about the sample space is 

to draw random examples. Henceforth, we consider any number of protocols to be viable 

ways of obtaining examples when pac-learning. In particular, we consider protocols that use 

random examples alone, membership queries alone, or a combination of both. We always 

specify the protocol being used. 

2.1 A Lower Bound 

Theorem 1 gives a lower bound on the number of examples required to pac-learn a dense­

in-itself concept class C by any algorithm that can both draw random examples and make 

membership queries. 

Theorem 1 For every algorithm A that pac-learns a dense-in-itself concept class C using 

random examples and membership queries, and for every f, 8 > 0, probability distribution 

D, and target concept c* E C, the total number of examples A needs to pac-learn C is 

n((l/f)ln(l/8)). 

Note that A may be either randomized or deterministic, and it may draw examples 

and make membership queries in any order. The bound is on the worst-case number of 

examples seen, where the worst case is taken over the runs of the algorithm for the given 

target concept, probability distribution, f, and 8. We assume in our asymptotic notation 

that f, 8, and /3 (to be defined shortly) are going to zero in the limit. 

Proof: We begin by assuming that a pac-learning algorithm A, an f, a 8, a probability 

distribution D, and a target concept c* have been given. We claim that we, as adversary, 

can produce a probability distribution D' and a concept c: that are close enough to D and 
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c., respectively, that if A does not draw n((l/E)ln(l/8)) random examples to distinguish 

these cases, then Pr(dn,(c:,c) ?.".: E) > 8, so that A is not a pac-learning algorithm. 

Let (3 be an arbitrarily small positive number, and let c: be a concept different than c. 

such that 

Pr( A sees examples in c. EB c: I A draws according to D) < (3 . 

The existence of c: is guaranteed by Lemma 1. Then 

Pr(A sees no examples in c. EB c: I A draws according to D) ?.".: 1 - (3 . 

Nate that if A sees no examples in c. EB c:, then A cannot distinguish between target concept 

c. and target concept c:. 

We now choose any point w in c. EB c:. Define the probability distribution D.,, to be the 

distribution that assigns probability 1 to point w and probability 0 to all other points. 

Given probability distributions D and Dw, we make a new probability distribution D' as 

follows. We "skim" f probability off of D, while keeping the relative distribution of points 

in D the same. That is, we uniformly remove f probability from the probability distribution 

D such that the relative weight of points under D remains the same, but the total weight 

of points in D now adds up to 1 - f. We assign the excess f probability to w. Thus our 

new probability distribution D' is a linear combination of probability distribution D and 

probability distribution Dw: 

D' = (1 - E)D + EDw . 

From now on, we suppose that algorithm A is drawing its random examples according 

to D'. When drawing an example according to D', there are two possibilities: either the 

example is drawn "as if according to D" (this happens with probability 1-E), or the example 

is drawn "as if according to Dw" (this happens with probability E). In general, we say that 

"A draws as if according to D" if A draws all of its random examples as if according to D. 

Suppose that we run algorithm A on distribution D' and target concept c., that A 

draws all of its examples as if according to distribution D, and that A sees no examples 

in c. EB c:. By definition, a pac-learning algorithm with high probability correctly classifies 

any point with weight for greater. Because A is a pac-learning algorithm and w has weight 

E, A's output hypothesis c classifies w correctly with high probability. Thus c with high 

probability agrees with c.(w), and so disagrees with c:(w). 

We note that, on the one hand, c: is consistent with target concept c. on all examples 

algorithm A sees with probability at least 1 - (3, yet, on the other hand, c~ disagrees with 
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c. on the classification of w. Since A is a pac-learning algorithm, therefore, when A now 

tries to learn c: instead of c. on distribution D', we have that its output concept c satisfies 

Pr(c(w) =f= c:(w) I A draws as if according to D) 2: (1 - b - {3), (2.1) 

since we are assuming that A pac-learns c. on D correctly, and with probability 1 - {3 the 

run looks the same as it would if c. were the target concept. Observe that if A runs under 

probability distribution D', then saying c(w) =f= c~(w) is equivalent to saying dv,(c,c:) 2: t. 

Let m = m( E, b) denote the maximum possible total number of examples drawn and/or 

chosen by any run of A on inputs E and b, and any probability distribution and any target 

concept. Since random examples are independent events, if all m examples obtained are 

random examples, then 

Pr(A draws as if according to D) = (1 - Er 
If less than m examples are random examples, then 

Pr(A draws as if according to D) > (1 - Er 
Assume that m is so small that it satisfies 

then 
b 

Pr( A draws as if according to D) > ----­
( 1 - b - {3) 

We show that this assumption implies that A does not pac-learn. 

Assume that in a given run A receives information about m sample points, by random 

example according to probability distribution D', by membership query, or by both. What 

then is the probability that during a run of A (on input distribution D', with target concept 

c:) the following events both happen? 

E = A mis classifies w (and so makes error at least E). 

F = A draws all its random examples as if according to D. 

Now, 

Pr(EF) = Pr(E I F) Pr(F) . 

Thus, since (by (2.1)) 

Pr(E I F) = Pr( A misclassifies w I A draws as if according to D) 2: 1 - b - {3 , 
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and 

we have 

6 
Pr(F) = Pr(A draws as if according to D);?:: (1- fr > 

1 
_ 6 _ /3 , 

6 
Pr(EF) > (1 - 6 - ,8) · l - 6 _,a = 6 · 

Since Pr( E) ;?:: Pr( E F) > 6, we have Pr( do• ( C.,, c) ;?:: f) > 6, and therefore A has not 

pac-learned. 

Solving form in (1- fr > 6/(1- 6 - ,8), we have 

mln(l - f) > 1n(6) - ln(l - 6 - /3), 

so 

1 
m < ln(l _ f) (1n(6) - ln(l - 6 - /3)) , 

-1 1 
< ln(l - f) (1n(6) + ln(l - 6 - /3)). 

Thus, unless 

m;:::: 

in other words, unless m = 0((1/f)ln(l/6)), Pr(do·(<.,c) > f) > 6, which proves our 

theorem. 

I 

2.2 Comparison of the Lower Bound to Previous Results 

We already know from Ehrenfeucht et al. (12] that for f < 1/2, an algorithm that can only 

draw random examples must see at lea.st 

O (! ln ! + VCdim(C)) 
f 6 f 

examples to pac-learn, where VCdim(C) is the Vapnik-Chervonenkis dimension of the class 

C. Since our bound is within a constant factor of their lower bound (treating VCdim(C) 

as a constant as we let f and 6 go to zero), we have shown that the minimum number 

of examples needed by an algorithm A that can both draw random examples and make 

membership queries is within a constant factor of the minimum number of examples needed 

by an algorithm B that can only draw random examples. 
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We rema.rk that, compa.red to the proof given by Ehrenfeucht, Haussler, Kea.rns, a.nd 

Valiant [12], our proofha.s the advantage that it applies to every probability distribution (not 

just one constructed by the adversa.ry), with the understanding of course that the lea.rning 

algorithm has no prior knowledge a.bout the actual probability distribution, and that the 

lea.ming algorithm must pa.c-lea.rn for every distribution. It also applies to learning from 

both random examples a.nd membership queries (not just learning from random examples). 

On the other hand, our proof does not yield a lower bound that grows with the VC dimension 

of the concept class C. 
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Chapter 3 

Smoothness Guarantees 

Until now, we have assumed that any probability distribution was possible. Now suppose 

we have a "smoothness guarantee." Specifically, we assume that the learning algorithm has 

an additional input, s, and is told that any region of X having volume a, for any a, has 

probability at most sa. Can this assumption improve our lower bound? Our first claim 

is that if the learning algorithm uses random examples only, then a smoothness guarantee 

does not reduce the lower bound on the number of random examples required to pac-learn. 

We say (C, D) (where C is a concept class on a domain X and D is a probability 

distribution on X) has all error rates if for every target concept c. E C, and for every 

nonnegative E < supcEc{dn(c.,c)}, there is a concept c EC such that dn(c.,c) = f. For 

instance, if D is smooth, and C is the concept class of half-spaces of Rn, rectangles in the 

plane, or I, then (C,D) has all error rates. 

3.1 A Lower Bound When Drawing Examples Only 

Theorem 2 For every algorithm B that draws random examples to pac-learn C, sufficiently 

small E > 0, fJ > 0, and smooth probability distribution D, if ( C, D) has all error· rate8 then 

the number of example8 B needs to draw is greater than ( 1/4E) ln( 1 / fJ). 

Thus, even though an algorithm B has information that D is smooth, if C is a concept 

class such that (C,D) has all error rates, B still needs to draw (1/4E)ln(l/fJ) examples to 

pac-learn C. Note that while the assumption that a concept class C under distribution D 

has all error rates may seem restrictive, as a practical matter it is quite reasonable, given 

the assumption of a smooth probability distribution. We leave it as an open problem to see 

whether this assumption actually is a restriction. 

Proof: 

Let c be a concept such that dn ( c., c) = 2E. (We have specified in the statement of The­

orem 2 that E must be sufficiently small. To be more precise, if E < 1/2(supcEc{dn(c.,c)}), 
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then by the assumption that ( C, D) has all error rates, there will always be a concept c with 

error rate 2£. Adding this constraint to our earlier constraint in Section 1.3.2 that £ must 

be less that .39841, we have£< min(.39841, 1/2(supeeddo(c.,c)})).) 

Let S = c. ED c. As before, let c be the hypothesis concept that a run of algorithm B 

outputs, and let d., be the concept that we as adversary choose. 

We begin by showing that if B sees no points in S, an adversary can force B to have 

error rate at least £. We conclude by showing that unless B draws at least (1/4£)1n(l/6) 

examples, then with probability greater than 6 the algorithm will see no points in S; in 

other words, with probability greater than 6 the algorithm will have error rate at least £. 

Given that B sees no points in S, we assume without loss of generality that c is more 

likely to agree with c. (in the probabilistic sense) than with c on points in S. Then 

Pr(c(x) = c.(x): x ES);?: 1/2, 

where the probability is based on the conditional distribution induced on S by distribu­

tion D. 

In this case, we set c~ to c. (If c is more likely to agree with c, we set c~ to c.; the 

reasoning for the rest of the proof remains the same.) Thus 

Pr(c(x)-:/: c:(x): x ES);:::: 1/2, 

where the probability again is based on the conditional distribution induced on S by distri­

bution D. 

Since dD is a bounded pseudometric, the triangle inequality holds for dv, giving 

(3.1) 

Now, by assumption, 

(3.2) 

By (3.1) and (3.2), we have 

(3.3) 

Also, by assumption, we have 
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(3.4) 

Since we have set c~ to c, (3.4) is equivalent to 

(3.5) 

Thus, combining (3.3) and (3.5), we obtain 

which shows that if B sees no points in S, B has error rate at lea.st £. 

The probability that B independently draws m examples and fails to see a point in S, 

that is, the probability that B has error rate at lea.st £, is (1 - 2£r. We fa.il to pac-learn 

if the probability of error rate at least £ is greater than 6, that is, if (1 - 2£r > 6; given 

our assumption that £ < .39841, we thus have that the lower bound on m even with the 

smoothness guarantee is (1/4£)ln(l/6). I 

3.2 Upper and Lower Bounds When Both Drawing and Choos­
ing Examples 

So far in this chapter, we have shown that a smoothness guarantee does not significantly 

reduce the lower bound on sample complexity if the learning algorithm can only draw 

random examples. We now show, on the other hand, that if the learning algorithm can also 

make membership queries, then there exists a fast pac-learning algorithm whose sample 

and computational complexity upper bounds are well below the lower bounds proved in the 

previous section. We first prove this result for a one-dimensional concept class, and then 

extend the result to an n-dimensional concept class. (Our generalization to n dimensions is 

not completely general; we prove the result only for a specific concept class. It is an open 

problem to prove such a result for general bounded n-dimensional domains.) 

3.2.1 Using the binary-search approach in one dimension 

Theorem 3 There exists an algorithm A that pac-leams I using membership queries, such 

that for every £, 6, and smooth probability distribution D with known smoothness constant 

s, the number of examples A needs to pac-leam I is lg(s/£). For deterministic algorithms 

lg( s / £) is also a lower bound on the sample complexity. Additionally, if we assume unit cost 

for each example drawn or chosen, a deterministic algorithm A runs in time 0(lg(s/£)). 
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Note that although under this model the algorithm may both draw and choose examples, 

the algorithm we present only chooses examples. 

Proof: The proof is based on a "binary search." We call a hypothesis interval an interval 

defined by two points, which we call L and R. Here L is the value of the rightmost positive 

example seen so far, and R is the value of the leftmost negative example seen so far. Thus 

the interval [L, R] represents the points that we don't know how to classify yet; the right 

endpoint of c., our target concept, is somewhere within this interval. 

In order to guarantee that the probability sa associated with a region of volume a is 

less than E, we set up the following equation, which gives us the requisite size for a: 

sa < E, or 

a < E/s. 

So if A has narrowed [L, R] to a size less than E/ s, A is guaranteed that the probability 

associated with [L, R] is less than E/ s · s, or E, and therefore can output any c with right 

endpoint in [L, R] with total confidence (6 = 0) that the error rate is less than c Algorithm 

A can use membership queries to do a binary search on the initial interval [O, 1], in which 

case A needs to make only lg( s / E) membership queries in order to narrow [ L, R] to a size 

less than E/ s. Observe that this upper bound of lg( s/ E) on the sample complexity when 

using membership queries is substantially lower than the lower bound of (1/4E) ln(l/6) on 

the sample complexity when using random examples only. 

To see that lg(s/E) is also a lower bound on the sample complexity for deterministic 

algorithms, consider an adversarial argument. An adversary can always label the requested 

examples so that after the algorithm makes lg( s/2E) queries, an interval [L, R] of size 2E/ s 

remains. At this point, the adversary can always force the algorithm to output a hypothesis 

with error rate at least c For instance, even if the algorithm outputs the concept represented 

by the midpoint of the interval, the adversary can choose the concept represented by L. 

Then, because the interval between L and the midpoint has length E/ s, in the worst case 

the hypothesis will have error rates· E/s = E. Since lg(s/2E) = lg(s/E) - 1, we have that 

greater than lg( s / E) - 1 queries are needed to ensure that in all cases the error is less than 

E; thus, at least lg( s / f) queries are necessary. 

If we assume it takes constant time for each membership query, then we also achieve the 

tight bound of 0(lg(s/E)) on the computational complexity for deterministic algorithms. 

I 
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3.2.2 Generalizing the binary-search approach to n dimensions 

So far, we have given an algorithm which pac-learns the one-dimensional class I under 

the assumption of a smooth probability distribution. In short, such an algorithm pac-learns 

"half-spaces" of a one-dimensional line segment. We would also like to show how to pac-learn 

an analogous n-dimensional class. That is, we would like to pac-learn the set of half-spaces 

of an n-dimensional object, where the n-dimensional object is a logical generalization of the 

one-dimensional line segment. 

There are a number of objects that come to mind as logical generalizations of the one­

dimensional line segment. Two such generalizations are the hypercube and the hypersphere. 

But perhaps the simplest generalization of a one-dimensional segment is the simplex. We 

will generalize the binary-search approach of the above section to learn half-spaces of a 

simplex. 

A simplex is a finite region of n-space enclosed by n + 1 hyperplanes, where each hy­

perplane has dimension n - 1. Importantly, a simplex has only n + 1 corner points, n + 1 

faces, and (n~ 1 ) edges. Each corner point is connected to each other corner point by an 

edge. For instance, a simplex in one dimension is a line, which is enclosed by two points 

(a point has dimension zero). A simplex in two dimensions is a triangle, which is enclosed 

by three lines. A simplex in three dimensions is a tetrahedron, which is enclosed by four 

planes, and so on [11]. A regular simplex is one in which each edge has the same length. 

A simplex thus has certain properties that make it easier to use as the generalization of 

a line segment than a hypercube or a hypersphere. For instance, observe that the number of 

faces, corner points, and edges of a simplex is linear in the dimension. This contrasts sharply 

with a hypercube, for example, in which the number of edges and corner points is exponential 

in the dimension. Our algorithm capitalizes-in fact, depends-on these properties of the 

simplex. We leave it as an open problem to pac-learn the set of hyperplanes which intersect 

a hypercube or a hypersphere. 

Let n represent the dimension of the concept class. 

Theorem 4 Let S be the class of hyperplanes which intersect a regular simplex. There 

exists an algorithm A that pac-learns S using membership queries, such that for every f, b, 

and smooth probability distribution D with known smoothness constant s, the number of 

examples A needs to pac-learn S is n 2 (1g( s/ f) + 4). Additionally, if we assume unit cost for 

each example drawn or chosen, A runs in time 0 ( n 7 s / E). 

Proof: 
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We consider a regular simplex in which each edge has length 1, and we assume that the 

coordinates of the simplex comers are given to the learning algorithm. The domain X of 

S consists of exactly those points on the boundary of the simplex and within the simplex. 

Given a target hyperplane that intersects a simplex, we consider the target hyperplane and 

all domain points on one side of the hyperplane to be positive examples of the concept, 

and all domain points on the other side of the hyperplane to be negative examples of the 

concept. Thus concept class Sis represented by the set of hyperplanes of n - 1-dimensions 

that intersect the given simplex of n dimensions. 

We begin our analysis by giving the formulas for computing the height and volume of a 

regular simplex whose edges have length 1. 

The recurrence formula for the height of such an n-dimensional simplex is: 

This evaluates to 

Hn = V(n + 1)/2n. 

The volume Vn of an n-dimensional simplex of edge-length 1 is equal to the base of the 

simplex (Bn) times the height of the simplex (Hn) divided by the dimension n: 

Since the base Bn of an n-dimensional simplex is equal to the volume Vn-1 of the 

corresponding n - 1-dimensional simplex, the recurrence formula for Vn is: 

This evaluates to 

The surface area Sn of an n-dimensional simplex is equal to the number of faces of an 

n-dimensional simplex (n + 1) times the volume of an n - 1-dimensional simplex (Vn-1): 

Sn= (n + 1) · Vn-1 
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= (n + 1) · Jn/2n- 1 /(n - 1)!. 

For any target hyperplane which cuts the simplex, the learning algorithm A should 

output a hypothesis hyperplane such that the error rate of the hypothesis is less than f. 

Consider first the classification of each of the simplex corner points. In the trivial case 

where all n + 1 corner points are labeled positive, all points inside the simplex are also 

positive. In this case any hypothesis which classifies all simplex points as positive suffices. 

(Similarly if all n + 1 corner points are labeled negative.) Otherwise, there is at least one 

positive corner point and one negative corner point. 

Let k be the total number of positive corner points, and let l be the total number of 

negative corner points. Then k + l = n + 1 = the total number of corner points. Since each 

corner point is connected to each other corner point, the total number of "mixed" edges, 

that is, edges such that one endpoint is positive and one is negative, is kl. 

The separating target hyperplane must cut each of these kl mixed edges. In fact, the 

set of simplex edges that the target hyperplane cuts is precisely this set of kl mixed edges. 

(All other edges have both endpoints positive or both endpoints negative, and clearly the 

separating hyperplane cannot cut these edges.) 

By definition, the length of each edge of the simplex is 1. We wish to find a much smaller 

interval, which we call a cut-interval, on each mixed edge. A cut-interval is a sub-interval of 

a mixed edge that still retains the property that one endpoint is positive and one endpoint is 

negative. Since a mixed edge is one dimensional, we can apply the binary-search techniques 

of the previous section to find a cut-interval of a specified size on the mixed edge. 

Note we only need n points to determine an n - I-dimensional hyperplane. By doing a 

binary search along each of the kl mixed edges, we find kl cut-intervals (rather than points). 

Since kl is always at least n, these kl cut-intervals define a constrained n-dimensional region 

within which the hyperplane must lie. (By definition of a simplex, and the fact that each 

of the kl cut-intervals comes from a different edge of the simplex, we are guaranteed that 

the kl regions will indeed define an n-dimensional region.) 

The overall strategy of the algorithm, then, is to find a cut-interval of a predetermined 

size, which we call width, on each of the kl mixed edges, and then output any hypothesis 

consistent with each of the cut-interval constraints. 

We present the algorithm, give a derivation for the value of the key variable width, 

prove the correctness of the algorithm, and finally give the sample complexity (number 
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Figure 3.1: Simplex with pancake region within the dashed lines; w =width. 

of membership queries needed) and computational complexity (time to find a hypothesis 

consistent with the constraints) analysis. 

3.2.2.1 The algorithm 

The algorithm begins by making n + 1 membership queries to obtain the classification of 

each corner point. 

For each of the resulting kl mixed edges, the algorithm does a binary search using 

membership queries to find a cut-interval of size width (width is precisely defined shortly). 

Since the length of each simplex edge is 1, the maximum number of queries necessary to do 

each binary search is lg(l/width). 

Each of the two endpoints of each cut-interval determines a constraint on where the 

target hyperplane can lie, so there are 2kl constraints tota.1. Any hypothesis consistent with 

the constraints is output. 

3.2.2.2 Derivation of width 

In order to analyze the sample and computational complexity, we need to determine the 

size of width necessary to achieve an error rate less than £. 

We form a "pancake" as follows: consider the n - 1-dimensiona.1 target hyperplane and 

a one-dimensional line perpendicular to this hyperplane. If we move the target hyperplane 

a.long the perpendicular a distance of width in each of the two directions away from the 

target hyperplane, then we trace out a pancake-like region with total width 2 · width. (See 

Figure 3.1.) 

We claim that the only points on which the target hyperplane and any hypothesis 

consistent with a.11 kl constraints can disagree must lie in this n-dimensiona.l pancake that 
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encloses the target hyperplane. We thus wish to choose a value of width so that the entire 

pancake has total probability less than f.. 

The volume of our pancake is clearly less than or equal to the width of the pancake times 

the volume of the maximum cross section of the pancake. The volume of the maximum 

cross section of the pancake in turn is less than or equal to the volume of the maximum 

cross section of the simplex, which in turn is less than or equal to the surface area Sn of the 

simplex. (We conjectured that the maximum cross section of a. simplex is at most equal to 

the surface area of a. single face of the simplex, but could not prove this conjecture.) Thus 

the volume of the pancake must be less than or equal to the width of the pancake, which is 

2 ·width, times the surface area. of the simplex, which is Sn. 

We wish that the total volume of the pancake should have probability weight less than 

€. So given smoothness constant s, it is necessary to have 

s · (2 ·width· Sn) < f.. 

This is equivalent to 

s · 2 ·width· (n + 1) · Vn-1 < f., 

and to 

s · 2 ·width· (n + 1) · Jn/2n-1/(n - 1)! < f., 

yielding (with rearrangements of terms) 

width< €/s · 1/2 · ( J2n-l/n · (n - 1)!/(n + 1)). 

(3.6) 

(3.7) 

Any value of width which satisfies (3. 7) will also satisfy (3.6), and any value of width 

which satisfies (3.6) will ensure that the total volume of the pancake has probability weight 

less than f.. So we choose width equal to one half the right-hand side of (3. 7) -

width= 1/2(€/s · 1/2 · ( V2"- 1/n · (n -1)!/(n + 1)) 

= f./s · 1/4 · ( J2n-l/n · (n - 1)!/(n + 1)). 

- and then analyze the resulting number of membership queries required given this choice 

of width. 

The number of membership queries necessary to narrow a cut-interval to size width is 

lg(l/width). Here, we have 

lg(l/width) = lg(s/€) + lg4 +lg( Jn/2"- 1 • (n + 1)/(n - 1)!). 
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Since 

lg( Jn/2"-1 • (n + 1)/(n - 1)!) < 1.6 

for all n, (and in fact is less than 0 for n > 3), and 

lg4 = 2, 

we have that lg(s/€) + 4 is an upper bound on lg(l/width): 

lg(l/width) < lg(s/£) + 4 

So the number of membership queries necessary on each mixed edge is at most lg(s/£)+4. 

Thus, we must do a binary search making at most lg(s/£) + 4 membership queries on each 

of the kl mixed edges. Since kl $ n2 (1 $ k $ n, 1 $ l $ n, thus kl $ n2
), the total sample 

complexity is at most n2(lg(s/£) + 4). 

3.2.2.3 Correctness of the algorithm 

We claim that the maximum error rate of any hypothesis hyperplane consistent with the 2kl 

constraints is less than £. We prove this by showing that all the points on which the target 

and hypothesis hyperplanes disagree-that is, the symmetric difference of the target and 

hypothesis concepts-must lie in the n-dimensional pancake region of width 2 · width that 

surrounds the target hyperplane. Since this pancake region has total probability weight less 

than £, the error rate of any consistent hypothesis must be less than £. 

We first show that each cut-interval endpoint lies within the pancake region, and then 

show that all points in the symmetric difference of the target and hypothesis concepts lie 

within the pancake. 

The total length of each cut-interval is width. This implies that the projection of each 

cut-interval endpoint onto the line perpendicular to the target hyperplane must also have 

distance to the target hyperplane less than or equal to width. Since the pancake is created by 

moving width along the p~rpendicular to the target hyperplane in each of the two directions 

away from the target hyperplane, ea.ch endpoint thus must lie within the pancake. 

We now establish that any point (not just the endpoints) on which the target and 

hypothesis concepts disagree lies within the specified pancake region. 

Consider the convex hull created by connecting the 2kl cut-interval endpoints. (We 

remark that not all of the e;') edges formed by connecting endpoints define the convex 

hull-some of these edges lie inside the convex hull.) The target and hypothesis hyper­

planes lie entirely within this convex hull, since each point where the target and hypothesis 

32 



hyperplanes intersect an edge of the simplex is within a. cut-interval. Thus, any point in the 

symmetric difference of the hypothesis and target concepts also lies within the convex hull. 

Now we establish that every point within the convex hull lies within the pancake region. 

As already stated, the distance from the target hyperplane to the projection of ea.ch of 

the 2kl cut-interval endpoints onto the target hyperplane perpendicular must be less than 

or equal to width. Since any point within the convex hull is a. convex linear combination of 

cut-interval endpoints, we know any point in the convex hull region must also have distance 

to the target concept less than or equal to width. But then every point in the convex 

hull, which in particular includes all points in the symmetric difference of the target and 

hypothesis concepts, must be contained within the pancake region. Thus, since the pancake 

has total probability at most £, the hypothesis error rate must be less than £. 

3.2.2.4 Complexity of the algorithm 

The computational complexity is equal to the time necessary to compute a hypothesis 

consistent with the 2kl constraints. We can solve this constraint problem using linear 

programming in time polynomial in the number of constraints, 2kl, and the precision of 

each constraint, lg(l/width). The worst-case bound for solving the constraint problem 

with 2kl constraints and bit precision lg(l/width) requires time 0((2kl)3
·
5 

• lg(l/width)). 

Since 2kl is O(n2), and lg(l/width) is O(s/£), we can find a hypothesis consistent with all 

2kl constraints in time O(n1s/£). 

I 

hull-some of these edges lie inside the convex hull.) The target and hypothesis hyper­

planes lie entirely within this convex hull, since each point where the target and hypothesis 
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Chapter 4 

Conclusions and Open Problems 

We have shown that membership queries do not help us to pac-learn a wide variety of 

classes. We have also shown that a priori knowledge of a. smooth probability distribution 

does not help us to pac-learn many concept classes, when we are only allowed to draw 

random examples. A smooth probability distribution, however, does help us to pac-learn 

certain of these classes when we can also make membership queries. In particular, we have 

shown a significantly reduced upper bound on the number of samples needed to learn I, 

which is a concept class in one dimension, and S, which is a concept class in n dimensions. 

We hope to generalize this upper bound to handle many other classes. 

The following open problems arise from this research: 

1. Improve the lower bound of Theorem 1 to depend upon VCdim(C). 

2. Generalize the n-dimensional approach of Theorem 3 to handle n - 1-dimensional 

hyperplanes intersecting arbitrary bounded convex n-dimensional domains (e.g. hy­

perspheres or hypercubes). 

3. In regards to solving 2 above, we hypothesize that it is possible to make a reduction 

from our problem to the problem solved by Maass and Turan [15] of exactly learning 

a target hyperplane in a boolean-valued n-dimensional sample space. In making the 

reduction we would capitalize on the fact that we are working with a smooth proba­

bility distribution and so simulate a boolean-valued domain in our continuous space. 

We would choose a small enough value for the distance between the boolean-valued 

points, so that if an algorithm exactly learned the target hyperplane, the error rate 

in the continuous space would be less than f.. This reduction is not worked out, but 

if correct, would give good bounds on learning half-spaces in n-dimensional space. 
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