
LABORATORY FOR
COMPUTER SCIENCE

MIT/LCS{fR-535

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

ON THE SAMPLE COMPLEXITY
OF PAC-LEARNING USING

RANDOM AND CHOSEN
EXAMPLES

Bronwyn Bonnie Eisenberg

March 1992

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

On the Sample Complexity of Pac-learning using
Random and Chosen Examples

by

Bronwyn Bonnie Eisenberg

B.A., English
Princeton University

(1981)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology
May 1991

© Massachusetts Institute of Technology 1991

Signature of Author------------------------
Department of Electrical Engineering and Computer Science

March 1, 1992

Certified by---------------------------
Ronald L. Rivest

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by---------------------------
Arthur C. Smith

Chairman, Department Committee on Graduate Students

Abstract

Two protocols used for learning under the pac-learning model introduced by Valiant
are learning from random examples and learning from membership queries. Membership
queries have also been used to efficiently and exactly learn a concept class C that is too
difficult to pac-learn using random examples. We ask whether using membership queries
in conjunction with or instead of random examples-can serve a new purpose: helping
to reduce the total number of examples needed to pac-learn a concept class C already
known to be pac-learnable using just random examples. We focus on concept classes that
are dense in themselves, such as half-spaces of R", rectangles in the plane, and the class
I= {[O, a]: 0 :$a< 1} of initial segments of [O, 1].

The main results of this thesis are:

1. Adding the option of using membership queries cannot significantly reduce the total
number of examples needed to pac-learn a dense-in-itself concept class C;
fl((l/£)1n(l/6)) random examples are still required to pac-learn C, where£ and 6 are
the usual pac-learning parameters. Interestingly, this bound holds for any unknown
probability distribution, unlike the "standard" proof (due to Ehrenfeucht, Haussler,
Kearns, and Valiant [12]), which holds only for a particular distribution constructed
by an adversary.

2. Even if the unknown probability distribution is known to be "smooth", at least
(1/4£)ln(l/6) examples are required to pac-learn C from random examples (only).

3. For the special case of learning half-spaces of an n-dimensional unit simplex, if the
probability distribution is smooth and examples can be chosen as well as drawn ran
domly, then the number of examples required to pac-learn decreases significantly, to
n2(lg(s/£) + 4), and the computational complexity is O(n7 s/£).

Portions of this thesis are joint work with Ron Rivest.

Thesis Supervisor: Ronald L. Rivest

Title: Professor of Electrical Engineering and Computer Science

Keywords: Pac-learning, Queries, Drawing examples, Choosing examples

1

Contents

1 Introduction

1.1 Overview

1.2 Standard Machine Learning Definitions

1.3 Pac-learning Definition

1.3.l Pac-learning error rate .

1.3.2 Pac-learning complexity

1.3.3 Protocols for obtaining examples

1.4 New Definitions

1.4.l Dense-in-itself concept classes

1.4.2 Smooth probability distributions

1.5 Pac-learning Background

1.6 The Results of this Thesis

2 A Lower Bound When Both Drawing and Choosing Examples

2.1 A Lower Bound

2.2 Comparison of the Lower Bound to Previous Results

3 Smoothness Guarantees

3.1 A Lower Bound When Drawing Examples Only

4

4

5

8

8

8

10

10

10

13

13

15

18

18

21

23

23

3.2 Upper and Lower Bounds When Both Drawing and Choosing Examples 25

3.2.1 Using the binary-search approach in one dimension

3.2.2 Generalizing the binary-search approach to n dimensions

2

25

27

4 0.•'.lho .. l•I ... 8s• ftq:d ill JI

I A:ailau 11.. •rt•

•

•

Chapter 1

Introduction

1.1 Overview

In 1984, Valiant published A Theory of the Leamable [18). His paper introduced a model

of learning that has come to be known as probably approximately correct learning, or pac

learning for short. As proposed by Valiant, a good learning algorithm should, after viewing a

certain number of labeled examples, output a hypothesis that with high probability classifies

almost all unseen examples correctly. Valiant 's model has been widely embraced, and many

interesting classes have been shown to be efficiently lea.rnable under the pac-model. (The

notion of efficiency is addressed in more detail later).

In spite of the fact that the pac-model leads to efficient learning algorithms, however,

the most traditional implementation of the model imposes restrictions on the way learning

can be done, and these restrictions potentially drive up the number of labeled examples,

in other words the amount of information, the learning algorithm needs to obtain in order

to compute a hypothesis. This thesis asks the following question: can altering several

of the pac-learning restrictions reduce the number of examples the learning algorithm, or

equivalently the learner, needs to obtain in order to compute a hypothesis?

In the standard pac-model, the learner has no choice over what examples are obtained.

Additionally, the learner knows nothing about the probability distribution under which the

learning is learning: in particular, any probability distribution is possible. In Chapter 2 we

consider what additional efficiency can be gained in Valiant 's model if the learner has some

control over what examples it receives. We prove a negative result: in spite of having some

choice over what examples are obtained, the number of examples the learner must obtain

in order to compute a hypothesis is within a constant factor of the number of examples the

learner must obtain in the standard pac-model.

In Chapter 3, we ask whether there is an increase in efficiency if the learner knows ahead

of time that certain probability distributions (for instance, extremely skewed distributions)

are disallowed. Here we show a positive result: if the learner knows that certain probability

4

distributions are not possible, then giving the learner some control over what examples it

may obtain can lead to a substantial decrease in the number of examples needed in order

to compute a hypothesis.

In Chapter 4, we state conclusions and open problems.

We continue this chapter by presenting some standard machine learning definitions, an

introduction to pac-learning, and some new definitions. In light of our definitions and the

introduction to pac-learning, we then discuss the learning models and main results of this

thesis.

1.2 Standard Machine Learning Definitions

We consider the problem of learning an unknown concept, called the target concept, from

examples. The examples are drawn from a space X, called the sample space. For instance,

we may have X = {O, l}n or X =Rn. In this thesis we focus on continuous sample spaces,

such as Rn. We use the terms learner and learning algorithm interchangeably.

A concept c is a subset of the sample space X. For x E X, we say that x E c is a

positive instance (or positive example) of a concept c, and that x rJ. c is a negative instance

(or negative example) of a concept c. We also use functional notation, writing c(x) = 1

for positive examples of a concept c and c(x) = 0 for negative examples; we call c(x) the

label or classification of x (by c). The unknown target concept is denoted c •. A hypothesis

concept is denoted c.

For instance, if X = Rn, an example of a concept is a half-space defined by an n - !

dimensional hyperplane. Such a hyperplane splits Rn into two half-spaces. The subset of

Rn consisting of the points on the hyperplane and all points on one side of the hyperplane

(that is, one of the half-spaces) is considered to be the concept. Each of these points is a

positive example of the concept, and each point on the other side of the hyperplane is a

negative example of the concept.

A concept thus is a set of points. Observe that the set, which is potentially infinite,

can, for concept classes of interest here, be represented by a finite set of parameters. For

instance, a half-space is a set with an infinite number of points; it can be represented,

however, by a hyperplane using a finite number of real-valued parameters.

We assume that there is a probability distribution D defined on the sample space X.

There are then two ways to obtain examples. First, the learner can draw examples from

X according to probability distribution D. Here we say that the learner is learning from

5

random examples. In this case, the learner has no choice over what examples it obtains.

Second, the learner may also, in some cases, make a membership query arbitrarily in X,

in which case the learner is also learning from membership queries. Making a membership

query is also called choosing an example. With a membership query, the learner can ask

about any point x, even if x is in a set that D assigns zero probability.

We assume that the learner is told c. (x) for any example x obtained, so that the learner

knows whether x is a positive example or a negative example of the target concept. We say

that the learner sees examples in a set S if it either draws a random example from S or

makes a membership query in S.

A concept class C is the set of all concepts of a particular type. For instance, the set of all

half-spaces in Rn (each half-space defined by an n - 1-dimensional hyperplane) is a concept

class. Another concept class is the class I= {[O, a]: 0 ~a< 1} of initial segments of [O, l].

We assume that the learner knows a priori the particular concept class C of which the target

concept c. is a member. However, it is not a requirement that the hypothesis concept that

the learner outputs come from this same concept class C. In fact, our proofs do not depend

on the assumption that the learner outputs some member of C as an approximation to c •.

Given two concepts c and c', let c Efl c' denote the set (c - c') U (c' - c) of points that

are classified differently by c and c'. This set of points on which c and c' disagree is called

the symmetric difference of c and c'. Given two concepts c and c', we are not interested in

simply the size of the symmetric difference. Rather, we are interested in the probability of

the symmetric difference.

More formally, we define the distance dv between concepts c and c' (with respect to

probability D) as

dv(c, c') = D(c Efl c') ,

the probability that c(x) ofi c' (x) for a point x randomly drawn according to D. That is,

dv(c, c') is the probability that c and c' disagree on the classification of a randomly drawn

point. Another way to think about this is that dv(c, c') measures the probability associated

with the symmetric difference of c and c'.

Now, given a target concept c. and another concept c, we wish to measure the distance

dv(c, c.) between the target concept and c. In this case, distance represents the error (again

in a probabilistic sense) of concept c with respect to target concept c •. More formally, we

define the error rate of a concept c (with respect to the distribution D and the target

concept c.) to be dv(c, c.). Thus, the error rate of a concept c measures the probability

associated with the symmetric difference of c. and c. We remark that potentially the

6

symmetric difference of the target concept and c can be a very large set and yet the error

rate dD(c, c.) can be very sma.11, provided that there is little or no probability associated

with the symmetric difference of c. and c.

Under some probability distributions, it is in fact possible that the symmetric difference

of two concepts c and d is non-empty, and yet has zero probability. In other words, although

the two concepts do disagree on some set of points, there is no probability weight on these

points. In this case, although the two concepts are not the same {that is, they do not classify

a.11 points the same), the error rate dD(c,d) equals zero. Thus we note that in general dD

defines only a bounded pseudometric on C, for any probability distribution D. For dD to

be a proper metric, it must be the case that for any incorrect concept c there is a positive

probability dD(c, c') of drawing a random example that demonstrates that c is incorrect.

If we were to consider only those probability distributions such that c =:/= c' implies that

dD(c,c') > 0, then dD would be a bounded metric on C. (In this thesis we do not state the

conditions on measurability that may be required to make our claims go through. See, for

example, Ben-David et al. [6] and Blumer et al. [9] for discussion.)

Often, the hypothesis space of a concept class is uncountably infinite. For instance, the

concept class I has an infinite hypothesis space: there are infinitely many initial segments

[O, a] of [O, 1]. The notion of the VC dimension of a hypothesis space offers a way of

measuring such an infinite space. More specifica.lly, the VC dimension is a combinatorial

parameter of the hypothesis space. Haussler gives a very clear definition of VC dimension

[13]:

"The VC dimension of a hypothesis space H, denoted VCdim(H), is defined

to be the maximum number d of instances that can be labeled as positive and

negative examples in a.11 2d possible ways, such that each labeling is consistent

with some hypothesis in H [10) [19)."

In other words, the VC dimension is equal to the largest number m of points, such that for

each element of the power set of the m points, the following holds: there exists a hypothesis

in the concept class, such that each of the points in this particular element of the power set

is classified as positive, and the remaining points (from the original set of m points) which

are not in this element of the power set are classified as negative. For example, the VC

dimension of the class I is 1.

7

1.3 Pac-learning Definition

The core idea of pac-learning is that a learning algorithm should compute with high prob

ability a hypothesis concept that is accurate to a given error rate. That is, the learner's

goal in the pac-learning model is not to exactly identify the target concept, but rather to

compute a hypothesis concept such that with high probability the hypothesis concept agrees

with the target concept on almost all examples in the sample space. Thus we have Valiant 's

notion of probably approximately correct [13] [18].

In the case of "batch" learning (used in the models of this thesis), the learner first sees

all examples, and then computes the hypothesis concept. In the case of "online" learning,

the learner may recompute a hypothesis concept after each example seen. In either case, it

is not sufficient for an algorithm simply to compute and output a hypothesis consistent or

close to consistent with all examples seen thus far; the learner should have confidence that

with high probability almost all future examples will be classified correctly.

1.3.1 Pac-learning error rate

A pac-learning algorithm is given as part of its input an error parameter £, which specifies

the maximum error rate acceptable (this relates to being approximately correct), and a

confidence parameter b, which specifies the degree of certainty that the hypothesis will

classify all unseen examples to within the specified error rate£ (this relates to being probably

approximately correct).

More formally, let c represent the hypothesis concept computed by a run of a pac-learning

algorithm. To pac-learn successfully, the algorithm, given input parameters£ and b, must,

for all probability distributions D, with probability at least 1 - {J compute a hypothesis c
such that the error rate dv (c.' c) < £:

Pr(dv(c.,c) < £) > 1-b. (1.1)

In Valiant 's original definition, dv (c., c) may be less than or equal to c For the sake of

simplicity, we assume that the error rate must be strictly less than L

We can now define computational complexity in pac-learning.

1.3.2 Pac-learning complexity

Valiant's goal was to encourage computer scientists to study complexity in learning theory

via "precise computational models of the learning phenomenon"[18]. Valiant delineates

8

two components of such learning models, which describe frameworks for learning target

concepts: (1) a protocol for receiving information about the target concept, and {2) an

algorithm for computing a hypothesis concept based on this information.

We define sample complexity to be the number of examples the learner needs to see

to compute a hypothesis concept. Then complexity in learning theory, as proposed by

Valiant, is measured as a function both of sample complexity {related to {1) above), and of

computational, or time, complexity, that is, how much computing a learning algorithm must

do to output a good hypothesis concept (related to {2) above). The goal in pac-learning is

to use only polynomial sample and time complexity to learn a target concept. This thesis

focuses in particular on issues related to sample complexity.

For a pac-lea.rning algorithm to have polynomial sample complexity, it must have sample

complexity polynomial in 1/£, 1/6 and the length of the input. For a pac-learning algorithm

to have polynomial time complexity, it must take time polynomial in the number of examples

received to compute a good hypothesis.

In sum, in order for a pac-learning algorithm to be computationally efficient as defined

by the pac-learning model, two conditions need to hold:

1. The number of examples obtained, that is, the sample complexity, should be polyno

mial in 1/£, 1/6, and the length of the input.

2. The time taken by the algorithm to compute a. good hypothesis, that is, the compu

tational complexity, should be polynomial in the number of examples received.

Henceforth, when we refer to pac-learning, we will be referring to computationally effi

cient pac-learning, unless otherwise noted.

We make an assumption that f. is sufficiently small. It is always true that

1/f. ~ -1/ln(l - f.).

For f. < .39841, however, it is also true that

1/(4£) ~ -1/ ln{l - 2£).

We thus assume f. is less than .39841; this assumption allows us to express our non

asymptotic lower bounds in the more standard form as a function of 1/£. For instance,

in Theorem 2 we substitute the weaker lower bound m > (1/4£)ln(l/6) for the stronger

m > (-1/ln(l - 2£))1n(l/6), where mis the number of examples obtained.

9

1.3.3 Protocols for obtaining examples

Given the pac-learning model, there a.re numerous ways in which the learner can obtain

information about the target concept.

In the most traditional form of pac-lea.rning (used, for example, by Blumer et al. [8]

and Valiant [18]), the protocol for receiving information is for the learner to draw random

examples according to a ~ed but unknown probability distribution on the sample space.

(By unknown probability distribution, we mean unknown to the learner.) When the learner

requests a sample point, the learner receives ha.ck an example drawn according to this

unknown probability distribution. The example is labeled as either a positive or negative

example of the concept. Any probability distribution on the sample space is possible. Since

the complexity bounds must hold no matter what the unknown probability distribution is,

this type of learning is also called distribution-free learning.

A second protocol is to obtain information through queries. A model in which the

learner asks for information is called learning using queries. Although touched upon by

Valiant [18], learning using queries was left largely unnoticed until Angluin published Type.s

of Queries For Concept Leaming [1] in 1986. In her paper, Angluin defines a wide variety

of protocols for receiving information about the target concept. The protocols all have in

common the fact that they allow the learner more control over what examples are seen. For

instance, the learner can choose a particular example and ask whether it is in the target

concept; this is called making a membership query. In general, the goal in learning by query,

in contrast to pac-learning, is to achieve exact learning, that is, to find the exact target

concept.

This thesis looks at models in which information is obtained by both drawing and choos

ing examples.

1.4 New Definitions

1.4.1 Dense-in-itself concept classes

We are interested in the sample complexity necessary to pac-learn what we call a dense-in

itself concept class C.

Definition 1 A concept class C is called dense in itself if for all concepts c E C, for all

/ > 0, and for all finite measures µ on X, there is another concept c' E C (that is, c' I- c)

such that µ(c ED c') < /.

10

A measure is similar to a probability distribution, in that it assigns weight to a sample

space. However, in a probability distribution all the weight must sum to 1; in a finite

measure, the weight can sum to any finite value.

The existence of dense-in-itself concept classes is easily proved using techniques by Ben

David, Benadek, and Mansour in A Parametrization Scheme For Classifying Models of

Learnability [7). They first define a notion CovD(A, B), such that one set of concepts A

covers another set of concepts B with respect to a given probability distribution D, if for

every£ > 0 and b E B, there exists an element a E A such that dD(a,b) < £. That is,

for every b E B, we can always find an a E A such that the probability of the symmetric

difference of a and bis less than £. Note that as they define it, a and b may be the same

concept.

We modify their definition to handle the case when A and B are the same concept class.

In particular, we adapt their notation, and say that a set C is dense in itself if Cov~D(C, C),

where Cov~D(C,C) means that for every£> 0 and c EC, there exists an element c' EC,

c =I c', such that dD(c, c') < £. Observe here the extra specification that the two concepts c

and c' cannot be the same. In sum, to make the analogy from their definition of CoVvD(A, B)

to our definition Cov~D(C, C) of dense-in-itself, we add two conditions: the concept classes

A and B must be the same, and the two concepts a and b must be different.

Ben-David et al. also define the notion Cov5 (A, B). By definition, Cov5 (A, B) holds if

"for every b E B there exists a sequence {ai : i E N) of elements of A such that limi 00 ai =
b" [7). That is, for every point :z:, there are only a finite number of concepts in the infinite

ai sequence that disagree with b on their classification of :z:. Observe that the notion

Govs(A, B) depends solely on the nature of the sets A and B and is independent of any

probability distribution.

We define an analogous notion CovHC, C), similar to Cov5 (A, B), except again for the

two conditions that the concept classes A and B must be the same, and that each of the

concepts a, must differ from b.

The notion Gov~(C, C) applies to the concept classes that we consider. For instance,

for the concept class of rectangles in the plane, we can think of a series of rectangles, each

one containing the one before it, such that the series of rectangles converge to the last

rectangle in the sequence, which is the target rectangle b. Similarly, we can think of a series

of hyperplanes that are all parallel to and increasingly close to a target hyperplane (where

close is measured by perpendicular distance to the hyperplane).

Ben-David et al. prove that Cov5 (A, B) implies COVvD(A, B). Their proof, essentially

without modifications, also shows that Cov~(C,C) implies Co~D(C,C). Thus since the

11

concept classes we consider have the property Cotls(C,C), the concept classes we con

sider have the property Cov~D(C, C). Recalling that if a concept class has the property

Co~ D (C, C), then the class is dense in itself, we have that the concept classes we consider

are dense in themselves. Some examples of concept classes that are dense in themselves are

half-spaces in n-dimensional space, rectangles in the plane, and the concept class I.

Recall that, by definition, a dense-in-itself concept class is guaranteed to contain, for

any finite measure µ and concept c, a concept c' E C, c :/; c', such that the measure µ of the

symmetric difference of c and c' is arbitrarily small. Now the probability measure error rate,

which is defined in Section 1.1, is a valid candidate for measure µ above, since error rate

is a finite measure. Thus, substituting in the above definition error rate for µ and target

concept c. for c, we have: for any given dense-in-itself concept class C and arbitrary target

concept c., we are guaranteed that there exists a concept c' with error rate (dD(c., c')) of

arbitrarily small size. For example, if we are given a target concept c. and wish to ensure

that the error rate of c. and some other concept is less than 10-5 , a dense-in-itself concept

class guarantees us that there exists a concept c' such that (dD(c.,c') < 10-6
).

The following lemma provides a key property of a dense-in-itself concept class.

Lemma 1 For every algorithm A that pac-leams a dense-in-itself concept class C usmg

random examples and membership queries, and every f., 6, target concept c. in C, f3 > O,

and probability distribution D, there exists a concept c in C - { c.}, such that

Pr(A(f., 6) sees examples in c. $ c) < f3 •

Proof: Let S = c. $ c. Assume A runs under probability distribution D. We prove the

lemma using Definition 1. Our strategy is to show that the probability measure

Pr(A(€,6) sees examples inc.$ c)

is bounded above by the measure of the expected number of points that algorithm A(f., 6)

sees in S. Then, since by definition of dense in itself we can make the measure of the

expected number of points that algorithm A(f., 6) sees in S as small as we like, it follows

that we can make Pr(A(f., 6) sees examples in c. $ c) as small as we like too.

We define µ(S) to be the expected number of points that algorithm A(f., 6) sees in S:

µ(S) = E(number of points A(£, 6) sees in S) . (1.2)

Then µ is a measure defined on X. Let Pi equal the probability that A(£, c) sees i examples

in S. Then
00

Pr(A(£, c) sees any examples in S) = L: Pi
i=l

12

00

< L:iP;
i=l

= µ(S).

Since by the definition of dense in itself we can find a concept c that allows us to make

µ(S) as small as we like (where S varies according to which c is chosen), the lemma follows.

I

1.4.2 Smooth probability distributions

In the original definition of the pac-learning model, all probability distributions are possi

ble. One can speculate that the fact that learning must be done under such a model drives

up sample complexity. For instance, the fact that the fixed but unknown probability dis

tribution could be extremely skewed may force the algorithm to obtain far more examples

than it might have to obtain if it had some information ahead of time about the probability

distribution.

We therefore consider whether having some advance knowledge about the nature of the

probability distribution might, in fact, lower the number of samples the algorithm needs to

obtain. Thus we look at the sample complexity necessary to pac-learn a concept class C

under a smooth probability distribution.

Definition 2 A probability distribution defined on Rn is called smooth if there exists an

s ~ 0, such that for all a ~ O, the probability associated with a region of volume a is ::; sa.

In other words, for every smooth probability distribution, there is an upper bound on

the amount of probability that can be associated with any region, and this upper bound is

in direct proportion to the size of the region. For instance, for the concept class I, the value

sa is an upper bound on the probability of a region of length a. Similarly, in n-dimensional

space, the value sa is an upper bound on the probability of a region of volume a. Observe

that under a smooth probability assumption, certain highly irregular distributions are not

possible. For instance, there is a limit to how much probability weight can be found in a

very small region, and there can be no probability weight assigned to a point.

1.5 Pac-learning Background

Some pac-learning history will help the reader view our results in light of past work.

We recall that pac-learning imposes two complexity requirements: (1) the sample com

plexity, which is the number of samples drawn, must be polynomial in the length of an

13

input instance and in the inverse of the error and confidence parameters, and (2) the com

putational complexity, which is the computational time to find a good hypothesis {with

good defined using the £ and 6 parameters), must be polynomial in the number of examples

received.

The first classes shown to be pac-learnable under the distribution-free model were all

classes of Boolean functions (18]. These classes-such as k-DNF and k-CNF-all have finite

sample space, for example, {O, l}n. In 1986, Blumer et al. extended the notion of what

classes could be learned under the distribution-free pac-learning model to include classes

in Euclidean n-dimensional space, such as half-spaces and hypercubes (8]. Significantly,

concept classes in Euclidean n-dimensional space, in contrast to classes of Boolean functions,

have uncountably infinite sample space: the sample space is Rn. (Observe, however, that a

representation of the concept, for instance, a defining hyperplane, can be specified finitely

with a finite number of real-valued parameters.) Blumer et al. gave upper and lower

polynomial bounds on sample complexity for these classes, and described polynomial-time

algorithms to learn certain Euclidean n-dimensional classes [8].

In fact, a wide variety of concept classes have been shown to be learnable with both

polynomial sample and time complexity. Examples of such classes include monomials over

n Boolean variables [18], and, for constant k, k-DNF [18], k-CNF [18], and k-decision-lists

[15] [17].

To a large extent, however, the time and sample complexity requirements are separable.

In 1986 Blumer et al. [8] showed that a concept class has polynomial sample complexity if

the VC dimension of the family of the concept class grows polynomially, and that if the VC

dimension of a family of concept classes grows faster than polynomially, then the concept

class is not pac-learnable (8].

There have also been significant results in the area of computational complexity. Two

of the results mentioned here are based on differing definitions of the pac-learning model:

one in which the hypothesis concept must come from the same concept class as the target

concept, and one in which the hypothesis concept may come from a different class than the

target concept.

In 1986, Pitt and Valiant [16] showed that given a pac-learning model in which the

output hypothesis concept must come from the same concept class as the target concept,

the computational complexity to pac-learn certain concept classes is not polynomial. They

proved that if finding a consistent hypothesis from the same class as the target concept

class is NP-hard, then the given concept class is not pac-learnable unless RP= NP. For

instance, they showed that since finding a consistent 2-term DNF hypothesis for the 2-term

14

DNF concept class is NP-hard, 2-term DNF is not pac-learnable, assuming RP f NP.

Kearns and Valiant proved computational complexity results for the pac-learning model

in which the hypothesis concept may come from a different concept class than the target

concept. They showed that even if the output hypothesis can come from a class outside

the target concept class, the computational complexity to pac-learn certain concept classes

is not polynomial. This result depends on certain complexity-theoretic cryptographic as

sumptions. Thus Kearns and Valiant showed that certain classes have polynomial sample

complexity but not polynomial time complexity. Examples of such classes are Boolean

formulas and finite automata [14].

Even when a class is pac-learnable, however, the traditional distribution-free model

of pac-learning places certain restrictions on the ways in which a learner can learn, and

these restrictions potentially drive up the sample complexity. For instance, the learner is

restricted to receiving examples at random according to a fixed but unknown probability

distribution: the learner has no choice over the particular examples seen. Additionally, the

upper bounds for sample complexity must hold no matter what probability distribution the

examples are drawn under: the bounds are worst case and so must hold even for extremely

unusual distributions. These limitations in the traditional pac-learning model have caused

researchers to look at ways of varying the model.

One of the principle means of varying the model is to allow the learner to ask queries, or

questions, of various sorts. Angluin and others have shown that numerous concept classes

that are not pac-learnable using the traditional model of drawing examples can be exactly

learned in polynomial time under various query models. An example of such a class is the

class of regular languages [1] [2]. Examples of classes that the membership-query model

in particular can be used to learn are monotone DNF, monotone CNF [3] [18], read-once

Boolean formulas [4], and the union of two half-spaces[5]. In sum, the extra power inherent

in the query model has proven sufficient to learn classes that are not pac-learnable under

the random example model.

1.6 The Results of this Thesis

This thesis examines two variations on the standard distribution-free model.

The first way we vary the model is to allow the learner to choose examples as well as

draw random examples. Here, we combine the traditional pac-learning protocol of drawing

random examples with the membership-query protocol of choosing examples to propose new

models for learning using queries.

15

The second way we vary the model is to give the learner some advance knowledge about

the probability distribution. We propose a model in which the learner knows a priori that

the probability distribution is smooth. Since a smooth probability distribution is one that

guarantees a specified upper bound on the amount of probability that can be associated

with any region, certain distributions, such as extremely skewed distributions, are ruled

out.

There are two key ways our new models differ from other query models. First, research

on learning using queries has focused on learning classes that do not have polynomial com

putational complexity, and so are too hard to learn under the pac-model. This thesis looks

at classes already known to be pac-learnable, and so which are already known to have

polynomial sample complexity. The issue addressed then is not whether the given concept

class has polynomial sample complexity, but rather whether using membership queries in

conjunction with random examples can reduce the sample complexity of the concept class.

Second, most research on query models has focused on exactly identifying target concepts

from classes with finite sample space. This thesis, however, looks at pac-learning classes

which may have uncountably infinite sample space. So whereas membership queries are

traditionally used to help exactly identify a concept from a finite class of concepts, we ask

whether membership queries can help pac-learn (that is, approximately rather than exactly

learn) a potentially infinite, even uncountable, concept class.

In Chapter 2, we show that under the distribution-free pac-learning model, the power to

both choose and draw random examples cannot significantly reduce sample complexity. In

contrast, in Chapter 3, we show that under a model in which the learner has some limited

information about the nature of the probability distribution, the power to both choose and

draw examples does lead to a significant reduction in sample complexity. In Chapter 4, we

state conclusions and open problems.

One of our main results thus is that for traditional pac-learning models, membership

queries do not help: the sample size required to pac-learn a dense-in-itself concept class if

the learner can both choose and draw examples is within a constant factor of the sample size

needed if the learner can just draw examples. Significantly, this lower bound is established

for all probability distributions (as long as the probability distribution is unknown to the

learner), not just for one worst-case probability distribution. On the other hand, we get

significant results in favor of membership queries if the learner knows a priori that the

probability distribution is smooth: if the learner can only draw examples, then the lower

bound on sample complexity for pac-learning many concept classes does not improve, but

if the learner can both choose and draw examples, then the sample and computational

16

1i!

Chapter 2

A Lower Bound When Both Drawing and
Choosing Examples

Up until now, when we have referred to pac-learning, we have meant the traditional model

of pac-learning, in which the protocol for obtaining information about the sample space is

to draw random examples. Henceforth, we consider any number of protocols to be viable

ways of obtaining examples when pac-learning. In particular, we consider protocols that use

random examples alone, membership queries alone, or a combination of both. We always

specify the protocol being used.

2.1 A Lower Bound

Theorem 1 gives a lower bound on the number of examples required to pac-learn a dense

in-itself concept class C by any algorithm that can both draw random examples and make

membership queries.

Theorem 1 For every algorithm A that pac-learns a dense-in-itself concept class C using

random examples and membership queries, and for every f, 8 > 0, probability distribution

D, and target concept c* E C, the total number of examples A needs to pac-learn C is

n((l/f)ln(l/8)).

Note that A may be either randomized or deterministic, and it may draw examples

and make membership queries in any order. The bound is on the worst-case number of

examples seen, where the worst case is taken over the runs of the algorithm for the given

target concept, probability distribution, f, and 8. We assume in our asymptotic notation

that f, 8, and /3 (to be defined shortly) are going to zero in the limit.

Proof: We begin by assuming that a pac-learning algorithm A, an f, a 8, a probability

distribution D, and a target concept c* have been given. We claim that we, as adversary,

can produce a probability distribution D' and a concept c: that are close enough to D and

18

c., respectively, that if A does not draw n((l/E)ln(l/8)) random examples to distinguish

these cases, then Pr(dn,(c:,c) ?.".: E) > 8, so that A is not a pac-learning algorithm.

Let (3 be an arbitrarily small positive number, and let c: be a concept different than c.

such that

Pr(A sees examples in c. EB c: I A draws according to D) < (3 .

The existence of c: is guaranteed by Lemma 1. Then

Pr(A sees no examples in c. EB c: I A draws according to D) ?.".: 1 - (3 .

Nate that if A sees no examples in c. EB c:, then A cannot distinguish between target concept

c. and target concept c:.

We now choose any point w in c. EB c:. Define the probability distribution D.,, to be the

distribution that assigns probability 1 to point w and probability 0 to all other points.

Given probability distributions D and Dw, we make a new probability distribution D' as

follows. We "skim" f probability off of D, while keeping the relative distribution of points

in D the same. That is, we uniformly remove f probability from the probability distribution

D such that the relative weight of points under D remains the same, but the total weight

of points in D now adds up to 1 - f. We assign the excess f probability to w. Thus our

new probability distribution D' is a linear combination of probability distribution D and

probability distribution Dw:

D' = (1 - E)D + EDw .

From now on, we suppose that algorithm A is drawing its random examples according

to D'. When drawing an example according to D', there are two possibilities: either the

example is drawn "as if according to D" (this happens with probability 1-E), or the example

is drawn "as if according to Dw" (this happens with probability E). In general, we say that

"A draws as if according to D" if A draws all of its random examples as if according to D.

Suppose that we run algorithm A on distribution D' and target concept c., that A

draws all of its examples as if according to distribution D, and that A sees no examples

in c. EB c:. By definition, a pac-learning algorithm with high probability correctly classifies

any point with weight for greater. Because A is a pac-learning algorithm and w has weight

E, A's output hypothesis c classifies w correctly with high probability. Thus c with high

probability agrees with c.(w), and so disagrees with c:(w).

We note that, on the one hand, c: is consistent with target concept c. on all examples

algorithm A sees with probability at least 1 - (3, yet, on the other hand, c~ disagrees with

19

c. on the classification of w. Since A is a pac-learning algorithm, therefore, when A now

tries to learn c: instead of c. on distribution D', we have that its output concept c satisfies

Pr(c(w) =f= c:(w) I A draws as if according to D) 2: (1 - b - {3), (2.1)

since we are assuming that A pac-learns c. on D correctly, and with probability 1 - {3 the

run looks the same as it would if c. were the target concept. Observe that if A runs under

probability distribution D', then saying c(w) =f= c~(w) is equivalent to saying dv,(c,c:) 2: t.

Let m = m(E, b) denote the maximum possible total number of examples drawn and/or

chosen by any run of A on inputs E and b, and any probability distribution and any target

concept. Since random examples are independent events, if all m examples obtained are

random examples, then

Pr(A draws as if according to D) = (1 - Er
If less than m examples are random examples, then

Pr(A draws as if according to D) > (1 - Er
Assume that m is so small that it satisfies

then
b

Pr(A draws as if according to D) > ----
(1 - b - {3)

We show that this assumption implies that A does not pac-learn.

Assume that in a given run A receives information about m sample points, by random

example according to probability distribution D', by membership query, or by both. What

then is the probability that during a run of A (on input distribution D', with target concept

c:) the following events both happen?

E = A mis classifies w (and so makes error at least E).

F = A draws all its random examples as if according to D.

Now,

Pr(EF) = Pr(E I F) Pr(F) .

Thus, since (by (2.1))

Pr(E I F) = Pr(A misclassifies w I A draws as if according to D) 2: 1 - b - {3 ,

20

and

we have

6
Pr(F) = Pr(A draws as if according to D);?:: (1- fr >

1
_ 6 _ /3 ,

6
Pr(EF) > (1 - 6 - ,8) · l - 6 _,a = 6 ·

Since Pr(E) ;?:: Pr(E F) > 6, we have Pr(do• (C.,, c) ;?:: f) > 6, and therefore A has not

pac-learned.

Solving form in (1- fr > 6/(1- 6 - ,8), we have

mln(l - f) > 1n(6) - ln(l - 6 - /3),

so

1
m < ln(l _ f) (1n(6) - ln(l - 6 - /3)) ,

-1 1
< ln(l - f) (1n(6) + ln(l - 6 - /3)).

Thus, unless

m;::::

in other words, unless m = 0((1/f)ln(l/6)), Pr(do·(<.,c) > f) > 6, which proves our

theorem.

I

2.2 Comparison of the Lower Bound to Previous Results

We already know from Ehrenfeucht et al. (12] that for f < 1/2, an algorithm that can only

draw random examples must see at lea.st

O (! ln ! + VCdim(C))
f 6 f

examples to pac-learn, where VCdim(C) is the Vapnik-Chervonenkis dimension of the class

C. Since our bound is within a constant factor of their lower bound (treating VCdim(C)

as a constant as we let f and 6 go to zero), we have shown that the minimum number

of examples needed by an algorithm A that can both draw random examples and make

membership queries is within a constant factor of the minimum number of examples needed

by an algorithm B that can only draw random examples.

21

We rema.rk that, compa.red to the proof given by Ehrenfeucht, Haussler, Kea.rns, a.nd

Valiant [12], our proofha.s the advantage that it applies to every probability distribution (not

just one constructed by the adversa.ry), with the understanding of course that the lea.rning

algorithm has no prior knowledge a.bout the actual probability distribution, and that the

lea.ming algorithm must pa.c-lea.rn for every distribution. It also applies to learning from

both random examples a.nd membership queries (not just learning from random examples).

On the other hand, our proof does not yield a lower bound that grows with the VC dimension

of the concept class C.

22

Chapter 3

Smoothness Guarantees

Until now, we have assumed that any probability distribution was possible. Now suppose

we have a "smoothness guarantee." Specifically, we assume that the learning algorithm has

an additional input, s, and is told that any region of X having volume a, for any a, has

probability at most sa. Can this assumption improve our lower bound? Our first claim

is that if the learning algorithm uses random examples only, then a smoothness guarantee

does not reduce the lower bound on the number of random examples required to pac-learn.

We say (C, D) (where C is a concept class on a domain X and D is a probability

distribution on X) has all error rates if for every target concept c. E C, and for every

nonnegative E < supcEc{dn(c.,c)}, there is a concept c EC such that dn(c.,c) = f. For

instance, if D is smooth, and C is the concept class of half-spaces of Rn, rectangles in the

plane, or I, then (C,D) has all error rates.

3.1 A Lower Bound When Drawing Examples Only

Theorem 2 For every algorithm B that draws random examples to pac-learn C, sufficiently

small E > 0, fJ > 0, and smooth probability distribution D, if (C, D) has all error· rate8 then

the number of example8 B needs to draw is greater than (1/4E) ln(1 / fJ).

Thus, even though an algorithm B has information that D is smooth, if C is a concept

class such that (C,D) has all error rates, B still needs to draw (1/4E)ln(l/fJ) examples to

pac-learn C. Note that while the assumption that a concept class C under distribution D

has all error rates may seem restrictive, as a practical matter it is quite reasonable, given

the assumption of a smooth probability distribution. We leave it as an open problem to see

whether this assumption actually is a restriction.

Proof:

Let c be a concept such that dn (c., c) = 2E. (We have specified in the statement of The

orem 2 that E must be sufficiently small. To be more precise, if E < 1/2(supcEc{dn(c.,c)}),

23

then by the assumption that (C, D) has all error rates, there will always be a concept c with

error rate 2£. Adding this constraint to our earlier constraint in Section 1.3.2 that £ must

be less that .39841, we have£< min(.39841, 1/2(supeeddo(c.,c)})).)

Let S = c. ED c. As before, let c be the hypothesis concept that a run of algorithm B

outputs, and let d., be the concept that we as adversary choose.

We begin by showing that if B sees no points in S, an adversary can force B to have

error rate at least £. We conclude by showing that unless B draws at least (1/4£)1n(l/6)

examples, then with probability greater than 6 the algorithm will see no points in S; in

other words, with probability greater than 6 the algorithm will have error rate at least £.

Given that B sees no points in S, we assume without loss of generality that c is more

likely to agree with c. (in the probabilistic sense) than with c on points in S. Then

Pr(c(x) = c.(x): x ES);?: 1/2,

where the probability is based on the conditional distribution induced on S by distribu

tion D.

In this case, we set c~ to c. (If c is more likely to agree with c, we set c~ to c.; the

reasoning for the rest of the proof remains the same.) Thus

Pr(c(x)-:/: c:(x): x ES);:::: 1/2,

where the probability again is based on the conditional distribution induced on S by distri

bution D.

Since dD is a bounded pseudometric, the triangle inequality holds for dv, giving

(3.1)

Now, by assumption,

(3.2)

By (3.1) and (3.2), we have

(3.3)

Also, by assumption, we have

24

(3.4)

Since we have set c~ to c, (3.4) is equivalent to

(3.5)

Thus, combining (3.3) and (3.5), we obtain

which shows that if B sees no points in S, B has error rate at lea.st £.

The probability that B independently draws m examples and fails to see a point in S,

that is, the probability that B has error rate at lea.st £, is (1 - 2£r. We fa.il to pac-learn

if the probability of error rate at least £ is greater than 6, that is, if (1 - 2£r > 6; given

our assumption that £ < .39841, we thus have that the lower bound on m even with the

smoothness guarantee is (1/4£)ln(l/6). I

3.2 Upper and Lower Bounds When Both Drawing and Choos
ing Examples

So far in this chapter, we have shown that a smoothness guarantee does not significantly

reduce the lower bound on sample complexity if the learning algorithm can only draw

random examples. We now show, on the other hand, that if the learning algorithm can also

make membership queries, then there exists a fast pac-learning algorithm whose sample

and computational complexity upper bounds are well below the lower bounds proved in the

previous section. We first prove this result for a one-dimensional concept class, and then

extend the result to an n-dimensional concept class. (Our generalization to n dimensions is

not completely general; we prove the result only for a specific concept class. It is an open

problem to prove such a result for general bounded n-dimensional domains.)

3.2.1 Using the binary-search approach in one dimension

Theorem 3 There exists an algorithm A that pac-leams I using membership queries, such

that for every £, 6, and smooth probability distribution D with known smoothness constant

s, the number of examples A needs to pac-leam I is lg(s/£). For deterministic algorithms

lg(s / £) is also a lower bound on the sample complexity. Additionally, if we assume unit cost

for each example drawn or chosen, a deterministic algorithm A runs in time 0(lg(s/£)).

25

Note that although under this model the algorithm may both draw and choose examples,

the algorithm we present only chooses examples.

Proof: The proof is based on a "binary search." We call a hypothesis interval an interval

defined by two points, which we call L and R. Here L is the value of the rightmost positive

example seen so far, and R is the value of the leftmost negative example seen so far. Thus

the interval [L, R] represents the points that we don't know how to classify yet; the right

endpoint of c., our target concept, is somewhere within this interval.

In order to guarantee that the probability sa associated with a region of volume a is

less than E, we set up the following equation, which gives us the requisite size for a:

sa < E, or

a < E/s.

So if A has narrowed [L, R] to a size less than E/ s, A is guaranteed that the probability

associated with [L, R] is less than E/ s · s, or E, and therefore can output any c with right

endpoint in [L, R] with total confidence (6 = 0) that the error rate is less than c Algorithm

A can use membership queries to do a binary search on the initial interval [O, 1], in which

case A needs to make only lg(s / E) membership queries in order to narrow [L, R] to a size

less than E/ s. Observe that this upper bound of lg(s/ E) on the sample complexity when

using membership queries is substantially lower than the lower bound of (1/4E) ln(l/6) on

the sample complexity when using random examples only.

To see that lg(s/E) is also a lower bound on the sample complexity for deterministic

algorithms, consider an adversarial argument. An adversary can always label the requested

examples so that after the algorithm makes lg(s/2E) queries, an interval [L, R] of size 2E/ s

remains. At this point, the adversary can always force the algorithm to output a hypothesis

with error rate at least c For instance, even if the algorithm outputs the concept represented

by the midpoint of the interval, the adversary can choose the concept represented by L.

Then, because the interval between L and the midpoint has length E/ s, in the worst case

the hypothesis will have error rates· E/s = E. Since lg(s/2E) = lg(s/E) - 1, we have that

greater than lg(s / E) - 1 queries are needed to ensure that in all cases the error is less than

E; thus, at least lg(s / f) queries are necessary.

If we assume it takes constant time for each membership query, then we also achieve the

tight bound of 0(lg(s/E)) on the computational complexity for deterministic algorithms.

I

26

3.2.2 Generalizing the binary-search approach to n dimensions

So far, we have given an algorithm which pac-learns the one-dimensional class I under

the assumption of a smooth probability distribution. In short, such an algorithm pac-learns

"half-spaces" of a one-dimensional line segment. We would also like to show how to pac-learn

an analogous n-dimensional class. That is, we would like to pac-learn the set of half-spaces

of an n-dimensional object, where the n-dimensional object is a logical generalization of the

one-dimensional line segment.

There are a number of objects that come to mind as logical generalizations of the one

dimensional line segment. Two such generalizations are the hypercube and the hypersphere.

But perhaps the simplest generalization of a one-dimensional segment is the simplex. We

will generalize the binary-search approach of the above section to learn half-spaces of a

simplex.

A simplex is a finite region of n-space enclosed by n + 1 hyperplanes, where each hy

perplane has dimension n - 1. Importantly, a simplex has only n + 1 corner points, n + 1

faces, and (n~ 1) edges. Each corner point is connected to each other corner point by an

edge. For instance, a simplex in one dimension is a line, which is enclosed by two points

(a point has dimension zero). A simplex in two dimensions is a triangle, which is enclosed

by three lines. A simplex in three dimensions is a tetrahedron, which is enclosed by four

planes, and so on [11]. A regular simplex is one in which each edge has the same length.

A simplex thus has certain properties that make it easier to use as the generalization of

a line segment than a hypercube or a hypersphere. For instance, observe that the number of

faces, corner points, and edges of a simplex is linear in the dimension. This contrasts sharply

with a hypercube, for example, in which the number of edges and corner points is exponential

in the dimension. Our algorithm capitalizes-in fact, depends-on these properties of the

simplex. We leave it as an open problem to pac-learn the set of hyperplanes which intersect

a hypercube or a hypersphere.

Let n represent the dimension of the concept class.

Theorem 4 Let S be the class of hyperplanes which intersect a regular simplex. There

exists an algorithm A that pac-learns S using membership queries, such that for every f, b,

and smooth probability distribution D with known smoothness constant s, the number of

examples A needs to pac-learn S is n 2 (1g(s/ f) + 4). Additionally, if we assume unit cost for

each example drawn or chosen, A runs in time 0 (n 7 s / E).

Proof:

27

We consider a regular simplex in which each edge has length 1, and we assume that the

coordinates of the simplex comers are given to the learning algorithm. The domain X of

S consists of exactly those points on the boundary of the simplex and within the simplex.

Given a target hyperplane that intersects a simplex, we consider the target hyperplane and

all domain points on one side of the hyperplane to be positive examples of the concept,

and all domain points on the other side of the hyperplane to be negative examples of the

concept. Thus concept class Sis represented by the set of hyperplanes of n - 1-dimensions

that intersect the given simplex of n dimensions.

We begin our analysis by giving the formulas for computing the height and volume of a

regular simplex whose edges have length 1.

The recurrence formula for the height of such an n-dimensional simplex is:

This evaluates to

Hn = V(n + 1)/2n.

The volume Vn of an n-dimensional simplex of edge-length 1 is equal to the base of the

simplex (Bn) times the height of the simplex (Hn) divided by the dimension n:

Since the base Bn of an n-dimensional simplex is equal to the volume Vn-1 of the

corresponding n - 1-dimensional simplex, the recurrence formula for Vn is:

This evaluates to

The surface area Sn of an n-dimensional simplex is equal to the number of faces of an

n-dimensional simplex (n + 1) times the volume of an n - 1-dimensional simplex (Vn-1):

Sn= (n + 1) · Vn-1

28

= (n + 1) · Jn/2n- 1 /(n - 1)!.

For any target hyperplane which cuts the simplex, the learning algorithm A should

output a hypothesis hyperplane such that the error rate of the hypothesis is less than f.

Consider first the classification of each of the simplex corner points. In the trivial case

where all n + 1 corner points are labeled positive, all points inside the simplex are also

positive. In this case any hypothesis which classifies all simplex points as positive suffices.

(Similarly if all n + 1 corner points are labeled negative.) Otherwise, there is at least one

positive corner point and one negative corner point.

Let k be the total number of positive corner points, and let l be the total number of

negative corner points. Then k + l = n + 1 = the total number of corner points. Since each

corner point is connected to each other corner point, the total number of "mixed" edges,

that is, edges such that one endpoint is positive and one is negative, is kl.

The separating target hyperplane must cut each of these kl mixed edges. In fact, the

set of simplex edges that the target hyperplane cuts is precisely this set of kl mixed edges.

(All other edges have both endpoints positive or both endpoints negative, and clearly the

separating hyperplane cannot cut these edges.)

By definition, the length of each edge of the simplex is 1. We wish to find a much smaller

interval, which we call a cut-interval, on each mixed edge. A cut-interval is a sub-interval of

a mixed edge that still retains the property that one endpoint is positive and one endpoint is

negative. Since a mixed edge is one dimensional, we can apply the binary-search techniques

of the previous section to find a cut-interval of a specified size on the mixed edge.

Note we only need n points to determine an n - I-dimensional hyperplane. By doing a

binary search along each of the kl mixed edges, we find kl cut-intervals (rather than points).

Since kl is always at least n, these kl cut-intervals define a constrained n-dimensional region

within which the hyperplane must lie. (By definition of a simplex, and the fact that each

of the kl cut-intervals comes from a different edge of the simplex, we are guaranteed that

the kl regions will indeed define an n-dimensional region.)

The overall strategy of the algorithm, then, is to find a cut-interval of a predetermined

size, which we call width, on each of the kl mixed edges, and then output any hypothesis

consistent with each of the cut-interval constraints.

We present the algorithm, give a derivation for the value of the key variable width,

prove the correctness of the algorithm, and finally give the sample complexity (number

29

Figure 3.1: Simplex with pancake region within the dashed lines; w =width.

of membership queries needed) and computational complexity (time to find a hypothesis

consistent with the constraints) analysis.

3.2.2.1 The algorithm

The algorithm begins by making n + 1 membership queries to obtain the classification of

each corner point.

For each of the resulting kl mixed edges, the algorithm does a binary search using

membership queries to find a cut-interval of size width (width is precisely defined shortly).

Since the length of each simplex edge is 1, the maximum number of queries necessary to do

each binary search is lg(l/width).

Each of the two endpoints of each cut-interval determines a constraint on where the

target hyperplane can lie, so there are 2kl constraints tota.1. Any hypothesis consistent with

the constraints is output.

3.2.2.2 Derivation of width

In order to analyze the sample and computational complexity, we need to determine the

size of width necessary to achieve an error rate less than £.

We form a "pancake" as follows: consider the n - 1-dimensiona.1 target hyperplane and

a one-dimensional line perpendicular to this hyperplane. If we move the target hyperplane

a.long the perpendicular a distance of width in each of the two directions away from the

target hyperplane, then we trace out a pancake-like region with total width 2 · width. (See

Figure 3.1.)

We claim that the only points on which the target hyperplane and any hypothesis

consistent with a.11 kl constraints can disagree must lie in this n-dimensiona.l pancake that

30

encloses the target hyperplane. We thus wish to choose a value of width so that the entire

pancake has total probability less than f..

The volume of our pancake is clearly less than or equal to the width of the pancake times

the volume of the maximum cross section of the pancake. The volume of the maximum

cross section of the pancake in turn is less than or equal to the volume of the maximum

cross section of the simplex, which in turn is less than or equal to the surface area Sn of the

simplex. (We conjectured that the maximum cross section of a. simplex is at most equal to

the surface area of a. single face of the simplex, but could not prove this conjecture.) Thus

the volume of the pancake must be less than or equal to the width of the pancake, which is

2 ·width, times the surface area. of the simplex, which is Sn.

We wish that the total volume of the pancake should have probability weight less than

€. So given smoothness constant s, it is necessary to have

s · (2 ·width· Sn) < f..

This is equivalent to

s · 2 ·width· (n + 1) · Vn-1 < f.,

and to

s · 2 ·width· (n + 1) · Jn/2n-1/(n - 1)! < f.,

yielding (with rearrangements of terms)

width< €/s · 1/2 · (J2n-l/n · (n - 1)!/(n + 1)).

(3.6)

(3.7)

Any value of width which satisfies (3. 7) will also satisfy (3.6), and any value of width

which satisfies (3.6) will ensure that the total volume of the pancake has probability weight

less than f.. So we choose width equal to one half the right-hand side of (3. 7) -

width= 1/2(€/s · 1/2 · (V2"- 1/n · (n -1)!/(n + 1))

= f./s · 1/4 · (J2n-l/n · (n - 1)!/(n + 1)).

- and then analyze the resulting number of membership queries required given this choice

of width.

The number of membership queries necessary to narrow a cut-interval to size width is

lg(l/width). Here, we have

lg(l/width) = lg(s/€) + lg4 +lg(Jn/2"- 1 • (n + 1)/(n - 1)!).

31

Since

lg(Jn/2"-1 • (n + 1)/(n - 1)!) < 1.6

for all n, (and in fact is less than 0 for n > 3), and

lg4 = 2,

we have that lg(s/€) + 4 is an upper bound on lg(l/width):

lg(l/width) < lg(s/£) + 4

So the number of membership queries necessary on each mixed edge is at most lg(s/£)+4.

Thus, we must do a binary search making at most lg(s/£) + 4 membership queries on each

of the kl mixed edges. Since kl $ n2 (1 $ k $ n, 1 $ l $ n, thus kl $ n2
), the total sample

complexity is at most n2(lg(s/£) + 4).

3.2.2.3 Correctness of the algorithm

We claim that the maximum error rate of any hypothesis hyperplane consistent with the 2kl

constraints is less than £. We prove this by showing that all the points on which the target

and hypothesis hyperplanes disagree-that is, the symmetric difference of the target and

hypothesis concepts-must lie in the n-dimensional pancake region of width 2 · width that

surrounds the target hyperplane. Since this pancake region has total probability weight less

than £, the error rate of any consistent hypothesis must be less than £.

We first show that each cut-interval endpoint lies within the pancake region, and then

show that all points in the symmetric difference of the target and hypothesis concepts lie

within the pancake.

The total length of each cut-interval is width. This implies that the projection of each

cut-interval endpoint onto the line perpendicular to the target hyperplane must also have

distance to the target hyperplane less than or equal to width. Since the pancake is created by

moving width along the p~rpendicular to the target hyperplane in each of the two directions

away from the target hyperplane, ea.ch endpoint thus must lie within the pancake.

We now establish that any point (not just the endpoints) on which the target and

hypothesis concepts disagree lies within the specified pancake region.

Consider the convex hull created by connecting the 2kl cut-interval endpoints. (We

remark that not all of the e;') edges formed by connecting endpoints define the convex

hull-some of these edges lie inside the convex hull.) The target and hypothesis hyper

planes lie entirely within this convex hull, since each point where the target and hypothesis

32

hyperplanes intersect an edge of the simplex is within a. cut-interval. Thus, any point in the

symmetric difference of the hypothesis and target concepts also lies within the convex hull.

Now we establish that every point within the convex hull lies within the pancake region.

As already stated, the distance from the target hyperplane to the projection of ea.ch of

the 2kl cut-interval endpoints onto the target hyperplane perpendicular must be less than

or equal to width. Since any point within the convex hull is a. convex linear combination of

cut-interval endpoints, we know any point in the convex hull region must also have distance

to the target concept less than or equal to width. But then every point in the convex

hull, which in particular includes all points in the symmetric difference of the target and

hypothesis concepts, must be contained within the pancake region. Thus, since the pancake

has total probability at most £, the hypothesis error rate must be less than £.

3.2.2.4 Complexity of the algorithm

The computational complexity is equal to the time necessary to compute a hypothesis

consistent with the 2kl constraints. We can solve this constraint problem using linear

programming in time polynomial in the number of constraints, 2kl, and the precision of

each constraint, lg(l/width). The worst-case bound for solving the constraint problem

with 2kl constraints and bit precision lg(l/width) requires time 0((2kl)3
·
5

• lg(l/width)).

Since 2kl is O(n2), and lg(l/width) is O(s/£), we can find a hypothesis consistent with all

2kl constraints in time O(n1s/£).

I

hull-some of these edges lie inside the convex hull.) The target and hypothesis hyper

planes lie entirely within this convex hull, since each point where the target and hypothesis

32

- -- ----- ---~-- -- ~----

Chapter 4

Conclusions and Open Problems

We have shown that membership queries do not help us to pac-learn a wide variety of

classes. We have also shown that a priori knowledge of a. smooth probability distribution

does not help us to pac-learn many concept classes, when we are only allowed to draw

random examples. A smooth probability distribution, however, does help us to pac-learn

certain of these classes when we can also make membership queries. In particular, we have

shown a significantly reduced upper bound on the number of samples needed to learn I,

which is a concept class in one dimension, and S, which is a concept class in n dimensions.

We hope to generalize this upper bound to handle many other classes.

The following open problems arise from this research:

1. Improve the lower bound of Theorem 1 to depend upon VCdim(C).

2. Generalize the n-dimensional approach of Theorem 3 to handle n - 1-dimensional

hyperplanes intersecting arbitrary bounded convex n-dimensional domains (e.g. hy

perspheres or hypercubes).

3. In regards to solving 2 above, we hypothesize that it is possible to make a reduction

from our problem to the problem solved by Maass and Turan [15] of exactly learning

a target hyperplane in a boolean-valued n-dimensional sample space. In making the

reduction we would capitalize on the fact that we are working with a smooth proba

bility distribution and so simulate a boolean-valued domain in our continuous space.

We would choose a small enough value for the distance between the boolean-valued

points, so that if an algorithm exactly learned the target hyperplane, the error rate

in the continuous space would be less than f.. This reduction is not worked out, but

if correct, would give good bounds on learning half-spaces in n-dimensional space.

34

Chapter 5

Acknowledgments

I first of all thank Ron llivest. He has been a superb and supportive advisor.

I thank Avrim Blum, Mic Grigni, Alex Ishii, Joe Kilian, James Park, Rob Schapire, and

Robert Solovay for their helpful discussions and comments.

I thank Jonathan Amsterdam, Aditi Dhagat, Sally Goldman, Micha.el Kearns, Norman

Margolus, and Rob Schapire for proof-reading my paper and giving me advice on my COLT

talk.

Thanks especially to Tandy Warnow for always being such a nurturing and supportive

friend-teacher, and to Phil Rogaway for always giving me such good advice.

Special thanks to Be Hubbard both for all her help to me personally and for helping to

create and maintain the warm, supportive, thriving theory community.

I also thank all my other wonderful friends not already mentioned above, including:

Wendy Brunzie, Carolyn Cox, Ann Feehan, Shalom Franck, Debra Goldentyer, Deborah

Greif, Agiua Heath, Maya Kopell, Suzanne Lawrence, Mojdeh Mohteshemi, Sharon Port,

Karen Saracik, Mark Schaeffer, Michal Shimshoni, Mona Singh, Julie Sweedler, Margaret

and Mark Tuttle, Debbie Utley, Debra Waller, Jill Werman, Su-Ming Wu, and Guillermo

Zemba.

Most of all, I thank my wonderful parents for all their love and support.

35

Bibliography

[1] Dana Angluin. Types of queries for concept learning. Technical Report

YALEU /DCS/TR-479, Yale University Department of Computer Science, June 1986.

[2] Dana Angluin. Learning regular sets from queries and counterexamples. Information

and Computation, 75:87-106, November 1987.

[3] Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319-342, April

1988.

[4] Dana Angluin, Lisa Hellerstein, and Marek Karpinski. Learning read-once formulas

with queries. Technical report, University of California, Report No. UCB/CSD 89/528,

1989.

[5] Eric B. Baum. On learning a union of half spaces. Journal of Complexity, 6(1):67-101,

March 1990.

[6] Shai Ben-David and Gyora M. Benedek. Measurability constraints on pac learnability.

Technical report, Technion, Haifa, 1991.

[7] Shai Ben-David, Gyora M. Benedek, and Yishay Mansour. A parametrization scheme

for classifying models of learnability. In Proceedings of COLT '89, pages 285-302.

Morgan Kaufmann, 1989.

[8] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth.

Classifying learna.ble geometric concepts with the Vapnik-Chervonenkis dimension. In

Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, pages

273-282, Berkeley, California, May 1986.

[9] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth.

Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4):929-

965, 1989.

36

[10] Thomas M. Cover. Geometrical and statistical properties of systems of linear in

equalities with applications to pattern recognition. IEEE Transactions on Electronic

Computers, EC-14(3):326-334, 1965.

[11] H. S. M. Coxeter. Regular Polytopes. Dover Publications, Inc., New York, second

edition, 1973.

[12] Andrzej Ehrenfeucht, David Haussler, Michael Kearns, and Leslie Valiant. A gen

eral lower bound on the number of examples needed for learning. Information and

Computation, 82(3):247-251, September 1989.

[13] David Haussler. Probably approximately correct learning. Technical Report UCSC

CRL-90-16, University of California Santa Cruz, May 1990.

[14] Michael Kearns and Leslie G. Valiant. Cryptographic limitations on learning boolean

formulae and finite automata. In Proceedings of the Twenty-First Annual ACM Sym

posium on Theory of Computing, pages 433-444, Seattle, Washington, May 1989.

[15] Wolfgang Maass and Gyogy Turin. How fast can a threshold gate learn? In Drastal,

Hanson, and Rivest, editors, Computational Learning Theory and Natural Learning

Systems: Constraints and Prospects. MIT Press. (To appear.).

[16] Leonard Pitt. Recent results in computational learning theory, 1990.

[17] Leonard Pitt and Leslie G. Valiant. Computational limitations on learning from ex

amples. Technical report, Harvard University Aiken Computation Laboratory, July

1986.

[18] Ronald L. Rivest. Lea.ming decision lists. Machine Learning, 2(3):229-246, 1987.

[19] Leslie G. Valiant. A theory of the learnable. Communications of the ACM,

27(11):1134-1142, November 1984.

[20] V. N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag,

New York, 1982.

37

