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Abstract 

The Design and Implementation of a 
Parallel Persistent Object System 

Michael L. Heytens 

Technical Report MIT / LCS / TR-529 
February 1992 

MIT Laboratory for Computer Science 
545 Technology Square 
Cambridge MA 02139 

It is widely recognized that the expressive power of relational database systems is inadequate for 
applications that manipulate complex, non record-oriented data. Much recent research has been 
focused on the design of more expressive database language models that seamlessly integrate 
the data modeling, abstraction, and general computation of full programming languages with 
the features of traditional database systems such as persistence, failure recovery, and security. 
Such additional flexibility gives expressive power to the programmer, but complicates matters 
for the compiler and run-time system in their efforts to implement database programs efficiently. 

In this report we describe AGNA, an experimental persistent object system that we have de
signed and built that utilizes parallelism in a fundamental way to enhance performance. Par
allelism is incorporated into the design of the system at all levels. We begin with an implicitly 
parallel transaction language that includes a full higher-order programming language and the 
"list comprehension," a notation similar to SQL but more general. Transactions are compiled 
into code for a multi-threaded abstract machine called P-RISC, whose central feature is fine 
grain parallelism with data-driven execution. P-RISC code is emulated on each processor of a 
MIMD machine with multiple disks. Coarse grain parallelism is used to distribute computations 
of a transaction over the nodes of a parallel machine, and fine grain parallelism is used within a 
node to overlap useful computation with long-latency operations such as disk I/O and remote 
memory accesses. 

A prototype of AGNA is operational, running on both a network of workstations and an In
tel iPSC/2 Hypercube with thirty-two processors and thirty-two disks. Experimental results 
demonstrate that parallelism is exploited on both uniprocessor and multiprocessor platforms. 
Performance of AGNA approaches that of state of the art relational and object-oriented database 
systems, and relies heavily on compiler optimizations and aggressive pursuit of parallelism. 

Key Words and Phrases: Persistent Objects, Functional Languages, Multi-Threaded, Object
Oriented Databases, Parallel Database Systems. 
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Chapter 1 

Introduction 

Computerized databases are vital components of a vast majority of today's information systems. 

Database systems are now used extensively throughout many organizations to provide a uniform 

and controlled interface to shared, structured information. Example applications that depend 

critically on database systems include automatic banking, payroll systems, and reservation 

systems. 

1.1 Expressivity Goals 

Over the past decade, general-purpose relational database management systems (DBMSs) and 

their associated database manipulation languages have emerged as robust, practical tools. Prior 

to the introduction of relational systems, so-called CODASYL and Hierarchical DBMSs were 

used. In these earlier systems, the programmer had to explicitly navigate through the intricate 

network of records in the database, while paying careful attention to the order in which records 

were visited, the key to achieving good performance. In relational systems, on the other hand, 

the programmer could pose queries in a limited, but high-level, non-procedural language; it 

was the responsibility of the query optimizer, a part of the DBMS, to select efficient navigation 

paths for query execution. Relational and other record-oriented DBMSs are now utilized in a 

wide variety of application systems, and on computers ranging from the largest mainframes to 

the smallest personal machines. 

While relational systems have met the needs of some application systems, the expressive 

power of the relational model is now recognized to be inadequate for applications that manipu

late complex, non record-oriented data. Examples of such applications include those to support 

computer integrated manufacturing, software engineering, and scientific research. Complex ob-
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ject structures common in these areas may be encoded in records of scalar values (the only 

data structures available in relational systems) just as trees may be encoded in Fortran arrays. 

However, this encoding obscures the high-level structure of the data, and must be managed 

entirely by the programmer, thus complicating programming significantly. 

Even if all objects were encoded into records of scalar values, the operators available in 

relational systems for manipulating data provide very limited functionality. For example, one 

cannot express a general tree traversal using SQL, the standard relational query language. 

To gain the necessary computational power, one must embed SQL into a host programming 

language such as C or Ada. Again, this complicates applications programming significantly 

because the programmer must contend with two incompatible sets of data structures (i.e., those 

in the programming language and those in the database), two error-handling mechanisms, two 

sets of control structures, and so on. In Chapter 2, we illustrate the complications that result 

from the limited expressive power of SQL by examining a graph traversal operation. 

In the past few years, much research has focused on the development of more expressive 

database systems, which can be grouped into three broad categories: 

• Extended Relational Systems. These systems begin with a traditional relational 

system, and extend it by adding user-defined procedures, objects, recursion, and other 

features standard in modem programming languages. Examples of this kind of system 

include POSTGRES [73], STARBURST [55], and LDL [25]. 

• Persistent Programming Languages. These systems start with the data modeling, 

abstraction, and control structures of a full programming language, and then add features 

of traditional database systems such as a query language, persistence, failure recovery, 

and security. Many of the languages used are based on object-oriented models, e.g., C++ 

or SmallTalk, thus such systems are commonly referred to as object-oriented databases 

{OODBs). Many research prototypes have been constructed [28, 34, 49, 61, 82], and a 

number of OODBs have appeared on the market recently [37, 45, 53, 62, 64, 80]. 

• Database System Generators. The goal of systems of this kind is not to provide a 

complete general-purpose DBMS, per se, but a rich toolkit that will enable a database 

implementor (an expert systems programmer) to construct quickly a DBMS customized 

to a particular applications area. Examples of this kind of system are EXODUS [21] and 

GENESIS [13]. 

12 



A goal of all three kinds of "third generation" systems (see Figure 1.1) is to increase the 

productivity of applications programmers by providing a richer, more expressive language model 

that allows, for example, the modeling of the structure and behavior of complex, real-world 

objects directly via corresponding objects and procedures in the database. This is in sharp 

contrast with relational database systems, as described previously, where all objects must be 

flattened into records of scalar values, and can then be manipulated only in pre-defined ways. 

1960's - 70's CODASYL/Hierarchical 

t 
1970's - present Relational 

today Extended Object-Oriented Database System 
Relational Generators 

Figure 1.1: Evolution of database management systems. 

1.2 Performance Goals 

When relational databases were first introduced, they did not provide absolute performance 

greater than their historical predecessors, and even today, CODASYL and Hierarchical systems 

often outperform relational DBMSs. Relational databases succeeded in the marketplace because 

they provided competitive performance while supporting a cleaner, higher-level language model 

that enhanced programmer productivity. When FORTRAN was first introduced, it did not 

provide performance better than hand-coded assembly programs. FORTRAN was ultimately 

successful because, as with relational databases, it provided competitive performance and a 

higher-level language. 

Similarly, it is not necessary for third-generation database systems to provide better abso

lute performance than RDBs on relational queries, but only competitive performance. More 

expressive systems can't expect to beat RDBs on such queries, because of the static, regular 

nature of relational data structures, and the small set of operations that they support. This 

allows detailed planning of data layouts in secondary storage, and the construction of efficient 

indexes, all of which are exploited heavily in query optimization. 
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The additional flexibility of third-generation database systems gives expressive power to 

the programmer, but complicates matters for the compiler and run-time system in their efforts 

to implement database programs efficiently. This complication stems directly from the wider 

range of object structures and operations with which these systems must contend. For example, 

optimization of a transitive closure operation over a network of module objects in a software 

engineering system (say, to mark them "out of date") is more challenging than a query in a 

relational system that finds all records in a set with a particular field value. 

1.2.1 Parallelism 

It may be possible for an expressive database system to achieve good performance by exploiting 

parallelism. Broadly speaking, parallelism may be used in two orthogonal ways: 

• Inter-transaction parallelism. Here multiple transactions are executed concurrently 

to increase system throughput, e.g., the number of transactions executed per second. 

Example applications that could benefit from this kind of parallelism are those for bank

ing, reservations systems, and securities exchange. The main research issue in exploiting 

inter-transaction parallelism is minimizing the resource conflicts that arise between trans

actions. For example, special-purpose locking schemes are used to reduce the time that 

locks are held, and data and computation are mapped to the nodes of a parallel machine 

in a way that lessens the likelihood of excessive contention at a given node. 

• Intra-transaction parallelism. Here parallelism is used within a transaction to de

crease its execution time. Example applications that could benefit from this kind of 

parallelism are those for scientific research, national defense, CAD /CAM, and analysis of 

financial data. Major research issues in exploiting intra-transaction parallelism include 

identifying which computations in a transaction can be safely executed in parallel, and 

developing compilation techniques and efficient run-time support (synchronization, com

munication, resource management, etc.) to exploit this parallelism on the target machine. 

Use of inter- and intra-transaction parallelism in database systems is not new. Inter

transaction parallelism is exploited by Tandem NonStop SQL to achieve linear growth of 

throughput from 14 to 208 Debit Credit transactions per second as the hardware is increased 

from 2 to 32 processors [74]. (A Debit Credit transaction is a simple transaction that manipu

lates several records in a database of banking information [1].) Intra-transaction parallelism is 
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exploited by Gamma [33], Tandem [35], and Teradata [75] to achieve roughly linear speedup on 

relational queries that have sufficient parallelism. Relational languages such as S QL are declar

ative and highly parallel, but as described previously, they lack adequate expressive power, 

and thus must be embedded in a host programming language. While this gains the necessary 

expressive power, it limits parallelism in two important ways. First, parallel execution does 

not extend to the non-SQL parts of the program, i.e., those written in the host language. For 

complex applications, this may be a significant part of the program. Second, independent SQL 

statements in the program, even if part of the same transaction, may not execute concurrently. 

This is due to the sequential nature of host languages into which one may embed SQL (Fortran, 

C, Cobol, etc.), and the lack of asynchronous query execution facilities. 

In order to exploit intra-transaction parallelism, the transaction language must be able to 

express parallel computations, either explicitly or implicitly. The explicitly parallel approach 

to programming languages involves extending a sequential language with explicit constructs 

for parallelism, such as a threads package [16, 83] or parallel loops [40]. While this approach 

is popular, it is difficult to express massively parallel programs using these paradigms. For 

example, explicitly specifying fine grain, low-level forms of parallelism such as overlapping disk 

1/0 and communication with computation can be very tedious and error-prone. Also, it is 

difficult to avoid writing programs that contain race conditions, which complicate debugging 

significantly. 

There are two common approaches to programming using implicit parallelism. The first is 

an outgrowth of research on vectorizing compilers [51] and involves sophisticated dependence 

analysis of a sequential program in order to relax the original sequential semantics safely. While 

this approach offers an attractive model to programmers, it does not appear to be feasible 

to extract much parallelism from such programs, particularly in an object-oriented system 

[41, 42, 54]. 

The second approach to implicit parallel programming is to use a high-level declarative 

language such as a logic or functional language. By their very nature, declarative languages 

do not specify a detailed order of execution, leaving the compiler great latitude in choosing 

one. Studies have shown that compilers for declarative languages can effortlessly extract orders 

of magnitude more parallelism than is possible with traditional, sequential languages [3]. This 

approach is very attractive, offering the combined benefits of a high-level language and abundant 

parallelism. 
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1.3 AGNA 

In this report we describe AGNA, an experimental persistent programming language that we 

have designed and implemented to investigate the use of parallelism in an information manage

ment system. AGNA supports a declarative transaction language that includes a full higher

order programming language, objects, a query language that is similar to SQL but more general, 

and single-assignment semantics for update. AGNA transactions are compiled into code for a 

multi-threaded abstract machine called P-RISC ("Parallel RISC"), whose central feature is fine 

grain parallelism with data-driven execution. 

We are targeting AGNA to MIMD machines consisting of processor-memory elements (PMEs) 

interconnected via a high speed network (see Figure 1.2). Each PME contains a processor, some 

local memory, and a disk. After compilation of a transaction on the front-end machine, the 

user may download the compiled code into the back-end machine and execute it via issuing 

to the command interpreter "load" and "run" commands, respectively. P-RISC code is exe

cuted via an emulator program, a single copy of which runs continuously on each PME; all fine 

grain P-RISC threads, possibly from different transactions, may execute in the same emulator 

process. 

A prototype of the AGNA system has been developed on workstations interconnected via 

a local area network. We have also ported our software to an Intel iPSC/2 Hypercube with 

thirty-two processors and thirty-two disks. More detailed descriptions of the AGNA software 

and the two hardware platforms are given in Chapter 5. 

Our focus in the current work has been on exploiting intra-transaction rather than inter

transaction parallelism, because we feel that it is the more challenging and less understood form 

of parallelism. Also, as more expressive database languages become available and database 

systems are used in a wider range of complex applications, decreasing the response time of 

single, large transactions will become increasingly important. While we have focused on intra

transaction parallelism, nothing in the AGNA language, run-time system, or target architecture 

precludes exploitation of inter-transaction parallelism. In fact, the simulations performed by 

Trinder in his thesis work [77] suggest that parallelism can be used effectively in a database 

system and language such as ours to enhance system throughput. 

The expressive power of AGNA 's transaction language is comparable to the expressive power 

of languages used by other third-generation database systems. The transaction language is 
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Front-end Machine 

> load 
> run 

aruwer 
> 

Command Interpreter 

Back-end Machine 

Interconnection 
Network 

• • • 
P-RISC 

Emulator Programs 

P-RISC 
executable 

Figure 1.2: AGNA system structure. 

similar to OODB languages in that it is based on a full programming language, and objects: 

(1) have unique identities independent of their field values; (2) may contain embedded references 

to other objects; and (3) may be shared. Many OODB languages support additional features 

such as methods, inheritance, and automatic versioning of objects. While these features provide 

no new, fundamental expressive power, they do make persistent programming easier. We could 

certainly add these to AGNA, but we have chosen to focus on language semantics and efficient 

parallel implementation, rather than on advanced language features. 

Perhaps the most fundamental difference between AGNA and other third-generation data

base systems is AGNA is based on a language that is inherently parallel, while most of the others 

are based on languages that are largely sequential. In the table shown in Figure 1.3, we have 

categorized third-generation database systems according to the amount of parallelism present 

in the semantics of their underlying languages. 

Sequential. Most OODB systems fall into this category, since the languages on which they 

are based (e.g., C++, Small Talk, Lisp) are tied inextricably to an imperative, sequential model 

of execution. These languages offer attractive models for programmers, but as described previ-
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Sequential 

GemStone [28] 
02 [61] 

Objectivity [62] 
ObjectStore [53] 

Itasca [45] 
other OODBs 

Semi-Parallel 

EXTRA/EXCESS [23] 
FAD [10] 
Iris [82] 

POSTGRES [73] 
Starburst [55] 

Fully Parallel I 

AGNA [60] 
LDL [25] 

Figure 1.3: Parallelism in third-generation database languages. 

ously, it is difficult to extract much parallelism from them. 

Semi-Parallel. Systems in the second column retain much of the declarativeness of the 

relational model and thus are more amenable to parallel implementation. Several of these 

systems [18, 38, 72] (and the parallel relational systems cited earlier) have effectively exploited 

three kinds of coarse-grain, intra-transaction parallelism: 

• Producer-consumer parallelism. The producer and consumers of a stream of data 

may execute concurrently. For example, a join operation that consumes a stream of data 

may overlap execution with the operation producing the data. 

• Independent-operator parallelism. High-level operators which do not have depen

dencies between them may execute in parallel. For example, two selection operations 

which produce the operands of a join may execute concurrently. 

• Intra-operator parallelism. Certain high-level operators may be suitable for parallel 

execution. For example, many parallel algorithms for the relational join operation have 

been developed [12, 33, 50, 68]. 

These forms of parallelism, and the associated run-time model of high-level operators which 

communicate solely via streams of data (which do not contain inter-object references), are most 

effective on simple, data-intensive programs. Such programs are relatively easy to partition 

into high-level operators, and since the total number of operators available is generally small 

(e.g., less than one hundred), it is feasible to hand-code their implementations for maximum 

parallelism. 
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It is difficult to see how the compilation techniques and run-time model used by current 

parallel database systems can be extended easily and applied effectively to more sophisticated 

transactions, i.e., those written in full programming languages, and executed against databases 

containing networks of complex objects. Two difficulties are apparent. First, sophisticated 

transactions may utilize thousands of small operators or database procedures, thus it becomes 

less feasible to hand-code each procedure for maximum parallelism. Second, the run-time model 

must be generalized to include a persistent heap structure to support inter-object references; 

this is a significant, fundamental change to the storage model. 

Another important issue is the amount of parallelism that can be extracted from these "semi

parallel" languages. While the three forms of parallelism mentioned above are important, we 

feel that many more sources, including fine grain parallelism, must be identified and exploited if 

a wide range of sophisticated transactions are to effectively utilize large-scale parallel machines. 

Parallelism in systems in the second column of the table in Figure 1.3 is constrained significantly 

in the following ways: 

1. Updates are completely imperative, and thus for the languages to be well-defined, the 

sequence of evaluation must be specified for arguments to procedures, expressions in 

blocks, etc .. For example, if the relative order of execution of two expressions which read 

and write the same data item are not specified by the language semantics, then different 

results may be produced, depending on the run-time order in which the read and write 

are executed. 

2. Much of the expressive power in these systems comes from database procedures or oper

ators written by the user in a sequential language such as C, which makes it is difficult 

to exploit intra-procedure parallelism. 

Thus, even if the compilation techniques and run-time model of current parallel database sys

tems could be extended to handle complex transactions, it is not clear that significant parallelism 

can be extracted from their languages because of the two forms of sequentiality listed above. 

Fully Parallel. Systems in the third column in the table of Figure 1.3 utilize high-level, 

declarative languages: AGNA is based on functional languages, while LDL is based on logic 

languages. Both AGNA and LDL include declarative models of update, so updates do not limit 

parallelism, and even update transactions may be executed with a high degree of parallelism. 

Both contain full programming languages, so user-defined procedures are written in a fully 
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parallel language. AGNA is based on functional instead of logic languages, mainly because we 

understand better how to incorporate features such as types, objects, higher-order functions, 

etc. into a functional language (43, 56, 57, 78], and how to compile functional languages for 

parallel machines (59, 76]. It is of course possible that readers more familiar with logic languages 

will see an application of some of the ideas presented in this report. 

AGNA is, to our knowledge, the first parallel implementation of an expressive persistent 

object system. As we shall see in Chapters 4 and 5, the compiler and run-time system pursue 

parallelism very aggressively. Unlike previous parallel database systems, our compilation and 

implementation techniques handle transactions written in a full programming language. AGNA 

includes a novel, distributed heap divided into volatile and persistent parts, so networks of 

complex objects may be manipulated and stored in the database. 

Experimental results given in Chapter 6 demonstrate that the performance of AGNA on sim

ple queries from the Wisconsin Database Benchmark [17], a standard set of relational queries, 

approaches that of state of the art uniprocessor and multiprocessor relational systems. Par

allelism is exploited in AGNA on the multiprocessor platform to achieve near-linear speedup 

and scaleup (i.e., increasing the number of processors and database size proportionally while 

maintaining a constant response time) of performance on transactions that have sufficient paral

lelism. Additional results given in Chapter 6 demonstrate that the uniprocessor performance of 

AGNA approaches that of state of the art object-oriented systems on more complex queries (e.g., 

a transitive closure operation) taken from the Engineering Database Benchmark [24], and that 

both AGNA and OODBs provide significantly better performance than RDBs on such queries. 

Even on a uniprocessor platform, the results show that parallelism is exploited in AGNA by 

overlapping useful computation with disk I/O, thus mitigating the effects of long-latency disk 

transfers. 

1.4 Outline of Thesis 

In Chapter 2, we give an informal description of our declarative transaction language and 

discuss its expressive power and suitability for parallel implementation. In Chapter 3, we give a 

formal operational semantics of the language by describing, via a number of rewrite rules, how 

a transaction is reduced to a value. The rewrite rules also describe how an update transaction 

forms the new state of a database, based on the old. Additionally, the rules demonstrate 
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very clearly the abundance of fine grain parallelism present in the language. In Chapter 4, 

we describe the compilation of AGNA transactions into P-RISC code. We also describe a 

number of significant optimizations performed on database queries, some of which are borrowed 

from relational databases, and some of which are specific to our parallel implementation. In 

Chapter 5, we describe how the P-RISC abstract machine is implemented on a network of 

workstations and an Intel iPSC /2 Hypercube with thirty-two processors and thirty-two disks. In 

Chapter 6, we describe the results of a preliminary performance evaluation of both uniprocessor 

and multiprocessor versions of AGNA. In Chapter 7, we conclude with a summary of the present 

work, a comparison with related work, and directions for future research. 

Readers interested in quickly skimming the thesis may wish to skip directly to Chapters 6 

and 7, which contain analysis and conclusions, respectively. All of the details of the language, 

its compilation, and implementation can be found in Chapters 2 through 5. 
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Chapter 2 

The Agna Transaction Language 

In order to exploit intra-transaction parallelism, the language must be able to express parallel 

computations, either explicitly or implicitly. 

The explicitly parallel approach to programming languages is a popular one, and involves 

extending a sequential language with explicit constructs for parallelism, such as a threads 

package [16, 83] or parallel loops [40]. We decided not to pursue this approach for two reasons. 

First, it is difficult to express massively parallel programs using these paradigms. Some of the 

kinds of parallelism we wish to exploit are very fine grain and low-level, such as overlapping 

disk 1/0 and communication with computation, and dealing with these details explicitly can 

be very tedious and error-prone. Second, it is difficult to avoid writing programs that contain 

race conditions, which complicate debugging significantly. 

There are two common approaches to programming using implicit parallelism. The first is 

an outgrowth of research on vectorizing compilers [51] and involves sophisticated dependence 

analysis of a sequential program in order to relax the original sequential semantics safely. 

We decided not to pursue this approach because, while it is certainly an attractive model for 

programmers, it does not appear to be feasible to extract much parallelism from such programs, 

particularly in an object-oriented system [41, 42, 54]. 

The second approach to implicit parallel programming is to use a high-level declarative 

language. By their very nature, declarative languages do not specify a detailed order of execu

tion, leaving the compiler great latitude in choosing one. This is the approach that we chose 

to pursue, as the combined benefits of a high-level language and massive parallelism are very 

appealing. 

Two varieties of declarative languages are common in the literature: logic languages and 
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functional languages. AGNA is based on functional languages, mainly because we understand 

better how to incorporate features such as types, objects, higher-order functions, etc. into 

a functional language [43, 56, 57, 78], and how to compile functional languages for parallel 

machines [59, 76]. It is of course possible that readers more familiar with logic languages will 

see an application of some of the ideas presented here. 

We begin this chapter with a high-level view of our database system as an object repository 

that responds to incoming transactions. Next we describe the base language, which is a full, 

higher-order functional programming language. We then describe our object model and how 

the declarative framework is extended to include updates using a single-assignment semantics, 

permitting even update transactions to be executed with a high degree of parallelism. Finally, 

we describe a high-level query notation called "list comprehensions,'' and compare the AGNA 

transaction language to SQL, the standard query language for relational database systems. 

2.1 Databases and Database Systems in AGNA 

To the functional language core on which the transaction language is based we add two fun

damental features: a persistent storage class and transactions. The persistent storage class 

contains objects whose lifetimes exceed those of the transactions that created them. In other 

words, when a transaction that creates a persistent object completes, the object remains in 

the persistent store, where it may be accessed by other transactions. Other common object 

lifetimes include the duration of a procedure and the duration of a transaction. Objects with 

lifetimes of the first kind are often stored in a stack-based activation record in conventional 

language implementations, while objects of the second kind are generally stored in a volatile 

heap. Such objects are termed ephemeral because of their relatively short lifetimes and their 

inaccessibility outside of the transactions that created them. 

For convenience and modularity, the persistent store is logically structured into databases. 

In AGNA, a database is a persistent environment of bindings that associates names with types 

and objects. The objects reside in a persistent heap and may be of any type- scalars, com

plex objects, lists, procedures, etc. Objects in the database include all and only those that 

are "reachable" from the persistent environment, i.e., those bound directly to names in the 

environment, and those that are accessible through inter-object references (as we shall see in 

Section 2.3, objects may contain embedded references to other objects.) Persistence in AGNA 
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is completely transparent to the programmer-he does not have to explicitly write an object 

to the persistent heap, nor does he have to read it into main memory from a persistent storage 

medium. Such tasks are performed implicitly by the system. 

A transaction (:net ... ) is a construct executed in a database environment, which may 

contain definitions of new types, definitions of new bindings, declarative update specifications, 

and queries (expressions to be evaluated). For example, a database for a university, shown in 

Figure 2.1, might be queried with the following transaction to find the address of John Smith, 

a student:1 

> (xact 
(student-address (student-with-name "John Smith"))) 

Procedure student-with-name is used to locate the desired student object, and procedure student-address 

is used to access the address. Top-level identifiers student-address and student-with-name are 

looked up in the database environment. 

persistent 

environment 
student-with-name: 

dean-of-students: 

student-address: 

• • • 

Figure 2.1: Database for a university. 

heap of objects 

Transactions are serializable and total. Serializability means that multiple transactions may 

execute concurrently in the same database environment, but the effect on the database is as if 

they were executed in some serial order. All programs in AGNA are structured into transactions, 

so concurrent execution is well-defined. Totality means that transactions either execute entirely 

1 We use a simple Lisp-like notation to a.void detailed syntax design. While some readers will undoubtedly 
find this unattractive, our focus is on the underlying language semantics a.nd expressive power, not on designing 
elegant syntax. If necessary, our language ca.n be viewed a.s a. ha.ck-end language for one's favorite user-interface. 
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or not at all. 

The execution of transactions in AGNA is coordinated and managed by a database system, 

which contains a database and accepts a list of incoming transactions. Again, transactions in 

the list are executed in some serializable order. Conceptually, the behavior of such a system 

can be modeled by the following function: 2 

(define dbsystem 
(lambda (db transactions) 

(letrec ((result (dbeval (hd transactions) db))) 
(cons (reply result) 

(dbsystem (nev-db result) (tl transactions)))))) 

In words: the database system is a function that talces a database and a list of transactions as 

input, and produces a list of replies as output. Function dbeval evaluates a transaction relative 

to a database, and produces a composite result consisting of a (possibly) new database and a 

reply (i.e., the value of the transaction). The new database is used in the evaluation of the 

next transaction. 

If transactions come from multiple users, then somehow they must be merged into a single 

input list, and replies in the output list must somehow be routed back to the appropriate source. 

The exact manner in which this is accomplished, and the possible user interfaces to a database 

system such as ours, are outside the scope of this dissertation. 

2.2 Base Language 

In this section we present the base functional language informally through a series of examples. 

Readers familiar with functional languages may wish to omit this section. A grammar of the 

complete transaction language is given in Appendix A. 

Functions 

The most important type of object in the base language is a function, which is created via a 

lambda expression. For example, the following expression evaluates to a function that takes two 

numbers as arguments, and returns their sum: 

(lambda (x y) (+ x y)) 

2 This is not an essential characterization, though; see, for example, [11] for other possibilities. 
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The formal parameters of the function are JC and y, which are added together by the body 

expression ( (+ JC y)) to form the result of the function. A function may be applied by enclosing 

it in parentheses along with its arguments. For example, the preceding function may be applied 

to arguments 3 and 4 as follows: 

((lambda (JC y) (+JC y)) 3 4) 

Functions may be named, for convenience, in a variety of ways. For example, the function 

above may be named and added to the database as follows: 

(JC act 
(define plus (lambda (JC y) (+ JC y)))) 

Here define introduces into the database environment a new top-level binding of the name plus 

to the procedure object returned by lambda. After this binding is defined, the name plus may 

be used in expressions as follows: 

(plus 3 4) 

Free identifier plus is looked up in the database environment, and the procedure to which it is 

bound is applied to arguments 3 and 4. 

We may wish to establish a binding of a name to an object only during execution of a single 

transaction. This is accomplished via define-local. For example, the following transaction binds 

local name fact to a procedure which computes factorials: 

(JCact 
(define-local fact (lambda (n) 

(if (<= n 1) 
1 
(* n (fact (- n 1)))))) 

... ) 

The name fact is only available in the body of the transaction, i.e., inside the lambda expression 

and in " ... ",the remainder of the transaction body. It is important to note that the binding is 

not added to the database. Fact utilizes the conditional expression if, which is a special form 

that first evaluates the predicate (i.e., (<= n 1)) to a boolean value, and then evaluates and 
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returns the value of the "then" (constant 1) or "else" (the multiplication) branch. 

We may wish to restrict the scope and lifetime of a binding even further. This is accom

plished via a letrec block. For example, an alternative definition of fact is: 

(define-local fact (lambda (n) 
(letrec ((f (lambda (counter product) 

(if (<= counter 1) 

product 
(f (- counter 1) (• counter product)))))) 

(f n 1)))) 

Here letrec is used to introduce a local binding of f to a function that computes factorials in 

a manner different from the previous method. Function f computes a factorial by iterating 

counter times, multiplying the counter by a running product during each iteration. The scope 

off includes only the inner lambda expression and the body of the letrec, i.e. 1 (f n 1). The 

body expression utilizes f, applying it ton, the number of the factorial to compute, and 1, the 

initial product. The result of the body expression is the result of the letrec. 

Lists 

A commonly used data object in AGNA, as well as other functional languages, is a list. For 

example, a list 1 containing the numbers 1 through 5 is shown in Figure 2.2. Each cell in the 

list consists of two components: a head, which contains a number in this case, and a tail, which 

points at the remainder of the list. The tail of the last cell contains nil, the empty list, which 

is depicted as a diagonal line in the figure. 

1: 

1 2 3 4 5 

Figure 2.2: List of integers from 1 to 5. 

Lists are constructed with cons, which takes a head and tail as arguments, and returns a 

new list. The following procedure, for example, constructs a list of integers in a specified range: 

(define ints-from (lambda (from to) 
(if (> from to) 

nil 
(cons from (ints-from (+from 1) to))))) 
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The result list is constructed in a recursive manner: during each invocation in which from is not 

greater than to, the function creates a new list in which the head is the current value of from, 

and the tail is the list returned by the recursive call. When the recursion bottoms out (i.e., 

from is greater than to), the empty list nil is returned. 

The following application of ints-from creates the list of Figure 2.2: 

(ints-from 1 5) 

Elements of the list may be accessed using functions hd and tl, which return the head and tail, 

respectively, of a list. For example, the following expression creates list 1 and returns its second 

element: 

(letrec ((1 (ints-from 1 5))) 

(hd (tl 1))) 

Local name 1 is bound to the list returned by ints-from, and the body expression returns the 

second element of the list. 

As we shall see in subsequent sections of this chapter, list data structures are used heavily 

in AGNA. For example, lists are a fundamental part of the high-level query notation (i.e., list 

comprehensions) supported by the transaction language, and are used as a bulk data structure 

for organizing large collections of persistent objects. 

Higher-Order Functions 

Functions are first-class objects in the AGNA language which means, among other things, that 

they may be passed as arguments to other functions and returned as results. A function that 

takes a function as an argument, or returns a function as a result, is called a higher-order 

function. For example, the following function takes a function f and a list 1 as arguments, and 

applies the function to each element of the list, returning a list of the results: 

(define map (lambda (f 1) 

(if (nil? 1) 

nil 
(cons (f (hd 1)) (map f (tl 1)))))) 
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As in function ints-from, the result list is constructed in a recursive manner: during each 

invocation in which 1 is not empty (i.e. 1 (nil? 1) is false), map creates a new list in which the 

head is the result off applied to the current element of 1 ( i.e.
1 

(hd 1) ), and the tail is the list 

produced by the recursive call to map, which contains the results off applied to the remaining 

elements of 1. When the recursion bottoms out, nil, the empty list is returned. 

Function map provides a powerful, high-level operator. For example, we can compute the 

squares of the integers from 1 to 5 as follows: 

(map (lambda (x) (• x x)) (ints-from 1 5)) 

Here the squaring function is simply mapped over the list produced by ints-from. Function map 

may also be used to select a field value from each object in a collection, in much the same way 

that a field name in an SQL SELECT statement selects the field from each row in a relation. 

Another powerful, higher-order function is filter, which takes a predicate function and a 

list, and returns a list of the elements in the input list that satisfy the predicate. Filter may 

be defined as follows: 

(define filter (lambda (p 1) 
(if (nil? 1) 

nil 
(letrec ((x (hd 1))) 

(if (p x) 
(cons x (filter p (tl 1))) 
(filter p (tl 1))))))) 

The procedure body has the same overall structure as map, except that in the "else" branch 

of the outer if the current head of the list (x) is added to the result list only if the predicate 

expression (p x) is true. Function filter is similar to an SQL WHERE clause in that both may be 

used to select the data objects from a collection that satisfy some predicate. 

Such functions as map and filter provide high-level list operators that may be composed 

easily. For example, here is a query that finds the names of all students in the list bound to 

senior-class-officers that satisfy predicate honor-student?: 

(xact 
(map student-name 

(filter honor-student? 
senior-class-officers))) 
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Suppose identifier senior-class-officers is a top-level name in the database environment bound 

to a list that contains students that are officers in the senior class. The list is first filtered, 

producing an intermediate result list, over which the name selection function student-name is 

then mapped. Student-name and honor-student? are bound to functions in the database. 

Yet another useful higher-order function is foldr ("fold right"), which talces a binary ac

cumulating function f, an initial value v, and a list of values 1 as arguments, and returns an 

accumulated value. Foldr may be defined as follows: 

(define f oldr (lambda (f v 1) 
(if (nil? 1) 

v 
(f (hd 1) (foldr f v (tl 1)))))) 

During each recursive call, f is applied to the value at the head of the list and the value returned 

by the recursive call to foldr. When 1 is empty, value vis returned. Foldr may be used to sum 

a list of integers as follows: 

(foldr + 0 (ints-from 1 10)) 

Here ints-from produces a list of integers from 1 to 10, which foldr then sums using + as a 

combining function and o as an initial value. The sum is accumulated from the right, or end of 

the list: 10 is first added to o, then 9 is added to the intermediate sum, then a, and so on. A 

similar function foldl may be used to accumulate a value from the left. 

It is important to note that functions in AGNA such as map, filter, and foldr operate 

uniformly on both persistent objects (i.e., objects in the database) and ephemeral objects (i.e., 

objects such as lists used only within a single transaction, and not accessible from the database 

environment). In other words, map, filter, foldr, and all other functions may access both kinds 

of objects in exactly the same way, and thus need not distinguish between the two. Similarly, 

both functions stored in the database such as predicate function honor-student?, and temporary 

computing functions such as (lambda (x) (• x x)), are treated uniformly. For example, both 

kinds of functions may be passed as arguments to map and filter. 
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2.3 Object Model 

Objects in the language include scalars (such as numbers and booleans), primitive and user

defined functions, lists, arrays, and objects of user-defined types. Objects of any type may be 

stored in the database. 

2.3.1 User-Defined Object Types 

User-defined types are introduced into a database environment via the type form. For example, 

here are definitions of STUDENT, COURSE, and ENROLLMENT types. 

(type STUDENT (extent) 
((name <=> STRING) 
(status => STRING) 
(gpa => FLOAT) 
(address => STRING) 
(bdate •<=> INTEGER))) 

(type COURSE (extent) 
((name <=> STRING) 
(prereqs •<=>• COURSE) 
(units => INTEGER))) 

(type ENROLLMENT (extent) 
((grade => STRING) 
(student •<=> STUDENT) 
(course •<=> COURSE))) 

For each field, the forms define the base type, whether it is single- or multiple-valued ( => or 

=>* ), and whether it supports a single- or multiple-valued inverse ( <= or *<= ). For example, 

the student name field records a single string value, and supports a unique inverse that maps 

strings to students. The course prereqs field records a collection of course objects, and supports 

a multiple-valued inverse that maps a course object to the collection of courses for which it is 

a prerequisite. 

A field of an object may be read using the select form. For example, ifs references a student 

object, then the name field may be accessed by the expression: 

(select s STUDENT NAME) 

32 



which evaluates to a string. It is important to realize that s is an expression that is evaluated, 

while STUDENT and NAME are literals that are not evaluated.3 The reason for the STUDENT qualifier 

is that NAME is not unique-the COURSE type, for example, also has a NAME field. By qualifying 

each field fully, certain optimizations in AGNA such as determining field offsets at compile-time 

instead of at run-time, can always be performed. 

Selection of a multiple-valued field produces a bag (or multi-set) of objects, packaged as a 

list. For example, if c references a course, then the expression: 

(select c COURSE PREREQS) 

evaluates to a list of course objects. The ordering of elements in the list is not significant. 

A type form also specifies whether a persistent or "base" extent (i.e., a collection of all 

objects of the type) is to be maintained automatically by the database system. Since (extent) 

declarations, which are optional, were included in all definitions above, persistent collections 

of all students, courses, and enrollments are maintained automatically by the system. Thus, 

whenever a student, course, or enrollment object is created, the system automatically inserts 

it into the appropriate collection. These collections are available to the programmer via the 

expressions (all STUDENT), (all COURSE), and (all ENROLLMENT), which evaluate to lists of all stu

dents, courses, and enrollments, respectively. Again, the ordering of elements in the lists is not 

significant. 

The rationale for system-maintained base extents is twofold: programmer convenience, and 

efficiency. It is very common that applications require such collections to be maintained and 

while the programmer could do this explicitly by inserting each new object into the appropriate 

extent list, it is more convenient for the programmer if this is done automatically. System

maintained sets are also less error-prone: a programmer, for example, may forget (or not know) 

to insert a new object into the type's extent. Finally, because base extents are maintained by the 

system, it is free to choose efficient internal representations. As we shall see in Chapters 5 and 6, 

scanning and filtering can be performed much more efficiently on such internal representations 

than on the general list representation. 

The programmer, of course, is free to maintain additional collections of objects explicitly. 

For example, in the university database the top-level name seminar-courses may be bound to a 

3 Throughout this dissertation, we use all uppercase letters for such literals. 
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collection of all seminar courses. When an object is created that describes a seminar course, it 

must be inserted manually into this collection. 

The invert form is used to apply inverse-mappings. It talces a type name, a field name and 

a field value as arguments, and searches the type extent for the object(s) with the desired field 

value (invertible fields are only allowed in types with a persistent extent, so there will always 

be an extent to search). The following expression, for example, evaluates to a student object 

with the indicated name, or a special null object if no such student exists: 

(invert STUDENT NAME "John Smith") 

Application of a multiple-valued inverse-mapping produces a collection of objects. The following 

expression, for example, evaluates to a list of enrollments for course c: 

(invert ENROLLMENT COURSE c) 

Again, the ordering of elements in the list is not significant. 

Specifications of field inverse-mappings are included in the transaction language for both 

semantic and pragmatic reasons. The only semantic issue is automatic enforcement of unique

ness constraints on<= fields. For example, because of the unique inverse on student name, two 

student objects may not exist in the database at the same time with the same name. As we 

shall see in Section 2.4, a transaction that attempts to add to the database a student object 

with a non-unique name is automatically aborted, and the database is not updated. While it 

is certainly possible to express such constraints in other ways, it is very convenient to do so in 

the type declarations. 

The pragmatic reason for specification of inverse-mappings is efficiency. As we shall see 

in Chapter 4, indexes are automatically constructed and maintained for invertible fields, and 

are used in the implementation of invert and list comprehension queries (to be described in 

Section 2.5). Efficiency considerations such as indexing are very important in persistent systems 

because databases tend to be large and objects long-lived. We will see in Chapter 6 the dramatic 

impact indexes have on performance. 
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2.3.2 Pre-Defined Object Types 

Pre-defined object types include list and array. The list type 1s specified by the following 

definition: 

(type list () 
( (hd => ANY) 
(tl => ANY))) 

The empty list is nil. Note that because the extent keyword is not specified, a collection of all 

list objects is not maintained automatically in the database. Thus, list objects only become 

persistent by being referenced from sc;µne persistent object. Lists may be manipulated with the 

following procedures: 

(define hd (lambda (1) (select 1 LIST HD))) 

(define tl (lambda (1) (select 1 LIST TL))) 

(define cons 
(lambda (x y) 

(letrec ((c (allocate LIST))) 
(update c LIST HD x) 
(update c LIST TL y) 
c))) 

Procedures hd and tl select the head and tail field values of a list, and cons constructs a new 

list object4 . We defer a discussion of allocate and update to Section 2.4. 

Arrays in AGNA are zero-indexed, and come with the following primitive operations: 

(allocate-array aize) 

(select-array array index) 

(update-array array index value) 

Allocate-array allocates a new, empty array, and select-array and update-array read and write 

individual array elements, respectively. Multi-dimensional arrays are constructed by nesting 

one-dimensional arrays; one could extend AGNA to handle multi-dimensional arrays, but we 

have not because such constructs are not a focus of this work. 
4If the body of letrec contains multiple expressions, as in the definition of cons, then all expressions are 

executed in parallel, with the value of the textually last expression returned as the result. 
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2.3.3 Type Checking 

Type checking of data objects is performed dynamically at run-time by the operators that 

manipulate them, and not statically at compile-time. For example, select interrogates the 

type of an object at run-time and reports an error if it does not match the type indicated by 

the transaction programmer in the select form. While static type checking may be desirable 

in AGNA, our current focus is on issues of persistence and parallelism, which are somewhat 

orthogonal to type checking. We have chosen dynamic type checking simply because it is well 

understood and easier to implement. Exploration of the issues involved in building a static type 

system for the AGNA language is a possible direction for future research. 

In a type declaration, only the "top-level" type of a field with a nested structure may be 

specified. For example, we may wish to include in the student type a field new-courses to record 

the collections of courses (i.e., list of lists of courses) that a student is considering taking the 

next term. Such a field could be declared as follows: 

(new-courses =>• LIST) 

We may store in the field lists of lists of courses (i.e., the collections of courses being considered) 

but the type checking performed will only ensure that the field value is a list of lists. The type 

"language" for describing fields (=>, =>*, etc. plus the base type name) is simply not capable 

of describing the entire structure of the field. While it would certainly be desirable to have a 

type system capable of expressing the entire nested field structure, again, our main focus in 

this work is on persistence and parallelism and not type systems. 

2.4 Database Updates 

An update transaction is a declarative specification of the new version of a database, expressed 

as a function of its current state. Both the top-level environment and objects in the heap may 

be updated. Conceptually, update specifications are collected during transaction execution, and 

occur instantaneously at transaction commit time. Thus, updates are only visible to subsequent 

transactions, and not to the transaction in which they were performed. 
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2.4.1 Changing the Top-Level Environment 

The simplest forms of update involve the installation of a new value or type definition in the 

database environment. We have already seen the define form to introduce new value bindings. 

For example, the following transaction introduces three new value bindings: 

(xact 
(define honors-student-gpa 3.9) 

(define senior-class-president (invert STUDENT NA.ME "John Smith")) 

(define student-address (lambda (s) (select s STUDENT ADDRESS)))) 

The first definition binds the name honors-student-gpa to the number 3.9. The second binds the 

name senior-class-president to the John Smith student object, while the third binds the name 

student-address to a function that, when applied to a student object s, returns its address. 

Note that the three expressions producing the values {i.e., 3.9, invert, and lambda) associated 

with these names are each evaluated exactly once, in the environment existing at the time of 

definition. When these names are used in subsequent transactions, the expressions are not 

re-evaluated in the environment extant at the time. If that is the desired behavior, then the 

expression must be placed in a procedure, where it will be evaluated each time the procedure 

is applied. 

To avoid the non-determinism of read-write race conditions, changes to the top-level envi

ronment are not immediately visible to an update transaction. A type or value definition in 

transaction Ti only becomes visible from transaction Ti+l onward. When we execute a reference 

to a top-level name during transaction Ti it is always looked up in the database environment 

prior to Ti (i.e., the old top-level environment). For example: 

(define x (+ x 1)) 

means: evaluate x in the current version of the database, add 1 to it, and bind x to this value 

in the new version of the database. On the other hand, consider: 

(define length 
(lambda (1) (if (nil? 1) 

0 

(+ 1 (length (tl 1)))))) 
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The reference to length in the body is not evaluated in the current transaction, since it is inside 

a procedure. When length is applied to some list in some later transaction, it will pick up the 

correct ( i. e. 1 latest) binding. 

As the definition of length indicates, we have taken the position that top-level names in 

procedure bodies are looked up in the environment current at the time the procedure is applied. 

This is also the approach taken by current Lisp systems. An alternative, perhaps equally 

plausible, position, is that such identifiers in procedure bodies are always looked up in the 

environment existing at the time the procedure was defined. With this approach, however, 

there is no way to "track" the most recent binding of an identifier. This means, for example, 

that when a procedure bound to a top-level identifier is redefined (say, to fix a bug), all callers 

of the procedure must also be redefined to pick up the corrected version. While this situation 

could be avoided by using special syntax such as a quote in front of an identifier, indicating 

that it should be looked up in the environment current at the time the procedure is applied, 

we feel this introduces unnecessary complexity. 

Note that the lookup rule that we have chosen does not preclude this alternative approach. 

For example, if in the following definition: 

(define f (lambda (x) Cg x))) 

we always want the current binding of g and not some later one that might exist when f is 

applied, we can rewrite the definition as follows: 

(define f ((lambda Cg x) Cg x)) g)) 

Here g is added as a formal parameter, and the function is partially applied to the value bound 

to gin the current environment. All applications off in subsequent transactions then use this 

value of g. Thus, top-level names in procedure bodies, which are looked up when the procedure 

is applied, can be looked up when the procedure is defined via this simple transformation. 

We have also seen another simple form of update, the type form to introduce new type 

bindings: 

(type <type-name> optional-eztent-apec 
( ( field-name field-apec ) 
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( field-name field-apec ) ) ) 

As with new value bindings, new type bindings are not visible until the subsequent transaction. 

Types introduced by a transaction may be recursive and mutually recursive. In other words, a 

field specification in one type introduced by a transaction may include the name of another type 

introduced by the same transaction. For example, the prereqs field in the COURSE type described 

in Section 2.3 is itself of type COURSE. Redefinition of types is not allowed, so a type name used 

in a field specification will either refer to a type introduced by the same transaction or one in 

the old version of the database, but not both. 

A top-level definition may be removed with the phrase: 

( undef ine identifier) 

Again, the update is not visible until the subsequent transaction. 

The type, define and undefine forms are top-level phrases, i.e., they cannot be nested inside 

expressions. 

2.4.2 Object Manipulation 

A new object may be allocated using the expression: 

(allocate type) 

If type was declared with an automatic persistent extent, the system also inserts the new object 

into the type's extent list. The updated extent list is not visible until the subsequent transaction. 

All fields of the newly allocated object are initialized to a special undefined value. 

We have already seen the select form to read a field value: 

(select object type-name field-name) 

A field may be written using the expression: 

(update object type-name field-name new-value) 
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The semantics of select and update depend on whether they are applied to a new object (i.e., 

one allocated by the current transaction), or a persistent object (i.e., one in the old version of 

the database, allocated by a previous transaction). 

Selects and Updates on New Objects 

Let 0 be an object of type T allocated in the current transaction. Initially, all fields of 0 

are undefined. Let us focus on a particular field F. In the current transaction, at most one 

(update 0 T F v), but any number of (select 0 T F) 's may be executed on field F. The relative 

execution order of these operations is unspecified. If select is executed while the field is still 

undefined (i.e., before update has been executed), it is automatically blocked until the field 

becomes defined. This is known in the parallel computing literature as I-structure semantics. 

Here is an expression that defines a new course object: 

(letrec ((c (allocate COURSE))) 
(update c COURSE NAME "Introduction to Algorithms") 
(update c COURSE PREREQS nil) 

(update c COURSE UNITS 12) 
c) 

The expression allocates a course object c, defines its three fields, and returns c as its value. Any 

attempt to redefine a field of c in the same transaction is viewed as an inconsistent specification, 

and causes a run-time error. This single-assignment requirement ensures that all readers of the 

new object see a consistent view of it, i.e., all readers of a field in the transaction receive the 

same value. If a select (outside of the letrec) tries to read a field value before it is defined, then 

it simply blocks. When the corresponding update is executed, all blocked readers are enabled. 

All new course objects must satisfy the unique inverse on course name (recall from Sec

tion 2.3.1, the definition of COURSE includes a unique field-inverse mapping strings to courses). 

If two new courses have the same name, or a new course has the same name as pre-existing 

course, then the system aborts the transaction automatically. 

Additional constraints may be imposed by the transaction programmer on object field values 

through explicit use of conditionals and abort-transaction, a primitive procedure that aborts 

the current transaction. For example, the following course constructor adds a constraint on the 

units field value: 
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(define make-course 
(lambda (name prereqs units) 

(if (or (<units 0) (>units 15)) 
(abort-transaction "Value of course units out of legal range") 
(letrec ((c (allocate COURSE))) 

(update c COURSE NAME name) 
(update c COURSE PREREQS prereqs) 
(update c COURSE UNITS units) 
c)))) 

If the units value is out of the legal range {O - 15), then an error message is printed and the 

transaction is aborted. 

The single-assignment and I-structure semantics described above apply also to objects of 

pre-defined types such as LIST and ARRAY. {For arrays, though, select-array and update-array are 

used instead of select and update.) 

Selects and Updates on Persistent Objects 

Let 0 be a persistent object of type T and, again, let us focus on a particular field F. In the cur

rent transaction, as before, at most one (update 0 T F v), and any number of (select 0 T F) 's 

may be executed. The update, however, is not visible in the current transaction, and occurs 

only at transaction commit time. The value returned by select is always the value of F in the 

old version of the database. If the old value is undefined, then a run-time error is raised. 

Here is an example of a persistent object update that changes the name of student "John 

Smith" to "John E. Smith": 

(letrec ((s (invert STUDENT NAME "John Smith"))) 
(update s STUDENT NAME "John E. Smith")) 

The expression utilizes invert to locate the desired student object, and then updates its name 

field. The new name is visible only in subsequent transactions; all readers in the current 

transaction still see the old value (i.e., "John Smith"). Also, the new name must satisfy the 

unique inverse mapping on student name. 

For multiple-valued fields, the value of the field is a list of objects. While we may also use 

update on such fields to replace the current value by a new one, it is more often the case that we 

just want to insert a new member into the list or delete an existing member. These operations 

are expressed as follows: 
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(insert object type-name field-name new-member) 

(delete object type-name field-name old-member) 

Such operations are only allowed on fields of persistent objects, i.e., not on fields of objects 

allocated in the current transaction, where update must be used. The reasons for this restriction 

are as follows. Clearly delete must be disallowed on a field of a new object because the deletion 

of an element from the field collection, defined by whatever means, would violate the single

assignment semantics and, therefore determinacy. For example: 

(letrec ((c (allocate COURSE))) 
(update c COURSE PREREQS eecs-intro-courses) 
(delete c COURSE PREREQS (invert COURSE NAME "Introduction to Programming")) 
(select c COURSE PREREQS)) 

Here a new course is allocated, an update and a delete are performed on its prereqs field, and 

the prerequisites are returned. The deletion is not allowed in this case because otherwise 

the value returned by select is ambiguous, as it may be the collection of courses bound to 

eecs-intro-courses, either with or without Introduction to Programming. Similarly, insertion 

of an additional course into the prereqs field is disallowed because it also violates the single-

assignment semantics. 

Definition of a field value in a new object solely via insert is also problematic because 

somehow the field collection must be "closed". Consider the following modification of the 

previous example: 

(letrec ((c (allocate COURSE))) 
(insert c COURSE PREREQS (invert COURSE NAME "Introduction to Programming")) 
(select c COURSE PREREQS)) 

Here a new course object is allocated, a course is added to its prereqs field, and the prerequisites 

are returned. The insertion is not allowed because, in general, it is not possible to determine 

when all insertions have executed (there may be more outside the letrec) and thus, when it is 

safe to return the field collection to select. 

Multiple insert and delete operations may be performed in a single transaction. As usual, 

the effects of these operations are not visible until the subsequent transaction. Remember that 

deletes must refer to an existing member of the collection (if not, they are silently ignored). 
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It is perfectly all right to insert an object more than once into a collection- the collections 

are not sets. At transaction commit time, it is as if all deletes were performed followed by 

all inserts. This ensures that deletes are performed against only existing members of a field 

collection, and guarantees determinacy, because otherwise the final field value can depend on 

the order in which insertions and deletions are performed (e.g., if object 0 is both inserted into 

and deleted from an empty field collection, then two final field values are possible, depending 

on whether the insertion or deletion is performed first). 

While multiple insertions and deletions may be performed on a field in a transaction, they 

may not be mixed with an update on the same field. As outlined above, insert and delete 

when mixed with update on a field F of a new object 0 violate the single-assignment semantics. 

Insertions and deletions mixed with update on a field of a persistent object are incompatible 

because update defines the new field value completely, independent of the old value, while insert 

and delete define the new value relative to the old. Thus, the final field value is ambiguous, as 

it may either be the new value supplied by update, or the old value modified by the insertions 

and deletions. 

Here is an example of an expression that uses insert and delete to change the prerequisites 

for the Advanced Algorithms course. 

(letrec ((c1 (invert COURSE NAME "Advanced Algorithms")) 

(c2 (invert COURSE NAME "Introduction to Algorithms")) 

(c3 (invert COURSE NAME "Theory of Computation"))) 

(insert c1 COURSE PREREQS c2) 

(delete c1 COURSE PREREQS c3)) 

The letrec expression binds local name c1 to the Advanced Algorithms course object, c2 to 

Introduction to Algorithms, and c3 to Theory of Computation. Insert adds c2 to the list of 

prerequisites for c1, and delete removes c3 from the list (see Figure 2.3). The expression also 

updates the inverse on course PREREQS that maps a course to the collection of courses for which 

it is a prerequisite (see Figure 2.4). Insert adds c1 {Advanced Algorithms) to the list of courses 

for which c2 (Introduction to Algorithms) is a prerequisite, and delete removes c1 from the list 

for c3 {Theory of Computation). 

Multiple insert and delete operations may be performed by repeated individual insertions 

and deletions; however, for convenience, the following forms are also available: 
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(insert-list object type-name field-name li11t-of-new-member11) 

(delete-list object type-name field-name li11t-of-old-member11) 

Deletion of Objects 

Objects of types without automatic extents do not require any explicit removal from the data

base. They are garbage-collected automatically when they are no longer reachable from the 

top-level environment. 

Objects of types with automatic extents will never get garbage-collected because there is at 

least one reference to such objects, from the automatic extent. Thus, they must be removed 

explicitly using the following construct: 

(drop object) 

2.5 List Comprehensions-An SQL-Like Notation 

A popular notation used in many functional programming languages is the list comprehension. 5 

A list comprehension has the form: 

(all body-ezpreaaion 

generator-or-filter 

generator-or-filter) 

Each generator has the form: 

(identifier liat-ezpreaaion) 

and can be read as: "For each identifier in the list li11t-ezpre1111ion ... ". The identifiers bound in 

the generators come into scope from top to bottom, so that each li11t-ezpre1111ion and filter can use 

identifiers bound by previous generators. Each filter has the form: 

(where boolean-ezpreaaion) 

6 List comprehensions are also called ZF-expressions and set expressions, and were popularized by David 
Turner in his language KRC(78). We believe they were originally invented by Burstall and Darlington in their 
language NPL at Edinburgh. 
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Identifier bindings that do not satisfy a filter are discarded. The meaning of the overall list 

comprehension is to evaluate the body-expression for each combination of generator bindings that 

satisfies all filters, and to return a list of the corresponding values. For example, the following 

list comprehension is a query that finds the names of all special-status students enrolled in 

Software Engineering. 

(all (select s STUDENT NAME) 
(s (all STUDENT)) 

(vhere (== "special" (select s STUDENT STATUS))) 
(c (all COURSE)) 

(vhere (== "Softvare Engineering" (select c COURSE NAME))) 
(e (all ENROLLMENT)) 

(vhere (and (== c (select e ENROLLMENT COURSE)) 
(== s (select e ENROLLMENT STUDENT))))) 

In words: 

for each s in the list of students, 
where s's status is special, 

for each c in the list of courses, 
where c 's name is "Software Engineering", 

for each e in the list of enrollments, 
where e's course is c and student is s, 

return the list of names of all such students. 

List comprehensions are well-integrated with other parts of the transaction language, and 

thus may be embedded in procedures, may use recursion, may utilize arbitrary procedure calls 

(including user-defined procedures) in the body, generator, and filter expressions, etc. For ex

ample, here is a procedure that uses a list comprehension to compute the total number of units 

taken by a student s: 

(define total-units (lambda (s) 
(foldl + 0 (all (course-units (enrollment-course e)) 

(e (all ENROLLMENT)) 
(vhere (== s (select e ENROLLMENT STUDENT))))))) 

The body expression of the list comprehension uses selector functions enrollment-course and 

course-units to access the units of each course associated with the enrollments for student s. 

Procedure foldl is used to sum the list of units. The selector functions are defined as follows: 

(define course-units (lambda (c) (select c COURSE UNITS))) 
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(define enrollment-course (lambda (e) (select e ENROLLMENT COURSE))) 

Function total-units may be utilized in other list comprehensions. For example, the follow-

ing query finds the names of all students talcing more than forty-eight units: 

(all (student-name s) 
(s (all STUDENT)) 
(vhere (> (total-units s) 48))) 

Selector function student-name is applied to each student s that satisfies the predicate expression. 

Of course, list comprehensions are not restricted to computing on lists of persistent objects, 

and may be used on lists of ephemeral objects as well. For example, the following procedure 

returns a list of pairs of relatively prime numbers between 1 and n: 

(define relatively-prime-pairs 
(lambda (n) 

(all (cons x (cons y nil)) 
(x (ints-from 1 n)) 
(y (ints-from x n)) 
(vhere (== 1 (gcd x y)))))) 

Generator identifier x is bound to elements in the list of integers from 1 to n, and for each x, 

identifier y is bound to elements in the list of integers from x to n. The body expression is 

executed for each binding in which the greatest common divisor of x and y is one. 

2.6 Comparison With SQL 

Data in the relational model are organized into collections of records (called relations or tables), 

where each record consists of a number of fields containing scalar values such as strings and 

numbers. The relational structure of the student-course database introduced in Section 2.3.1, 

along with some sample data, is shown in Figure 2.5. Four tables are needed, one each for 

students, courses, and enrollments, and one to record course prerequisites. 

Note that the relational representation includes ID fields in the STUDENT and COURSE tables, 

which are not present in the corresponding AGNA type declarations. This is because in AGNA, 

an object may refer to another object by storing a (system-maintained) reference to it. In the 

relational model, however, the programmer must encode object references by explicitly storing 
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STUDENT COURSE 

ID NAME STATUS GPA ADDRESS BDATE ID NAME UNITS 

17 "John Smith" "GR.AD" 3.06 "31 Elm Road" 640010 23 "Data Structures" 12 

21 "Peter Sinclair" "UCB.AD" 3.2 "14 Main St.• 710412 26 •complexity theory" 12 . . • . 
• • 

ENROLLMENT COURSE_PREREQS 

STUDENT_ID COURSE_ ID GRADE COURSE_ ID PREREQ_ID 

17 26 "A" 26 23 

21 23 "B" 26 27 

• • • • • . 
Figure 2.5: Relational structure of student-course database. 

a unique key value of the referenced object. The ID fields provide the keys by which students 

and courses are referenced. For example, the enrollment table records student and course ids, 

and a grade. 

Forcing the SQL programmer to encode object references in this manner is similar to the 

way in which one must encode tree structures in arrays in Fortran. While this is certainly 

possible, it makes programming more complex and error-prone. This can be seen by examining 

two common operations: (1) creating a new entity, such as a student, and (2) dereferencing an 

object "pointer". The extra complexity of the first operation, creating a new object, is due to 

the explicit programmer management of the id field. For example, allocating a new, unique id 

requires a scheme such as maintaining a "high-water" mark, perhaps in an auxiliary table, or 

alternately searching for the highest id in current use, from which a unique id can be generated. 

In AGNA, unique object identifiers are also assigned during object creation, but they are used 

only internally and are managed entirely by the system. 

The extra complexity of the second operation, dereferencing an object pointer, is due to the 

associative lookup that must be specified. For example, to access the GPA of a student with 

id 23 in SQL (31], the standard relational database language, the programmer must specify the 

id of the desired student record, and then select the GPA field: 

SELECT gpa 
FROM student 
WHERE id=23 
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In AGNA, on the other hand, field values may be read directly from an object reference-no 

explicit lookups are required. 

Of course, if a suitable unique object attribute already exists, then an artificial key such as 

course id is not necessary. We might, for example, consider using student and course names 

as keys. This is not a good idea, however, for two reasons. First, pointer dereferencing is a 

common operation, so we would like it to be as efficient as possible. In this case, lookups on 

integer id fields, and the associated key comparisons, are more efficient than lookups on string 

names. The second, and more fundamental reason, is that even though the names are unique, 

they may change ( e.g. 1 as a result of a student getting married), in which case we must update 

the student object, as well as locate and update all references to it. It is unlikely that artificial 

keys will ever change. 

An additional fundamental difference between the relational and AGNA representations of 

the student-course database is the way in which multi-valued fields such as course prerequisites 

are represented. In AGNA, prerequisites are implemented via a multiple-valued field in the 

course object: 

(type COURSE (extent) 
((name <=> STRING) 
(prereqs •<=>• COURSE) 
(units => INTEGER))) 

In the relational model, a collection of values cannot be stored in a field, so the prerequisites 

of a course must be encoded in the auxiliary table COURSE_pREREQS, which records one entry for 

each course prerequisite. As before, this encoding complicates and makes more error-prone 

the programmer's task. For example the definition of a course's prerequisites involves multiple 

insertions into the coURsE_pREREQS table. In AGNA, on the other hand, the list of courses can be 

stored directly in the prereqs field in a single update operation. 

Fetching course prerequisites in SQL is also more abstruse. For example, here is an SQL 

query that finds the prerequisites for Software Engineering: 

SELECT prereq_id 
FROM course, course_.prereqs 
WHERE name="Softvare Engineering" and id=course__id 

In the WHERE clause, we must specify explicitly the condition linking the course and course_prereqs 
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tables (id=course_id), as well as the condition on course name. In AGNA, we can access the 

prerequisites directly after the desired course object is located: 

(letrec ((c (invert COURSE NAME "Software Engineering"))) 
(select c COURSE PREREQS)) 

Finally, referential integrity is a senous concern in the relation model. For example, for 

every COURSE-1D in the COURSE..PREREQS table, there must be a course with that id in the COURSE 

table. Current relational systems either don't deal with this issue at all, in which case it is 

entirely the responsibility of the programmer to ensure the integrity of such references, or they 

layer on top of the basic system a separate mechanism for describing and checking integrity 

constraints. Both approaches complicate the programmer's task. In AGNA, on the other hand, 

the integrity of object references is not an issue because an object is only garbage-collected 

when no more references to it exist. 

List Comprehensions 

The reader may discern a strong similarity between list comprehension notation and SQL. For 

example, here is an SQL query to find the names of all students with a GPA of at least 3.9: 

SELECT name 
FROM student 
WHERE gpa>=3.9 

The corresponding list comprehension is: 

(all (select s STUDENT NAME) 
(s (all STUDENT)) 
(where (>= (select s STUDENT GPA) 3.9))) 

The body expression in a list comprehension is analogous to SQL's SELECT clause, the generator 

lists are analogous to tables in the FROM clause, and the where clause is analogous to SQL's WHERE 

clause. 

While list comprehensions are similar to SQL, they are more general. The expressive power 

of list comprehensions is at least as great as SQL because: (1) SQL can be translated to the 

relational calculus [81], and (2) the relational calculus can be translated to list comprehensions 
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[77]. List comprehensions are more general than SQL because: 

• The generator lists may be arbitrary computed lists, unlike SQL, where they must be 
existing, named relations. 

• The vhere predicates may be arbitrary boolean expressions that may include arbitrary 
function calls, whereas SQL allows only a fixed repertoire of operations. 

• The body-e:z:preuion may be an arbitrary expression, not just projections on the fields of 
base relations. 

We have already seen an example of how vhere predicates may include arbitrary function calls. 

Recall from the previous section the following query that finds the names of all students taking 

more than forty-eight units: 

(all (student-name s) 
(s (all student)) 
(vhere (> (total-units s) 48))) 

User-defined procedure total-units, also introduced in the previous section, utilizes a list com

prehension to compute the total units for a student s. This sort of procedural abstraction is 

very natural in AGNA and functional programming, but simply not possible in SQL, where all 

queries must be encoded directly in the fixed, pre-defined set of operations. 

Declarativeness of List Comprehensions and SQL 

Both list comprehensions and SQL are declarative in the sense that they allow one to pose 

queries at a high level, and to ignore details such as the specific algorithms used to implement 

a query, and how data are organized on disk. For example, indexes are used automatically and 

transparently by AGNA and SQL systems. The transaction programmer need not mention them 

explicitly in queries, nor update them manually in update transactions. Also, the compiler picks 

efficient methods for data access, based on its knowledge of indexes, data-set sizes, distributions 

of data values, etc. 

Embedded SQL 

Simple operations on record-oriented data can be expressed elegantly and concisely in SQL. 

Equivalent operations in AGNA can also be expressed in a similar manner using list comprehen

sions. As we consider more complicated operations and data, the level of complexity in SQL 
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programs escalates rapidly due to the lack of abstraction, encoding of object pointers, encoding 

of multiple-valued attributes, and so on. In AGNA, on the other hand, the user may easily move 

to more complex operations by exploiting the richer object modeling and the full functional 

language included in the transaction language. For example, consider the following procedure 

that returns a list of the (direct and indirect) prerequisites of a course: 

(define all-course-prereqs 
(lambda (c) 

(letrec ((cs (course-prereqs c))) 
(if (nil? cs) 

nil 
(foldl append cs (map all-course-prereqs cs)))))) 

Procedure all-course-prereqs takes a course c and returns a list of its prerequisites (duplicates 

are not removed). The procedure binds local name cs to the list of e's direct prerequisites. If cs 

is empty ( i. e. 1 c has no prerequisites), then nil is returned. Otherwise, foldl is used to append 

cs to the results of recursively calling all-course-prereqs on the elements of cs. 

The transitive closure operation performed by all-course-prereqs is expressed easily and 

succinctly in AGNA. It is not possible to express this operation directly in SQL-it simply 

does not have adequate expressive power. To gain the necessary expressive power, SQL must 

be embedded into a host language such as C or Ada. Here is a C procedure that contains 

embedded SQL statements (prefaced by EXEC SQL) that finds the prerequisites of the course with 

id courseid: 

int allCoursePrereqs( courseid, idArray ) 
EXEC SQL BEGIN DECLARE SECTION; 
int courseid, idArray D ; 
EXEC SQL END DECLARE SECTION; 
{ 

EXEC SQL BEGIN DECLARE SECTION; 
int index=O, j=O, id=courseid; 
EXEC SQL END DECLARE SECTION; 

EXEC SQL BEGIN TRANSACTION; 
do { 

EXEC SQL SELECT prereq_id 
INTO :idArray[index] 
FROM course_prereqs 
WHERE course...id=: id; 

EXEC SQL BEGIN; 
index++; 

EXEC SQL END; 
id = idArray [j] ; 

} vhile ( j++ <index); 
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EXEC SQL END TRANSACTION; 

return index; 
} 

Result prerequisite ids are stored in array idArray and the total number of ids retrieved is 

returned.6 . The SELECT statement in the do-while loop fetches from the database all direct 

prerequisites of the course whose id is stored in host variable id (host variables in the SELECT 

statement are prefaced by : ). Initially id is set to the value of courseid, the course whose 

prerequisites the procedure computes. The result of each invocation of the query is returned to 

the host language one value at a time. For each prereq_id returned, the actual id value is stored 

into host variable idArray (specified in the INTO clause) and the BEGIN - END block is executed, 

incrementing the index into idArray. 

After the first execution of the SELECT statement, id is assigned, in sequence, to prerequisite 

ids stored in idArray. The loop is exited when the SQL query has been invoked for each such 

binding of id (i.e., j >= index), and the number of prerequisites fetched is returned. The loop is 

enclosed in SQL statements to begin and end the transaction, which are necessary to force the 

database to consider all invocations of the SELECT statement part of the same multi-statement 

transaction, rather than a series of individual single-statement transactions. As in the AGNA 

version, duplicates are not eliminated. 

The embedded SQL version of this operation is significantly more complicated than the 

corresponding AGNA version. To program in embedded SQL one must contend with two sets 

of incompatible data structures (e.g., array idArray in C and relation course_prereqs in the data

base), two sets of incompatible control constructs, two type systems, etc. Difficulties inherent 

in embedded SQL make it a viable option only for expert applications programmers. In AGNA, 

on the other hand, even novice users can quickly and easily escalate to sophisticated queries. 

Finally, it is important to realize that it is not the embedding of SQL, per se, that causes the 

complexity of 11.llCoursePrereqs. For reasons of interoperability, it is desirable for all databases, 

including AGNA, to be accessible from languages such as C. The complexity of allCoursePrereqs 

arises because SQL does not have adequate control structures, and thus part of the operation 

6 We have glossed over the thorny issue of storage allocation for the result array idArray - the caller of 
allCoursePrereqs must allocate storage for it. For this version of allCoursePrereqs to work correctly on 
data.bases of all sizes, an additional length argument must be included to allow detection of the end of the array 
and extension of it. Alternatively, a linked list result data structure could be used. In either case, construction 
of the result is significantly more complex than in AGNA, where storage management is performed automatically 
by the system. 
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must be implemented in SQL (e.g., SELECT) and part in C (e.g., do - while). This also results 

in run-time inefficiencies, as the embedded program and database system repeatedly exchange 

small pieces of the operation and small pieces of the result. 

AGNA, on the other hand, does have suitable control structures, and thus the entire op

eration can be coded in the transaction language. An embedded program may invoke this 

operation in the database with a single call and receive back from it the entire result. Thus, 

embedded AGNA programs may interact with the database in a clean and high-level manner. 

2. 7 Discussion 

As stated earlier, we have focused mainly on expressive power, persistence and parallelism, and 

have given little or no attention to elegant syntax. The expressive power in AGNA arises from 

several features: 

• The user may define new object types with no restrictions on the fields. Thus, arbi

trary graph structures may be constructed, so that it is easy to directly model real-world 

structures- no complex encodings are necessary. 

• There is no dichotomy between persistent objects and ephemeral objects. An object 

persists as a result of being (1) bound directly to a top-level identifier; (2) an object of 

a type with an automatic extent; or, recursively, (3) reachable from a persistent object. 

There is no need for the programmer to manage the migration of objects from the volatile 

heap to the persistent heap, or to map the persistent heap to disk files (or some other 

persistent storage medium). These tasks are performed automatically by the system. 

• The system provides support for a family of field types that are very useful in databases: 

single-valued and multiple-valued, with optional inverses. 

• The transaction language includes a full, higher-order, functional programming language 

[8, 20, 78]. 

• The transaction language includes list comprehension notation, which may be used as 

a declarative query language. List comprehensions are structurally similar to SQL, but 

more general. 
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• Parallelism is implicit in the language. The transaction programmer does not have to 

worry about partitioning data, about partitioning processes, about mapping data and 

processes to nodes of a parallel machine, etc. The single-assignment semantics makes it 

easy to reason about what state is read by each sub-expression, even in the presence of 

parallel execution. The single-assignment semantics ensures determinacy of execution, 

i.e., a unique answer. 
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Chapter 3 

Transaction Language Semantics 

In the previous chapter, we gave a very informal description of the AGNA transaction language. 

In this chapter, we present a formal operational semantics for the language. We begin with a 

discussion of the implicit parallelism present in the language, which is the primary motivation 

for the semantics that we have chosen. We then give the formal semantics, by first presenting a 

core subset of the language, then giving a translation from the full language to this core subset, 

and finally describing how a program in the core language is reduced to a value and, for update 

transactions, how the database is updated. We conclude with an example reduction. 

3.1 Implicit Parallelism 

Parallelism in the transaction language is implicit in its semantics: 

• In a block: 

(letrec ((x1 e1) 

(xN eN)) 
eBody) 

all expressions e1, ... , eN and eBody are evaluated in parallel, and the value of eBody may 

be returned as soon as it is available, even if the other expressions have not finished 

evaluating. 

• In primitive applications: 

(+ e1 e2) 
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(cons e1 e2) 

all arguments are evaluated in parallel, and some primitives may even return a result 

value before the arguments have finished evaluating (for example, cons and other object 

constructors). 

• In a function application: 

(ef e1 ... eN) 

all expressions are evaluated in parallel; the function (value of ef) may be invoked as soon 

as it is known, and it may even return a result, before the arguments are known. 

• In a conditional expression: 

(if e1 e2 e3) 

the predicate e1 is evaluated to a boolean value, after which one of the expressions e2 or 

e3 is evaluated and returned as the value of the expression. 

In other words, everything is evaluated in parallel, except as controlled by conditionals and 

data dependencies. The semantics are: 

Non-strict: procedures and object constructors may be invoked and even return results 

before all arguments are evaluated to values. 

Not lazy: expressions may be evaluated even if they are not needed for the final result. 

Eager: expressions are evaluated eagerly and in parallel. 

Implicitly parallel: the programmer does not specify what must be done in parallel. 

These semantics are borrowed from the Id programming language [58]. Programs evaluated un

der this regime often show massive amounts of parallelism. As an illustration of the parallelism 

that results from non-strict, eager evaluation, consider the following expression that finds the 

names of all students with a GPA of 4.0. 
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(map (lambda (s) (select s STUDENT NAME)) 
(filter (lambda (s) (== (select s STUDENT GPA) 4.0)) 

(all STUDENT))) 

In a strict implementation, we must build the entire student list (i.e., evaluate (all STUDENT)), 

filter it, and then perform the map. Each operation must execute entirely before the next one 

may begin. With the non-strictness in AGNA, as soon as the first cons-cell in the student list is 

allocated, a reference to it can be returned as the result of (all STUDENT) (shown in Figure 3.1). 

A reference to a student object is stored in the head of the list, while the tail is left empty ( l_ 

in the figure). 

t (all STUDENT) 

first student 

Figure 3.1: First cons cell in student list. 

Construction of the remainder of the student list and the filter operation may then proceed 

in parallel. If the filter operation attempts to read the tail of a cons-cell that is empty (i.e., one 

that contains _1_), then it simply blocks, waiting for a value to be stored there. When the write 

finally arrives, the blocked read operation is notified, allowing the list traversal to continue. 

A similar kind of parallelism also exists between the filter operation, which produces a 

filtered list of student objects, and the map operation, which consumes it. In fact, this form of 

parallelism is possible in AGNA between any computation which produces a data object, and a 

computation that consumes it, not just those involving extent lists, or filtered extent lists. In 

[3], this producer/consumer parallelism, and other forms of parallelism due to non-strictness, 

are shown to be pervasive, even in programs that use traditional algoritluns. 

3.2 Formal Semantics 

The formal semantics of the AGNA transaction language are defined via an abstract reduction 

machine called the FDB Machine1 . The interface to the FDB Machine is exactly that offunction 

dbeval from Section 2.1: it takes a transaction and a database as input, and produces an answer 

1 "FDB" stands for "Functional Database". 
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and a new database as output. Figure 3.2 depicts the overall structure of the process by which 

the FDB Machine reduces (or "executes") a transaction. Input function in maps transaction 

X and database D to initial machine configuration -y0 . Rewrite rules are then repeatedly 

applied, reducing sub-expressions within the transaction, and updating the database. A final 

configuration 1'! is reached when no more rewrite rules are applicable. Finally, output function 

out maps 1'! to a value V (i.e., the answer) and database D'. 

Rewrite rules used by the machine operate only on a core subset of the transaction language. 

This allows the rules to be specified more simply, and to reduce the total number needed by 

the machine. Translation from a transaction in the full language to this "kernel" language is 

performed by the input function. 

(X, D) + GJ ____. 'Yo => 1'1 => . . . => 1'! ____. B -b (V,D') 

Figure 3.2: Operation of the FDB Machine. 

It is important to realize that the translations and reductions included in the semantics are 

part of a machine-independent specification of the language, and not an actual implementation. 

As we shall see in subsequent chapters, the actual implementation will be quite different. In 

the development of the operational semantics, we have chosen clarity over efficiency. 

3. 3 The Kernel Language 

The syntax of the kernel language is shown in Figure 3.3. Eliminated are features of the full 

language that make programs easier to write, but that provide no new expressive power. Below 

we give a scheme for translating from the full language to the kernel language. 
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Transaction 

Block 

Statement 

Definition 

Expression 

SimpleExpr 

Primitive 

Constant 

Block 

(letrec ((Identifier Statement)+) SimpleExpr) 

Definition I Expression 

(define Identifier SimpleExpr) 
( undef ine Identifier) 

SimpleExpr I (SimpleExpr+) 
{Primitive SimpleExpr*) 
(lambda (Identifier*) Expression) 
(if SimpleExpr Expression Expression) 
Block 

Constant I Identifier 

+ I - I drop I abort-transaction I··· 

Boolean I String I Number I nil I abort I 0 

Figure 3.3: Grammar of the kernel language. 

3.4 Translation of Transactions into the Kernel Language 

The algorithm for translating an input transaction into the kernel language first rewrites the 

transaction to a top-level letrec block, and then recursively translates all nested sub-expressions. 

Xact Forms 

The input transaction is rewritten to a letrec block as follows: 

(:xact (letrec 
(define f e1) ((xl (define f el')) 

(define-local x e2) ==> (x e2') 

(type ... ) (x2 (type ... )') 

e3) (x3 e3')) 

x3) 

where el', e2', (type ... )',and e3' are the kernel language translations of el, e2, (type ... ), 

and e3, respectively. Identifiers xl, x2, and x3 are new and unique. Note that the define-local 

construct is eliminated by rewriting it to a binding in the letrec block. 
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Letrec Blocks 

Multiple expressions in the body of a letrec block are eliminated. For example: 

(letrec ((c (allocate LIST))) 
(update c LIST HD 1) 
(update c LIST TL nil) 
c) 

is rewritten to: 

(letrec ((c (allocate LIST)) 

c) 

(x1 (update c LIST HD 1)) 
(x2 (update c LIST TL nil))) 

Identifiers x1, and x2 are new and unique. 

Simple Expressions 

In certain constructs, letrec blocks are introduced to simplify sub-expressions to simple sub

expressions (identifiers or constants). For example, the conditional: 

(if e1 e2 e3) 

is rewritten to: 

(letrec ((x e1)) 
(if x e2 e3)) 

Also translated in this manner are: arguments to primitive functions, all expressions of appli

cations of user-defined functions, and the value expressions of define forms. Also, the body 

expression of a letrec block such as: 

(letrec ((x1 e1)) 
e2) 

is rewritten to: 

(letrec ((x1 e1) 
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(x2 e2)) 
x2) 

Identifier x2 is new and unique. The motivation for these transformations is that they simplify 

the specification of rules (given in Section 3.6) for error propagation and reduction of letrec 

blocks. For example, we no longer need to specify error propagation from the predicate of a 

conditional. 

Higher-Order Primitive Functions 

All higher-order uses of primitive functions are eliminated. For example, a partial application 

of a primitive function such as ( + 5) below: 

(map (+ 5) 1) 

is rewritten to: 

(map ((lambda (x y) (+ x y)) 5) 1) 

This transformation ensures that primitive functions in the kernel language are always applied 

to a full set of arguments. 

List Comprehensions 

List comprehensions are rewritten according to the following scheme (for full details, please 

refer to [47]): 

(all e (where epred) qi ... q .. ) => (if epred (all e q1 .. . q .. ) nil) 

(all e) => (cons e nil) 

Procedure flatmap, which flattens a list of lists into a single list by appending all the compo

nents, is defined as follows: 

(define (f latmap f 1) 
(if (nil? 1) 

nil 
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(append (f (hd 1)) (flatmap f (tl 1))))) 

Object Allocation 

An allocate expression such as: 

(allocate LIST) 

is rewritten to: 

(allocate-object liat 2) 

Allocate-object is the primitive procedure that performs object allocation, list is the unique 

numeric identifier of the LIST type, and 2 is the number of fields in the new object. The unique 

identifier associated with each type and the number of fields of a type are part of the meta

information maintained by the system, which we describe in Section 3.7. For now, type ids and 

field offsets can be viewed as constants inserted by the translation process. 

All Expressions 

An all expression such as: 

(all ENROLLMENT) 

is rewritten to: 

(extent-of enrollment) 

Procedure extent-of is a primitive that returns the extent list of a type. 

Select, Update, Insert, and Delete Forms 

A select expression such as: 

(select c LIST HD) 

is rewritten to: 
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(select-field c liat 0) 

Select-field is the primitive procedure that performs field selection, list is the numeric type 

identifier, and O is the (zero-based) field index. Update, insert, and delete are translated in a sim-

ilar manner, using primitives update-field, insert-in-field, and delete-from-field, respectively. 

For efficiency, multi-valued fields in persistent objects in the AGNA implementation do not 

use the general list representation, but rather a compact internal format. 2 This has implications 

with regard to sharing. For example, when a multi-valued field f of a persistent object o is 

updated to, say, a persistent list 1, the elements of 1 are stored in o using this compact internal 

representation (see Figure 3.4). When the field value is read in subsequent transactions, a new 

list is built in the volatile heap and returned. Because the value stored for f is not simply a 

reference to 1, but a separate representation of the collection, field insertions and deletions in 

subsequent transactions do not modify the contents of 1. Also, updates to the structure of 1 

(e.g., adding a new element to the end of the list in a subsequent transaction) do not alter the 

value off. 

o: 

• • • 

on 

Figure 3.4: Building of multi-valued field collection. 

Unlike the actual AGNA implementation, we do use the general list representation for field 

collections in the formal semantics because here we are more concerned with clarity than ef

ficiency. We model the lack of sharing illustrated by the example above by explicitly copying 

lists before they are installed in multi-valued fields, and also before they are returned to field 

readers. For example, an update such as: 

(update c COURSE PREREQS 1) 

is rewritten to: 

(update-field c courae 1 (copy-list 1)) 

2 We describe this internal format and the rationale for it in Chapter 5. 
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and a field selection such as: 

(select c COURSE PREREQS) 

is rewritten to: 

(copy-list (select-field c courae 1)) 

Array Manipulation 

Array primitives are rewritten as follows: 

(allocate-array ezpr) => (allocate-object array ezpr) 

(update-array object indez value) => (update-field object array indez value) 

(select-array object indez) => (select-field object array indez) 

These translations rewrite operations on arrays to the corresponding generic object manipula

tion primitives. 

Invert Forms 

An invert form such as: 

(invert STUDENT NAME "John E. Smith") 

is rewritten to: 

(invert! atudent name-poaition "John E. Smith") 

Invert! is the primitive function that implements <=> field inverses. Its arguments are a type 

id, field offset and field value, and it returns the object with the specified field value, if one 

exists, or a special null object otherwise. A similar function invert2 implements multi-valued 

field inverses. 
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Insert-list and Delete-list Forms 

An insert-list form such as: 

(insert-list c COURSE PREREQS secs-core-courses) 

is rewritten to: 

(letrec ((object c)) 

(f oreach eecs-core-courses 
(la.mbda (new-member) (insert object COURSE PREREQS new-member)))) 

Procedure foreach is like map in that it applies a procedure to each element in a list, but unlike 

map in that it returns ()instead of a list of results. 3 Delete-list is rewritten in a similar manner. 

Nested Function Definitions 

All nested la.mbda expressions are named and lifted out into closed, local bindings in the top-level 

letrec block by a process known as lambda-lifting [46]. For each la.mbda expression, this entails: 

(1) adding to its formal parameter list all free variables (except references to top-level database 

names), (2) lifting the function to a local binding of a new, unique name, and (3) replacing all 

uses of the function by an application of it to its free variables. For example, a letrec block 

such as: 

(letrec ((f (la.mbda (x) (+ x y))) 
(y e1)) 

f) 

is rewritten to: 

(letrec ((f (f1 y)) 
(y e1)) 

f) 

Also, a binding of new, unique identifier f1 to: 

(la.mbda (y x) (+ x y)) 

3 
() is the only value of type void, and has no useful operations defined on it. It is used as the return value 

of an expression that is executed for its side-effects, not the value it produces. 
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is added to the top-level letrec block. 

Summary 

The FDB Machine maps an input transaction X and database D to the answer V and a new 

database D'. Operation of the machine consists of three separate phases: (1) translation of X 

and D to /o, the initial machine state; (2) reduction of the transaction via repeated application 

of rewrite rules to expressions in the machine state; and (3) formation of the answer V and new 

database D' from the final machine state. The first step is performed by the input function, 

and includes the rewriting of X to an equivalent transaction in the kernel language, a core 

subset of the full language. In this section we have described the translations used by the input 

function in the rewriting of X. In the remainder of this chapter we describe the machine state, 

additional actions performed by the input function, the rewrite rules, and the output function. 

3.5 The FDB Machine 

As stated earlier, the FDB Machine repeatedly applies rewrite rules to reduce a transaction 

relative to a database. Each application of a rewrite rule maps a machine state Ii to /i+l• 

reducing some sub-expression of the transaction. The state of the machine consists of four 

components: 

1. The transaction. This describes the computations that remain to .be performed. 

2. The unique identifier associated with the transaction, assigned by the input function. 

Transactions are executed in a serializable order and the identifier associated with a 

transaction can be thought of as its position in this ordering. 

3. The database against which the transaction is executed. 

4. Five collections used to accumulate deferred updates during reduction of the transaction. 

These updates are installed in the new version of the database by the output function. 

The third component, the database, consists of: (1) a top-level environment p, which maps 

names to values; and (2) a heap u, which maps object identifiers to values. Object identifiers 

are used only internally, and are not the same as program identifiers. Data objects in u are 

represented as follows: 
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where t is a type tag4 , i is the number of fields, ¢ is the unique identifier of the transaction 

that allocated the object, and v10 through VJ,_ 1 are field values. 

Both the top-level environment and heap of a database are tables that map identifiers to 

values (see Figure 3.5). The tables also include a new value column used in update transactions 

to record identifier and object values in the new version of the database. We use notation 

p.,(:i:) to refer to the value bound to top-level identifier :i:, and Pn(:i:) to refer to the new value. 

Similarly, u.,(o) refers to the value bound to object identifier o, and un(o) to the new value. 

identifier value new value 
x 259 J_ 

p: 
y 023 J_ 

... 

object-id value new value 

045 (list 2 rP Vhd Vt!) (list 2 ¢i J_ _l_) 
u: 

019 (course 3 ¢ Vna.nie Vprereq• Vunit•) (course 3 ¢i J_ J_ _l_) 
... 

Figure 3.5: Top-level database environment (top) and object heap (bottom). 

The fourth component of the machine state contains collections that are used during re

duction of the transaction to accumulate deferred updates. Database updates performed via 

define, undefine, and update are recorded directly in (the new value columns of) p and u during 

the reduction process, while objects to be inserted into or dropped from type extents, and 

objects to be inserted into or deleted from field collections are accumulated in collections adds, 

drops, inserts, and deletes, respectively. Possible violations of the uniqueness of inverse field

mappings, resulting from new values of object fields for which unique inverses are maintained, 

are accumulated in collection constraints. 

These deferred updates and constraint checks are processed by the output function after the 

machine reaches a halting configuration. Such updates and constraint checks are not performed 

during the reduction process for two reasons. First, deferring them to the output function 

greatly simplifies specification of the rewrite rules. Second, some sort of mechanism for deferring 

updates is required to implement such things as field insertions and deletions correctly. (Recall 

4 While t is actually a numeric type tag, here we will use symbolic tags such as list or student for readability. 
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from Section 2.4, it must be as if all deletes in an update transaction were performed prior to 

the first insert.) 

Initial machine state ; 0 is produced by input function in, whose pseudo-code is shown in 

Figure 3.6. For a transaction (:z:act s 1 ••• sm.) and database {p, a'), in returns the following initial 

state: 

{${1etrec {{z1 s~) ... (zn s~)) Zn), CJ>, {p', u'), C) 

where: 

• $ is a marker used by the rewrite rules to track expressions to be evaluated; 

• Cletrac ((:z: 1 sD ... (:z:,. s~)) :z:,.) is the kernel language version of the original transaction in 

which all letrec-bound identifiers have unique names; 

• CJ> is the unique identifier assigned to the transaction; 

• p' and u' are updated versions of p and u in which all top-level identifier and object field 

values in the new version of the database are undefined; and 

• C is the set of collections for deferred updates and constraint checks, all initially empty. 

Reduction proceeds from this initial state, and terminates when the machine reaches a 

configuration to which no rewrite rules apply. The transaction expression is initially a letrec 

block and, as we shall see in the next section, it remains a letrec block throughout the reduction 

process, unless the transaction is aborted, in which case it is rewritten to a special abort value. 

We use the top-level block as a place to accumulate transient bindings introduced via nested 

blocks and function applications {after appropriate renaming of identifiers). In the final machine 

state if of a successful transaction, all expressions in the top-level block are reduced to values 

(i.e., expressions for which no further reduction is possible). 

Given the final machine state as input, the output function produces the answer (i.e., the 

value of the transaction) and a new database. Determining the answer is straightforward: it 

is the value in the body of the final top-level letrec block. The new version of the database is 

formed in the new value columns of p and u by processing updates in the adds, drops, inserts, 

and deletes collections, and migrating to the new version old values of top-level identifiers and 

persistent object fields not redefined by the transaction. For pure queries (no updates), the 
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in(X,(p,u)) 
{ 

} 

; ; Set values of identifiers and object fields to "undefined" 
; ; in new version of database. 
For each identifier :z: in p: p,,.(:z:) +-- _l_; 

For each identifier o in u: u,,.(o) = u .. (o); 
For each field f in u,,.(o): u,,.(o).f +-- _l_; 

,, Initialize deferred update and constraint collections. 
C.adds +-- 0; 
C.drops +-- 0; 
C.inserts +-- 0; 
C.deletes +-- 0; 
C.constraints +-- 0; 

;; Assign unique id to current transaction, translate 
,, transaction to kernel language, rename letrec-bound identifiers 
,, uniquely, and return initial machine configuration. 
Let <I>= p .. (transaction-id)+ 1 

Let E = alpha-rena.me-letrec-ids(p,to-kernel-language(X)) 
Return ($E,<I>,(p,u),C); 

Figure 3.6: Pseudo-code of input function. 

new database is equal to the old one. If the transaction expression in the final machine state 

is the abort value, then that is the answer returned, along with the old database. We give a 

precise definition of the output function in Section 3.8. 

3.6 Rewrite Rules 

Motivated by the Contextual Rewriting System of Ariola and Arvind [2], we use the following 

notation to describe a rule: 

which reads: "If preconditions C1 through Cn hold, then an expression E may be rewritten to 

expression E', with additional machine state updates U1 through Um." We omit the horizontal 

line when n is zero. We use meta-variable v to denote any value (constant or object identifier); 

c any constant; e any expression; r and s any statement; :i: and y any identifier; t any numeric 

type identifier; o any object identifier; and n, m, and j any integer. 

Two markers are used in the reduction process. We have already seen one, $, which is 

used to mark expressions to be reduced. Such expressions can be thought of as "scheduled" for 
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reduction. Some expressions marked with$, such as lambda, can be rewritten directly to values. 

For others, however, such as a function application, the$ is fust propagated to sub-expressions, 

some or all of which must be reduced to values before the expression itself can be reduced. For 

this latter type of expression we mark it with a • after the $ is propagated to sub-expressions. 

One can think of • as marking expressions that are "executing". 

Definitions 

$(define :z: e) =>•(define :z: $e) 

•(define :z: v) => (); Pn(z) - v 

$(undefine :z:) => (); Pn(z) - T 

In the first rule, the marker is simply propagated to component expression e. In the second and 

third rules, the value of :z: in the new version of the database is set to v and T, respectively. 

Identifiers bound to T in Pn are removed from p by the output function. Inconsistencies such 

as multiple definitions of the same identifier are detected statically, and thus do not have to be 

handled here. 

Constants 

$c => c 

This rule states that constants are self-evaluating. 

Procedures 

A lambda expression is rewritten to a closure object, which encapsulates a function. As we shall 

see soon in the rules for applications, closure objects may also include an environment containing 

arguments supplied via partial applications. No environment is needed in closures produced by 

the rule above because the lambda-lifting transformation performed in the translation to the 

kernel language ensures that procedure bodies contain no free variables. 

To enhance readability, for closures we use a representation different from the standard 

(ti </J Vj0 ••• VJ;_J. 
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Conditionals 

•{if false e2 e3) => $e3 

The first rule simply propagates $ to the predicate expression, while the second and third 

rules select the then ( e2 ) and else ( e3 ) expressions of a conditional after the predicate has 

been reduced to a boolean value. Note that the rules prevent evaluation of e2 or e3 until the 

conditional has been rewritten by the first rule, and the predicate is reduced to a value. 

Letrec Blocks 

${letrec {{:i:1 s1) ... (:i:n sn)) s) => •{letrec {(:i:1 $s1) ... (zn $sn)) $s) 

This rule propagates the marker to all component statements, thus demonstrating a major 

source of parallelism in the language, as all statements may execute concurrently. An additional 

rule for letrec blocks given below allows a block immediately nested within another to be 

flattened into the outer block: 

•{letrec ((:i:1 s1) •(letrec ((:i:1 s1) 

(:i:i •(letrec ((Y1 r1) (:Ci 1') 
(Y1 r1) 

1')) (Yn 1'n) 
... ) ... ) 

s) s) 

Name clashes between the two blocks are not possible because of the unique renaming of letrec

bound identifiers in the original transaction body and in procedure bodies during application 

(described below). 

Identifiers 

Pv(z) = v 

$:i: => v 

'Yi= (•(letrec ( ... (:i: v) .. . ) y), iJ>, (p,u), C) 
$:i: => v 
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These rules allow a program identifier to be replaced by the value to which it is bound. In 

the first rule, :c is a top-level database name; note that this rule encodes the principle that all 

database identifiers are looked up in the old environment (i.e., Pv)· The second rule replaces a 

local identifier bound in the top-level letrec block with the corresponding value. At most one of 

these rules can apply for a given identifier :c because of the unique renaming of local identifiers. 

Applications 

The$ is propagated to all component expressions, which may execute in parallel. An application 

may be rewritten when the first subexpression reduces to a closure. If the arity of the function 

is not satisfied, then a new closure is created: 5 

0 < j < m 
•((closure (>.:i:1 ... :cm.e) ei ... ei) ei+l .. . ei) 

JJ. 
•(letrec ( (Yi+l ei+l) ... (Yi ei)) 

(closure ( A:C1 ... :Cm .e) ei ... ei $yi+l ... $yi)) 

Here the arity is not satisfied because j, the number of arguments received so far ( ei through 

ei from previous applications, and ei+i through ei from the current application), is less than 

m, the number of arguments to the function. The application is rewritten to a letrec block in 

which argument expressions ei+l through ei are bound to new, unique identifiers Yi+l through 

Yi. The value of the block is a closure object whose environment includes the previous set 

of supplied arguments (e1 to ei), as well as the new identifiers bound to the new argument 

express10ns. 

If the function arity is satisfied, then execution of the body may begin: 

•(letrec ((:c~ e1) ... (:c~ em) 
(:c' $e')) 

$:c') 

Expression e1 is a copy of e in which (1) formal parameters :Ci are replaced by new, unique iden

tifiers :c'i, and (2) all local variables bound in letrec blocks inside e are a-renamed consistently 

to new, unique identifiers. 

These rules capture the eager, non-strict behavior of procedure applications: all expressions 

of an application are evaluated eagerly and in parallel; the body expression may be evaluated 

6 To prevent this rule from becoming too wide, the expression to which the application is rewritten is shown 
below the application instead of alongside it. 
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as soon as it is available, and it may even return a result, before all argument expressions have 

reduced to values. 

Primitive Functions 

$(primop ei ... en) => •(primop $e1 ... $en) 

All arguments of a primitive operation may execute in parallel. While we don't list them all 

here, we assume rules for the reduction of all primitive operations. For example, the following 

two rules describe how not is rewritten: 

•(not true)=> false 

•(not false)=> true 

Similar rules exist for other primitive arithmetic, relational, and logical functions. If a primitive 

function is applied to an argument of the wrong type (e.g., not applied to a number), then the 

machine becomes "stuck" in the sense that it will eventually reach a state in which some sub

expressions of the top-level block are not reduced to values (the erroneous application will be 

one such sub-expression), but to which no rewrite rules apply. Other errors, such as undefined 

identifiers, violations of the single-assignment semantics, etc. also cause the machine to get 

stuck in a similar manner. The output function recognizes these situations and aborts the 

transaction. 

Object Allocation 

•(allocate-object t i) => o; uv( o) - (t i <I> J_o ... J_i-1), 

adds - adds + o 

An object of type t with i fields, all initially undefined, is allocated in the heap and bound to 

new, unique identifier o. Nate that the transaction id of the object is set to <I>, the id of the 

current transaction. A reference to the new object is inserted into collection adds. Output 

function out examines this collection of newly-allocated objects at the end of the transaction, 

and for each object of a type with an associated persistent extent, it inserts the new object into 

the extent. Thus, the updated extent is only visible to subsequent transactions. 
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Dropping An Object 

•(drop o) => (); drops+--- drops+ o 

A reference to the object to be dropped is added to collection drops; deletion of the object is 

performed by the output function. 

Field Selection 

lTv(o)=(ti</J ... Vj ... ), O~j<i 

•(select-field o t j) =>vi 

Here the jth field value is selected from object o. Note that the precondition precludes ap

plication of this rule when the j th field is undefined (i.e., ..l). In other words, reduction of 

select-field is permitted only after the field has been assigned a value. Also note that there 

is no way for select-field to access field values of objects in the new version of the heap (i.e., 

a-n)· Finally, this rule illustrates the non-strictness of objects in AGNA, as selection of the jth 

field of an object is allowed even though other fields may not yet be defined. 

Field Update 

A field update of an object allocated in the current transaction (i.e., transaction id <I>) inserts 

the field value into the object in the old version of the heap (i.e., ov), making it accessible to 

field readers in the current transaction: 

lTv(o) =(ti <I> ... ..lj ... ), 0 ~ j < i 
•(update-field o t j v) => (); a-v(o) +---(ti <I> .. . v .. . ) 

if unique-inverse(t, j) then 
constraints +--- constraints + (t, j, v) 

If the field at offset j has a unique inverse (i.e., a field declared <=> or <=>*, identified by 

predicate unique-inverse), then a three-tuple consisting of the type id, field off set, and field 

value is added to collection constraints. The check to ensure that the new field value is in fact 

unique is performed by the output function. If a violation of the uniqueness constraint is found, 

then the transaction is aborted. 

A field update of a persistent object, on the other hand (i.e., one with a transaction id not 

equal to <I>), inserts the field value into the object in the new version of the heap (i.e., on), 

where it is not visible to the current transaction. 
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CTn(o) =(ti¢ ... _lj ... ), 0 ~ j < i, ¢ f Cl> 

•(update-field o t j v) => (); un(o) ~(ti¢ .. . v .. . ) 
if unique-inverse( t, j) then 

constraints ~ constraints + (t, j, v) 

Note that in both rules, the preconditions require the jth field to be undefined, thus enforcing 

the single-assignment semantics. Here also, a three-tuple is added to constraints if the field has 

a unique inverse. 

Field Insertion and Deletion 

lTn(o) =(ti¢ ... _lj ... ), 0 ~ j < i, ¢ f Cl> 

•{insert-in-field o t j v) => {); inserts~ inserts+ (o, j, v) 

A reference to the object, the field offset, and the field value are packaged into a tuple, and 

inserted into collection inserts. Deletion from a field collection (using delete-from-field) is 

rewritten in a similar manner. As with other deferred updates, insertions and deletions are 

performed by the output function at the end of the transaction. 

Again, note that the preconditions require the jth field to be undefined, thus preventing 

insertion into or deletion from a field that has already been updated via update. They do not 

prevent update from being used on a field after an insertion or deletion, however. Inconsistent 

updates such as these are detected by the output function, and the transaction is aborted. 

Finally, note that the preconditions also prevent insertions and deletions on fields of ephemeral 

objects (transaction id<!>). 

Explicit User Abort 

•(abort-transaction v) => abort 

•{letrec ( ... {Xi abort) ... ) e) => abort 

The first rule rewrites abort-transaction to a special abort value. This value is propagated 

via the second rule to the top-level letrec block where it ultimately becomes the value of the 

transaction. For our purposes here, the error message argument to abort-transaction is not 

important and thus we ignore it. Additional error values such as those for type errors and 

violations of the single-assignment semantics, could be introduced explicitly and propagated to 

top-level in a similar manner, though we have not done so here. 

77 



Summary of Parallelism in Transaction Language 

There are three main sources of parallelism in the transaction language: letrec blocks, appli

cations of user-defined functions, and applications of pre-defined functions. As illustrated by 

the rewrite rules, all sub-expressions of these constructs are evaluated eagerly and in parallel. 

Furthermore, this parallel evaluation regime is applied recursively to each sub-expression, thus 

resulting in an abundance of fine grain parallelism. 

3. 7 Meta-Data 

The translation of AGNA transactions into the kernel language given in Section 3.4 utilizes 

information describing the types and fields of a database (i.e., the meta-data) such as unique 

type ids and field offsets. We assume that this information is available to the translation process. 

In practice, the meta-data may be stored in a separate database, but for our purposes here, we 

have chosen to store it in the main database in the form of TYPE and FIELD objects. This is also 

the approach that we have taken in the actual implementation of AGNA. 

A type form such as: 

(type DEPARTMENT (extent) 
((id <=> INTEGER) 

(name <=> STRING))) 

is translated to: 

(letrec ( (f1 (make-field 0 "id" "<=>" INTEGER ... ) ) 
(f2 (make-field 1 "name" "<=>" STRING ... ) ) ) 

(make-type "DEPARTMENT" true (cons f1 (cons f2 nil)) ... )) 

This translation is meant only to sketch a rough picture of how type forms may be translated; 

for our purposes here, the precise details are unimportant. The translation utilizes make-field 

to create field objects from the field positions, names, kinds, etc. and make-type to create a type 

object from the type name, whether an extent is to be maintained, the list of fields, etc. The 

extent list for the type is stored in a field of the type object named extent-list. We assume that 

each type and field object has associated with it a unique numeric identifier, which is generated 

and stored in the id field of the object by constructor make-field or make-type. 
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3.8 The Output Function 

Output function out maps a final machine configuration to a composite result consisting of the 

answer and a new database. Pseudo-code for the function is shown in Figure 3. 7. Out first 

checks the machine state for the following three conditions which cause the transaction to be 

aborted: 

1. Final expression E is itself the value abort. This is the case when a transaction is explicitly 

aborted via abort-transaction. 

2. E is a letrec block, but not all sub-expressions are reduced to values. This is the case 

when an error (e.g., a type error) prevents the machine from reducing all sub-expressions 

fully. 

3. Both update and insert/delete were used on the same field of a persistent object field. For 

the reasons outlined in Section 2.4, this is viewed as an inconsistent specification. 

If at least one of these conditions holds, the transaction is aborted by returning the abort value 

and the old database, after a garbage-collection to remove heap objects inaccessible from u. 

Next, all undefined components of the new version of the database are assigned the corre

sponding values from the old version. For example, if a top-level identifier in the old version of 

the database were not redefined by the transaction, then in this step the new version automat

ically inherits the old value. Deferred updates accumulated in the drop, add, delete, and insert 

collections are then performed in the new version of the database. 

Installation of deferred updates may cause the uniqueness of inverse field-mappings to be 

violated, e.g., two new student objects may have the same name. Such violations are detected 

by performing inversions for all new values of unique fields which, along with the object type 

and field position, are stored in the constraints collection. If more than one object is found 

with a given field value, then the transaction is aborted. 

At this point in out, we are assured that the transaction will not need to be aborted. Next, 

all identifiers undefined by the transaction in the new environment are located and their values 

in Pn are set to 1-.6 Finally, the new version of the database is installed in Pv and f.'Tv, the 

transaction id seed is incremented by one, and the result value and new database are returned. 

6 If the rewrite rule for undefine had set the value of such identifiers to l_ in p ... , then they would not be 
distinguished from identifiers in the old version of the database that were not redefined. Thus, the rule binds 
undefined identifiers to T. 
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out C(E, of>, (p, u), C)) 
{ 

} 

, , Abort transaction if: (1) E is "abort"; (2) E not reduced fully (e.g., 
,, because of an undefined identifier); and (3) insert/delete - update 
,, inconsistency. 
if ( E==abort OR E!=(letrec ((x1 v1) ... (xn vn)) v) OR 

update-insert-conflict?(p.(insert-list),p) OR 
update-delete-conflict?(p.(delete-list),p) ) Then 

Return (abort,gc((p,u))); 

,, Move to new version of database identifier and field values 
, , not redefined by transaction. 
For each id :z: in p: if p,.(:z:) = l_ Then p,.(:z:) +--- Pw(:z:); 
For each id o in u: if u,.(o) = l_ Then u,.(o) +--- u.(o); 

For each field f in u,.(o): 
if u,.(o).f = l_ Then u,.(o).f +--- u.(o).f; 

; ; Process deferred updates in C: drops, adds, inserts, and deletes. 
;; Drops: 
For each object o in drops: Let t = (invert TYPE ID type-id-of-object(o)) 

If type-extent(t) Then 
u,.(t.extent-list)+-remove(o,u,.(t.extent-list)); 

; ; Similarly for add11, insert/I, and deletes. 

,, Check uniqueness of inverse-mappings; abort if not unique. 
For each triple (t ,pos, v) in constraints: 

if inverse-not-unique?(t,pos,v) Then 
Return (abort,gc((p,u))); 

;; Set to l_ all identifiers undefined by transaction (i.e., 
; ; identifiers bound to T in p,.). 

For each identifier :z: in p,.: If p,.( :z:) = T Then 
p,.(:z:) +--- l_; 

;; Finally, install new version of database, gc, increment transaction 
; ; id "seed", and return result v (assuming E=(letrec ((x1 v1) ... (xn vn)) v)). 
For each identifier :z: in p: Pw(z) +--- p,.(:z:); 
For each identifier o in u: u.(o) +--- u,.(o); 
p.(transaction-id) +--- p.(transaction-id)+ l; 

Return (v,gc((p,u))); 

Figure 3.7: Pseudo-code of output function. 
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3.9 Example: Persistent Object Update 

Let us now examine the reduction of the following transaction that increments by three the 

units value of the course object bound to c1: 

(:x:act 
(update c1 COURSE UNITS (+ 3 (select c1 COURSE UNITS)))) 

An equivalent kernel language expression is: 

(letrec ((x1 (select-field c1 caurae 2)) 
(x2 (+ x1 3)) 
(x3 (update-field c1 caurae 2 x2))) 

x3) 

Here we use the notation course to represent the numeric identifier of the course type. Constant 

2, the third argument in the calls to select-field and update-field, is the offset of the course 

units field. Let us call the expression above E. The initial machine state /o, produced by the 

input function, is: 

($E, 43, (p, u), C) 

Components of the initial machine state are: expression E, marked for reduction; 43, the unique 

id assigned to the transaction, generated from the seed bound to transaction-id in p (shown be

low); the database; and C, collections for deferred updates and constraint checks, all initialized 

to 0. The initial state of the database is: 

p: 

aJf._ec t-iti_ value new va_l_ue 

u: 
023 j_caurse 3 _!I!_ "A!_g_orithms" nil 9l __{course 3 ¢_lo_ j_ J_l 
019 j_enrollment 3 ¢ ''If" 014 023} __{enrollment 3 ¢ j_ J_ _l_} 
011 Jenrallment 3 ¢ UC'' 015 023} IenroTrment 3 ¢ J_ J_ i:1 
... 

The first reduction step propagates the $ to all sub-expressions of the top-level block: 

•(letrec ((x1 $(select-field c1 caurae 2)) 
(x2 $(+ x1 3)) 
(x3 $(update-field c1 caurae 2 x2))) 

$x3) 
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Next we propagate the marker into the right-hand sides of letrec bindings: 

•Cletrac ((x1 •(select-field $c1 $course $2)) 
(x2 •(+ $x1 $3)) 
(x3 •(update-field $c1 $course $2 $x2))) 

$x3) 

Then, we rewrite the references to top-level identifier c1 and the numeric constants: 

•Cletrac ((x1 •(select-field 0 23 course 2)) 
(x2 e(+ $x1 3)) 
(x3 •(update-field 0 23 course 2 $x2))) 

$x3) 

Note that the identifier lookups were performed in p11 , the old version of the database. The 

field selection can now be rewritten: 

•Cletrac ((x1 9) 
(x2 •(+ $x1 3)) 

(x3 •(update-field 0 23 course 2 $x2))) 
$x3) 

Next we rewrite the addition and substitute for x2: 

e(letrec ((x1 9) 

(x2 12) 
(x3 •(update-field 023 course 2 12))) 

$x3) 

Finally, after reducing the field update and substituting for x3 we get: 

•(letrec ((x1 9) 

(x2 12) 
(x3 ())) 

()) 

with the following heap in which the units field of course 0 23 is updated: 

rT : 

o!J..ect-~ v~ue new value 
023 Icourse 3 ¢ "A!g_orithms" nil 9} Icourse 3 ¢ _l_ _l_ 12} 
019 1enrollment 3 ¢ "B" 011 023} 1enrolfment 3 ¢ _l_ _l_ _l_} 
011 lenrollment 3 ¢ "C" 015 0231 i_enro!_l_ment 3 ¢ J_ J_ J_l ... 
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Note that the update is recorded in the new vers10n of the heap, while the old value still 

remains accessible to the transaction. The output function returns the answer O and the 

updated database shown below. 

p: 

&_en till_e r vtiI_ue new va]_ue 
cl 023 _lo_ 

transact10n-ici_ 43 _J:_ 
... 

u: 

o~ct-~ v~ue new v~ue 
0l3 ]_course 3 r/1 "A!g__orithms" nil 121 ]Course 3 r/1 "Algorithms" nil 121 
019 ]_enrollment 3 rjJ "B" ou 023I _{_enrollment 3 r/1 "B--,,- 014 0231 

011 _{enrollment 3 rjJ "C" 015 023) _ _{_enrollment 3 r/1 "C--,,- 015 02:J 
... 

This example also illustrates the sharing of objects in AGNA: enrollment objects bound to 019 

and 0 11 contain references to the course object, and the update is visible to both in the new 

database. 
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Chapter 4 

Compilation of Agna Transactions 

In the previous chapters, we described the AGNA language model and argued that it contains 

much implicit parallelism. In this chapter, we outline our approach to exploiting this parallelism 

by compilation to fine grain threads. Compilation of AGNA transactions occurs in three major 

phases- source-to-source translation of the original transaction text, translation into dataflow 

program graphs, and translation into code for a multi-threaded abstract machine called P-RISC. 

Substantial code optimizations are performed at each stage. 

We begin this chapter with a discussion of the motivation for fine grain parallelism and 

data-driven computation. Then, we describe each of the three phases of compilation, in turn, 

including a presentation of the P-RISC abstract machine. In the next chapter, we shall see how 

the P-RISC machine, the target of compilation, is mapped to a concrete multiprocessor. 

4.1 Rationale For a Fine Grain, Data-Driven Model 

Central to our strategy for exploiting the implicit parallelism of the transaction language is a 

computational model that utilizes fine grain parallelism with data-driven execution, both for 

normal computation as well as for disk 1/0. Research into dataflow architectures indicates that 

this is an effective way to mask the long memory latencies inherent in a parallel computer [3, 4]. 

The analysis and experimental results may be summarized as follows. 

Parallel MIMD machines are dominated by asynchronous events. Even on uniprocessors, it 

is already well recognized that asynchronous events are more efficiently handled by an interrupt

driven model rather than one that uses polling, because it avoids busy-waiting. An interrupt is 

a simple example of data-driven scheduling- when data becomes available, an interrupt occurs, 

and a continuation is specified (via an interrupt vector), which is the thread to be activated to 
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accept the data. 

Dataflow models of computation take this idea to the limit- all scheduling is uniformly 

data-driven. All long-latency (asynchronous) operations are structured as split-phase actions. 

Examples of long-latency operations include: memory reads across a parallel machine, disk 

transfers, procedure calls, requests for resources (such as heap allocation), etc. In the first 

phase, a request is sent from point A to point B in the machine, carrying with it three pieces 

of information: 

( 1) the continuation contB in B that will handle the request; 

(2) the arguments for the request, and 

(3) the continuation contA in A that will handle B's response. 

When the request arrives at B, the continuation contB is activated (scheduled), which uses 

the arguments to perform the remote computation. When this is complete, the second phase 

occurs: B sends the result back to A, accompanied by contA. When the response arrives at A, 

the continuation contA is scheduled to compute using the result. Thus, a natural coroutining 

structure is inherent in the model. 

The benefit of split-phase actions is that processor A does not have to block while waiting 

for B's response- it is free to perform other computations in the interim. Further, the benefit of 

passing continuations around is that a continuation directly identifies the thread to be activated, 

making scheduling very efficient. Finally, a processor can have multiple split-phase actions 

outstanding, and messages do not have be processed in any particular order. These features 

are invaluable in achieving high processor utilization. 

Traditionally, this model has been used in dataflow machines to mask the long latencies of 

inter-node messages. In our model, we also use it to mask the long latencies of disk requests 

by allowing a processor to execute other threads while some are blocked on disk I/O. A further 

possibility, which we do not explore in this work, is in a model that permits multiple outstanding 

disk requests, it may be possible to reorder them to improve average access time. 

Fine grain threads are useful for scalability and load balancing. The performance of a parallel 

system should improve if we can provide more parallel resources (more processors, memories, 

and disks). Having small threads ensures that even with more processors, each processor still 

has enough threads to keep it busy while some threads are blocked. Further, small threads give 

more flexibility in the distribution of work across the machine. 
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Connection With The AGNA Language Model 

The above argument for fine grain threads can be made independently of the language model. 

However, it is very difficult to compile to such threads from traditional languages. Since they 

are usually tied inextricably to an imperative model, partitioning into parallel threads without 

introducing read-write races (due to side-effects) requires complex dependency analysis, which 

is difficult in all but the simplest programs. 

For declarative languages, on the other hand, the lack of side-effects makes it particularly 

easy to compile into very fine grain threads. In the terminology of parallelizing compilers, there 

are no anti-dependencies in the language. We refer the reader to [3] for substantial evidence that 

compilers for declarative languages can effortlessly extract orders of magnitude more parallelism 

than is possible with traditional languages. 

4.2 Phase One: Source-to-Source Thanslation 

Phase one of compilation rewrites an input transaction in the full language to one in a core 

internal language similar to the kernel language of Section 3.3. This rewriting of a transaction to 

the core language simplifies the remainder of the compiler by reducing the number of constructs 

it must handle. All of the translations described in Section 3.3 are actually performed by the 

first phase of the compiler, except that the xact form is not eliminated, and more sophisticated 

strategies are employed to translate list comprehensions, inverse-mappings, and operations on 

multi-valued fields and persistent extents to more efficient code. Phase one also performs 

additional translations to eliminate define and undefine, and to insert code to begin and end a 

transaction, and print the result. 

In this section, we describe these additional translations, and discuss the more sophisticated 

strategies for handling list comprehensions, inverse-mappings, and operations on multi-valued 

fields and persistent extents. We also describe a number of significant optimizations that are 

used in AGNA to enhance the performance of list comprehension database queries. 

4.2.1 Sequencing of Transaction Execution 

Added to the original transaction text are calls to library routines to begin the transaction, 

print the result, and end the transaction. A transaction (xact body), for example, is translated 

as follows: 
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(:net 
(seq 

(begin-transaction) 
(print body') 
(end-transaction))) 

Seq is a new construct part of the internal intermediate language that sequentializes execution of 

expressions1 , and body' is a translation of the original transaction body. Top-level expressions in 

the seq form define the three phases of execution of an AGNA transaction: the prologue, during 

which transaction-specific initialization is performed; the body, during which the user-supplied 

portion of the transaction is actually executed and the result printed; and the epilogue, during 

which the transaction's updates, if any, are installed in the database, making them visible to the 

next transaction. We will have more to say in the next chapter regarding the specific actions 

performed during the transaction prologue and epilogue. 

4.2.2 Define, and Undefine 

Bindings in the top-level environment are recorded in the database via objects of the following 

type: 

(type BINDING (extent) 
((name <=> STRING) 
(value=> ANY))) 

The database contains one such object for each top-level name. Define and undefine constructs 

in a transaction are rewritten to code that manipulates these objects. For example, a definition 

such as: 

(define x 10) 

is rewritten to: 

(add-new-binding "x" 10) 

where procedure add-new-binding (and helper make-binding) are defined as follows: 

1 As we shall see in Section 4.3, seq is hyper-6trict in that all computation associated with a component 
expression must complete before execution of the next one begins. 
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(define add-nev-binding 
(lll.lllbda (nil.Ille value) 

(letrec ((b (invert BINDING NAME name))) 
(if (null? b) 

(make-binding name value) 
(update b BINDING VALUE value))))) 

(define make-binding 
(lll.lllbda (name value) 

(letrec ((b (allocate BINDING))) 
(update b BINDING NAME name) 
(update b BINDING VALUE value)))) 

Add-nev-binding applies the nil.Ille inverse-mapping to search for the binding object with the desired 

name. ff the binding does not exist in the database (i.e., (null? b) is true2), then a new one is 

created by constructor make-binding. H the binding does exist, then its value field is updated. In 

either case, the binding of name ( "x") to value ( 10) is added to the new version of the database. 

An undef ine such as: 

(undefine x) 

is translated to: 

(letrec ((b (invert BINDING NAME "x"))) 

(if (null'? b) 
() 

(drop b))) 

Again, the inverse field-mapping on name is applied to search for the desired binding object. H 

the object is not found, then the undefine is silently ignored and () is returned. H it is found, 

then the binding object is dropped from the database. 

Finally, references in a transaction to top-level database names are also rewritten to code 

that manipulates binding objects. A reference to top-level name x, for example, is translated 

to: 

(lookup "x") 

2 Recall that (invert T F v), for a<=> field F, returns a special null object when no object of type Tin 
the database has value v in field F. 

89 



where lookup is a primitive procedure that locates the appropriate binding object and returns 

its value. Procedure lookup could be written in the transaction language and defined as a non

primitive procedure in the database, but that would introduce a boot-strapping problem as 

the lookup procedure itself is required to find the value bound to lookup. The problem could 

be avoided by statically mapping pre-defined objects (including the lookup procedure) to heap 

locations, and resolving all references to such objects at compile-time. While this eliminates 

entirely run-time lookups of pre-defined objects, the overall impact on performance is small 

because lookups are fairly inexpensive (especially repeated lookups of the same identifier). In 

the current version of AGNA, we chose to avoid the complexity of statically mapping pre-defined 

objects to heap locations, and thus lookup is implemented as a primitive procedure. 

The use of ordinary database objects instead of special-purpose data structures to implement 

the top-level environment simplifies both compilation and the run-time system. For example, 

the part of the run-time system that installs updates in the database does not have to handle 

the top-level environment specially. A possible disadvantage is efficiency, since special-purpose 

structures can be tailored to support operations on the top-level environment most efficiently. 

However, as we shall see soon, several techniques used in the AGNA implementation, such as 

indexing, allow operations on the top-level environment to be performed efficiently. 

4.2.3 Inverse Field-Mappings 

In the translation to the kernel language given in Section 3.3, field inversions were rewritten 

to exhaustive searches on extent lists. For an extent with n objects, the complexity of this 

approach is O(n) for both single- and multi-valued inverses. The translation performed by the 

compiler utilizes index structures to increase the efficiency of field inversions. An index is a 

data structure that efficiently maps field values to objects. 

The object storage system on which AGNA is based supports both hash and Btree ("balanced 

tree") indexes. By default, hash indexes are created for all fields with inverse-mappings (i.e., 

*<= and<= fields). This default behavior can be changed, however, by annotations in the type 

declaration. For example, if the student type were defined as follows: 

(type STUDENT (extent) 
((name <=> STRING) 
(status => STRING) 
(gpa => FLOAT) 
(address => STRING) 
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(bdate •<=>INTEGER (index btree)))) 

then two indexes would be created: a hash index on name, and a Btree index on bdate (see 

Figure 4.1). Both index types are dense in the sense that they contain one entry for each 

student object, recording a field value and a pointer to the associated student. In the hash 

index, entries are maintained in a hash table, while in the Btree index, entries are maintained 

in a balanced tree. Non-leaf nodes of the Btree provide a multi-level index to the leaves, where 

the entries are stored in sorted order. 

Btree index 
on bdate field 

I <671013, atudant-ptr> I 

Extent 

hash index 
on name field 

---
I <"John Smith", atudant-ptr>-, 

Figure 4.1: Btree and hash indexes on student objects. 

In the student type above, a Btree index on bdate may be preferred over a hash index because 

of its ability to support range queries as well as "exact match" lookups. For example, the Btree 

index can be used in the implementation of a list comprehension query (as we shall see shortly) 

that finds all students with birthdates in a particular range of values, while a hash index is of 

no use in such a query. This is because the entries in a Btree are maintained in sorted (field) 

order, while entries in the hash table are maintained in hash order. For the name field, on the 

other hand, range queries are probably less likely and the increased efficiency of a hash index 

over a Btree for unique field lookups makes it a more suitable choice. 

Inverse field-mappings are translated to sv-invert and mv-invert, pre-defined procedures 

which use these indexes to implement single-valued and multi-valued inversions, respectively. 

For example, the expression: 

(invert STUDENT NAME "John Smith") 

is translated to: 
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(sv-invert atudent-id name-id "John Smith") 

Procedure sv-invert takes a type id, a field id, and a field value, and returns the object with 

the field value, if one exists, or a null object otherwise. Using a hash index, the complexity 

of sv-invert above is 0(1). Using a Btree index, the complexity of sv-invert is, for almost 

all practical purposes, 0(1) also, though with a larger constant factor. 3 For mv-invert, the 

complexity is O(m) for both types of index, where mis the number of objects with the desired 

field value. 

A quick check is performed at run-time by sv-invert and mv-invert to determine which type 

of index exists on a given field. Though this information could be added as a parameter at 

compile-time, the overhead of the run-time check is insignificant, and by not compiling it in, 

we retain the freedom to change the index structures without forcing recompilation. 

In Chapter 6, we will see the dramatic impact that indexes have on performance. 

4.2.4 Multi-Valued Fields and Type Extents 

In the translation to the kernel language given in Section 3.3, explicit copying of multi-valued 

field and extent lists was introduced to prevent the lists from being shared and modified indi

rectly through some other part of the database. Such copying is not actually necessary in AGNA 

because field collections and extents are stored in a compact internal form, and the general list 

representation is built in the volatile heap only when needed (e.g., when a multi-valued field is 

selected and traversed). We will describe this more compact representation and the rationale 

for it in the next chapter. 

4.2.5 List Comprehensions 

The translation scheme given in Section 3.3 rewrites a list comprehension to nested map and 

append operations. For example, the comprehension: 

(all (cons :x y) 
(:x (ints-from 1 n)) 
(y (ints-from :x n)) 
(where (== 1 (gcd :x y)))) 

3 For example, if nodes in the tree are 8 Kbytes in size (the current node size used in AGNA) and field values 
average thirty-two bytes in length, then a four-level Btree contains almost three billion entries, while a five-level 
tree contains over six-hundred billion entries. Therefore, the number of levels that must be traversed (and hence 
the complexity) is, for all practical purposes, constant. 
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that returns a list of pairs of relatively prime numbers between 1 and n, is translated to: 

(flatmap (lambda (x) 
(flatmap (lambda (y) 

(if (== 1 (gcd x y)) 

(cons (cons x y) nil) 
nil)) 

(ints-from x n))) 
(ints-from 1 n)) 

Recall that flatmap applies a list-producing procedure to each element of a list, and returns an 

appended list of the results. The procedure applied by the outer flatmap produces, for a given 

x, the list of pairs that satisfy the filter (i.e., are relatively prime). As these intermediate result 

lists are produced for each value of x, they are also appended together to form the final result. 

The procedure applied by the inner flatmap evaluates the filter expression for a given x and y, 

and produces a singleton list containing the pair if the filter is true, or nil if it is false. These 

singleton lists are appended together by the inner flatmap to form the intermediate result lists 

which are, in turn, appended together by the outer flatmap. 

While the translation scheme above is simple and elegant, it includes costly construction 

and appending of intermediate result lists. The translation scheme actually used in the AGNA 

compiler avoids this overhead by building the result list directly. This is accomplished by 

extending the tail of the result list as each output element is generated. For example, let us 

assume that le points to the tail (i.e., last cons-cell) of the result list, and that we wish to add 

a new output element (x,y). As shown in Figure 4.2, the result list is extended by allocating 

a new cons-cell le', storing a reference to it in the tail of le, and defining its head to be (x,y). 

Note that the tail of le' is left undefined. This kind of list extension is performed by the 

following function, which adds an element z to the last cons-cell of a list: 

(define extend-list 
(lambda (z le) 

(letrec ((c (allocate LIST))) 
(update c LIST HD z) 
(update le LIST TL c) 
c))) 

After all elements of the result list have been added in this manner, the list is terminated by 

storing nil in the tail of the last cons-cell. 

We can use extend-list to translate a simple list comprehension such as: 
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to: 

• • 

(x,y) 

lc:~c':hr 

·~--¥J 
(x, y) (x,y) 

Figure 4.2: Extension of result list. 

(all :z: 

(:z: (ints-from 1 n)) 
(where (odd? :z:))) 

(letrec ((r (allocate LIST)) 
(f (lambda (1 le) 

(if (nil? 1) 

le 
(f (tl 1) Cletrac ( (:z: (hd 1))) 

(if (odd? :z:) (extend-list x le) le))))))) 
(update (f (ints-from 1 n) r) LIST TL nil) 
(tl r)) 

The translation allocates an empty cons-cell r, from which the result list is grown. Tail-recursive 

procedure f is applied to the list of integers returned by ints-from, and r. During each iteration, 

f evaluates the filter expression for the current :z:. If the predicate evaluates to true, then the 

result list is extended (by x) in the next iteration. When the iteration is complete (i.e., (nil? 1) 

is true), the last cons-cell of the result list is returned to the body of the letrec, where it is 

terminated by storing nil in the tail. The final result list is then simply the tail of r, the initial 

cons-cell. 

Non-strictness in the AGNA transaction language is exploited in two important ways by 

this translation. First, non-strictness of data objects is what allows us to extend the result 

list incrementally. Under strict evaluation, this translation is simply not possible because 

there is no way for extend-list to allocate and return a new cons-cell before defining both of 

its fields. Second, as soon as the tail of initial cons-cell r is defined, then the result of the list 

comprehension (i.e., (tl r)) can be returned and passed along to consumer computations. Such 

consumer computations, then, may execute concurrently with construction of the remainder of 

the list. 
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The translation scheme used above can be extended easily to handle comprehensions with 

nested generators. We simply need to pass the last cons-cell into the innermost iteration where, 

again, extend-list is used to grow the result list. For example, the list comprehension: 

(all (cons x y) 

(x (ints-from 1 n)) 
(y (ints-from x n)) 
(where (== 1 (gcd x y)))) 

is translated to: 

(letrec ((r (allocate LIST)) 
(f2 (lambda (x 1 le) 

(if (nil? 1) 

le 
(f2 x (tl 1) (letrec ( (y (hd 1))) 

(f1 (lambda (1 le) 
(if (nil? 1) 

le 

(if (== 1 (gcd x y)) 

(extend-list (cons x y) le) 
le)))))) 

(f1 (tl 1) (letrec ( (x (hd 1))) 

(f2 x1 (ints-from x n) le))))))) 
(update (f 1 (ints-from 1 n) r) LIST TL nil) 
(tl r)) 

This translation has the same top-level structure as the previous one, except that two local 

functions are used ( f 1 and f2) instead of one ( f). Local procedure f 1 iterates over the list of 

integers from 1 ton and, for each x in the list, calls f2 to iterate over the associated list of y's. 

The current tail of the result list (le) is threaded through f1 to f2, where it is extended for 

each binding of x and y that satisfy the filter expression. As before, the list is terminated in the 

body of the top-level letrec, and the final result is the tail of initial cons-cell r. 

4.2.6 Phase One Optimizations 

While the translations given above are optimal in the sense that they allocate exactly one 

cons-cell per element of the result list (after allocation of initial cell r), they can be improved 

considerably by both algebraic and implementation-based transformations. In this subsection, 

we describe these improvements. In the next chapter, we describe additional list comprehension 

improvements that are performed within the run-time system. 
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Performing Filters As Soon As Possible 

An important improvement, especially in comprehensions that involve base extents, is to apply 

filters as soon as possible. For example, the comprehension: 

(all e.,,11 

(:z: (11.ll T1)) 

(y (11.ll T2)) 

(where (and e., e1 ))) 

is translated to: 

(11.ll e.,,11 

(:z: (all T1)) 

(where e.,) 
(y (11.ll T2)) 

(where e11 )) 

Here e,,,,y is an expression in :z: and y, and e,,, and ey are predicate expressions in :z: and y, 

respectively. Since e,,, does not involve y, it is inserted as a separate filter qualifier immediately 

after the generator introducing :z:. The advantage of this transformation is that it eliminates as 

soon as possible bindings of :z: that do not satisfy predicate e,,,, thus avoiding bindings of y and 

the associated predicate evaluations in the original expression that can't possibly contribute 

to the result. For this translation to be valid in AGNA, predicate expressions e,,, and ey and 

generator expression (all T2) must have no side-effects. 

Combination of Unary Operations 

A well-known algebraic transformation performed in relational database systems combines se

quences of unary operations, applying them as a group, in order to avoid multiple traversals 

over large collections of data [79]. This general transformation is also useful for improving list 

comprehensions and, in fact, is performed automatically in certain cases by the default trans

lation scheme. For example, consider the following query to find the names of all students with 

a GPA of at least 3.9: 

(all (select s STUDENT NAME) 
(s (all STUDENT)) 
(where (>= (select s STUDENT GPA) 3.9))) 
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A straightforward translation of the query first filters the list of all students, producing an 

intermediate list, over which the name selection function is then mapped. 

(map (lambda (s) (select s STUDENT NAME)) 
(filter (lambda (s) (>= (select s STUDENT GPA) 3.9)) 

(all STUDENT))) 

While this translation is simple and elegant, it can be improved by eliminating the construction 

and traversal of the intermediate list. This is accomplished by combining the list filtering and 

mapping, two unary operations, and performing them both in a single pass over the student list. 

Here is a translation using the scheme described in Section 4.2.5 that includes this improvement. 

(letrec ((r (allocate LIST)) 
(f (lambda (1 le) 

(if (nil? 1) 
le 
(f (tl 1) (letrec ((s (hd 1))) 

(if (>= (select s STUDENT GPA) 3.9) 
(extend-list (select s STUDENT NAME) le) 
le))))))) 

(update (f (all STUDENT) r) LIST TL nil) 
(tl r)) 

Local tail-recursive procedure f iterates over the student list, performing both the list filtering 

and name selection in a single pass. The result list is grown incrementally from initial cons-cell 

r using extend-list, and terminated in the body by storing nil in the last cell of the list. 

Low-Level Filtering and Projection of Base Extents 

For the filtering and transformation of an arbitrary list of objects, the previous translation is 

optimal with respect to the number of cons-cells used to construct the result list (exactly one 

per result element after allocation of initial cell r ). The value of the expression (all STUDENT) is 

obtained by scanning over the file that stores student objects and building a list in the volatile 

heap. When this list is available, it is then filtered and transformed in one scan. 

However, a substantial improvement in performance can be obtained when the generator 

expression is a base extent and the filters are simple predicates on the object fields. In this 

case, the filtering may be performed during file scanning, avoiding even the construction of the 

original list. 

As in all database systems, AGNA is based on an "object storage system" that implements 
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files and file scanning. The services provided by this module are similar to those provided in 

the Research Storage System (RSS) in System R [6], and WiSS, the Wisconsin Storage System 

[26]. The object storage system implements sequential object files, secondary Btree and hash 

indexes, sequential and index object scans with predicates, and management of the cache of 

file pages. All persistent data access is performed through the object storage system, thereby 

insulating higher levels of the system from details of secondary storage such as data layout, 

whether access is through the OS file system or directly to a raw disk, etc. 

The scan predicates supported by the object storage system are lists of conditions of the 

form F 0 v, where Fis a field name, 0 is a relational operator such as equality, and vis a value. 

We do not allow arbitrary AGNA predicates to be evaluated during the file scan because we 

would like predicate evaluation to be "quick", i.e., matched to the speed at which the file scan 

is performed. 

In the example query above, the condition describing the students of interest (GPA 2:: 3.9) 

is suitable for translation to such a low-level predicate, which we can then use in the scan of 

the student file. 4 By performing the filtering within the storage system, a compact internal 

representation of the student extent is scanned and filtered in an efficient manner. Also, the file 

scanning function has the capability of performing simple projections on object fields. Thus, 

we may also push the final projection on the student name field down into the scan operation. 

Here is a translation that incorporates these improvements: 

(letrec ((pred (cons (make-condition gpa-id ">=" 3. 9) nil))) 

(fil ter-ertent atudent-id name-id acceu-path pred)) 

The extent filtering and projection are performed by primitive procedure filter-extent, which 

takes type and field identifiers, an access path (to be described soon), and a predicate, i.e., 

a list of condition objects. In this case the predicate consists of a single condition, which is 

created by procedure make-condition. Filter-extent scans the student extent and produces a list 

of names of students that satisfy the condition on GPA. 

Use of Indexes 

One of the most important optimizations performed by relational systems is the use of efficient 

index structures. Studies of relational systems have shown that the effective exploitation of 

4 ln Chapter 5, we describe in detail the mapping of persistent objects to disk files. 
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indexes is essential for achieving good performance for a range of queries [17]. The experimental 

results presented in Chapter 6 indicate that the effective use of index structures is equally 

important for implementing list comprehension queries efficiently. 

As discussed earlier, the object storage system in AGNA supports two types of indexes

Btree and hash. For example, if the student type were defined as follows: 

(type STUDENT (extent) 
((name <=> STRING) 
(status => STRING) 
(gpa => FLOAT) 
(address => STRING) 
(bdate •<=> INTEGER (index btree)))) 

then two indexes would be created: a hash index on name, and a Btree index on bdate. For a 

query which accesses the student extent, there may be multiple "access paths" to the data. For 

example: 

(all (select s STUDENT NAME) 
(s (all STUDENT)) 
(where (and (>= (select s STUDENT GPA) 3.9) 

(< (select s STUDENT BDATE) 720101)))) 

There are at least two ways to implement this query: (1) scan the student extent applying a 

predicate consisting of both conditions; and (2) use the index on bdate to locate students with 

birthdates before 1/1/72, then apply the condition on GPA to the corresponding objects in the 

base extent. 

Our compiler uses the following heuristics, listed in order of preference, to select an imple

mentation strategy. 

l. If a condition of the form F = v exists on a field with a hash index, then use the index to 

find all objects with value v. Apply the remaining conditions to the objects returned. If 

conditions exist for more than one such field, then choose a <= field (unique inverse) over 

a •<=field. If more than one possibility still exists, then pick one arbitrarily. 

2. If a condition of the form F () v exists on a field with a Btree index and () is not the 

inequality operator, then use the index to find objects satisfying all such conditions on 

F. Apply the remaining conditions to the objects returned. If conditions exist for more 

than one such field, say F1 and F2 , then use the following four steps to select one. (1) If a 
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condition involving the equality operator exists for one field and not the other then choose 

the field with the equality condition. (2) If one field has a single-valued inverse ( <=) and 

the other has a multiple-valued inverse ( *<= ), then choose the one with the single-valued 

mverse. (3) Choose more restrictive condition sets over less restrictive ones. For example, 

F1 > v1 and F1 < v2 is more restrictive than F2 > v1 . ( 4) Pick a field arbitrarily. 

3. If Rules 1 and 2 are not applicable, then simply scan the entire extent for objects which 

satisfy all conditions. 

More sophisticated strategies are certainly possible, taking into consideration such things as 

the number of objects in the base extent, histograms describing distributions of field values, 

etc.; AGNA does not currently implement them. 

The access path selected by the compiler is passed as arguments to filter-extent indicating 

the unique field identifier and the type of index to use (there may be more than one). For the 

example query above, all students with birthdates in the desired range are located first using 

the index, and then the condition on GPA is applied. Here is the translation: 

Cletrac ( (pred (cons (make-condition gpa-id ">=" 3. 9) 
(cons (make-condition bdate-id "<" 720101) nil)))) 

(fil tar-extent atudent-id name-id bdate-id BTREE pred)) 

Filter-extent takes the id of the extent to filter, the field onto which the result objects are 

projected, the field and index of the access path, and the predicate. As described previously, 

both the filtering and projection are implemented within the object storage system, rather than 

explicitly materializing lists and then filtering and transforming them. 

4.3 Phase Two: Translation to DFPGs 

Phase two of compilation translates the text output of phase one to a dataflow program graph 

(DFPG) [76]. A DFPG is, roughly, a "data-driven" representation of the abstract syntax tree. 

Many other parallelizing compilers start with a control flow graph of a sequential program 

and, using extensive dependence analysis, attempt to extract some form of dataflow graph, 

because this is widely recognized to be the "most parallel" representation of the program (see 

[9, 14, 36]). Unfortunately, this analysis is very complicated, primarily due to the underlying 

imperative model of computation. 
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In AGNA, it is possible to go directly from the source language to a dataflow graph, precisely 

because of its non-imperative model. For example, a select operation in procedure A that reads 

from a particular field of a data object does not have to be sequenced by graph edges with 

the corresponding update operation, which may even be in another procedure B, because the 

compiler can assume that the select automatically blocks until the corresponding update has 

executed. This assumption depends critically on single-assignment semantics. 

Translations used in phase two of compilation are based largely on methods described by 

Traub in [76]. Readers familiar with this material may wish to skip to Section 4.3.6, where we 

describe a new dataflow graph optimization involving tail-recursive functions. 

4.3.1 Simple Expressions 

Expressions involving primitive operations such as arithmetic, logical, and relational operators 

are translated to dataflow graphs in a straightforward manner. For example, the graph for the 

following expression: 

(• (+ x y) (- x y)) 

is shown in Figure 4.3. The graph consists of three instructions, each specifying an opcode, and 

input and output arcs. Data values are carried on tokens, which flow along the output arc of 

one instruction to the input of another. In AGNA, the data values are either constants, such as 

numbers and booleans, or references to heap-resident objects. 

Instructions may execute only when their firing rule is satisfied. The firing rule for strict 

primitives such as+ states that the instruction may execute only when both inputs are present, 

i.e., tokens have been placed on both input arcs. Execution of an instruction consumes input 

tokens, possibly produces side-effects, such as allocation of a new heap object, and generates 

new tokens that are placed on output arcs. The +, -, and* instructions produce output tokens 

that carry the sum, difference, and product, respectively, of their inputs. 

Dataflow graphs capture all of the fine grain parallelism of the source language, and make 

explicit any data dependences and multiple uses of a variable. When x and y are available, 

the addition and subtraction may execute either serially or in parallel-the relative execution 

order of the two instructions is left unspecified. The * instruction, because it depends on data 

produced by+ and -, may not execute until both have placed tokens on their output arcs. 
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x y 

Figure 4.3: Dataflow graph for(* (+ x y) (- x y)). 

4.3.2 Object Manipulation 

Object allocation, and field update, insertion and deletion, are translated to the primitive graph 

instructions that perform these operations. For example, the dataflow graph for the following 

expression: 

(letrec ( (c (allocate-object list 2)) 

(x1 (update-field c list 0 h)) 
(x2 (update-field c list 1 t))) 

c) 

is shown in Figure 4.4. The expression allocates a list object c, updates its fields, and returns a 

reference to the new object. Inputs to the graph provide hand t, the head and tail of list, and 

CONSTANT instructions provide the necessary constants. Outputs are the list-carrying result token 

produced by ALLOCATE-OBJECT, and the tokens produced by each of the UPDATE-FIELD instructions. 

CONSTANT("list") CONSTANT(2) 

ALLOCATE-OBJECT 

Ob;jed 'I}lpe Field Value Ob;jed Type Field Value 

UPDATE-FIELD UPDATE-FIELD 

Result 

Figure 4.4: Dataflow graph for list construction. 
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Synchronization between the UPDATE-FIELD instructions and any SELECT-FIELD instructions that 

read fields of the new object is performed automatically by the instructions themselves. In other 

words, if a field selection happens to execute before the corresponding update operation, then 

it automatically blocks until the field is written, after which the field value is returned. Thus, 

we are free to execute field update and selection instructions in any order. 

4.3.3 Triggers and Signals 

Some instructions, such as the CONSTANT instructions of Figure 4.4, have no "normal" inputs. But 

without inputs, how can we give a firing rule for such instructions? To address this issue, we 

add to the graph arcs along which special trigger tokens flow. Such tokens carry no meaningful 

value, but serve only to initiate execution of an instruction. When the graph is augmented with 

trigger arcs (see Figure 4.5), the firing rule for CONSTANT may be stated simply: the instruction 

executes when its trigger input token is available. 

Note that the result of the graph (i.e., list object c, the output of ALLOCATE-OBJECT) does 

not depend on field values h and t. As soon as the trigger input is available, CONSTANT(2) and 

CONSTANT("list") may execute and place tokens on their output arcs. These tokens, in turn, 

initiate execution of ALLOCATE-OBJECT, which allocates a list object in the heap, and produces the 

result token that carries a reference to the new object. This result can be produced before fields 

in the new object are updated, and even before field values h and t are available. 

Another issue that arises from the graph of Figure 4.4 is what to do with outputs of the 

UPDATE-FIELD instructions? It is clear that the output arc of ALLOCATE-OBJECT is to be connected 

to the instruction that consumes the result, i.e., the expression in which the original letrec is 

embedded. But what about the outputs of UPDATE-FIELD? While such outputs do not contribute 

directly to the result of the expression, it is nevertheless useful to know when they are available. 

For example, if the letrec expression is in the body of a procedure, then we may wish to 

free resources allocated to the procedure when all computation in the body has terminated, 

i.e., when the result and both UPDATE-FIELD outputs are available. To enable this detection 

of termination, we add to the graph a SIGNAL-TREE instruction that collects the UPDATE-FIELD 

outputs, and emits a signal token when they are both present (see Figure 4.5). Like trigger 

tokens, signal tokens carry no meaningful value. When both the result and signal outputs are 

present, all computation in the graph is terminated. 
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Trigger 

CONSTANT ("list") CONSTANT (2) 

Object TllPe Field Value Object TllPe Field Value 

UPDATE-FIELD UPDATE-FIELD 

SIGNAL-TREE 

Result Signal 

Figure 4.5: Dataflow graph for list construction with triggers and signals. 

4.3.4 Procedure Definition and Application 

Procedure definitions are translated to LAMBDA instructions. For example, the definition of cons: 

(lambda (h t) 

(letrec (Cc (allocate-object list 2)) 
(x1 (update-field c list 0 h)) 

(x2 (update-field c list 1 t))) 
c)) 

is translated to the dataflow graph shown in Figure 4.6. The LAMBDA instruction encapsulates 

the body expression (shown previously in Figure 4.5), providing it with a trigger input, and 

arguments h and t. The RESULT-RETURN instruction receives the result of the body expression 

(i.e., a reference to the new list object), and returns it to the caller of the procedure. When 

both the result and signal outputs are present, SIGNAL-RETURN propagates the termination signal 

back to the caller, and resources allocated to the procedure are freed. Resources are deallocated 

by the callee, instead of the caller, because this enables optimization of tail-recursive calls, as 

we shall see in Section 4.3.6. 

A LAMBDA instruction is connected to the graph in which it is embedded via external Trigger 

and Result arcs (see Figure 4.7). The firing rule is: when the trigger token arrives, an object 
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LAMBDA 
Thgger h. 

SIGNAL-RETURN 

Signal 

Figure 4.6: Dataflow graph for procedure cons. 

representing the encapsulated procedure is created in the heap, and a token carrying a reference 

to it is placed on the Result output arc. 

Trigger 

LAMBDA 
Result 

Figure 4. 7: External view of LAMBDA instruction. 

Procedure applications are translated to APPLY. 5 For example, translation of the list con-

st ruction: 

(cons 10 nil) 

is shown in Figure 4.8. APPLY takes as input the procedure object and two arguments, and 

produces as output the result and signal. The non-strictness of applications is embodied in 

the firing rule for APPLY, which requires only that the procedure input be present before the 

instruction begins executing. Thus, when the cons input is present, APPLY allocates a new 

instance of the procedure body, and initiates execution with a trigger token. When argument 

6 ln this work, we consider only the application of a procedure to all of its arguments, i.e., a full application. 
Compilation methods for partial applications or curried functions are well understood for declarative languages 
such as ours (see [59, 76)), and we do not explore them here. 
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inputs are available, they are simply passed on to the procedure body. When cons returns a 

value (which, as we have already seen, may be before field values h and t are available), it is 

placed on the Result output arc. When the signal token is returned, it is placed on the Signal 

output. 

cons 10 nil 

Procedure Arg1 Arg2 

APPLY 

Figure 4.8: Datafl.ow graph for (cons 10 nil). 

In our description of procedure application, we have been quite vague about the linkage 

mechanism, saying things like the caller "initiates execution" of the body, and arguments are 

"passed on to the procedure". The reader can rest assured that we will make all of these 

details explicit in Section 4.5, when we describe the translation of datafl.ow graphs to P-RISC 

instructions. 

4.3.5 Miscellaneous 

Conditionals 

Conditional expressions are translated to IF, an instruction that encapsulates the "then" and 

"else" clauses. For example, the conditional: 

(if (p x) 0 (+ x x)) 

is translated to the graph shown in Figure 4.9. Incoming external arcs provide the value of 

predicate expression (p x) and free variable x. A trigger token and the free variable are routed 

either to the then or else arm of the conditional, depending on the predicate value. Result 

and signal outputs from the selected arm are placed on the corresponding external Result and 

Signal output arcs. 
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(p x) x 

IF Predicate FV1 

ThenThgger ThenFV1 EluThgger ElseFV1 

CONSTANT(O) 

SIGNAL-TREE SIGNAL-TREE 

Then.Result ThenSignaJ ElseSignal El•eResult 

Result Signal 

Figure 4.9: Dataflow graph for (if (p x) 0 ( + x x))). 

Like procedures, conditionals are non-strict. The firing rule for IF requires only that the 

predicate value be present before an arm of the conditional is selected and execution initiated 

via the trigger token. When free variable inputs arrive, they are passed on to the appropriate 

arm. In the graph of Figure 4.9, for example, if the predicate is true, then o can be produced 

immediately by the conditional, even before x arrives. 

Top-Level Name Lookups 

Lookups in the top-level database environment are translated to LOOKUP. For example, a reference 

to top-level name begin-transaction is translated to the graph shown in Figure 4.10. 

CONSTANT("begin-transaction" 

Figure 4.10: Lookup of top-level name begin-transaction. 
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Seq Forms 

Expressions in a seq form are sequenced through the use of SIGNAL-TREE and IDENTITY instructions. 

For example, the expression: 

(seq (f x) x) 

is translated to the graph shown in Figure 4.11. Procedure f is applied to argument x, and the 

result and signal outputs are collected by SIGNAL-TREE, which passes a signal on to IDENTITY when 

both inputs are present. When its two input tokens are available, IDENTITY passes on its first 

(i.e., x), which is the value of the expression. Note that seq is hyper-strict in that the second 

expression ( x) may not begin executing until the first expression produces both a result and a 

signal, not just a result. 

f x 

Procedure Arg1 

APPLY 
Result Signal 

SIGNAL-TREE 

Figure 4.11: Datafiow graph for (seq (f x) x). 

Transactions 

Transactions are translated to XACT, an instruction that encapsulates the transaction body. For 

example, transaction: 

(xact 
(seq 

(begin-transaction) 
(print x) 
(end-transaction))) 
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is translated to the graph shown in Figure 4.12. The XACT instruction provides a trigger input 

that initiates lookup of top-level identifier begin-transaction, and a signal input port that accepts 

the signal indicating that all execution in the transaction body has terminated. 

XACT Trigger 

CONSTANT("begin-transaction") CONSTANT("x") CONSTANT("end-transaction") 

APPLY APPLY 
IleauJt Signal Ile suit Signal 

SIGNAL-TREE SIGNAL-TREE 

Signal 

Figure 4.12: XACT datafiow graph. 

4.3.6 Phase Two Optimizations 

Tail Recursion 

A significant optimization performed by the AGNA compiler on datafiow graphs involves tail

recursive functions. Consider the definition of procedure foldl: 

(define foldl 
(lambda (f v 1) 

(if (nil? 1) 

v 
(foldl f (f v (hd 1)) (tl 1))))) 

Recall from Chapter 2 that foldl takes a binary combining function f, an initial value v, and a 

list of values 1, and produces an accumulated value. During each invocation in which 1 is not 

empty, foldl recursively calls itself, passing f, the new accumulated value, and the tail of 1. 

The datafiow graph of foldl is shown in Figure 4.13. Let us focus on the APPLY instruction 

in the body that implements the recursive call to foldl. APPLY allocates a new instance of foldl, 

passes to it trigger and argument tokens, and receives from it result and signal tokens. The 

result and signal tokens, in turn, are passed across the bottom arm of the IF instruction to 
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RESULT-RETURN and SIGNAL-RETURN, which return them to the appropriate input ports of the APPLY 

instruction that invoked the procedure. Thus, the computation unfolds as shown in the example 

of Figure 4.14: the first instance of the body invokes the second, and so on, until the recursion 

ends in the nth instance, at which point the final accumulated value and termination signal 

are propagated back through each instance to the original caller. Note that even though foldl 

is written in a tail-recursive manner, its execution, as just described, consumes O(length(l)) 

resources, i.e., one instance of the procedure body for each element of 1. 

LAMBDA 

IF 

Thgger I 

I 
ThenTrigger Then-/ Then-ti Then-I 

ThenSignaJ Then.Result 

Result 

RESULT-RETURN 

ti 

ti Predicate 

Else Trigger Else-/ Else-t1 Else-I 

Signal 

ElseResult 

Signal 

Figure 4.13: Datafl.ow graph of procedure foldl. 

A modification of the procedure linkage mechanism enables foldl to execute using less than 

O(length(l)) resources. As before, the APPLY in instance i allocates instance i + 1, and passes to 

it trigger and argument tokens. However, instead of receiving from it and propagating a result 

token as before, APPLY instructs instance i + 1 to return its result directly to the instruction 
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···~ 
termination 

signal 

Figure 4.14: Unfolding of computation for (foldl + 0 1). 

waiting for the result of instance i. Also, the SIGNAL-RETURN instruction in instance i is instructed 

to send its termination signal forward to instance i + 1, rather than back to instance i - 1 as 

before. With this new linkage mechanism between instances of foldl, the computation unfolds 

as shown in Figure 4.15: the first instance invokes the second, and so on, until the recursion 

ends, at which point the accumulated value is returned directly to the original caller of foldl. 

The termination signal is propagated forward, and also returned directly to the original caller 

when the recursion ends. 

Figure 4.15: Modified unfolding of computation for (foldl + 0 1). 

This new foldl computation is potentially more efficient than the old one because instance 

i, after invoking instance i + 1 and sending its termination signal, may free resources allocated 

to it. Thus, regardless of the length of list 1, the entire computation can execute using only a 

fixed set of resources. Whether or not this actually happens in an implementation is a function 

of the order in which instructions are actually executed. As we shall see in the next chapter, 

the scheduling strategy used by the AGNA implementation ensures that a common class of 

tail-recursive functions does execute using a constant amount of resources. 

To implement the linkage scheme described above, we introduce a new dataflow graph 

instruction called TAIL-APPLY. How do we know when to use this new instruction? After the 

graph is generated, using APPLY for all applications, we simply search it and replace all sub

graphs matching the left side of Figure 4.16 with the instruction shown on the right. In other 
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words, we use TAIL-APPLY in those situations where the result of an application is immediately 

returned as the result of the procedure in which the application is performed. Note that the 

body of foldl, shown previously in Figure 4.13, does not contain a sub-graph of this form, even 

though the result of the recursive application inside the conditional is ultimately returned as the 

result of foldl. To accommodate such tail-recursive functions, we preprocess the graph before 

searching it, and propagate RESULT-RETURN inside encapsulator instructions such as IF. Inside the 

IF, a RESULT-RETURN is inserted into each branch of the conditional between the result-producing 

instruction and the internal result input port. 

-
Figure 4.16: Introduction of TAIL-APPLY. 

Like APPLY, TAIL-APPLY is non-strict in that it may fire as soon as the procedure input is 

available. Execution of TAIL-APPLY involves the following actions (say f calls g): 

1. Allocation of a new instance of g's body and initiation of execution via a trigger token. 

The input ports to which g is to return its result and signal (which are stored in the 

execution environment established by f for g) are set to the input ports to which f is to 

return its result and signal. Finally, the input port to which f is to send its termination 

signal is updated to a new signal input in g (to be described soon). The signal token 

is not actually generated, however, until f executes SIGNAL-RETURN, which determines the 

destination by accessing return information stored in f's execution environment. 

2. When argument inputs are available, they are passed on to the procedure body. 

3. When step one is complete and all arguments are transmitted, a token is placed on the 

Signal output arc of the TAIL-APPLY instruction, indicating that the tail call has completed. 

Finally, we need to add a new signal input port to each procedure, as mentioned in step 

one above, to ensure that a procedure invoked via TAIL-APPLY does not complete and send a 

termination signal prior to completion of its caller. We do this by requiring that a token be 
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present on the new signal input before SIGNAL-RETURN is allowed to fire. The final graph of foldl, 

including this additional signal input and the TAIL-APPLY optimization, is shown in Figure 4.17. 

Note that the signal input must be present even if the procedure is not invoked by TAIL-APPLY; 

thus, we need to modify APPLY to generate a trigger and a signal token after allocating a new 

instance of the body. While generation and handling of the signal token adds a small overhead 

to normal procedure applications, the benefits of TAIL-APPLY far outweigh this cost. 

LAMBDA 
Trigger Signal I II 

IF I 
Th.enTngger Th.en-/ Th.en-11 Th.en-I 

RESULT-RETURN 

Th.enSignaJ Th.enResult 

Result 

ElseResult 

Signal 

SIGNAL-RETURN 

Signal 

Predicate 

Else-11 Else-I 

SIGNAL-TREE 

Else Signal 

Figure 4.17: Graph of foldl including TAIL-APPLY and Signal input. 

Common Sub-Expressions 

Two types of common sub-expressions are identified during translation to datafl.ow graphs: 

constants and references to top-level database names. Lists of constants and top-level names 
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already translated are maintained for each scope, and subsequent uses of a constant or name 

present in these lists simply attach a new arc to the appropriate graph instruction, rather than 

generating an entirely new instruction. Thus, all uses of a constant or top-level name in a scope 

are connected to the same graph instruction. 

4.4 The P-RISC Abstract Machine 

In the preceding sections, we described the first two phases of compilation: source-to-source 

translation of the original transaction text, and then translation to dataflow graphs. We now 

describe the final target of compilation, which is a multi-threaded RISC-like abstract machine 

called P-RISC (for "parallel RISC"). In Section 4.5, we complete our description of the AGNA 

compilation process by describing how dataflow graphs are translated to P-RISC code. 

At this point the reader may wonder why we include the P-RISC machine in the compilation 

process. For example, why not compile dataflow graphs directly into native machine code? We 

chose the P-RISC machine as the target of compilation because at the time the compiler was 

written, we had not yet decided on a multiprocessor platform on which to run AGNA, and even 

if we had, we wanted the flexibility to experiment easily with different platforms. The P-RISC 

model provides a complete, machine-level description of the program which makes explicit the 

key features of our computational model: fine grain multi-threading, data-driven execution, 

and split-phase actions to tolerate long latencies. A program expressed as P-RISC code can 

be translated to native machine code for execution, interpreted in software, or perhaps even 

executed directly in hardware. 

Many machine-level details hidden by dataflow graphs are made explicit in the P-RISC 

abstract machine. For example, we shall now see the details of how the caller of a procedure 

establishes an execution context for the body, initiates execution, and passes arguments. Other 

details, however, such as the organization of secondary storage, and the distribution of compu

tation and data across a parallel machine, are not addressed here. These will be addressed in 

the next chapter, where the abstract machine is mapped to a concrete architecture. 

The P-RISC machine consists of a pool of active thread descriptors and separate memories 

for frames and the heap (see Figure 4.18). Each thread is described by a pair: an instruction 

pointer (IP) and a frame pointer (FP). IP points to the current instruction, which resides in 

the code section of a heap-based procedure or transaction object, and FP points to a frame. 
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Like conventional activation records, frames are allocated and deallocated as part of procedure 

call and return, and provide local storage for arguments and computations in a procedure 

body. Frames are organized into a tree: there is a root frame for the transaction body, and 

a frame for each outstanding procedure call. Multiple frames all throughout the tree can be 

active simultaneously, and each frame can have many simultaneously active threads. This is in 

contrast to the traditional "cactus stack" model, where there can be only one thread active for 

each branch of the cactus, which may contain several frames. 

Pool of Thread Descriptors 

Frame Memory Heap Memory 

Figure 4.18: Organization of P-RISC abstract machine. 

The machine operates by repeatedly extracting an active thread, executing its current in

struction, and adding to the thread pool zero or more successor descriptors. The strategy 

for choosing the next thread to execute is not specified, and multiple threads may execute 

concurrently. 

Heap memory is a single-level, global store, part of which is volatile, and the remainder of 

which is persistent. Thus, heap memory accoIIlIIlodates persistent objects part of the database, 

as well as transient objects only used during execution of a single transaction. Heap memory 

locations include extra status bits that indicate whether a location is full or empty. As we shall 

see in a moment, the heap may be read and written using normal loads and stores, which ignore 
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these status bits, and synchronized loads and stores, which are used to implement the deferred 

read, single-assignment semantics of the AGNA object model. 

4.4.1 P-RISC Instructions 

Following [59], we describe the semantics of P-RISC instructions in terms of state transitions on 

frame memory, heap memory, and the pool of thread descriptors. In other words, for a thread 

descriptor (FP, IP), we describe how execution of the instruction referenced via IP modifies frame 

and/or heap memory, and the new descriptors, if any, that are added to the thread pool. We 

use the notation Frames[FP+r] to refer to offset r in the frame referenced via FP, and Heap[j] to 

refer to the jth location of heap memory. 

Arithmetic, Logical, and Relational 

The usual complement of arithmetic, logical, and relational instructions such as ADD, AND, NOT, 

etc. are supported. Their syntax and semantics are standard: 

Syntax Semantics 
binop r1 r2 r3 Frames [FP+r1] <- Frames [FP+r2] binop Frames [FP+r3] 

unop r1 r2 Frames [FP+r1] <- unop Frames [FP+r2] 

LO ADC r1 c Frames [FP+r1] <- c 

Thread descriptor (FP,IP+1) is added to the active pool in all three cases. 

Control Flow 

Both conditional and unconditional jumps are also standard: 

Syntaz Semantic8 
JMP L Add descriptor (FP ,L) to active pool 
JMPF r L If Frames [FP+r] ==O 

Add descriptor (FP, L) to active pool 
Else 

Add descriptor (FP,IP+1) to active pool 

Other conditional jumps such as JMPT (jump "true"), are also supported. 

The abstract machine supports three basic thread manipulation primitives: 

-Syntaz Semantic8 
FORK L Add descriptors (FP,L) and (FP,IP+1) to active pool 

DIE Add no descriptor to active pool 

JOIN r bn If bit n of Frames [FP+r] is one 
Add descriptor (FP, IP+ 1) to active pool 

Else 
Add no descriptor to active pool 

Toggle bit n of Frames [FP+r] 
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FORK spawns a new fine grain thread for the current frame by adding both (FP ,L) and successor 

descriptor (FP,IP+l) to the active pool. DIE terminates execution of the current thread. JOIN 

is used to combine and synchronize parallel threads, generating a successor descriptor only if 

the join bit is set to one. For example, in the code below, threads Tl and T2 are combined and 

synchronized by the JOIN instruction at label Ll: 

Tl: 7. rl +- ei 

JMP Ll 

Ll: JOIN r3 bO 7. wait for ei and e1 

ADD r4 rl r2 

Tl and T2 compute the values of expressions e1 and e2 , place them in frame slots r1 and r2, and 

transfer control to Ll. Tl transfers control via JUMP, while T2 simply "falls through" to Ll. The 

join bit is initially set to zero. When JOIN is first executed (say, by Tl), the bit is set to one, 

and no successor descriptor is generated, i.e., the thread is terminated. When T2 executes JOIN, 

the bit is set back to zero, and the thread is allowed to continue with the addition. Note that 

the two instances of the JOIN instruction must execute atomically to avoid a situation in which 

both see the zero value of the join bit, and neither is allowed to continue. 

Heap Access 

The heap may be accessed via normal loads and stores, or synchronized loads and stores. 

Normal loads and stores have the usual syntax and semantics: 

Syntaz Semantic~ 

LOAD rl r2 Frames[FP+rl] <- HeapTFrames[FP+r2]] 
STORE r1 r2 Heap[Frames[FP+r2]] <- Frames[FP+r1] 

Successor thread descriptors (FP ,IP+1) are added to the active pool in both cases. The semantics 

of synchronized loads and stores depend on the status bits of the location being accessed. If 

a synchronized load (!LOAD) attempts to read an empty location, then it adds to the deferred 

reader list stored at that location a triple consisting of its FP, IP+l, and frame offset. If the 

location is full, on the other hand, then !LOAD behaves the same as LOAD and simply returns the 

value stored there. A synchronized store (I STORE) writes a value in an empty location (an error 

is raised if it is full), and unblocks any deferred !LOADS waiting there. 
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Syntaz -Semantic4 
!LOAD r1 r2 Let A = Frames [FP+r2] 

Case Heap [A] of 
(Empty,l) * Heap[A] <- (Deferred,(cons (FP,IP+1,r1) 1)) 
(Full, v) * Frames[FP+r1] <- v; 

Add (FP,IP+1) to active pool 

I STORE r1 r2 Let v = Frames [FP+r1] 
Let A = Frames [FP+r2] 
Case Heap [A] of 

(Empty,l) * Heap[A] <- (Full,v); 
For each (FP', IP' ,r) in 1 

Frames[FP'+r] <- v 
Add (FP' , IP') to active pool 

(Full,-) * Error 

The reading and writing of heap location A in each case must be performed atomically. 

Inter-Frame Transfers 

In procedure call and return, it is necessary for the caller and callee to transfer between them 

both control and data. The caller, for example, has to transfer arguments and return informa

tion to the callee's frame, and initiate one or more threads of execution in the body. The callee, 

on the other hand, has to transfer back to the caller frame the result of the procedure, and 

also initiate execution of threads receiving the result and signal of the application. Inter-frame 

transfers of this kind are performed by STARTO and START1, which are defined as follows: 

Syntaz Semantic' 
STARTO r1 r2 Let FP' = Frames [FP+r1] 

Let IP ' = Frames [FP+r2] 
Add (FP,IP+1) to active pool 
Add (FP' , IP') to active pool 

START1 r1 r2 r3 r4 Let FP' = Frames [FP+r1] 
Let IP' = Frames [FP+r2] 
Let r = Frames [FP+r3] 
Let v = Frames [FP+r4] 
Frames[FP'+r] <- v 
Add (FP, IP+1) to active pool 
Add (FP' , IP') to active pool 

4.4.2 P-RISC Managers 

We also include in the abstract machine an extensible set of high-level "manager" instructions 

performing such tasks as frame and object management. Each manager performs some func-

tion relative to zero or more inputs, and produces zero or more outputs. Managers may be 

viewed either as complex instructions, or macros which the compiler expands to a sequence of 

primitives. Below we describe only a few managers; a description of the complete set used by 

the AGNA compiler is given in Appendix B. 
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Object allocation is encapsulated by ALLOCOBJ, which allocates and initializes a new object 

in the volatile heap: 

Tyntaz Semantics 
ALLOCOBJ ri rj Let T = Frames [FP+ri] 

Let S = Frames [FP+ri+1] 
Allocate and initialize object in volatile heap of type T and size S 
Let A be the address of this object 
Frames[FP+rj] <- A 
Add (FP, IP+1) to active pool 

The initialization performed includes defining the object header and setting to "empty" all 

field status bits. Like all managers, ALLOCOBJ receives its arguments in contiguous frame slots 

beginning at ri, and returns its results in contiguous slots beginning at rj. 

For convenience, field selection and update are also performed by managers. For example, 

field selection is performed by SELECTF, defined as follows: 

Syntaz Semantics 
SELECTF ri rj Let Obj = Frames [FP+ri] 

Let ObjType = Frames[FP+ri+1] 
Let Offset = Frames [FP+ri +2] 
Error checking: 

1. Type check 
2. Bounds check 
3. Obj persistent and field undefined? 

If error found 
raise error 

Frames [FP+rj] <- Obj + Offset 
ILOAD rj rj 

Arguments to SELECTF are the object, its type, and the field offset; the result returned is the field 

value. SELECTF first checks for three error conditions: (1) an object not of the correct type; (2) 

a field reference that is out of bounds (this condition may hold only if Obj is an array because 

this is the only offset that is computed and not supplied by the compiler); and ( 3) a persistent 

object with field at Offset that is undefined6 . If one of these conditions is found to hold, then 

a run-time error is raised. Otherwise, the field address is built in slot rj and ILOAD is used to 

access the field. If the field is not yet defined, then ILOAD will defer the operation as described 

previously. 

Frame allocation is also performed by a manager instruction: 

6 This last condition is an error because field updates of persistent objects are only visible to subsequent 
transactions and thus if SELECTF is allowed to continue, ILOAD will cause the transaction to deadlock. 
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-Synta:r: Semantica 
ALLOCFRAME ri rj Let CallerFP = Frames [FP+ri] 

Let ResultIP = Frames [FP+ri +1] 
Let SignalIP = Frames [FP+ri +2] 
Let ResSlot = Frames [FP+ri+3] 
Let NumSlots = Frames [FP+ri +4] 
Let FP' be address of new frame 
Zero-out frame slots in FP' 
Store in FP': CallerFP, Resul tIP, Signal IP, and Res Slot 
Frames[FP+rj] <- FP' 
Add (FP,IP+1) to active pool 

Manager ALLOCFRAME allocates a frame as part of procedure application. Its arguments are: the 

caller's FP, the IPs of the threads to receive the result and signal, the slot where the result of 

the procedure is to be stored, and the size of the new frame. ALLOCFRAME allocates a frame of the 

desired size, initializes its slots to zero, stores the linkage information, returns a pointer to the 

new frame, and adds successor descriptor (FP, IP+1) to the active pool. 

At the end of a transaction, all objects in the volatile heap that are reachable from the top

level database environment are moved to the persistent heap. Manager MKPERSISTENT performs 

this low-level moving of objects to the persistent heap. 

Synta:r: Semantica 
MKPERSISTENT ri rj Let Obj = Frames [FP+ri] 

Frames [FP+rj] <- Obj 
Frames[FP+rj+1] <- false 
If volatile?(Obj) 

If alreadyMoved(Obj) 
Frames[FP+rj] <- lookupPersistentAddr(Obj); 

Else 
LetA be address of persistent storage 

copy(Obj,A); 
Frames [FP+rj] <- A; 
Frames[FP+rj+1] <- true; 

Add (FP, IP+1) to active pool 

A reference to the object to be moved is passed in slot ri and the persistent address is returned in 

slot rj. An additional (boolean) result is returned in slot rj+1 indicating whether the persistent 

address returned in rj was allocated by the current call to MKPERSISTENT (true) or a previous one 

(false). 7 The first result is initialized to the object itself, and the second result to false. If the 

object has already been moved to the persistent heap (tested by predicate alreadyMoved), then 

the persistent address is looked up via lookupPersistentAddr and returned. Otherwise, storage is 

allocated in the persistent heap, the object is copied, and the new persistent address and true 

are returned. 
7MKPERSISTENT may be invoked on the same volatile object more than once if it is reachable from multiple 

points in the database. For example, if a transaction binds the same object to two different names in the top
level environment, then MKPERSISTENT is called two times on the object. To preserve the sharing of objects, the 
persistent address of the object established in the first call must also be returned as the result of the second call. 
The boolean result returned to the second caller (false} indicates that it is not necessary to search for volatile 
objects in the graph of objects rooted at Obj. This is performed by the first caller of MKPERSISTENT. In the next 
chapter, we give a complete description of the process by which objects are moved to the persistent heap. 
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4.5 Phase Three: Translation to P-RISC Code 

The third and final phase of compilation generates P-RJSC code from dataflow graphs via a 

three-step process: 

1. Analysis of the graph to determine which pieces are worth doing in parallel and which 

are best done sequentially. 

2. Mapping of temporary storage implicit in the graph to frame slots. Such storage consists 

of slots for synchronization, slots for values that are carried on tokens from one instruction 

to another, and any slots needed internally by an instruction. 

3. Nearly context-free expansion of each graph instruction to P-RJSC code. 

We now examine each of these steps in turn. 

4.5.1 Graph Analysis 

The graph analysis performed by AGNA is based on a heuristic developed by Iannucci called 

the Method of Dependence Sets (MDS) [44]. We first describe the motivation for such analysis 

and then present MDS. Readers familiar with MDS may wish to skip to Section 4.5.2. 

Motivation 

Instructions in a datafiow graph may be viewed as independent tasks that execute when and only 

when their required inputs are available. Synchronization of input values is performed implicitly 

by the instructions themselves, i.e., when the necessary inputs are present, an instruction 

schedules itself for execution. At a given instant of time, all instructions for which inputs are 

available may execute. 

In the generation of P-RJSC code, we can preserve all of the parallelism present in dataflow 

graphs by translating each graph instruction to a corresponding P-RISC thread that performs: 

(1) explicit synchronization of its inputs; (2) the operation specified by the graph instruction; 

and (3) transfer of control to consumer threads. Using this translation scheme, the dataflow 

graph of Figure 4.19 is translated to the following P-RJSC code: 

X: {, r10 +--- x 
FORK T1 
JMP T2 
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Y: % r11 +-- y 
FORK Tl 
JMP T2 

Tl: JOIN r9 bO % wait for x and y 
ADD r12 r10 r11 
JMP T3 

T2: JOIN r9 bl % wait for x and y 

SUB r13 r11 r12 

T3: JOIN r9 b2 % wait for aum and difference 
MUL r14 r12 r13 

Computations that produce x and y place their values in frame locations rlO and r11, respectively, 

and then transfer control to threads Tl and T2. When both inputs are available, the threads 

perform the addition and subtraction, and transfer control to T3, where the multiplication is 

performed. 

x y 

Figure4.19: Dataflowgraphfor (* (+ x y) (- x y)). 

An alternative translation strategy is to combine Tl, T2, and T3 as follows: 

X: % rl +-- x 
JMP T 

Y: % r2 +-- y 

T: JOIN r9 bO 
ADD r12 r10 r11 
SUB r13 r10 r11 
MUL r14 r12 r13 

Here, explicit synchronization is again performed for inputs x and y, but then all three arith

metic operations are performed in sequence. While in this translation we give up the flexibility 

122 



to execute the addition and subtraction operations in any order (and possibly in parallel), the 

instruction count is reduced considerably through the elimination of synchronization overhead 

and transfers of control. Also, by reducing the number of transfers of control, pipeline per

formance is improved, and locality is enhanced so that it may be easier to store intermediate 

results in high speed memory. 

When is it beneficial to perform such sequentialization of operations? In the example above, 

it is clearly worthwhile. If the addition and subtraction, however, were replaced by more 

complex operations involving, say, disk accesses, then it may be advantageous to allow them 

to be executed in parallel. In the AGNA compiler, we utilize a simple heuristic developed by 

Iannucci called the Method of Dependence Sets (MDS) [44] to address this question. The net 

result is, roughly, that parallelism is preserved between long-latency operations, and sequential 

code is generated for connected subgraphs that do not involve such operations. 

We decided to use MDS in AGNA because (1) it is simple and well understood; (2) it is 

provably deadlock-free; and (3) its latency-directed approach seemed particularly appropriate 

given the many long-latency operations in a parallel, persistent system. While a possible area 

of future research, we have not undertaken in this work a thorough analysis of its strengths and 

weaknesses relative to other approaches. 

Method of Dependence Sets 

MDS operates by dividing graph instructions into partitions in such a way that all instructions 

in a partition Pi depend, either directly or indirectly, on the same set of long-latency outputs. 

There are three basic kinds of long-latency outputs in the graph instructions used in the AGNA 

compiler: 

• Internal outputs of LAMBDA. Such arcs are considered to have a long latency because of the 

non-strictness of procedure calls in AGNA. 

• Outputs of APPLY . 

• Outputs of manager instructions such as LOOKUP, SELECT-FIELD, UPDATE-FIELD, etc. 

An example partitioning produced by MDS, shown in Figure 4.20, divides the body of the 

procedure into partitions Pi, P2 , and P3 . Partition P1 contains the LOOKUP and CONSTANT instruc

tions, which depend only on the Trigger arc. Partition P2 contains the arithmetic instructions 
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and RESULT-RETURN, which depend on the long-latency outputs of the two LOOKUPS and the trigger. 

Finally, partition P3 contains SIGNAL-RETURN, which depends on all of the long-latency outputs 

in the procedure body. 

LAMBDA 
SignaJ 

~------------. 
CONSTANT("x") I .__ _ ___,.. __ __, 

~LOOK~ 
/ 

r 

I 

Trigger 

- - - ~ Partition P1 

CONSTANT("y") 
I 

.______,___. _) 
~ Partition P 

2 

1 

~ RESULT-RETURN 

SIGNAL-RETURN 

'-- -

SignaJ 

Figure 4.20: Partitioning of graph for (lambda () (* (+ x y) (- x y))). 

This kind of partitioning is performed on the graph in the body of each procedure definition 

(i.e., the instructions encapsulated by each LAMBDA), as well as the body of the top-level XACT. 

The partitioning algorithm, applied to either LAMBDA or XACT, proceeds as follows: 8 

1. Topologically sort instructions in encapsulator body. 

2. Give each long-latency output in the graph a unique name. 

3. For each instruction i, in topological order: 

(a) Compute LLDS(i), the long-latency dependence set, as follows. Let J be the set 

of instructions from which i receives input. Let 0 be the set of output arcs which 

8 As described in [44], MDS works only on acyclic graphs, and thus cannot accommodate the graphs generated 
by expressions such as (letrec ( (c (f a b c))) c). Here, we assume all graphs are acyclic. 
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connect instructions in J to i. 

LLDS(i) = ( LJ LLDS(j)) U {o Io E 0 /\long-latency( a)} 
jEJ 

In words: LLDS(i) includes LLDS(j), for all instructions j from which i receives 

input, plus all long-latency output arcs o which feed i directly. 

(b) Place i in the partition with dependence set LLDS(i). If no such partition exists, 

then create one. 

After partitioning (and allocation of frame slots, to be described next), code generation is 

performed within a partition by expanding, in topological order, each graph instruction to the 

P-RJSC instructions that implement it. Explicit transfers of control to consumer instructions 

and synchronization of inputs are performed only for data flowing along inter-partition arcs. 

For example, for partitions P1 , P2 , and Pa, the order in which instructions are expanded, and 

the explicit control transfers and synchronization are shown in Figure 4.21. In Pi, FORK is used 

prior to the first LOOKUP to initiate concurrent execution of the remainder of the partition, and 

both LOOKUPS transfer control to the start of P2 after execution. In P2 , after synchronization 

of inputs, execution is completely sequential. Note that the - instruction does not need to 

perform additional synchronization of its inputs x and y, nor do the LOOKUPs need to transfer 

control directly to -. The sequentialization of instructions in P2 ensures that both inputs are 

present when the subtraction is performed. Finally, Pa synchronizes its inputs and executes 

SIGNAL-RETURN. 

An important issue to consider when introducing additional execution constraints (e.g., 

sequentiality) not present in the source language is deadlock. For example, if we introduce a 

new constraint that forces a SELECT-FIELD graph instruction to execute before the corresponding 

UPDATE-FIELD, then the program will deadlock because the SELECT-FIELD will block indefinitely. In 

[44] it is shown that the partitioning performed by MDS does not introduce deadlock. 

Finally, we note that enhancements to the basic MDS Algorithm have been developed by 

David Culler and his research group at U.C. Berkeley (67]. Additional analysis is utilized to 

produce larger partitions, and extensions have been developed to partition cyclic graphs. 

4.5.2 Frame Slot Allocation 

After graph analysis, the next step in the generation of P-RJSC code from dataflow graphs is 

the mapping of temporary storage implicit in the graph to frame slots. This storage includes 
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Figure 4.21: Synchronization and control transfers for P1 and P2 • 

slots for: (1) synchronization; (2) values that are carried on tokens; and (3) internal use by the 

expansion of an instruction. We first describe the organization of frames, and then present the 

algorithm for frame slot allocation. 

Frame Organization 

There are two different types of frames: transaction and procedure. Exactly one of the first 

type is allocated per transaction execution, while one of the second type is allocated for each 

application of a user-defined procedure. Both consist of a chunk of linearly-addressed memory. 

Unlike the heap, frames are not accessed by synchronized reads and writes, so extra status bits 

are not needed in frame memory. 

The first two slots in a transaction frame (shown in Figure 4.22) contain constant o, and 

a pointer to the frame itself. Because these values are used so frequently, slots for them are 

allocated statically and they are written by the frame allocation manager. Instructions in the 

body of the transaction may read from but not write to these slots. The remaining slots in the 

frame provide dynamic storage for instructions in the transaction body. 

The first six slots in a procedure frame (also shown in Figure 4.22) are allocated statically. 

Again, the first two slots contain constant o and a pointer to the frame itself. The next four 

contain the following return information: the caller's FP, the caller's result and signal IPs, and 

the slot in the caller's frame where the result is to be stored. The next set of contiguous 
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• 
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first scratch slot 
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• 
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last scratch slot 

Figure 4.22: Organization of transaction frame (left) and procedure frame (right). 

slots contains arguments to the procedure and, as before, the remaining slots provide dynamic 

storage for instructions in the body. 

Algorithm 

The algorithm for mapping graph storage to frame slots traverses the graph in a transaction 

or procedure body and allocates, for each instruction, slot bits for synchronization, slots for 

internal use, and slots for outgoing, value-carrying arcs. Simple static analysis is employed to 

determine when an allocated frame slot is no longer accessible and thus may be reused safely. 

Static techniques, however, may not always be sufficient to determine at what point in the 

graph it is safe to reuse a frame slot, because the relative execution order of instructions may 

be left unspecified by the compiler and determined only at run-time. For example, consider 

slot ri which holds the result of ALLOCATE-OBJECT, shown in Figure 4.23. It is safe to reuse ri 

only after all instructions Ji have executed and consumed its value, and for the reason just 

described, this may not be determinable at compile-time. In the AGNA compiler, we identify 

two common cases for which static analysis can determine when it is safe to reuse ri: 
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• There is only one consUIIler instruction, J 1 ; slot ri may be reused safely when J 1 has 

consUIIled its value. 

• All Ji reside in the same partition and are executed sequentially; slot ri may be reused 

after the last Ji has executed. 

Type Size 

ALLOCATE-OBJECT 
Result 

ri 

• • • 

Figure 4.23: Reuse of result value in slot ri. 

Another issue to consider is when slots used internally by an instruction may be reused. 

For a strict instruction such as ALLOCATE-OBJECT, internal slots may be reused as soon as a result 

token is produced. For a non-strict instruction such as APPLY, internal slots may be safely reused 

as soon as a signal token is generated. 

In AGNA, each input port of an instruction has associated with it two sets of slots, called free 

and to-free, that are used by the compiler to propagate across the graph information describing 

when a slot may be reused. The free set contains slots that are available for immediate reuse, 

while to-free contains slots that are available for reuse by an instruction's successors. For 

example, consider the graph shown in Figure 4.24. Result slot r12 and internal slot r13 are 

allocated for use by ALLOCATE-OBJECT from the incoming free set. The free set passed on to APPLY 

consists of unused free slot r14 and to-free slots r15 through r18. Slots r12 and r13 used by 

ALLOCATE-OBJECT are placed in the to-free set passed to APPLY which, in turn, will place them in 

the free set passed to its successors. 

For non-strict instructions such as APPLY, unused free slots are passed on to consillilers of the 

result output. IT there is more than one consUIIler, as shown in Figure 4.25, the slots are divided 

evenly amongst them. Thus, free slots r16, r17, and r18 not used by APPLY are split between Ii 

and 12. APPLY's internal slots are added to the to-free set of the input port connected to the 

signal output. In the figure, it is assUIIled that the relative execution order of 11 and 12 is not 

known at compile-time, and thus APPLY result slot r15 is not added to the to-free set of 11 or h-
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free: {} 
to-free: {} 

free: {r12,r13,r14} 

to-free: {r16, r16, r17, r18} 

'I)/pe Size 

ALLOCATE-OBJECT internal: {r13} 
Result 

r12 

free: {r14,r16,r16,r17,r18} 

to-free: {r12, r13} 
~----~ 

APPLY 

Figure 4.24: Propagation of free and to-free sets across ALLOCATE-OBJECT. 

free: {r16, r17} 
to-free:{} 

free: {} 

to-free: {} 

free: {r12,r13,r14} 

to-free: {r16, r16, r17, r18} 

'I)/pe Size 

ALLOCATE-OBJECT 
Result 

r12 

internal: {r13} 

free: {r11} free: {r14,r16,r16,r17,r18} 

to-free: {r10} to-free: {r12, r13} 
~------~ 

internal: {r11, r14} 

free: {r18} 

to-free:{} 

Figure 4.25: Propagation of free and to-free sets across APPLY. 
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The rules for propagating free and to-free information can be summarized as follows. For 

a strict instruction: to-free and unused free slots are split amongst successor free sets; internal 

slots are split amongst successor to-free sets; and the result slot is added to the to-free set of 

the last successor to execute, if this instruction can be identified statically (according to the 

analysis described above). For a non-strict instruction: unused free slots are split amongst free 

sets of consumers of the result; to-free slots are split amongst free sets of consumers of the 

signal; internal slots are split amongst to-free sets of consumers of the signal; and the result 

slot is added to the to-free set of its last consumer, again, if the instruction can be identified 

statically. 

The algorithm for allocating frame slots traverses the graph in an XACT or LAMBDA body in 

topological order, and performs the following for each instruction I: 

• Allocation of slot bits for explicit synchronization of inputs. Input ports requiring such 

synchronization are exactly those identified by the graph analysis described previously in 

Section 4.5.1. A unique label is also associated with each input port; these are used later 

in the actual generation of P-RISC code. 

• Compute set F REE(I) of slots available for reuse as follows. Let IP be I's input ports. 

F REE(I) = LJ ip.free 
ipEIP 

Allocate from F REE(I) slots needed for results and internal use; if set is exhausted, then 

allocate new, unused frame slots as necessary. Allocation of such slots is performed by 

incrementing a "high water" mark, initially set to the first free slot in the frame. 

• Propagate to I's successors free and to-free information as described above. 

Allocation of synchronization bits in the first step is straightforward and proceeds as follows. 

Before the graph traversal begins, the first scratch slot is allocated for synchronization, and a 

marker indicating the number of bits used within the slot is set to zero. When the algorithm 

needs to allocate synchronization bits, it simply increments the marker by the appropriate 

number. If the marker happens to exceed the bit length of a slot (i.e., all bits in the current 

slot are allocated), then a new, unused frame slot is assigned for synchronization, and the 

marker is reinitialized to zero. Frame slots allocated for synchronization, and bits in such slots, 

are never reused. 9 

9 For the programs that we have compiled and run on our prototype system, which has 64 bit frame slots, 
only rarely does a procedure or transaction body require more than one slot for synchronization. 
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The second step is complicated somewhat by the requirement of some instructions that 

slots for internal use be contiguous. The reason for this requirement is that P-RISC manager 

instructions, as described in Section 4.4, are passed arguments in contiguous frame slots. 

4.5.3 Code Generation 

After partitioning and frame slot allocation, the next and final step translates the dataflow 

graph to P-RISC code by traversing the graph in the transaction body in topological order 

and invoking an expander function on each instruction to generate the equivalent P-RISC code. 

Results of the partitioning and slot allocation steps are stored in data structures representing 

the graph and thus are available to the expander functions, of which there is one for each type 

of instruction. An expander is solely a function of the instruction and its attributes (inputs, 

outputs, partition, etc.) and has no global knowledge of the graph. Code produced by expander 

functions is accumulated in partition objects created and added to the graph in the partitioning 

step. 

XACT 

Signal 

expansion 
of 

body 

L: DEALLOCATE rl rl 
DIE 

Figure 4.26: Expansion of XACT. 

P-RISC code of the transaction consists of the results of expanding the body, followed by 

frame deallocation and thread termination as shown in Figure 4.26. Allocation of a frame for 

the transaction is performed by the run-time system when the transaction object is loaded into 

memory, and not explicitly by the transaction itself. Code associated with each partition in 

the body is terminated with a DIE instruction prior to the appending of partitions to form the 

final code sequence, so there is no danger that sequential flow of control in one partition will 

incorrectly fall through and begin executing in another. The final transaction object, i.e., the 

result of compilation, is structured as follows. 

• Standard object header. This contains things like a pointer/data flag, type tag, etc. 
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• Frame size and base address. The frame size is used by the run-time system to allocate a 

frame of the appropriate size prior to execution of the transaction body. The base address, 

initially zero, is the heap address at which the transaction object is assumed to reside, and 

is used by the compiler to construct intra-object pointers such as references to objects in 

the static data area (described below). When the transaction object is assigned an actual 

heap address at run-time, the base address and all intra-object pointers are updated. 

• Code area. This contains P-RJSC code of the transaction. 

• Static data area. This contains embedded data objects such as strings and procedures. 

Synchronization and Transfers of Control 

As described in Section 4.5.1, explicit synchronization of inputs and transfers of control to 

consumer instructions are needed only for inter-partition arcs. Since these aspects of code gen

eration are identical for all strict instructions, they are not repeated in each instruction-specific 

expander, but rather factored out and performed by procedures pre-expand and post-expand. 

Thus, code generation for a strict instruction I actually consists of: 

(1) pre-expand(/); 

( 2) instruction-specific expansion; and 

(3) post-expand(/). 

For example, consider the translation of SELECT-FIELD in Figure 4.27. Since SELECT-FIELD is a long

latency operation, procedure pre-expand adds a FORK to label L2 to initiate concurrent execution 

of the remainder of partition P2 , and a JOIN instruction to synchronize the Object input using 

the label, frame slot, and bit assigned to the input port during slot allocation. Note that 

synchronization is not needed for the Type and Field inputs because they are produced within 

the same partition, P2 . Line (3) contains code produced by the expander for the SELECT-FIELD 

instruction; we will see soon how this and other object-manipulation instructions are translated. 

Finally, post-expand adds a JMP to the consumer instruction in partition P3 and a NOOP as the 

target of FORK in line (1).10 

For non-strict instructions (APPLY, TAIL-APPLY, and IF), pre-expand and post-expand initiate 

concurrent execution of the remainder of the thread as for strict instructions (lines ( 1) and ( 5) 

10 All such NOOPs are eliminated during peep-hole optimization. 
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Figure 4.27: Explicit synchronization and control transfers. 

in Figure 4.27), but do not add explicit synchronization or transfers of control to consumers. 

These are handled by the expander functions themselves, to be described soon, because they 

are different for each of the three non-strict instructions. 

Constants 

A CONSTANT graph instruction is expanded to LDADC, the P-RJSC instruction that loads a data 

value into a frame slot. If a constant can fit in a single frame slot, such as an integer, then it 

is included directly in the instruction as shown in Figure 4.28. Other constants, such as long 

strings, are placed in the static data area and a pointer to them is loaded, also via LDADC. 

CONSTANT(24) ~ LOADC r14 24 

r14 

Figure 4.28: Expansion of CONSTANT (24). 

Primitive Applications 

Expressions involving primitive operations such as arithmetic, logical, and relational operators 

are expanded in the obvious way. For example, the + instruction is translated as shown in 

Figure 4.29. 

133 



r1~r12 
+ ..... 

r16 

ADD r15 r10 r12 

Figure 4.29: Expansion of+. 

Object Manipulation 

Object allocation, field update, field insertion and deletion, field inverse-mappings, and other 

kinds of object manipulation are expanded to code which places the arguments in contiguous 

frame slots, and then calls the appropriate manager. For example, the SELECT-FIELD instruction 

shown in Figure 4.30 calls manager SELECTF after copying its arguments to frame slots r11, r12, 

and r13, the slots allocated for internal use. 

Procedure Definition 

Object Tl/pe Field 

SELECT-FIELD 
{r11, r12, r13} 

Reault 

r17 

ADD 
ADD 
ADD 
SELECTF 

r11 rO r15 
r12 rO r21 
r13 rO r19 
r11 r17 

Figure 4.30: Expansion of SELECT-FIELD. 

Expansion of LAMBDA recursively expands instructions in the body and packages the resulting 

code into a procedure object with the same overall structure as the transaction object described 

previously. The procedure object is placed in the transaction's static data area, and a reference 

to it (i.e., the result of LAMBDA) is placed in the result slot via LOADC. 

Result and termination signals produced by a procedure are returned via RESULT-RETURN 

and SIGNAL-RETURN, respectively, whose expansions are shown in Figure 4.31. RESULT-RETURN is 

translated to START1, which stores the result of the procedure in the caller's frame, and activates 

the thread to receive this value. SIGNAL-RETURN is translated to STARTO, which activates the signal

receiving thread. Both instructions use the linkage information stored in frame slots r2 through 

r5. 

The structure of the code area of a procedure with two arguments is shown in Figure 4.32. 

At the beginning is a thread-initiation table that contains one entry for each input to the body 
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rlO 

RESULT-RETURN START! r2 r3 r5 rlO 

SIGNAL-RETURN STARTO r2 r4 

Figure 4.31: Expansion of RESULT-RETURN and SIGNAL-RETURN. 

expression. As we shall see soon, callers of the procedure transfer control to instructions in this 

table to initiate execution of trigger, signal, and argument threads in the body. Each entry in 

the table is a JHP, whose target is either the consumer instruction itself, if there is only one, or 

a dispatch area immediately following the table for initiating execution of multiple consumers 

of an input. For example, argument x has multiple consumers as shown in the figure, and 

execution is initiated by the FORK and JMP following the table. While the FORK and JMP could be 

included directly in the thread-initiation table, this would complicate matters at the call site as 

the offset for a thread in the body would, in general, have to be determined at run-time. If the 

table contains only one entry per input, however, then offsets can be computed at compile-time. 

LAMBDA 
'IHgger z 11 

L: 

Signal 

JMP Trig 
JMP Sig 
JMP x 
JMP y 

X: FORK A 
JMP B 

body 

thread 
initiation 
table 

initiate 
consumers of z 

L: DEALLOCATE rl rl 
DIE 

Figure 4.32: Organization of code in procedure body. 

Code associated with each partition in the procedure body is terminated with a DIE instruc

tion prior to the appending of partitions to form the code sequence labeled body in the figure, 
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so as with transactions, there is no danger that sequential flow of control in one partition will· 

incorrectly fall through and begin executing in another. At the Signal input port of the bottom 

arm of LAMBDA, the procedure frame is deallocated, and execution is terminated. 

P-RISC code generated for the SIGNAL-TREE instruction used in Figure 4.32 is produced 

entirely by pre-expand and post-expand; its expander function generates no code. In other words, 

the code for SIGNAL-TREE consists entirely of synchronization and transfers of control to successor 

instructions. 

Procedure Applications 

Procedure applications in AGNA perform: synchronization oflong-latency inputs; allocation of 

a new frame; transmission of linkage information and argument values; initiation of threads in 

the procedure body; and setup of threads to receive the result and termination signal. Consider 

the APPLY instruction in Figure 4.33 that applies a procedure to two arguments; its expansion 

consists of three contiguous segments of code. The first segment, given below, performs explicit 

synchronization of the Procedure input and allocates a new frame. 

(1) Pree: JOIN r3 b9 
(2) LOADC r18 24 
(3) ADD r18 r18 r10 
(4) LOAD r18 r18 

(5) ADD r14 rO r1 
(6) LOADC r15 Res 
(7) LOADC r16 Sig 
(8) LOADC r17 20 
(9) ALLOCFRAME r14 r14 
(10) FORK Arg2 

7. synchronize Procedure input 
7. fetch frame size at address r10+24 

7. load args and call frame allocator 
7. caller FP =self FP, in r1 
7. result IP = label Res 
7. signal IP = label Sig 
7. result slot = r20 
Y. allocate new frame, r14 +-- FP 
7. new FP available, go store and start arg 2 

After synchronization in line 1, the frame size and linkage information are loaded into slots 

r14 through r18 and the frame allocation manager is invoked. The frame size is read in lines 2 

through 4 from a known offset {24) from the start of the procedure object. Linkage information 

is loaded in lines 5 to 8: the caller FP is the current frame's FP, stored in r1; the result and 

signal IPs are labels Res and Sig, respectively; and the result slot is r20. Manager ALLOCFRAME 

(in line 9) allocates a new frame, stores the linkage information, and returns a pointer to the 

frame in slot r14. After frame allocation, a thread is spawned in line 10 at label Arg2 (code 

given below) to store the procedure's second argument and initiate its thread of execution in 

the body. 
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L1: L2: I 

r--------....__ 

Pree: 
(r3,b9) 

~ 

Arg2: 
(r3, b10) 

Procedure Arg1 Arg2 

APPLY 
{r14,r16,r16,r17,r18} 

Result Signal 

r20 
..._ ___ ___.._. Sig: 

Figure 4.33: APPLY instruction, annotated with labels and slot information. 

The second segment of code transmits the first argument and initiates execution of threads 

in the procedure body corresponding to the trigger, signal, and first argument inputs. 

(11) LO ADC r15 32 'l. start trigger thread at r10+32 
(12) ADD r15 r15 r10 
(13) STARTO r14 r15 
(14) LO ADC r15 40 'l. start signal thread at r10+40 
(15) ADD r15 r15 r10 
(16) STARTO r14 r15 
(17) LO ADC r15 48 'l. start argl thread at r10+48 
(18) ADD r15 r15 r10 
(19) LO ADC r16 6 'l. first arg stored in slot 6 
(20) START1 r14 r15 r16 r9 
(21) DIE 

Execution of both the trigger and signal threads is initiated via STARTO in lines 13 and 16. The 

FP used in both cases is the new frame pointer in slot r14. The target IPs for the threads are 

computed by adding known offsets (32 and 40) to the address of the procedure stored in slot 

r10. Lines 17 to 20 store the first argument of the procedure in slot six in the new frame, just 

past the linkage information, and activate the thread to receive it. 

The final segment of code in the expansion of APPLY in Figure 4.33 transmits the second 

argument and sets up a thread to receive the procedure's result. 

(22) Arg2: JOIN r3 b10 'l. wait for both arg value and frame pointer 
(23) LO ADC r17 56 'l. start argl thread at r10+48 
(24) ADD r17 r17 r10 
(25) LO ADC r18 7 'l. second arg stored in slot 7 
(26) START1 r14 r17 r18 r11 
(27) DIE 

(28) Res: FORK Ll 'l. dispatch to consumers of result 
(29) JMP 12 
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Explicit synchronization is performed first in line 22, waiting for both the argument value and 

new frame pointer to be computed. When they are available, the argument value (in r11) is 

stored in slot r7 and the corresponding thread is started via START1. The thread receiving the 

result of the application (at label Res, line 28) branches to consumer instructions at labels L1 and 

L2. Since the termination signal has only a single consumer (at label Sig), control is transferred 

directly to it from the procedure body. 

While the expansion given above is for the particular APPLY instruction shown in Figure 4.33, 

the general translation scheme used for applications should be clear. First, synchronization is 

provided for the procedure input, if necessary, after which a new frame of the appropriate 

size is allocated. When the frame is available, threads in the procedure body receiving the 

trigger, signal, and all arguments not requiring explicit synchronization are started. Arguments 

requiring synchronization are started when both the argument value and new frame pointer 

are available. Finally, threads are set up to dispatch to multiple consumers of the result or 

termination signal. 

Tail Calls 

Expansion of TAIL-APPLY is similar to APPLY, but different in several important aspects. Recall 

from Section 4.3.6 that a procedure f called in a tail-recursive manner from a procedure g 

returns its result and termination signal directly to the computations waiting for the result and 

signal of g (say C1 and C2), instead of passing them first tog and then to C1 and C2 , as in a 

normal application. In a tail call, procedure g also propagates its termination signal forward to 

f, rather than back to its caller. 

Consider the TAIL-APPLY instruction shown in Figure 4.34. As with APPLY, the first segment 

of the expansion performs explicit synchronization of the Procedure input and allocates a new 

frame. 

(1) Pree: 
(2) 
(3) 
(4) 

(5) 
(6) 
(7) 
(8) 
(9) 
(10) 

JOIN r3 b9 
LOADC r18 24 
ADD r18 r18 r10 
LOAD r18 r18 

ADD r14 rO r2 
ADD r15 rO r3 
ADD r16 rO r4 
ADD r17 rO r5 
ALLOCFRAME r14 r14 
FORK Arg2 

'!. synchronize Procedure input 
'!. fetch frame size at address r10+24 

'!. load args and call frame allocator 
'!. caller FP =return FP, in r2 
'!.result IP= return result IP, in r3 
'!.signal IP= return signal IP, in r4 
'!.result slot= return result slot, in r5 
'!. allocate new frame, r14 <-- FP 
'!. new FP available, go store and start arg 2 
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(11) 
(12) 
(13) 

ADD r2 rO r14 
LDADC r15 40 
ADD r4 r10 r15 

'l. return FP <--- nev FP 

'l. return signal IP <--- callee signal IP 

After synchronization in line 1, the frame size and linkage information are loaded into slots r14 

through r18 and the frame allocation manager is invoked as before in APPLY. Here, however, the 

linkage information in the new frame (r2 through r5) is set to return to the current procedure's 

caller, rather than the procedure itself: in line 5, the caller FP is set to the current frame's 

return FP, stored in slot r2; in lines 6 and 7, the result and signal IP s are set to the current 

frame's result and signal IPs, respectively, stored in r3 and r4; and in line 8, the result slot is 

set to the contents of r5, the current frame's result slot. Next, a thread is spawned in line 10 

at label Arg2 to start the second argument, as before. Finally, lines 11 through 13 update the 

return FP and signal IP of the current procedure to the new FP and signal IP of the procedure 

being applied so that SIGNAL-RETURN propagates the termination signal to the callee as desired. 

~---- ~ 

Proc: 
(r3, b9) 

P_. 

Arg2: 
(r3,b10) 

Procedure Arg1 Arg£ 

TAIL-APPLY 
{r14,r16,r16,r17,r18} 

Signal 

~------- Sig: 

Figure 4.34: Annotated TAIL-APPLY instruction. 

The second segment of code transmits the first argument and initiates execution of threads 

in the procedure body corresponding to the trigger and first argument inputs. 

(14) 
(15) 
(16) 
(17) 

(18) 
(19) 
(20) 
(21) 

LDADC r15 32 
ADD r15 r15 r10 
STARTO r14 r15 
LDADC r15 48 
ADD r15 r15 r10 
LDADC r16 6 
START1 r14 r15 r16 r9 
JMP Done 

'l. start trigger thread at r10+32 

% start arg1 thread at r10+48 

% first arg stored in slot 6 

As before, the trigger and first argument are started in lines 14 through 20. Note that here we 

do not start the signal thread, however, because it is started later by SIGNAL-RETURN. The final 
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instruction in line 21 transfers control to label Done which, as we shall see below, generates the 

Signal output of TAIL-APPLY when the application is complete. 

The last segment of code: 

(22) Arg2: JOIN r3 b10 7. wait for both arg value and frame pointer 
(23) LO ADC r17 56 '!. start arg1 thread at r10+48 
(24) ADD r17 r17 r10 
(25) LO ADC r18 7 '!. second arg stored in slot 7 
(26) START1 r14 r17 r18 r11 

(27) Done: JOIN r3 b9 
(28) JMP Sig 

As before, explicit synchronization is performed in line 22 and the second argument is started in 

lines 23 to 26. Here, however, synchronization is performed in line 27, waiting for the trigger and 

all argument inputs to be started, after which control is transferred to label Sig, the consumer 

of TAIL-APPLY's signal output. 

Conditionals 

Conditionals are expanded to code that performs: explicit synchronization of long-latency in

puts; triggering and routing of free variable inputs to the appropriate arm of the conditional; and 

transfers of control to consumers of the result and termination signal. For example, expansion 

of the IF instruction shown in Figure 4.35 is given below. 

(1) Fred: JOIN r9 b1 '!. synchronize Predicate input 
(2) FORK FV2 7. predicate available, go handle FV2 
(3) JMPT r10 1 '!. if predicate is true, go to 1 
(4) FORK EFV1 '!. start consumer of FV1 in Elae branch 
(5) JMP ETrig '!. trigger Elae branch 
(6) 1: FORK TFV1 '!. start consumer of FV1 in Then branch 
(7) JMP TTrig 7. trigger Then branch 
(8) FV2: JOIN r9 b2 '!. synchronize FV2 input 
(9) JMPT r10 TFV2 '!. if predicate is true, route FV2 to Then branch 
(10) JMP EFV2 'Y. route FV2 to Elae branch 

(11) TRes: ADD r20 rO r13 7. move Then result to result slot r20 
(12) FORK 11 '/. branch to consumers of Reault 
(13) JMP 12 
(14) ERes: ADD r20 rO r12 'Y. move Else result to result slot r20 
(15) FORK 11 'Y. branch to consumers of Reault 
(16) JMP 12 
(17) TSig: NOOP 
(18) ESig: JMP 13 'Y. branch to consumer of Signal 
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After synchronization of the incoming predicate in line 1, a thread is spawned in line 2 at label 

FV2 to handle long-latency input FV2 when it is available. Next, control is transferred to TFV1 

and TTrig in lines 6 and 7 (the Then branch) or EFV1 and ETrig in lines 4 and 5 (the Else branch), 

depending on whether the predicate is true or false. Note that the consumer of FVJ can be 

safely started at this point because the value of FVJ is delivered on an intra-partition arc. The 

next three instructions in lines 8 to 10 wait for both the Predicate and FV2 inputs, and then 

branch either to TFV2 or EFV2, again, depending on the predicate value. 

Lines 11 to 13 and 14 to 16 receive the results of the Then and Else branches, copy them to 

final result slot r20, and transfer control to consumer instructions at labels 11 and 12. Lines 17 

and 18 provide branch targets for producers of ThenSignal and ElseSignal, and transfer control 

to the consumer instruction at label 13. 

IF 

Prad: 
(r9 b1) 

Predicate 

!Res: 

FV1 

ThenResult ThenSignaJ 

Result 

.---...~+-~~~~~~~-----~r20 

L1: L2: 

FV2: 
rl9 (r9, b2) 

FVe 

r12 

ERes: 

ElseResult ElseSignaJ 

Signal 

~-----------L3: 

Figure 4.35: Annotated IF instruction. 

The general translation scheme for IF is summarized is follows. First, explicit synchroniza

tion is performed for the predicate input, if necessary, after which the Then or Else branch is 

triggered, according to the value of the predicate. Next transfers of control are made to Then or 

Else consumers of free variables arriving on intra-partition arcs. Then, explicit synchronization 

is performed for free variables arriving on inter-partition arcs, and transfers of control are again 

made to corresponding Then or Else consumers. Finally, code is generated that receives the 

result and signal outputs of both arms of the conditional, copies the results to the final result 
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slot, and transfers control to successor instructions. 

4.5.4 Phase Three Optimizations 

Peep-hole optimization is performed on code in the transaction body and code for each embed

ded procedure. Four types of optimization are performed: 

1. NOOP instructions are eliminated. Such instructions are not necessary and were introduced 

only to simplify code generation. 

2. FORK instructions for which the target is a DIE instruction are eliminated. This situation 

may result, for example, from a FORK generated by pre-expand prior to a long-latency 

operation. The FORK is intended to initiate concurrent execution of the remainder of the 

thread, but if the instruction happens to be the last one expanded in the partition, the 

FORK target may be DIE. 

3. JMPs to successor instructions are eliminated. This situation often appears when code from 

the various partitions in a transaction or procedure are appended together. For example, 

the last instruction in one partition may transfer control to a consumer at the beginning 

of the next partition. 

4. Transfers of control to JMP instructions are "forwarded". In other words, the label to which 

a JMP instruction transfers control is inserted directly in all control-transfer instructions 

for which it is the target. 
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Chapter 5 

Implementation of the P-RISC 
Abstract Machine 

In the previous chapter, we described how transactions are compiled to code for the P-RISC 

abstract machine. In this chapter, we describe how the abstract machine is implemented on a 

real multiprocessor. 

5 .1 Overview 

We are targeting our implementation to MIMD multiprocessors consisting of one or more 

processor-memory elements (PMEs), interconnected via a high-speed network (see Figure 5 .1). 

Each PME consists of a processor, some local memory, and an attached disk. The network may 

be a bus, as is typical in small multiprocessors, or a switching network in larger machines. 

Interconnection 
Network 

• • • 

Figure 5.1: Target machine organization. 

We feel that this particular architecture is an appropriate choice for two reasons. First, we 

believe that a distributed instead of shared model of physical memory is easier to scale to larger 
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machines. Second, the clustering of a processor, memory, and disk at a PME allows the locality 

of persistent data to be exploited. For example, a transaction may filter an enormous amount 

of persistent data (e.g., terabytes ), and having processing power close to each disk allows filters 

to be applied locally. H all persistent data must be read from a remote disk and transferred 

through the network, then the latency of access is increased and valuable network bandwidth is 

consumed, much of it potentially by transfers for data that are quickly discarded by the filter. 

The P-RISC abstract machine may be implemented in a number of different ways. One 

possibility is to build a P-RISC processor directly in hardware [69], while another is to translate 

P-RISC instructions into native machine code of a real multiprocessor [59]. In AGNA we have 

taken yet another approach, implementing the P-RISC machine via software emulation. The 

motivation for this decision is twofold. First, this approach provides a great deal of flexibility 

and portability (the emulator is written in C), since we can easily change platforms, add run

time metering, etc. Second, this requires less effort than the other approaches, and before 

pursuing a more complicated (and efficient) implementation, we wanted to verify that the 

overhead of emulation was indeed a bottleneck. If the limiting factor were the disk or network, 

for example, then more efficient execution of P-RISC instructions would have little impact on 

overall performance. 

Software for the AGNA system is structured into three separate programs, as shown in 

Figure 5.2 (a similar system organization is used by Culler [29]). Two of the programs, the 

compiler and a command interpreter, run on the front-end machine, while a single, identical 

copy of the third program, the P-RISC emulator, runs continuously on each processor of the 

back-end machine. The user interacts with the system as follows. He first submits the source 

of a transaction to the compiler, which translates it as described in the previous chapter, and 

then writes the output to a P-RISC "executable" file on the front-end machine. He then issues 

a "load" command to the command interpreter to download the compiled transaction into the 

heap memory of the machine. Finally, he issues a "run" command, again to the command 

interpreter, to execute the transaction and print the result. Additional commands supported 

by the command interpreter allow the user to create and destroy databases, review statistics 

gathered during execution, etc. 

A prototype implementation of the AGNA software was developed on workstations running 

the Unix operating system1
, interconnected via a local area network. The compiler is written in 

1 Unix is a. registered tra.dema.rk of AT&T. 
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Front-end Machine 

> load 
> run 

answer 
) 

Command Interpreter 

Back-end Machine 

Interconnection 
Network 

• • 
P-RISC 

Emulator Programs 

P-RISC 
executable 

Figure 5.2: AGNA system structure. 

Common Lisp, while the command interpreter and P-RJSC emulator are written in C. Several 

P-RJSC emulators may run on a single workstation, or each emulator may be mapped to its 

own physical machine. The development environment and programming languages (i.e., Unix, 

Lisp, and C) were chosen because of their widespread availability, their flexibility, and the many 

program development tools such as profilers and debuggers that they support. We have also 

ported our software to an Intel iPSC /2 Hypercube with 32 processors and 32 disks. We give a 

detailed description of the iPSC/2 in the next chapter. 

Outline of Chapter 

In the next two sections we describe how the heap and frame memory of the P-RISC machine 

are implemented in the distributed memory and disks of the parallel machine. Then we describe 

the organization of the emulator process and how it schedules and executes instructions. Next 

we discuss the representations used for indexes and multi-valued fields. Then we explore the 

issues of how computation and data are distributed across the machine, and finally, we end 

with a description of the different phases of execution of an AGNA transaction. 
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5.2 Mapping the Heap to the Physical Machine 

Heap memory of the P-RISC machine provides the abstraction of a single-level, virtual, global 

store, part of which is volatile, and the remainder of which is persistent. Heap addresses in 

AGNA are forty-two bits wide. To facilitate organization of the heap and its mapping to PMEs 

of the machine, it is divided into 210 segments of size 232 . Segments are the unit of distribution 

across PMEs, or said another way, each segment is contained entirely within one PME. A 

segment-to-PME mapping table (many-to-one) is replicated on all PMEs. The first stage of 

heap address translation, therefore, involves consulting this table to determine which PME 

holds the target heap location. 

The number of segments was chosen to be larger than the number of processors in most 

current MIMD machines (so at least one segment may be mapped to each PME), but yet 

small enough to allow the segment-to-PME mapping table to be cached entirely within all 

local memories of the machine for fast address translation. The segment size was chosen to be 

fairly large to accommodate big databases, and because thirty-two bits is a convenient unit to 

manipulate on most current machines. 

When a database is created, only a single segment is initially mapped to each PME. Segments 

not assigned to a PME at database creation time are available for dynamic allocation at some 

later point. In other words, when the volatile or persistent heap in all segments in a PME is 

exhausted, then a fresh segment is allocated dynamically to the PME. 

Within a PME 

Each segment is divided into pages of size 8 Kbytes each, which are the units transferred 

between disk and physical memory. Heap addresses therefore consist of a segment number, a 

page number, and a page offset as shown in Figure 5.3. On each PME, a subset of all the 

virtual pages in that PME are cached in physical memory in a collection of page frames. The 

mapping is maintained in a hash table: 

(segment,page) ~ page-frame 

Thus, the second step of heap address translation involves pro bing this table. If successful, i.e., 

the page is in memory, then the heap address can be accessed immediately 

The page size used in AGNA was chosen as a compromise between efficiency of access to large 

chunks of the heap, and good overall paging behavior. A large unit of transfer is more efficient 
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I Segment I Page Offset 

10 bits 19 bits 13 bits 

Figure 5.3: Structure of heap address. 

than a smaller one in the sense that for the fixed costs such as seek time and rotational latency 

associated with each read operation, more data is actually transferred. 2 On the other hand, if 

objects in the working set are clustered poorly in the heap, larger page sizes may actually be 

less efficient because of the time required to transfer additional page data into the cache when 

it is unlikely to be needed. Also, this may result in more page-outs from the cache, since a 

greater portion of it will be consumed by objects not used by the current computation. 

AGNA currently imposes the restriction that the total size of an object must be less than 

the size of a page. Further, an object is placed in contiguous locations in the heap so that 

it is contained entirely within a page. The rationale for these decisions is that they simplify 

management and manipulation of objects. A number of proposals in the literature for handling 

objects larger than a page ( e.g. 1 [22]) could be adopted in AGNA; this is an area for future 

investigation. 

Pages within a segment are partitioned into a persistent part and a volatile part-the high

order page bit distinguishes between the two. Thus, no mapping tables or lookups of any kind 

are required to differentiate between addresses in the persistent and volatile parts of the heap. 

This is important for efficiency reasons, as the two kinds of addresses have to be identified 

and handled differently in a number of frequently-performed operations such as installation of 

database updates at the end of a transaction, field update, field selection, etc. While other 

encodings may be equally suitable, we use the high-order bit because it can be accessed quickly 

and efficiently. A consequence of this decision is that the persistent and volatile portions of the 

heap are of equal size. 

If the second step of address translation, described above, finds that the target page is not 

present in the cache, then it is fetched from disk. All volatile pages in all segments in a PME 

are mapped, via a hash table, to a single paging file. Thus, if the target address is in the 

volatile heap, then the remainder of address translation involves: (1) probing the hash table to 

determine the location of the associated page in the paging file; (2) reading the page into a free 

2 For example, if the cost to read a 1 Kbyte block is 27 milliseconds (18 seek, 8 rotate, 1 transfer), then the 
cost to read an 8 Kbyte block is only 34 milliseconds (18 seek, 8 rotate, 8 transfer). Thus, while the latter 
operation takes roughly twenty-five percent longer, eight times the data is transferred. 
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page frame; and {3) accessing the target location. 

The mapping of persistent pages to disk files is more complex. To facilitate this mapping, we 

define a physical extent to be a contiguous set of 512 persistent pages. Thus, the page number 

in a persistent heap address consists of a physical extent number and a page offset within the 

extent {see Figure 5.4). We impose a further restriction that an extent can only contain objects 

of a single type. 

I Segment J 
10 bits ,' 

I 
I 

Page I Offset 
( 

\ 13 bits 

' ' 
Physical Offset in 
Extent Extent 

10 bits 9 bits 

Figure 5.4: Structure of persistent heap address. 

All physical extents of a particular type (e.g., student) in all segments in a PME are mapped 

to the same disk file (student. dat). The correspondence is maintained in a hash table: 

{segment ,extent) -+ ( file,page-offset) 

Thus, if the second step of address translation finds that the target page is persistent and not 

present in the cache, then the following actions are performed (see Figure 5.5): {1) the hash 

table is probed to determine the file and page offset at which the extent begins; (2) the page 

offset within the extent, stored in the low-order page bits, is added to the offset within the file 

and the desired page is read into a free page frame; and (3) the offset within the page is used 

to compute the target location. 

The reason for mapping contiguous page groups (i.e., physical extents) rather than indi

vidual pages to files is to keep the mapping tables from becoming too large. For example, the 

table below shows the number of mapping table entries required for physical extents of various 

sizes. 

Unit of Mapping 
{Physical Extent Size) 

1 page 
512 pages 

262,144 pages 

Entries in Mapping Table 
(Per Segment) 

262,144 
512 

1 

With an extent size of only one page, storage utilization in the persistent heap and associated 

files is high because pages are allocated individually. The size of the corresponding mapping 
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Extent 

Figure 5.5: Handling of persistent page fault. 

table, however, is quite large and thus it may be difficult to keep it entirely memory-resident, in 

which case costly paging of the mapping table is required. Tradeoffs at the other extreme (the 

last row of the table) are just the opposite: low storage utilization, but a small mapping table. 

We chose a physical extent size of 512 pages as a compromise between these two extremes. 

When a new type is declared via the transaction language, a file is created and a single 

physical extent is allocated on each PME on which objects of the type are to be stored (we will 

see in Section 5.8 how this set of PMEs is determined and how objects are distributed amongst 

PMEs in the set). For example, when type STUDENT is introduced into a database environment, 

local files named student. dat are created and initial physical extents are allocated on each PME 

implementing the type (see Figure 5.6). Each PME may implement multiple segments, and each 

segment consists of multiple physical extents. Extents within a PME are allocated sequentially, 

so the next available extent is allocated and mapped to the student file. 

PME PME 

/..~ /..~ 
SEG SEG 

/..~ 
SEG SEG 

/..~ 
EXT EXT EXT EXT 

\, \, 
atudant.dat ~ ........ __ ___, student. dat~ ~"""-----' 

Figure 5.6: Allocation of initial physical extents in student files. 
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While an entire physical extent is mapped to each student file, only the first page in each 

file is actually allocated on disk. A free list of storage on allocated pages is maintained in each 

file. Thus, when a new student object is to be allocated in the persistent heap, the free list 

in the local student file is searched for a suitable chunk of storage. If one is found, then the 

object is placed at that location. If one is not found, then a new file page is allocated. When 

the initial student extent in a PME is full, then the next available one is allocated and mapped 

to the student file. Again, only the first page of the new extent is actually allocated on disk. 

When all extents in all segments in a PME are full, then a new segment is allocated to the 

PME. (A new segment is also allocated when the volatile heap becomes full.) 

Objects in a type extent are clustered and stored compactly in the associated physical 

extents; the general list representation is not stored in the physical extents or anywhere else 

in the persistent heap. The compact storage of objects allows bulk operations on type extents 

to be performed efficiently (e.g., finding all students with GPA 2': 3.9), and facilitates building 

of indexes on files to support the inverse field-mappings specified in the source-language type 

declarations. While cons-cells of the list representation could be maintained elsewhere in the 

heap without affecting the compact storage of (say) student objects, this is not done for two 

reasons. First, this avoids the storage overhead of one cons-cell per student object. Second, as 

we saw in Section 4.2.6, in many cases the entire extent list is not needed anyway because a 

(generally) much smaller filtered list of objects can be produced efficiently from a scan over the 

associated physical extents. When the entire extent list is required, a list is built in the volatile 

heap. 

Heap Reorganization 

Apart from the normal requirement of fast translation from virtual heap addresses to physical 

memory addresses, we also require fast reconfigurability of a database to a machine with a 

different number of PMEs. For example, it should be easy to reconfigure a database originally 

constructed on a sixteen PME machine to a fifteen PME machine (perhaps a PME failed) or a 

thirty-two PME machine (perhaps the machine was upgraded).3 

In the first case, we need only: (1) map segments implemented by the failed PME to other 

PMEs of the machine by updating the segment-to-PME mapping table; and (2) append physical 

extents stored at the failed PME to type files of other PMEs and add new entries to the tables 

3 For now, we are only considering static, off-line reconfiguration. 
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mapping physical extents to files. In the second case (i.e., the machine grows from sixteen 

to thirty-two PMEs), either unused or existing segments are allocated to the new PMEs. In 

any case, reorganization consists only of modifying mapping tables and moving around blocks 

of persistent data; no exhaustive searches of the database are required to update inter-object 

references. 

5.3 Frame Memory and the Pool of Active Threads 

We have chosen to implement frames as objects in the volatile heap, and thus the emulator does 

not contain a separate memory for frames. The motivation for this decision is that both frame 

and heap memory of the P-RISC machine require storage management routines, including some 

sort of mechanism for moving objects to and from a backing store. Rather than duplicate the 

bulk of this functionality for frame and heap memory, we decided simply to store frames in the 

heap. Note, however, that not all of the generality of heap memory is required for frames (e.g., 

synchronized reads and writes aren't needed), so while this decision reduces complexity, there 

may be some performance penalty. 

We have taken the position that each frame resides entirely within a PME, and that all 

threads of a frame on PME i must execute on PME i. The rationale for this is that it enables 

a procedure or transaction body to access its frame slots efficiently, since all such accesses are 

entirely local. We shall see in Section 5.8 how the PME on which a frame is placed is selected. 

Finally, the pool of active thread descriptors of the P-RISC machine is not represented as 

a separate collection, as described in the previous chapter, but rather the IP of each active 

thread of a frame is stored in a stack inside the frame itself, as shown in Figure 5. 7. The stack 

grows "up" from the last slot in the frame, which records the depth of the stack. Since the FP 

part of a thread descriptor (i.e., (FP,IP)) is available implicitly in this organization, only the 

IP part is actually stored in the stack. The maximum number of threads that may be active 

simultaneously in a procedure or transaction body, and hence the maximum depth of the IP 

stack in the associated frame, is determined statically by the compiler. The required frame size 

stored in procedure and transaction objects by the compiler is large enough to ensure that the 

IP stack never overflows into the data area. 

This particular representation of the pool of active threads was chosen for three reasons. 

First, it groups thread descriptors by FP, which is desirable for scheduling purposes. Second, 
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Figure 5.7: Stack of active IPs in frame. 

it is storage efficient, since the FP part of descriptors is not stored explicitly. Third, storage 

management is simplified, since allocation and deallocation of the IP stacks is performed as 

part of normal frame manipulation. 

References to all frames in an emulator with at least one active IP are stored in an "active 

frame" stack. When an IP is pushed onto the IP stack in an inactive frame (i.e., one in which 

the stack depth is zero), a reference to the frame itself is also pushed onto the active frame 

stack. If the stack becomes full, then additional active frames are stored in an overflow chain. 

A stack was chosen as the primary data structure because it is simple and efficient, yet flexible 

enough to accommodate the order in which active frames are accessed by the emulator (to be 

described soon). 

5.4 Organization of the Emulator Process 

The emulator process is structured into a single interpreter thread and one or more manager 

threads, all of which are lightweight, user-level threads running in the same operating system 

process.4 The interpreter thread and manager threads are spawned when the emulator is 

started, and exist for the lifetime of the process. Such threads are never created or destroyed 

after system startup time. In the next chapter, we address the issue of the number of manager 

threads used in an emulator process. 

The rationale for using multiple lightweight threads is as follows. At any given instant of 

time, an emulator process may contain many P-RISC micro-threads that are ready to execute. 

4 The interested reader is referred to [16) for an introduction to such threads, which are supported by many 
operating systems today such as Mach and Sun Unix OS. To avoid confusion here, we will refer to these threads 
as "lightweight threads" and to P-RISC threads as "micro-threads" when the meaning is not clear from context. 
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If execution of one of them involves disk 1/0-say a LOAD tries to access a local but non-resident 

heap location-then we do not want the entire process to block awaiting completion of the I/ 0, 

because the emulator can execute other micro-threads while the disk transfer is in progress. 

Ideal operating system support for this, with respect to our model of computation, is a 

non-blocking, asynchronous, disk-read routine. With such a routine, LOAD can be executed in a 

split-phase manner. In the first phase, the disk transfer is initiated via the disk-read routine, 

after which the emulator continues executing other micro-threads. In the second phase, the 

emulator is notified (e.g., via an interrupt) that the 1/0 is complete, and the desired heap 

location is accessed and the micro-thread to receive the result is activated. 

Unfortunately, this kind of non-blocking, asynchronous disk 1/0 is not supported by the 

operating systems to which we have ported AGNA (two versions of Unix). We use an interpreter 

thread and multiple manager threads to achieve the desired overlap of computation and disk 

1/0. The interpreter thread is responsible for scheduling P-RJSC instructions and executing 

those that do not involve long-latency operations, while those that do involve such operations 

are executed by manager threads. Communication between the interpreter and manager threads 

is via message queues, as shown in Figure 5.8. 

T1 
interpreter 

thread 

PMEi 

manager 
threads 

Figure 5.8: Interpreter and manager threads on PME i. 

The interpreter thread initiates execution of instructions that involve disk 1/0, such as 

the LOAD described above, by enqueueing a manager request that contains the operation to 

be performed, its arguments, and the micro-thread (i.e., (FF, IP)) and frame slot to receive the 

result. All manager threads are capable of handling all messages, so in the case of LOAD, the next 

available manager dequeues the message and issues the 1/0 request. The request causes only 

the manager thread to suspend, and the emulator may switch to other lightweight threads to 

continue execution. When the disk transfer is complete, the manager responds with a message 

containing the FF, IP, result frame slot, and contents of the desired heap location. At some later 

point, the interpreter handles the message by storing the value into the result frame slot, and 
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activating the micro-thread (FP, IP). 

The Interpreter Thread 

Operation of the interpreter thread consists of repeated selection of an active micro-thread, 

execution of its current instruction, and generation of successor micro-thread descriptors, if 

any. Its C code is shown below. 

interpreter() 
{ 

} 

HeapAddr •fp=O, •ip=O; 

while ( TRUE ) { I• loop infinitely •/ 

} 

if ( ip==O { I• no current IP •/ 

} 

if ( fp!=O ) { 

} 

ip = getNextActiveIP(fp); 
if ( ip!=O ) goto L; 

checkForMsgs () ; 

fp = getNextActiveFP(); 
if ( fp==O) waitForMsgs(); 
continue; 

/•got current FP, try to get IP •/ 

I• if active IP found, go execute instruction •/ 

/• handle any queued messages •/ 

I• switch to new frame •/ 
I• no active frames; wait for messages •/ 

L: switch ( opcode(ip) ) { 

} 

case ADD: ... perform addition ... 
ip->address += ADD_LENGTH; 
break; 

case FORK: ... perform fork ... 
ip->address += FORK_LENGTH; 
break; 

case LOAD: ip=doLoad_1(fp,ip,readFrame(fp,loadAddressSlot(ip)), 
resultSlot(ip)); 

break; 
case LOOKUP: ip=doLookup_l(fp,ip,readFrame(fp,lookupNameSlot(ip)), 

resultSlot(ip)); 
break; 

The top-level if statement in the first half of the while loop assigns to variables fp and ip the 

heap addresses of the frame and instruction pointers, respectively, of the thread to be executed. 

The current instruction is executed in the switch statement in the second half of the vhile loop. 

Instructions that do not involve long-latency operations, such as ADD, are executed entirely 

within the switch statement. If the successor instruction is immediately available for execution, 
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which is the case for ADD and FORK shown above, then ip is updated to reference it. 5 In the next 

section, we give the code which performs ADD and FORK operations. 

For an instruction that may involve long-latency operations, the interpreter invokes a proce

dure to handle the instruction, passing the current FP and IP, and any instruction arguments. 

For example, procedure doLoad_1, which handles LOAD instructions, takes as arguments an fp, ip, 

heap location, and result frame slot. Three outcomes are possible for doLoad_1: 

l. The entire LOAD operation is executed immediately, and the IP of the next sequential 

instruction is returned. This is the case when the target heap address is local and resident. 

2. A LOAD message is sent to a local manager, and zero is returned indicating that the current 

micro-thread is terminated. This is the case when the target location is local but non-

resident. A new micro-thread is selected for execution inside procedure interpreter. 

3. A LOAD message is sent to another PME, and again, zero is returned. This is the case 

when the target location is non-local. 

All other procedures which handle instructions that may involve long-latency operations have 

three similar possible outcomes, though the conditions which distinguish one outcome from 

another may be different. 

Manager Threads 

Manager threads all execute a copy of the same code, which is given below. 

managerThread() 

{ 

} 

char •msg; 

while ( TRUE ) { 

} 

msg = dequeue(mgrMsgQ); 
switch ( msgOpcode(msg) ) { 

} 

case LOAD: doLoad..2 (msg) ; break; 
case LOOKUP: doLookup..2(msg); break; 

6 HeapAddr, the type of the C structure to which ip points, contains fields segment and address, recording 
the segment number and address within the segment, respectively. Thus, assigning ip to the next instruction 
involves only incrementing the address field by the length of the current instruction. 
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Manager threads repeatedly dequeue messages from mgrMsgQ (the queue of messages from the 

interpreter) and execute the specified operations. Procedure dequeue, which implements the 

dequeue operation, is blocking and atomic. In other words, if no messages are present in 

mgrMsgQ, then the manager thread blocks. When the interpreter thread enqueues a message, 

exactly one of the managers blocked on a dequeue operation will receive it. After implementing 

the specified operation, a manager thread sends a reply message either to the local interpreter 

thread or a remote PME. 

All instructions that may contain long-latency operations have two procedures which im

plement them, one that executes in the interpreter thread, and one that executes in a manager 

thread. Above we saw examples of the first kind: d0Load_1, doLookup_1, etc., and also of the 

second kind: doLoad-2, doLookup-2, etc .. We will give the definitions of these procedures in the 

next section. 

Intra-PME Messages 

As we saw earlier, messages sent from the interpreter to local managers contain the operation 

to be performed, any arguments, and the micro-thread and frame slot to receive the result. 

The number of message types handled by manager threads is equal to the number of P-RISC 

instructions (including manager instructions) that may involve long-latency operations. 

Only two types of messages are sent to the interpreter thread from local managers: 

<STARTO,fp,ip> 
<START1,fp,ip,r,v> 

The interpreter handles these messages via procedure handleMsg, defined as follows. 

handleMsg(msg) 
char *msg; 
{ 

HeapAddr *fp = startMsgFP(msg), *ip = startMsgIP(msg); 

} 

if ( msg0pcode(msg)==START1 ) { 
int r = start1MsgSlot(msg); 
long *V = start1MsgValue(msg); 
writeFrame(fp,r,v); I* fp[r] <- v */ 

} 
pushIP (fp, ip); I* activate (fp,ip) *I 
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If the message type is START1, then the value contained in the message ( v) is stored in the 

indicated frame slot (r ). For both message types, micro-thread (fp, ip) is activated by procedure 

pushIP, which pushes an IP onto the stack of active IPs in a frame. 

All queued messages are handled by the interpreter thread in two situations. First, after 

all active IPs in the current frame are exhausted, but before switching to a new frame, proce-

dure checkForMsgs is called, as shown earlier in procedure interpreter. Here is the definition of 

checkForMsgs. 

void checkForMsgs() 
{ 

while ( !queueEmpty(interpreterMsgQ) 
handleMsg(dequeue(interpreterMsgQ)); 

} 

The procedure simply extracts and handles all queued messages. The motivation for the inter

preter handling messages before switching to a new frame is that this enhances locality in the 

emulator. We comment further on the issue of locality in Section 5.6. 

The second situation arises when the interpreter has no work to do, i.e., the local pool of 

active micro-threads is empty. In this case, it calls vaitForMsgs, again from the body of procedure 

interpreter. Here is the definition of vaitForMsgs. 

void vaitForMsgs() 
{ 

} 

handleMsg(dequeue(interpreterMsgQ)); 
checkForMsgs () ; 

First, the interpreter waits for a message via dequeue, which blocks until one is available. After 

the first message is handled via handleMsg, any additional messages in the queue are handled 

through the call to checkForMsgs. 

lnter-PME Messages 

Inter-PME messages have the same structure as messages passed between the interpreter and 

local manager threads. Inter-PME messages are sent via procedure sendMsg, which takes the 

target PME number and message text. When a message arrives at a PME, the emulator process 

is interrupted, and the message is enqueued. Messages of type STARTO and START1 are added to 
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queue interpreterMsgQ, while all others are added to queue mgrMsgQ. 

STARTO and START1, the only messages that activate micro-threads, are placed in the inter

preter's message queue because we have taken the position that all manipulation of the stack of 

active frames and IP stacks in frames is performed only in the interpreter thread. The motiva

tion for this is as follows. First, this means that no exclusion mechanism, such as semaphores, is 

needed when manipulating these stacks to ensure consistency. This enhances both the simplicity 

and efficiency of access, which is important because these stacks are manipulated frequently. 

The second reason has to do with what the interpreter thread does when no micro-threads 

are available for execution. As described previously, the interpreter calls procedure waitForMsgs, 

which blocks until a message is available. If manager threads could activate micro-threads, 

then some mechanism would be needed to allow a manager to unblock the interpreter from its 

wait for incoming messages. Perhaps a null "wake up" message could be used. Or perhaps 

the interpreter thread could be restructured to idle when no work is available by repeatedly 

checking for both incoming messages and active threads. 6 

In any case, we believe that these schemes are more complicated and less efficient than the 

one we have chosen. A possible drawback of our approach, however, is that if the frame in which 

an IP is to be stored is not resident, then the interpreter thread will suspend until the desired 

heap page is transferred to physical memory. While manager threads may execute during the 

transfer, active micro-threads may not. 

5.5 Execution of P-RISC Instructions 

Arithmetic, Logical, and Relational Instructions 

In the previous section we saw that instructions that do not involve long-latency operations, 

such as ADD, are executed entirely in the switch statement in procedure interpreter. Here is the 

implementation of ADD: 

case ADD: { 
long •v1 = readFrame(fp,source1(ip)), 

•v2 = readFrame(fp,source2(ip)), 
r[2J; 

r [OJ = v2 [OJ ; 

6 For this to be efficient, the interpreter thread would have to lower its priority, relative to manager threads, 
before idling. 
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} 

r[1] = v1[1]+v2[1]; 
vriteFrame(fp,sink(ip),r); 
ip->address += ADD_LENGTH; 
break; 

Procedure readFra.me is used to assign to vi and v2 the (C) memory addresses of the operands. 

The result value is constructed in two-word array r and written via writeFrame. Integers and 

other scalars in AGNA are represented as two-word quantities: the first word contains the 

standard object header (type tag, data/pointer flag, etc.), while the second word contains the 

value. Thus, r[OJ contains the new header, taken from v2, while r[1] contains the sum. Finally, 

the new IP is set to the next sequential instruction. 

All other arithmetic, logical, and relational instructions are executed in a similar manner. 

Control Flow 

Control fl.ow instructions, such as FORK, also execute entirely within procedure interpreter: 

case FORK: { 
HeapAddr tgtIP; 

tgtIP.segment = ip->segment; 
tgtIP.address = ip->address+forkOffset(ip); 
pushIP(fp,ltgtIP); 
ip->address += FORK_LENGTH; 
break; 

} 

A new active IP tgtIP (i.e., the FORK target) is constructed and pushed into the current frame 

via pushIP. As before, ip is set to the next instruction. The FORK target is computed by adding 

the offset contained in the FORK instruction to the segment address of the current IP. 

Other control fl.ow instructions, such as conditional and unconditional jumps, are executed 

in a similar manner. JOIN is executed as follows: 

case JOIN: { 
long •v = readFrame(fp,joinSlot(ip)); 
int bit= joinBit(ip); 

if ( getBitValue(v,bit)==O ) { 
ip = O; 
setBitValue(v,bit,1); 

} else { 
ip->address += JOIN_LENGTH; 
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setBitValue(v,bit,0); 
} 
break; 

} 

If the join bit is zero, then ip is set to zero (i.e., the current micro-thread is terminated) and 

the bit is toggled. If the bit is one, then ip is set to the next instruction, and again, the bit is 

toggled. 

Heap Access 

Heap access instructions include LOAD, ILOAD, STORE, and !STORE. Here is the definition of procedure 

doLoad_1, called by the interpreter to handle LOAD instructions. 

HeapAddr •doLoad_1(fp,ip,address,resultSlot) 
HeapAddr •fp, •ip, •address; 
int resultSlot; 
{ 

} 

int pme=pmeOfAddress(address); 
char •msg; 

ip->address += LOAD..LENGTH; 
if ( pme==localPME ) 

if ( addressResident(address) ) { 
long •v = translate(address); 
vriteFrame(fp,resultSlot,v); 
return ip; 

} 

msg = buildMsg(LOAD,fp,ip,2,address,resultSlot); 
if ( pme==localPME ) 

enqueue(mgrMsgQ,msg); 
else 

sendMsg(pme,msg); 
return O; 

First the PME on which the target location resides is determined via procedure pmeOfAddress 

and stored in pme, and ip is set to the next instruction. If the location is implemented by the 

current PME (whose number is stored in global variable localPME) and the address is resident 

in the local cache of page frames, then the value stored in the desired location is written into 

the result frame slot, and the updated ip is returned. If the target location is non-local or 

non-resident, then a LOAD message is constructed and sent either to a local manager thread or 

to the PME in which the location resides, after which zero is returned. 
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The procedure which handles the LOAD message, either in a local or remote manager thread, 

is defined as follows: 

void doLoad-2 (msg) 
char •msg; 
{ 

long •value; 

... Deatructure meuage into fp, ip, resul tSlot, and address. 

value= mapAndTranslate(address); 
msg = buildMsg(STARTl,fp,ip,2,resultSlot,value); 
pme = pmeOfAddress(fp); 

} 

if ( pme==localPME ) 
enqueue(interpreterMsgQ,msg); 

else 
sendMsg(pme,msg); 

After the message is destructured into its component fields, the target heap location is mapped 

and translated by procedure mapAndTranslate. The procedure first checks to see if the desired 

page is already resident in the cache, and if it is not present, then it is read into a free page 

frame. A pointer to the value stored at the heap address is returned. Semaphores are used 

within mapAndTranslate to ensure that the calling thread sees a consistent view of shared data 

structures such as the cache of page frames and its hash table index. 

Other heap access instructions are handled in a similar manner. For example, doStore_l first 

checks to see if the target address is local and resident. If so, then it performs the operation 

and returns a pointer to the next instruction. If not, a STORE message is sent either to a local 

manager or a remote PME, and zero is returned. !LOAD and !STORE are identical to LOAD and 

STORE, except that they also perform implicit synchronization. If the execution of !LOAD finds, by 

examining the presence bits, that the target location is empty, then it adds a triple consisting 

of the FP, IP, and frame slot to the list of deferred readers rooted at the desired location. When 

!STORE writes a value into an empty location (it is an error if full), all waiters are enabled via 

STARTl messages. 

Inter-Frame Transfers 

Instructions for transferring control and data from one frame to another are STARTO and STARTl. 

In the previous section we saw how the interpreter handles incoming STARTO and STARTl messages. 

Procedure interpreter calls doStartLl, defined below, to implement STARTl instructions. 
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HeapAddr •doStart1_1(fp,ip,tgtFP,tgtIP,value,resultSlot) 
HeapAddr •fp, •ip, •tgtFP, •tgtIP; 
long •value; 
int resultSlot; 
{ 

} 

int pme=pmeOfAddress(tgtFP); 

if ( pme==localPME ) { 
writeFrame(tgtFP,resultSlot,value); 
pushIP(tgtFP,tgtIP); 

} else 
sendMsg(pme,buildMsg(START1,fp,ip,4,tgtFP,tgtIP,value,resultSlot)); 

ip->address += START1-1.ENGTH; 
return ip; 

If the target frame is local, then the value is stored in the desired slot and the micro-thread 

(tgtFP,tgtIP) is activated. Otherwise, a START1 message is sent to the PME on which the frame 

resides. In either case, the next instruction is scheduled for execution. 

STARTO instructions are handled via procedure doStart0_1 in a similar manner. 

Manager Instructions 

Execution of many manager instructions is similar to that of heap access instructions. For 

example, ALLDCOBJ, which allocates a new object in the volatile heap, decides whether the allo

cation is to be performed locally or on a remote PME7 , and iflocally, whether in the interpreter 

or a manager thread. Other instructions which are executed in this manner include ALLOCFRAME, 

SELECTF, and UPDATEF. 

Other manager instructions are used solely to implement local operations. Examples of 

this sort include: SVINVERT and MVINVERT, which perform local single- and multiple-valued field 

inversions, respectively; and FILTEREXTENT, which builds a filtered list of all local objects of a 

specific type. SVINVERT, which searches locally for the object with a particular field value (e.g., 

the student object with a certain name), is handled in the interpreter thread via procedure 

doSvinvert_1: 

HeapAddr •doSvinvert_1(fp,ip,type,field,value,resultSlot) 
HeapAddr •fp, •ip, •value; 
int type, field, resultSlot; 
{ 

ip->address += MGR-1.ENGTH; 
enqueue(mgrMsgQ,buildMsg(SVINVERT,fp,ip,4,type,field,value,resultSlot)); 

7We will see in Section 5.8 how it makes this decision. 
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return O; 
} 

Since it is difficult to predict whether the associative search required to implement SVINVERT will 

involve long-latency operations (i.e., accesses to non-resident pages), doSvinverL1 always builds 

a SVINVERT message and passes it to a local manager. 

Inside a manager thread, SVINVERT is handled by doSvinvert-2, defined below. 

void doSvinvert-2 (msg) 
char •msg; 
{ 

} 

long •v; 

... Deatructure meaaage into component fielda ... 

... Uae field index to aearch for object with deaired field value ... 

if ( object found ) 
v = object; 

else 
v = buildNullDbject(type); 

enqueue(interpreterMsgQ,buildMsg(START1,fp,ip,2,resultSlot,v)); 

After the message is destructured, a search for the desired object is performed using the field 

index. The return value, which is either the desired object or a null object, is placed in a START1 

message that is passed to the local interpreter thread. 

The reader may wonder at this point why we include such a high-level manager instruction 

as a primitive in the emulator. For example, why isn't it expanded to more basic P-RISC 

instructions? Or why isn't the operation coded as a procedure in the transaction language, or 

some extension thereof? We currently implement high-level instructions as primitives for two 

reasons: efficiency of execution and ease of development. First, by implementing such operations 

in C instead of multiple P-RISC instructions, we avoid the overhead of interpretation in our 

current implementation. Second, compilers for C are more robust and efficient than the current 

AGNA compiler. Note, however, that regardless of the implementation strategy (e.g., primitive, 

macro, or procedure call), the interface and split-phase execution remain the same. 
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5.6 Ordering of Instructions 

In Chapter 4, we saw that the P-RISC machine does not specify the order in which micro

threads are to be executed. In the interpreter, however, we made a (static) ordering decision 

in which {1) all threads of the current frame are executed to completion before switching to a 

new frame, and {2) all instructions in a micro-thread are executed sequentially until the thread 

is terminated (e.g., via JOIN). 

The motivation for this is that it enhances locality of execution. First, this may increase 

performance by increasing the effectiveness of caches in the underlying hardware (e.g., processor 

caches). Second, this locality allows the emulator to avoid many translations of the heap 

addresses of the current FP and IP. While not all of the details were shown in procedure 

interpreter earlier, switching to a new frame actually entails: 

1. "Unpinning" the old code and frame objects. In other words, the heap pages on which 

the objects reside are unlocked from their physical memory addresses in the cache, and 

thus are available for replacement. 

2. The new FP and IP are selected and stored in variables fp and ip. 

3. The new code and frame objects are pinned and their physical memory addresses are 

determined and stored in variables fpPA and ipPA. These physical addresses are used inside 

the interpreter whenever possible, thus avoiding unnecessary translations of frame and 

instruction pointers. 

As we shall see in the next chapter, address translation, which is currently performed in AGNA in 

software, is relatively expensive, so this improvement has a significant impact on performance. 

Of course, the virtual addresses, stored in fp and ip, are used in messages sent to local manager 

threads and remote PMEs. 

5. 7 Representation of Indexes and Multi-Valued Fields 

In this section, we describe the representation of indexes and multi-valued fields. 
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Indexes 

Indexes in AGNA are currently not represented as objects in the global heap, but rather are 

separate file-based structures that may be manipulated only through calls to the object storage 

system. For example, addition of a new element to a hash index is not performed via allocate, 

update, and so on, but through a call to the appropriate routine in the object storage system 

(made from within a P-RJSC manager), which is written in C. While our long-term goal is to 

represent indexes uniformly as persistent objects, we currently do not for the same two reasons 

that we treat high-level manager instructions as primitives: efficiency and ease of development. 

An index on a field f of objects in an extent of type Tis mapped to a collection of files, one 

per PME on which objects of type T are stored. For example, the hash index on student name 

described in Section 4.2.3 is stored in local files named student-name. idx. Each index file in a 

PME maps names to local student objects as shown in Figure 5.9. 

PMEi 

hash indez on name 

student.dat 

<s1,. .. > 
.__-IW"'",<s:Z, ... > 

• 
• 
• 

bau objec:t fiJe 

Figure 5.9: Index on name field oflocal student objects. 

Indexes could be mapped to files differently, e.g., the entire index on student name could 

be stored in a single file, rather than in a collection of files. The mapping used in AGNA was 

chosen because it supports a high degree of parallelism, as local searches that utilize the index 

may execute concurrently on all PMEs of a type. Also, locality is enhanced because an index 

refers only to local objects. 

Multi-Valued Fields 

As discussed in Chapter 3, multi-valued fields in objects in the persistent heap do not use the 

general list representation, but rathe:r a compact internal form. Consider the definition of type 

COURSE introduced in Chapter 2 that includes multi-valued field prereqs: 

(type COURSE (extent) 

((name <=> STRING) 
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(prereqs •<=>• COURSE) 
(units => INTEGER))) 

Like all new objects, allocate-object allocates new course objects in the volatile heap, with all 

fields undefined. When the prereqs field of a new course object (call it o) is defined via update, 

a reference to the field list is stored in the appropriate field "slot" of o. 

When course o is added to the persistent heap at transaction commit time, the representation 

of the prereqs field is changed from a list of courses to a collection of records of the form: 

<o,prereq> 

In other words, installation of o in the persistent heap involves construction of a new represen

tation of its prereqs field collection. Each record in the new representation stores a reference 

to o and a reference to one of its prerequisites; there is one such record for each element of the 

field collection. These records are stored in file course-prereqs.dat on the PME on which o itself 

resides. A similar course-prereqs. dat file exists on all PMEs on which course objects are stored, 

with the file on PME i holding records that describe the prereqs field collections of all course 

objects residing on PME i. 

When the prereqs field of a persistent course object is read, records in the course-prereqs .dat 

file are located, and a list of prerequisites is constructed in the volatile heap. Two indexes are 

maintained on the records that describe prerequisites, one on the course field, and the other on 

the prerequisite field. The first index allows all prerequisites for a given course to be located 

quickly, while the second index allows the inverse field-mapping on prereqs (that maps a course 

to all the courses for which it is a prerequisite) to be implemented efficiently. 

All of the files that relate to type COURSE in a PME are shown in Figure 5.10. At the 

top of the figure are the base object file (course.dat), which contains all course objects that 

reside in segments stored in the PME, and the file holding the hash index on the name field 

(course-name. idx). At the bottom of the figure is the file holding the prereqs field collections of 

all course objects in the PME (caurse-prereqs.dat), along with its two index files. 

Field collections of persistent objects are stored in this internal form, and do not use the 

general list representation, for the following reasons. First, by not storing the cons-cells of 

the list representation, less storage is required. Second, the clustering of field collections in 

the internal form facilitates indexing to support the inverse field-mappings specified in type 
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prereqs field collectiom hash index on prereqs 

Figure 5.10: All files related to courses on PME i. 

declarations. Finally, this clustering also facilitates efficient scanning of all field collections of 

a type. A possible disadvantage in not storing the general list representation explicitly is that 

it must be constructed in the volatile heap when needed. 

As with indexes, records in multi-valued field files are not represented as persistent objects 

in the heap, but rather they use a representation internal to the object storage system. These 

records may be manipulated only via calls to the object storage system. Again, the motivation 

for this decision is efficiency and ease of programming. 

5.8 Distribution of Data and Computation 

In this section, we describe how data and computation are distributed to PMEs in a parallel 

machine. 

5.8.1 Data 

We saw in Section 5.2 how segments of the heap are mapped to PMEs. The issue addressed 

here is: when a new object is allocated, in what segment, and therefore on what PME, should 

it be placed? This issue can be broken down into two separate questions. First, for a given type 

(e.g., student), on what PMEs should instances of the type be stored? For example, objects 

may be clustered on some subset of the PMEs, or distributed over all nodes of the machine. 

Second, after this "home" set of PMEs is determined for a type, how does the object allocation 
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manager choose (at run-time) the PME on which to place a new object? 

In the current version of AGNA, the answer to the first question is: objects of all types are 

distributed to all PMEs of the machine. For a type T, this placement information is stored as a 

collection of PME numbers in the associated type object (i.e., the object describing the type, 

and part of the database's meta-information) in multi-valued field pmes. In some cases, it may 

be desirable to restrict distribution of objects of some type to a subset of all PMEs, based on 

expected extent size, frequency of access, or other factors. While not currently implemented, 

AGNA could accommodate such cases by allowing hints or annotations in type declarations 

describing the PMEs over which objects are to be distributed, or a tool by which the database 

administrator could modify the home set of PMEs of a type. 

The answer to the second question is: a new object is placed on a PME selected randomly 

from the type's home set. This placement strategy is carried out, in part, by the compiler in 

its translation of allocate expressions. For example, an expression such as: 

(allocate STUDENT) 

is translated to: 

(allocate-object RANDOM student size) 

This is identical to the translation described previously for allocate, except that here we have 

added argument RANDOM, a hint describing where the new object is to be placed.8 This hint is 

ultimately passed to P-RISC manager ALLOCOBJ, which allocates the new student object in the 

volatile heap of a PME selected randomly from the set of PMEs assigned to the student type. 

When the object is moved to the persistent heap at transaction commit time, it is moved to a 

location in the same PME, thus becoming part of the database stored in the selected PME. 

This random placement of objects over all PMEs can be expected to provide a fairly uniform 

distribution of objects over the machine. Depending on the nature and frequency of access 

to objects of a particular type, alternative placement strategies may be more effective. For 

example, consider objects of type BINDING that record identifier bindings in the top-level database 

environment. Recall from Chapter 4 that the BINDING type has fields name and value: 

8 We did not describe this placement hint in the compilation chapter because the compiler has no special 
understanding of it, and also because it is primarily an implementation-level issue. 
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(type BINDING (extent) 
((name <=> STRING) 
(value => ANY))) 

The most frequent operation performed on binding objects involves locating the object with a 

particular name, and then extracting its value (i.e., an identifier lookup). If binding objects 

are distributed randomly to PMEs of the machine, then lookup on the name field requires local 

searches on all PMEs. If, however, binding objects were mapped to PMEs via a hash value 

computed from the name, then the lookup operation need search only at one node (i.e., the 

PME to which the hash value of a name maps). Thus, the lookup operation is better supported 

by hash distribution than by random placement. 

While not accessible to objects of user-defined types, AGNA uses this hash-based placement 

strategy internally for binding objects. Binding constructor make-binding is defined as follows: 

(define make-binding 
(lambda (name value) 

(letrec ((pmes (pmes-of-type "BINDING")) 
(j (hash-to-pme pmes (string-hash name))) 
(b (allocate PME j BINDING))) 

(update b BINDING NAME name) 
(update b BINDING VALUE value)))) 

This definition is identical to the one given in Chapter 4, except for the placement hint PME 

j included in allocate. The computed PME number, j, is generated by procedure hash-to-pme 

from pmes, the set of PMEs on which binding objects reside, and a hash value computed from 

the name. This expanded use of allocate that includes a placement hint is not available to the 

transaction programmer, but only internally for the coding of system functions. The placement 

hint is passed on to ALLOCOBJ, which allocates the new binding object on the desired PME. 

With binding objects distributed in this manner, LOOKUP, the identifier lookup manager, 

hashes an identifier to a PME, locates the appropriate binding object on that PME, and selects 

and returns the value field. To make identifier lookups even more efficient, a special cache of 

top-level identifiers and their values is maintained in physical memory on each PME. Thus, 

repeat lookups of an identifier on a PME are handled very efficiently, involving no non-local 

searching or disk I/ 0. 

Note that while this distribution strategy does increase the efficiency oflookups, it requires 

redistribution of all binding objects whenever the set of home PMEs for type BINDING changes. 
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This may happen, for example, if a PME fails and the database is reconfigured to run on a 

smaller machine. In the case of binding objects, though, they are easily moved from one heap 

location to another because they are used only internally and can have no references to them 

from other objects. Thus, we do not have to worry about creating dangling pointers when 

moving such objects. 

Two additional placement hints may be specified in allocate: LOCAL and REMOTE. The former 

places the new object on the PME on which the object allocation manager is invoked, while 

the latter places the new object on a remote PME. These hints, along with RANDOM and PME j, 

provide sufficient low-level mechanisms by which to implement a variety of high-level distribu

tion strategies. In addition to the hashing and random placement strategies described above, a 

number of other methods for distributing objects are possible: round-robin, "minimum object 

load", associating a range of field values with each PME, etc. Parallel relational systems, such 

as Gamma [33], have utilized many of these data distribution strategies. Evaluation of such 

strategies and a full assessment of their impact on performance is a topic for future investigation 

in AGNA. 

One issue that must be examined closely in AGNA in strategies such as hashing is the 

relocation of objects. For example, if objects of type T are mapped to PMEs via hashing on 

field f, then when the value off in an object o is updated, o may need to be relocated if the new 

value off hashes to a PME different from the old one. But if o is moved from one heap location 

to another, then all references to it must also be updated. A scan of the entire database to 

locate such references is not an acceptable solution, since it would be prohibitively expensive, 

even in medium-sized databases. 

One possible approach is to move o, but leave in its place an object containing the new 

address. Pointers to the old location of o are automatically "forwarded" to and replaced by the 

new address whenever they are dereferenced. The issue of moving objects while maintaining 

referential integrity is intimately tied up with garbage-collection, which we have not addressed 

in this work. Garbage-collection of both the persistent and volatile heaps is an important topic 

of future investigation in AGNA. 

5.8.2 Computation 

Computation spreads from a PME to other nodes of the machine via two basic mechanisms: 

object manipulation and procedure calls. Examples of the first mechanism include allocation 

170 



of a new object on another PME, and selection of a field value in a remote object. 

In the second mechanism (procedure calls), the PME on which the procedure body executes 

is determined via the placement of its associated frame. As described in Section 5.3, the code 

of a procedure or transaction and its associated frame must reside on the same PME. The 

compiled transaction and initial transaction frame are always placed on a PME designated at 

system startup time. Procedure frames are placed on PMEs in one of two ways. The first 

method, which is the default strategy, is to select a PME randomly at run-time. The intent of 

this simple approach is to balance the computational load evenly across the machine. 

Like the placement of objects described earlier, placement of procedure frames and code 

is controlled by a hint that is either introduced by the compiler, or used explicitly in internal 

system functions. All procedure calls are translated by the compiler to APPLY, a special form for 

procedure application that includes a hint on where the procedure body is to be executed. It 

is in this translation that the default hint is generated. For example, expression: 

(f x y) 

is translated to: 

(APPLY RANDOM f x y) 

The hint (i.e. 1 RANDOM) is ultimately passed to the P-RJSC frame allocation manager, which 

places the new frame on a PME selected randomly. This, in turn, determines the PME on 

which the procedure executes. 

After the frame for procedure f is allocated, but before threads are started in the body, a 

copy of the procedure object is placed on the same PME as the frame. This can be seen in the 

P-RJSC code for the application off, sketched below: 

(1) f: JOIN r9 b3 

(2) LO ADC r19 1 
(3) ALLOCFRAME r14 r14 
(4) OBJECTPME r14 r15 
(5) ADD r16 rO 
(6) LOCALIZE r15 r15 

r22 

'/. wait for f 
'/. load into r14-r18: caller FP, result IP, 
'/. signal IP, result slot, and frame size 
'/. r19<-encoding of hint RANDOM 
'/. r14<-new FP 
'/. r15<-PME of new object 
'/. r16<-copy of proc. ptr. in r22 
'/. r15<-copy of proc. on same PME as frame 
'/. start threads in body of proc. r15 
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After synchronization in line 1, arguments to the frame allocator are loaded into slots r14 to 

r18, as described in Chapter 4. Here an additional argument, an encoding of the placement 

hint, is loaded into slot r19. In line 3, the new frame is allocated and a pointer to it is placed 

in slot r14. Then in line 4, manager OBJECTPME is used to determine the number of the PME on 

which the frame resides. Line 5 copies the procedure pointer to r16, and then in line 6 manager 

LOCALIZE is used to place a copy of the procedure on the selected PME (stored in r15) and return 

a pointer to it. LOCALIZE utilizes a special table on each PME describing objects that have been 

stored locally, so if a copy of the procedure already exists on the PME, then a pointer to it is 

returned and a new copy is not made. After this, threads in the procedure body are started as 

described in the previous chapter. 

Other hints allowed in the APPLY form are: LOCAL, REMOTE, and PME n. In the remainder of this 

section we describe how these hints are used to exploit the locality of data in the building and 

filtering of extent lists. Before we do that, however, we describe a special representation of lists 

used by the system functions that build and filter extent lists. 

Open Lists 

The non-strictness of lists in AGNA can be used to append them together efficiently. Say, for 

example, that we want to append lists L1 and L2. By choosing representations for L1 and L2 that 

embody two key ideas, we can append the lists in 0(1) time while using no additional storage. 

The first idea is to leave the tail of the last cons-cell in each list empty. This will allow us to 

link the end of 11 directly to the head of 12 using no additional storage i.e., we don't have to 

build any intermediate lists. The second key idea is to maintain a direct reference not only to 

the first cons-cell in each list, but also to the last one. This will allow us to locate the end of 

each list in constant time, so that we can link 11 to 12, and terminate 12 by storing nil in the 

tail of its last cons-cell. 

A representation for lists which includes these two ideas is called an open list. Open lists, 

which are closely related to difference lists in logic programming, can be represented as a cons

cell containing two references Al and A2, as shown in Figure 5.11. Internally, the structure 

consists of a list in which the tail of the last cons-cell is empty. Al points at the first cell and 

A2 points at the last cell {these may in fact be the same cell, if there is only one element in the 

list). With 11 and 12 represented as open lists, we can append them and return the result list 

as follows. 
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• • • 

V1 V2 Vn 

Figure 5.11: The structure of an open list. 

(letrec ((x1 (update (tl L1) LIST TL (hd L2))) 
(x2 (update (tl L2) LIST TL nil))) 

(hd L1)) 

As shown in Figure 5.12, the first update stores a reference to the head of L2 in the last cons-cell 

of L1, while the second one terminates the list by storing nil in the tail of the last cons-cell in 

L2. X1 and x2 are dummy identifiers. The body of letrec returns the result list, which is not 

represented as an open list. 

Ll: L2: 

... ----... . .. 
v v v v v v 

Figure 5.12: Appending of open lists 11 and L2. 

Building and Filtering Extent Lists 

Consider the following example: 

(all (select s STUDENT NAME) 
(s (all STUDENT)) 
(where (>= (select s STUDENT GPA) 3.9))) 

- - ·nil , 

i.e., an expression that evaluates to the list of names of students with a GPA of at least 3.9. As 

described earlier, student objects are distributed over the various PMEs of the parallel machine. 

The strategy for filtering and building the result list is for each PME to construct a local list 

of all the names of its students that satisfy the filter, and then to append these lists together. 

However, we would like the PMEs to work in parallel, and for the list-appending to be very 
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efficient, i.e., we wish to avoid constructing any intermediate lists. 

Each PME executes the following expression (we will see in a moment how it is persuaded 

to do this): 

(letrec ((pred (cons (make-condition gpa-id ">=" 3.9) nil))) 
(local-filter-extent atudent-id name-id BASEFILE NO INDEX pred rest)) 

producing the result shown in Figure 5.13. The arguments to local-filter-extent are: the 

type id of the extent to filter; the object field to be included in the result; the access path and 

index-constants BASEFILE and NOINDEX indicate that use of an index in this query is not possible, 

so the filter must be performed by scanning over all student objects in the base file; the filter 

predicate, which consists of a list of conditions; and rest, which is used to link the local lists 

together. Because of the non-strict semantics in AGNA, each PME can construct its local list 

of student objects before it knows the value of the rest argument. The last cons-cell simply 

remains empty. As soon as the first cons-cell is allocated, a reference to it can be returned as 

the result of local-filter-extent. When the value of rest arrives, which may be much later, it 

gets stored into the last cons-cell . 

• : (local-filter-extent •tudent-id name-id BASEFILE NOINDEX pred rest) 
I I 
I I 
I I 
\ I 
\ I 

\ I ' , 
\ I 

\ I 
\ I 
I 

' 
• • • 

na11e name name 

Figure 5.13: Local list of student names constructed on each PME. 

Here is the definition of local-filter-extent: 

(define local-filter-extent 
(lambda (type field access-path index predicate rest) 

(letrec ((res (FILTEREXTENT type field access-path index predicate))) 
(if (nil? res) 

rest 
(letrec ((xl (update (tl res) LIST TL rest))) 

(hd res)))))) 
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Local result lists are produced by FILTEREXTENT, which is passed the type and field ids, the access 

path, the index to use, and the predicate. FILTEREXTENTreturns either nil, if no local objects are 

found which satisfy the predicate, or an open list containing the student names. In the first 

case, the rest argument is returned as the result. In the second case, the local result list and 

rest are appended together, and a reference to the local list is returned. The use of an open 

list by FILTEREXTENT allows this list appending to be performed efficiently, as described earlier. 

Now, we step up one level to see the implementation of the entire list comprehension. 

Conceptually, the extent filtering and appending of lists is accomplished by structuring the 

computation thus: 

(letrec ( (pred (cons (make-condition gpa-id ">=" 3. 9) nil))) 
(foldr 

(lambda (j rest) 
(APPLY PME j local-filter-extent atudent-id name-id BASEFILE NDINDEX pred rest)) 

nil 
pmes)) 

Recall from Chapter 2 that foldr takes a binary combining function, an initial value, and a 

list of values as arguments, and returns an accumulated value as its result. Pmes is the list 

of PME numbers on which student objects reside. The overall structure of the computation 

may be seen in Figure 5.14. The foldr computation executes on various PMEs, and initiates 

the local-filter-extent computations on each PME j in list pmes. Because of non-strictness, all 

these computations can proceed in parallel, even though each one does not yet have the value 

of its rest parameter. Further, each PME j can return the reference to the head of its sublist 

as soon as it is allocated; this reference is passed on by foldr as the rest parameter for the 

computation in PME j - 1, where it is stored in the tail of the last cons-cell. 

5. 9 Transaction Execution 

As we saw at the beginning of this chapter, the compiler runs on the front-end machine and 

writes its output to a file, also on the front-end machine. The compiler obtains type and field 

information from a local shadow copy of the meta-data of a database. This copy is kept up

to-date by the command interpreter, which queries the back-end and installs any updates after 

each transaction execution. 

After a transaction is compiled, it is down-loaded into the back-end machine. Before execu-
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Figure 5.14: Local filtered and transformed extent constructed on each PME. 

tion begins, each PME performs a number of local initializations, such as reclaiming all storage 

in the volatile heap, clearing the paging file, and initializing deferred update collections and 

various caches. While a number of read-only transactions may be loaded together and executed 

concurrently, update transactions must be executed serially. This is because AGNA does not 

currently include a concurrency control mechanism, such as two-phase locking [30], to prevent 

harmful interactions between queries and update transactions. Concurrency control is a major 

topic for future investigation in AGNA. 

As we saw in the compilation chapter, execution of an AGNA transaction occurs in three 

phases: prologue, body, and epilogue. For a transaction (:xact e), the three phases correspond 

to the top-level expressions in the seq form introduced by the compiler to sequence execution 

properly: 

(xact 
(seq 

(begin-transaction) 
(print e 1

) 

(end-transaction))) 

Expression e' is a translated version of e. 

Prologue 

In the prologue, an identifier is assigned to the transaction and propagated to all PMEs of the 

machine. Here is the definition of begin-transaction: 
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(define begin-transaction 
(lambda () 

(letrec ((id (next-transaction-id))) 
(foreach (lambda (j) (APPLY PME j local-begin-transaction id)) 

all-pmes)))) 

The new id is assigned via next-transaction-id, from a seed stored in the database. The id is 

passed to procedure local-begin-transaction, which is executed on each PME. Identifier all-pmes 

is bound to a list of all PME numbers. 

Body 

In the next phase of execution, the user-supplied portion of the transaction is executed and 

the answer is printed. All updates to the database are stored in collections adds, drops, updates, 

inserts, and deletes, while possible violations of field uniqueness constraints are accumulated 

in constraints. Each collection is represented as multiple local sublists, one on each PME. For 

example, when the object allocation manager creates a new student object on PME i, it also 

adds a reference to the student to the adds sublist on PME i. 

If during this phase a run-time error occurs or the transaction is explicitly aborted via 

abort-transaction, then an appropriate message is generated and printed on the front-end ma

chine and execution is terminated. This is currently accomplished in a heavy-handed manner 

by an automatic aborting and restarting of all emulator processes. Note that because of non

strictness, the result returned by a transaction that ultimately aborts may be printed as the 

answer before execution is terminated. In such cases, the message describing the abort condi

tion printed on the front-end machine informs the user that the transaction was aborted, and 

therefore the answer is to be discarded. 

Epilogue 

The final phase of execution, implemented via end-transaction, installs deferred updates in the 

database and brings disk files up-to-date. In the first phase, procedure precommi t is invoked on 

each PME to install in the database the local collections of deferred updates. The collections 

are processed on each PME as follows: 

• adds: Each object in the list is copied to the persistent heap in the local PME. All 

objects in the volatile heap reachable from these new persistent objects are also copied 
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to the persistent heap. 

• drops: In each object in the list, a flag is set to "false" in the object header indicating 

that the object is not part of the type's extent. The routines which manipulate type 

extents implicitly include a predicate that filters out objects not part of the extent. Note 

that dropping an object does not delete it from the database, but only removes it from 

the type extent. Though not implemented in the current prototype, the object may be 

garbage-collected separately when no references to it exist. 

• updates: New field values in the list are installed in persistent objects. All objects in the 

volatile heap reachable from these new persistent objects are also copied to the persistent 

heap. 

• deletes: Elements in the list are deleted from multi-valued field collections. All deletes 

are processed completely before processing of inserts begins. 

• inserts: Elements in the list are added to multi-valued field collections. Again, all 

objects in the volatile heap reachable from the new persistent objects are copied to the 

persistent heap. 

Two errors that may arise during the processing of updates are (1) a field of a persistent 

object is updated multiple times, and (2) a field is updated via both update and insert/delete. 

Such errors are detected as follows. Maintained in the header of each object is the id of the 

last transaction to update the object, and a field bit mask. When a persistent object is first 

updated in a transaction, this update-id is set to the id of the current transaction and the bit 

mask is cleared. Whenever a field is updated, the corresponding bit in the mask is set. Multiple 

update errors are identified when an update is performed on a field for which the bit is already 

set. 

For multi-valued fields, additional update bits are maintained in each field slot indicating 

whether the field has been updated via update or insert/delete. Such bits are cleared along with 

the object header bit mask. Updates to fields via both update and insert/delete are detected 

by examining these field update bits. 

The search for reachable volatile objects in the processing of adds, updates, and inserts is 

performed via procedure make-object-persistent, which is defined as follows: 
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(define make-object-persistent 
(lambda (object) 

(if (and (volatile? object) (object-reference? object)) 
(letrec ((x (make-persistent-copy object))) 

(if (hd x) 
(tl x) 

... Call make-object-perJiJtent on each field value ... 

.. . ]nJtall updated valueJ ... 

... Return (ti :r:) ... )) 
object))) 

First, if the object is already persistent or a scalar such as an integer, then there is nothing to 

do and the object is returned. Otherwise, make-persistent-copy is called to move the object to 

the persistent heap. The return value is a cons-cell in which the head is a boolean indicating 

whether the object has already been moved to the persistent heap via a previous call, and the 

tail is the persistent address. As described in the previous chapter in the discussion of P-RJSC 

manager instruction MKPERSISTENT, this is needed to preserve the sharing of objects. In other 

words, if make-persistent-copy is called twice with the same object, the second time the object 

is not copied to another persistent location, but rather the persistent address established in the 

first call is returned to the second caller as well. MKPERSISTENT utilizes a hash table to maintain 

pairs of volatile and persistent addresses. 

If object is not a new persistent object (i.e.,(hd x) is true), then the persistent address is re

turned. Otherwise the graph traversal continues, and make-object-persistent is called recursively 

on each field value of the object. The (possibly) updated values are installed in the persistent 

copy of the object. 

After all precommit operations have completed, all updates are installed in the persistent 

heap, but not necessarily written to disk, i.e., some dirty persistent heap pages may still be 

in the page cache. Precommit procedures each return a composite result indicating whether any 

local updates were processed, and whether any errors were encountered. If no local updates 

and no errors were reported, then the transaction is committed. 

If errors were reported, then the transaction is aborted. Some sort of recovery mechanism, 

such as write-ahead logging [30], is needed in this situation to restore the original state of the 

database. Recovery is not implemented in the current version of AGNA, and is a topic for future 

investigation. 

If no errors were reported, then the list of constraint checks is executed to ensure that the 

uniqueness of field inverse-mappings still hold. If no errors are reported in this step, then all 
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Chapter 6 

Analysis 

The universe of database transactions can be divided into two sets, one containing transactions 

that can be expressed in SQL, and the other containing transactions that can't (see Figure 6.1). 

An example transaction in the former set is Tl, while an example in the latter set is T2: 

• Tl: Find the names of all students with a GPA of at least 3. 9. 

• T2: Find all direct and indirect prerequisites of course "Advanced Algorithms". 

As discussed in Chapter 2, Tl can be expressed succinctly and elegantly in SQL. Many sophisti

cated implementation techniques such as indexing and clustering of data are used by relational 

systems to deliver top-notch performance for such transactions. Both ease-of-expression and 

good performance are important for queries such as Tl because they form a common and useful 

class of transactions. 

SQL +Host PL 

AGNA 

OODBs •T2 

Figure 6.1: Division of universe of database transactions. 

It is important for more expressive persistent systems to provide ease-of-expression and 

performance comparable to SQL for Tl-like transactions. One of the primary reasons why 

relational databases displaced earlier CODASYL systems as the DBMS of choice is because 

transactions such as Tl could not be expressed easily in such systems. One had to write 
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a program that explicitly navigated through the collection of student records, and selected 

the name field of each record that satisfied the predicate-no high-level query language was 

supported. 

In Chapter 2, we saw that list comprehensions in AGNA can be used to formulate Tl as 

concisely as in SQL. Most other object-oriented systems also provide high-level query languages 

with which to formulate Tl concisely. In the first section of this chapter, we present experimen

tal results from a preliminary performance evaluation of both uniprocessor and multiprocessor 

versions of AGNA on Tl-like queries, along with comparisons to similar results for commercial 

and experimental relational systems. The results show that the performance of AGNA on such 

queries approaches that of state of the art relational database systems. 

The AGNA transaction language contains a full higher-order programming language, and 

thus the user may easily move from Tl to more complicated queries such as T2. This is also 

the case in most current object-oriented systems, since they also contain full programming 

languages (e.g., c++ or Smalltalk). In Section 6.3, we compare the uniprocessor performance 

of AGNA on T2-like queries to that of relational and object-oriented systems. The results show 

that AGNA is competitive with other OODBs, and that both AGNA and other OODBs provide 

superior performance relative to relational systems on queries such as T2. 

6.1 Measurement Methodology 

For each query execution, we report elapsed (wall clock) time in seconds until all computation 

in the query is complete. Query results are built in the volatile heap, and are not traversed 

by the print function, i.e., times for printing results are not included. Execution times are 

automatically reported by AGNA for all transactions. The emulator on which a transaction is 

initially loaded records the time immediately before execution commences, and again after it 

completes. The difference between the two times is reported as the elapsed time. In the Sun 

Unix implementation of AGNA, the C library function ftime is used to record times, while in 

the hypercube implementation, iPSC/2 C library function mclock is utilized. 

For some transactions, we also give an execution profile showing how much time was spent in 

various activities such as I/O and heap management. On both the Sun and iPSC/2 platforms, 

the I/O time for a transaction was determined by tracing its I/O requests, and then timing the 

execution of a separate program that performed no computation, but issued a similar sequence 
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of 1/0 operations. We were careful to ensure that no disk pages were cached in the operating 

system prior to execution of these separate programs.1 

On the Sun platform, a profile of activities other than 1/0 was obtained via the Unix 

profiling tool gprof [39]. On the iPSC/2, suitable profiling tools were not available, so we used 

analytical methods such as counting inter-PME messages, and simple experimental techniques 

such as timing successive executions of a node program, with each one adding a single new 

activity. In all cases, no other jobs were allowed to run concurrently on the machines on which 

we conducted our experiments. 

6.2 Relational Queries 

Transactions used in the first set of experiments were taken from the "selection" queries in the 

Wisconsin benchmark [17], a standard set of relational queries executed against a synthetic 

database. All of our experiments used the following object type: 

(type WISC (extent) 
((unique1 => INTEGER) 

(unique2 <=> INTEGER (index Btree)) 
(filler => (STRING 200)))) 

While the relation structure specified in the Wisconsin benchmark has more fields than type 

WISC, only unique1 and unique2 were utilized by the part of the benchmark that we used. Thus, 

we combined all other fields into the filler field for simplicity. 2 The total length of all fields 

was the same as the relation width specified in the Wisconsin benchmark. Fields unique1 and 

unique2 were assigned unique values from the range 1 to n, where n was the number of objects 

used in a particular test. 

Test queries selected a subset of objects in the WISC extent. Parameters varied were: extent 

size, predicate selectivity, object field used by the predicate, query structure (list comprehension 

vs. explicit use of procedure filter) and, for multiprocessor experiments, machine size. 

1 On the Sun platform, this was accomplished by rebooting the machine prior to program execution. On the 
iPSC/2, AGNA accesses a raw disk directly, so no caching is performed by the operating system. 

~The notation (STRING 200) in the specification of filler defines a fixed-length field of length 200. If a 
length is not specified in a string field, then values of unlimited length may be stored in the field. 
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6.2.1 Uniprocessor Results 

Our uniprocessor experiments were designed to investigate the effectiveness in AGNA of low

level filtering and indexing, and to compare absolute performance with state of the art relational 

systems. The platform used was a Sun 4/490 configured as follows. 

• main memory: sixty-four megabytes 

• operating system: Sun UNIX OS 4.1.1 

• disk: ipi-1000/2HP with an ips-80 controller 

For all uniprocessor experiments, we used an extent size of 50,000 objects, and a 16 megabyte 

page cache. 

Low-Level Filtering 

The first experiment involved execution of the following two queries: 

T3: (xact (filter (lambda (v) (and (> (select v WISC UNIQUE1) vl) 
(< (select v WISC UNIQUE1) v2))) 

(all WISC))) 

T4: (xact (all v 
(v (all WISC)) 
(where (and (> (select v WISC UNIQUE1) vl) 

(< (select v WISC UNIQUE1) v2))))) 

Values vl and v2 were chosen so that each query returned the same five hundred objects or one 

percent of the extent. The first query builds an extent list in the volatile heap, and then filters 

it. The second query performs the filter in the object storage system during object retrieval, 

building only a list of objects in the result. In both cases, no persistent heap or file pages were 

present in either the AGNA or operating system caches prior to query execution. The timings 

were: 

T3: 148.5 seconds 

T4: 034.5 seconds 

Here is a breakdown: 
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• 233 build extent list (34.2 secs) 
• 10.23 list-cell allocation and field definition (3.5 secs) 

T3 • 24.63 object storage system (8.4 secs) 
• 65.23 I/O (22.3 secs) 

• 773 filter and build result list (114.3 secs) 

• 00.13 result list construction, begin/end transaction (.04 secs) 
T4 • 35.33 object storage system (12.2 secs) 

• 64.63 I/O (22.3 secs) 

In T3, 233 of the time is spent scanning over the 'WISC file and building an extent list, while 

773 of the time is spent filtering it and building the result list. The extent list construction 

consists of I/O (65.23), page and object handling in the object storage system (24.63), and 

allocation of list-cells and definition of their head and tail fields (10.23 ). In T4, .13 of the time 

is spent constructing the result list and beginning and ending the transaction, 35.33 is spent in 

the object storage system manipulating pages and applying the predicate, and 64.63 is spent 

in disk I/0. 

P-RISC manager instruction FILTEREXTENT is used to perform the file scanning and initial list 

construction in both T3 and T4, the only difference being that a file-scan predicate (i.e., a list of 

simple conditions on field values) is utilized by T4 and not by T3. Since FILTEREXTENT is currently 

implemented as a strict primitive for simplicity, no overlap is possible in T3 between the extent 

list building and filtering. In both T3 and T4, the amount of time spent in I/O is the same, 22.3 

seconds. Virtually all of this results from the WISC file scan performed in FILTEREXTENT. The 'WISC 

data file consists of 1516 pages; each page transfer, therefore, takes about 14.7 milliseconds, 

and the total transfer rate is .56 megabytes/second. 

From the additional time spent in the object storage system in T4 (12.2 seconds vs. 8.4 

seconds in T3), we can determine that 3.8 seconds (the difference) is spent in T4 checking 

whether 'WISC objects satisfy the predicate. When this checking is performed via the more 

general procedure filter in T3, it takes significantly longer-virtually all of the 114.3 seconds 

spent filtering and building the result list.3 While some of this wide difference is attributable 

to compilation technology and our decision to emulate the P-RISC machine in software, the 

results of this experiment nevertheless demonstrate the significant impact on performance of 

efficient, low-level filtering. 

3 We shall see in the next section a detailed breakdown of a computation similar to filter, thus we don't 
examine it further here. 
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Indexing 

The next experiment was designed to test the effectiveness of indexing in AGNA. It involved T4, 

and a new query TS, which is identical to T4 except that field unique2 is used instead of unique1: 

T5: (xact (all w 
(w (all WISC)) 
(where (and (> (select w WISC UNIQUE2) vl) 

(< (select w WISC UNIQUE2) v2))))) 

As before, values vl and v2 were chosen so that each query returned the same five hundred 

objects. T4, as we have already seen, scans the entire WISC data file, performing the filtering 

during object retrieval. TS, on the other hand, utilizes the Btree index on unique2, thus avoiding 

a scan of the entire file. The timings were: 

T4: 34.5 seconds 

T5: 01.1 seconds 

Here is the breakdown: 

• 00.13 result list construction, begin/end transaction (.04 secs) 
T4 • 35.33 object storage system (12.2 secs) 

• 64.63 I/O (22.3 secs) 

• 03.63 result list construction, begin/end transaction (.04 secs) 
T5 • 41.93 object storage system ( .46 secs) 

• 54.53 I/O (.6 secs) 

Both T4 and TS spend the same amount of time constructing the result list and beginning/ ending 

the transaction, but the time spent in the object storage system and I/O is much less in TS 

because the Btree index provides direct access to those objects with unique2 field values in the 

desired range. The results of this experiment underscore the importance of efficient indexing 

in AGNA. 

Comparison with INGRES 

We also executed the relational equivalents of T4 and TS using INGRES version 6.3, a modern 

commercial relational database system. We built a corresponding database of the same size, 

and used the same hardware platform (Sun 4/490, 64 Mb of memory, ipi-1000/2HP disk with 

186 



an isp-80 controller). INGRES was configured to use a page cache of the same size (16 Mb), 

and locking and logging were turned off to eliminate the overhead of concurrency control and 

recovery, respectively, since these functions are not performed by AGNA. 

The queries were written in SQL and embedded in a C program. Rather than build result 

lists as in AGNA, we stored each record id of the result in a pre-allocated C array. Here is query 

T4: 

void doT40 
{ 

} 

EXEC SQL BEGIN DECLARATION 
int ids[500], i=O; 
EXEC SQL END DECLARATION 

EXEC SQL SELECT id 
INTO : ids [i] 
FROM wise 
WHERE unique1 > vl and unique1 < v2; 

EXEC SQL BEGIN; 
i++; 

EXEC SQL END; 

Query T5 is similar. The INGRES timings were:4 

T4: 34.1 seconds 

T5: 00.3 seconds 

These results indicate that even on a uniprocessbr, the performance of AGNA is competi

tive with that of commercial relational systems on comparable queries. Further, we have an 

advantage over SQL in that AGNA's list comprehensions are part of a full functional language, 

so that the user can smoothly extend queries to perform arbitrary computation. 

6.2.2 Multiprocessor Results 

Multiprocessor experiments were conducted on an Intel iPSC/2 with 32 nodes. Each node 

includes an Intel 80386 processor, 8 megabytes of physical memory, and a MAXTOR 4380 disk 

drive with an embedded SCSI controller that maintains a 45 Kbyte read-ahead cache. Also 

included in each node is a specialized hardware router module, all of which are interconnected 

4 INGRES applications code such as doT4 executes in a separate operating system process, which connects to 
and interacts with a back-end database server. The timings do not include the time to connect to the server and 
to perform initializations such as opening the database. 
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to form a hypercube. Routers support eight bit-serial, full-duplex channels that connect a node 

to its eight nearest neighbors. 5 Each channel is capable of sustaining a data transfer rate of 2.8 

Mbytes /second, independent of other channels. 

AGNA uses the interrupt-driven communication primitives in NX, the operating system 

of the iPSC/2. An interrupt handler and message buffer are always posted on a node to 

receive incoming messages. When a message arrives at a PME, it is written directly to the 

posted message buffer, after which an interrupt occurs and the handler is invoked. Thus, no 

unnecessary copying of the message is performed. 

Two different underlying protocols are used by the iPSC/2 for message transmission [27]. 

Messages of one hundred bytes or less are sent as datagrams, using a one-trip protocol. Messages 

longer than one hundred bytes use a three-trip protocol. In the first step, a proxy message is 

sent from the source to the target node to establish a communications circuit between them. If 

a receive is posted for the message or enough free memory exists to hold it on the target node, 

then a reply is sent back immediately requesting transmission of the message. In the third step, 

the message is sent and, as the tail of the message moves through the circuit, it is released one 

link at a time. The table below shows the latency (from one emulator process to another) of 

inter-node messages of various sizes [33]: 

Message size in bytes Latency 
50 0.74ms. 
500 l.46ms. 

1000 l.57ms. 
4000 2.69ms. 
8000 4.64ms. 

We conducted four sets of experiments to evaluate the performance of simple list compre

hensions in the multiprocessor version of AGNA. The first set of experiments compared the 

multiprocessor performance of AGNA, using a full machine configuration of thirty-two nodes, to 

the uniprocessor performance of both AGNA and INGRES. The next three sets of experiments 

involved only the multiprocessor version of AGNA, and varied the machine size (i.e., number 

of PMEs), the problem size (i.e., number of objects in the extent), or both. The second set of 

experiments evaluated performance relative to extent size by keeping the machine size constant 

while scaling up the problem size. The third set evaluated the scalability of the system by 

maintaining a constant problem size while increasing the number of PMEs in the machine con

figuration. Finally, the fourth set of experiments evaluated the ability of the system to maintain 

6 Configurations with both compute and I/O nodes use one of the channels exclusively for communication 
with the I/O subsystem. 
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a constant response time as the problem size and machine size were increased proportionally. 

The design of the latter three sets of experiments was motivated by the performance study re

ported in [33). For all experiments, a 4 megabyte page cache was used; the remainder of physical 

memory was consumed by other system data structures, message buffers, and interpreter and 

manager thread code. 

All of the queries used in our experiments involved the WISC type described previously and 

the following query template: 

(xact 

(all 'If 

(w (all WISC)) 

(where (and (> (select w WISC unique1-or-unique2) vi) 
(< (select w WISC unique1-or-unique2) v2 ))))) 

Values v1 and v2 were varied to test queries that returned different numbers of objects. The field 

used in the predicate expression was varied between unique! and unique2 to test both indexed and 

non-indexed access to WISC objects. For all experiments, WISC objects were distributed uniformly 

across all PMEs of the machine. 

Effect of parallelism 

In the first set of experiments, we selected 13 of an extent size of 100,000 objects, using both 

unique! (the non-indexed field) and unique2 (the indexed field). We gathered performance results 

for AGNA on the iPSC/2 multiprocessor platform (all 32 PMEs), and both AGNA and INGRES 

on the Sun uniprocessor platform described in Section 6.2.1. The results are tabulated below. 

13 non-indexed 13 indexed 

AGNA JS~J 
INGRES (Sun) 
AGNA (Hypercube, 32 nodes) 

68.3 
68.0 
4.1 

1.2 
0.4 
2.2 

Results for the non-indexed query demonstrate the exploitation of parallelism in AGNA to 

achieve significantly greater performance than that of INGRES. The performance difference 

is actually greater than it appears, because the Sun processor and disk are approximately 

three and two times faster, respectively, than the processor and disk used in the Hypercube. 

Performance of AGNA on the multiprocessor platform for the indexed selection is less than that 

of both AGNA and INGRES on the uniprocessor platform, because of the little computation and 

disk I/ 0 performed by the query (i.e., it is not a good candidate for parallel execution), and 
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the slowness of the Intel Hypercube network which, as we shall see below, is the performance 

bottleneck for this class of query. 

Performance relative to extent size 

In the second set of experiments, the machine configuration was kept constant at 32 PMEs while 

the extent size was increased from 100,000 to 10,000,000 objects. We executed two queries using 

unique1 (the non-indexed field), selecting 13 of the objects in the base extent in the first one, 

and 103 in the second one. We also executed two queries using unique2 (the indexed field), 

selecting 13 of the objects in the first one, and a single object in the second one. 

Ideally, the increase in response time would not grow at a rate faster than the increase in 

extent size. The results are shown in the table of Figure 6.2. For the non-indexed selections, 

the increase in response time is almost perfectly matched with the increase in extent size from 

1,000,000 to 10,000,000 objects (27.8 to 275 seconds, and 29.1 to 298 seconds). For the increase 

in extent size from 100,000 to 1,000,000 objects, this is not the case because with 100,000 objects 

the time it takes to begin a transaction, dispatch the local filter operations, append the local 

result lists, and end the transaction becomes more significant (almost half of the total time) 

relative to the time spent filtering on each node. Response time for the indexed selections is 

dominated by this overhead. 

Query Description 100,000 1,000,000 10,000,000 
1 % non-indexed sJection 4.1 27.8 275 
10% non-indexed selection 4.3 29.1 298 
1 % indexed selection 2.2 2.6 7.0 
1 object usin__g_ index 2.1 2.1 2.1 

Figure 6.2: Performance relative to extent size. 

Let us examine two of the queries in more detail: selection of a single object from an extent 

of size 100,000 (lower left-hand corner of the table), and selection of 1% of an extent of size 

10,000,000 objects (upper right-hand corner). 

While appropriate run-time metering tools weren't available on the iPSC/2, an analysis of 

the number of messages in the critical path of execution of the first query suggests that it is 

network-bound. As described in Section 5.9, query execution is organized into four steps, each 

completed entirely before the next is allowed to begin: (1) prologue, (2) body, (3) epilogue 

pre commit, and ( 4) epilogue commit. All steps involve distributing some computation to each 
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node of the machine, and steps (2) and (3) also include receipt and handling of results. Let 

us examine the messages exchanged during the prologue. Procedure begin-transaction, defined 

below along with two additional routines, implements the prologue. 

(define begin-transaction 
(lambda () 

(letrec ((id (next-transaction-id))) 
(foreach (lambda (j) (APPLY PME j local-begin-transaction id)) 

all-pmes)))) 

(define local-begin-transaction 
(lambda (id) ... Perform local initializatiom ... )) 

(define foreach 
(lambda (f 1) 

(if (nil? 1) 
"DONE" 
(letrec ((x (f (hd 1)))) 

(foreach f (tl 1)))))) 

The following messages are transmitted in the call to begin-transaction from the transaction 

body: 

Number of 
Messages Operation 

2 lookup identifier begin-transaction 
2 read frame size from procedure object 
2 allocate frame 
4 store procedure on same PME as frame 
2 start trigger and signal threads in body 

Messages are sent in sequence because each depends on the result of the prev10us one, and 

all but one of the 12 messages (the one that starts the signal thread) are required before 

computation may begin in the body of begin-transaction.6 By a similar analysis, up to 14 

messages may be transmitted before the trigger and list argument threads are started in the 

body of procedure foreach. Each subsequent invocation of foreach may also require transmission 

of up to 14 messages. After the final invocation returns a result and signal, the next phase of 

the transaction (i.e., the body) may begin. The maximum number of messages in the critical 

path during the epilogue step is tabulated below: 

6 This message count assumes a worst-case scenario. For example, the procedure may already reside on the 
same PME as the frame, in which case no messages are required. 
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Number of 
Messages 

11 
14 

14*32 
2 

475 

Operation 
invocation of begin-transaction 
initial invocation of foreach 
all subsequent invocations of foreach 
signal and result return 

The unfolding of computation in the prologue is shown in Figure 6.3. It is important to 

realize that the total number of messages in the table above does not represent the number of 

messages transmitted during the prologue phase, but rather an estimate of those in the critical 

path, i.e., those required to "grow" the spine shown in the figure. In fact, many more inter

PME messages, such as those to invoke procedure local-begin-transaction on each PME, will 

be transmitted. 

local-begin-transaction 

Prologue: begin-transaction foreach • • • foreach 

messages messages messages messages 

2 messages 

Figure 6.3: Messages in critical path of prologue execution. 

Assuming that all messages are fifty bytes in length, the total transmission time for messages 

in the critical path is approximately .35 seconds ( 4 75 * . 75 ms). 7 Roughly speaking, this same 

pattern of computation is used in the subsequent three steps, and hence approximately the same 

number of message transmissions are required. An estimate of the time to send all messages 

in the critical path of the entire transaction execution, then, is 1.4 seconds ( 4 * .35 ), which is 

673 of the total execution time. Since few disk transfers and little computation are performed 

by the transaction, processors and disks are most likely idle the majority of the time. 

While the distribution of computation to PMEs in AGNA could be modified to reduce the 

number of message transmissions in the critical path, one conclusion of the analysis above is 

that the latency of message transmission in the iPSC/2 is such that the network may quickly 

become a bottleneck in computations which involve much non-local communication. A non-

7This is a conservative assumption because messages which copy a procedure to a PME will always be much 
longer than fifty bytes. 
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local procedure call, for example, requires a minimum of five messages (two to read the frame 

size, two to allocate the frame, and one to start the trigger thread) to initiate execution in the 

procedure body. The message transmission time alone for this is almost four milliseconds. In the 

implementation of general purpose models of computation such as ours, many small messages 

are inevitable. Thus, we believe that the latency of inter-PME messages in the iPSC/2 must 

be reduced by at least an order of magnitude to provide acceptable overall performance for 

expressive models of computation. 

Now let us examine the selection of 13 of an extent of size 10 million objects using unique1, 

the non-indexed field. In this case, the network is not the limiting factor. Approximately 

255 of the 257 seconds of execution is spent with all PMEs executing (in parallel) a copy of 

procedure local-filter-extent which, as we saw in the previous chapter, builds a local list of 

objects satisfying the predicate. The bulk of procedure local-filter-extent is implemented by 

P-RJSC manager FILTEREXTENT, whose execution profile for this query is given below. 

693 computation 
• 52.23 object manipulation 
• 34.83 result list construction 
• 13.03 page cache management 

313 disk 1/0 

FILTEREXTENT, and hence the transaction, is compute-bound, as 693 of the time is spent in object 

manipulation (e.g., applying the predicate), constructing the result list, and managing the cache 

of pages, while only 313 is spent performing 1/0. 

Speedup 

In this set of experiments, we kept the extent size constant at 1,000,000 objects while the 

machine configuration was increased from 1 to 32 nodes. The ideal behavior in this case would 

be for response time to decrease (or speedup) proportionally with increases in machine size. 

Results for the 13 selection queries are shown in Figure 6.4. (We also executed the 103 

selection query using the non-indexed field; the response time and speedup curves for it are 

almost identical to those for the 13 non-indexed selection.) 

The speedup for non-indexed selections is practically linear from 1 to 32 nodes. We would 

like to emphasize that this linear speedup depends, in part, on the uniform distribution of WISC 

objects across the machine. If objects were distributed in a non-uniform manner, then it is 
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Figure 6.4: Speedup for 13 selection. 
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possible that the speedup would be less. For the indexed selection, good speedup is obtained 

from 1 to 8 nodes, but then response time levels off due to the additional communications 

overhead with larger machine configurations. 

Scaleup 

In the final set of experiments, we increased the machine and extent sizes proportionally. The 

ideal behavior in this case would be for response time to remain constant. The results are 

shown in Figure 6.5. 

Response Time 
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PMEs 
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4 -------------
8 16 24 

PMEs 
32 

Figure 6.5: Scaleup for 13 selection without index (left) and with index (right). 

Response time remains relatively constant for selection using the non-indexed field. For the 

indexed selection, response time increases slowly with increases in the machine size due, again, 

to the increased communications overhead. 

Comparison with Gamma 

The Gamma Parallel Relational Database Project at the University of Wisconsin has also re

ported results for the selection queries that we used in our experiments. A thorough performance 

evaluation of Gamma, on the same hardware platform, is reported in [33]. 

For queries that involve a significant amount of processing relative to the overhead of a 

transaction, e.g., a non-indexed selection on all 32 nodes with an extent size of 10,000,000 

objects, Gamma is anywhere from two to five times faster than AGNA. For very short transac

tions, the difference is more significant, often greater than a factor of ten. We believe that the 

differences in performance can be attributed to three things: 
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l. The P-RlSC abstract machine, the target of the AGNA compiler, is currently emulated in 

software. Further, we know of numerous optimizations possible on P-RlSC code that we 

have not yet had the opportunity to incorporate. From hand-coded examples and results 

reported for Culler's Threaded Abstract Machine [67], we believe that these optimizations 

and compilation to native code can easily increase overall performance by a factor of 10 

or more. 

2. AGNA implements objects in a segmented, paged, virtual heap. The management of this 

heap, including its paging to disk, is implemented entirely in software which has not been 

optimized very much yet. Further, our heap structure is more complicated due to the more 

complex object model supported by AGNA. For example, the storage model in Gamma is 

not a global heap, but rather a collection of files ofrecords. The mapping of records to files 

is determined statically when a relation is created, and no direct inter-record references 

are allowed. 

3. Much less effort has gone into AGNA to date to tune the system, particularly the object 

storage system, where additional optimizations could, we believe, increase the performance 

of low-level object scans by at least a factor of two. Also, additional optimizations to 

reduce the number of inter-PME messages have not yet been incorporated. 

We are very encouraged by our results, and believe that we are within shooting distance of 

parallel relational systems on comparable queries. Again, we have the advantage that in AGNA, 

the programmer can smoothly escalate to more complex objects and queries that involve general 

networks of objects and arbitrary computation. 

6.3 Extra-Relational Queries 

We also performed a set of experiments using the Engineering Database Benchmark (EDB) [24] 

to evaluate the performance of AGNA on extra-relational transactions. We begin this section 

with a description of the benchmark database and operations, then we report uniprocessor 

results for AGNA. Next we compare our results to similar results for INGRES and a commercial 

object-oriented database system. Multiprocessor results for AGNA on this benchmark are not 

available, as an umesolved bug in the iPSC/2 communications subsystem has prevented us 

from running the benchmark operations successfully on that platform. 
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6.3.1 Engineering Database Benchmark 

The Engineering Database Benchmark was designed to evaluate the performance of database 

systems on basic operations commonly performed by engineering applications. Object types in 

the benchmark database are PART and CONNECTION, defined as follows: 

(type PART (extent) 
((id <=> INTEGER) 

(type => (STRING 10)) 
(x => INTEGER) 
(y => INTEGER) 
(build-date => INTEGER) 
(connections <=>• CONNECTION))) 

(type CONNECTION (extent) 
((part •<=> PART) 
(type => (STRING 10)) 
(length=> INTEGER))) 

Each part consists of a unique id, four other attributes, and connections to three parts; the 

connection information is stored in multi-valued field connections. Each connection consists of 

a part (i.e., part Bin a connection from part A to B), and two attributes. Thus, the database 

consists of a graph of objects as shown in Figure 6.6. 

Figure 6.6: Part and connection objects in EDB database. 

While databases of various sizes are included in the benchmark, we chose to use the smallest 

because more published results for other systems are available using this size than any of the 

others. The "small" database consists of 20,000 parts and 60,000 connections. As specified 

in the benchmark, connections between parts are chosen to enhance locality in the sense that 

903 of all connections are made from a source part to a target part selected randomly from 

the "closest" 13, i.e., those 13 of the parts with id values numerically closest to the id of the 
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source part. The remaining 10% of the connections are made to target parts selected randomly 

from the entire part extent.8 

Operations in the benchmark are: 

• Lookup. 1000 random ids are generated and the corresponding parts are fetched. The 

x, y, and type field values of each part are passed to a null-bodied procedure. 

• Traversal. Select a part randomly, and then visit all parts reachable in seven or fewer 

connections. (The total number of parts visited is 3280, with duplicates.) The x, y, 

and type field values of each part visited are passed to a null-bodied procedure. A re-

verse traversal is also performed, i.e., the same operation except that the connections are 

traversed in the opposite direction. 

• Insert. Create 100 new parts and their connections. 

All operations are performed in each of ten iterations. Initially, no data pages may be present 

in the database or OS caches. The results of the first iteration are referred to as "cold" start 

results, and the asymptotic best times of the remaining iterations, which may access cached 

pages, are referred to as the "warm" start results. The EDB designers made the distinction 

between warm and cold start results to distinguish systems which enhance performance via 

efficient caching of data in applications programs. Engineering applications, the target domain 

of the benchmark, often access the same data repeatedly from different parts of the program, 

thus performance can be improved significantly if data is cached efficiently. The Wisconsin 

benchmark designers, on the other hand, did not make such a distinction, because relational 

queries typically do not exhibit this pattern of access, and thus the benchmark is focused 

more on testing query processing algorithms, use of indexes, etc. rather than particular caching 

strategies. 

For each of the ten iterations, a different set of random ids and parts must be selected. The 

benchmark specification allows the database to be stored locally or remotely and accessed via 

a network. For our experiments, we used a local database since remote access, in the sense 

defined by the benchmark, is not supported by AGNA. 

8 A random number generator is utilized in construction of the database and in the benchmark operations. 
The random number generator used in AGNA, described in (65], is the one suggested by the EDB authors [24]. 
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6.3.2 Experimental Results 

We ran the EDB benchmark on the uniprocessor platform described in the previous section 

(Sun 4/490, 64 megabytes of memory, ipi-1000/2HP disk with an isp-80 controller). As before, 

a 16 megabyte page cache was used. The results (response times in seconds) are tabulated 

below. 

I Operation Cold Warm 

Lookup 13.9 7.2 
Forward Traverse 21. 7 12.2 
Reverse Traverse 42.4 32.5 
Insert 9 8 

Total size of the database was 11 megabytes and the database build time was 1180 seconds. 

Warm-Start Execution of Forward Traverse Operation 

Let us now examine in detail a warm-start execution of the forward traversal operation, i.e., 

one in which all relevant data pages are in the cache prior to execution, thus no I/ 0 is required. 

First, here are the AGNA procedures that perform the operation: 

(define forward-traverse 
(lambda (part hops total-parts-visited) 

(letrec ((x (select part PART X)) 
(y (select part PARTY)) 
(t (select part PART TYPE)) 
(a (null-proc x y t)) 
(cs (select part PART CONNECTIONS))) 

(if (>= hops 1) 
(£-traverse-helper cs (- hops 1) (+ 1 total-parts-visited)) 
1)))) 

(define null-proc (lambda (x y type) ())) 

(define £-traverse-helper 
(lambda (cs hops n) 

(if (nil? cs) 
n 

(letrec ((part (select (hd cs) CONNECTION PART))) 
(£-traverse-helper (tl cs) 

hops 
(+ n (forward-traverse part hops 0))))))) 

Procedure forward-traverse takes a part, the number of "hops" or connections to follow from 

the part, and the total number of parts visited so far. The x, y, and type fields are selected 

and passed to null-proc, as specified by the benchmark. If the number of hops remaining is at 

least one, then procedure £-traverse-helper is utilized to continue the traversal. Its arguments 
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are a list of connections, the number of hops, and the total number of parts visited. Procedure 

f-traverse-helper simply iterates over the list of connections, selecting the target part of each 

and passing it to forward-traverse. 

The forward traversal operation is invoked as follows: 

(xact 
(forward-traverse (invert PART ID (random 1 20000)) 7 0)) 

Procedure random returns a random number in the specified range, which is then used to select 

the part from which the traversal begins. The number of hops is initially seven, and the count 

of parts visited zero. 

Here is the breakdown of a warm execution of the transaction above. 

27.73 
21.03 
16.03 
11.43 
06.53 
06.33 
05.63 
05.53 

frame pointer address translations, initiated via procedure interpreter 
procedure interpreter, but not procedures called by it 
building/ sending/receiving messages 
allocation and deallocation of frames 
miscellaneous 
identifier lookups 
pinning/unpinning heap pages via procedure interpreter 
selection of object fields 

The largest category in the breakdown, which consumes 27. 73 of the time, involves only address 

translations of FPs initiated via procedure interpreter. Such translations, which total 93,025, 

are performed when the interpreter switches execution from one frame to another (25,172), and 

in the execution of STARTO {28,459) and START1 (39,394) instructions. Including the additional 

address translations performed in object field selection, frame allocation, etc. a total of 32.43 

of the time is spent translating AGNA heap addresses. Thus, it is clear that the implementation 

of the virtual heap in software in AGNA is a major source of overhead. Each translation of 

a (resident) heap address takes 166 native SPARC instructions. In Section 6.3.4, we discuss 

techniques used by some OODBs to reduce this overhead, and their applicability in AGNA. 

Execution of procedure interpreter, the next largest category, consumes 213 of the time. 

This does not include time spent in any procedures called by the interpreter, but only in the 

interpreter procedure itself. The bulk of this time represents the overhead of interpretation of 

the P-RJSC instruction set. For example, execution of a P-RJSC ADD instruction in procedure 

interpreter takes 26 native SPARC instructions.9 While this overhead may be reduced some

what by more efficient compilation to P-RJSC code and additional optimizations in procedure 

9 This assumes that the P-RISC frame and instruction pointers have already been translated. 
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interpreter, it is clear that the overhead of interpretation is significant. Compilation to native 

machine code is thus an important area of future research in AGNA. 

The building, sending, and receiving of messages is the next largest category, consuming 

163 of the time.10 The primary reason why this category consumes so much time is that 

the interpreter and manager lightweight threads are each mapped to a separate OS process in 

the current uniprocessor implementation, thus sending an intra-PME message involves inter

process communication, which is relatively expensive. For example, a 100 byte message sent 

from one process to another talces approximately .5 ms. While we would have preferred to 

place all lightweight threads in the same OS process and thereby reduce the communication 

overhead considerably, the only thread package that we had access to (Sun's lightweight process 

library) did not support non-blocking I/O, i.e., when a lightweight thread issues an I/O request, 

the entire OS process blocks, even if other lightweight threads are ready to execute. In the 

iPSC/2 implementation, on the other hand, a suitable thread package was available, and thus 

all lightweight threads are placed in the same OS process. 

The next most time consuming activity (11.43) is the allocation and deallocation of frames. 

Allocation involves a call to the heap storage allocator, which maintains a table of free blocks 

of various sizes, and initialization of the frame structure. Deallocation involves a call to the 

storage allocator to free storage occupied by the frame. Both allocation and deallocation involve 

address translations which, as we just saw, are quite expensive. A total of 10,946 frames are 

allocated and deallocated by the transaction. 

Remaining categories in the breakdown above are: various miscellaneous tasks; top-level 

identifier lookups; pinning and unpinning of the heap pages on which the current frame and 

code objects reside; and the selection of object fields. 

Cold-Start Execution of Forward Traverse Operation 

We also examined a cold-start execution of the forward traverse operation to determine the 

degree to which the latency of disk I/O is masked by parallelism. We executed the query using 

a modified version of AGNA that included only one manager thread, whose execution was not 

10 In a. we.rm execution, the interpreter thread only sends messages to ma.na.ger threads for lookups of top-level 
names not in the identifier cache, a.nd selection of multi-valued fields. As discussed in the previous chapter, such 
operations a.re a.lwa.ys performed by ma.na.ger threads because it is difficult to predict whether the associative 
searches that they perform will involve access to non-resident pages. 
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allowed to overlap with the interpreter thread. 11 We also executed the query using different 

numbers of manager threads that did overlap execution with the interpreter thread. The results 

are tabulated below. 

Number of Manager 
Response Time J Threads Overlap? 

1 no 25.9 
1 yes 22.5 
2 yes 21.6 
3 yes 21.7 

With one manager thread and no overlap of disk I/O and computation, the response time is 

25.9 seconds. This improves by approximately 16% (4.3 seconds) when two or three managers 

are used and overlap is allowed. Regardless of the number of manager threads used and whether 

overlap is allowed, 574 disk pages are read in manager threads. Using the average service time 

reported earlier (14.7 ms), the total I/O time is 8.3 seconds. 

If 8.3 seconds are spent in I/O, though, why does response time only improve by about 

half that amount ( 4.3 seconds) when overlap is allowed? The answer involves the following 

three factors. First, while much parallelism is available throughout most of the transaction (see 

Figure 6.712), there are short periods of time at the beginning and end of execution during 

which not enough work is available to cover I/O time completely. During these periods, the 

emulator is idle for a total of approximately .5 seconds waiting for I/O to complete. 

400 
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100 

100 200 300 400 500 600 700 800 900 1000 1100 

Thousands of P-RISC Instructions Executed 

Figure 6. 7: Parallelism profile of forward traverse operation. 

11 This was accomplished by having the interpreter thread, after sending a message to the manager thread, 
immediately block awaiting the reply. 

12 Raw data for the parallelism profile of Figure 6.7 was produced by the statistics-gathering facilities of AGNA. 

Data such as the number of active micro-threads and queued manager requests are recorded at regular intervals 
(every 10,000 P-RISC instructions), and may be viewed by the user after transaction execution is completed. 
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Second, not all of the 8.3 seconds ofI/O time is available for other computations. For exam

ple, before the interpreter may begin execution after an I/O request is initiated by a manager 

thread, the operating system must switch execution from the manager to the interpreter pro

cess, thus incurring the overhead of a context switch. Also, the 14. 7 ms estimate of I/ 0 service 

time includes the time required to copy the disk page from a kernel buffer to user space, i.e., 

to an AGNA page frame buffer. During this copying, which takes a total of about .33 seconds, 

the processor is not available for execution of other threads. 

Third, execution of the transaction with overlap of I/O and computation involves the ex

change of more intra-PME SELECTF messages than when no overlap is allowed. For example, 

a number of connection objects may reference parts that are on the same non-resident page. 

With no overlap, the interpreter thread issues a SELECTF request to a manager thread the first 

time an object on a non-resident page is referenced, and waits for the reply. All subsequent 

references to objects on the page find it resident, and thus may be handled entirely within the 

interpreter thread. 

When overlap is allowed, the interpreter thread may issue multiple SELECTF manager requests 

involving objects on the same non-resident page before the page is made resident by a manager 

thread.13 The 1/0 is performed only once, but the extra manager messages are expensive given 

the high cost of intra-PME messages in the current uniprocessor implementation of AGNA. In 

the forward traverse operation with one manager thread and no overlap, 1440 messages are 

sent from the interpreter to the manager thread. With three manager threads and overlap, an 

additional 700 SELECTF messages are sent. The additional messages, and their replies (sTART1), 

represent a substantial overhead, as each message requires construction, transmission, decoding, 

context switching, etc. Thus, the third reason why response time does not improve by more 

than 4.3 seconds when computation is overlapped with I/0 is that more messages, and hence 

more computation, is required. 

Warm-Start Execution of Forward Traverse Operation 

We also used the statistics gathering facilities supported by AGNA to determine the parallelism 

available in the interpreter during a warm execution of the forward traversal operation. The 

profile is shown in Figure 6.8. 

13 While the interpreter could keep track of the pages for which 1/0 requests have been issued and thus avoid 
multiple manager requests, this is currently not done. 
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Figure 6.8: Parallelism profile. 

For the most part, all three curves remain relatively fiat throughout execution of the trans

action. The reason for this is that the computation unfolds in a depth-first rather than a 

breadth-first manner. In the body of forward-traverse, the frame for the call to null-proc is al

located and threads in the body activated (but not executed) before the frame and threads for 

£-traverse-helper. In the body of £-traverse-helper, the frame for the recursive call is allocated 

and threads activated before the frame and threads for forward-traverse. As described in the 

previous chapter, active frames are maintained in a stack, and this causes the traversal to be 

performed in a depth-first manner. 

For a warm execution on a uniprocessor, a depth-first traversal is optimal because it is the 

most resource-efficient. A breadth-first traversal, for example, may allocate more frames than 

can fit in physical memory at any one time, and thus may incur expensive paging overhead. The 

additional parallelism in a breadth-first approach, though, may be desirable in a multiprocessor 

environment, and even on a uniprocessor to help mask the latency of disk I/O. This, and other 

issues related to resource management, are an important topic of future investigation in AGNA. 

6.3.3 Comparison With INGRES 

We executed the Engineering Database Benchmark using INGRES on the same hardware plat

form. As before, INGRES was configured to use a 16 megabyte page cache, and logging and 

locking were turned off, since these functions are not performed in AGNA. The SQL represen

tation of the database includes two tables, PART and CONNECTION, as shown in Figure 6.9. Hash 

indexes were built on the ID column in the PART table, and the FROMID and TOID columns in the 

CONNECTION table. All of the operations were coded in SQL embedded in C. Also, SQL queries 
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were compiled where possible to avoid the overhead of parsing, optimization, access path selec

tion, etc. on each query execution. The INGRES results are tabulated below, along with the 

AGNA results presented earlier. 

Cold Warm 
Operation INGRES AGNA INGRES AGNA 

Lookup 22.2 13.9 18.0 07.2 
Forward Traverse 66.5 21.7 57.0 12.2 
Reverse Traverse 76.1 42.4 69.0 32.5 
Insert 20.0 09.0 19.0 08.0 

Total size of the INGRES database was 5 Mb and the database build time was 2855 seconds. 

AGNA provides superior performance in all cases; we believe there are three fundamental reasons 

for this. First, AGNA supports the overlap of execution and disk I/O which, as we just saw, 

improves the cold start results. In INGRES, each transaction executes in a single thread of 

control, so when a disk transfer is initiated, the entire transaction is suspended until it is 

complete. 

PART CONNECTION 

ID TYPE x y BUILD_DATE FROM ID TOID TYPE LENGTH 

17 "part-typa7" :Z3 1209 :Z:Z7488376 17 :Z1 "conn-type4" 346 

:Z1 "part-typa3" 98946 :Z:Z46 766333 34 3346 "conn-type0 11 9 

• . 
• 

. . . 
Figure 6.9: Relations in EDE benchmark. 

Second, AGNA supports a richer object model, and in particular, objects may directly 

reference other objects. A connection object, for example, points at the target part of the 

connection. Traversing this link to a target part in AGNA involves only the dereferencing of a 

pointer. In INGRES, on the other hand, access to the target part referenced via a row in the 

CONNECTION table involves a general associative lookup in the PART table. 

Finally, all of the benchmark operations are written entirely in the AGNA transaction 

language-no embedding in a separate language is necessary. This allows the AGNA com

piler to see and thus optimize the entire operation. Also, this organization allows the entire 

transaction to be executed in the "database system". As we saw in Chapter 2, in INGRES one 

is forced to embed more complicated operations in a host language. For example, here is the 

embedding of the forward traversal operation in C: 

int forvardTraverse( id, hops, totalPartsVisited ) 
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EXEC SQL BEGIN DECLARE SECTION; 
int id; 
EXEC SQL END DECLARE SECTION; 
int hops, totalPartsVisited; 
{ 

} 

EXEC SQL BEGIN DECLARE SECTION; 
int x, y, toid; 
char partType[11], cursorName[8]; 
EXEC SQL END DECLARE SECTION; 

if ( hops<1 ) return 1; 

/• 
**Fetch part X, Y, and TYPE fields. Call null procedure. 
•I 
EXEC SQL REPEATED SELECT x, y, type 

INTO :x, :y, :partType 
FROM parts 
WHERE id=:id; 

nullProc(x,y,partType); 

/• 
** Continue traversal. 
•I 
sprintf(cursorName,"level'Y.d",hops); 
EXEC SQL DECLARE :cursorName CURSOR FOR 

SELECT toid 
FROM connections 
WHERE fromid=:id; 

EXEC SQL OPEN :cursorName; 
EXEC SQL 'W"HENEVER NOT FOUND GOTO closeCursor; 

totalPartsVisited++; 
while ( 1 ) { 

} 

EXEC SQL FETCH :cursorName INTO :toid; 
totalPartsVisited += forwardTraverse(toid,hops-1,0); 

closeCursor: 
EXEC SQL CLOSE :cursorName; 
return totalPartsVisited; 

Procedure forwardTraverse takes a part id, the number of hops, and the total number of parts 

visited. The first SQL query fetches the x, y, and type fields of the current part and passes them 

to a null procedure. Next, the traversal is continued by declaring and opening a cursor-scan 

over the parts to which the current part is connected. For each part returned, forwardTraverse 

is called recursively. 

Note that here part of the operation is implemented by SQL, and part by the host language. 

This means that the SQL compiler cannot see and thus cannot optimize the entire operation-it 
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is only able to optimize small pieces of it. Also, this organization results in run-time inefficien

cies, as the front-end OS process containing forwardTraverse must repeatedly exchange small 

pieces of the operation and replies with the back-end database system. The result is high 

communication overhead and inefficient use of the database system. 

6.3.4 Comparison With an OODB 

EDB benchmark results for commercial object-oriented and relational systems, whose identities 

were deliberately not revealed, are reported in [24]. The hardware platform used was a Sun 

3/260 with 8 megabytes of memory, an SMD-4 disk controller, and two local Hitachi disks. The 

operating system used was Sun UNIX OS 4.0.3. The page cache was approximately 5 Mb in 

size, which was large enough to hold the entire database in both systems. The small remote 

database was used. The results reported in [24] are tabulated below. 

Cold Warm 
Operation OODB RDB OODB RDB 

Lookup 20.0 29.0 01.0 19.0 
Forward Traverse 17.0 94.0 01.2 84.0 
Insert 03.6 20.0 02.9 20.0 

It is difficult to make precise comparisons between the OODB results and the AGNA results 

presented earlier because of the different hardware and OS platforms used, and the placement of 

the database (local vs. remote). However, since the RDB results given above are similar to the 

results that we obtained using INGRES, we believe that two general conclusions are justified. 

First, the cold-start performance of AGNA is competitive with OODB: the lookup results for 

AGNA are roughly 303 faster, the forward traverse results 303 slower, and the insert results 

two to three times slower. Again, this does not take into account the differences cited above. 

Second, the warm-start performance of AGNA is at least an order of magnitude slower than 

that of OODB. We feel that the majority of this difference is attributable to the overhead inher

ent in AGNA's software-based emulation of the P-RISC machine. If we were to compile AGNA 

to native machine code, we believe that the warm-start performance of the forward traversal 

operation would improve by at least an order of magnitude. We base this on the performance 

results reported by Culler and his group at Berkeley [29, 67] for Id programs compiled to native 

code, which execute two orders of magnitude faster than Id programs compiled and interpreted 

under GITA, a graph interpreter for the MIT Tagged-Token Datafl.ow Architecture [5]. 

Another factor is the techniques used by OODB (and most other OODBs) to provide fast 

access to memory-resident data. While [24] does not mention the specific techniques employed 
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by OODB, those mentioned in the literature include converting all inter-object references in 

resident objects from logical identifiers to memory addresses, constructing special indexes on 

resident objects, etc. [32]. 

One strategy for implementing the first technique works as follows. When a page of objects is 

read into memory, all objects in the page are scanned and outgoing logical pointers are converted 

(or "swizzled") to memory addresses. If a logical pointer references a non-resident object, then 

it is converted to a memory address that will cause a trap if the pointer is dereferenced. A trap 

handler fetches the page on which the target object resides, and converts all logical identifiers 

in the page to memory addresses. While this approach is not very portable, it does support 

efficient pointer traversal, since no interpretation of pointers is required. 

Before an updated page of objects can be written back to disk, all pointers must be converted 

back to logical identifiers. Also, it is necessary to ensure that pointers (in resident objects) to 

objects on the page will generate a trap when dereferenced. This is potentially very expensive, 

as conceptually it requires, for each object, maintaining the set of all objects which reference 

it. 

The tradeoffs of this approach are high overhead when disk pages are read or written, but 

efficient access to memory-resident objects. Most commercial OODBs are targeted to design 

applications which [24] estimates have working set sizes of approximately 4 Mb (e.g., a CAD 

drawing) and include an order of magnitude more reads than writes. For applications with these 

characteristics, the techniques described above are very effective at increasing performance. 

While we could also utilize such techniques in AGNA, it is not clear that this is is a good idea, 

for two reasons. First, optimizations such as pointer swizzling are significantly more complicated 

in a multiprocessor implementation. For example, in both uniprocessor and multiprocessor 

systems, there are logical (i.e., disk-based) and physical (i.e., memory-based) pointers that 

must be manipulated. In multiprocessor systems, though, there is the additional complication 

oflocal vs. remote pointers, of both kinds. Say, for example, that a non-local object is referenced 

from PME i via its logical id. Should the object be copied to PME i and the pointer converted? 

If so, what if the object is also referenced from PME j? Maintaining consistency in such cases 

is equivalent to the multiprocessor caching problem. 

The second reason why OODB optimization techniques might not be as effective in AGNA 

is that we have targeted our system to a wider class of databases and applications which 

often will not have the characteristics of design applications mentioned previously, for which 
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Chapter 7 

Concluding Remarks 

In this chapter we summarize the present work, compare our work with related work of other 

researchers, and outline directions for future research. 

7.1 Contribution and Summary of Present Work 

The main contribution of this work is the design of a persistent object system that utilizes 

parallelism in a fundamental way to achieve competitive performance, and the techniques used 

in its implementation. Parallelism is incorporated into the system at all levels. We began 

with a declarative, implicitly parallel transaction language that includes a full higher-order 

programming language and list comprehensions, a notation that can be used as a high-level, 

declarative query language. We believe that such declarative languages, from which massive 

parallelism can be extracted easily, are essential to achieving scalable performance for complex 

transactions on large-scale parallel machines. 

A novel aspect of the language is its non-destructive, single-assignment update of persistent 

objects. This permits even update transactions to be executed with a high degree of parallelism, 

and ensures a unique result, i.e., transactions are determinate. Previous work on rewrite rule 

systems was extended and a formal semantics for the language specified. 

AGNA transactions are compiled in three major phases- source-to-source translation of the 

original transaction text, translation into datafl.ow program graphs, and translation into code for 

a multi-threaded abstract machine called P-RISC, whose central feature is fine grain parallelism 

with data-driven execution. Coarse grain parallelism is used to distribute computations of a 

transaction over the nodes of a parallel MIMD machine, and fine grain parallelism is used within 

a node to mask long-latency operations such as disk I/O, remote memory accesses, and waits 
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for synchronization. 

A number of significant optimizations are performed on list comprehensions, including use 

of Btree and hash indexes to combine generators and filters, reduction of the number of in

termediate lists, and moving filters as close to disk 1/0 as possible. An additional, signifi

cant optimization performed by the compiler enables tail-recursive procedures to execute in a 

resource-efficient manner. Included in the abstract machine is a virtual heap that encompasses 

both persistent and ephemeral objects. A novel segmented, paged structure permits clustering 

of objects of a particular type, and easy mapping to the distributed memory and disks of a 

multiprocessor. 

A prototype implementation was developed on workstations running the UNIX operating 

system, interconnected via a local area network. A port of the software is also operational on 

an Intel iPSC/2 Hypercube with thirty-two processors and thirty-two disks. To our knowledge, 

AGNA is the first real implementation of a parallel persistent object system, whether based on 

functional languages or not. Analysis and experimental results demonstrate: 

• Performance approaches that of state of the art uruprocessor and multiprocessor rela

tional systems on a simple but important class of queries. Performance relies heavily on 

optimization of list comprehensions, and aggressive pursuit of parallelism, based on fine 

grain, non-strict evaluation. 

• Performance is superior to uniprocessor relational systems, and approaches that of state 

of the art object-oriented systems, on more complicated queries such as those involving 

graph traversal operations. 

• Exploitation of parallelism on both uniprocessor and multiprocessor platforms. On a 

uniprocessor platform, fine grain parallelism is used to mitigate the effects of I/ 0 latency 

by executing other threads while I/ 0 is in progress. On a multiprocessor platform, parallel 

execution of both computation and I/ 0 is used to achieve scalable performance of simple 

list comprehension queries. 

7.2 Comparison With Related Work 

In Chapter 1, we compared the approach taken in AGNA to those taken by the developers of 

other third-generation database systems. Here we include additional comparisons with specific 
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systems. 

7.2.1 Functional Data Model 

Some of the earliest connections between functional languages and database systems were made 

by Shipman in his work on the Functional Data Model [70], Buneman et al. in their work on 

FQL {Functional Query Language) [19] and Atkinson, Kulkarni et al. in their work on PS-Algol 

and the Extended Functional Data Model [7, 52]. Most of this work emphasized language design 

and all the implementations were sequential. 

7 .2.2 Trinder's Functional Database Model 

Trinder, in his thesis [77], has also studied the use of a non-strict functional language as a 

parallel database language. He examined parallelism in transactions by executing them on a 

simulator (running on a sequential machine) that models parallel execution and disk 1/0 in 

certain idealized ways. His results confirm our belief (a belief long held by our fellow dataflow 

researchers and substantiated by numerous experiments in dataflow architectures [3]) that non

strict parallel evaluation is a very promising method to exploit parallelism and to overcome the 

long latencies of disk 1/0 and communication in parallel machines. 

Trinder and his colleagues are currently implementing his functional database model on 

GRIP, a parallel machine [66]. One difference from our work is that since GRIP does not have 

a parallel 1/0 system, the database will have to reside in main memory. In AGNA, we have 

addressed the issue of implementing a virtual heap that is much larger than main memory and of 

distributing objects onto multiple disks. A second difference is that GRIP is a shared memory 

architecture; we believe that our distributed memory model is not only physically easier to 

scale to much larger machines, but also operationally, because we have taken into account the 

increased latencies of larger machines. 

7.2.3 AGM 

AGM (Active Graph Model) [15], developed at UC Irvine, was a parallel database system that 

used a language based on the Entity-Relationship data model. Memory was viewed as an active 

graph of tokens, which are used to represent both entities and relationships. Tokens are mapped 

to PMEs of the machine by a hashing function, and transaction processing consists of injecting 

and propagating special query and/ or update tokens through the graph. 
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7.2.4 SPL 

Kato et al. [48] have designed a database language SPL based on list comprehensions. However, 

their approach seems quite different from ours. They have a compilation scheme where each 

generator and filter in the list comprehension is treated as a function from streams to streams. 

Each function is treated as a sequential process in a parallel system, and the streams are directly 

implemented as communication channels between these processes. With these restrictions, they 

have not had to deal with persistent heaps, and they do not utilize indexes for efficient access. 

Some problems that we see with this approach are that streams themselves are not first class 

objects, and it is difficult to deal with higher-order functions and updates. 

7.2.5 Gamma 

Gamma is a parallel relational database system developed at the University of Wisconsin. It 

exploits intra-transaction parallelism to achieve roughly linear speedup for single-user execution 

of relational queries as the hardware is increased from 1 to 30 nodes, i.e., for a constant-sized 

database, doubling the number of PMEs roughly halves the response time [33]. 

Gamma uses a "shared-nothing" [71] memory organization in which PMEs do not share 

main memory or disks, and communicate solely via message-passing. Relations are partitioned 

horizontally across all PMEs. A data-driven, coarse-grained model of parallel computation is 

utilized. For example, a relational query is compiled to a dataflow graph containing operators 

such as select, project, and join. An operator is implemented via one or more processes (or 

process threads) running on each PME which participates in the operator. For relational queries, 

the query processing strategy to be used and the process-to-PME mapping are determined 

largely at compile-time. 

In contrast to the Gamma implementation, we use a much finer parallel grain size and 

a memory model consisting of a global heap and procedure frames (or activation records). 

Another major difference is the way in which parallel tasks are mapped to PMEs. In AGNA, 

tasks are often mapped to PMEs at runtime, based primarily on considerations ofload balancing 

and object location. For an SQL-like subset of our language, however, the compiler is often 

able to select a query processing strategy which provides hints on where certain computations 

should be performed, thereby exploiting the locality of data. While such methods work well for 

relatively simple operations on regularly structured data, it is not clear that they can be easily 
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generalized to more sophisticated operations on complex data. 

The final significant difference is the way in which parallel tasks are synchronized and con

trolled. In Gamma, a separate control process is used to inform an operator process of the 

identity of the processes to (from) which it is to send (receive) data. When the processes which 

implement an operator complete, they inform the control process, which in turn may initiate 

other operator processes. Consumer processes block while waiting for data from producer pro

cesses. In our approach, synchronization is performed explicitly via the join instruction (which 

combines parallel threads) or implicitly through heap access (readers of an empty location are 

automatically deferred until the location is written). These mechanisms make minimal use of 

OS synchronization primitives and are entirely data driven, involving no busy-waiting. Control 

is handled uniformly through the use of continuations, which can be thought of as the ultimate 

in lightweight threads. For operating systems which support non-blocking 1/0, all threads on 

a PME, possibly from different transactions, may execute within the same OS process. 

7.2.6 FAD and Bubba 

FAD, designed at MCC [10], was another parallel functional database language. FAD did not 

have anything like list comprehensions; queries had to be composed explicitly using operations 

such as map and filter. In FAD, functions were not first class objects, and updates were 

completely imperative which, as discussed in Chapter 1, constrains parallelism significantly. 

FAD was to be implemented on Bubba, a parallel database machine [18] built on top of a 

Flex/32 multicomputer consisting of 40 PMEs (32 with local disks). We believe that only a 

relational subset of FAD (no inter-object references) was actually implemented before the end 

of the project; we do not know what optimizations were implemented or what performance was 

achieved. 

7.3 Directions for Future Work 

While we are pleased with the results and progress of the present work, many exciting oppor

tunities exist for future work. In this section we outline some of these opportunities. 
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7.3.l Language 

In AGNA, we have obviously not spent any time on concrete syntax design- with its heavily 

parenthesized notation, the transaction language is by no means user-friendly. A more concise 

and elegant syntax, such as that used in [63], is clearly desirable. Further, AGNA does not have 

a static type system, something that is also desirable. 

7 .3.2 Concurrency Control and Failure Recovery 

We have not yet addressed in AGNA the important issues of concurrency control (across trans

actions) and failure recovery, though we believe that conventional techniques such as two-phase 

locking and write-ahead logging could be applied easily in AGNA. 

7 .3.3 Retention of Historical Data 

Perhaps a more interesting approach to recovery would be to extend AGNA's database model to 

include historical data, which is straightforward because of its non-destructive update model, 

and then to fold recovery into normal management of the database. Instead of modeling a 

database as a single environment of bindings, we can model it as a sequence of environments, 

each produced by an update transaction. Because old data is never overwritten, a conventional 

log is not necessary, and recovery is simplified greatly. Also, the entire history of the database 

is available to all transactions. This means that the programmer, or database administrator, 

does not have to decide a priori which object histories to maintain, since needed historical data 

will always be available. 

If old database environments are to be accessible to the programmer, then the transaction 

language must be extended to include a way to refer to environments, and a mechanism for 

specifying the environment in which an expression is to be evaluated. As a practical matter, 

strategies will need to be developed for archiving and/or pruning old environments, since it 

may not be feasible to maintain on-line all old versions of the database. 

7 .3.4 Compiler 

An obvious area of future work here is compilation to native machine code. Also, many ad

ditional optimizations a.re possible on list comprehensions. One area for improvement is com

prehensions that include nested generators, the equivalent of join queries (cross-products) in 
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relational systems. We believe that traditional methods for implementing join queries, as well 

as new ones that can utilize the direct object references part of the AGNA object model, can 

be exploited. Finally, enhancements to the compiler and/or run-time system aimed at reducing 

the overhead of heap address translations, are desirable. 

7 .3.5 Resource Management 

Much additional work is possible in the difficult area of resource management: automatic 

garbage-collection of both persistent and volatile parts of the heap; additional strategies for 

distribution of objects to PMEs; code-mapping policies; support for large data objects; frame 

management; coding of resource managers, including the object storage system, in a parallel 

language. 

7 .3.6 Analysis and Experimentation 

Finally, more analysis and experimentation are needed to further assess the strengths and 

weaknesses of AGNA. One obvious area to be examined is the ability of AGNA to exploit 

parallelism between transactions. In the present work we have focused on parallelism within 

a single transaction, but parallelism may also be used in AGNA to increase total transaction 

throughput. 
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Appendix A 

Syntax of the Agna Transaction 
Language 

This appendix gives the syntax of the complete AGNA transaction language. Standard BNF 

notation is used. 

Transaction 

Statement 

Definition 

Field-Spec 

Expression 

Qualification 

Primitive 

Constant 

··-.. 

··-.. 

(xact Statement+) 

Definition I Expression 

(define Identifier Ex£ression) 
(define-local Identifier Expression) 
( undef ine Identifier) 
(type Identifier <[extent]) (Field-Spec*)) 

(Identifier { =>1<=>1=>*1<=>*1*<=>1•<=>•} Identifier) 

Constant I Identifier I (Expression+) 
(Primitive Expression*) 
(if Expression Expression Expression) 
(let ((Identifier Expression)+) Expression+) 
(lambda (Identifier*) Expression) 
(allocate Identifier) 
(invert Identifier Identifier Expression) 
(select Expression Identifier Identifier) 
(update Expression Identifier Identifier Expression) 
(insert [-list] Expression Identifier Identifier Expression) 
(delete[-list Expression Identifier Identifier Expression) 
(all Identifier) 
(all Expression Qualification+) 

(Identifier Expression) 
(where Expression+) 

+ I - I drop I ... 

Boolean I String I Number I nil I () 
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Appendix B 

P-RISC Managers 

This appendix describes the complete set of P-RISC manager instructions used in AGNA. 

B.1 Heap Memory Allocation 

ALLDCOBJ allocates and initializes a new object in the volatile heap: 

Syntax Semantic8 
ALLOCOBJ ri rj Let T = Frames [FP+ri] 

Let S = Frames [FP+ri +1] 
Allocate and initialize object in volatile heap of type T and size S 
Let A be the address of this object 
Frames[FP+rj] <- A 
Add (FP, IP+1) to active pool 

Object initialization performed includes defining the object header and setting to "empty" all 

field status bits. 

ALLDCFRAME allocates and initializes a new frame. 

Syntaz Semantic8 
ALLDCFRAME ri rj Let CallerFP = Frames [FP+ri] 

Let ResultIP = Frames [FP+ri +1] 
Let SignalIP = Frames [FP+ri +2] 
Let ResSlot = Frames [FP+ri +3] 
Let NumSlots = Frames [FP+ri +4] 
Let FP ' be address of new frame 
Zero-out frame slots in FP' 
Store in FP': CallerFP, Rasul tIP, Signal IP, and ResSlot 
Frames[FP+rj] <- FP' 
Add (FP, IP+1) to active pool 

Arguments are: the caller's FP, the IPs of the threads to receive the result and signal, the slot 

where the result of the procedure is to be stored, and the size of the new frame. ALLDCFRAME 

allocates a frame of the desired size, initializes its slots to zero, stores the linkage information, 

returns a pointer to the new frame, and adds successor descriptor (FP, IP+1) to the active pool. 

Allocation in the persistent heap is performed by manager MKPERSISTENT, which copies an 

object from the volatile to the persistent part of the heap. 
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Syntax Semantic1 
MKPERSISTENT ri rj Let Obj = Frames [FP+ri] 

Frames [FP+rj] <- Obj 
Frames[FP+rj+1] <- false 
If volatile? (Obj) 

If alreadyMoved(Obj) 
Frames[FP+rj] <- lookupPersistentAddr(Obj); 

Else 
LetA be address of persistent storage 

copy(Obj,A); 
Frames [FP+r j] <- A; 
Frames[FP+rj+1] <- true; 

Add (FP,IP+1) to active pool 

A reference to the object to be moved is passed in slot ri and the persistent address is returned in 

slot rj. An additional (boolean) result is returned in slot rj+1 indicating whether the persistent 

address returned in rj was allocated by the current call to MKPERSISTENT {true) or a previous one 

(false). The first result is initialized to the object itself, and the second result to false. If the 

object has already been moved to the persistent heap (tested by predicate alreadyMoved), then 

the persistent address is looked up via lookupPersistentAddr and returned. Otherwise, storage is 

allocated in the persistent heap, the object is copied, and the new persistent address and true 

are returned. 

DEALLOCATE frees the heap storage occupied by an object. 

Syntaz Semantic1 
DEALLOCATE ri rj Let Obj = Frames [FP+ri] 

Let Len = length(Obj) 
Add storage of length Len at address Obj to free list 
Add (FP,IP+1) to active pool 

B.2 Object Manipulation 

Selection of field values is performed via manager SELECTF. 

Syntaz Semantic1 
SELECTF ri rj Tet Obj = FramesTFP+riJ 

Let Obj Type = Frames [FP+ri+1] 
Let Offset = Frames [FP+ri+2] 
Error checking: 

l. Type check 
2. Bounds check 
3. Obj persistent and field undefined? 

If error found 
raise error 

Frames [FP+rj] <- Obj + Offset 
ILOAD rj rj 

Arguments to SELECTF are the object, its type, and the field offset; the result returned is the field 

value. SELECTF first checks for three error conditions: (1) an object not of the correct type; (2) 

a field reference that is out of bounds (this condition may hold only if Obj is an array because 

this is the only offset that is computed and not supplied by the compiler); and (3) a persistent 
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object with field at Offset that is undefined. If one of these conditions is found to hold, then 

a run-time error is raised. Otherwise, the field address is built in slot rj and !LOAD is used to 

access the field. If the field is not yet defined, then !LOAD will defer the operation. 

Update of field values is performed via manager UPDATEF. 

Syntaz Semantica 
UPDATEF ri rj Let Obj = Frames [FP+ri] 

Let Obj Type = Frames [FP+ri+1] 
Let Offset = Frames [FP+ri+2] 
Let Value = Frames [FP+ri+3] 
Error checking: 

1. Type check 
2. Bounds check 

If error found 
raise error 

Frames [FP+rj] <- () 

If unique inverse exists on field 
Add (ObjType,Offset, Value) to conatrainta collection 

If Obj is ephemeral 
Frames[rx] <- Obj + Offset; 
Frames[ry] <- Value; 
!STORE ry rx; 

Else 
Add (Obj, Offset, Value) to updatea collection 
Add (FP,IP+1) to active pool 

Arguments to UPDATEF are the object, its type, the field offset, and the field value. If a unique 

inverse exists on the field, then a triple consisting of the object type, field offset, and field value 

is added to collection constraints. If the object is ephemeral, then two internal frame slots rx 

and ry are loaded with the field address and value, respectively, and !STORE is used to define the 

field. If the object is persistent, then a triple consisting of the object, the field offset, and the 

field value is placed in the updates collection, and the successor descriptor is added to the pool 

of active threads. 

Insertion of values into field collections is performed via manager INSERTF. 

Syntaz Semantica 
INSERTF ri rj Let Obj = Frames [FP+ri] 

Let ObjType = Frames[FP+ri+1] 
Let Offset = Frames [FP+ri+2] 
Let Value = Frames [FP+ri +3] 
Error checking: 

1. Type check 
2. Bounds check 
3. Object ephemeral? 

If error found 
raise error 

Frames [FP+rj] <- () 
Add (Obj, Offset, Value) to inaerta collection 
Add (FP, IP+1) to active pool 

Arguments to INSERTF are the object, its type, the field offset, and the new field element. If no 

errors are found, then a triple consisting of the object, the field offset, and the field element 
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is placed in the inserts collection, and the successor descriptor is added to the pool of active 

threads. 

Deletion of values from field collections is performed via manager DELETEF. 

Synta:c Semantica 
DELETEF ri rj Let Obj = Frames [FP+ri] 

Let Obj Type = Frames [FP+ri+1] 
Let Offset = Frames [FP+ri +2] 
Let Value = Frames[FP+ri+3] 
Error checking: 

1. Type check 
2. Bounds check 
3. Object ephemeral? 

If error found 
ra.ise error 

Frames [FP+rj] <- () 

Add (Obj, Offset, Value) to deletea collection 
Add (FP, IP+1) to active pool 

Arguments to DELETEF are the object, its type, the field offset, and the field element to be deleted. 

If no errors are found, then a triple consisting of the object, the field offset, and the field element 

is placed in the deletes collection, and the successor descriptor is added to the pool of active 

threads. 

The actual addition of an element to a field collection during the transaction epilogue is 

performed via manager ADDMVFIELDELEMENT. 

Syntax Semantica 
ADDMVFIELDELEMENT ri rj Let Obj = Frames [FP+ri] 

Let Offset = Frames [FP+ri +1] 
Let Value = Frames [FP+ri +2] 
Frames [FP+rj] <- () 

Insert Value into field collection 
Add (FP,IP+1) to active pool 

Arguments to ADDMVFIELDELEMENT are the object, field offset, and field element to be added. The 

new element is inserted into the field collection, and all appropriate indexes are updated. A 

successor descriptor is added to the pool of active threads. 

The actual deletion of an element from a field collection during the epilogue is performed 

via DELETEMVFIELDELEMENT. 

Syntax Semantica 
DELETEMVFIELDELEMENT ri rj Let Obj = Frames [FP+ri] 

Let Offset = Frames [FP+ri+1] 
Let Value = Frames [FP+ri+2] 
Frames[FP+rj] <- () 

Delete Value from field collection 
Add (FP, IP+1) to active pool 

Arguments to DELETEMVFIELDELEMENT are the object, field offset, and field element to be deleted. 

The element is removed from the field collection, and all appropriate indexes are updated. A 

successor descriptor is added to the pool of active threads. 
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Finally, new values of single-valued fields are installed in persistent objects during the epi

logue via INSTALLFIELDVALUE. 

Syntax Semantica 
INSTALLFIELDVALUE ri rj Let Obj = Frames [FP+ri] 

Let Offset= Frames[FP+ri+1] 
Let Value = Frames [FP+ri+2] 
Frames[FP+rj] <- () 
Frames[rx] <- Obj + Offset; 
Frames[ry] <- Value; 
STORE ry rx; 
If index exists on field 

update index 
Add (FP, IP+1) to active pool 

Arguments to INSTALLFIELDVALUE are the object, field offset, and field value. The field value is 

written via STORE, and the field index is updated, if one exists. A successor descriptor is added 

to the pool of active threads. 

B.3 Associative Searches 

Lookup of top-level identifiers is performed via LOOKUP. 

Synta:r: Semantica 
LOOKUP ri rj Let Name = Frames [FP+ri] 

Use index on name field in binding objects 
to locate object with desired name 
If object with name not found 

rB.lse error 
Frames [rj] <- value bound to name; 
Add (FP, IP+1) to active pool 

The collection of binding objects in the database is searched (via the index on name) for the 

object with the desired name. If it is not found, then an error is raised. Otherwise, the value 

bound to the name is returned, and a successor descriptor is added to the active pool. 

Single-valued inverse field-mappings are implemented via SVINVERT. 

Synta:r: Semantic a 
SVINVERT ri rj Let Obj Type = Frames [FP+ri] 

Let Offset = Frames [FP+ri+1] 
Let Value = Frames [FP+ri+2] 
Use index on field to search for object with field value 
If desired object found 

Frames [rj] <- object; 
Else 

Frames[rj] <- the-null-object; 
Add (FP,IP+l) to active pool 

The extent of objects of type ObjType is searched (via the field index) for the object with the 

desired field value. If it is found, then it is returned as the result, otherwise the null object is 

returned. In both cases, a successor descriptor is added to the active pool. 

Multi-valued inverse field-mappings are implemented via MVINVERT. 
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Syntax Semantic& 
MVINVERT ri rj Let ObjType = Frames[FP+ri] 

Let Offset = Frames [FP+ri+l] 
Let Value = Frames [FP+ri+2] 
Use index on field to search for objects with field value 
Frames [rj] <- list of objects found; 
Add (FP, IP+l) to active pool 

The extent of objects of type ObjType is searched (via the field index) for the objects with the 

desired field value. A list of the objects found is returned, and a successor descriptor is added 

to the active pool. 

Searches of type extents are performed via FILTEREXTENT. 

Syntax Semantic& 
FILTEREXTENT ri rj Let ObjType = Frames[FP+ri] 

Let Obj Field = Frames [FP+ri+l] 
Let AccessPath = Frames [FP+ri+2] 
Let Index = Frames [FP+ri+3] 
Let Predicate = Frames [FP+ri+4] 
Search type extent, using indicated access path, for 
objects that satisfy the predicate 
Frames [rj] <- list of objects (projected onto Obj Field); 
Add (FP, IP+l) to active pool 

Arguments are the type of the extent to search, the field onto which the result is to be projected, 

the access path and index, and the predicate. A result list is returned, and a successor descriptor 

is added to the active pool. 

B.4 Miscellaneous 

An object is printed via manager PRINT. 

Syntax Semantic& 
PRINT ri rj Let Obj = Frames [FP+ri] 

Print Obj 
Frames [rj] <- (); 
Add (FP, IP+l) to active pool 

A top-level identifier binding is entered into the identifier cache via CACHEIDVALUE. 

Syntax Semantic& 
CACHEIDVALUE ri rj Let Name = Frames [FP+ri] 

Let Value = Frames[FP+ri+l] 
Add (Name, Value) to cache 
Frames [rj] <- (); 
Add (FP,IP+l) to active pool 

Managers ADDSLIST, DROPSLIST, INSERTSLIST, DELETESLIST, and CONSTRAINTSLIST return the lists of 

updates and constraints collected during execution of the transaction body. Manager ADDSLIST 

is given below; the others are similar. 

Syntax Semantic& 
ADDSLIST ri rj Frames[rj] <- addsList; 

Add (FP, IP+l) to active pool 
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