
LABORATORY FOR
COMPUTER SCIENCE

MIT/LCS{fR-529

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

THE DESIGN AND
IMPLEMENTATION OF A
PARALLEL PERSISTENT

OBJECT SYSTEM

Michael L. Heytens

February 1992

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

I.

!·

..... &

1jJfr1r111

.. /MJl1•l.llJ~ ,~;; ... ,.. '~
,-'·'

@ Massachusetts Institute of Technology 1992

This report describes research done at the Laboratory of Computer Science of the Massachusetts
Institute of Technology. Funding for the Laboratory is provided in part by the Advanced
Research Projects Agency of the Department of Defense under Office of Naval Research contract
N00014-89-J-1988. The author has been supported in part by graduate fellowships from Intel
and Teradyne.

Abstract

The Design and Implementation of a
Parallel Persistent Object System

Michael L. Heytens

Technical Report MIT / LCS / TR-529
February 1992

MIT Laboratory for Computer Science
545 Technology Square
Cambridge MA 02139

It is widely recognized that the expressive power of relational database systems is inadequate for
applications that manipulate complex, non record-oriented data. Much recent research has been
focused on the design of more expressive database language models that seamlessly integrate
the data modeling, abstraction, and general computation of full programming languages with
the features of traditional database systems such as persistence, failure recovery, and security.
Such additional flexibility gives expressive power to the programmer, but complicates matters
for the compiler and run-time system in their efforts to implement database programs efficiently.

In this report we describe AGNA, an experimental persistent object system that we have de
signed and built that utilizes parallelism in a fundamental way to enhance performance. Par
allelism is incorporated into the design of the system at all levels. We begin with an implicitly
parallel transaction language that includes a full higher-order programming language and the
"list comprehension," a notation similar to SQL but more general. Transactions are compiled
into code for a multi-threaded abstract machine called P-RISC, whose central feature is fine
grain parallelism with data-driven execution. P-RISC code is emulated on each processor of a
MIMD machine with multiple disks. Coarse grain parallelism is used to distribute computations
of a transaction over the nodes of a parallel machine, and fine grain parallelism is used within a
node to overlap useful computation with long-latency operations such as disk I/O and remote
memory accesses.

A prototype of AGNA is operational, running on both a network of workstations and an In
tel iPSC/2 Hypercube with thirty-two processors and thirty-two disks. Experimental results
demonstrate that parallelism is exploited on both uniprocessor and multiprocessor platforms.
Performance of AGNA approaches that of state of the art relational and object-oriented database
systems, and relies heavily on compiler optimizations and aggressive pursuit of parallelism.

Key Words and Phrases: Persistent Objects, Functional Languages, Multi-Threaded, Object
Oriented Databases, Parallel Database Systems.

3

Acknowledgements

First, I would like to thank Rishiyur Nikhil, my thesis advisor, for his encouragement, guidance,

and friendship throughout the development of AGNA. I am indebted to Arvind's Computation

Structures Group, whose experience and previous research have influenced this work signifi

cantly. I would also like to thank David DeWitt of the University of Wisconsin, for giving me

access to his Intel Hypercube computer, and for initially getting me interested in parallelism

and databases. Rick Rasmussen, the local Hypercube expert at the University, was always

willing to answer my questions and handle my bug reports in a timely manner. I am grateful to

the MIT CAF Group, especially Duane Boning, Mike Mcilrath, Paul Penfield, and Don Troxel

for encouragement throughout this work.

I thank DARPA, Teradyne, and Intel for financial support, without which graduate study

would not have been possible.

I am grateful to my family for their encouragement throughout graduate school. Finally, I

thank my wife, Jill, for her constant love and support, especially during the last year of this

work.

4

Contents

1 Introduction
1.1 Expressivity Goals
1.2 Performance Goals

1.2.1 Parallelism
1.3 AGNA

1.4 Outline of Thesis

2 The AGNA Transaction Language
2.1 Databases and Database Systems in AGNA

2.2 Base Language
2.3 Object Model

2.3.1 User-Defined Object Types
2.3.2 Pre-Defined Object Types
2.3.3 Type Checking

2.4 Database Updates
2.4.1 Changing the Top-Level Environment
2.4.2 Object Manipulation

2.5 List Comprehensions-An SQL-Like Notation .
2.6 Comparison With SQL .
2. 7 Discussion

3 Transaction Language Semantics
3.1 Implicit Parallelism.
3.2 Formal Semantics.
3.3 The Kernel Language
3.4 Translation of Transactions into the Kernel Language
3.5 The FDB Machine
3.6 Rewrite Rules
3.7 Meta-Data .. .
3.8 The Output F\inction
3.9 Example: Persistent Object Update

4 Compilation of AGNA Transactions
4.1 Rationale For a Fine Grain, Data-Driven Model .
4.2 Phase One: Source-to-Source Translation ..

4.2.1 Sequencing of Transaction Execution .
4.2.2 Define, and Undefine .
4.2.3 Inverse Field-Mappings ..

5

11
11
13
14
16
20

23
24
26
32
32
35
36
36
37
39
45
47
54

57
57
59
60
61
68
71
78
79
81

85

85
87
87
88
90

4.2.4 Multi-Valued Fields and Type Extents
4.2.5 List Comprehensions
4.2.6 Phase One Optimizations

4.3 Phase Two: Translation to DFPGs
4.3.1 Simple Expressions ..
4.3.2 Object Manipulation
4.3.3 Triggers and Signals
4.3.4 Procedure Definition and Application
4.3.5 Miscellaneous
4.3.6 Phase Two Optimizations

4.4 The P-RISC Abstract Machine
4.4.1 P-RISC Instructions .. .
4.4.2 P-RISC Managers

4.5 Phase Three: Translation to P-RISC Code .
4.5.1 Graph Analysis
4.5.2 Frame Slot Allocation ...
4.5.3 Code Generation
4.5.4 Phase Three Optimizations

5 Implementation of the P-RISC Abstract Machine
5.1 Overview
5.2 Mapping the Heap to the Physical Machine ..
5.3 Frame Memory and the Pool of Active Threads
5.4 Organization of the Emulator Process
5.5 Execution of P-RISC Instructions
5.6 Ordering of Instructions
5. 7 Representation of Indexes and Multi-Valued Fields
5.8 Distribution of Data and Computation .

5.8.1 Data
5.8.2 Computation

5.9 Transaction Execution

6 Analysis
6 .1 Measurement Methodology
6.2 Relational Queries

6.2.1 Uniprocessor Results
6.2.2 Multiprocessor Results .

6.3 Extra-Relational Queries
6.3.1 Engineering Database Benchmark
6.3.2 Experimental Results
6.3.3 Comparison With INGRES
6.3.4 Comparison With an OODB

7 Concluding Remarks
7.1 Contribution and Summary of Present Work
7.2 Comparison With Related Work

7.2.1 Functional Data Model
7 .2.2 Trinder's Functional Database Model .

6

92
92
95

. 100

. 101

. 102

. 103

. 104

. 106

. 109

. 114

. 116

. 118

. 121

. 121

. 125

. 131

. 142

143
. 143
. 146
. 151
. 152
. 158
. 164
. 164
. 167
. 167
. 170
. 175

181
. 182
. 183
. 184
. 187
. 196
. 197
. 199
. 204
. 207

211
. 211
. 212
. 213
. 213

7.2.3 AGM .
7.2.4 SPL ..
7.2.5 Garruna
7.2.6 FAD and Bubba

7 .3 Directions for Future Work
7.3.l Language
7.3.2 Concurrency Control and Failure Recovery
7.3.3 Retention of Historical Data.
7.3.4
7.3.5
7.3.6

Compiler
Resource Management
Analysis and Experimentation

A Syntax of the AGNA Transaction Language

B P-RISC Managers
B .1 Heap Memory Allocation
B.2 Object Manipulation
B .3 Associative Searches
B.4 Miscellaneous

7

. 213

. 214

. 214

. 215

. 215

. 216

. 216

. 216

. 216

. 217

. 217

219

221
. 221
. 222
. 225
. 226

List of Figures

1.1 Evolution of database management systems
1.2 AGNA system structure.
1.3 Parallelism in third-generation database languages.

2.1 Database for a university. .
2.2 List of integers from 1 to 5.
2.3 Prerequisites for course c1.
2.4 Update of inverse-mapping on PREREQS.

2.5 Relational structure of student-course database ..

3.1 First cons cell in student list. . .
3.2 Operation of the FDB Machine ..
3.3 Grammar of the kernel language.
3.4 Building of multi-valued field collection.
3.5 Top-level database environment (top) and object heap (bottom).
3.6 Pseudo-code of input function. .
3.7 Pseudo-code of output function

4.1 Btree and hash indexes on student objects.
4.2 Extension of result list.
4.3 Dataflow graph for (* (+ x y) (- x y)).

4.4 Dataflow graph for list construction.
4.5 Dataflow graph for list construction with triggers and signals.
4.6 Dataflow graph for procedure cons ..
4. 7 External view of LAMBDA instruction.
4.8 Dataflow graph for (cons 10 nil).
4.9 Dataflow graph for (if (p x) 0 (+ x x))).
4.10 Lookup of top-level name begin-transaction.
4.11 Dataflow graph for (seq (f x) x).
4.12 IACT dataflow graph
4.13 Dataflow graph of procedure foldl.
4.14 Unfolding of computation for (foldl + 0 1) ..
4.15 Modified unfolding of computation for (foldl + O 1) ..
4.16 Introduction of TAIL-APPLY
4.17 Graph of foldl including TAIL-APPLY and Signal input.
4.18 Organization of P-RJSC abstract machine
4.19 Dataflowgraphfor (* (+ x y) (- x y))

4.20 Partitioning of graph for (lambda () (* (+ x y) (- x y))).

4.21 Synchronization and control transfers for P1 and P2 . • ...••

9

13
17
18

25
28
44
44
48

59
60
61
65
69
71
80

91
94

. 102

. 102

. 104

. 105

. 105

. 106

. 107

. 107

. 108

. 109

. 110

. 111

. 111

. 112

. 113

. 115

. 122

. 124

. 126

4.22 Organization of transaction frame (left) and procedure frame (right).
4.23 Reuse of result value in slot ri.

4.24 Propagation of free and to-free sets across ALLOCATE-OBJECT.

4.25 Propagation of free and to-free sets across APPLY.
4.26 Expansion of XACT
4.27 Explicit synchronization and control transfers ..
4.28 Expansion of CONSTANT(24).

4.29 Expansion of+
4.30 Expansion of SELECT-FIELD.
4.31 Expansion of RESULT-RETURN and SIGNAL-RETURN.
4.32 Organization of code in procedure body.
4.33 APPLY instruction, annotated with labels and slot information.
4.34 Annotated TAIL-APPLY instruction ..
4.35 Annotated IF instruction ...

5.1 Target machine organization.
5.2 AGNA system structure. . ..
5.3 Structure of heap address ...
5.4 Structure of persistent heap address.
5.5 Handling of persistent page fault ...
5.6 Allocation of initial physical extents in student files.
5. 7 Stack of active IPs in frame
5.8 Interpreter and manager threads on PME i.
5.9 Index on name field of local student objects.
5.10 All files related to courses on PME i ..
5.11 The structure of an open list
5.12 Appending of open lists L1 and L2
5.13 Local list of student names constructed on each PME.
5.14 Local filtered and transformed extent constructed on each PME.

6.1 Division of universe of database transactions. .
6.2 Performance relative to extent size
6.3 Messages in critical path of prologue execution.
6.4 Speedup for 13 selection.
6.5 Scaleup for 13 selection without index (left) and with index (right).
6.6 Part and connection objects in EDB database.
6. 7 Parallelism profile of forward traverse operation.
6.8 Parallelism profile.
6.9 Relations in EDB benchmark

10

. 127

. 128

. 129

. 129

. 131

. 133

. 133

. 134

. 134

. 135

. 135

. 137

. 139

. 141

. 143

. 145

. 147

. 148

. 149

. 149

. 152

. 153

. 165

. 167

. 173

. 173

. 174

. 176

. 181

. 190

. 192

. 194

. 195

. 197

. 202

. 204

. 205

Chapter 1

Introduction

Computerized databases are vital components of a vast majority of today's information systems.

Database systems are now used extensively throughout many organizations to provide a uniform

and controlled interface to shared, structured information. Example applications that depend

critically on database systems include automatic banking, payroll systems, and reservation

systems.

1.1 Expressivity Goals

Over the past decade, general-purpose relational database management systems (DBMSs) and

their associated database manipulation languages have emerged as robust, practical tools. Prior

to the introduction of relational systems, so-called CODASYL and Hierarchical DBMSs were

used. In these earlier systems, the programmer had to explicitly navigate through the intricate

network of records in the database, while paying careful attention to the order in which records

were visited, the key to achieving good performance. In relational systems, on the other hand,

the programmer could pose queries in a limited, but high-level, non-procedural language; it

was the responsibility of the query optimizer, a part of the DBMS, to select efficient navigation

paths for query execution. Relational and other record-oriented DBMSs are now utilized in a

wide variety of application systems, and on computers ranging from the largest mainframes to

the smallest personal machines.

While relational systems have met the needs of some application systems, the expressive

power of the relational model is now recognized to be inadequate for applications that manipu

late complex, non record-oriented data. Examples of such applications include those to support

computer integrated manufacturing, software engineering, and scientific research. Complex ob-

11

ject structures common in these areas may be encoded in records of scalar values (the only

data structures available in relational systems) just as trees may be encoded in Fortran arrays.

However, this encoding obscures the high-level structure of the data, and must be managed

entirely by the programmer, thus complicating programming significantly.

Even if all objects were encoded into records of scalar values, the operators available in

relational systems for manipulating data provide very limited functionality. For example, one

cannot express a general tree traversal using SQL, the standard relational query language.

To gain the necessary computational power, one must embed SQL into a host programming

language such as C or Ada. Again, this complicates applications programming significantly

because the programmer must contend with two incompatible sets of data structures (i.e., those

in the programming language and those in the database), two error-handling mechanisms, two

sets of control structures, and so on. In Chapter 2, we illustrate the complications that result

from the limited expressive power of SQL by examining a graph traversal operation.

In the past few years, much research has focused on the development of more expressive

database systems, which can be grouped into three broad categories:

• Extended Relational Systems. These systems begin with a traditional relational

system, and extend it by adding user-defined procedures, objects, recursion, and other

features standard in modem programming languages. Examples of this kind of system

include POSTGRES [73], STARBURST [55], and LDL [25].

• Persistent Programming Languages. These systems start with the data modeling,

abstraction, and control structures of a full programming language, and then add features

of traditional database systems such as a query language, persistence, failure recovery,

and security. Many of the languages used are based on object-oriented models, e.g., C++

or SmallTalk, thus such systems are commonly referred to as object-oriented databases

{OODBs). Many research prototypes have been constructed [28, 34, 49, 61, 82], and a

number of OODBs have appeared on the market recently [37, 45, 53, 62, 64, 80].

• Database System Generators. The goal of systems of this kind is not to provide a

complete general-purpose DBMS, per se, but a rich toolkit that will enable a database

implementor (an expert systems programmer) to construct quickly a DBMS customized

to a particular applications area. Examples of this kind of system are EXODUS [21] and

GENESIS [13].

12

A goal of all three kinds of "third generation" systems (see Figure 1.1) is to increase the

productivity of applications programmers by providing a richer, more expressive language model

that allows, for example, the modeling of the structure and behavior of complex, real-world

objects directly via corresponding objects and procedures in the database. This is in sharp

contrast with relational database systems, as described previously, where all objects must be

flattened into records of scalar values, and can then be manipulated only in pre-defined ways.

1960's - 70's CODASYL/Hierarchical

t
1970's - present Relational

today Extended Object-Oriented Database System
Relational Generators

Figure 1.1: Evolution of database management systems.

1.2 Performance Goals

When relational databases were first introduced, they did not provide absolute performance

greater than their historical predecessors, and even today, CODASYL and Hierarchical systems

often outperform relational DBMSs. Relational databases succeeded in the marketplace because

they provided competitive performance while supporting a cleaner, higher-level language model

that enhanced programmer productivity. When FORTRAN was first introduced, it did not

provide performance better than hand-coded assembly programs. FORTRAN was ultimately

successful because, as with relational databases, it provided competitive performance and a

higher-level language.

Similarly, it is not necessary for third-generation database systems to provide better abso

lute performance than RDBs on relational queries, but only competitive performance. More

expressive systems can't expect to beat RDBs on such queries, because of the static, regular

nature of relational data structures, and the small set of operations that they support. This

allows detailed planning of data layouts in secondary storage, and the construction of efficient

indexes, all of which are exploited heavily in query optimization.

13

The additional flexibility of third-generation database systems gives expressive power to

the programmer, but complicates matters for the compiler and run-time system in their efforts

to implement database programs efficiently. This complication stems directly from the wider

range of object structures and operations with which these systems must contend. For example,

optimization of a transitive closure operation over a network of module objects in a software

engineering system (say, to mark them "out of date") is more challenging than a query in a

relational system that finds all records in a set with a particular field value.

1.2.1 Parallelism

It may be possible for an expressive database system to achieve good performance by exploiting

parallelism. Broadly speaking, parallelism may be used in two orthogonal ways:

• Inter-transaction parallelism. Here multiple transactions are executed concurrently

to increase system throughput, e.g., the number of transactions executed per second.

Example applications that could benefit from this kind of parallelism are those for bank

ing, reservations systems, and securities exchange. The main research issue in exploiting

inter-transaction parallelism is minimizing the resource conflicts that arise between trans

actions. For example, special-purpose locking schemes are used to reduce the time that

locks are held, and data and computation are mapped to the nodes of a parallel machine

in a way that lessens the likelihood of excessive contention at a given node.

• Intra-transaction parallelism. Here parallelism is used within a transaction to de

crease its execution time. Example applications that could benefit from this kind of

parallelism are those for scientific research, national defense, CAD /CAM, and analysis of

financial data. Major research issues in exploiting intra-transaction parallelism include

identifying which computations in a transaction can be safely executed in parallel, and

developing compilation techniques and efficient run-time support (synchronization, com

munication, resource management, etc.) to exploit this parallelism on the target machine.

Use of inter- and intra-transaction parallelism in database systems is not new. Inter

transaction parallelism is exploited by Tandem NonStop SQL to achieve linear growth of

throughput from 14 to 208 Debit Credit transactions per second as the hardware is increased

from 2 to 32 processors [74]. (A Debit Credit transaction is a simple transaction that manipu

lates several records in a database of banking information [1].) Intra-transaction parallelism is

14

exploited by Gamma [33], Tandem [35], and Teradata [75] to achieve roughly linear speedup on

relational queries that have sufficient parallelism. Relational languages such as S QL are declar

ative and highly parallel, but as described previously, they lack adequate expressive power,

and thus must be embedded in a host programming language. While this gains the necessary

expressive power, it limits parallelism in two important ways. First, parallel execution does

not extend to the non-SQL parts of the program, i.e., those written in the host language. For

complex applications, this may be a significant part of the program. Second, independent SQL

statements in the program, even if part of the same transaction, may not execute concurrently.

This is due to the sequential nature of host languages into which one may embed SQL (Fortran,

C, Cobol, etc.), and the lack of asynchronous query execution facilities.

In order to exploit intra-transaction parallelism, the transaction language must be able to

express parallel computations, either explicitly or implicitly. The explicitly parallel approach

to programming languages involves extending a sequential language with explicit constructs

for parallelism, such as a threads package [16, 83] or parallel loops [40]. While this approach

is popular, it is difficult to express massively parallel programs using these paradigms. For

example, explicitly specifying fine grain, low-level forms of parallelism such as overlapping disk

1/0 and communication with computation can be very tedious and error-prone. Also, it is

difficult to avoid writing programs that contain race conditions, which complicate debugging

significantly.

There are two common approaches to programming using implicit parallelism. The first is

an outgrowth of research on vectorizing compilers [51] and involves sophisticated dependence

analysis of a sequential program in order to relax the original sequential semantics safely. While

this approach offers an attractive model to programmers, it does not appear to be feasible

to extract much parallelism from such programs, particularly in an object-oriented system

[41, 42, 54].

The second approach to implicit parallel programming is to use a high-level declarative

language such as a logic or functional language. By their very nature, declarative languages

do not specify a detailed order of execution, leaving the compiler great latitude in choosing

one. Studies have shown that compilers for declarative languages can effortlessly extract orders

of magnitude more parallelism than is possible with traditional, sequential languages [3]. This

approach is very attractive, offering the combined benefits of a high-level language and abundant

parallelism.

15

1.3 AGNA

In this report we describe AGNA, an experimental persistent programming language that we

have designed and implemented to investigate the use of parallelism in an information manage

ment system. AGNA supports a declarative transaction language that includes a full higher

order programming language, objects, a query language that is similar to SQL but more general,

and single-assignment semantics for update. AGNA transactions are compiled into code for a

multi-threaded abstract machine called P-RISC ("Parallel RISC"), whose central feature is fine

grain parallelism with data-driven execution.

We are targeting AGNA to MIMD machines consisting of processor-memory elements (PMEs)

interconnected via a high speed network (see Figure 1.2). Each PME contains a processor, some

local memory, and a disk. After compilation of a transaction on the front-end machine, the

user may download the compiled code into the back-end machine and execute it via issuing

to the command interpreter "load" and "run" commands, respectively. P-RISC code is exe

cuted via an emulator program, a single copy of which runs continuously on each PME; all fine

grain P-RISC threads, possibly from different transactions, may execute in the same emulator

process.

A prototype of the AGNA system has been developed on workstations interconnected via

a local area network. We have also ported our software to an Intel iPSC/2 Hypercube with

thirty-two processors and thirty-two disks. More detailed descriptions of the AGNA software

and the two hardware platforms are given in Chapter 5.

Our focus in the current work has been on exploiting intra-transaction rather than inter

transaction parallelism, because we feel that it is the more challenging and less understood form

of parallelism. Also, as more expressive database languages become available and database

systems are used in a wider range of complex applications, decreasing the response time of

single, large transactions will become increasingly important. While we have focused on intra

transaction parallelism, nothing in the AGNA language, run-time system, or target architecture

precludes exploitation of inter-transaction parallelism. In fact, the simulations performed by

Trinder in his thesis work [77] suggest that parallelism can be used effectively in a database

system and language such as ours to enhance system throughput.

The expressive power of AGNA 's transaction language is comparable to the expressive power

of languages used by other third-generation database systems. The transaction language is

16

Front-end Machine

> load
> run

aruwer
>

Command Interpreter

Back-end Machine

Interconnection
Network

• • •
P-RISC

Emulator Programs

P-RISC
executable

Figure 1.2: AGNA system structure.

similar to OODB languages in that it is based on a full programming language, and objects:

(1) have unique identities independent of their field values; (2) may contain embedded references

to other objects; and (3) may be shared. Many OODB languages support additional features

such as methods, inheritance, and automatic versioning of objects. While these features provide

no new, fundamental expressive power, they do make persistent programming easier. We could

certainly add these to AGNA, but we have chosen to focus on language semantics and efficient

parallel implementation, rather than on advanced language features.

Perhaps the most fundamental difference between AGNA and other third-generation data

base systems is AGNA is based on a language that is inherently parallel, while most of the others

are based on languages that are largely sequential. In the table shown in Figure 1.3, we have

categorized third-generation database systems according to the amount of parallelism present

in the semantics of their underlying languages.

Sequential. Most OODB systems fall into this category, since the languages on which they

are based (e.g., C++, Small Talk, Lisp) are tied inextricably to an imperative, sequential model

of execution. These languages offer attractive models for programmers, but as described previ-

17

Sequential

GemStone [28]
02 [61]

Objectivity [62]
ObjectStore [53]

Itasca [45]
other OODBs

Semi-Parallel

EXTRA/EXCESS [23]
FAD [10]
Iris [82]

POSTGRES [73]
Starburst [55]

Fully Parallel I

AGNA [60]
LDL [25]

Figure 1.3: Parallelism in third-generation database languages.

ously, it is difficult to extract much parallelism from them.

Semi-Parallel. Systems in the second column retain much of the declarativeness of the

relational model and thus are more amenable to parallel implementation. Several of these

systems [18, 38, 72] (and the parallel relational systems cited earlier) have effectively exploited

three kinds of coarse-grain, intra-transaction parallelism:

• Producer-consumer parallelism. The producer and consumers of a stream of data

may execute concurrently. For example, a join operation that consumes a stream of data

may overlap execution with the operation producing the data.

• Independent-operator parallelism. High-level operators which do not have depen

dencies between them may execute in parallel. For example, two selection operations

which produce the operands of a join may execute concurrently.

• Intra-operator parallelism. Certain high-level operators may be suitable for parallel

execution. For example, many parallel algorithms for the relational join operation have

been developed [12, 33, 50, 68].

These forms of parallelism, and the associated run-time model of high-level operators which

communicate solely via streams of data (which do not contain inter-object references), are most

effective on simple, data-intensive programs. Such programs are relatively easy to partition

into high-level operators, and since the total number of operators available is generally small

(e.g., less than one hundred), it is feasible to hand-code their implementations for maximum

parallelism.

18

It is difficult to see how the compilation techniques and run-time model used by current

parallel database systems can be extended easily and applied effectively to more sophisticated

transactions, i.e., those written in full programming languages, and executed against databases

containing networks of complex objects. Two difficulties are apparent. First, sophisticated

transactions may utilize thousands of small operators or database procedures, thus it becomes

less feasible to hand-code each procedure for maximum parallelism. Second, the run-time model

must be generalized to include a persistent heap structure to support inter-object references;

this is a significant, fundamental change to the storage model.

Another important issue is the amount of parallelism that can be extracted from these "semi

parallel" languages. While the three forms of parallelism mentioned above are important, we

feel that many more sources, including fine grain parallelism, must be identified and exploited if

a wide range of sophisticated transactions are to effectively utilize large-scale parallel machines.

Parallelism in systems in the second column of the table in Figure 1.3 is constrained significantly

in the following ways:

1. Updates are completely imperative, and thus for the languages to be well-defined, the

sequence of evaluation must be specified for arguments to procedures, expressions in

blocks, etc .. For example, if the relative order of execution of two expressions which read

and write the same data item are not specified by the language semantics, then different

results may be produced, depending on the run-time order in which the read and write

are executed.

2. Much of the expressive power in these systems comes from database procedures or oper

ators written by the user in a sequential language such as C, which makes it is difficult

to exploit intra-procedure parallelism.

Thus, even if the compilation techniques and run-time model of current parallel database sys

tems could be extended to handle complex transactions, it is not clear that significant parallelism

can be extracted from their languages because of the two forms of sequentiality listed above.

Fully Parallel. Systems in the third column in the table of Figure 1.3 utilize high-level,

declarative languages: AGNA is based on functional languages, while LDL is based on logic

languages. Both AGNA and LDL include declarative models of update, so updates do not limit

parallelism, and even update transactions may be executed with a high degree of parallelism.

Both contain full programming languages, so user-defined procedures are written in a fully

19

parallel language. AGNA is based on functional instead of logic languages, mainly because we

understand better how to incorporate features such as types, objects, higher-order functions,

etc. into a functional language (43, 56, 57, 78], and how to compile functional languages for

parallel machines (59, 76]. It is of course possible that readers more familiar with logic languages

will see an application of some of the ideas presented in this report.

AGNA is, to our knowledge, the first parallel implementation of an expressive persistent

object system. As we shall see in Chapters 4 and 5, the compiler and run-time system pursue

parallelism very aggressively. Unlike previous parallel database systems, our compilation and

implementation techniques handle transactions written in a full programming language. AGNA

includes a novel, distributed heap divided into volatile and persistent parts, so networks of

complex objects may be manipulated and stored in the database.

Experimental results given in Chapter 6 demonstrate that the performance of AGNA on sim

ple queries from the Wisconsin Database Benchmark [17], a standard set of relational queries,

approaches that of state of the art uniprocessor and multiprocessor relational systems. Par

allelism is exploited in AGNA on the multiprocessor platform to achieve near-linear speedup

and scaleup (i.e., increasing the number of processors and database size proportionally while

maintaining a constant response time) of performance on transactions that have sufficient paral

lelism. Additional results given in Chapter 6 demonstrate that the uniprocessor performance of

AGNA approaches that of state of the art object-oriented systems on more complex queries (e.g.,

a transitive closure operation) taken from the Engineering Database Benchmark [24], and that

both AGNA and OODBs provide significantly better performance than RDBs on such queries.

Even on a uniprocessor platform, the results show that parallelism is exploited in AGNA by

overlapping useful computation with disk I/O, thus mitigating the effects of long-latency disk

transfers.

1.4 Outline of Thesis

In Chapter 2, we give an informal description of our declarative transaction language and

discuss its expressive power and suitability for parallel implementation. In Chapter 3, we give a

formal operational semantics of the language by describing, via a number of rewrite rules, how

a transaction is reduced to a value. The rewrite rules also describe how an update transaction

forms the new state of a database, based on the old. Additionally, the rules demonstrate

20

very clearly the abundance of fine grain parallelism present in the language. In Chapter 4,

we describe the compilation of AGNA transactions into P-RISC code. We also describe a

number of significant optimizations performed on database queries, some of which are borrowed

from relational databases, and some of which are specific to our parallel implementation. In

Chapter 5, we describe how the P-RISC abstract machine is implemented on a network of

workstations and an Intel iPSC /2 Hypercube with thirty-two processors and thirty-two disks. In

Chapter 6, we describe the results of a preliminary performance evaluation of both uniprocessor

and multiprocessor versions of AGNA. In Chapter 7, we conclude with a summary of the present

work, a comparison with related work, and directions for future research.

Readers interested in quickly skimming the thesis may wish to skip directly to Chapters 6

and 7, which contain analysis and conclusions, respectively. All of the details of the language,

its compilation, and implementation can be found in Chapters 2 through 5.

21

Chapter 2

The Agna Transaction Language

In order to exploit intra-transaction parallelism, the language must be able to express parallel

computations, either explicitly or implicitly.

The explicitly parallel approach to programming languages is a popular one, and involves

extending a sequential language with explicit constructs for parallelism, such as a threads

package [16, 83] or parallel loops [40]. We decided not to pursue this approach for two reasons.

First, it is difficult to express massively parallel programs using these paradigms. Some of the

kinds of parallelism we wish to exploit are very fine grain and low-level, such as overlapping

disk 1/0 and communication with computation, and dealing with these details explicitly can

be very tedious and error-prone. Second, it is difficult to avoid writing programs that contain

race conditions, which complicate debugging significantly.

There are two common approaches to programming using implicit parallelism. The first is

an outgrowth of research on vectorizing compilers [51] and involves sophisticated dependence

analysis of a sequential program in order to relax the original sequential semantics safely.

We decided not to pursue this approach because, while it is certainly an attractive model for

programmers, it does not appear to be feasible to extract much parallelism from such programs,

particularly in an object-oriented system [41, 42, 54].

The second approach to implicit parallel programming is to use a high-level declarative

language. By their very nature, declarative languages do not specify a detailed order of execu

tion, leaving the compiler great latitude in choosing one. This is the approach that we chose

to pursue, as the combined benefits of a high-level language and massive parallelism are very

appealing.

Two varieties of declarative languages are common in the literature: logic languages and

23

functional languages. AGNA is based on functional languages, mainly because we understand

better how to incorporate features such as types, objects, higher-order functions, etc. into

a functional language [43, 56, 57, 78], and how to compile functional languages for parallel

machines [59, 76]. It is of course possible that readers more familiar with logic languages will

see an application of some of the ideas presented here.

We begin this chapter with a high-level view of our database system as an object repository

that responds to incoming transactions. Next we describe the base language, which is a full,

higher-order functional programming language. We then describe our object model and how

the declarative framework is extended to include updates using a single-assignment semantics,

permitting even update transactions to be executed with a high degree of parallelism. Finally,

we describe a high-level query notation called "list comprehensions,'' and compare the AGNA

transaction language to SQL, the standard query language for relational database systems.

2.1 Databases and Database Systems in AGNA

To the functional language core on which the transaction language is based we add two fun

damental features: a persistent storage class and transactions. The persistent storage class

contains objects whose lifetimes exceed those of the transactions that created them. In other

words, when a transaction that creates a persistent object completes, the object remains in

the persistent store, where it may be accessed by other transactions. Other common object

lifetimes include the duration of a procedure and the duration of a transaction. Objects with

lifetimes of the first kind are often stored in a stack-based activation record in conventional

language implementations, while objects of the second kind are generally stored in a volatile

heap. Such objects are termed ephemeral because of their relatively short lifetimes and their

inaccessibility outside of the transactions that created them.

For convenience and modularity, the persistent store is logically structured into databases.

In AGNA, a database is a persistent environment of bindings that associates names with types

and objects. The objects reside in a persistent heap and may be of any type- scalars, com

plex objects, lists, procedures, etc. Objects in the database include all and only those that

are "reachable" from the persistent environment, i.e., those bound directly to names in the

environment, and those that are accessible through inter-object references (as we shall see in

Section 2.3, objects may contain embedded references to other objects.) Persistence in AGNA

24

is completely transparent to the programmer-he does not have to explicitly write an object

to the persistent heap, nor does he have to read it into main memory from a persistent storage

medium. Such tasks are performed implicitly by the system.

A transaction (:net ...) is a construct executed in a database environment, which may

contain definitions of new types, definitions of new bindings, declarative update specifications,

and queries (expressions to be evaluated). For example, a database for a university, shown in

Figure 2.1, might be queried with the following transaction to find the address of John Smith,

a student:1

> (xact
(student-address (student-with-name "John Smith")))

Procedure student-with-name is used to locate the desired student object, and procedure student-address

is used to access the address. Top-level identifiers student-address and student-with-name are

looked up in the database environment.

persistent

environment
student-with-name:

dean-of-students:

student-address:

• • •

Figure 2.1: Database for a university.

heap of objects

Transactions are serializable and total. Serializability means that multiple transactions may

execute concurrently in the same database environment, but the effect on the database is as if

they were executed in some serial order. All programs in AGNA are structured into transactions,

so concurrent execution is well-defined. Totality means that transactions either execute entirely

1 We use a simple Lisp-like notation to a.void detailed syntax design. While some readers will undoubtedly
find this unattractive, our focus is on the underlying language semantics a.nd expressive power, not on designing
elegant syntax. If necessary, our language ca.n be viewed a.s a. ha.ck-end language for one's favorite user-interface.

25

or not at all.

The execution of transactions in AGNA is coordinated and managed by a database system,

which contains a database and accepts a list of incoming transactions. Again, transactions in

the list are executed in some serializable order. Conceptually, the behavior of such a system

can be modeled by the following function: 2

(define dbsystem
(lambda (db transactions)

(letrec ((result (dbeval (hd transactions) db)))
(cons (reply result)

(dbsystem (nev-db result) (tl transactions))))))

In words: the database system is a function that talces a database and a list of transactions as

input, and produces a list of replies as output. Function dbeval evaluates a transaction relative

to a database, and produces a composite result consisting of a (possibly) new database and a

reply (i.e., the value of the transaction). The new database is used in the evaluation of the

next transaction.

If transactions come from multiple users, then somehow they must be merged into a single

input list, and replies in the output list must somehow be routed back to the appropriate source.

The exact manner in which this is accomplished, and the possible user interfaces to a database

system such as ours, are outside the scope of this dissertation.

2.2 Base Language

In this section we present the base functional language informally through a series of examples.

Readers familiar with functional languages may wish to omit this section. A grammar of the

complete transaction language is given in Appendix A.

Functions

The most important type of object in the base language is a function, which is created via a

lambda expression. For example, the following expression evaluates to a function that takes two

numbers as arguments, and returns their sum:

(lambda (x y) (+ x y))

2 This is not an essential characterization, though; see, for example, [11] for other possibilities.

26

The formal parameters of the function are JC and y, which are added together by the body

expression ((+ JC y)) to form the result of the function. A function may be applied by enclosing

it in parentheses along with its arguments. For example, the preceding function may be applied

to arguments 3 and 4 as follows:

((lambda (JC y) (+JC y)) 3 4)

Functions may be named, for convenience, in a variety of ways. For example, the function

above may be named and added to the database as follows:

(JC act
(define plus (lambda (JC y) (+ JC y))))

Here define introduces into the database environment a new top-level binding of the name plus

to the procedure object returned by lambda. After this binding is defined, the name plus may

be used in expressions as follows:

(plus 3 4)

Free identifier plus is looked up in the database environment, and the procedure to which it is

bound is applied to arguments 3 and 4.

We may wish to establish a binding of a name to an object only during execution of a single

transaction. This is accomplished via define-local. For example, the following transaction binds

local name fact to a procedure which computes factorials:

(JCact
(define-local fact (lambda (n)

(if (<= n 1)
1
(* n (fact (- n 1))))))

...)

The name fact is only available in the body of the transaction, i.e., inside the lambda expression

and in " ... ",the remainder of the transaction body. It is important to note that the binding is

not added to the database. Fact utilizes the conditional expression if, which is a special form

that first evaluates the predicate (i.e., (<= n 1)) to a boolean value, and then evaluates and

27

returns the value of the "then" (constant 1) or "else" (the multiplication) branch.

We may wish to restrict the scope and lifetime of a binding even further. This is accom

plished via a letrec block. For example, an alternative definition of fact is:

(define-local fact (lambda (n)
(letrec ((f (lambda (counter product)

(if (<= counter 1)

product
(f (- counter 1) (• counter product))))))

(f n 1))))

Here letrec is used to introduce a local binding of f to a function that computes factorials in

a manner different from the previous method. Function f computes a factorial by iterating

counter times, multiplying the counter by a running product during each iteration. The scope

off includes only the inner lambda expression and the body of the letrec, i.e. 1 (f n 1). The

body expression utilizes f, applying it ton, the number of the factorial to compute, and 1, the

initial product. The result of the body expression is the result of the letrec.

Lists

A commonly used data object in AGNA, as well as other functional languages, is a list. For

example, a list 1 containing the numbers 1 through 5 is shown in Figure 2.2. Each cell in the

list consists of two components: a head, which contains a number in this case, and a tail, which

points at the remainder of the list. The tail of the last cell contains nil, the empty list, which

is depicted as a diagonal line in the figure.

1:

1 2 3 4 5

Figure 2.2: List of integers from 1 to 5.

Lists are constructed with cons, which takes a head and tail as arguments, and returns a

new list. The following procedure, for example, constructs a list of integers in a specified range:

(define ints-from (lambda (from to)
(if (> from to)

nil
(cons from (ints-from (+from 1) to)))))

28

The result list is constructed in a recursive manner: during each invocation in which from is not

greater than to, the function creates a new list in which the head is the current value of from,

and the tail is the list returned by the recursive call. When the recursion bottoms out (i.e.,

from is greater than to), the empty list nil is returned.

The following application of ints-from creates the list of Figure 2.2:

(ints-from 1 5)

Elements of the list may be accessed using functions hd and tl, which return the head and tail,

respectively, of a list. For example, the following expression creates list 1 and returns its second

element:

(letrec ((1 (ints-from 1 5)))

(hd (tl 1)))

Local name 1 is bound to the list returned by ints-from, and the body expression returns the

second element of the list.

As we shall see in subsequent sections of this chapter, list data structures are used heavily

in AGNA. For example, lists are a fundamental part of the high-level query notation (i.e., list

comprehensions) supported by the transaction language, and are used as a bulk data structure

for organizing large collections of persistent objects.

Higher-Order Functions

Functions are first-class objects in the AGNA language which means, among other things, that

they may be passed as arguments to other functions and returned as results. A function that

takes a function as an argument, or returns a function as a result, is called a higher-order

function. For example, the following function takes a function f and a list 1 as arguments, and

applies the function to each element of the list, returning a list of the results:

(define map (lambda (f 1)

(if (nil? 1)

nil
(cons (f (hd 1)) (map f (tl 1))))))

29

As in function ints-from, the result list is constructed in a recursive manner: during each

invocation in which 1 is not empty (i.e. 1 (nil? 1) is false), map creates a new list in which the

head is the result off applied to the current element of 1 (i.e.
1

(hd 1)), and the tail is the list

produced by the recursive call to map, which contains the results off applied to the remaining

elements of 1. When the recursion bottoms out, nil, the empty list is returned.

Function map provides a powerful, high-level operator. For example, we can compute the

squares of the integers from 1 to 5 as follows:

(map (lambda (x) (• x x)) (ints-from 1 5))

Here the squaring function is simply mapped over the list produced by ints-from. Function map

may also be used to select a field value from each object in a collection, in much the same way

that a field name in an SQL SELECT statement selects the field from each row in a relation.

Another powerful, higher-order function is filter, which takes a predicate function and a

list, and returns a list of the elements in the input list that satisfy the predicate. Filter may

be defined as follows:

(define filter (lambda (p 1)
(if (nil? 1)

nil
(letrec ((x (hd 1)))

(if (p x)
(cons x (filter p (tl 1)))
(filter p (tl 1)))))))

The procedure body has the same overall structure as map, except that in the "else" branch

of the outer if the current head of the list (x) is added to the result list only if the predicate

expression (p x) is true. Function filter is similar to an SQL WHERE clause in that both may be

used to select the data objects from a collection that satisfy some predicate.

Such functions as map and filter provide high-level list operators that may be composed

easily. For example, here is a query that finds the names of all students in the list bound to

senior-class-officers that satisfy predicate honor-student?:

(xact
(map student-name

(filter honor-student?
senior-class-officers)))

30

Suppose identifier senior-class-officers is a top-level name in the database environment bound

to a list that contains students that are officers in the senior class. The list is first filtered,

producing an intermediate result list, over which the name selection function student-name is

then mapped. Student-name and honor-student? are bound to functions in the database.

Yet another useful higher-order function is foldr ("fold right"), which talces a binary ac

cumulating function f, an initial value v, and a list of values 1 as arguments, and returns an

accumulated value. Foldr may be defined as follows:

(define f oldr (lambda (f v 1)
(if (nil? 1)

v
(f (hd 1) (foldr f v (tl 1))))))

During each recursive call, f is applied to the value at the head of the list and the value returned

by the recursive call to foldr. When 1 is empty, value vis returned. Foldr may be used to sum

a list of integers as follows:

(foldr + 0 (ints-from 1 10))

Here ints-from produces a list of integers from 1 to 10, which foldr then sums using + as a

combining function and o as an initial value. The sum is accumulated from the right, or end of

the list: 10 is first added to o, then 9 is added to the intermediate sum, then a, and so on. A

similar function foldl may be used to accumulate a value from the left.

It is important to note that functions in AGNA such as map, filter, and foldr operate

uniformly on both persistent objects (i.e., objects in the database) and ephemeral objects (i.e.,

objects such as lists used only within a single transaction, and not accessible from the database

environment). In other words, map, filter, foldr, and all other functions may access both kinds

of objects in exactly the same way, and thus need not distinguish between the two. Similarly,

both functions stored in the database such as predicate function honor-student?, and temporary

computing functions such as (lambda (x) (• x x)), are treated uniformly. For example, both

kinds of functions may be passed as arguments to map and filter.

31

2.3 Object Model

Objects in the language include scalars (such as numbers and booleans), primitive and user

defined functions, lists, arrays, and objects of user-defined types. Objects of any type may be

stored in the database.

2.3.1 User-Defined Object Types

User-defined types are introduced into a database environment via the type form. For example,

here are definitions of STUDENT, COURSE, and ENROLLMENT types.

(type STUDENT (extent)
((name <=> STRING)
(status => STRING)
(gpa => FLOAT)
(address => STRING)
(bdate •<=> INTEGER)))

(type COURSE (extent)
((name <=> STRING)
(prereqs •<=>• COURSE)
(units => INTEGER)))

(type ENROLLMENT (extent)
((grade => STRING)
(student •<=> STUDENT)
(course •<=> COURSE)))

For each field, the forms define the base type, whether it is single- or multiple-valued (=> or

=>*), and whether it supports a single- or multiple-valued inverse (<= or *<=). For example,

the student name field records a single string value, and supports a unique inverse that maps

strings to students. The course prereqs field records a collection of course objects, and supports

a multiple-valued inverse that maps a course object to the collection of courses for which it is

a prerequisite.

A field of an object may be read using the select form. For example, ifs references a student

object, then the name field may be accessed by the expression:

(select s STUDENT NAME)

32

which evaluates to a string. It is important to realize that s is an expression that is evaluated,

while STUDENT and NAME are literals that are not evaluated.3 The reason for the STUDENT qualifier

is that NAME is not unique-the COURSE type, for example, also has a NAME field. By qualifying

each field fully, certain optimizations in AGNA such as determining field offsets at compile-time

instead of at run-time, can always be performed.

Selection of a multiple-valued field produces a bag (or multi-set) of objects, packaged as a

list. For example, if c references a course, then the expression:

(select c COURSE PREREQS)

evaluates to a list of course objects. The ordering of elements in the list is not significant.

A type form also specifies whether a persistent or "base" extent (i.e., a collection of all

objects of the type) is to be maintained automatically by the database system. Since (extent)

declarations, which are optional, were included in all definitions above, persistent collections

of all students, courses, and enrollments are maintained automatically by the system. Thus,

whenever a student, course, or enrollment object is created, the system automatically inserts

it into the appropriate collection. These collections are available to the programmer via the

expressions (all STUDENT), (all COURSE), and (all ENROLLMENT), which evaluate to lists of all stu

dents, courses, and enrollments, respectively. Again, the ordering of elements in the lists is not

significant.

The rationale for system-maintained base extents is twofold: programmer convenience, and

efficiency. It is very common that applications require such collections to be maintained and

while the programmer could do this explicitly by inserting each new object into the appropriate

extent list, it is more convenient for the programmer if this is done automatically. System

maintained sets are also less error-prone: a programmer, for example, may forget (or not know)

to insert a new object into the type's extent. Finally, because base extents are maintained by the

system, it is free to choose efficient internal representations. As we shall see in Chapters 5 and 6,

scanning and filtering can be performed much more efficiently on such internal representations

than on the general list representation.

The programmer, of course, is free to maintain additional collections of objects explicitly.

For example, in the university database the top-level name seminar-courses may be bound to a

3 Throughout this dissertation, we use all uppercase letters for such literals.

33

collection of all seminar courses. When an object is created that describes a seminar course, it

must be inserted manually into this collection.

The invert form is used to apply inverse-mappings. It talces a type name, a field name and

a field value as arguments, and searches the type extent for the object(s) with the desired field

value (invertible fields are only allowed in types with a persistent extent, so there will always

be an extent to search). The following expression, for example, evaluates to a student object

with the indicated name, or a special null object if no such student exists:

(invert STUDENT NAME "John Smith")

Application of a multiple-valued inverse-mapping produces a collection of objects. The following

expression, for example, evaluates to a list of enrollments for course c:

(invert ENROLLMENT COURSE c)

Again, the ordering of elements in the list is not significant.

Specifications of field inverse-mappings are included in the transaction language for both

semantic and pragmatic reasons. The only semantic issue is automatic enforcement of unique

ness constraints on<= fields. For example, because of the unique inverse on student name, two

student objects may not exist in the database at the same time with the same name. As we

shall see in Section 2.4, a transaction that attempts to add to the database a student object

with a non-unique name is automatically aborted, and the database is not updated. While it

is certainly possible to express such constraints in other ways, it is very convenient to do so in

the type declarations.

The pragmatic reason for specification of inverse-mappings is efficiency. As we shall see

in Chapter 4, indexes are automatically constructed and maintained for invertible fields, and

are used in the implementation of invert and list comprehension queries (to be described in

Section 2.5). Efficiency considerations such as indexing are very important in persistent systems

because databases tend to be large and objects long-lived. We will see in Chapter 6 the dramatic

impact indexes have on performance.

34

2.3.2 Pre-Defined Object Types

Pre-defined object types include list and array. The list type 1s specified by the following

definition:

(type list ()
((hd => ANY)
(tl => ANY)))

The empty list is nil. Note that because the extent keyword is not specified, a collection of all

list objects is not maintained automatically in the database. Thus, list objects only become

persistent by being referenced from sc;µne persistent object. Lists may be manipulated with the

following procedures:

(define hd (lambda (1) (select 1 LIST HD)))

(define tl (lambda (1) (select 1 LIST TL)))

(define cons
(lambda (x y)

(letrec ((c (allocate LIST)))
(update c LIST HD x)
(update c LIST TL y)
c)))

Procedures hd and tl select the head and tail field values of a list, and cons constructs a new

list object4 . We defer a discussion of allocate and update to Section 2.4.

Arrays in AGNA are zero-indexed, and come with the following primitive operations:

(allocate-array aize)

(select-array array index)

(update-array array index value)

Allocate-array allocates a new, empty array, and select-array and update-array read and write

individual array elements, respectively. Multi-dimensional arrays are constructed by nesting

one-dimensional arrays; one could extend AGNA to handle multi-dimensional arrays, but we

have not because such constructs are not a focus of this work.
4If the body of letrec contains multiple expressions, as in the definition of cons, then all expressions are

executed in parallel, with the value of the textually last expression returned as the result.

35

2.3.3 Type Checking

Type checking of data objects is performed dynamically at run-time by the operators that

manipulate them, and not statically at compile-time. For example, select interrogates the

type of an object at run-time and reports an error if it does not match the type indicated by

the transaction programmer in the select form. While static type checking may be desirable

in AGNA, our current focus is on issues of persistence and parallelism, which are somewhat

orthogonal to type checking. We have chosen dynamic type checking simply because it is well

understood and easier to implement. Exploration of the issues involved in building a static type

system for the AGNA language is a possible direction for future research.

In a type declaration, only the "top-level" type of a field with a nested structure may be

specified. For example, we may wish to include in the student type a field new-courses to record

the collections of courses (i.e., list of lists of courses) that a student is considering taking the

next term. Such a field could be declared as follows:

(new-courses =>• LIST)

We may store in the field lists of lists of courses (i.e., the collections of courses being considered)

but the type checking performed will only ensure that the field value is a list of lists. The type

"language" for describing fields (=>, =>*, etc. plus the base type name) is simply not capable

of describing the entire structure of the field. While it would certainly be desirable to have a

type system capable of expressing the entire nested field structure, again, our main focus in

this work is on persistence and parallelism and not type systems.

2.4 Database Updates

An update transaction is a declarative specification of the new version of a database, expressed

as a function of its current state. Both the top-level environment and objects in the heap may

be updated. Conceptually, update specifications are collected during transaction execution, and

occur instantaneously at transaction commit time. Thus, updates are only visible to subsequent

transactions, and not to the transaction in which they were performed.

36

2.4.1 Changing the Top-Level Environment

The simplest forms of update involve the installation of a new value or type definition in the

database environment. We have already seen the define form to introduce new value bindings.

For example, the following transaction introduces three new value bindings:

(xact
(define honors-student-gpa 3.9)

(define senior-class-president (invert STUDENT NA.ME "John Smith"))

(define student-address (lambda (s) (select s STUDENT ADDRESS))))

The first definition binds the name honors-student-gpa to the number 3.9. The second binds the

name senior-class-president to the John Smith student object, while the third binds the name

student-address to a function that, when applied to a student object s, returns its address.

Note that the three expressions producing the values {i.e., 3.9, invert, and lambda) associated

with these names are each evaluated exactly once, in the environment existing at the time of

definition. When these names are used in subsequent transactions, the expressions are not

re-evaluated in the environment extant at the time. If that is the desired behavior, then the

expression must be placed in a procedure, where it will be evaluated each time the procedure

is applied.

To avoid the non-determinism of read-write race conditions, changes to the top-level envi

ronment are not immediately visible to an update transaction. A type or value definition in

transaction Ti only becomes visible from transaction Ti+l onward. When we execute a reference

to a top-level name during transaction Ti it is always looked up in the database environment

prior to Ti (i.e., the old top-level environment). For example:

(define x (+ x 1))

means: evaluate x in the current version of the database, add 1 to it, and bind x to this value

in the new version of the database. On the other hand, consider:

(define length
(lambda (1) (if (nil? 1)

0

(+ 1 (length (tl 1))))))

37

The reference to length in the body is not evaluated in the current transaction, since it is inside

a procedure. When length is applied to some list in some later transaction, it will pick up the

correct (i. e. 1 latest) binding.

As the definition of length indicates, we have taken the position that top-level names in

procedure bodies are looked up in the environment current at the time the procedure is applied.

This is also the approach taken by current Lisp systems. An alternative, perhaps equally

plausible, position, is that such identifiers in procedure bodies are always looked up in the

environment existing at the time the procedure was defined. With this approach, however,

there is no way to "track" the most recent binding of an identifier. This means, for example,

that when a procedure bound to a top-level identifier is redefined (say, to fix a bug), all callers

of the procedure must also be redefined to pick up the corrected version. While this situation

could be avoided by using special syntax such as a quote in front of an identifier, indicating

that it should be looked up in the environment current at the time the procedure is applied,

we feel this introduces unnecessary complexity.

Note that the lookup rule that we have chosen does not preclude this alternative approach.

For example, if in the following definition:

(define f (lambda (x) Cg x)))

we always want the current binding of g and not some later one that might exist when f is

applied, we can rewrite the definition as follows:

(define f ((lambda Cg x) Cg x)) g))

Here g is added as a formal parameter, and the function is partially applied to the value bound

to gin the current environment. All applications off in subsequent transactions then use this

value of g. Thus, top-level names in procedure bodies, which are looked up when the procedure

is applied, can be looked up when the procedure is defined via this simple transformation.

We have also seen another simple form of update, the type form to introduce new type

bindings:

(type <type-name> optional-eztent-apec
((field-name field-apec)

38

(field-name field-apec)))

As with new value bindings, new type bindings are not visible until the subsequent transaction.

Types introduced by a transaction may be recursive and mutually recursive. In other words, a

field specification in one type introduced by a transaction may include the name of another type

introduced by the same transaction. For example, the prereqs field in the COURSE type described

in Section 2.3 is itself of type COURSE. Redefinition of types is not allowed, so a type name used

in a field specification will either refer to a type introduced by the same transaction or one in

the old version of the database, but not both.

A top-level definition may be removed with the phrase:

(undef ine identifier)

Again, the update is not visible until the subsequent transaction.

The type, define and undefine forms are top-level phrases, i.e., they cannot be nested inside

expressions.

2.4.2 Object Manipulation

A new object may be allocated using the expression:

(allocate type)

If type was declared with an automatic persistent extent, the system also inserts the new object

into the type's extent list. The updated extent list is not visible until the subsequent transaction.

All fields of the newly allocated object are initialized to a special undefined value.

We have already seen the select form to read a field value:

(select object type-name field-name)

A field may be written using the expression:

(update object type-name field-name new-value)

39

The semantics of select and update depend on whether they are applied to a new object (i.e.,

one allocated by the current transaction), or a persistent object (i.e., one in the old version of

the database, allocated by a previous transaction).

Selects and Updates on New Objects

Let 0 be an object of type T allocated in the current transaction. Initially, all fields of 0

are undefined. Let us focus on a particular field F. In the current transaction, at most one

(update 0 T F v), but any number of (select 0 T F) 's may be executed on field F. The relative

execution order of these operations is unspecified. If select is executed while the field is still

undefined (i.e., before update has been executed), it is automatically blocked until the field

becomes defined. This is known in the parallel computing literature as I-structure semantics.

Here is an expression that defines a new course object:

(letrec ((c (allocate COURSE)))
(update c COURSE NAME "Introduction to Algorithms")
(update c COURSE PREREQS nil)

(update c COURSE UNITS 12)
c)

The expression allocates a course object c, defines its three fields, and returns c as its value. Any

attempt to redefine a field of c in the same transaction is viewed as an inconsistent specification,

and causes a run-time error. This single-assignment requirement ensures that all readers of the

new object see a consistent view of it, i.e., all readers of a field in the transaction receive the

same value. If a select (outside of the letrec) tries to read a field value before it is defined, then

it simply blocks. When the corresponding update is executed, all blocked readers are enabled.

All new course objects must satisfy the unique inverse on course name (recall from Sec

tion 2.3.1, the definition of COURSE includes a unique field-inverse mapping strings to courses).

If two new courses have the same name, or a new course has the same name as pre-existing

course, then the system aborts the transaction automatically.

Additional constraints may be imposed by the transaction programmer on object field values

through explicit use of conditionals and abort-transaction, a primitive procedure that aborts

the current transaction. For example, the following course constructor adds a constraint on the

units field value:

40

(define make-course
(lambda (name prereqs units)

(if (or (<units 0) (>units 15))
(abort-transaction "Value of course units out of legal range")
(letrec ((c (allocate COURSE)))

(update c COURSE NAME name)
(update c COURSE PREREQS prereqs)
(update c COURSE UNITS units)
c))))

If the units value is out of the legal range {O - 15), then an error message is printed and the

transaction is aborted.

The single-assignment and I-structure semantics described above apply also to objects of

pre-defined types such as LIST and ARRAY. {For arrays, though, select-array and update-array are

used instead of select and update.)

Selects and Updates on Persistent Objects

Let 0 be a persistent object of type T and, again, let us focus on a particular field F. In the cur

rent transaction, as before, at most one (update 0 T F v), and any number of (select 0 T F) 's

may be executed. The update, however, is not visible in the current transaction, and occurs

only at transaction commit time. The value returned by select is always the value of F in the

old version of the database. If the old value is undefined, then a run-time error is raised.

Here is an example of a persistent object update that changes the name of student "John

Smith" to "John E. Smith":

(letrec ((s (invert STUDENT NAME "John Smith")))
(update s STUDENT NAME "John E. Smith"))

The expression utilizes invert to locate the desired student object, and then updates its name

field. The new name is visible only in subsequent transactions; all readers in the current

transaction still see the old value (i.e., "John Smith"). Also, the new name must satisfy the

unique inverse mapping on student name.

For multiple-valued fields, the value of the field is a list of objects. While we may also use

update on such fields to replace the current value by a new one, it is more often the case that we

just want to insert a new member into the list or delete an existing member. These operations

are expressed as follows:

41

(insert object type-name field-name new-member)

(delete object type-name field-name old-member)

Such operations are only allowed on fields of persistent objects, i.e., not on fields of objects

allocated in the current transaction, where update must be used. The reasons for this restriction

are as follows. Clearly delete must be disallowed on a field of a new object because the deletion

of an element from the field collection, defined by whatever means, would violate the single

assignment semantics and, therefore determinacy. For example:

(letrec ((c (allocate COURSE)))
(update c COURSE PREREQS eecs-intro-courses)
(delete c COURSE PREREQS (invert COURSE NAME "Introduction to Programming"))
(select c COURSE PREREQS))

Here a new course is allocated, an update and a delete are performed on its prereqs field, and

the prerequisites are returned. The deletion is not allowed in this case because otherwise

the value returned by select is ambiguous, as it may be the collection of courses bound to

eecs-intro-courses, either with or without Introduction to Programming. Similarly, insertion

of an additional course into the prereqs field is disallowed because it also violates the single-

assignment semantics.

Definition of a field value in a new object solely via insert is also problematic because

somehow the field collection must be "closed". Consider the following modification of the

previous example:

(letrec ((c (allocate COURSE)))
(insert c COURSE PREREQS (invert COURSE NAME "Introduction to Programming"))
(select c COURSE PREREQS))

Here a new course object is allocated, a course is added to its prereqs field, and the prerequisites

are returned. The insertion is not allowed because, in general, it is not possible to determine

when all insertions have executed (there may be more outside the letrec) and thus, when it is

safe to return the field collection to select.

Multiple insert and delete operations may be performed in a single transaction. As usual,

the effects of these operations are not visible until the subsequent transaction. Remember that

deletes must refer to an existing member of the collection (if not, they are silently ignored).

42

It is perfectly all right to insert an object more than once into a collection- the collections

are not sets. At transaction commit time, it is as if all deletes were performed followed by

all inserts. This ensures that deletes are performed against only existing members of a field

collection, and guarantees determinacy, because otherwise the final field value can depend on

the order in which insertions and deletions are performed (e.g., if object 0 is both inserted into

and deleted from an empty field collection, then two final field values are possible, depending

on whether the insertion or deletion is performed first).

While multiple insertions and deletions may be performed on a field in a transaction, they

may not be mixed with an update on the same field. As outlined above, insert and delete

when mixed with update on a field F of a new object 0 violate the single-assignment semantics.

Insertions and deletions mixed with update on a field of a persistent object are incompatible

because update defines the new field value completely, independent of the old value, while insert

and delete define the new value relative to the old. Thus, the final field value is ambiguous, as

it may either be the new value supplied by update, or the old value modified by the insertions

and deletions.

Here is an example of an expression that uses insert and delete to change the prerequisites

for the Advanced Algorithms course.

(letrec ((c1 (invert COURSE NAME "Advanced Algorithms"))

(c2 (invert COURSE NAME "Introduction to Algorithms"))

(c3 (invert COURSE NAME "Theory of Computation")))

(insert c1 COURSE PREREQS c2)

(delete c1 COURSE PREREQS c3))

The letrec expression binds local name c1 to the Advanced Algorithms course object, c2 to

Introduction to Algorithms, and c3 to Theory of Computation. Insert adds c2 to the list of

prerequisites for c1, and delete removes c3 from the list (see Figure 2.3). The expression also

updates the inverse on course PREREQS that maps a course to the collection of courses for which

it is a prerequisite (see Figure 2.4). Insert adds c1 {Advanced Algorithms) to the list of courses

for which c2 (Introduction to Algorithms) is a prerequisite, and delete removes c1 from the list

for c3 {Theory of Computation).

Multiple insert and delete operations may be performed by repeated individual insertions

and deletions; however, for convenience, the following forms are also available:

43

(insert-list object type-name field-name li11t-of-new-member11)

(delete-list object type-name field-name li11t-of-old-member11)

Deletion of Objects

Objects of types without automatic extents do not require any explicit removal from the data

base. They are garbage-collected automatically when they are no longer reachable from the

top-level environment.

Objects of types with automatic extents will never get garbage-collected because there is at

least one reference to such objects, from the automatic extent. Thus, they must be removed

explicitly using the following construct:

(drop object)

2.5 List Comprehensions-An SQL-Like Notation

A popular notation used in many functional programming languages is the list comprehension. 5

A list comprehension has the form:

(all body-ezpreaaion

generator-or-filter

generator-or-filter)

Each generator has the form:

(identifier liat-ezpreaaion)

and can be read as: "For each identifier in the list li11t-ezpre1111ion ... ". The identifiers bound in

the generators come into scope from top to bottom, so that each li11t-ezpre1111ion and filter can use

identifiers bound by previous generators. Each filter has the form:

(where boolean-ezpreaaion)

6 List comprehensions are also called ZF-expressions and set expressions, and were popularized by David
Turner in his language KRC(78). We believe they were originally invented by Burstall and Darlington in their
language NPL at Edinburgh.

45

Identifier bindings that do not satisfy a filter are discarded. The meaning of the overall list

comprehension is to evaluate the body-expression for each combination of generator bindings that

satisfies all filters, and to return a list of the corresponding values. For example, the following

list comprehension is a query that finds the names of all special-status students enrolled in

Software Engineering.

(all (select s STUDENT NAME)
(s (all STUDENT))

(vhere (== "special" (select s STUDENT STATUS)))
(c (all COURSE))

(vhere (== "Softvare Engineering" (select c COURSE NAME)))
(e (all ENROLLMENT))

(vhere (and (== c (select e ENROLLMENT COURSE))
(== s (select e ENROLLMENT STUDENT)))))

In words:

for each s in the list of students,
where s's status is special,

for each c in the list of courses,
where c 's name is "Software Engineering",

for each e in the list of enrollments,
where e's course is c and student is s,

return the list of names of all such students.

List comprehensions are well-integrated with other parts of the transaction language, and

thus may be embedded in procedures, may use recursion, may utilize arbitrary procedure calls

(including user-defined procedures) in the body, generator, and filter expressions, etc. For ex

ample, here is a procedure that uses a list comprehension to compute the total number of units

taken by a student s:

(define total-units (lambda (s)
(foldl + 0 (all (course-units (enrollment-course e))

(e (all ENROLLMENT))
(vhere (== s (select e ENROLLMENT STUDENT)))))))

The body expression of the list comprehension uses selector functions enrollment-course and

course-units to access the units of each course associated with the enrollments for student s.

Procedure foldl is used to sum the list of units. The selector functions are defined as follows:

(define course-units (lambda (c) (select c COURSE UNITS)))

46

(define enrollment-course (lambda (e) (select e ENROLLMENT COURSE)))

Function total-units may be utilized in other list comprehensions. For example, the follow-

ing query finds the names of all students talcing more than forty-eight units:

(all (student-name s)
(s (all STUDENT))
(vhere (> (total-units s) 48)))

Selector function student-name is applied to each student s that satisfies the predicate expression.

Of course, list comprehensions are not restricted to computing on lists of persistent objects,

and may be used on lists of ephemeral objects as well. For example, the following procedure

returns a list of pairs of relatively prime numbers between 1 and n:

(define relatively-prime-pairs
(lambda (n)

(all (cons x (cons y nil))
(x (ints-from 1 n))
(y (ints-from x n))
(vhere (== 1 (gcd x y))))))

Generator identifier x is bound to elements in the list of integers from 1 to n, and for each x,

identifier y is bound to elements in the list of integers from x to n. The body expression is

executed for each binding in which the greatest common divisor of x and y is one.

2.6 Comparison With SQL

Data in the relational model are organized into collections of records (called relations or tables),

where each record consists of a number of fields containing scalar values such as strings and

numbers. The relational structure of the student-course database introduced in Section 2.3.1,

along with some sample data, is shown in Figure 2.5. Four tables are needed, one each for

students, courses, and enrollments, and one to record course prerequisites.

Note that the relational representation includes ID fields in the STUDENT and COURSE tables,

which are not present in the corresponding AGNA type declarations. This is because in AGNA,

an object may refer to another object by storing a (system-maintained) reference to it. In the

relational model, however, the programmer must encode object references by explicitly storing

47

STUDENT COURSE

ID NAME STATUS GPA ADDRESS BDATE ID NAME UNITS

17 "John Smith" "GR.AD" 3.06 "31 Elm Road" 640010 23 "Data Structures" 12

21 "Peter Sinclair" "UCB.AD" 3.2 "14 Main St.• 710412 26 •complexity theory" 12 . . • .
• •

ENROLLMENT COURSE_PREREQS

STUDENT_ID COURSE_ ID GRADE COURSE_ ID PREREQ_ID

17 26 "A" 26 23

21 23 "B" 26 27

• • • • • .
Figure 2.5: Relational structure of student-course database.

a unique key value of the referenced object. The ID fields provide the keys by which students

and courses are referenced. For example, the enrollment table records student and course ids,

and a grade.

Forcing the SQL programmer to encode object references in this manner is similar to the

way in which one must encode tree structures in arrays in Fortran. While this is certainly

possible, it makes programming more complex and error-prone. This can be seen by examining

two common operations: (1) creating a new entity, such as a student, and (2) dereferencing an

object "pointer". The extra complexity of the first operation, creating a new object, is due to

the explicit programmer management of the id field. For example, allocating a new, unique id

requires a scheme such as maintaining a "high-water" mark, perhaps in an auxiliary table, or

alternately searching for the highest id in current use, from which a unique id can be generated.

In AGNA, unique object identifiers are also assigned during object creation, but they are used

only internally and are managed entirely by the system.

The extra complexity of the second operation, dereferencing an object pointer, is due to the

associative lookup that must be specified. For example, to access the GPA of a student with

id 23 in SQL (31], the standard relational database language, the programmer must specify the

id of the desired student record, and then select the GPA field:

SELECT gpa
FROM student
WHERE id=23

48

In AGNA, on the other hand, field values may be read directly from an object reference-no

explicit lookups are required.

Of course, if a suitable unique object attribute already exists, then an artificial key such as

course id is not necessary. We might, for example, consider using student and course names

as keys. This is not a good idea, however, for two reasons. First, pointer dereferencing is a

common operation, so we would like it to be as efficient as possible. In this case, lookups on

integer id fields, and the associated key comparisons, are more efficient than lookups on string

names. The second, and more fundamental reason, is that even though the names are unique,

they may change (e.g. 1 as a result of a student getting married), in which case we must update

the student object, as well as locate and update all references to it. It is unlikely that artificial

keys will ever change.

An additional fundamental difference between the relational and AGNA representations of

the student-course database is the way in which multi-valued fields such as course prerequisites

are represented. In AGNA, prerequisites are implemented via a multiple-valued field in the

course object:

(type COURSE (extent)
((name <=> STRING)
(prereqs •<=>• COURSE)
(units => INTEGER)))

In the relational model, a collection of values cannot be stored in a field, so the prerequisites

of a course must be encoded in the auxiliary table COURSE_pREREQS, which records one entry for

each course prerequisite. As before, this encoding complicates and makes more error-prone

the programmer's task. For example the definition of a course's prerequisites involves multiple

insertions into the coURsE_pREREQS table. In AGNA, on the other hand, the list of courses can be

stored directly in the prereqs field in a single update operation.

Fetching course prerequisites in SQL is also more abstruse. For example, here is an SQL

query that finds the prerequisites for Software Engineering:

SELECT prereq_id
FROM course, course_.prereqs
WHERE name="Softvare Engineering" and id=course__id

In the WHERE clause, we must specify explicitly the condition linking the course and course_prereqs

49

tables (id=course_id), as well as the condition on course name. In AGNA, we can access the

prerequisites directly after the desired course object is located:

(letrec ((c (invert COURSE NAME "Software Engineering")))
(select c COURSE PREREQS))

Finally, referential integrity is a senous concern in the relation model. For example, for

every COURSE-1D in the COURSE..PREREQS table, there must be a course with that id in the COURSE

table. Current relational systems either don't deal with this issue at all, in which case it is

entirely the responsibility of the programmer to ensure the integrity of such references, or they

layer on top of the basic system a separate mechanism for describing and checking integrity

constraints. Both approaches complicate the programmer's task. In AGNA, on the other hand,

the integrity of object references is not an issue because an object is only garbage-collected

when no more references to it exist.

List Comprehensions

The reader may discern a strong similarity between list comprehension notation and SQL. For

example, here is an SQL query to find the names of all students with a GPA of at least 3.9:

SELECT name
FROM student
WHERE gpa>=3.9

The corresponding list comprehension is:

(all (select s STUDENT NAME)
(s (all STUDENT))
(where (>= (select s STUDENT GPA) 3.9)))

The body expression in a list comprehension is analogous to SQL's SELECT clause, the generator

lists are analogous to tables in the FROM clause, and the where clause is analogous to SQL's WHERE

clause.

While list comprehensions are similar to SQL, they are more general. The expressive power

of list comprehensions is at least as great as SQL because: (1) SQL can be translated to the

relational calculus [81], and (2) the relational calculus can be translated to list comprehensions

50

[77]. List comprehensions are more general than SQL because:

• The generator lists may be arbitrary computed lists, unlike SQL, where they must be
existing, named relations.

• The vhere predicates may be arbitrary boolean expressions that may include arbitrary
function calls, whereas SQL allows only a fixed repertoire of operations.

• The body-e:z:preuion may be an arbitrary expression, not just projections on the fields of
base relations.

We have already seen an example of how vhere predicates may include arbitrary function calls.

Recall from the previous section the following query that finds the names of all students taking

more than forty-eight units:

(all (student-name s)
(s (all student))
(vhere (> (total-units s) 48)))

User-defined procedure total-units, also introduced in the previous section, utilizes a list com

prehension to compute the total units for a student s. This sort of procedural abstraction is

very natural in AGNA and functional programming, but simply not possible in SQL, where all

queries must be encoded directly in the fixed, pre-defined set of operations.

Declarativeness of List Comprehensions and SQL

Both list comprehensions and SQL are declarative in the sense that they allow one to pose

queries at a high level, and to ignore details such as the specific algorithms used to implement

a query, and how data are organized on disk. For example, indexes are used automatically and

transparently by AGNA and SQL systems. The transaction programmer need not mention them

explicitly in queries, nor update them manually in update transactions. Also, the compiler picks

efficient methods for data access, based on its knowledge of indexes, data-set sizes, distributions

of data values, etc.

Embedded SQL

Simple operations on record-oriented data can be expressed elegantly and concisely in SQL.

Equivalent operations in AGNA can also be expressed in a similar manner using list comprehen

sions. As we consider more complicated operations and data, the level of complexity in SQL

51

programs escalates rapidly due to the lack of abstraction, encoding of object pointers, encoding

of multiple-valued attributes, and so on. In AGNA, on the other hand, the user may easily move

to more complex operations by exploiting the richer object modeling and the full functional

language included in the transaction language. For example, consider the following procedure

that returns a list of the (direct and indirect) prerequisites of a course:

(define all-course-prereqs
(lambda (c)

(letrec ((cs (course-prereqs c)))
(if (nil? cs)

nil
(foldl append cs (map all-course-prereqs cs))))))

Procedure all-course-prereqs takes a course c and returns a list of its prerequisites (duplicates

are not removed). The procedure binds local name cs to the list of e's direct prerequisites. If cs

is empty (i. e. 1 c has no prerequisites), then nil is returned. Otherwise, foldl is used to append

cs to the results of recursively calling all-course-prereqs on the elements of cs.

The transitive closure operation performed by all-course-prereqs is expressed easily and

succinctly in AGNA. It is not possible to express this operation directly in SQL-it simply

does not have adequate expressive power. To gain the necessary expressive power, SQL must

be embedded into a host language such as C or Ada. Here is a C procedure that contains

embedded SQL statements (prefaced by EXEC SQL) that finds the prerequisites of the course with

id courseid:

int allCoursePrereqs(courseid, idArray)
EXEC SQL BEGIN DECLARE SECTION;
int courseid, idArray D ;
EXEC SQL END DECLARE SECTION;
{

EXEC SQL BEGIN DECLARE SECTION;
int index=O, j=O, id=courseid;
EXEC SQL END DECLARE SECTION;

EXEC SQL BEGIN TRANSACTION;
do {

EXEC SQL SELECT prereq_id
INTO :idArray[index]
FROM course_prereqs
WHERE course...id=: id;

EXEC SQL BEGIN;
index++;

EXEC SQL END;
id = idArray [j] ;

} vhile (j++ <index);

52

EXEC SQL END TRANSACTION;

return index;
}

Result prerequisite ids are stored in array idArray and the total number of ids retrieved is

returned.6 . The SELECT statement in the do-while loop fetches from the database all direct

prerequisites of the course whose id is stored in host variable id (host variables in the SELECT

statement are prefaced by :). Initially id is set to the value of courseid, the course whose

prerequisites the procedure computes. The result of each invocation of the query is returned to

the host language one value at a time. For each prereq_id returned, the actual id value is stored

into host variable idArray (specified in the INTO clause) and the BEGIN - END block is executed,

incrementing the index into idArray.

After the first execution of the SELECT statement, id is assigned, in sequence, to prerequisite

ids stored in idArray. The loop is exited when the SQL query has been invoked for each such

binding of id (i.e., j >= index), and the number of prerequisites fetched is returned. The loop is

enclosed in SQL statements to begin and end the transaction, which are necessary to force the

database to consider all invocations of the SELECT statement part of the same multi-statement

transaction, rather than a series of individual single-statement transactions. As in the AGNA

version, duplicates are not eliminated.

The embedded SQL version of this operation is significantly more complicated than the

corresponding AGNA version. To program in embedded SQL one must contend with two sets

of incompatible data structures (e.g., array idArray in C and relation course_prereqs in the data

base), two sets of incompatible control constructs, two type systems, etc. Difficulties inherent

in embedded SQL make it a viable option only for expert applications programmers. In AGNA,

on the other hand, even novice users can quickly and easily escalate to sophisticated queries.

Finally, it is important to realize that it is not the embedding of SQL, per se, that causes the

complexity of 11.llCoursePrereqs. For reasons of interoperability, it is desirable for all databases,

including AGNA, to be accessible from languages such as C. The complexity of allCoursePrereqs

arises because SQL does not have adequate control structures, and thus part of the operation

6 We have glossed over the thorny issue of storage allocation for the result array idArray - the caller of
allCoursePrereqs must allocate storage for it. For this version of allCoursePrereqs to work correctly on
data.bases of all sizes, an additional length argument must be included to allow detection of the end of the array
and extension of it. Alternatively, a linked list result data structure could be used. In either case, construction
of the result is significantly more complex than in AGNA, where storage management is performed automatically
by the system.

53

must be implemented in SQL (e.g., SELECT) and part in C (e.g., do - while). This also results

in run-time inefficiencies, as the embedded program and database system repeatedly exchange

small pieces of the operation and small pieces of the result.

AGNA, on the other hand, does have suitable control structures, and thus the entire op

eration can be coded in the transaction language. An embedded program may invoke this

operation in the database with a single call and receive back from it the entire result. Thus,

embedded AGNA programs may interact with the database in a clean and high-level manner.

2. 7 Discussion

As stated earlier, we have focused mainly on expressive power, persistence and parallelism, and

have given little or no attention to elegant syntax. The expressive power in AGNA arises from

several features:

• The user may define new object types with no restrictions on the fields. Thus, arbi

trary graph structures may be constructed, so that it is easy to directly model real-world

structures- no complex encodings are necessary.

• There is no dichotomy between persistent objects and ephemeral objects. An object

persists as a result of being (1) bound directly to a top-level identifier; (2) an object of

a type with an automatic extent; or, recursively, (3) reachable from a persistent object.

There is no need for the programmer to manage the migration of objects from the volatile

heap to the persistent heap, or to map the persistent heap to disk files (or some other

persistent storage medium). These tasks are performed automatically by the system.

• The system provides support for a family of field types that are very useful in databases:

single-valued and multiple-valued, with optional inverses.

• The transaction language includes a full, higher-order, functional programming language

[8, 20, 78].

• The transaction language includes list comprehension notation, which may be used as

a declarative query language. List comprehensions are structurally similar to SQL, but

more general.

54

• Parallelism is implicit in the language. The transaction programmer does not have to

worry about partitioning data, about partitioning processes, about mapping data and

processes to nodes of a parallel machine, etc. The single-assignment semantics makes it

easy to reason about what state is read by each sub-expression, even in the presence of

parallel execution. The single-assignment semantics ensures determinacy of execution,

i.e., a unique answer.

55

Chapter 3

Transaction Language Semantics

In the previous chapter, we gave a very informal description of the AGNA transaction language.

In this chapter, we present a formal operational semantics for the language. We begin with a

discussion of the implicit parallelism present in the language, which is the primary motivation

for the semantics that we have chosen. We then give the formal semantics, by first presenting a

core subset of the language, then giving a translation from the full language to this core subset,

and finally describing how a program in the core language is reduced to a value and, for update

transactions, how the database is updated. We conclude with an example reduction.

3.1 Implicit Parallelism

Parallelism in the transaction language is implicit in its semantics:

• In a block:

(letrec ((x1 e1)

(xN eN))
eBody)

all expressions e1, ... , eN and eBody are evaluated in parallel, and the value of eBody may

be returned as soon as it is available, even if the other expressions have not finished

evaluating.

• In primitive applications:

(+ e1 e2)

57

(cons e1 e2)

all arguments are evaluated in parallel, and some primitives may even return a result

value before the arguments have finished evaluating (for example, cons and other object

constructors).

• In a function application:

(ef e1 ... eN)

all expressions are evaluated in parallel; the function (value of ef) may be invoked as soon

as it is known, and it may even return a result, before the arguments are known.

• In a conditional expression:

(if e1 e2 e3)

the predicate e1 is evaluated to a boolean value, after which one of the expressions e2 or

e3 is evaluated and returned as the value of the expression.

In other words, everything is evaluated in parallel, except as controlled by conditionals and

data dependencies. The semantics are:

Non-strict: procedures and object constructors may be invoked and even return results

before all arguments are evaluated to values.

Not lazy: expressions may be evaluated even if they are not needed for the final result.

Eager: expressions are evaluated eagerly and in parallel.

Implicitly parallel: the programmer does not specify what must be done in parallel.

These semantics are borrowed from the Id programming language [58]. Programs evaluated un

der this regime often show massive amounts of parallelism. As an illustration of the parallelism

that results from non-strict, eager evaluation, consider the following expression that finds the

names of all students with a GPA of 4.0.

58

(map (lambda (s) (select s STUDENT NAME))
(filter (lambda (s) (== (select s STUDENT GPA) 4.0))

(all STUDENT)))

In a strict implementation, we must build the entire student list (i.e., evaluate (all STUDENT)),

filter it, and then perform the map. Each operation must execute entirely before the next one

may begin. With the non-strictness in AGNA, as soon as the first cons-cell in the student list is

allocated, a reference to it can be returned as the result of (all STUDENT) (shown in Figure 3.1).

A reference to a student object is stored in the head of the list, while the tail is left empty (l_

in the figure).

t (all STUDENT)

first student

Figure 3.1: First cons cell in student list.

Construction of the remainder of the student list and the filter operation may then proceed

in parallel. If the filter operation attempts to read the tail of a cons-cell that is empty (i.e., one

that contains _1_), then it simply blocks, waiting for a value to be stored there. When the write

finally arrives, the blocked read operation is notified, allowing the list traversal to continue.

A similar kind of parallelism also exists between the filter operation, which produces a

filtered list of student objects, and the map operation, which consumes it. In fact, this form of

parallelism is possible in AGNA between any computation which produces a data object, and a

computation that consumes it, not just those involving extent lists, or filtered extent lists. In

[3], this producer/consumer parallelism, and other forms of parallelism due to non-strictness,

are shown to be pervasive, even in programs that use traditional algoritluns.

3.2 Formal Semantics

The formal semantics of the AGNA transaction language are defined via an abstract reduction

machine called the FDB Machine1 . The interface to the FDB Machine is exactly that offunction

dbeval from Section 2.1: it takes a transaction and a database as input, and produces an answer

1 "FDB" stands for "Functional Database".

59

and a new database as output. Figure 3.2 depicts the overall structure of the process by which

the FDB Machine reduces (or "executes") a transaction. Input function in maps transaction

X and database D to initial machine configuration -y0 . Rewrite rules are then repeatedly

applied, reducing sub-expressions within the transaction, and updating the database. A final

configuration 1'! is reached when no more rewrite rules are applicable. Finally, output function

out maps 1'! to a value V (i.e., the answer) and database D'.

Rewrite rules used by the machine operate only on a core subset of the transaction language.

This allows the rules to be specified more simply, and to reduce the total number needed by

the machine. Translation from a transaction in the full language to this "kernel" language is

performed by the input function.

(X, D) + GJ ____. 'Yo => 1'1 => . . . => 1'! ____. B -b (V,D')

Figure 3.2: Operation of the FDB Machine.

It is important to realize that the translations and reductions included in the semantics are

part of a machine-independent specification of the language, and not an actual implementation.

As we shall see in subsequent chapters, the actual implementation will be quite different. In

the development of the operational semantics, we have chosen clarity over efficiency.

3. 3 The Kernel Language

The syntax of the kernel language is shown in Figure 3.3. Eliminated are features of the full

language that make programs easier to write, but that provide no new expressive power. Below

we give a scheme for translating from the full language to the kernel language.

60

Transaction

Block

Statement

Definition

Expression

SimpleExpr

Primitive

Constant

Block

(letrec ((Identifier Statement)+) SimpleExpr)

Definition I Expression

(define Identifier SimpleExpr)
(undef ine Identifier)

SimpleExpr I (SimpleExpr+)
{Primitive SimpleExpr*)
(lambda (Identifier*) Expression)
(if SimpleExpr Expression Expression)
Block

Constant I Identifier

+ I - I drop I abort-transaction I···

Boolean I String I Number I nil I abort I 0

Figure 3.3: Grammar of the kernel language.

3.4 Translation of Transactions into the Kernel Language

The algorithm for translating an input transaction into the kernel language first rewrites the

transaction to a top-level letrec block, and then recursively translates all nested sub-expressions.

Xact Forms

The input transaction is rewritten to a letrec block as follows:

(:xact (letrec
(define f e1) ((xl (define f el'))

(define-local x e2) ==> (x e2')

(type ...) (x2 (type ...)')

e3) (x3 e3'))

x3)

where el', e2', (type ...)',and e3' are the kernel language translations of el, e2, (type ...),

and e3, respectively. Identifiers xl, x2, and x3 are new and unique. Note that the define-local

construct is eliminated by rewriting it to a binding in the letrec block.

61

Letrec Blocks

Multiple expressions in the body of a letrec block are eliminated. For example:

(letrec ((c (allocate LIST)))
(update c LIST HD 1)
(update c LIST TL nil)
c)

is rewritten to:

(letrec ((c (allocate LIST))

c)

(x1 (update c LIST HD 1))
(x2 (update c LIST TL nil)))

Identifiers x1, and x2 are new and unique.

Simple Expressions

In certain constructs, letrec blocks are introduced to simplify sub-expressions to simple sub

expressions (identifiers or constants). For example, the conditional:

(if e1 e2 e3)

is rewritten to:

(letrec ((x e1))
(if x e2 e3))

Also translated in this manner are: arguments to primitive functions, all expressions of appli

cations of user-defined functions, and the value expressions of define forms. Also, the body

expression of a letrec block such as:

(letrec ((x1 e1))
e2)

is rewritten to:

(letrec ((x1 e1)

62

(x2 e2))
x2)

Identifier x2 is new and unique. The motivation for these transformations is that they simplify

the specification of rules (given in Section 3.6) for error propagation and reduction of letrec

blocks. For example, we no longer need to specify error propagation from the predicate of a

conditional.

Higher-Order Primitive Functions

All higher-order uses of primitive functions are eliminated. For example, a partial application

of a primitive function such as (+ 5) below:

(map (+ 5) 1)

is rewritten to:

(map ((lambda (x y) (+ x y)) 5) 1)

This transformation ensures that primitive functions in the kernel language are always applied

to a full set of arguments.

List Comprehensions

List comprehensions are rewritten according to the following scheme (for full details, please

refer to [47]):

(all e (where epred) qi ... q ..) => (if epred (all e q1 .. . q ..) nil)

(all e) => (cons e nil)

Procedure flatmap, which flattens a list of lists into a single list by appending all the compo

nents, is defined as follows:

(define (f latmap f 1)
(if (nil? 1)

nil

63

(append (f (hd 1)) (flatmap f (tl 1)))))

Object Allocation

An allocate expression such as:

(allocate LIST)

is rewritten to:

(allocate-object liat 2)

Allocate-object is the primitive procedure that performs object allocation, list is the unique

numeric identifier of the LIST type, and 2 is the number of fields in the new object. The unique

identifier associated with each type and the number of fields of a type are part of the meta

information maintained by the system, which we describe in Section 3.7. For now, type ids and

field offsets can be viewed as constants inserted by the translation process.

All Expressions

An all expression such as:

(all ENROLLMENT)

is rewritten to:

(extent-of enrollment)

Procedure extent-of is a primitive that returns the extent list of a type.

Select, Update, Insert, and Delete Forms

A select expression such as:

(select c LIST HD)

is rewritten to:

64

(select-field c liat 0)

Select-field is the primitive procedure that performs field selection, list is the numeric type

identifier, and O is the (zero-based) field index. Update, insert, and delete are translated in a sim-

ilar manner, using primitives update-field, insert-in-field, and delete-from-field, respectively.

For efficiency, multi-valued fields in persistent objects in the AGNA implementation do not

use the general list representation, but rather a compact internal format. 2 This has implications

with regard to sharing. For example, when a multi-valued field f of a persistent object o is

updated to, say, a persistent list 1, the elements of 1 are stored in o using this compact internal

representation (see Figure 3.4). When the field value is read in subsequent transactions, a new

list is built in the volatile heap and returned. Because the value stored for f is not simply a

reference to 1, but a separate representation of the collection, field insertions and deletions in

subsequent transactions do not modify the contents of 1. Also, updates to the structure of 1

(e.g., adding a new element to the end of the list in a subsequent transaction) do not alter the

value off.

o:

• • •

on

Figure 3.4: Building of multi-valued field collection.

Unlike the actual AGNA implementation, we do use the general list representation for field

collections in the formal semantics because here we are more concerned with clarity than ef

ficiency. We model the lack of sharing illustrated by the example above by explicitly copying

lists before they are installed in multi-valued fields, and also before they are returned to field

readers. For example, an update such as:

(update c COURSE PREREQS 1)

is rewritten to:

(update-field c courae 1 (copy-list 1))

2 We describe this internal format and the rationale for it in Chapter 5.

65

and a field selection such as:

(select c COURSE PREREQS)

is rewritten to:

(copy-list (select-field c courae 1))

Array Manipulation

Array primitives are rewritten as follows:

(allocate-array ezpr) => (allocate-object array ezpr)

(update-array object indez value) => (update-field object array indez value)

(select-array object indez) => (select-field object array indez)

These translations rewrite operations on arrays to the corresponding generic object manipula

tion primitives.

Invert Forms

An invert form such as:

(invert STUDENT NAME "John E. Smith")

is rewritten to:

(invert! atudent name-poaition "John E. Smith")

Invert! is the primitive function that implements <=> field inverses. Its arguments are a type

id, field offset and field value, and it returns the object with the specified field value, if one

exists, or a special null object otherwise. A similar function invert2 implements multi-valued

field inverses.

66

Insert-list and Delete-list Forms

An insert-list form such as:

(insert-list c COURSE PREREQS secs-core-courses)

is rewritten to:

(letrec ((object c))

(f oreach eecs-core-courses
(la.mbda (new-member) (insert object COURSE PREREQS new-member))))

Procedure foreach is like map in that it applies a procedure to each element in a list, but unlike

map in that it returns ()instead of a list of results. 3 Delete-list is rewritten in a similar manner.

Nested Function Definitions

All nested la.mbda expressions are named and lifted out into closed, local bindings in the top-level

letrec block by a process known as lambda-lifting [46]. For each la.mbda expression, this entails:

(1) adding to its formal parameter list all free variables (except references to top-level database

names), (2) lifting the function to a local binding of a new, unique name, and (3) replacing all

uses of the function by an application of it to its free variables. For example, a letrec block

such as:

(letrec ((f (la.mbda (x) (+ x y)))
(y e1))

f)

is rewritten to:

(letrec ((f (f1 y))
(y e1))

f)

Also, a binding of new, unique identifier f1 to:

(la.mbda (y x) (+ x y))

3
() is the only value of type void, and has no useful operations defined on it. It is used as the return value

of an expression that is executed for its side-effects, not the value it produces.

67

is added to the top-level letrec block.

Summary

The FDB Machine maps an input transaction X and database D to the answer V and a new

database D'. Operation of the machine consists of three separate phases: (1) translation of X

and D to /o, the initial machine state; (2) reduction of the transaction via repeated application

of rewrite rules to expressions in the machine state; and (3) formation of the answer V and new

database D' from the final machine state. The first step is performed by the input function,

and includes the rewriting of X to an equivalent transaction in the kernel language, a core

subset of the full language. In this section we have described the translations used by the input

function in the rewriting of X. In the remainder of this chapter we describe the machine state,

additional actions performed by the input function, the rewrite rules, and the output function.

3.5 The FDB Machine

As stated earlier, the FDB Machine repeatedly applies rewrite rules to reduce a transaction

relative to a database. Each application of a rewrite rule maps a machine state Ii to /i+l•

reducing some sub-expression of the transaction. The state of the machine consists of four

components:

1. The transaction. This describes the computations that remain to .be performed.

2. The unique identifier associated with the transaction, assigned by the input function.

Transactions are executed in a serializable order and the identifier associated with a

transaction can be thought of as its position in this ordering.

3. The database against which the transaction is executed.

4. Five collections used to accumulate deferred updates during reduction of the transaction.

These updates are installed in the new version of the database by the output function.

The third component, the database, consists of: (1) a top-level environment p, which maps

names to values; and (2) a heap u, which maps object identifiers to values. Object identifiers

are used only internally, and are not the same as program identifiers. Data objects in u are

represented as follows:

68

where t is a type tag4 , i is the number of fields, ¢ is the unique identifier of the transaction

that allocated the object, and v10 through VJ,_ 1 are field values.

Both the top-level environment and heap of a database are tables that map identifiers to

values (see Figure 3.5). The tables also include a new value column used in update transactions

to record identifier and object values in the new version of the database. We use notation

p.,(:i:) to refer to the value bound to top-level identifier :i:, and Pn(:i:) to refer to the new value.

Similarly, u.,(o) refers to the value bound to object identifier o, and un(o) to the new value.

identifier value new value
x 259 J_

p:
y 023 J_

...

object-id value new value

045 (list 2 rP Vhd Vt!) (list 2 ¢i J_ _l_)
u:

019 (course 3 ¢ Vna.nie Vprereq• Vunit•) (course 3 ¢i J_ J_ _l_)
...

Figure 3.5: Top-level database environment (top) and object heap (bottom).

The fourth component of the machine state contains collections that are used during re

duction of the transaction to accumulate deferred updates. Database updates performed via

define, undefine, and update are recorded directly in (the new value columns of) p and u during

the reduction process, while objects to be inserted into or dropped from type extents, and

objects to be inserted into or deleted from field collections are accumulated in collections adds,

drops, inserts, and deletes, respectively. Possible violations of the uniqueness of inverse field

mappings, resulting from new values of object fields for which unique inverses are maintained,

are accumulated in collection constraints.

These deferred updates and constraint checks are processed by the output function after the

machine reaches a halting configuration. Such updates and constraint checks are not performed

during the reduction process for two reasons. First, deferring them to the output function

greatly simplifies specification of the rewrite rules. Second, some sort of mechanism for deferring

updates is required to implement such things as field insertions and deletions correctly. (Recall

4 While t is actually a numeric type tag, here we will use symbolic tags such as list or student for readability.

69

from Section 2.4, it must be as if all deletes in an update transaction were performed prior to

the first insert.)

Initial machine state ; 0 is produced by input function in, whose pseudo-code is shown in

Figure 3.6. For a transaction (:z:act s 1 ••• sm.) and database {p, a'), in returns the following initial

state:

{${1etrec {{z1 s~) ... (zn s~)) Zn), CJ>, {p', u'), C)

where:

• $ is a marker used by the rewrite rules to track expressions to be evaluated;

• Cletrac ((:z: 1 sD ... (:z:,. s~)) :z:,.) is the kernel language version of the original transaction in

which all letrec-bound identifiers have unique names;

• CJ> is the unique identifier assigned to the transaction;

• p' and u' are updated versions of p and u in which all top-level identifier and object field

values in the new version of the database are undefined; and

• C is the set of collections for deferred updates and constraint checks, all initially empty.

Reduction proceeds from this initial state, and terminates when the machine reaches a

configuration to which no rewrite rules apply. The transaction expression is initially a letrec

block and, as we shall see in the next section, it remains a letrec block throughout the reduction

process, unless the transaction is aborted, in which case it is rewritten to a special abort value.

We use the top-level block as a place to accumulate transient bindings introduced via nested

blocks and function applications {after appropriate renaming of identifiers). In the final machine

state if of a successful transaction, all expressions in the top-level block are reduced to values

(i.e., expressions for which no further reduction is possible).

Given the final machine state as input, the output function produces the answer (i.e., the

value of the transaction) and a new database. Determining the answer is straightforward: it

is the value in the body of the final top-level letrec block. The new version of the database is

formed in the new value columns of p and u by processing updates in the adds, drops, inserts,

and deletes collections, and migrating to the new version old values of top-level identifiers and

persistent object fields not redefined by the transaction. For pure queries (no updates), the

70

in(X,(p,u))
{

}

; ; Set values of identifiers and object fields to "undefined"
; ; in new version of database.
For each identifier :z: in p: p,,.(:z:) +-- _l_;

For each identifier o in u: u,,.(o) = u .. (o);
For each field f in u,,.(o): u,,.(o).f +-- _l_;

,, Initialize deferred update and constraint collections.
C.adds +-- 0;
C.drops +-- 0;
C.inserts +-- 0;
C.deletes +-- 0;
C.constraints +-- 0;

;; Assign unique id to current transaction, translate
,, transaction to kernel language, rename letrec-bound identifiers
,, uniquely, and return initial machine configuration.
Let <I>= p .. (transaction-id)+ 1

Let E = alpha-rena.me-letrec-ids(p,to-kernel-language(X))
Return ($E,<I>,(p,u),C);

Figure 3.6: Pseudo-code of input function.

new database is equal to the old one. If the transaction expression in the final machine state

is the abort value, then that is the answer returned, along with the old database. We give a

precise definition of the output function in Section 3.8.

3.6 Rewrite Rules

Motivated by the Contextual Rewriting System of Ariola and Arvind [2], we use the following

notation to describe a rule:

which reads: "If preconditions C1 through Cn hold, then an expression E may be rewritten to

expression E', with additional machine state updates U1 through Um." We omit the horizontal

line when n is zero. We use meta-variable v to denote any value (constant or object identifier);

c any constant; e any expression; r and s any statement; :i: and y any identifier; t any numeric

type identifier; o any object identifier; and n, m, and j any integer.

Two markers are used in the reduction process. We have already seen one, $, which is

used to mark expressions to be reduced. Such expressions can be thought of as "scheduled" for

71

reduction. Some expressions marked with$, such as lambda, can be rewritten directly to values.

For others, however, such as a function application, the$ is fust propagated to sub-expressions,

some or all of which must be reduced to values before the expression itself can be reduced. For

this latter type of expression we mark it with a • after the $ is propagated to sub-expressions.

One can think of • as marking expressions that are "executing".

Definitions

$(define :z: e) =>•(define :z: $e)

•(define :z: v) => (); Pn(z) - v

$(undefine :z:) => (); Pn(z) - T

In the first rule, the marker is simply propagated to component expression e. In the second and

third rules, the value of :z: in the new version of the database is set to v and T, respectively.

Identifiers bound to T in Pn are removed from p by the output function. Inconsistencies such

as multiple definitions of the same identifier are detected statically, and thus do not have to be

handled here.

Constants

$c => c

This rule states that constants are self-evaluating.

Procedures

A lambda expression is rewritten to a closure object, which encapsulates a function. As we shall

see soon in the rules for applications, closure objects may also include an environment containing

arguments supplied via partial applications. No environment is needed in closures produced by

the rule above because the lambda-lifting transformation performed in the translation to the

kernel language ensures that procedure bodies contain no free variables.

To enhance readability, for closures we use a representation different from the standard

(ti </J Vj0 ••• VJ;_J.

72

Conditionals

•{if false e2 e3) => $e3

The first rule simply propagates $ to the predicate expression, while the second and third

rules select the then (e2) and else (e3) expressions of a conditional after the predicate has

been reduced to a boolean value. Note that the rules prevent evaluation of e2 or e3 until the

conditional has been rewritten by the first rule, and the predicate is reduced to a value.

Letrec Blocks

${letrec {{:i:1 s1) ... (:i:n sn)) s) => •{letrec {(:i:1 $s1) ... (zn $sn)) $s)

This rule propagates the marker to all component statements, thus demonstrating a major

source of parallelism in the language, as all statements may execute concurrently. An additional

rule for letrec blocks given below allows a block immediately nested within another to be

flattened into the outer block:

•{letrec ((:i:1 s1) •(letrec ((:i:1 s1)

(:i:i •(letrec ((Y1 r1) (:Ci 1')
(Y1 r1)

1')) (Yn 1'n)
...) ...)

s) s)

Name clashes between the two blocks are not possible because of the unique renaming of letrec

bound identifiers in the original transaction body and in procedure bodies during application

(described below).

Identifiers

Pv(z) = v

$:i: => v

'Yi= (•(letrec (... (:i: v) .. .) y), iJ>, (p,u), C)
$:i: => v

73

These rules allow a program identifier to be replaced by the value to which it is bound. In

the first rule, :c is a top-level database name; note that this rule encodes the principle that all

database identifiers are looked up in the old environment (i.e., Pv)· The second rule replaces a

local identifier bound in the top-level letrec block with the corresponding value. At most one of

these rules can apply for a given identifier :c because of the unique renaming of local identifiers.

Applications

The$ is propagated to all component expressions, which may execute in parallel. An application

may be rewritten when the first subexpression reduces to a closure. If the arity of the function

is not satisfied, then a new closure is created: 5

0 < j < m
•((closure (>.:i:1 ... :cm.e) ei ... ei) ei+l .. . ei)

JJ.
•(letrec ((Yi+l ei+l) ... (Yi ei))

(closure (A:C1 ... :Cm .e) ei ... ei $yi+l ... $yi))

Here the arity is not satisfied because j, the number of arguments received so far (ei through

ei from previous applications, and ei+i through ei from the current application), is less than

m, the number of arguments to the function. The application is rewritten to a letrec block in

which argument expressions ei+l through ei are bound to new, unique identifiers Yi+l through

Yi. The value of the block is a closure object whose environment includes the previous set

of supplied arguments (e1 to ei), as well as the new identifiers bound to the new argument

express10ns.

If the function arity is satisfied, then execution of the body may begin:

•(letrec ((:c~ e1) ... (:c~ em)
(:c' $e'))

$:c')

Expression e1 is a copy of e in which (1) formal parameters :Ci are replaced by new, unique iden

tifiers :c'i, and (2) all local variables bound in letrec blocks inside e are a-renamed consistently

to new, unique identifiers.

These rules capture the eager, non-strict behavior of procedure applications: all expressions

of an application are evaluated eagerly and in parallel; the body expression may be evaluated

6 To prevent this rule from becoming too wide, the expression to which the application is rewritten is shown
below the application instead of alongside it.

74

as soon as it is available, and it may even return a result, before all argument expressions have

reduced to values.

Primitive Functions

$(primop ei ... en) => •(primop $e1 ... $en)

All arguments of a primitive operation may execute in parallel. While we don't list them all

here, we assume rules for the reduction of all primitive operations. For example, the following

two rules describe how not is rewritten:

•(not true)=> false

•(not false)=> true

Similar rules exist for other primitive arithmetic, relational, and logical functions. If a primitive

function is applied to an argument of the wrong type (e.g., not applied to a number), then the

machine becomes "stuck" in the sense that it will eventually reach a state in which some sub

expressions of the top-level block are not reduced to values (the erroneous application will be

one such sub-expression), but to which no rewrite rules apply. Other errors, such as undefined

identifiers, violations of the single-assignment semantics, etc. also cause the machine to get

stuck in a similar manner. The output function recognizes these situations and aborts the

transaction.

Object Allocation

•(allocate-object t i) => o; uv(o) - (t i <I> J_o ... J_i-1),

adds - adds + o

An object of type t with i fields, all initially undefined, is allocated in the heap and bound to

new, unique identifier o. Nate that the transaction id of the object is set to <I>, the id of the

current transaction. A reference to the new object is inserted into collection adds. Output

function out examines this collection of newly-allocated objects at the end of the transaction,

and for each object of a type with an associated persistent extent, it inserts the new object into

the extent. Thus, the updated extent is only visible to subsequent transactions.

75

Dropping An Object

•(drop o) => (); drops+--- drops+ o

A reference to the object to be dropped is added to collection drops; deletion of the object is

performed by the output function.

Field Selection

lTv(o)=(ti</J ... Vj ...), O~j<i

•(select-field o t j) =>vi

Here the jth field value is selected from object o. Note that the precondition precludes ap

plication of this rule when the j th field is undefined (i.e., ..l). In other words, reduction of

select-field is permitted only after the field has been assigned a value. Also note that there

is no way for select-field to access field values of objects in the new version of the heap (i.e.,

a-n)· Finally, this rule illustrates the non-strictness of objects in AGNA, as selection of the jth

field of an object is allowed even though other fields may not yet be defined.

Field Update

A field update of an object allocated in the current transaction (i.e., transaction id <I>) inserts

the field value into the object in the old version of the heap (i.e., ov), making it accessible to

field readers in the current transaction:

lTv(o) =(ti <I>lj ...), 0 ~ j < i
•(update-field o t j v) => (); a-v(o) +---(ti <I> .. . v .. .)

if unique-inverse(t, j) then
constraints +--- constraints + (t, j, v)

If the field at offset j has a unique inverse (i.e., a field declared <=> or <=>*, identified by

predicate unique-inverse), then a three-tuple consisting of the type id, field off set, and field

value is added to collection constraints. The check to ensure that the new field value is in fact

unique is performed by the output function. If a violation of the uniqueness constraint is found,

then the transaction is aborted.

A field update of a persistent object, on the other hand (i.e., one with a transaction id not

equal to <I>), inserts the field value into the object in the new version of the heap (i.e., on),

where it is not visible to the current transaction.

76

CTn(o) =(ti¢ ... _lj ...), 0 ~ j < i, ¢ f Cl>

•(update-field o t j v) => (); un(o) ~(ti¢ .. . v .. .)
if unique-inverse(t, j) then

constraints ~ constraints + (t, j, v)

Note that in both rules, the preconditions require the jth field to be undefined, thus enforcing

the single-assignment semantics. Here also, a three-tuple is added to constraints if the field has

a unique inverse.

Field Insertion and Deletion

lTn(o) =(ti¢ ... _lj ...), 0 ~ j < i, ¢ f Cl>

•{insert-in-field o t j v) => {); inserts~ inserts+ (o, j, v)

A reference to the object, the field offset, and the field value are packaged into a tuple, and

inserted into collection inserts. Deletion from a field collection (using delete-from-field) is

rewritten in a similar manner. As with other deferred updates, insertions and deletions are

performed by the output function at the end of the transaction.

Again, note that the preconditions require the jth field to be undefined, thus preventing

insertion into or deletion from a field that has already been updated via update. They do not

prevent update from being used on a field after an insertion or deletion, however. Inconsistent

updates such as these are detected by the output function, and the transaction is aborted.

Finally, note that the preconditions also prevent insertions and deletions on fields of ephemeral

objects (transaction id<!>).

Explicit User Abort

•(abort-transaction v) => abort

•{letrec (... {Xi abort) ...) e) => abort

The first rule rewrites abort-transaction to a special abort value. This value is propagated

via the second rule to the top-level letrec block where it ultimately becomes the value of the

transaction. For our purposes here, the error message argument to abort-transaction is not

important and thus we ignore it. Additional error values such as those for type errors and

violations of the single-assignment semantics, could be introduced explicitly and propagated to

top-level in a similar manner, though we have not done so here.

77

Summary of Parallelism in Transaction Language

There are three main sources of parallelism in the transaction language: letrec blocks, appli

cations of user-defined functions, and applications of pre-defined functions. As illustrated by

the rewrite rules, all sub-expressions of these constructs are evaluated eagerly and in parallel.

Furthermore, this parallel evaluation regime is applied recursively to each sub-expression, thus

resulting in an abundance of fine grain parallelism.

3. 7 Meta-Data

The translation of AGNA transactions into the kernel language given in Section 3.4 utilizes

information describing the types and fields of a database (i.e., the meta-data) such as unique

type ids and field offsets. We assume that this information is available to the translation process.

In practice, the meta-data may be stored in a separate database, but for our purposes here, we

have chosen to store it in the main database in the form of TYPE and FIELD objects. This is also

the approach that we have taken in the actual implementation of AGNA.

A type form such as:

(type DEPARTMENT (extent)
((id <=> INTEGER)

(name <=> STRING)))

is translated to:

(letrec ((f1 (make-field 0 "id" "<=>" INTEGER ...))
(f2 (make-field 1 "name" "<=>" STRING ...)))

(make-type "DEPARTMENT" true (cons f1 (cons f2 nil)) ...))

This translation is meant only to sketch a rough picture of how type forms may be translated;

for our purposes here, the precise details are unimportant. The translation utilizes make-field

to create field objects from the field positions, names, kinds, etc. and make-type to create a type

object from the type name, whether an extent is to be maintained, the list of fields, etc. The

extent list for the type is stored in a field of the type object named extent-list. We assume that

each type and field object has associated with it a unique numeric identifier, which is generated

and stored in the id field of the object by constructor make-field or make-type.

78

3.8 The Output Function

Output function out maps a final machine configuration to a composite result consisting of the

answer and a new database. Pseudo-code for the function is shown in Figure 3. 7. Out first

checks the machine state for the following three conditions which cause the transaction to be

aborted:

1. Final expression E is itself the value abort. This is the case when a transaction is explicitly

aborted via abort-transaction.

2. E is a letrec block, but not all sub-expressions are reduced to values. This is the case

when an error (e.g., a type error) prevents the machine from reducing all sub-expressions

fully.

3. Both update and insert/delete were used on the same field of a persistent object field. For

the reasons outlined in Section 2.4, this is viewed as an inconsistent specification.

If at least one of these conditions holds, the transaction is aborted by returning the abort value

and the old database, after a garbage-collection to remove heap objects inaccessible from u.

Next, all undefined components of the new version of the database are assigned the corre

sponding values from the old version. For example, if a top-level identifier in the old version of

the database were not redefined by the transaction, then in this step the new version automat

ically inherits the old value. Deferred updates accumulated in the drop, add, delete, and insert

collections are then performed in the new version of the database.

Installation of deferred updates may cause the uniqueness of inverse field-mappings to be

violated, e.g., two new student objects may have the same name. Such violations are detected

by performing inversions for all new values of unique fields which, along with the object type

and field position, are stored in the constraints collection. If more than one object is found

with a given field value, then the transaction is aborted.

At this point in out, we are assured that the transaction will not need to be aborted. Next,

all identifiers undefined by the transaction in the new environment are located and their values

in Pn are set to 1-.6 Finally, the new version of the database is installed in Pv and f.'Tv, the

transaction id seed is incremented by one, and the result value and new database are returned.

6 If the rewrite rule for undefine had set the value of such identifiers to l_ in p ... , then they would not be
distinguished from identifiers in the old version of the database that were not redefined. Thus, the rule binds
undefined identifiers to T.

79

out C(E, of>, (p, u), C))
{

}

, , Abort transaction if: (1) E is "abort"; (2) E not reduced fully (e.g.,
,, because of an undefined identifier); and (3) insert/delete - update
,, inconsistency.
if (E==abort OR E!=(letrec ((x1 v1) ... (xn vn)) v) OR

update-insert-conflict?(p.(insert-list),p) OR
update-delete-conflict?(p.(delete-list),p)) Then

Return (abort,gc((p,u)));

,, Move to new version of database identifier and field values
, , not redefined by transaction.
For each id :z: in p: if p,.(:z:) = l_ Then p,.(:z:) +--- Pw(:z:);
For each id o in u: if u,.(o) = l_ Then u,.(o) +--- u.(o);

For each field f in u,.(o):
if u,.(o).f = l_ Then u,.(o).f +--- u.(o).f;

; ; Process deferred updates in C: drops, adds, inserts, and deletes.
;; Drops:
For each object o in drops: Let t = (invert TYPE ID type-id-of-object(o))

If type-extent(t) Then
u,.(t.extent-list)+-remove(o,u,.(t.extent-list));

; ; Similarly for add11, insert/I, and deletes.

,, Check uniqueness of inverse-mappings; abort if not unique.
For each triple (t ,pos, v) in constraints:

if inverse-not-unique?(t,pos,v) Then
Return (abort,gc((p,u)));

;; Set to l_ all identifiers undefined by transaction (i.e.,
; ; identifiers bound to T in p,.).

For each identifier :z: in p,.: If p,.(:z:) = T Then
p,.(:z:) +--- l_;

;; Finally, install new version of database, gc, increment transaction
; ; id "seed", and return result v (assuming E=(letrec ((x1 v1) ... (xn vn)) v)).
For each identifier :z: in p: Pw(z) +--- p,.(:z:);
For each identifier o in u: u.(o) +--- u,.(o);
p.(transaction-id) +--- p.(transaction-id)+ l;

Return (v,gc((p,u)));

Figure 3.7: Pseudo-code of output function.

80

3.9 Example: Persistent Object Update

Let us now examine the reduction of the following transaction that increments by three the

units value of the course object bound to c1:

(:x:act
(update c1 COURSE UNITS (+ 3 (select c1 COURSE UNITS))))

An equivalent kernel language expression is:

(letrec ((x1 (select-field c1 caurae 2))
(x2 (+ x1 3))
(x3 (update-field c1 caurae 2 x2)))

x3)

Here we use the notation course to represent the numeric identifier of the course type. Constant

2, the third argument in the calls to select-field and update-field, is the offset of the course

units field. Let us call the expression above E. The initial machine state /o, produced by the

input function, is:

($E, 43, (p, u), C)

Components of the initial machine state are: expression E, marked for reduction; 43, the unique

id assigned to the transaction, generated from the seed bound to transaction-id in p (shown be

low); the database; and C, collections for deferred updates and constraint checks, all initialized

to 0. The initial state of the database is:

p:

aJf._ec t-iti_ value new va_l_ue

u:
023 j_caurse 3 _!I!_ "A!_g_orithms" nil 9l __{course 3 ¢_lo_ j_ J_l
019 j_enrollment 3 ¢ ''If" 014 023} __{enrollment 3 ¢ j_ J_ _l_}
011 Jenrallment 3 ¢ UC'' 015 023} IenroTrment 3 ¢ J_ J_ i:1
...

The first reduction step propagates the $ to all sub-expressions of the top-level block:

•(letrec ((x1 $(select-field c1 caurae 2))
(x2 $(+ x1 3))
(x3 $(update-field c1 caurae 2 x2)))

$x3)

81

Next we propagate the marker into the right-hand sides of letrec bindings:

•Cletrac ((x1 •(select-field $c1 $course $2))
(x2 •(+ $x1 $3))
(x3 •(update-field $c1 $course $2 $x2)))

$x3)

Then, we rewrite the references to top-level identifier c1 and the numeric constants:

•Cletrac ((x1 •(select-field 0 23 course 2))
(x2 e(+ $x1 3))
(x3 •(update-field 0 23 course 2 $x2)))

$x3)

Note that the identifier lookups were performed in p11 , the old version of the database. The

field selection can now be rewritten:

•Cletrac ((x1 9)
(x2 •(+ $x1 3))

(x3 •(update-field 0 23 course 2 $x2)))
$x3)

Next we rewrite the addition and substitute for x2:

e(letrec ((x1 9)

(x2 12)
(x3 •(update-field 023 course 2 12)))

$x3)

Finally, after reducing the field update and substituting for x3 we get:

•(letrec ((x1 9)

(x2 12)
(x3 ()))

())

with the following heap in which the units field of course 0 23 is updated:

rT :

o!J..ect-~ v~ue new value
023 Icourse 3 ¢ "A!g_orithms" nil 9} Icourse 3 ¢ _l_ _l_ 12}
019 1enrollment 3 ¢ "B" 011 023} 1enrolfment 3 ¢ _l_ _l_ _l_}
011 lenrollment 3 ¢ "C" 015 0231 i_enro!_l_ment 3 ¢ J_ J_ J_l ...

82

Note that the update is recorded in the new vers10n of the heap, while the old value still

remains accessible to the transaction. The output function returns the answer O and the

updated database shown below.

p:

&_en till_e r vtiI_ue new va]_ue
cl 023 _lo_

transact10n-ici_ 43 _J:_
...

u:

o~ct-~ v~ue new v~ue
0l3]_course 3 r/1 "A!g__orithms" nil 121]Course 3 r/1 "Algorithms" nil 121
019]_enrollment 3 rjJ "B" ou 023I _{_enrollment 3 r/1 "B--,,- 014 0231

011 _{enrollment 3 rjJ "C" 015 023) _ _{_enrollment 3 r/1 "C--,,- 015 02:J
...

This example also illustrates the sharing of objects in AGNA: enrollment objects bound to 019

and 0 11 contain references to the course object, and the update is visible to both in the new

database.

83

Chapter 4

Compilation of Agna Transactions

In the previous chapters, we described the AGNA language model and argued that it contains

much implicit parallelism. In this chapter, we outline our approach to exploiting this parallelism

by compilation to fine grain threads. Compilation of AGNA transactions occurs in three major

phases- source-to-source translation of the original transaction text, translation into dataflow

program graphs, and translation into code for a multi-threaded abstract machine called P-RISC.

Substantial code optimizations are performed at each stage.

We begin this chapter with a discussion of the motivation for fine grain parallelism and

data-driven computation. Then, we describe each of the three phases of compilation, in turn,

including a presentation of the P-RISC abstract machine. In the next chapter, we shall see how

the P-RISC machine, the target of compilation, is mapped to a concrete multiprocessor.

4.1 Rationale For a Fine Grain, Data-Driven Model

Central to our strategy for exploiting the implicit parallelism of the transaction language is a

computational model that utilizes fine grain parallelism with data-driven execution, both for

normal computation as well as for disk 1/0. Research into dataflow architectures indicates that

this is an effective way to mask the long memory latencies inherent in a parallel computer [3, 4].

The analysis and experimental results may be summarized as follows.

Parallel MIMD machines are dominated by asynchronous events. Even on uniprocessors, it

is already well recognized that asynchronous events are more efficiently handled by an interrupt

driven model rather than one that uses polling, because it avoids busy-waiting. An interrupt is

a simple example of data-driven scheduling- when data becomes available, an interrupt occurs,

and a continuation is specified (via an interrupt vector), which is the thread to be activated to

85

accept the data.

Dataflow models of computation take this idea to the limit- all scheduling is uniformly

data-driven. All long-latency (asynchronous) operations are structured as split-phase actions.

Examples of long-latency operations include: memory reads across a parallel machine, disk

transfers, procedure calls, requests for resources (such as heap allocation), etc. In the first

phase, a request is sent from point A to point B in the machine, carrying with it three pieces

of information:

(1) the continuation contB in B that will handle the request;

(2) the arguments for the request, and

(3) the continuation contA in A that will handle B's response.

When the request arrives at B, the continuation contB is activated (scheduled), which uses

the arguments to perform the remote computation. When this is complete, the second phase

occurs: B sends the result back to A, accompanied by contA. When the response arrives at A,

the continuation contA is scheduled to compute using the result. Thus, a natural coroutining

structure is inherent in the model.

The benefit of split-phase actions is that processor A does not have to block while waiting

for B's response- it is free to perform other computations in the interim. Further, the benefit of

passing continuations around is that a continuation directly identifies the thread to be activated,

making scheduling very efficient. Finally, a processor can have multiple split-phase actions

outstanding, and messages do not have be processed in any particular order. These features

are invaluable in achieving high processor utilization.

Traditionally, this model has been used in dataflow machines to mask the long latencies of

inter-node messages. In our model, we also use it to mask the long latencies of disk requests

by allowing a processor to execute other threads while some are blocked on disk I/O. A further

possibility, which we do not explore in this work, is in a model that permits multiple outstanding

disk requests, it may be possible to reorder them to improve average access time.

Fine grain threads are useful for scalability and load balancing. The performance of a parallel

system should improve if we can provide more parallel resources (more processors, memories,

and disks). Having small threads ensures that even with more processors, each processor still

has enough threads to keep it busy while some threads are blocked. Further, small threads give

more flexibility in the distribution of work across the machine.

86

Connection With The AGNA Language Model

The above argument for fine grain threads can be made independently of the language model.

However, it is very difficult to compile to such threads from traditional languages. Since they

are usually tied inextricably to an imperative model, partitioning into parallel threads without

introducing read-write races (due to side-effects) requires complex dependency analysis, which

is difficult in all but the simplest programs.

For declarative languages, on the other hand, the lack of side-effects makes it particularly

easy to compile into very fine grain threads. In the terminology of parallelizing compilers, there

are no anti-dependencies in the language. We refer the reader to [3] for substantial evidence that

compilers for declarative languages can effortlessly extract orders of magnitude more parallelism

than is possible with traditional languages.

4.2 Phase One: Source-to-Source Thanslation

Phase one of compilation rewrites an input transaction in the full language to one in a core

internal language similar to the kernel language of Section 3.3. This rewriting of a transaction to

the core language simplifies the remainder of the compiler by reducing the number of constructs

it must handle. All of the translations described in Section 3.3 are actually performed by the

first phase of the compiler, except that the xact form is not eliminated, and more sophisticated

strategies are employed to translate list comprehensions, inverse-mappings, and operations on

multi-valued fields and persistent extents to more efficient code. Phase one also performs

additional translations to eliminate define and undefine, and to insert code to begin and end a

transaction, and print the result.

In this section, we describe these additional translations, and discuss the more sophisticated

strategies for handling list comprehensions, inverse-mappings, and operations on multi-valued

fields and persistent extents. We also describe a number of significant optimizations that are

used in AGNA to enhance the performance of list comprehension database queries.

4.2.1 Sequencing of Transaction Execution

Added to the original transaction text are calls to library routines to begin the transaction,

print the result, and end the transaction. A transaction (xact body), for example, is translated

as follows:

87

(:net
(seq

(begin-transaction)
(print body')
(end-transaction)))

Seq is a new construct part of the internal intermediate language that sequentializes execution of

expressions1 , and body' is a translation of the original transaction body. Top-level expressions in

the seq form define the three phases of execution of an AGNA transaction: the prologue, during

which transaction-specific initialization is performed; the body, during which the user-supplied

portion of the transaction is actually executed and the result printed; and the epilogue, during

which the transaction's updates, if any, are installed in the database, making them visible to the

next transaction. We will have more to say in the next chapter regarding the specific actions

performed during the transaction prologue and epilogue.

4.2.2 Define, and Undefine

Bindings in the top-level environment are recorded in the database via objects of the following

type:

(type BINDING (extent)
((name <=> STRING)
(value=> ANY)))

The database contains one such object for each top-level name. Define and undefine constructs

in a transaction are rewritten to code that manipulates these objects. For example, a definition

such as:

(define x 10)

is rewritten to:

(add-new-binding "x" 10)

where procedure add-new-binding (and helper make-binding) are defined as follows:

1 As we shall see in Section 4.3, seq is hyper-6trict in that all computation associated with a component
expression must complete before execution of the next one begins.

88

(define add-nev-binding
(lll.lllbda (nil.Ille value)

(letrec ((b (invert BINDING NAME name)))
(if (null? b)

(make-binding name value)
(update b BINDING VALUE value)))))

(define make-binding
(lll.lllbda (name value)

(letrec ((b (allocate BINDING)))
(update b BINDING NAME name)
(update b BINDING VALUE value))))

Add-nev-binding applies the nil.Ille inverse-mapping to search for the binding object with the desired

name. ff the binding does not exist in the database (i.e., (null? b) is true2), then a new one is

created by constructor make-binding. H the binding does exist, then its value field is updated. In

either case, the binding of name ("x") to value (10) is added to the new version of the database.

An undef ine such as:

(undefine x)

is translated to:

(letrec ((b (invert BINDING NAME "x")))

(if (null'? b)
()

(drop b)))

Again, the inverse field-mapping on name is applied to search for the desired binding object. H

the object is not found, then the undefine is silently ignored and () is returned. H it is found,

then the binding object is dropped from the database.

Finally, references in a transaction to top-level database names are also rewritten to code

that manipulates binding objects. A reference to top-level name x, for example, is translated

to:

(lookup "x")

2 Recall that (invert T F v), for a<=> field F, returns a special null object when no object of type Tin
the database has value v in field F.

89

where lookup is a primitive procedure that locates the appropriate binding object and returns

its value. Procedure lookup could be written in the transaction language and defined as a non

primitive procedure in the database, but that would introduce a boot-strapping problem as

the lookup procedure itself is required to find the value bound to lookup. The problem could

be avoided by statically mapping pre-defined objects (including the lookup procedure) to heap

locations, and resolving all references to such objects at compile-time. While this eliminates

entirely run-time lookups of pre-defined objects, the overall impact on performance is small

because lookups are fairly inexpensive (especially repeated lookups of the same identifier). In

the current version of AGNA, we chose to avoid the complexity of statically mapping pre-defined

objects to heap locations, and thus lookup is implemented as a primitive procedure.

The use of ordinary database objects instead of special-purpose data structures to implement

the top-level environment simplifies both compilation and the run-time system. For example,

the part of the run-time system that installs updates in the database does not have to handle

the top-level environment specially. A possible disadvantage is efficiency, since special-purpose

structures can be tailored to support operations on the top-level environment most efficiently.

However, as we shall see soon, several techniques used in the AGNA implementation, such as

indexing, allow operations on the top-level environment to be performed efficiently.

4.2.3 Inverse Field-Mappings

In the translation to the kernel language given in Section 3.3, field inversions were rewritten

to exhaustive searches on extent lists. For an extent with n objects, the complexity of this

approach is O(n) for both single- and multi-valued inverses. The translation performed by the

compiler utilizes index structures to increase the efficiency of field inversions. An index is a

data structure that efficiently maps field values to objects.

The object storage system on which AGNA is based supports both hash and Btree ("balanced

tree") indexes. By default, hash indexes are created for all fields with inverse-mappings (i.e.,

*<= and<= fields). This default behavior can be changed, however, by annotations in the type

declaration. For example, if the student type were defined as follows:

(type STUDENT (extent)
((name <=> STRING)
(status => STRING)
(gpa => FLOAT)
(address => STRING)

90

(bdate •<=>INTEGER (index btree))))

then two indexes would be created: a hash index on name, and a Btree index on bdate (see

Figure 4.1). Both index types are dense in the sense that they contain one entry for each

student object, recording a field value and a pointer to the associated student. In the hash

index, entries are maintained in a hash table, while in the Btree index, entries are maintained

in a balanced tree. Non-leaf nodes of the Btree provide a multi-level index to the leaves, where

the entries are stored in sorted order.

Btree index
on bdate field

I <671013, atudant-ptr> I

Extent

hash index
on name field

I <"John Smith", atudant-ptr>-,

Figure 4.1: Btree and hash indexes on student objects.

In the student type above, a Btree index on bdate may be preferred over a hash index because

of its ability to support range queries as well as "exact match" lookups. For example, the Btree

index can be used in the implementation of a list comprehension query (as we shall see shortly)

that finds all students with birthdates in a particular range of values, while a hash index is of

no use in such a query. This is because the entries in a Btree are maintained in sorted (field)

order, while entries in the hash table are maintained in hash order. For the name field, on the

other hand, range queries are probably less likely and the increased efficiency of a hash index

over a Btree for unique field lookups makes it a more suitable choice.

Inverse field-mappings are translated to sv-invert and mv-invert, pre-defined procedures

which use these indexes to implement single-valued and multi-valued inversions, respectively.

For example, the expression:

(invert STUDENT NAME "John Smith")

is translated to:

91

(sv-invert atudent-id name-id "John Smith")

Procedure sv-invert takes a type id, a field id, and a field value, and returns the object with

the field value, if one exists, or a null object otherwise. Using a hash index, the complexity

of sv-invert above is 0(1). Using a Btree index, the complexity of sv-invert is, for almost

all practical purposes, 0(1) also, though with a larger constant factor. 3 For mv-invert, the

complexity is O(m) for both types of index, where mis the number of objects with the desired

field value.

A quick check is performed at run-time by sv-invert and mv-invert to determine which type

of index exists on a given field. Though this information could be added as a parameter at

compile-time, the overhead of the run-time check is insignificant, and by not compiling it in,

we retain the freedom to change the index structures without forcing recompilation.

In Chapter 6, we will see the dramatic impact that indexes have on performance.

4.2.4 Multi-Valued Fields and Type Extents

In the translation to the kernel language given in Section 3.3, explicit copying of multi-valued

field and extent lists was introduced to prevent the lists from being shared and modified indi

rectly through some other part of the database. Such copying is not actually necessary in AGNA

because field collections and extents are stored in a compact internal form, and the general list

representation is built in the volatile heap only when needed (e.g., when a multi-valued field is

selected and traversed). We will describe this more compact representation and the rationale

for it in the next chapter.

4.2.5 List Comprehensions

The translation scheme given in Section 3.3 rewrites a list comprehension to nested map and

append operations. For example, the comprehension:

(all (cons :x y)
(:x (ints-from 1 n))
(y (ints-from :x n))
(where (== 1 (gcd :x y))))

3 For example, if nodes in the tree are 8 Kbytes in size (the current node size used in AGNA) and field values
average thirty-two bytes in length, then a four-level Btree contains almost three billion entries, while a five-level
tree contains over six-hundred billion entries. Therefore, the number of levels that must be traversed (and hence
the complexity) is, for all practical purposes, constant.

92

that returns a list of pairs of relatively prime numbers between 1 and n, is translated to:

(flatmap (lambda (x)
(flatmap (lambda (y)

(if (== 1 (gcd x y))

(cons (cons x y) nil)
nil))

(ints-from x n)))
(ints-from 1 n))

Recall that flatmap applies a list-producing procedure to each element of a list, and returns an

appended list of the results. The procedure applied by the outer flatmap produces, for a given

x, the list of pairs that satisfy the filter (i.e., are relatively prime). As these intermediate result

lists are produced for each value of x, they are also appended together to form the final result.

The procedure applied by the inner flatmap evaluates the filter expression for a given x and y,

and produces a singleton list containing the pair if the filter is true, or nil if it is false. These

singleton lists are appended together by the inner flatmap to form the intermediate result lists

which are, in turn, appended together by the outer flatmap.

While the translation scheme above is simple and elegant, it includes costly construction

and appending of intermediate result lists. The translation scheme actually used in the AGNA

compiler avoids this overhead by building the result list directly. This is accomplished by

extending the tail of the result list as each output element is generated. For example, let us

assume that le points to the tail (i.e., last cons-cell) of the result list, and that we wish to add

a new output element (x,y). As shown in Figure 4.2, the result list is extended by allocating

a new cons-cell le', storing a reference to it in the tail of le, and defining its head to be (x,y).

Note that the tail of le' is left undefined. This kind of list extension is performed by the

following function, which adds an element z to the last cons-cell of a list:

(define extend-list
(lambda (z le)

(letrec ((c (allocate LIST)))
(update c LIST HD z)
(update le LIST TL c)
c)))

After all elements of the result list have been added in this manner, the list is terminated by

storing nil in the tail of the last cons-cell.

We can use extend-list to translate a simple list comprehension such as:

93

to:

• •

(x,y)

lc:~c':hr

·~--¥J
(x, y) (x,y)

Figure 4.2: Extension of result list.

(all :z:

(:z: (ints-from 1 n))
(where (odd? :z:)))

(letrec ((r (allocate LIST))
(f (lambda (1 le)

(if (nil? 1)

le
(f (tl 1) Cletrac ((:z: (hd 1)))

(if (odd? :z:) (extend-list x le) le)))))))
(update (f (ints-from 1 n) r) LIST TL nil)
(tl r))

The translation allocates an empty cons-cell r, from which the result list is grown. Tail-recursive

procedure f is applied to the list of integers returned by ints-from, and r. During each iteration,

f evaluates the filter expression for the current :z:. If the predicate evaluates to true, then the

result list is extended (by x) in the next iteration. When the iteration is complete (i.e., (nil? 1)

is true), the last cons-cell of the result list is returned to the body of the letrec, where it is

terminated by storing nil in the tail. The final result list is then simply the tail of r, the initial

cons-cell.

Non-strictness in the AGNA transaction language is exploited in two important ways by

this translation. First, non-strictness of data objects is what allows us to extend the result

list incrementally. Under strict evaluation, this translation is simply not possible because

there is no way for extend-list to allocate and return a new cons-cell before defining both of

its fields. Second, as soon as the tail of initial cons-cell r is defined, then the result of the list

comprehension (i.e., (tl r)) can be returned and passed along to consumer computations. Such

consumer computations, then, may execute concurrently with construction of the remainder of

the list.

94

The translation scheme used above can be extended easily to handle comprehensions with

nested generators. We simply need to pass the last cons-cell into the innermost iteration where,

again, extend-list is used to grow the result list. For example, the list comprehension:

(all (cons x y)

(x (ints-from 1 n))
(y (ints-from x n))
(where (== 1 (gcd x y))))

is translated to:

(letrec ((r (allocate LIST))
(f2 (lambda (x 1 le)

(if (nil? 1)

le
(f2 x (tl 1) (letrec ((y (hd 1)))

(f1 (lambda (1 le)
(if (nil? 1)

le

(if (== 1 (gcd x y))

(extend-list (cons x y) le)
le))))))

(f1 (tl 1) (letrec ((x (hd 1)))

(f2 x1 (ints-from x n) le)))))))
(update (f 1 (ints-from 1 n) r) LIST TL nil)
(tl r))

This translation has the same top-level structure as the previous one, except that two local

functions are used (f 1 and f2) instead of one (f). Local procedure f 1 iterates over the list of

integers from 1 ton and, for each x in the list, calls f2 to iterate over the associated list of y's.

The current tail of the result list (le) is threaded through f1 to f2, where it is extended for

each binding of x and y that satisfy the filter expression. As before, the list is terminated in the

body of the top-level letrec, and the final result is the tail of initial cons-cell r.

4.2.6 Phase One Optimizations

While the translations given above are optimal in the sense that they allocate exactly one

cons-cell per element of the result list (after allocation of initial cell r), they can be improved

considerably by both algebraic and implementation-based transformations. In this subsection,

we describe these improvements. In the next chapter, we describe additional list comprehension

improvements that are performed within the run-time system.

95

Performing Filters As Soon As Possible

An important improvement, especially in comprehensions that involve base extents, is to apply

filters as soon as possible. For example, the comprehension:

(all e.,,11

(:z: (11.ll T1))

(y (11.ll T2))

(where (and e., e1)))

is translated to:

(11.ll e.,,11

(:z: (all T1))

(where e.,)
(y (11.ll T2))

(where e11))

Here e,,,,y is an expression in :z: and y, and e,,, and ey are predicate expressions in :z: and y,

respectively. Since e,,, does not involve y, it is inserted as a separate filter qualifier immediately

after the generator introducing :z:. The advantage of this transformation is that it eliminates as

soon as possible bindings of :z: that do not satisfy predicate e,,,, thus avoiding bindings of y and

the associated predicate evaluations in the original expression that can't possibly contribute

to the result. For this translation to be valid in AGNA, predicate expressions e,,, and ey and

generator expression (all T2) must have no side-effects.

Combination of Unary Operations

A well-known algebraic transformation performed in relational database systems combines se

quences of unary operations, applying them as a group, in order to avoid multiple traversals

over large collections of data [79]. This general transformation is also useful for improving list

comprehensions and, in fact, is performed automatically in certain cases by the default trans

lation scheme. For example, consider the following query to find the names of all students with

a GPA of at least 3.9:

(all (select s STUDENT NAME)
(s (all STUDENT))
(where (>= (select s STUDENT GPA) 3.9)))

96

A straightforward translation of the query first filters the list of all students, producing an

intermediate list, over which the name selection function is then mapped.

(map (lambda (s) (select s STUDENT NAME))
(filter (lambda (s) (>= (select s STUDENT GPA) 3.9))

(all STUDENT)))

While this translation is simple and elegant, it can be improved by eliminating the construction

and traversal of the intermediate list. This is accomplished by combining the list filtering and

mapping, two unary operations, and performing them both in a single pass over the student list.

Here is a translation using the scheme described in Section 4.2.5 that includes this improvement.

(letrec ((r (allocate LIST))
(f (lambda (1 le)

(if (nil? 1)
le
(f (tl 1) (letrec ((s (hd 1)))

(if (>= (select s STUDENT GPA) 3.9)
(extend-list (select s STUDENT NAME) le)
le)))))))

(update (f (all STUDENT) r) LIST TL nil)
(tl r))

Local tail-recursive procedure f iterates over the student list, performing both the list filtering

and name selection in a single pass. The result list is grown incrementally from initial cons-cell

r using extend-list, and terminated in the body by storing nil in the last cell of the list.

Low-Level Filtering and Projection of Base Extents

For the filtering and transformation of an arbitrary list of objects, the previous translation is

optimal with respect to the number of cons-cells used to construct the result list (exactly one

per result element after allocation of initial cell r). The value of the expression (all STUDENT) is

obtained by scanning over the file that stores student objects and building a list in the volatile

heap. When this list is available, it is then filtered and transformed in one scan.

However, a substantial improvement in performance can be obtained when the generator

expression is a base extent and the filters are simple predicates on the object fields. In this

case, the filtering may be performed during file scanning, avoiding even the construction of the

original list.

As in all database systems, AGNA is based on an "object storage system" that implements

97

files and file scanning. The services provided by this module are similar to those provided in

the Research Storage System (RSS) in System R [6], and WiSS, the Wisconsin Storage System

[26]. The object storage system implements sequential object files, secondary Btree and hash

indexes, sequential and index object scans with predicates, and management of the cache of

file pages. All persistent data access is performed through the object storage system, thereby

insulating higher levels of the system from details of secondary storage such as data layout,

whether access is through the OS file system or directly to a raw disk, etc.

The scan predicates supported by the object storage system are lists of conditions of the

form F 0 v, where Fis a field name, 0 is a relational operator such as equality, and vis a value.

We do not allow arbitrary AGNA predicates to be evaluated during the file scan because we

would like predicate evaluation to be "quick", i.e., matched to the speed at which the file scan

is performed.

In the example query above, the condition describing the students of interest (GPA 2:: 3.9)

is suitable for translation to such a low-level predicate, which we can then use in the scan of

the student file. 4 By performing the filtering within the storage system, a compact internal

representation of the student extent is scanned and filtered in an efficient manner. Also, the file

scanning function has the capability of performing simple projections on object fields. Thus,

we may also push the final projection on the student name field down into the scan operation.

Here is a translation that incorporates these improvements:

(letrec ((pred (cons (make-condition gpa-id ">=" 3. 9) nil)))

(fil ter-ertent atudent-id name-id acceu-path pred))

The extent filtering and projection are performed by primitive procedure filter-extent, which

takes type and field identifiers, an access path (to be described soon), and a predicate, i.e.,

a list of condition objects. In this case the predicate consists of a single condition, which is

created by procedure make-condition. Filter-extent scans the student extent and produces a list

of names of students that satisfy the condition on GPA.

Use of Indexes

One of the most important optimizations performed by relational systems is the use of efficient

index structures. Studies of relational systems have shown that the effective exploitation of

4 ln Chapter 5, we describe in detail the mapping of persistent objects to disk files.

98

indexes is essential for achieving good performance for a range of queries [17]. The experimental

results presented in Chapter 6 indicate that the effective use of index structures is equally

important for implementing list comprehension queries efficiently.

As discussed earlier, the object storage system in AGNA supports two types of indexes

Btree and hash. For example, if the student type were defined as follows:

(type STUDENT (extent)
((name <=> STRING)
(status => STRING)
(gpa => FLOAT)
(address => STRING)
(bdate •<=> INTEGER (index btree))))

then two indexes would be created: a hash index on name, and a Btree index on bdate. For a

query which accesses the student extent, there may be multiple "access paths" to the data. For

example:

(all (select s STUDENT NAME)
(s (all STUDENT))
(where (and (>= (select s STUDENT GPA) 3.9)

(< (select s STUDENT BDATE) 720101))))

There are at least two ways to implement this query: (1) scan the student extent applying a

predicate consisting of both conditions; and (2) use the index on bdate to locate students with

birthdates before 1/1/72, then apply the condition on GPA to the corresponding objects in the

base extent.

Our compiler uses the following heuristics, listed in order of preference, to select an imple

mentation strategy.

l. If a condition of the form F = v exists on a field with a hash index, then use the index to

find all objects with value v. Apply the remaining conditions to the objects returned. If

conditions exist for more than one such field, then choose a <= field (unique inverse) over

a •<=field. If more than one possibility still exists, then pick one arbitrarily.

2. If a condition of the form F () v exists on a field with a Btree index and () is not the

inequality operator, then use the index to find objects satisfying all such conditions on

F. Apply the remaining conditions to the objects returned. If conditions exist for more

than one such field, say F1 and F2 , then use the following four steps to select one. (1) If a

99

condition involving the equality operator exists for one field and not the other then choose

the field with the equality condition. (2) If one field has a single-valued inverse (<=) and

the other has a multiple-valued inverse (*<=), then choose the one with the single-valued

mverse. (3) Choose more restrictive condition sets over less restrictive ones. For example,

F1 > v1 and F1 < v2 is more restrictive than F2 > v1 . (4) Pick a field arbitrarily.

3. If Rules 1 and 2 are not applicable, then simply scan the entire extent for objects which

satisfy all conditions.

More sophisticated strategies are certainly possible, taking into consideration such things as

the number of objects in the base extent, histograms describing distributions of field values,

etc.; AGNA does not currently implement them.

The access path selected by the compiler is passed as arguments to filter-extent indicating

the unique field identifier and the type of index to use (there may be more than one). For the

example query above, all students with birthdates in the desired range are located first using

the index, and then the condition on GPA is applied. Here is the translation:

Cletrac ((pred (cons (make-condition gpa-id ">=" 3. 9)
(cons (make-condition bdate-id "<" 720101) nil))))

(fil tar-extent atudent-id name-id bdate-id BTREE pred))

Filter-extent takes the id of the extent to filter, the field onto which the result objects are

projected, the field and index of the access path, and the predicate. As described previously,

both the filtering and projection are implemented within the object storage system, rather than

explicitly materializing lists and then filtering and transforming them.

4.3 Phase Two: Translation to DFPGs

Phase two of compilation translates the text output of phase one to a dataflow program graph

(DFPG) [76]. A DFPG is, roughly, a "data-driven" representation of the abstract syntax tree.

Many other parallelizing compilers start with a control flow graph of a sequential program

and, using extensive dependence analysis, attempt to extract some form of dataflow graph,

because this is widely recognized to be the "most parallel" representation of the program (see

[9, 14, 36]). Unfortunately, this analysis is very complicated, primarily due to the underlying

imperative model of computation.

100

In AGNA, it is possible to go directly from the source language to a dataflow graph, precisely

because of its non-imperative model. For example, a select operation in procedure A that reads

from a particular field of a data object does not have to be sequenced by graph edges with

the corresponding update operation, which may even be in another procedure B, because the

compiler can assume that the select automatically blocks until the corresponding update has

executed. This assumption depends critically on single-assignment semantics.

Translations used in phase two of compilation are based largely on methods described by

Traub in [76]. Readers familiar with this material may wish to skip to Section 4.3.6, where we

describe a new dataflow graph optimization involving tail-recursive functions.

4.3.1 Simple Expressions

Expressions involving primitive operations such as arithmetic, logical, and relational operators

are translated to dataflow graphs in a straightforward manner. For example, the graph for the

following expression:

(• (+ x y) (- x y))

is shown in Figure 4.3. The graph consists of three instructions, each specifying an opcode, and

input and output arcs. Data values are carried on tokens, which flow along the output arc of

one instruction to the input of another. In AGNA, the data values are either constants, such as

numbers and booleans, or references to heap-resident objects.

Instructions may execute only when their firing rule is satisfied. The firing rule for strict

primitives such as+ states that the instruction may execute only when both inputs are present,

i.e., tokens have been placed on both input arcs. Execution of an instruction consumes input

tokens, possibly produces side-effects, such as allocation of a new heap object, and generates

new tokens that are placed on output arcs. The +, -, and* instructions produce output tokens

that carry the sum, difference, and product, respectively, of their inputs.

Dataflow graphs capture all of the fine grain parallelism of the source language, and make

explicit any data dependences and multiple uses of a variable. When x and y are available,

the addition and subtraction may execute either serially or in parallel-the relative execution

order of the two instructions is left unspecified. The * instruction, because it depends on data

produced by+ and -, may not execute until both have placed tokens on their output arcs.

101

x y

Figure 4.3: Dataflow graph for(* (+ x y) (- x y)).

4.3.2 Object Manipulation

Object allocation, and field update, insertion and deletion, are translated to the primitive graph

instructions that perform these operations. For example, the dataflow graph for the following

expression:

(letrec ((c (allocate-object list 2))

(x1 (update-field c list 0 h))
(x2 (update-field c list 1 t)))

c)

is shown in Figure 4.4. The expression allocates a list object c, updates its fields, and returns a

reference to the new object. Inputs to the graph provide hand t, the head and tail of list, and

CONSTANT instructions provide the necessary constants. Outputs are the list-carrying result token

produced by ALLOCATE-OBJECT, and the tokens produced by each of the UPDATE-FIELD instructions.

CONSTANT("list") CONSTANT(2)

ALLOCATE-OBJECT

Ob;jed 'I}lpe Field Value Ob;jed Type Field Value

UPDATE-FIELD UPDATE-FIELD

Result

Figure 4.4: Dataflow graph for list construction.

102

Synchronization between the UPDATE-FIELD instructions and any SELECT-FIELD instructions that

read fields of the new object is performed automatically by the instructions themselves. In other

words, if a field selection happens to execute before the corresponding update operation, then

it automatically blocks until the field is written, after which the field value is returned. Thus,

we are free to execute field update and selection instructions in any order.

4.3.3 Triggers and Signals

Some instructions, such as the CONSTANT instructions of Figure 4.4, have no "normal" inputs. But

without inputs, how can we give a firing rule for such instructions? To address this issue, we

add to the graph arcs along which special trigger tokens flow. Such tokens carry no meaningful

value, but serve only to initiate execution of an instruction. When the graph is augmented with

trigger arcs (see Figure 4.5), the firing rule for CONSTANT may be stated simply: the instruction

executes when its trigger input token is available.

Note that the result of the graph (i.e., list object c, the output of ALLOCATE-OBJECT) does

not depend on field values h and t. As soon as the trigger input is available, CONSTANT(2) and

CONSTANT("list") may execute and place tokens on their output arcs. These tokens, in turn,

initiate execution of ALLOCATE-OBJECT, which allocates a list object in the heap, and produces the

result token that carries a reference to the new object. This result can be produced before fields

in the new object are updated, and even before field values h and t are available.

Another issue that arises from the graph of Figure 4.4 is what to do with outputs of the

UPDATE-FIELD instructions? It is clear that the output arc of ALLOCATE-OBJECT is to be connected

to the instruction that consumes the result, i.e., the expression in which the original letrec is

embedded. But what about the outputs of UPDATE-FIELD? While such outputs do not contribute

directly to the result of the expression, it is nevertheless useful to know when they are available.

For example, if the letrec expression is in the body of a procedure, then we may wish to

free resources allocated to the procedure when all computation in the body has terminated,

i.e., when the result and both UPDATE-FIELD outputs are available. To enable this detection

of termination, we add to the graph a SIGNAL-TREE instruction that collects the UPDATE-FIELD

outputs, and emits a signal token when they are both present (see Figure 4.5). Like trigger

tokens, signal tokens carry no meaningful value. When both the result and signal outputs are

present, all computation in the graph is terminated.

103

Trigger

CONSTANT ("list") CONSTANT (2)

Object TllPe Field Value Object TllPe Field Value

UPDATE-FIELD UPDATE-FIELD

SIGNAL-TREE

Result Signal

Figure 4.5: Dataflow graph for list construction with triggers and signals.

4.3.4 Procedure Definition and Application

Procedure definitions are translated to LAMBDA instructions. For example, the definition of cons:

(lambda (h t)

(letrec (Cc (allocate-object list 2))
(x1 (update-field c list 0 h))

(x2 (update-field c list 1 t)))
c))

is translated to the dataflow graph shown in Figure 4.6. The LAMBDA instruction encapsulates

the body expression (shown previously in Figure 4.5), providing it with a trigger input, and

arguments h and t. The RESULT-RETURN instruction receives the result of the body expression

(i.e., a reference to the new list object), and returns it to the caller of the procedure. When

both the result and signal outputs are present, SIGNAL-RETURN propagates the termination signal

back to the caller, and resources allocated to the procedure are freed. Resources are deallocated

by the callee, instead of the caller, because this enables optimization of tail-recursive calls, as

we shall see in Section 4.3.6.

A LAMBDA instruction is connected to the graph in which it is embedded via external Trigger

and Result arcs (see Figure 4.7). The firing rule is: when the trigger token arrives, an object

104

LAMBDA
Thgger h.

SIGNAL-RETURN

Signal

Figure 4.6: Dataflow graph for procedure cons.

representing the encapsulated procedure is created in the heap, and a token carrying a reference

to it is placed on the Result output arc.

Trigger

LAMBDA
Result

Figure 4. 7: External view of LAMBDA instruction.

Procedure applications are translated to APPLY. 5 For example, translation of the list con-

st ruction:

(cons 10 nil)

is shown in Figure 4.8. APPLY takes as input the procedure object and two arguments, and

produces as output the result and signal. The non-strictness of applications is embodied in

the firing rule for APPLY, which requires only that the procedure input be present before the

instruction begins executing. Thus, when the cons input is present, APPLY allocates a new

instance of the procedure body, and initiates execution with a trigger token. When argument

6 ln this work, we consider only the application of a procedure to all of its arguments, i.e., a full application.
Compilation methods for partial applications or curried functions are well understood for declarative languages
such as ours (see [59, 76)), and we do not explore them here.

105

inputs are available, they are simply passed on to the procedure body. When cons returns a

value (which, as we have already seen, may be before field values h and t are available), it is

placed on the Result output arc. When the signal token is returned, it is placed on the Signal

output.

cons 10 nil

Procedure Arg1 Arg2

APPLY

Figure 4.8: Datafl.ow graph for (cons 10 nil).

In our description of procedure application, we have been quite vague about the linkage

mechanism, saying things like the caller "initiates execution" of the body, and arguments are

"passed on to the procedure". The reader can rest assured that we will make all of these

details explicit in Section 4.5, when we describe the translation of datafl.ow graphs to P-RISC

instructions.

4.3.5 Miscellaneous

Conditionals

Conditional expressions are translated to IF, an instruction that encapsulates the "then" and

"else" clauses. For example, the conditional:

(if (p x) 0 (+ x x))

is translated to the graph shown in Figure 4.9. Incoming external arcs provide the value of

predicate expression (p x) and free variable x. A trigger token and the free variable are routed

either to the then or else arm of the conditional, depending on the predicate value. Result

and signal outputs from the selected arm are placed on the corresponding external Result and

Signal output arcs.

106

(p x) x

IF Predicate FV1

ThenThgger ThenFV1 EluThgger ElseFV1

CONSTANT(O)

SIGNAL-TREE SIGNAL-TREE

Then.Result ThenSignaJ ElseSignal El•eResult

Result Signal

Figure 4.9: Dataflow graph for (if (p x) 0 (+ x x))).

Like procedures, conditionals are non-strict. The firing rule for IF requires only that the

predicate value be present before an arm of the conditional is selected and execution initiated

via the trigger token. When free variable inputs arrive, they are passed on to the appropriate

arm. In the graph of Figure 4.9, for example, if the predicate is true, then o can be produced

immediately by the conditional, even before x arrives.

Top-Level Name Lookups

Lookups in the top-level database environment are translated to LOOKUP. For example, a reference

to top-level name begin-transaction is translated to the graph shown in Figure 4.10.

CONSTANT("begin-transaction"

Figure 4.10: Lookup of top-level name begin-transaction.

107

Seq Forms

Expressions in a seq form are sequenced through the use of SIGNAL-TREE and IDENTITY instructions.

For example, the expression:

(seq (f x) x)

is translated to the graph shown in Figure 4.11. Procedure f is applied to argument x, and the

result and signal outputs are collected by SIGNAL-TREE, which passes a signal on to IDENTITY when

both inputs are present. When its two input tokens are available, IDENTITY passes on its first

(i.e., x), which is the value of the expression. Note that seq is hyper-strict in that the second

expression (x) may not begin executing until the first expression produces both a result and a

signal, not just a result.

f x

Procedure Arg1

APPLY
Result Signal

SIGNAL-TREE

Figure 4.11: Datafiow graph for (seq (f x) x).

Transactions

Transactions are translated to XACT, an instruction that encapsulates the transaction body. For

example, transaction:

(xact
(seq

(begin-transaction)
(print x)
(end-transaction)))

108

is translated to the graph shown in Figure 4.12. The XACT instruction provides a trigger input

that initiates lookup of top-level identifier begin-transaction, and a signal input port that accepts

the signal indicating that all execution in the transaction body has terminated.

XACT Trigger

CONSTANT("begin-transaction") CONSTANT("x") CONSTANT("end-transaction")

APPLY APPLY
IleauJt Signal Ile suit Signal

SIGNAL-TREE SIGNAL-TREE

Signal

Figure 4.12: XACT datafiow graph.

4.3.6 Phase Two Optimizations

Tail Recursion

A significant optimization performed by the AGNA compiler on datafiow graphs involves tail

recursive functions. Consider the definition of procedure foldl:

(define foldl
(lambda (f v 1)

(if (nil? 1)

v
(foldl f (f v (hd 1)) (tl 1)))))

Recall from Chapter 2 that foldl takes a binary combining function f, an initial value v, and a

list of values 1, and produces an accumulated value. During each invocation in which 1 is not

empty, foldl recursively calls itself, passing f, the new accumulated value, and the tail of 1.

The datafiow graph of foldl is shown in Figure 4.13. Let us focus on the APPLY instruction

in the body that implements the recursive call to foldl. APPLY allocates a new instance of foldl,

passes to it trigger and argument tokens, and receives from it result and signal tokens. The

result and signal tokens, in turn, are passed across the bottom arm of the IF instruction to

109

RESULT-RETURN and SIGNAL-RETURN, which return them to the appropriate input ports of the APPLY

instruction that invoked the procedure. Thus, the computation unfolds as shown in the example

of Figure 4.14: the first instance of the body invokes the second, and so on, until the recursion

ends in the nth instance, at which point the final accumulated value and termination signal

are propagated back through each instance to the original caller. Note that even though foldl

is written in a tail-recursive manner, its execution, as just described, consumes O(length(l))

resources, i.e., one instance of the procedure body for each element of 1.

LAMBDA

IF

Thgger I

I
ThenTrigger Then-/ Then-ti Then-I

ThenSignaJ Then.Result

Result

RESULT-RETURN

ti

ti Predicate

Else Trigger Else-/ Else-t1 Else-I

Signal

ElseResult

Signal

Figure 4.13: Datafl.ow graph of procedure foldl.

A modification of the procedure linkage mechanism enables foldl to execute using less than

O(length(l)) resources. As before, the APPLY in instance i allocates instance i + 1, and passes to

it trigger and argument tokens. However, instead of receiving from it and propagating a result

token as before, APPLY instructs instance i + 1 to return its result directly to the instruction

110

···~
termination

signal

Figure 4.14: Unfolding of computation for (foldl + 0 1).

waiting for the result of instance i. Also, the SIGNAL-RETURN instruction in instance i is instructed

to send its termination signal forward to instance i + 1, rather than back to instance i - 1 as

before. With this new linkage mechanism between instances of foldl, the computation unfolds

as shown in Figure 4.15: the first instance invokes the second, and so on, until the recursion

ends, at which point the accumulated value is returned directly to the original caller of foldl.

The termination signal is propagated forward, and also returned directly to the original caller

when the recursion ends.

Figure 4.15: Modified unfolding of computation for (foldl + 0 1).

This new foldl computation is potentially more efficient than the old one because instance

i, after invoking instance i + 1 and sending its termination signal, may free resources allocated

to it. Thus, regardless of the length of list 1, the entire computation can execute using only a

fixed set of resources. Whether or not this actually happens in an implementation is a function

of the order in which instructions are actually executed. As we shall see in the next chapter,

the scheduling strategy used by the AGNA implementation ensures that a common class of

tail-recursive functions does execute using a constant amount of resources.

To implement the linkage scheme described above, we introduce a new dataflow graph

instruction called TAIL-APPLY. How do we know when to use this new instruction? After the

graph is generated, using APPLY for all applications, we simply search it and replace all sub

graphs matching the left side of Figure 4.16 with the instruction shown on the right. In other

111

words, we use TAIL-APPLY in those situations where the result of an application is immediately

returned as the result of the procedure in which the application is performed. Note that the

body of foldl, shown previously in Figure 4.13, does not contain a sub-graph of this form, even

though the result of the recursive application inside the conditional is ultimately returned as the

result of foldl. To accommodate such tail-recursive functions, we preprocess the graph before

searching it, and propagate RESULT-RETURN inside encapsulator instructions such as IF. Inside the

IF, a RESULT-RETURN is inserted into each branch of the conditional between the result-producing

instruction and the internal result input port.

-
Figure 4.16: Introduction of TAIL-APPLY.

Like APPLY, TAIL-APPLY is non-strict in that it may fire as soon as the procedure input is

available. Execution of TAIL-APPLY involves the following actions (say f calls g):

1. Allocation of a new instance of g's body and initiation of execution via a trigger token.

The input ports to which g is to return its result and signal (which are stored in the

execution environment established by f for g) are set to the input ports to which f is to

return its result and signal. Finally, the input port to which f is to send its termination

signal is updated to a new signal input in g (to be described soon). The signal token

is not actually generated, however, until f executes SIGNAL-RETURN, which determines the

destination by accessing return information stored in f's execution environment.

2. When argument inputs are available, they are passed on to the procedure body.

3. When step one is complete and all arguments are transmitted, a token is placed on the

Signal output arc of the TAIL-APPLY instruction, indicating that the tail call has completed.

Finally, we need to add a new signal input port to each procedure, as mentioned in step

one above, to ensure that a procedure invoked via TAIL-APPLY does not complete and send a

termination signal prior to completion of its caller. We do this by requiring that a token be

112

present on the new signal input before SIGNAL-RETURN is allowed to fire. The final graph of foldl,

including this additional signal input and the TAIL-APPLY optimization, is shown in Figure 4.17.

Note that the signal input must be present even if the procedure is not invoked by TAIL-APPLY;

thus, we need to modify APPLY to generate a trigger and a signal token after allocating a new

instance of the body. While generation and handling of the signal token adds a small overhead

to normal procedure applications, the benefits of TAIL-APPLY far outweigh this cost.

LAMBDA
Trigger Signal I II

IF I
Th.enTngger Th.en-/ Th.en-11 Th.en-I

RESULT-RETURN

Th.enSignaJ Th.enResult

Result

ElseResult

Signal

SIGNAL-RETURN

Signal

Predicate

Else-11 Else-I

SIGNAL-TREE

Else Signal

Figure 4.17: Graph of foldl including TAIL-APPLY and Signal input.

Common Sub-Expressions

Two types of common sub-expressions are identified during translation to datafl.ow graphs:

constants and references to top-level database names. Lists of constants and top-level names

113

already translated are maintained for each scope, and subsequent uses of a constant or name

present in these lists simply attach a new arc to the appropriate graph instruction, rather than

generating an entirely new instruction. Thus, all uses of a constant or top-level name in a scope

are connected to the same graph instruction.

4.4 The P-RISC Abstract Machine

In the preceding sections, we described the first two phases of compilation: source-to-source

translation of the original transaction text, and then translation to dataflow graphs. We now

describe the final target of compilation, which is a multi-threaded RISC-like abstract machine

called P-RISC (for "parallel RISC"). In Section 4.5, we complete our description of the AGNA

compilation process by describing how dataflow graphs are translated to P-RISC code.

At this point the reader may wonder why we include the P-RISC machine in the compilation

process. For example, why not compile dataflow graphs directly into native machine code? We

chose the P-RISC machine as the target of compilation because at the time the compiler was

written, we had not yet decided on a multiprocessor platform on which to run AGNA, and even

if we had, we wanted the flexibility to experiment easily with different platforms. The P-RISC

model provides a complete, machine-level description of the program which makes explicit the

key features of our computational model: fine grain multi-threading, data-driven execution,

and split-phase actions to tolerate long latencies. A program expressed as P-RISC code can

be translated to native machine code for execution, interpreted in software, or perhaps even

executed directly in hardware.

Many machine-level details hidden by dataflow graphs are made explicit in the P-RISC

abstract machine. For example, we shall now see the details of how the caller of a procedure

establishes an execution context for the body, initiates execution, and passes arguments. Other

details, however, such as the organization of secondary storage, and the distribution of compu

tation and data across a parallel machine, are not addressed here. These will be addressed in

the next chapter, where the abstract machine is mapped to a concrete architecture.

The P-RISC machine consists of a pool of active thread descriptors and separate memories

for frames and the heap (see Figure 4.18). Each thread is described by a pair: an instruction

pointer (IP) and a frame pointer (FP). IP points to the current instruction, which resides in

the code section of a heap-based procedure or transaction object, and FP points to a frame.

114

Like conventional activation records, frames are allocated and deallocated as part of procedure

call and return, and provide local storage for arguments and computations in a procedure

body. Frames are organized into a tree: there is a root frame for the transaction body, and

a frame for each outstanding procedure call. Multiple frames all throughout the tree can be

active simultaneously, and each frame can have many simultaneously active threads. This is in

contrast to the traditional "cactus stack" model, where there can be only one thread active for

each branch of the cactus, which may contain several frames.

Pool of Thread Descriptors

Frame Memory Heap Memory

Figure 4.18: Organization of P-RISC abstract machine.

The machine operates by repeatedly extracting an active thread, executing its current in

struction, and adding to the thread pool zero or more successor descriptors. The strategy

for choosing the next thread to execute is not specified, and multiple threads may execute

concurrently.

Heap memory is a single-level, global store, part of which is volatile, and the remainder of

which is persistent. Thus, heap memory accoIIlIIlodates persistent objects part of the database,

as well as transient objects only used during execution of a single transaction. Heap memory

locations include extra status bits that indicate whether a location is full or empty. As we shall

see in a moment, the heap may be read and written using normal loads and stores, which ignore

115

these status bits, and synchronized loads and stores, which are used to implement the deferred

read, single-assignment semantics of the AGNA object model.

4.4.1 P-RISC Instructions

Following [59], we describe the semantics of P-RISC instructions in terms of state transitions on

frame memory, heap memory, and the pool of thread descriptors. In other words, for a thread

descriptor (FP, IP), we describe how execution of the instruction referenced via IP modifies frame

and/or heap memory, and the new descriptors, if any, that are added to the thread pool. We

use the notation Frames[FP+r] to refer to offset r in the frame referenced via FP, and Heap[j] to

refer to the jth location of heap memory.

Arithmetic, Logical, and Relational

The usual complement of arithmetic, logical, and relational instructions such as ADD, AND, NOT,

etc. are supported. Their syntax and semantics are standard:

Syntax Semantics
binop r1 r2 r3 Frames [FP+r1] <- Frames [FP+r2] binop Frames [FP+r3]

unop r1 r2 Frames [FP+r1] <- unop Frames [FP+r2]

LO ADC r1 c Frames [FP+r1] <- c

Thread descriptor (FP,IP+1) is added to the active pool in all three cases.

Control Flow

Both conditional and unconditional jumps are also standard:

Syntaz Semantic8
JMP L Add descriptor (FP ,L) to active pool
JMPF r L If Frames [FP+r] ==O

Add descriptor (FP, L) to active pool
Else

Add descriptor (FP,IP+1) to active pool

Other conditional jumps such as JMPT (jump "true"), are also supported.

The abstract machine supports three basic thread manipulation primitives:

-Syntaz Semantic8
FORK L Add descriptors (FP,L) and (FP,IP+1) to active pool

DIE Add no descriptor to active pool

JOIN r bn If bit n of Frames [FP+r] is one
Add descriptor (FP, IP+ 1) to active pool

Else
Add no descriptor to active pool

Toggle bit n of Frames [FP+r]

116

FORK spawns a new fine grain thread for the current frame by adding both (FP ,L) and successor

descriptor (FP,IP+l) to the active pool. DIE terminates execution of the current thread. JOIN

is used to combine and synchronize parallel threads, generating a successor descriptor only if

the join bit is set to one. For example, in the code below, threads Tl and T2 are combined and

synchronized by the JOIN instruction at label Ll:

Tl: 7. rl +- ei

JMP Ll

Ll: JOIN r3 bO 7. wait for ei and e1

ADD r4 rl r2

Tl and T2 compute the values of expressions e1 and e2 , place them in frame slots r1 and r2, and

transfer control to Ll. Tl transfers control via JUMP, while T2 simply "falls through" to Ll. The

join bit is initially set to zero. When JOIN is first executed (say, by Tl), the bit is set to one,

and no successor descriptor is generated, i.e., the thread is terminated. When T2 executes JOIN,

the bit is set back to zero, and the thread is allowed to continue with the addition. Note that

the two instances of the JOIN instruction must execute atomically to avoid a situation in which

both see the zero value of the join bit, and neither is allowed to continue.

Heap Access

The heap may be accessed via normal loads and stores, or synchronized loads and stores.

Normal loads and stores have the usual syntax and semantics:

Syntaz Semantic~

LOAD rl r2 Frames[FP+rl] <- HeapTFrames[FP+r2]]
STORE r1 r2 Heap[Frames[FP+r2]] <- Frames[FP+r1]

Successor thread descriptors (FP ,IP+1) are added to the active pool in both cases. The semantics

of synchronized loads and stores depend on the status bits of the location being accessed. If

a synchronized load (!LOAD) attempts to read an empty location, then it adds to the deferred

reader list stored at that location a triple consisting of its FP, IP+l, and frame offset. If the

location is full, on the other hand, then !LOAD behaves the same as LOAD and simply returns the

value stored there. A synchronized store (I STORE) writes a value in an empty location (an error

is raised if it is full), and unblocks any deferred !LOADS waiting there.

117

Syntaz -Semantic4
!LOAD r1 r2 Let A = Frames [FP+r2]

Case Heap [A] of
(Empty,l) * Heap[A] <- (Deferred,(cons (FP,IP+1,r1) 1))
(Full, v) * Frames[FP+r1] <- v;

Add (FP,IP+1) to active pool

I STORE r1 r2 Let v = Frames [FP+r1]
Let A = Frames [FP+r2]
Case Heap [A] of

(Empty,l) * Heap[A] <- (Full,v);
For each (FP', IP' ,r) in 1

Frames[FP'+r] <- v
Add (FP' , IP') to active pool

(Full,-) * Error

The reading and writing of heap location A in each case must be performed atomically.

Inter-Frame Transfers

In procedure call and return, it is necessary for the caller and callee to transfer between them

both control and data. The caller, for example, has to transfer arguments and return informa

tion to the callee's frame, and initiate one or more threads of execution in the body. The callee,

on the other hand, has to transfer back to the caller frame the result of the procedure, and

also initiate execution of threads receiving the result and signal of the application. Inter-frame

transfers of this kind are performed by STARTO and START1, which are defined as follows:

Syntaz Semantic'
STARTO r1 r2 Let FP' = Frames [FP+r1]

Let IP ' = Frames [FP+r2]
Add (FP,IP+1) to active pool
Add (FP' , IP') to active pool

START1 r1 r2 r3 r4 Let FP' = Frames [FP+r1]
Let IP' = Frames [FP+r2]
Let r = Frames [FP+r3]
Let v = Frames [FP+r4]
Frames[FP'+r] <- v
Add (FP, IP+1) to active pool
Add (FP' , IP') to active pool

4.4.2 P-RISC Managers

We also include in the abstract machine an extensible set of high-level "manager" instructions

performing such tasks as frame and object management. Each manager performs some func-

tion relative to zero or more inputs, and produces zero or more outputs. Managers may be

viewed either as complex instructions, or macros which the compiler expands to a sequence of

primitives. Below we describe only a few managers; a description of the complete set used by

the AGNA compiler is given in Appendix B.

118

Object allocation is encapsulated by ALLOCOBJ, which allocates and initializes a new object

in the volatile heap:

Tyntaz Semantics
ALLOCOBJ ri rj Let T = Frames [FP+ri]

Let S = Frames [FP+ri+1]
Allocate and initialize object in volatile heap of type T and size S
Let A be the address of this object
Frames[FP+rj] <- A
Add (FP, IP+1) to active pool

The initialization performed includes defining the object header and setting to "empty" all

field status bits. Like all managers, ALLOCOBJ receives its arguments in contiguous frame slots

beginning at ri, and returns its results in contiguous slots beginning at rj.

For convenience, field selection and update are also performed by managers. For example,

field selection is performed by SELECTF, defined as follows:

Syntaz Semantics
SELECTF ri rj Let Obj = Frames [FP+ri]

Let ObjType = Frames[FP+ri+1]
Let Offset = Frames [FP+ri +2]
Error checking:

1. Type check
2. Bounds check
3. Obj persistent and field undefined?

If error found
raise error

Frames [FP+rj] <- Obj + Offset
ILOAD rj rj

Arguments to SELECTF are the object, its type, and the field offset; the result returned is the field

value. SELECTF first checks for three error conditions: (1) an object not of the correct type; (2)

a field reference that is out of bounds (this condition may hold only if Obj is an array because

this is the only offset that is computed and not supplied by the compiler); and (3) a persistent

object with field at Offset that is undefined6 . If one of these conditions is found to hold, then

a run-time error is raised. Otherwise, the field address is built in slot rj and ILOAD is used to

access the field. If the field is not yet defined, then ILOAD will defer the operation as described

previously.

Frame allocation is also performed by a manager instruction:

6 This last condition is an error because field updates of persistent objects are only visible to subsequent
transactions and thus if SELECTF is allowed to continue, ILOAD will cause the transaction to deadlock.

119

-Synta:r: Semantica
ALLOCFRAME ri rj Let CallerFP = Frames [FP+ri]

Let ResultIP = Frames [FP+ri +1]
Let SignalIP = Frames [FP+ri +2]
Let ResSlot = Frames [FP+ri+3]
Let NumSlots = Frames [FP+ri +4]
Let FP' be address of new frame
Zero-out frame slots in FP'
Store in FP': CallerFP, Resul tIP, Signal IP, and Res Slot
Frames[FP+rj] <- FP'
Add (FP,IP+1) to active pool

Manager ALLOCFRAME allocates a frame as part of procedure application. Its arguments are: the

caller's FP, the IPs of the threads to receive the result and signal, the slot where the result of

the procedure is to be stored, and the size of the new frame. ALLOCFRAME allocates a frame of the

desired size, initializes its slots to zero, stores the linkage information, returns a pointer to the

new frame, and adds successor descriptor (FP, IP+1) to the active pool.

At the end of a transaction, all objects in the volatile heap that are reachable from the top

level database environment are moved to the persistent heap. Manager MKPERSISTENT performs

this low-level moving of objects to the persistent heap.

Synta:r: Semantica
MKPERSISTENT ri rj Let Obj = Frames [FP+ri]

Frames [FP+rj] <- Obj
Frames[FP+rj+1] <- false
If volatile?(Obj)

If alreadyMoved(Obj)
Frames[FP+rj] <- lookupPersistentAddr(Obj);

Else
LetA be address of persistent storage

copy(Obj,A);
Frames [FP+rj] <- A;
Frames[FP+rj+1] <- true;

Add (FP, IP+1) to active pool

A reference to the object to be moved is passed in slot ri and the persistent address is returned in

slot rj. An additional (boolean) result is returned in slot rj+1 indicating whether the persistent

address returned in rj was allocated by the current call to MKPERSISTENT (true) or a previous one

(false). 7 The first result is initialized to the object itself, and the second result to false. If the

object has already been moved to the persistent heap (tested by predicate alreadyMoved), then

the persistent address is looked up via lookupPersistentAddr and returned. Otherwise, storage is

allocated in the persistent heap, the object is copied, and the new persistent address and true

are returned.
7MKPERSISTENT may be invoked on the same volatile object more than once if it is reachable from multiple

points in the database. For example, if a transaction binds the same object to two different names in the top
level environment, then MKPERSISTENT is called two times on the object. To preserve the sharing of objects, the
persistent address of the object established in the first call must also be returned as the result of the second call.
The boolean result returned to the second caller (false} indicates that it is not necessary to search for volatile
objects in the graph of objects rooted at Obj. This is performed by the first caller of MKPERSISTENT. In the next
chapter, we give a complete description of the process by which objects are moved to the persistent heap.

120

4.5 Phase Three: Translation to P-RISC Code

The third and final phase of compilation generates P-RJSC code from dataflow graphs via a

three-step process:

1. Analysis of the graph to determine which pieces are worth doing in parallel and which

are best done sequentially.

2. Mapping of temporary storage implicit in the graph to frame slots. Such storage consists

of slots for synchronization, slots for values that are carried on tokens from one instruction

to another, and any slots needed internally by an instruction.

3. Nearly context-free expansion of each graph instruction to P-RJSC code.

We now examine each of these steps in turn.

4.5.1 Graph Analysis

The graph analysis performed by AGNA is based on a heuristic developed by Iannucci called

the Method of Dependence Sets (MDS) [44]. We first describe the motivation for such analysis

and then present MDS. Readers familiar with MDS may wish to skip to Section 4.5.2.

Motivation

Instructions in a datafiow graph may be viewed as independent tasks that execute when and only

when their required inputs are available. Synchronization of input values is performed implicitly

by the instructions themselves, i.e., when the necessary inputs are present, an instruction

schedules itself for execution. At a given instant of time, all instructions for which inputs are

available may execute.

In the generation of P-RJSC code, we can preserve all of the parallelism present in dataflow

graphs by translating each graph instruction to a corresponding P-RISC thread that performs:

(1) explicit synchronization of its inputs; (2) the operation specified by the graph instruction;

and (3) transfer of control to consumer threads. Using this translation scheme, the dataflow

graph of Figure 4.19 is translated to the following P-RJSC code:

X: {, r10 +--- x
FORK T1
JMP T2

121

Y: % r11 +-- y
FORK Tl
JMP T2

Tl: JOIN r9 bO % wait for x and y
ADD r12 r10 r11
JMP T3

T2: JOIN r9 bl % wait for x and y

SUB r13 r11 r12

T3: JOIN r9 b2 % wait for aum and difference
MUL r14 r12 r13

Computations that produce x and y place their values in frame locations rlO and r11, respectively,

and then transfer control to threads Tl and T2. When both inputs are available, the threads

perform the addition and subtraction, and transfer control to T3, where the multiplication is

performed.

x y

Figure4.19: Dataflowgraphfor (* (+ x y) (- x y)).

An alternative translation strategy is to combine Tl, T2, and T3 as follows:

X: % rl +-- x
JMP T

Y: % r2 +-- y

T: JOIN r9 bO
ADD r12 r10 r11
SUB r13 r10 r11
MUL r14 r12 r13

Here, explicit synchronization is again performed for inputs x and y, but then all three arith

metic operations are performed in sequence. While in this translation we give up the flexibility

122

to execute the addition and subtraction operations in any order (and possibly in parallel), the

instruction count is reduced considerably through the elimination of synchronization overhead

and transfers of control. Also, by reducing the number of transfers of control, pipeline per

formance is improved, and locality is enhanced so that it may be easier to store intermediate

results in high speed memory.

When is it beneficial to perform such sequentialization of operations? In the example above,

it is clearly worthwhile. If the addition and subtraction, however, were replaced by more

complex operations involving, say, disk accesses, then it may be advantageous to allow them

to be executed in parallel. In the AGNA compiler, we utilize a simple heuristic developed by

Iannucci called the Method of Dependence Sets (MDS) [44] to address this question. The net

result is, roughly, that parallelism is preserved between long-latency operations, and sequential

code is generated for connected subgraphs that do not involve such operations.

We decided to use MDS in AGNA because (1) it is simple and well understood; (2) it is

provably deadlock-free; and (3) its latency-directed approach seemed particularly appropriate

given the many long-latency operations in a parallel, persistent system. While a possible area

of future research, we have not undertaken in this work a thorough analysis of its strengths and

weaknesses relative to other approaches.

Method of Dependence Sets

MDS operates by dividing graph instructions into partitions in such a way that all instructions

in a partition Pi depend, either directly or indirectly, on the same set of long-latency outputs.

There are three basic kinds of long-latency outputs in the graph instructions used in the AGNA

compiler:

• Internal outputs of LAMBDA. Such arcs are considered to have a long latency because of the

non-strictness of procedure calls in AGNA.

• Outputs of APPLY .

• Outputs of manager instructions such as LOOKUP, SELECT-FIELD, UPDATE-FIELD, etc.

An example partitioning produced by MDS, shown in Figure 4.20, divides the body of the

procedure into partitions Pi, P2 , and P3 . Partition P1 contains the LOOKUP and CONSTANT instruc

tions, which depend only on the Trigger arc. Partition P2 contains the arithmetic instructions

123

and RESULT-RETURN, which depend on the long-latency outputs of the two LOOKUPS and the trigger.

Finally, partition P3 contains SIGNAL-RETURN, which depends on all of the long-latency outputs

in the procedure body.

LAMBDA
SignaJ

~------------.
CONSTANT("x") I .__ _ ___,.. __ __,

~LOOK~
/

r

I

Trigger

- - - ~ Partition P1

CONSTANT("y")
I

.______,___. _)
~ Partition P

2

1

~ RESULT-RETURN

SIGNAL-RETURN

'-- -

SignaJ

Figure 4.20: Partitioning of graph for (lambda () (* (+ x y) (- x y))).

This kind of partitioning is performed on the graph in the body of each procedure definition

(i.e., the instructions encapsulated by each LAMBDA), as well as the body of the top-level XACT.

The partitioning algorithm, applied to either LAMBDA or XACT, proceeds as follows: 8

1. Topologically sort instructions in encapsulator body.

2. Give each long-latency output in the graph a unique name.

3. For each instruction i, in topological order:

(a) Compute LLDS(i), the long-latency dependence set, as follows. Let J be the set

of instructions from which i receives input. Let 0 be the set of output arcs which

8 As described in [44], MDS works only on acyclic graphs, and thus cannot accommodate the graphs generated
by expressions such as (letrec ((c (f a b c))) c). Here, we assume all graphs are acyclic.

124

connect instructions in J to i.

LLDS(i) = (LJ LLDS(j)) U {o Io E 0 /\long-latency(a)}
jEJ

In words: LLDS(i) includes LLDS(j), for all instructions j from which i receives

input, plus all long-latency output arcs o which feed i directly.

(b) Place i in the partition with dependence set LLDS(i). If no such partition exists,

then create one.

After partitioning (and allocation of frame slots, to be described next), code generation is

performed within a partition by expanding, in topological order, each graph instruction to the

P-RJSC instructions that implement it. Explicit transfers of control to consumer instructions

and synchronization of inputs are performed only for data flowing along inter-partition arcs.

For example, for partitions P1 , P2 , and Pa, the order in which instructions are expanded, and

the explicit control transfers and synchronization are shown in Figure 4.21. In Pi, FORK is used

prior to the first LOOKUP to initiate concurrent execution of the remainder of the partition, and

both LOOKUPS transfer control to the start of P2 after execution. In P2 , after synchronization

of inputs, execution is completely sequential. Note that the - instruction does not need to

perform additional synchronization of its inputs x and y, nor do the LOOKUPs need to transfer

control directly to -. The sequentialization of instructions in P2 ensures that both inputs are

present when the subtraction is performed. Finally, Pa synchronizes its inputs and executes

SIGNAL-RETURN.

An important issue to consider when introducing additional execution constraints (e.g.,

sequentiality) not present in the source language is deadlock. For example, if we introduce a

new constraint that forces a SELECT-FIELD graph instruction to execute before the corresponding

UPDATE-FIELD, then the program will deadlock because the SELECT-FIELD will block indefinitely. In

[44] it is shown that the partitioning performed by MDS does not introduce deadlock.

Finally, we note that enhancements to the basic MDS Algorithm have been developed by

David Culler and his research group at U.C. Berkeley (67]. Additional analysis is utilized to

produce larger partitions, and extensions have been developed to partition cyclic graphs.

4.5.2 Frame Slot Allocation

After graph analysis, the next step in the generation of P-RJSC code from dataflow graphs is

the mapping of temporary storage implicit in the graph to frame slots. This storage includes

125

(rcO-:-sTANT~x~
I I

FORK Ll

JUMP L2 --~

LOOKUP

JUMP L2 -----~

Partition P1

r L; JOIN 1

RESULT-RETURN c JUM:_L3_----~

Partition P 2

Signal

c L3 • --;O~ :::'1
~I:A~RE:R=V

Partition P
9

Figure 4.21: Synchronization and control transfers for P1 and P2 •

slots for: (1) synchronization; (2) values that are carried on tokens; and (3) internal use by the

expansion of an instruction. We first describe the organization of frames, and then present the

algorithm for frame slot allocation.

Frame Organization

There are two different types of frames: transaction and procedure. Exactly one of the first

type is allocated per transaction execution, while one of the second type is allocated for each

application of a user-defined procedure. Both consist of a chunk of linearly-addressed memory.

Unlike the heap, frames are not accessed by synchronized reads and writes, so extra status bits

are not needed in frame memory.

The first two slots in a transaction frame (shown in Figure 4.22) contain constant o, and

a pointer to the frame itself. Because these values are used so frequently, slots for them are

allocated statically and they are written by the frame allocation manager. Instructions in the

body of the transaction may read from but not write to these slots. The remaining slots in the

frame provide dynamic storage for instructions in the transaction body.

The first six slots in a procedure frame (also shown in Figure 4.22) are allocated statically.

Again, the first two slots contain constant o and a pointer to the frame itself. The next four

contain the following return information: the caller's FP, the caller's result and signal IPs, and

the slot in the caller's frame where the result is to be stored. The next set of contiguous

126

0:

1:

2:

constant 0

self FP

first scratch slot

•
•
•

last scratch slot

0:

1:

2:

3:

4:

5:

6:

constant 0

self FP

caller FP

result IP

signal IP

result slot

first argument

•
•
•

last argument

first scratch slot

•
•
•

last scratch slot

Figure 4.22: Organization of transaction frame (left) and procedure frame (right).

slots contains arguments to the procedure and, as before, the remaining slots provide dynamic

storage for instructions in the body.

Algorithm

The algorithm for mapping graph storage to frame slots traverses the graph in a transaction

or procedure body and allocates, for each instruction, slot bits for synchronization, slots for

internal use, and slots for outgoing, value-carrying arcs. Simple static analysis is employed to

determine when an allocated frame slot is no longer accessible and thus may be reused safely.

Static techniques, however, may not always be sufficient to determine at what point in the

graph it is safe to reuse a frame slot, because the relative execution order of instructions may

be left unspecified by the compiler and determined only at run-time. For example, consider

slot ri which holds the result of ALLOCATE-OBJECT, shown in Figure 4.23. It is safe to reuse ri

only after all instructions Ji have executed and consumed its value, and for the reason just

described, this may not be determinable at compile-time. In the AGNA compiler, we identify

two common cases for which static analysis can determine when it is safe to reuse ri:

127

• There is only one consUIIler instruction, J 1 ; slot ri may be reused safely when J 1 has

consUIIled its value.

• All Ji reside in the same partition and are executed sequentially; slot ri may be reused

after the last Ji has executed.

Type Size

ALLOCATE-OBJECT
Result

ri

• • •

Figure 4.23: Reuse of result value in slot ri.

Another issue to consider is when slots used internally by an instruction may be reused.

For a strict instruction such as ALLOCATE-OBJECT, internal slots may be reused as soon as a result

token is produced. For a non-strict instruction such as APPLY, internal slots may be safely reused

as soon as a signal token is generated.

In AGNA, each input port of an instruction has associated with it two sets of slots, called free

and to-free, that are used by the compiler to propagate across the graph information describing

when a slot may be reused. The free set contains slots that are available for immediate reuse,

while to-free contains slots that are available for reuse by an instruction's successors. For

example, consider the graph shown in Figure 4.24. Result slot r12 and internal slot r13 are

allocated for use by ALLOCATE-OBJECT from the incoming free set. The free set passed on to APPLY

consists of unused free slot r14 and to-free slots r15 through r18. Slots r12 and r13 used by

ALLOCATE-OBJECT are placed in the to-free set passed to APPLY which, in turn, will place them in

the free set passed to its successors.

For non-strict instructions such as APPLY, unused free slots are passed on to consillilers of the

result output. IT there is more than one consUIIler, as shown in Figure 4.25, the slots are divided

evenly amongst them. Thus, free slots r16, r17, and r18 not used by APPLY are split between Ii

and 12. APPLY's internal slots are added to the to-free set of the input port connected to the

signal output. In the figure, it is assUIIled that the relative execution order of 11 and 12 is not

known at compile-time, and thus APPLY result slot r15 is not added to the to-free set of 11 or h-

128

free: {}
to-free: {}

free: {r12,r13,r14}

to-free: {r16, r16, r17, r18}

'I)/pe Size

ALLOCATE-OBJECT internal: {r13}
Result

r12

free: {r14,r16,r16,r17,r18}

to-free: {r12, r13}
~----~

APPLY

Figure 4.24: Propagation of free and to-free sets across ALLOCATE-OBJECT.

free: {r16, r17}
to-free:{}

free: {}

to-free: {}

free: {r12,r13,r14}

to-free: {r16, r16, r17, r18}

'I)/pe Size

ALLOCATE-OBJECT
Result

r12

internal: {r13}

free: {r11} free: {r14,r16,r16,r17,r18}

to-free: {r10} to-free: {r12, r13}
~------~

internal: {r11, r14}

free: {r18}

to-free:{}

Figure 4.25: Propagation of free and to-free sets across APPLY.

129

The rules for propagating free and to-free information can be summarized as follows. For

a strict instruction: to-free and unused free slots are split amongst successor free sets; internal

slots are split amongst successor to-free sets; and the result slot is added to the to-free set of

the last successor to execute, if this instruction can be identified statically (according to the

analysis described above). For a non-strict instruction: unused free slots are split amongst free

sets of consumers of the result; to-free slots are split amongst free sets of consumers of the

signal; internal slots are split amongst to-free sets of consumers of the signal; and the result

slot is added to the to-free set of its last consumer, again, if the instruction can be identified

statically.

The algorithm for allocating frame slots traverses the graph in an XACT or LAMBDA body in

topological order, and performs the following for each instruction I:

• Allocation of slot bits for explicit synchronization of inputs. Input ports requiring such

synchronization are exactly those identified by the graph analysis described previously in

Section 4.5.1. A unique label is also associated with each input port; these are used later

in the actual generation of P-RISC code.

• Compute set F REE(I) of slots available for reuse as follows. Let IP be I's input ports.

F REE(I) = LJ ip.free
ipEIP

Allocate from F REE(I) slots needed for results and internal use; if set is exhausted, then

allocate new, unused frame slots as necessary. Allocation of such slots is performed by

incrementing a "high water" mark, initially set to the first free slot in the frame.

• Propagate to I's successors free and to-free information as described above.

Allocation of synchronization bits in the first step is straightforward and proceeds as follows.

Before the graph traversal begins, the first scratch slot is allocated for synchronization, and a

marker indicating the number of bits used within the slot is set to zero. When the algorithm

needs to allocate synchronization bits, it simply increments the marker by the appropriate

number. If the marker happens to exceed the bit length of a slot (i.e., all bits in the current

slot are allocated), then a new, unused frame slot is assigned for synchronization, and the

marker is reinitialized to zero. Frame slots allocated for synchronization, and bits in such slots,

are never reused. 9

9 For the programs that we have compiled and run on our prototype system, which has 64 bit frame slots,
only rarely does a procedure or transaction body require more than one slot for synchronization.

130

The second step is complicated somewhat by the requirement of some instructions that

slots for internal use be contiguous. The reason for this requirement is that P-RISC manager

instructions, as described in Section 4.4, are passed arguments in contiguous frame slots.

4.5.3 Code Generation

After partitioning and frame slot allocation, the next and final step translates the dataflow

graph to P-RISC code by traversing the graph in the transaction body in topological order

and invoking an expander function on each instruction to generate the equivalent P-RISC code.

Results of the partitioning and slot allocation steps are stored in data structures representing

the graph and thus are available to the expander functions, of which there is one for each type

of instruction. An expander is solely a function of the instruction and its attributes (inputs,

outputs, partition, etc.) and has no global knowledge of the graph. Code produced by expander

functions is accumulated in partition objects created and added to the graph in the partitioning

step.

XACT

Signal

expansion
of

body

L: DEALLOCATE rl rl
DIE

Figure 4.26: Expansion of XACT.

P-RISC code of the transaction consists of the results of expanding the body, followed by

frame deallocation and thread termination as shown in Figure 4.26. Allocation of a frame for

the transaction is performed by the run-time system when the transaction object is loaded into

memory, and not explicitly by the transaction itself. Code associated with each partition in

the body is terminated with a DIE instruction prior to the appending of partitions to form the

final code sequence, so there is no danger that sequential flow of control in one partition will

incorrectly fall through and begin executing in another. The final transaction object, i.e., the

result of compilation, is structured as follows.

• Standard object header. This contains things like a pointer/data flag, type tag, etc.

131

• Frame size and base address. The frame size is used by the run-time system to allocate a

frame of the appropriate size prior to execution of the transaction body. The base address,

initially zero, is the heap address at which the transaction object is assumed to reside, and

is used by the compiler to construct intra-object pointers such as references to objects in

the static data area (described below). When the transaction object is assigned an actual

heap address at run-time, the base address and all intra-object pointers are updated.

• Code area. This contains P-RJSC code of the transaction.

• Static data area. This contains embedded data objects such as strings and procedures.

Synchronization and Transfers of Control

As described in Section 4.5.1, explicit synchronization of inputs and transfers of control to

consumer instructions are needed only for inter-partition arcs. Since these aspects of code gen

eration are identical for all strict instructions, they are not repeated in each instruction-specific

expander, but rather factored out and performed by procedures pre-expand and post-expand.

Thus, code generation for a strict instruction I actually consists of:

(1) pre-expand(/);

(2) instruction-specific expansion; and

(3) post-expand(/).

For example, consider the translation of SELECT-FIELD in Figure 4.27. Since SELECT-FIELD is a long

latency operation, procedure pre-expand adds a FORK to label L2 to initiate concurrent execution

of the remainder of partition P2 , and a JOIN instruction to synchronize the Object input using

the label, frame slot, and bit assigned to the input port during slot allocation. Note that

synchronization is not needed for the Type and Field inputs because they are produced within

the same partition, P2 . Line (3) contains code produced by the expander for the SELECT-FIELD

instruction; we will see soon how this and other object-manipulation instructions are translated.

Finally, post-expand adds a JMP to the consumer instruction in partition P3 and a NOOP as the

target of FORK in line (1).10

For non-strict instructions (APPLY, TAIL-APPLY, and IF), pre-expand and post-expand initiate

concurrent execution of the remainder of the thread as for strict instructions (lines (1) and (5)

10 All such NOOPs are eliminated during peep-hole optimization.

132

I
(r9, bl)

I L1:

Object Type Field

SELECT-FIELD

Result

p~
I

I ,.
I

_)

{1) FORK L2

{2) Ll: JOIN r9 bl

{3)

(4)

expansion of
SELECT-FIELD

JMP L3

(5) L2: NOOP

Figure 4.27: Explicit synchronization and control transfers.

in Figure 4.27), but do not add explicit synchronization or transfers of control to consumers.

These are handled by the expander functions themselves, to be described soon, because they

are different for each of the three non-strict instructions.

Constants

A CONSTANT graph instruction is expanded to LDADC, the P-RJSC instruction that loads a data

value into a frame slot. If a constant can fit in a single frame slot, such as an integer, then it

is included directly in the instruction as shown in Figure 4.28. Other constants, such as long

strings, are placed in the static data area and a pointer to them is loaded, also via LDADC.

CONSTANT(24) ~ LOADC r14 24

r14

Figure 4.28: Expansion of CONSTANT (24).

Primitive Applications

Expressions involving primitive operations such as arithmetic, logical, and relational operators

are expanded in the obvious way. For example, the + instruction is translated as shown in

Figure 4.29.

133

r1~r12
+

r16

ADD r15 r10 r12

Figure 4.29: Expansion of+.

Object Manipulation

Object allocation, field update, field insertion and deletion, field inverse-mappings, and other

kinds of object manipulation are expanded to code which places the arguments in contiguous

frame slots, and then calls the appropriate manager. For example, the SELECT-FIELD instruction

shown in Figure 4.30 calls manager SELECTF after copying its arguments to frame slots r11, r12,

and r13, the slots allocated for internal use.

Procedure Definition

Object Tl/pe Field

SELECT-FIELD
{r11, r12, r13}

Reault

r17

ADD
ADD
ADD
SELECTF

r11 rO r15
r12 rO r21
r13 rO r19
r11 r17

Figure 4.30: Expansion of SELECT-FIELD.

Expansion of LAMBDA recursively expands instructions in the body and packages the resulting

code into a procedure object with the same overall structure as the transaction object described

previously. The procedure object is placed in the transaction's static data area, and a reference

to it (i.e., the result of LAMBDA) is placed in the result slot via LOADC.

Result and termination signals produced by a procedure are returned via RESULT-RETURN

and SIGNAL-RETURN, respectively, whose expansions are shown in Figure 4.31. RESULT-RETURN is

translated to START1, which stores the result of the procedure in the caller's frame, and activates

the thread to receive this value. SIGNAL-RETURN is translated to STARTO, which activates the signal

receiving thread. Both instructions use the linkage information stored in frame slots r2 through

r5.

The structure of the code area of a procedure with two arguments is shown in Figure 4.32.

At the beginning is a thread-initiation table that contains one entry for each input to the body

134

rlO

RESULT-RETURN START! r2 r3 r5 rlO

SIGNAL-RETURN STARTO r2 r4

Figure 4.31: Expansion of RESULT-RETURN and SIGNAL-RETURN.

expression. As we shall see soon, callers of the procedure transfer control to instructions in this

table to initiate execution of trigger, signal, and argument threads in the body. Each entry in

the table is a JHP, whose target is either the consumer instruction itself, if there is only one, or

a dispatch area immediately following the table for initiating execution of multiple consumers

of an input. For example, argument x has multiple consumers as shown in the figure, and

execution is initiated by the FORK and JMP following the table. While the FORK and JMP could be

included directly in the thread-initiation table, this would complicate matters at the call site as

the offset for a thread in the body would, in general, have to be determined at run-time. If the

table contains only one entry per input, however, then offsets can be computed at compile-time.

LAMBDA
'IHgger z 11

L:

Signal

JMP Trig
JMP Sig
JMP x
JMP y

X: FORK A
JMP B

body

thread
initiation
table

initiate
consumers of z

L: DEALLOCATE rl rl
DIE

Figure 4.32: Organization of code in procedure body.

Code associated with each partition in the procedure body is terminated with a DIE instruc

tion prior to the appending of partitions to form the code sequence labeled body in the figure,

135

so as with transactions, there is no danger that sequential flow of control in one partition will·

incorrectly fall through and begin executing in another. At the Signal input port of the bottom

arm of LAMBDA, the procedure frame is deallocated, and execution is terminated.

P-RISC code generated for the SIGNAL-TREE instruction used in Figure 4.32 is produced

entirely by pre-expand and post-expand; its expander function generates no code. In other words,

the code for SIGNAL-TREE consists entirely of synchronization and transfers of control to successor

instructions.

Procedure Applications

Procedure applications in AGNA perform: synchronization oflong-latency inputs; allocation of

a new frame; transmission of linkage information and argument values; initiation of threads in

the procedure body; and setup of threads to receive the result and termination signal. Consider

the APPLY instruction in Figure 4.33 that applies a procedure to two arguments; its expansion

consists of three contiguous segments of code. The first segment, given below, performs explicit

synchronization of the Procedure input and allocates a new frame.

(1) Pree: JOIN r3 b9
(2) LOADC r18 24
(3) ADD r18 r18 r10
(4) LOAD r18 r18

(5) ADD r14 rO r1
(6) LOADC r15 Res
(7) LOADC r16 Sig
(8) LOADC r17 20
(9) ALLOCFRAME r14 r14
(10) FORK Arg2

7. synchronize Procedure input
7. fetch frame size at address r10+24

7. load args and call frame allocator
7. caller FP =self FP, in r1
7. result IP = label Res
7. signal IP = label Sig
7. result slot = r20
Y. allocate new frame, r14 +-- FP
7. new FP available, go store and start arg 2

After synchronization in line 1, the frame size and linkage information are loaded into slots

r14 through r18 and the frame allocation manager is invoked. The frame size is read in lines 2

through 4 from a known offset {24) from the start of the procedure object. Linkage information

is loaded in lines 5 to 8: the caller FP is the current frame's FP, stored in r1; the result and

signal IPs are labels Res and Sig, respectively; and the result slot is r20. Manager ALLOCFRAME

(in line 9) allocates a new frame, stores the linkage information, and returns a pointer to the

frame in slot r14. After frame allocation, a thread is spawned in line 10 at label Arg2 (code

given below) to store the procedure's second argument and initiate its thread of execution in

the body.

136

L1: L2: I

r--------....__

Pree:
(r3,b9)

~

Arg2:
(r3, b10)

Procedure Arg1 Arg2

APPLY
{r14,r16,r16,r17,r18}

Result Signal

r20
..._ ___ ___.._. Sig:

Figure 4.33: APPLY instruction, annotated with labels and slot information.

The second segment of code transmits the first argument and initiates execution of threads

in the procedure body corresponding to the trigger, signal, and first argument inputs.

(11) LO ADC r15 32 'l. start trigger thread at r10+32
(12) ADD r15 r15 r10
(13) STARTO r14 r15
(14) LO ADC r15 40 'l. start signal thread at r10+40
(15) ADD r15 r15 r10
(16) STARTO r14 r15
(17) LO ADC r15 48 'l. start argl thread at r10+48
(18) ADD r15 r15 r10
(19) LO ADC r16 6 'l. first arg stored in slot 6
(20) START1 r14 r15 r16 r9
(21) DIE

Execution of both the trigger and signal threads is initiated via STARTO in lines 13 and 16. The

FP used in both cases is the new frame pointer in slot r14. The target IPs for the threads are

computed by adding known offsets (32 and 40) to the address of the procedure stored in slot

r10. Lines 17 to 20 store the first argument of the procedure in slot six in the new frame, just

past the linkage information, and activate the thread to receive it.

The final segment of code in the expansion of APPLY in Figure 4.33 transmits the second

argument and sets up a thread to receive the procedure's result.

(22) Arg2: JOIN r3 b10 'l. wait for both arg value and frame pointer
(23) LO ADC r17 56 'l. start argl thread at r10+48
(24) ADD r17 r17 r10
(25) LO ADC r18 7 'l. second arg stored in slot 7
(26) START1 r14 r17 r18 r11
(27) DIE

(28) Res: FORK Ll 'l. dispatch to consumers of result
(29) JMP 12

137

Explicit synchronization is performed first in line 22, waiting for both the argument value and

new frame pointer to be computed. When they are available, the argument value (in r11) is

stored in slot r7 and the corresponding thread is started via START1. The thread receiving the

result of the application (at label Res, line 28) branches to consumer instructions at labels L1 and

L2. Since the termination signal has only a single consumer (at label Sig), control is transferred

directly to it from the procedure body.

While the expansion given above is for the particular APPLY instruction shown in Figure 4.33,

the general translation scheme used for applications should be clear. First, synchronization is

provided for the procedure input, if necessary, after which a new frame of the appropriate

size is allocated. When the frame is available, threads in the procedure body receiving the

trigger, signal, and all arguments not requiring explicit synchronization are started. Arguments

requiring synchronization are started when both the argument value and new frame pointer

are available. Finally, threads are set up to dispatch to multiple consumers of the result or

termination signal.

Tail Calls

Expansion of TAIL-APPLY is similar to APPLY, but different in several important aspects. Recall

from Section 4.3.6 that a procedure f called in a tail-recursive manner from a procedure g

returns its result and termination signal directly to the computations waiting for the result and

signal of g (say C1 and C2), instead of passing them first tog and then to C1 and C2 , as in a

normal application. In a tail call, procedure g also propagates its termination signal forward to

f, rather than back to its caller.

Consider the TAIL-APPLY instruction shown in Figure 4.34. As with APPLY, the first segment

of the expansion performs explicit synchronization of the Procedure input and allocates a new

frame.

(1) Pree:
(2)
(3)
(4)

(5)
(6)
(7)
(8)
(9)
(10)

JOIN r3 b9
LOADC r18 24
ADD r18 r18 r10
LOAD r18 r18

ADD r14 rO r2
ADD r15 rO r3
ADD r16 rO r4
ADD r17 rO r5
ALLOCFRAME r14 r14
FORK Arg2

'!. synchronize Procedure input
'!. fetch frame size at address r10+24

'!. load args and call frame allocator
'!. caller FP =return FP, in r2
'!.result IP= return result IP, in r3
'!.signal IP= return signal IP, in r4
'!.result slot= return result slot, in r5
'!. allocate new frame, r14 <-- FP
'!. new FP available, go store and start arg 2

138

(11)
(12)
(13)

ADD r2 rO r14
LDADC r15 40
ADD r4 r10 r15

'l. return FP <--- nev FP

'l. return signal IP <--- callee signal IP

After synchronization in line 1, the frame size and linkage information are loaded into slots r14

through r18 and the frame allocation manager is invoked as before in APPLY. Here, however, the

linkage information in the new frame (r2 through r5) is set to return to the current procedure's

caller, rather than the procedure itself: in line 5, the caller FP is set to the current frame's

return FP, stored in slot r2; in lines 6 and 7, the result and signal IP s are set to the current

frame's result and signal IPs, respectively, stored in r3 and r4; and in line 8, the result slot is

set to the contents of r5, the current frame's result slot. Next, a thread is spawned in line 10

at label Arg2 to start the second argument, as before. Finally, lines 11 through 13 update the

return FP and signal IP of the current procedure to the new FP and signal IP of the procedure

being applied so that SIGNAL-RETURN propagates the termination signal to the callee as desired.

~---- ~

Proc:
(r3, b9)

P_.

Arg2:
(r3,b10)

Procedure Arg1 Arg£

TAIL-APPLY
{r14,r16,r16,r17,r18}

Signal

~------- Sig:

Figure 4.34: Annotated TAIL-APPLY instruction.

The second segment of code transmits the first argument and initiates execution of threads

in the procedure body corresponding to the trigger and first argument inputs.

(14)
(15)
(16)
(17)

(18)
(19)
(20)
(21)

LDADC r15 32
ADD r15 r15 r10
STARTO r14 r15
LDADC r15 48
ADD r15 r15 r10
LDADC r16 6
START1 r14 r15 r16 r9
JMP Done

'l. start trigger thread at r10+32

% start arg1 thread at r10+48

% first arg stored in slot 6

As before, the trigger and first argument are started in lines 14 through 20. Note that here we

do not start the signal thread, however, because it is started later by SIGNAL-RETURN. The final

139

instruction in line 21 transfers control to label Done which, as we shall see below, generates the

Signal output of TAIL-APPLY when the application is complete.

The last segment of code:

(22) Arg2: JOIN r3 b10 7. wait for both arg value and frame pointer
(23) LO ADC r17 56 '!. start arg1 thread at r10+48
(24) ADD r17 r17 r10
(25) LO ADC r18 7 '!. second arg stored in slot 7
(26) START1 r14 r17 r18 r11

(27) Done: JOIN r3 b9
(28) JMP Sig

As before, explicit synchronization is performed in line 22 and the second argument is started in

lines 23 to 26. Here, however, synchronization is performed in line 27, waiting for the trigger and

all argument inputs to be started, after which control is transferred to label Sig, the consumer

of TAIL-APPLY's signal output.

Conditionals

Conditionals are expanded to code that performs: explicit synchronization of long-latency in

puts; triggering and routing of free variable inputs to the appropriate arm of the conditional; and

transfers of control to consumers of the result and termination signal. For example, expansion

of the IF instruction shown in Figure 4.35 is given below.

(1) Fred: JOIN r9 b1 '!. synchronize Predicate input
(2) FORK FV2 7. predicate available, go handle FV2
(3) JMPT r10 1 '!. if predicate is true, go to 1
(4) FORK EFV1 '!. start consumer of FV1 in Elae branch
(5) JMP ETrig '!. trigger Elae branch
(6) 1: FORK TFV1 '!. start consumer of FV1 in Then branch
(7) JMP TTrig 7. trigger Then branch
(8) FV2: JOIN r9 b2 '!. synchronize FV2 input
(9) JMPT r10 TFV2 '!. if predicate is true, route FV2 to Then branch
(10) JMP EFV2 'Y. route FV2 to Elae branch

(11) TRes: ADD r20 rO r13 7. move Then result to result slot r20
(12) FORK 11 '/. branch to consumers of Reault
(13) JMP 12
(14) ERes: ADD r20 rO r12 'Y. move Else result to result slot r20
(15) FORK 11 'Y. branch to consumers of Reault
(16) JMP 12
(17) TSig: NOOP
(18) ESig: JMP 13 'Y. branch to consumer of Signal

140

After synchronization of the incoming predicate in line 1, a thread is spawned in line 2 at label

FV2 to handle long-latency input FV2 when it is available. Next, control is transferred to TFV1

and TTrig in lines 6 and 7 (the Then branch) or EFV1 and ETrig in lines 4 and 5 (the Else branch),

depending on whether the predicate is true or false. Note that the consumer of FVJ can be

safely started at this point because the value of FVJ is delivered on an intra-partition arc. The

next three instructions in lines 8 to 10 wait for both the Predicate and FV2 inputs, and then

branch either to TFV2 or EFV2, again, depending on the predicate value.

Lines 11 to 13 and 14 to 16 receive the results of the Then and Else branches, copy them to

final result slot r20, and transfer control to consumer instructions at labels 11 and 12. Lines 17

and 18 provide branch targets for producers of ThenSignal and ElseSignal, and transfer control

to the consumer instruction at label 13.

IF

Prad:
(r9 b1)

Predicate

!Res:

FV1

ThenResult ThenSignaJ

Result

.---...~+-~~~~~~~-----~r20

L1: L2:

FV2:
rl9 (r9, b2)

FVe

r12

ERes:

ElseResult ElseSignaJ

Signal

~-----------L3:

Figure 4.35: Annotated IF instruction.

The general translation scheme for IF is summarized is follows. First, explicit synchroniza

tion is performed for the predicate input, if necessary, after which the Then or Else branch is

triggered, according to the value of the predicate. Next transfers of control are made to Then or

Else consumers of free variables arriving on intra-partition arcs. Then, explicit synchronization

is performed for free variables arriving on inter-partition arcs, and transfers of control are again

made to corresponding Then or Else consumers. Finally, code is generated that receives the

result and signal outputs of both arms of the conditional, copies the results to the final result

141

slot, and transfers control to successor instructions.

4.5.4 Phase Three Optimizations

Peep-hole optimization is performed on code in the transaction body and code for each embed

ded procedure. Four types of optimization are performed:

1. NOOP instructions are eliminated. Such instructions are not necessary and were introduced

only to simplify code generation.

2. FORK instructions for which the target is a DIE instruction are eliminated. This situation

may result, for example, from a FORK generated by pre-expand prior to a long-latency

operation. The FORK is intended to initiate concurrent execution of the remainder of the

thread, but if the instruction happens to be the last one expanded in the partition, the

FORK target may be DIE.

3. JMPs to successor instructions are eliminated. This situation often appears when code from

the various partitions in a transaction or procedure are appended together. For example,

the last instruction in one partition may transfer control to a consumer at the beginning

of the next partition.

4. Transfers of control to JMP instructions are "forwarded". In other words, the label to which

a JMP instruction transfers control is inserted directly in all control-transfer instructions

for which it is the target.

142

Chapter 5

Implementation of the P-RISC
Abstract Machine

In the previous chapter, we described how transactions are compiled to code for the P-RISC

abstract machine. In this chapter, we describe how the abstract machine is implemented on a

real multiprocessor.

5 .1 Overview

We are targeting our implementation to MIMD multiprocessors consisting of one or more

processor-memory elements (PMEs), interconnected via a high-speed network (see Figure 5 .1).

Each PME consists of a processor, some local memory, and an attached disk. The network may

be a bus, as is typical in small multiprocessors, or a switching network in larger machines.

Interconnection
Network

• • •

Figure 5.1: Target machine organization.

We feel that this particular architecture is an appropriate choice for two reasons. First, we

believe that a distributed instead of shared model of physical memory is easier to scale to larger

143

machines. Second, the clustering of a processor, memory, and disk at a PME allows the locality

of persistent data to be exploited. For example, a transaction may filter an enormous amount

of persistent data (e.g., terabytes), and having processing power close to each disk allows filters

to be applied locally. H all persistent data must be read from a remote disk and transferred

through the network, then the latency of access is increased and valuable network bandwidth is

consumed, much of it potentially by transfers for data that are quickly discarded by the filter.

The P-RISC abstract machine may be implemented in a number of different ways. One

possibility is to build a P-RISC processor directly in hardware [69], while another is to translate

P-RISC instructions into native machine code of a real multiprocessor [59]. In AGNA we have

taken yet another approach, implementing the P-RISC machine via software emulation. The

motivation for this decision is twofold. First, this approach provides a great deal of flexibility

and portability (the emulator is written in C), since we can easily change platforms, add run

time metering, etc. Second, this requires less effort than the other approaches, and before

pursuing a more complicated (and efficient) implementation, we wanted to verify that the

overhead of emulation was indeed a bottleneck. If the limiting factor were the disk or network,

for example, then more efficient execution of P-RISC instructions would have little impact on

overall performance.

Software for the AGNA system is structured into three separate programs, as shown in

Figure 5.2 (a similar system organization is used by Culler [29]). Two of the programs, the

compiler and a command interpreter, run on the front-end machine, while a single, identical

copy of the third program, the P-RISC emulator, runs continuously on each processor of the

back-end machine. The user interacts with the system as follows. He first submits the source

of a transaction to the compiler, which translates it as described in the previous chapter, and

then writes the output to a P-RISC "executable" file on the front-end machine. He then issues

a "load" command to the command interpreter to download the compiled transaction into the

heap memory of the machine. Finally, he issues a "run" command, again to the command

interpreter, to execute the transaction and print the result. Additional commands supported

by the command interpreter allow the user to create and destroy databases, review statistics

gathered during execution, etc.

A prototype implementation of the AGNA software was developed on workstations running

the Unix operating system1
, interconnected via a local area network. The compiler is written in

1 Unix is a. registered tra.dema.rk of AT&T.

144

Front-end Machine

> load
> run

answer
)

Command Interpreter

Back-end Machine

Interconnection
Network

• •
P-RISC

Emulator Programs

P-RISC
executable

Figure 5.2: AGNA system structure.

Common Lisp, while the command interpreter and P-RJSC emulator are written in C. Several

P-RJSC emulators may run on a single workstation, or each emulator may be mapped to its

own physical machine. The development environment and programming languages (i.e., Unix,

Lisp, and C) were chosen because of their widespread availability, their flexibility, and the many

program development tools such as profilers and debuggers that they support. We have also

ported our software to an Intel iPSC /2 Hypercube with 32 processors and 32 disks. We give a

detailed description of the iPSC/2 in the next chapter.

Outline of Chapter

In the next two sections we describe how the heap and frame memory of the P-RISC machine

are implemented in the distributed memory and disks of the parallel machine. Then we describe

the organization of the emulator process and how it schedules and executes instructions. Next

we discuss the representations used for indexes and multi-valued fields. Then we explore the

issues of how computation and data are distributed across the machine, and finally, we end

with a description of the different phases of execution of an AGNA transaction.

145

5.2 Mapping the Heap to the Physical Machine

Heap memory of the P-RISC machine provides the abstraction of a single-level, virtual, global

store, part of which is volatile, and the remainder of which is persistent. Heap addresses in

AGNA are forty-two bits wide. To facilitate organization of the heap and its mapping to PMEs

of the machine, it is divided into 210 segments of size 232 . Segments are the unit of distribution

across PMEs, or said another way, each segment is contained entirely within one PME. A

segment-to-PME mapping table (many-to-one) is replicated on all PMEs. The first stage of

heap address translation, therefore, involves consulting this table to determine which PME

holds the target heap location.

The number of segments was chosen to be larger than the number of processors in most

current MIMD machines (so at least one segment may be mapped to each PME), but yet

small enough to allow the segment-to-PME mapping table to be cached entirely within all

local memories of the machine for fast address translation. The segment size was chosen to be

fairly large to accommodate big databases, and because thirty-two bits is a convenient unit to

manipulate on most current machines.

When a database is created, only a single segment is initially mapped to each PME. Segments

not assigned to a PME at database creation time are available for dynamic allocation at some

later point. In other words, when the volatile or persistent heap in all segments in a PME is

exhausted, then a fresh segment is allocated dynamically to the PME.

Within a PME

Each segment is divided into pages of size 8 Kbytes each, which are the units transferred

between disk and physical memory. Heap addresses therefore consist of a segment number, a

page number, and a page offset as shown in Figure 5.3. On each PME, a subset of all the

virtual pages in that PME are cached in physical memory in a collection of page frames. The

mapping is maintained in a hash table:

(segment,page) ~ page-frame

Thus, the second step of heap address translation involves pro bing this table. If successful, i.e.,

the page is in memory, then the heap address can be accessed immediately

The page size used in AGNA was chosen as a compromise between efficiency of access to large

chunks of the heap, and good overall paging behavior. A large unit of transfer is more efficient

146

I Segment I Page Offset

10 bits 19 bits 13 bits

Figure 5.3: Structure of heap address.

than a smaller one in the sense that for the fixed costs such as seek time and rotational latency

associated with each read operation, more data is actually transferred. 2 On the other hand, if

objects in the working set are clustered poorly in the heap, larger page sizes may actually be

less efficient because of the time required to transfer additional page data into the cache when

it is unlikely to be needed. Also, this may result in more page-outs from the cache, since a

greater portion of it will be consumed by objects not used by the current computation.

AGNA currently imposes the restriction that the total size of an object must be less than

the size of a page. Further, an object is placed in contiguous locations in the heap so that

it is contained entirely within a page. The rationale for these decisions is that they simplify

management and manipulation of objects. A number of proposals in the literature for handling

objects larger than a page (e.g. 1 [22]) could be adopted in AGNA; this is an area for future

investigation.

Pages within a segment are partitioned into a persistent part and a volatile part-the high

order page bit distinguishes between the two. Thus, no mapping tables or lookups of any kind

are required to differentiate between addresses in the persistent and volatile parts of the heap.

This is important for efficiency reasons, as the two kinds of addresses have to be identified

and handled differently in a number of frequently-performed operations such as installation of

database updates at the end of a transaction, field update, field selection, etc. While other

encodings may be equally suitable, we use the high-order bit because it can be accessed quickly

and efficiently. A consequence of this decision is that the persistent and volatile portions of the

heap are of equal size.

If the second step of address translation, described above, finds that the target page is not

present in the cache, then it is fetched from disk. All volatile pages in all segments in a PME

are mapped, via a hash table, to a single paging file. Thus, if the target address is in the

volatile heap, then the remainder of address translation involves: (1) probing the hash table to

determine the location of the associated page in the paging file; (2) reading the page into a free

2 For example, if the cost to read a 1 Kbyte block is 27 milliseconds (18 seek, 8 rotate, 1 transfer), then the
cost to read an 8 Kbyte block is only 34 milliseconds (18 seek, 8 rotate, 8 transfer). Thus, while the latter
operation takes roughly twenty-five percent longer, eight times the data is transferred.

147

page frame; and {3) accessing the target location.

The mapping of persistent pages to disk files is more complex. To facilitate this mapping, we

define a physical extent to be a contiguous set of 512 persistent pages. Thus, the page number

in a persistent heap address consists of a physical extent number and a page offset within the

extent {see Figure 5.4). We impose a further restriction that an extent can only contain objects

of a single type.

I Segment J
10 bits ,'

I
I

Page I Offset
(

\ 13 bits

' '
Physical Offset in
Extent Extent

10 bits 9 bits

Figure 5.4: Structure of persistent heap address.

All physical extents of a particular type (e.g., student) in all segments in a PME are mapped

to the same disk file (student. dat). The correspondence is maintained in a hash table:

{segment ,extent) -+ (file,page-offset)

Thus, if the second step of address translation finds that the target page is persistent and not

present in the cache, then the following actions are performed (see Figure 5.5): {1) the hash

table is probed to determine the file and page offset at which the extent begins; (2) the page

offset within the extent, stored in the low-order page bits, is added to the offset within the file

and the desired page is read into a free page frame; and (3) the offset within the page is used

to compute the target location.

The reason for mapping contiguous page groups (i.e., physical extents) rather than indi

vidual pages to files is to keep the mapping tables from becoming too large. For example, the

table below shows the number of mapping table entries required for physical extents of various

sizes.

Unit of Mapping
{Physical Extent Size)

1 page
512 pages

262,144 pages

Entries in Mapping Table
(Per Segment)

262,144
512

1

With an extent size of only one page, storage utilization in the persistent heap and associated

files is high because pages are allocated individually. The size of the corresponding mapping

148

Heap Address

Of!•et in Of!•et
Extent

Figure 5.5: Handling of persistent page fault.

table, however, is quite large and thus it may be difficult to keep it entirely memory-resident, in

which case costly paging of the mapping table is required. Tradeoffs at the other extreme (the

last row of the table) are just the opposite: low storage utilization, but a small mapping table.

We chose a physical extent size of 512 pages as a compromise between these two extremes.

When a new type is declared via the transaction language, a file is created and a single

physical extent is allocated on each PME on which objects of the type are to be stored (we will

see in Section 5.8 how this set of PMEs is determined and how objects are distributed amongst

PMEs in the set). For example, when type STUDENT is introduced into a database environment,

local files named student. dat are created and initial physical extents are allocated on each PME

implementing the type (see Figure 5.6). Each PME may implement multiple segments, and each

segment consists of multiple physical extents. Extents within a PME are allocated sequentially,

so the next available extent is allocated and mapped to the student file.

PME PME

/..~ /..~
SEG SEG

/..~
SEG SEG

/..~
EXT EXT EXT EXT

\, \,
atudant.dat ~ __ ___, student. dat~ ~"""-----'

Figure 5.6: Allocation of initial physical extents in student files.

149

While an entire physical extent is mapped to each student file, only the first page in each

file is actually allocated on disk. A free list of storage on allocated pages is maintained in each

file. Thus, when a new student object is to be allocated in the persistent heap, the free list

in the local student file is searched for a suitable chunk of storage. If one is found, then the

object is placed at that location. If one is not found, then a new file page is allocated. When

the initial student extent in a PME is full, then the next available one is allocated and mapped

to the student file. Again, only the first page of the new extent is actually allocated on disk.

When all extents in all segments in a PME are full, then a new segment is allocated to the

PME. (A new segment is also allocated when the volatile heap becomes full.)

Objects in a type extent are clustered and stored compactly in the associated physical

extents; the general list representation is not stored in the physical extents or anywhere else

in the persistent heap. The compact storage of objects allows bulk operations on type extents

to be performed efficiently (e.g., finding all students with GPA 2': 3.9), and facilitates building

of indexes on files to support the inverse field-mappings specified in the source-language type

declarations. While cons-cells of the list representation could be maintained elsewhere in the

heap without affecting the compact storage of (say) student objects, this is not done for two

reasons. First, this avoids the storage overhead of one cons-cell per student object. Second, as

we saw in Section 4.2.6, in many cases the entire extent list is not needed anyway because a

(generally) much smaller filtered list of objects can be produced efficiently from a scan over the

associated physical extents. When the entire extent list is required, a list is built in the volatile

heap.

Heap Reorganization

Apart from the normal requirement of fast translation from virtual heap addresses to physical

memory addresses, we also require fast reconfigurability of a database to a machine with a

different number of PMEs. For example, it should be easy to reconfigure a database originally

constructed on a sixteen PME machine to a fifteen PME machine (perhaps a PME failed) or a

thirty-two PME machine (perhaps the machine was upgraded).3

In the first case, we need only: (1) map segments implemented by the failed PME to other

PMEs of the machine by updating the segment-to-PME mapping table; and (2) append physical

extents stored at the failed PME to type files of other PMEs and add new entries to the tables

3 For now, we are only considering static, off-line reconfiguration.

150

mapping physical extents to files. In the second case (i.e., the machine grows from sixteen

to thirty-two PMEs), either unused or existing segments are allocated to the new PMEs. In

any case, reorganization consists only of modifying mapping tables and moving around blocks

of persistent data; no exhaustive searches of the database are required to update inter-object

references.

5.3 Frame Memory and the Pool of Active Threads

We have chosen to implement frames as objects in the volatile heap, and thus the emulator does

not contain a separate memory for frames. The motivation for this decision is that both frame

and heap memory of the P-RISC machine require storage management routines, including some

sort of mechanism for moving objects to and from a backing store. Rather than duplicate the

bulk of this functionality for frame and heap memory, we decided simply to store frames in the

heap. Note, however, that not all of the generality of heap memory is required for frames (e.g.,

synchronized reads and writes aren't needed), so while this decision reduces complexity, there

may be some performance penalty.

We have taken the position that each frame resides entirely within a PME, and that all

threads of a frame on PME i must execute on PME i. The rationale for this is that it enables

a procedure or transaction body to access its frame slots efficiently, since all such accesses are

entirely local. We shall see in Section 5.8 how the PME on which a frame is placed is selected.

Finally, the pool of active thread descriptors of the P-RISC machine is not represented as

a separate collection, as described in the previous chapter, but rather the IP of each active

thread of a frame is stored in a stack inside the frame itself, as shown in Figure 5. 7. The stack

grows "up" from the last slot in the frame, which records the depth of the stack. Since the FP

part of a thread descriptor (i.e., (FP,IP)) is available implicitly in this organization, only the

IP part is actually stored in the stack. The maximum number of threads that may be active

simultaneously in a procedure or transaction body, and hence the maximum depth of the IP

stack in the associated frame, is determined statically by the compiler. The required frame size

stored in procedure and transaction objects by the compiler is large enough to ensure that the

IP stack never overflows into the data area.

This particular representation of the pool of active threads was chosen for three reasons.

First, it groups thread descriptors by FP, which is desirable for scheduling purposes. Second,

151

• • •

• • •
stack depth

'

,

' ' ' ' '·
, , , ,

data slots ,.

...

r ,

...
, , ,
, IP stack

Figure 5.7: Stack of active IPs in frame.

it is storage efficient, since the FP part of descriptors is not stored explicitly. Third, storage

management is simplified, since allocation and deallocation of the IP stacks is performed as

part of normal frame manipulation.

References to all frames in an emulator with at least one active IP are stored in an "active

frame" stack. When an IP is pushed onto the IP stack in an inactive frame (i.e., one in which

the stack depth is zero), a reference to the frame itself is also pushed onto the active frame

stack. If the stack becomes full, then additional active frames are stored in an overflow chain.

A stack was chosen as the primary data structure because it is simple and efficient, yet flexible

enough to accommodate the order in which active frames are accessed by the emulator (to be

described soon).

5.4 Organization of the Emulator Process

The emulator process is structured into a single interpreter thread and one or more manager

threads, all of which are lightweight, user-level threads running in the same operating system

process.4 The interpreter thread and manager threads are spawned when the emulator is

started, and exist for the lifetime of the process. Such threads are never created or destroyed

after system startup time. In the next chapter, we address the issue of the number of manager

threads used in an emulator process.

The rationale for using multiple lightweight threads is as follows. At any given instant of

time, an emulator process may contain many P-RISC micro-threads that are ready to execute.

4 The interested reader is referred to [16) for an introduction to such threads, which are supported by many
operating systems today such as Mach and Sun Unix OS. To avoid confusion here, we will refer to these threads
as "lightweight threads" and to P-RISC threads as "micro-threads" when the meaning is not clear from context.

152

If execution of one of them involves disk 1/0-say a LOAD tries to access a local but non-resident

heap location-then we do not want the entire process to block awaiting completion of the I/ 0,

because the emulator can execute other micro-threads while the disk transfer is in progress.

Ideal operating system support for this, with respect to our model of computation, is a

non-blocking, asynchronous, disk-read routine. With such a routine, LOAD can be executed in a

split-phase manner. In the first phase, the disk transfer is initiated via the disk-read routine,

after which the emulator continues executing other micro-threads. In the second phase, the

emulator is notified (e.g., via an interrupt) that the 1/0 is complete, and the desired heap

location is accessed and the micro-thread to receive the result is activated.

Unfortunately, this kind of non-blocking, asynchronous disk 1/0 is not supported by the

operating systems to which we have ported AGNA (two versions of Unix). We use an interpreter

thread and multiple manager threads to achieve the desired overlap of computation and disk

1/0. The interpreter thread is responsible for scheduling P-RJSC instructions and executing

those that do not involve long-latency operations, while those that do involve such operations

are executed by manager threads. Communication between the interpreter and manager threads

is via message queues, as shown in Figure 5.8.

T1
interpreter

thread

PMEi

manager
threads

Figure 5.8: Interpreter and manager threads on PME i.

The interpreter thread initiates execution of instructions that involve disk 1/0, such as

the LOAD described above, by enqueueing a manager request that contains the operation to

be performed, its arguments, and the micro-thread (i.e., (FF, IP)) and frame slot to receive the

result. All manager threads are capable of handling all messages, so in the case of LOAD, the next

available manager dequeues the message and issues the 1/0 request. The request causes only

the manager thread to suspend, and the emulator may switch to other lightweight threads to

continue execution. When the disk transfer is complete, the manager responds with a message

containing the FF, IP, result frame slot, and contents of the desired heap location. At some later

point, the interpreter handles the message by storing the value into the result frame slot, and

153

activating the micro-thread (FP, IP).

The Interpreter Thread

Operation of the interpreter thread consists of repeated selection of an active micro-thread,

execution of its current instruction, and generation of successor micro-thread descriptors, if

any. Its C code is shown below.

interpreter()
{

}

HeapAddr •fp=O, •ip=O;

while (TRUE) { I• loop infinitely •/

}

if (ip==O { I• no current IP •/

}

if (fp!=O) {

}

ip = getNextActiveIP(fp);
if (ip!=O) goto L;

checkForMsgs () ;

fp = getNextActiveFP();
if (fp==O) waitForMsgs();
continue;

/•got current FP, try to get IP •/

I• if active IP found, go execute instruction •/

/• handle any queued messages •/

I• switch to new frame •/
I• no active frames; wait for messages •/

L: switch (opcode(ip)) {

}

case ADD: ... perform addition ...
ip->address += ADD_LENGTH;
break;

case FORK: ... perform fork ...
ip->address += FORK_LENGTH;
break;

case LOAD: ip=doLoad_1(fp,ip,readFrame(fp,loadAddressSlot(ip)),
resultSlot(ip));

break;
case LOOKUP: ip=doLookup_l(fp,ip,readFrame(fp,lookupNameSlot(ip)),

resultSlot(ip));
break;

The top-level if statement in the first half of the while loop assigns to variables fp and ip the

heap addresses of the frame and instruction pointers, respectively, of the thread to be executed.

The current instruction is executed in the switch statement in the second half of the vhile loop.

Instructions that do not involve long-latency operations, such as ADD, are executed entirely

within the switch statement. If the successor instruction is immediately available for execution,

154

which is the case for ADD and FORK shown above, then ip is updated to reference it. 5 In the next

section, we give the code which performs ADD and FORK operations.

For an instruction that may involve long-latency operations, the interpreter invokes a proce

dure to handle the instruction, passing the current FP and IP, and any instruction arguments.

For example, procedure doLoad_1, which handles LOAD instructions, takes as arguments an fp, ip,

heap location, and result frame slot. Three outcomes are possible for doLoad_1:

l. The entire LOAD operation is executed immediately, and the IP of the next sequential

instruction is returned. This is the case when the target heap address is local and resident.

2. A LOAD message is sent to a local manager, and zero is returned indicating that the current

micro-thread is terminated. This is the case when the target location is local but non-

resident. A new micro-thread is selected for execution inside procedure interpreter.

3. A LOAD message is sent to another PME, and again, zero is returned. This is the case

when the target location is non-local.

All other procedures which handle instructions that may involve long-latency operations have

three similar possible outcomes, though the conditions which distinguish one outcome from

another may be different.

Manager Threads

Manager threads all execute a copy of the same code, which is given below.

managerThread()

{

}

char •msg;

while (TRUE) {

}

msg = dequeue(mgrMsgQ);
switch (msgOpcode(msg)) {

}

case LOAD: doLoad..2 (msg) ; break;
case LOOKUP: doLookup..2(msg); break;

6 HeapAddr, the type of the C structure to which ip points, contains fields segment and address, recording
the segment number and address within the segment, respectively. Thus, assigning ip to the next instruction
involves only incrementing the address field by the length of the current instruction.

155

Manager threads repeatedly dequeue messages from mgrMsgQ (the queue of messages from the

interpreter) and execute the specified operations. Procedure dequeue, which implements the

dequeue operation, is blocking and atomic. In other words, if no messages are present in

mgrMsgQ, then the manager thread blocks. When the interpreter thread enqueues a message,

exactly one of the managers blocked on a dequeue operation will receive it. After implementing

the specified operation, a manager thread sends a reply message either to the local interpreter

thread or a remote PME.

All instructions that may contain long-latency operations have two procedures which im

plement them, one that executes in the interpreter thread, and one that executes in a manager

thread. Above we saw examples of the first kind: d0Load_1, doLookup_1, etc., and also of the

second kind: doLoad-2, doLookup-2, etc .. We will give the definitions of these procedures in the

next section.

Intra-PME Messages

As we saw earlier, messages sent from the interpreter to local managers contain the operation

to be performed, any arguments, and the micro-thread and frame slot to receive the result.

The number of message types handled by manager threads is equal to the number of P-RISC

instructions (including manager instructions) that may involve long-latency operations.

Only two types of messages are sent to the interpreter thread from local managers:

<STARTO,fp,ip>
<START1,fp,ip,r,v>

The interpreter handles these messages via procedure handleMsg, defined as follows.

handleMsg(msg)
char *msg;
{

HeapAddr *fp = startMsgFP(msg), *ip = startMsgIP(msg);

}

if (msg0pcode(msg)==START1) {
int r = start1MsgSlot(msg);
long *V = start1MsgValue(msg);
writeFrame(fp,r,v); I* fp[r] <- v */

}
pushIP (fp, ip); I* activate (fp,ip) *I

156

If the message type is START1, then the value contained in the message (v) is stored in the

indicated frame slot (r). For both message types, micro-thread (fp, ip) is activated by procedure

pushIP, which pushes an IP onto the stack of active IPs in a frame.

All queued messages are handled by the interpreter thread in two situations. First, after

all active IPs in the current frame are exhausted, but before switching to a new frame, proce-

dure checkForMsgs is called, as shown earlier in procedure interpreter. Here is the definition of

checkForMsgs.

void checkForMsgs()
{

while (!queueEmpty(interpreterMsgQ)
handleMsg(dequeue(interpreterMsgQ));

}

The procedure simply extracts and handles all queued messages. The motivation for the inter

preter handling messages before switching to a new frame is that this enhances locality in the

emulator. We comment further on the issue of locality in Section 5.6.

The second situation arises when the interpreter has no work to do, i.e., the local pool of

active micro-threads is empty. In this case, it calls vaitForMsgs, again from the body of procedure

interpreter. Here is the definition of vaitForMsgs.

void vaitForMsgs()
{

}

handleMsg(dequeue(interpreterMsgQ));
checkForMsgs () ;

First, the interpreter waits for a message via dequeue, which blocks until one is available. After

the first message is handled via handleMsg, any additional messages in the queue are handled

through the call to checkForMsgs.

lnter-PME Messages

Inter-PME messages have the same structure as messages passed between the interpreter and

local manager threads. Inter-PME messages are sent via procedure sendMsg, which takes the

target PME number and message text. When a message arrives at a PME, the emulator process

is interrupted, and the message is enqueued. Messages of type STARTO and START1 are added to

157

queue interpreterMsgQ, while all others are added to queue mgrMsgQ.

STARTO and START1, the only messages that activate micro-threads, are placed in the inter

preter's message queue because we have taken the position that all manipulation of the stack of

active frames and IP stacks in frames is performed only in the interpreter thread. The motiva

tion for this is as follows. First, this means that no exclusion mechanism, such as semaphores, is

needed when manipulating these stacks to ensure consistency. This enhances both the simplicity

and efficiency of access, which is important because these stacks are manipulated frequently.

The second reason has to do with what the interpreter thread does when no micro-threads

are available for execution. As described previously, the interpreter calls procedure waitForMsgs,

which blocks until a message is available. If manager threads could activate micro-threads,

then some mechanism would be needed to allow a manager to unblock the interpreter from its

wait for incoming messages. Perhaps a null "wake up" message could be used. Or perhaps

the interpreter thread could be restructured to idle when no work is available by repeatedly

checking for both incoming messages and active threads. 6

In any case, we believe that these schemes are more complicated and less efficient than the

one we have chosen. A possible drawback of our approach, however, is that if the frame in which

an IP is to be stored is not resident, then the interpreter thread will suspend until the desired

heap page is transferred to physical memory. While manager threads may execute during the

transfer, active micro-threads may not.

5.5 Execution of P-RISC Instructions

Arithmetic, Logical, and Relational Instructions

In the previous section we saw that instructions that do not involve long-latency operations,

such as ADD, are executed entirely in the switch statement in procedure interpreter. Here is the

implementation of ADD:

case ADD: {
long •v1 = readFrame(fp,source1(ip)),

•v2 = readFrame(fp,source2(ip)),
r[2J;

r [OJ = v2 [OJ ;

6 For this to be efficient, the interpreter thread would have to lower its priority, relative to manager threads,
before idling.

158

}

r[1] = v1[1]+v2[1];
vriteFrame(fp,sink(ip),r);
ip->address += ADD_LENGTH;
break;

Procedure readFra.me is used to assign to vi and v2 the (C) memory addresses of the operands.

The result value is constructed in two-word array r and written via writeFrame. Integers and

other scalars in AGNA are represented as two-word quantities: the first word contains the

standard object header (type tag, data/pointer flag, etc.), while the second word contains the

value. Thus, r[OJ contains the new header, taken from v2, while r[1] contains the sum. Finally,

the new IP is set to the next sequential instruction.

All other arithmetic, logical, and relational instructions are executed in a similar manner.

Control Flow

Control fl.ow instructions, such as FORK, also execute entirely within procedure interpreter:

case FORK: {
HeapAddr tgtIP;

tgtIP.segment = ip->segment;
tgtIP.address = ip->address+forkOffset(ip);
pushIP(fp,ltgtIP);
ip->address += FORK_LENGTH;
break;

}

A new active IP tgtIP (i.e., the FORK target) is constructed and pushed into the current frame

via pushIP. As before, ip is set to the next instruction. The FORK target is computed by adding

the offset contained in the FORK instruction to the segment address of the current IP.

Other control fl.ow instructions, such as conditional and unconditional jumps, are executed

in a similar manner. JOIN is executed as follows:

case JOIN: {
long •v = readFrame(fp,joinSlot(ip));
int bit= joinBit(ip);

if (getBitValue(v,bit)==O) {
ip = O;
setBitValue(v,bit,1);

} else {
ip->address += JOIN_LENGTH;

159

setBitValue(v,bit,0);
}
break;

}

If the join bit is zero, then ip is set to zero (i.e., the current micro-thread is terminated) and

the bit is toggled. If the bit is one, then ip is set to the next instruction, and again, the bit is

toggled.

Heap Access

Heap access instructions include LOAD, ILOAD, STORE, and !STORE. Here is the definition of procedure

doLoad_1, called by the interpreter to handle LOAD instructions.

HeapAddr •doLoad_1(fp,ip,address,resultSlot)
HeapAddr •fp, •ip, •address;
int resultSlot;
{

}

int pme=pmeOfAddress(address);
char •msg;

ip->address += LOAD..LENGTH;
if (pme==localPME)

if (addressResident(address)) {
long •v = translate(address);
vriteFrame(fp,resultSlot,v);
return ip;

}

msg = buildMsg(LOAD,fp,ip,2,address,resultSlot);
if (pme==localPME)

enqueue(mgrMsgQ,msg);
else

sendMsg(pme,msg);
return O;

First the PME on which the target location resides is determined via procedure pmeOfAddress

and stored in pme, and ip is set to the next instruction. If the location is implemented by the

current PME (whose number is stored in global variable localPME) and the address is resident

in the local cache of page frames, then the value stored in the desired location is written into

the result frame slot, and the updated ip is returned. If the target location is non-local or

non-resident, then a LOAD message is constructed and sent either to a local manager thread or

to the PME in which the location resides, after which zero is returned.

160

The procedure which handles the LOAD message, either in a local or remote manager thread,

is defined as follows:

void doLoad-2 (msg)
char •msg;
{

long •value;

... Deatructure meuage into fp, ip, resul tSlot, and address.

value= mapAndTranslate(address);
msg = buildMsg(STARTl,fp,ip,2,resultSlot,value);
pme = pmeOfAddress(fp);

}

if (pme==localPME)
enqueue(interpreterMsgQ,msg);

else
sendMsg(pme,msg);

After the message is destructured into its component fields, the target heap location is mapped

and translated by procedure mapAndTranslate. The procedure first checks to see if the desired

page is already resident in the cache, and if it is not present, then it is read into a free page

frame. A pointer to the value stored at the heap address is returned. Semaphores are used

within mapAndTranslate to ensure that the calling thread sees a consistent view of shared data

structures such as the cache of page frames and its hash table index.

Other heap access instructions are handled in a similar manner. For example, doStore_l first

checks to see if the target address is local and resident. If so, then it performs the operation

and returns a pointer to the next instruction. If not, a STORE message is sent either to a local

manager or a remote PME, and zero is returned. !LOAD and !STORE are identical to LOAD and

STORE, except that they also perform implicit synchronization. If the execution of !LOAD finds, by

examining the presence bits, that the target location is empty, then it adds a triple consisting

of the FP, IP, and frame slot to the list of deferred readers rooted at the desired location. When

!STORE writes a value into an empty location (it is an error if full), all waiters are enabled via

STARTl messages.

Inter-Frame Transfers

Instructions for transferring control and data from one frame to another are STARTO and STARTl.

In the previous section we saw how the interpreter handles incoming STARTO and STARTl messages.

Procedure interpreter calls doStartLl, defined below, to implement STARTl instructions.

161

HeapAddr •doStart1_1(fp,ip,tgtFP,tgtIP,value,resultSlot)
HeapAddr •fp, •ip, •tgtFP, •tgtIP;
long •value;
int resultSlot;
{

}

int pme=pmeOfAddress(tgtFP);

if (pme==localPME) {
writeFrame(tgtFP,resultSlot,value);
pushIP(tgtFP,tgtIP);

} else
sendMsg(pme,buildMsg(START1,fp,ip,4,tgtFP,tgtIP,value,resultSlot));

ip->address += START1-1.ENGTH;
return ip;

If the target frame is local, then the value is stored in the desired slot and the micro-thread

(tgtFP,tgtIP) is activated. Otherwise, a START1 message is sent to the PME on which the frame

resides. In either case, the next instruction is scheduled for execution.

STARTO instructions are handled via procedure doStart0_1 in a similar manner.

Manager Instructions

Execution of many manager instructions is similar to that of heap access instructions. For

example, ALLDCOBJ, which allocates a new object in the volatile heap, decides whether the allo

cation is to be performed locally or on a remote PME7 , and iflocally, whether in the interpreter

or a manager thread. Other instructions which are executed in this manner include ALLOCFRAME,

SELECTF, and UPDATEF.

Other manager instructions are used solely to implement local operations. Examples of

this sort include: SVINVERT and MVINVERT, which perform local single- and multiple-valued field

inversions, respectively; and FILTEREXTENT, which builds a filtered list of all local objects of a

specific type. SVINVERT, which searches locally for the object with a particular field value (e.g.,

the student object with a certain name), is handled in the interpreter thread via procedure

doSvinvert_1:

HeapAddr •doSvinvert_1(fp,ip,type,field,value,resultSlot)
HeapAddr •fp, •ip, •value;
int type, field, resultSlot;
{

ip->address += MGR-1.ENGTH;
enqueue(mgrMsgQ,buildMsg(SVINVERT,fp,ip,4,type,field,value,resultSlot));

7We will see in Section 5.8 how it makes this decision.

162

return O;
}

Since it is difficult to predict whether the associative search required to implement SVINVERT will

involve long-latency operations (i.e., accesses to non-resident pages), doSvinverL1 always builds

a SVINVERT message and passes it to a local manager.

Inside a manager thread, SVINVERT is handled by doSvinvert-2, defined below.

void doSvinvert-2 (msg)
char •msg;
{

}

long •v;

... Deatructure meaaage into component fielda ...

... Uae field index to aearch for object with deaired field value ...

if (object found)
v = object;

else
v = buildNullDbject(type);

enqueue(interpreterMsgQ,buildMsg(START1,fp,ip,2,resultSlot,v));

After the message is destructured, a search for the desired object is performed using the field

index. The return value, which is either the desired object or a null object, is placed in a START1

message that is passed to the local interpreter thread.

The reader may wonder at this point why we include such a high-level manager instruction

as a primitive in the emulator. For example, why isn't it expanded to more basic P-RISC

instructions? Or why isn't the operation coded as a procedure in the transaction language, or

some extension thereof? We currently implement high-level instructions as primitives for two

reasons: efficiency of execution and ease of development. First, by implementing such operations

in C instead of multiple P-RISC instructions, we avoid the overhead of interpretation in our

current implementation. Second, compilers for C are more robust and efficient than the current

AGNA compiler. Note, however, that regardless of the implementation strategy (e.g., primitive,

macro, or procedure call), the interface and split-phase execution remain the same.

163

5.6 Ordering of Instructions

In Chapter 4, we saw that the P-RISC machine does not specify the order in which micro

threads are to be executed. In the interpreter, however, we made a (static) ordering decision

in which {1) all threads of the current frame are executed to completion before switching to a

new frame, and {2) all instructions in a micro-thread are executed sequentially until the thread

is terminated (e.g., via JOIN).

The motivation for this is that it enhances locality of execution. First, this may increase

performance by increasing the effectiveness of caches in the underlying hardware (e.g., processor

caches). Second, this locality allows the emulator to avoid many translations of the heap

addresses of the current FP and IP. While not all of the details were shown in procedure

interpreter earlier, switching to a new frame actually entails:

1. "Unpinning" the old code and frame objects. In other words, the heap pages on which

the objects reside are unlocked from their physical memory addresses in the cache, and

thus are available for replacement.

2. The new FP and IP are selected and stored in variables fp and ip.

3. The new code and frame objects are pinned and their physical memory addresses are

determined and stored in variables fpPA and ipPA. These physical addresses are used inside

the interpreter whenever possible, thus avoiding unnecessary translations of frame and

instruction pointers.

As we shall see in the next chapter, address translation, which is currently performed in AGNA in

software, is relatively expensive, so this improvement has a significant impact on performance.

Of course, the virtual addresses, stored in fp and ip, are used in messages sent to local manager

threads and remote PMEs.

5. 7 Representation of Indexes and Multi-Valued Fields

In this section, we describe the representation of indexes and multi-valued fields.

164

Indexes

Indexes in AGNA are currently not represented as objects in the global heap, but rather are

separate file-based structures that may be manipulated only through calls to the object storage

system. For example, addition of a new element to a hash index is not performed via allocate,

update, and so on, but through a call to the appropriate routine in the object storage system

(made from within a P-RJSC manager), which is written in C. While our long-term goal is to

represent indexes uniformly as persistent objects, we currently do not for the same two reasons

that we treat high-level manager instructions as primitives: efficiency and ease of development.

An index on a field f of objects in an extent of type Tis mapped to a collection of files, one

per PME on which objects of type T are stored. For example, the hash index on student name

described in Section 4.2.3 is stored in local files named student-name. idx. Each index file in a

PME maps names to local student objects as shown in Figure 5.9.

PMEi

hash indez on name

student.dat

<s1,. .. >
.__-IW"'",<s:Z, ... >

•
•
•

bau objec:t fiJe

Figure 5.9: Index on name field oflocal student objects.

Indexes could be mapped to files differently, e.g., the entire index on student name could

be stored in a single file, rather than in a collection of files. The mapping used in AGNA was

chosen because it supports a high degree of parallelism, as local searches that utilize the index

may execute concurrently on all PMEs of a type. Also, locality is enhanced because an index

refers only to local objects.

Multi-Valued Fields

As discussed in Chapter 3, multi-valued fields in objects in the persistent heap do not use the

general list representation, but rathe:r a compact internal form. Consider the definition of type

COURSE introduced in Chapter 2 that includes multi-valued field prereqs:

(type COURSE (extent)

((name <=> STRING)

165

(prereqs •<=>• COURSE)
(units => INTEGER)))

Like all new objects, allocate-object allocates new course objects in the volatile heap, with all

fields undefined. When the prereqs field of a new course object (call it o) is defined via update,

a reference to the field list is stored in the appropriate field "slot" of o.

When course o is added to the persistent heap at transaction commit time, the representation

of the prereqs field is changed from a list of courses to a collection of records of the form:

<o,prereq>

In other words, installation of o in the persistent heap involves construction of a new represen

tation of its prereqs field collection. Each record in the new representation stores a reference

to o and a reference to one of its prerequisites; there is one such record for each element of the

field collection. These records are stored in file course-prereqs.dat on the PME on which o itself

resides. A similar course-prereqs. dat file exists on all PMEs on which course objects are stored,

with the file on PME i holding records that describe the prereqs field collections of all course

objects residing on PME i.

When the prereqs field of a persistent course object is read, records in the course-prereqs .dat

file are located, and a list of prerequisites is constructed in the volatile heap. Two indexes are

maintained on the records that describe prerequisites, one on the course field, and the other on

the prerequisite field. The first index allows all prerequisites for a given course to be located

quickly, while the second index allows the inverse field-mapping on prereqs (that maps a course

to all the courses for which it is a prerequisite) to be implemented efficiently.

All of the files that relate to type COURSE in a PME are shown in Figure 5.10. At the

top of the figure are the base object file (course.dat), which contains all course objects that

reside in segments stored in the PME, and the file holding the hash index on the name field

(course-name. idx). At the bottom of the figure is the file holding the prereqs field collections of

all course objects in the PME (caurse-prereqs.dat), along with its two index files.

Field collections of persistent objects are stored in this internal form, and do not use the

general list representation, for the following reasons. First, by not storing the cons-cells of

the list representation, less storage is required. Second, the clustering of field collections in

the internal form facilitates indexing to support the inverse field-mappings specified in type

166

PMEi

course-name.idx course.dat

<c1, ... >
_ __..,..,c:z, ... >

•
•
•

hash index on name baae object ftJe

hash index on course

<c1,c:Z3>

c:Z,c47> __ ,....__.,,

•
•
•

prereqs field collectiom hash index on prereqs

Figure 5.10: All files related to courses on PME i.

declarations. Finally, this clustering also facilitates efficient scanning of all field collections of

a type. A possible disadvantage in not storing the general list representation explicitly is that

it must be constructed in the volatile heap when needed.

As with indexes, records in multi-valued field files are not represented as persistent objects

in the heap, but rather they use a representation internal to the object storage system. These

records may be manipulated only via calls to the object storage system. Again, the motivation

for this decision is efficiency and ease of programming.

5.8 Distribution of Data and Computation

In this section, we describe how data and computation are distributed to PMEs in a parallel

machine.

5.8.1 Data

We saw in Section 5.2 how segments of the heap are mapped to PMEs. The issue addressed

here is: when a new object is allocated, in what segment, and therefore on what PME, should

it be placed? This issue can be broken down into two separate questions. First, for a given type

(e.g., student), on what PMEs should instances of the type be stored? For example, objects

may be clustered on some subset of the PMEs, or distributed over all nodes of the machine.

Second, after this "home" set of PMEs is determined for a type, how does the object allocation

167

manager choose (at run-time) the PME on which to place a new object?

In the current version of AGNA, the answer to the first question is: objects of all types are

distributed to all PMEs of the machine. For a type T, this placement information is stored as a

collection of PME numbers in the associated type object (i.e., the object describing the type,

and part of the database's meta-information) in multi-valued field pmes. In some cases, it may

be desirable to restrict distribution of objects of some type to a subset of all PMEs, based on

expected extent size, frequency of access, or other factors. While not currently implemented,

AGNA could accommodate such cases by allowing hints or annotations in type declarations

describing the PMEs over which objects are to be distributed, or a tool by which the database

administrator could modify the home set of PMEs of a type.

The answer to the second question is: a new object is placed on a PME selected randomly

from the type's home set. This placement strategy is carried out, in part, by the compiler in

its translation of allocate expressions. For example, an expression such as:

(allocate STUDENT)

is translated to:

(allocate-object RANDOM student size)

This is identical to the translation described previously for allocate, except that here we have

added argument RANDOM, a hint describing where the new object is to be placed.8 This hint is

ultimately passed to P-RISC manager ALLOCOBJ, which allocates the new student object in the

volatile heap of a PME selected randomly from the set of PMEs assigned to the student type.

When the object is moved to the persistent heap at transaction commit time, it is moved to a

location in the same PME, thus becoming part of the database stored in the selected PME.

This random placement of objects over all PMEs can be expected to provide a fairly uniform

distribution of objects over the machine. Depending on the nature and frequency of access

to objects of a particular type, alternative placement strategies may be more effective. For

example, consider objects of type BINDING that record identifier bindings in the top-level database

environment. Recall from Chapter 4 that the BINDING type has fields name and value:

8 We did not describe this placement hint in the compilation chapter because the compiler has no special
understanding of it, and also because it is primarily an implementation-level issue.

168

(type BINDING (extent)
((name <=> STRING)
(value => ANY)))

The most frequent operation performed on binding objects involves locating the object with a

particular name, and then extracting its value (i.e., an identifier lookup). If binding objects

are distributed randomly to PMEs of the machine, then lookup on the name field requires local

searches on all PMEs. If, however, binding objects were mapped to PMEs via a hash value

computed from the name, then the lookup operation need search only at one node (i.e., the

PME to which the hash value of a name maps). Thus, the lookup operation is better supported

by hash distribution than by random placement.

While not accessible to objects of user-defined types, AGNA uses this hash-based placement

strategy internally for binding objects. Binding constructor make-binding is defined as follows:

(define make-binding
(lambda (name value)

(letrec ((pmes (pmes-of-type "BINDING"))
(j (hash-to-pme pmes (string-hash name)))
(b (allocate PME j BINDING)))

(update b BINDING NAME name)
(update b BINDING VALUE value))))

This definition is identical to the one given in Chapter 4, except for the placement hint PME

j included in allocate. The computed PME number, j, is generated by procedure hash-to-pme

from pmes, the set of PMEs on which binding objects reside, and a hash value computed from

the name. This expanded use of allocate that includes a placement hint is not available to the

transaction programmer, but only internally for the coding of system functions. The placement

hint is passed on to ALLOCOBJ, which allocates the new binding object on the desired PME.

With binding objects distributed in this manner, LOOKUP, the identifier lookup manager,

hashes an identifier to a PME, locates the appropriate binding object on that PME, and selects

and returns the value field. To make identifier lookups even more efficient, a special cache of

top-level identifiers and their values is maintained in physical memory on each PME. Thus,

repeat lookups of an identifier on a PME are handled very efficiently, involving no non-local

searching or disk I/ 0.

Note that while this distribution strategy does increase the efficiency oflookups, it requires

redistribution of all binding objects whenever the set of home PMEs for type BINDING changes.

169

This may happen, for example, if a PME fails and the database is reconfigured to run on a

smaller machine. In the case of binding objects, though, they are easily moved from one heap

location to another because they are used only internally and can have no references to them

from other objects. Thus, we do not have to worry about creating dangling pointers when

moving such objects.

Two additional placement hints may be specified in allocate: LOCAL and REMOTE. The former

places the new object on the PME on which the object allocation manager is invoked, while

the latter places the new object on a remote PME. These hints, along with RANDOM and PME j,

provide sufficient low-level mechanisms by which to implement a variety of high-level distribu

tion strategies. In addition to the hashing and random placement strategies described above, a

number of other methods for distributing objects are possible: round-robin, "minimum object

load", associating a range of field values with each PME, etc. Parallel relational systems, such

as Gamma [33], have utilized many of these data distribution strategies. Evaluation of such

strategies and a full assessment of their impact on performance is a topic for future investigation

in AGNA.

One issue that must be examined closely in AGNA in strategies such as hashing is the

relocation of objects. For example, if objects of type T are mapped to PMEs via hashing on

field f, then when the value off in an object o is updated, o may need to be relocated if the new

value off hashes to a PME different from the old one. But if o is moved from one heap location

to another, then all references to it must also be updated. A scan of the entire database to

locate such references is not an acceptable solution, since it would be prohibitively expensive,

even in medium-sized databases.

One possible approach is to move o, but leave in its place an object containing the new

address. Pointers to the old location of o are automatically "forwarded" to and replaced by the

new address whenever they are dereferenced. The issue of moving objects while maintaining

referential integrity is intimately tied up with garbage-collection, which we have not addressed

in this work. Garbage-collection of both the persistent and volatile heaps is an important topic

of future investigation in AGNA.

5.8.2 Computation

Computation spreads from a PME to other nodes of the machine via two basic mechanisms:

object manipulation and procedure calls. Examples of the first mechanism include allocation

170

of a new object on another PME, and selection of a field value in a remote object.

In the second mechanism (procedure calls), the PME on which the procedure body executes

is determined via the placement of its associated frame. As described in Section 5.3, the code

of a procedure or transaction and its associated frame must reside on the same PME. The

compiled transaction and initial transaction frame are always placed on a PME designated at

system startup time. Procedure frames are placed on PMEs in one of two ways. The first

method, which is the default strategy, is to select a PME randomly at run-time. The intent of

this simple approach is to balance the computational load evenly across the machine.

Like the placement of objects described earlier, placement of procedure frames and code

is controlled by a hint that is either introduced by the compiler, or used explicitly in internal

system functions. All procedure calls are translated by the compiler to APPLY, a special form for

procedure application that includes a hint on where the procedure body is to be executed. It

is in this translation that the default hint is generated. For example, expression:

(f x y)

is translated to:

(APPLY RANDOM f x y)

The hint (i.e. 1 RANDOM) is ultimately passed to the P-RJSC frame allocation manager, which

places the new frame on a PME selected randomly. This, in turn, determines the PME on

which the procedure executes.

After the frame for procedure f is allocated, but before threads are started in the body, a

copy of the procedure object is placed on the same PME as the frame. This can be seen in the

P-RJSC code for the application off, sketched below:

(1) f: JOIN r9 b3

(2) LO ADC r19 1
(3) ALLOCFRAME r14 r14
(4) OBJECTPME r14 r15
(5) ADD r16 rO
(6) LOCALIZE r15 r15

r22

'/. wait for f
'/. load into r14-r18: caller FP, result IP,
'/. signal IP, result slot, and frame size
'/. r19<-encoding of hint RANDOM
'/. r14<-new FP
'/. r15<-PME of new object
'/. r16<-copy of proc. ptr. in r22
'/. r15<-copy of proc. on same PME as frame
'/. start threads in body of proc. r15

171

After synchronization in line 1, arguments to the frame allocator are loaded into slots r14 to

r18, as described in Chapter 4. Here an additional argument, an encoding of the placement

hint, is loaded into slot r19. In line 3, the new frame is allocated and a pointer to it is placed

in slot r14. Then in line 4, manager OBJECTPME is used to determine the number of the PME on

which the frame resides. Line 5 copies the procedure pointer to r16, and then in line 6 manager

LOCALIZE is used to place a copy of the procedure on the selected PME (stored in r15) and return

a pointer to it. LOCALIZE utilizes a special table on each PME describing objects that have been

stored locally, so if a copy of the procedure already exists on the PME, then a pointer to it is

returned and a new copy is not made. After this, threads in the procedure body are started as

described in the previous chapter.

Other hints allowed in the APPLY form are: LOCAL, REMOTE, and PME n. In the remainder of this

section we describe how these hints are used to exploit the locality of data in the building and

filtering of extent lists. Before we do that, however, we describe a special representation of lists

used by the system functions that build and filter extent lists.

Open Lists

The non-strictness of lists in AGNA can be used to append them together efficiently. Say, for

example, that we want to append lists L1 and L2. By choosing representations for L1 and L2 that

embody two key ideas, we can append the lists in 0(1) time while using no additional storage.

The first idea is to leave the tail of the last cons-cell in each list empty. This will allow us to

link the end of 11 directly to the head of 12 using no additional storage i.e., we don't have to

build any intermediate lists. The second key idea is to maintain a direct reference not only to

the first cons-cell in each list, but also to the last one. This will allow us to locate the end of

each list in constant time, so that we can link 11 to 12, and terminate 12 by storing nil in the

tail of its last cons-cell.

A representation for lists which includes these two ideas is called an open list. Open lists,

which are closely related to difference lists in logic programming, can be represented as a cons

cell containing two references Al and A2, as shown in Figure 5.11. Internally, the structure

consists of a list in which the tail of the last cons-cell is empty. Al points at the first cell and

A2 points at the last cell {these may in fact be the same cell, if there is only one element in the

list). With 11 and 12 represented as open lists, we can append them and return the result list

as follows.

172

• • •

V1 V2 Vn

Figure 5.11: The structure of an open list.

(letrec ((x1 (update (tl L1) LIST TL (hd L2)))
(x2 (update (tl L2) LIST TL nil)))

(hd L1))

As shown in Figure 5.12, the first update stores a reference to the head of L2 in the last cons-cell

of L1, while the second one terminates the list by storing nil in the tail of the last cons-cell in

L2. X1 and x2 are dummy identifiers. The body of letrec returns the result list, which is not

represented as an open list.

Ll: L2:

... ----... . ..
v v v v v v

Figure 5.12: Appending of open lists 11 and L2.

Building and Filtering Extent Lists

Consider the following example:

(all (select s STUDENT NAME)
(s (all STUDENT))
(where (>= (select s STUDENT GPA) 3.9)))

- - ·nil ,

i.e., an expression that evaluates to the list of names of students with a GPA of at least 3.9. As

described earlier, student objects are distributed over the various PMEs of the parallel machine.

The strategy for filtering and building the result list is for each PME to construct a local list

of all the names of its students that satisfy the filter, and then to append these lists together.

However, we would like the PMEs to work in parallel, and for the list-appending to be very

173

efficient, i.e., we wish to avoid constructing any intermediate lists.

Each PME executes the following expression (we will see in a moment how it is persuaded

to do this):

(letrec ((pred (cons (make-condition gpa-id ">=" 3.9) nil)))
(local-filter-extent atudent-id name-id BASEFILE NO INDEX pred rest))

producing the result shown in Figure 5.13. The arguments to local-filter-extent are: the

type id of the extent to filter; the object field to be included in the result; the access path and

index-constants BASEFILE and NOINDEX indicate that use of an index in this query is not possible,

so the filter must be performed by scanning over all student objects in the base file; the filter

predicate, which consists of a list of conditions; and rest, which is used to link the local lists

together. Because of the non-strict semantics in AGNA, each PME can construct its local list

of student objects before it knows the value of the rest argument. The last cons-cell simply

remains empty. As soon as the first cons-cell is allocated, a reference to it can be returned as

the result of local-filter-extent. When the value of rest arrives, which may be much later, it

gets stored into the last cons-cell .

• : (local-filter-extent •tudent-id name-id BASEFILE NOINDEX pred rest)
I I
I I
I I
\ I
\ I

\ I ' ,
\ I

\ I
\ I
I

'
• • •

na11e name name

Figure 5.13: Local list of student names constructed on each PME.

Here is the definition of local-filter-extent:

(define local-filter-extent
(lambda (type field access-path index predicate rest)

(letrec ((res (FILTEREXTENT type field access-path index predicate)))
(if (nil? res)

rest
(letrec ((xl (update (tl res) LIST TL rest)))

(hd res))))))

174

Local result lists are produced by FILTEREXTENT, which is passed the type and field ids, the access

path, the index to use, and the predicate. FILTEREXTENTreturns either nil, if no local objects are

found which satisfy the predicate, or an open list containing the student names. In the first

case, the rest argument is returned as the result. In the second case, the local result list and

rest are appended together, and a reference to the local list is returned. The use of an open

list by FILTEREXTENT allows this list appending to be performed efficiently, as described earlier.

Now, we step up one level to see the implementation of the entire list comprehension.

Conceptually, the extent filtering and appending of lists is accomplished by structuring the

computation thus:

(letrec ((pred (cons (make-condition gpa-id ">=" 3. 9) nil)))
(foldr

(lambda (j rest)
(APPLY PME j local-filter-extent atudent-id name-id BASEFILE NDINDEX pred rest))

nil
pmes))

Recall from Chapter 2 that foldr takes a binary combining function, an initial value, and a

list of values as arguments, and returns an accumulated value as its result. Pmes is the list

of PME numbers on which student objects reside. The overall structure of the computation

may be seen in Figure 5.14. The foldr computation executes on various PMEs, and initiates

the local-filter-extent computations on each PME j in list pmes. Because of non-strictness, all

these computations can proceed in parallel, even though each one does not yet have the value

of its rest parameter. Further, each PME j can return the reference to the head of its sublist

as soon as it is allocated; this reference is passed on by foldr as the rest parameter for the

computation in PME j - 1, where it is stored in the tail of the last cons-cell.

5. 9 Transaction Execution

As we saw at the beginning of this chapter, the compiler runs on the front-end machine and

writes its output to a file, also on the front-end machine. The compiler obtains type and field

information from a local shadow copy of the meta-data of a database. This copy is kept up

to-date by the command interpreter, which queries the back-end and installs any updates after

each transaction execution.

After a transaction is compiled, it is down-loaded into the back-end machine. Before execu-

175

I

, ,
,

,,, , ,

I PME 0

n

--

n

-----------, , , , , , , , , , ,
'

,

n

I
1 (foldr

1/ ,"

-__.._
I I

\

I I ,
I ,

I ,
I

PME 1 I

res re"st
I

n

nil ...)
I

'---~------------
' ' -' I ' ' \ \ ' ' ' \

I \ ' ' \
I I ' \
\ \ I I
I I I PME n I
I I
\ I I I
\ I I res rest
I

' 'H I I ' I \

• • • • •• .L

n n

Figure 5.14: Local filtered and transformed extent constructed on each PME.

tion begins, each PME performs a number of local initializations, such as reclaiming all storage

in the volatile heap, clearing the paging file, and initializing deferred update collections and

various caches. While a number of read-only transactions may be loaded together and executed

concurrently, update transactions must be executed serially. This is because AGNA does not

currently include a concurrency control mechanism, such as two-phase locking [30], to prevent

harmful interactions between queries and update transactions. Concurrency control is a major

topic for future investigation in AGNA.

As we saw in the compilation chapter, execution of an AGNA transaction occurs in three

phases: prologue, body, and epilogue. For a transaction (:xact e), the three phases correspond

to the top-level expressions in the seq form introduced by the compiler to sequence execution

properly:

(xact
(seq

(begin-transaction)
(print e 1

)

(end-transaction)))

Expression e' is a translated version of e.

Prologue

In the prologue, an identifier is assigned to the transaction and propagated to all PMEs of the

machine. Here is the definition of begin-transaction:

176

(define begin-transaction
(lambda ()

(letrec ((id (next-transaction-id)))
(foreach (lambda (j) (APPLY PME j local-begin-transaction id))

all-pmes))))

The new id is assigned via next-transaction-id, from a seed stored in the database. The id is

passed to procedure local-begin-transaction, which is executed on each PME. Identifier all-pmes

is bound to a list of all PME numbers.

Body

In the next phase of execution, the user-supplied portion of the transaction is executed and

the answer is printed. All updates to the database are stored in collections adds, drops, updates,

inserts, and deletes, while possible violations of field uniqueness constraints are accumulated

in constraints. Each collection is represented as multiple local sublists, one on each PME. For

example, when the object allocation manager creates a new student object on PME i, it also

adds a reference to the student to the adds sublist on PME i.

If during this phase a run-time error occurs or the transaction is explicitly aborted via

abort-transaction, then an appropriate message is generated and printed on the front-end ma

chine and execution is terminated. This is currently accomplished in a heavy-handed manner

by an automatic aborting and restarting of all emulator processes. Note that because of non

strictness, the result returned by a transaction that ultimately aborts may be printed as the

answer before execution is terminated. In such cases, the message describing the abort condi

tion printed on the front-end machine informs the user that the transaction was aborted, and

therefore the answer is to be discarded.

Epilogue

The final phase of execution, implemented via end-transaction, installs deferred updates in the

database and brings disk files up-to-date. In the first phase, procedure precommi t is invoked on

each PME to install in the database the local collections of deferred updates. The collections

are processed on each PME as follows:

• adds: Each object in the list is copied to the persistent heap in the local PME. All

objects in the volatile heap reachable from these new persistent objects are also copied

177

to the persistent heap.

• drops: In each object in the list, a flag is set to "false" in the object header indicating

that the object is not part of the type's extent. The routines which manipulate type

extents implicitly include a predicate that filters out objects not part of the extent. Note

that dropping an object does not delete it from the database, but only removes it from

the type extent. Though not implemented in the current prototype, the object may be

garbage-collected separately when no references to it exist.

• updates: New field values in the list are installed in persistent objects. All objects in the

volatile heap reachable from these new persistent objects are also copied to the persistent

heap.

• deletes: Elements in the list are deleted from multi-valued field collections. All deletes

are processed completely before processing of inserts begins.

• inserts: Elements in the list are added to multi-valued field collections. Again, all

objects in the volatile heap reachable from the new persistent objects are copied to the

persistent heap.

Two errors that may arise during the processing of updates are (1) a field of a persistent

object is updated multiple times, and (2) a field is updated via both update and insert/delete.

Such errors are detected as follows. Maintained in the header of each object is the id of the

last transaction to update the object, and a field bit mask. When a persistent object is first

updated in a transaction, this update-id is set to the id of the current transaction and the bit

mask is cleared. Whenever a field is updated, the corresponding bit in the mask is set. Multiple

update errors are identified when an update is performed on a field for which the bit is already

set.

For multi-valued fields, additional update bits are maintained in each field slot indicating

whether the field has been updated via update or insert/delete. Such bits are cleared along with

the object header bit mask. Updates to fields via both update and insert/delete are detected

by examining these field update bits.

The search for reachable volatile objects in the processing of adds, updates, and inserts is

performed via procedure make-object-persistent, which is defined as follows:

178

(define make-object-persistent
(lambda (object)

(if (and (volatile? object) (object-reference? object))
(letrec ((x (make-persistent-copy object)))

(if (hd x)
(tl x)

... Call make-object-perJiJtent on each field value ...

.. .]nJtall updated valueJ ...

... Return (ti :r:) ...))
object)))

First, if the object is already persistent or a scalar such as an integer, then there is nothing to

do and the object is returned. Otherwise, make-persistent-copy is called to move the object to

the persistent heap. The return value is a cons-cell in which the head is a boolean indicating

whether the object has already been moved to the persistent heap via a previous call, and the

tail is the persistent address. As described in the previous chapter in the discussion of P-RJSC

manager instruction MKPERSISTENT, this is needed to preserve the sharing of objects. In other

words, if make-persistent-copy is called twice with the same object, the second time the object

is not copied to another persistent location, but rather the persistent address established in the

first call is returned to the second caller as well. MKPERSISTENT utilizes a hash table to maintain

pairs of volatile and persistent addresses.

If object is not a new persistent object (i.e.,(hd x) is true), then the persistent address is re

turned. Otherwise the graph traversal continues, and make-object-persistent is called recursively

on each field value of the object. The (possibly) updated values are installed in the persistent

copy of the object.

After all precommit operations have completed, all updates are installed in the persistent

heap, but not necessarily written to disk, i.e., some dirty persistent heap pages may still be

in the page cache. Precommit procedures each return a composite result indicating whether any

local updates were processed, and whether any errors were encountered. If no local updates

and no errors were reported, then the transaction is committed.

If errors were reported, then the transaction is aborted. Some sort of recovery mechanism,

such as write-ahead logging [30], is needed in this situation to restore the original state of the

database. Recovery is not implemented in the current version of AGNA, and is a topic for future

investigation.

If no errors were reported, then the list of constraint checks is executed to ensure that the

uniqueness of field inverse-mappings still hold. If no errors are reported in this step, then all

179

lpe
i.
i

I' .
l<r· I' .
I:·

I

,....- .. w1lU• to4ilk-' 1lre ••ta1iilill'•·r• »ltf-;~•·--.. ..,.. .•.
tlwa ii.....·.···· ' :~}\'~;: ;_ .·· ~

180

Chapter 6

Analysis

The universe of database transactions can be divided into two sets, one containing transactions

that can be expressed in SQL, and the other containing transactions that can't (see Figure 6.1).

An example transaction in the former set is Tl, while an example in the latter set is T2:

• Tl: Find the names of all students with a GPA of at least 3. 9.

• T2: Find all direct and indirect prerequisites of course "Advanced Algorithms".

As discussed in Chapter 2, Tl can be expressed succinctly and elegantly in SQL. Many sophisti

cated implementation techniques such as indexing and clustering of data are used by relational

systems to deliver top-notch performance for such transactions. Both ease-of-expression and

good performance are important for queries such as Tl because they form a common and useful

class of transactions.

SQL +Host PL

AGNA

OODBs •T2

Figure 6.1: Division of universe of database transactions.

It is important for more expressive persistent systems to provide ease-of-expression and

performance comparable to SQL for Tl-like transactions. One of the primary reasons why

relational databases displaced earlier CODASYL systems as the DBMS of choice is because

transactions such as Tl could not be expressed easily in such systems. One had to write

181

a program that explicitly navigated through the collection of student records, and selected

the name field of each record that satisfied the predicate-no high-level query language was

supported.

In Chapter 2, we saw that list comprehensions in AGNA can be used to formulate Tl as

concisely as in SQL. Most other object-oriented systems also provide high-level query languages

with which to formulate Tl concisely. In the first section of this chapter, we present experimen

tal results from a preliminary performance evaluation of both uniprocessor and multiprocessor

versions of AGNA on Tl-like queries, along with comparisons to similar results for commercial

and experimental relational systems. The results show that the performance of AGNA on such

queries approaches that of state of the art relational database systems.

The AGNA transaction language contains a full higher-order programming language, and

thus the user may easily move from Tl to more complicated queries such as T2. This is also

the case in most current object-oriented systems, since they also contain full programming

languages (e.g., c++ or Smalltalk). In Section 6.3, we compare the uniprocessor performance

of AGNA on T2-like queries to that of relational and object-oriented systems. The results show

that AGNA is competitive with other OODBs, and that both AGNA and other OODBs provide

superior performance relative to relational systems on queries such as T2.

6.1 Measurement Methodology

For each query execution, we report elapsed (wall clock) time in seconds until all computation

in the query is complete. Query results are built in the volatile heap, and are not traversed

by the print function, i.e., times for printing results are not included. Execution times are

automatically reported by AGNA for all transactions. The emulator on which a transaction is

initially loaded records the time immediately before execution commences, and again after it

completes. The difference between the two times is reported as the elapsed time. In the Sun

Unix implementation of AGNA, the C library function ftime is used to record times, while in

the hypercube implementation, iPSC/2 C library function mclock is utilized.

For some transactions, we also give an execution profile showing how much time was spent in

various activities such as I/O and heap management. On both the Sun and iPSC/2 platforms,

the I/O time for a transaction was determined by tracing its I/O requests, and then timing the

execution of a separate program that performed no computation, but issued a similar sequence

182

of 1/0 operations. We were careful to ensure that no disk pages were cached in the operating

system prior to execution of these separate programs.1

On the Sun platform, a profile of activities other than 1/0 was obtained via the Unix

profiling tool gprof [39]. On the iPSC/2, suitable profiling tools were not available, so we used

analytical methods such as counting inter-PME messages, and simple experimental techniques

such as timing successive executions of a node program, with each one adding a single new

activity. In all cases, no other jobs were allowed to run concurrently on the machines on which

we conducted our experiments.

6.2 Relational Queries

Transactions used in the first set of experiments were taken from the "selection" queries in the

Wisconsin benchmark [17], a standard set of relational queries executed against a synthetic

database. All of our experiments used the following object type:

(type WISC (extent)
((unique1 => INTEGER)

(unique2 <=> INTEGER (index Btree))
(filler => (STRING 200))))

While the relation structure specified in the Wisconsin benchmark has more fields than type

WISC, only unique1 and unique2 were utilized by the part of the benchmark that we used. Thus,

we combined all other fields into the filler field for simplicity. 2 The total length of all fields

was the same as the relation width specified in the Wisconsin benchmark. Fields unique1 and

unique2 were assigned unique values from the range 1 to n, where n was the number of objects

used in a particular test.

Test queries selected a subset of objects in the WISC extent. Parameters varied were: extent

size, predicate selectivity, object field used by the predicate, query structure (list comprehension

vs. explicit use of procedure filter) and, for multiprocessor experiments, machine size.

1 On the Sun platform, this was accomplished by rebooting the machine prior to program execution. On the
iPSC/2, AGNA accesses a raw disk directly, so no caching is performed by the operating system.

~The notation (STRING 200) in the specification of filler defines a fixed-length field of length 200. If a
length is not specified in a string field, then values of unlimited length may be stored in the field.

183

6.2.1 Uniprocessor Results

Our uniprocessor experiments were designed to investigate the effectiveness in AGNA of low

level filtering and indexing, and to compare absolute performance with state of the art relational

systems. The platform used was a Sun 4/490 configured as follows.

• main memory: sixty-four megabytes

• operating system: Sun UNIX OS 4.1.1

• disk: ipi-1000/2HP with an ips-80 controller

For all uniprocessor experiments, we used an extent size of 50,000 objects, and a 16 megabyte

page cache.

Low-Level Filtering

The first experiment involved execution of the following two queries:

T3: (xact (filter (lambda (v) (and (> (select v WISC UNIQUE1) vl)
(< (select v WISC UNIQUE1) v2)))

(all WISC)))

T4: (xact (all v
(v (all WISC))
(where (and (> (select v WISC UNIQUE1) vl)

(< (select v WISC UNIQUE1) v2)))))

Values vl and v2 were chosen so that each query returned the same five hundred objects or one

percent of the extent. The first query builds an extent list in the volatile heap, and then filters

it. The second query performs the filter in the object storage system during object retrieval,

building only a list of objects in the result. In both cases, no persistent heap or file pages were

present in either the AGNA or operating system caches prior to query execution. The timings

were:

T3: 148.5 seconds

T4: 034.5 seconds

Here is a breakdown:

184

• 233 build extent list (34.2 secs)
• 10.23 list-cell allocation and field definition (3.5 secs)

T3 • 24.63 object storage system (8.4 secs)
• 65.23 I/O (22.3 secs)

• 773 filter and build result list (114.3 secs)

• 00.13 result list construction, begin/end transaction (.04 secs)
T4 • 35.33 object storage system (12.2 secs)

• 64.63 I/O (22.3 secs)

In T3, 233 of the time is spent scanning over the 'WISC file and building an extent list, while

773 of the time is spent filtering it and building the result list. The extent list construction

consists of I/O (65.23), page and object handling in the object storage system (24.63), and

allocation of list-cells and definition of their head and tail fields (10.23). In T4, .13 of the time

is spent constructing the result list and beginning and ending the transaction, 35.33 is spent in

the object storage system manipulating pages and applying the predicate, and 64.63 is spent

in disk I/0.

P-RISC manager instruction FILTEREXTENT is used to perform the file scanning and initial list

construction in both T3 and T4, the only difference being that a file-scan predicate (i.e., a list of

simple conditions on field values) is utilized by T4 and not by T3. Since FILTEREXTENT is currently

implemented as a strict primitive for simplicity, no overlap is possible in T3 between the extent

list building and filtering. In both T3 and T4, the amount of time spent in I/O is the same, 22.3

seconds. Virtually all of this results from the WISC file scan performed in FILTEREXTENT. The 'WISC

data file consists of 1516 pages; each page transfer, therefore, takes about 14.7 milliseconds,

and the total transfer rate is .56 megabytes/second.

From the additional time spent in the object storage system in T4 (12.2 seconds vs. 8.4

seconds in T3), we can determine that 3.8 seconds (the difference) is spent in T4 checking

whether 'WISC objects satisfy the predicate. When this checking is performed via the more

general procedure filter in T3, it takes significantly longer-virtually all of the 114.3 seconds

spent filtering and building the result list.3 While some of this wide difference is attributable

to compilation technology and our decision to emulate the P-RISC machine in software, the

results of this experiment nevertheless demonstrate the significant impact on performance of

efficient, low-level filtering.

3 We shall see in the next section a detailed breakdown of a computation similar to filter, thus we don't
examine it further here.

185

Indexing

The next experiment was designed to test the effectiveness of indexing in AGNA. It involved T4,

and a new query TS, which is identical to T4 except that field unique2 is used instead of unique1:

T5: (xact (all w
(w (all WISC))
(where (and (> (select w WISC UNIQUE2) vl)

(< (select w WISC UNIQUE2) v2)))))

As before, values vl and v2 were chosen so that each query returned the same five hundred

objects. T4, as we have already seen, scans the entire WISC data file, performing the filtering

during object retrieval. TS, on the other hand, utilizes the Btree index on unique2, thus avoiding

a scan of the entire file. The timings were:

T4: 34.5 seconds

T5: 01.1 seconds

Here is the breakdown:

• 00.13 result list construction, begin/end transaction (.04 secs)
T4 • 35.33 object storage system (12.2 secs)

• 64.63 I/O (22.3 secs)

• 03.63 result list construction, begin/end transaction (.04 secs)
T5 • 41.93 object storage system (.46 secs)

• 54.53 I/O (.6 secs)

Both T4 and TS spend the same amount of time constructing the result list and beginning/ ending

the transaction, but the time spent in the object storage system and I/O is much less in TS

because the Btree index provides direct access to those objects with unique2 field values in the

desired range. The results of this experiment underscore the importance of efficient indexing

in AGNA.

Comparison with INGRES

We also executed the relational equivalents of T4 and TS using INGRES version 6.3, a modern

commercial relational database system. We built a corresponding database of the same size,

and used the same hardware platform (Sun 4/490, 64 Mb of memory, ipi-1000/2HP disk with

186

an isp-80 controller). INGRES was configured to use a page cache of the same size (16 Mb),

and locking and logging were turned off to eliminate the overhead of concurrency control and

recovery, respectively, since these functions are not performed by AGNA.

The queries were written in SQL and embedded in a C program. Rather than build result

lists as in AGNA, we stored each record id of the result in a pre-allocated C array. Here is query

T4:

void doT40
{

}

EXEC SQL BEGIN DECLARATION
int ids[500], i=O;
EXEC SQL END DECLARATION

EXEC SQL SELECT id
INTO : ids [i]
FROM wise
WHERE unique1 > vl and unique1 < v2;

EXEC SQL BEGIN;
i++;

EXEC SQL END;

Query T5 is similar. The INGRES timings were:4

T4: 34.1 seconds

T5: 00.3 seconds

These results indicate that even on a uniprocessbr, the performance of AGNA is competi

tive with that of commercial relational systems on comparable queries. Further, we have an

advantage over SQL in that AGNA's list comprehensions are part of a full functional language,

so that the user can smoothly extend queries to perform arbitrary computation.

6.2.2 Multiprocessor Results

Multiprocessor experiments were conducted on an Intel iPSC/2 with 32 nodes. Each node

includes an Intel 80386 processor, 8 megabytes of physical memory, and a MAXTOR 4380 disk

drive with an embedded SCSI controller that maintains a 45 Kbyte read-ahead cache. Also

included in each node is a specialized hardware router module, all of which are interconnected

4 INGRES applications code such as doT4 executes in a separate operating system process, which connects to
and interacts with a back-end database server. The timings do not include the time to connect to the server and
to perform initializations such as opening the database.

187

to form a hypercube. Routers support eight bit-serial, full-duplex channels that connect a node

to its eight nearest neighbors. 5 Each channel is capable of sustaining a data transfer rate of 2.8

Mbytes /second, independent of other channels.

AGNA uses the interrupt-driven communication primitives in NX, the operating system

of the iPSC/2. An interrupt handler and message buffer are always posted on a node to

receive incoming messages. When a message arrives at a PME, it is written directly to the

posted message buffer, after which an interrupt occurs and the handler is invoked. Thus, no

unnecessary copying of the message is performed.

Two different underlying protocols are used by the iPSC/2 for message transmission [27].

Messages of one hundred bytes or less are sent as datagrams, using a one-trip protocol. Messages

longer than one hundred bytes use a three-trip protocol. In the first step, a proxy message is

sent from the source to the target node to establish a communications circuit between them. If

a receive is posted for the message or enough free memory exists to hold it on the target node,

then a reply is sent back immediately requesting transmission of the message. In the third step,

the message is sent and, as the tail of the message moves through the circuit, it is released one

link at a time. The table below shows the latency (from one emulator process to another) of

inter-node messages of various sizes [33]:

Message size in bytes Latency
50 0.74ms.
500 l.46ms.

1000 l.57ms.
4000 2.69ms.
8000 4.64ms.

We conducted four sets of experiments to evaluate the performance of simple list compre

hensions in the multiprocessor version of AGNA. The first set of experiments compared the

multiprocessor performance of AGNA, using a full machine configuration of thirty-two nodes, to

the uniprocessor performance of both AGNA and INGRES. The next three sets of experiments

involved only the multiprocessor version of AGNA, and varied the machine size (i.e., number

of PMEs), the problem size (i.e., number of objects in the extent), or both. The second set of

experiments evaluated performance relative to extent size by keeping the machine size constant

while scaling up the problem size. The third set evaluated the scalability of the system by

maintaining a constant problem size while increasing the number of PMEs in the machine con

figuration. Finally, the fourth set of experiments evaluated the ability of the system to maintain

6 Configurations with both compute and I/O nodes use one of the channels exclusively for communication
with the I/O subsystem.

188

a constant response time as the problem size and machine size were increased proportionally.

The design of the latter three sets of experiments was motivated by the performance study re

ported in [33). For all experiments, a 4 megabyte page cache was used; the remainder of physical

memory was consumed by other system data structures, message buffers, and interpreter and

manager thread code.

All of the queries used in our experiments involved the WISC type described previously and

the following query template:

(xact

(all 'If

(w (all WISC))

(where (and (> (select w WISC unique1-or-unique2) vi)
(< (select w WISC unique1-or-unique2) v2)))))

Values v1 and v2 were varied to test queries that returned different numbers of objects. The field

used in the predicate expression was varied between unique! and unique2 to test both indexed and

non-indexed access to WISC objects. For all experiments, WISC objects were distributed uniformly

across all PMEs of the machine.

Effect of parallelism

In the first set of experiments, we selected 13 of an extent size of 100,000 objects, using both

unique! (the non-indexed field) and unique2 (the indexed field). We gathered performance results

for AGNA on the iPSC/2 multiprocessor platform (all 32 PMEs), and both AGNA and INGRES

on the Sun uniprocessor platform described in Section 6.2.1. The results are tabulated below.

13 non-indexed 13 indexed

AGNA JS~J
INGRES (Sun)
AGNA (Hypercube, 32 nodes)

68.3
68.0
4.1

1.2
0.4
2.2

Results for the non-indexed query demonstrate the exploitation of parallelism in AGNA to

achieve significantly greater performance than that of INGRES. The performance difference

is actually greater than it appears, because the Sun processor and disk are approximately

three and two times faster, respectively, than the processor and disk used in the Hypercube.

Performance of AGNA on the multiprocessor platform for the indexed selection is less than that

of both AGNA and INGRES on the uniprocessor platform, because of the little computation and

disk I/ 0 performed by the query (i.e., it is not a good candidate for parallel execution), and

189

the slowness of the Intel Hypercube network which, as we shall see below, is the performance

bottleneck for this class of query.

Performance relative to extent size

In the second set of experiments, the machine configuration was kept constant at 32 PMEs while

the extent size was increased from 100,000 to 10,000,000 objects. We executed two queries using

unique1 (the non-indexed field), selecting 13 of the objects in the base extent in the first one,

and 103 in the second one. We also executed two queries using unique2 (the indexed field),

selecting 13 of the objects in the first one, and a single object in the second one.

Ideally, the increase in response time would not grow at a rate faster than the increase in

extent size. The results are shown in the table of Figure 6.2. For the non-indexed selections,

the increase in response time is almost perfectly matched with the increase in extent size from

1,000,000 to 10,000,000 objects (27.8 to 275 seconds, and 29.1 to 298 seconds). For the increase

in extent size from 100,000 to 1,000,000 objects, this is not the case because with 100,000 objects

the time it takes to begin a transaction, dispatch the local filter operations, append the local

result lists, and end the transaction becomes more significant (almost half of the total time)

relative to the time spent filtering on each node. Response time for the indexed selections is

dominated by this overhead.

Query Description 100,000 1,000,000 10,000,000
1 % non-indexed sJection 4.1 27.8 275
10% non-indexed selection 4.3 29.1 298
1 % indexed selection 2.2 2.6 7.0
1 object usin__g_ index 2.1 2.1 2.1

Figure 6.2: Performance relative to extent size.

Let us examine two of the queries in more detail: selection of a single object from an extent

of size 100,000 (lower left-hand corner of the table), and selection of 1% of an extent of size

10,000,000 objects (upper right-hand corner).

While appropriate run-time metering tools weren't available on the iPSC/2, an analysis of

the number of messages in the critical path of execution of the first query suggests that it is

network-bound. As described in Section 5.9, query execution is organized into four steps, each

completed entirely before the next is allowed to begin: (1) prologue, (2) body, (3) epilogue

pre commit, and (4) epilogue commit. All steps involve distributing some computation to each

190

node of the machine, and steps (2) and (3) also include receipt and handling of results. Let

us examine the messages exchanged during the prologue. Procedure begin-transaction, defined

below along with two additional routines, implements the prologue.

(define begin-transaction
(lambda ()

(letrec ((id (next-transaction-id)))
(foreach (lambda (j) (APPLY PME j local-begin-transaction id))

all-pmes))))

(define local-begin-transaction
(lambda (id) ... Perform local initializatiom ...))

(define foreach
(lambda (f 1)

(if (nil? 1)
"DONE"
(letrec ((x (f (hd 1))))

(foreach f (tl 1))))))

The following messages are transmitted in the call to begin-transaction from the transaction

body:

Number of
Messages Operation

2 lookup identifier begin-transaction
2 read frame size from procedure object
2 allocate frame
4 store procedure on same PME as frame
2 start trigger and signal threads in body

Messages are sent in sequence because each depends on the result of the prev10us one, and

all but one of the 12 messages (the one that starts the signal thread) are required before

computation may begin in the body of begin-transaction.6 By a similar analysis, up to 14

messages may be transmitted before the trigger and list argument threads are started in the

body of procedure foreach. Each subsequent invocation of foreach may also require transmission

of up to 14 messages. After the final invocation returns a result and signal, the next phase of

the transaction (i.e., the body) may begin. The maximum number of messages in the critical

path during the epilogue step is tabulated below:

6 This message count assumes a worst-case scenario. For example, the procedure may already reside on the
same PME as the frame, in which case no messages are required.

191

Number of
Messages

11
14

14*32
2

475

Operation
invocation of begin-transaction
initial invocation of foreach
all subsequent invocations of foreach
signal and result return

The unfolding of computation in the prologue is shown in Figure 6.3. It is important to

realize that the total number of messages in the table above does not represent the number of

messages transmitted during the prologue phase, but rather an estimate of those in the critical

path, i.e., those required to "grow" the spine shown in the figure. In fact, many more inter

PME messages, such as those to invoke procedure local-begin-transaction on each PME, will

be transmitted.

local-begin-transaction

Prologue: begin-transaction foreach • • • foreach

messages messages messages messages

2 messages

Figure 6.3: Messages in critical path of prologue execution.

Assuming that all messages are fifty bytes in length, the total transmission time for messages

in the critical path is approximately .35 seconds (4 75 * . 75 ms). 7 Roughly speaking, this same

pattern of computation is used in the subsequent three steps, and hence approximately the same

number of message transmissions are required. An estimate of the time to send all messages

in the critical path of the entire transaction execution, then, is 1.4 seconds (4 * .35), which is

673 of the total execution time. Since few disk transfers and little computation are performed

by the transaction, processors and disks are most likely idle the majority of the time.

While the distribution of computation to PMEs in AGNA could be modified to reduce the

number of message transmissions in the critical path, one conclusion of the analysis above is

that the latency of message transmission in the iPSC/2 is such that the network may quickly

become a bottleneck in computations which involve much non-local communication. A non-

7This is a conservative assumption because messages which copy a procedure to a PME will always be much
longer than fifty bytes.

192

local procedure call, for example, requires a minimum of five messages (two to read the frame

size, two to allocate the frame, and one to start the trigger thread) to initiate execution in the

procedure body. The message transmission time alone for this is almost four milliseconds. In the

implementation of general purpose models of computation such as ours, many small messages

are inevitable. Thus, we believe that the latency of inter-PME messages in the iPSC/2 must

be reduced by at least an order of magnitude to provide acceptable overall performance for

expressive models of computation.

Now let us examine the selection of 13 of an extent of size 10 million objects using unique1,

the non-indexed field. In this case, the network is not the limiting factor. Approximately

255 of the 257 seconds of execution is spent with all PMEs executing (in parallel) a copy of

procedure local-filter-extent which, as we saw in the previous chapter, builds a local list of

objects satisfying the predicate. The bulk of procedure local-filter-extent is implemented by

P-RJSC manager FILTEREXTENT, whose execution profile for this query is given below.

693 computation
• 52.23 object manipulation
• 34.83 result list construction
• 13.03 page cache management

313 disk 1/0

FILTEREXTENT, and hence the transaction, is compute-bound, as 693 of the time is spent in object

manipulation (e.g., applying the predicate), constructing the result list, and managing the cache

of pages, while only 313 is spent performing 1/0.

Speedup

In this set of experiments, we kept the extent size constant at 1,000,000 objects while the

machine configuration was increased from 1 to 32 nodes. The ideal behavior in this case would

be for response time to decrease (or speedup) proportionally with increases in machine size.

Results for the 13 selection queries are shown in Figure 6.4. (We also executed the 103

selection query using the non-indexed field; the response time and speedup curves for it are

almost identical to those for the 13 non-indexed selection.)

The speedup for non-indexed selections is practically linear from 1 to 32 nodes. We would

like to emphasize that this linear speedup depends, in part, on the uniform distribution of WISC

objects across the machine. If objects were distributed in a non-uniform manner, then it is

193

Response Time

800

600

400

200

8 16
PM Es

Response Time

20

15

10

5

8 16
PMEs

24

24

32

Speedup

32

24

16

8

8

(a) 1% Non-indexed selection.

Speedup

32

24

16

8

/
32 8

(b) 1 % Indexed selection.

Figure 6.4: Speedup for 13 selection.

194

16 24 32
PM Es

• •

16 24 32
PMEs

possible that the speedup would be less. For the indexed selection, good speedup is obtained

from 1 to 8 nodes, but then response time levels off due to the additional communications

overhead with larger machine configurations.

Scaleup

In the final set of experiments, we increased the machine and extent sizes proportionally. The

ideal behavior in this case would be for response time to remain constant. The results are

shown in Figure 6.5.

Response Time

400

300

200

100

8 16 24
PMEs

32

Response Time

16

12

8

4 -------------
8 16 24

PMEs
32

Figure 6.5: Scaleup for 13 selection without index (left) and with index (right).

Response time remains relatively constant for selection using the non-indexed field. For the

indexed selection, response time increases slowly with increases in the machine size due, again,

to the increased communications overhead.

Comparison with Gamma

The Gamma Parallel Relational Database Project at the University of Wisconsin has also re

ported results for the selection queries that we used in our experiments. A thorough performance

evaluation of Gamma, on the same hardware platform, is reported in [33].

For queries that involve a significant amount of processing relative to the overhead of a

transaction, e.g., a non-indexed selection on all 32 nodes with an extent size of 10,000,000

objects, Gamma is anywhere from two to five times faster than AGNA. For very short transac

tions, the difference is more significant, often greater than a factor of ten. We believe that the

differences in performance can be attributed to three things:

195

l. The P-RlSC abstract machine, the target of the AGNA compiler, is currently emulated in

software. Further, we know of numerous optimizations possible on P-RlSC code that we

have not yet had the opportunity to incorporate. From hand-coded examples and results

reported for Culler's Threaded Abstract Machine [67], we believe that these optimizations

and compilation to native code can easily increase overall performance by a factor of 10

or more.

2. AGNA implements objects in a segmented, paged, virtual heap. The management of this

heap, including its paging to disk, is implemented entirely in software which has not been

optimized very much yet. Further, our heap structure is more complicated due to the more

complex object model supported by AGNA. For example, the storage model in Gamma is

not a global heap, but rather a collection of files ofrecords. The mapping of records to files

is determined statically when a relation is created, and no direct inter-record references

are allowed.

3. Much less effort has gone into AGNA to date to tune the system, particularly the object

storage system, where additional optimizations could, we believe, increase the performance

of low-level object scans by at least a factor of two. Also, additional optimizations to

reduce the number of inter-PME messages have not yet been incorporated.

We are very encouraged by our results, and believe that we are within shooting distance of

parallel relational systems on comparable queries. Again, we have the advantage that in AGNA,

the programmer can smoothly escalate to more complex objects and queries that involve general

networks of objects and arbitrary computation.

6.3 Extra-Relational Queries

We also performed a set of experiments using the Engineering Database Benchmark (EDB) [24]

to evaluate the performance of AGNA on extra-relational transactions. We begin this section

with a description of the benchmark database and operations, then we report uniprocessor

results for AGNA. Next we compare our results to similar results for INGRES and a commercial

object-oriented database system. Multiprocessor results for AGNA on this benchmark are not

available, as an umesolved bug in the iPSC/2 communications subsystem has prevented us

from running the benchmark operations successfully on that platform.

196

6.3.1 Engineering Database Benchmark

The Engineering Database Benchmark was designed to evaluate the performance of database

systems on basic operations commonly performed by engineering applications. Object types in

the benchmark database are PART and CONNECTION, defined as follows:

(type PART (extent)
((id <=> INTEGER)

(type => (STRING 10))
(x => INTEGER)
(y => INTEGER)
(build-date => INTEGER)
(connections <=>• CONNECTION)))

(type CONNECTION (extent)
((part •<=> PART)
(type => (STRING 10))
(length=> INTEGER)))

Each part consists of a unique id, four other attributes, and connections to three parts; the

connection information is stored in multi-valued field connections. Each connection consists of

a part (i.e., part Bin a connection from part A to B), and two attributes. Thus, the database

consists of a graph of objects as shown in Figure 6.6.

Figure 6.6: Part and connection objects in EDB database.

While databases of various sizes are included in the benchmark, we chose to use the smallest

because more published results for other systems are available using this size than any of the

others. The "small" database consists of 20,000 parts and 60,000 connections. As specified

in the benchmark, connections between parts are chosen to enhance locality in the sense that

903 of all connections are made from a source part to a target part selected randomly from

the "closest" 13, i.e., those 13 of the parts with id values numerically closest to the id of the

197

source part. The remaining 10% of the connections are made to target parts selected randomly

from the entire part extent.8

Operations in the benchmark are:

• Lookup. 1000 random ids are generated and the corresponding parts are fetched. The

x, y, and type field values of each part are passed to a null-bodied procedure.

• Traversal. Select a part randomly, and then visit all parts reachable in seven or fewer

connections. (The total number of parts visited is 3280, with duplicates.) The x, y,

and type field values of each part visited are passed to a null-bodied procedure. A re-

verse traversal is also performed, i.e., the same operation except that the connections are

traversed in the opposite direction.

• Insert. Create 100 new parts and their connections.

All operations are performed in each of ten iterations. Initially, no data pages may be present

in the database or OS caches. The results of the first iteration are referred to as "cold" start

results, and the asymptotic best times of the remaining iterations, which may access cached

pages, are referred to as the "warm" start results. The EDB designers made the distinction

between warm and cold start results to distinguish systems which enhance performance via

efficient caching of data in applications programs. Engineering applications, the target domain

of the benchmark, often access the same data repeatedly from different parts of the program,

thus performance can be improved significantly if data is cached efficiently. The Wisconsin

benchmark designers, on the other hand, did not make such a distinction, because relational

queries typically do not exhibit this pattern of access, and thus the benchmark is focused

more on testing query processing algorithms, use of indexes, etc. rather than particular caching

strategies.

For each of the ten iterations, a different set of random ids and parts must be selected. The

benchmark specification allows the database to be stored locally or remotely and accessed via

a network. For our experiments, we used a local database since remote access, in the sense

defined by the benchmark, is not supported by AGNA.

8 A random number generator is utilized in construction of the database and in the benchmark operations.
The random number generator used in AGNA, described in (65], is the one suggested by the EDB authors [24].

198

6.3.2 Experimental Results

We ran the EDB benchmark on the uniprocessor platform described in the previous section

(Sun 4/490, 64 megabytes of memory, ipi-1000/2HP disk with an isp-80 controller). As before,

a 16 megabyte page cache was used. The results (response times in seconds) are tabulated

below.

I Operation Cold Warm

Lookup 13.9 7.2
Forward Traverse 21. 7 12.2
Reverse Traverse 42.4 32.5
Insert 9 8

Total size of the database was 11 megabytes and the database build time was 1180 seconds.

Warm-Start Execution of Forward Traverse Operation

Let us now examine in detail a warm-start execution of the forward traversal operation, i.e.,

one in which all relevant data pages are in the cache prior to execution, thus no I/ 0 is required.

First, here are the AGNA procedures that perform the operation:

(define forward-traverse
(lambda (part hops total-parts-visited)

(letrec ((x (select part PART X))
(y (select part PARTY))
(t (select part PART TYPE))
(a (null-proc x y t))
(cs (select part PART CONNECTIONS)))

(if (>= hops 1)
(£-traverse-helper cs (- hops 1) (+ 1 total-parts-visited))
1))))

(define null-proc (lambda (x y type) ()))

(define £-traverse-helper
(lambda (cs hops n)

(if (nil? cs)
n

(letrec ((part (select (hd cs) CONNECTION PART)))
(£-traverse-helper (tl cs)

hops
(+ n (forward-traverse part hops 0)))))))

Procedure forward-traverse takes a part, the number of "hops" or connections to follow from

the part, and the total number of parts visited so far. The x, y, and type fields are selected

and passed to null-proc, as specified by the benchmark. If the number of hops remaining is at

least one, then procedure £-traverse-helper is utilized to continue the traversal. Its arguments

199

are a list of connections, the number of hops, and the total number of parts visited. Procedure

f-traverse-helper simply iterates over the list of connections, selecting the target part of each

and passing it to forward-traverse.

The forward traversal operation is invoked as follows:

(xact
(forward-traverse (invert PART ID (random 1 20000)) 7 0))

Procedure random returns a random number in the specified range, which is then used to select

the part from which the traversal begins. The number of hops is initially seven, and the count

of parts visited zero.

Here is the breakdown of a warm execution of the transaction above.

27.73
21.03
16.03
11.43
06.53
06.33
05.63
05.53

frame pointer address translations, initiated via procedure interpreter
procedure interpreter, but not procedures called by it
building/ sending/receiving messages
allocation and deallocation of frames
miscellaneous
identifier lookups
pinning/unpinning heap pages via procedure interpreter
selection of object fields

The largest category in the breakdown, which consumes 27. 73 of the time, involves only address

translations of FPs initiated via procedure interpreter. Such translations, which total 93,025,

are performed when the interpreter switches execution from one frame to another (25,172), and

in the execution of STARTO {28,459) and START1 (39,394) instructions. Including the additional

address translations performed in object field selection, frame allocation, etc. a total of 32.43

of the time is spent translating AGNA heap addresses. Thus, it is clear that the implementation

of the virtual heap in software in AGNA is a major source of overhead. Each translation of

a (resident) heap address takes 166 native SPARC instructions. In Section 6.3.4, we discuss

techniques used by some OODBs to reduce this overhead, and their applicability in AGNA.

Execution of procedure interpreter, the next largest category, consumes 213 of the time.

This does not include time spent in any procedures called by the interpreter, but only in the

interpreter procedure itself. The bulk of this time represents the overhead of interpretation of

the P-RJSC instruction set. For example, execution of a P-RJSC ADD instruction in procedure

interpreter takes 26 native SPARC instructions.9 While this overhead may be reduced some

what by more efficient compilation to P-RJSC code and additional optimizations in procedure

9 This assumes that the P-RISC frame and instruction pointers have already been translated.

200

interpreter, it is clear that the overhead of interpretation is significant. Compilation to native

machine code is thus an important area of future research in AGNA.

The building, sending, and receiving of messages is the next largest category, consuming

163 of the time.10 The primary reason why this category consumes so much time is that

the interpreter and manager lightweight threads are each mapped to a separate OS process in

the current uniprocessor implementation, thus sending an intra-PME message involves inter

process communication, which is relatively expensive. For example, a 100 byte message sent

from one process to another talces approximately .5 ms. While we would have preferred to

place all lightweight threads in the same OS process and thereby reduce the communication

overhead considerably, the only thread package that we had access to (Sun's lightweight process

library) did not support non-blocking I/O, i.e., when a lightweight thread issues an I/O request,

the entire OS process blocks, even if other lightweight threads are ready to execute. In the

iPSC/2 implementation, on the other hand, a suitable thread package was available, and thus

all lightweight threads are placed in the same OS process.

The next most time consuming activity (11.43) is the allocation and deallocation of frames.

Allocation involves a call to the heap storage allocator, which maintains a table of free blocks

of various sizes, and initialization of the frame structure. Deallocation involves a call to the

storage allocator to free storage occupied by the frame. Both allocation and deallocation involve

address translations which, as we just saw, are quite expensive. A total of 10,946 frames are

allocated and deallocated by the transaction.

Remaining categories in the breakdown above are: various miscellaneous tasks; top-level

identifier lookups; pinning and unpinning of the heap pages on which the current frame and

code objects reside; and the selection of object fields.

Cold-Start Execution of Forward Traverse Operation

We also examined a cold-start execution of the forward traverse operation to determine the

degree to which the latency of disk I/O is masked by parallelism. We executed the query using

a modified version of AGNA that included only one manager thread, whose execution was not

10 In a. we.rm execution, the interpreter thread only sends messages to ma.na.ger threads for lookups of top-level
names not in the identifier cache, a.nd selection of multi-valued fields. As discussed in the previous chapter, such
operations a.re a.lwa.ys performed by ma.na.ger threads because it is difficult to predict whether the associative
searches that they perform will involve access to non-resident pages.

201

allowed to overlap with the interpreter thread. 11 We also executed the query using different

numbers of manager threads that did overlap execution with the interpreter thread. The results

are tabulated below.

Number of Manager
Response Time J Threads Overlap?

1 no 25.9
1 yes 22.5
2 yes 21.6
3 yes 21.7

With one manager thread and no overlap of disk I/O and computation, the response time is

25.9 seconds. This improves by approximately 16% (4.3 seconds) when two or three managers

are used and overlap is allowed. Regardless of the number of manager threads used and whether

overlap is allowed, 574 disk pages are read in manager threads. Using the average service time

reported earlier (14.7 ms), the total I/O time is 8.3 seconds.

If 8.3 seconds are spent in I/O, though, why does response time only improve by about

half that amount (4.3 seconds) when overlap is allowed? The answer involves the following

three factors. First, while much parallelism is available throughout most of the transaction (see

Figure 6.712), there are short periods of time at the beginning and end of execution during

which not enough work is available to cover I/O time completely. During these periods, the

emulator is idle for a total of approximately .5 seconds waiting for I/O to complete.

400

300

200

100

100 200 300 400 500 600 700 800 900 1000 1100

Thousands of P-RISC Instructions Executed

Figure 6. 7: Parallelism profile of forward traverse operation.

11 This was accomplished by having the interpreter thread, after sending a message to the manager thread,
immediately block awaiting the reply.

12 Raw data for the parallelism profile of Figure 6.7 was produced by the statistics-gathering facilities of AGNA.

Data such as the number of active micro-threads and queued manager requests are recorded at regular intervals
(every 10,000 P-RISC instructions), and may be viewed by the user after transaction execution is completed.

202

Second, not all of the 8.3 seconds ofI/O time is available for other computations. For exam

ple, before the interpreter may begin execution after an I/O request is initiated by a manager

thread, the operating system must switch execution from the manager to the interpreter pro

cess, thus incurring the overhead of a context switch. Also, the 14. 7 ms estimate of I/ 0 service

time includes the time required to copy the disk page from a kernel buffer to user space, i.e.,

to an AGNA page frame buffer. During this copying, which takes a total of about .33 seconds,

the processor is not available for execution of other threads.

Third, execution of the transaction with overlap of I/O and computation involves the ex

change of more intra-PME SELECTF messages than when no overlap is allowed. For example,

a number of connection objects may reference parts that are on the same non-resident page.

With no overlap, the interpreter thread issues a SELECTF request to a manager thread the first

time an object on a non-resident page is referenced, and waits for the reply. All subsequent

references to objects on the page find it resident, and thus may be handled entirely within the

interpreter thread.

When overlap is allowed, the interpreter thread may issue multiple SELECTF manager requests

involving objects on the same non-resident page before the page is made resident by a manager

thread.13 The 1/0 is performed only once, but the extra manager messages are expensive given

the high cost of intra-PME messages in the current uniprocessor implementation of AGNA. In

the forward traverse operation with one manager thread and no overlap, 1440 messages are

sent from the interpreter to the manager thread. With three manager threads and overlap, an

additional 700 SELECTF messages are sent. The additional messages, and their replies (sTART1),

represent a substantial overhead, as each message requires construction, transmission, decoding,

context switching, etc. Thus, the third reason why response time does not improve by more

than 4.3 seconds when computation is overlapped with I/0 is that more messages, and hence

more computation, is required.

Warm-Start Execution of Forward Traverse Operation

We also used the statistics gathering facilities supported by AGNA to determine the parallelism

available in the interpreter during a warm execution of the forward traversal operation. The

profile is shown in Figure 6.8.

13 While the interpreter could keep track of the pages for which 1/0 requests have been issued and thus avoid
multiple manager requests, this is currently not done.

203

60

50

40

30

20

10

frames
allocated

~frames active

100 200 300 400 500 600 100 800 900 1000 1100

Thousands of P-RISC Instructions Executed

Figure 6.8: Parallelism profile.

For the most part, all three curves remain relatively fiat throughout execution of the trans

action. The reason for this is that the computation unfolds in a depth-first rather than a

breadth-first manner. In the body of forward-traverse, the frame for the call to null-proc is al

located and threads in the body activated (but not executed) before the frame and threads for

£-traverse-helper. In the body of £-traverse-helper, the frame for the recursive call is allocated

and threads activated before the frame and threads for forward-traverse. As described in the

previous chapter, active frames are maintained in a stack, and this causes the traversal to be

performed in a depth-first manner.

For a warm execution on a uniprocessor, a depth-first traversal is optimal because it is the

most resource-efficient. A breadth-first traversal, for example, may allocate more frames than

can fit in physical memory at any one time, and thus may incur expensive paging overhead. The

additional parallelism in a breadth-first approach, though, may be desirable in a multiprocessor

environment, and even on a uniprocessor to help mask the latency of disk I/O. This, and other

issues related to resource management, are an important topic of future investigation in AGNA.

6.3.3 Comparison With INGRES

We executed the Engineering Database Benchmark using INGRES on the same hardware plat

form. As before, INGRES was configured to use a 16 megabyte page cache, and logging and

locking were turned off, since these functions are not performed in AGNA. The SQL represen

tation of the database includes two tables, PART and CONNECTION, as shown in Figure 6.9. Hash

indexes were built on the ID column in the PART table, and the FROMID and TOID columns in the

CONNECTION table. All of the operations were coded in SQL embedded in C. Also, SQL queries

204

were compiled where possible to avoid the overhead of parsing, optimization, access path selec

tion, etc. on each query execution. The INGRES results are tabulated below, along with the

AGNA results presented earlier.

Cold Warm
Operation INGRES AGNA INGRES AGNA

Lookup 22.2 13.9 18.0 07.2
Forward Traverse 66.5 21.7 57.0 12.2
Reverse Traverse 76.1 42.4 69.0 32.5
Insert 20.0 09.0 19.0 08.0

Total size of the INGRES database was 5 Mb and the database build time was 2855 seconds.

AGNA provides superior performance in all cases; we believe there are three fundamental reasons

for this. First, AGNA supports the overlap of execution and disk I/O which, as we just saw,

improves the cold start results. In INGRES, each transaction executes in a single thread of

control, so when a disk transfer is initiated, the entire transaction is suspended until it is

complete.

PART CONNECTION

ID TYPE x y BUILD_DATE FROM ID TOID TYPE LENGTH

17 "part-typa7" :Z3 1209 :Z:Z7488376 17 :Z1 "conn-type4" 346

:Z1 "part-typa3" 98946 :Z:Z46 766333 34 3346 "conn-type0 11 9

• .
•

. . .
Figure 6.9: Relations in EDE benchmark.

Second, AGNA supports a richer object model, and in particular, objects may directly

reference other objects. A connection object, for example, points at the target part of the

connection. Traversing this link to a target part in AGNA involves only the dereferencing of a

pointer. In INGRES, on the other hand, access to the target part referenced via a row in the

CONNECTION table involves a general associative lookup in the PART table.

Finally, all of the benchmark operations are written entirely in the AGNA transaction

language-no embedding in a separate language is necessary. This allows the AGNA com

piler to see and thus optimize the entire operation. Also, this organization allows the entire

transaction to be executed in the "database system". As we saw in Chapter 2, in INGRES one

is forced to embed more complicated operations in a host language. For example, here is the

embedding of the forward traversal operation in C:

int forvardTraverse(id, hops, totalPartsVisited)

205

EXEC SQL BEGIN DECLARE SECTION;
int id;
EXEC SQL END DECLARE SECTION;
int hops, totalPartsVisited;
{

}

EXEC SQL BEGIN DECLARE SECTION;
int x, y, toid;
char partType[11], cursorName[8];
EXEC SQL END DECLARE SECTION;

if (hops<1) return 1;

/•
**Fetch part X, Y, and TYPE fields. Call null procedure.
•I
EXEC SQL REPEATED SELECT x, y, type

INTO :x, :y, :partType
FROM parts
WHERE id=:id;

nullProc(x,y,partType);

/•
** Continue traversal.
•I
sprintf(cursorName,"level'Y.d",hops);
EXEC SQL DECLARE :cursorName CURSOR FOR

SELECT toid
FROM connections
WHERE fromid=:id;

EXEC SQL OPEN :cursorName;
EXEC SQL 'W"HENEVER NOT FOUND GOTO closeCursor;

totalPartsVisited++;
while (1) {

}

EXEC SQL FETCH :cursorName INTO :toid;
totalPartsVisited += forwardTraverse(toid,hops-1,0);

closeCursor:
EXEC SQL CLOSE :cursorName;
return totalPartsVisited;

Procedure forwardTraverse takes a part id, the number of hops, and the total number of parts

visited. The first SQL query fetches the x, y, and type fields of the current part and passes them

to a null procedure. Next, the traversal is continued by declaring and opening a cursor-scan

over the parts to which the current part is connected. For each part returned, forwardTraverse

is called recursively.

Note that here part of the operation is implemented by SQL, and part by the host language.

This means that the SQL compiler cannot see and thus cannot optimize the entire operation-it

206

is only able to optimize small pieces of it. Also, this organization results in run-time inefficien

cies, as the front-end OS process containing forwardTraverse must repeatedly exchange small

pieces of the operation and replies with the back-end database system. The result is high

communication overhead and inefficient use of the database system.

6.3.4 Comparison With an OODB

EDB benchmark results for commercial object-oriented and relational systems, whose identities

were deliberately not revealed, are reported in [24]. The hardware platform used was a Sun

3/260 with 8 megabytes of memory, an SMD-4 disk controller, and two local Hitachi disks. The

operating system used was Sun UNIX OS 4.0.3. The page cache was approximately 5 Mb in

size, which was large enough to hold the entire database in both systems. The small remote

database was used. The results reported in [24] are tabulated below.

Cold Warm
Operation OODB RDB OODB RDB

Lookup 20.0 29.0 01.0 19.0
Forward Traverse 17.0 94.0 01.2 84.0
Insert 03.6 20.0 02.9 20.0

It is difficult to make precise comparisons between the OODB results and the AGNA results

presented earlier because of the different hardware and OS platforms used, and the placement of

the database (local vs. remote). However, since the RDB results given above are similar to the

results that we obtained using INGRES, we believe that two general conclusions are justified.

First, the cold-start performance of AGNA is competitive with OODB: the lookup results for

AGNA are roughly 303 faster, the forward traverse results 303 slower, and the insert results

two to three times slower. Again, this does not take into account the differences cited above.

Second, the warm-start performance of AGNA is at least an order of magnitude slower than

that of OODB. We feel that the majority of this difference is attributable to the overhead inher

ent in AGNA's software-based emulation of the P-RISC machine. If we were to compile AGNA

to native machine code, we believe that the warm-start performance of the forward traversal

operation would improve by at least an order of magnitude. We base this on the performance

results reported by Culler and his group at Berkeley [29, 67] for Id programs compiled to native

code, which execute two orders of magnitude faster than Id programs compiled and interpreted

under GITA, a graph interpreter for the MIT Tagged-Token Datafl.ow Architecture [5].

Another factor is the techniques used by OODB (and most other OODBs) to provide fast

access to memory-resident data. While [24] does not mention the specific techniques employed

207

by OODB, those mentioned in the literature include converting all inter-object references in

resident objects from logical identifiers to memory addresses, constructing special indexes on

resident objects, etc. [32].

One strategy for implementing the first technique works as follows. When a page of objects is

read into memory, all objects in the page are scanned and outgoing logical pointers are converted

(or "swizzled") to memory addresses. If a logical pointer references a non-resident object, then

it is converted to a memory address that will cause a trap if the pointer is dereferenced. A trap

handler fetches the page on which the target object resides, and converts all logical identifiers

in the page to memory addresses. While this approach is not very portable, it does support

efficient pointer traversal, since no interpretation of pointers is required.

Before an updated page of objects can be written back to disk, all pointers must be converted

back to logical identifiers. Also, it is necessary to ensure that pointers (in resident objects) to

objects on the page will generate a trap when dereferenced. This is potentially very expensive,

as conceptually it requires, for each object, maintaining the set of all objects which reference

it.

The tradeoffs of this approach are high overhead when disk pages are read or written, but

efficient access to memory-resident objects. Most commercial OODBs are targeted to design

applications which [24] estimates have working set sizes of approximately 4 Mb (e.g., a CAD

drawing) and include an order of magnitude more reads than writes. For applications with these

characteristics, the techniques described above are very effective at increasing performance.

While we could also utilize such techniques in AGNA, it is not clear that this is is a good idea,

for two reasons. First, optimizations such as pointer swizzling are significantly more complicated

in a multiprocessor implementation. For example, in both uniprocessor and multiprocessor

systems, there are logical (i.e., disk-based) and physical (i.e., memory-based) pointers that

must be manipulated. In multiprocessor systems, though, there is the additional complication

oflocal vs. remote pointers, of both kinds. Say, for example, that a non-local object is referenced

from PME i via its logical id. Should the object be copied to PME i and the pointer converted?

If so, what if the object is also referenced from PME j? Maintaining consistency in such cases

is equivalent to the multiprocessor caching problem.

The second reason why OODB optimization techniques might not be as effective in AGNA

is that we have targeted our system to a wider class of databases and applications which

often will not have the characteristics of design applications mentioned previously, for which

208

such ~ an llM>lt el'ectiw. The BDB 1tiarhmtd: .,.. .,.nem. d1at perform. U..

optimise.Uom ia die belfi patllilrlit licJat Mcaw till 111!1••• AU ia DlmlOl'1t aM dull

1uch ,,..._...,.. U.. to,., die caet of arr' . M s pcl1••· AGWA acc11111 Nliirt d.Ua

leu eflldmtly, bat will iacur ... - ond, ol>jeeU .. rwi frca wt

writtm to dilk.

209

Chapter 7

Concluding Remarks

In this chapter we summarize the present work, compare our work with related work of other

researchers, and outline directions for future research.

7.1 Contribution and Summary of Present Work

The main contribution of this work is the design of a persistent object system that utilizes

parallelism in a fundamental way to achieve competitive performance, and the techniques used

in its implementation. Parallelism is incorporated into the system at all levels. We began

with a declarative, implicitly parallel transaction language that includes a full higher-order

programming language and list comprehensions, a notation that can be used as a high-level,

declarative query language. We believe that such declarative languages, from which massive

parallelism can be extracted easily, are essential to achieving scalable performance for complex

transactions on large-scale parallel machines.

A novel aspect of the language is its non-destructive, single-assignment update of persistent

objects. This permits even update transactions to be executed with a high degree of parallelism,

and ensures a unique result, i.e., transactions are determinate. Previous work on rewrite rule

systems was extended and a formal semantics for the language specified.

AGNA transactions are compiled in three major phases- source-to-source translation of the

original transaction text, translation into datafl.ow program graphs, and translation into code for

a multi-threaded abstract machine called P-RISC, whose central feature is fine grain parallelism

with data-driven execution. Coarse grain parallelism is used to distribute computations of a

transaction over the nodes of a parallel MIMD machine, and fine grain parallelism is used within

a node to mask long-latency operations such as disk I/O, remote memory accesses, and waits

211

for synchronization.

A number of significant optimizations are performed on list comprehensions, including use

of Btree and hash indexes to combine generators and filters, reduction of the number of in

termediate lists, and moving filters as close to disk 1/0 as possible. An additional, signifi

cant optimization performed by the compiler enables tail-recursive procedures to execute in a

resource-efficient manner. Included in the abstract machine is a virtual heap that encompasses

both persistent and ephemeral objects. A novel segmented, paged structure permits clustering

of objects of a particular type, and easy mapping to the distributed memory and disks of a

multiprocessor.

A prototype implementation was developed on workstations running the UNIX operating

system, interconnected via a local area network. A port of the software is also operational on

an Intel iPSC/2 Hypercube with thirty-two processors and thirty-two disks. To our knowledge,

AGNA is the first real implementation of a parallel persistent object system, whether based on

functional languages or not. Analysis and experimental results demonstrate:

• Performance approaches that of state of the art uruprocessor and multiprocessor rela

tional systems on a simple but important class of queries. Performance relies heavily on

optimization of list comprehensions, and aggressive pursuit of parallelism, based on fine

grain, non-strict evaluation.

• Performance is superior to uniprocessor relational systems, and approaches that of state

of the art object-oriented systems, on more complicated queries such as those involving

graph traversal operations.

• Exploitation of parallelism on both uniprocessor and multiprocessor platforms. On a

uniprocessor platform, fine grain parallelism is used to mitigate the effects of I/ 0 latency

by executing other threads while I/ 0 is in progress. On a multiprocessor platform, parallel

execution of both computation and I/ 0 is used to achieve scalable performance of simple

list comprehension queries.

7.2 Comparison With Related Work

In Chapter 1, we compared the approach taken in AGNA to those taken by the developers of

other third-generation database systems. Here we include additional comparisons with specific

212

systems.

7.2.1 Functional Data Model

Some of the earliest connections between functional languages and database systems were made

by Shipman in his work on the Functional Data Model [70], Buneman et al. in their work on

FQL {Functional Query Language) [19] and Atkinson, Kulkarni et al. in their work on PS-Algol

and the Extended Functional Data Model [7, 52]. Most of this work emphasized language design

and all the implementations were sequential.

7 .2.2 Trinder's Functional Database Model

Trinder, in his thesis [77], has also studied the use of a non-strict functional language as a

parallel database language. He examined parallelism in transactions by executing them on a

simulator (running on a sequential machine) that models parallel execution and disk 1/0 in

certain idealized ways. His results confirm our belief (a belief long held by our fellow dataflow

researchers and substantiated by numerous experiments in dataflow architectures [3]) that non

strict parallel evaluation is a very promising method to exploit parallelism and to overcome the

long latencies of disk 1/0 and communication in parallel machines.

Trinder and his colleagues are currently implementing his functional database model on

GRIP, a parallel machine [66]. One difference from our work is that since GRIP does not have

a parallel 1/0 system, the database will have to reside in main memory. In AGNA, we have

addressed the issue of implementing a virtual heap that is much larger than main memory and of

distributing objects onto multiple disks. A second difference is that GRIP is a shared memory

architecture; we believe that our distributed memory model is not only physically easier to

scale to much larger machines, but also operationally, because we have taken into account the

increased latencies of larger machines.

7.2.3 AGM

AGM (Active Graph Model) [15], developed at UC Irvine, was a parallel database system that

used a language based on the Entity-Relationship data model. Memory was viewed as an active

graph of tokens, which are used to represent both entities and relationships. Tokens are mapped

to PMEs of the machine by a hashing function, and transaction processing consists of injecting

and propagating special query and/ or update tokens through the graph.

213

7.2.4 SPL

Kato et al. [48] have designed a database language SPL based on list comprehensions. However,

their approach seems quite different from ours. They have a compilation scheme where each

generator and filter in the list comprehension is treated as a function from streams to streams.

Each function is treated as a sequential process in a parallel system, and the streams are directly

implemented as communication channels between these processes. With these restrictions, they

have not had to deal with persistent heaps, and they do not utilize indexes for efficient access.

Some problems that we see with this approach are that streams themselves are not first class

objects, and it is difficult to deal with higher-order functions and updates.

7.2.5 Gamma

Gamma is a parallel relational database system developed at the University of Wisconsin. It

exploits intra-transaction parallelism to achieve roughly linear speedup for single-user execution

of relational queries as the hardware is increased from 1 to 30 nodes, i.e., for a constant-sized

database, doubling the number of PMEs roughly halves the response time [33].

Gamma uses a "shared-nothing" [71] memory organization in which PMEs do not share

main memory or disks, and communicate solely via message-passing. Relations are partitioned

horizontally across all PMEs. A data-driven, coarse-grained model of parallel computation is

utilized. For example, a relational query is compiled to a dataflow graph containing operators

such as select, project, and join. An operator is implemented via one or more processes (or

process threads) running on each PME which participates in the operator. For relational queries,

the query processing strategy to be used and the process-to-PME mapping are determined

largely at compile-time.

In contrast to the Gamma implementation, we use a much finer parallel grain size and

a memory model consisting of a global heap and procedure frames (or activation records).

Another major difference is the way in which parallel tasks are mapped to PMEs. In AGNA,

tasks are often mapped to PMEs at runtime, based primarily on considerations ofload balancing

and object location. For an SQL-like subset of our language, however, the compiler is often

able to select a query processing strategy which provides hints on where certain computations

should be performed, thereby exploiting the locality of data. While such methods work well for

relatively simple operations on regularly structured data, it is not clear that they can be easily

214

generalized to more sophisticated operations on complex data.

The final significant difference is the way in which parallel tasks are synchronized and con

trolled. In Gamma, a separate control process is used to inform an operator process of the

identity of the processes to (from) which it is to send (receive) data. When the processes which

implement an operator complete, they inform the control process, which in turn may initiate

other operator processes. Consumer processes block while waiting for data from producer pro

cesses. In our approach, synchronization is performed explicitly via the join instruction (which

combines parallel threads) or implicitly through heap access (readers of an empty location are

automatically deferred until the location is written). These mechanisms make minimal use of

OS synchronization primitives and are entirely data driven, involving no busy-waiting. Control

is handled uniformly through the use of continuations, which can be thought of as the ultimate

in lightweight threads. For operating systems which support non-blocking 1/0, all threads on

a PME, possibly from different transactions, may execute within the same OS process.

7.2.6 FAD and Bubba

FAD, designed at MCC [10], was another parallel functional database language. FAD did not

have anything like list comprehensions; queries had to be composed explicitly using operations

such as map and filter. In FAD, functions were not first class objects, and updates were

completely imperative which, as discussed in Chapter 1, constrains parallelism significantly.

FAD was to be implemented on Bubba, a parallel database machine [18] built on top of a

Flex/32 multicomputer consisting of 40 PMEs (32 with local disks). We believe that only a

relational subset of FAD (no inter-object references) was actually implemented before the end

of the project; we do not know what optimizations were implemented or what performance was

achieved.

7.3 Directions for Future Work

While we are pleased with the results and progress of the present work, many exciting oppor

tunities exist for future work. In this section we outline some of these opportunities.

215

7.3.l Language

In AGNA, we have obviously not spent any time on concrete syntax design- with its heavily

parenthesized notation, the transaction language is by no means user-friendly. A more concise

and elegant syntax, such as that used in [63], is clearly desirable. Further, AGNA does not have

a static type system, something that is also desirable.

7 .3.2 Concurrency Control and Failure Recovery

We have not yet addressed in AGNA the important issues of concurrency control (across trans

actions) and failure recovery, though we believe that conventional techniques such as two-phase

locking and write-ahead logging could be applied easily in AGNA.

7 .3.3 Retention of Historical Data

Perhaps a more interesting approach to recovery would be to extend AGNA's database model to

include historical data, which is straightforward because of its non-destructive update model,

and then to fold recovery into normal management of the database. Instead of modeling a

database as a single environment of bindings, we can model it as a sequence of environments,

each produced by an update transaction. Because old data is never overwritten, a conventional

log is not necessary, and recovery is simplified greatly. Also, the entire history of the database

is available to all transactions. This means that the programmer, or database administrator,

does not have to decide a priori which object histories to maintain, since needed historical data

will always be available.

If old database environments are to be accessible to the programmer, then the transaction

language must be extended to include a way to refer to environments, and a mechanism for

specifying the environment in which an expression is to be evaluated. As a practical matter,

strategies will need to be developed for archiving and/or pruning old environments, since it

may not be feasible to maintain on-line all old versions of the database.

7 .3.4 Compiler

An obvious area of future work here is compilation to native machine code. Also, many ad

ditional optimizations a.re possible on list comprehensions. One area for improvement is com

prehensions that include nested generators, the equivalent of join queries (cross-products) in

216

relational systems. We believe that traditional methods for implementing join queries, as well

as new ones that can utilize the direct object references part of the AGNA object model, can

be exploited. Finally, enhancements to the compiler and/or run-time system aimed at reducing

the overhead of heap address translations, are desirable.

7 .3.5 Resource Management

Much additional work is possible in the difficult area of resource management: automatic

garbage-collection of both persistent and volatile parts of the heap; additional strategies for

distribution of objects to PMEs; code-mapping policies; support for large data objects; frame

management; coding of resource managers, including the object storage system, in a parallel

language.

7 .3.6 Analysis and Experimentation

Finally, more analysis and experimentation are needed to further assess the strengths and

weaknesses of AGNA. One obvious area to be examined is the ability of AGNA to exploit

parallelism between transactions. In the present work we have focused on parallelism within

a single transaction, but parallelism may also be used in AGNA to increase total transaction

throughput.

217

Appendix A

Syntax of the Agna Transaction
Language

This appendix gives the syntax of the complete AGNA transaction language. Standard BNF

notation is used.

Transaction

Statement

Definition

Field-Spec

Expression

Qualification

Primitive

Constant

··-..

··-..

(xact Statement+)

Definition I Expression

(define Identifier Ex£ression)
(define-local Identifier Expression)
(undef ine Identifier)
(type Identifier <[extent]) (Field-Spec*))

(Identifier { =>1<=>1=>*1<=>*1*<=>1•<=>•} Identifier)

Constant I Identifier I (Expression+)
(Primitive Expression*)
(if Expression Expression Expression)
(let ((Identifier Expression)+) Expression+)
(lambda (Identifier*) Expression)
(allocate Identifier)
(invert Identifier Identifier Expression)
(select Expression Identifier Identifier)
(update Expression Identifier Identifier Expression)
(insert [-list] Expression Identifier Identifier Expression)
(delete[-list Expression Identifier Identifier Expression)
(all Identifier)
(all Expression Qualification+)

(Identifier Expression)
(where Expression+)

+ I - I drop I ...

Boolean I String I Number I nil I ()

219

Appendix B

P-RISC Managers

This appendix describes the complete set of P-RISC manager instructions used in AGNA.

B.1 Heap Memory Allocation

ALLDCOBJ allocates and initializes a new object in the volatile heap:

Syntax Semantic8
ALLOCOBJ ri rj Let T = Frames [FP+ri]

Let S = Frames [FP+ri +1]
Allocate and initialize object in volatile heap of type T and size S
Let A be the address of this object
Frames[FP+rj] <- A
Add (FP, IP+1) to active pool

Object initialization performed includes defining the object header and setting to "empty" all

field status bits.

ALLDCFRAME allocates and initializes a new frame.

Syntaz Semantic8
ALLDCFRAME ri rj Let CallerFP = Frames [FP+ri]

Let ResultIP = Frames [FP+ri +1]
Let SignalIP = Frames [FP+ri +2]
Let ResSlot = Frames [FP+ri +3]
Let NumSlots = Frames [FP+ri +4]
Let FP ' be address of new frame
Zero-out frame slots in FP'
Store in FP': CallerFP, Rasul tIP, Signal IP, and ResSlot
Frames[FP+rj] <- FP'
Add (FP, IP+1) to active pool

Arguments are: the caller's FP, the IPs of the threads to receive the result and signal, the slot

where the result of the procedure is to be stored, and the size of the new frame. ALLDCFRAME

allocates a frame of the desired size, initializes its slots to zero, stores the linkage information,

returns a pointer to the new frame, and adds successor descriptor (FP, IP+1) to the active pool.

Allocation in the persistent heap is performed by manager MKPERSISTENT, which copies an

object from the volatile to the persistent part of the heap.

221

Syntax Semantic1
MKPERSISTENT ri rj Let Obj = Frames [FP+ri]

Frames [FP+rj] <- Obj
Frames[FP+rj+1] <- false
If volatile? (Obj)

If alreadyMoved(Obj)
Frames[FP+rj] <- lookupPersistentAddr(Obj);

Else
LetA be address of persistent storage

copy(Obj,A);
Frames [FP+r j] <- A;
Frames[FP+rj+1] <- true;

Add (FP,IP+1) to active pool

A reference to the object to be moved is passed in slot ri and the persistent address is returned in

slot rj. An additional (boolean) result is returned in slot rj+1 indicating whether the persistent

address returned in rj was allocated by the current call to MKPERSISTENT {true) or a previous one

(false). The first result is initialized to the object itself, and the second result to false. If the

object has already been moved to the persistent heap (tested by predicate alreadyMoved), then

the persistent address is looked up via lookupPersistentAddr and returned. Otherwise, storage is

allocated in the persistent heap, the object is copied, and the new persistent address and true

are returned.

DEALLOCATE frees the heap storage occupied by an object.

Syntaz Semantic1
DEALLOCATE ri rj Let Obj = Frames [FP+ri]

Let Len = length(Obj)
Add storage of length Len at address Obj to free list
Add (FP,IP+1) to active pool

B.2 Object Manipulation

Selection of field values is performed via manager SELECTF.

Syntaz Semantic1
SELECTF ri rj Tet Obj = FramesTFP+riJ

Let Obj Type = Frames [FP+ri+1]
Let Offset = Frames [FP+ri+2]
Error checking:

l. Type check
2. Bounds check
3. Obj persistent and field undefined?

If error found
raise error

Frames [FP+rj] <- Obj + Offset
ILOAD rj rj

Arguments to SELECTF are the object, its type, and the field offset; the result returned is the field

value. SELECTF first checks for three error conditions: (1) an object not of the correct type; (2)

a field reference that is out of bounds (this condition may hold only if Obj is an array because

this is the only offset that is computed and not supplied by the compiler); and (3) a persistent

222

object with field at Offset that is undefined. If one of these conditions is found to hold, then

a run-time error is raised. Otherwise, the field address is built in slot rj and !LOAD is used to

access the field. If the field is not yet defined, then !LOAD will defer the operation.

Update of field values is performed via manager UPDATEF.

Syntaz Semantica
UPDATEF ri rj Let Obj = Frames [FP+ri]

Let Obj Type = Frames [FP+ri+1]
Let Offset = Frames [FP+ri+2]
Let Value = Frames [FP+ri+3]
Error checking:

1. Type check
2. Bounds check

If error found
raise error

Frames [FP+rj] <- ()

If unique inverse exists on field
Add (ObjType,Offset, Value) to conatrainta collection

If Obj is ephemeral
Frames[rx] <- Obj + Offset;
Frames[ry] <- Value;
!STORE ry rx;

Else
Add (Obj, Offset, Value) to updatea collection
Add (FP,IP+1) to active pool

Arguments to UPDATEF are the object, its type, the field offset, and the field value. If a unique

inverse exists on the field, then a triple consisting of the object type, field offset, and field value

is added to collection constraints. If the object is ephemeral, then two internal frame slots rx

and ry are loaded with the field address and value, respectively, and !STORE is used to define the

field. If the object is persistent, then a triple consisting of the object, the field offset, and the

field value is placed in the updates collection, and the successor descriptor is added to the pool

of active threads.

Insertion of values into field collections is performed via manager INSERTF.

Syntaz Semantica
INSERTF ri rj Let Obj = Frames [FP+ri]

Let ObjType = Frames[FP+ri+1]
Let Offset = Frames [FP+ri+2]
Let Value = Frames [FP+ri +3]
Error checking:

1. Type check
2. Bounds check
3. Object ephemeral?

If error found
raise error

Frames [FP+rj] <- ()
Add (Obj, Offset, Value) to inaerta collection
Add (FP, IP+1) to active pool

Arguments to INSERTF are the object, its type, the field offset, and the new field element. If no

errors are found, then a triple consisting of the object, the field offset, and the field element

223

is placed in the inserts collection, and the successor descriptor is added to the pool of active

threads.

Deletion of values from field collections is performed via manager DELETEF.

Synta:c Semantica
DELETEF ri rj Let Obj = Frames [FP+ri]

Let Obj Type = Frames [FP+ri+1]
Let Offset = Frames [FP+ri +2]
Let Value = Frames[FP+ri+3]
Error checking:

1. Type check
2. Bounds check
3. Object ephemeral?

If error found
ra.ise error

Frames [FP+rj] <- ()

Add (Obj, Offset, Value) to deletea collection
Add (FP, IP+1) to active pool

Arguments to DELETEF are the object, its type, the field offset, and the field element to be deleted.

If no errors are found, then a triple consisting of the object, the field offset, and the field element

is placed in the deletes collection, and the successor descriptor is added to the pool of active

threads.

The actual addition of an element to a field collection during the transaction epilogue is

performed via manager ADDMVFIELDELEMENT.

Syntax Semantica
ADDMVFIELDELEMENT ri rj Let Obj = Frames [FP+ri]

Let Offset = Frames [FP+ri +1]
Let Value = Frames [FP+ri +2]
Frames [FP+rj] <- ()

Insert Value into field collection
Add (FP,IP+1) to active pool

Arguments to ADDMVFIELDELEMENT are the object, field offset, and field element to be added. The

new element is inserted into the field collection, and all appropriate indexes are updated. A

successor descriptor is added to the pool of active threads.

The actual deletion of an element from a field collection during the epilogue is performed

via DELETEMVFIELDELEMENT.

Syntax Semantica
DELETEMVFIELDELEMENT ri rj Let Obj = Frames [FP+ri]

Let Offset = Frames [FP+ri+1]
Let Value = Frames [FP+ri+2]
Frames[FP+rj] <- ()

Delete Value from field collection
Add (FP, IP+1) to active pool

Arguments to DELETEMVFIELDELEMENT are the object, field offset, and field element to be deleted.

The element is removed from the field collection, and all appropriate indexes are updated. A

successor descriptor is added to the pool of active threads.

224

Finally, new values of single-valued fields are installed in persistent objects during the epi

logue via INSTALLFIELDVALUE.

Syntax Semantica
INSTALLFIELDVALUE ri rj Let Obj = Frames [FP+ri]

Let Offset= Frames[FP+ri+1]
Let Value = Frames [FP+ri+2]
Frames[FP+rj] <- ()
Frames[rx] <- Obj + Offset;
Frames[ry] <- Value;
STORE ry rx;
If index exists on field

update index
Add (FP, IP+1) to active pool

Arguments to INSTALLFIELDVALUE are the object, field offset, and field value. The field value is

written via STORE, and the field index is updated, if one exists. A successor descriptor is added

to the pool of active threads.

B.3 Associative Searches

Lookup of top-level identifiers is performed via LOOKUP.

Synta:r: Semantica
LOOKUP ri rj Let Name = Frames [FP+ri]

Use index on name field in binding objects
to locate object with desired name
If object with name not found

rB.lse error
Frames [rj] <- value bound to name;
Add (FP, IP+1) to active pool

The collection of binding objects in the database is searched (via the index on name) for the

object with the desired name. If it is not found, then an error is raised. Otherwise, the value

bound to the name is returned, and a successor descriptor is added to the active pool.

Single-valued inverse field-mappings are implemented via SVINVERT.

Synta:r: Semantic a
SVINVERT ri rj Let Obj Type = Frames [FP+ri]

Let Offset = Frames [FP+ri+1]
Let Value = Frames [FP+ri+2]
Use index on field to search for object with field value
If desired object found

Frames [rj] <- object;
Else

Frames[rj] <- the-null-object;
Add (FP,IP+l) to active pool

The extent of objects of type ObjType is searched (via the field index) for the object with the

desired field value. If it is found, then it is returned as the result, otherwise the null object is

returned. In both cases, a successor descriptor is added to the active pool.

Multi-valued inverse field-mappings are implemented via MVINVERT.

225

Syntax Semantic&
MVINVERT ri rj Let ObjType = Frames[FP+ri]

Let Offset = Frames [FP+ri+l]
Let Value = Frames [FP+ri+2]
Use index on field to search for objects with field value
Frames [rj] <- list of objects found;
Add (FP, IP+l) to active pool

The extent of objects of type ObjType is searched (via the field index) for the objects with the

desired field value. A list of the objects found is returned, and a successor descriptor is added

to the active pool.

Searches of type extents are performed via FILTEREXTENT.

Syntax Semantic&
FILTEREXTENT ri rj Let ObjType = Frames[FP+ri]

Let Obj Field = Frames [FP+ri+l]
Let AccessPath = Frames [FP+ri+2]
Let Index = Frames [FP+ri+3]
Let Predicate = Frames [FP+ri+4]
Search type extent, using indicated access path, for
objects that satisfy the predicate
Frames [rj] <- list of objects (projected onto Obj Field);
Add (FP, IP+l) to active pool

Arguments are the type of the extent to search, the field onto which the result is to be projected,

the access path and index, and the predicate. A result list is returned, and a successor descriptor

is added to the active pool.

B.4 Miscellaneous

An object is printed via manager PRINT.

Syntax Semantic&
PRINT ri rj Let Obj = Frames [FP+ri]

Print Obj
Frames [rj] <- ();
Add (FP, IP+l) to active pool

A top-level identifier binding is entered into the identifier cache via CACHEIDVALUE.

Syntax Semantic&
CACHEIDVALUE ri rj Let Name = Frames [FP+ri]

Let Value = Frames[FP+ri+l]
Add (Name, Value) to cache
Frames [rj] <- ();
Add (FP,IP+l) to active pool

Managers ADDSLIST, DROPSLIST, INSERTSLIST, DELETESLIST, and CONSTRAINTSLIST return the lists of

updates and constraints collected during execution of the transaction body. Manager ADDSLIST

is given below; the others are similar.

Syntax Semantic&
ADDSLIST ri rj Frames[rj] <- addsList;

Add (FP, IP+l) to active pool

226

r..pJttrt\Wtt'1J1111f¥1u:m; ;Jtm1JM11rauu•ut11.11• .1t11•1•.:u11a1,uq1 !SiJlllllWUJJ!itJJL tt•flll.l.ltllfl.lltAtJZ!k¥S:4®J Je;
' ·~ .. 1·.

Two MWitiou1 me•s1 ,., ---. _. ._.-.-~. Gf t19it P·BllC .. chiM ,_

1e, but ia tlae MM '"''111111 1•*•• •Pl!IJJllS •«1j!J ~- • ••• al. &M na· •
wlaich •object ia......, wl t11•• • 11J11 a ... :t111•"tl4,,,.,,ut • • ..,11 • na.

227

Bibliography

[1] Anon et al. A Measure of Transaction Processing Power. Datamation, 31(7):112-118,
April 1985.

[2] Z. Ariola and Arvind. Contextual rewriting. Technical Report CSG Memo 323, MIT
Laboratory for Computer Science, 1991.

[3] Arvind, D. E. Culler, and G. K. Maa. Assessing the Benefits of Fine-grained Parallelism
in Dataflow Programs. International Journal of Supercomputer Applications, 2(3), 1988.

[4] Arvind and R. A. Iannucci. Two Fundamental Issues in Multiprocessing. In Proceedings of
DFVLR - Conference 1987 on Parallel Processing in Science and Engineering, Bonn-Bad
Godesberg, W. Germany, Springer- Verlag LNCS 295, June 25-29 1987.

[5] Arvind and R. S. Nikhil. Executing a Program on the MIT Tagged-Token Dataflow Ar
chitecture. IEEE Transactions on Computers, 39(3):300-318, 1989.

[6] M. Astrahan et al. System R: Relational Approach to Database Management. ACM Trans.
on Database Systems, 1(2), June 1976.

[7] M. P. Atkinson, K. Chisholm, and W. Cockshott. PS-Algol: An Algol with a Persistent
Heap. ACM SIGPLAN Notices, 17(7):24-31, July 1981.

[8] J. Backus. Can Programming be Liberated from the van Neumann Style? A Functional
Style and its Algebra of Programs. Communications of the ACM, 21(8):613-641, August
1978.

[9] R. A. Ballance, A. B. Maccabe, and K. J. Ottenstein. The program dependence web: A
representation supporting control-, data- and demand-driven interpretation of imperative
languages. In Proc. SIGPLAN '90 Conj. on Programming Language Design and Imple
mentation, July 1990.

[10] F. Bancilhon, T. Briggs, S. Khoshafian, and P. Valduriez. FAD, a Powerful and Sim
ple Database Language. In Proc. 13th. Intl. Con/. on Very Large Databases, Brighton,
England, pages 97-105, September 1-4 1987.

[11] P. S. Barth and R. S. Nikhil. Supporting state-sensitive computation in a dataflow system.
Technical Report CSG Memo 294, MIT Laboratory for Computer Science, 545 Technology
Square, Cambridge, MA 02139, USA, March 1989. Describes how to deal with state
(up datable objects) in a fine grain parallel system.

229

[12] C. Baru, 0. Frieder, D. Kandlur, and M. Segal. Join on a cube: Analysis, simulation, and
implementation. In Proceedings of the 5th International Workshop on Database Machines,
1987.

[13] D. Batory, T. Leung, and T. Wise. Implementation Concepts for an Extensible Data Model
and Data Language. ACM Transactions on Database Systems, 13(3), Sept. 1988.

[14] M. Beck and K. K. Pingali. From control flow to dataflow. Technical Report TR89-
1050, Department of Computer Science, Cornell University, Ithaca, NY 14853-7501, USA,
October 1989.

[15] L. Bic and R. L. Hartmann. AGM: A dataflow database machine. ACM Transactions on
Database Systems, 14(1):114-146, March 1989.

[16] A. D. Birrell. An introduction to progamming with threads. Technical report, DEC
Systems Research Center, 130 Lytton Ave., Palo Alto CA 94301, January 1989.

[17] D. Bitton, D. J. DeWitt, and C. Turbyfill. Benchmarking Database Systems: A Systematic
Approach. In Proceedings of the 1983 Conference on Very Large Data Bases, August 1983.

[18] H. Baral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart,
M. Smith, and P. Valduriez. Prototyping Bubba, A Highly Parallel Database System.
IEEE Trans. on Knowledge and Data Engineering, 2(1):4-24, March 1990.

[19] 0. P. Buneman, R. E. Frankel, and R. S. Nikhil. An Implementation Technique For
Database Query Languages. ACM Transactions on Database Systems, 7(2):164-186, June
1982.

[20] W. H. Burge. Recursive Programming Techniques. Addison Wesley, Reading, MA, 1975.

[21] M. J. Carey, D. J. DeWitt, G. Graefe, D. Haight, J. Richardson, D. Schuh, E. Shekita, and
S. Vandenberg. The EXODUS Extensible DBMS Project: An Overview. In S. Zdonik and
D. Maier, editors, Readings in Object-Oriented Databases. Morgan Kaufmann, San Mateo,
Calif., 1990.

[22] M. J. Carey, D. J. DeWitt, J.E. Richardson, and E. J. Shekita. Object and file management
in the EXODUS extensible database system. In Proceedings of the 1986 Conference on
Very Large Data Bases, Kyoto, Japan, August 1986.

[23] M. J. Carey, D. J. DeWitt, and S. L. Vandenberg. A Data Model and Query Language for
EXODUS. In Proceedings of the 1988 ACM SIGMOD Conference, Chicago, June 1988.

[24] R. Cattell and J. Skeen. Engineering database benchmark. Technical report, Database
Engineering Group, Sun Microsystems, 2550 Garcia Avenue, Mountain View, CA 94043,
April 1990.

[25] D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi, S. Tsur, and C. Zaniolo. The LDL
System Prototype. IEEE Trans. on Knowledge and Data Engineering, 2(1):76-90, March
1990.

[26] H.-T. Chou, D. J. DeWitt, R.H. Katz, and A. C. Klug. Design and Implementation of the
Wisconsin Storage System. Software-Practice and Experience, 15(10):943-962, October
1985.

230

[27] P. Close. The iPSC/2 Node Architecture. In Proceedings of Third Hypercube Conference
{ACM}, 1988.

[28] G. Copeland and D. Maier. Making Smalltalk a Database System. In Proceedings of the
198..f. ACM SIGMOD Conference, Boston, MA, 1984.

[29] D. Culler, A. Sah, K. Schauser, T. van Eicken, and J. Wawrzynek. Fine-Grain Parallelism
with Minimal Hardware Support: A Compiler-Controlled Threaded Abstract Machine. In
Proceedings of the ,f.th International Conference on Architectural Support for Programming
Languages and Operating Systems, Santa Clara, CA, April 1991.

[30] C. J. Date. An Introduction to Database Systems, Volume II. Addison-Wesley, Reading,
Massachusetts, 1984.

[31] C. J. Date. A Guide to the SQL Standard. Addison-Wesley, Reading, Massachusetts, 1987.

[32] A. Dearle, G. M. Shaw, and S. B. Zdonik, editors. Proc. of the Fourth International
Workshop on Persistent Object Systems. Morgan Kaufmann, September 1990.

[33] D. DeWitt, S. Ghandeharizadeh, D. Schneider, A. Bricker, H.-1. Hsiao, and R. Rasmussen.
The Gamma Database Machine Project. IEEE Trans. on Knowledge and Data Engineer
ing, 2(1):44-62, March 1990.

[34] K. Dittrich, W. Gotthard, and P. Lockemann. DAMOKLES-The Database System for
the UNIBASE Software Engineering Environment. IEEE Database Engineering, 10(1),
1987.

[35] S. Englert, J. Gray, T. Kocher, and P. Shah. A benchmark of NonStop SQL Release 2
demonstrating near-linear speedup and scaleup on large databases. Technical Report Tech.
Report 89.4, Tandem Part No. 27469, Tandem Computers, May 1989.

[36] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph and its use
in optimization. ACM Transactions on Programming Languages and Systems, 9(3):319-
349, July 1987.

[37] Object Databases Corp. GBase Technical Summary, 1990.

[38] G. Graefe. Encapsulation of Parallelism in the Volcano Query Processing System. In
Proceedings of the 1990 ACM SIGMOD Conference, Atlantic City, NJ, May 1990.

[39] S. Graham, P. Kessler, and M. McKusick. gprof: A Call Graph Execution Profiler. Proc. of
the SIGPLAN '82 Symposium on Compiler Construction, SIGPLAN Notices, 17(6):120-
126, 1982.

[40] M. D. Guzzi, W. L. Harrison, III, and D. A. Padua. Programming languages for parallel
processors. Technical Report CSRD report no. 623, Center for Supercomputing Research
and Development, University of Illinois at Urbana-Champaign, 104 S. Wright Street, Ur
bana, Illinois 61801, January 22 1987.

[41] W. L. Harrison III. The Interprocedural Analysis and Automatic Parallelization of Scheme
Programs. PhD thesis, University of Illinois, Urbana-Champaign, Illinois, March 1989.

[42] L. J. Hendren and A. Nicolau. Parallelizing programs with recursive data structures. IEEE
Transactions on Parallel and Distributed Systems, 1(1):35-47, January 1990.

231

[43] M. L. Heytens and R. S. Nikhil. GESTALT: An Expressive Database Programming System.
ACM SIGMOD Record, 18(1), March 1989.

[44] R. A. Iannucci. A Datafiow/von Neumann Hybrid Architecture. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, May 1988.

[45] Itasca Systems, Inc. ITASCA System Overview, 1990.

[46] T. Johnsson. Lambda lifting: Transforming programs to recursive equations. In Proceed
ings Functional Languages and Computer Architecture, Nancy, France, September 1985.

[4 7] S. L. P. Jones. The Implementation of Functional Programming Languages. Prentice-Hall
International, London, 1987.

[48] K. Kato, T. Masuda, and Y. Kiyoki. A Comprehension-Based Database Language and
its Distributed Execution. In Proc. 10th Intl. Conj. on Distributed Computing Systems,
Paris, France, pages 442-449, May 28-June 1 1990.

[49] W. Kim, J. F. Garza, N. Ballou, and D. Woelk. Architecture of the ORION Next
GenerationDatabase System. IEEE Trans. on Knowledge and Data Engineering, 2(1):109-
124, March 1990.

[50] M. Kitsuregawa, H. Tanaka, and T. Moto-oka. Application of hash to database machine
and its architecture. New Generation Computing, 1(1), 1983.

[51] D. J. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. Wolfe. Dependence graphs and
compiler optimizations. In Proceedings of the 8th Annual ACM Symposium on Principles
of Programming Languages, pages 207-218, January 1981.

[52] K. G. Kulkarni and M. P. Atkinson. Implementing Extended Functional Data Model Using
PS-Algol. Software: Practice & Experience, 1986.

[53] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore Database System.
Communications of the ACM, 34(10):50-63, October 1990.

[54] J. R. Larus and P. N. Hilfinger. Restructuring Lisp Programs for Concurrent Execution.
In Proc. ACM/SIGPLAN PPEALS (Parallel Programming: Experience with Applications,
Languages and Systems, New Haven, Connecticut, pages 100-110, July 19-211988. (ACM
Sigplan Notices 23:9).

[55] G. M. Lohman, B. Lindsay, H. Pirahesh, and K. B. Schiefer. Extensions to STARBURST:
Objects, Types, Functions, and Rules. Communications of the ACM, 34(10):94-109, Oc
tober 1990.

[56] R. S. Nikhil. Functional languages, functional databases. In Proceedings of the Workshop
on Persistence and Data Types, Appin, Scotland, Appin, Scotland, August 1985.

[57] R. S. Nikhil. The semantics of update in a functional database programming language.
In Proceedings of the ALTAIR-CRAI Workshop on Database Programming Languages,
Roscoff, France, Roscoff, France, September 1987.

[58] R. S. Nikhil. Id (Version 90.0) Reference Manual. Technical Report CSG Memo 284-1,
MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139,
USA, July 1990.

232

[59] R. S. Nikhil. The Parallel Programming Language Id and its Compilation for Parallel
Machines. In Proc. Workshop on Massive Parallelism, Amalfi, Italy, October 1989. Aca
demic Press, 1990. Also: CSG Memo 313, MIT Laboratory for Computer Science, 545
Technology Square, Cambridge, MA 02139, USA.

[60] R. S. Nikhil and M. L. Heytens. Exploiting Parallelism in the Implementation of AGNA,
a Persistent Programming System. In Proc. of 7th IEEE Intl. Conj. on Data Engineering,
Kobe, Japan, April 8-12 1991.

[61] 0. Deux et al. The 0 2 System. Communications of the ACM, 34(10):34-48, October 1990.

[62] Objectivity, Inc. Objectivity Database System Overview, 1990.

[63] A. Ohori, 0. P. Buneman, and V. Breazu-Tannen. Database Programming in Machiavelli
a Polymorphic Language with Static Type Inference. In Proc. Intl. Conj. on the Manage
ment of Data, Portland, OR, pages 46-57, June 1989.

[64] Ontologic, Inc. ONTOS Reference Manual, 1990.

[65] S. Park and K. Miller. Random number generators: Good ones are hard to find. CACM,
31{10), October 1988.

[66] S. L. Peyton Jones, C. Clack, J. Salkild, and M. Hardie. GRIP - A High Performance
Architecture for Parallel Graph Reduction. In Proc. 3rd. Intl. Conj. on Functional Pro
gramming and Computer Architecture, Portland, OR, September 1987.

[67] K. E. Schauser, D. E. Culler, and T. von Eicken. Compiler-controlled multithreading for
lenient languages. In Proc. 5th Intl. Conj. on Functional Programming and Computer
Architecture, Cambridge, MA, August 1991.

[68] D. Schneider and D. J. DeWitt. A Performance Evaluation of Four Parallel Join Algo
rithms in a Shared-Nothing Multiprocessor Envirorunent. In Proceedings of the 1989 ACM
SIGMOD Conference, Portland, OR, June 1989.

[69] M. Sharma and R. S. Nikhil. PRISC-1: A Multi-threaded RISC Architecture. Technical
Report (unpublished), MIT Laboratory for Computer Science, November 1989.

[70] D. W. Shipman. The Functional Data Model and the Data Language DAPLEX. ACM
Trans. on Database Systems, 6(1):140-173, March 1981.

[71] M. Stonebraker. The case for shared nothing. Database Engineering, 9(1), 1986.

[72] M. Stonebraker, R. Katz, D. Patterson, and J. Ousterhout. The Design of XPRS. In
Proceedings of the 1988 Conference on Very Largbe Data Bases, Los Angeles, CA, August
1988.

[73] M. Stonebraker and G. Kemnitz. The POSTGRES Next-Generation Database Manage
ment System. Communications of the ACM, 34(10):78-93, October 1990.

[74] Tandem Performance Group. A Benchmark of Non-Stop SQL on the Debit Credit Trans
action. In Proceedings of the 1988 ACM SIGMOD Conference, Chicago, IL, June 1988.
ACM.

233

[75] Dbc/1012 database computer system manual release 2.0. Technical Report Document
Cl0-0001-02, Teradata Corp., November 1985.

[76] K. R. Traub. A Compiler for the MIT Tagged-Token Dataflow Architecture. Master's
thesis, Massachusetts Institute of Technology, 1986. Technical Report LCS TR-370.

[77] P. Trinder. A functional database. Oxford University D.Phil. Thesis, December 1989.

[78] D. A. Turner. The semantic elegance of applicative languages. In Proc. ACM Confer
ence on Functional Programming Languages and Computer Architecture, Portsmouth, New
Hampshire, pages 85-92, October 1981.

[79] J. D. Ullman. Principles of Database Systems. Computer Science Press, Rockville, Mary
land, 1982.

[80] Versant Object Technologies, Inc. VERSANT Technical Overview, 1990.

[81] G. von Bultzingsloewen. Translating and Optimising SQL Queries Having Aggregates.
In Proceedings of the 13th Intl. Conference on Very Large Databases, Brighton, England,
September 1987.

[82] K. Wilkinson, P. Lyngbaek, and W. Hasan. The Iris Architecture and Implementation.
IEEE Trans. on Knowledge and Data Engineering, 2(1):63-75, March 1990.

[83] N. Wirth. Programming in Modula-2. Springer-Verlag, Berlin, 1982.

234

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Puo11c recort1ng auraen for ui1s cotlect1on ot 1ntormation 1<, estimate~ to ave"'.:Jc;e 1 hour oe(r~soor'ie. 1nc~c1ng ~r'!e time for re1new1ng 1nstruct1ons, searc:i1ng existing oata sources,
gatnerrng ano rn~1ntarning the tjata ne"!ded, and como1eung :lno re"1ew1ng ::-ie co1leCT1on of 1nrormac1on. Sena comments r~araing this burden estimate or anv 0ttier asced or this
corleci;1on ot :ntormat1ori. 1nc1ud1ng sugs;:~tions ror recuc1ng r:·11<, :::urcen ~o Washington Heaaauan:er'i Serv1ce'i. 01rec:orate ror 1nforl"'l"at1on Ocerat1ons ano Reoort'i. 1215 Jefferson
Davis H1ghwav. Suite 1204. ,:.r11ngt0n. •Jil. 22202-1302. and to t:i~ Otfice- •JT Management and Budget, P~aerwor< Reduction Proiect (Q7Q4.Q188). Wa>nington, OC 2~503.

1. AGENCY USE ONLY (Leave blank) 12. REPORT DA TE] 3. REPORT TYPE AND DA TES COVERED
Feb. 1992

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

The Design and Implementation of A Parallel Persistent

Object System

6. AUTHOR(S)

Michael L. Heytens

• 7. PERFORMING ORGANIZATION NAME(S) ANO ADDRESS(ES) 8. PERFORMING ORGANIZATION

I
REPORT NUMBER

Massachusetts Institute of Technology
Laboratory for Computer Science

l 545 Technology Square MIT/LCS/TR 529
j Cambridge, l-1.A 02139
i

i 9. SPONSORING i .YlONITOiilNG AGENCY NAME(S) AND ADORESS(ES)
l

j 10. SPONSORING 1 MONITORING
l AGENCY REPORT NUMBER

DARPA j I N00014-89-J-1988

I
j 11. SUPPLEMENTARY ''lOTES

i

I
I

I
l
j
;

'.~~~
j 12a. DIST::\IBUflO;~ 1 AV,4ILA31LITY STATEMENT 1 12b. DISTRIBUTION CODE

I

I
I
l 13. ABSTRACT (1\ It is widely recognized that the expressive power of relational database systems is inadequate for

applications that manipulate complex, non record-oriented data. ~uch recent research has been
focused on the design of more expressive database language models that seamlessly integrate
the data modeling, abstraction, and general computation of full programming languages with
the features of traditional database systems such as persistence, failure recovery, and security.

I
l

I

14.

Such additional flexibility gives expressive power to the prograrruner, but complicates matters
for the compiler and nm-time system in their efforts to implement database programs efficiently.

In this report we describe AGNA, an experimental persistent object system that we have de
signed and built that utilizes parallelism in a fundamental way to enhance performance. Par
allelism is incorporated into the design of the system at all levels. We begin with an implicitly
parallel transaction language that includes a full higher-order program.ming language and the
"list comprehension," a notation similar to SQL but more general. Transactions are compiled
into code for a multi-threaded abstract machine called P-RJSC, whose central feature is fine
grain parallelism with data-driven execution. P-RJSC code is emulated on each processor of a
MIMD machine with multiple disks. Coarse grain parallelism is used to distribute computations
of a transaction over the nodes of a parallel machine, and fine grain parallelism is used within a
node to overlap useful computation with long-latency operations such as disk I/O and remote

memory accesses. __ __ (con 1 t ._l
SUBJECT TERMS 15. NUMBEBJQF
persistent objects, functional languages, multi-threaded, l 14
object oriented databases, parallel databases systems 16. ?RICE CODE

PAGES

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLAS SJ FICA TION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. UMITA TION OF ABSTRACT

NS~J 7540-01-280-5500 Standard Form 298 (Rev 2-89)
0 rescr:be-a by .:.N')I)[a ,::39. '. 3
298-102

:~;':;:'.';:·.~."?··1 A~· of AAA ii P"MM .. ~J; ti~., ~wakt;i;;;.d-.. a-
·"' · ··· teliPSC/2~m ,,,11·iiui1..t~~W11'11i&uuhlftlldtt

~\tr;;.·~;~.,· :> .. .;;1.~
•... ~~·,

-------·----· ciemmuinie tJaat pualWima-iuqlillited. • Mtll •iJ c<•Mr m •wd&I;; ll!Laoua&fbl:w.
Performance of AGJllA lallPI ·c:Mr tit.at of li&te of the art; relational and object-oriented databue

--------· -~" system11, and relies heavily on compiler optimintii:muiad agraaive pursuit of parallelism. 1.,, _____ """'

. "' . ._,,-----1-------------------------_:I ·? G~t.. iJTl'r ~

!r ficif·.G A ~o aoljsjnStff~{qrFrr Lr!.h JJ;'.;1~9({ 9rft! ~
rnsj8'[? jJ9i'_<ff}

"'---···~··-- ·--------------------m~ .a

v· j u 1 1 · .. . I ens V9i1 , . s.£11~ ... h l
l I ! . .

.-,___" __ .-all w ... --.-.-~-,,,--.--• .,...._..,_..,,._,.---...,..,..---·...--""'-''.""" , 1. •• J ¢~Tl\t11;:: VT• ~ ,

0
4. 1:. rf

YiO.n:,~tv.:,or.c Ll'1;.-,/;C;F'''· .e· l 1<'..i)c<:lU'ICtll O~J;. (l}JMALM llluiiASmAt>llO ut'llM'11 \h;~ ·';
~38~ ... ~~LH--" T$iC4_j-f. l ~

· '(W·-~onri.Jsl' lo f.t::WJJ.jenI Ejj$GJJ:i·n);:i:,:i:Y t
s::asi.J2 "J.Ujvq~c,;) 'l"(>i 'f10Js;-rod,,..,J

9·u;up2 '{:gofonrl.:>eT (.;'..(
eu:;a ~. t ;..;sbJ:::cforf·.~)

----.,.---,...,.,,..,.~-'"'...-~,....,__,.,,._,.. __ ._.~--·--~---;,i<--ll" § ~ .. ii' -~
:;w.14:"'i~Or.'. <:i.1:":J2~-::,-;? .c· 1<;;>:<:·:;WC;,t, Q~t, '~'™A." v)~Ji:i.c. ;>i<m~.::::·1~~0M .;:•~1lf!Ct.iAOGe .e-;

A?,B·~~;· .HI 0r/:«>G.:;.: "'.'~'H·~:'.-)/_ i
l,'llfAG '

.
i -----...----------·--- :>JTOI'· YJ;~.Tlf'1M3J~'<U2 .rt I

~ - ,., .. ,_,,_._.,.....,,,.._ __ ... ,., ___ •• .,. ... ----·------..... --,---,.,,, ,~,,..,._--~-,-..... <>.~.~--
\ ' r, ·~ "- ~ .1\·)· 1.- ·'

•::'-...
.cl'

. ----· -'P,,__

i)A~T?SJ'. C'.(1 .-;: .. .'' .:, ; iii/H~ O".:. i
I

---~·........___ .. ""'"""""" ... '""' =·· ---~--

