
LABORATORY FOR
COMPUTER SCIENCE

MIT/LCS{fR-511

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

SECURE COMPUTATION
(Preliminary Report)

Silvio Micali
Phillip Rogaway

August 1991

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Secure Computation
(Preliminary Report)

Silvio Micali Phillip Rogaway

August 9, 1991

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139
USA

Abstract

We define what it means for a network of communicating players to securely compute a
function of privately held inputs. Intuitively, we wish to correctly compute its value in a manner
which protects the privacy of each player's contribution, even though a powerful adversary may
endeavor to disrupt this enterprise.

This highly general and desirable goal has been around a long time, inspiring a large body
protocols, definitions, and ideas, starting with Yao [1982, 1986] and Goldreich, Micali and
Wigderson [1987]. But all the while, it had resisted a full and satisfactory formulation.

Our definition is built on several new ideas. Among them:

• Blending privacy and correctness in a deeper manner, using a special type of simulator
designed for the purpose.

• Requiring adversarial awarenes.t-capturing the idea that the adversary should know, in
a very strong sense, certain information associated to the execution of a protocol.

• Imitating an ideal evaluation in a run-by-run manner, our definition depending more on
individual executions than on global properties of ensembles.

Among the noteworthy and desirable properties of our definition is the reducibility of secure
protocols, which we believe to be a cornerstone in a matu ' theory of secure computation.

An earlier draft of this paper was presented and distributed at a DI MACS workshop
on cryptographJ, October 1990. The paper continues to evolve; this is a preliminary
report on our work.

Contents

1 Introduction
1.1 Secure-Computation Problems
1.2 Privacy and Correctness . . .
1.3 Prior and Related Definitions
1.4 Critique of These Definitions
1.5 Our Definitions
1.6 Key Features of Our Definitions .
1.7 How to Read This Paper.

2 Protocols and Adversaries
2.1 Protocols

2.1.1 Informal description
2.1.2 Formal description .
2.1.3 Remarks

2.2 Executing Protocols in the Absence of an Adversary
2.2.l Informal description
2.2.2 Formal description
2.2.3 Remarks

2.3 Adversaries
2.3.1 Informal description
2.3.2 Formal description .
2.3.3 Remarks

2.4 Executing Protocols in the Presence of an Adversary
2.4.1 Informal description
2.4.2 Formal description
2.4.3 Remarks .

2.5 Discussion ..

3 Secure Protocols
3.1 Ideal Evaluation
3.2 Correctness (without privacy) .. .

3.2.1 Awareness and Correctness
3.2.2 View and traffic
3.2.3 Adversary input and output .
3.2.4 Network input and output .
3.2.5 Local input . . .
3.2.6 Weak correctness . . .
3.2. 7 Remarks

3.3 Privacy (without correctness)
3.3.1 Motivation
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7

Ideal-evaluation oracles
Simulators
Formal description .
Ensembles
lndistinguishability .
Privacy

2

4
4
5
5
6
8
9

11

13
14
14
15
16
16
16
17
18
19
19
19
20
20
20
21
24
24

26

26
27
27
30
31
32
32
33
34
34
34
35
35
37
39
40
41

3.3.8 Remarks
3.4 Security (without history) . .

3.4.1 Security from scratch
3.4.2 Remarks

3.5 Incorporating History
3.5.1 Auxiliary inputs
3.5.2 Adversary advice
3.5.3 Security (including history)
3.5.4 Remarks

3.6 Incorporating Variability
3.6.1 Variable number of players
3.6.2 Function families
3.6.3 Variable number of rounds
3.6.4 Security (including history and variability)
3.6.5 Remarks .

3.7 Discussion

4 Complexity
4.1 Polynomiality of Algorithms
4.2 The Complexity of Protocols and Their Adversaries
4.3 The Complexity of Distinguishing Ensembles
4.4 The Complexity of Awareness .

4.4.1 Informal description
4.4.2 Formal description
4.4.3 Remarks

4.5 Computational Security
4.6 Statistical Security
4. 7 Perfect Security .
4.8 Discussion

5 Properties of Secure Protocols
5.1 Preliminaries
5.2 Correctness in the Presence of Passive Adversaries
5.3 Completeness of String-Valued Computation . . .
5.4 Independence of Committed Inputs

5.4.1 Minimum dependence on input distributions
5.4.2 Minimum dependence on good inputs

5.5 Reducibility
5.5.1 Issues in reducibility
5.5.2 Subroutine composition
5.5.3 Protocols with a.n ideal evaluation
5.5.4 Security in this model ..
5.5.5 The reducibility theorem

5.6 Existence and Other Folklore
5.7 Discussion .

References

3

41
41
42
42
45
46
47
48
49
50
50
50
51
52
53
54

55
55
55
57
58
58
60
60
60
60
60
61

62
62
63
63
67
68
69
70
71
72
74
77
77
81
81

83

1 Introduction

The last decade has witnessed the rise of secure computation as a new and exciting mathematical
subject. This is the study of communication protocols allowing several parties to perform a correct
computation on some inputs that are and should be kept private. As a simple example, the parties
want to compute the tally of some privately held votes. This new discipline is extremely subtle,
involving in novel ways fundamental concepts such as probabilism, information, and complexity
theory.

In the making of a. new science, finding the correct definitions can be one of the most difficult
tasks: from relatively few examples, one should handle cases that have not yet arisen and reach
the highest possible level of generality. It is the purpose of this paper to identify the right notion
of secure computation and prove the right fundamental properties about it.

In the last few years, cryptography has been very successful in identifying its basic objectives,
properly defining them, and successfully solving them. Secure encryption, secure pseudorandom
generation, secure digital signatures, and zero-knowledge proofs-concepts that appeared forever
elusive-have all found successful formalizations and solutions. But in contrast to these successes,
and despite many beautiful and fundamental ideas that preceded us, not even a satisfactory def
inition of a secure protocol has been proposed so far. This is not surprising, since protocols are
an extremely complex object: by defining security for encryption, signatures, and pseudorandom
generation, one is defining properties of algorithms; but to properly define protocol security, one
needs instead to define properties of the interaction of several algorithms, some of which may be
deliberately designed to disrupt the joint computation in various ways. The intricacy of this sce
nario has often encouraged researchers to work either with definitions of security tailored to the
problem at hand; or to consider broad definitions, but restricted to specific computational tasks;
or to work with only intuitive notions in mind.

Lack of universally accepted definitions can only create confusion and mistakes, a.nd it is only
by reaching an exact understanding of what we can expect from a secure protocol can we safely
rely on them and further develop them. By developing the right notion of secure computation we
will spare cryptography the increasing dangers of confusion, error, and misunderstanding. Powerful
computer networks are alr~a.dy in place and the possibility of using them for new and wonderful
tasks will largely depend on how successful this development will be. The goal is definitely worth
the effort, for its potential a.pplica.tions and from a. purely intellectual point of view. Lets us begin!

1.1 Secure-Computation Problems

What is secure computation a.bout? Informally, it consists of finding a communication protocol
that allows a group of players to accomplish a special type of task, despite the fact that some of
them may try to sabotage this enterprise. This said, we now explain terms. Let's start with the
easy ones.

Players (also called processors or parties for variation of discourse) can be thought as people,
each possessing a personal computer, and capable of exchanging messages. A protocol is a. set
of instructions for the players to follow for sending these messages. The rules of the game are as
follows: (1) in executing a protocol, some of the participants may be bad, thereby disregarding their
instructions and cooperating to disrupt the joint effort; (2) no trusted device or external entity is
available; (3) every good party can perform private computation (i.e., computation unmonitored
by the bad players).

What is a secure protocol supposed to accomplish? We start by looking at a few archetypal
examples. Since our aim is to exemplify various issues a.nd key desiderata that may inspire us

4

to properly define secure computation, in the following list we credit the one who first posed the
problem.

1. THE MILLIONAIRES PROBLEM (Yao, [Ya82a]). Two millionaires wish to find out who is
richer, though neither is willing to reveal the extent of his fortune. Can they carry out a
conversation which identifies the richer millionaire, but doesn't divulge additional information
about either's wealth?

2. THE DIGITAL VOTING PROBLEM (Chaum, [Ch81]). Is it possible for a group of computer
users to hold a secret-ballot election on a computer network?

3. THE INDEPENDENT ANNOUNCEMENT PROBLEM (Chor, Goldwa.sser, Micali, and Awerbuch
[CGMA85]). A group of players want to exchange messages so as to announce their secret
values independently. That is, what the bad players announce cannot be chosen based on the
values of the good players.

4. THE COIN FLIPPING PROBLEM (Blum, [B182]). How can Alice and Bob, speaking to one
another over the telephone, agree on a random, unbiased coin fl.ip--even if one of them cheats
to try to produce a coin flip of a certain outcome?

5. THE OBLIVIOUS TRANSFER PROBLEM (Rabin, [Ra81]). Is it possible for Alice to send to Bob
a message min such a way that (i) half the time, Bob gets m; (ii) the other half of the time,
Bob gets nothing; and (iii) Alice never knows which of the two events has occurred?

6. THE MENTAL POKER PROBLEM (Shamir, Rivest and Adleman, [SRA81]). Can a group of
players properly shuffle and deal a deck of cards over the phone?

1.2 Privacy and Correctness

Even the above short list illustrates the enormous variety of types of goals for secure protocols.
There may be two parties or many. The output of a protocol may be a single value known to all
players (as in digital voting), or to only one of the players (as in an oblivious transfer), or it may
be a private value for each player (as in mental poker). The output may depend on the players'
initial state deterministically (as in the first three problems), or probabilistically (as in the la.st
three problems).

What do such heterogeneous problems have in common, then? Essentially, that the joint com
putation should both be private and correct: while preserving the privacy of individually held data,
the joint computation manages to correctly perform some computational task based on this data.
Correctness and privacy may seem to be conflicting requirements, and capturing in the most general
sense what simultaneously meeting them means (within our rules of the game) is quite difficult.
As we shall see, to obtain a satisfactory notion of security, privacy and correctness should not be
handled independently (like in all prior work), but need to be blended in the proper way.

1.3 Prior and Related Definitions

Y-EVALUATION. Distilling a common thread in many prior examples of secure computation, Yao
proposed the following general problem [Ya.82a]. Assume we haven parties, 1, ... , n. Each party i
has a private input, z;, known only to him. The parties want to compute a given function f on
their own inputs while maintaining the privacy of these inputs. In other words, they want to
compute y = /(z11 ••• , Zn) without revealing to any player more about the private inputs than the

5

output itself implicitly reveals. If the function is vector-valued, fi = f(x1 , ••• , xn), where y has n
components, it is desired that every party i privately learn the i-th component of y.

Yao also proposed a notion for what it means for a protocol to solve the above problem. Roughly
said, his formalization attempts to capture the idea that the worst the bad players can do to
disrupt a computation is to choose alternative inputs for themselves, or quit in the middle of the
computation. We will refer to this notion of security as Y-evaluation. Subsequently [Ya86], Yao
strengthened his notion of a Y-evaluation so as to incorporate some fairness constraint. A fair
protocol is one in which there is very little advantage to be gained by quitting in the middle. That
is, the protocol takes care that, at each point during the execution, the "informational gap" among
the players is small. The study of fair protocols was started earlier by Luby, Micali, and Rackoff
[LMR83] and progressed with the contributions of [Ya86, BG89, GL90].

GMW-GAMES. A more general notion for security has been introduced by Goldreich, Micali
and Wigderson [GMW87]. They consider secure protocols as implementations of abstract, but
computable, games of partial information. Informally, ingredients of such an n-player game are an
arbitrary set of states, a set of moves (functions from states to states), a set of knowledge functions
(defined on the states), and a vector-valued outcome function (defined on the states) whose range
values have as many components as there a.re players. The players wish to start the game by
probabilistically selecting an initial state globally unknown to every one. Then the players take
turns in making moves. When it is the turn of player i, a portion K(S) of the current global state S
must be privately revealed to him; here K denotes the proper knowledge function for this stage
of the game. Based on this private information, player i secretly selects a move µ, thereby the
new, secret, state must become µ(S). At the end of the game, ea.ch player privately learns his own
component of the outcome function evaluated at the final state.

[GMW87] envisioned a notion of security which would mimic the abstract game in a "virtual"
manner: states are virtually selected, moves a.ct on virtual states, and so on. We will refer to their
notion as GMW-games. Again putting a.side how this can be achieved, let us point out an additional
aspect of their notion. Namely, in a GMW-ga.me, bad players cannot disrupt the computation at
all by quitting early. (This condition can indeed be enforced whenever the majority of the players
are honest.)

OTHER PRIOR WORK. Several noteworthy variants ofY-evalua.tion and GMW-ga.mes have been pro
posed, with varying degrees of explicitl"~ss and care. These definitional ideas include, most notably,
the work of Galil, Haber and Yung [GHY87], Cha.um, Da.mgard and van de Graff [CDG87], Ben-Or,
Goldwasser and Wigderson [BGW88], Chaum, Crepeau and Da.mgard [CCD88], Kilian [Ki89], and
Crepeau [Cr90].

CONCURRENT WORK. Early in our effort we told our initial ideas (like merging privacy and cor
rectness) to Beaver, who later pursued his own ones in [Be91a., Be91b].

Later, we collaborated with Kilian in developing definitions for secure function evaluation.
This collaboration was enjoyable and profitable. Its fruits a.re described in [KMR90], and will be
discussed in Section 3. 7

Concurrently with the effort of [KMR90], Goldwa.sser and Levin [GL90] independently proposed
an interesting approach to defining secure function evaluation.

1.4 Critique of These Definitions

Definitions cannot, of course, be "wrong" in an absolute sense; but we feel that all previous ones
were either vague, or not sufficiently general, or considered "secure" protocols that should have not

6

been called such a.t a. closer analysis. We thus cheerfully decided to clarify the intuitive notion of
secure computation. Little we knew that we had taken up a two-year commitment!

Let us very briefly critique some of the mentioned work.

Y-EVALUATION. Though Yao should be credited for presenting his notion with great detail1, in our
opinion his ideas do not fully capture the fundamental intuition of secure computation, leading to
several difficulties.

Blind input correlation. One of these difficulties we call "blind input correlation." Namely, a two
party Y-eva.lua.tion, while preventing a bad player from directly learning the good player's input,
might allow him to choose his own input so to be correlated with the good player's. For example, it
is not ruled out that, whenever the good player starts with secret input x, the bad player, without
finding out what x was, ca.n force the output to be, say, y = J(x,x) (or y = J(x, -x), or ...). In
some context, this correlation may result in (what would be considered by most people) a loss of
security.2

Privacy/correctness sepamtion. Y-evaluation considers privacy and correctness a.s individual con
straints a.nd, though with a different terminology, considers secure a. protocol that is both private
and correct. Indeed, privacy a.nd correctness are the fundamental aspects of secure computation,
but, a.s we point out in the discussion of Chapter 3, the logical connective "and" does not blend
them adequately together. The negative effect of this definitional approach is thus considering
secure some protocols that are not such, at lea.st according to our intuition.

GMW-GAMES. GMW-games are most general and powerful, and they are endowed with very
strong intuitive appeal. The weakness of [GMW87) is in not providing full help in turning this
intuition into a successful formalization. Indeed, several wrong choices could still be ma.de from
the level their definition wa.s left at. Additionally, their notion wa.s being developed for protocols
possessing a. very particular structure. Namely, the notion of security was tailored for protocols
that would first perform an initial committal phase, and would then perform computation on these
committed inputs. While their algorithmic structure proved to be very successful (indeed, all
subsequent protocols for secure computation share it), it should not be embedded in the definition
of our goal. (Indeed, the tendency of defining security a.s a property of a. specific protocol -or class
of protocols- is wide-spread in the prior literature.)

CONCURRENT WORK. Concurrent work does not suffer from this drawback, but has other short
comings. Beaver [Be91a) does not blend the various goals for a secure protocol, but treats them a.s
separate requirements, a.s Yao first did and incurring in the same type of difficulties. (This same
author ha.s presented a. new pa.per on this same subject to Crypto '91, concurrently with ours, but,
not having yet seen it, we cannot comment on it.) As for the work of Goldwa.sser and Levin, we
believe that, a.s we point out in the discussion of Section 4, in a computationally bounded setting,
it may be difficult to design protocols proven secure according to their definitions.

1This precision, however, wu made heavier from lacking more modern construct. for disculllling these issues, like
the notion of a simulator developed by Goldwasser, Micali and Rackoff [GMR89].

~Let's see what iu effects might be on some of the discussed secure-computation problems. Consider solving the
digital voting problem by Y-evaluating the tally function; for simplicity, let there be ouly two candidates to vote for.
Then the bad players -though ignoring the electoral intentions of a given good player- might succeed in voting as
a block for the opposite candidate. Should we consider this a secure election? We believe not. Similarly, trying to
solve the independent announcement problem by Y-evaluating the "concatenation" function (i.e., the function that,
on input. :z:1, ... ,:Z:n, retuma the single value :z:1# ... #:z:n), a bad player might always succeed in announcing the
siLIIJ.e value as a given good player. Indeed, a poor case of independence!

7

1.5 Our Definitions

Our notion of secure computation solves the above difficulties, and other ones as well. We plan to
build up our definition in two stages. First, as our alternative to Y-evaluation, we define secure
function evaluation, to which this paper is devoted. Our notion is quite powerful and expressive;
for instance, the first three secure-computation problems of Subsection 1.1 are straightforwardly
solvable by securely evaluating the proper function. After developing secure function evaluation,
we hint how this notion can be successfully extended to that of a secure game, our way of fully
specifying GMW-games. (The present paper is already quite long, and a different one should be
devoted to a detailed treatment of this extension. Also, the present treatment restricts its definitions
to there being three or more players.) Secure games capture, in our opinion, the very notion of
secure computation. Quite reassuringly, all six problems of Subsection 1.1 a.re straightforwardly
solved by "playing" a secure game.

The basic intuition behind secure function evaluation is the same one put forward, in quite a
different language, by [GMW87). In essence, two scenarios a.re considered: an ideal one in which
there is a trusted party helping in the function evaluation, and a realistic one in which the trusted
party is simulated by running a protocol. Security is a property of a realistic evaluation, and consists
of achieving "indistinguisha.bility" from the corresponding ideal evaluation. While remaining quite
informal, let us at least be less succinct.

IDEAL FUNCTION EVALUATION. In an ideal function evaluation of a vector-valued function f there
is an external trusted party to whom the participants privately give their respective secret inputs.
The trusted entity will not divulge the received inputs; rather, it will correctly evaluate function f
on them, and will privately hand component i of the result to party i. An adversary can interfere
with this evaluation as follows. At the very beginning, before any party has given his own input to
the trusted party, the adversary can corrupt a first player and learn his private input. After this,
and possibly based on what she has just learned, the adversary may corrupt a second player and
learn this input, too. This continues until the adversary is satisfied. At this point, the adversary
chooses alternative, fake inputs for the corrupted players, and all parties give the their inputs
to the trusted authority-the uncorrupted players giving their initial inputs, a"d the corrupted
players giving their new, fake inputs. When the proper, individual outputs ha\ been returned
by the trusted party, the adversary learns the value of the output of every corrupted player. The
adversary can still corrupt, one by one, additional players, learning both their inputs and outputs
when she does so.

It should he noticed that in such an ideal evaluation the adversary not only learns the inputs of
the players she corrupts, but by choosing properly their substitutes, she may learn from the final
result quite a bit about the other inputs as well.

IDEAL vs. SECUB.E FUNCTION EVALUATION. While the notion of an ideal function evaluation has
been essentially defined above, formalizing the notion of a secure function evaluation is much more
complex; we will do it in the next few sections. Here let us just give its basic intuition. To begin
with, there no longer is any trusted party; the players will instead try to simulate one by means of
a protocol. The adversary can still corrupt any t players, but this time a corruption will be much
more "rewarding." For not only will she learn the private inputs of corrupted players, but also
their current computational state in the protocol (and a bit of additional information as well). She
will receive all future message addressed to them and she will get control of what messages they
are responsible for sending out.

Given the greater power of the adversary in this new setting, it is intuitively clear that a protocol
for function evaluation cannot perform "better" than an ideal function evaluation; but it can do

8

much worse! Roughly sa.id, a secure function evaluation consists of simulating every important
aspect of an ideal function evaluation, to the maximum extent possible, so that a secure protocol
does not perform "significantly worse" than the ideal protocol.

Setting the stage of security in terms of the above indistinguishability is an important insight
of the [GMW87] work. We also follow their approach, but our notion of indistinguishability is a
bit more liberal -that is, as we shall see, it crucially allows a bit more of interaction. The main
difference with their work, though, and the real difficulty of ours, is not so much in the spirit of the
solution as in properly realizing what "maximum possible" should mean, and identifying what are
the important features, implicit (and perhaps hidden) in an ideal function evaluation that should
(and can!) be mimicked in a secure function evaluation.

1.6 Key Features of Our Definitions

Let us now highlight the key features of our definitions. These we distinguish as choices and prop
erties. The former are key technical ideas of our notion of security. The latter are key desiderata:
each one is a condition-sine-qua-non for calling a protocol secure. Notice, though, that we do not
force these necessary conditions into our definitions in an artificial manner; rather, we derive them
naturally as consequences (hence the name "properties") of our notion of security, and thus of our
technical choices.

Key Choices

BLENDING PRIVACY AND CORRECTNESS. Secure protocols are more than just correct and private.
Simply requiring simultaneous meeting of these two requirements leads to several "embarrassing"
situations. In a secure protocol, correctness and privacy are blended a deeper manner. In particular,
privacy -a meaningful notion all by itself- is taken to mean that the protocol admits a certain type
of simulator, and correctness is a concept which we define through the same simulator proving the
protocol private. This merging of privacy and correctness avoids calling secure protocols those which
clearly are not, and is a ma.in contribution of this paper, as well as one of our first achievements
in the course of this research. We are pleased to see that our idea has been adopted by other
researchers in the area.

ADVERSARIAL AWARENESS. In the ideal evaluation of/, not only is there a notion of what inputs
the adversary has substituted for the original ones of the corrupted players, but also that she is aware
of what these substituted inputs are! Similarly, she is aware of the outputs handed by the trusted
party to the corrupted players. We realize that this is a crucial aspect of ideal evaluation, and
thus one that should be preserved as closely as possible by secure evaluation. Indeed, adversarial
awareness is an essential ingredient in obta.ining the crucial reducibility property discussed below.

TIGHT MIMICRY. Our definition of a secure protocol mimics the ideal evaluation of a function f
in a very "tight" manner. (For those familiar with the earlier definition of zero knowledge, the
definition of security relies less on "global" properties of ensembles of executions and more on
individual executions.) In each particular run of a secure protocol for evaluating f, one may
"put a finger on" what inputs the adversary has effectively substituted for the original ones of the
corrupted players; when in the computation this has happened; what the adversary and the players
get back from the joint computation, and when this happens; and these values are guaranteed
(almost certa.inly) to be exactly what they should be - based on/, the inputs the adversary has
effectively substituted, and the inputs the good players originally had.

9

Key Properties

MODEL INDEPENDENCE. As we said a secure protocol is one that "properly" replaces the trusted
external party of ideal evaluation with exchanging messages. There are, however, several possibil
ities for exchanging messages. For instance, each pair of participants may be linked by a secure
communication channel (i.e., the adversary cannot hear messages exchanged by uncorrupted peo
ple); alternatively, each pair of players may have a dedicated, but insecure, communication channel;
else, the only possible communication may consist of broadcasting messages, and so on. Though
for ease of presentation we develop our notion of security with respect to a particular, underlying
communication model, our notion of security is essentially independent of the underlying communi
cation model. Indeed, we prove that the existence of secure protocol in one model of communication
entails their existence in all other "reasonable" models. This proof is highly constructive: we show
that, for any two rich-enough communication models, there exists a "compiler" that, given a pro
tocol secure in the first model, generates a protocol for the same task which is secure in the second.
(Interestingly, the proof, though often considered folklore, turned out to be quite difficult!)

SYNTACTIC INDEPENDENCE. Our definition of security is independent of the "syntax" in which a
protocol is written. Designing a secure protocol is easier if one adopts a syntactic structure a la
[GMW87]; that is, having the parties first execute a "committal phase" in which they pin down
their inputs while keeping them still secret3 and then they compute on these committed inputs.
A different type of syntactic help consists of assuming that a primitive for securely computing
some simple function is given, and then reducing to it the secure computation of more complex
functions. This also simplifies the design of secure computation protocols (and actually presupposes
that secure protocols enjoy the reducibility property we discuss below.) While it is alright to use a
right syntax to lessen the difficulty of designing secure protocols, we insisted that our definition of
security be independent of any specific syntactic restriction for a protocol to be called secure. (Of
course, though we insist at remaining at an intuitive level here, being secure is itself an enormous
restriction for a protocol, but of a different nature.)

INPUT INDEPENDENCE. There is yet a third, and crucial, type of independence property. In the
ideal evaluation of a function f, the fake values the adversary chooses are completely independent
of the values held by uncorrupted players. Of course, a secure protocol should have this property
too, as closely as is possible. (It is a rather subtle matter how to state this goal satisfactorily.) After
the proper definitions are in place, we show that our defi.J 'tion of security captures independence
in an extremely strong sense-not by "adding it in" as a desired goal, but, rather, by it being a
provable property of any secure protocol.

REDUCIBILITY. Reducibility has always been a key desideratum. Let us describe this goal. Suppose
you have designed a secure protocol for some complicated task-computing some function /, say.
In an effort to make more manageable your job as protocol designer, you assumed in designing the
protocol that you had some primitive, g, in hand. You proved that your protocol P1 for computing
f was secure in a "special" model of computation - one in which an "ideal" evaluation of the
primitive g was provided "for free." One would want that you obtain a secure protocol for f by
inserting the code of a secure protocol for g wherever it is necessary in P1 that g be computed.
This key goal for any "good" definition of security is surprisingly difficult to obtain, particularly
if one adopts the most natural and innocent-looking notion of adversarial awareness (namely, the
result of applying a fixed algorithm to the adversary's entire computational state). Our notion of

3This secret commitment is called verifiable secret sharing, a notion introduced by [CGMA85]. For a precise
definition and worked out example see [FM90]

10

security ensures reducibility; in fact, this has been one of the main driving forces in shaping our
definitions.

1. 7 How to Read This Paper

GENERAL ORGANIZATION. The paper is divided up into five chapters. After this (1) introduction,
one is (2) a chapter describing protocols, then (3) one describing secure protocols, (4) a chapter on
complexity issues and the computational security, and, finally, (5) a chapter on properties of secure
protocols.

This release is a preliminary report. Though chapters (1)-(3) are getting close to their final
form, chapters (4) and (5) are rather incomplete and contain historical baggage in their notation,
outlook, and proofs.

SIMPLIFYING ASSUMPTIONS. In order to simplify the presentation of our notion of security, we
initially makes a number of simplifying assumptions. In particular, as our development begins we
initially assume the following:

1. First, that the players and our adversaries have no past and no destiny but to try to compute
some given function. Thus each party brings into the collaborative computation of a function f
only his input x;, and the adversary brings into the collaborative computation no special
information whatsoever. This disregard for players' and the adversary's history is rectified in
Section 3.5.

2. We assume that there are only a fixed number of parties participating in the protocol. This
restriction is relaxed in Section 3.6.1.

3. We assume that the goal of these players is to collaboratively compute some particular finite
function. A finite function is a map from strings of some fixed length l to strings of some
fixed length, l. This restriction is relaxed in Section 3.6.2.

4. We assume that a secure protocol for evaluating a function takes some particular number of
rounds, R. This number may be thought of as a constant, or, more generally, as a polynomial
time computable function of the "common input." A protocol so restricted is called a fixed
TYmnd protocol. In Section 3.6.3 we relax the restriction that our protocols are fixed-round
protocols.

5. We initially take our goal to be an information-theoretic standard of security. What is more,
hough there are complexity-issues which should be dealt with even for information-theoretic
security, we ignore them. Complexity-theoretic extensions and modifications to our definitions
are described in Chapter 4.

Because of some of these, the notion of security initially developed (Definition 3.10) fails to have
some of the properties one would expect of a. secure protocol, and it fails to illustrate the full power
of our adversaries. Only after accommodating the first three of these extensions can we maintain
that a reasonable notion has been achieved (Definition 3.15). Nonetheless, the "stripped-down"
notion is meaningful, and describing it first and then specifying how the definition is modified
highlights the importance of a. variety of issues.

In this paper we aim at achieving solely what we believe should be the absolute minimum
notion of security. This should encompass "input independence" and "reducibility." Indeed these
are properties both desirable and achieved by our definition, as we show in Chapter 5. Protocols

11

have many important angles to them. Among these are "economicity of resources" and "fairness,"
whose investigation is already under way. We do not deal with these and other more sophisticated
notions in our paper. To a.void that the field would outpace its foundations, we believe that a firmer
understanding of basic security should come first.

Those who believe that what we consider an absolute minimum is actually "too much" (e.g.,
those who think that security should be defined without guaranteeing reducibility, say) may find
in section 3. 7 more general notions outlined.

12

2 Protocols and Adversaries

In this section we describe the execution of protocols-programs which are run by a collection of
communicating players. Specifying how a protocol runs involves describing not only what happens
when all the players perform flawlessly, but in describing, too, the manner in which they may fail
to perform their specified instructions, and what effect this has on the execution.

First we describe how a fault-less network operates. Afterwards, we consider the possibility
of some players becoming "bad"-that is, of deviating from their prescribed instructions. Several
questions immediately arise concerning the capabilities of these bad players.

ADVERSARIES. First among them is: how powerful should we let these bad players be? In some
scenarios the only natural way for a processor to deviate from a protocol is by ceasing all commu
nications, such as in the case of a computer "crash." Alternatively, processors may start sending
messages "at random," corresponding, perhaps, to having some short-circuited register. If people
are behind their processors, it is safer to consider more "malicious" deviations. This possibility,
clearly subsuming the previous ones, is the one we focus on. Our goal is in fact reaching the
strongest, natural notion of security, so that a protocol satisfying our definitions may be safely and
easily used in any natural context. We thus allow bad players to deviate from their prescribed
instructions in any way-the only constraint being that the number of bad players may be limited
to a certain fraction of the total. (We will later consider the case in which bad players are limited
to being able to perform "reasonable" computational tasks, as well.) We also allow bad players to
secretly cooperate with ea.ch other. Actually, to guarantee their "perfect cooperation," we envisage
a single a.gent, the adversary, who, during an execution of a protocol, may corrupt and control
players.

An equally important question is: when can the adversary corrupt players? One possibility is to
consider a static adversary, one who can choose and corrupt a. subset of the players only at the start
of a protocol. Since any real adversary may be expected to make an effort to corrupt those players
whose corruption would be most beneficial to her, a. better possibility is to consider a. dynamic
adversary, one capable of corrupting players at arbitrary points during the execution of a protocol,
based on the information acquired from previous corruptions. Such an adversary ~ provably more
powerful than a static one (see Section 3.6.5), and security with respect to a dynamic adversary is
both harder to achieve and harder to properly define. The adversary we consider is dynamic.

COMMUNICATION MODEL. Assuming such a. strong adversary makes our definition of security much
more meaningful. On the other hand, given that secure protocols a.re non-trivial to find, we at least
make them easier to write by providing a. generous communication model. In essence, we allow each
player both to privately talk to any other player (that is, to speak over a "private communication
line"), and to talk "aloud," so that all players will hear what is said and know who has said it (that
is, to speak over a. dedicated communication line that is monitored by all the other players).

While our notions and theorems a.re stated in this chosen chosen communication model, we
emphasize that, as with all important notions, secure computation is essentially independent of
the particulars of the selected model. Indeed, for the notion of security we develop, essentially a
syntactical replacement of adversaries and networks in our definition by respective, weaker versions
of them yields the corresponding, right notion of security in the modified framework.

13

2.1 Protocols

2.1.1 Informal description

THE GENERAL PICTURE. Protocols are the instructions which players follow in order to accomplish
some task. A collection of players connected by some communication mechanism is said to form
a network. Each player of a network has a string, called his computational state, and the effect of
the protocol is in updating these strings. At the beginning of a protocol this string should encode
a player's private input.

Computational states are updated either as a result of local computation, or as a result of
interacting with other players by exchanging messages. As we shall see in detail, the ordering of
these events is tightly controlled. In fact, our protocols operate in rounds. A round consists of
having all players perform their local computation and then sending messages to all other players.
Once all these messages have been delivered to the proper players, the next round begins. This
process repeats a fixed number of times.

Intuitively, local computation consists of applying a probabilistic function to a player's compu
tational state. Still, we find it convenient to distinguish between probabilistic and deterministic
aspects involved in local computation. Namely, a player computes locally in two ways. First, he
can replace his own computational state by its image under some (deterministic) function; in fact,
a protocol is regarded as being precisely this function. Also, a player may append to his compu
tational state a uniformly distributed random bit-a process called "flipping a coin." This models
that fact that a computing device with suitable hardware can obtain "random" bits. Such random
bits are crucial for achieving security in our sense. Which of these two activities a player wishes to
perform is indicated in his computational state, according to some fixed conventions. Alternatively,
the computational state may indicate that the player's local computation is over for the current
round, and all his messages are ready to be sent out.

Interaction with other players occurs once all the players finish their local computation for the
current round. At this time, each player has a computational state which determines his broadcast
message, which is a string to be delivered to everyone, as well as a set of private messages, each
of which is to be delivered to a specified recipient. As we shall specify shortly, these messages will
be delivered by appending to each player's state the various messages he is entitled to, making it
clear what was received from whom.

ADDITIONAL CHOICES. While notions such as rounds are central to the idea of a synchronous pro
tocol and would likely be reflected in any formalization of the execution of a protocol, various other
choices in our formalization reflect a. more individual taste. For instance, while protocols, players,
and networks are all ideas with strong intuitive meaning, we only formalize protocols. Players and
networks are thought of as "virtual" objects, not directly represented in the formalism and primar
ily useful for the language of discourse they provide. Intuitively, any "computing device" can play
the role of a. player, and any "communication mechanism" can play the role of the network. But
a protocol is mathematical object, natural to define and independent of any particular computing
device or communication mechanism designed to execute it.

Another personal choice is our formalization of a protocol as a single program. Conceptually,
each player i runs his own program, Pi, directing the evolution in time of his computational state.
However, we consider each player as running the same program, P. Such a program is made
specific to the player who runs it simply by specifying a player's identity in his initial computational
state. This makes a protocol a finite-size object instructing each player how to behave, however
many of them there are. Clearly this viewpoint entails no loss of generality when the number of
players is fixed-you could always imagine that a. protocol P begins by saying, "if you a.re player i,

14

execute ~"-and the viewpoint ensures, when the number of players is not regarded as fixed, that
a protocol always has a finite description.

To describe protocols more formally, we have drawn a distinction between the computation
which a protocol P directs, and the other, "syntactic" components needed to compactly specify
how a protocol runs. These syntactic functions direct whether it is time to apply the function P,
or time to flip a coin, or time to end the round's activities; and they specify what messages a player
means to broadcast and which ones he intends to deliver privately to whom.

To facilitate discussing complexity issues later, a protocol Pis regarded as a function not only
of a player's computational state, but also of a separate string called the common input, which is
known by everyone.

2.1.2 Formal description

NOTATION. An alphabet is a finite set. We will only use the alphabet {O, 1}. A string is a
finite sequence of characters from some alphabet, and an infinite string is an infinite sequence of
characters over some alphabet. If x and y are strings, xy denotes their concatenation. A language
is a set of strings.

We define {O, 1}" as the language of strings of length n, and {O, 1r = Un {O, 1}" as the set
of all strings. We let {O, 1}00 denote the set of infinite binary strings. The empty string (i.e., the
length-0 sequence of characters) is denoted by A. If we write x E {O, 1r where x is apparently
not composed of characters of the alphabet {O, 1} (e.g., x = 11*0), then it is understood that the
string xis encoded over {O, 1} in some natural manner.

The set of nonnegative integers is denoted N = {O, 1, 2, ... }. If a and b are integers, a ~ b, we
let [a .. b] denote the set of integers between a and b, inclusive. By [a .. oo] we denote the set of all
integers greater than or equal to a, together with a point "oo".

DEFINITION OF A PROTOCOL. We reiterate that we are first describing a protocol for a fixed
number of players; later we discuss protocols for arbitrary numbers of players. We also note that
the phrases beneath the underbraces should be considered as suggestive terminology, not part of
any formal definition.

Definition 2.1 An R-round, n-party protocol is a Turing-computable function

common
input

current
state

new
state

A protocol syntactic function is any of the following Turing-computable functions:

• a next-action function, N: {O, 1 r - {compute, flip-coin, round-done} ...__...,
current action to take
state

• a broadcast-message function, M: {O, 1r - {O, 1r ...__..., ...__...,
current broadcut
state IDemaag9

• a private-message function, m: {O, 1r x [1..nJ - {o, 1r ...__..., ..__..,, ...__...,
current identity or private

state recipient ID-.p

NOTATION. In place of m(si,j) we write m;(si)·

15

2.1.3 Remarks

RECOVERABILITY OF COIN TOSSES. As we have said, when a player flips a coin the outcome is
appended to his computational state. This process can be repeated as many times as it is deemed
sufficient. Then the protocol function P is applied to this augmented computational state, a new
state results, and the coin flips may or may not be recoverable it. Some protocols "record" their
coin tosses in the new state, others do not (though some information about these coin tosses may
still be inferable from the new computational state).

THE SYNTACTIC FUNCTIONS. These specify how a protocol P directs the updating of player's
computational state, effecting the computational states of other players in the process. As such,
we might have considered a protocol to be the five-tuple (P,N, M, m) consisting of the protocol
algorithm proper and the collection of syntactic functions. However, we choose instead to take the
syntactic functions to be fixed functions, good for any protocol. This way, for example, protocols
can more easily be composed with one another: there is no danger that two protocols employ
different conventions on how processors communicate, say.

Though particular maps, we have not actually specified the syntactic functions since the con
ventions chosen for defining them are not important. Each function should specify its range value
in a natural and simple manner from its domain value. For example, with "(", ")", "(", ")",
"*", and "," all being formal symbols, we might say that if computational state s1 does not con
tain the symbol "*" but it does contain one and only one occurrence of a substring (li) then
N(s1) = flip-coin if j = 2, N(s;) = round-done if j = 3, N(s;) = protocol-done if j = 4; in all
other cases, N(s;) = compute; ifs; contains one and only one occurrence of a substring (µ), then
M(s;) =µ;otherwise, M(s;) =A; ifs; contains one and only one occurrence of a substring (li ,µ;),
for j E [1..n], then m;(s1) =µ;;otherwise; m;(s1) =A.

2.2 Executing Protocols in the Absence of an Adversary

2.2.1 Informal description

The syntactic goal of executing a protocol is transforming the players' initial computational states
to a set of final computational states. Besides the common input and the initial computational
states, this transformation depends on the particular coin flips made by each player. This naturally
leads to the notion of a player configumtion, which records both a. player's computational state and
his "future coin tosses." That is, each player, at the beginning of the protocol, has associated to
him an infinite string of bits, each selected with uniform probability. When the player flips a coin,
he reads and strips off the first bit in this sequence.

In absence of an adversary, the common input and the players' initial configurations completely
determine the execution of a protocol. In the formalism below, we recursively express how these
configurations progress from round to round. Here is the general idea..

Each player i begins round r in some configuration C[, and ends with some configuration C[.
This transformation is not done in one step. Rather, by flipping coins and computing, the player
goes through a sequence of micro-rounds, 0, 1, 2, {The micro-round p is written as a second
superscript to the quantity of interest.) In some cases there may be an infinite sequences of micro
rounds without completing the round (as when, being very unlucky, a player tries to select one out
of three possibilities with uniform probability). Normally, however, there will be a finite number g;,.
of micro-rounds before the next-action function evaluates to "round-done." Accordingly, player i
will begin round r in some configuration C[0 (= C[), and end it in some configuration c;ei• (= C[).
For every player i, c;r+l}O is determined from all of the configurations { c;ej•} by evaluating the

16

broadcast-message function a.nd private-message function on them, and appending to each C;"" its
proper message subset.

2.2.2 Formal description

NOTATION. When a symbol denotes a string or an infinite string, use of the same symbol with a
subscript denotes the indicated character. This convention holds even if the symbol denoting the
string already bears a subscript. For example, if r; is a string or an infinite string, then r; 1 is the
first character of r;.

Two other notes. Symbols such as { #, #, *• •,•}, which appear here or elsewhere, are all just
formal punctuation symbols. Also, the character r, below, is somewhat overworked: with a sub
script i, it indicates player i's random string; as a superscript, it indicates the round number. This
should cause no confusion.

PLAYER CONFIGURATIONS. These should capture enough information to allow a convenient recur
sive formalization of the execution of a protocol, as player configurations evolve from rnicroround
to-microround and round-to-round.

Definition 2.2 A player configuration (s;, r;) is an element of {O, 1r x {O, 1}00
• .___.. ,,___....,

player's future
state coins

CONFIGURATION SEQUENCES. An R-round, n-party protocol P generates from a common input, c,
and n initial player configurations, (C?0

, ••• ,C~0), a sequence of configurations {C?: i E [1..n),r E
[O .. R], p E N}, which we now describe. Sometimes, one or more of these configurations may fail to
be defined by the recurrences below. If this happens, the protocol is said to have diverged.

Fix the notation

for player configurations, and let g;,. denote the least number such that N(s?'•) = round-done (if
such a number exists). Define

M[= M(s?'') and

m~; = m; (s?'•)

for what processor i broadcasts in round r and sends to processor j in round r, respectively. Let

M~ = M[• · · ·*M~•m~i* · · ·•m~i

be the actual meBSages (public a.nd private) sent to processor i in round r. (These will not be
received until the beginning of round r + 1.) Define C?P = Cl0 = C?0 for all p E [1..oo) and
i E [1..n). Then, for r ~ 1, the players' configurations progress as follows:

=

=

if N(s?) = compute

(
rp rp rp rp)

S; •r;1 , ri2 ri3 • · · if N(s?) =flip-coin

{

(8~e;. •M~ r~e;.) . . , .
c;ei•

17

if N(s?) = round-done

if r > 0

if r = 0

EXECUTING PROTOCOLS. An initial configuration of the network is identified by a tuple (x, c, T)
specifying the player's private inputs xi, ... ,xn E {o,1r, the common input c E {0,1}", and the
players' coins ri, ... , rn E {O, 1}00

• An initial configuration of the network determines an execution
of the n-party protocol P. This execution is the sequence of configurations {C[P} generated by P
when the initial configuration of party i is taken to be C?0 = (x;Ui, r;), player i's coins are r;, and
the common input is c.

The set of executions of P with common input c, private inputs Xi, ••• , Xn, and all possible coin
sequences ri, ... , rn enjoys a probability measure by endowing each execution with the measure
induced by taking each bit of each r; to be selected uniformly and independently. In the absence
of an adversary, executing a protocol P with common input c and private inputs xi, ... , Xn, means
sampling according to this probability distribution.

ADMISSIBLE PROTOCOLS. As we have said, a protocol may diverge (when a player repeatedly flips
coins and applies the protocol function P without ever ending a round). We are not interested in
protocols for which this happens.4 A protocol is called admissible if, for any common input and
any initial player configuration, it does not diverge. From now on, all protocols are assumed to be
admissible. Forcing a protocol to flip at most a fixed number of coins per round (a number which
depends only on the common input, say) is certainly a way to guarantee its admissibility.

PLAYER'S VIEW. The computational state of a player need only record what he requires to continue
his, and therefore prior computational states might or might not be inferable from the current
computational state. It is useful to introduce view, a notion formalizing this "history" of prior
computational states.

In a protocol execution, the round-r view of player i is the string hi = (si0
' sr1

' .•• 's~e;.). His
view through round r is defined as H[= (c, h?, h;, ... , hi), while the view of player i from an
R-round protocol is Hf.

2.2.3 Remarks

MORE ON COIN TOSSES. Whether or not a protocol keeps explicit record of the ·oins tossed (see
remark 2.1.3), it is still meaningful to speak about notions such as "the coins fli:i;!-'ed by the first
player during a particular round in an execution of a protocol."

SIMULATING ROUNDS. The organization of the computation in rounds, though purely conceptual,
can be simulated in the real world without relying on perfect synchrony. For instance, in a computer
network one may not be able to guarantee simultaneous delivery of messages nor access to a global
clock. Nonetheless, it may be reasonable to assume that every message sent will arrive within five
minutes of when it was sent, that the local computation of every processor can be completed within
half an hour, and that each processor's clock knows the time of day within five minutes. In this
case, the round structure can be simulated by instructing every processor to send its messages on
the (local) hour, and start its local computation, using all the newly received messages, at a quarter
pa.st the hour.

As can be appreciated such a simulation, rounds are often an expensive resource. Since the time
allocated for simulating each round should be sufficiently generous, so to be sure that all messages
will be received and all local computation done, it is important to design protocols that use few
rounds.

•Alternatively, we could say "we are not interested in protocola for which this happens with positive probability."
This relaxation would slightly complicate the statement of some later definitions, but is otherwise immaterial.

18

THE VOID ROUND. We have established the convention that a protocol begins with the players
executing a "dummy" round, round 0. During this round, "nothing happens." The presence of
the void round facilitates bringing the adversary into the model of computation in a manner which
allows for clean protocol composition.

2.3 Adversaries

2.3.1 Informal description

An adversary is a device capable of interacting with the participants of a network in a prescribed
way. For convenience of discourse, we will adopt gender conventions: a player, "he," and the
adversary, "she. "5

The options of an adversary are greater than those of a player. Like the players, she can
compute, flip coins, send and receive messages. Her additional feature is her ability to corrupt
players in the execution of a protocol. Though we postpone, for a bit, the details of her interaction
with the players, it is necessary to understand right off that once a player i is corrupted, it is the
adversary who will receive messages sent to i and send messages on his behalf.

Our aim for now is to describe the adversary as a "gadget." Like the players, this gadget has
associated to it a collection of syntactic functions. The adversary's next-action function N indicates
what action she wishes to perform next; her broadcast-message function M indicates what she
will broadcast on behalf of corrupted players; and her private-message function m indicates what
message she will send privately to each player, on behalf of each corrupted processor.

2.3.2 Formal description

Definition 2.3 An adversary for an n-party protocol is a function

A: {o,1r x {o,1r - {o,1r . ..__...,, ..__...,, ..__...,,
common

input
current

state
new
state

An adversary syntactic function is any of the following functions:

• a next-action function, N: {o,1r -+ {compute,flip-coin,corrupt17 ••• ,corruptn,round-done} ..__...,,
current
state

• a broadcast-message function, M: {O, lf x (1..n] -+ {O, 1r ..__...,, ...__, ..__...,,
current corrupted broadcast
state player mesaage

• a private-message function, m: {O, 1}* x [1..n) x [1..n] - {O, 1}* ..___,,__ ...__, ...__, ..__...,,
current
state

corrupted identity of
player recipient

private
message

NOTATION. In place of M(sA, i) a.nd m(sA, i,j) we will write Mi(sA) and mi;(sA), respectively.

5 Justification for gender conventiona judiciously relegated to an unpubliahed manuscript.

19

START
Player's round 0 *

Adversary's round 0
Player's round 1

Adversary's round 1

Player's round R
Adversary's round R

END

Figure 1: An R-round execution of a protocol with the adversary. The player's ot" round is a round
in which there is not activity. Such rounds will be marked with a "*".)

2.3.3 Remarks

Again, we do not explicitly specify the syntactic functions since the particular conventions selected
for them is irrelevant to further discussion. All that is important is that each function specifies its
range value in a natural and simple manner from its domain value, as with the syntactic functions
associated to the players of a network.

As with a protocol, the first component in A's domain is the common input. Though this could
be considered as an unnecessary component-it could be encoded in the adversary's initial compu
tational state-we make a separate argument of it to facilitate, later on, dealing with computational
complexity.

Note that, while a protocol must at least be computable, no similar assumption is made of
an adversary; an adversary which is, say, an arbitrary function, with no finite description, is a
perfectly good adversary. Possible restrictions on the power of an adversary will be investigated in
Chapter 5.

2.4 Executing Protocols in the Presence of an Adversary

2.4.1 Informal description

ALTERNATING ACTIVITY. Think of an adversary A as an abstract machine interacting with the
participants of a network in a prescribed way. This wa; entails the players and the adversary
alternating periods of activity, as suggested by Figure 1.

In the beginning, all of the players are good, and so they remain unless the adversary corrupts
them. While the players compute, the adversary is quiescent. But once all of the still-good players
have finished their local computation, they effectively go to sleep, and A is awakened. She is active
for a while-computing locally and possibly corrupting additional players-until she has finished,
for the time being, and goes to sleep. Then the players execute again. The players and the adversary
continue alternating periods of execution in this way, until the players complete their last round, R.
At that point, the adversary is given one la.st round of activity, and then the protocol execution is
said to be over.

AN ADVERSARY ROUND. When an adversary begins a round of her activity, she is given certain
information. Namely, she is handed the messages that still-good players have just broadcasted,
plus the messages the still-good players just transmitted to already-corrupted players.

After some local computation, the adversary may choose to corrupt some players. This she
can do in a dynamic way. When corrupting a player i in round r, the adversary learns some

20

information about him, his exposed state, a[, which will be described momentarily. Then, based on
this information, still within the same round, the adversary can corrupt, one at a time and exactly
as before, additional players, until she does not want to corrupt any more of them. At this point,
the adversary composes all out-going messages from the bad players to the good, and it is these
messages (together with the messages sent by good players) which will be delivered to the players
in the next round.

In our formalization, an adversary round is divided into a sequence of micro-rounds, just as
player rounds were. As her micro-rounds progress, the adversary computes, flips coins, and corrupts
players. Though we find it convenient to adopt a formalism in which the players execute first, this
is a round in which there is no activity-so really it is the adversary who is both the first and the
last agent to be active in a protocol execution.

EXPOSED STATE. As we said, the exposed state is whatever information the adversary learns when
corrupting a player. If a player i is corrupted in adversary round r, his exposed state will always
consist of all of the messages addressed to him in round r (which would have been delivered to him
at the beginning of players' round r + 1), together with some information, E(H[), about his current
view. Since we are now aiming at defining secure computation with respect to the most powerful
natural adversary, through out this chapter we let the exposed state function Ebe the identity.
That is, by corrupting a player, the adversary gets, over the most recent messages addressed to
him, the view of his execution of the protocol up to that point (thus, all prior messages, coin tosses,
computational states etc.)

The exposed-state function, as we shall see in the next discussion section, is essential in pin
ning down the underlying model of computation and communication, and different exposed state
functions will be considered in later chapters.

2.4.2 Formal description

We now describe how an n-party protocol P executes in the presence of an adversary A.

ADVERSARY CONFIGURATIONS. These should capture enough information to allow a convenient
recursive formulation of how a protocol runs in the presence of an adversary, as player and adversary
configurations progress from round to round and micro-round to micro-round.

Definition 2.4 An adversary configuration (sA, rA, 11:A) is an element of

{O, l}* x {O, 1}00 x ~·~ . ._,__...___ ._,,_
adversary'• future cornipted

state coins playen

CONFIGURATION SEQUENCES. Let A be an adversary for an n-party protocol, and let P be
such a protocol. We describe how, from a common input c, any n initial player configura
tions, (cro 1 , •• 1 C~

0), any initia.J. adversary Configuration, C~O = (sA, T Ai ll:A), and any exposed
state function E: {O, l}* - {O, 1}*, protocol P and adversary A generate a sequences of player
configurations, {C?: i E [1..n),r E [O .. R),p E N}, and a sequence of adversary configurations,
{C,7': r E [O .. R),p E N}. Sometimes, one or more of these configurations may fail to be defined by
the recurrences below. If this happens, the protocol is said to have diverged.

Fix the notation

C? =
c::

(s?, r;") and

(
rp rp rp)

SA! TA 1 ll:A

21

for player and adversary configurations.
Let f!;,. denote the least number such that N(sf") = round-done (if such a number exists), and

let f!Ar denote the least number such that N(s~"·) = round-done (if such a number exists). For
clarity, we sometimes omit designating the micro-round to indicate the final micro-round of the
indicated player or adversary round. For example, we may write si, C[, sA, ,,;A, and C~, in place
Of S~e;. c:eir SreAr K."eAr and creAr respectively

• • 1 • A ' A • A • •
As before, define C?P = C;1° = C;00 for p E [1..oo) and i E [1..n). The players' configurations

progress as before,

(P(c, s?), r?), if N(s?) =compute

c~<p+t>
• = (rp rp rp rp)

S; *Tit , T;2 T;3 • • • if N(s?) = flip-coin

C':P • if N(s?) =round-done

{
(s~e;.*M~ rreir) if T > Q ' ',

C~r+t)O = ' c:eir if T = Q
'

the only difference being that the set of actual messages delivered to player i from round r, Mi,
will be defined differently. The adversary's sequence of configurations progresses as follows:

(A(c,s'."t), r'."t, ,,;.'.":) if N(s'.°t) =compute

if N(s'."t) = corrupti

C"J if N(s"J) = round-done

where u[is the exposed state of processor i in round r, and M~+t are the intended messages sent
by good players and intercepted by the adversary at the start of her round r + 1. These strings,
and Mi, are defined below.

where

M[= { M(ar) if i '/. "'.:.
Mi(s'.:.) if i E "'.:.

,. = { m;(si) if i '/."A
mi; mi;(s'.:.) if i E "'A

"Actual round-r messages visible to i"

"Actual round-r broadcast from i"

"Actual round-r message from i to i"

The intended messages prepared by good players during round r a.re given by

{ M(sn "f · '/. r-1 "Intended round-r broadcast prepared if: l I K.A = A otherwise by good player i" '

- ,. { m;(si) if i rt. ,,.'.A- 1 "Intended round-r message for i pre-
mi; = A otherwise pared by good player i"

22

(Messages other than M[and mi; may be delivered to processor j in round r + 1 because of the
action of the adversary.) The exposed state of processor i which A will get hold of if she corrupts
him in round r is given by

a[= {
si•x; if r = 0

si•x;•m~j•···•m~i•E(H[) ifr > 0
"The exposed state of processor i at
round r."

for some fixed function E. (The definition of H[is unchanged: H[= (c, h?, hI, ... , hi), where
hr = (sr0

, si1
, ••• , s?").) Finally, the incoming messages to the adversary at the beginning of her

round r are given by

M·,.A M-,. M-,. .,. .,. .,. .,.
= 1 * · · · * n •mu*··· •min*··· •mnl * · · · •mnn

where

. ,.
mi; = {

mi; if j E K'.°.t- 1
A otherwise

"Incoming messages to the adversary
at the start of her round r"

We add the stipulation to the above definitions that M[= mi; = M[= mi; = A for r = 0.

EXECUTING PROTOCOLS. An initial configuration of the network is identified by a tuple (i, c, r, r A)
specifying the players' private inputs Xi, ••• , Xn E {O, 1r, the common input c E {O, 1}*, the players'
coins ri, ... ,rn E {0,1}00

, and the adversary's coins rA E {0,1}00
• For a given protocol P and

adversary A, an initial configuration of the network determines an execution of P in the presence
of A: this is the sequence of configurations { C?, C;{} generated by P and A when the initial
configuration of party i is taken to be C?0 = (xi~i, ri), the initial configuration of A is (KA, r A• KA),
for KA= 0, player i's coins are ri, the adversary's coins are rA, and the common input is c.

The set of executions of P with common input c, private inputs x1 , ••• , Xn, and all possible
coin sequences r 1, ••• , r n and r A becomes a probability space by endowing each execution with the
measure induced by taking each bit of r A and each bit of each ri to be selected uniformly and
independently. In the presence of an adversary, executing a protocol P with com. ·on input c and
private inputs x1 , ••• , Zn means sampling from this probability space.

ADMISSIBLE ADVERSARIES. As we have said, all our protocols are admissible; thus no adversary
can force a good player to compute forever by sending him messages in some tricky way. On the
other hand, the adversary can gain nothing if she herself computes forever-except for messing
up our recursions! We say that an adversary diverges if she goes through an infinite sequence
of computational states, her next-action function never indicating round-done. An adversary A is
admissible if for any common input, any initial adversary state, any set of messages received, and
any set of exposed states learned, adversary A does not diverge. From now on, all adversaries are
assumed to be admissible. Thus, when a protocol interacts with an adversary, it does not diverge.

ADVERSARIES WITH BOUNDED CHARISMA. If an adversary corrupts all the players, then nothing
can be said about their behavior in her presence. We thus favor less captivating adversaries.

Definition 2.5 Lett E N and let A be an adversary for an R-round protocol. We say that A is a
t-adversary if A corrupts at most t players: that is, 111:~1 $ t in any execution of P with A.

For our purposes, it is equally acceptable to strengthen the constraint above and demand that a
t-adversary always corrupt exactly t players.

23

2.4.3 Remarks

2.5 Discussion

THE EXPOSED STATE. As we said, the exposed state represents all the adversary learns when she
corrupts a player. What should this be? Certainly the adversary is entitled to the player's com
putational state in that instant; indeed, a player must keep this information a.round for continuing
executing the protocol. Also, she is entitled to learn the player's private input; indeed, we aim
at precisely capturing the situation of an ideal function evaluation, and she gets this information
in that scenario. Additionally, we let the adversary learn all the messages addressed to a player
which were sent in the same round in which she corrupted him; indeed, when rounds are simulated
in an asynchronous communication model, the adversary might be lucky and get these messages
early enough to use this information in making her decisions in the current simulated round. Thus,
seeking a strong enough model to capture any "real" underlying network, we assume the adversary
is always lucky.

Besides these three components, we let the exposed state, CT[, also contain a piece, E(H;), of
player i's view, H[, at the end of round r. Since this specified portion of the player's view may
not be recoverable from his computational state, why give it to the adversary? As with "prompt"
message delivery to the adversary, our reason stems from modeling reality robustly. To avoid being
unduly specific, we have rightly chosen a formalism that is silent about the nature of players and
adversaries. In reality, though, a.n adversary ma.y be able to exploit the peculiarities of the agents
that perform local computation. For instance, if players are people, it ma.y not be so easy to
instruct them to forget their pa.st a.nd resist interrogation! Alternatively, the wa.y in which coins
are flipped ma.y allow the adversary to recover all pa.st coin tosses once a player is corrupted. In no
case, however, ca.n the adversary learn more a.bout a player, by corrupting him, than his view. The
exposed-state function E thus constitutes a "knob" to control precisely what additional information
can be derived by a.n "actual" adversary corrupting a.n "actual" player.

CHOOSING THE EXPOSED STATE. Though our notion of secure computation is applicable for all
exposed-state functions E, we suggest that E, a.t the minimum, divulge the current-round view
of a. corrupted player. (This ca.n be formalized by saying that E(H;) = hr•E'(H;) for some
function E'.) We define the standard model to be the one in which E gives exactly the current
round view, E(Hn = h'i. We have two excellent reasons for favoring the standard model.

• Independence from asynchrony models. Achieving security in the standard model ensures in
an elegant way that the adversary cannot exploit a.ny a.synchrony present in the underlying
real communication system. In fa.ct, the standard model eliminates the burden of formalizing
a.nd choosing among infinitely many a.nd often incomparable models for a.n a.synchronous
adversa.ry. 11 It is because we let the adversary receive the current-round view of corrupted
players that we ca.n neatly alternate player a.nd adversary rounds.

6 Without receiving the current-round view of a corrupted player, it may be beneficial for the adversary to corrupt a
player in the middle of his round of computation, since computing, in practice, "decreases" information. For example,
one may consider an adversary who can corrupt a chosen player i at chosen micro-round p. (This capability, which is
subsumed by the standard model, is undesirable since it is not model independent; in fa.ct, it depends in a crucial way
on how much computation can be performed within a micro-round.) Another model allows the adversary to corrupt
players only at the end of their rounds, like we do, still granting her private inputs, current computational states,
and messages intended for corrupted players in the current round, but nothing else (i.e., our model with E =A). As
this model is incomparable with the one juat mentioned, which is better to adopt? "Below" the standard model lie
myriads of specialized and not-too-interesting models.

24

• Independence from communication mechanisms. If public-key cryptography is possible, then
secure computation in the standard model is achievable not only in the rich type of networks
we describe, but even in ones where communication is only possible via broadcasting, or only
possible via separate communication lines between every pair of players, even if these lines
can be monitored by the adversary, as discussed in section XX. In fact, it can be achieved
in any "reasonable" communication mechanism - a statement necessarily part theorem and
part thesis. Here, by "reasonable" we essentially mean that the adversary cannot disrupt
the communication between two good players, a property without which there is no secure
computation.

For the reasons given above, and for concreteness, we assume the standard model, unless stated
otherwise.

Another noteworthy exposed-state function is the identity map, E(H[) = H'[, which defines the
complete-history model. The importance of this model is not only due to the fact that it gives rise
to the worst adversarial scenario, but also to the fact that security with respect to it is achievable
under at least one communication mechanism -in fact, as explained in section YY, the one adopted
in this paper.

25

3 Secure Protocols

As we said in the introduction, we define a secure protocol for computing a function to be one that
mimics an ideal evaluation, in all of its aspects, as closely as possible. Thus, in this section, we
recall what an ideal evaluation is, establishing a convenient notation for the rest of our enterprise;
we highlight its important aspects; we define the sense in which a protocol can imitate them; and,
finally, we set just how close this imitation should be. This last point is both important and
delicate. Demanding "perfect imitation" is both easier and counterproductive: for the notion of
secure computation to be of any use, it must allow the existence of secure protocols, at least in some
reasonable models of communication.

The notion of secure computation is inherently complex, even disregarding -as we do in this
chapter- computational complexity issues and other, complicating issues. We thus decided to
break its presentation in smaller and more manageable pieces of some independent interest. Ac
cordingly, we provide separate definitions of both correctness and privacy, and then show how to
properly interleave them to yield the notion of security. While we hope that this will improve the
readability of our paper, we ask the reader to keep in mind that it is secure computation which
is our real aim! Thus, while meaningful alternatives to our definitions of correctness (alone) and
privacy (alone) can be found, we strongly believe that any satisfactory definition for what it means
for a protocol, in the presence of a sufficiently powerful adversary, to closely mimic an ideal function
evaluation, will be essentially similar to ours.

We do, though, encourage further work if felt necessary, and thus do explicitly highlight what
we found to be the key ingredients and concerns for putting together any meaningful definition of
secure computation.

3.1 Ideal Evaluation

VECTOR NOTATION. As usual, we denote a vector by a letter topped with an arrow symbol, "_,,.
The same letter without the arrow but with a subscript denotes the indicated component. For
example, if i is a vector, x; is its ith component. An n-vector is a vector with n components.

Fix n, and let T ~ [1..n). Then we write T for [1..n) -T. If i is an n-vector and T ~ [1..n], the
tagged vector xT = {{i,x;): i ET}. (That is, xT keeps track of the indices as well as the values.)
To each two n-vectors i and X' and s11bset T ~ [1..n), we associate the "shuffled" vector Xr U xT,
which is then-vector y where y; =xi if i ET and Yi= x~ otherwise. For/: ({O, 1r)" - ({O, 1r)"
and T ~ {1, ... , n}, h(i) is defined as h(i) = (f(i))T, and f;(i) is defined as /i(i) = (/(i))i
-thus f = (/1, .. ·, fn)·

THE IDEAL SCENARIO. Let i E ({0, 1r)" be a vector and f: ({0, lr)" - ({0, lr)" be a function.
Then the ideal evaluation off(i) in the presence of an adversary proceeds as follows:

(1) the adversary dynamically (one at a time) corrupts some set T ~ [1..n) of the players;
(2) she then chooses some fake inputs, xT, for them;
(3) each uncorrupted player i now receives f;(xT U xr) (from a "trusted party," one sometimes

imagines), while the adversary receives h(xT U xr);
(4) finally, the adversary may dynamically corrupt some additional players. When she corrupts

a player j, she learns (x;, f;(x1- U xT)).

26

3.2 Correctness (without privacy)

So far, we have discussed executing a protocol in purely syntactic terms. In fact, we never even
discussed the possibility of protocols having an output! Since the ultimate goal of our protocols is
to securely evaluate a function, the time has come to add a bit of semantics to our setting.

In this section we put forward a definition of "correctness without privacy." That is, we provide
a way to "rationalize" the execution of some protocols and distinguish those whose "net result"
consists of correctly computing, in a weak sense, a function f.

The weakness of the proposed definition comes exactly from our wish to ignore "privacy" for
now. In fact, we believe that any computation in the presence of an adversary, to be robust, needs
also to be a private one. Since, however, we will define security as a strengthening of the following
notion of weak computation, all the quantities and concepts introduced here will be relevant to our
future effort. Among these concepts is that of awareness, which will be particularly crucial.

3.2.1 Awareness and Correctness

There are, of course, several ways in which correctness without privacy may be intended. Since we
aim here at making a step towards defining secure computation, the one we want to capture corre
sponds to an ideal evaluation without privacy; namely, an ideal evaluation in which the adversary
knows, in advance, the initial inputs of all players.

First, without much trouble, we can enrich protocols with a new syntactic function: an output
function, defined on the final computational state,

o: {o,1r - {o,1r . .._,,__, .._,,__,
round-R output

state value

Armed of this small syntactical change, we now discuss a few definitions of "correctness without
privacy." Fortunately, we have little use of formalization here, since all considered definitions will
be rejected, except for the la.st one which will be greatly expanded in later subsections. To simplify
things further, we shall here be content of considering solely the case in which, whenever n players
-whose initial inputs are, respectively, x1, ... , Xn- want to evaluate a function I = (/1, ... , In),
the adversary always corrupts a fixed set T of them at the very beginning. This way Twill represent
the set of good players at any step of a protocol execution.

ELEMENTARY CORRECTNESS. A protocol whose only guarantee is that, upon termination, each
good player i outputs Ii evaluated at "some" inputs, does not capture the desired an ideal evaluation
without privacy. In the latter one, in fact, "these inputs" are the same for all players; moreover,
the ones corresponding to good players coincide with the initial ones. We thus move on to consider
the following

Informal Definition: A protocol computes a function I= (fl! ... , In) with elementary correctness
if, at the end of each execution, there exist values xT such that every good player i outputs
/i(x'r U ZT)·

With proper language changes, elementary correctness corresponds to the original correctness con
straint of [Ya82a], and to that of many other researchers as well. At a first glance, it may appear to
be exactly what we want. In fact, in the execution of any protocol, nothing prevents the adversary
.fr.om corrupting a set of players T at the very beginning, substituting their initial inputs with xT,
and then letting them follow the protocol scrupulously. If the protocol is assumed to compute a
function in any meaningful sense, we should expect in this unavoidable circumstance that each

27

good player i ought then to output /i(x1' U x'T). Since any reasonable definition should not demand
what cannot be obtained, elementary correctness appears totally adequate in modeling an ideal
evaluation without privacy.

Unfortunately, things a.re more subtle, and some other important aspect has not been properly
captured.

AWARENESS. The definition of elementary correctness only requires that, in each execution, there
exists some values x1' such that the good players will each output his component of f evaluated
at their initial inputs "shuffled in" with fake inputs x1'. In an ideal evaluation without privacy,
instead, not only the corresponding x1' values exist, but the adversary is aware of them, since she
actually hands them to the trusted party. This awareness aspect is an integral part of the ideal
scenario, that is, one that we demand to be captured. Why such insistence? At first glance this
awareness may appear something purely "psychological" and extraneous to a purely mathematical
setting. Quite to the contrary, it is instead full of technical consequences, not the least of which
being the much desired and needed reducibility property of secure computation. At this point of the
paper, however, we are not yet in a position of of elevating the level of our discussion and justify
this key choice of ours, and thus take a more formalistic approach:

Since the adversary is aware of which inputs she substitutes in an ideal evaluation, we
demand that she be aware of them in a correct-without-privacy computation (and a
secure computation), as well.

Though there may be some latitude in the formalization of adversarial awareness, we strongly
believe it to be a central concern for secure computation. We wish to describe our notion of security
without initially entangling the reader in the subtleties arising from this formalization. Thus, for
now, we adopt a simple but restrictive notion of awareness, leaving to subsequent sections both
relaxing it and discussing it from a complexity point of view.

We say that the adversary is aware of some quantity associated to the P.xecution of
the protocol if that quantity can be computed by evaluating a specified /uni 'ion on the
adversary traffic.

The adversary traffic simply consists of all the messages she sends and receives via the corrupted
processors, the exposed state of the processors she corrupts, and the common input. These are
quantities immediately available to her, and thus it is easy for her, if she so wants, to evaluate a
specified function on them, thus yielding a simple and natural notion of awareness. (Further illus
tration of the rationale behind this initial choice of awareness may be found in the next discussion
subsection.)

To incorporate awareness, the definition of correctness without privacy will make use of an
adversary input function, .AI. This function may at first be defined as mapping the adversary's
final traffic to a "fake" input, x1', indicating the value which the adversary regards herself as having
substituted into the collaborative computation.

At a second thought, rather than defining AI on the adversary's final view, we define it on
any intermediate adversary view as well, and enlarge its range to contain the distinguishing value
not-yet-indicating that the adversary's activity has not yet resulted in her entering any substituted
values into the joint computation. This way, while executing a correct-without-privacy protocol,
by evaluating AI on her growing traffic, the adversary can -if she so wants- be aware not only
of which values she has substituted, but also when this substitution has taken place-something

28

which is certa.inly present in an ideal evaluation, with or without privacy. We call this temporal
awareness.

To keep things meaningful, we require a certain "monotonicity" property from AI: namely, if
some intermediate adversary view takes on a value x!- -:f not-yet, it will keep on assuming the value
x;. on any subsequent view. (Else, the interpretation that the adversary knows when the input
substitution occurred would fa.il to hold.) Moreover, when evaluated on the final adversary view,
AI should take a. value different from not-yet. (Else, the interpretation that the adversary does
eventually enter some fake values into the ideal evaluation would fail to hold.)

Finally, the "fake" input the adversary substitutes is not the only thing she is aware of in
the ideal evaluation. She is also a.ware of the private outputs of the corrupted players. Thus our
formalization of correctness-without-privacy will make use of an adversary output function, AO. It
maps the final traffic to a tagged vector YT, indicating the output "attributable" to each corrupted
player i ET.

We are thus led to the following

Informal Definition: A protocol awarely computes the function f if there exist awareness func
tions AI and AO such that, upon termination, each good player i outputs f;(x1- U xr), x;. =
AI(adversary traffic), and (what the adversary "can compute as bad player outputs"=) AO(adversary
traffic)= YT = h(x1- U xr)·

WEAK COMPUTATION. Have we finally captured correctness without privacy? Not yet: there a.
"mismatch." In an ideal evaluation without privacy, the adversary could substitute the inputs
of the corrupted players with a. given set of fake values w!-, and, after this, she is entitled to
become aware of the values h(w1- U xr)· Unfortunately, there is not yet any guarantee that, in an
execution of a. correct-without-privacy protocol for f, the adversary may become a.ware of the result
of evaluating the good inputs shuffled with a. different set of fake ones, even though she executes
honestly on behalf of ea.ch corrupted player. That is, assume after corrupting the players in T at
the very beginning, the adversary sends messages on their behalf as if they were honest and had
w;. as the set of their initial inputs. By doing so she generates some specific traffic, traffic, for
herself. However, our formalization so far does not guarantee that AI(traffic) = w!-. This does not
affect the output of good players at all, since, whether or not AI(traffic)= w!-, each good player
g E T will output J, evaluated at the good inputs shuffled with w!-.7 What can, instead, be said
about the "output" of the adversary? Only that in the ideal scenario it will be yf = h(w!- U xr)
while in the protocol scenario will be yf = h(AI(traffic) U xr)· Since there is no guarantee, so
far, that AI(traffic) equals w!-, there is also no guarantee that yf equals yf. This "mismatch"
would result in the non-composability of correct-without-privacy protocols! This may not be too
bad per se, since correctness without privacy is for us only an intermediate step, but the notion of
security would be affected the same way.

To prevent this mismatch, a correct protocol implicitly defines a local input function, I. This
function, evaluated at the message traffic of an individual player, yields the input of that particular
player into the joint computation. Naturally, it must be the case that for each good player, this
evaluation yields his initial input. The output of a correct protocol, both for the good players and
the adversary, is correctly correlated with these local inputs. Awareness is guaranteed by having
the projection of I onto the corrupted players coincides with the result of applying AI.

7Thls is ao beca.UBe, to a player in T, the situation in which all players remained good and the ones in subeet T
happened to have 1.117- u their set of initial inputs, and the situation in which the players in T were corrupted, were
given w7' u a. set of fake inputs, but otherwise followed faithfully the protocol, are totall11 identical. Thus, given that
in the first situation each good player g e T would output fT(1.117- U z'T), the same will happen in the second situation.

29

Let us try to explain a bit. The adversary cannot compute the input that a good player
contributes to the computation via the public function AI, since she does not have all the messages
necessary to evaluate it. On the other hand, by evaluating AI on her traffic, she can be aware of the
inputs of the corrupted players. It should be noticed that this latter requirement is not, in general,
a trivial one! In fact, the input of a corrupted player is determined by evaluating I on his local
traffic. When dealing with a dynamic adversary, capable of corruptiong players in the middle of an
execution, this traffic is composed of two parts: a "good sub-traffic" containing all the messages
sent and received when the was good, and a "bad sub-traffic" containing all of his messages after
corruption. The adversary certainly knows the second sub-traffic, but to compute what input a bad
player has really entered the computation one needs either to also know the good sub-traffic, or to
have some other quantity that suffices for her to be aware of her corrupted players' inputs. In the
setting considered in our first three sections, the adversary will explicitly have access to the good
sub-traffic. (In fact, we are defining security with respect to an adversary with the biggest, natural
advantage. Accordingly, upon corrupting a player, she obtains, as his exposed state, his full view;
thus, in particular, his good sub-view.) In general, in less adversarial models, the protocol must
guarantee adversarial awareness through the function AI. The resulting notion of security is what
we call weak computation. A synopsis of it is offered by the following

Informal Definition: A protocol weakly computes the function f if, upon termination, each good
player i outputs f;(xT U xT), where xT = AI(adversary traffic), and the adversary "can compute
as bad player outputs" YT = h(xT U x'T), where YT = AO(adversary traffic). Bad player i's
"input contribution" depends on his local traflic (and if this traffic pattern arises while i is good,
it specifies his initial input.)

The next subsections of this section are devoted at properly formalizing this notion.

3.2.2 View and traffic

Using the notation developed in the last section, we associate to the execution of an R-round
protocol with an adversary some important quantities: an individual player's view, the adversary's
view,, an individual player's traffic, and the adversary's traffic.

A PLAYER'S VIEW. A player's view encodes "everything that happens to him"; We already defined
this quantity, but let us recall the definition here. For i be a player, his round-r view is the string
hi = (s';0

, s';1
, • •• , s?"), his view through round-r is H[- (c, h~, hl, ... , h'i), and his final view

is H;R·

THE ADVERSARY'S VIEW. The adversary's view encodes "everything that happens to the adver
sary". More formally, her round-r view is the string hA. = (sA.0 , s•·,._t, ... , s~eA•), her view through
round-r is H~ = (c,h~,h~, ... ,h~), and her final view is H!f.

PLAYER TRAFFIC. Player i's traffic records all the messages into or out of player i-whether or
not player i is corrupted. To define this, recall that M[is the message broadcast by i at the end
of round-r, and mi; is the message sent from i to j at the end of round-r. Then player i's round-r
traffic is the string

his traffic through round-r is r; == (c, t?' tl' ... ' t'i), and player i's traffic is TiR.

30

ADVERSARY TRAFFIC. The adversary traffic records all of the exchanges between the adversary
and the uncorrupted players: everything the adversary "gets" from good players (the messages they
broadcast, the messages they send to corrupted players, and the information the adversary learns
when one of these good players is corrupted), together with the information that the adversary
"gives" to good players (the messages the adversary broadcasts on behalf of corrupted players, and
the messages the adversary sends out along private channels to uncorrupted players on behalf of
corrupted players). To define the adversary's traffic, recall (from Page 23) the quantity MA for
the incoming messages to the adversary at the beginning of her round-r. Similarly, we introduce a
notation for the out-going messages from the adversary at the end of her round-r. It is

where

M~
I

.. ,.
m;;

.. ..
= M[* · · · •M"•m~ 1 * · m~n* · · · *m~ 1 * · m~n

= { M;(s'.".) if i E "'A
A otherwise

{ m;;(sA) if i E "'A and j ¢ ,..~e,...
= A otherwise

"Round-r messages sent out by bad
players."

"Round-r messages prepared by cor
rupted players"

"Round-r messages from bad players
to good players"

We add in the proviso that M[= mi; = A for r = 0. Now, consider a round-r in which some
number m of players are corrupted, in sequence: ii, ... , im. The round-r adversary traffic is the
string

containing the messages received by the adversary at the beginning of the round; the corruption
requests, in order, and exposed state given to the adversary as a result of these requests; and the
messages composed and sent out by the adversary at the end of her round of activity. The adversary
traffic through round-r is TA. = (c, t~, t~, . .. , tA), and the adversary traffic is T:.

NOTATION. Fix a. R-round, n-party protocol, P, and an adversary, A. Then for any initial config
uration (i, c, r, r A) there is an induced execution of P with A, and, consequently, for any player i
and round r, there is an associated plaJer i view through round r, player i traffic through round r,
adversary view through round r, and adversary traffic through round r. These a.re denoted by
HA,P,r(... ...) TA,P,r(... ...) HA,P,r(- -) d TA,P,r(- ...) Wh A d p ; x,c,r,rA, ; x,c,r,rA, A x,c,r,rA, an A x,c,r,rA. en an are
understood, we omit them as superscripts.

3.2.3 Adversary input and output

Definition 3.1 An adversary input function for an R-round protocol is a map

AI: {o,1r x {o,1r -~ u {not-yet} = =- fake input traffic input.

such that for any c E {O, 1 r and any well-formed sequence of traffic values T!, ... , T:, indicating
corrupted players ,..~ <;;;; • • • <;;;; ,..~, there is some r < R for which

• AI(c, ~)=not-yet for a.11 f < r; and,

31

• For some tagged vector x1', T =#\':A. and AI(c, J1) = xJ. for all f?: r.

An adversary output function for an R-round protocol is a map

.AO: {o,1r x {o,1r -~x~ .._,,_- .._,,_- ~
common final deserved

input traffic output

such that for any c E {O, 1 r and any well-formed sequence of traffic values T~, ... , r:, indicating
corrupted players#\':~ ~ · · · ~ ,,.~,

• For some tagged vector xr, T =#\':~and AO(c, r:) = xr
NOTATION. If P is an n-party, R-round protocol and A is an adversary, then any initial configura
tion (i,c, r, rA) determines an execution of P with A, and hence a final adversary traffic T!f and
an adversary committal AIA,P(i,c, r,rA)~rAI(c,T!f). When A and Pare understood, we omit
them as superscripts.

Similarly, protocol P, adversary A, and initial configuration (i, c, r, r A) determine an adver

sary output .AOA,P(i,c, r,rA)~rAI(c,T:). When A and Pare understood, we omit them as
superscripts.

3.2.4 Network input and output

NETWORK INPUT. Fix a protocol P and an adversary A. It is natural to extend .AI(i, c, r, r A) to an
n-vector by including, along with the substituted inputs of corrupted processors, the original inputs
of the processors which were uncorrupted at the time that AI specified a substituted value. Thus
we define the network input, AI(i, c, r, TA), as x1' u xr, where XT = .AI(i, c, r, TA)· Intuitively,
the network input is the good players' original inputs "shuffled in" with the substituted inputs
the adversary regards herself as entering into the collaborative computation; it specifies, for the
indicated execution, what the network has entered into the joint computation on this run.

NETWORK OUTPUT. Fix a protocol P and an adversary A. It is natural to extend .AO(i,c, r,rA)
to an n-vector by including, a.long with the adversaria.lly-perceived outputs of corrupted players,
the private output of the players which were uncorrupted at the protocol's conclusion. Thus we
define the network output, .AO(i,c, r,rA), as Yr u YT• where Yr = .AO(i,c, r,rA) and YT is
defined by Yi = o(sr), for i E 7. Intuitively, the network output consists of the good players'
outputs "shuffled in" with the outputs the adversary regards herself as having been given as a
result of the collaborative computation; it specifies, for the indicated execution, what the good
players did compute as output values, and what the adversary could compute on behalf of the
corrupted players.

3.2.5 Local input

DEFINITION or A LOCAL INPUT. Local input functions for protocols have a bit too much structure
to conveniently define them in one swoop. So we break the definition in two; first, as a syntactic
object:

Definition 3.2 A local input function is a map

I: [1..n] x {O, 1r x {O, 1r - {O, 1}l u {not-yet}__,, .._,,_- .._,,_- ._,.-
player common player' a committed

input traffic input

32

We denote I(i,c,T) by Ii(c,T).
Now fix an n-party, R-round protocol, P, and a t-adversary, A. Any initial configuration

(i, c, f, r A) determines an execution, and hence a collection of player traffic values, {T[: i E
[l..n], r E [O .. R]}, and a. collection of players corrupted during this execution, {K~}. We define the
following quantities associated with the specified execution:

• (The round-r input of player i.) I[(i, c, f, r A)= Ii(c, T[)

• (The round-r input of the network.) V(i,c, f,rA) = (I1(c,T[), ... ,In(c,T~))

• (The committed input of player i.) I;(i,c, f,rA) = Ifl(c,T[)

• (The local inputs.) I(i,c, r,rA) = (I1(c,Tr), ... ,In(c,T:-))

• (The bad players at round-r.) Ba.dr (i, c, r, r A) = KA

• (The good players at round-r.) Goodr(i, c, r, r A)= [l..n] - KA

For I to be a. local input function that is "ok" with respect to a. protocol P, we need the following
additional structure:

Definition 3.3 Fix t E N and a R-round, n-party protocol, P. We say that an I is at-local input
function for P if for every t-adversary A the following conditions hold:

• (Monotone committal.) I;(i,c, f,rA) =xi E {o,1t ~ z;+1(i,c, f,rA) =xi

• (Simultaneous committal.) I;(i,c, r,rA) =not-yet~ Ij(i,c, r,rA) =not-yet

• (Eventual committal.) I 1(i, c, f, r A) E {O, l}t

• (Meaningful committal.) g E Goodr(i,c, r,rA) ~ z;(x,c, r,rA) E {not-yet, xd

ADMISSIBLE ADVERSARY INPUT FUNCTION. An adversary input function is admissible if it coincides
with a local input function. More formally,

Definition 3.4 Fix an n-party, R-round protocol, P. An adversary input function for P is t
admissible if there exists at-local input function I for P such that for any t-adversary A and initial
configuration (i, c, r, r A), any round r and player i E Ba.dr(i, c, r, r A),

• AI(c, 11) = not-yet ~ I(c, T;) = not-yet, and

• AI(c, 11) = z7' ~ I(c,Ti) = x~ for all i ET,

where T[= T[(z, c, r, r A) and T,t = T,t(i, c, f, r A)·

3.2.6 Weak correctnes•

We now describe what it means for a. protocol to weakly compute a. finite function.

Definition 3.5 Let n, l, l, t E N, let f: ({ 0, 1} t)n - ({ 0, 1 }1)n be a function, and let P be a fixed
round, n-party protocol. We say that P perfectly t-weakly computes f if there is at-admissible ad
versary input function AI and an adversary output function AO such that for every t-adversary A,

AO(i,c, r,rA) = f(AI(i,c, r,rA)).

33

3.2.7 Remarks

EXISTENCE OF WEAKLY CORRECT PROTOCOLS.

TRAFFIC vs. VIEW. In subsequent sections, we both relax our notion of awareness and discuss
its complexity. We wish, however, to briefly discuss here the rationale for letting it depend on the
traffic. Let's concentrate on adversarial awareness, since similar points can be made on player's
awareness. Why not, for instance, allow adversarial awareness to arbitrary depend on the full
adversary view? (Here, by adversary view we mean the adversary traffic plus all the coins she
has tossed; alternatively, it is the sequence of her computational states.) There are at least two
excellent answers.

• On the philosophical side, this view is meant to capture all that affected her computation,
not necessarily what she is aware of. For instance, the adversary might have a source of en
tropy for randomizing her state, without having explicit ac.cess to her underlying coin tosses.
More generally, if the adversary is a person, it may he unrealistic to say that she knows a
full description of her own state, so as to he able to evaluate a function on it. By defining
adversarial awareness as a function of her view, we would be making an unnecessary assump
tion about the nature of an adversary, and we would ultimately obtain a notion of security
adequate only if the adversary is -say- a Turing machine. It is, instead, incontrovertible
that the adversary, independently of her nature, has immediate access to (and thus is aware
of) her traffic. Thus, ignoring complexity concerns, computability on the traffic is a simple
and natural notion of awareness.

• A more technical answer is that adopting too generous a notion of awareness (like computabil
ity on the adversary's full view) seems to entail, at a very close examination, loosing crucial
properties of secure computation-such as reducibility.

Thus, while for some agents, awareness can depend on additional quantities, both weak-computation
and secure protocols make sure that it only depends on the traffic. This way, they guarantee the
independence of their respective notions from the nature of the particular agents.

3.3 Privacy (without correctness)

3.3.1 Motivation

A secure computation of a function f should mimic-as closely as possible-its ideal evaluation;
that is, roughly, it should he exactly as private and exactly a.s correct. Though we will ultimately
insist that these two issues he handled together in a protocol we call secure, privacy by itself is
meaningful and interesting notion. In this section, we describe a notion of "privacy leaking f ,"
motivated by the ideal evaluation.

Privacy is a measure of how much the adversary learns. Of course, in any protocol correctly
computing f the adversary can learn at least the ideal in/ormation--the information available in the
ideal evaluation. (In fact, she can dynamically corrupt a few players during her round 0 using the
same strategy she would use in the ideal evaluation; give them the same fake inputs she would give
them in the ideal scenario; then let them run as in the original protocol; then corrupt, during her
final round, additional players, as she would in the ideal evaluation. This way, upon termination,
the adversary will learn all the information available to her in the ideal evaluation.) In any correct
protocol, however, the adversary sees additional information: the adversary traffic generated by the
protocol and, more generally, her own view. Thus a secure protocol for evaluating f should ensure

34

that this view does not contain more than the ideal information. In fact, we want it to contain
precisely the ideal information. We express that a secure protocol is exactly as private as an ideal
protocol by saying that:

(i) (THE PROTOCOL IS AT LEAST AS PRIVATE AS THE IDEAL PROTOCOL.) There must
exist an agent which, knowing only the ideal information, manages to interact with the
adversary so as to generate for her what is essentially the same view as she gets when
interacting with the real network of players.

(ii) (THE PROTOCOL IS AT MOST AS PRIVATE AS THE IDEAL PROTOCOL.) From the
information obtained in executing a protocol, the adversary should be able to "extract"
the ideal information.

The principal tools for properly expressing the above ideas are simulators and awareness. The later
we have already seen, while the former is the agent that generates the right view for the adversary.
It does this with the aid of an ideal-evaluation oracle, an abstraction which models possession of
the ideal information.

Once we have in hand a notion of how an adversary interacts with a simulator, the notion of
privacy is close at hand: all we have to say is the the adversary-network interactions are "just like"
the adversary-player interaction. The crux, of course, is in saying what "just like" means-but
this task is made easy for us by now well-known notions in modern cryptography.

3.3.2 Ideal-evaluation oracles

An ideal-evaluation oracle is a special, history-dependent oracle. For any n-vector i and function
f: ({O, 1}*)" - ({O, 1}*)", the ideal-evaluation oracle 0 1(i) responds to two types of queries:

• A component query is an integer i E [1..n). How a component query is answered depends on
whether or not a valid function query has been made. If a valid function query has not yet
been made, then the component query i is answered by x;. If a valid function query x1' has
been made and 'fi = f(x1' U xT'), then component query i is answered by (x;, yi). An invalid
component query is answered by the empty string.

• A function query is a tagged vector x1'. A function query x1' is valid if it is the first query
of this type and T consists precisely of the compon 1t queries made so far. If x1' is a valid
function query and y = f(x1' U xT'), then the function query is answered by YT· An invalid
function query is answered by the empty string.

Clearly, if i represents the players' private inputs and f is the function that they want to collabo
ratively compute, then having an 0 1(i) oracle precisely captures possessing the ideal information:
what an adversary can learn in the ideal evaluation of f(i) by corrupting t players she can also
learn by making t component to an 0 1(i) oracle, and vice versa.

3.3.3 Simulators

As suggested by Figure 2, an adversary interacts with a simulator with "mechanics" similar to
her interacting with a network. (In fact, the interesting simulators a.re those which cause these
interactions to be indistinguishable to the adversary.) For example, since an adversary expects to
see messages broadcast by uncorrupted players, a simulator is equipped to provide such messages;
since the adversary can corrupt a player and learn his exposed state, a simulator is equipped to
specify it.

35

rs

[rA J
I

N
traffic

A ~ s traffic
A

Figure 2: A simulator S creates a "virtual world" and allows the adversary A to act in this world, as
though S itself were a network, N. To accomplish this, a simulator is provided an ideal-evaluation
oracle 01(i). Above, r A are the adversary's coins, and r 5 are the simulator's coins.

To meaningfully interact with an adversary, a simulator has access to an ideal-evaluation or
acle, 01 (i). It is crucial that the simulator's access to this oracle and its interaction with the
adversary be properly coordina.ted--else, one does not obtain a meaningful notion of security. We
specify this coordination below:

• When, and only when, the adversary A with whom the simulator S interacts corrupts a
player i, the simulator makes a component query of i.

• The strategy employed by the simulator to come up with its function query consists of eval
uating a.n adversary input function, AI.

• The simulator makes this function query immediately following the completion of an adversary
round.

Let us briefly justify these choices. The first requirement highlights that it would be unacceptable
if an adversary could, say, corrupt players 1, 3 and 4, and the simulator, in response, would ask
the private inputs of players 2, 3 and 7; were this allowed even simple serial composition properties
would not hold for the resulting notion of privacy. The second constraint is at the heart of our
blending of privacy and correctness; it guarantees that in a computation with the network, the
adversary is forced to "know" the value x1' that she ha.s effective entered into the joint computation.
This same value will be used to define correctness. The la.st assumption concretizes the intuition
that the adversary can enter a. value x1' into the collaborative computation only by sending out
messages, not by corrupting some player.

HISTORY. Before proceeding further, we would like to mention, at lea.st briefly, a history of the
ideas of this subsection. The notion of using a. simulator for proving and, more importantly, for
defining tha.t the a.mount of knowledge learned in an interaction is bounded, is due to Goldwa.sser,
Micali and Rackoff [GMR.89]. Our notion of a simulator, however, is, by necessity, more demanding
than the one developed in their context. In particular, while our simulator must interact with an
adversary in a manner similar to an adversary interacting with a network-implicitly assembling a
transcript associated to this interaction which is precisely the adversary's view-simulators in the
sense of [GMR.89) ma.y lay down a.n arbitrary transcript intended to resemble the adversary view.
Thus we distinguish our simulators as being "on-line."

36

In fact, on-line simulatability was already recognized a.s possessing a useful structure. Kil
ian [Ki89] discusses interactions of this form, and they are explicitly required in the work of Crepeau
and Micali [Cr90].

We note that on-line simulatability is essentially unrelated to the notion of black-box simulata
bility, an idea first investigated by Oren [Or87]. Black-box simulatability concerns the manner in
which a simulator may depend on the adversary it is intended to simulate, while on-line simulata
bility concerns the mechanism in which "simulated" adversary transcripts are assembled. (In fact,
we have not yet discussed the extent to which our simulators may depend on the adversary with
whom they speak.)

3.3.4 Formal description

We now define what a simulator is and how it runs with an adversary A, using a particular oracle
o,(x) and adversary input function .AI.

Let us briefly explain why a simulator, as an agent, looks different from players and adversaries.
In describing protocols and adversaries, we insisted on a fine level of granularity. This was necessary
because, for a player, any single chunk of probabilistic computation significantly alters his internal
state of knowledge, and may make it more profitable or less profitable to corrupt him; for the
adversary, we needed to pin-point her ability to corrupt several players in sequence within a round,
and to specify exactly the view she gets in the execution of a protocol. On the other hand, for a
simulator it is important to tightly coordinate its interaction with the oracle and the adversary,
a.s we have already specified, but capturing precisely the simulator's internal state at each point
in time is less crucial. Thus for a simulator we can get by with a "coarser" level of granularity.
In fact, we do not keep track of its individual coin tosses: a simulator moves from computational
state to computational state in complete knowledge of its infinite sequence of coins. Since these
coin tosses remain fixed (i.e., are never explicitly "stripped off" as they were with the players and
the adversary), a simulator's configuration may be regarded as coinciding with its computational
state.

Though one would do, we associate to a simulator two syntactic function, u and µ. When applied
to the simulator's computational state "at the right time," these specify what the simulator sends to
the adversary. Specifically, when the adversary corrupts a player i, she expects her computational
state to be augmented by the exposed state u[of the newly corrupted player. Imitating this,
the simulator evaluates u on its computational state and the result of this is appended to the
adversary's computational state. Likewise, at the beginning of an adversary round, the adversary
expects to have her incoming messages M'.:ot augment her computational state. Imitating this, the
simulator evaluatesµ on its computational state and the result of this is appended to the adversary's
computational state.

Definition 3.8 A simulator S is a function

s: {O, 1r x {O, 1r x {O, 1}00
- {O, 1r ...__..... ...__..... ___...... ...__.....

common
input

current simulator
state coins

new
state

A simulator syntactic function is either of the following functions:

• a simulated exposed state function u: {O, 1r -+ {O, 1}* ...__..... ...__.....
current simulated
state exposed state

37

• a simulated incoming-messages functionµ: {O, 1r -.___.,
current
state

{O, 1r .___.,
simulated

incoming messages

DISCUSSION. As before, the simulator syntactic functions are fixed maps, each determining its range
point in a natural, easily encoded manner from its domain points. As usual, we omit specifying
these functions.

CONFIGURATION SEQUENCES. Let f: ({O, l}lr - ({O, l}l)n be a finite function, let A be an
adversary for a.n R-round, n-party protocol, and let AI be a.n adversary input function. If S is a
simulator then running adversary A with simulator S, oracle !l1(i), adversary input AI, common
input c, initial adversary state sA, adversary coins rA, initial simulator state ss, simulator coins r5 ,

and initial corruptions KA, is a way to map the initial adversary configuration, C~0 = (sA,rA,KA),
tO a final adversary Configuration, c: = c:eAR,

To describe this mapping, fix the notation that c;p = s'/, let (}Ar be as before, a.nd let the
adversary configurations progress according to the following recurrences:

(A(rp) rp rp) c, SA , r A, KA if N(s"J) =compute

if N(s"J) = flip-coin

C"J if ii(s"J) = round-done

while the simulator's computational state progresses according to

{

S(c, s~*!l"(i), rs) if N(s"J) = corrupti
r(p+l)

Ss =
s'/ otherwise

where, to specify the behavior of the oracle, we set

!l"(i) =

if AI(c, TA) = not-yet

if AI(c, TA)= xT and
ff= J(xT u xy)

!l(x~) = YTWherey=f(xTUxT)

a.nd !l(not-yet) = A. As usual, TA denotes the traffic to the adversary through round r.

EXECUTING AN ADVERSARY WITH A SIMULATOR. Consider a fixed-round protocol, P, having
adversary input function AI. An execution of a.n adversary A with a simulator S, ideal-evaluation
oracle !l1(i), adversary input function AI, common input c, adversary coins rA, simulator coins rs,
a.nd initial corruptions KA = 0, is the collection of configurations { C"J, s"J} generated, as above,

38

when the initial computational state of the simulator is C*K.A and the initial computational state
of the adversary is KA.

REMARK. The fact that the simulator computes its function query by evaluating an awareness
function imposes a restriction on the way the simulator computes the function query. The awareness
property not withstanding, the function query might also depend on the coin tosses of the simulator,
which are not part of the adversary traffic. By binding together the function query and the adversary
input function .AI, we intertwine privacy and awareness in a significant way.

The AO function, instead, poses no restrictions on the simulating algorithm. However, suppose
that the adversary A has oracle n 1(x) and the adversary and simulator S interact leading to an R
round traffic Tf. In this interaction, suppose the simulator asked a function query x~, as indicated
by .AI, and the players of set T were corrupted at termination. Then, in light of (ii) on Page 35,
one would expect that

AO(T.f) = fr(x'-r U xT")·

In fact, we might have demanded this relationship between S, AI, and AO (for any adversary A),
dismissing most uninteresting cases. But it is not necessary to do so; the assertion above will be
true automatically (except perhaps a negligible fraction of the time) in a protocol we call "secure."

3.3.5 Ensembles

Ensembles are collections of probability measures; they provide a convenient abstraction for dis
cussing asymptotics in many cryptographic scenarios. Our ensembles bear two indices, which are
treated differently. Since one of these will always be a security parameter, we being by giving some
intuition on what one is.

SECURITY PARAMETER. Very informally, a computation achieves perfect security if its execution
imparts to an adversary absolutely no information beyond what is divulged in the corresponding
ideal computation.

Unfortunately, for most reasonable cryptographic scenarios and for most interesting tasks, the
goal of achieving perfect security is not obtainable. Thus we must be less demanding, allowing our
protocols to fall short of perfect security in a well-specified, quantizable way. A security parameter
is used to measure how far a protocol is from the ideal scenario. The larger its value, the more
secure the resulting executions, and the closer to the abstraction one is achieving. Before they run
a protocol, players agree to use an adequately large security parameter to satisfy their needs.

Since our notion of a secure computation allows "imperfect" security, it explicitly depends on
a security parameter, k. We establish the convention that this security parameter is presented to
the players and the adversary on the common input, written in unary. In fa.ct, for now we fix the
convention that the common input c contains only the security parameter: c = 1 c.

DEFINITION or AN ENSEMBLE Our notion of an ensemble is somewhat more general than that
of [GM84]. We define it below.

Definition 3.7 If C ={Lt~ {O, 1r: k EN} is a family of languages, then an ensemble E (over CJ
is a collection of probability measures on {O, 1r, one for each (k,w) E N x L11 • The argument k is
called the index of the ensemble E, the argument w is called the parameter of E, and C is called the
parameter set of E.

As the index k is always drawn from N, we never specify it, writing E = {E,,(w): w E L,,} to
indicate an ensemble over C = {L 11 }. When the parameter set of an ensemble is understood and

39

there is no danger of confusion, we refer to an ensemble by writing the symbol "£" in front of its
"generic element"-that is, we simply write £E1i:(w) instead of {E1i:(w): w E Lc}.

The above notion of an ensemble applies only to distributions on strings. However, the notion
is trivially extended to any other domain whose elements can be canonically encoded as strings.
We will thus speak of ensembles on other domains, where it is understood that there is, implicitly,
a fixed encoding of domain points into strings.

AN EXAMPLE OF AN ENSEMBLE. A probabilistic encryption algorithm is an algorithm E that takes
as input a security parameter, k, a message, m, and a sequence of random coins, r, and produces as
output a cyphertext, y, which is an encryption of m. The algorithm E produces its output in time
polynomial in the security parameter. Thus a probabilistic encryption algorithm can only encrypt
messages m whose length is bounded by some polynomial, kc, in the security parameter.

Fixing the security parameter, k, a message m E {O, 1}"
0

, and taking each bit of the random
coins r to be selected uniformly at random, the algorithm E induces a distribution E1i:(m) on space
of encryptions of m under security parameter k. Letting£ = {L1i: = {O, 1}"

0

}, these distributions
form an ensemble £E1i:(m) over£.

ENSEMBLES FOR SECURE FUNCTION EVALUATION In defining secure computation, two ensembles
will be of importance to us. One is the ensemble of views the adversary sees when she interacts with
the network, while the other is the ensemble of views she sees when interacting with the simulator.

The ensemble induced by a network. Consider an adversary, A, interacting with a network running
an R-round, n-party protocol, P. When i E ({O, l}')n is the vector of player inputs and the security
parameter is k, soc= 1", then for each pair (r, r A) of player random strings and adversary random
strings there is an associated adversary view. If rand rA are allowed to vary, then there is an
induced distribution on these adversary views, which we denote by A-VIEWf (i). If i and k are
allowed to vary as well, we obtain an ensemble

£A-VIEWf (i)

over£= {L1i: = ({O, l}')n}.

The ensemble induced by a simulator. Let f: ({O, l}')n - ({0, 1}1)n, and consider an adversary, A,
interacting with a simulator S = (S,AI) for an R-rou11d protocol. When i E ({O,l}'r, the
security parameter is k, and the simulator S equipped with an 0 1(i)-oracle, then for each pair
(rA,rs) of adversary and simulator random strings there is an associated adversary view. If TA
and rs are allowed to vary, then there is an induced distribution on these adversary views, which
we denote by A-VIEW!·/ (z). If i and k are allowed to vary as well, we obtain an ensemble

£A-VIEW!·.AI.J (i)

over£= {L1i: = ({O, l}')n}.

3.3.6 Indistinguishability

A central notion in this paper is indistinguishability, as introduced by [GM84] in the context of
encryption. (The notion has also proven crucial for a complexity-theoretic treatment of pseudoran
dom generation [Ya82b] and of zero-knowledge proofs [GMR.89].) Essentially, it captures the idea
that two families of distributions can be (asymptotically) so close as to be considered the same. To

40

say this exactly requires some specialized language-the notion of a distinguisher and a probability
ensemble. The reader who wishes a bit more discussion of these notions may consult [GMR89]
(pages 191-193}.

NEGLIGIBILITY. We will say that a function€: N R is negligible if it is nonnegative and vanishes
faster than the inverse of any polynomial: for any c > 0 there exists a KE N such that E(k) :S k- 0

for all k ~ K. A function €(k) which is not negligible is called nonnegligible.

DEFINITION OF INDISTINGUISHABILITY. We now specify what it means for two ensembles to be so
close as to be considered insignificantly different.

Definition 3.8 Ensembles E and E' are statistically indistinguishable, written E :::: E', if they are
over the same parameter set C = { L,.}, and

E(k) = sup L IProbE.(w)[x] - ProbE~(w)[xJj
wEL• rE{0,1}•

is negligible.

When we wish to emphasize the parameter set C of indistinguishable ensembles E and E' we write
E::::E'.

c

3.3. 7 Privacy

We give a rather stringent definition of privacy below.

Definition 3.9 Let n,l,l,t EN, let/: ({O, l}l)"---+ ({0,1}1)" be a function, and let P be a fixed
round, n-party protocol. We say that P is statistically t-private leaking f if there is a simulator S,,
and an adversary input function input function AI, such that for any t-adversary A,

£A-VIEWf(i) :::: £A-VIEW!·A.I,/(i).
c

3.3.8 Remarks

ABSOLUTE PRIVACY. A special case o1 a. private protocol leaking f is an absolutely private protocol:
such a protocol is one which is private leaking "absolutely nothing"-the constant map f =A, say.
Privacy alone, and absolute privacy in particular, are useful notions; for instance, the COMMIT
protocol of a. verifiable secret sharing should be absolutely private. (See [CGMA85] for introducing
the notion of a. verifiable secret sharing, [FM90] for a. protocol and crisp definition, and [RB89] for
another important protocol.)

'V3 vs. 3V.

3.4 Security (without history)

As we shall see, a secure protocol is somewhat more than one which meets the previously given
privacy and correctness constraints. In this section, we define our most ha.sic definition of security.
Since it ignores the possible "history" of players and the adversary the notion is called "security
from scratch."

41

3.4.1 Security from scratch

We define wha.t it means for a. protocol P to securely evaluate a finite function f, from scratch,
ignoring issues of computational complexity.

Definition 3.10 Let n, l, l, t E N, let f: ({O, l}t)" --+ ({O, 1}1
)" be a function, and let P be a fixed

round, n-party protocol. We say that P statistically t-securely computes f from scratch, ignoring
complexity, if there is a simulator S, at-admissible adversary input function AI, and an adversary
output function AO, such that for any t-adversary A,

• PRIVACY: (The adversary's view when she talks to the network is indistinguishable from her
view when she talks to the simulator.)

l"A-VIEWf (x)
c.

l" A-VIEWf·.AI.J (x).

• CORRECTNESS: (The network output almost always coincides with f evaluated at the network
input.) There is a negligible function E(k) such that for all x E ({O, l}l)",

where the probability is taken over all possibler and rA.

The privacy constraint asserts indistinguisha.bility of ensembles over C = {L1: = ({O, l}t)"}. The
correctness constraint says tha.t almost never does a. good player i compute something other than
fi(x'), or a bad player j not "know" f;(x'), where x' is the network input.

3.4.2 Remarks

EXPLANATION. Definition 3.10 can be explained as follows. For this explanation, we regard sim
ulation as a. game the adversary plays "in her head," the purpose of which is to construct some
view.

• Privacy. When the adversary talks to the network, the players' inputs being i, what she sees
is something which she can generate for herself, given just an idea.I-evaluation oracle, S11 (i).
In fa.ct, with the a.id of such an oracle, the adversary can simulate, in her subconscious, a
virtual network, interacting with which is just like interacting with the actual network.

• Correctneu. When the adversary interacts with this virtual network, on ea.ch execution she
must make an output query to the oracle. What this output query is, and when she makes
it, is determined by a. function AI. Now, if the adversary speaks to an actual network in lieu
of the virtual network, the sa.me function AI still indicates what the "output query is", and
"when it would be made." Of course, there is really no output query being ma.de--but we
take the value of AI a.s defining wha.t the adversary ha.s committed to, and when.

Correctness sa.ys tha.t if the adversary has committed to a value xT, and the initial input
wa.s i, then, almost certainly, ea.ch good player i will compute fi(xT U x:r)· Additionally,
the adversary can compute a value f; (xT U x'T) on behalf of any bad player j. She does this
simply by evaluating the adversary output function, AO.

42

ADVERSARIAL AWARENESS. We emphasize that not only is there a notion of what the adversary
has substituted in for the input values of the bad players, and when she has done it, but, what
is more, the adversary is aware of what this substituted value is, and when this substitution took
place. This is called input awareness. One could, instead, have defined the adversary's input in a
way which did not require such awareness-but doing this would represent a failure to mimic an
important aspect of the idea.I evaluation.

Besides input awareness, the adversary is aware of her share of the output-the output which
bad players are entitled to, even though they are bad. This is called output awareness.

Adversarial awareness--meaning both input awareness and output awareness-are essential
ingredients in obtaining the reducibility result discussed in Section 5.5.

WHY ON-LINE SIMULATABILITY?

BLENDING PRIVACY AND CORRECTNESS. We might have made separate definitions of privacy and
correctness, and then said that a secure protocol is one simultaneously meeting both of them.
Instead of this, our definition blends privacy and correctness in a deeper manner. Given that this
is done implicitly in Definition 3.10 we explicitly say it here: the simulator-crucial in defining
privacy-specifies the adversary input function, AI, and therefore the network input function it
determines, AI. The correctness constraint depends on this network input, and thus on the notion
of privacy and the simulator which establishes it. In this way, we "weave" correctness into privacy,
the same simulator used for defining privacy being used to define correctness, too.

DECOUPLED PRIVACY AND CORRECTNESS. Since our method of blending of privacy and correctness
is a somewhat delicate admixture of these objectives, it is important to explain what is wrong with
decoupled security-saying that a secure protocol is one simultaneously meeting disjoint require
ments for privacy and correctness. In fact, decoupled security can lead to various "embarrassing"
problems can result! Let us be more concrete, even if somewhat informal.

For concreteness, when we say "privacy alone" we mean the notion oft-private leaking J, as given
by Definition 3.9; and when we say "correctness alone" we mean the notion oft weakly computing J,
as given by Definition de-weakcorrecntess. Pleasantly, however, our criticism of rlecoupled notions
of security is immune to variants in definitional choices for privacy and correctnef', We emphasize,
for decoupled security, the function Aic used for correctness need not be linked or related in any
manner to the function AIP used for privacy.

Decoupled security. What is wrong with decoupled security? An example from our work with
Kilian is useful for answering this question [KMR90].

Suppose there are three players, each player i having a private input xi E {O, l}t. Let xi[l:l-1]
denote xi stripped of its last bit. Consider the following function f that the players may wish to
jointly compute. For each i E {1, 2, 3}, define

I.() _ { xi[l: l - 1] if the last bit of x2 is a 0, and
J• Xi. x2, X 3 - x2[1: l - 1] if the last bit of z2 is a 1.

That is, each player is to learn the same string, either the private input of the first player or second
player, as determined by the parity of the second player's input.

Consider the following protocol, P1•

PROTOCOL P1:

Step 1. Player 1 announces bis input, x1 •

Step 2. Player 2 announces bis output, y2 •

Players 1 and 3 take 1h this as their output, too.

43

We claim that protocol Pi is 1-private leaking f. Very roughly, the argument is as follows. The
main concern is a.bout Player 2; for simplicity, consider the case that the adversary corrupts him
right off. Now privacy requires the existence of a simulator S = (S,AI). But if we define the
adversary input function a.s being identically 0, then the adversary learns xi right away from its
ideal-evaluation oracle. Using this value, the simulator can easily interact with the adversary so as
to give to her a view from the right distribution.

Likewise, protocol Pi 1-weakly computes f. Very roughly, the argument is as follows. The ma.in
concern is a.bout Player 2; for simplicity, consider the case that the adversary corrupts him right
off. If we define the adversary input as consisting of y2 1 once it is announced in Step 2, and we
define the output function as being y2 , then the protocol computes a network output which is f
applied to the network inputs.

What went wrong? Clearly protocol Pi is not a "good" protocol. For in the ideal evaluation off, a
bad Player 2 has two disjoint options: he can either learn Player l's input (by choosing an even fake
input), or he can control Player l's output (by choosing the desired odd input). In protocol Pi,
Player 2 can can both see Player l's input and control Player l's output.

Input independence. A first explanation for this failure might be that the protocol Pi was bad
because it failed to achieve input independence: in particular, a "fake" value of x 2 chosen by a bad
Player 2 might depend on the private input of Player Xi. For he who shares our point of view -that
a secure evaluation should mimic as closely as possible an ideal evaluation- input independence
must be either an explicit requirement of a definition of security, or (as in our case) a consequence
of it; for independence exists in an ideal evaluation, as the the adversary has no idea of the inputs
of uncorrupted players when she chooses her substitutes for them.

Realizing that a formalization of privacy and correctness, ta.ken together, might not imply
independence, several researchers have considered independence as an additional requirement to
add along.

Security -::/:- privacy + correctness + input independence. Though formalizing input independence
in a robust and satisfying way is not trivial, we shall not need to in order to make our point: that
disjointly requiring privacy, correctness, and independence is still inadequate to properly capture
the idea of security. Let us demonstrate this by modifying our counterexample.

Suppose, once a.gain, that there are three players, each player i having a private input xi E
{O, l}t. Consider the following function g that they may wish to jointly compute. For ea.ch i E
{l, 2, 3}, define

() { lxi if the la.st bit of x 2 is a 0, and
Yi Xi' x2, x3 = 2x2 if the la.st bit of x2 is a 1.

That is, each player is to learn the same string, either that belonging to the first player or second
player, as determined by the parity of the second player's input. The string which is released is
tagged by the identity of the one who contributed it.

We sketch a protocol P2 below. Though somewhat artificial, other, "natural" protocols might
suffer from the same defect which this one highlights.

Our protocol makes use of a committal protocol. Roughly, this is a way to pin down an input
while simultaneously keeping it secret. At a later stage, a decommittal protocol can be used to
globally reveal exactly what was committed during the committal stage. References for this notion
of a committal and decommittal protocol (the ingredients of a verifiable secret sharing) appear in
the la.st footnote.

44

PROTOCOL P2:

Step 1. Each player i commits to his private input, x;.
Step 2. The last bit of x 2 is decommitted.
Step 3. If it is a 0, Xi is decommitted.

If it is a 1, x 2 is decommitted.
Each party i outputs g;(xi, x 2 , X3).

Step 4. Player 1 tells Player 2 his input, xi.

Though we shall not formally argue it, protocol P2 is private leaking g, correctly computes g, and
achieves input independence. Still, the protocol is certainly wrong. The "mistake" is the inclusion
of Step 4, which gives Player 2 information he does not deserve when x2 ends in a 1.

The fundamental problem illustrated by this example is that privacy and correctness can be
competing requirements, and a. decoupled definition of security does not respect the possible inter
action of these two competing goals.

MODEL or COMPUTATION. Our definition implicitly fixes the model of computation to be that
described-for example, the exposed state function, E, gives the current-round view (that is, "the
standard model"). Other models of computation can be specified, each "automatically" giving
rise to its own notion of security. For example, information-theoretic security, from scratch, in
the complete-history model, is exactly as Definition 3.10 gives, except that the exposed-history
function, E, implicit in the definition, is the identity map.

3.5 Incorporating History

We now drop the first simplifying assumption listed in Section 1.7. Namely, we wish to take account
of the fact that the players and the adversary may have a. history dating back before the execution of
the current protocol. Because of this history, a player may initially possess more information than
just his private input, and an adversary may initially possess information correlated to the players'
inputs. We must capture the intuition that even in the presence of such extra information, the
adversary can no more compromise a secure protocol than she can compromise the ideal evaluation
which takes account of the extra information. For example, even if the adversary already knows
the private inputs of all the odd-numbered players, and even if each even-numbered player i < n - 2
already knows the private input of player i + 2, still, a protocol should leak nothing more than it
is "supposed to" under these circumstances.

A HISTORY or HISTORY. Concern that protocols be robust against such additional information
in the hands of its agents has its roots in the auxiliary input provided in the definition of a zero
knowledge proof systems. Auxiliary input is more than a "trick" to permit basic composition
properties: it is an addition which mirrors the refined intuition.

At the very beginning, the need for auxiliary input in a robust formalization of zero-knowledge
was unnoticed by its creators, Goldwasser, Micali and Rackoff. They quickly discovered this issue
included it in their paper setting forth the notion of zero-knowledge [GMR.89). Independently,
Tompa and Woll [TW87) and Oren [Or87) realized that a good definition of zero-knowledge needs
to have auxiliary input.

MODELING HISTORY. Everyone needs a sense of history. Indeed, the adversary may initially
possess certain information, and each player ma.y have information associated to him a.ta. protocol's
inception-this information becoming available to the adversary when she corrupts him. Mirroring

45

this, history is modeled as advice to the adversary, and as auxiliary input for each player. We
remark that in our context, "auxiliary input" is a new technical term, different from the usage
mentioned above, in the context of zero-knowledge proof systems.

In the upcoming subsections, we first expand our explication of the auxiliary inputs. Then we
explain adversary advice, and formally specify how to run a protocol in the presence of an adversary
when the players have auxiliary inputs and the adversary has advice. In Section 3.5.3 we update
our definition of security, giving a more refined notion for information-theoretic secure function
evaluation than was Definition 3.10.

3.5.1 Auxiliary inputs

Underlying our notion of security from scratch is the idea that each player i comes into a collabora
tive computation having no past and with but one destiny-to compute some Ji(x1, ••• , xn)· With
this in mind, we modeled the initial state of a player i as containing only his private input and his
identity, s?0 = x;#i. We said that when the adversary corrupts player i in a round r she learns an
exposed state u[containing some piece of i's history and the messages he is about to receive.

To be more general, corrupting a player should be more rewarding. When the adversary corrupts
a player i, she is handed some arbitrary information a; associated to him. This information might
represent the history of that player before the execution began; or, it might be information irrelevant
to the current task at hand (as in the "saved state" in a subroutine call) not modeled by the player's
computational state.

PROTOCOLS RUNNING WITH ADVERSARIES. To incorporate this change into our model, to each
player i we associate not only his private input, x;, but also his auxiliary input, a;. A player i
cannot see his auxiliary input-only the adversary, when she corrupts him, is given it. By denying
a player access to his auxiliary input we reflect the intuition that this is information which a good
player does not need to use for performing the current computational task.

Executing a protocol in the presence of an adversary now requires specifying the private input i,
the auxiliary input ii, and the common input c. For simplicity, all auxiliary inputs are taken to be
of the same length, which we denote by m. It is convenient to demand that this value appear, in
unary, on the common input: say c = 1k#1 m.

When a processor i is corrupted by the adversary in round r, the exposed state she receives is
re-defined as

"The exposed state of processor i at
round r. "

where, recall, mji is the round-r message prepared by j for i, and E is the exposed-state func
tion. We re-define the configuration of a player to include the his auxiliary input; thus a player
configuration is an element ("" r;, ai) of

{O, 1r .._,.-
x {O, 1}00 x {O, 1}00

...__.,.__, ...__.,.__,
player'• future future

at ate coina advice

SIMULATORS RUNNING WITH ADVERSARIES. To devise a history-sensitive notion of security we
must take account of auxiliary inputs in our notion of the ideal evaluation. Namely, in the ideal
evaluation off on input i and auxiliary input ii, when the adversary corrupts a player i she learns

46

(x;, a;) if she has not yet substituted in her fake inputs. If she has substituted in these fake inputs
and they were x~, then the adversary receives ((x;,a;), y;), where y= f(x'r U x:r').

The changes to the rules in the ideal evaluation are reflected in the definition of the ideal
evaluation oracle. First we change the notation to 0 1 (i, ii), explicitly indicating the dependency of
the oracle on the auxiliary input. The oracle behaves as follows: to a component query of i, if the
valid function query has not yet been made then the oracle responds with (x;, a;); while if the valid
function query x1- has already been made and ff= J(x1- U x:r), the oracle responds ((x;,a;), Yi)·

The notion of simulatability is unchanged, except, of course, that the oracle given to the simu
lator is now an 0 1(i, a)-oracle, and the execution of a simulator with an adversary depends on the
auxiliary input a.

3.5.2 Adversary advice

The adversary's advice, denoted a ... , can be thought of as information the adversary has come to
know, somehow, before the protocol begins running. As shall be clear when we formalize security,
the adversary's advice may depend in an arbitrary way on the common input, the players' inputs,
and their auxiliary inputs. But it cannot depend on the random coin sequences which are issued
to the players.

(When we describe the complexity-theoretic notion of security in Section 5, the adversary's
advice will play a.n additional role: it will model nonuniformity which may be available to the
adversary. See Section 4.3 for some discussion of this.)

We model the adversary's advice as an infinite string, which the adversary consumes bit-by-bit,
in exactly the same manner as she consumed her random coin tosses. When a bit from aA is read,
it vanishes from aA a.nd augments the adversary's computational state.

To implement these ideas, we modify a.n adversary's next-action function to allow her to get a
single bit of advice from a A. The adversary is still permitted to perform all the actions she was
previously permitted. Thus the adversary's next-action function is now a syntactic function with
the following domain and (expanded) range:

N: {O, 1r - {compute, flip-coin, get-advice, corrupt11 ••• , corrupt", round-done}__..
current
state

We must also augment the notion of an adversary configuration, adding a component for the
unconsumed portion of her advice. Thus a.n adversary configuration (s ... ,r ... ,a,t,KA) is an element
of the set

{O, 1r x {O, lf'° x {O, lf'° x 2£1..n) •

........__.. ---- ---- .__.,, advenary's future future corrupted
state coins advice players

CONFIGURATION SEQUENCES. Let A be a.n adversary for a.n n-party protocol, and let P be such a
protocol. We describe how, from any common input c, player inputs i, initial player configurations
(cr0

, ••• 'C~0), initial adversary configuration c~0 = (s ... , r A' a ... , KA), and exposed-state function E,
protocol P and adversary A generate a sequence of player configurations, { C?: i E [1..n], r E
[O .. R],pE N}, and a sequence of adversary configurations, {C1: r E [O .. R),pE N}.

47

With a.11 notation as before, the players' computational states progress according to

(p(rp) rp rp) c,s; , r; , a; if N(s?) =compute

(
rp rp rp rp rp) s; •r;1 , r; 2 r;3 • • ·, a; if N(s?) = flip-coin

if N(s?) =round-done

while the adversary's sequence of configuration is given by

if N(s']) =compute

(
rp rp rp rp rp rp)

SA *TA1' rA2rA3 .. ·, aA' ""A if N(s']) =flip-coin

if N(s']) = flip-coin

(rp r rp rp rp { "})
SA *<7;' r A' aA' ,..A u ' if N(s']) =corrupt;

if N(s']) = round-done

cy+1>0
{

(8 reAr ·M· r+l TreAr a'"eAr ,,_re Ar)
A A•A•A•A

creir
A

if r > 0

if r = 0

with the exposed state u[as specified on Page 46.

EXECUTING PROTOCOLS. An initial configuration of the network is now identified by a tuple
(i, ii, a A, c, r, r A), specifying the players' private inputs i E ({O, l}lr' their aur:iliary input ii E
({O, l}m)n, the adversary's advice aA E {O, 1}00

, the common input c = 1 k#l m, thl: players' coins f,
and the adversary's coins r A. For a given protocol P and adversary A, an initial configuration of
the network determines an ezecution of P in the presence of A. This execution is the sequence of
configurations { c;P, C~} generate by P and A when the initial configuration of party i is taken
to be C?0 = (x;#i, r;), the initial configuration of A is (,.;A, TA, aA ,.;A), for ,..A= 0, player i's coins
are r;, the adversary's coins are r A' the common input is c, and the players' inputs are i.

3.5.3 Security (including history)

VALID INITIAL CONFIGURATIONS. Not a.11 tuples (i,a,aA,c, r,rA) denote valid initial configura
tions. In fact, under the conventions we have specified, the only initial configurations allowed are
those having their first four components given by U. Lt, where

Lk = u {(i,a,aA,c): iE ({O,l}tt, aE ({O,l}mr, aA E {0,1}00
, and

C = lk#lm}.

Here, Lk denotes the valid tuples (i,a,aA,c) having security parameter k.

ENSEMBLES FOR. SECURE FUNCTION EVALUATION. Given a fixed-round, n-party protocol p and
an adversary A, an initial network configuration (i, a, a A, c, r, r A) determines the an execution,

48

and a corresponding adversary's view. If rand r A are allowed to vary, then there is an induced
distribution on these adversary views, which we denote by A-VIEWf (i, a, a A, c). If (i, a, a A, c) are
allowed to va.ry a.swell, then we obtain an ensemble £A-VIEWf(i,a,aA,c) over C ={Le}.

Similarly, fix a. function f : ({O, l}L)" - ({O, 1}1
)", an adversary, A, and a simulator, S, using

an adversary input function .AI. Then each point (.i,ii,aA,c) E L~, taken together with a set
of adversary and simulator coins (rA,rs), determine an associated adversary view. If rA and rs
are allowed to va.ry, then there is an induced distribution on these views, which we denote by
A-VIEW~"' (i, a, a , c). If (i, a, a , c) are allowed to vary as well, then we obtain an ensemble
EA-VIEW~·.A.I,J(i,a,a ,c) over C ={Le}.

NETWORK INPUT AND OUTPUT. For a given adversary A and protocol P, The adversary in
put and output formerly gave rise to functions .AI(i, c,T, r A) and AO(i, c, T, r A)· Since our
initial configurations are now somewhat richer, the awareness functions now give rise to func
tions .AI(i,a,a ,c, r,r) and AO(i,a,aA,c, r,rA), specifying the adversary's input and output
that results from the given initial configuration. These function, in turn, give rise to functions
.AI(i,a,aA,c, r,rA) and AO(i,a,aA,c, r,rA), exactly as before.

SECURE FUNCTION EVALUATION. Using the language just introduced, we are now ready to de
fine what it means for a protocol P to securely evaluate a finite function f, ignoring issues of
computational complexity.

Definition 3.11 Let f : ({O, l}L)" - ({O, 1}1
)" be a function, and let P be an fixed-round, n

party protocol. We say that P statistically t-securely computes /, ignoring complexity, if there is a
simulator S, at-admissible adversary input function .AI, and and an adversary output function AO,
such that for any t-adversary A,

• Privacy:

• Correctness: There is a negligible function f(k) such that for all (i,ii,a ,c) EL,.,

where the probability is taken over all possible rand r A·

3.5.4 Remarks

ON-LINE ADVICE. We remark that more general notions of adversary advice a.re possible than
the one we have described here. For example, one could regard the adversary as being entitled to
obtain information in insta.llments, new information becoming available to her at each round and
with each corruption of a. player. The information she is entitled to in a given round or following
a given corruption would be a. string computable by an explicitly given, efficiently computable
probabilistic map on the adversary's current computational state, the common input c, the input
vector i, and the auxiliary input ii. Though somewhat unintuitive, when embedded in the notion
of a secure protocol, demanding robustness against such on-line advice appears to be a. stronger
notion of security. Though on-line advice may be necessary for a theory of secure protocols robust
against running multiple protocols concurrently, we have chosen to stick with the simpler notion of
an infinite adversary advice string, and finite auxiliary strings for ea.ch player, for reasons of ease
of explication.

49

3.6 Incorporating Variability

We now drop the second, third, and fourth simplifying assumption listed in Section 1.7. Namely,
we no longer imagine that the number of players be fixed, that our functions be finite functions,
and that a protocol run in a number of rounds R = R(c) which is independent of the random
choices made during its execution.

After describing each relaxation in separate subsections, we give a more refined definition of
secure function evaluation than was Definition 3.11. It still ignores issues of computational com
plexity, but does not imagine that protocols are run, "from scratch," by some fixed number of
players, in some fixed number of rounds, their goal being to evaluate a fixed finite function.

3.6.1 Variable number of players

GENERAL PROTOCOLS. To properly talk about general multiparty protocols we must relax the
requirement that a. protocol is tailored for one particular number of players. Thus we consider
a (general) protocol P to be a family of n-party protocols, P = {Pn}· However, recall that we
demanded that a protocol at least be reasonable to describe (that is, Turing-computable); in passing
to general protocols, we would like not to lose this property. In fact, any "reasonable" protocol
should have a description that is efficiently computable knowing the number of players involved.
We demand this in our definition below.

Definition 3.12 A protocol P is a polynomial-time computable function that maps a number 1"
to a standard encoding of an n-party protocol Pn.

(A nonuniform protocol fails to meet the "polynomial time" constraint above.) We suppress the
subscript n when considering an n-party protocol Pn, using P to denote either a general protocol,
or the particular n-party protocol that it specifies, when n is understood.

Now that the number of players may vary, we will always specify it on the common input. We
briefly postpone describing its syntax.

GENERAL ADVERSARIES. To talk about a general protocol under attack by an adversary we must
suitably relax our notion of an adversary, too. In particular, we consider an adversary to be a
collection of agents, the appropriate agent selected according to the number of players. As there
was no requirement on the computability of the adversarv's strategy, there is no computability
requirement in determining the collection of functions whicn constitute an adversary.

Definition 3.13 An adversary A is a function that maps a number 1n to an n-party adversary An.

Once again, we suppress the subscript n when considering an adversary for an n-party protocol An,
using A to denote either a. general adversary, or the n-party adversary An that it specifies, when n

is understood.

3.6.2 Function families

WHY FUNCTION FAMILIES? Though the secure evaluation of finite functions is not a trivial matter,
it is not general enough. For example, dealing exclusively with such functions does not let us discuss
"a secure computation for the mean salary"-since the number of players and how big their salaries
might be has not yet been specified. To deal with such computational tasks, and to realize the
full power of a dynamic adversary, we consider secure computations of families of finite functions.
Our formalization of these objects constitutes one way to deal with infinite domains (rather than

50

({O, l}t)n) while insisting, in any given execution, that the potential domain be finite. See the
discussion at the end of this chapter for an explanation of why this is necessary.

FUNCTION FAMILIES. Recall that a finite function is a map Intl : ({O, l}tr - ({O, 1}1)n, for some
fixed values of n, l, and I. Our notion of distributively computing "arbitrary" functions is to use the
common input to specify what finite function the current protocol is supposed to compute. In fact,
a function family f is precisely a way to interpret each common input c = l"#ln#lt#11#1m#C
as a map le: ({O, l}tr - ({O, l}1r. That is,

Definition 3.14 A function family f is a map from strings to finite functions such that when c =
1 "#1 n#lt#l1#lm#C, for some CE {O, l}*, the finite function le ~r /(c) is a map fe : ({O, l}t)" --+

({o,1}1r.
This viewpoint of what a function family is has two pleasant features. First, it expunges nonuni
formity issues from consideration: if you want to compute some function, it should be described
on the common input, the complexity of producing such common inputs being irrelevant. Second,
the viewpoint emphasizes that the encoding of a function is highly relevant to its computation: for
example, it may be possible to securely compute a function under one encoding, but impossible
under some other.

As a consequence, the claim that a protocol securely computes a function family f must explic
itly fix how each common inputs c encodes its finite functions fe· On the other hand, a definition
of the secure computation of f need not fix how common inputs encode functions; all that is im
portant is the relationship between the behavior of the protocol when the common input is c to
the function Jc.

UNIVERSAL PROTOCOLS. Suppose the function family f is as follows: when the common input is
c = l"#ln#lt#11#lm#C, and C encodes a Boolean circuit from ({O,l}tr to ({0,1}1r, then le
denotes the mapping described by this circuit. If C does not properly encode such a circuit, then
le is some particular constant map.

In this case, if there is a secure protocol to compute f then it is universal, in the sense that any
family of finite functions has a natural encoding as a family of circuits. Other encodings are equally
good and equally universal: C might be taken as a description of a Turing machine program, say.

The existence of universal protocols will be discussed in Section XXX.

3.6.3 Variable number of rounds

In the ideal evaluation of a function f, one imagines that the computation takes a fixed amount of
time, and therefore the players and the adversary know when the computation is over. Though we
do not regard taking a fixed amount of time as being an important feature of the ideal evaluation,
we do regard termination awareness as an important feature of it.

Therefore, we rela.x the constraint that the number of rounds be fixed at some value R, depend
ing, if at all, only on the common input. Instead, we allow protocols to take a number of rounds
which may vary with the random choices made in the execution.

Since we wish to capture that all the participants should "know" when the computation is over,
we might as well require that the computation be jointly terminating-that is, all good players
halt within the space of a single player round. But this requirement a.lone would not be quite
enough-because the adversary, too, should know when termination occurs. We can ensure that
she does very simply, by demanding that termination be a function of the traffic of broadcasts.

We describe below, without undo formalism, the changes used to implement these ideas.

51

REQUIRED CHANGES. We leave unchanged the notion of a protocol and adversary, but add a single
player interaction function: a terminated function, r. In defining the execution of a protocol in
the presence of the adversary, T is applied to the vector of broadcast messages computed at the
completion of a player round. When it evaluates to 1, the last round of player activity has just
been completed, and the protocol terminates after the following round of adversary activity. At
the end of this round, T must still evaluate to 1, regardless of what the adversary did.

A protocol diverges if it never terminates, due either to an infinite sequence of micro-rounds,
or to r's failure to signal termination. An admissible protocol never diverge, regardless of starting
configuration. A protocol for secure function evaluation must be admissible.

An R-round execution is one which terminates at round R. Adversary views include only the
sequence of computational states up until termination. In defining the adversary output and the
network output, the adversary output function, AO, is applied to the adversary's final traffic, while
the players' output function, o, is applied to each player's final computational state.

In defining the interaction of an an adversary with a simulator, the simulator and the adversary
together determine the broadcasts. The interaction function T can be applied to these broadcasts.
Therefore, termination is an equally meaningful condition applied to adversary-simulator interac
tions as it was applied to adversary-network interactions, and quantities like the adversary view
produced from conversations with the simulator are well-defined. An adversary-simulator interac
tion diverges if it does not terminate. We require that a simulator for secure function evaluation
never diverges, regardless of the adversary with whom it interacts.

WHEN BROADCAST IS NOT AVAILABLE. The notion above must be modified to be meaningful if
broadcast is not permitted. In this case, a secure protocol must come equipped with a function
r which, applied to player i's traffic T[, evaluates to either protocol-done or protocol-not-done.
Applied to the adversary's traffic T~, it also evaluates in this range. In an execution of a protocol
with an adversary, these functions all evaluate to protocol-not-done-until the round at which they
all evaluate to protocol-done. The function T can then be used as above.

In the absence of broadcast, what is outlined above might be considered too much to expect,
because of the impossibility of achieving constant-round secure protocols which it would entail. To
avoid this, we can relax the definition further, and require only approximate-termination awareness:
namely, ea.ch player, and the adversary as well, must know when the protocol has terminated only
to within a certain number of rounds, 6. This amount can be considered as a fixed polynomial of
parameters specified by c, say. In an execution of a protocol with an adversary, these functions all
evaluate to protocol-not-done and then to protocol-done--except for a "window" of up to 6 rounds,
during which some may evaluate to protocol-not-done and others to protocol-done. The value of r
can now be used as a.hove.

3.6.4 Security (including history and variability)

VALID INITIAL CONFIGURATIONS. Not a.11 tuples (i, a, a,., c, r, r ..t) denote valid initial configura
tions. In fact, under the conventions we have specified, the only initial configurations allowed a.re
those having their first four components given by U1r L1r, where

L.,. = u {(i,ii,a,.,c): iE ({O,l}l)", iiE ({O,l}m)", a,. E {0,1}00
, a.nd

c = 11r#l"#ll#l'#lm#C, for c E {O, 1r} .

.Here, L1r denotes the valid tuples (i,a,a,.,c) having security parameter k.

52

ENSEMBLES AND AWARENESS FUNCTIONS. For any protocol P, adversary A, function family /,
and simulator S, we have associated ensembles

over {, = {Lt}, defined exactly mirroring the definitions of the corresponding ensembles of Sec
tion 3.5.3.

For any protocol P and adversary A, each initial network configuration (i, ii, aA, c, r, r A) deter
mines AI(i, a, aA' c, r, TA) and AO(i, a, aA' c, f, TA), exactly as before. These, in turn, give rise
to function AI(i,a,aA,c, r,rA) and AO(i,a,aA,c, r,rA)·

SECURE FUNCTION EVALUATION. We now revise our definition of secure function evaluation, still
ignoring complexity issues but taking account of the extensions from this and the previous section.

Definition 3.15 Let f = {/e} be a family of finite functions, and let P be a protocol. We
say that P statistically t-securely computes /, ignoring complexity, if there is a simulator S, a t
admissible adversary input function AI, and an adversary output function AO, such that for any
t-adversary A,

• Privacy: £A-VIEWf (i, a, aA, c) ~ £A-VIEW:·AI,J (i, a, aA, c).
'

• Correctness: There is a negligible function E(k) such that for all (i, a, aA, c) E Lt,

Prob [AO(i,a,aA,c, r,rA) :f: J(AI(i,a,aA,c, r,rA))] $ E(k),

where the probability is taken over all possible rand r A·

3.6.5 Remarks

VARIABLE NUMBERS OF PLAYERS. Varying the number of players is more than a nicety to neatly
handle functions on larger domains: it is a necessary relaxation to our notions if .ve are to realize
the true power of our adversaries.

Roughly sa.id, for any fized number of players, security with respect to the class of "powerful"
(dynamic) adversaries we ha.ve described is equivalent to security with respect to the class of "weak"
(static) adversaries who heha.ve as follows: they choose the set of players they will corrupt at the
beginning of the protocol, before any players are corrupted; then they corrupt exactly this set of
pla.yers. The equivalence of static and dynamic adversaries when the number of pla.yers is fixed
sha.11 be proven in an expanded version of this paper.

On the other hand, when n is a.llowed to vary the situation is exa.ctly the reverse. Namely,
there exist protocols which are (provably) secure with respect to a. sta.tic adversary, but (provably)
insecure with respect to a dynamic adversary. In an expanded version of this paper, a protocol
having this property will be described.

FUNCTION FAMILIES. Similarly, dealing with families of functions is important to the notion of
security. lnfonna.lly, there exists a protocol P and a function family f = {/e} ha.ving the property
that for any c, the protocol P when run on an initial configuration ha.ving common input c securely
computes the finite function fe· All the sa.me, the protocol does not securely compute /. An
example of this phenomenon will he described in an expanded version of this pa.per.

53

TERMINATION AWARENESS. The requirement that players and their adversaries "know" when a
computation is over is necessary, for example, to make a sensible notion of serial composition. It is
necessary for our reducibility theorem, as well. Of course, a meaningful notion of security can still
be given which does not demand this property.

KNOWING THE INPUT LENGTHS. Notice that, whatever our computational task, all players know
how long other players inputs are. Though we need not be quite so demanding, it is essential
that the players at least know a. bound on the length of the longest possible private input. As
long as such a bound is known, we can take all inputs to be of the same length, as a matter of
convenience; but if such a bound is not known, and one is unwilling to reveal this information in
the course of a "secure" protocol, then problem of secure computation changes markedly, and many
computational tasks become impossible. (See (CGK90] for work on the problem within this more
restricted framework.) The ca.use for this, intuitively, is that for some functions f, a communication
protocol to distributively evaluate them must divulge not only the function value itself, but also
a bound on the length of its inputs: for one thing a player i learns when interacting with another
player j is the number of bits which were sent out by j and received by i, and, for some functions,
this number of bits will have to be as many as j's input is long.

As a consequence, to arrive at a generally obtainable notion of security, one has the choice
between developing a notion of a secure function evaluation which "leaks nothing except the function
value and a bound on the input length," or, alternatively, one that "leaks nothing beyond the
function value, where a bound on input lengths is known by everyone ipso facto." We have adopted
the second viewpoint.

3. 7 Discussion

Discuss the following points:
Doing nothing is not a secure computation of the constant function. Explain why it shouldn't

be.
Weaker notions of security, as in [KMR90}.
More "direct" mimicking of ideal evaluation, as in [GL90}.
Simulators in our context vs. zero-knowledge: why the differences?

54

4 Complexity

This chapter -particularly Section 4.4- is to be substantially revised.
This section describes a. rela.xed definition of security, called computational security. Though

an informa.tion-theoretically secure protocol is necessarily computationally secure, the reverse need
not hold, as computational security only captures immunity against those t-adversaries which are
limited to performing reasonable computational tasks.

The broad strokes for rela.xing our notion of security are straightforward, so we sketch them now.
We say that reasonable adversaries are those which run in polynomial time, and a computationally
secure protocol only considers the injurious effects such agents. As expected, a computationally
secure protocol must be efficiently simulatable given the appropriate ideal-evaluation oracle. But
instead of saying that interacting with this simulator produces nearly an identical view as interacting
with the network, we perm.it the distribution on views to be quite different, as long as these
distributions appear the same to observers limited to efficient computation. Computationally
secure protocols must achieve the same correctness condition as information-theoretically secure
protocols, but they do this with respect to efficiently computable awareness functions, AI and AO.

The main subtlety in defining computational security lurks in this last sentence: we must
modify our adversary input and output functions very carefully, or else we do not arrive at a
model-independent notion of security which preserves our reducibility theorem. The new notions
for awareness functions are described in Section 4.4.

After having defined this more liberal notion of security, we also define a less liberal one, called
perfect security. Though perfect security, like perfect zero-knowledge, is more cumbersome to work
with than its statistical counterpart, it is always good to understand what perfect security is and
when it can be achieved.

4.1 Polynomiality of Algorithms

We follow well-entrenched tradition, regarding deterministic functions as computationally tractable
exactly when they can be computed by Turing machines running in polynomial time.

It is convenient to speak of computable functions of several inputs, some of which may be
infinite strings. For example, a probabilistic encryption function is such an object (page 40). For
functions on possibly infinite strings, we explain the meaning of "polynomial time" below.

A Turing machine is a device with some number of inp11t tapes, a single output tape, and a finite
control. Roughly said, a Turing machine M computes a. function M(xi, ... , x;) if, when input tape i
is initialized to x;, the execution of M always halts with output ta.pe containing M(xi, ... , x;).
Notice tha.t the function M may be defined on any fixed number of finite or infinite strings.

For Turing machine M to compute the function M in polynomial time, we require M com
pute M, halting after a number of finite-state transitions bounded a.hove by some fixed polynomial
in the length of M's first argument, x1•

Recall that we have ma.de the common input the first argument ton-party protocols, adversaries,
a.nd simula.tors. So, in all these cases, polynomiality means polynomial in le!.

4.2 The Complexity of Protocols and Their Adversaries

MICRO-ROUNDS. Let e = {C?,C7} be an execution of an n-pa.rty protocol, term.ina.ting at
round R. The number of player micro-rounds for this execution is the number of micro-rounds

55

utilized by uncorrupted processors: that is, it is

where

n R

L:L:e~r'
i=l r=l

if 3f < r such that i E ;;,~00

otherwise

The player micro-round complexity is a function of the common input, c. It gives the worst-case
number of player micro-rounds when the common input is c, and is "oo" if no such number exists.
By "worst case" we mean the maximum over all executions of the protocol interacting with any
adversary.

Similarly, the number of adversary micro-rounds for an execution e is

The adversary micro-round complexity is a function of the common input, c. It gives the worst-case
number of adversary micro-rounds when the common input is c, and is "oo" if no such number
exists. Here, "worst case" gives the maximum over all executions of the adversary interacting with
any protocol.

ROUNDS. The round complexity of a protocol Pis a function of the common input, c. It gives the
least value R such that when protocol P is run in the presence of any adversary A and the common
input is c, the execution necessarily terminates within R rounds. The round complexity is "oo" if
no such number exists.

COMMUNICATION BITS. The communication complexity of a protocol Pis a function of the common
input, c. It gives the least value µ such that when protocol P is run in the presence of any
adversary A and the common input is c, the total number of bits sent out by uncorrupted processors
is at most µ. The communication complexity is "oo" if no such number exists. The number of
communication bits for a specific R-round execution is defined as 2:7=1 L~= 1 (IM[I + I:j:1 lmi;I),
using the definitions from Page 22. Th.is expression counts all of the bits sent by processors before
they are corrupted.

POLYNOMIALITY OF PROTOCOLS AND ADVERSARIES. A protocol is polynomial time if each micro
round can be computed quickly, and there are not too many of them. More formally:

Definition 4.1 A protocol P is polynomial time if there is a polynomial Q such that

• For any n, the n-party protocol Pn (c, s) evaluates within Q(lcl)-time, where c is the common
input.

• For each n, the player micro-round complexity of Pn is bounded above by Q(lcl).

Analogously, an adversary A is polynomial time if she is easily described, each micro-round is easy
to compute, and there are not too many of them. More formally:

Definition 4.2 An adversary A is polynomial-time if there is a polynomial Q such that

• For any n, the encoding of An is computed by A in time bounded above by Q(n).

56

• For any n and common input c, the adversary micro-round complexity of An (c, s) is bounded
above by Q(lcl).

• For any n, the algorithm A,,(c, s) evaluates within Q(icl)-time.

Note that, under our definitions, a protocol can be polynomial time even though it may interact
with an adversary who "floods" the network with a superpolynomial number of communication
bits.

4.3 The Complexity of Distinguishing Ensembles

ALTERNATIVE DEFINITION OF INDISTINGUISHABILITY. We being by rephrasing our definition of
indistinguishability in a way which generalizes better for handling issues of computational complex
ity. This notion is based on the idea of a distinguisher, the formalization of a "judge" who votes
to decide among two competing alternatives.

A distinguisher D 4 is a { 0, 1 }-valued function D on some number of input strings, x 1, ••• , x;,
an infinite advice string, a, and an infinite sequence of random bits, rv. By ED4 (x11 ... , x;) we
denote the expected value of D, over its random bits rv, when the inputs are x1 , ••• , X; and the
advice is a. This is precisely the probability that D evaluates to 1. The following definition of
indistinguishability is easily proven equivalent to Definition 3.8.

Definition 4.3 Ensembles E and E' are statistically indistinguishable, written E ~ E', if they are
over the same parameter set C = { L,,}, and for every distinguisher D4

,

E(k) = sup jED4 (1", E,,(w),w) - ED 4 {1", E~(w),w)j
wEL•

is negligible.

COMPUTATIONAL INDISTINGUISHABILITY. We now specify what it means for two ensembles to be
indistinguishable to an observer with bounded computational resources, thereby relaxing the notion
of statistical indistinguishability of Definition 4.3.

Recall that a distinguisher D 4 is a {O, 1}-valued function D on a set of inputs, Xi, ••. , Xn, an
infinite advice string, a, and an infinite string of coin tosses, rv. We say that a distinguisher D 4 is
polynomial-time if Dis a polynomial-time algorithm. Computational indistinguishability demands
negligible bias in distinguishing ensembles based on such resource-bounded algorithms:

Definition 4.4 Ensembles E and E' are computationally indistinguishable, written E:::::: E', if they
are over the same parameter set C = {L,,}, and for every polynomial-time distinguisher na

E(k) = sup jED4 (l", E,,(w),w) - ED4 (1", E~(w),w)j
wEL•

is negligible.

When we wish to emphasize the parameter set £ = { L,,} which parameterizes the ensembles E
and E' we write E :::::: E'.

c

57

4.4 The Complexity of Awareness

In this subsection, we discuss what it means for a computationally bounded adversary to know
something a.bout a.n interaction. The intuition we a.re trying to capture is that the adversary knows
some information if she could compute it "on the side," without much extra expenditure of effort
and without knowing much about herself at all.

Our notion of awareness is very demanding, for a variety of reasons. First: because we wish
to make minimal assumptions about what an adversary, as a devise, actually is and can do. For
example, we certainly do not wish to assume that a.n adversary has a description of herself as a
Turing ma.chine, for example, or that she might "know" something only if she knows exactly her
own nature: if we take our anthropomorphization seriously and our adversary actua.lly is a person,
such an assumption is highly questionable! For the same rationale, our adversary should not be
able to "reset herself," "see her coin flips," or figure out what she would have done in the distant
past or distant future. Second: our notion of awareness is strong in order to facilitate dealing with
complexity concerns at very fine level, if we choose to. As a.n example, if an adversary interacts
with an agent using just linear computational complexity, but she "knows" some information in the
sense that she could compute it using some cubic-time algorithm, then it might not, in fa.ct, "know"
the information in a very real sense-her computing it may simply be impractical. Third: we must
adopt a rather stringent notion of awareness or we no longer know how to prove our reducibility
theorem.

The idea. that an interaction might establish that an agent "knows something" was put forward
by Goldwa.sser, Micali and Rackoff [GMR89] and formalized by Feige, Fiat and Shamir [FFS87],
and Tompa and Woll [TW87]. However, our notion of awareness differs from ideas to be found
there. For one thing, the goal is different: we are discussing proofs of knowledge of a function
associated with the interaction itself, as opposed to proofs of knowledge of a. witness to a boolean
predicate, say. Apart from this, we wish to be more demanding than in previous work, for the
reasons given above.

4.4.1 Informal description

We are interested in knowledge associated to an interaction-principally, the knowledge an adver
sary possesses when she interacts. We thus make the following definition.

Definition 4.5 An (adversary) awareness function :Fis a map

:F= {o, 1r x {o, 1r - {o, 1r___,.___,.___,.
common

input
adversary

traffic
value

known

If :F is not as above because its ra.nge is not { 0, 1 r' we still call :F a.n awareness function, as long
as its range haa a natural encoding into {O, 1 }*. As a.n example, the adversary input and output
functions were awareness functions.

An adversary A interacts with a.n agent B who send messages to A a.nd receives messages from
her. We have described in detail the interaction of a.n adversary with two types of agents: protocols
and simulators. In defining awareness, we may imagine a.n adversary A interacting with a.n arbitrary
agent-but for simplicity we will jump back, in a bit, and take this a.gent to be a network running
a protocol P. The nature of the interaction between A a.nd B may depend on some parameters-in
fa.ct, the interactions we care about are probabilistic functions of w = (x, a, a A, c).

An interaction of an adversary A with a.n a.gent B will be denoted A+-+ B. To emphasize some
parameter w on which this interaction depends, we write A::+ B.

58

ALGORITHM FA(c; oi,,8i, ... ,o,):

The algorithm is given c and does some computation.
for i +- 1 to s - 1:

until the algorithm is satisfied:
It is given o 1, .Bi. ... , o;.
It must compute a sample ,a; +-(A ~ B)[oi, ,81, ••• , o;].
The algorithm is provided a sample from (A ~ B)[oi, .Bi. ... , o;, ,B;].
It does some more computation.

It outputs a value, y.

Figure 3: The structure of a probabilistic algorithm F for extracting knowledge from an agent A
about traffic T. The algorithm is given input c and is "trying" to compute F(c, T). The traffic
T = (o 1 , .Bi. ... , o,)

An A ::.+ B interaction can be described as follows: A sends to B a string o 1 (consisting of
a corruption request corrupt; or a vector of messages on behalf of currently corrupted player M);
then B responds with a string ,81 (consisting, presumably, of an exposed state or a vector of messages
on behalf of good players, respectively); then A sends another string, o 2 ; then B responds with a
string, ,82 ; and so forth, until A sends some last string, o,, to the agent B.

Now, for any w, not only is there is a distribution on possible A ::.+ B interactions, but, fixing
an initial segment oi,,817 ••• ,o;, there is a distribution (A::.+ B)[o1 ,,8i, ... ,a;] on possible next
messages .Bi returned by B. Likewise, there is a distribution on any (A ::.+ B)[ai, .Bi. ... , ,8;]

What does it mean for an adversary awareness function F to be efficiently computable (with
respect to the agent B)? Roughly, there must be fixed probabilistic polynomial time algorithm F
(which one might imagine "embedding" in A) which is almost always able to compute F "on the
side," as A interacts with B. The algorithm F does this by playing the following simple game.
As the conversation between A and B progresses, after A has already engaged in some partial
conversation T and has just heard a message ,8 from B, the algorithm F may choose to concoct
some different message ,8'-but one drawn from the same distribution as the last message that B
just sent. Algorithm F may then use A as a "black box"to figure out what message A would
respond on the conversation in which the last message was ,8' instead of ,8. (Each time A is so
invoked, independent random coins a.re used for it.) Algorithm F may run this experiment several
times, getting various sample replacement messages ,8', ,8", However, this is the only manner
under which F may experiment with the black-box A. At the end, F outputs it "guess" of F(c, T).

Basically, we say that an adversary A is efficiently aware of an awareness function F arising
from interactions with B under the condition that F(c, T) can be computed by a probabilistic
polynomial-time alternative sampling algorithm-which is a algorithm having the structure de
scribed in Figure 3.

Definition 4.6 Fix t E N. An adversary awareness function F for interacting with a protocol
P is efficiently computable (with respect tot) if there exists a probabilistic polynomial time on
line alternative sampling algorithm F such that for any polynomial-time t-adversary A, for some
negligible function £(k), for any (i,a,aA,c) EL,,, with probability at least 1- £(k) the following
even happens: ifT is a transcript drawn from by allowing A and P to interact with a configuration
with (i,a,aA,c), then FA(c,T) outputs F(c,T).

For a computational notion of security, not only do we allow allow the adversary input and output
functions to depend on the adversary A in this "controlled" but efficiently computable way, but

59

we allow the same of the simulator. That is, recall that, in our previous definitions of security,
the simulator Shad no information whatsoever about the adversary with whom it was interacting
(apart from that which could be inferred by the messages this adversary sent out). Now, we allow
the simulator to compute its messages to A by allowing S to be a

Namely, the simulator S, has an "oracle" for the adversary A with which it interacts, considered
as a probabilistic algorithm that S to be a probabilistic polynomial-time on-line alternative sampling
algorithm. We call such a simulator an efficient simulator.

4.4.2 Formal description

4.4.3 Remarks

4.5 Computational Security

SECURE FUNCTION EVALUATION. We now give our notion of computational security.

Definition 4.7 Let t E N, Jet f = Uc} be a family of finite functions, and let P be a protocol.
We say that P computationally t-securely computes f if there is an efficient simulator S using an
efficiently-computable t-admissible adversary input function AI, and an adversary output func
tion AO, such that for any t-adversary A,

• Privacy: £A-VIEwr(i,a,a,.,c) ~ £A-VIEwt·Az,i(i,a,a,.,c).
c

• Correctness: There is a negligible function E(k) such that for all (i,a,a,.,c) E £ 10

Prob [AO(i,a,a,.,c, r,rA) ::/: J(AI(i,a,aA,c, r,rA))] ~ E(k),

where the probability is taken over all possible r and r A.

4.6 Statistical Security

4. 7 Perfect Security

PROBABILISTIC ALGORITHMS. A probabilistic algorithm M is a Turing machine which takes some
number of inputs, x1 , ••• , xi, and an infinite sequence of "coin flips," r. It is required that for any
set of inputs, M halts with probability 1, where the probahility is taken over all choices of r. Thus,
fixing any set of inputs xi, •.• , xi, probabilistic algorithm M induces a distribution on outputs,
M(x 11 ••• ,xi)·

There is no widespread agreement for a robust and generally adequate notion of an efficient
probabilistic algorithm. Requiring that a probabilistic algorithm run in fixed polynomial time is
usually adequate, but in some cases this is too restrictive. For example, simulators for perfect
zero-knowledge proofs often do not run in fixed polynomial time, but we still want to demand that
they be "efficient." The same problem arises in our context: a perfect notion of security requires
something more generous than fixed polynomial time simulation.

When fixed polynomial time is inadequate, it is common to relax the notion to expected poly
nomial time. This is often a poor solution, for a variety of reasons:

• First, expected polynomial-time is not a very robust notion. For example, the composition of
expected polynomial time algorithms is not necessarily expected polynomial time. This lack of
robustness leads, for example, to an unaesthetic and conceptually questionable a.symmetry in
the definition of perfect zero-knowledge: allowing simulators to be expected polynomial-time
while verifiers are required to be fixed polynomial time.

60

• Second, expected polynomial time can be too liberal a notion. For example, for any constant c,
an expected polynomial time algorithm might take longer than nc-time for a non-negligible
fraction of the possible random strings. Arguably, such behavior should be considered unac
ceptable in an algorithm termed "efficient."

• Finally, expected polynomial time can be an insufficiently liberal notion. For example, an algo
rithm which is linear-time -a.part from the fact that it diverges with negligible probability
is a pretty efficient algorithm! But it is not expected polynomial time.

To address such issues, we say that a probabilistic algorithm M(x11 ... , x;, r) is polynomial-time if
there exists a. fixed polynomial Q and a negligible function £ such that for any (x 11 ••• , x;), with
probability at least 1 - £(1xtl), algorithm M halts within Q(lx 11)-steps. That is, M almost always
halts in fixed polynomial time.

We note that the class of probabilistic polynomial time algorithms is closed under composition;
that such algorithms are robust against changing their behavior on a negligible fraction of random
coin sequences; and that such algorithms would seem to be adequate for most simulation purposes.

4.8 Discussion

NONUNIFORMITY. The notion we have defined for computational indistinguisha.bility is a nonuni
form notion-possibly, the ensembles appear different to the resource-bounded judge only by virtue
of the infinite advice string, a. Nonuniform notions of indistinguishability have more commonly
been defined by polynomial-size circuit families. We find the phrasing above more convenient,
because of it more natural to allow an infinite string to be an input to algorithm than to a. circuit.

Uniform notions of computational indistinguisha.bility-where the distinguisher does not have
benefit of the advice a-are also possible. In fact, all notions and results of this paper have analogs
in the uniform model, and it is not difficult to make the appropriate extensions. For economy of
notions, we choose to describe only the nonuniform notion of security. This means that not only
a.re the adversaries we consider restricted to nonuniform efficient computation, but, mirroring this,
the the underlying notion of security is nonuniform as well.

WHY PREFER NONUNIFORMITY? In our context, nonuniform notions of security have several
advantages over their uniform counterparts. Most importantly, since a. cryptosystem is generally
run for a. particular choice of security para.meter, one would be unhappy with a protocol which was
only secure against uniform adversaries: a. sufficiently committed attacker would mount an attack
that would break the cryptosystem itself, a. much worse break than just breaking a particular usage
of the cryptosystem. Secondly, proofs are frequently simpler or more natural in the nonuniform
model. Third, existence results on secure protocols talk a.bout how an arbitrary circuit can be used
to specify a. protocol for securely evaluating it; thus there is already nonuniformity present in the
families of circuits which might be evaluated.

61

5 Properties of Secure Protocols

This chapter is to be substantially revised.
This section describes some of the basic properties which secure protocols enjoy. After some

basic results on indistinguishability in Section 5.1, we begin, in Section 5.2, with the observation
that in a secure protocol for computing f, when run in the presence of an adversary that is only
"nosy" (that is, as she corrupts players, she continues to perform computation according to the
protocol), each player i almost certainly outputs f;(i). In Section 5.4 we show that, in a secure
protocol, what the adversary commits to is essentially independent of input values held by good
players, as it was with the abstraction which a secure protocol endeavors to imitate. In Section 5.3
we show that the level of generality necessary for designing secure protocols for doing vector-valued
secure function evaluation is already present in the seemingly simpler task of doing string-valued
secure computation; in particular, vector-valued secure function evaluation can be implemented
on top of string-valued secure function evaluation in a "generic" and efficient manner. Finally -
and most importantly- in Section 5.5 we show that modular design of cryptographic protocols is
possible, in the sense that if you design a secure protocol for computing some function g, you may
thereafter treat g as a "primitive" operation available to you in designing other secure protocols.
This reducibility property is the center of our notion of security.

5.1 Preliminaries

We state without proof some basic properties of indistinguishability.

Proposition 5.1 If two ensembles are perfectly indistinguishable, they are statistically indistin
guishable. If two ensembles are statistically indistinguishable, they are computationally indistin
guishable. •

Proposition 5.2 Computational indistinguishability of ensembles forms an equivalence relation.
So does statistical indistinguishability and perfect indistinguishability. •

The following definition and lemma capture the notion that if two ensembles are computationally
indistinguishable, then the ensembles appear different even when sampled by selecting the param
eter according to an arbitrary distribution. The same assertion holds for statistical for perfect
indistinguishabili ty.

Definition 5.3 Let A and B be ensembles, and let I = { 1 .. : k E N} a family of probability
measures on {O, 1r. We say that A and B are statistically indistinguishable over I if A and B are
ensembles over the same parameter set,£ = {L .. }, and support 1 .. ~ Lk for all k, and for every
distinguisher n·'

is negligible. They are computationally indistinguishable over £ if the same assertion holds for
every polynomial time distinguisher n·.
Lemma 5.4 Let A and B be indistinguishable over£= {L .. }. Then for any family of probability
measures I= {! .. }, where support 1 .. ~ L1: for all k, A and B are indistinguishable over I. •

We next note that computational indistinguishability coincides with statistical indistinguishability
·in one natural setting-when the support of the ensemble grows very slowly (or not at all) in
the index of the ensemble. Such ensembles arise when, for example, a predicate is applied to an
ensemble, and the image is considered an ensemble once again.

62

Lemma 5.5 Let A be an ensemble over£= {L1:} such that, for some constant c, support A1:(w) ~
{O, l}elgl: for all k EN, w E L1:. Then A and Ba.re computationally indistinguishable if and only
if they are statistically indistinguishable. •

Last of all, we state a technical assumption under which a particular "composition" lemma holds
on indistinguishable ensembles.

Lemma 5.6 Suppose l'A1:(x) ~ l'A~(x), support A1:(x) C L~, support A~(x)
c

l'B1:(x, y) ~, B~(x, y), with B1:(x, y) and B~(x, y) are polynomial-time samplable.
ext:

any constants c1: E L1:, l'B1:(c1:,A1:(x)) ~ l'Bk(c1:,A1:(x)).
c

5.2 Correctness in the Presence of Passive Adversaries

c L~,

Then for

•

A particularly sedate type of adversary is one that is "honest-but-curious"; such an adversary,
when she corrupts a player, continues to execute the protocol faithfully on behalf of that player.
(As always, such an adversary may choose whom to corrupt using an adaptive strategy.) As
expected, when a secure protocol is run under attack by such an adversary, each player almost
always computes the correct function value, as determined by the initial input vector. We state
and argue this in the full paper.

Theorem 5. 7 Suppose P t-securely computes a function l = {le}, and let A be an honest-but
curious t-adversary for P. Then, when P is run in the presence of A, for some negligible function
E(k), for a fraction of at least 1 - l(k) of all (i, ii, aA, c) E L1: each player i outputs ((/e)(i))i·

Proof: Consider P being run in the presence of the "void adversary," A0 , who corrupts no players
whatsoever. Let S be the simulator establishing P's security. Since the adversary input function AI
provides a value x;. where the set T consists precisely of the currently corrupted players, and since
the set of currently corrupted players must be void, we know that AI is identically equal to
0. Consequently, the network input AI is identical to the input vector i, and the correctness
constraint for P run in the presence of adversary Ao says that, for some negligible function E(k),
for all (i, ii, aA, c) E L1:(/), with probability at least 1 - l(k) each processor i will output (/c(x))i.

Now consider P being run in the presence of the honest-but-curious t-adversary A. Because
this adversary executes the protocol P faithfully on behalf of each corrupted player, we know that
the distribution on outputs of processors when running under attack by the void adversary Ao is
identical to the distribution on outputs of processors when under attack by A. Thus the conclusion
regarding the distribution on outputs for P under attack by A0 holds equally well for P under
attack by A. •

5.3 Completeness of String-Valued Computation

The following theorem justifies, in some instances, restricting attention to the computation of
string-valued function families. For its statement, we let J' be the function family of string-valued
functions, encoded as boolean circuits, and we let l be the function family of vector-valued func
tions, encoded as boolean circuits. More specifically, we let the function family /' = {J:} be
described as follows: for a common input c', a function le•: ({O, 1 }'"' r-' - {O, 1 }

1
"' is described

by a boolean circuit Ce• over bounded fan-in gates and unbounded fan-in XOR gates. Each func
tion le• can also be interpreted as a vector-valued function simply by replicating its output for
each player. The function family l ={le} is the one which maps any common input c to a func
tion fe: ({O, 1}'0)"• - ({O, 1}1

)"• described by a boolean circuit Cc over bounded fan-in gates and
unbounded fan-in XOR gates.

63

Theorem 5.8 Suppose that there is an O(depth{Ce))-round protocol P that t-securely computes
f. Then there is an O(depth(C~))-round protocol P' that t-securely computes/', where

Proof: This proof is a remnant of notation past. It requires substantial updating, and is left here
only to give some idea of the argument involved.

We must describe a protocol P = {Pn,t} and show that it securely computes f = {Cn,d·
The basic idea is very simple: P is derived from a protocol P for some deterministic function

j related to f, as follows: each party i inputs into the computation of j a random pad Pi which
is XOR'ed with his "own" piece of the output. The is done so that the part of the output which
"belongs" to a good player is not meaningful to the adversary, but it is still easy for the good player
to interpret what his private output is.

We now proceed to make this idea precise, and prove that it works.

Definition of j.
Define the string-valued function j = {Cn,i: ({O, l}it - {O, l}i} according to

Cn,t(XiPi 01 t•o'Y•, ... , XnPn01 t,.o-r ..)

where

(Pi EBCn,t(i)) [1 : l] · · · (PnEBCn,t(i)) [(n - 1)l + 1 : nl] 09

= pEBCn,t(i) 09 ,

l is the value that occurs most among { li, ... , ln},
!xii = IP;I = l,
g = i- nl, and
P = P= Pi ···pn = (Pi.···1Pn)·

Note that we have assumed an encoding of Cn,t for which y = Cn,t(i) specifies, consecutively, the
outputs of each of the players. Also, we do not distinguish vectors, such as (Pi, ... , Pn), from the
corresponding string Pi ... Pn·

For values Cn,i which are not well-defined by the expression above (for example, there is no

unique l, i is too small, etc.), assert that en i = o'.
We remark that j = {Cn,l} has polynomial-size circuits; the only observation needed is that Cn,i

is defined in terms of fewer than i different circuits {Cn,tlt<b each having size at most poly(nl) ~
poly(ni).

Definition of the protocol P.
Let P beat-secure protocol for j. Protocol Pn,t is as follows: each player i, on input x; E {O, l}t,

flips coins to determine a random string p;,

Player i defines

Player i runs Pn,l,; on input

p; - {0,1(

i = max{3L + 1, nl}, and

1' = i - (3l + 1).

64

(1)

(2)
(3)

(4)

However, instead of outputting the string y which P specifies to output, player i outputs

Yi= y[(i - l)l + 1: il]EBPi· (5)

Outline.
We must show that Pt-securely computes/. Let A be a polynomially-bounded adversary. We

must construct an on-line simulator S for A. Let S be the on-line simulator showing that A does
not defeat P, and let x be the associated committal function for A attacking P. The simulator
S for P is ma.de by modifying S. As the most apparent obstacle, note that S has access to an
0 1(:ips;])-oracle, whereas S ha.s access to an 0 1(:i; !)-oracle.

The simulator S will behave like S, with a few exceptions. First, its queries to its 0 1(xpi;])
oracle will be answered by a.n oracle fi, which the simulator S itself will provide, using access
only to its 0 1(i; !)-oracle. Secondly, simulator S, instead of producing transcripts with "output
strings" y in the simulated views, will produces transcripts in which the string y is replaced by
Yi = y[(i - l)l + 1 : il]EBPii where Pi is ta.ken from the simulator's output. La.st of all, instead
of producing transcripts in which XiPiSi appears as a. player's input, S will produce transcripts in
which x; appears as the player's input, and Pi prefixes the player's random coins.

To prove that the simulator S "works," we will establish the following sequence of implications,
for protocols, simulators, and oracles which we shall shortly define.

VIEW~(a),i>(lll) ~
501(1p1J)

A(a) ~ (6)

VIEW~(a),P(I) ~
5nt..1J)

A(a) ~ (7)

= 5nt..1;n
A(a) ~ (8)

VIEW~(a),P(I) ~
j;f'll..l;J)

A(a) (9)

= 501(1;!)
A(a) (10)

The Protocol P.
We begin by defining a. probabilistic analog of P, the protocol P. Each player i, executing Pn,t,i

on input xi E {0,1}', begins by flipping coins to determine p; according to Equation 1. Player i
defines i and 'Y according to Equations 2 and 3, sets Si = Ol'O-Y, and runs Pn i; on input x;p;s;. '.
Player i outputs the string y which P computes.

In other words, P is identical to P, except that P outputs the string Yi = y[(i - 1)l + 1 : il]EBp;,
whereas P just outputs y.

The oracle fi.
We next consider a probabilistic analog fi, to the oracle O,(xps;]). Oracle fi behaves as follows:

it selects random

.P-({o,1}'r, (11)

defines i and 'Y according to Equations 2 and 3, a.nd sets

(12)

The oracle then behaves like an 0 1(ips;]) oracle. In particular, to a. component query of i preceding
the output query, fl responds with X;p;s;; to a.n output query of i!r'iJ.rsT, fl responds with Y =
f(i'.rYTi'.r U x"fiiTSir); a.nd to subsequent component queries i, fl responds (xip;s;, y;).

65

The simulator S.
The simulator S is identical to S, apart from the encoding of transcripts. Namely, suppose,

that S, when interacting with its oracle, produces a transcript T. The transcript T specifies (among
other things), for each corrupted processor i, i's private input x;p;s; and a portion of i's random
tape, R;. Simulator S outputs the same transcript r, except that each player i's input tape is taken
to contain only x;, whereas player i's random tape is replaced by p;R;. This can be considered as
applying a simple function h to the transcript T that S computes.

Equation 1 holds.
We wish to show that Equation 7 holds,

VIEW~(aJ,P(rJ

asserting the computational indistinguishability of (i, a)-parameterized ensembles. What we know
is that Equation 6 holds,

VIEW,. "' s·o,(rp;JJ
A(1J),P(rp;) "' A(1J) '

asserting the computational indistinguishability of (ips, a)-parameterized ensembles.
The argument closely parallels Claim ?? in the proof of the main theorem of this thesis (page??).

Equation 6 means that for any polynomial-size family of circuits {D,.},

(k) I (,.) ED (S"01(#1J))I
€ = ~3; ED,. VIEW A(a),P(rpT) - Ii A(1J)

is negligible. Let

(k) I (J:) ED (s·o,(rp1JJ) I €,r = 11}~ EDJ: VIEW A(a),P(#T) - J: A(1J) '

where pE {O, 1rt and iis given by Equation 12. Then the weighted sum

c(k) =max rnt L: €,r(k)
r,IJ

PE({0,1}')•

is negligible. Now we can bound this from above by

c(k) = 2-nl ~ IED (VIEW11) ED (SO,(rpl;J)) I max L..J I< A(a),P(#T) - I< A(1J) ' r,IJ
pE({0,1} 1)•

> ~ ED (VIEW,.) 2-nt ~ ED (S·o,cr,rrJ)) L..J I: A(1J),P(r,TT) - L..J I: A(a)
PE({0,1}1)• pE({0,1}1)•

= E''(k),

using the triangle inequality: E IA; - B;I ~ I E{A; - B;)I =IE A; - E B;I; thus E''(k) is negligible.
With h the map specified earlier (taking a transcript T with input x;p;s; and random tape R;

to a transcript with input x; and random tape p;R.), we conclude that E'"(k) is negligible, where

€"(k) = maxr"' L ED,.(h(VIEW~(a),P(llT))) - rnt L ED,.(h(S~(!f'J>))
~a l

pE({0,1}1)• pE({0,1})•

= 1ll}~ED1:(VIEW~(a),P(I)) - ED1i(S~!/»I

66

by the definitions of P, P, and ft. This being negligible is precisely what is is needed to establish
the claim.

An alternative way to look at fi.
Reviewing what we have defined, the oracle ft can be described as follows: it chooses a random

pad p, selects i as we have specified, and then, to a component query of i preceding the output
query, fi responds i;'fil;; to an output query of X'rfrS'.r, fi responds with yffi(for U fr), where
y - J(i'r U xT")i and to subsequent output queries i, fi responds with (x;r;p;s;, p;ff)y;).

There is another way to describe the behavior of fi, which is identical. Namely, fi chooses
random rand pas above, selects i as we have specified, and flips coins to select w - ({O, 1 }t)".
Then, to a component query of i preceding the output query, fi responds x;'fil;; to an output query
of i'r'i1TS'.r, fi selects y .._ J(i'r U xT) and responds with Wir U i>rffiYTi and to subsequent output
queries i, fi responds with (x; w; s;, w;ff)y;).

The advantage of this description of fi is that now it is apparent that fi can be simulated using
only the aid of an Ot(x; J) oracle; we thus change the arguments to this oracle to fi(x; !).

Protocol P is private.
Consider the simulator S which is identical to S except that in any transcript T that S would

output in which a player had a private output of y and a random string prefixed by p;, S outputs
the same transcript, but with player i having private output of y; given by Equation 5. This can
be considered as applying a simple function, h, to the transcripts T that S would output, and
outputting h(r) instead of outputting r. Applying h to both sides of Equation 7, the definitions of
P, P, S and !; gives that

VIEW• ,..., s·ru..*;n
A.(11),P(*) "' A.(11) •

Oracle S is defined to behave like S, except that it simulates the behavior of fi with the aid of
an Ot(i; J) oracle; we have already discussed why this is possible. By construction, then, the last
assertion gives that

VIEW• ,..., 50,(*;J)
A.(11),P(*) "' A(11) '

as desired.

Protocol P is correct.
The committal function XA was a well-defined committal function associated with simulator S

for A attacking P. By our definition of the simulator S, XA = XA remains a well-defined committal
function associated with S, for A attacking P. We know that, almost certainly (over coin flips i
and r A, and uniformly, across (iii, a)), each good player running P computes];(X.(xps, r, TA, a, k)).
Whenever this event occurs, each good player i in the protocol P computes];(;i(!ips, r, rA, a, k))ffip; =
f;(X(i,pr,rA,a,k)). Almost certainly, then, each good player i computes f;(x(x,r,r11,a,k)).

•
5.4 Independence of Committed Inputs

This section demonstrates that what the adversary commits to in an execution of a secure protocol
is essentially independent of the inputs held by currently uncorrupted players. Stating this theorem
in a precise yet intuitive way is tricky - both because the adversary necessarily can commit values
which are quite dependent on the values held by good player (but somehow they are not meaningfully
correlated), and also because the number of players and the input length are not regarded as being
fixed.

67

5.4.1 Minimum dependence on input distributions

Let l = {le} and I' = {I~} be families of distributions, each c E U Le specifying distributions I,
and l~ on tuples (i,ii,aA,c) E Le. We wish to investigate the adversary's limitations in guessing
which of the two distributions the initial configuration is drawn from. To do this, consider the
following two games:

Game 1 (Distinguish I and /' using a secure protocol]. A protocol P which t-securely
computes f = {/e} is run in the presence of a slightly "special" polynomial-time adversary A. The
speciality of the adversary consists of her being able to specify-via a network interaction function

Guess: {O, 1r - {o, 1r
~~
current guess of
state I or I'

which gives A's "guess" as to whether the input configuration was drawn from I or from/'. When
the adversary's committal becomes well defined (as specified by .AI) the bit specified by Guess is
taken to be this guess.

To quantify how well the adversary A does in distinguishing I from I' during the execution of
protocol P, define the adversarial distinguishability of these ensembles by

adv-distA,P,l,l'(c) = IEc1,a,aA,e)o-lo GuessA,P(i,ii,aA,c, r,rA)-

Ec1,a,aA,c)o-I~ GuessA,P(i, ii, aA, c, r, TA) 1,
where GuessA,P(i, ii, a A, c, r, r A) denotes A's guess when the initial configuration is specified by
(i, ii, aA, C, r, TA)•

Game 2 (Distinguish I and I' using component queries). Let D0 be a distinguisher having
access to an ideal evaluation oracle 0(i, ii). (That is, the oracle only makes component queries,
no output queries. There is, implicitly, some bound t on the number of permitted queries.) By
Doc1,a)(c,aA), where c = lc#ln#ll#11#1m#Cc, we denote the distribution induced on D's output
when its input is (c, aA) and its oracle responds to up tot component queries i with (xi, ai)·

To quantify how well D 0 distinguishes between I and I', define the inherent distinguishability
of these families of distributions by

inherent-distD.,1,1•(c) = jEc1.a,aA,c)-1• D~1·">(c, a A) - Ec.1,a,aA,c)o-J~ D~(.f,if)(c, aA)j .

The inherent distinguishability of ensembles I and I' can be considered a.s a lower-bound on the
extent to which they can be distinguished by polynomial-time algorithms given the ability to
adaptively "open" a bounded number of components of (i, ii).

One expression of independence of what the adversary is committing to lies in the fact that the
adversary cannot win at Game 1-where she gets to run protocol P-significantly better than she
could win at Game 2-where she does not bother to run the protocol at all, but just talks to an
ideal evaluation oracle which can make at most t component queries, instead. More formally, we
have the following theorem:

Theorem 5.9 Let P is at-secure protocol for some function family f. Then for any t-adversary A
there exists a distinguisher D 0 such that for all pairs of ensembles I= {le} and I' = {/~},

£(k) = sup ladv-distA,P,1,1•(c) - inherent-distD,1,11 (c)I
e:l•#···

is negligible.

68

Proof sketch: Since P is a secure protocol for f, there exists a simulator S which, when given
an n 1(i,a)-oracle and interacting with an adversary A having advice aA and sharing common
input c with the network, provides to A a view computationally indistinguishable from that which
the network provides on input (i, a, aA, c). The distinguisher D(J existentially guaranteed by the
theorem is constructed from S by simulating S interacting with A-but halting this simulation at
the point at which S attempts to make its output query. The output query is not made; instead,
at this point D reads off A's guess Guess, outputs the bit which it specifies, and terminates. Note
that the simulation-since it never actually ma.de its output query-can be carried out with only
an n,(i, ii) oracle.

To see that this algorithm D achieves the bound of Theorem 5.9, note that, by Proposition 5.4,
the ensemble provided by S to A when the initial configuration is I-distributed is computationally
indistinguishable over I to that provided to A by the network when the initial configuration is
/-distributed. Similarly, the ensemble provided to A by S is computationally indistinguishable
over I' to that provided by the network when the initial configuration is /'-distributed. The result
follows by Lemma. 5.5 and the transitivity of indistinguisha.bility (Proposition 5.2). •

REMARK. Add in: The same theorem with f value given to both.

5.4.2 Minimum dependence on good inputs

Let I= {/c} be a. family of distributions, each le a. distribution on tuples (i, a, aA, c). Let B be any
predicate on vectors, B: Un>3 t>o({O,l}tt-+ {0,1}. (Predicate B need not even be computable,
even for the case computa.tiona.lly bounded case of this theorem.) Consider the following two games:

Game 1' [Guess B using a secure protocol]. A protocol P which securely computes f = Uc}
is run in the presence of a polynomial-time t-adversary A. The adversary is a.gain equipped with a
network interaction function to allow it to specify a. "guess" Guess. This time, Guess is interpreted
as specifying a a. "guess" by A as to the value B(i), a guess which is specified when the committal
is made by A. The input configuration is distributed according to le.

To quantify how well the adversary does in guessing the predicate B, define the adversarial
approximability of B by A over I as

adv-appro:tA,P,B,r(c) = Prob[GuessA,P(i, ii, a, c, r, r A)= B(i)],

where the probability is ta.ken over (i, a, a A, c) being distributed according to l1i:, (where c = 11c · · ·),
and the uniform distribution on coins rand r A• Here GuessA,P(i, a, a, c, r, r A) denotes the guess
that A makes (as specified by Guess) in the execution of protocol P when the initial configuration
is given by (i, a, a, c, r, r A)•

Game 2' [Guess B using component queries]. Let G be a distinguisher having access to an
ideal evaluation oracle n(i,a). By GO(l,.J)(c,aA), where c = 1/r#ln#lt#11#1m#Cc, we denote the
distribution induced on G's output its input is (c, a A) a.nd its oracle responds to up to t component
queries i with (zit a1).

It is G's job to guess the value of B(i). To quantify how well D does this, define the inherent
approximability of predicate B by

inherent-approxG,s,r(c) = Prob[G01<U)(c, aA) = B(i)],

where the probability is taken over (i, a, a A, c) being /1r-distributed. The inherent approximability
of predicate B over I ca.n be considered as a. lower bound on how accurately B(i) ca.n be guessed

69

by a polynomial-time algorithm when the initial configuration is I-distributed and the algorithms
are given the ability to adaptively "open" a bounded number of components of (i, ii).

One expression of independence of what the adversary is committing to lies in the fact that the ad
versary cannot win at Game 1'-where she guesses B based on a run of the protocol P-significantly
better than she could win at Game 2'-where she guesses B by just talking to at-bounded oracle.
More formally, we have the following theorem:

Theorem 5.10 Let P be a t-secure protocol for a function family f. Then for all polynomial
time t-adversaries A there exists a polynomial-time distinguisher G such that for all families of
distributions I= {le} and for all predicates B,

£(k) = e!~I'. .. ladv-approxA,P,B,1(c) - inherent-approxa,8 ,1(c)I

is negligible.

Proof sketch: The proof is similar to that of Theorem 5.9. As before, fixing an adversary A and
letting S be the simulator establishing security, the guessing algorithm G is constructed from S
by running the simulation of S interacting with A, but halting this simulation at the point at
which S attempts to make its output query. The output query is not made; instead, G reads
A's guess, outputs this bit, and terminates. That the distinguisher G approximates B nearly as
well as the adversary approximates B when attacking the network running P and when the initial
configuration is I-distributed follows along the same lines as Theorem 5.9. •

5.5 Reducibility

Suppose you want to design a secure protocol for some complicated task-computing some func
tion f, say. In an effort to make more manageable your job as protocol designer, you assume in
designing this protocol that you have some primitive, g, at your disposal. (As an example, you
might wish to design protocols assuming the ability to perform an oblivious transfer between any
pair of players.) You prove that P• securely computes f with respect to a "special" model of
computation, one for which an ideal evaluation of the primitive g is provided.

Now suppose you have continued your work and desiimed a protocol P1 which securely com
putes g. It is secure in the "generic" model of computation.

One would hope that you obtain a secure protocol for f (in the "generic" model of computation)
by inserting the code P1 wherever it is necessary in P' that g be computed. Such a reducibility
property offers the promise that we can not only design protocols top-down, but that, associated
to this design scheme, is a modular proof of security. On the other hand, without reducibility,
modular design of secure protocols may be impossible.

In this section, we show that our notion of security allows reducibility, establishing, after the
necessary preliminaries, a powerful reducibility theorem in Section 5.5.5

Before launching into effort, we wish to emphasize that reducibility is not the same as compos
ability. In fa.ct, reducibility is more subtle and interesting than serial or parallel composition. These
properties capture the sense in which, say, the concatenation of secure protocols remains a secure
protocol, or the parallel execution of secure protocols remains a secure protocols; but reducibility
captures the sense in which an ideal protocol can be replaced by a secure protocol. An explanation
of this notion necessarily requires the construction of specific computational models and notions of
security.

70

rs

traffic
p A s A

Figure 4: Left: a protocol and an adversary, sharing the ability to do ideal g-evaluation. The
traffic is defined to include the information coming into and going out of the adversary-side of the
box labeled g. Right: the simulator providing all traffic to A - including the appearance of the
box labelled g.

Some of this section is rather formal. We comment that we have found it impossible to reason
properly about reducibility when "intuitively clear" concepts like how to compose protocols are not
formalized; thus, we must specify an extremely explicit model of computation-and one tailored to
making it relatively facile to state and prove our theorems.

5.5.1 Issues in reducibility

Reducibility brings to light a variety of issues, including the need for devising special-purpose
models of computation and their corresponding notions of security, the importance of input and
output awareness, and the need for auxiliary inputs and adversary advice. We briefly discuss these
issues in this subsection.

SPECIAL-PURPOSE MODELS. When a protocol is designed under the assumption 1.at we provide a
certain primitive "for free," there must be formal notions crafted to reflect the new scenario.

The abstraction this special-purpose model is meant to capture can be described as follows.
The players are given a physical "box" to use to collaboratively compute g. At the beginning each
round, good and bad players insert values a.long the input wires to this box. At the beginning of
the next round, good and bad player get the appropriate output back a.long the output wires of this
box. The box, of course, faithfully computes the function g applied to the vector of values coming
in along its input wires.

We need to make this abstraction into a definition of a protocol in the model of computation
allowing ideal evaluation of g. For simplicity, we imagine that the protocol makes just one call
to the ideal evaluation of g, for the case where this occurs more often (or even every round) is
then easily handled. Explicitly, at the end of some particular player round r, each player is to
have "written" in his computational state his input wi to the ideal evaluation of g. Likewise, the
adversary, at the end of her round r, must have "written" in her computational state some tagged
vector w;.., where Tis the set of currently-corrupted players. At the beginning of the player's next
round, each good player i learns the 9i(my U w;..), while, at the beginning of the adversary's next
round, she is given 9T(myU w;.). This model of computation is pictorially depicted on the left hand
side of Figure 5, and it will be formalized in Section 5.5.3.

After understanding the revised model, we must describe what security means for it. The

71

notion is essentially the same as before: in particular, one demands a simulator that produces the
appropriate views for the adversary. Of course, these views now include the output from the ideal
evaluation of g. But the simulator is given no special abilities to produce these outputs. The notion
of player and adversary traffic, though, is slightly amended to accommodate the new scenario, as
we now discuss.

AWARENESS. Note that if the players have a physical "box" to use to collaboratively compute g,

then the values w~ that the adversary inserts along the "input wires" to this box should thus be
considered as pa.rt of her traffic-something the adversary is definitely is aware of. Similarly, the
values 9T(w~ U WT) that the adversary gets back along the "output wires" of the box are again
something she definitely knows, and should be considered as part of her traffic.

The construction of the simulator implicit in the claim that we have a secure protocol in the
model of computation providing an ideal evaluation for g will, in general, need to have the simulator
"see" the adversary's contribution w~: if the simulator were denied this information, it could not,
in general carry out the simulation-as can be seen by considering the case where g is the identity
function, Ui(w) = w,.

Furthermore, modeling the idea that the adversary can extract the output received from the box
is important. Imagine the "box" being replaced by a protocol, and suppose an adversary derived
from A1-an adversary designed to attack the protocol with ideal g-evaluation-is to be set loose on
the composite protocol. Even if the adversary promises to make no corruptions during the execution
of the subprotocol, there is still no natural sense in which the adversary attacking the composite
protocol can be derived from an adversary attacking the protocol with ideal g-evaluation-unless
we mimic the possession of adversary output in the ideal evaluation of g. This would show up
as a technical impediment to establishing reducibility, prohibiting the natural construction of a
simulator.

AUXILIARY INPUTS AND ADVERSARY ADVICE. At the time at which an abstract protocol for g is
invoked, the players a.re in some computational state. Most of this computational state is irrelevant
to the computation of g. However, it might be highly correlated with other player's inputs tog.

Were we not to have included auxiliary inputs in our formulation of security we would be unable to
assume that the adversary, being granted this information associated to player i when she corrupts
him, would admit simulatability. Similar statements apply to the adversary's advice.

5.5.2 Subroutine composition

For protocols designed for subroutine composition, we augment the notion of a protocol as follows:
in addition to the four interaction functions associated with a protocol-77, M, m and o-we provide
a subroutine input function

i: {O, 1r -+ {O, 1t_,__,_
current
state

input to
subroutine

To describe our reducibility theorem, it is necessary to specify the mechanics by which one
protocol calls another. For simplicity, we will describe only the case in which a protocol P calls an
R-round protocol Q, and it does this at some particular round f.

The sequence of computational states that a player goes through is depicted in Figure 5. We
~stablish the convention that there is no activity in the players' rounds 0, r + 1, and r + R + 2, and,
consequently, there is no message delivery to the players in rounds 0, 1, r+ 1, r+2, r+R+2, r+R+3.
Notice how saved state from the subroutine call is not considered pa.rt of the computational state

72

Player round Adversary round

0
(00 00) s; , r; , a;

*
0

1
(00 00) s; , r; , a;

1

f (sr°, rr°, a;)

f

r+l (i(s:)Ui, r:, a;Us:)
* r+l

r+2 (i(s:)Ui, r:, a;Us:)

r+2

r+R+ 1
((l'+R+l)O (l'+R+l)O u ') s; , r; , a; s;

r+R+ 1

r+R+2 (si:' •o(si:'+R+l) r~+R+i a·)
I I ' I ' I * r+R+2

r+R+3 (s~ •o(si:'+R+l) ri:'+R+l a·)
I I ' I ' I

r+R+3

Figure 5: The sequence of confi.gurations at the beginning of player i macro-rounds in a protocol
that calls an R-round protocol at time f.

of a player; this ensures that a protocol only depends on what it "should" depend on. Formally,
the sequence of player configurations is defined as follows:

if N(s?) =compute and either 1 ~ r ~ r or r ~ f + R + 3

(Q(c s"') r~' a~') 7 i 7 I , I if N(s?) =compute and r E [r + 2 .. r + R + 1]

if N(s?) ~flip-coin and r ¢ {O, r + 1, r + R + 2}

otherwise

73

if N(si) = round-done and
r <t {O, r, r + 1, r + R + 1, r + R + 2}

C[otherwise

while the adversary's sequence of configurations is given by:

where

cy+1)0 =

(A(rp) rp rp rp)
c, SA ' r A' a A' KA if N(s'"J) = compute

if N(s'"J) = flip-coin

if N(s'"J) = get-advice

K'"J u {i}) if N(s'"J) = corrupt;

{

(s'.:t•M'.l 1
, rA, a'.:t, K'.:t)

(s'.:t•, rA, aA, KA)

otherwise

if r <t {O, r, r + 1, r + R + 1, r + R + 2}

otherwise

{
siu;•a; ifrE{0,1,f+l,f+2,f+R+l,r+R+2}
si•x;•a;•m~;* · · · •m~;•E(H[) otherwise

and all other notation is as before. The player and adversary traffic have the same formal definition
as given previously, except that we add the proviso that all messages (M[, mi;, etc.) are defined to
be the empty string, for rounds 0, r + 1, and r + R + 2.

REMARK. Notice that if the adversary corrupts a player i during the execution of a subprotocol,
the adversary necessarily "learns" player i's input £; = t(sn into the subprotocol, since the saved
state sr was preserved and given to the adversary on corrupting i. The same preservation of player
input values was built into the definition of executing protocols in the presence of an adversary-in
the handing to the adversary on the corruption of player i the initial private input x; belonging to
that player.

5.5.3 Protocols with an ideal evaluation

Let g = {ge: ({O, 1}1
)" - ({O, 1}1

)". We consider an enriched model of computation in which the
players can compute the function g "for free."

To define the running in the presence of an adversary a protocol P• which assumes the ideal eval
uation of a function g, we augment the notion of a protocol as we did for subroutine compositions,

74

Player round Adversary round

f (s:'°, r:'°, ai)

f

r+l (t(sf)Ui, rf, aiUsf)
* r+l

r+2 (sf•gi(ti,···,tn), rf, ai)
*

f+l () SA *YT t1,···,ln r+2

r+3 (sf *Yi(ti,···, tn), rf, ai)
* r+3

r+4 (sr *Yi(t1, · · ·, Ln), rr, a;)

r+4

Figure 6: The sequence of configurations at the beginning of each macro-round for a player i in a
protocol in the model of computation providing ideal g-evaluation executed at round f.

by adding a function t on player computational states,

t: {O, 1r -+ {O, 1}' ..__...,, ..._,_._.
current
state

input
tog

Similarly, we augment the notion of an adversary by adding to the four interaction functions
associated to an adversary a g-input function

i: {O, 1r _ 211 .. nJx{o,1}' ..__...,,
current
state

input
tog

The behavior of a protocol with a. ideal g-evalua.tion is depicted in Figure 6. We establish the
convention tha.t there is no activity in rounds 0, f + 1, r + 2, or r + 3, and, consequently, no message
delivery in rounds 0, 1, r + 1, r + 2, or r + 3, and r + 4. The sequence of player and adversary
configurations is formally defined a.s follows:

(p(rp) rp rp) c, s; , ri , a; if N(s?) =compute and r ¢ {O, r + 1, r + 2, f + 3}

c~<P+i> =
I if N(s?) =flip-coin and r ¢ {O, r + 1, r + 2, r + 3}

otherwise

75

(r Mr r r) S; * i 1 T;, a; if r <I. {O, r .. f + 2}

if r = f

c; otherwise

while the sequence of configurations the adversary goes through is given by

c~<p+1> =

cy+l)O =

where

and

=

(A(rp) rp rp rp) c, s A ' r A ' a A ' ,.. A if N(s'J) =compute

(rp rp rp rp rp SA *TAl• TA2TA3 .. ·, aA 1
rp) K:A if N(s'J) =flip-coin

(rp rp rp rp rp rp) SA •a Al• r A' aA2aA3 ... , "'A if N(s'J) =get-advice

(rp ,.
SA *<1;' rp rp rp {"}) r A' aA' "'A u i if N(s'J) =corrupt;

C'" A otherwise

(,. M'"+l ,. '"P ,.) SA* A I r A• aA I "'A if r ¢ { 0, f .. f + 2}

(sA*9T(ti.···,tn), rA, aA, x:A) if r = f + 1

otherwise

£;

if r E {O, 1, r + 1, r + 3, r + 4}
ifr=r+2
otherwise

Player i's round-r traffic is given by

t':
I =

while the adversary's round-r traffic is given by

=

76

if r-:/:: f + 1
ifr=r+l

if r ¢ { r + 1, r + 2}
if r = f + 1
if r = r + 2

All messages, above, are defined to be the empty string for round r E {O, r + 1, f + 2, r + 3}. The
traffic through round-r is defined exactly as before.

REMARK. Notice how, in the formalization above, the traffic includes the values "input" by the
adversary into the ideal evaluation of g, and the values "output" by this ideal evaluation are, in
the following round, given back to the adversary.

5.5.4 Security in this model

The definition of security in the new model of computation is almost exactly what is inherited by
using the new definition of how players and adversaries interact: A protocol Pt-securely computes a
function f in the model of computation providing ideal g-evaluation if there exists a simulator S for
it, at-admissible adversary input function AI, and an adversary output function AO, such that
Note that the simulator is now responsible for providing the "simulated g-output," "gT(ti, ... , tn)·"
Refer again to Figure 4 for a suggestive picture.

We said almost exactly because we add on a minor technical detail: we forbid the !-function
query to be made during the execution of the ideal g-evaluation. More precisely, if AI(c, T~) =
not-yet, then AI(c, ~+3) 'f:. not-yet, too.

This assumption can be justified in several ways. First, allowing an !-output query to be made
by the simulator during the execution of the ideal g-evaluation goes against the intuition that we
have properly reduced the computation off to that of g. Second, we have chosen a formalization
that allows no message delivery during the execution of the ideal g-evaluation-and it goes against
the intuition (and the existence of the local input function) to say that a committal occurs at
a moment when no messages are delivered. Finally, the assumption is necessary to prove our
reducibility theorem.

5.5.5 The reducibility theorem

Under the assumption that g has a secure protocol, and when there is a protocol pg that securely
computes a function fin the model of computation which assumes ideal evaluation for g, we show
that we can do without the enriched model of computation: by substituting into pg the code for
the protocol Pg that securely computes g, we get a secure protocol that securely computes fin the
"generic" model of computation. Diagrammatically, we wish to do without the box labeled g that
appear in Figure 4.

If pg is a protocol in the model of computation that assumes the ideal evaluation of g at round f,

and if Pg is fixed-round protocol, then by pP. we denote the protocol that consists of pg modified
so as to call P1 in round r; this is a protocol in the "standard" model of computation.

Theorem 5.11 Lett EN, and let f: ({O,l}tr - ({0,1}1)n be a function. Suppose there is a
protocol P' that t-securely computes f in the model of computation in which it can perform an
ideal g-evaluation at some fixed round f. Suppose also that there is an R-round protocol P, that
t-securely computes g. Then the protocol P = pP., in which P' calls Pg as a subroutine at round r,
is at-secure protocol for computing f.

Stronger statements of this theorem are possible, but this one was already difficult enough to state!

Proof sketch: This proof is an unfinished remnant from times ptUt. It requires substantial updating,
and is left here only to give some idea of the argument involved in the constroction of the simulator.

77

Protocol P is the composite protocol consisting of pg calling Pg at round f, where pg is the
protocol that computes fin the model of computation assuming g-hardware active at round f, and
Pg is the R-round protocol computing g.

To show that P t-securely computes f, we must construct a simulator S = (S, AI, AO) and
show that the simulator "works" to establish privacy and correctness. Before beginning this, fix
the following notation: that s• = (SI' AV' AO') is the simulator existentially guaranteed for p1
by its security, and 81 = (S1 ,AI1 ,A01) is the simulator existentially guaranteed for Pg by its
security. We now specify, in turn, the functions AI, AO, and S.

DEFINITION OF AI. The adversary input function for P is derived from the adversary input
function AI' in a natural manner. Given traffic T,4, if the traffic is so short that Pg has not
yet been called, we apply AI' directly to T.4; if T,4 indicates that Pg is currently running, we
return not-yet for AI(TA), an action which will be justified by our assumption that a simulator
for a protocol with g-hardware does not makes its !-output query during the simulation of the
computation of g; and, finally, if TA indicates that P1 has already been completed, then we extract
the portion of T.4 in which P1 was running, obtain values for Aig and AO, from this portion of
the traffic, and, using these, construct a recoded version of TA to which AI' is applied in order to
compute AI.

Making this more precise, for r ~ f + R + 2, write

TA = C*KA*TA[O .. f)
TA[r+l..r+R+l]
TA[r + R + 2 ..)

where TA[O .. f] ends with the (r + l)th "11"-character in T.4; and TA[r + 1..f + R + 1) begins with the
character following that and ends with the (f + R + 2)nd "11"-symbol in T,4; and T,4[f + R + 2 ..]
begins with the character following that and includes all of the rest of the string T,4. Let

where
x:~ = x:A U { i : •i• is a substring of T.4 (O .. r]};

that is, x:~ is the set of all processors that the traffic TA indicates were corrupted by time (f,), and
Tg is the properly recoded traffic from the portion of the protocol in which Pg was being run.

Let Irr be the non-void value Irr = Aig(c, T1 [0 .. r']) associated to some prefix of T1 , where T1 [0 .. r']
is the prefix of r1 terminated by the (r' + l)st "11"-symbol. This is the "input" in the subprotocol,
as extracted from the traffic. Let "YT = A01(c, T1); this is the "output" of the corrupted processors
which the adversary could compute on their behalf.

Let {ii, ... , i 0 } = T be the sequence of processors, in order, corrupted by the adversary before
the adversary's committal '1' = AI1 (c, r 1[0 .. r']) became defined, and let { i0 +1, ···,ii'} = T - T be
the ordered sequence of processors corrupted after the adversary's committal Irr became defined.
Let srj' arj and Si; be defined by the presence of the substring

· r; f' II f' II
•&;•*Si;* Si; llai; 11Si;

in rg. The "recoded traffic," recode(r.4), is given by

recode(rA) = cMA*rA[O .. r]

78

and, finally, define

tr•

*IT
• f' f'

•ia+l •s; .. +1 *ai .. +1 *Xi .. +1 */i .. +1

. f' f'
eip•S;.s *ai.s *X;.s */i.s•

r~[r + R + 2 ..]

if r ~ r

{

.A.19(r~)
.AI(r~) = not-yet

.AI' (recode(_ r~))
if r E [r + 1..r + R + 1]
if r ~ r + R + 2

DEFINITION OF .AO. In an r-round execution of an adversary with protocol P, the adversary
output is defined by

AO(r~) = AO' (recode(_ r~)).

DEFINITION OF S. The simulator S for Pis produced by "properly combining" the simulators S9

and 51 • The main difficulty lies in properly dealing with the queries made by the simulator S1 ,

since S lacks the 0(~ i•i; g)-oracle which 51 expects.
Simulator S will "simulate" the simulators S1 and 51 • To this end, it uses separate and inde

pendent coin flips rs• and rs,· The simulator 5 is defined as follows:

1. Rounds O .. r. Beginning with the simulator's round 0 and continuing until the simulators
round f, 5 behaves exactly as 51 behaves. That is, 5 simulates the behavior of 5 1 during
these rounds, communicating with A exactly as 5' would communicate with A. At the end
of this, the simulator 51 is in some computational state s~., with some set of corrupted
processors at this point "~.

2. Rounds r + 1..r + R + 1. Beginning with the simulator's round r + 1 and continuing until the
completion of the simulator's round r + R + 1, simulator 5 runs the simulators S1 and S, in
the manner we now describe.

Simulator S continues to interact with A, but now it uses the algorithm S1 to decide on its
messages to A. Simulator 51 is initially in computational state C*"~· There is an immediate
question that must be answered: how is the simulator S to answer 51 's oracle queries when
it is not equipped with an (~ i.iUi; g)-oracle. We now describe how S does this:

(a) When A corrupts a processor i and, consequently, 51 makes a component query of i,
processor i has been corrupted, and so 5 "knows" a string si •a;Usr •x;. The algorithm
S simulates S• having just received a corruption of i and component query answered by
(t(sD, a;Usn. The simulator S1 outputs a string for A which S itself outputs for A.

79

(b) Similarly, S1 is told that processor i has just been corrupted, and S• is given a component
query response of (z;,a;). Simulator S9 prepares an outgoing message for the adversary
with which it interacts, but this message is ignored by S.

(c) Suppose now that S, make an output query of i'r. Then i'r• is properly appended to the
traffic r' between the simulator S9 and the adversary (indicating the end of round f + 1,
as far as 51 is concerned), and 51 is allowed to run, determining a value /T = 4°>(s~+i)o).
The output query of S1 is now answered by "'tT·

(d) ff, in the future, a processor i is corrupted, then S just learned a value sia;#sr*x;. Simu
lator S• is then executed with component query i answered by (x;, a;). The simulator S'
returns a value sr •a;#sr *1'i· The component query of Sg is answered by ((l(sD, attsD, "}';).

(e) When round f + R + 1 has been completed, the traffic r1 for the simulator S1 is updated
by appending a "m"-character, indicating-to S'-the end of round f + 2. Simulator S 9

is now in some computational state s~+2 •

3. Rounds [r + R + 2 .. end]. During A's round f + R + 2 and continuing until termination, S
behaves exactly as 51 dictates, beginning in state s~+2 •

THE CONSTRUCTION WORKS. To argue correctness, we begin by constructing an adversary A•
intended for attacking protocol P•-and an adversary A,-intended for attacking the protocol P1 •

Of course these adversaries are constructed based on adversary A.

DEFINITION OF A1 • Adversary A1 is precisely adversary A, except that its advice is used to
initialize its state. That is, the first thing A1 does is request some advice, the answer to which
determines the initial state of A1 • Thereafter, A1 behaves exactly like A. The security of P1

DEFINITION OF A'. The adversary A' behaves as follows:

1. Rounds 0 .. f. Between A1 's round 0 and A•'s round f, inclusive, A1 behaves exactly as A
behaves. That is, A• simulates the behavior of A during these rounds, corrupting processors
when A does, and communicating with the network with which it is running exactly as A
would. At the end of this, the simulated adversary A is in some computational state s~.

2. Round f + 1. During A•'s round f + 1, A• will "play a game in her head"-a game which
we now describe. During this game, various processors will be corrupted, and the state of
adversary A will be updated.

In this game, the adversary A• simulates the behavior of A-beginning in state s~ •-talking
to the simulator S1 • The coins A' uses in the simulation of S1 are distinct and uncorrelated
to the coins A' provides to the simulated adversary A. There is an immediate question that
must be answered: how is adversary A' to answer the simulator S1 's oracle queries when, in
fact, A• has no oracle? We now describe how A• does this.

(a)

(b)

When, in the simulation, A corrupts a processor i and, consequently, S, makes a compo

nent query of i, A' actually does corrupt processor i. This results in A1 obtaining a string
c•t(sn•i•ai*"i· The component query asked by S1 is then answered by (c•i(sD•i, ai•sn.
When S1 makes an output query of t-r, A• encodes within its computational state the
information required so that i'(s~.) = VJ' and N(s~.) = round-done. At this point in
time, with the simulated adversary A in some computational state s~ p', A• is done with
its round r + 1 activities.

80

3. Round r + 2. At the beginning Al's round r + 2, she has been presented a set of values
iT· (H A1 is interacting with a network, 'YT = 9T(£1 • • • tn)), where T is the set of currently
corrupted processors a.nd t; is given by Equation ?? .) Adversary Al uses iT to answer the
oracle's output query, and the "mental game" Al is playing using A (which is now in state
s~p') continues. This may result in additional corruptions by the simulated adversary A.
When the simulated adversary A corrupts a processor i, resulting in S9 making a component
query of i, A' actually does corrupt processor i, obtaining a value sf *'Y;*a;. The component
query is then answered by ((c•i(sr)•i, a;*sr), "f;), and the simulation continues until A's
round r + R + 1 has been completed. After that, with the simulated adversary A's in some
computational state s~+R+i, adversary A1 is done with her round f + 2, and enters round-done
into her computational state.

4. Rounds rt 3 .. end. During Al's round ft3 and continuing until its termination, A9 continues
to simulate the behavior of A (starting off in state s~+R+i•-until A terminates. At this point,
A1 terminates as well, outputting what A outputs.

5.6 Existence and Other Folklore

5. 7 Discussion

81

•

Acknowledgments

In distilling our notion of secure computation we have benefitted highly from the beautiful insights
of those who preceded us.

This work may not have come about without the earlier notions of secure function computation
set forth by Yao [Ya82a, Ya86), and by Goldreich, Wigderson, and the first author [GMW87].

A more recent, fundamental source of inspiration was provided by the work of Kilian [Ki89]
and the joint work of Kilian and the authors [KMR90]. Some of the knots solved here were first
identified and/ or untangled there.

An equally crucial role was played by the work of Claude Crepeau and the first author [Cr90],
which also provided us with a wonderful source of examples that proved crucial for distilling our
notion.

We have also gained plenty of crucial insights from Goldwasser's, Rackoff's, and the first author's
work on the earlier, related notion of a zero-knowledge proof [GMR89].

Last but not least, we would like to thank the many friends with which we exchanged ideas
about secure protocols for so many years.

I (the first author) was fortunate to have had Manuel Blum, Shafi Goldwasser, Oded Goldreich,
Charles Rackoff, and Michael Fischer as traveling companions in very heroic times, when secure
protocols were a totally unexplored and hostile territory. A bit more recently, my very special
thanks go to my (cryptography) students Paul Feldman, Claude Crepeau, Phil Rogaway, Mihir
Bellare, and Rafail Ostrovsky, from which I continue learning an enormous amount.

I (the second author) happily thank Mihir Bellare and Joe Kilian for many nice discussions on
protocols and cryptography.

82

References

[Be91a.] D. BEAVER, "Formal Definitions for Secure Distributed Protocols," in Distributed
Computing and Cryptography - Proceedings of a DIMACS Workshop, October 1989.
(Pa.per not presented a.t workshop but invited to appear in proceedings.)

[Be91b] D. BEAVER, "Foundations of Secure Interactive Computing," to appear in CRYPT0-91
Proceedings.

[BG89] 0. BEAVER AND S. GOLDWASSER, "Multipa.rty Computations with Faulty Majority,"
Proc. of the 30th FOGS (1989), 468-473.

[BMR90] D. BEAVER, S. MICALI AND P. ROGAWAY, "The Round Complexity of Secure Proto
cols," Proc. of the 22nd FOGS (1990), 503-513.

[BF85] J. BENALOH (COHEN) AND M. FISCHER, "A Robust and Verifiable Cryptographically
Secure Election Scheme," Proc. of the 26th FOGS (1985), 372-381.

[BGW88] M. BEN-OR, S. GoLDWASSER AND A. WIGDERSON, "Completeness Theorems for
Non-Cryptographic Fault-Tolerant Distributed Computation," Proc. of the 20th STOC
(1988), 1-10.

[Bl82] M. BLUM, Coin Flipping by Telephone, IEEE COMPCON, (1982) 133-137.

[BM82] M. BLUM AND S. MICALI, "How to Generate Cryptographically Strong Sequences of
Pseudo-Random Bits," SIAM J. of Computing, Vol. 13, No. 4, 1984, 850-864. Earlier
version in Proc. of the 23rd FOGS (1982).

[Ch81] D. CHAUM, "Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms," Comm. of the ACM 24 (2) February 1981, 84-88.

[BCC88] G. BRASSARD, D. CHAUM AND C. CREPEAU, "Minimum disclosure proofs of knowl
edge," Journal of Computer and System Sciences, Vol. 37, No. 2, October 1988, 156-
189.

[CCD88] D. CHAUM, C. CREPEAU AND I. DAMGARD, "Multipa.rty Unconditionally Secure Pro
tocols," Proc. of the 20th STOC {1988), 11-19.

[CDG87] D. CHAUM, I. DAMGARD AND J. VAN DE GRAFF, "Multipa.rty Computations Ensur
ing the Privacy of Each Party's Input and Correctness of the Result," CRYPT0-87
Proceedings, 87-119.

[CG89] B. CHOR. AND E. KusHILEVITZ, "A Zero-One Law for Boolean Privacy," Proc. of the
21st STOC (1989), 62-72.

[CGK90] B. CHOR., M. GEREB-GRAUS AND E. KusHILEVITZ, "Private Computations over the
Integers," Proc. of the 31st FOGS (1990), 325-344. Earlier version by Chor and Kushile
vitz, "Sha.ring over Infinite Domains," CRYPT0-89 Proceedings, Springer-Verlag, 299-
306.

(CGMA85] B. CHOR, 0. GOLDWASSEB., S. MICALI AND B. AWERBUCB, "Verifiable Secret Sha.ring
and Achieving Simultaneity in the Presence of Faults," Proc. of the 26th FOGS (1985),
383-95.

83

[Cr90] C. CREPEAU, "Correct and Private Reductions Among Oblivious Transfers," MIT
Ph.D. Thesis, February 1990.

[DLM] R. DEMILLO, N. LYNCH, AND M. MERITT, "Cryptographic Protocols," Proc. of the
14th STOC (1982) 383-400.

[DH76) W. DIFFIE AND M. HELLMAN, "New Directions in Cryptography," IEEE Transactions
on Information Theory, 22(6) (November 1976). 644-654.

[Ed65) J. Edmonds, "Paths, Trees, and Flowers," Canadian J. of Mathematics, 17:449-467,
1965.

[FFS87) U. FEIGE, A. FIAT, AND A. SHAMIR, "Zero Knowledge Proofs of Identity," Proc. of
the 19th STOC (1987), 210-217.

[FS90] U. FEIGE AND A. SHAMIR, "Witness indistinguishability and witness hiding proto
cols," Proc. of the 22nd STOC (1990), 416-426.

[FS91) U. FEIGE AND A. SHAMIR, "On Expected Polynomial Time Simulation of Zero Knowl
edge Protocols," in Distributed Computing and Cryptography - Proceedings of a
DIMACS Workshop, October 1989.

[Fe88) P. FELDMAN, "One Can Always Assume Private Channels," unpublished manuscript
(1988).

[FM90) P. FELDMAN AND S. MICALI, "An Optimal Algorithms for Synchronous Byzantine
Agreement," MIT/LCS Technical Report TM-425 (June 1990). Previous version in
Proc. of the 20th STOC (1988), 148-161.

(GHY87) Z. GALIL, S. HABER AND M. YUNG, "Cryptographic Computation: Secure Fault
Tolerant Protocols and the Public-Key Model," CRYPT0-87 Proceedings, 135-155.

[Go89] O. GOLDREICH, "Foundations of Cryptography - Class Notes," Spring 1989, Technion
University, Haifa, Israel.

[GL90] S. GOLDWASSER AND L. LEVIN, "Fair Computation of General Functions in Presence
of Immoral Majority," CRYPT0-90 Proceedings, 75-84.

[GM84) S. GOLDWASSER AND S. MICALI, "Probabilistic Encryption," Journal of Computer
and System Sciences, Vol. 28, No. 2 (1984), 270-299. Earlier version in Proc. of the
14th STOC (1982).

[GMR89] o. GOLDWASSER, s. MICALI, AND c. RAcKOFF, "The Knowledge Complexity of
Interactive Proof Systems," SIAM J. of Comp., Vol. 18, No. 1, 186-208 (February
1989). Earlier version in Proc. of the 17th STOC (1985), 291-305.

[GMR88) S. GOLDWASSER, S. MICALI, AND R. RIVEST, "A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks," SIAM Journal on Computing, 17(2):281-
308, April 1988.

(GMW87) 0. GOLDREICH, S. MICALI AND A. WIGDERSON, "How to Play Any Mental Game,"
Proc. of the 19th STOC (1987), 218-229.

84

[GV87)

[Ha88)

[HU79]

[Ki89]

[KMR90]

[Le85]

[LMR83]

[Me83]

[MRS88]

[Or87]

[PSL80]

[Ra81]

[RB89]

[SRA81]

[TW87]

[Ya82a]

[Ya82b]

f:Ya86]

0. GoLDREICH AND R. VAINISH, "How to Solve any Protocol Problem-An Efficiency
Improvement," CRYPT0-87 Proceedings, 76-86.

S. HABER, "Multi-Party Cryptographic Computation: Techniques and Applications,"
Columbia University Ph.D. Thesis (1988).

J. HoPCROFT AND J. ULLMAN, Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, 1979.

J. KILIAN, "Uses of Randomness in Algorithms and Protocols," MIT Ph.D. Thesis,
April 1989.

J. KILIAN, S. MICALI, AND P. ROGAWAY, "The Notion of Secure Computation,"
manuscript, 1990.

L. LEVIN, "One-Way Functions and Pseudorandom Generators," Combinatorica,
Vol. 17, 1988, 357-363. Earlier version in Proc. of the 17th STOC (1985).

M. LUBY, S. MICALI AND C. RACKOFF, "How to Simultaneously Exchange a Secret
Bit by Flipping a Symmetrically Biased Coin," Proc of the 24th FOGS (1983).

M. MERITT, "Cryptographic Protocols." Georgia Institute of Technology Ph.D. Thesis,
Feb. 1983.

S. MICALI, C. RAcKOFF AND B. SLOAN, "The Notion of Security for Probabilistic
Cryptosystems," SIAM J. of Computing, 17(2):412-26, April 1988.

Y. OREN, "On the Cunning Power of Cheating Verifiers: Some Observations about
Zero Knowledge Proofs," Proc. of the 28th FOGS (1987), 462-4 71.

M. PEASE, R. SHOSTAK AND L. LAMPORT, "Reaching Agreement in the Presence of
Faults," J. of the ACM Vol. 27, No. 2, 1980.

M. RABIN, "How to Exchange Secrets by Oblivious Transfer," Technical Memo TR-81,
Aiken Computation Laboratory, Harvard University, 1981.

T. RABIN AND M. BEN-OR, "Verifiable Secret Sharing and Multiparty Protocols with
Honest Majority," Proc. of the 21st STOC {1989), 73-85.

A. SHAMIR., R. RIVEST, AND L. ADLEMAN, "Mental Poker," in Mathematical Gar
dener, D. D. Klamer, editor, Wadsworth International {1981) pp 37-43,

M. TOM PA AND H. WOLL, "Ra.ndom Self-Reducibility and Zero Knowledge Interactive
Proofs of Possession of Information," Proc. of the 28th FOGS {1987), 472-482.

A. YAO, "Protocols for Secure Computation," Proc. of the 23 FOCS (1982), 160-164.

A. YAO, "Theory and Applications of Trapdoor Functions," Proc. of the 23 FOGS
{1982) 80-91.

A. YAO, "How to Generate and Exchange Secrets," Proc. of the 27 FOCS (1986).

85

