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Abstract 

This thesis describes a lexical study of phoneme collocational constraints using a 
metric motivated by information theory. Phonologists have long been describing the 
permissible combination of phonemes in the form of phonotactic rules. They have 
shown that these rules often can be expressed in terms of phoneme equivalence classes. 
Thus, for example, the homorganic rule for American English states the a syllable-final 
nasal-stop pair must agree on their place of articulation. Over the past decade, there 
have also been many lexical studies examining the constraining power of phoneme 
equivalence classes, demonstrating their utility for lexical access. While there are 
good reasons to express these constraints using classes well motivated by theory, the 
phoneme space clearly can be partitioned in many other ways. It is conceivable that, 
by allowing phonemes to form various sets of equivalence classes and quantifying the 
constraining power for each set, we may discover phoneme classes that will provide 
the strongest constraints for lexical access. Our line of investigation is inspired by 
recent work on word equivalence classes by Jelinek and word collocational constraints 
by Church. 

Specifically, we investigated phoneme collocational constraints using a normalized 
measure of mutual information. A pair-wise, hierarchical clustering technique is used 
to combine phonemes into classes using this metric. The result of this clustering 
procedure can be displayed as a dendrogram, from which an arbitrary number of 
equivalence classes can be selected. 

We have conducted a number of experiments investigating the collocation con
straints of phoneme pairs and triplets. We found that in many cases phonemes are 
organized into classes that share certain phonological features. In fact, phonemes 
that have similar acoustic properties often exhibit similar collocational constraints. 
We also compared the constraining power of our phoneme classes with those chosen 
with a phonological criterion, and found ours to be more than competitive. Based 
on our results, we conclude that our information theoretic metric is particularly well 
suited to a description of lexical constraining power. We discuss the implications of 
the results to automatic speech recognition. 

Thesis Supervisor: Victor W. Zue 
Title: Principal Research Scientist 
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Chapter 1 

Introduction 

This thesis explores phoneme collocational constraints, their use in discovering phono

logical equivalence classes, and their application for lexical access. Specifically, we 

employ an information theoretic metric over the collocational constraints to form a 

phoneme hierarchy. In this chapter we review how previous studies have investigated 

phonemic constraints. We will then discuss both the empirical and experimental bases 

which motivate our study. 

1.1 Units and their Organization 

Spoken language is composed of units of varying scales. Phonemes constitute the 

finite set of contrastive sounds in a language. The syllable, though controversial, 

seems involved in the mental representation of language. Morphemes are the smallest 

unit of meaning. Words, phrases, sentences, and discourse convey more detailed 

express10ns. Units at a particular scale are combined to form the units of larger 

scales. 

These units cannot be combined haphazardly. Language provides constraints on 

how the units can be assembled to form valid structures. The constraints can be 

applied to improve the performance of machine-based speech recognition by reducing 

the difficulty of the task. To do so it is important to understand how the constraints 

can be represented and how much constraining power they offer. 

Constraints at different levels have been studied with varying degrees of thorough

ness. Word level constraints, which govern ordering of words into larger units, have 
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been particularly well-explored. Syntactic constraints have been codified in the form 

of grammars. Semantic constraints, for example restrictions between verbs and their 

objects, are beginning to be understood. Constraining power can be estimated by 

established metrics like perplexity. 

Our understanding of constraints at other levels is comparatively primitive and, 

to a large extent, anecdotal. In particular, the organization of phonemes into words 

is still poorly understood although its importance is unquestioned. How should these 

constraints be expressed? Can we quantify the applicability of a particular constraint? 

Is there a measure of correctness or excellence we can apply to evaluate discordant 

constraints? 

1.2 Linguistic Description of Phonemic Constraints 

Linguists have developed phonotactic rules to describe phoneme collocational con

straints, but they usually are achieved through enumeration and introspection. These 

rules are based primarily on phoneme environments, but factors from other levels can 

be incorporated into the constraints as well. For example, the homorganic nasal

stop rule states that a nasal followed by a stop within a syllable must be one of the 

following pairs: 

/mp/ 
/mb/ 

/nt/ 
/nd/ 

Thus we have words like /hemp/ and / lrend / but not * / lrenp /. This restriction is 

not enforced across syllable boundaries, as in / mklud /. Knowledge of this constraint 

can be used to aid lexical access in a speech recognition system by helping to anchor 

word or syllable boundaries at non-homorganic pairs. 

While these rules can be specified by enumeration of allowable sequences, they can 

be more compactly described using phonological properties, often properties suggested 

by linguists for other purposes. In the example above, we can say that the nasal and 

stop must have the same place of articulation. The fact that these constraints can be 

described in terms of properties suggests that phonemes may be organized into more 

than a flat structure. 
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One possible structuring mechanism is based on distinctive features [1]. These are 

a set of phonetic properties which describe a sound's manner of production and place 

of articulation. Sagey [2] proposes a structure in which the features are embedded 

in a hierarchy universal across languages. Because features can be used to partition 

the phoneme space into equivalence classes, it is implied that phonemes too can be 

arranged into a universal hierarchy. 

Stevens [3] discusses how one might use distinctive features for lexical access. He 

argues that the acoustic correlates of distinctive features are more robust than those 

of a particular allophone. Features provide a compact manner of representing allo

phonic variation and can specify both abrupt and gradual articulator movements. 

Furthermore, the redundancy inherent in features suggests an underspecified repre

sentation at the lexical level. Regardless of the mechanical benefits afforded by a 

feature-based lexical access strategy, we should ask how much lexical constraining 

power they provide. 

1.3 Previous Computational Studies 

Because spoken language has always had to contend with communication through 

a noisy channel, we expect that it has evolved to include mechanisms to enhance 

robustness. It is these mechanisms we wish to discover and exploit. 

Researchers have tried to quantify the constraining power of phonotactics. In 

doing so, they hope to find a set of classes which avoids the need to make fine phonetic 

distinction yet captures much of the constraining power inherent in the lexicon. Such 

broad classes are presumably more robust and easier to detect than the phonemes 

which they comprise. 

Shipman and Zue [4] performed studies showing that even a broadly characterized 

phoneme string provides substantial constraints for lexical access of isolated words. 

In some cases, the constraint is sufficient to identify the word without finer analysis. 

They categorized each phoneme into one of six manner classes and used the classes 

to map a lexicon into cohorts containing words with the same broad class patterns. 

To measure the efficiency of the broad classes they computed various statistics on the 

cohorts' sizes. Huttenlocher [5] refined the study by incorporating a better metric and 
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exploring the effects of lexical stress. He also showed how acoustic detectors could 

be constructed for the broad classes, an idea more fully developed by Fissore, et al. 

[6], as part of a complete speech recognition system. However none of these studies 

explored the effects of varying the broad classes and there was no experimental basis 

for the particular classes they chose. 

The lexical metrics used in these studies are questioned by Carter [7]. He ar

gues that a good lexical access metric should use a logarithmic scale, as it better 

characterizes the amount of additional work needed to identify a word. Accordingly 

he suggests using word entropy over a lexicon's broad-class cohorts to measure the 

constraining power provided. 

Vernooij, et al. [8] further refine this work by noting that after broad classification 

and lexical access we still need to perform finer phonetic classification to identify a 

word in a cohort. Again we would like to make as broad a categorization as possible to 

avoid classification errors. They use a constrained clustering technique to determine 

the best intermediate classes between their five broad classes and the phonemes. 

Their metric is based on the number of words uniquely identified by a proposed set 

of classes. 

1.4 Collocational Constraints in Language 

Previous computational studies relied on the introspection of researchers for the broad 

classification used. Clearly, there are many ways phonemes can be partitioned into 

equivalence classes. We would like to determine if some reasonable set of broad 

classes, reasonable in terms of existing linguistic theories and what might be detected 

acoustically, can be derived in a data-driven manner. If so, we will have a powerful 

confirmation that our intuition is right. If not, we can at least use the results to gauge 

the relative constraining power of some other broad class set. 

Work by Shannon [9] has shown that there are strong constraints on letter se

quences which can be applied to efficiently encoding texts. He demonstrated this by 

applying an information-theoretic metric to letter strings. As the length of the string 

increases, the uncertainty of the following letter decreases. Unfortunately, longer 

letter sequences also capture more idiosyncrasies of the text studied and so are less 
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applicable to other texts. 

Studies by .Jelinek [10] have shown that an information theoretic metric can be 

used to determine word categories from corpora. By combining words which occur 

in similar contexts, classes embodying both syntactic and semantic information are 

formed. These language structures are captured automatically without resorting to 

the incorporation of syntax or semantics in the metric. Church, et al., [11] perform 

similar computations but relax the word ordering requirement. This compensates for 

noise in the form of inserted words. 

Our goal is to apply similar techniques to pronunciations in order to find phoneme 

classes. In doing so, we will provide a more complete analysis of phoneme classes than 

is present in other studies. We are encouraged by the success of word-level studies 

as they capture linguistic information without explicitly requiring it. We expect to 

utilize the analogous structures at the phoneme level. 

1.5 Thesis Overview 

In this thesis, we will demonstrate a technique for capturing phoneme collocational 

constraints by classifying phonemes into a hierarchy. The approach we take is data

driven and relies on large lexicons to represent the language. By using an information

theoretic metric we will provide results which are meaningful and match the lexical 

access task's complexity. We evaluate these classes against classes suggested by other 

studies using measures motivated by the lexical access task. We propose a new 

evaluation metric which may be better suited to recognition systems, particularly 

continuous speech systems, than previous measures. 

The remainder of this thesis is as follows: In chapter 2, we outline the issues 

important to our study and give our philosophy for addressing them. Chapter 3 

shows how we automatically derive phoneme equivalence classes using large lexica, 

and provides comparison using historical measures. Finally, in chapter 4 we discuss 

possible extensions of this work. 
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Chapter 2 

Approach 

In this chapter we will outline our philosophy and methods of examining phoneme 

collocational constraints. We begin by looking at the general requirements and how we 

can avoid the weaknesses in previous work. Next, we provide the information theoretic 

measures used by this study and explain the issues involved in using them on phoneme 

strings. We then discuss the clustering technique and lexicon preparation. Finally, we 

give an example of how we can use collocational constraints to form phoneme classes. 

2.1 General Considerations 

We believe that a major flaw with previous phoneme and lexical studies were the 

preconceived notions as to how phonemes should be classified. There are proposed 

linguistic and acoustic classification schemes, but they may not entirely address the 

needs of lexical access specifically. 

Vernooij, et al., demonstrated using a self-organizing technique to develop a hier

archy spanning from broad-classes to phonemes that is oriented to speech recognition 

systems. However, they did not carry the experiments to their logical conclusion. 

Their technique can be used to organize all phonemes into a single hierarchy, a hi

erarchy free of the somewhat arbitrary broad classes. Then the entire hierarchy, 

including a new set of broad classes, will be "optimized" for lexical access. We would 

expect a system using such a hierarchy to deliver better lexical access performance 

than one in which part of the hierarchy is selected according to other criteria. 
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2.1.1 Use a Minimum of Preconceptions 

For lexical experiments we must choose a particular representation for pronunciations; 

in particular we must specify a phoneme inventory. A good metric should treat the 

resulting data symbolically and make no further assumptions about what sounds the 

symbols represent or how to organize them. Although we know linguistic units larger 

than the phonemes play a role in phonotactic constraints, we do not fully understand 

this mechanism. For both of these reasons, we place no additional constraints on 

the organization of phonemes. We make no claim as to the acoustic similarity of the 

phonemes in a cluster, nor do we require the cluster to conform to an external set of 

linguistic criteria. 

2.1.2 Maximize Data Utilization 

Phonotactics provide powerful constraints on sound patterns. For example, we know 

that there are severe restrictions on the permissible consonant clusters in English. 

A good metric should be able to exploit these constraints to avoid relying on other 

sources. A metric based on word comparisons does not adequately do this. 

Consider two words, one of the form CVCC and the other CCVC where C rep

resents a consonant and V represents a vowel. A metric which uses strict string 

comparison compares the nth characters of the two strings. In this example we com

pare vowels against consonants while a better method might compare the clusters 

and vowels separately. To remedy this we could try performing an alignment of sorts 

between the pronunciations. It is not clear how to carry out such an alignment. 

Furthermore, the alignment process would inherently impart a bias to the results. 

There is an additional problem with this measure: it partitions the lexicon based 

on the number of phonemes in each pronunciation. Thus it only compares a word 

against words with a like number of phonemes. This can result in sparse data problems 

and may make us miss important comparisons. It also implies that our lexical access 

strategy needs to compare only words of equal pronunciation length. This is only 

true if our recognition system always hypothesizes the correct number of phonemes. 

Instead we would prefer a metric which compares a word against all others. A 

metric based on phoneme collocational data can do this because it represents all 
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pronunciations in an abstract form. By usmg such a metric we in turn hope to 

develop a phoneme hierarchy which reflects the phoneme collocational constraints. 

2.1.3 Apply Information-Theoretic Measures 

Other studies have demonstrated the power of applying information measures in other 

language related domains. Information measures have been shown capable of captur

ing word classes by combining relevant contexts. By using them properly, we should 

be able to extract phoneme classes by exploiting phonotactic constraints. We can do 

so without explicitly having to specify the nature of these constraints. 

Another benefit of information measures is that they are based on a solid mathe

matical foundation. Moreover, the value produced by an information measure usually 

is easy to interpret. 

We can use mutual information to specify a metric which does not partition a 

lexicon. To do so we will compare phonemes' contexts rather than rely on word level 

comparisons. Thus the measure can employ notions of direction and locality which 

are pertinent to speech recognition. 

2 .1.4 Relevance to Lexical Access 

While we are interested in the linguistic interpretation of our results, we are more 

directed by the needs of lexical access for continuous speech recognition. While we 

do not want to tie ourselves to any particular recognizer or recognition model, we 

do keep in mind the general kinds of search and discrimination which any recognizer 

must make. 

To make practical use of broad phoneme classes within a recognizer, the classes 

must be acoustically detectable and should be robust. Presumably this means that 

the classes consist of phonemes which are acoustically similar and the robustness 

stems from avoiding making fine distinctions between them. 

This study makes no use of acoustic data in forming classes. Doing so allows us to 

determine if the collocational constraints inherently embody acoustic similarities. It 

also avoids issues of spectral representation and comparison vital to acoustic distance 

measures. 
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2.2 Metric Overview 

We based the measures used in our studies on information theory. Information theory 

is concerned primarily with the probabilistic analysis of communications systems and 

so seems well-suited to speech. Unlike typical information theory problems, we are 

not concerned with robust transmission. Instead, we are interested in the ability to 

predict a phoneme based on its context. 

2.2.1 Metric Development 

We based our metric for forming phoneme classes on average mutual information [12], 

defined as: 

( . ) "'"' ( ) P(x,y) 
IX; Y = T Ly P x, y log2 P(x)P(y)" 

It is the expected value of the mutual information, the amount of information about 

the event x provided by the event y. Note that the measure is reversible, making it 

equally correct to say that this measures the amount of information about y provided 

by x. An alternative description of mutual information says that it compares the prob

ability that x and y co-occur, P(x,y), against the probability of them co-occurring 

were they statistically independent, P(x)P(y). 

When P(x, y) = 0, we have an apparent problem, as the logarithm of 0 is unde

fined. We note that lim x log x = 0, and so substitute 0 for the computation in these 
x-o 

instances. 

When we use the same set for both arguments of the average mutual information, 

the formula reduces to: 

I(X; X) = H(X) = - L P(x) log2 P(x). 
x 

This is known as the entropy. It is the expected value of the self-information of the 

event x, -log2 P(x). The self-information can be interpreted as the number of bits 

of information needed to specify the event x. Thus the entropy is the mean amount 

of information needed to specify events in X. 

We apply these measures by letting X and Y represent a set of phonemes. In 
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practice, the probabilities are estimated by the formula: 

P(x) ~ l:_l_ 
IXI 

where lxl denotes the number of occurrences of x within some set X and IXI denotes 

the size of the set. 

To use mutual information to capture collocational constraints we choose X and 

Y to represent sequentially related phonemes. We use subscripts to indicate relative 

positions. For example, we denote the average mutual information between adjacent 

phonemes using the equation: 

( ) " " ( ) P(x;, x;+1) 
I X;;X;+1 = ~ ~ P x;,x;+1 log2 P(x·)P(x· ). 

X; X;+i i i+l 

By generalizing this we can define a mutual information measure between any se

quence of phonemes and another. 

Finally we want to map the phonemes into broad classes. We use <P(x) to represent 

the class into which phoneme x is mapped. As an example, we can measure the 

average mutual information between a phoneme and the phoneme class following it 

by: 

( ( )) " " ( ( )) P(x;, <P(x;+1)) 
IX;;<.!> X;+1 = 1t f:.1 P x;, <.!> X;+1 log2 P(x;)P(<P(x;+1))" 

Our measures presume there is at least one phoneme position being mapped into 

classes and it is from that phoneme's position that we measure relative distances. We 

may map additional phoneme positions as well. 

There are many ways we can describe the context of a phoneme, each with a com

panion information measure. The simplest case, no context, corresponds to phoneme 

entropy. Next simplest is to use a single phoneme or broad class to the left or right. 

We can use a sequence of 2 (or more) phonemes or use some combination of left 

and right contexts. Finally, we can relax the ordering constraints and consider co

occurrence of phonemes within a window. 

2.2.2 Normalization 

The value of a mutual information measure is determined by the a priori probabilities 

of the events. We need to normalize the results in order to make them more meaningful 
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across different data sets. To do so we compute the percent information extracted by 

a phoneme class mapping, for example: 

This is the ratio of the information measured with the mapping to the information 

measured without it. At best, this measure will be 100% , since the mapping can 

only reduce the information available. 

This PIE is different from the one used in Carter [7]. Both can be thought of as 

a two-step process. First we compute an information measure before and after some 

distortion. Then \Ve compute the ratio of the two results. Carter's PIE is based on 

word entropy while all of our measures are based on phoneme comparisons. 

2.3 Pronunciation Constructs 

We base our studies on the pronunciation of words. We will next justify the lexico

graphic representation used. 

2.3.1 Validity of Using Phonemes 

We feel that phonemes are a reasonable unit to analyze as their psycholinguistic basis 

has been demonstrated. We choose phonemes over allophones because the phonemic 

inventory is better agreed upon. 

Using phonemes implies that lexical pronunciations are sequences of segments. It 

is often difficult to find robust segment boundaries in an acoustic signal. A voiding this 

dependence would require our using some more controversial lexical representation. 

We recognize this limitation, but also note that this may be surmountable for a 

particular recognition system by using data which captures segmentation difficulties. 

With it we can construct a lexicon which provides alternate word pronunciations, 

each with a varying number of phonemes. By comparing the analysis of this lexicon 

and the original, we can understand the effects of segmentation accuracy on lexical 

access. 
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2.3.2 Syllables are Too Controversial 

Syllables have been shown to provide strong constraints on the organization of sounds 

into words [13]. For example, they constrain the basic CV structures allowed. Syllabic 

structure also has strong influences on acoustic realization, especially with regard to 

prosody and reduced syllables. 

In order to make explicit use of syllable structure we need to mark that structure. 

How should we do this? The simplest approach would be to mark syllable boundaries, 

perhaps including lexical stress. A better method might parse syllables into their 

constituent structure. 

There are two problems with these explicit markers. First, the correct syllable 

structure, if there is one, is not always clear. This problem manifests itself as ambi

syllabic phonemes, variations in stress patterns, or even the validity of a more complex 

structure. Second, were we to settle on a particular syllable structure we must also 

choose the means of representing it. A logical approach would be to expand the 

phoneme symbol set to represent each phoneme and its syllabic position. This could 

result in a very large number of complex symbols, thus making the results difficult to 

interpret. 

We chose to circumvent these difficulties by avoiding explicit syllable markers and 

instead utilizing the structure implicitly. By using the mutual information measure 

on a suitably small phoneme sequence, we should be able to capture many constraints 

imposed by syllable constituents. Longer sequence could conceivably cover long dis

tance intrasyllable constraints such as those between the onset and coda. 

As an added benefit, by not breaking the word into syllables we will be able to see 

cross-syllable and cross-morpheme effects. We know that many phoneme collocational 

constraints are not enforced at these boundaries, but this can provide much constraint 

by fixing the location of the boundary. 

2.3.3 Word Boundary Independence 

The logical unit for our studies is the word, as it is also the basis for our lexicons. 

Because we are interested in continuous speech recognition, we should consider more 

than intraword constraints; we should also examine phoneme constraints across word 
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boundaries. Like at syllable and morpheme boundaries, phoneme collocational con

straints at word boundaries can be a powerful aid to speech recognition [14]. 

To include cross-word constraints we need to concatenate the phoneme sequence at 

the end of one word with the phoneme sequence at the start of another. An elementary 

approach is to do this for all words. This corresponds to using a (word)* grammar, a 

grammar in which a word can be followed by any other word with equal probability. 

While it is possible to construct a sentence containing an arbitrary sequence of words, 

syntax and semantics greatly constrain the set of reasonable sentences. If we wish to 

consider phoneme sequences across word boundaries, we should account for these word 

sequence constraints. However, doing so forces us to assume a particular language 

model. 

We do not wish to rely on a language model as it would tie us to a particular 

task or recognition system. Accordingly, we have chosen not to examine inter-word 

phoneme sequences, realizing that this gives us only a partial view of the collocation 

constraints. 

Words are clearly a unit of language, but the boundaries between words are dif

ficult to determine in continuous speech. Therefore we should try to avoid a metric 

which relies on word boundaries. 

We could include a word boundary marker, / # /, in our pronunciations to ex

plicitly capture these constraints. We think doing so is somewhat arbitrary and it 

ignores other word structures. Additionally, using word boundary markers may ad

versely affect experiments. Some lexicons are constructed to contain many regular 

forms of a word. This produces a preponderance of sequences like / d# /, / z# /, and 

/ IJ# /. For both of these reasons we have decided not to represent word boundaries 

as a pronunciation symbol. 

2.4 Clustering Technique Overview 

We next describe how to combine phonemes into classes. Our basic approach is to 

cluster phoneme symbols based on a lexical information metric. Because we do not 

know the right number of classes for lexical access, we should incorporate some means 

of creating classes using various degrees of specificity. This suggests using some type 
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of hierarchical structure. 

2.4.1 Many Possible Classes 

There are two fundamental ways of producing a phoneme hierarchy. The first, the 

agglomerative approach, iteratively combines classes until a single class is formed 

containing all of the phonemes. The second, the divisive approach, iteratively splits 

classes until all classes contain a unique phoneme. 

We can show that there are 2n-l - 1 ways to divide n phonemes into 2 classes. 

If we have on the order of 40 phonemes, the first split in forming a binary class tree 

would require evaluating roughly 239 -1 ~ 5 x 1011 possibilities. This is far too many 

for practical purposes. Instead we chose to use a pair-wise agglomerative approach 

to form the hierarchy. 

2.4.2 Algorithm 

The algorithm for forming the hierarchy is simple. Initially, consider a set of n 

phoneme symbols. We try each of the (;) possible symbol pairs for clustering. For 

each pair, we temporarily map the lexicon to replace occurrences of the second symbol 

in the pair with the first. Then we compute the PIE resulting from this map. We 

cluster the symbol pair which maximizes the PIE and permanently map the lexicon 

using it. This reduces the symbol set size to n - 1. We iterate the procedure until 

only a single symbol is left. 

When there is a single symbol representing all the phonemes there is no infor

mation present to predict. Thus a necessary terminal condition of the clustering is 

that the PIE is zero. This contrasts with Carter, where a single-symbol mapping still 

retains the information present in the number of phonemes per word. 

2.4.3 Reducing Computational Complexity 

At first this algorithm seems computationally intensive because we must map the 

lexicon many times. Worse, the time needed to do so grows with the size of the 

lexicon. This presents a computational problem, since we need to use large lexicons 

so as to best approximate the actual usage. 
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Note that the reason we do the mappmg is to change the parameters of the 

mutual information measure. These arguments are restricted to only a portion of 

each pronunciation. Thus we can collapse the lexicon to an m-dimensional table 

counting occurrences of m-long phoneme sequences. This table supplies values for 

estimating P(x,y). Similarly we can construct tables for the marginals P(x) and 

P(y). 

These tables alone are sufficient for calculating the mutual information measure. 

They also eliminate the costly lexicon mapping. We calculate the effect of merging two 

classes by summing the entries corresponding to those classes across other dimensions 

in the table. This procedure makes the algorithm independent of lexicon size except 

for the initial table generation. It depends only on the number of phonemes and the 

length of the sequences. 

2.5 Lexicon Preparation 

We base most of our studies on a modified version of the Merriam Webster Pocket 

Dictionary, which we will refer to as "MPD." The lexicon contains roughly the 20,000 

most common words in American English. We chose this lexicon because many 

researchers have refined and checked its pronunciations. In addition, using it will 

allow us to compare our results to some earlier work. 

2.5.1 Modifying Pronunciations 

We want to be able to compare our results to those produced by distinctive features 

because their constraints for lexical access are poorly understood. Features, in the 

form of feature vectors, have difficulty representing some of the symbols used in MPD, 

notably the diphthongs and syllabic consonants. In addition, lexical stress in MPD 

is indicated both through the use of stress markers and by schwas in reduced stress 

syllables. To eliminate these problems we apply the following rewrite rules: 

/rµ/----'t/ Affi/ j~j----'tj An/ /IJ/----'tj AIJ/ 
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/ aY /-+/ ai/ /aw /-+/au/ 

No change is made to the diphthongs / iY /, / eY /, or /ow/ since their monophthong 

counterparts, / i /, / e j, and / o /, can be represented by feature vectors. In addition, 

all syllable and stress markers are removed from the pronunciations. 

2.5.2 Word Frequency Weighting 

Previous studies have shown that weighting the lexicon using frequency of occurrence 

in the Brown Corpus [15] can have dramatic effects due to the overwhelming influence 

of common words. We think of such weighting as a zeroth-order language model. 

Using any language model opens a host of issues which we could not adequately 

address in this thesis. Accordingly we chose to ignore weighting effects for clustering. 

2.6 An Example 

We will next present an example of our clustering technique so that the reader can 

better understand it. For this example we will use a subset of MPD consisting of 33 

words: 

Spelling Pronunciation Spelling Pronunciation Spelling Pronunciation 
aisle ail lie lai peel pil 
ay ai lisle lail peep pip 
aye ai loll lal pl poi 
eel il lollypop lalipap pie pm 
eye ai lop lap pile pail 
I 01 lye lai pipe pmp 
isle ail p pi plea pli 
lea li pa pa plop plop 
leal lil pas pa ply plai 
leap lip pea pi pop pap 
lee li peal pil poppy pap1 

We selected these words because they are the largest number of words which can be 

formed using only four different phonemes. 

Let's find the phoneme clusters created using the mutual information between 

adjacent clusters as the metric. There are 65 diphones in this sub-lexicon of which 

only 10 are unique. We estimate the probability of a diphone occurring from its 
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frequency in the data and summarize the results in a table: 

li+l 

U;+1 

li+l 

Pi+1 

1· I Q· I I· 
' Pi 

2 _8_ JL 
65 65 65 

_8_ JL 
65 65 
6 14 6 

65 65 65 
_Q__ 4 
65 65 

14121 112118 
65 65 65 65 

P(x;) 

Using these data we can compute the desired mutual information and PIE: 

2 8 3 

0 + 21._..fil.._+81 _..fil.._+31 _..li_+ 
65 ogz ~.ll 65 ogz 12.ll 65 og2 ll.ll 

65 65 65 65 65 65 

8 ~ 
65 log2 !l\.z + 

65 65 
0 + 0 

9 2-+ 65 log2 1l5
!1 + 

65 65 

6 14 

6 log 65 + 14 1 . 65 + 
65 2 !± .1§. 65 og2 11. .1§. 

65 65 65 65 
0 6 f-+ 65 logz !!l. .52.§. + 

65 65 

0 
5 4 

+ 51 65 +41 _..li_+ 
65 ogz 11..JL 65 og2 12.2-

65 65 65 65 
0 

::::::: 0.719 bits 

PIE 1003 
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Using the 4 phonemes, there are (;) = 6 ways we can form 3 classes. vVe try each 

of these possibilities and note which one has the greatest PIE: 

li Qi I· 
' P; 

li+l lQ_ ~ 12 
Oi+l 65 65 65 

li+l 
20 6 
65 65 

Pi+1 
5 4 

65 65 

I (<I> (X;); <I> (X;+1)) ~ 0.272 bits 
PIE~ 38% 

l; P; Q· 
' 

I· 
' 

li+l 3 7 12 
P;+1 65 65 65 

Oi+l 
17 
65 

li+l 
12 14 
65 65 

I (<I> (Xi); <I> (Xi+1)) ~ 0.610 bits 
PIE~ 85% 

O;pi l· 
' 

I· 
' 

Oi+1 14 ~ 4 
Pi+1 65 65 65 

1;+1 
5 8 

65 65 

li+l 
20 __Q__ 

65 65 

I (<I> (Xi); <I> (Xi+1)) ~ 0.297 bits 
PIE~ 41% 
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li ii Q· 
' Pi 

li+l 14 16 Jl_ 
li+l 65 65 65 

Oi+l 
8 9 

65 65 

Pi+1 
A_ Ji_ 
65 65 

I (<I> (X;); <I> (Xi+1)) ~ 0.243 bits 
PIE~ 34% 

Oi ii l· 
' P; 

Oi+l 14 14 15 
ii+l 65 65 65 

li+l 
10 i 
65 65 

Pi+1 
Jl_ 
65 

I (<I> (Xi); <I> (Xi+1)) ~ 0.283 bits 
PIE~ 39% 

1i P; l· 
' 

a; 

li+l 10 6 19 
Pi+1 65 65 65 

1;+1 
11 2 
65 65 

Oi+l 
Jl_ 8 
65 65 

I (<I> (Xi); <I> (Xi+1)) ~ 0.363 bits 
PIE~ 51% 



From this we determine it is best to merge / 1 / and / p / into a single class. We 

keep this merger and consider the 3 possible sets of 2 classes: 

li Pi CI; 1· 
' li Pi ii Cl; 

1;+1 
27 12 

Pi+1 65 65 

li+l 
27 21 

Pi+i 65 65 
ai+l li+l 

li+l 
26 
65 ili+l 

17 
65 

I (<I> (Xi); <I> (Xi+1)) ~ 0.156 bits 
PIE~ 22% 

I (<I> (Xi); <I> (Xi+i)) ~ 0.178 bits 
PIE~ 25% 

li Pi Cl; ii 

4+1 3 19 
Pi+1 65 65 

Cl;+1 29 14 
li+l 65 65 

I (<I> (Xi); <I> (Xi+i)) ~ 0.203 bits 
PIE~ 28% 

Of these possibilities, merging /a/ and / i/ produces the best results. Finally, we 

are left with only one merger possible: 

l;+1 

Pi+1 65 
Oi+l 65 
ii+l 

I (<I> (X;); <I> (Xi+i)) = 0 bits 
PIE= 0% 
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Figure 2.1: Dendrogram corresponding to the example phoneme clustering. 

We can best understand the resulting hierarchy by displaying it in the form of a 

dendrogram [16], shown in Figure 2.1. The dendrogram's abscissa lists the phonemes 

in our hierarchy while the ordinate shows PIE. We denote two classes joining by 

drawing a horizontal line across them at the PIE level where they merged. This 

display allows us to see both the phoneme clusters and their relative robustness. 

2.7 Summary 

We have presented a technique for forming phoneme clusters using a minimum of pre

sumed knowledge. In addition, we have chosen to use an information-theoretic metric 

because its utility in capturing collocational constraints has been demonstrated. vVe 

have shown how a metric can be defined over a phoneme sequence and have justified 

the pronunciations we use. 
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Chapter 3 

Experiments 

In this chapter we present the results of our phoneme clustering experiments. We 

evaluate the performance of our clusters against those suggested by other studies 

using both historic and new lexical metrics. Finally, we examine some of the questions 

related to our techniques. 

Our experiments considered many variations on the basic theme. For clarity, we 

will present only some representative results here. Some of our additional phoneme 

clustering experiments are described in appendix A. 

In our work we have striven to avoid the preconceived notions of how to structure 

phonemes; yet, we cannot conduct nor discuss our study in a vacuum. We will always 

need to compare our results to alternate structures, and the best frame of reference 

available consists of the phoneme groupings proposed by linguists, e.g., distinctive 

features. Accordingly, we will note similarities and differences between these two 

approaches whenever appropriate. 

3.1 Diphones 

We begin by considering the use of the mm1mum contextual information. In our 

first study, we cluster phonemes based on the average mutual information between 

a phoneme's class and the following phoneme's class. Because the average mutual 

information is a reversible measure, it does not matter whether we consider a phoneme 

and its successor or its predecessor. We capture constraints in both directions at once. 

We display the results of our clustering as a dendrogram in Figure 3.1. 
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Figure 3.1: Dendrogram produced by clustering based on diphones. 

Perhaps the most striking aspect of this hierarchy is that it completely segregates 

the vowels and consonants from one another. This single distinction provides a large 

amount of information, roughly 30% of what is possible. 

Vowels are organized into subclasses, and some of the divisions are suggestive of 

dimensions used to describe vowel color. For example, /i/ and /u/ are high and 

tense while / u / and / :J / are back and rounded. 

The consonants can be viewed as being divided into four roughly-separated classes: 

semivowels, fricatives, stops, and nasals. The stops are divided based on their place of 

articulation. There may be an affinity between the coronals, demonstrated by clusters 

containing /1/ and /r/; /s/ and /n/; and /s/,/z/, /a/, rs;, /z/, /c/, /6/, /d/, 
and /t/. It is interesting to note that /h/, often an oddity for other classification 

schemes, is placed among the semivowels. 

Many of the classes formed contain phonemes which are similar acoustically. This 

is fascinating, as no part of our clustering procedure requires this to be so. We 

suggest that this may be viewed as evidence that language's acoustic and contextual 

constraints may be evolving simultaneously. 

The dendrogram shows that the robustness of the phoneme classes varies through-
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out the hierarchy. In particular, some of the initial clusters formed are not very robust 

and soon merge with other clusters. Yet these clusters are crucial in determining the 

form of the remaining tree. Perhaps some of the phonemes which are grouped against 

our linguistic intuition do so because of these unstable initial steps. 

We can examine these critical times in the clustering process to search for slightly 

lower scoring classes which give better linguistic justification. A class which is suffi

ciently close in score to the best might have won under different conditions, perhaps 

a different lexicon or a divisive search. Examination of our dendrogram confirms 

this suspicion. For example, even though the / fbp / cluster is satisfactory, linguists 

might prefer the stops to have merged first. When we examine the clustering scores, 

placing /f/ with /b/ yields 97.52 PIE while /f/ with /p/ yields 97.31 PIE and /p/ 

with /b / yields 97.29 PIE. These are relatively close. Thus we can attribute at least 

some of the "improper" clustering to competing classes ·which nearly yielded the most 

information extracted but failed to do so. 

In terms of linguistic description, perhaps the worst cluster in the hierarchy is 

the fairly robust one combining / IJil / with / s /. Linguists might prefer clustering the 

nasals and placing the / s / near / s / or / z /. How might we explain this clustering? 

In part, it may be the aforementioned gravity of the coronals. Alternatively, it may 

be an artifact of the lexicon having many words containing / rn /, / IIJ /, or /IS/. 

The fact that such a simple process can yield a reasonable looking dendrogram is 

most encouraging. Even now we can see a fair degree of agreement between linguistic 

theory and our data-driven approach. 

3.2 Triphones 

We next add additional contextual information to see if this will result in classes better 

fitting linguistic descriptions. We do so by considering sequences of three phonemes 

rather than two. Note that these metrics incorporate directionality, unlike the metric 

used in the previous experiment. It arises because we treat the phonemes unequally 

by pairing two as the "context" for the third. Thus, there are three possible ways to 

compute the average mutual information over a sequence of three phonemes, x 1 x 2 x 3 : 

I (X2 ; (X1, X3)) 
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Figure 3.2: Dendrogram produced by clustering based on class in context. 

In this experiment, we cluster based on a phoneme's class and the classes of the 

phonemes immediately left and right. This is motivated by the "phoneme in context" 

unit commonly in use, though the name "class in context" is more appropriate for 

our measure. The resulting dendrogram is shown in Figure 3.2. 

Clustering based on class in context results in clusters even more linguistically 

relevant than those of the diphone experiment. The general structure of the vowels 

is essentially the same. One improvement is that /re/ and / E / now cluster together 

before / o / is added. 

Among the consonants, we find / f / clusters with fricatives rather than labial stops 

and affricates form a robust cluster. Many low-level clusters are formed by joining a 

voiced phoneme with its unvoiced counterpart. Rather than standing alone, / s / now 

clusters with /z/ and /m/ joins them along with /n/ and /g/. 

Some changes are not for the better. We find / s / is now grouped with the 

semivowels while /1/ is not. Nonetheless, these results are better than those of the 

diphone experiment. 
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3.3 Cluster Evaluation 

We can use the hierarchies we created to partition phonemes into classes suitable 

for lexical access. We can use any set of classes from the hierarchy provided they 

encompass all of the phonemes and are mutually exclusive. Having done this we 

should ask how effective these classes are from a lexical access standpoint and compare 

them to classes suggested by other approaches. 

3.3.1 Lexical Experiments 

One way to evaluate our results is the type of procedure first used by Shipman and 

Zue [4]. They mapped a lexicon's pronunciations in accordance with six manner 

classes and gathered the words into cohorts. They determined the efficacy of the 

classes by computing a statistic over the cohorts. 

Unlike previous lexical experiments which relied on a fixed number of broad 

classes, we can vary the number of classes used. There is a simple way to select 

n classes from a dendrogram for 1 :::; n :::; number of phonemes: we "slice" the den

drogram horizontally at the level which provides the number of classes we desire. This 

allows us to study the tradeoff between the number of classes used and the fineness 

of phonetic distinctions made. 

As we mentioned earlier, using word-level measures partitions the lexicon based on 

the number of phonemes per word. A measure which did not force this partitioning 

would be more appropriate for both isolated and continuous speech recognition. The 

information measures we used for clustering fulfill this requirement. Given a set 

of classes we can map the lexicon and compute the resulting PIE. By varying the 

underlying information measure, we can tune the lexical measure to suit a particular 

lexical access task. 

While more abstract than cohort-based lexical measures, we think this metric 

is still relevant as we measure the additional information needed to distinguish a 

phoneme from its classmates. Doing so is one way of viewing the lexical access 

problem. In addition, our measure uses a logarithmic scale, which Carter [7] suggests 

is more appropriate for measuring the work needed to complete the lexical access task. 

Like Carter's metric, we can produce either a normalized result for easier comparison 

35 



on a particular task or an absolute result for comparison across tasks. 

In our evaluation we provide both cohort-based and phoneme-based measures 

of cluster performance. The first measure we use is expected cohort size as it is 

representative of the cohort measures and seems more appropriate than mean cohort 

size. The other measure we use is the average mutual information between a class and 

its neighboring classes given in PIE form. This is precisely the second measurement 

we used for forming phoneme classes. For brevity, we refer to this measure as "context 

PIE." The values of some additional lexical measures are given in appendix B. 

3.3.2 Baseline Establishment 

Previous experiments have shown how well a set of broad classes can disambiguate a 

word in a lexicon. However, these experiments rely on the conviction of the reader 

to evaluate both the results and the metric. We would prefer an objective baseline 

against which a classification scheme can be measured. 

One possibility is to compare the broad classification to the finest classes possible, 

the phonemes. This does not work well because we know it is possible to disambiguate 

virtually all of the lexicon using phonemes. It is similarly unreasonable to use no 

classes, to use a phoneme placeholder, though this is an important limit for cohort

based measures. 

There is a simple way to create a baseline for broad class evaluation. We gener

ate a hierarchy by combining phonemes at random. A typical dendrogram created 

this way is shown in Figure 3.3. It is important to note that this dendrogram does 

not embody the class structuring typical of dendrograms created using collocational 

constraints. We create 1000 hierarchies in this manner and compute our lexical perfor

mance measures using their classes. We then average the results to form the baseline 

performance. 

3.3.3 Distinctive Features 

We would like to compare our results to the performance of distinctive features. We 

use a feature set, shown in Table 3.1, based on Stevens [17]. The primary change we 

have made to the feature set is to specify all features' values for all phonemes. Where 
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<D I + I I I I I I I + + + I I I 

I---
'+-< I + I I I I I I + I I + I I I 

p I + + + I I I I I I I I I + + 
:::: I + + I I I I I I + + I I + + 
8 I + + I I I I I + I I I I + + 
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>; + I + I I I + + I + I + I I + C'1'l 

::l + I + + + I + + + I I + I I + 
~ + I + + I I + + I I I + I I + 
< + I + I I I + I I I I + I I + 
0 +I I + I + I + + I I I + I I + 
(') + I + I I + + + I I I + I I + 
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~ + I + I I + I I I I I + I I + 
w + I + I I I I I I I I + I I + 
il) + I + I + I I I I I I + I I + 
""" + I + + I I I I I I I + I I + 

...... + I + + + I I I I I I + I I + 
ct! ...... ...... 
c c 
ct! ...... "'O ct! 

(.) c c Q) - ..... ::i ...... 
ct! ct! .Q c :.c 0 ..... Q) "'O - c c Q) ct! 

"'O 
(/) 0 c ct! ..... ·.;:::; Q) 

ct! ..c (/) ..::£ 0 Q) "'O c c C) c 3: (.) ::i :g ,_ ...... c ·;;:: ~ 
(.) 

>. 0 0 
~ 0 ct! 0 0 c 0 ...... g Cl) (.) Cl) I _J aJ 0: _J (.) <( (.) Cl) z 

Table 3.1: Feature-bundle specifications for phonemes used in our experiments. 
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Figure 3.3: A phoneme hierarchy produced by random clustering. 

Stevens left a feature unspecified, we use a "-" to indicate that the feature is not 

present. We have also replaced the features [Spread Glottis] and [Slack Vocal Cords] 

with the more common [Voiced]. 

Note that some of the features are unnecessary or redundant for our phoneme set. 

Were we to eliminate the [Nasal] feature, there would be no ambiguity amongst the 

phonemes. Other features, for example [Voiced], are critical in that their elimination 

would cause ambiguity. 

By underspecifying feature values we can form phoneme equivalence classes. In 

order to vary the scale of the equivalence classes formed, we vary the number of 

features left unspecified. We begin by ranking the features to select the best single 

feature to use. We define best as giving the greatest cluster context PIE. We keep 

the phoneme distinctions made by this feature and repeat the process to select an 

additional feature. We iterate until all features are enabled. 

This process is illustrated in Figure 3.4. The height of each bar shows the PIE for 

a particular subset of features. The numbered bottom axis measures the size of each 

feature subset. The remaining axis is divided into categories representing the features. 

If we looked from above we would see a triangular portion of the base covered. This 

is because once we enable a feature it is never disabled and we have arranged the 
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Figure 3.,1: Perce11t of context cluster informatio11 extracted by compounded feature 
specification. 
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Figure 3.5: Maximum information extracted by compounded feature specification. 

features in the order of their inclusion. 

This figure permits us to see how the relative importance of a feature depends on 

those already specified. For example, by examining the row corresponding to using 

a single feature, we find that [Syllabic] is the best with [Consonantal] second best. 

The two features provide redundant information. As shown in the second row, once 

we have specified [Syllabic] the importance of [Consonantal] diminishes. Instead, the 

[Tense] feature, insignificant in the one-feature ranking, is now the best one to add. 

Although it was relatively important initially, [Consonantal] will end up providing no 

useful information at all. 

This procedure forms a ranking of the features based on the phoneme identification 

information they supply. Although the information is represented in the rear diagonal 

of the previous figure, we reproduce it in Figure 3.5 for clarity. Although we can use n 
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Figure 3.6: Dendrogram of a phoneme hierarchy produced using an acoustic similarity 
metric. 

features to specify 2n classes, the redundancies between features as well as unrealized 

feature bundles mean that in general fewer classes will be available. 

3.3.4 Acoustic Clustering 

We also compare our results to a phoneme hierarchy produced using acoustic data. For 

this we use a method developed by Glass [18]. This technique uses a spectral average 

to represent each cluster. The most similar clusters are merged in an agglomerative 

clustering procedure. 

For our experiment, we produced a hierarchy based on phonetic transcription 

segments from 1000 TIMIT database [19] utterances. Rather than using all phonetic 

transcription characters, we reduce the set to those symbols used in our other studies. 

We include the diphthongized vowels where a monophthong is not used in transcribing 

the data. 

The resulting dendrogram is shown in Figure 3.6. We can extract phoneme classes 

from this dendrogram using the same procedure as for our other dendrograms. 

Many of the classes in this hierarchy are similar to ones produced using phoneme 

collocational data even though our experiments do not use any form of acoustic 

similarity measure. A key difference between the results is in the two cluster split: 
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semivowels are more like vowels than consonants in this acoustic classification, but 

they behave more like consonants linguistically. 

3.3.5 Results 

We conducted our evaluation on the MPD lexicon, prepared exactly as for our 

phoneme clustering experiments. The results are shown in Figure 3.7. 

A lower expected cohort size is interpreted as better for lexical access. The smaller 

the expected cohort size, the fewer average number of words we need to distinguish, 

and so the less we need to rely on making accurate fine phonetic distinctions. 

The performance of acoustic clusters is generally worse than that of the other 

cases, however it is somewhat better when using only a few classes. The acoustic 

class performance is punctuated by discontinuities. Each of these may correspond to 

particularly important phoneme distinctions. 

Distinctive features are narrowly the worst choice when using fewer than 10 classes. 

This is the range most useful for lexical access with broad classification. Note that 

the expected cohort size for features drops faster than for the acoustic classes. 

Our collocational constraint-based clusters perform better than either of the afore

mentioned schemes except for the 2- and 3-class cases and performs comparably to the 

six manner classes. The discontinuity between 8 and 9 context clusters corresponds 

to the first fully identified phoneme, / r /, splintering from its parent class. 

Unfortunately, using expected cohort size we find that our randomly formed clus

ters perform best, except when using fewer than 6 classes. Since we believe phoneme 

classes derived using speech knowledge should perform better than those derived ran

domly, we conclude that expected cohort size is a poor measure of lexical access 

difficulty. 

We expect a larger value to signify better classes when using context PIE. Larger 

values mean we have come closer to identifying phonemes in the lexicon. Presumably 

this means we are close to identifying words as well. 

We first check the performance of randomly-formed classes. These classes now 

clearly perform poorly compared to the others. Based on this alone, we have reason 

to believe this metric is superior to expected cohort size. 
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Classes based on context PIE perform best regardless of how many categories 

are used. This is not surprising since the clustering procedure finds locally optimum 

classes for this mutual information measure. Were we to expand our search to seek 

the optimum set, we could provide an upper bound on class performance using this 

metric. 

Using this measure we find features perform relatively well for less than ten classes. 

The manner classes perform on par with distinctive features. The acoustic classes 

perform notably worse over this range, but later move to match the performance of 

features. 

The two class case is particularly interesting. Feature- and context-based clusters 

yield just over 253 of the lexicon's information while acoustically-based clusters yield 

only about 10%. The only difference in the class pairs they use is that acoustic clusters 

place the semivowels with the vowels instead of with the consonants. The difference 

in performance must stem from this. 

3.4 Discussion 

Our study raises a number of questions we shall proceed to address. We shall take a 

closer look at the phoneme collocational data and examine how some of the decisions 

we made affect our results. 

3.4.1 Capturing Collocational Constraints 

How can we be sure the dendrograms we produced look the way they do because of 

phoneme collocational constraints? For assurance we perform a similar experiment 

in which we use no contextual information. We repeat our clustering procedure using 

PIE based on phoneme class entropy. Another way of viewing this is we base our 

clusters on phoneme frequency of occurrence alone. The resulting dendrogram is 

shown in Figure 3.8. 

This dendrogram is very much unlike the dendrograms we see in our other exper

iments. The clusters formed do not stand out as anything linguistically relevant with 

two possible exceptions: /n/ with /t/ (which have the same place of articulation) and 

the neighborhood of / z /. Perhaps the most striking difference is that the consonants 
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Figure 3.8: Dendrogram produced by clustering based class entropy. 

and vowels are intermingled throughout this dendrogram. 

This suggests that our other experiments are exploiting phoneme collocational 

constraints and that these constraints are fairly powerful. 

3.4.2 Relationship to Pattern Recognition 

How can we gain a better understanding of the information captured by our metrics? 

An alternate view of our hierarchical clustering procedure is that it gathers phonemes 

which occur in similar contexts. In the dendrogram of Figure 3.1, phoneme classes 

are combined when the distributions of their adjacent classes are similar. Although 

we have presented the experiments from an information-theoretic standpoint, we can 

also view the work as a pattern classification problem. 

By examining these distributions we can gain a better understanding of the clus

tering decision process. For example, in Figures 3.9 and 3.10 we show the distribution 

of all phonemes following / b / and / p /, and / E / and /I/, respectively. The data is 

normalized so that the area under the curves is equal. Each figure shows two phonemes 

which are similar in terms of manner and place. 

It is important to note both the similarities and differences in these figures. Both 
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of the stops share a profile dominated by vowels and the consonants / 1 /, / y /, / r /, 

and / s /. The phonemes following / c / and /I/ show a radically different distribution 

from those following / b / and / p /. 

Our diphone mutual information measure used the distributions for both preced

ing and succeeding classes. These distributions can differ greatly, as illustrated in 

Figures 3.11 and 3.12. The effects of the homorganic nasal-stop rule are clearly in

dicated in the first distribution. In fact, the phonemes following / IJ / are dominated 

strongly by / k/ and / g /. Thus looking forward there seems to be little similarity 

between the nasals. Looking backwards provides more similar profiles, and again / IJ / 

seems better constrained. 

Using such data we can see how phonemes with similar contexts cluster together. 

Note that our mutual information measure is based strictly on these distributional 

constraints, yet many of the clusters formed are also acoustically similar. 

3.4.3 Effects of Altering Pronunciations 

How did changing the pronunciations of the MPD lexicon affect our clustering? To 

answer this we repeated the diphone experiment using the unadulterated lexicon. We 

included all of the symbols, even the stress and syllable markers. The results are 

shown in Figure 3.13. 

Here we see numerous effects not present in the original experiment. The syllable 

markers, / < /, / - /, and / * /, are clustered together as are the stress markers / '/ 

and /' /. The nuclei of reduced syllables, all three varieties of schwa as well as the 

syllabic consonants, form a cluster. 

The differing symbol sets makes it difficult to compare the phoneme clusters to 

those of the altered pronunciations. We still see similarities between the two, par

ticularly at higher levels in the dendrogram. We also note that some of the initial 

clusters formed are less robust than for the mapped lexicon. 

3.4.4 Lexicon Idiosyncrasies 

How are our results affected by the limitations, of both size and structure, inherent in 

the lexicon? A lexicon is produced within a set of guidelines to ensure pronunciation 
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Figure 3.12: Relative frequencies for phonemes preceding two nasals. 

48 



"O 25 
al .,, 
(,) 

<tl .. 
x 
WJ 

§ 50 
;:::; 
<tl 
E .. 
0 ..... 
..!: 

~ 75 

'' < - • Jczbvdezt skbgpf Im srwhyon 

< - • JcZbvd eztskbgpf lmsrwhyon 

Jc Zbvdezt skbgpf lmsrwhyon <-• 

Jc zb vdeztskbgpf Im srwhy 

lmsrwhy Iczbvdeztskbgpf 
>------~----<fJn -* 

Jczbvdezts 

uo 838/'\ )'3' 
1 

OO w h y r I ms d e z J c z b v t s b g p f k o n - • < ' ' o ~ ~ E /\ u uc/owu' o"e' 3" I i' ! 8' r)1 ~ a ! 

Figure 3.13: Dendrogram produced by clustering based on diphones. 

consistency. Our process cannot distinguish between these rules and true linguistic 

constraints. Also, our results may improve if we use a larger lexicon as it will provide 

more stable initial clusters. 

To understand these effects we repeated our trigram experiment on two additional 

lexicons. The first is the Shoup lexicon [20]. It uses cover symbols which represent 

a set of phonemes in an attempt to capture phonemic variability. The cover symbols 

work well when there is at most one in a word's pronunciation. When multiple cover 

symbols are present it may be overly generous. It includes many regular forms. The 

second lexicon is the MobyPronunciator lexicon [21]. It allows multiple pronunciations 

per word but lists them explicitly. It includes only irregular word forms. The Moby 

lexicon contains foreign terms which we have removed based on the use of non-English 

characters in their orthography. 

\Ve processed both lexicons in a manner similar to our altering of MPD. However, 

we permitted the Shoup lexicon to retain monophthongs not found in the others. 

Summary statistics for these three lexicons are shown in Table 3.2. 

The results of clustering based on these lexicons are shown in Figures 3.14 and 

3.15. The Shoup lexicon produces a dendrogram which hints at the MPD results but 
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MPD Mo by Shoup 
Number of Pronunciations 19,837 161,675 494,569 
Maximum Pronunciation Length 17 30 24 
Mean Pronunciation Length 6.52 8.61 8.67 
Median Pronunciation Length 6 8 8 

Table 3.2: Summary statistics for three large lexicons. 

is clearly not as good. We suspect this is an artifact of the over generation present 

in the lexicon. The Moby lexicon produces a hierarchy similar to the MPD results. 

Again, the clusters higher in the dendrogram have more in common than those at 

lower levels. 

3.5 Summary 

In this chapter we have shown how we generate phoneme clusters using a mutual

information metric. The classes are formed of phonemes that often share linguistic 

properties. We have presented the same metric as a new way of measuring the power 

of a set of classes within a broad-classification lexical access scheme. We have shown 

how we can provide both upper and lower bounds for comparing existing classification 

schemes on this scale. Finally we have examined some of the factors which affect our 

results. 
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Chapter 4 

Conclusions 

Phoneme collocational constraints provide a fertile and largely unexplored area of 

research. This thesis cannot possibly address all aspects of this vast subject. In this 

chapter we will summarize our work. We will conclude by offering a few possible 

extensions of our work and describe how they might be accomplished. 

4.1 Summary of Results 

Previous studies have shown the utility of a set of broad phoneme classes for lexical 

access. Broad classes can significantly constrain word candidates from a lexicon. 

They can avoid fine acoustic distinctions and so may be detected more robustly. A 

speech recognition system can exploit these two features to improve performance 

while reducing computation. 

We demonstrated how phoneme collocational constraints can be applied to pro

duce a hierarchy of phoneme classes. We use mutual information as a metric because 

of its success in capturing word collocational constraints. The classes we construct 

are reminiscent of linguistic and acoustic classes even though we did not tap these 

knowledge sources. This can be viewed as evidence of a global constraint optimization 

affecting phonological, lexical, and acoustic domains. 

We repeated the lexical studies of previous experiments to demonstrate the con

straining power of our phoneme classes. Because we arrange the phonemes into a 

hierarchy, we can evaluate classes of varying coarseness. In these studies our results 

compare favorably to those of other phoneme classification strategies. 
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We also have shown that the lexical metric used in these studies ranks a baseline 

of random classes as being better than other techniques. This spurred us to apply 

an alternate lexical metric based on phoneme collocational data. This metric ranks 

random classes below others, as a good metric should. 

4.2 Suggested Extensions 

There are many ways to enhance the work we have presented. Rather than provide 

an exhaustive list, we will consider only those we believe are most important. 

4.2.1 Word Sequence Modelling 

Researchers conducted earlier lexical studies at a time when large vocabulary contin

uous speech recognition was impractical. Accordingly, these studies were geared for 

isolated word systems. The questions of lexical access complexity are still relevant, 

but we must shift our focus to more natural speech. 

We did not address across-word phoneme constraints because we did not wish 

to introduce a language model variable into an already complex study. Adding the 

necessary data is a relatively easy task. If the phoneme sequences we are interested in 

are sufficiently shorter than the words, a bigram language model should be adequate. 

Longer phoneme sequences would require more complex language models to ensure 

accuracy. 

The results of such studies would reflect the continuous speech lexical access task 

more accurately than does our current work. 

4.2.2 Significance Pruning of Seed Sequences 

Some of the initial clusters in our dendrograms are not robust. The initial clusters are 

important when we are using agglomerative hierarchy construction. Because these 

classes make the finest distinctions, they are formed when data are most likely to 

be sparse. We propose using a significance test to prune entries from our sequence 

frequency table before clustering as a way of improving our classes. 
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4.2.3 Alternate Clustering Techniques 

We have chosen to explore a single clustering technique using a single type of metric. 

Our choices were motivated by previous studies. We have shown how phoneme cluster 

generation can be viewed as a pattern classification problem. We can apply other 

pattern classification techniques for exploring phoneme collocational constraints to 

determine which is best. We can also compare the results of other distance metrics, 

for example Euclidean distance between phoneme frequency contours. 

4.2.4 Recognizer Tuned Clusters 

We can adapt our procedures to the performance of a particular speech recognizer. We 

use the recognizer's lexicon and language model. We can map the lexicon using the 

recognizer's confusion matrix and insertion/ deletion statistics to simulate the input 

to the lexical access component better. This should give us a more realistic estimate 

of broad classification power. 

4.2.5 Acoustic Detectability 

Broad phoneme classes formed by our procedure are of little use to a recognizer if we 

cannot detect them reliably. We could incorporate acoustic distance measures for the 

classes into our clustering procedure, but this is not what we really seek. Instead, we 

propose building acoustic detectors for our broad classes. There are established means 

for evaluating the performance of these classifiers. Should we discover a particular 

class cannot be detected reliably, we can inhibit its formation in the classification 

tree. 

There is an alternative way we can evaluate our classes based on acoustic data. 

By summing rows and columns in a particular speech recognizer's confusion matrix, 

we can approximate how our broad classes will affect that system's performance. We 

can use the entropy of the matrices to compare phoneme classification schemes. 

4.2.6 Measuring Tree Stability 

We have used lexical measures to evaluate our phoneme classes objectively. We have 

not provided an evaluation of the phoneme hierarchy itself. There may be ways we can 

55 



compare two hierarchies, perhaps based on the two halves of a lexicon, to determine 

the stability of the classes. 

4.3 Summary 

This thesis provides an approach for evaluating phoneme collocational constraints as 

they apply to lexical access. We have shown results which demonstrate the power

fulness of these constraints. We also have exposed a potential problem with earlier 

lexical studies on broad phoneme classification. Finally, we offer support for linguistic 

theories of phoneme structuring. 
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Appendix A 

Related Clustering Experiments 

In this appendix we present some additional clustering experiments based on phoneme 

collocational constraints. We will briefly describe each experiment, show the resulting 

dendrogram, and discuss the outcome. 

A.1 Directional Diphone Measure 

Although the mutual information measure is reversible, we may create a directional 

measure using it by treating its arguments unequally. One way to do this for diphones 

is to use a phoneme's class and the adjacent phoneme as arguments rather than use 

two classes. Thus we can allow a class to predict the following phoneme using the 

measure I(<P(Xi); Xi+i)· An alternative interpretation is that each phoneme predicts 

the preceding class. By using I (Xi; <P ( Xi+i)) we reverse the direction of the measure. 

We show the results of both in Figure A.l. 

itedylrwh,.,~I!emgfpbk$n:flue 

Figure A.l: Dendrograms produced by clustering based on a class predicting the 
following phoneme (left) and the preceding phoneme (right). 
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Figure A.2: Dendrogram produced by clustering based on a class predicted by the 
preceding two classes. 

Neither of these hierarchies is as good as the one shown in Figure 3.1, especially 

since there isn't a clean split between the vowels and consonants. Both dendrograms 

have many clusters based on phonemes with similar manner or place. 

A.2 Forward Prediction Triphones 

Many speech recognizers use a left-to-right control strategy. A lexical access strategy 

based on a phoneme and its immediate context would need to process input one 

segment behind the acoustic decoder. We would like to determine if this delay is 

necessary or if we could use past context only without losing constraint. To better 

understand this, we used the measure I (<I>(X3 ); (<I>(X1 ), <I>(X2 ))) to construct the 

dendrogram shown in Figure A.2. 

Again, we consider the intermingling of vowels and consonants an indication that 

using a phoneme and its neighbors provides superior performance. 
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Figure A.3: Dendrogram produced by clustering based on phoneme in context using 
two disjoint halves of the MPD lexicon. 

A.3 Phoneme Class Stability 

We desire a simple method for examining the stability of our phoneme clusters. By 

selecting words at random, we create disjoint halves of the MPD lexicon. We re

peat our experiments using both sections and compare the results. Dendrograms for 

phoneme in context clusters created using this technique are shown in Figure A.3. 

The hierarchies are far from identical and yet are clearly related. Both dendro

grams separate the vowels from the consonants. We find numerous phoneme pairs 

in both dendrograms. Furthermore, we can see the "poisoning" effect an ill-fitting 

phoneme can have on clustering. For an example of this, compare the placement of 

/ f / with the stops in both dendrograms. Notice how the cluster containing it is far 

less robust than when it is absent. 

A.4 Word Frequency Weighting 

As we discussed earlier, we view weighting by word frequency as a weak attempt at 

language modelling. Still, it is traditional to perform lexical experiments with and 

without such weighting. We give the results of a single experiment using weighting 

from the Brown corpus in Figure A.4. 

Much of the dendrogram is comparable to the unweighted version. We do see some 

changes, notably / (j / clustering with / u /. This is an unusual cluster but not entirely 

unexpected. We know that / (j / is common in function words, and these words are 

the most abundant in the Brown corpus. It is reasonable to expect these extremely 
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Figure A.4: Dendrogram produced by clustering based on phoneme in context using 
word frequency weighting. 

frequent phonemes, and phonemes they are neighbors with, to behave differently. 

A.5 Longer Range Effects 

The dendrogram produced using phoneme in context was better than the one pro

duced using only a single neighbor. We want to explore what will happen when we 

use an even larger context. As we expand the context to include more phonemes 

it becomes ever more important to use a language model to provide across-word se

quences. We do not do this. We do, however, relax the sequence constraint in hopes 

of capturing more relevant events. 

For these experiments, we consider the occurrence of a phoneme class in a window 

preceding a selected class. Thus we use a window of length n - 1 for a sequence of n 

phonemes. We show results for windows of length 2 through 5 in Figure A.5. 

It is interesting to compare dendrogram (a) in this figure to Figure A.2. These 

differ only in the enforcement of a sequence constraint. This constraint seems to 

provide much information as demonstrated by the division of vowels and consonants. 

Also, the window approach yields a dendrogram with less robust fine clusters. 
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Appendix B 

Related Lexical Experiments 

In this section we give the results for four additional lexical measures of broad classi

fication performance. We do so because these measures are common in the literature. 

We conducted all of these experiments using the MPD lexicon. 

The first measure is the percentage of words in the lexicon uniquely specified by its 

class pattern, shown in Figure B.l. This is considered important because it represents 

words which require no further acoustic discrimination for completing lexical access. 

All of the classes perform similarly except for distinctive features, which performs 

decidedly worse. Randomly formed clusters generally perform best .. 

In our next graph, shown in Figure B.2, we compare classes using the word en

tropy measure advocated by Carter [7]. Again we see a poor separation between 

classification schemes, notably random classes. 

We show the maximum cohort size in Figure B.3. This provides a measure of the 

most difficult word identification problem remaining after broad classification. Again 

we see the classes performing similarly except for the worse performance of features. 

Here we also see many discontinuities. These arise mainly from individual phonemes 

being identified. 

Finally, we examine mean cohort size. It is a cousin of expected cohort size, but 

perhaps gives a less accurate picture of lexical access difficulty. The results for the 

measure are shown in Figure B.4. 

The highly skewed nature of the data means it is difficult to make detailed com

parisons. The results are similar in nature to the previous three. 
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Figure B.l: Graph of phoneme class performance as measured by percentage of words 
uniquely specified by their class pattern. 
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Specifically, we investigated phoneme colloca.tional constra.ints using a. normalized 
measure of mutual information. A pa.ir-wise, hiera.rchica.l clustering technique is used 
to combine phonemes into classes using this metric. The result of this clustering 
procedure ca.n be displayed a.s a. dendrogra.m, from which an a.rbitra.ry number of 

equivalence classes can be selected. 
We have conducted a number of experiments investigating the collocation con

straints of phoneme pairs a.nd triplets. We found that in ma.ny cases phonemes a.re 
organized into classes that sha.re certa.in phonological features. In fa.ct, phonemes 
that have similar acoustic properties often exhibit simita.T collocationa.l constra.ints. 
We a.lso compared the constraining power of our phoneme claues with those chosen 
with a phonologica.l criteriQn, a.nd found ours to be more than competitive. Based 
on our results, we conclude that our information theoretic metric is particularly well 
suited to a description of lexical ·constraining power. We discuss the implications of 
the results to automatic speech recognition. 
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