
LABORATORY FOR
COMPUTER SCIENCE

MIT/LCS{fR-506

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

ALGORITHMS FOR
APPROXIMATE GRAPH

COLORING

Avrim Blum

June 1991

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Algorithms for Approximate Graph Coloring

by

Avrim Louis Blum

S.B., Mathematics with Computer Science
S.B., Physics

Massachusetts Institute of Technology
(1987)

S.M., Electrical Engineering and Computer Science
Massachusetts Institute of Technology

(1989)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 1991

© Massachusetts Institute of Technology 1991

Signature of Author----~----·----~--'~--------------
Department of Electrical Engineering and Computer Science

May 9, 1991

Certified by~~~~~~~~~~~~~~~~~~-~~· ~~~-~~
Ronald L. Rivest

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by------------------------------
Arthur C. Smith

Chairman, Department Committee on Graduate Students

Algorithms for Approximate Graph Coloring
by

A vrim Louis Blum

Submitted to the Department of Electrical Engineering and Computer Science
on May 9, 1991, in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Abstract
A coloring of a graph is an assignment of colors to the vertices so that no two adjacent
vertices are given the same color. The problem of coloring a graph with the minimum
number of colors is well known to be NP-hard, even restricted to k-colorable graphs for
constant k 2'. 3. This thesis explores the approximation problem of coloring k-colorable
graphs with as few additional colors as possible in polynomial time, focusing on the case of

k = 3.
For the worst-case problem, the previous best upper bound on the number of colors

needed for coloring 3-colorable n-vertex graphs in polynomial time is 0(Jn/ .;rogn) colors
by Berger and Rompel, improving a bound of 0(Jn) colors by Wigderson. We present
an algorithm to color any 3-colorable graph with 0(n318 poly log(n)) colors, breaking an
"O(n 1/ 2 - 0 <1)) barrier". The algorithm presented here is based on examining second-order
neighborhoods of vertices, rather than just immediate neighborhoods of vertices as in pre­
vious approaches. We extend our results to improve the worst-case bounds for coloring
k-colorable graphs for constant k > 3 as well.

We also examine the problem of coloring random k-colorable graphs. We consider a
standard model in which vertices are first randomly assigned to one of k color classes
and then each edge between two vertices of different color is placed into the graph with
probability p. For sufficiently high edge probability, it is known by results of Turner, Dyer
and Frieze, and others, that such graphs are easy to k-color. We describe here an algorithm
to k-color graphs generated in this way for a much wider range of edge probabilities (p 2'.
n-l+f for any constant f > 0) than previously possible.

To study a wider variety of graph distributions, we also present a model of graphs gen­
erated by the semi-random source of Santha and Vazirani that provides a smooth transition
between the worst-case and random models. In this model, the graph is generated by a
"noisy adversary" - an adversary whose decisions (whether or not to insert a particular
edge) have some small (random) probability of being reversed. We show that even for quite
low noise rates, semi-random k-colorable graphs can be colored with high probability using
just k colors.

Finally, we use assumptions about the worst-case difficulty of approximate graph col­
oring to provide lower bounds for other hard problems. Using techniques developed by
Berman and Schnitger, we show that if there is no polynomial-time algorithm to color
k-colorable graphs with O(log n) colors, then the largest independent set in a graph (or
equivalently the largest clique) cannot be approximated to within a factor of n1

-f for any
constant f > 0. This is a much higher lower-bound than achieved by previous results, albeit
based on less solid assumptions.

Thesis Supervisor: Ronald L. Rivest

Title: Professor of Electrical Engineering and Computer Science

2

Acknowledgments

I would like to thank first of all my advisor Ron Rivest for his encouragement and his help,

and for his always good sense of worthwhile research directions to explore. Both at a high

level and at a detailed level, he has helped me throughout my graduate student years with

his suggestions, ideas, and his ability to draw intuition from a wide variety of research areas.

Portions of this thesis are based on joint work with Joel Spencer. I would like to thank

Joel for all he has taught me, for attempting to impart to me some of his probabilistic

intuition, and for many exciting discussions. I would also like to thank the other faculty

that I have worked and discussed problems with in my time at MIT, including Silvio Micali,

Shafi Goldwasser, David Shmoys, and Mike Sipser.

The many students in the MIT Theory of Computation group have made my time as

a graduate student particularly enjoyable. I would like especially to thank Cliff Stein, Rob

Schapire, Mark Hansen, and Aditi Dhagat-good friends and researchers who have helped

me in many ways, including through many productive technical discussions. Also, I would

like to thank Su-Ming Wu, Bob Sloan, Mona Singh, Lance Fortnow, Bronwyn Eisenberg,

Margrit Betke, and Javed Aslam, my officemates at various times for making my immediate

work environment so much fun, and Muli Safra, Rafi Ostrovsky, Dina Kravets, Joe Kilian,

and Mihir Bellare for teaching me about their areas of expertise. In addition, I would like

to thank Be Hubbard for her good cheer, her administrative help, and chocolates.

Most of all, I would like to thank my family: my parents Lenore and Manuel for their

support, for their excitement towards my research and for their good general research sense

that I hope has rubbed off on me, and my wife Michelle for her spirit, encouragement and

for helping make these years such good ones.

Finally, I am grateful for financial support provided by a truly hassle-free NSF graduate

fellowship and by NSF grant CCR-8914428.

3

Contents

1 Introduction

1.1 Applications of graph coloring

1.2 Forms of approximation, and past work

1.2.l Approximate coloring in the worst case

1.2.2 Exact coloring in special cases

1.3 New results and a plan of the thesis

2 Notation, definitions, and previous algorithms

2.1 Previous algorithms

3 Worst-case bounds: preliminaries

3.1 New worst-case approach: the basic idea

3.2 A few additional definitions .

3.3 Useful definitions of progress

4 Worst-case bounds for 3-colorable graphs: first algorithm

4.1 Forcing expansion

4.2 The algorithm . . .

4.3 Forcing good distribution

4.3.1 The basic approach, and a counterexample to the naive strategy

4.3.2 Theorems and proofs

4.4 Applying the vertex-cover approximation

5 Worst-case bounds for 3-colorable graphs: improved algorithm

5.1 A useful lemma

5.2 Making progress from dense regions

5.3 The coloring algorithm

6 Worst-case bounds for k-colorable graphs

6.1 A simple recursive approach

4

6

7

8

8

9

10

12

13

15

15

17

17

21

21

22

24

24

26

31

32

32

36

40

43

43

CONTENTS

6.2 Directly extending the k = 3 algorithm

6.2.1 Motivation

6.2.2 The bootstrapping algorithm

7 Random models for k-colorable graphs

7.1 An improved algorithm

7 .1.1 Calculating expectations

7.1.2 Analysis and the I-path algorithm

8 Semi-random graphs

8.1 Basic definitions and statement of results

8.2 A first algorithm

8.3 A better algorithm: k = 3

8.3.l Motivation

8.3.2 Janson's inequality

8.3.3 The main theorem

8.4 A better algorithm: general k

8.5 Relating the balanced and unbalanced models

9 Lower bounds for independent set approximation based on approximate

5

47

47

48

57

58

59

61

65

65

67

71

73

73

76

80

84

graph coloring 86

9.1 Additional definitions and previous results 86

9.1.1 The basic idea of the new results 88

9.2 Randomized graph products 88

10 Possibilities for improvement, open problems, and conclusion

10.1 Possibilities for improvement .

10.2 Open problems and conclusion

A The Vertex-Cover / Independent-Set approximation algorithm

B An analog of Spencer's result on counting extensions

B.l Modifying Spencer's result

94

94

95

97

99

100

Chapter 1

Introduction

A k-coloring of a graph is an assignment of one of k distinct colors to each vertex in the

graph so that no two adjacent vertices are given the same color. The chromatic number of

a graph is the smallest k such that the graph can be k-colored.

Graph coloring problems have a long history in mathematics and computer science.

The famous 4-Color Problem of whether every planar graph is 4-colorable, dates back at

least to 1852 [33]. Partly through that problem, finally solved by Appel and Haken [3],

graph coloring has become a central topic in combinatorics. In computer science, graph

coloring problems have long been known to model various scheduling problems such as

examination scheduling and register allocation. Graph coloring is also closely related to

other combinatorial problems such as finding the maximum independent set in a graph (the

largest set of vertices such that no two have an edge between them).

Unfortunately from the algorithmic point of view, as is well known, the problem of

determining the chromatic number of a graph is NP-Complete. The problem of deciding

whether a graph is k-colorable for any fixed k 2: 3 is NP-Complete as well. Thus, coloring

an arbitrary k-colorable graph with k colors for k 2: 3 cannot be done in polynomial time

unless P = NP (for k = 2, 2-coloring is easy). Knowing that the coloring problem is NP­

hard does not make it disappear, however, and it also does not necessarily mean nothing

useful can be done. It does mean that as for many other famous hard problems such as the

Traveling Salesman Problem (TSP) and the Bin Packing problem, researchers attempting

to find good fast algorithms must consider issues of approximation.

This thesis concerns the algorithmic problem of finding good approximate colorings of

graphs for several natural forms of approximation. We focus here on deriving polynomial­

time algorithms for coloring graphs of constant chromatic number and on improving upon

previously known algorithmic guarantees. In particular, we both improve upon previous

guarantees for the number of colors needed in the worst case to properly color k-colorable

graphs in polynomial-time, and extend the known classes of graphs for which optimal col­

orings can be found quickly. We will not be so concerned here with precisely optimizing

the running time of the algorithms (so long as they are polynomial); instead we focus more

6

1.1. Applications of graph coloring 7

on the quality of the approximation. Because 3-chromatic graphs are the simplest and in

a sense the most fundamental graphs for which optimal coloring is NP-hard, much of this

thesis will focus on the special case of coloring graphs of chromatic number 3. We then

describe extensions of these results to graphs of higher constant chromatic number as well.

1.1 Applications of graph coloring

Graph coloring problems arise in situations where one would like to assign a small number

of values to objects under pairwise constraints of the form that object x and object y cannot

receive the same value. Such situations occur often in various scheduling problems and we

present a few examples here.

Example 1: Examination Scheduling.

Consider the problem of scheduling n final exams into a small number of different

time slots. One would like to do so in a way such that no student has a conflicting

schedule: that is, no student has two of her examinations at the same time. Suppose

we assign one vertex in a graph to each examination and place an edge between two

vertices if some student is taking both corresponding exams. Then the problem of

scheduling the examinations into k time slots so no student has a conflict is exactly

the problem of coloring the corresponding graph with k colors [42][5].

Example 2: Register Allocation.

A more "real computer science" problem, for which graph coloring techniques have

actually been used in practice is the problem of register allocation in compilers. Work

in this direction has been done by several researchers including Chaitin [15], Chaitin et

al. [16], and Briggs et al. [13]. During compilation, a standard compiler [15] transforms

the source program into an intermediate language based on a hypothetical machine

with an unlimited number of fast syntactic (virtual) registers. Since the real machine

has only a bounded number of registers, the compiler in a "register allocation phase"

must then map the computed values in the syntactic registers into the true registers of

the machine (e.g., 17 registers in work of Chaitin et al. [16] or 32 registers in work of

Chaitin [15]). If the compiler cannot do this exactly, it will be forced to "spill" some

values into main memory through load and store operations. Because the registers

are fast, the hope is to spill as little of the computation as possible.

The relationship of this problem to graph coloring is as follows. For each procedure in

a program, Chaitin et al. build a "register interference graph" containing one vertex

for each value (e.g. a variable in the program) and an edge between two vertices if

8 Chapter 1. Introduction

the two values interfere and cannot be placed into the same register. Interference is

checked roughly by examining if both values are "live" at the same time, or more

precisely if one value is live at a definition point of the other. Thus, if we think of

the real registers as colors, an assignment of 17 or 32 colors to the vertices of the

interference graph (depending on which machine is being used) corresponds to an

assignment of registers to the computed values of the procedure.

Of course, it may be that the interference graph cannot be colored with the required

number of colors. In that case, the uncolored vertices are "spilled" into main memory.

So, the goal here is to color as many vertices as possible with the given number of

colors (where "many" may be defined by some additional measure of cost and not

just sheer quantity). As it turns out, once values are spilled, this requires additional

vertices, usually of low degree, to be added onto the graph, so the abstraction as

a standard coloring problem is not quite exact. Nonetheless, simple graph coloring

heuristics appear to work well in practice [15][16][13].

1.2 Forms of approximation, and past work

For the graph coloring problem, the issue of approximation splits naturally into two general

directions. One direction is to consider worst-case graphs, but allow the number of colors

used to be non-optimal. In particular, one would like answers to the question:

Given an n-vertex k-colorable graph, how many colors do you need in order to

color the graph in polynomial time?

A second general direction is to relax the restriction that the graph be worst case and

attempt to find optimal colorings for large or nicely characterized subsets of the inputs.

That is, one would like answers to the question:

While coloring k-colorable graphs with k colors in the worst-case is hard, can

you find a large subset of cases where k-coloring is easy?

1.2.1 Approximate coloring in the worst case

For graphs of constant chromatic number, the first nontrivial result along the first direction

presented here was due to Wigderson [43]. Wigderson gives an algorithm to color any n­

vertex 3-colorable graph with 0(y'n) colors, and more generally to color any k-colorable

graph with 0(n 1-6) colors. More recently, several researchers: Berger and Rompel [6],

Linial, Saks, and Wigderson [24], and Raghavan [32] independently have improved upon

this bound to color k-colorable graphs with o((n/logn) 1 -k~l) colors, which fork= 3

results in a coloring of 3-colorable graphs with 0(vn/ y'f()g1i") colors.

1.2. Forms of approximation, and past work 9

The result of Berger and Rompel, et al. was important because no progress had been

made for some time and it showed that fa was in no sense a lower bound for color­

ing 3-colorable graphs. However, for the kinds of techniques used it was clear that, say,

O(fajlog2 n) colors would be completely out of reach. The difficulty in improving these

results motivated work of Linial and Vazirani [25] who provide some evidence for an n<

lower bound for the general chromatic number approximation problem.

For general graphs of arbitrary chromatic number, the best algorithmic result known to

date is due to Halld6rsson [22]. Halld6rsson's algorithm has a performance guarantee-that

is, a ratio of the number of colors used to the chromatic number-of O(n(log log n)2 /(log n)3
).

This result is based upon an algorithm by Boppana and Halld6rsson [12] for the Independent

Set problem which finds an independent set within an n/(log n) 2 factor of the maximum.

There has also been recent work on coloring graphs presented in an on-line manner; that

is, coloring graphs presented one vertex at a time in some arbitrary order. Vishwanathan [41]

presents an algorithm for such a model that uses a number of colors within a logarithmic

factor of the Wigderson bound.

1.2.2 Exact coloring in special cases

Many classical results on graph coloring can be thought of from the point of view of the

second direction described here. These results prove nice characterizations that are sufficient

conditions for k-colorability, and the characterizations are often testable in polynomial time.

For example, the famous 4-Color Problem and Theorem gives an easy way to prove a graph

to be 4-colorable - one simply checks that the graph is planar. In fact, the 4-Color Theorem

of Appel and Haken is known to yield a polynomial-time coloring algorithm for such graphs.

Of course, if the graph turns out not to be planar, then this technique says nothing about

the graph's chromatic number. For graphs of chromatic number 3, similar classical results

are known. Grotzsch ([5], p.355) proved that any planar graph without triangles must be

3-colorable, and this was extended to hold for graphs with at most 3 triangles by Griinbaum

[21]. 1 The proofs of both results involve reducing a graph to one with fewer vertices in ways

that yield polynomial-time coloring algorithms. For graphs of general chromatic number,

Brooks' Theorem [14][26] states that any connected graph of maximum degreed (d > 2) is

either d-colorable or else is a single (d + 1)-clique. Note that it is very easy to d-color any

graph with maximum degree d - 1: for each vertex in an arbitrary order, simply give to

that vertex any color in {1, ... , d} not held at the time by any of its neighbors. Steinberg

[37] presents a survey of such classical results, focusing on 3-chromatic graphs.

1 In some sense this is "best possible" since the 4-clique K4 is planar with four triangles and is not
3-colorable. See [5].

10 Chapter 1. Introduction

Instead of presenting such explicit characterizations of easy-to-color families of graphs,

one can also study random families of graphs. Turner [38], Kucera [23], and Dyer and

Frieze [18] give polynomial-time algorithms that color random k-colorable graphs with k

colors with high probability, for any constant k. So, most k-colorable graphs are easy to

k-color. In fact, Dyer and Frieze go further and provide an algorithm that when amortized

over all n-vertex k-colorable graphs, spends on average polynomial time per graph. Petford

and Welsh [31] present experimental work using heuristics for coloring random 3-colorable

graphs and claim success for a wide range of edge probabilities.

It is not known how to color general random graphs (where we do not restrict the chro­

matic number) in polynomial-time with the minimum of colors, but one can get fairly close.

For the model 9(n,p) of an n-vertex graph in which each edge is included with probability

p, Bollobas [10] has shown that the chromatic number will be (1 + o(l)) n/(2logb n) with

high probability, for b = 1 ~P. It is not hard to show that the greedy algorithm: in some

order give to each vertex the color of least index not yet held by any of its neighbors, finds

a coloring of at most (1 + o(l))n/logb n colors, a factor of 2 above optimal. Matula [27]

provides quasi-polynomial approaches with provably better bounds.

1.3 New results and a plan of the thesis

This thesis presents results in both of the two directions discussed above. For k-colorable

graphs for constant k, we both provide better approximation guarantees for the worst-case

problem and expand the classes of graphs for which optimal coloring is known to be easy.

The major portion of this thesis concerns the the first direction discussed of finding

improved approximation guarantees for the worst-case problem. We present an algorithm

that uses a quite different strategy from that used by the algorithms of Wigderson and

Berger and Rompel and others, and colors any 3-colorable graph with 0(n318 log5
/

2 n) colors.

Thus, we improve the previous bound of 0(fol y'10gli") colors and break a "soft-0(fo)
barrier" (that is, ignoring poly logarithmic factors). The algorithm we present also extends

to graphs of higher constant chromatic number and improves upon the previous bounds for

such graphs. We present the new algorithm in two parts: the first part (Chapter 4) colors

3-colorable graphs with 0(n 2
/

5+o(t)) colors, and the second part (Chapter 5) achieves the

better bound claimed above. The strategy used also suggests a plausible path for further

significant reductions in the color bounds, and a discussion of this is given in Chapter

10. The algorithms presented for the worst-case problem are motivated by techniques that

would work if the graph were in fact chosen randomly, and this motivation and the general

flavor of the algorithms are given in Chapter 3.

Along the second direction, we extend the class of randomly chosen k-colorable graphs for

1.3. New results and a plan of the thesis 11

which a k-coloring can be found in polynomial time. In particular, we consider a standard

model of a random k-colorable graph in which vertices are first randomly assigned to one of

k color classes and then each edge between two vertices of different color is placed into the

graph with probability p. For this model, we are able to find colorings for a wider range of

edge probabilities (p 2: n- 1+• for any constant € > 0) than was previously known. These

results are described in Chapter 7.

While the known results on random graphs imply that most k-colorable graphs are easy

to k-color, random k-colorable graphs tend to be of a very special type. For example, with

high probability all vertices of a random k-colorable graph have nearly the same degree and

vertices of the same color class all have nearly the same number of common neighbors. So,

graphs created in only a "somewhat random" manner may not be colored well by algorithms

for the random case. To explore a wider variety of graph distributions, we present in Chapter

8 a model of graphs created by the semi-random source of Santha and Vazirani [34] that

provides a smooth transition between the worst-case and random models. In this model,

the graph is generated by a "noisy adversary" - an adversary whose decisions (whether

or not to insert a particular edge) have some small probability of being reversed. We show

that even for quite low noise rates, these semi-random k-colorable graphs can be colored

with high probability using just k colors. The discussion of random and semi-random graph

models is based in part on work joint with Joel Spencer.

In addition to the above-mentioned general directions, we describe in Chapter 9 how

hardness assumptions for approximately coloring graphs in the worst case can be used to

provide lower bounds for other hard problems. In particular, we use a technique developed

by Berman and Schnitger [7] to prove the following result. Suppose there were a polynomial­

time algorithm to find an independent set in a graph of size at most a factor of n 1
-' smaller

than the size of the largest independent set, for some constant € > 0. Then one could

convert such a procedure into one that colors k-colorable graphs with O(log n) colors, for any

constant k. Also, one could convert such a procedure into one that colors (log n)-colorable

graphs with poly log(n)-colors. This contrasts with the best algorithm known to date [22] for

coloring (log n)-color able graphs which uses more than n/ (log n)2 colors. So, these results

imply that a seemingly small improvement in approximating independent sets implies one

can get a much larger improvement for approximate graph coloring. In contrapositive

form, these results present a high lower-bound for Independent Set approximation based

on a hardness assumption for graph coloring that is quite far from the best algorithmic

guarantees currently known.

Some of the work in this thesis has previously appeared in extended abstract form [8][9].

Chapter 2

Notation, definitions, and previous algorithms

In this chapter we review some standard graph-theoretic definitions and introduce basic

notation that will be used throughout this thesis. At the end of the chapter we will describe

some previous worst-case coloring algorithms in order to introduce a few useful techniques.

Given a graph G, let V (G) denote the vertices of G and E (G) denote the edges of G.

We will use N (v) to denote the neighborhood of a vertex v and d(v) to denote the vertex

degree. That is, for G = (V, E):

• N(v) = {w EV I (v,w) EE}, and

• d(v) = IN (v) 1.

It will also be convenient to define the degree D(S) of a set of vertices S by:

• D(S) = L d(v),
vES

and the neighborhood N (S) of set S by:

• N(S)= LJN(v)={wEVl(v,w)EEforsomevES}.
vES

Notice that D(S) may he much larger than IN(S)I if vertices in S share many neighbors in

common. We will also use the term "distance-2 neighbors" of a vertex v to mean the set

N(N(v)). Note that if N(v) -f- </>then v E N(N(v)).

An independent set in a graph is a set of vertices no two of which are adjacent to each

other. A vertex cover is a set W such that every edge in the graph has at least one endpoint

in W; that is, it is a set W such that V - W is independent.

As mentioned in the introduction, the chromatic number of a graph is the least number

of colors needed to color the graph so that no two adjacent vertices are given the same

color. As is standard terminology [29], we will say that a graph is k-chromatic to mean

that the chromatic number is exactly k, and that a graph is k-colomble to mean that the

chromatic number is at most k. For the most part, this distinction will not be important

and we will use the terms interchangeably. We say that an algorithm t-colors a graph if it

12

2.1. Previous algorithms 13

colors the graph with at most t colors, and it optimally colors a graph if it colors with the

fewest number of colors possible.

For the special case where G is a 3-colorable graph, we use red, blue, and green to denote

the colors of vertices in G under some legal (but unknown) 3-coloring. We also use these

terms to denote the sets of vertices belonging to each color class under that legal coloring.

For functions f and g we say g(n) = O(J(n)) to denote that g(n) = O(J(n) loge n) for

some constant c. Similarly, we will use g(n) = n(J(n)) to denote that g(n) = f!(J(n) I loge n)

for some constant c. We also use "g(n) ~ J(n)" to mean that J(n) = o(g(n)). Finally, we

use the following general standard notation:

• (m); = m(m - 1)(m - 2) · · · (m - i + 1).

• Kt is the clique on t vertices.

• For Sa subset of vertices of graph G, the graph H = Gls is the subgraph of G induced

by set S. That is, V(H) =Sand E(H) = {(i,j) E E(G) I i,j ES}.

The term "log n" will be used to denote log2 n, and logP n will be used to denote (log n)P.

2.1 Previous algorithms

As is well known, 2-colorable graphs can easily be 2-colored in polynomial time. For exam­

ple, the following procedure suffices to color any 2-colorable graph with the colors 0 and 1.

First, assign a color, say 0, to one vertex in each connected component in the graph. Then

assign color 1 to each neighbor of a vertex colored 0. Finally, repeat, assigning color 0 to

any uncolored neighbor of a vertex of color 1, and color 1 to any uncolored neighbor of a

vertex colored 0, and so on, until the entire graph is colored. The resulting coloring will be

legal since 2-colorable graphs have no odd cycles.

Let us now review Wigderson's algorithm [43] for the special case of 3-colorable graphs.

Wigderson's algorithm looks at the immediate neighborhoods of vertices, and uses the fact

that in a 3-colorable graph the neighborhood of any vertex is 2-colorable. The algorithm

proceeds as follows. If there exists a vertex of degree at least Jn in the graph, then we

color its neighborhood with two unused colors and then delete the colored nodes from the

graph. If all vertices have degree less than Jn, we can greedily Jn-color the remaining

graph, since with Jn colors, for each vertex we are guaranteed that at least one color is not

used on its neighbors. The total number of colors used is at most 3Jfi,. If we pick a degree

cutoff of ffn instead of Jn, we can optimize the constant for this type of strategy to VS.
A more formal description of the algorithm is given below.

14 Chapter 2. Notation, definitions, and previous algorithms

Wigderson's Algorithm

Given G = (V, E), a 3-colorable graph on n vertices.

1. Initialize color c to 0.

2. While there exists a vertex v E V with d(v) 2: y'n,

(a) 2-color N (v) with colors: c, c + 1.

(b) Let ct- c + 2, V t- V - N(v).

(note that the loop in this step can be executed at most y'n times.)

3. Color the remaining graph with colors c, c + 1, ... , c + y'n - 1, by arbitrarily

assigning to each vertex a color not held by any of its neighbors.

The improvement to O(y'n/~) of Berger et al. mentioned previously results from

choosing (log n) starting vertices instead of one. This can be done by selecting an arbitrary

subset of vertices of size (3 log n), and trying each subset of size (log n); one such subset must

be monochromatic under some legal 3-coloring of G and so has a 2-colorable neighborhood.

The way that this set is then exploited is described in [6]. We will revisit this algorithm in

Chapter 3, where the algorithm and bounds guaranteed follow as an easy corollary of the

machinery described there.

In contrast to the above strategies, the new worst-case algorithm presented here is a

multi-pronged attack. The main idea of the new approach is to take advantage of informa­

tion from not just the immediate neighbors of vertices, but from distance-2 neighbors as

well. One difficulty with looking at distance-2 neighbors is that they have not so obvious

a structure as the immediate neighbors. For example, the immediate neighborhood, as

noted earlier, is 2-colorable; the structure of the distance-2 neighbors will have to be more

carefully brought out.

Chapter 3

Worst-case bounds: preliminaries

3.1 New worst-case approach: the basic idea

The previous best algorithms for coloring 3-colorable graphs all used 0(n 1/
2

) colors in the

worst-case. This section describes the basic idea for an algorithm to color any n-vertex

3-colorable graph G with O(n") colors, for some a< 1/2. Note that to do so, it is enough,

as in Wigderson's algorithm, to find an independent or 2-chromatic set of size O(n1
-"),

since that set can be colored with 1 or 2 colors and the procedure repeated on the graph

remaining.

The idea of the new algorithm is to try to make progress from examining distance-2

neighbors, and not just the immediate neighborhoods of vertices as in previous algorithms.

We will describe the motivation for the approach by considering the question: "what if

the edges in the graph were distributed randomly?" That is, what if after an adversary

decided which nodes to place in the sets red, blue, and green (the color classes under a legal

3-coloring unknown to the algorithm) a coin of some bias p was then flipped for each pair

of vertices u, v of different colors to determine whether edge (u, v) would be in the graph?

In that case, the following strategy finds an independent set of size 0(n 213).

First, we may assume there are about the same number of red, blue, and green vertices,

since otherwise we could immediately separate at least one of the color classes from the

others by just looking at the vertex degrees. 1 Second, we may assume that the vertices have

average degree at least n 1 l 3
, since otherwise we could just greedily gather an independent

set of size n(n 213
). Finally, for simplicity, we assume that the average degree d is at most

n 112-(for some E > 0 (so we have n 113 ~ d ~ n 112-'). This last requirement will simplify

the motivational argument, but is not necessary.

Suppose v is a red vertex. Then, the neighborhood of v consists of blue and green

vertices, with approximately half of each color if the numbers of blue and green vertices

in the graph are roughly equal. Each blue vertex in N (v) similarly has about half green

1 Once we have separated one of the color classes from the others, we can then easily 2-color the graph
remaining. This fact about the sizes of the color classes for random graphs does not generalize to worst-case
graphs, and in fact, there is no analog of this step used in the worst-case algorithm. It is inserted here solely
to simplify our picture of the graph.

15

16 Chapter 3. Worst-case bounds: preliminaries

neighbors and half red neighbors, and each green vertex has about half blue neighbors and

half red neighbors. So, if we look at the set of the distance-2 neighbors S = N(N(v)), red

vertices are significantly more predominant than blue or green vertices. In fact, about half

of Sis red, a quarter blue, and a quarter green, since we have assumed dis small enough (at

most n 112
-') that not many vertices of Sare neighbors of several vertices of N(v). Thus,

S is a set of size at least !1(n 213
) that has within it an independent set (the red vertices) of

about one half the size of S. 2

Given a set S of size !1(n213
) containing an independent set of size ~ISi, and therefore

a vertex cover of size ~Is 1, we can algorithmically find an independent set of size n(n 213
)

by applying a vertex-cover approximation algorithm due to Bar-Yehuda and Even [4] and

(independently) to Monien and Speckenmeyer [28].3 Their algorithm finds a vertex cover

of size at most (2 - 10~:~n) times the size of the minimum vertex cover in the graph. If we

apply the algorithm to the graph induced by S, we find a vertex cover Win S of size at most

~ISi (2- 10~:~n), which is at most ISi- ISl/(4loglSI). So, the complement, S-W, is an

independent set inside s of size at least !1(ISI/ log ISi) = n(n 213). Thus, in the case where

the edges in the graph are chosen by a random process, we have found a large independent

set. In Chapter 7, we see how in fact to do much better for random graphs and actually

3-color random 3-colorable graphs for p ~ n°< 1)-l (i.e., where the average degree is at least

n' for some f > 0).

Worst-case graphs, however, are not random. Instead, we will use various techniques

to force the graph to have properties of random graphs, or at least weak versions of these

properties, that we need. One such property is that of being "well-distributed": we want

N(N(v)), or at least an easy-to-select subset of N(N(v)), to have nearly half red vertices,

so that the vertex-cover approximation algorithm can be used. The second such property

is an expansion property: we want the selected subset of N(N(v)) to be significantly larger

than N(v), so that our performance is much better than that achieved by looking only at

immediate neighbors.

Chapters 4 and 5 describe one general method for proving the existence of a form of

good distribution in worst-case graphs and two methods for forcing expansion. The first

method for forcing expansion (described in Chapter 4) is simple and elegant and results in

a coloring of any 3-colorable graph with O(n215
) colors; the second (described in Chapter 5)

is more complicated, but results in an improved bound of 0(n318) colors.

2 We can remove the restriction d < n 1
/

2
-< by choosing S to be a subset of N(N(v)) generated by

conceptually deleting edges from the graph at random until the average degree is below n 1!2 -<, and then
letting S = N(N(v)) in this new graph.

3 Their algorithms differ slightly but the bounds are essentially the same. A version of their algorithm is
described in Appendix A for completeness.

3.2. A few additional definitions 17

3.2 A few additional definitions

We now present a few additional definitions that will be needed in Chapters 4 and 5. Given

a graph G = (V, E) on n vertices:

• For v EV, let dT(v) = IN(v) n Tl. We call dT(v) the degree into T of v.

• For S, T ~ V, let DT(S) = L dT(v). We call DT(S) the degree into T of S.
vES

Note that dT(v) = D{v}(T) and DT(S) = D5 (T).

• Let o = o (n) = 5 1;s n •

• Let I;= {v Ev I d(v) E [(1 + o)i,(1 + o)i+1)} for j = 0, 1,2, That is, we divide

the set of vertices of degree at least 1 into bins I; so that in each bin, the ratio of

the degrees of any two vertices is less than (1 + o). The number of bins is at most

log1+6 n::; (1 + o(l))t ln n < t log n .

• Fors~ v, let N;(S) = {v E N(S) I ds(v) E [(1 + o)i,(1 + o)i+1)} for i = 0, 1,2,

In other words, N;(S) (0::; i::; log 1+6 n) is the subset of vertices in N(S) that are hit

by at least (1 + o)i and less that (1 + o)i+1 edges from s.

3.3 Useful definitions of progress

In order to more easily describe and analyze the coloring algorithms presented, it will be

useful to have several formal notions of "making progress" towards an J(n)-coloring of an

n-vertex graph. These notions simplify the analysis by allowing us to aim for intermediate

goals. While we will only need to consider J(n) a function of the form 0(n<> log13 n), the

notions of progress in fact hold for a more general class of "nearly-polynomial" functions,

as defined below.

Definition 3.1 A function f over z+ is nearly-polynomial if it is non-decreasing and

there exist constants c, c' > 1 such that for all sufficiently large N,

J(2N) 2: cf(N) and J(2N)::; c' J(N).

For example, if J(n) = n 112 , then we may choose c = c' = 2112 • If J(n) = n<> log13 n for

a > 0, then we may choose c = 2<>(1 - E) and c' = 2<>(1 + E) for any constant f > 0.

Three important ways of making progress towards an J(n)-coloring of an n-vertex k­

colorable graph are defined as follows.

18 Chapter 3. Worst-case bounds: preliminaries

Progress Type 1: [Large-IS] Find an independent or 2-colorable4 set S of size f!(nl J(n)).

Progress Type 2: [Small-Nbhd] Find an independent or 2-colorable set S such that JN(S)I =
O(f(n)JSJ).

Progress Type 3: [Same-Color] Find two vertices that must be the same color under any

legal k-coloring of the graph.

Progress Type 1 "makes progress" because we can color the set found with at most two

colors, throw away the colored vertices, pick two new colors to work with and continue. The

idea for progress Type 2 is that we can use it to find many different 2-colorable sets, each of

which is independent of the others because each set has a small neighborhood; combining

the sets found gives us a large 2-colorable set and thereby progress of Type 1. Progress Type

3 always helps us towards any approximate coloring. More formally, besides showing that

each type of progress is useful individually, we would like to say that any combination of the

three types of progress, in any order, yields an O(J(n))-coloring of an n-vertex k-colorable

graph.

Lemma 3.1 If there exists a polynomial-time algorithm A that is guaranteed given any k­

colomble graph of m vertices, to make progress of either Type 1, 2 or 3 towards an O(J(m))­

coloring (where f is nearly-polynomial), then there exists a polynomial-time algorithm B that

colors any n-vertex k-colorable graph G with O(J(n)) colors.

Progress Type 1 and a weaker variant of Type 2 were used by Wigderson [43). In fact,

if we do not care about constants, we can state Wigderson's algorithm for coloring n-vertex

3-colorable graphs with 0(n 112) colors as follows. If a vertex v has a neighborhood of

size f!(n 112
) then we make progress of Type 1 using its neighborhood; otherwise, JN(v)I =

0(1 · n112
) so we make progress Type 2.

We can also state simply the algorithm of Berger and Rompel [6) to color any 3-colorable

graph with 0(fol yfclgn) colors using these types of progress (here, J(n) = fol y'log n).

Select a subset S of 3 log n vertices in graph G arbitrarily and examine every independent

subset S of S of size (log n). Note that there are at most (~~~gnn) < n3 such subsets, so

this can be done in polynomial time. For each subset S, test to see if its neighborhood is

2-colorable; this test will succeed for some S since at least one such subset must consist of

vertices all the same color in some legal 3-coloring of G. Now, if JN(S)J ~ foyfclgn, we

have made progress of Type 1. If JN(S)I < fo~, then we have made progress of Type

2.
4 Technically, an independent set is 2-colorable. We list both here to emphasize there is no need for the

set S to require 2 colors. Also, we label this type of progress by "LARGE-IS" since given a 2-chromatic set,
one can easily find an independent subset of only a factor of 2 smaller.

3.3. Useful definitions of progress 19

We now prove Lemma 3 .1, showing that these types of progress really do "make progress".

Proof of Lemma 3.1: First, if algorithm A ever makes progress of Type 3 [Same-Color]

on a subgraph of G, then since the two vertices u and v found must be the same color under

any k-coloring of the subgraph, they also must be the same color under any k-coloring of G.

So, we can just merge the vertices u and v into a new vertex with neighborhood N (u) UN (v)

and start again from the beginning: in doing so, we remove one vertex from G and use no

colors. Thus, we may assume from now on that A only makes progress of Types 1 or 2

when applied to any subgraph of G.

Claim: If for some constant E > 0 we can always find a 2-colorable set of size Em/ J(m)

in a k-colorable graph of m vertices, then we can achieve an O(J(n))-coloring of Gas follows.

We find such a set in G, color it with two colors, remove those vertices from the graph, and

repeat.

Proof of Claim: The proof is just a straightforward calculation given below. The

number C(m) of colors used satisfies C(m) ~ 2 + C (m - Em/ J(m)). Since f is a nearly­

polynomial function, for each m' in the range [m/2, m], we have:

C(m') < 2 + C (m' - Em'/ J(m'))

< 2+C(m'-E(m/2)/f(m)). (because f is non-decreasing)

Applying this last inequality J(m)/E times, we get C(m) ~ 2J(m)/£ + C(m/2), which

implies

C(m) < ~ [f(m) + f(m/2) + ... + J(l)]

< ~J(m) [1 + ~ + -f, + f,- + ... + 0(1)]

(since J(n) ;:=: cf(n/2) for n large enough)

< [f(c2~ 1) + 0(1)] J(m)

O(J(m)). D (End proof of claim.)

Thus, to prove the lemma, we just need some algorithm B' that on any k-colorable graph

of m vertices finds a 2-colorable set of size fl(m/ f(m)). Algorithm B' works as follows.

On input (V,E), where m = IVI,

1. Initialize set U to the empty set and initialize V' to V.

2. While IV'I ;:=: m/2 do:

(a) Let (V', E') be the subgraph induced by the vertices in V'. Run algorithm A on

(V',E').

20 Chapter 3. Worst-case bounds: preliminaries

(b) If A returns with progress of Type 1 [Large-IS], then since IV'I ~ m/2, we have

a 2-colorable set of size r!(/(:/;f2)) = f!(m/ f(m)) (since f is nearly-polynomial),

so halt and output that set.

(c) If A returns with progress of Type 2 [Small-Nbhd], let S denote the set returned

by A. Now, update:

u +-- uus
V' +-- V' - (Su N(S)).

Notice that in this step, each time we add vertices to U, we remove all their

neighbors from V'. So, we maintain the invariant that Uhas no neighbors in V'.

3. Halt and output U.

If we reach step 3 in the above algorithm, it must be that at that point, IV'I < m/2.

Set U is a 2-colorable set since each set S added to U in step 2(c) is 2-colorable and by

the invariant mentioned in 2(c), the sets S are all independent of each other (thus, we may

use the same 2 colors on each set S). Set U is also large because for each set S of size

r found in 2(c), we add r vertices to U and remove at most r + tr f (m) vertices from V'

for some constant t by the definition of progress Type 2 [Small-Nbhd). 5 Thus, IV - V'I is

at least m/2 and IV - V'I is at most IUI + tlUlf(m). Combining the two inequalities, we

find IUI + tJUlf(m) ~ m/2, which implies IUI = f!(m/ f(m)). This large 2-colorable set is

exactly what we needed from algorithm B'. •

By Lemma 3.1, we now may just aim for progress of one of the three types in our coloring

algorithms. This fact will simplify the statements and correctness proofs of algorithms

presented in Chapters 4, 5, and 6.

Also, as a simple application of these types of progress, note that progress Type 2

[Small-Nbhd] can be used to guarantee that for each vertex v, the set N(N(v)) has size

f!(f(n) 2): we make progress if JN(v)I ~ f(n) since {v} is an independent set and make

progress if IN(N(v))I ~ f(n)JN(v)I since N(v) is 2-colorable. Thus, we get the following

corollary. (We assume here that f is nearly-polynomial.)

Corollary 3.2 If G is an n-vertex 3-colorable graph such that IN(N(v))I = O(f(n) 2) for

some vertex v, then we can make progress towards an O(f(n))-coloring of G.

5 Here we use the fact that f is non-decreasing.

Chapter 4

Worst-case bounds for 3-colorable graphs: first
algorithm

In this chapter, we describe an algorithm to color any n-vertex 3-colorable graph with

0(n°A) colors. As mentioned in the last chapter, the algorithm consists of two major parts.

First, we force the graph without loss of generality to have a useful expansion property.

Second, we find and take advantage of a form of good distribution of edges that we show

must exist in any 3-colorable graph. Some of the theorems we prove, in particular those in

Section 4.3 concerning the distribution property, hold more generally for graphs constrained

only to have large independent sets. This fact will be useful for us later in Chapter 6 for

extending these techniques to graphs of higher chromatic number.

4.1 Forcing expansion

In this section, we show that if our goal is to color a 3-colorable graph G with O(f(n))

colors, where f is a nearly-polynomial function as in Definition 3.1, then we may assume

without loss of generality that no two vertices share more than n/[f(n)] 2 neighbors. So,

for example, if we wish to color with 0(na) colors, we may assume for all u, v E V, that

IN(u) n N(v)I ~ n 1- 2a (for a= 0.4, the shared neighborhood may have size at most n°· 2
).

This is our first method for forcing expansion in the graph.

Bounding the number of neighbors that may be shared by two vertices forces expansion

in the following way. Suppose we wish to color with na colors. If we look at the neighborhood

of some vertex v and consider an arbitrary subset of m + d(v) edges leaving N(v), then

we may assume those edges enter into at least m/n1- 2a other vertices. The reason is that

otherwise, some vertex w f- v must have more than n1- 2
a neighbors in N(v). This fact will

be useful when we show in Section 4.3 how to find such a set of m edges whose endpoints

contain an easy-to-find independent set.

Given the three methods for making progress defined in the last chapter, this method

for forcing expansion falls out easily. Throughout this section, we assume f is a nearly­

polynomial function.

21

22 Chapter 4. Worst-case bounds for 3-colorable graphs: first algorithm

Theorem 4.1 If G is an n-vertex 3-colorable graph containing vertices u and v such that

IN(u) n N(v)I = n (n/[f(n)]2),

then we can make progress of Type 1, 2, or 3 towards an O(f(n))-coloring of G.

Proof: Suppose u and v are two vertices that share a neighborhood S = N (u) n N (v)

of size S1(n/[f(n)]2). Clearly, S is 2-colorable since it is a subset of the neighborhood of u.

So, if IN(S)I :::;; n/ f(n), then we have made progress Type 2 [Small-Nbhd]. On the other

hand, if IN(S)I ~ n/ f(n) and N(S) is 2-colorable, then we have made progress of Type 1

[Large-IS]. The last possibility is that N(S) is not 2-colorable (and that it is large, but we

will not need this fact). But, this last case means that u and v must be the same color

under any legal 3-coloring of G. The reason is that if u and v could possibly be different

colors under some legal 3-coloring (say blue and green) then S would be monochromatic

(red), so N(S) would be 2-colorable (blue and green). So, if our attempt to 2-color N(S)

fails, then we make progress of Type 3 [Same-Color]. •

We can use the same argument as above to guarantee without loss of generality that

a selected set S of size S1(n/ f(n)2
) in G is not monochromatic under any legal 3-coloring

of G. In particular, suppose S were monochromatic, so N(S) is 2-colorable. Then, if

IN(S)I ~ n/ f(n) we make progress Type 1 [Large-IS], and if IN(S)I < n/ f(n) we make

progress Type 2 [Small-Nbhd]. So, we get the following corollary.

Corollary 4.2 Given an independent set S of size S1(n/ f(n)2) in an n-vertex 3-colorable

graph G, we can either make progress towards an O(f(n)) coloring of G or else guarantee

that the vertices of S are not all the same color under any legal 3-coloring of G.

While this corollary is not be immediately useful for us here, an improved, more com­

plicated method for forcing expansion (described in Chapter 5) consists in part of an im­

provement to this corollary, and leads to better coloring guarantees.

4.2 The algorithm

We now describe the algorithm for coloring n-vertex 3-colorable graphs with 0(n 215 log8
/

5 n)

colors. As mentioned in the last chapter, the algorithm uses a vertex cover approximation

algorithm of Bar-Yehuda and Even [4] and (independently) Monien and Speckenmeyer [28]

that finds a vertex cover of size at most (2 - 1~~!~gnn) times the size of the minimum vertex

cover in a graph. We will call their algorithm the BE/MS algorithm. A simpler version of

their procedure for the special case in which it is used in this thesis is given as Algorithm

Approx-IS in Appendix A.

4.2. The algorithm

Algorithm First-Approx:

Given: G = (V, E), a 3-colorable graph on n vertices. Let f(n) = n 215 (log n)815
•

Output: Progress of Type 1, 2, or 3 towards an 0(n215 (1og n)815)-coloring of G.

23

1. [Min degree} For each vertex v, if d(v) < f(n), make progress Type 2 [Small-Nbhd).

2. [Expansion) For each pair of vertices u, v, if IN(u) n N(v)I 2: n/[f(n)]2, then

make progress using Theorem 4.1.

3. [Dist-2 Neighbors} Otherwise, for each vertex v, for each i,j E {O, 1, ... , 5 log2 n }:

Let Tv,i,i = N;(N(v) n Ii)·

(Recall the definitions of Section 3.2.)

4. [VC approx] Run the BE/MS Vertex-Cover approximation algorithm on each

Tv,i.i· If we find an independent set of size f!(n315/(logn)815), we have made

progress Type 1 (Large-IS).

The next two sections are devoted to proving the following theorem.

Theorem 4.3 (Main Theorem) Algorithm First-Approx makes progress of Types 1, 2, or

3 towards an 0(n 215(log n)815)-coloring of any n-vertex 3-colorable graph.

Using Lemma 3.1 (the usefulness of making progress), we get the following corollary.

Corollary 4.4 There exists a polynomial-time algorithm that will color any 3-colorable n­

vertex graph with O(n215(logn)815) colors.

Let us calculate the running time of the coloring algorithm. The BE/MS algorithm runs

in time 0(NM) on any N-vertex graph with M edges. We may assume for simplicity that

the graph in Step 4 of algorithm First-Approx has size at most n 315 else we just remove excess

vertices at random. So, the running time of algorithm First-Approx, which is dominated by

Steps 3 and 4, is at most:

[(n vertices) · (log2 n j's)· (log2 n i's) in Step 3] x [n315(n315)2 for vertex cover in Step 4]

= O(n14/5),

which is polynomial in n. Note that this is the time needed to give one color to n(n315)

vertices. One may have to run the algorithm 0(n 215
) times in order to color the entire

graph.

24 Chapter 4. Worst-case bounds for 3-colorable graphs: first algorithm

4.3 Forcing good distribution

From the last sections, we know that if we wish to color an n vertex graph with 0 (!(n))

colors, then we may assume that the graph has minimum degree J (n) (or else we make

progress Type 2 [Small-Nbhd]) and no two vertices share more than n/[f(n))2 neighbors (or

else we make progress with Theorem 4.1).

The goal of this section is to show how, given such a graph G, to find a small number of

subgraphs such that at least one must be both nearly half red under some legal 3-coloring

of G (at least ~(1 - 10~n) of its vertices red), and large (size n(J(n)4 /n) = n(n315
) for

J(n) = n(n215
)). In particular, we will show this holds true for one of a small number of

subsets of the neighbors of the neighbors of v for some vertex v in the graph.

We will assume without loss of generality that red is the color in G such that D(red) =
max (D(red), D(blue), D(green)). That is, of the three colors, red is the color with the most

edges incident to vertices of that color. The assumption on red implies that D(red) 2:

HD(blue) + D(green)), so

Dred(blue U green) >
1
2n(blue U green). (4.1)

Note also that if dis the average degree of the vertices in G, then D(red) 2: dJredJ.

4.3.1 The basic approach, and a counterexample to the naive strategy

In order to find a large subgraph that is nearly half red, the first step will be to find a large

subset S E blue U green such that nearly half of the edges leaving S enter into red vertices.

We know that if we look at the entire set blue U green, at least half of the edges leaving

that set enter into red vertices (equation (4.1)). The problem is: we do not know how to

find blue U green. We can, however, look at subsets of blue U green by considering vertex

neighborhoods, many of which (for red starting vertices) will be blue and green.

Given the property of blue U green described in equation (4.1), one might expect that

this property would hold for the neighborhood of some vertex as well: that is, that for some

v E red, we would have Dred(N(v)) 2: ~D(N(v)). Unfortunately, this may not necessarily

be the case, and what follows is a counterexample to this seemingly innocent claim.

Consider a graph with m red vertices r 0 , ••• , Tm_ 1 , m + 1 green vertices g0 , ••• , gm, and

m + 1 blue vertices b0 , ••• , bm. Vertices 9m and bm are two distinguished vertices with large

degree and twice as many edges into blue or green vertices than into red vertices. The rest

of the vertices have low degree, but together there are enough edges with red endpoints so

that D(red) is greater than D(blue) or D(green). More specifically, the edges in the graph

4.3. Forcing good distribution 25

Figure 4.1: A counterexample to the naive strategy. For clarity, only edges incident

to the distinguished vertices Ym and bm, and incident to a typical red vertex are given.
The four edges between the red vertex and the non-distinguished blue and green vertices

are shown as dashed lines.

are: (see Figure 4.1)

{(gm, ro), (gm, r1), ... , (gm, Tm/2-1)}

U {(gm, bo), (gm, bi),···, (gm, bm-1)}

LJ {(bm, Tm/2), (bm, Tm/2+1), · · ·, (bm, Tm-1)}

U {(bm,go), (bm,g1), ···,(gm, bm-1)}

U {(g;, r;), (g;, r(i+l)modm)} for each 0 ~ i ~ m - 1

U {(b;, r;), (b;, r(i+l)modm) for each 0 ~ i ~ m - 1.

That is, vertices gm and bm are each connected to a different half of of the red vertices

and each are connected to all the vertices of index less than m of the remaining color. In

addition, each r; is connected to two green and two blue vertices of index less than m.

So, D(red) = Sm, D(green) = (4 + Vm, and D(blue) = (4 + ~)m. But, for each

red vertex v, we have Dred(N(v)) = 8 + m/2 and Dv-red(N(v)) = 4 + m, which implies

D(N(v)) = 12 + 3m/2. So, Dred(N(v)) is approximately one third of D(N(v)) rather

than one half. One can also construct variations of this counterexample in which the ratio

between Dred(N(v)) and D(N(v)) is even worse.

The problem here is that the vertices have wildly varying degrees. While one can also

find variations on this counterexample that hold even when all vertices have degrees in the

26 Chapter 4. Worst-case bounds for 3-colorable graphs: first algorithm

range (n°-•, n°+•] for any€> 0, if we restrict the vertex degrees extremely tightly then the

desired property does hold. That is, if the degrees are nearly identical, then there exists

v E V such that N (v) has nearly half the edges leaving it entering into red vertices. This is

the purpose of the bins Ii and is the intuition for Theorem 4.5 below.

Once we have a set S ~ N (v) with nearly half the edges leaving it entering into red

vertices, we again use a similar idea to find a large set inside N(S) which is nearly half red.

The trick again is to separate vertices according to degree, which is the purpose of the sets

N;(S). This step is handled by Theorem 4.6.

4.3.2 Theorems and proofs

We now describe the theorems that allow the above basic idea and the algorithm First-Approx

to succeed. These theorems are stated in terms of not-necessarily 3-colorable graphs con­

taining a large independent set R. (The symbol "R" is used to be suggestive of the set

red.)

Theorem 4.5 Given an n-vertex gmph G = (V, E) with avemge vertex degree d, and an

independent set R such that (1) DR(V - R) ~ AD(V - R) for some 0 ~ A ~ 1 and {2}

D(R) ~ dJRI, then for some v ER and some bin Ii:

l. IN(v)niil ~ /J2d/log1Hn,

2. DR(N(v)nii) ~ A(l-3b)D(N(v)nii)·

In other words, for some v E R, the set N (v) n Ii is a reasonably large fraction of N (v)

and has almost a fraction A of the edges incident to it going into R. We now look at the

neighbors of N(v) n Ii and show that for some i, the set N;(N(v) n Ii) has the properties

we need.

Theorem 4.6 Given an n-vertex gmph G = (V, E), a set R ~ V, and A1 E[O,1]:

For any set S such that DR(S) ~ A' D(S), there must exist some i < log1+6 n such that:

l. DN,(S)nR(S) ~ i5DR(S)/(log1+6 n),

2. JN;(S) n Rl/IN;(S)I ~ (1 - 2i5)A'.

Assuming for now the correctness of Theorems 4.5 and 4.6, we can prove a corollary

showing why at least one of the sets created in Step 3 of Algorithm First-Approx will both

be large and contain an independent set of nearly half its vertices (and so be of the right

form for the vertex-cover algorithm used in Step 4).

4.3. Forcing good distribution 27

Corollary 4. 7 Given an n-vertex 3-colorable graph G = (V, E) such that {1) no two ver­

tices share more than s neighbors and {2) G has minimum degree dmin ~ max{s(l +
6),(3log1+6n)/6}, then for some v EV and some i,j E [0,5log2 n], the set

has at least n ((dmin)2
/ (slog 7 n)) vertices of which at least a fraction H 1 - 10~ n) are colored

red under some legal 3-coloring of G.

Proof of Corollary 4. 7: By definition of set red in G, the conditions of Theorem 4.5

are satisfied for R =red and>.= 1/2 (see equation (4.1)). Let vertex v and bin Ii be such

that claims (1) and (2) of Theorem 4.5 are satisfied for S = N(v) n Ii. By claim (2) of

Theorem 4.5, set S satisfies the conditions of Theorem 4.6 with A1 = ~(1 - 36). Let i be the

index such that claims (1) and (2) of Theorem 4.6 are satisfied and let T = N;(S). Then:

DTnR(S) > 6DR(S)/(log1+6 n) (Theorem 4.6, claim 1)

> 6[>.(1- 36)D(S)]/(log1+6 n) (Theorem 4.5, claim 2)

> 6>.(1 - 36) [dmin1s1] /(log1+6 n) (for all v, d(v) ~ dmin) (4.2)

> 63 >.(1- 36)d~;n/(log1 +6 n) 2 (Theorem 4.5, claim 1)

n (6 5 d~;n/(log2
n)) (using log1+6 n = O(t log n))

n (d~;n/(log7
n)) . (6 - _1_) - 5logn

Since no two vertices share more than s neighbors and S <;;; N (v), we know no vertex w i- v

has more than s neighbors in S. Since we have also assumed that dmin ~ s(l + 6), we know

that the set N;1 (S) containing v contains no other vertices besides v by definition of N;.

Also, since dmin ~ (3 log1+6 n)/ b, by equation (4.2) we have DTnR(S) > ISi so we know

T i- { v} and thus v </. T. So, set T consists only of vertices with at most s neighbors in S

and we have:

ITI > DTnR(S)/s

n (d~;n/(slog7
n)).

Also, the fraction of red vertices in T is large:

IT n Rl/ITI > >.(1 - 20)(1 - 3o)

> Hi - M)

> .!. (1- _1) 2 logn ·

(Theorems 4.5 claim 2, and 4.6 claim 2)

(by definition of red, we have>.~ 1/2)

Thus, set T satisfies both claims of the corollary. •

Before proving Theorems 4.5 and 4.6, we state a simple combinatorial lemma:

28 Chapter 4. Worst-case bounds for 3-colorable graphs: first algorithm

Lemma 4.8 Given b balls of which r are red, all placed ink boxes, then for any f (0 :::; f <
1), there is some box with at least ET/ k red balls such that the ratio of the number red balls

to the total number of balls inside that box is more than (1 - E)r/b.

Proof: Throw out all boxes with fewer than ff/ k red balls. The minimum possible

ratio of red balls to total balls left is: (r - ET)/ (b - ET) since at worst we throw out k boxes

containing only red balls. This ratio is strictly greater than (1- E)r/b. So, by pigeonholing,

there must exist at least one box left with a ratio of red balls to total balls at least this

large. •

Proof of Theorem 4.5: For convenience, we call vertices in the independent set R "red".

First, we show there exists a good bin. We are given that DR(V - R) ~ .\D(V - R).

We apply Lemma 4.8 where there is one "box" for each of the log1H n bins Ii. For each

v E V - R, if v E Ii, we place d(v) "balls" of which dR(v) are red into box j. So, the number

of balls in box j equals D(Ii n (V - R)) out of which DR(Ii n (V - R)) are red, and the

number of balls total is D(V - R) of which DR(V - R) are red. Lemma 4.8 tells us, taking

f = b, that for some j 0 , if we let I= Iio n (V - R), then:

DR(!) > bDR(V - R)/(log1H n) and

DR(!) > .\(1 - b)D(I).

(4.3)

(4.4)

Informally, the set I of non-red vertices has the property that many edges have endpoints

in I (since DR(!)= D(D(V - R)) by equation (4.3)), that almost a,\ fraction of the edges

leaving I enter red nodes (equation (4.4)), and that all nodes in I have similar degrees (since

I~ Ii
0

). We do not know how to distinguish between edges with endpoints in R and other

sorts of edges, so we do not know which Ii contains I, only that such an Ii must exist.

We now show that for some v E R, the set N (v) nI satisfies claims (1) and (2) of Theorem

4.5. Note that this completes the proof because N(v) n [Ii
0
n (V - R)] = N(v) n Ii

0
since

v E R and R is an independent set.

Define:

• R' = {v ER: IN(v) n II~ b2d/log1H n}.

R' is the set of red vertices such that N(v) n I satisfies claim (1) of Theorem 4.5. We first

show that nearly ,\ of the edges from the set I enter into R' and then use this to show that

4.3. Forcing good distribution 29

for some v E R', claim (2) of Theorem 4.5 holds. So, from the definition of R', we have:

DR'(!) > DR(J)- IRl152d/log1+o n

> DR(I) - DR(V - R)l52 jlog1+o n (since DR(V - R) = D(R) 2'. di RI)

> DR(I) - (DR(/)(log1+o n)/15) (15 2
/ logl+o n) (by equation (4.3))

> DR(I)(l - 15).

Finally, applying equation (4.4) we have:

(4.5)

We now claim that for some v E R', the set N(v) n I satisfies claim (2) of Theorem

4.5. Essentially, the reason for this is that all vertices in I have similar degrees. The actual

proof is by contradiction, using a counting argument.

Suppose for contradiction that: 1

ForallvER', DR'(N(v)nI) < .X(1-315)D(N(v)nl). (con tr 4.6)

If this is the case, then it must also be true that:

L DR'(N(v) n I) < .X(l - 315) L D(N(v) n I). (con tr 4. 7)
vER' vER'

Now, instead of writing each quantity as a sum over v ER', we would like to write each as

a sum over w E J. We can do this as follows.

We may write the sum [LvER'D(N(v)nl)] as LvER' [EwEN(v)nid(w)] by the defini­

tion of D. Now, each vertex w E I is counted in the inside sum dR1(w) times since w

is in the neighborhood of dR'(w) different vertices of R'. Thus, LvER' D(N(v) n I)

LwEJdR'(w)d(w). Similarly, LvER'DR1(N(v)nl) = LwE1dR1(w) 2
•

Applying the inequality (con tr 4. 7) we have assumed for contradiction, we get:

wEI wEI

< .X(l - 315) L dR'(w)(l + l5)i 0 +1 (since d(w) < (1 + l5)i 0 +1 for all w E J)
wEI

(by definition of DR') (4.8)

For any collection of values, the average of the squares is at least the square of the

average. Thus:

l~I L dR'(w)2 2'.
wEI

1 It is always dangerous to display false equations, so we are labeling these inequalities with the symbol
"contr" to emphasize that they are just being assumed for contradiction.

30 Chapter 4. Worst-case bounds for 3-colorable graphs: first algorithm

So, DR'(J)2/III::; LwEI dR1(w) 2
• Combining this fact with equation (4.8), we have:

l~I DR1(J)2 < .A(l - 36)(1 + 6)io+l DR'(!).

Multiplying both sides of equation (4.9) by III/DR'(!), we get:

DR1 (I) < .X(l - 36)(1 + 6)io+llJI

< .X(l - 36)(1 + 6)D(I) (since d(w) 2: (1 + 6)i 0 for all w E I)

< .X(l - 26)D(I).

This contradicts equation (4.5) and completes the proof of Theorem 4.5. •

(4.9)

Proof of Theorem 4.6: We are given a set S such that DR(S) 2: ND(S); that is,

at least a fraction of N of the edges leaving the set S (double-counting edges with both

endpoints in S) enter into R. We want to show that at least one of the sets N;(S) both is

large and has nearly a fraction N of its vertices in R. To do so, we apply Lemma 4.8 where

we have one "box" for each set N;(S). We place a ball in box i for each endpoint in N;(S)

of an edge from S to N;(S). A ball is red if the endpoint to which it corresponds is in R.

The number of balls in box i is DN,(s)(S) of which DN,(S)nR(S) are red, and the number

of balls total in the log 1H n boxes is D(S) of which DR(S) are red. By Lemma 4.8, taking

E = 6, for some io (0::; io < log 1H n),

1. DN,
0
(S)nR(S) 2'. 6DR(S)/(log1H n) and

2. DN,
0
(S)nR(S)/ DN,

0
(s)(S) 2'. (1 - 6)N.

(4.10)

(4.11)

By definition of N;
0
(S), each vertex in N;

0
(S) is incident to at least (1 + 6);0 and less

than (1 + 6)io+i edges from S. Thus,

and

which implies that:

IN;o(S) n Rl/IN;o(S)I > [nN,o(S)nR(S)/ DN,o(s)(S)] /(1 + 6)

> (1- 6).X'/(1+6)

> (1 - 26).A'. (4.12)

Equations (4.10) and (4.12) show that the index i 0 satisfies both claims of the theorem. •

4.4. Applying the vertex-cover approximation 31

4.4 Applying the vertex-cover approximation

Given a graph H on N vertices, M edges, and with a minimum vertex cover of size Nvc,

the BE/MS vertex-cover algorithm [4][28] discussed earlier (and also presented as algorithm

Approx-IS in Appendix A) finds a vertex cover of size at most (2 - 1~~~~s:) Nvc in time

O(N M).

If H has an independent set with at least Hl - lo~N)N vertices, it must have a vertex

cover of at most ~(1+ Io~N)N vertices. So, the algorithm will find a vertex cover WC V(H)

of size at most:

.! (1 + _1_) (2 _ loglogN) N [1 _ loglogN + _1 __ loglogN] N
2 log N 2 log N 4 log N log N 4(1og N) 2

< [1 - nco: N)] N.

Since Wis a vertex cover, V(H)- Wis an independent set of size at least !1(i
0
:N). So,

we have the following lemma.

Lemma 4.9 Given a gmph H on N vertices with an independent set of size at least ~(1 -

lo:N)N, the BE/MS algorithm can be used to find in polynomial time an independent set of

size !l(N /log N).

We now prove the Main Theorem (4.3).

Proof of Theorem 4.3: Step 1 of algorithm First-Approx ensures that no vertex

has degree less than J(n) for f (n) = n215 log815 n. Step 2 ensures that no two vertices

share more than n/ J(n)2 neighbors. Applying these values to Corollary 4. 7 of the previous

section yields the result that of the 0(n log4 n) subsets generated in Step 3 of Algorithm

First-Approx, at least one set T = Tv,i,j has !1(J(n)4/(nlog7 n)) vertices of which at least a

fraction %(1- lo~n) are colored red under some legal 3-coloring of G. By Lemma 4.9, since

(1 - 10~J 2'.: (1 - log
1
ITI), Step 4 of algorithm First-Approx will find an independent set in T

of size !1(J(n)4 /(nlog8 n)). We can thus make progress of Type 1 [Large-IS] on some Tv,i,j

in Step 4 of Algorithm First-Approx so long as:

J(n) 4 /(nlog
8

n) = !l(n/f(n)).

Equivalently, we make progress towards an O(J(n))-coloring so long as J(n) 5 = !1(n2 log8 n),

or f(n) = !1(n215 log8
/

5 n). Thus, we have proved the Main Theorem. •

Chapter 5

Worst-case bounds for 3-colorable graphs:
improved algorithm

In this chapter, we present a procedure that improves on the bounds achieved by Algorithm

First-Approx given in Chapter 4. The essence of the new algorithm is an improved method

for forcing expansion (see Section 4.1) and making progress from regions of high density in

a 3-colorable graph. This improves performance and results in coloring n-vertex 3-colorable

graphs with only O(n318
) colors.

Algorithm First-Approx performs most poorly when the input graph consists of a collec­

tion of high-density regions or "clumps," with a lower density of edges between clumps. In

particular, it performs worst when the set S = N (v) n Ii has a large fraction of its neighbors

hit by about n°· 2 edges from vertices in S. Here we present an additional tool for making

progress from such dense regions and thus improve the coloring bound.

5.1 A useful lemma

We now present a strengthening of Corollary 4.2, described in Lemma 5.1 below, that allows

us to force a 3-colorable graph G to behave in a certain "nice" way. In particular, for any

vertex v of G, for any subset S we select of N (v) of size at least (n log2 n) / f (n)2 , the lemma

allows us without loss of generality to force S to contain fi(ISI) vertices of each of the two

available colors (that is, the colors that v does not have), or else make progress towards

an /(n)-coloring of G. This will be useful for forcing sets to expand "roughly evenly" into

vertices of the available colors in the graph. As with Corollary 4.2, this lemma requires the

graph to be 3-colorable.

Let /(n) be some nearly-polynomial function.

Lemma 5.1 Given a set S ~ V(G) of size f2((nlog2 n)/ J(n) 2), we can either make progress

towards an O(J(n))-coloring of G or else guarantee that under every legal 3-coloring of G,

set S contains less than (1 - 41;gn)ISi vertices of any given color class.

The idea of the proof is that if S consists of vertices nearly all of one color, say red, then

its neighborhood should contain mostly blue and green vertices and have few red vertices. If

32

5.1. A useful lemma 33

this occurs, then N(S) will have a large independent set of size max{IN(S) ngreenl, IN(S)n

blue!}. One can thus make progress on N(S) using the BE/MS Vertex-Cover algorithm. The

difficulty with this approach is that the neighborhood N (S) need not have few red vertices.

It could be, for example, that the red vertices in S tend to have a smaller degree than the

others. Or, even if all vertices have the same degree, it could be that edges from the blue

and green vertices of S all enter into different vertices in N(S), but edges from red vertices

in S tend to hit many vertices multiple times. To handle these difficulties, we will run a

procedure separating vertices and neighborhoods into bins depending on degree, in a similar

manner to that done in the proofs of Theorems 4.5 and 4.6.

Proof of Lemma 5.1:

For convenience, let red be the color with the most vertices in S. The first goal is to find

a large independent set S' ~ S. We can do this in a greedy fashion by deleting arbitrary

edges from S. That is, begin with S' = S, and while S' is not an independent set, pick

an arbitrary edge (a, b) between two vertices of S' and delete the endpoints from S' (let

S' .._ S' - {a,b}). If we ever have deleted more than ___1R_
41

5 edges from S, this means we ogn
must have removed over 4 !:~n vertices not in red from S (an edge can have at most one

endpoint in red). So, we can guarantee that no color comprises more than (1-
41

;gn) of the

vertices of Sand halt. Otherwise (we do not delete more than 4 /:~n edges from S), we will

end with S' an independent set of size at least (1- 21;gn)ISi, which is n((nlog2 n)/ f(n) 2
).

Since S' is independent and has size n((nlog2 n)/J(n) 2), we can make progress Type 2

[Small-Nbhd] towards an O(f(n))-coloring of G if IN(S')I:::; (nlog2 n)/ f(n), in which case

we halt with "progress made". Otherwise, let T = N(S'), so ITI ~ (nlog2 n)/J(n).

The basic idea of the procedure now is the following. We first "throw out" edges so

that the vertices in S' have disjoint neighborhoods in T. If at this point all vertices in S'

had the same degree, we would be done: if set S' consisted almost entirely of red vertices,

then set T would consist almost entirely of blue and green vertices. Since the vertices of S'

may have differing degrees, we partition S' into bins based on degree in a similar fashion

as done with the sets Ii defined in Section 3.2. For each bin, either it contains a good

fraction of non-red vertices, or else its neighborhood is mostly blue and green. Thus, if a bin

has many neighbors in T, we can either make progress using the BE/MS algorithm on the

neighborhood or else have a guaranteed number of non-red vertices in S' (recall, our final

goal is to guarantee that S has at least 41;gn ISi non-red vertices.) Formally, we perform

the following steps.

1. For each vertex win T, arbitrarily mark one of the edges from w into S'. Let E' be

the set of marked edges. Now, for each v ES', define its marked neighborhood N'(v)

34 Chapter 5. Worst-case bounds for 3-colorable graphs: improved algorithm

blue and green

T

blue and green

Figure 5.1: Vertices in S' have disjoint marked neighborhoods. If the vertices had

nearly identical "marked degree,'' then a mostly red set S' would imply a mostly blue

and green set T.

by:

N'(v) = {wETj(v,w)EE'}.

For any set A~ S', define the marked neighborhood of A similarly to be:

N'(A) = LJ N'(v).
vEA

Note that by definition of E', if A and Bare disjoint subsets of S', then their marked

neighborhoods are disjoint as well, because each w E Tis in the marked neighborhood

of only one vertex of S'. (See Figure 5.1.)

2. Partition S' into subsets such that in each subset, if we consider only the edges in

E', the minimum degree is at least half of the maximum degree. In particular, we

partition S' into sets S 0 , ••• , Sm for m :=; log n such that:

S; = {vES':IN'(v)jE[2;,2;+1 -1]}.

(We may ignore vertices in S' with no marked neighbors.)

Observation: Notice that if more than a fraction (1- 21,;gn) of the vertices of some

S; are red, then at most lo~n of the vertices in N'(S;) can be red, since the non-red

vertices in S; can have at most twice as large a marked neighborhood in T as the red

vertices do (and, as noted in Step 1, marked neighborhoods of disjoint subsets of S'

are disjoint).

5.1. A useful lemma 35

3. Now, pick i 0 such that IN'(S;a)I is maximized; so IN'(S;a)I 2: C+i~gn)ITI since there

are at most (1 + log n) sets S; and their neighborhoods are disjoint. Note that i 0 is

not necessarily the largest index, since lower index sets might have enough vertices to

compensate for having fewer neighbors per vertex.

4. We now apply the BE/MS vertex-cover algorithm (or equivalently, the independent

set approximation algorithm Approx-IS given in Appendix A) to the set N'(S;a)· If

it finds an independent set of size f!(n/ f(n)), then we have made progress Type 1

[Large-IS] and can halt with "progress made".

The reason we apply the BE/MS vertex cover algorithm is that if more than a fraction

(1- 21;gn) of the vertices of S;a are red, then by the observation in Step 2, N'(S;a) has

at most a Io!n fraction of its vertices red, so N'(S;a) has an independent set of at least

~(1- Io!n) of its vertices, namely either N'(S;o) n blue or N'(S;a) ngreen, whichever is

larger. Thus, by Lemma 4.9, we find an independent set of size f!(IN'(S;a)l/logn) =

f!(n/ J(n)) since we have assumed ITI 2: (nlog2 n)/ J(n) and IN'(S;a)I 2: l+I~gn ITI.

So, if we do not make progress, we know it is not true that more than (1 -
21

;g n) of

the vertices of S;a are red.

5. If we did not make progress in step 4, we know that at least
2
,;gn of the vertices in

Sia are blue or green. Now, let S' ,.__ S' - S;a and let T = N(S').

If S' has not been reduced to less than 1/3 its original size, then go back to Step 1.

Notice that in this case, we may still assume that !Tl 2: (n log2 n) / J (n) since S' still

has size f!((nlog2 n)/ f(n) 2
).

If S' is less than 1/3 its original size, then go on to Step 6.

6. If we reach this step, it means we have reduced S' to less than a third of its original

size, and have done so by removing from S' sets containing at least a
21

;gn fraction of

blue and green vertices. Since S' originally had size at least (1-
21

;gn)ISi, this implies

we must have removed more than:

blue and green vertices from S. So, we may halt with the guarantee asked for in

the statement of the lemma since set S could not possibly have contained more than

(1 - 41;gn)ISi red vertices. •

36 Chapter 5. Worst-case bounds for 3-colorable graphs: improved algorithm

5.2 Making progress from dense regions

We will now use Lemma 5.1 to help take advantage of certain types of dense regions in

3-colorable graphs. In particular, we consider the case of two sets of vertices S and T where

S is 2-colored under some legal 3-coloring of G and the number of edges between S and

T is large compared with the sizes of the two sets. This occurs when S is a subset of the

neighborhood of a vertex (e.g., a set N(v) n Ii) and T is some set N;(S) for a large i (see

Section 3.2).

Theorem 5.2 Given sets of vertices S and T in an n-vertex 3-colorable graph G, such that

1. S is 2-colored under some legal 3-coloring of G,

2. Dr(S) = n(ISl(nlog2 n)/ f(n) 2
), and

3. [Dr(S))3 =n([1s1+~Ealdr(v)) x [1SllTl 2(nlogn)/f(n)2 +ITllSl 2n
2
/f(n)4

)),

then we can make progress towards an O(f(n))-coloring of G.

Before proving this theorem, let us first make sense of the condition on [Dr(S)) 3 by

considering a few examples. Suppose we wish to color with f(n) = n318 colors, the set S

has size n318
, and each vertex v in S has degree n318 into T. Then, DIN) = n318 , which is

greater than n 114 log 2 n (condition 2). The main condition (condition 3) reduces to:

Ignoring logarithmic factors, the theorem assures us we make progress if !Tl = 0(n 518). This

is the basic idea for the 0(n 318 log5
/

2 n)-coloring algorithm described later. For that appli­

cation of this theorem, if T has n(n 518
) vertices, we will be able to find a large independent

set inside T, and thus make progress of Type 1.

As another example, if we wished to color with n° 35 colors, S had size n°· 35 and each

vertex in S had degree n°·35 into T, then the main condition reduces to

In this case, we only make progress if !Tl = O(n°45
) (here the !Tlni.3 term is dominant).

However, we do not know how to make use of forcing !Tl= n(n°· 45
).

Proof of Theorem 5.2: For convenience, let blue and green be the two colors that

appear in S, and let us define the following notation.

• Let Dtotal = Dr(S).

• Let davg = Dtota1/ISI be the average degree into T of vertices in S.

5.2. Making progress from dense regions 37

We want to keep track of those vertices of T that have a reasonably large degree into S, so

we define a subset T' of T by:

• T' = {w ET I ds(w) ~ ~Dt;j'1 }.

Since D5 (T - T') < !Tl [~ D1'fj"1], we have Ds(T') ~ ~Dtotah or equivalently,

(5.1)

We also want to look at those vertices in S that have reasonably large degree into T', so

define:

• S' = {v ES I dT1(v) ~ !D1~15l}.

Since DT·(S - S') < ISi [!D%\5 l], we have: DT·(S') > !DT·(S), which by equation 5.1

implies:

(5.2)

Also, by definition of S' and equation (5.1), if v ES' then dT•(v) ~ ~Dt.W1 or equivalently,

(5.3)

Since we are given (condition 2) that davg = !1((nlog2 n)/ f(n) 2), this implies that all v ES'

have dT(v) ~ dT1(v) = n((nlog2 n)/ f(n) 2
). Thus, by Lemma 5.1 (applied to the sets

N(v) n T), we can guarantee that each vertex v E S' has at least a fraction 41;gn of its

edges into T entering into non-red vertices.

So, for some non-red color, say green without loss of generality, at least DT(S') / (8 log n)

edges from S' enter into green vertices of T. This implies that some green vertex g E T has

degree at least DT(S')/(8ITI logn) into S'. Now, define (see Figure 5.2):

•X=N(g)nS'.

• Y = N (X) n T'.

So, we have:

!XI > iDT(S')/(ITI logn)

> ; 2 Dtota1/(ITI logn)

n ((Wi) (~)). (5.4)

Note that set X consists entirely of blue vertices, and since Y is in the neighborhood of a

blue set, Y contains only red and green vertices. We want to show that Y is large, because

38 Chapter 5. Worst-case bounds for 3-colorable graphs: improved algorithm

Figure 5.2: Vertex g and the sets X and Y. Also, green vertex g' E S (defined later) and

the intersecting neighborhoods.

we will later intersect Y with a red and blue set to get a large monochromatic (red) set,

which will allow us to make progress. We show that Y must be large as follows.

By Theorem 4.1 we may assume that no two vertices of X share more than n/ f (n)2

neighbors in T'. Now suppose that IXI < /(:)2 (~davg)· In this case, each vertex v E X

can share at most IXl(n/f(n)2
) < ~davg neighbors with all of the other vertices in X. This

implies, by equation (5.3), that v must have at least ~davg neighbors in T' not shared with

any other vertices of X. So, set Y must have size at least n(IXldavg)·

If IXI ~ /(:)
2

(~davg), then if we only consider the first 1(:)2 (~davg) of the vertices of X,

we still get that !YI = n(/(:)2 (davg)2). So, whichever case occurs, we have:

(5.5)

By definition, Y is a subset of T' and vertices of T' all have a high degree into S. So, we

can lower bound the degree of Y into S by:

Ds(Y) > 0 D1Ti'1) IYI

H~davg!YI
n (min{1x11::(davg) 2

, /(:)2(davg) 3 tft}) (by equation 5.5)

n (min { [mr (davg)3 /logn, /(:)
2

(davg)3 tft}). (by equation 5.4) (5.6)

Now we apply condition 3 in the statement of the theorem. The condition (dividing both

sides by ISl 3
) states that (davg)3 = [ISl+maxvEsdT(v)] .n ($ 1(~)2 logn + ffi 1(n°i•). So,

this implies both that:

[ill]
2

3 ITI (davg) /log n (5.7)

5.2. Making progress from dense regions 39

and

!J!it_(d)3 [ill]
n avg ITI (5.8)

Thus, combining both equations (5.7) and (5.8) with equation (5.6), we get:

Ds(Y) = fl Cc~l' [ISi + ~tfdr(v)]). (5.9)

It now must be that one of the following two cases occurs. The first case is that there

is some green vertex g' E Sin the neighborhood of more than ~Ds(Y)/ISI vertices of Y.

In this case, according to equation (5.9), it must be that D{g'}(Y) = O(n/ J(n) 2
). So,

N(g') n Y is a set of O(n/ f(n) 2
) vertices, all of which are red since N(g') ~blue U red and

Y ~ red U green; see Figure 5.2. Thus, we can make progress on this monochromatic set

using Corollary 4.2.

The other possibility is that no green vertex in S is in the neighborhood of more than

~Ds(Y)/ISI vertices of Y. In this case, the set of all vertices in S hit by more than

~Ds(Y)/ISI edges from Y is all blue. Define Z to be that set; that is:

• Z = {v ES I dv(v) > ~Ds(Y)/ISI}.

Clearly, the number of edges between vertices of Y and vertices in (S - Z) is at most

ISl(~Ds(Y)/ISI) = ~Ds(Y). So, Dz(Y) ~ ~D5 (Y). Thus, we can bound the size of Z by:

IZI > ~Ds(Y)/ maxdv(v)
vES

> ~Ds(Y)/ maxdr(v)
vES

which by equation (5.9) implies:

IZI = O(n/ J(n) 2
).

Since Z is monochromatic (blue) we can now use Corollary 4.2 to make progress. So,

whichever of the two cases occurs, we have made progress towards an O(J(n))-coloring.

The final algorithm for making progress given our sets S and T is as follows:

Algorithm Dense-Region-Progress:

Given: Sets S and T satisfying the conditions of Theorem 5.2 in some graph G.

Output: Progress towards an O(J(n))-coloring of G.

1. Run the algorithm of Lemma 5.1 on N (v) n T for all v E S. If any runs make

progress towards an O(J(n))-coloring, then halt. Otherwise, we know there are

many edges from S into red, blue, and green vertices of T under any legal 3-

coloring of G.

40 Chapter 5. Worst-case bounds for 3-colorable graphs: improved algorithm

2. Iffor some pair of vertices u,v ES, we have IN(u) n N(v)l 2:: n/ J(n) 2
, then use

Theorem 4.1 to make progress.

3. Otherwise, for each vertex v E T,

(a) let Y = N(N(v)n S)nT and let Z = {w ES: dy(w);::: n/J(n) 2
}.

(Note that , we do not need to use the sets S' and T'; they were just conve­

nient for the analysis.)

(b) Run the algorithm of Corollary 4.2 on Z.

(c) For each w E Z, run the algorithm of Corollary 4.2 on Y n N(w).

The above proof guarantees that this algorithm makes progress. •

5.3 The coloring algorithm

We now combine algorithms First-Approx and Dense-Region-Progress to get an improved

algorithm guaranteed to 0(n318)-color any n-vertex 3-colorable graph.

Algorithm Improved-Approx:

Given: G = (V, E), a 3-colorable graph on n vertices. Let f (n) = n318 (log n)512
•

Output: Progress towards an O(f(n))-coloring of G.

1. For each vertex v, if d(v) < J(n), make progress Type 2 [Small-Nbhd).

2. Otherwise, for each vertex v, for each i,j E {O, 1, ... ,5(logn) 2
}:

(a) Let S = N(v) n Ii.

(b) Let T = N;(S).

(c) If ITI 2:: n518 /(logn)312 , run the BE/MS Vertex-Cover approximation algo­

rithm. If we find an independent set of size at least n/ J(n), we have made

progress Type 1 [Large-IS).

(d) If S and T satisfy the conditions of Theorem 5.2, then make progress using

Algorithm Dense-Region-P regress.

Theorem 5.3 Algorithm Improved-Approx will make progress towards an 0(n318 (log n)512
)­

coloring of any n-vertex 3-colorable graph.

Proof: Assume Algorithm Improved-Approx does not make progress in Step 1. So, we know

that the minimum degree d 2:: f (n) = n318 (log n)512
• As in Chapter 4, let R = red be the

color class with D(red) = max(D(red), D(blue), D(green)).

5.3. The coloring algorithm 41

We now apply some of the facts proven in Section 4.3.2. Theorem 4.5 guarantees us

that for some vertex v E R and some index j, the set S = N (v) n Ii in Step 2(a) has the

property that:

ISi > t5 2 J(n)/1og1+0 n, and

DR(S) > Hl - 3t5)D(S),

(5.10)

(5.11)

where t5 = 51;gn. Note that for the given value off, equation (5.10) and the definition of t5

imply that:

(5.12)

Theorem 4.6 (using>..'= ~(1 - 3'5)) shows that for some index i, the set T = N;(S) of step

2(b) has the property that:

DTnR(S) > 6DR(S)/ log1H n, and

IT n Rl/ITI > ~(1 - 26)(1 - 36).

(5.13)

(5.14)

Let us now, for the rest of the proof, fix two such sets S and T satisfying equations (5.10)

through (5.14). We now show that these equations and the definitions of S and T will

ensure success of the algorithm.

Suppose first that ITI ~ n 518 /(logn)312
• By equation 5.14 above, set T contains an

independent set (T n R) of at least a fraction ~(1 - lo~n) of its vertices (using 6 = 51;gn).
So by Lemma 4.9, the BE/MS vertex-cover algorithm finds an independent set of size

n (n518 /(logn)512
) = n(n/ J(n)) so we make progress Type 1 [Large-IS) in Step 2(c).

On the other hand, if ITI < n518 /(log n)312
, then we just need to show that S and T

satisfy the conditions of Theorem 5.2. Clearly, S is 2-colored under any legal 3-coloring

of G since S ~ N(v), so Condition 1 is satisfied. For J(n) = n318 (logn) 512
, Condition 2

reduces to DT(S)/ISI = n (n114 /(logn)3
), which is found to be easily met using equations

(5.11) and (5.13) as follows.

DT(S) > DTnR(S) n (D(S)/(logn)3
) (5.15)

n(dlSl/(log n)3
). (5.16)

So,

DT(S)/ISI > n(n3fs I (log n) i12) (5.17)

n(n114 /(log n)3
). (5.18)

The last task is to show that Condition 3 is satisfied, which for the given value of f,
reduces to the requirement that

42 Chapter 5. Worst-case bounds for 3-colorable graphs: improved algorithm

(
nl/4 nl/2 J)

[DT(S)]
3 = n [1s1 + ~Ea_;di(v)]. [1s1 ITJ

2
(logn)4 + ITI JSl

2
(logn)lO . (5.19)

To show that this requirement holds, we upper bound the quantities ISJ, ITI, and

maxvES dT(v).

From equation (5.17), we have

(5.20)

Next, our very condition for this case was that:

(5.21)

Finally, since S ~ Ii so all vertices of S have nearly the same degree (though not necessarily

the same degree into T), we can bound maXvES dT(v) as follows:

maxdT(v)
vES O(D(S)/ISI)

O(DT(S)(log n)3 /ISi) (using equation 5.15)

o(DT(S)(logn)3(logn)312/n318) (using equation 5.12)

O(DT(S)(logn) 912jn318
). (5.22)

The three equations (5.20), (5.21), and (5.22) allow us to reduce requirement (5.19) to the

condition that:

[DT(S)]3
(

D (S) n9/s n3/s)
= n [(logn)9/2 :3/8] . [nT(S)(logn)13/2 + DT(S)2 (logn)21/2]

2 (n
3
1

4
DT(S))

[DT(S)] . n (logn)2 + (logn)6 •
(5.23)

Equivalently, we just have the requirement that DT(S) = n(n314/(log n)2 + DT(S)/(logn)6
).

Clearly, DT(S) = n(DT(S)/(logn) 6
) so we simply need DT(S) = n(n314/(logn)2). We

are now done, because combining equations (5.17) and (5.12) yields:

DT(S) n(1s1 n3/8/(logn)l/2)

n(n3,4/(logn)2).

Thus, Step 2(d) of Algorithm Improved-Approx makes progress. •

Chapter 6

Worst-case bounds for k-colorable graphs

We now consider two different methods for using the preceding techniques developed for

3-colorable graphs to improve the bounds for approximately coloring k-colorable graphs for

fixed k > 3. One method is simply to use the preceding algorithms as an improved base case

for a recursive strategy used by Wigderson [43]. A second method is to directly extend the

above algorithms for k > 3. For the latter approach, one needs both an analog of the shared

neighborhood condition (Theorem 4.1), and a way to cascade together several applications

of the distance-2 neighbor-taking process (Step 3 of Algorithm First-Approx) so that we can

"pump up" the relative size of the largest independent set. We will see that the second

method yields better asymptotic bounds than the first, though with diminishing returns

as k increases. However, the running time of the second method grows as (n log2 n)2k+O(l)

while the running time of the first is dominated just by the time taken by the base-case

algorithm. The two methods can be combined, providing a time/performance tradeoff, by

choosing some k0 and using the second method as a base case for the first method fork ;::: k0 •

This will result in an algorithm with running time 0((n log2 n)2ko+c) for some constant c.

The results of these approaches are summarized (in "O" notation) in Table 6.1. The

first row shows the bound for using Wigderson's algorithm with base case at k = 2. The

second and third rows show how the bounds are improved when we use the new coloring

method as base cases for k = 3 and k = 4 respectively. The last row shows the best bounds

we can get using the direct extension. Note: the bounds in the last two rows are with

high probability over the coin tosses of the algorithm. See Corollaries 6.2 and 6. 7 for more

precise bounds.

6.1 A simple recursive approach

A standard method [43][6][22] to approximately color k-colorable graphs is to pick a vertex

of high degree and recursively try to color its (k - 1)-colorable set of neighbors with as few

colors as possible. When we get to a 2-colorable set, we can just directly 2-color that set

in the standard way. For example, Wigderson's algorithm for coloring k-colorable graphs

with kn1- 1/(k-l) colors can be described as follows:

43

44 Chapter 6. Worst-case bounds for k-colorable graphs

Where k - 3 4 5 6 7 general

Wigderson [43] nl/2 n2/3 n3/4 n4/5 n5/6 nl-6

no.5 no.667 no.15 no.8 no.833

base: k = 3 n3/8 n8/13 n13/18 n18/23 n23/28 1 I n - k-7/•

n0.375 no.615 no.122 no.783 no.821

base: k = 4 n3/5 n5/7 n7/9 n9/11 nl-k-~/2

no.6 no.114 no.118 no.818

best we have n3/8 n3/5 ..ll. 105 ~301

n•'' n137 n• .. ,

no.375 no.6 no.695 no.766 no.806

Table 6.1: Summary of results in "0" notation for various combinations of algorithms.
Items "base: k = 3" and "base: k = 4" correspond to using Algorithm Recursive-Color

with Algorithm Multi-Stage-Color as a base case for k = 3 or 4 respectively.

Wigderson's Algorithm for k-colorable graphs:

Given: A k-colorable graph G on n vertices.

Output: A coloring with at most kn1- 1/(k-l) colors.

1. If there exists a vertex v with at least nl-l/(k-l) neighbors, then color the
k-3

neighborhood recursively with (k - 1) (n 1- 1/(k-l)) l- k~ 2 = (k - 1) (n i-=-f) I-=-2 =

(k - 1)n Et colors. Then remove those nodes from the graph and the colors from

the palette.

Note that this step can be executed at most n 1f(k-l) times, resulting in a total

of(k - l)nZ:::~+k~1 = (k - l)n1- 1/(k-l) colors used in this step.

2. Otherwise, greedily color the graph left with nl-l/(k-l) colors.

So, the total number of colors used in both steps together is

kn1-1/(k-1).

(Note that for the base case of k = 2, we have 2 = 2n1-l/(2- 1).)

The algorithms presented in the previous chapters allow one to stop at k = 3 as a base

case instead of k = 2 in this type of procedure and thus use fewer colors. More generally,

we can describe when a bound achieved for coloring graphs of chromatic number k0 will

improve the performance of this kind of recursive procedure for graphs of higher chromatic

number. In particular, suppose we have an algorithm A to color any n-vertex k0 -colorable

6.1. A simple recursive approach 45

graph with 0(nu) colors. Then, the important quantity for this approach, which we call

the recursive pe,rformance r(A) of the algorithm, is:

r(A) = 1
ko - --.

1-o:
(6.1)

If an algorithm has a higher value of r, then the bounds achieved by using that as a base

case for k > k0 will be improved. Specifically, the recursive algorithm will color k-colorable

graphs fork z k0 with 6 (n1- 1/(k-r(A))) colors. So, for example, using the fact that we can

2-color 2-colorable graphs (k0 = 2,o: = 0), we find r = 1 and the bound is 6 (n1-I/(k-l)).

Using the improved bounds for coloring 3-colorable graphs in chapter 5 (ko = 3, o: = 3/8),

we get r = 3 - 5 ~8 = 7 /5, so the improved bound for k z 3 is:

6 (n 1
- •-~/•) colors. (6.2)

Later, in Section 6.2, we will see how to color 4-colorable graphs with O(n315
) colors, so we

- 1 1

get r = 4 - 2 ~ 5 = 3/2. Thus, for k z 4, we can color with 0(n - •- 3 / 2) colors.

The following theorem more precisely describes the bounds achieved by the recursive

approach.

Theorem 6.1 Given an algorithm A to color any m-vertex k0 -colorable graph with cma log.am

colors, then algorithm Recursive-Color(A) below can color any n-vertex k-colorable graph

(k z k0) with at most:

[c + (k - k
0
)]nl-l/(k-r) (log nl['.a..:-;] (6.3)

colors, where r = r(A) = ko - 12a.

Using Theorem 6.1 and the bounds achieved by algorithm Improved-Approx, (k0 = 3, a=

3/8, (3 = 5/2),we can restate formula (6.2) more precisely in the following corollary.

Corollary 6.2 Algorithm Recursive-Color(lmproved-Approx) colors any n-vertex k-colorable

graph (k z 3) with at most

(
1 1 •) 0 n - •-1/• (log n) •-1/•

colors.

The recursive algorithm to achieve these bounds is described below.

Algorithm Recursive-Color: (Variant on Wigderson's algorithm)

Given: An n-vertex k-colorable graph G and an algorithm A to color any m-vertex

k0 -colorable graph with at most Ck
0
(m) = cmalog/3 m colors (k0 :S k).

Output: A Ck(n)-coloring of G, for Ck(n) as defined in equation (6.3).

46

1. Let r = k0 - -
1
-. 1-a

Chapter 6. Worst-case bounds for k-colorable graphs

2. Let J(n,k) = nl-l/(k-r)(lognl\o_:-;.

3. While there exists a vertex with at least f(n, k) neighbors, select f(n, k) of its

neighbors and color them with Ck_ 1(f(n,k)) colors. Remove those nodes from

the graph and the colors from the palette.

Note that we can execute this step at most n/ f(n, k) times.

4. Otherwise, greedily color the graph with f (n, k) colors.

Proof of Theorem 6.1: Let A be an algorithm that colors any m-vertex k0-colorable

graph with cm"'log.8 m colors and let r = r(A). We will use Ck(n) to denote the coloring

bound achieved on n-vertex k-colorable graphs. First, formula (6.3) in the statement of the

theorem holds for the base case of k = k0 since for k = k0 , we have:

cn 1-~(log n).8· 1

en"' log.an.

Let ck= c+(k-k0) and let f(n, k) = n kl<.'.:~' (log n).ak,.o_:-; as in Algorithm Recursive-Color.

So, assuming the bounds of Theorem 6.1 inductively for k' < k, we need to show that

Ck(n) ~ cd(n, k).

Since we can loop in step 3 of Algorithm Recursive-Color at most n/ f(n, k) times, this

results in the recurrence:

Ck(n) ~ Ck-1 (f(n, k)) [n/ f(n, k)] + f(n, k).

So, substituting in the bounds of Theorem 6.1 inductively, we have:

Ck(n) < [ck_ 1[f(n,k)]1- 1f(k-r-l)[logf(n,k)j.8(kk!,-_.-,)] [,c~,k)] + f(n,k)

< ck_ 1[f(n,k)]1-l/(k-r-l)[logn]P(kk!;:,) [J(~,k)] + f(n,k)

ck_ 1n[f(n,k)t 1 f(k-r-l)[logn]P(kk!;:,) + f(n,k)

-1 -1

ck_
1
n (n kl<.'.:~') J<_,_, ([log nj.8 kko_:-;) ~ [log n]PU..?;:,) + f(n, k)

ck-1n 1 -~[logn]P(•k3;_.-,)(72r+ 1) + f(n,k)

ck_ 1 n 1 -~[lognjP(\0:;) + f(n,k)

ck_if(n,k) + f(n,k)

cd(n,k). •

6.2. Directly extending the k = 3 algorithm 47

6.2 Directly extending the k = 3 algorithm

6.2.1 Motivation

In this section, we describe how the methods of Algorithm First-Approx of Chapter 4 can be

applied directly to graphs of higher chromatic number, yielding improved coloring bounds

for such graphs. Unfortunately, we do not know a way to extend the approach of Algorithm

Improved-Approx in a similar way, though it can still provide a useful "base case".

The main idea of Algorithm First-Approx was to look at large subsets of the distance-

2 neighbors of vertices in a 3-colorable graph: in particular, the sets N; (N (v) n Ii) for

each vertex v and each pair of indices i, j. The "well-distributed" property proved in

Theorems 4.5 and 4.6 ensures that one such set will be nearly half red under some legal

3-coloring of the graph, and the expansion property of Theorem 4.1 ensures the set is large

as well.

While the expansion property depended heavily on the graph being 3-colorable, the

theorems forcing good distribution require only that the given graph have an independent

set of large total degree (see Section 4.3.2). In particular, they simply require that there

exist a large independent set R such that DR(V - R) ;::: >.D(V - R) for some constant >.

and that the graph have sufficiently large minimum degree. So, we could conceivably make

progress on graphs of a higher chromatic number than 3 by cascading several applications

of the distance-2 neighbor-taking stage in the following way.

Suppose, say, G is a 5-colorable graph and we wish to color G with J(n) colors. Then,

we know there exists an independent set R such that DR(V - R) 2: iD(V - R) and we can

establish a minimum degree of J(n). If we could guarantee that no two vertices shared too

many neighbors, we could look at the sets Tv,i,j and be assured that one will be large and

have an independent set R' = Rn Tv,i,i such that IR'I ~ i ITv,i,il using Theorems 4.5 and

4.6. Let us now focus on the subgraph G' induced by Tv,i,i• and let V' = Tv,i,j· Suppose

we could in addition somehow ensure that within G', the vertices of R' had about the same

average degree as the other vertices of V'. Then we would have D(R') ~ iD(V'), which

would imply that:

DR1(V' - R') ~ ~D(V' - R'), (6.4)

since DR·(V' - R') = D(R') and D(R') ~ ~D(V') = i(D(V' - R') + D(R')), where we are

now counting degrees only within G'.

Now, if we re-establish a minimum degree without destroying (6.4) above, we could

then re-apply the distance-2 neighbor-taking process within G' to get a set V" containing an

independent set R" such that IR"I ~ ~IV"I· If again we could ensure that D(R") ~ ~D(V")

48 Chapter 6. Worst-case bounds for k-colorable graphs

within the new graph G", we would get:

DR11(V11
- R") ~ ~D(V" - R").

Thus, one final application of examining the sets Tv,i,j within G" will yield some set on

which the BE/MS vertex-cover algorithm makes progress.

So, the two main ingredients needed to make this procedure go through are (1) how to

ensure that no two vertices share too many neighbors in common, and (2) how to get from

JR'J ~ .XJV'J to D(R') ~ .XD(V'). These problems are solved in the following sections.

6.2.2 The bootstrapping algorithm

We now describe procedures that allow us to "bootstrap" applications of Algorithm First-Approx

to graphs of higher chromatic number. The resulting algorithm Multi-Stage-Color will color

any n-vertex k-colorable graph with:

• !1.:(n) = O(n°'(l.:)log13(1.:)n) colors,

where a(k) will be defined inductively ink, and f3(k) is a nondecreasing function such

that f3(k) ~ 5.5. The exponent (3 of the logarithm in fact approaches 5.5 ask---;. oo.

Because a is the critical value and the log factors are low-order terms, for purposes

of simpler analysis we will not attempt to get tight bounds and assume (3 is fixed at

5.5 for all k > 3.

For base cases, a(2) = 0 and a(3) = 3/8 using algorithm Improved-Approx. The recursive

formula for a(k) for k > 3 is:

1
1 - a(k)

- 2-- 1--1 1 (1)
- 21.:- 2 + 1 - a(k - 2) 21.:- 2 •

(6.5)

We will examine this formula in more detail later, but we just note here that a 1s non­

decreasing in k.

We need in this section to redefine the value b to depend on the chromatic number k of

the graph G we wish to color. In particular, we shall use:

1
• b = b(k) =

41.: log n

The sets Ii and N;(v) used in Chapter 4 now depend on this new quantity.

As mentioned previously, the theorems of Section 4.3.2 forcing good distribution do not

require that the graph be 3-colorable, only that there exist a large independent set R such

that DR(V - R) 2: .XD(V - R) for some constant .X and that the graph have sufficiently

large minimum degree. Let us, in fact, repeat Corollary 4.7 here, removing all mention of

the chromatic number of the graph. (The fact that the graph was 3-colorable was used only

in showing that .X 2: 1/2.)

6.2. Directly extending the k = 3 algorithm 49

Corollary 6.3 (Variant of Corollary 4. 7) Suppose G = (V, E) is an n-vertex graph

such that {1} no two vertices share more than s neighbors, (2) G has minimum degree

dmin ~ max(s(l + t5),(3logn)/t52), and {3} G contains an independent set R such that

DR(V - R) ~ >.D(V - R) for some constant>. E [O, l]. Then, for any t5 = e(l~gn)' for some

v EV and some i,j E [O, ... ,log1H n], the set

has size at least n ((dmin)2/(slog7 n)) and the property that ITv,i,j n RI~ >.(1- 5t5)1Tv,d·

We now present a new method to ensure that no two vertices share too many neighbors.

Theorem 6.4 Given an n-vertex k-colorable graph G containing two vertices that share
1-a(k)

at least n l- 0 <•- 2 > neighbors and an algorithm A to color any m-vertex (k - 2)-colorable

graph with fk-·i(m) colors, Algorithm Sharing-Progress below will make progress towards an

fk(n)-coloring of G.

Algorithm Sharing-Progress:

Given: (1) Ann-vertex k-colorable graph G containing two vertices that share at least
1-<>(k)

n 1 - 0
(•-

2 > neighbors, and (2) an algorithm A to color any m-vertex (k - 2)-colorable

graph with fk- 2 (m) colors.

Output: Progress towards an fk(n) coloring of G.

1-a(k)

1. Let S = N(x) n N(y) where x and y share at least n l- 0 <•- 2 > neighbors, and let

Gs be the subgraph induced by set S.

2. Run algorithm A on Gs. Note that if Gs is (k - 2)-colorable, then A will color

Gs with at most:

O(ISla(k-2)(log ISl)~(k-2))

< O(ISJa(k- 2)(logn)~(k)) colors,

(using ISi ~ n and f3 non-decreasing). Thus, Algorithm A will find an indepen­

dent set of size at least:

ISl1-a(k-2)

n((logn)~(k))
nl-a(k)

n ((log n)~(k))
n(n/ fk(n)).

(far the given choice of ISi)

Thus, if Gs is (k-2)-colorable, then we have made progress of Type 1 [Large-IS].

50 Chapter 6. Worst-case bounds for k-colorable graphs

3. If we did not make progress in Step 2, it must be that Gs was not (k - 2)­

color able. The only way this could be is if x and y must be the same color under

any legal k-coloring of G. So, we can merge vertices x and y and make progress

of Type 3 [Same-Color].

The argument given in Algorithm Sharing-Progress proves Theorem 6.4. •

We now use Algorithm Sharing-Progress in a procedure that allows us to "bootstrap"

applications of Step 3 of Algorithm First-Approx.

Algorithm Bootstrap:

Given: (1) Values a E [O, 1], f3 E Z and o = E>(I;gn)' and (2) An m-vertex subgraph

H (m ~ 1/62) of an n-vertex graph G such that H contains an independent set R

with IRI ~ >.IV(H)I for some constant>.> 0.

Output: Either: (1) progress towards an O(n°log/Jn)-coloring ofG, or else (2) at

most m/2 subgraphs G 0 , Gi, ... , Gm; 2 _ 1 of H such that with high probability at least

one G; has both a minimum degree of (02 r;;)n° log/Jn and considering only edges

within G;, D(R n V(G;)) ~ (>. - 2o)D(V(G;)).

1. Let G 0 =(Va, E 0) = H. Inductively create graph G; = (V;, E;) from graph G;_ 1

for i = 1, 2, ... , m/2 - 1 by selecting an edge at random in E;_ 1 and deleting

both endpoints. So, IVil = IVi-1 - 21.
2. For each G; with at least om vertices, while G; contains a vertex with degree

less than 02mn°- 1 log/Jn: delete from G; the vertex of minimum degree and all

incident edges.

Suppose we have removed more than o2m vertices from any G;. Since within

the set W; of vertices deleted from G;, the degree of each vertex can be at most

o2mn"'- 1 log/Jn, we can greedily find an independent set inside W; of size at least:

o2 m
= n/(n° log/Jn).

So, we make progress Type 1 [Large-IS] towards an 0(n"' log/Jn)-coloring of G.

3. If we did not make progress in Step 2, then output the graphs G; for i =
0, 1, ... , m/2 - 1.

Theorem 6.5 [Algorithm Bootstrap works as guaranteed] Given an m-vertex subgraph

H (m ~ 1/ 62
) of an n-vertex graph G such that H contains an independent set R with

IRI ~ >.IV(H)I for some constant>.. Then, either (1) Algorithm Bootstrap makes progress

6.2. Directly extending the k = 3 algorithm 51

towards an 0(na log~ n)-coloring of G in Step 2, or else (2) with high probability, one of

the subgraphs G; = (V;, E;) has both a minimum degree of c5 2mna- 1 log~ n and within the

subgraph, D(R n V;) ~ (.X - 2c5)D(V;).

Proof: Let us consider the graphs G; created after Step 1 of Algorithm Bootstrap, but

before deleting vertices in Step 2. Let R; = V; n R and let N = m(l - c5)/2; note that set

VN contains c5m vertices. We show now that with high probability, for some index i :S N,

we have D(R;) ~ (.X - c5)D(V;). The idea of the argument is that since we are removing

vertices with a probability proportional to their degree, if D(R;) < (.X - c5)D(V;) for all

such i, then we would remove many fewer vertices from R than from V - R. In fact, with

high probability we would remove so many fewer that once we reach graph GN, the set RN

would be larger than than V N, a clear contradiction.

For each i :S N, let A; be the event that in creating G;+1 from G;, we delete an edge

with an endpoint in R;. Since the number of edges in E; with an endpoint in R; is exactly

D(R;) (because R; is an independent set), we have:

Pr[A;] D(R;)/jE;j

2D(R;)/ D(V;). (6.6)

Suppose for some index i :S N we have D(R;) :S (.X - c5)D(V;). Then, the probability event

A; occurs is at most 2(.X - c5).

Let p = 2(.X - c5) and assume for contradiction that D(R;) < (.X - c5)D(V;) for every

:S N. So, for each i :S N, the probability that the ith edge removed from G has an

endpoint in R is less than p. Since we remove N edges to create G N and every time we

remove an edge the probability it has an endpoint in R is less than p, by Chernoff bounds [2]

the probability we remove more than pN(l + c5) vertices from R is at most e- 62
n(pN). Since

pN = n(m) and we assume m ~ 1/c5 2 in the statement of the theorem, the probability we

remove more than pN(l + c5) vertices from R is o(l). Thus, with high probability:

IRNI > .Xm - pN(l + c5)

.Xm - 2(.X - c5)[m(l - c5)/2](1 + c5)

m[.X - (.X - c5)(1 - c5 2
)]

c5m + mc52 (.X - c5)

> c5m. (since A > c5)

So, with high probability, IRNI > IVNI, a contradiction. Thus, with high probability our

assumption that D(R;) < (.X - c5)D(V;) for every i :S N is incorrect; that is, for some v; of

size at least c5m, we have D(R;) ~ (.X - c5)D(V;).

52 Chapter 6. Worst-case bounds for k-colorable graphs

Now, let i be such that IV;! > bm and D(R;) 2'.: (.X- b)D(V;) before Step 2 of Algorithm

Bootstrap. In Step 2, if at most b2 m vertices are removed, then we remove at most a fraction

b of the vertices of V; in order to establish the desired minimum degree. Since we are always

removing the vertex of least degree, we remove at most bD(V;) from the total degree sum

of the subgraph. Even if, at worst, all the vertices removed were from the set R;, we still

have in the graph remaining that:

D(R;) 2'.: (.X - 2b)D(V;),

as claimed. •

Given Theorem 6.5, we have an improved approximation algorithm for coloring graphs

of chromatic number k > 3 as follows. We first apply algorithm Sharing-Progress; we

then run the distance-2 neighbor-taking stage of Algorithm First-Approx k - 2 times, using

Algorithm Bootstrap to "clean up" the graph in between applications; and finally, we use

the BE/MS vertex-cover algorithm. The formal algorithm to color any k-colorable graph

with O(n°Ck)log.8(k) n) colors is given below. For simplicity, we have separated out the

distance-2-neighbor /bootstrap step into a separate procedure.

Algorithm Multi-Stage-Color:

Given: An n-vertex k-colorable graph G.

Output: Progress towards an 0(n° log.8 n)-coloring of G for a = a(k) as defined by

the recursion in equation (6.5), and {3 at most 5.5.

Let f(n) = n° log.8 n.

1. {Base case] If k = 2 then just color G with 2 colors. If k = 3, then run Algoritl1m

Improved-Approx on G.

2. {Minimum degree] For each vertex v, if d(v) < f(n), make progress Type 2.

3. {Minimum sharing of neighbors} For each pair of vertices u, v, if IN(u) n N(v)I ~
1-n(k)

n' n(k- 2>, then make progress using Algorithm Sharing-Progress. Note that Algo-

rithm Sharing-Progress will use Algorithm Multi-Stage-Color recursively on (k-2)­

colorable graphs.

4. {Initial distance-2 neighbors} For each vertex v and each pair i, j E [O, ... , log1+6 n],

let Gv,i,j be the subgraph induced by the set N;(N(v) n Ii)·

5. {Additional neighbor-taking stages] For each graph Gv,i,i• run Procedure

Iterate-neighbors below on input (n, k, Gv,i,i• k - 3).

6.2. Directly extending the k = 3 algorithm 53

If the algorithm makes progress on any of the inputs given, then halt with success.

Otherwise, let G1, ... , G q be all the graphs returned by Iterate-neighbors, for

q = O([(log1+n n)2k-4n2k-5).

6. {Vertex-Cover approximation] Run the BE/MS vertex-cover algorithm on the

graphs G1 , ••• , Gq·

Procedure Iterate-neighbors: (n, k, G', iter)

Given: Values n and k. An m-vertex subgraph G' of some n-vertex graph G, and

a number of iterations iter.

Output: O([m2(1og 1+6 m) 2]iter) subgraphs of G' or else progress towards an

0(na(k) log13(k) n)-coloring of G.

Pl. If iter = 0, then return G'.

P2. If iter ~ 1, then run Algorithm Bootstrap on G' and values a= a(k),(3 = (3(k),

and b = h(k).

P3. If Algorithm Bootstrap returns progress towards an 0(na(k) log/3(k) n)-coloring

ofG, then halt with success. Otherwise, let H0 , ••• ,H:m_ 1 be the subgraphs
2

returned.

P4. Now, for each II,, (0 ~ l < ~ - 1) for each vertex v rn H1 and each index

i, j E [O, ... , log1+6 m]:

(note: there are at most m 2 (1og1+6 m) 2 different 4-tuples (l,v,i,j))

(a) Let G1,v,i,i be the subgraph of H1 induced by N;(N(v) n Ii), where neighbor­

hoods are taken within H 1•

(b) Run: lterate-neighbors(n,k,G1,v,i,j, iter - 1).

Theorem 6.6 Algorithm Multi-Stage-Color, given any n-vertex k-colorable graph, makes

progress towards a coloring with O(na(k)(logn)5·5) colors, for a(k) as defined in equa­

tion (6.S).

Before proving Theorem 6.6, let us examine the claimed performance more closely. Let

1(k) = i-!(k)" So, equation (6.5) can be written as:

1(k) = 2 - -
1
- + 1(k - 2) (1 - -

1
-) . 2k-2 2k-2

(6. 7)

One can see from this equation immediately that 1(k) < 2 + 1(k - 2); that is, if we

increase k by 2, then / increases by less than 2. We can compare this with the sim­

pler approach from Section 6.1. Algorithm Recursive-Color given there colors k-colorable

54 Chapter 6. Worst-case bounds for k-colorable graphs

graphs with O(n<>'(k)) colors for a'(k) = 1 - k~r for some constant r. Thus, the quantity

1'(k) = 1_;,(k) equals k - rand 1'(k) = 2+1'(k - 2). Since the function g(x) = 1 ~x is an

increasing function with x, for algorithm Multi-Stage-Color the exponent a does not rise as

rapidly as in algorithm Recursive-Color. Thus, the new approach yields better bounds. Be­

cause Algorithm Multi-Stage-Color is slower than algorithm Recursive-Color, one can achieve

time/performance tradeoffs by running the faster algorithm with the slower algorithm as a

base case for some k = k0 • Table 6.1 at the beginning of this chapter shows the results for

both algorithms and for various combinations. In particular, for example, we can substitute

the bound of Theorem 6.6 for k = 4 into the bound of Theorem 6.1 to get the following

corollary.

Corollary 6. 7 Algorithm Recursive-Color using algorithm Multi-Stage-Color as a base case

fork= 4, colors any n-vertex k-colomble gmph (k ~ 4) with at most:

(
1 1 •• (1)) O n - k-3/2 (log n)-.- k-3/2

colors.

Proof of Theorem 6.6:

We may assume k > 3 since otherwise, we just run Algorithm Improved-Approx in Step
1-D(k)

1 of Multi-Stage-Color. Define sk(n) = n 1-D(k->), and let a = a(k) and f3 = f3(k). Steps

2 and 3 of Algorithm Multi-Stage-Color establish that the graph has a minimum degree of

n" log.an and that no two vertices share more than sk(n) neighbors.

Since G is k-colorable, it must contain an independent set R with Dn(V - R) >

k~l D(V - R). So, by Corollary 6.3, one of the graphs G' = Gv,i,j created in Step 4

will both have size at least:

m1 (dmin)2 /(sk(n)log
7 n)

n2"log2.8 n/(sk(n)log7 n), (6.8)

and contain an independent set of at least a A1 = k~l (1 - 58) ~ (k~l - 58) fraction of its

vertices. 1

We now examine the call to procedure Iterate-neighbors. Suppose Iterate-neighbors is

called with a graph G' of at least m; vertices containing an independent set of at least a A;

fraction of its nodes. By Theorem 6.5, if Step P3 does not halt with success immediately,

then one of the graphs H1 produced will have both a minimum degree of bm;n"- 1 log.8 n

1 One can verify that the minimum degrees and the values m; defined satisfy the technical conditions of
Corollary 6.3 (min degree > max(s(l + 8), {3 log n)/82

)) and Theorem 6.5 (m; ~ 1/82
).

6.2. Directly extending the k = 3 algorithm 55

and contain an independent set R' with D(R') 2: (.X; - 2'5)D(V(H1)). Rewriting the latter

inequality, we have D(R') 2: (.X; - 2'5)[D(V(H1) - R') + D(R')], so:

Using the minimum degree bound and degree ratios above, Corollary 6.3 implies that one of

the sets G1,v,i,j produced in Step P4(a) will both have size at least mi+1 and an independent

set of at least a fraction A;+i of its vertices, where:

and

m;+1 '54min2
a-

2(log n)2/3 /(sk(n) log7 n)

n(min2
a-

2(log n)2/3 /(sk(n) log 11 n)

n(m;n2a-
2

/ sk(n)),

A;+1 > >. -26 5'5
1->.;+26 -

> >., -46 - 5'5
1->.,

> ~ -13'5 1->., for .A; :::; 1/2.

(for f3 = 5.5) (6.9)

(6.10)

Thus, one of the graphs G1 returned to Step 5 of Algorithm Multi-Stage-Color will have at

least mk_ 2 vertices and contain an independent set of size at least .Xk_ 2\V(G1)\, where we

must now solve for mk_ 2 and .Xk_ 2.

Claim 1: A· > - 1-. - 4•+20 for 0 < i < k - 2 . • - k-• - -

Proof: For i = 1 the claim holds. For i > 1, by induction and using equation (6.10), we

have:

.X, > (-~- - 4i+10)/(~ + 4i+io) - 13'5 k-1+1 k-1+1

> (-1- - 2. 4i+10)/(~) - 13'5 k-1+1 k-s+l

> _1_. - 2. 4i+115(k-i-J;l) - 136
k-1 k-•

> - 1-. - 3. 4i+l15 - 136
k-· (for i :::; k - 2)

> _l_ - 4•+215
k-i . (for i + 1 2: 2) D

So, for 6 = o(k) = 4 k 1~gn' we have:

.Xk 2 > (1 - - 1
-) - - 2 logn · (6.11)

Claim 2: m; = f!(n(2;+'-2)a · n2- 2'. [sk(n)]1- 2').

Proof: One can easily check that the claim holds for the base case of i = 1, using equa­

tion (6.8) and the fact that for f3 = 5.5 that log2
/3 n > log7 n. For i > 1, we can check

56 Chapter 6. Worst-case bounds for k-colorable graphs

inductively that (6.9) satisfies the claim as follows:

m;+1 n(m;n20- 2/[sk(n)])

n(n(2'+1-2)2a. n2(2-2'). [sk(n)]2(1-2'). n2a-2 /[sk(n)J)

n(n(2'+'-4+2)a. n4-2•+1-2. [sk(n)]2-2'+'-1)

n(n(2'+>-2)a. n2-2•+1. [sk(n)]1-2'+') D

So,

(6.12)

Thus, one of the graphs of Step 5 of Algorithm Multi-Stage-Color will have an independent

set of at least(~ - lo~n) of its vertices (from equation (6.11)) and have size at least mk-2,

as given in equation (6.12). By lemma 4.9, Step 6 will find an independent set of size at

least mk-d log n.

Thus, to prove Theorem 6.6 we must just show that mk-d log n = f2(n/(n°(k)log;5(k) n)).

Since f3(k) is set to 5.5 it is enough to have mk_ 2 = f!(nl-a(k)). Equivalently, using equa-
1-a.<•l

tion (6.12), taking logn of both sides, and substituting in sk(n) = n 1-a.<•- 2l, we just need to

show that:

Rearranging terms, this formula is equivalent to:

or:

[1 - a(k)](2k-1 - 1) ::; 2k-2 + [1 - a(k)] (1 - 2k-2)'
1 - a(k - 2)

_2_k-2_ + [1] (1 - 2k-2)
l-a(k) l-a(k-2) ·

Dividing both sides by 2k-2 and rearranging one final time, we find that we just need:

1 1 1 (1) > 2---- ---1
- 2k- 2 1 - a(k - 2) 2k-2 · 1 - a(k)

But, this formula is exactly the definition of a(k) given in equation (6.5). So Algorithm

Multi-Stage-Color works as claimed. •

Chapter 7

Random models for k-colorable graphs

While the problem of coloring worst-case k-colorable graphs seems quite difficult, it turns

out that coloring random k-colorable graphs is much easier. In fact, it is well known by

results of Kucera [23], Turner [38], and others that random k-colorable graphs can be k­

colored in polynomial-time with high probability. These results show that, in fact, most

k-colorable graphs are easy to k-color. Dyer and Frieze [18] go further and provide an

algorithm that when amortized over all n-vertex k-colorable graphs, spends polynomial

time on average per graph. Experimental work on various heuristics for coloring random

k-colorable graphs has been done by Petford and Welsh [31].

The standard model for a random n-vertex graph is the model 9 (n, p) in which each

possible edge (u, v) is placed into the graph with probability p. This model has the property

that the distribution 9(n, 1/2) is the same as that obtained by selecting a labeled n-vertex

graph uniformly at random from the set of all n-vertex graphs.

There are several natural models, however, for what one means by a random k-colorable

graph. Dyer and Frieze examine several and prove relationships among them [18]. We focus

here on one model that happens to be simplest to analyze, which we shall denote 9(n, p, k).

A graph is selected in 9(n, p, k) according to the following procedure. First each labeled

vertex is independently assigned to one of k color classes with equal probability 1/ k. Then,

independently for each pair u, v of vertices in different color classes, the edge (u, v) is placed

into the graph with probability p. We use the notation:

• G .._ 9(n,p, k)

to mean that G is selected according to the distribution defined by this model.

The 9(n, p, k) model is a natural one for a random n-vertex k-colorable graph, though

even for p = 1/2 it is not equivalent to selecting a graph uniformly at random from the

set of all n-vertex k-colorable graphs. In particular, graphs that can be k-colored in mul­

tiple different ways are over-represented in 9(n, 1/2, k) since different assignments to the

color classes may still lead to the same graph. (See Dyer and Frieze [18] for more on the

relationship between the models.)

57

58 Chapter 7. Random models for k-colorable graphs

In this chapter, we consider the problem of k-coloring graphs in 9(n, p, k) for as low an

average edge density as possible. We present an algorithm to k-color such graphs with high

probability for any constant k, and for p 2:: n°< 1)- 1 ; that is, the procedure will work for the

average degree as low as n' for any fixed E > 0. Before describing that algorithm, however,

we point out first a quite easy method to k-color G +- 9(n,p,k) for p 2:: n-l/2+' (E > 0).

This idea of the easier procedure is simply this: two vertices from the same color class

in G will tend to share more neighbors in common than two vertices of different color. Two

vertices from the same class have an expected n - n/k vertices they might potentially share

as neighbors, and so can be expected to share n(l - 1/ k)p2 neighbors in common. However,

two vertices from different color classes have only an expected n - 2n/ k vertices they may

share as neighbors, and so they can be expected to share only n(l - 2/k)p2 neighbors in

common. For p 2:: n-l/2+', these values are n 2'(1-1/k) and n 2'(1- 2/k) respectively. Since

for any given pair of vertices x, y, the indicator random variables Xv for the event that v is

a neighbor to both x and y are mutually independent over all v (and each occurring with

probability p2 if vis a different color from both x and y), we may apply Chernoff bounds.

In particular, if X = L Xv, andµ= E[X] is the expected number of neighbors in common

between x and y, Chernoff bounds state that for any b > 0,

Pr[X < (1 - b)µ or X > (1 + b)µ] < 2e- 62
µ/ 3

(See Angluin and Valiant [2]). Forµ= 0(n2'), this probability is so small that even when

summed over all pairs of starting vertices x, y, the probability any pair shares a number of

neighbors that differs by more than bµ from the expectation is o(l).

One thus finds that with high probability, all pairs of vertices selected in the same color

class share n 2 '[1 - 1/k](l + o(l)) neighbors and all pairs of vertices of different color share

only n 2'[1 - 2/k](l + o(l)) neighbors in common. Thus, one can easily algorithmically

separate the color classes.

7.1 An improved algorithm

In this section, we describe an algorithm based on an extension of the above idea that k­

colors graphs in 9(n,p, k) for much lower values of p. The results presented here are based

on work joint with Joel Spencer.

Another way to view the above observation is that vertices of the same color will have

more paths of length 2 between them than vertices of different colors. This idea can be

extended to paths of a longer constant length l for improved bounds. If l is even, it turns

out (see Section 7.1.1) that the expected number of paths of length l between two vertices

of the same color is higher than the expected number for vertices of different color. If l is

7.1. An improved algorithm 59

odd, the reverse holds. The difficulty in analyzing the case l > 2, however, is that the events

corresponding to the paths of length l between two vertices are no longer independent.

Different paths of length 2 between two vertices x and y share no edges in common, but two

paths of length 3 might share an edge: for example, consider the two paths (x, w, w', y) and

(x, w', w, y). So, to prove that the number of paths will be with high probability close to

the number expected, one needs a more sophisticated probabilistic analysis. Luckily, such

analysis for a general class of this type of problem has already been provided by Spencer

[35] in the context of the random graph model 9(n,p). It turns out that the same analysis

holds for the 9(n, p, k) model as well.

7 .1.1 Calculating expectations

Let l ~ 2 be some integer constant and let us fix two vertices x and y. By a "path" we

will always mean a simple path; that is, one that never touches any vertex more than once.

In this section, we calculate the expe,cted number of paths of length l between x and y in

G ;- 9(n,p, k) and show this expectation differs by a constant factor depending on whether

or not x and y are in the same color class.

In particular let E1(p) be the expected number of paths of length l between x and y in

G ;- 9(n, p, k), and let E?ame(p) and Efff(p) be the expected number of such paths given

that x and y are chosen in the same or in different color classes respectively. Also, for p > 0

let A.1(p) = [E?ame(p) - Ei'liff(p)]/ E1(p). When pis clear from context, we will just write

Er, E?ame, Efff, and A.1 for the above quantities. We show now that for constant k and l,

the value A.1 is bounded away from 0 by a constant.

We can calculate the expected number of paths between x and y by fixing some arbitrary

sequence of distinct vertices (also distinct from x and y) v1, ... , v1_ 1 and calculating the

probability of the event B 1 that each pair (x, v1), (vi, v2), ••• , (v1_2 , v1_1), (v1_1, y) consists

of vertices chosen in different color classes. Given that the event B 1 occurs, the probability

the path (x,v1, ... ,v1_1,y) appears in G is simply p1• Given that B1 does not occur, the

probability is 0. Since there are (n - 2)1_1 = (n - 2)(n - 3) · · ·(n - l) = n1- 1[1 - o(l)]

possible such sequences v1, ... , v1_1, the expectation E1 is simply [1 - o(l)]p1n1- 1 Pr[Bi].

For any random variable X, let Prsame[X] and Prdiff[X] be the probability that event X

occurs given that x and y are in the same color class, or given that x and y are in different

color classes, respectively. Thus, we have:

E1 = E1(P) [1 - o(l)]p1n1- 1Pr[Bi],

[1 - o(l)]plnl-lprsame[B1],

[1 - o(l)]p1n1-1prdiff[Bi].

(7 .1)

(7.2)

(7.3)

60 Chapter 7. Random models for k-colorable graphs

Also, since the p1(n - 2)1-i terms factor out of the expression for Ai, we have:

Prsame[Bi] - Prcliff[Bi]

Pr[Bi]
(7.4)

So, to compute Ei, E~ame, Efff, and Ai, we need only examine the fixed sequence Vi, ••• , V1-1

and the event that all are chosen colors such that the path (x, Vi, ••• , v1_ i, y) is a "potential

path" in the graph.

The value Pr[Bi] is quite easy to calculate: each vertex in the path has a (1 - t)
probability of being given a different color than the preceding vertex. Thus,

Pr[Bi] = (1 - t)1
• (7.5)

Also, clearly, Pr[Bi] = Prsame[Bi] · Pr[x and y are chosen the same color] + Prdiff[Bi] ·

Pr[x and y are chosen of different color]. So,

(7.6)

So, from equations (7.5) and (7.6), in order to calculate Prsame[Bi] and Prdiff[Bi] it suffices

to prove the following theorem.

Proof: Define the following events At and Bt fort S: l. Notice that this definition of Bt

coincides with the previous definition of B1 for t = l.

• Fort S: /,let At be the event that each pair (x, vi), (vi, v2), ••• , (vt_ 2 , Vt_ 1) consists of

vertices chosen in different color classes.

• For t S: l, let Bt be the event that At occurs and in addition vertex v1_ 1 is chosen in

a different color class from y.

Also, for convenience, let At - Bt be the event that At occurs and Bt does not. Notice

that since Bt <;:: Ai, we have Pr[At - Bt] = Pr[At] - Pr[Bt]· Also note that event At does

not depend on whether x and y are chosen in the same or different color class.

The probability of event At is easy to calculate: we just need Vi a different color from

x, v2 a different color from v1 , and so on up to Vt-l· Thus:

(7. 7)

Fort= 2, event B2 is the event that Vi is a different color from both x and y, so Prsame[B2] =
1 - 1/k and Prdiff[B2] = 1 - 2/k. Fort> 2, event Bt occurs if either: (1) B 1_ 1 occurs and

7.1. An improved algorithm 61

Vt-l is of one of the k - 2 colors not used in y or Vt_ 2 , or (2) event At-l - Bt-1 occurs and

Vt-l is of one of the k - 1 colors not used in y or Vt_ 2• Thus,

Prsarne[Bt_i](l - 2/k) + (Pr[At-d - Prsarne[B1-1J)(l - 1/k)

(1 - 1/k)t-1 - iPrsarne[Bt_i].

Thus, we can solve for Prsarne[Bi] as follows.

(1- 1/k)l-1 - f [(1- 1/k)l-2 - f Prsarne[B1-2J]

(7.8)

(7.9)

(1 - 1/k)l-1 - i(l - 1/k)l-2 +kl, [(1- 1/k)/-3 - f Prsame[B1_3J]

Similarly,

(1 - l/k)1- 1 - i(l - l/k)1- 2 + k
1,(1 - l/k)1- 3 -

... + (-1)1-2 (i)l-2Prsarne[B2].

From equations (7.10) and (7.11), we have:

Thus, we have proven the theorem. •

(-1 y-2(t)1-2 [Prsarne[B2] - Prdiff[B2]]

(-1)1(t)1- 2[(l - 1/k)- (1- 2/k)]

(-1)/(f)l-1.

By Theorem 7.1 and equation (7.4), we have .X1 = [(-1)1/k1- 1]/Pr[B1], so:

(7.10)

(7.12)

(7.13)

Thus, for l and k both constant, we have .X1 bounded away from 0 by some constant > 0.

Also, note by equations (7.2) and (7.3) that for p ~ n- 1+• for some constant f > 0, for

sufficiently large integer l (in fact l ~ 12/ fl), we have Eiarne, Efiff = n(n).

7.1.2 Analysis and the /-path algorithm

Note the following property of paths of constant length l between fixed vertices x and y.

The number of edges in the path divided by the number of "non-rooted" vertices (that is,

62 Chapter 7. Random models for k-colorable graphs

vertices not including x and y) is l/(l - 1). For any proper subgraph S of such a path, the

quantity: IE(S)l/IV(S)- {x,y}I is strictly less. Because this ratio of edges to non-rooted

vertices is strictly less for all proper subgraphs, we say that paths between x and y are

"strictly-balanced". (A definition of "strictly balanced" for more general "rooted graphs"

appears in Definition 8.3 of Chapter 8.)

Spencer [35] proves that for any such strictly balanced graph and any constants 8, c > 0,

if the expected number of copies of the graph in G +-- 9 (n, p) is at least J(log n for sufficiently

large K, then the actual number of copies of the graph in G +-- 9(n,p) will be within (1 +8)

of the expectation with probability 1 - o(n- 0
). In Appendix B, we prove a slightly weaker

(and simpler to prove) analog of Spencer's theorem for the model 9(n,p, k). A special case

of the analog is the following. Let Num1(G) be the number of paths oflength l between x

and yin G.

Corollary 7.2 (Corollary to Theorem B.2) For any constants 8, c > 0, if l and p are

such that K log n ::; Erarrle(p), Efff(p) ::; n' for sufficiently large J(and sufficiently small

E*, then for G +-- 9(n,p, k):

1. Prsarrle[(l - 8)Erarrle < Num1(G) < (1+8)E?arrle] ~ 1 - o(n- 0
),

2. Prdiff[(l - 8)Efiff < Num1(G) < (1 + 8)Efiff] ~ 1 - o(n- 0
).

So, if the expected number of paths is sufficiently large, but not too large, then we can be

assured that with probability 1 - o(n- 2), the number of paths between x and y will be close

to the expectation. 1

For convenience, since >.1 ~ 1, define constant €
1 > 0 so that:

Esarrle Ediff E [K log n n'J
I ' I ' ·

(7.14)

By equation (7.13), for l constant, the value l>-d is at least some constant greater than 0.

Also, as noted at the end of Section 7.1.1, for p = n-1+• for any constant E > 0, there exists

integer l such that E?arrle,Efiff = n(n). We want l such that E1 E [n'
1

,2n'
1

] but such an

integer l might not exist. We can handle this difficulty by noting the following fact.

Fact 7 .1 Let 9q(n, p, k) be the model such that we first select G +-- 9(n, p, k) and then delete

each edge with probability q. Then, 9q(n, p, k) = 9(n, p(l - q), k).

That is, if we delete each edge in graph G +-- 9(n, p, k) with some probability q, then the

distribution obtained is exactly the same as if we had just put each edge into the graph with

1 In fact, the restriction that Erarrle, EFiff ~ n<" is most certainly not necessary. We leave for future work
to show that Spencer's theorem goes through for the expectation greater than n<" as well.

7.1. An improved algorithm 63

probability p(l - q) in the first place. So, given a graph G +-- 9(n,p, k) and a value l such

that E1 > 2n'
1

, if we delete edges at random from G with probability q so that the expected

number of paths between x and y is between n•' and 2n'
1

, then we can apply Corollary 7.2

to the resulting graph. We now present the algorithm I-path.

Algorithm /-path

Given: An n-vertex k-colorable graph G.

Output: A k-coloring of G or else failure.

1. Let davg be the average degree in G and let p = n(:~·i"/k)"
(So, ifG +-- 9(n,p,k) for p = n-1+• then with high probability, p = p[l + o(l)].)

Pickl such that p1n1- 1 = n(n) and let~= 1/k1- 1 .

2. Randomly delete each edge in G with probability q so that E 1(p(1 - q)) E

rnn•', ~n•'] where t' is such that Corollary 7.2 holds for c = 2 and fJ = ~/4,
and E 1(p(l - q)) is calculated using equations (7.1) and (7.5).

Let E?ame = E?ame(p(l - q)), calculated using equations (7.2) and (7.10).

3. For i = 1 to k do:

(a) Pick an arbitrary uncolored vertex x and let Si be the set containing x and

all vertices with a number of paths of length l to x in the range:

If the set Si is not independent or Si contains previously-colored vertices,

then halt with failure.

(b) If Si is independent, then assign color i to all vertices of S;.

4. If in Step 3 we assigned one of k colors to each vertex in the graph, then halt

with success. If we did not color each vertex, then halt with failure.

Theorem 7.3 Algorithm /-path k-colors graphs G +-- 9(n, p, k) with high probability for

p ~ n-1+• for any constant f > 0.

Proof: Let C 1 , ..• , Ck be the sets of vertices in each color class in the creation of graph

G in model 9(n, p, k). Let us say that Step 3 succeeds in iteration i if the set S; created

equals cj for some 1 ~ j ~ k.

In step 1, as noted, with high probability p = p[l + o(l)], and let us for convenience

assume now that this is the case. So, E1(p(l - q)) = [1 + o(l)]E1(p(l - q)) and E?arne(p(l -

q)) = [1 + o(l)]E1same(p(l - q)). Let E1same = E?arne(p(l - q)), let Efiff = Efiff(p(l - q)), and

let E1 = E1(p(l - q)).

64 Chapter 7. Random models for k-colorable graphs

In Step 2, if E 1(P(l - q)) E rnn•', ~n'
1

], then E1 E [n'
1

, 2n''] and Corollary 7.2 applies.

Thus, by Corollary 7 .2 and since {J is chosen sufficiently small so that I E7ame - E?iffl > 2fJ,

we have the following. With probability 1- n2 (o(n- 2)] = 1- o(l), for every pair of vertices

x, y in the same color class C;, and for no pairs x, y in different color classes, the number

of paths of length l between x and y is in the range ((1 - b)E7ame, (1 + b)E7ame]. Thus,

with high probability, Step 3 succeeds for each iteration i and Algorithm I-path k-colors the

graph. •

Since l is a constant, counting the number of simple paths of length l between two

vertices can be done in polynomial time and so the /-path algorithm runs in polynomial

time. The running time of the algorithm could be improved considerably by counting non­

simple paths as well as simple paths. It is likely that the bounds claimed by Corollary 7.2

can be made to apply for that case as well.

Chapter 8

Semi-random graphs

The results of Turner [38] and Dyer and Frieze [18] mentioned in the last chapter show

that random k-colorable graphs, and thus most k-colorable graphs, are easy to k-color.

Random k-colorable graphs, however, tend to be of a very special type. For instance, with

high probability all vertices have nearly the same degree and all have nearly the same

number of edges to each of the other (k - 1) color classes. So, graphs created in only

a "somewhat random" manner may not be colored well by algorithms for <;J(n,p, k). On

the other hand, worst-case assumptions may be overly pessimistic in many situations. To

analyze the coloring of graphs in an intermediate range, we consider here two new graph

models that lie in between the random and worst-case models. These new models provide a

smooth transition between the random and worst-case scenarios and are based on a notion

of a "semi-random source" from the cryptographic literature. We will call these models the

"semi-random" graph models.

8.1 Basic definitions and statement of results

We define here two graph models both based on the semi-random source (also called a

"slightly-random" source) of Santha and Vazirani [34] (see also [40] [39] [17]). In the first

model, which we denote 9s(n, p, k), the graph is generated as follows. First, an adversary

splits then vertices into k color classes (fork = 3, we denote these classes by red, blue, and

green). Then for each pair of vertices u, v where u and v belong to different color classes

(running through such pairs in an order of its choosing), the adversary decides whether

or not to include edge (u, v) in the graph. Once the adversary has made a choice for a

particular edge (u, v), the choice is then reversed with probability p. Note that later choices

of the adversary may depend on the outcomes of earlier decisions, as in the Santha-Vazirani

source [34]. An alternative way to view this model, and closer to the point of view used by

Santha-Vazirani is the following. For each pair of vertices u, v belonging to different color

classes, the adversary picks a bias Puv between p and 1 - p of a coin which is then flipped

to determine whether edge (u, v) is placed in the graph. The adversary may determine the

bias Puv based on the outcome of previous coin tosses. The two views of the model are

65

66 Chapter 8. Semi-random graphs

equivalent: if the adversary in the first description is deterministic, then it can be thought

of as selecting Puv E {p, 1 - p }; if it is randomized, it can act as if selecting intermediate

values. We call p the noise rate of the source and this model, the semi-random graph model.

The second model we consider is a slightly modified version of the above, differing in

that the sizes of the k color classes are required all to be CT(n). We call this second model the

balanced semi-random graph model and denote it by 9sn(n,p,k). Following the notation in

Chapter 7, we write:

• G.-9s(n,p,k) or G.-9sn(n,p,k)

to denote that G is selected according to the corresponding model for some unknown adver­

sary. We denote the semi-random and balanced semi-random models for a fixed adversary

A by 9f(n,p,k) and 9fn(n,p,k) respectively. Formally, we say that an algorithm t-colors

G .-- 9s(n,p, k) with high probability (or t-colors G ,..._ 9sn(n,p, k) with high probability)

if it does so with high probability for any choice of the adversary.

A nearly equivalent way to view the semi-random models is that each edge between

vertices of different color classes is actually placed into the graph with probability exactly

p, and then an adversary may elect to place additional edges into the graph if it so chooses.

This version is perhaps conceptually the most elegant, and an adversary in this version

can simulate the adversaries in 9s (n, p, k) and 9sn (n, p, k), though the converse does not

hold. For example, the adversary here could make the graph a complete k-partite graph if

it so desired; also, the adversary here may make its decisions after all coin tosses have been

performed. While this version could conceivably be more difficult for coloring algorithms

than the semi-random graph models as defined above, all the algorithms presented in this

chapter work under both conditions.

The semi-random models separate the algorithms for coloring random k-colorable graphs

into two categories. Some of the algorithms for the random model [18][23] are highly

dependent on facts such as the edge probabilities all being equal and are easily defeated

by a semi-random source. Others, such as Turner's No-Choice algorithm [38] adapt well

to the semi-random model. In particular, Turner's bound of p 2: n-l/k+< for k-coloring

G .-- 9(n, p, k) holds in the balanced semi-random model as well.

We present first in Section 8.2 an algorithm that achieves the same bound as Turner's

algorithm but with significantly simpler analysis (and for 3-colorable graphs holds in the

slightly more general 9s(n,p,3) model). We then, in Sections 8.3 and 8.4, present an al­

gorithm with better bounds for the balanced model. This algorithm 3-colors graphs in

9sn (n, p, 3) with high probability for p 2: n -o 6+<, and more generally for k-colorable graphs

works for p 2: n[c.+.)z_,]+r_ The algorithm of Sections 8.3 and 8.4 requires a more involved

8.2. A first algorithm 67

analysis, and the use of the Janson inequality for estimating probabilities of "almost" inde­

pendent events. In Section 8.5 we present some relationships between the coloring problems

in the balanced and unbalanced semi-random models.

For convenience, we make the following definition.

Definition 8.1 Let G +--- 9s(n,p,k) or G +--- 9s8 (n,p,k). The pair (u,v) is a potential

edge in G if u and v belong to different color classes in the adversary's color scheme.

For a subgraph Hof Gora subset U of V(G), we will use colors(H) and colors(U) to

denote the set of color classes of G that are represented in the subgraph or subset.

8.2 A first algorithm

We now consider the models 9s(n, p, 3) and 9sn(n, p, 3) of a 3-colorable graph generated by

a semi-random source. Although for small constant noise rates p, say p = 0.01, it appears

at first that the adversary has a good deal of power to defeat a coloring algorithm, it turns

out that it does not. As previously mentioned, Turner's algorithm [38] actually 3-colors

such a graph with high probability for any p 2: n- 1/ 3 +• for constant f > 0.

We present first a different algorithm that achieves the same bound as Turner's, but

works for the unbalanced case 9s(n, p, 3) as well and has a much simpler analysis. We

then present a straightforward improvement and a natural extension of this algorithm for

k-colorable graphs (for constant k) for the balanced model.

The idea for the simplest algorithm is the following. If in the adversary's color scheme

u E blue and v E green, then the shared neighborhood S = N (u) n N (v) contains only red

vertices. Thus, N(S) ~ blue U green. For p 2: n-l/3+< we show that with high probability,

N(S) actually equals the entire set blue U green. So, given u and v, one can split G into a

2-colorable portion N(S) and an independent portion V -N(S) and thus 3-color the graph.

Algorithm Two-Stage

Given: A graph G = (V, E).

Output: Either a 3-coloring of G or failure.

1. First try to 2-color G. If that works, halt with success. Otherwise, do the

following:

2. For each pair of vertices u, v (think of u as a candidate green node and v as a

candidate blue node),

(a) Let S = N(u) n N(v).

68 Chapter 8. Semi-random graphs

(b) Let T = N(S).

If T is 2-colorable and V - T is an independent set, then color T blue and

green, color V - T red and halt. Otherwise go to the top of the loop with a

different pair u, v.

3. If Step 2 did not succeed for any pair u, v, then halt with failure.

Theorem 8.1 (weak version) Algorithm Two-Stage 3-colors G +--- 9s(n,p,3) with high

probability (over the coin tosses of the semi-random source) for p 2'.' n- 1
/

3+' and constant

f > 0.

Proof: For convenience, let red be the color with the most vertices in the adversary's 3-

coloring. If there are either no blue or no green vertices, then we will 2-color the graph at the

start. Otherwise, let u be a green vertex and v a blue vertex (in the adversary's 3-coloring).

Then, the set S = N(u)nN(v) contains only red vertices and so set T = N(S) ~ blueUgreen.

We now prove that with high probability, for p 2'.' n- 1
/

3+', set T contains all the blue and

green vertices.

If we view the semi-random source as choosing biases Puv E [p, 1 - p], then the sizes

of sets S and T are minimized when each Puv equals p. In that case, every vertex in

red independently has a probability p2 of belonging to S. So, using Chernoff bounds,

ISi 2: ~lredlp2 = O(np2
) with high probability. Now, each vertex z E blue U green such

that z (/. { u, v} has a probability (1 - p)ISi of not belonging to T. The reason is that for

z (/. { u, v }, for each w E red, the events Az,w that edge (z, w) appears in the graph occur

with probability p and are independent of each other and of the choice of S. So, we have:

Pr[z (/. T] ::::; e-plSI = e-n(np') = e-n(n'') = o(l/n).

That is, with high probability all vertices z E blue U green belong to T. Thus, with high

probability, T = blueUgreen and V -T =red and so for some pair u, v considered, algorithm

Two-Stage succeeds. •

Note that if the sizes of the color classes are roughly balanced, we can speed up Algorithm

Two-Stage considerably by choosing the vertices u and v at random. For instance, if the

sizes of the color classes are all within constant factors, then we have a constant probability

of selecting two "good" vertices each time.

Algorithm Two-Stage fails when p falls below n- 1/ 3 because then the vertices u E green

and v E blue may not share enough neighbors for N(S) to equal blue U green. However, for

p below n- 1
/

3
, set S might still contain many vertices, and applying additional iterations

of the neighbor-taking process can then boost its size if the sizes of the blue, green, and

8.2. A first algorithm 69

' ' ' ' ' ' ' ' ' ' '
s1

R

Figure 8.1: Vertices u and v and sets Sh and Sb.

red vertex sets are roughly balanced. In fact, we can consider the following straightforward

extension of Algorithm Two-Stage that works in the balanced semi-random model. (See

Figure 8.1.)

Algorithm t-Stage

Given: A graph G = (V, E), and integer t.

Output: Either a 3-coloring of G or failure.

For each edge (u,v):

1. Let Sb= {u}, S1 = {v}, and Sh= N(Sb) n N(S1).

2. Let S~ = N(S1) n N(Sh), S1 = N(Sb) n N(Sh), and Sk = N(S~) n N(S1).

3. Let S~ = N(S1) n N(Sk), S~ = N(S~) n N(Sk), and S~ = N(S~) n N(S~).

t. Let T = N(Sk- 1
).

If Tis 2-colorable and V -Tis an independent set, then color T blue and green,

color V - T red and halt. Otherwise go to the top of the loop with a different

edge (u, v).

If we have not succeeded in Step t for any edge (u, v), then halt with failure.

For the balanced model, we have the following stronger version of Theorem 8.1.

Theorem 8.1 (strong version) Algorithm t-Stage will 3-color G .._ 9s8 (n,p,3) with high

probability for p ~ n- 1/2+<, f > 0 constant, and t > log3 (1/f).

70 Chapter 8. Semi-random graphs

Algorithm t-Stage is, in fact, very similar to Turner's No-Choice algorithm, and his algo­

rithm should achieve this stronger bound as well for 9sn(n, p, 3). The algorithm presented

here, while more complicated an algorithm, is easier to analyze. However, because we will

demonstrate an even better algorithm in the next section, we give here just a proof sketch

showing that fort= 3, the algorithm will 3-color G +-- 9sn(n,p,3) for p ~ n- 5
/

11 +•, and

more briefly describe how this is extended.

Proof sketch: Again, if u is green and v is blue then for all i, Sb ~ green, S1, ~ blue,

and S}i ~ red, and T ~ blue U green. For the given value of p, with high probability there

will exist an edge between two such vertices u and v. Also, the sizes of the sets Sb, S1,, Sk
and T are minimized by the semi-random source that chooses each Puv to equal p. One

final fact to note is that for each i ~ 1, Sb ~ s~+ 1 , Sk ~ s1+ 1
, and Sk ~ S~t 1 • The

general argument now is just repeated application of bounds for large deviations, being

somewhat careful about independence. For this proof sketch, we focus on the case where

t = 3 and show that algorithm t-Stage will 3-color G +-- {158 (n,p,3) for p = n- 5/ll+< with

high probability. Recall that for G +-- 958 (n, p, 3) the sizes of the sets red, blue, and green

are all E>(n).

We can imagine that the coin deciding the presence of an edge is not flipped until we

actually examine that edge. So, we first examine all edges (u, w) and (v, w) for w E red

and find that almost surely IS11 = E>(lredlp2
) = E>(np2

). Next, for each z E green, we

examine the edges (z, w) for w E Sh and the edge (z, v). For z f u, these are all previously

unexamined edges. So, for z E green - { u} we have:

Pr[z E Sb] p(l - (1 - p)ISJ.I)

P2 I S 11 (1 + o(1)). (using plShl = o(l))

Thus with high probability, ISbl = E>(lgreenlnp4
) = E>(n2p4

) and similarly we have IS11 =

E>(n2p4). Now, for each z E red-Sh we examine the edges (z, w) and (z, w') for w E Sb-Sb
and w' E S'JJ - S1. Again, these are all previously unexamined edges, so the same argument

as above shows that the probability z belongs to Skis proportional to p2 ISb-Sbl IS1-Sbl·

Thus with high probability, ISk - s11 = E>(n5p10
). Finally, we have T = N(S]l). Notice

that set T contains Sb u S1 and that for each vertex z E (blue U green) - (Sb u S1), we

have not yet examined the edges (z, w) for w E S"k_ - Sh. So, for each such vertex z,

Pr[z ~ T] < (1 - p)l 5~-sJ,1

(1 - p)e(n'p'o)

o(l/n), for p = n- 5
/

11 +•.

8.3. A better algorithm: k = 3 71

So, with high probability, T = blue U green.

More generally, for p = n-1/2+•, if ISkl = 8(nx'p2x') we will have with high probability

that I s1+ 1 1 = 8(nx•+ 1 p2x•+ 1) for Xi+I = 3x; + 2, so long as nx•+1 p2x•+ 1 = o(n). Since we begin

with IS11 = 8(n2
') and at each step the size of Sk more than triples, we can continue with

the assumption that nx•+ 1 p2 x•+1 = o(n) for at most log3 (1/f) iterations. Suppose i and pare

such that nx•+ 1 p2x•+ 1 f: o(n). Since the probability that Algorithm t-Stage succeeds can only

increase with larger p, we may for purposes of analysis decrease p so that nx•+ 1 p2x•+ 1 = fo.
We will thus have for z E (blue U green) - (Sh US~) that: Pr[z '/. T] ::; (1 - p)°Cfo) <
e-e(fop) = o(l/n). So, set T equals blue U green with high probability. •

It is interesting to note that algorithm Two-Stage (or t-Stage) extends naturally to

graphs in 058 (n, p, k) for constant k > 3. The idea is that instead of selecting two vertices

u, v at the start, to select k - 2 sets: U2 , ••• , Uk-1' each U; of i vertices, at the start.

For some such choice, the vertices of Uk-I are all of different colors in colors(G) and the

vertices of Uk_ 2 are all of different colors in colors(Uk_i) and so forth. (That is, the vertices

of Ui-l are all of different colors, and each is of a color used in Ui-) So, for Tk = V(G) and

U; = { ui, ... , u;}, for each i E {2, ... , k} simply let

Ti-1 = NT,(NT,(ui) n ... n NT,(uD),

where NT,(X) = N(X) n T;. With high probability, for p ~ n- 1/k+•, we will be able to

assign one color to each set Ti -T;_ 1 for i ~ 3 and two colors to the set T2 , and thus k-color

the graph. This yields the same bounds as those achieved by Turner. Again, we will not go

into the analysis in detail because in the next section, we show how a quite different idea

can be used to get even better bounds.

8.3 A better algorithm: k = 3

We now describe a different style of algorithm that improves upon the above bound in

the balanced case, to 3-color graphs 058 (n,p,3) with high probability for p ~ n-05+•.

The algorithm, while quite simple, requires a more involved probabilistic analysis than

the previous one. In particular, we will need to use the Janson inequality [11] to bound

probabilities of "nearly" independent events based on pairwise dependencies. 1

The algorithm is based on the following simple observation. If in a 3-colorable graph G

there are two vertices x and y both adjacent to a pair of vertices u and v that are adjacent

to each other, then x and y must be the same color in any legal 3-coloring. We call the

subgraph induced by {x,u,v,y} a link between x and y. (See Figure 8.2).

1The results described in this section and Section 8.4 are based on work joint with Joel Spencer.

72 Chapter 8. Semi-random graphs

Figure 8.2: A link between x and y.

At first glance, it would seem the above observation does not help, since for fixed vertices

x and y, the probability there exists a link between x and y is at most 0(n 2p5
). (There

are O(n2) possible pairs (u, v) and for each pair the probability all necessary edges exist

is p5
.) Thus, the probability there is a link between x and y is much less than 1 even for

p = o(n-o.4).

The key fact to note, however, is that we do not need a link between every pair of, say,

red vertices x and y. All we need is that for each such pair there is a sequence of links

between x and some x', between x' and some x", and so forth, until eventually at some

point we reach y. We will call such a sequence a "chain".

Another way to think of this observation is that given a graph G we can create a new

graph Has follows. The vertex set V(H) equals V(G), and if x and y are connected by a

link in G, we put an edge between x and y into H. So, while edges in G exist only between

vertices of different color, edges in H exist only between vertices of the same color (in G).

The "key observation" is then just that in order to easily select the set of red vertices in G,

we do not need red to be a clique in H, just a connected set. So, the simple algorithm is as

follows.

Algorithm Chain

Given: A graph G = (V, E).

Output: A 3-coloring of G or failure.

1. Create graph H = (V, F), where

F = {(x, y) I 3 a link in G between x and y }.

2. Find all connected components in H. If there are exactly three, halt with success,

producing as output the vertices of the three components labeled as red, blue,

and green.

Otherwise, if there are more than 3 components, then halt with failure.

8.3. A better algorithm: k = 3 73

8.3.1 Motivation

As mentioned above, each connected component in graph H produced by Algorithm Chain

consists of vertices that must be the same color under any legal 3-coloring of G. The

following sections contain a proof that when p 2: n-0.6+<, with high probability there will

be only 3 such components in H. Let us first, however, give a motivational argument,

supposing that each edge between two vertices of the same color were placed independently

with the same probability into H.

Let p = n-0 6+' and for simplicity, assume that E < 1/5. Given two vertices x and

y of the same color (say red) in G, the expected number of links between x and y in G

= E>(n2p 5) = E>(n- 1+5'). For E < 1/5, the probability there exists a link between x and y,

and thus the probability that x and y are are neighbors in His 0(n-1+5') as well. Thus, if

we consider the subgraph in H induced by the set red, the average degree of each vertex is

E>(n5
'). It is well known that in the random graph model Q(n, p), once the average degree

exceeds K log n for sufficiently large K, the graph is connected with high probability. So,

if the edges in the red subgraph of H were placed randomly, the red set would be a single

connected component almost surely since n5
' ~ K log n.

8.3.2 Janson's inequality

Janson's inequality [11] is used in the following setting. Consider a universe U o[points

and a collection of subsets X 1 , ••• , Xm of U. We now create a new subset S of U by placing

each j E U into S independently with probability p. Let A; be the event that X; ~ S.

Janson's inequality bounds the probability that no set X; is contained within S: that is,

the probability that no event A; occurs. 2

Define:

m

• M = II Pr[A;].
i=l

If the X; were all disjoint, then the events A; would all be independent and so M would

be the probability that no A; occurs. If the X; are not disjoint, then the events A; are

not independent. However, Janson's inequality allows us to bound the probability no X; is

contained in S by looking only at pairwise dependencies. In particular, Janson's inequality

states that:

M ::; Pr[no X; is contained in SJ ::; Me-.-!:x~ (8.1)

where .X is an upper bound on Pr[A;] and we define:

2 Janson's inequality works even if the probabilities for each point j are different, so long as the points
are placed into S independently. We will not need this fact for our purposes.

74

. ~
ordered pairs (if:.j)

x,nX;:1:4>

Chapter 8. Semi-random graphs

Pr[A; and A;].

Notice that if ..X ~ 1/2 and~= o(l), then by equation (8.1), Pr[no X; is contained in S)

= M(l + o(l)). That is, under these two conditions, the probability is within 1 + o(l) of

what the probability would be had the A; been independent.

In the study of random graphs Janson's inequality is often used to show that some

structure exists with high probability. For example, suppose one wishes to prove that the

graph G - 9(n,p) contains a triangle with high probability for p ~ 1/n. For such a

setting, we let U be the set of all edges of the n-clique Kn (thought of as possible edges

in G) and have one X; for each set of three edges corresponding to a triangle. Janson's

inequality then provides an upper bound on the probability that no triangle is contained in

G. In the setting of this thesis, we will use Janson 's inequality to prove that in the balanced

semi-random model, for sufficiently large noise rate p, for any x, y E red there will be a

chain between x and y with probability at least 1 - o(n- 2).

The following definitions are taken (roughly) from Spencer [35). 3

Definition 8.2 Let H be a graph in which some subset R of its vertices are specified to be

"roots" and H has no edges between vertices in R. We will call the pair (R, H) a rooted

graph, or simply say that H is a rooted graph when R is implicit. Define edges(H) to be

the total number of edges in H and nonroots(H) to be the number of vertices in H excluding

roots. Define the density of H to be dens(H) = edges(H)/nonroots(II).

We will always consider rooted graphs to be graphs on a constant number of vertices, and

examine the number of copies of such graphs in larger n-vertex graphs.

Definition 8.3 A rooted graph (R, H) is strictly balanced if for some constant €1 > 0,

foreverypropersubgraph(R,H'), we have dens(H') ~ dens(H)-€1
• (By a proper subgraph,

we mean that H' C H.)

Definition 8.4 Suppose (R, H) is a rooted graph and G = (V, E) is a graph with V 2 R.

An image of H over R in G is a subgraph of G isomorphic to H by a map which is the

identity on R. When R is clear from context, we will drop the phrase "over R ".

So, for example, if H is a triangle with a root vertex x, then the images of H over { x} in

G are all triangles in G containing vertex x.

3 The term "image" used here is essentially the same as an "extension" in Spencer's paper, except he
counts maps while we count images of maps.

8.3. A better algorithm: k = 3 75

Definition 8.5 Suppose (R, H) is some strictly balanced rooted graph and V is a set of n

vertices containing R. Let Xi, ... , Xm denote all distinct images of H in the clique Kn on

V . That is, the X; are all possible images of H fixing root set R in an n-vertex graph. For

some model M {such as 9(n,p) or 9sn(n,p, k)}, we define:

~(H,M) = I:
ordered pairs i"ti

E(X;)nE(X1)"tef>

Pr[X; ~ G and xi ~ GIG f- M].

Spencer [36][35] proves the following theorem for random graphs 9(n,p).

Theorem 8.2 (Spencer) Let (R, H) be a strictly balanced rooted graph on a constant

number of vertices with v = nonroots(H) and e = edges(H). Then there exists£* > 0 so

that if p S: n-v/e+•", then b.(H,9(n,p)) = o(l).

Spencer then uses this fact to prove that with high probability, for p = n-v/e+•·, G will

contain some image of H.

We can use Spencer's theorem to prove the following.

Theorem 8.3 Let 9#-n(n, p, k) be the semi-random model with an adversary that always

elects not to place edges into the graph. Let (R, H) be a strictly balanced rooted graph on

a constant number of vertices with v = nonroots(H) and e = edges(II). Then there exists

£• > 0 so that ifp = n-v/e+•·, then b.(H,9#-n(n,p,k)) = o(l).

Proof: Theorem 8.3 follows immediately from Spencer's theorem (Theorem 8.2). Let

Xi, ... , Xm denote the images of H in the clique J(n and let A; be the event that X; ~ G.

Each edge (x, y) is placed into G with probability at most p (either probability 0 if x and y

are in the same color class or else probability p if they are in different color classes). Thus,

for any pair of events A;, Ai, we have:

Pr[A; A Ai I G f- 9tn(n,p,k)] s: Pr[A; A Ai I G .-9(n,p)].

For sake of completeness, however, we provide a direct proof here as well following the

argument of Spencer [35].

We prove the theorem by considering separately for each fixed value of s E { 1, ... , v},

the pairs X;, Xi that share s vertices in common in addition to the roots. Note that if

s = 0, then the graphs X; and Xi share no edges and so are not counted in the summation

in Definition 8.5. The number of pairs X; and Xi sharing s vertices in common in addition

to the roots is 0(n2v-•) since there are 2v - s different vertices and only a constant number

of permutations.

76 Chapter 8. Semi-random graphs

Let f' > 0 be a value such that every proper subgraph of H containing the roots has

density at most dens(H) - f
1 (see the definition of "strictly balanced"). If s = v, then

since X; and Xi are distinct, there must be at least e + 1 edges in X; U Xi. For any fixed

edge, the probability that edge belongs to G is at most p (it could be smaller, e.g. 0, if

the two endpoints are in the same color class in the graph). So, the contribution to the

summation from such pairs X; and Xi is at most: O(nvpe+1) = O(nv+(e+i)(-v/e+•·)) =
0(n-v/e+(e+l)c•) = o(l), for f* sufficiently small.

Now consider s < v and fix a pair X; and Xi sharing s vertices in common in addition

to roots. Let S be the subgraph X; n Xi; that is, V(S) = V(X;) n V(Xi) and E(S) =
E(X;) n E(Xi)· Since (R,H) is strictly balanced, we know that IE(S)l/s ~ e/v - f

1 for

some f 1 > 0. So, IE(X;) U E(Xi)I = 2e - IE(S)I 2'. 2e - se/v +sf' and thus the probability

that both X; and Xi are subgraphs of G is at most p 2e-•e/v+"
1

•

Finally, summing over all 0(n 2v-•) pairs X; and Xi sharing s vertices in common besides

the endpoints, the contribution to ~ is at most:

0(n2V-• (n-vfe+c•)2e-•e/v+H1
)

0(n2v-•-2v+•-H 1v/e+(2e-•e/v+H')<•)

0(n-•f1V /e+(2e-rn/v+••')c·)

o(1) (for f* sufficiently small).

Thus, the contribution to~ from each value of s E [1, v] is o(l), and since there are only a

constant number of different choices for s, we have ~(H, 9'f 8(n, p, k)) = o(1). •

We will use this fact in the next section to prove that in balanced semi-random 3-

colorable graphs, with high probability there will exist chains between every pair of vertices

x and yin the same color class.

8.3.3 The main theorem

We now prove the following theorem.

Theorem 8.4 Algorithm Chain will 3-color G ;- 9s8 (n,p,3) with high probability for p 2'.

n-3/s+c for any constant f > 0.

The idea of the proof is to consider chains of some length r between two fixed endpoints

(roots) x and y and to prove that with probability 1- o(n- 2
) at least one such chain exists

in G. This will be done by showing that chains are strictly balanced and then applying

Theorem 8.3 and Janson's inequality.

Before proving Theorem 8.4, however, let us first formally define a chain and prove a

few preliminary lemmas.

8.3. A better algorithm: k = 3 77

Ur-1

Wo ~·
Vr-1

Figure 8.3: A chain of length r between w 0 and Wr·

Definition 8.6 A chain C of length r is a rooted graph on 3r+ 1 vertices { w 0 , u0 , Vo, Wi, ull Vi,

••. , Wr-1, Ur-1 • Vr-1, Wr} and 5r edges, where:

r-1

E(C) = LJ {(wi, ui), (wi, v;), (ui, v;), (u;, W;+ 1), (v;, W;+ 1)}.

i=O

(See Figure 8.3). Vertices w0 and Wr are the roots of the chain and will be called the

endpoints.

Definition 8. 7 If G +--- Ysn(n, p, 3), we will say that C is a potential chain between two

vertices w 0 and Wr if all wi are in the same color class, and for each i, vertices u;, V;, and

w; are all in different color classes.

Note that non roots(C) = 3r - 1 and edges(C) = 5r, and there are no edges in C between

the roots. Also, note that the ratio: -nonroots(C)/edges(C) = -3/5 + 5
1r, so if p =

n-3
/

5+< as in the bound for Theorem 8.4, then for C a sufficiently long chain we will have

p = n-nonroots(C)/edges(C)+<" for some f* > 0. This is the form of the condition on p in

Theorem 8.3 for proving that ~ = o(l). Our immediate goal is thus to prove that chains

are strictly balanced.

Fact 8.8 If C is a chain of length r, then dens(C) = edge•f~b) = 5/3 + 3
5

t (C). nonroo s nonroo s

The following is a useful fact about subgraphs of chains.

Lemma 8.5 Let S be a subgraph of a chain C. Then IE(S)I :::'.: 5/3(IV(S)I - 1).

Proof: Let C have vertex set {w0,u0,v0, ... ,wr_1,ur-i.Vr_ 1,wr}· Let L; be the ith

link in C; that is, L; = Cl{w.,u;,v.,w;+i}· For convenience, partition the vertices of S into

disjoint sets V; = V(S) n [V(L;) - {w;+i}J, and partition the edges of S into disjoint sets

E; = E(S) n E(Li), for O:::; i < r. So, S = (LJ V;, U E;).

For a given index i, if V; is not empty and W;+ 1 E V(S), then IE;l/IV;I :::'.: 5/3. One can

easily check that the maximum value of this ratio occurs when Ei and V; are both "full"

78 Chapter 8. Semi-random graphs

(sizes 5 and 3 respectively). If v; is non-empty but W;+i r/. V(S), then: if IV.I = 3 we have

IEil :S 3, if IV.I = 2 we have IEil :S 1, and if IV.I = 1 we have IEil = 0.

Since there must exist some i such that v; is non-empty and Wi+l r/. V(S), this implies:

IE(S)I < max{ 5/3 (jV(S)I - 3) + 3, 5/3 (jV(S)I - 2) + 1, 5/3 (jV(S)I - 1) + 0}

5/3 (IV(S)I - 1). •

We can now use Lemma 8.5 to prove that chains are strictly-balanced, and so allow easy

application of Janson's inequality.

Lemma 8.6 Let S be a subgmph of a chain C of some constant length r such that V(S)

contains the endpoints w 0 and Wr but V (S) doe.s not contain all the vertices of C. Then,

for some constant f
1 = f 1

(r) > 0,

edges(S) edges(C) , -----< -f.
nonroots(S) - nonroots(C)

That is, chains are strictly-balanced.

Proof: Since we are giving an upper bound on the number of edges in S, we may as well

assume that S is a vertex-induced subgraph.

First, suppose S consists of just one connected component. So, S contains vertices

{ w0 , w1, ••• , Wr} and at least one of { ui, Vj} for each i < r. Thus, for each vertex in C

missing from S, there must be at least 3 edges of C missing from S as well: if ui r/. V(S)

then (wi,ui),(ui,vi),(ui,wi+i) r/. E(S). So, if m vertices ofC are missing from S, then:

edges(S)
non roots(S)

<

<

edges(C) - 3m
nonroots(C) - m

edges(C) ,
-----'--- -f
nonroots(C)

for some f
1 > 0,

because n::~:f.~b) < 3 and both edges(C) and nonroots(C) are constant.

If S consists of more than one connected component, then w 0 and wr cannot be in the

same component since we have assumed that S is vertex-induced. We can thus partition S

into two disjoint subgraphs: s.tart and Sre.t where s.tart is the component containing Wo

and Smt is everything else (and need not be connected). So, nonroots(S) = jV(S)I - 2 =

jV(S,tart)I + jV(Smt)I - 2. Applying Lemma 8.5, we get:

edges(S) IE(S,tart)I + IE(Swt)I

< 5/3(jV(S.tart)I - 1) + 5/3(jV(Smt)I - 1)

5/3(jV(S)I - 2)

(5/3)nonroots(S).

8.3. A better algorithm: k = 3 79

S edges(S) < edges(C) _ / £ I _ 5 b F t (8 8)
o, nonroots(S) - nonroots(C) f or f - 3nonroots(C)' y ac · · •

Proof of Theorem 8.4: First, it is clear from the description of Algorithm Chain

that adding additional edges into the graph G cannot decrease the probability of success.

Therefore, in order to prove Theorem 8.4, it is enough to prove that Algorithm Chain

succeeds when each potential edge is placed into the graph with probability exactly p; that

is, the adversary A always chooses not to place edges into the graph. It is similarly also

enough to prove the theorem when p exactly equals n-3 /5+< for some constant f > 0. Let

r E Z, i > 0 be constants such that p = n- 3 /s+f,:+<. (8.2)

By Lemma 8.6, chains Cr of length rare strictly balanced. So, by Theorem 8.3, there exists

f• > 0 such that if p ~ n-nonroots(C)/edges(C)+<• then Ll = Ll(Cn9t"8 (n,p,3)) = o(l). Because

additional edges cannot decrease the probability of success, we may for the purposes of

analysis assume that:

f < * f .

Th • nonroots(C) _ -3r±l _ 3/5 1 h b Th 8 3 h • us, smce - edges(C) - Sr - - + Sr, we ave y eorem . t at.

Ll = o(l).

(8.3)

(8.4)

Fix two points x and y in the same color class m G; without loss of generality, say

x,y E red. We now show that with probability 1 - o(n- 2), x and y are connected by a

chain of length r, with r as in equation (8.2). This will immediately imply Algorithm Chain

succeeds.

In fact, the analysis we provide to show that with high probability there is a chain

between x and y, more generally holds in the random model (i(n,p) for any strictly balanced

rooted graph H where p ~ n-nonroots(H)/edges(H)+<•. This general fact is proven by Spencer

[36][35]. The proof of Spencer's theorem can be seen to hold in the (i58 (n,p,k) model as

well, so long as the number of images of H containing no edges between vertices in the same

color class is 0(nnonroots(H)). This is the case for chains, but is not the case, for example, for

non-k-colorable graphs. For completeness, we provide a direct proof for chains along the

lines of Spencer's arguments here.

Label each potential chain oflength r between x and y as some C; for (1 ~ i ~ m), where

the number of such potential chains is: m = 2r (0(n))3r- 1
(1 - o(1)) since there are two color

choices for each (u, v) pair, there are 0(n) vertices in each color class in 9sn(n, p, 3), and r

is constant. Thus, m = 0(n3
r-l). We bound the probability that x and y are not connected

by a chain of length r by applying Janson's inequality. The universe U corresponds to the

80 Chapter 8. Semi-random graphs

set of 0(n 2
) potential edges in G and the sets X; correspond to the potential chains C; of

length r between x and y, where X; is the set of all edges in C;. Every C; has 5r edges,

each in G with probability p. So,

m

M II Pr[C; rz G]
i=l

(1 - p5r)0(n3r-1)

< e
-p5r ·El(n3r-1)

e-0(n-3r+1+5r<+3r-1)

e
-0(n5r<)

o(l/n2
). (8.5)

Let us now consider the term e-2-x~ in Janson's inequality. For a fixed potential chain C;,

the value .\ = Pr[C; ~ G] = p5
r = o(l). By our choice of€, we have ~ = o(l) as well

(equation 8.4). Thus, e-2-x~ = 1 + o(l).

We now apply Janson's inequality using the bound on the above term together with

the bound on M in equation (8.5). We thus get that Pr[x and y are not connected by a

chain of length r in G] = Me-2-x~ = M(l + o(l)), which equals o(l/n2). So, with high

probability, all pairs of vertices from the same color class are connected by some such chain

and Algorithm Chain succeeds. •

8.4 A better algorithm: general k

We can extend the results of the previous section to graphs of higher chromatic number k.

A simple way to do this is just to replace the notion of a "link" by that of a "t-link" defined

as follows.

Definition 8.9 A t-link for some constant t is a (t + 2)-vertex graph consisting of two

vertices x and y called the endpoints both fully connected to a t-clique. (See Figure 8.4).

Equivalently, at-link between x and y is a (t + 2)-clique with the edge (x, y) removed.

Note that if two vertices in a k-colorable graph are endpoints of a (k - 1)-link, then they

must be the same color in any legal k-coloring. Using this fact, we can get the following

natural generalization of Algorithm Chain to graphs of constant chromatic number k 2'.: 3.

Algorithm t-Chain

Given: G = (V, E), a k-colorable graph.

Output: A k-coloring of G or else failure.

8.4. A better algorithm: general k 81

y

Figure 8.4: A 4-link between x and y.

k= 3 4 5 6

p value (fraction) n-3/5 n-4/9 n-5/14 n-6/20

(decimal) n-o.6 n-0.444 n-0.357 n-o.3

Table 8.1: Algorithm t-Chain succeeds with high probability for p at least this value

times n'.

1. Create graph H = (V, F), where

F = {(x, y) I 3 a (k - l)-link in G between x and y}.

2. Find all connected components in H. If there are exactly k components, then

halt with success, producing those components as the color classes of G.

Otherwise, if there are more than k components, then halt with failure.

Theorem 8. 7 Algorithm t-Chain k-colors G <--- 958 (n, p, k) for p 2: n[<•+-,):_,]+•, (f > 0)

with high probability. (See Table 8.1).

In order to prove Theorem 8. 7, we consider (k - 1)-chains of some constant length r. We

then prove, analogously to the previous section, that (k - 1)-chains are strictly-balanced,

so Theorem 8.3 applies. We define a t-chain as follows.

Definition 8.10 A t-chain of length r is a sequence of r t-links connected at their end­

points. For a t-chain C with fixed endpoints x and y, we will treat the chain as a rooted

graph, with x and y as the roots.

Fact 8.11 !JC is at-chain oflengthr, then IV(C)I = r(t+l)+l, nonroots(C) = r(t+l)-1,

and IE(C)I = edges(C) = r [C~2) -1] = ~[(t+l)(t+2)-2]. So, 1 J~~~~ 1 =~[t+2- 1 ~ 1] =
t + t
2 t+l"

Note that if Cr is a (k - 1)-chain of length r, then the term [(k;l~~- 2] in the statement
f Th 8 7 1 li -nonroots(Cr)

O eorem . equa S mr-oo edges(Cr) •

82 Chapter 8. Semi-random graphs

As in the proof of Theorem 8.4, the first step is to prove that t-chains are strictly­

balanced. We first prove a fact analogous to Lemma 8.5.

Lemma 8.8 Let S be a subgraph of a t-chain C of length r. Then:

IE(S)I:::; [~ + t~l] (IV(S)I - 1).

Proof:

Let L beat-link and let g(t) = ~ + t~i • Define dens1(H) = 1 J~~~~ 1 , so:

dens1(L) = dens1(C) = g(t). (8.6)

Claim 1: If S <;;; L, then dens1(S):::; g(t).

Proof of 1: We may assume S is vertex-induced. Thus, S is either a (t + 2 - c)­

clique or else S is a (t - c)-link for some c ~ 1. In the latter case, the claim follows

from equation (8.6) since g(t) is an increasing function of t. In the former case, we have

dens1(S) = t+;-c = ~ + 1 - ~ < g(t) for c ~ 1. 0

Now, we prove the lemma that if S <;;; C then dens1(S) :::; g(t) by induction on the

length of C. The base case is proved in the above claim, so we may assume the lemma

holds for any t-chain of length r - 1. Let C' be the t-chain of length r - 1 consisting of

the first r - 1 links in C and let S' be S restricted to C'. So, dens1(S') :S g(t). Let L

be the last link in C and let SL be S restricted to L. So, IE(S)I = IE(S')I + IE(SL)I and

IV(S)J ~ IV(S')I + IV(SL)I - 1 (note: S' and SL may share one vertex in common where L

joins C'). Thus, dens1(S):::; 1 Jfg~~7Jf~~)1~ 2 = [IV(k~f1~?J~[~t;}~ 1 _ 11 :::; g(t) by induction and

Claim 1. •

Lemma 8.9 Let S be a subgraph of at-chain C of some constant length r such that V(S)

contains the endpoints x and y but V(S) fc V(C). Then, for some constant €
1 = €1

(r) > 0,

edges(S) < edges(C) _ f'.

nonroots(S) - nonroots(C)

That is, t-chains are strictly-balanced.

Proof: For Cat-chain oflength r, we have edges(C) = ~[(t + 1)(t +2)- 2] = ~ [t2 + 3t].

So, we may upper bound the density as follows:

dens(C) w2+3tJ
r(ttl)-1

t 2 t3t
2tt2-2/r

< ill 2 •

8.4. A better algorithm: general k 83

Again, we may assume that S is a vertex-induced subgraph.

First, suppose S consists of just one connected component. So, S contains at least one

non-endpoint for each t-link L in C, and contains all link endpoints. Let us focus on some

fixed t-link L in C. If S is missing m vertices from that link, then it must be missing at

least (t + 1) + t + (t - 1) + ... + (t - m + 2) edges from that link as well. So, the ratio

of (edges missing) to (vertices missing) is at least (t+i)+(;-m+2
) ~ 1¥, for m ::; t - 1, the

largest value of m possible. Thus, if there are in total m vertices in C missing from S, then

edges(S)
nonroots(S)

because 1¥ ~ ~ +dens(C).

<

<

edges(C) - m(t + 4)/2
nonroots(C) - m

edges(C) ,
------'---'-- - E for some f 1 > 0,
nonroots(C)

If S consists of more than one connected component, then the endpoints of C cannot

be in the same component since we have assumed that S is vertex-induced. We can thus

partition S into two disjoint subgraphs: S•tart and Sr .. t where S.iart contains root x and

Sreat is everything else. So, nonroots(S) = IV(S.tart)I + IV(Sreadl - 2. Let g(t) = ~ + 1 ~ 1 •

Applying Lemma 8.8, we get:

edges(S) IE(Satart)I + IE(Sreai)I

< g(t)(IV(S.tart)I - 1) + g(t)(IV(Sreai)I - 1)

g(t)nonroots(S).

So edges(S) < IE(C)I _ edges(C) < edges(C) _ E' for E' > 0. •
' nonroots(S) - IV(C)l-1 - nonroots(C)+l - nonroots(C)

Proof of Theorem 8. 7: As in the proof of Theorem 8.4, we may assume that the

adversary A always elects not to place edges into the graph. Let C = C(r) be a (k- l)-chain

of length r between two fixed vertices x and y. So:

- nonroots(C) /edges(C) -(kr - 1)/ (~[k(k + 1) - 2]) (see Fact 8.11)

-2k 2

k(k + 1) - 2 + r[k(k + 1) - 2]'

Thus, for sufficiently large r, for some i > 0, we have p ~ n-nonroots(C)/edges(C)+<_ By

Lemma 8.9 we know C is strictly balanced, so let E* > 0 be the constant of Theorem 8.3

such that for p::::; n-nonroots(C)/edges(C)+,.' we have~ = ~(C, <JfB(n,p, k)) = o(l). Because

additional edges cannot decrease the probability of success, we may for the purposes of

analysis assume that i ::::; f*. That is,

p = n-nonroots(C)/edges(C)+; for some r E z, 0 < i < f*. (8.7)

84 Chapter 8. Semi-random graphs

We now examine all potential (k - 1)-chains C; of length r between at x and y. That is,

all images over { x, y} in Kn of C, such that the image contains no edges between two vertices

in the same color class in the adversary's k-coloring. Since in the balanced semi-random

model there are 0(n) vertices in each color class and since r is constant, the number of

potential (k - 1)-chains is m = 0(nnonroots(C)). Because each edge in some such C; is placed

into G with probability p, for any given C; we have

So:

Pr[C; ~ G] = pedges(C) = n-nonroots(C)+edges(C)<.

m

M I1 Pr[C; C/: G]

<

i=l

(1 _ n-nonroots(C)+edges(C)i)E>(n"'"'°''<(c))

-n(-nonroots(C)+edges(C);)E>(n"'"''""(c))
e
e-E>(n edges(C)i)

Since >. = Pr[C; ~ G] = pedges(C) = o(l) and Ll = o(l), we have by Janson's inequality

that: Pr[x and y are not connected by a (k - 1)-chain of length r in G] = Me6~ =

M(l + o(l)) = o(l/n2
). So, with high probability, all pairs of vertices from the same color

class are connected by some such chain and Algorithm t-Chain succeeds. •

8.5 Relating the balanced and unbalanced models

For graphs of chromatic number 3, we had fairly good performance bounds even in the

unbalanced model. However, for graphs of higher chromatic number, the algorithms required

the number of vertices in each color class to be roughly balanced. The reason that the

unbalanced case is harder is that if a color class is very small, then the noise rate p as a

function of the number of vertices is dramatically lower. So, if (k - 1) color classes each are

small, the algorithm is essentially required to solve a problem for a much lower noise rate

on the (k - 1)-chromatic graph defined by those colors. In particular, one gets the following

theorem.

Theorem 8.10 If EPP "R NP, then fork ~ 4 there is no polynomial-time algorithm for

k-coloring graphs in 9 5 (n,p, k) with high probability, for p = n-< for any constant f > 0.

Proof: Suppose otherwise; that is, there exists an algorithm B for k-coloring graphs

in 9s(n,p,k) for p = n-< for some constant f > 0 where k ~ 4. We show how to use B to

8.5. Relating the balanced and unbalanced models 85

optimally color an arbitrary (k - 1)-colorable graph in probabilistic polynomial time. Note

that fork~ 4, the problem of optimally coloring (k - 1)-colorable graphs is NP-hard.

Let G = (V, E) be a (k - 1)-colorable graph on n-vertices. We create a new N-vertex

graph H = (V U V', F) where V' is a set of vertices of size n31< disjoint from V, and

N = n + n31< a.s follows. For each pair u, v E V, if (u, v) E E then let (u, v) be an edge in

F as well. Also, independently for each pair v E V and v' E V', let (v, v') be an edge of

F with probability 1 - p for p = N-<. Note that there are no edges in F between vertices

in V'. Now, feed graph H to algorithm B. If B k-colors H, then with high probability it

must assign at most k - 1 colors to V and therefore (k - 1)-color G. The reason is that

otherwise there are k vertices in V all given different colors by B, and with probability

(1 - p)k > 1 - kp = 1 - o(l), any given vertex in V' is connected to all k of them (and

in fact with extremely high probability, there will be some such vertex in V'). This forces

(k + 1) colors to be used in H.

The main point of the proof is that an adversary with noise rate p = N-' can create a

k-colorable graph on N vertices in a distribution indistinguishable from that used to create

H. In particular, as above, the adversary separates the N vertices into one set V of n

vertices and k - 1 colors, and one set V' of N - n vertices and one color. It then attempts

to places edges between vertices in V exactly where they appear in the graph G and to

put in all edges between V and V'. Since n is so small (less that N<l 3), there are at most

N 2</3 potential edges in the set V. So for p = N-<, with probability at least 1 - N-'1 3 the

adversary will be able to place exactly the edges it wishes between vertices in V without

any noise at all. Thus, since we assumed that B can k-color graphs created by such an

adversary with high probability, then B must k-color graph H with high probability as well .

•
In the balanced model, our best bound for 3-coloring G +-- g58 (n, p, 3) with high prob­

ability is p ~ n-0.6+<. For the random model, we were able to 3-color for p as low as

n-1+<. We leave as an open problem whether one can achieve such a low bound on p for

the semi-random model as well.

Chapter 9

Lower bounds for independent set approximation
based on approximate graph coloring

In this section, we describe a lower bound for independent set approximation (or equiv­

alently clique approximation) based on assumptions about the hardness of approximate

graph coloring. Thought of in contrapositive form, we show how to get very good bounds

for approximate graph coloring if we are given seemingly weak algorithms for approximating

the maximum independent set in a graph. These results are corollaries to a basic technique

of Berman and Schnitger [7] which they use to provide weaker lower bounds for independent

set approximation based on other hard problems.

Let is(G) denote the size of the largest independent set in graph G. For the Independent

Set problem, we define the performance guarantee of an algorithm to be the worst-case ratio

over all graphs G on n vertices, of is(G) to the size of the independent set found (with high

probability if the algorithm is randomized) [12]. So, the lower the performance guarantee,

the better the algorithm. The best performance guarantee known for a polynomial-time

algorithm for Independent Set is O(n/(logn)2) by Boppana and Halldorsson [12].

What we show in this chapter is that if there exists an polynomial-time algorithm

with performance guarantee O(n1-') for Independent Set, then there is a polynomial-time

algorithm to color k-colorable graphs with O(log n) colors and to color (log n)-colorable

graphs with poly log(n)-colors. The best algorithm known to date [22] for coloring (log n)­

colorable graphs uses more than n/(log n)2 colors. The best algorithm known for 3-colorable

graphs (see Chapters 4 and 5 of this thesis) uses O(n318
) colors. So, this result shows that

a performance that seems only somewhat better in approximating independent sets implies

being able to do quite significantly better for approximate graph coloring.

9.1 Additional definitions and previous results

Given a maximization (minimization) problem, we say an algorithm is a polynomial-time

approximation scheme (PTAS) if for any constant f > 0, it runs in probabilistic polynomial

time and finds a solution of value within a (1 + E) factor of the maximum (minimum). For

example, consider the problem MAX 2-SAT of finding a solution that maximizes the number

86

9.1. Additional definitions and previous results 87

Where Lower Bound Assumptions

FGLSS constant NP </; no(Ioglogn)_ TIME

FGLSS 2(log n) 1 -< NP </; n(log n)" -TIME

BS n' ,ll PTAS for MAX-SNP

Here nl-r No (log n)-coloring algorithm for k-colorable graphs or

no polylog(n)-coloring for (log n)-colorable graphs.

Here n/2(clogn)''' No 0(n')-coloring for k colorable graphs in

quasi-polynomial (n(logn)•) time.

Table 9.1: Lower bounds for Independent Set approximation based on various assump­
tions.

of satisfied clauses in a 2-CNF expression. A PTAS for this problem would be an algorithm

that for any € > 0, given a sufficiently large 2-CNF expression, finds an assignment that

satisfies 1/(1 + E) of the maximum number of clauses possible.

MAX SNP is a syntactically defined class of problems described by Papadimitriou and

Yannakakis [30]. It has the property that if one MAX SNP-hard or MAX SNP-complete

problem has a polynomial-time approximation scheme then all problems in MAX SNP do

as well. Some MAX SNP-complete problems include MAX k-SAT for k ~ 2 (finding the

maximum number of clauses satisfiable in a k-CNF formula), the problem Independent Set­

B of finding the largest independent set in a graph of constant degree bound B ~ 4, the

TSP with edge weights 1 and 2, and others (30]. It is believed for these problems that no

polynomial-time approximation schemes exist.

Berman and Schnitger prove that if there do not exist polynomial-time approximation

schemes for MAX SNP-hard problems, then for some constant € > 0, no polynomial-time

algorithm approximates Independent Set with performance guarantee n'. In a recent result

of a very different style, Feige, Goldwasser, Lovasz, Safra, and Szegedy [19] prove a lower

bound for approximating independent sets based on NP not containing "quasi-polynomial

time". In particular, they show that there is no polynomial-time algorithm for independent

set with performance guarantee 0(2(logn)'-'
1

) for any €1 > 0, if NP</; Uk [n<Iogn)•_TIME].

In addition, they show there is no algorithm with constant performance guarantee for In­

dependent Set if NP </; n°(Ioglogn)_ TIME. Thus, they get a weaker conclusion than Berman

and Schnitger (since 2<10gn)'_,, < n' for all E, E1 > 0) but based on likely a much more solid

assumption. The new results presented in this chapter go in the other direction, proving

a much stronger conclusion, but based on what may be much less solid assumptions. The

results are summarized in Table 9.1.

88 Chapter 9. Lower bounds for independent set approximation

9.1.1 The basic idea of the new results

Berman and Schnitger prove their result on approximating independent sets by amplifying

"approximation gaps" in a constraint satisfaction problem M AXk,n· They then show this

problem can be reduced in an approximation-preserving sense to Independent Set, and

reduced from, in such a sense, MAX SNP-Complete problem MAX 2SAT (Lemma 4.6 of

[7]). Following the chain of reductions yields their n' bound. More simply, however, we

can apply their basic technique in a straightforward way directly to the independent set

problem. Doing so allows us to relate the approximability of Independent Set not only to

that of finding PTAS's for MAX SNP-hard problems (in this case, the problem Independent

Set-B), but also to the problem of finding good approximations for graph coloring. In fact,

this version of their procedure (in some ways more general, in some more specific than the

procedure in [7]) can be thought of as a randomized version of a commonly used graph

product, and we describe the procedure from this point of view.

9.2 Randomized graph products

We now describe the randomized graph product technique that will be the key to the results

presented in this chapter. The technique is formalized in the procedure Rand-Select below.

Algorithm Rand-Select takes as input an n-vertex graph G and values r, p, and t, and

produces as output a new N-vertex graph H. The purpose of this procedure is to amplify

gaps in independent set approximation. In particular, the procedure will reduce a problem

of finding an independent set of size n/tP in an n-vertex graph containing an (unknown)

independent set of size n/t, to a problem of finding an independent set of size N / (nr)P in

an N-vertex graph containing an independent set of size N /nr, where N = nrP+ 2
• Thus,

for example, if the original graph was 3-colorable and so contained an independent set of

size n/3, then the problem of finding an independent set of size n/9 in the original graph (a

factor of 3 smaller) is mapped to a problem of finding an independent set a factor of 1/nr

smaller than the largest independent set in the new n 2r+2-vertex graph. We now describe

the procedure.

Algorithm Rand-Select (Variant of procedure in proof of Lemma 4.3 in [7])

Given: Ann-vertex graph G = (V, E) and values r, p, and t.

Output: An nrP+ 2 -vertex graph H, and a mapping <.p from subsets ofG to vertices

of H.

1. Select N = nrp+ 2 subsets of vertices, each of size r log1 n, at random from the

vertices of G. Label the subsets s 1 , s 2 , ••• , sN.

9.2. Randomized graph products 89

G H

Figure 9.1: A sample mapping from sets s; in G to vertices w; in H.

2. For each subsets;, associate a vertex w; in H. The edge set E(H) = {(w;, wi) I
s; U si is not independent in G}. That is: (w;, wi) is not an edge in H only if

both s; and si are independent sets and in addition there are no edges between

any vertex in s; and any vertex in si.

Define a mapping <p(s;) = w; and <p- 1
(w;) = s;. (See Figure 9.1.)

(Note that for this to be a polynomial-time procedure, we need the product rp bounded

above by a constant. The value t need not be a constant: in fact, we will later plug in

t = log n to apply this technique to (log n)-colorable graphs.)

Given a graph G and new graph H created using Rand-Select above, it will be convenient

to extend the mapping <pas follows. For S ~ V(G), let <p(S) = {<p(s;) Is;~ S}. Also, for T

a subset of V(H), define <p- 1(T) = {v Iv Es; for some <p(s;) ET}= UwET<p- 1 (w). Notice

that S 2 <p- 1(<p(S)) and T ~ <p(<p- 1(T)); we do not necessarily get equality in the first case

since S may have elements not inside any s; ~ S, and in the second case, for w;, wi E T,

the set s; U si may contain some sk for wk tf. T. From this extended definition of <p and the

definition of E(H) in step 2 of Rand-Select, we immediately get the following fact.

Fact 9.1 If S is an independent set in G, then <p(S) is an independent set in H. If T is

an independent set in H of size at least 2, then <p- 1(T) is independent in G.

Proof: If w;, wi E <p(S), then s;, si ~ S. So if the edge (w;, wi) is in H, then s; U si is a

non-independent subset of S. If T is independent in H of size greater than 1, then for each

w; E T, the set s; must be independent in G. So, <p- 1(T) is a union of independent sets

that are pairwise independent of each other, and thus is independent itself. •

The purpose of procedure Rand-Select is as follows. Let H = Rand-Select(G, r,p, t). If

we have an independent set S of size n/t in graph G, then since each s; has probability

90 Chapter 9. Lower bounds for independent set approximation

about (i Y log, n of being chosen inside S, the expected size of <p(S) in H is 0(nrp+ 2
(i Y log, n)

= 0(nr(p-l)+2). In fact, with high probability, <p(S) will be about that large. However, the

expected size of r.p(S') for S' an independent set of size n/tP is only 0(nrp+ 2
(fp Y log, n) =

0(n 2). In fact, it turns out that with high probability, r.p(S') will be small for all such S'

(this is the purpose of the "+2" in Rand-Select) as described in the following theorem. 1

Theorem 9.1 Let G be an n-vertex graph with an independent set S of size n/t and let H

be the output ofRand-Select(G,r,p,t). Then, with high probability, if(rlog1 n) 2 = o(n/tP)

where p 2'.: 1, both of the following are true:

(1) lr.p(S)I 2'.: ~nr(p-l)+ 2 , and

{ 2) for every independent set S' in G of size at most n / tP, we have I r.p(S') I ~ 4n 2 •

Note that (1) implies lr.p(S)I = 0.(N /nr) and {2} implies lr.p(S')I = O(N /nrP), for N

IV(H)I.

The proof of this theorem uses the following standard (Chernoff variant) probabilistic in­

equality (e.g., see [1]).

Fact 9.2 Suppose X 1 , ... ,Xm are mutually independent {0,1}-valued random variables.

Let X = X 1 + X 2 + ... + Xm and letµ= E[XJ. Then:

Pr[X>2µ] <

Pr[X < µ/2] < -µ/8 e .

Proof of Theorem 9.1: First, claim (1) (the easy half). Given S ~ V(G) of size n/t,

consider a run of algorithm Rand-Select. Let X; be a random variable such that X; = 1 if

s; ~ S, and otherwise X; = 0. So, X = L:X; equals lr.p(S)I. Since S has size n/t, we have:

Pr[X; = 1] Cl~~: n) /Clo~, n)
(+) r log, n (l + o(l)) (since (r log1 n)2 = o(n/t))

n-r(l + o(l)).

Thus, E[X] = nr(p-l)+2(1 + o(l)) and with high probability, we have X = lr.p(S)I 2'.:
lnr(p-1)+2
2 •

Now, claim (2): we show that for every small set S' (and thus every small independent

set S'), r.p(S') has size at most 4n2 • We do this by showing that each individual set S' has

an extremely low probability of having an image under r.p larger than this value.

1 We can actually replace the "+2" with "+1" to get a slightly better bound in Theorem 9.2 with only a
little extra effort. However, the precise value of the constant is not crucial for us unless it could somehow
be made significantly less than 1.

9.2. Randomized graph products 91

Fix a given set S' in G of size n/tP. Let x; = 1 ifs; ~ S', and X[= 0 ifs; <f:. S', and

let X' = L x:. Again, since (r logt n)2 = o(n/tP), we have:

Pr[x; = 1] (tptrlog,n(l + o(l))

n-rp(l + o(l)).

Thus, 0.5n2 < E[X'] < 2n2. Applying Fact 9.2, we get that Pr[X' > 4n2
] < (e/4)0

·
5n2,

which equals 2-en• for some constant c. Note that if S' has size less than njtP, then

Pr[X' > 4n2] can only be lower. Now the crucial point: the probability that X' > 4n2 is so

small that even if we now sum over all at most 2n such sets S', we get that Pr[l<p(S')I > 4n 2
]

for any S' of size at most njtP, is no more than 2n2-en• = o(l). Thus, with high probability,

both conclusions of Theorem 9.1 hold. •

So, algorithm Rand-Select maps a problem of finding an independent set of size l/tr- 1

times the largest in the original n-vertex graph to a problem of finding one of size 1 / nrr-r =
l/N(1-;.±.f,) times the largest in the new N-vertex graph. In particular, one gets the

following theorem.

Theorem 9.2 Suppose there exists a (mndomized) algorithm A for Independent Set on

N -vertex gmphs that runs in time f(N) and has performance guarantee s; ~ N(l- ;;;_
22

) for

constants r,p. Then, there is a randomized algorithm B that on n-vertex graphs containing

an independent set of size n/t, finds an independent set of size njtP with high probability in

time f(nPr+ 2) + O(nrp+O(l)), so long as (rlog1 n)2 = o(n/tP).

Proof: Given an n-vertex graph G with independent set S of size n/t, run algorithm

Rand-Select(G, r,p, t) to create graph H on nrr+2 vertices. This step takes O(nrr+°C1
))

time. By Fact 9.1, we know that <p(S) is independent in H, so by Theorem 9.1 claim (1),

we have that with high probability H contains an independent set of size ~nrr-r+2 . So,

algorithm A in time J(nrr+ 2) finds an independent set Tin Hof size at least:

~ [nrr+2](1-;,V2)
= 4n2

•

Now, look at S' = <p- 1 (T) which is independent in G by Fact 9.1. We know, by definition

of <p, that <p(S') 2 T and so l<p(S')I 2: 4n2. Thus by Theorem 9.1 claim (2), we have: with

high probability S' must have size at least n/tP. •

If we plug p = 1 + f into Theorem 9.2 and let r = 2(1 - 6)/6 so r~ 2 = 1 - 6, then:

n(i-;;~?2) = n(l+;f.+2 2: n[t-i:<](r:!:-;) = n[,.f.,]CI-b).

So, if we view Theorem 9.2 in the contrapositive form, we get the following corollary.

92 Chapter 9. Lower bounds for independent set approximation

Corollary 9.3 If for some t and some constant€ > 0 there is no randomized polynomial­

time algorithm which finds an independent set of size n/tCi+<) on n-vertex graphs containing

an independent set of size n/t, then: for any constant 6 > 0 there is no (randomized)

polynomial-time algorithm with performance guarantee o(nrl<C1
-

6l) for general Independent

Set.

This corollary immediately implies the Berman-Schnitger result on the approximability

of Independent Set [7] by using the MAX SNP-hard problem Independent Set-B. Any n­

vertex graph with degree at most B must have an independent set of size n/(B + 1). So,

we get the following.

Corollary 9.4 (Berman and Schnitger) If there do not exist randomized PTAS's for

MAX SNP-hard problems, then there exists c > 0 such that Independent Set does not have

a (randomized) polynomial-time approximation algorithm with performance guarantee nc.

In particular, if for some€ and B, Independent Set-B does not have a randomized polynomial­

time approximation algorithm with performance guarantee (1 + €), then Independent Set

does not have a polynomial time approximation algorithm with performance guarantee

(
'

1

(1 6)) I (o ni+.7 - for€ = logn+i 1 +€),for any constant 6 > 0.

We can also use Theorem 9.2 to provide stronger bounds on independent-set approxi­

mation based on assumptions of the hardness of approximate graph coloring. In particular,

we can prove the following.

Theorem 9.5 Suppose there exists a (randomized) polynomial-time algorithm A for In­

dependent Set with performance guarantee n 1-< for some € > 0. Then, there is a ran­

domized polynomial-time algorithm B that will color any n-vertex k-colorable graph with

O(log n) colors, and color any n-vertex O(log n)-colorable graph with O(logc n)-colors (where

c ~ 1 + 3/€).

Theorem 9.6 Suppose there exists a (randomized) quasipolynomial-time algorithm A for

Independent Set with performance guarantee N /2.../c log N on N -vertex graphs, then there is

a randomized quasipolynomial-time algorithm B to color any n-vertex k-colorable graph with

O(n<) colors, where€= (20logk)/c.

Proof of Theorems 9.5 and 9.6: Given an n-vertex t-colorable graph G, we know there

exists an independent set of size at least n/t. Suppose we had an algorithm B' that on any

n-vertex graph with an independent set of size n/t were guaranteed to find an independent

set of size n/tP for some constant p. We could then find a coloring of G with at most (tP ln n)

colors by applying B', coloring the independent set found with one color, and then repeating

9.2. Randomized graph products 93

on the remaining graph G' of size at most n(l - 1/tP). Note that since G is t-colorable,

so is graph G', and thus G' has an independent set of at least 1/t of its vertices as well

and we may reapply B'. The number of colors used by this algorithm B is at most a value

C such that n(l - 1/tPf = 1, so C :::;; -(ln n)/ ln(l - 1/tP) :::;; tP ln n. Thus if t is some

constant k, the number of colors used is O(log n) and if t =log n, the number of colors used

is 0((log n)P+l). (The fact that log n decreases as the graph gets smaller only helps).

If there exists a polynomial time algorithm A for Independent Set with performance

guarantee n 1-' for some constant E > 0, then for p > 3~2 ', algorithm A has performance

guarantee o(n 1-P-h). So, we can apply Theorem 9.2 with r = 1 to get a randomized

polynomial-time algorithm B' with the guarantee we need. This proves Theorem 9.5.

For Theorem 9.6, we must be a bit careful.2 The quasi-polynomial time algorithm B

is as follows. Given n-vertex k-colorable graph G, let p = E logk n so n' = kP, and let

N = nP+2• Plugging in these values, we get:

2JclogN N,fi/y'(p+2)1ogn

> NVc/(2plogn)

NV•c/(2p2 logk)

~ NP-h.

(using log n = (p log k) / E)

(using E = 201~gk)

Thus, the performance guarantee N ;2Jc1og N of algorithm A for Independent Set on N­

vertex graphs is o(N/NP-h) = o(N1-P-h). So, we can again apply Theorem 9.2 with r = 1

to get an algorithm B guaranteed on any k-colorable graph to find an independent set of

size n/kP = n 1-'. Thus, B makes progress (in fact, progress type 1 of Section 3.3) towards

an O(n')-coloring of G.

Since algorithm A is quasipolynomial, algorithm B runs in time quasipolynomial m

(nP+ 2), which is quasipolynomial inn since nP+2 = nO(lognJ. •

2 Note: it is easy to fall into a trap in Theorem 9.2 in falsely thinking that if p is a function of n (eg.
p =dog n) for algorithm B, then we can plug in the same function of N (eg. dog N) for algorithm A.

Chapter 10

Possibilities for improvement, open problems, and
conclusion

10.1 Possibilities for improvement

Algorithm First-Approx performs most poorly when (1) many vertices share about n° 2 neigh­

bors in common, and (2) the average vertex degree is about n°.4. If the edges in the graph

were distributed randomly, this combination of events would likely not occur since for such

a low average degree, any two given vertices would be expected to share less than one

neighbor in common. Instead, the graph must contain high density regions. For example,

a graph could have properties (1) and (2) above if it consists of a collection of "clusters"

of size 0(n°·6
) such that each vertex inside a given cluster has 0(n°.4) neighbors within

the cluster and 0(n°.4) neighbors distributed throughout the other clusters. Thus, if the

edges within a cluster a distributed randomly, then 2 vertices inside the same cluster share

on average 0((n°·4
)

2 /n°· 6
) = 0(n°·2) neighbors in common, even though the degrees are

low. (The purpose of giving to each vertex 0(n°· 4) neighbors in the other clusters is so

that the distance-2 neighbor set N(N(v)) for each vertex v may have size f!(n° 8
) to avoid

immediately making progress through Corollary 3.2.)

Algorithm Improved-Approx achieves better performance by taking advantage of such

high density regions when they are found. However, one other possible approach is the

following. Suppose by removing 9/10 of the edges in the graph, one could somehow get

rid of such high-density regions and prove a stronger analog of Theorem 4.1 (bounding the

number of shared neighbors of two vertices). Then, Theorems 4.5 and 4.6 would still apply

to show that some set T = N;(N(v) n Ii) in the new graph is both large and has a large

fraction of its vertices red. The main point here is that even though an independent set in

the new graph might not be an independent set in the original graph, there still must be

some color class in a 3-coloring of the original graph that satisfies the ,\ = 1/2 condition (see

Theorem 4.5) in the new graph. Also, the average degree has only changed by a constant

factor, so the set T produced will still be large. One small difficulty is that Corollary 4.7

relies on a large minimum degree which might no longer exist in the new graph. This

94

10.2. Open problems and conclusion 95

problem can be overcome by simply deleting all vertices with degree less than, say, 1/10 of

the average in the new graph.

A different way one might he able to do significantly better is to consider distance-3

neighborhoods of vertices (or perhaps even distance-t neighborhoods for larger t). From

preliminary calculations, I believe that some of the results for distance-2 neighborhoods

may go through - for example, that one could find a set T with an independent set of 3/8

of its vertices inside the distance-3 neighborhood. (Note that if the edges were distributed

randomly, one would expect a ratio of ~ :~ :~ of blues to reds to greens inside the distance-3

neighbors of v for v E red.) However, all the techniques given here for forcing expansion

- that is, for forcing the set found to be large - seem to break down completely.

10.2 Open problems and conclusion

We have described here an algorithm guaranteed to color any 3-chromatic graph with

0(n318) colors in the worst case, and shown how these techniques can be used to improve

previous bounds for coloring k-chromatic graphs for k > 3 as well. Clearly, however, there

remains a long way to go. There is no reason to believe an 0(n318
) bound is intrinsic to the

coloring problem. In fact, for coloring 3-colorable graphs, to date there is no lower bound

known greater than 3. That is, it remains unknown whether there is any intrinsic reason

why one could not 4-color any given 3-colorable graph in polynomial time. It would be a

very significant contribution to this area if one could make headway in this direction. For

the general problem of coloring graphs of arbitrary chromatic number, the best lower bound

remains a factor of 2 - f from 1976 by Garey and Johnson [20].

The random and "semi-random" case appears much easier. We have described here an

algorithm to color a random k-colorable graph in the model 9(n,p, k) for pas low as n- 1+•

(see Section 7). For even smaller values of p, perhaps some other strategy might work well.

An intriguing open question is whether there might be a polynomial-time algorithm to color

graphs in 9(n, p, k) for every p, or whether there is some intrinsic reason such an algorithm

should not exist. Experimental work of Petford and Welsh [31] suggests that at least for

the heuristics used there, low values of p for which the average degree in the graph is about

5 or 6 may he the hardest.

For the semi-random model we described in Chapter 8 an algorithm to color graphs in

9s8 (n,p,3) for pas low as n- 0
·
6+', and for higher values of p fork> 3 (see Table 8.1).

One obvious open question is whether one can optimally color such graphs for lower noise

rates p. A second open direction to explore is coloring graphs based on even "harder" semi­

random sources that have been proposed and studied in the cryptographic literature. In

these models, the "noise" is not independent over each bit; rather, we are simply guaranteed

96 Chapter 10. Possibilities for improvement, open problems, and conclusion

that no sequence of bits of some length occurs too often. In a graph setting, this might

correspond to a model in which we are simply guaranteed that for any given collection of

"potential edges," no fixed configuration occurs with more than some specified probability.

The reader is referred to papers of Chor and Goldreich [17] and Zuckerman [44] for more

details on these "weak random" models.

Appendix A

The Vertex-Cover / Independent-Set
approximation algorithm

We now describe a simplified version of the Vertex-Cover approximation algorithm of Bar­

Yehuda and Even [4] and Monien and Speckenmeyer [28], specialized to its use in this thesis.

The version here is taken from a treatment given by Boppana and Halld6rsson [12]. We

will describe the algorithm as an Independent Set approximation algorithm for the special

case where the input n-vertex graph contains an independent set of at least ~(1 - lo~n) of

its vertices. The output of the procedure is an independent set of size !1(n/ log n).

Algorithm Approx-IS (Simplified version of the BE/MS algorithm}

Given: An n-vertex graph G which has an independent set of size at least Hl -
1)n
logn ·

Output: An independent set of size at least n(n/ log n).

1. Remove all odd cycles of length ~ 2! + 1 for l = 10r - ~. See Note 1 below.

(Assume for simplicity that 10r - ~ is an integer.)

2. Initialize I, the independent set found, to ¢.

3. Choose v EV.

4. For i E {O, ... , l}, let V; = the set of vertices of distance i from v.

5. For i E {O, ... , l}, let S; = V; U V;_ 2 U V;_ 4 U

Note that S; is an independent set since there are no odd cycles of length ~ 2! + 1.

For example, if there were an edge between a vertex in Vi and a vertex in Vi
then there is a cycle of length 7.

Also, note that N(S;) = Si+l·

6. Let i 0 ~ l be an index such that IN(S;
0
)I ~ n 1/(l+l)IS;

0
I.

This property must hold for some i 0 E {O, ... , l} because otherwise:

IN(S1)I > n 1/(l+l)ISil > n2/(l+l)IS1-il > n3/(l+l)IS1-2I > ... > n(l+l)/(l+l)ISol = n,

a contradiction.

97

98 Appendix A. The Vertex-Cover / Independent-Set approximation algorithm

7. Let I+- I U Sia and let V +- V - Sia - N(S;o).

If Vis non-empty, then go back to Step 3. Otherwise output set I.

See note 2 below.

Note 1: Step 1 removes all odd cycles of length :::; 2/ + 1. An odd cycle of length 2i + 1

may have at most i vertices in any independent set in G. So, if m vertices remain after

this step (so n - m are removed), we have removed at most 21~ 1 (n - m) vertices from any

independent set in G. Thus, the maximum independent set in G may have size at most

m + 21~ 1 (n - m). This implies that the number of vertices m remaining is at least n/ log n

since otherwise,

m + (n - m)21~1 < m + (n - m)(1or - ~)/(1o~n)

m + (n - m)logn-3 2logn

< lo; n + (n - lo; n) (~ - 2 l:g n)

!:!. __ n_+~
2 log n 2 log1 n

< 1(1 - _1_)n. 2 logn (for n sufficiently large)

This contradicts our assumption on the largest independent set in G.

Note 2: By Note 1, after Step 1 we know graph G has at least n/ log n vertices. Each

application of Step 6 removes from V at most O(n1/(l+l)) times as many vertices as added

to I. So, the final set I reported in Step 7 must be large enough so that 1Iln1/(l+l) =
n(n/ log n). That is, it must be the case that:

n(-1-nl/(1+1)). logn

For l = Io~n - ~.we have:

_I = (logn _ l)/(logn + l)
1+1 6 2 6 2

logn-3 > logn-6
logn+3 logn

So, finally, this implies that:

III n -n -y;;gn (1 1
6

)

logn

n(-n-. r6) logn

n(n/logn). •

1- _6_
logn ·

Appendix B

An analog of Spencer's result on counting
extensions

In this section, we prove an analog of a theorem of Spencer for counting the number of

images of a rooted graph.

If (R, H) is a rooted graph (see Definitions 8.2, 8.3, and 8.4), define Im(H, G) to be

the set of images of H in G and let Num(H, G) = IIm(H, G)I. Also, for M some model

(such as 9(n,p) or 9(n,p, k)) define µ(H, M) to be the expected number of images of Hin

G+-M.

Spencer [35] proves the following result for the random graph model 9(n, p).

Theorem B.1 {Spencer) Let (R, H) be strictly balanced on some constant number of

vertices and let o,c > 0. Then, 3K > 0 so that ifp is such that µ(H,9(n,p)) ~ Klogn,

then for G +--- 9(n,p):

Pr[(l - o)µ s; Num(H,G) s; (1+o)µ]=1 - o(n-c).

In order to prove that the /-path algorithm of Chapter 7 works as claimed, we need an

analog of Spencer's result - at least for the case of H a path of some constant length l -

for the model 9(n,p,k). (As noted in Chapter 7, paths of length l between two roots x and

y are strictly balanced.) In fact, Spencer's proof goes through in the 9(n, p, k) model with

only minor modifications. We describe here what those modifications are and how they

affect Spencer's proof.

Spencer's result is easiest to prove for the special (but main) case where there exists

some sufficiently small f so that the expected numberµ of images of Hin G is at most n';

that is, when K log n s; µ s; n'. To simplify our discussion, we will only consider that case

here. We will also consider only rooted graphs (R, H) that have no automorphisms fixing

the roots. Spencer counts "extensions" which are essentially all the different maps of H

into G, whereas we count the images of H; for rooted graphs without such automorphisms,

these are the same quantity. Note that paths oflength l fit into this category.

For H a path of length l between roots x and y, we would like to prove that the number

of images of Hin G +--- 9(n,p, k) given that x and y are chosen the same color, or given

99

100 Appendix B. An analog of Spencer's result on counting extensions

that x and y are chosen of different color, are both within (1 + o(1)) of the expectation. In

order to not prove essentially the same theorem twice - once for each case - let us define

the notion of a random k-colorable graph given a particular root coloring. For a root set

R, there are klRI different possible ways to assign k colors to the IRI vertices. So:

• Let Of(n,p, k) be the model Q(n,p, k) given that the subset R of V has the jth of

klRI possible colorings.

B.1 Modifying Spencer's result

Suppose (R, H) is a rooted graph on a constant number of vertices and X is some image

of Hin Kn. Let v = nonroots(H) and e = edges(H). Then Pr[X ~ GI G +-- Q(n,p)] =
p0

• If H has no automorphisms, then µ(H,Q(n,p)) = nvp0 (1- o(l)). The key fact that

allows Spencer's argument to go through for Q(n, p, k) is that if H is also k-colorable, then

Pr[X ~GIG+-- Q(n,p,k)] = 0(p0
). The reason is that since H has only a constant

number of vertices, there is a constant probability at least (1 / k)IV(H)I that in the creation

of G, the vertices of X are placed into color classes that legally color the graph. So,

Pr[X ~ G] ~ (1/k)IV(H)lp0 = E>(pe).

We now describe how to modify Spencer's proof to prove the following result.

Theorem B.2 Let (R, H) be strictly balanced on some constant number of vertices with

no automorphisms fixing the roots, and let b, c > 0. Then, there exists](, E > 0 so that if

µ = µ(H, Qf(n,p, k)) E [K log n, n'], then for G +-- Qf(n,p, k):

Pr[(l - b)µ ~ Num(H, G) ~ (1 + b)µ] = 1 - o(n-c).

Proof: For convenience, let M = Of(n,p, k), v = nonroots(H), e = edges(H), and let

G +-- M. Also, let X 1 , •. ., X m be the images of H in Kn and let A; be the event that

X; ~ G. We may assume that H is k-colorable given that the root set has the jth possible

assignment of colors, else µ would equal 0.

From our above observations, for any given image X;, Pr[X; ~ G] = 0(p0
) and so

µ = 0(nvp0
). For convenience, let us define p so that Pr[X; ~ G] = (p) 0 and thus

µ = (1 - o(l))nvpe.

Spencer's proof for Q(n,p) where µ(H,Q(n,p)) E [K'logn,n'
1

] for sufficiently large J('

and sufficiently small £
1

, proceeds in three stages. First, he proves a theorem stated here as

Theorem 8.2 of Chapter 8. We have already proven the analog in Theorem 8.3. 1 Second,

he proves that for G' +-- Q(n,p), with probability 1 - o(n-c), the size of every maximal

1Technically, Theorem 8.3 was proven for the semi-random model QsB(n, p, k). However, since m
Qf(n,p, k) there are w.h.p. O(n) vertices of each color class, the bound holds for this model as well.

B.1. Modifying Spencer's result 101

family F of disjoint Xi in G' is within (1 + '5) ofµ. Finally he shows that for any fixed

maximal family F, with probability 1-o(n-c) there are only 0(1) images Xi ~Fin G' that

intersect some Xi E F. Since every image of H must either belong to F or else intersect

some Xi E F (as Fis a maximal family of disjoint images), the last 2 parts of Spencer's

argument imply that Num(H,G') is within (1 + c5) ofµ with probability 1 - o(n-c).

Note that for X any subgraph of Kn at all,

Pr[X ~GIG<---- M] '.S Pr[X ~ G' I G' <---- 9(n,p)].

The reason is simply that each edge is placed into G <---- M with probability at most p (either

probability p or probability 0 depending on the colors of the endpoints), while in 9(n,p),

each edge is placed into the graph with probability exactly p. So, if we pick f sufficiently

small such that µ(H,9(n,p)) < n<' and thus Spencer's argument holds for G' <---- Q(n,p),

then the third part of Spencer's argument carries over directly and we need not prove it

again here. (Recall that µ = 0(nvpe) so for any f 1 > 0 there exists f > 0 such that

(µ :S n <) => (n v pe '.S n <').) We focus now on the second part. The analysis here is taken

directly the proof of Spencer [35].

Let us first calculate some basic quantities. First, the number of X; in Kn is at most n v

so we can loosely upper bound the number of families F ~ Im(H,Kn) oft pairwise disjoint

images Xi, by (ntv). Also, for any fixed such family F, the probability that F ~ Im(H, G)

(that is, that the Xi in F are all in G) is (jje)t since the Xi E F are all disjoint so the

corresponding events Ai are mutually independent.

For a given family F of t pairwise disjoint Xi, we now upper bound the probability

that no image X 1 disjoint from all Xi E F exists in G; that is, the probability that F is

a maximal family of disjoint images given that F ~ Im(H, G). Let X;,, ... , X;T be all the

images in Im(H, Kn) disjoint from F. We know that:

r = (n - tv - IRl)v

since there are (n- tv - IRI) non-root vertices not inside F, and H has no automorphisms.

By Theorem 8.3, for f sufficiently small, :Z:::i-i Pr[A; /\ A1] = o(l) where i "'j if i =/= j and

E(Xi) U E(Xi) =/= ¢. So, certainly the summation restricted to just the i, j E {ii, .. ., ir}

equals o(l) as well. Thus, by Janson's inequality, (noting that the ")." term is o(l)) we

have:

Pr[A Ai,]
r

[1 + o(l)] IT Pr [Ai,)
j=l j=l

[1 + o(l)](l - per. (by definition of p)

Given the above facts, we can upper bound the probability Pi that there exists any

maximal family F oft pairwise disjoint Xi's within G by the quantity:

102 Appendix B. An analog of Spencer's result on counting extensions

v vt [Jnt v] t • Consider now two cases. First, suppose t ~ n 2'. We may upper bound (n1) by"%- <
(Using 3 > 2.718 ... to avoid confusion withe.) So, since nvpe = O(n') we have:

Thus, the probability there exists within G a maximal family F of any size t ~ n 2
' is at

most o(n-c).

The second case is t S n 2'. For f sufficiently small (at most 1/4) we have t S n 1
/

2 so:

(n - tv - JRJ)v = nv - 0(tvnv-l) ~ nv - 0(nv-lf2). Thus,

(1 _ pe)(n-tv-IRl)v < (1 _ Petv /(l _ pe)0(nv-I/>)

(1 - 'f>etv /(1 - 0(penv-1/2))

< (1 - 'f>etv /(1 - 0(n'n-lf2))

(1 - 'f>etv[l + o(l)].

So, we can upper bound the probability P1 by:

P1 < [1 + o(l)] (ntv) ('f>e)t(l - 'f>etv

< [1 + o(l)] (~v) ('f>e)t(l - 'f>erv-t.

Thus, P1 S (1 + o(l))Pr[Y = t] where Y has the binomial distribution B(nv ,pe). Let p: =
nvpe. We know for such a distribution, for any 8 > 0 we have Pr[JY - µ• J > %µ*] = o(n-c),

so long as µ* > K log n for sufficiently large K. Thus, the probability there exists any

maximal family F of disjoint images X; of size not within 8µ ofµ, and so not within ~µ• of

µ*, is at most o(n-c). This finishes the second part of Spencer's argument. Since as noted

above, the third part follows immediately from the result for 9(n, p), we have proved the

theorem. •

Bibliography

[1] N. Alon and J. Spencer. The Probabilistic Method. Wiley, 1991.

[2] Dana Angluin and Leslie G. Valiant. Fast probabilistic algorithms for Hamiltonian

circuits and matchings. Journal of Computer and System Sciences, 18(2):155-193,

April 1979.

[3] K. Appel and W. Haken. Every planar map is four colorable. Illinois J. Math., 21:429-

490, 491-567, 1979.

[4] R. Bar-Yehuda and S. Even. A 2 - 1~~!~gnn performance ratio for the weighted vertex

cover problem. Technical Report Technical Report #260, Technion Haifa, January

1983.

[5] C. Berge. Graphs and Hypergraphs. North-Holland, 1973.

[6] B. Berger and J. Rompel. A better performance guarantee for approximate graph

coloring. Algorithmica, 1988.

[7] P. Berman and G. Schnitger. On the complexity of approximating the independent set

problem. In 6th STAGS. Lecture Notes in Computer Science # 349, pages 256-267,

1989.

[8] Avrim Blum. An O(n°·4)-approximation algorithm for 3-coloring (and improved ap­

proximation algorithms for k-coloring). In Proceedings of the Twenty-First Annual

ACM Symposium on Theory of Computing, pages 535-542, Seattle, May 1989.

[9] Avrim Blum. Some tools for approximate 3-coloring. In Proceedings of the 31st Annual

Symposium on Foundations of Computer Science, St. Louis, October 1990.

[10] B. Bollobas. The chromatic number of random graphs. Combinatorica, 8:49-55, 1988.

[11] R. Boppana and J. Spencer. A useful elementary correlation inequality. J. Combin.

Theory Ser. A, 50:305-307, 1989.

103

104 BIBLIOGRAPHY

[12] R. B. Boppana and M. M. Halldorsson. Approximating maximum independent sets by

excluding subgraphs. In Proc. of 2nd Scand. Workshop on Algorithm Theory. Springer­

Verlag Lecture Notes in Computer Science #447, pages 13-25, July 1990.

[13] P. Briggs, K. D. Cooper, K. Kennedy, and L. Torczon. Coloring heuristics for register

allocation. In Proceedings of the SIG PLAN '89 Conference on Programming Language

Design and Implementation, pages 275-284, Portland, June 1989.

[14] R. L. Brooks. On colouring the nodes of a network. Prov. Cambridge Phil. Soc.,

37:194-197, 1941.

[15] G. J. Chaitin. Register allocation and spilling via graph coloring. In Proceedings of

the SIGPLAN '82 Symposium on Compiler Construction, pages 98-101, Boston, June

1982.

[16] G. J. Chaitin, M.A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P. W.

Markstein. Register allocation via coloring. Computer Languages, 6:47-57, 1981.

[17] B. Chor and 0. Goldreich. Unbiased bits from sources of weak randomness and prob­

abilistic communication complexity. SIAM J. Computing, 17(2):230-261, April 1988.

[18] M. E. Dyer and A. M. Frieze. The solution of some random NP-Hard problems in

polynomial expected time. Journal of Algorithms, 10:451-489, 1989.

[19] U. Feige, S. Goldwasser, L. Lovasz, M. Safra, and M. Szegedy. Approximating clique

is almost NP-Complete. In preparation, 1991.

[20] M. R. Garey and D. S. Johnson. The complexity of near-optimal graph coloring.

JACM, 23:43-49, 1976.

[21] B. Griinbaum. Grotzsche's theorem on 3-colorings. Michigan Math J., 10:303-310,

1963.

[22] M. M. Halldorsson. A still better performance guarantee for approximate graph color­

ing. Technical Report 90-44, DIMACS, June 1990. Also to appear in IPL.

[23] L. Kucera. Expected behavior of graph colouring algorithms. In Lecture Notes m

Computer Science No. 56, pages 447-451. Springer-Verlag, 1977.

[24] N. Linial, M. Saks, and A. Wigderson. personal communication.

[25] N. Linial and U. Vazirani. Graph products and chromatic numbers. In Proceedings of

the 30th Annual Symposium on Foundations of Computer Science, Research Triangle

Park, October 1989.

BIBLIOGRAPHY 105

(26] L. Lovasz. Three short proofs in graph theory. Journal of Combinatorial Theory,

Series B, 19:111-113, 1973.

[27] D. W. Matula. Expose-and-merge exploration and the chromatic number of a random

graph. Combinatorica, pages 275-284, 1987.

(28] B. Monien and E. Speckenmeyer. Ramsey numbers and an approximation algorithm

for the vertex cover problem. Acta Informatica, 22:115-123, 1985.

[29] R. Nelson and R. J. Wilson, editors. Gmph Colourings. Longman Scientific and

Technical, 1990.

[30] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complex­

ity classes. In Proceedings of the Twentieth Annual ACM Symposium on Theory of

Computing, pages 229-234, Chicago, May 1988.

(31] A. D. Petford and D. J. A. Welsh. A randomised 3-colouring algorithm. Discrete

Mathematics, 74:253-261, 1989.

(32] P. Raghavan. personal communication.

[33] G. Ringel. Map Color Theorem. Springer-Verlag, 1974.

[34] M. Santha and U. V. Vazirani. Generating quasi-random sequences from semi-random

sources. JCSS, 33:75-87, 1986.

[35] Joel Spencer. Counting extensions. J. Combin. Theory Ser. A, 55:247-255, 1990.

[36] Joel Spencer. Threshold functions for extension statements. J. Combin. Theory Ser.

A, 53:286-305, 1990.

(37] Richard Steinberg. The state of the three color problem. Annals of Discrete Mathe­

matics. To appear.

[38] J. S. Turner. Almost all k-colorable graphs are easy to color. Journal of Algorithms,

9:63-82, 1988.

[39] U. Vazirani and V. Vazirani. Random polynomial time ie equal to slightly-random

polynomial time. In Proceedings of the 26th Annual IEEE Symposium on Foundations

of Computer Science, pages 417-428, Portland, October 1985.

[40] U. V. Vazirani. Towards a strong communication complexity theory, or generating

quasi-random sequences from two communicating slightly-random sources. In Proceed­

ings of the 17th Annual ACM Symposium on Theory of Computing, pages 366-378,

Providence, 1985.

106 BIBLIOGRAPHY

[41] Sundar Vishwanathan. Randomized online graph coloring (preliminary version). In

Proceedings of the 31st Annual Symposium on Foundations of Computer Science, vol­

ume II, pages 464-469, St. Louis, October 1990.

[42] D. J. A. Welsh and M. B. Powell. An upper bound on the chromatic number of a graph

and its application to timetabling problems. The Computer Journal, 10:85-87, 1967.

[43] A. Wigderson. Improving the performance guarantee for approximate graph coloring.

JACM, 30(4):729-735, 1983.

[44] D. Zuckerman. General weak random sources. In Proceedings of the 31st Annual

Symposium on Foundations of Computer Science, pages 534-543, St. Louis, October

1990.

