
LABORATORY FOR 
COMPUTER SCIENCE 

MIT/LCS/TR-486 

MASSACHUSETTS 
INSTITUTE OF 
TECHNOLOGY 

ON RETIMING SYNCHRONOUS 
CIRCUITRY AND 

MIXED-INTEGER OPTIMIZATION 

Marios Christos Papaefthymiou 

September 1990 

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139 



~· 
r .. -; 



On 
Retirning Synchronous Circuitry 

and 
Mixed-Integer Optimization 

by 

Marios Christos Papaefthymiou 

B.S., Electrical Engineering 
California Institute of Technology 

(1988) 

Submitted to the 
Department of Electrical Engineering and Computer Science 

in partial fulfillment of the requirements for the degree of 

Master of Science in Electrical Engineering and Computer Science 

at the 

Massachusetts Institute of Technology 
August 1990 

© Massachusetts Institute of Technology 1990 

Depart Electrical Engineering and Computer Science 
August 31, 1990 

Certified by -~~---'/u; __ E__,___~ .__.~'-"'----=-' -=-~~~-~----
Charles E. Leiserson 

Associate Professor of Computer Science and Engineering 
Thesis Supervisor 

Accepted by---------------------------
Arthur C. Smith 

Chairman, Department Committee on Graduate Students 

1 





On Retiming Synchronous Circuitry 
and Mixed-Integer Optimization 

by 

Marios Christos Papaefthymiou 

Submitted to the 
Department of Electrical Engineering and Computer Science 

on August 31, 1990 
in partial fulfillment of the requirements for the degree of 

Master of Science in Electrical Engineering and Computer Science 

Abstract 

In this paper we investigate properties of retiming, a circuit transformation which 
preserves the behavior of the circuit as a whole. We present an algorithm which 
transforms a given combinational circuit into a functionally equivalent pipelined cir
cuit with minimum latency and clock-period no greater than a given upper bound c. 
The algorithm runs in O(E) steps, where E is the number of interconnections in 
the circuit, and is optimal within a constant factor. We give a novel and concise 
characterization of the minimum clock-period of a circuit in terms of the maximum 
delay-to-register ratio cycle in the circuit. We show that this ratio does not exceed the 
minimum feasible clock-period by more than the maximum delay D of the elements in 
the circuit. This characterization leads to an O(ElgD) algorithm for minimum clock
period pipelining of combinational circuitry with latency no greater than a given up
per bound l, an O(min{V112 Elg(V D), VE}) algorithm for minimum clock-period re
timing of unit-delay circuitry, an O(V Elg D) algorithm for minimum clock-period 
retiming of general circuitry and an O(min{V112Elg(VW)lg(VD), VElg(VD)}) al
gorithm for approximately minimum clock-period retiming, where V is the number of 
processing elements in the circuit. We demonstrate the closed semiring structure of 
retiming on unit-delay circuits under a given clock-period constraint. Finally, we give 
an O(V3 lg V) algorithm for a mixed-integer optimization problem which arises in the 
linear programming framework of retiming. 

Thesis Supervisor: Charles E. Leiserson 
Title: Associate Professor of Computer Science and Engineering 

Keywords: digital circuitry, systolic systems, parallel computation, computer-aided 
design, retiming, pipelining, propagation delay, group theory, semirings, mixed-integer 
optimization, network flow. 

This research was supported in part by the Defense Advanced Research Projects Agency under 
Contract N00014-87-K-0825 

3 





Acknowledgements 

I would like to thank my advisor Charles Leiserson for his encouragement and 

support during the course of this thesis. In short time he taught me a lot about 

research and teaching. 

The Theory of Computation Group at MIT's Laboratory for Computer Science 

provided an ideal environment for carrying out this work, both in terms of human 

resources as well as in terms of equipment support and organization. 

I would like to thank Demetris Ilertsimas of MIT's Sloan School of Management 

for his helpful pointers to the Operations Research literature. 

Above all, I would like to thank my family for always being by my side. 

5 





Contents 

1 Introduction 

2 Minimum Latency Pipelining 
2.1 Preliminaries ............... . 
2.2 Difference Constraints and Shortest-Paths 
2.3 The Algorithm .............. . 

3 Minimum Clock-Period Characterization 
3.1 Preliminaries .............. . 
3.2 Minimum Period for Unit-Delay Circuits . 
3.3 Minimum Period for General Circuits 
3.4 Algorithmic Implications ........ . 

3.4.1 Minimum clock-period pipelining 
3.4.2 Minimum clock-period retiming . 
3.4.3 Approximately minimum clock-period retiming 

4 The Closed Semiring Structure of Retiming 
4.1 Preliminaries ................. . 
4.2 The Closed Semiring Construction . . . . . . 
4.3 An Algorithm for Unit-Delay Circuitry Retiming 

5 A Mixed-Integer Optimization Problem 
5.1 Preliminaries .............. . 
5.2 Mixed-Integer Dual Minimum-Cost Flow . 
5.3 Feasibility and Optimality Conditions 
5.4 The Algorithm ............ . 
5.5 An Application to State Minimization 

6 Conclusion 

7 

9 

12 
12 
15 
17 

23 
24 
24 
25 
30 
30 
34 
35 

38 
38 
39 
44 

50 
51 
53 
54 
59 
59 

63 



j 



Chapter 1 

Introduction 

Speed of design is essential in building large-scale, highly-complex systems. This 

issue becomes more apparent, since emerging VLSI technologies lead to systems of 

increasing size and complexity. Design automation accelerates the design process by 

providing tools that improve the quality of a quickly designed circuit. Retiming, which 

was introduced in [13, 14, 15] and treated in [17], is a well-known design automation 

technique which aims at speeding the design process, without sacrificing the quality 

of the implementation. Retiming optimizes clocked circuits by relocating registers so 

as to reduce combinational rippling. In this thesis we further investigate retiming and 

provide results of practical as well as theoretical interest. We present optimal algo

rithms for optimization of combinational circuitry. We give a novel characterization of 

the minimum clock-period of a circuit in terms of the maximum register-to-delay ratio 

cycle in the circuit, which leads to improved algorithms for minimum clock-period 

and approximately minimum clock-period retiming. We exhibit the group theoretical 

structure of retiming on circuits with unit-delay components. Finally, we give an ef

ficient algorithm for a mixed-integer optimization problem, which arises in the linear 

programming framework of rctiming. 

In Chapter 2 we introduce the basic concepts of retiming. We define the notations 

and terminology and review the graph-theoretic model of digital circuits from [15, 17]. 

We give an algorithm that transforms a given combinational circuit into a functionally 

equivalent pipelined circuit with minimum latency and clock-period no greater than 

a given upper bound c. The algorithm runs in O(E) steps, where Eis the number of 

interconnections in the circuit, and is optimal within a constant factor. The operation 

9 



10 CHAPTER 1. INTRODUCTION 

of the algorithm is based on the notion of accumulated delay along a path in the circuit. 

In Chapter 3 we give a novel and concise characterization of the minimum feasible 

dock-period of a circuit in terms of the maximum delay-to-register ratio cycle in the 

circuit graph. We prove that this ratio does not exceed the minimum feasible clock

period by more than an additive factor of D, where D is the maximum delay of the 

processing elements in the circuit. This observation establishes a range of possible 

values for the minimum clock-period, that is independent of the size of the circuit. 

The range depends solely on the delays of the individual components used. 

Based on the maximum ratio cycle characterization of the minimum dock-period 

we approach a variety of retiming problems. For combinational circuits we give an 

optimal O(E) algorithm, that transforms a unit-delay combinational circuit into a 

pipelined circuit with minimum clock-period and latency no greater than a given upper 

bound l. We also give a more general O(ElgD) algorithm for the same problem on 

combinational circuits with arbitrary delays. We show how to obtain a minimum 

clock-period retiming of a unit-delay circuit in O(min {V112 E lg(VW), VE}) steps, 

where V is the number of processing elements in the circuit and W is the maximum 

number of registers on a wire in the circuit, by direct application of graph-theoretic 

algorithms for finding the minimum cycle mean in a graph [11, 20]. We demonstrate 

how to obtain a minimum clock-period retiming of a circuit with arbitrary delays 

in O(V Elg D) steps. The best previously known strongly polynomial algorithm for 

minimum clock-period retiming of synchronous circuitry, unit-delay or arbitrary-delay, 

required O(V Elg V) steps [17]. Finally, if the retimed circuit is allowed a clock-period 

which does not exceed the minimum possible by more than D we show how to obtain 

it in O(min{V112 E lg(VW) lg(V D), VE lg(V D)}) steps. The running times of the 

algorithms in Chapters 2 and 3 are summarized in the table of Figure 1.1. 

In Chapter 4 we investigate group-theoretic properties of retiming. We demon

strate the closed semiring structure of retiming on unit-delay circuits and we give a 

Bellman-Ford type algorithm, with redefined additive and multiplicative operations, 

for unit-delay circuitry retiming. Its running time is O(V E) and matches the best 

previously known strongly polynomial algorithm for the same problem [17]. 

In Chapter 5 we investigate a mixed-integer optimization problem, which arises in 

the linear programming framework of retiming. We give a polynomial time algorithm 



11 

Circuit Type Transformation Running Time 
Combinational Min Latency Pipelining O(E) 
VD Combinational Min Clock-Period O(E) 
Combinational Min Clock-Period O(Elg D) 

VD Sequential Min Clock-Period O (min { ~~2 
Elg(VW) } ) 

Sequential Min Clock-Period O(VElgD) 

Sequential Approx Min Clock-Period 0 f . I V1i 2Elg(VW)lg(VD) 
mm VElg(VD) 

Figure 1.1: Summary of problems and running times of corresponding algorithms. For 
the sake of simplicity we denote a set S and its cardinality ISi by the same symbol. 
The initials VD denote unit-delay circuitry. 

for a generic mixed-integer optimization problem, that we call restricted mixed-integer 

dual of an uncapacitated minimmn-cost flow. The polynomial running time is achieved 

by introducing a set of additional, appropriately chosen constraints. The same idea 

was used for the solution of a similar mixed-integer problem in [22, 16], which did 

not involve, however, an objective to be optimized. The technique of introducing 

additional constraints, or cuts as they are known in the literature, in order to solve 

mixed-integer optimization problems, is known in general to require an exponential 

number of steps [21, 23, 3, 18]. Aharoni, Erdos and Linial [1] pose the question 

whether a clever choice of cuts can yield polynomial time algorithms. We show that 

this is possible for the problem we consider, by choosing the cuts in a way that reduces 

the original mixed-integer problem to a network flow problem. 

'2 



Chapter 2 

Minimum Latency Pipelining 

In this chapter we review the basic concepts of retiming and describe an O(E) algo

rithm for minimum latency pipelining of combinational circuitry. The running time 

of the algorithm is optimal within a constant factor. The chapter is organized as fol

lows. Section 2.1 defines the terminology used in the rest of the paper and presents 

a mathematical framework of retiming. Section 2.2 gives a brief overview of the re

lation between the problem of satisfying a given set of difference constraints and the 

problem of finding single-source shortest-paths in a graph. This relation serves as a 

basis for proving the correctness of our algorithm for minimum latency pipelining of 

combinational circuitry. Both the algorithm and its correctness proof are given in 

Section 2.3. 

2.1 Preliminaries 

In this section we define the notations and terminology needed in the rest of the paper 

and present the graph-theoretic model of digital circuits assumed. We also describe 

the operation of retiming and present a mathematical framework for it. The entire 

framework presented in this section was introduced in [13, 14, 15] and was treated 

thoroughly in [17]. 

We view a circuit abstractly as a network of functional elements and globally 

clocked registers. The functional elements provide the computational power of the 

circuit and the registers act as storage elements. Each functional element has an 

associated propagation clela.y. The outputs of a functional element at any time are 

12 



2.1. PRELIMINARIES 13 

defined as a specified function of its inputs, provided that all the inputs have been 

stable for a time at least equal to the element's propagation delay. 

We model a circuit as a finite, vertex-weighted, edge-weighted, directed multigraph 

G = (V, E, d, w). The vertices of the graph model the functional elements of the circuit. 

Each vertex v is weighted with its numerical propagation delay d( v ). The directed 

edges E of the graph model interconnections between functional elements. Each edge 

u ~ v E E connects an output of some functional element represented by vertex u to 

an input of some functional element represented by vertex v. Each edge e is labeled 

with a register count w( e ), which equals the number of registers along the connection. 

We impose the restriction that there be no directed cycles in G of zero edge-weight, 

thereby ensuring that no race conditions can arise. We define the clock-period <I>( G) 

for any synchronous circuit G as the maximum amount of propagation delay through 

which any signal must ripple between clock ticks. 

We shall view a simple path p = 'U ,l, v in G as a sequence of vertices and edges, 

with no repetitions, that starts from a vertex u and ends at a vertex v. For any path 

ea e1 ek-1 l f' h h . h h f h . h f h p = v0 --+ v1 --+ • . . __. Vk, we ue rne t e pat wezg t as t e sum o t e we1g ts o t e 

edges of the path: 
k-1 

w(p) = L w(ei). 
i=O 

We also define the path delay as the sum of the delays of the vertices of the path: 

k 

d(v) = L d( v;). 
i=O 

In order that a graph G = ( V, E, d, w) have well-defined physical meaning as a 

circuit, we place the restriction that the propagation delays d( v) and the register 

counts w( e) are nonnegative integers for each vertex v E V and for each edge e E E. 

Retiming transformations alter the clock-period of a circuit by inserting and delet

ing registers, but without otherwise affecting the circuit's structure. The new circuit is 

functionally equivalent, as seen by the external world, to the original. Such a proof can 

be found in [15], which also contains a technical definition of the term "equivalent". 

A retiming of a circuit G = ( V, E, d, w) is an integer-valued vertex-labeling r : V --+ 

Z. The retiming specifies a transforma.tion of the original circuit in which registers are 

added and removed so as to change the graph G into a new graph Gr = (V, E, d, Wr ). 



14 CIIAPTER 2. MINIMUM LATENCY PIPELINING 

The edge-weighting Wr is defined for an edge u ~ v by the equation 

wr(e) = w(e) + r(u)- r(v), 

and the label r( v) is referred to as the lead of vertex v. A retiming r of a circuit is 

legal if the register counts Wr of the retimed circuit Gr are nonnegative, thus ensuring 

that no edge may have a negative register count. 

In order to characterize the clock-period of a retimed circuit we define two quan

tities: 

W(u,v) 

D(u, v) 

min{w(p): u;& v}, 

max{d(p): u ;& v and w(p) = W(u, v)}. 

The quantity l¥( u, v) is the minimum number of registers on any path from vertex u 

to vertex v. We call a path u ;& v such that w(p) = W( u, v) a critical path from u to 

v and we denote it by u ~ v. The quantity D( u, v) is the maximum total propagation 

delay on any critical path from 'U to v. 

The following two statements about D are important: 

Fl D(u,v) can take on O(V2 ) values. 

F2 Given a synchronous circuit G and a retiming r of G, the clock-period il>( Gr) 

is equal to D( u, v) for some u, v E V. 

Statements Fl and F2 are easily justified by the fact that there are O(V2 ) pairs of 

vertices in the graph and that retiming does not change the propagation delay along 

a critical path between any two vertices in the graph. 

We can compute Vi' and D by solving an all-pairs shortest-paths problem in G. 

Common ways of solving this problem are the Floyd-Warshall method [12, page 86], 

which runs in O(V3
) and Johnson's algorithm [10], which runs in O(VE + V 2 lgV) 

time using the Fibonacci heap data structure due to Fredman and Tarjan [6]. 

The following theorem, which is proven in [17], characterizes the conditions under 

which a retiming produces a circuit whose clock-period is no greater than a given 

constant. 



2.2. DIFFERENCE CONSTRAINTS AND SHORTEST-PATHS 15 

Theorem 2.1 Let G = (V, E, d, w) be a synchronous circuit, let c be an arbitrary 

positive real number, and let r be a function from V to the integers. Then r is a legal 

retiming of G such that <I>( Gr) ::.:; c if and only if 

r(v) - r(u)::.:; w(e) (2.1) 

for every edge u _:_. v of G, and 

r(v) - r(u)::.:; W(u,v)- 1 (2.2) 

for all vertices u, v E V such that D( u, v) > c. D 

This theorem provides the basic tool needed to solve the retiming problem for a 

given clock-period. Notice that the constraints on the unknowns r( v) in the theorem 

are linear inequalities involving only differences of unknowns. Using the Bellman-Ford 

algorithm [12, page 74] we can test whether there exists a retimed circuit with clock

period less than some constant c in O(V3 ) steps, since there can be O(V2 ) inequalities 

of the form (2.1 ). Leiserson and Saxe [17] give an asymptotically faster algorithm, 

which runs in O(V E) steps. 

2.2 Difference Constraints and Shortest-Paths 

In this section we exhibit the relation between the problem of satisfying a given set of 

difference constraints and the pro blern of finding single-source shortest-paths in a graph 

generated by the given set of constraints. We also give without proof an important 

property of the single-source shortest-paths solution [12, 4]. The framework, that we 

develop in this section, will he used extensively in the rest of this thesis. 

We consider the problem of solving the following system of difference constraints. 

Problem DC (Difference Constraints) Let S be a set of m linear constraints of the 

form 

:rj - .Ti ::.:; aij (S) 

on the n unknowns x1, x2, ... , :rn, where aij are given real constants. Determine a set 

of feasible values for the unknowns Xi or determine that no such set exists. D 



16 CHAPTER 2. MINIMUM LATENCY PIPELINING 

The given system S induces an edge-weighted graph G = (V, E, w ). The vertex set 

V is defined as 

V = { v Xv is an unknown of S}. 

The edge set E is defined as 

E = { u--> v : Xv - Xu ~ auv is a constraint of S}. 

Finally, for every edge u ~ v E E we have 

w(e) = auv· 

Now, we define the single-source shortest-paths problem on an edge-weighted graph 

G = (V, E, w) from a source-vertex .s E V. 

Problem SSSP (Single-Source Shortest-Paths) Let G = (V, E, w) be an edge-weighted 

graph and let s be a vertex in V. Determine a value l ( v) for each vertex v E V such 

that 

l(v) = min{w(p) : s ~ v}. D 

We give without proof three important lemmata [12]. 

Lemma 2.2 Problem DC is solvable if and only if Problem SSSP is solvable. D 

Lemma 2.3 Problem SSSP is solvable if and only if there exist no directed cycles C 

in G with weight w( C) < 0. D 

Lemma 2.4 Let S be a system of ni difference constraints of the form 

on then unknowns :r 1 , x2, ... , :i: 11 , where a;j ar·e given real constants. Let G = (V, E, w) 

be the graph induced by S, and let l ( v) be the length of the shortest path in G from 

the source s E V to vertex v. Then the assignment xv = l( v) for each vertex v E V 

satisfies the constraints in S and maximizes Xv - Xs for every vertex v EV. D 

These three lemmata will be used extensively in the correctness proofs of the 

algorithms that we present in the rest of the thesis. 



2.3. THE ALGORITHM 17 

2.3 The Algorithm 

This section introduces the problem of minimum latency pipelining of combinational 

circuitry and presents an efficient algorithm for its solution. The algorithm terminates 

in O(E) steps, and its performance is optimal within a constant factor. Its running 

time is a significant improvement over the O(V E) running time of the previously 

known techniques for the general retiming problem. 

In a combinational circuit all register counts are zero and thus the circuit graph is 

acyclic. We consider the circuit to have one input interface VJ and one output interface 

vo. By retiming a combinational circuit G, we can produce a pipelined circuit Gr which 

achieves a shorter clock-period at the cost of introducing a latency of r(VJ) - r(vo) 

clock ticks for signals to propagate from the input interface VJ to the output interface 

vo. 

The problem of minimum latency pipelining is defined as follows: Given a combi

national circuit G = ( V, E, d, 0) with input interface v I and output interface vo, and 

a positive integer c, find a legal 1·eliming r of G such that <I>( Gr) s; c and the latency 

r( v I) - r( vo) of the ·re timed circuit is as small as possible. Stated in mathematical 

terms, we want to solve the following problem: 

Problem MLP (Minimum Latency Pipelining) Given a combinational circuit 

G = (V, E, d, 0) with input interface VJ and output interface vo, determine a value 

r(v) for each vertex v EV that minimizes r(vr)- r(vo) subject to 

r(v)- r(u) s; 0 (2.3) 

for every edge ·u _:. v E E, and 

r( v) - r( u) s; -1 (2.4) 

for all vertices u, v E V such that D( u, v) > c. D 

According to Section 2.2, Problem lvILP can be viewed as a single-source shortest-paths 

problem on the constraint graph Ge = (Ve, E 0 we), which is defined in the following 

manner. 

v 
' 



18 CHAPTER 2. MINIMUM LATENCY PIPELINING 

{u -t v : r(v)- r(u) is constrained by (2.3) or (2.4)}, 

{ 
0 if r( v) - r( u) is constrained by (2.3), 
-1 if r( v) - r( u) is constrained by (2.3). 

A feasible assignment of values to the unknowns of Problem MLP can be obtained in 

O(V E) steps by using the general techniques described in Section 2.1. 

We present Algorithm MLP, which yields a solution to Problem MLP in O(E) 

steps. The running time of the algorithm is optimal within a constant factor. For each 

vertex v in the graph, Algorithm IvILP maintains its stage Ir( v )I and its accumulated 

delay 8( v ). The stage of a vertex v is the number of registers along any path from the 

input interface VJ to the vertex v. The accumulated delay of a vertex vis the longest 

delay of a signal coming into that vertex from a preceding register. The algorithm 

operates as follows: 

Algorithm MLP (Min'imun1 Latency Pipelining) Given a combinational circuit G 

and a desired clock-period c, this algorithm determines a pipelined combinational 

circuit Gr with clock-period <I>( Cr) s; c and minimum latency. 

1. For each vertex v E \I, set r(v) +-- 0 and '5(v) +-- d(v). 

2. Visit the edges u ---+ v in topological sort order. For each edge u -t v do: 

2.1. If r(v) > r(u), then r(v) +- r(u). 

2.2. If 8(u) + d(v) > c and r(v);::: r(u), then r(v) +-- r(u)- 1. 

2.3. If b(u) + d(v) > 8(v) and r(u) = r(v), then 8(v) +-- 8(u) + d(v). 

3. For each edge u ~ v EE, set w,.(e) = w(e) + r(u)- r(v). D 

The idea behind Algorithm MLP is to visit the vertices of the graph keeping track 

of the longest propagation delay up to the vertex currently visited. New registers 

are introduced according to a greedy criterion: whenever the longest propagation 

delay exceeds the desired clock-period c, a pipeline stage is introduced. Visiting the 

edges in topological sort order ensures that whenever an edge is considered all the 

preceding edges in the graph have been taken into account. Step 2.1 of the algorithm 

ensures that no succeeding vertex belongs to a higher pipeline stage. Step 2.2 ensures 



2.3. THE ALGORITHM 19 

that whenever the longest propagation delay along a register-free path leading from a 

preceding vertex to the currently visited vertex exceeds the desired clock-period c, a 

new pipeline stage is introduced. Finally, step 2.3 ensures that once all the incoming 

edges of a vertex v have been processed, the maximum propagation delay along a 

register-free path leading from a preceding vertex to vertex v is maintained. 

Algorithm MLP terminates, since the number of edges is finite and it executes a 

finite number of operations per edge. In fact the algorithm runs quickly, as is shown 

by the following lemma. 

Lemma 2.5 Algor·ithm MLP tenninates in O(E) steps on a circuit G = (V, E, d, 0). 

Proof: Steps 1 and 3 require 8(1~ + V) steps. Sorting the edges of a directed acyclic 

graph in topological order requires O(E) time [4]. In step 2 each edge is visited 

exactly once and the number of operations is bounded by a constant. By the time the 

algorithm terminates, therefore, it has executed O(E) steps, assuming V:::;; E - 1. D 

In order to demonstrate the correctness of Algorithm MLP we proceed in two 

stages. First we show that Algorithm MLP yields a set of values for r(v) that sat

isfies (2.3) and (2.4). Then, we show that this set is a single-source shortest-paths 

solution in the constraint graph Ge, thereby ensuring, according to Lemma 2.4, that 

r(vo) - r(v1) is maximized. lt follows directly that the set of values r(v) is a legal 

retiming that minimizes the latency r(vI) - r(va). 

Lemma 2.6 Algorithm MLP yields a solution that satisfies (2.3}. 

Proof: Steps 2.1 and 2.2 of the algorithm change r(v). Both steps ensure that r(v) is 

only decreasing for every edge u ~ v in E. D 

Lemma 2. 7 Algorithm M LP yields a solution that satisfies (2.4). 

Proof: Assume for the sake of contradiction that for some pair of vertices ( u0 , uk), 

th . l 0 1 k-2 k-1 • h . ere exists a pat 1 p = u 0 --+ 1t 1 --+ ... --+ Uk-l --+ Uk m G wit propagation 

delay d(p) > c such that r(uk) - r(uo) > -1 or, equivalently, r(uo) :::;; r(uk)· The 

inequality r( uo) :::;; r( uk) and transitive application of inequality (2.3) imply that 

r(ui) = r('uj) for all vertices tt;, llj E p. In this case step 2.3 of the algorithm ensures 



20 CIIAPTER 2. MINIMUM LATENCY PIPELINING 

that 6(uk_1 ) + d(uk) 2:: d(p) which in turn implies that 6(uk_i) + d(uk) > c. When 

visiting vertex uk the algorithm detects this condition in step 2.2 and enforces r( Uk) > 
r( Uk- 1 ), which contradicts the fact that r( ui) = r( Uj) for all vertices Ui, Uj E p. D 

In order to show that the values r( v) given by Algorithm MLP are a single-source 

shortest-paths solution in the coitstraint graph Ge, we must prove two basic lemmata 

first. 

Lemma 2.8 At any point of the algorithm, we have d( v) ::; b'( v) ::; c. 

Proof: The relation d( v) ::; 8( v) clearly holds at any point of the algorithm, since 

initially d(v) = b'(v) and 8(v) is never decreased. 

Now, for the second part of the inequality, observe that b'(v) increases in step 2.3 

only. For the sake of contradiction assume that for some edge u --+ v the relation 

6( v) > c holds after the execution of step 2.3. It follows that the preconditions 

6( v) = b'( u) + d( v) > c and r( tl) = r( v) of step 2.3 must have been satisfied prior to 

its execution. But, from the immediately previous step 2.2 we have that r(u) > r(v), 

since 6(u) + d(v) > c, which contradicts the fact that r(u) = r(v). D 

Lemma 2.9 For every vertex v that has had all its incoming edges visited by the 

algorithm we have 6(v)::; cir(v)I + 8(v), where 6(v) denotes the maximum possible 

delay from VJ to v along any path in G. 

Proof: The proof is by induction on the vertices that have had all their incoming 

edges visited by the algorithm. fllitially, vertex VJ has had all its incoming edges 

trivially visited by the algorithm, since the indegree of VJ is zero, and r(v1) = 0. 

Since the longest path from v I to itself is the trivial path with no edges, we infer that 

~(v1) = d(v1). Also, we have that 8(vI) = d(v1). Therefore 6(v1)::; cir(v1)I + 6(v1) 

holds. 

Now, consider the inductive step. Since the edges are visited in topological sort 

order, whenever all the incoming edges of a vertex v have been visited all the incoming 

edges of the vertices u; with edges u; -. v have been visited as well. Assume for the 

sake of contradiction that 6(v) > cir(v)\ + 8(v) holds after having visited all the 

incoming edges Ui --+ v of vertl'X v. Then, we have: 

d(v)+max{6(u;): u;--+v EE}>cir(v)l+b'(v), (2.5) 



2.3. THE ALGORJTIIM 21 

which implies 

d(v) + max{clr(u;)I + o(ui) : Ui---+ v EE}> clr(v)I + o(v), (2.6) 

since .6..(u;) :$ cir(ui)I + o(u;) by the inductive assumption. Let the maximum in the 

left hand side of (2.5) occur for i = i'. Now, consider the three possible orderings of 

r(ui') and r(v): 

Case 1: r( u;1) < r( v ). This case is impossible, because steps 2.1 and 2.2 of the 

algorithm ensure that r(v) can only decrease. 

Case 2: r( u;1) = r( v ). In this case we have from (2.6): 

clr(v)I + o(v) < d(v) + max{clr(ui)I + o(ui) u;---+ v EE} 

= d(v) + cir(ui')I + o(ui') 

= d(v)+clr(v)l+o(ui') 

< rl(v) + clr(v)I + max{o(ui) u;---+ v EE} 

which implies that 

o(v)<d(v)+max{o(ui): Uj---+VEE}. 

But from step 2.3 we have d(v) + rnax{o(ui) : Ui ---+ v E E} 

contradiction. 

o( v ), which is a 

Case 3: r(1l;1) > r(v). ln this case we have lr(v)I ~ lr(u;1)I + 1, which implies 

clr(v )I > ci1·(u11 )I+ c 

> cir(11;1)l+b(u;1) 

= max{clr(ui)I + o(ui) : Uj---+ v EE}. 

Since o(v) ~ d(v) from Lemma 2.8, the last inequality implies 

clr(v)I + o(v);::: d(v) + max{clr(ui)I + o(ui) : Uj---+ v EE}, 

which contradicts inequality (2.6). D 

Now, using Lemma 2.9 we can prove that the values r(v) given by Algorithm 

MLP are the lengths of the shortest-paths in the constraint graph Ge from the input 

interface VJ. 



22 Clll\PTER 2. MINIMUM LATENCY PIPELINING 

Lemma 2.10 Let l(v) be the length of the shortest path in Ge from VJ to v. Then 

Algorithm MLP sets r(v) = l(v). 

Proof: Assume for the sake of contradiction that the length l( v) of the actual shortest 

path pin Ge satisfies /( v) < r( v) :S 0. This inequality implies that p traverses at least 

one -1 edge more than the shortest path indicated by Algorithm MLP. Consequently, 

there exists a path p from v I to v in G with propagation delay d(p) such that d(p) ~ 

cjl(v)I + 1, since d(v) ~ 1 for every vertex v E V. From Lemma 2.9, however, the 

maximum possible delay .6.( v) from v 1 to v along any path in G satisfies 

C.( v) < clr(v)l+b(v) 

< cir(v)I + c 

< c(ll(v)I - 1) + c 

cll(v)I 

< cll(v)I + 1, 

implying .6.( v) < d(p ), which is a contradiction. D 

Combining lemmata :2.4, :2.G, :2.7 and 2.10, we obtain the following theorem. 

Theorem 2.11 Algorithm /./!LP correctly solves Problem MLP. D 

This theorem completes the correctness proof of Algorithm MLP. 

In summary, in this chapter we presented and proved the correctness of a greedy 

strategy for pipelining combinational circuitry. The clock-period of the pipelined cir

cuit is guaranteed not to exceed a specified upper bound c and its latency is guaranteed 

to be minimal under the given clock-period constraint. The running time of the al

gorithm is directly proportional to the number of interconnections in the circuit and 

is optimal within a constant factor. The given procedure is used extensively as a 

subroutine of the algorithms in the following section. 



Chapter 3 

Minimum Clock-Period 
Characterization 

In this chapter we give a concise characterization of the minimum feasible clock-period 

of a circuit in terms of the maximum delay-to-register ratio of the directed cycles in the 

circuit graph. This characterization leads to improved algorithms for various retiming 

problems. 

The chapter is structured as follows. Section 3.1 introduces basic definitions that 

are used throughout the chapter. Section 3.2 gives an exact characterization of the 

minimum feasible clock-period for unit-delay circuits and Section 3.3 gives a range of 

D values for the minimum feasible clock-period of general circuits, where D is the 

maximum propagation delay of the circuit components. The previous ranges known 

for both cases had 8(V2 ) values. 

The algorithmic implica.tiom; of the minimum feasible clock-period characteriza

tions are given in the three subsections of Section 3.4. Section 3.4.l gives an O(E) 

algorithm for minimum clock-period pipelining of unit-delay combinational circuitry. 

The running time of this algorithm is optimal within a constant. An O(Elg D) algo

rithm for minimum clock-period pipeli11ing of general combinational circuitry is also 

presented in this section. Section :{.4.2 presents an O(min{V112 Elg(V D), VE}) algo

rithm for minimum clock-period retiming of unit-delay circuitry, and an O(V Elg D) 

algorithm for minimum clock-period retiming of general circuitry. Finally, Section 3.4.3 

gives an O(min{v1
/

2 Elg(\/W) lg(F D), V Elg(V D)}) algorithm for determining a re

timing of a general circuit such that the clock-period is approximately minimized. 

23 



24 CIIAPTEll 3. MJNI!l1U!vf CLOCK-PERIOD CHARACTERIZATION 

3.1 Preliminaries 

In this section we give some basic definitions that we will use throughout the rest of 

the chapter. 

Let G = (V, E, d, w) be a circuit graph. We denote by D the maximum propagation 

delay of the circuit components: 

D=max{d(v): vEV}. 

e0 e1 ek-2 ek-1 
We define the delay-to-register ratio R( C) of a cycle C = Vo --+ V1 --+ ... --+ Vk-1 --+ 

v0 in the circuit G as follows: 

I: d(v) 
R(C) = vEC . 

L w(e) 
eEC 

We denote by C*( G) the directed cycle in G with maximum delay-to-register ratio. 

By definition R(C*(G)) 2:' R(C) for every cycle CE G. 

A clock-period c is called frnsibfe for the circuit G if and only if there exists a 

retiming r of G such that <l>( G,.) :S c. Finally, we denote by <I> min( G) the clock-period 

of the retimed circuit G,. with the slllallest possible clock-period: 

<I>min(G) = rnin{<P(G,.) : r is a retiming of G}. 

3.2 Minimum Period for Unit-Delay Circuits 

In this section we relate the minimum clock-period <I>min(G), that we can obtain by 

retiming a given unit-delay circuit G = (V, E, l, w), with the maximum delay-to

register ratio R( C*( G)) of the cycles C in the circuit graph G. Specifically, we show 

that <I>min(G) = fR(C"(G))l 

The result presented in this section relies on a retiming theorem in [17], which 

gives a characterization of when a unit-delay circuit has a clock-period less than or 

equal to c. The theorem is phrased in terms of the graph G - 1/c, which is defined as 

G-1/c = (V,E,d,w') where w'(c) = w(e)- l/c for every edge e EE. Thus, G-1/c 

is the graph obtained from G hy su htracting 1 / c from the weight of each edge in G. 



3.3. MINIMUM PERIOD FOR GENERAL CIRCUITS 25 

Theorem 3.1 Let G = ( 1', E, 1, w) be a unit-delay synchronous circuit, and let c be 

any positive integer. Then ther·e is a retiming r of G such that <I>( Gr) ~ c if and only 

if G - 1/ c contains no cycles having negative edge-weight. D 

We can use Theorem 3.1 to characterize the minimum clock period <I>min(G) in 

terms of the maximum delay-to-register ratio R(C*(G)). 

Theorem 3.2 Let G = (\!, E, 1, w) be a unit-delay synchronous circuit with maximum 

delay-to-register ratio R( C*( G)). Let <I> min( G) denote the minimum clock-period that 

can be obtained by r'Ctiming G. Then 

11min(G) = f R(C*(G))l. 

Proof: According to Theorem 3.1, a clock-period c is feasible if and only if G-1/c has 
· · h 1 ''l f" l C eo e1 ek-2 ek-1 no negat1ve-we1g t eye es. l rns, or every eye e = v 0 ---+ v 1 ---+ • • • ---+ Vk-1 ---+ Vo 

in G and any feasible clock-period c we have: 

k-1 

L (w(e;) - 1/c) 2'. 0. 
i=O 

Equivalently: 
k-I 

c 2'. k/ L w(e;). 
i=O 

The right hand side of the last inequality equals R(C), by definition, and since this in

equality holds for every cycle CE Git must also hold for C*(G). Thus c 2'. R(C*(G)). 

Now, the integrality of c implies that c 2'. f R(C*(G))l, and since c 2'. <I>min(G) > 
f R(C*(G))l for every feasible period c, we have that <I>min(G) = f R(C*(G))l D 

3.3 Minimum Period for General Circuits 

In this section we relate the millimum clock-period <I> min( G), that we can obtain by 

retiming a given general circuit G = (\f,E,d,w), with the delay-to-register ratios of 

the cycles in the circuit graph G au d the propagation delays of the circuit components. 

Specifically, we show that 



26 CHAPTER 3. MINIMUM CLOCK-PERIOD CHARACTERIZATION 

where D denotes the maximum propagation delay of the elements in the circuit, and 

C*(G) denotes the cycle in G with maximum delay-to-register ratio R(C*(G)). Ob

serve that both the lower allCl the upper bound are independent of the size of the 

circuit. 

There is no counterpart of Theorem 3.1 known for general circuits. This is the 

reason why we cannot obtain an exact characterization of <I> min( G) for general circuits 

in a manner similar to that of the previous section for unit-delay circuits. However, 

we are still able to give tight bounds for <I>min(G), which are independent of the size 

of the circuit. 

The next theorem gives a necessary condition for a circuit to have a clock-period less 

than or equal to c, and will he used to derive a lower bound for <I>min(G). The theorem 

is phrased in terms of the graph G - d/c, which is defined as G - d/c = (V, E, d, w'), 

where w'(e) = w(e)- d(v)/c for every edge u _:.. v EE. 

Theorem 3.3 Let G = ( \/, E, d, w) ue a synchronous circuit, and let c be any positive 

integer. If there is a retiminu r of G l:!uch that <I>( Gr) ::::; c then G - d/ c contains no 

cycles having negative cdue-wciuht. 

Proof: Assume there exists a rPti ming r of G such that <I>( Gr) ::::; c. Consider any cycle 

C G r. . f' I e 0 e 1 ek-2 ek-1 • h l E r· .t'Or every register- ree pat 1 ]J = Vo --> v1 --> ... --> Vk-1 --+ Vk m t e eye e 

we have L:7=o d( Vi) ::::; c. Let w,. ( C) = l:::e; EC Wr ( e;) be the number of registers in C. 

Then, by adding the contributions from the wr( C) register-free paths in C, we get 

L d(vi) < c L Wr(e;) 
v,EC e,EC 

or, equivalently, 

L w,.(ei) - L d(v;)/c ~ 0. 

Now, recall that wr( e) = w( e) + r( 11) - r( v) for every edge u _:.. v E C. Consequently, 

the sum over the edges in C tele8copes, yielding 

L w(ei)- L d(v;)/c~ 0. 
t:,EC: v,EC 

Since this statement is true for every cycle CE G, we conclude that G - d/c contains 

no cycles with negative edge-weight. D 



3.3. MINIMUJ\f PERIOD FOR GENERAL CIRCUITS 27 

As a direct consequence of Theorem 3.3, we have the following lower bound on the 

minimum feasible clock-period of a general circuit: 

Corollary 3.4 Let G = (V, E, d, w) be a synchronous circuit with maximum delay-to

register ratio R( C*( G) ), and let <!>min ( G) be the minimum clock-period we can obtain 

by retiming G. Then 

IR( C~( G))l s; <I> min( G). 

Proof: For any feasible clock-period c, Theorem 3.3 implies 

L (w(e)-d(v)/c)~O 

for every cycle CE G. Equivalently, c ~ R(C) for every cycle CE G, which yields 

c ~ R(C*(G)) for C = C*(G). Since this lower bound holds for every feasible clock

period, we have R( C*( G)) :::_;; <l> 111 ;n( G). Given that the propagation delays of the 

circuit components are integers we infer that <I> min( G) must be an integer as well. 

Therefore jR(C*(G))l s; <I>min(G). D 

Observe that the converse of Theorem 3.3 is not true. Specifically, given a circuit 

G = (V, E, d, w), if C- d/c has no 11egative weight cycles it does not follow that there 

exists a retiming r of the circuit such that <I>(Gr) s; c. The validity of this statement 

can be demonstrated most easily with the help of an example. Consider the circuit of 

Figure 3.1, which is c011figured as a ring with three registers and four computational 

elements. It is impossible to get a retiming with clock-period c = 3, even though 

R( C*( G)) = 3, since there is only one register available to be placed among the three 

elements of delay 2. 

Even though the con verse of Theorem 3.3 is not true, we can still find an upper 

bound for <I>min(G) in terms of tl1e maximum delay-to-register ratio R(C*(G)) in the 

circuit and the maximum propagation delay D of the circuit components. 

Lemma 3.5 Let G = ( \/, E, d, w) be a synchronous circuit with maximum delay-to

register ratio R(C*(G)), and !el <I>mtn(G) be the minimum clock-period we can obtain 

by retiming G. Then 

<l>m,,,(G) s; jR(C*(G))l + D. 



28 CHAPTER 3. MINIMUM CLOCK-PERIOD CHARACTERIZATION 

Figure 3.1: A synchronous circuit G with three registers and four computational ele
ments. The propagation delay of each element is indicated in the vertex which repre
sents it. The circuit cannot be retirnecl to have period c = 3, even though G-d/c has 
no negative weight cycles. 

Proof: We will prove that <Pmin(G) :S: IR(C*(G))l + D by showing that G can be 

retimed to have clock-period c = IJl(C*(G))l + D. 

According to the ma.tltematical programming formulation of retiming, which was 

given in Theorem 2.1, the circuit G can be retimed to achieve period c if we can find 

a set of values r( v) such that 

r(v) - r(u) :S: w(u-+ v) (3.1) 

for every edge u -+ v E E, and 

r(v)- r(u):::; W(u,v)-1 (3.2) 

for all vertices u, v such that D(11, v) > c. Let 

Ew = {u - v: u,v E \f, r(v)- r(u) is constrained by (3.2)}. 

The constraint sets (3.1) and (3.2) induce the constraint graph Ge= (V,EUEw,wc), 

where 

{ 
w(u-+v) U-+vEE, 

w(n-v)-
c - Hl(u,v)-1 u-+vEEw. 

According to Lemma 2.2 and Lemma 2.3, the circuit G can be retimed to achieve 

clock-period <P(Gr):::; c exactly when G'c has no negative weight cycles. Let us assume 

for the sake of contradiction that Ge does have a negative weight cycle c- E Ge, 

which consists of two sets of edges E~ and E~, with Ei S: E, E~ S: Ew, IEil = n1 and 

IE~I = n2. Since the edge-weights are integral we have 

L Wc(e) + L Wc(e) :S: -1. (3.3) 
cEE; eEE~ 



3.3. MINIMUM PERIOD FOR GENERAL CIRCUITS 29 

Let 

where u ~ v denotes the critical path in G from u to v. Then, according to inequal

ity (3.3), we have: 

L w(e) + L w(e) L w( e) + L w( e) - n2 + n2 

L w(e) + L wc(e) + n2 
eEE{ eEE~ 

L Wc(e) + L wc(e) + n2 

eEE{ eEE~ 

< n2 - 1. 

Now, for the delay-to-register ratio of the cycle which consists of the edges E~ U E~ in 

G we have: 

Ee E'd(u) +Le E"d(.u) u--+vE 1 u--+ v E 
2 > E e E' w( e) + L e E" w( e) U--+VE I U--+ vE ' 2 

> 

> 

> 

"""" e d(u) + """" e d(u) L.,u--+vEE{ L.,u--+vEE~' 

n2 - 1 

Eu!..vEE~' d( U) 
n 2 - 1 

n2(c - D) 

n2 - 1 

n2n~ 1 \R(C*(G))l 

___!!2__ R( C*( G) ). 
n 2 - 1 

Since n2f(n2 - 1) > 1, we conclude that there exists a cycle in G with delay-to

register ratio greater than the maximum delay-to-register ratio R( C*( G) ), which is a 

contradiction. Therefore, Ge has no negative weight cycles and c = \R(C*(G))l + D 

is a feasible clock-period. Consequently <I>min(G)::; \R(C*(G))l + D. D 

Corollary 3.4 and Lemma 3.5 imply the following. 

Theorem 3.6 Let G = ( V, E, d, w) be a synchronous circuit with maximum delay-to

register ratio R( C*( G)), and let <Pmin ( G) be the minimum clock-period we can obtain 

by retiming G. Then 

\R(C*(G))l ~ <I>min(G) ~ \R(C*(G))l + D. D 



30 CHAPTER 3. MINIMU!vI CLOCK-PERIOD CHARACTERIZATION 

Circuit Type Transformation Running Time 
UD Combinational Min Clock-Period O(E) 
Combinational Min Clock-Period O(Elg D) 

UD Sequential Min Clock-Period O (min { ~~2 
Elg(VW) } ) 

Sequential Min Clock-Period O(VElg D) 

Sequential Approx Min Clock-Period 
( . V 112 E lg(VW) lg(V D) 

O mm VElg(VD) 

Figure 3.2: Summary of problems and running times of corresponding algorithms. The 
initials UD denote unit-delay circuitry. 

3.4 Algorithmic Implications 

In this section we study the algorithmic implications of the minimum clock-period 

characterization for a variety of rctiming problems. We use the ideas of the previous 

sections to develop fast algorithms for minimum clock-period pipelining of combina

tional circuitry. We show how to obtain improved running times for clock-period 

minimization of sequential circuits, using known graph-theoretic algorithms. Finally, 

we give a faster algorithm for appmximate clock-period minimization of general se

quential circuits. The problems listed in this section along with the running times of 

the corresponding algorithms are illustrated in Figure 3.2. 

3.4.1 Minimum clock-period pipelining 

We use the ideas of the previous sections to develop fast algorithms for minimum 

clock-period pipelining of combinational circuitry. Specifically, we give an O(E) op

timal algorithm for minimum clock-period pipelining of unit-delay combinational cir

cuitry and an O(E lg D) algorithm for minimum clock-period pipelining of general 

combinational circuitry. 

Let us consider unit-delay circuitry first. The problem of minimum clock-period 

pipelining is defined as follows: Given a unit-delay combinational circuit G = (V, E, 1, 0) 

and a positive integer l, determine a rctiming r such that Gr is a pipelined combina

tional circuit with latency no grrnte1 than l and with minimum clock-period. The fol

lowing lemma characterizes the minimum feasible clock-period in terms of the longest 

propagation delay 6. of a path in the circuit and the latency l. 

>} 



3.4. ALGORITHMIC IMPLICATIONS 31 

Lemma 3.7 Let G = (V,E, 1,0) be a unit-delay combinational circuit with input 

interface v1 and output interface vo. Let 6 be the number of vertices in the longest 

path pt:;. = v1""" vo in G, and let l be a positive integer. Then the minimum clock

period <I> min( G) for any pipelined version of G with latency l is 

<I> min( G) = I l ~ 1 l · 
Proof: Any retiming r of the circuit that gives a pipelined version of the circuit with 

latency l satisfies constraints (2.1) and (2.2) as well as a latency constraint. Specifically, 

it satisfies 

r(v) - r(u) ::=; 0 

for every edge u ..:.+ v in E, 

r( v) - r( u) ::=; -1 

for all vertices u, v E V such that D( u, v) > c, and 

T(vt)- r(vo) ::=; l. 

This set of inequalities induces the constraint graph Ge= (Ve, Ee, we) and accord

ing to Lemma 2.2 and Lernma. 2.3 it is feasible if and only if there exists no negative

weight cycle in Ge· We shall use this statement to show that <I>min(G) = f ~/(l + l)l. 

First we show that f 6/(/ + l)l is a lower bound for <I>min(G). Let r be a feasible 

retiming of the circuit with latency l and clock-period c. Every path in Gr from v1 

to vo has l + 1 register-free parts. Consider the longest such path pt:;. with delay ~. 

Adding up all the contributions yields 6 ::=; c(l + 1), which implies c 2: ~/(l + 1). 

Therefore, <I>min(G) ~ 6/(l + 1), or ipmin(G) 2: f6/(l + l)l, since <I>min(G) must be 

an integer. 

Now, we prove that I 6/(/ + 1)1, the lower bound of <I>min(G), is a feasible clock

period, thus establishing the desired equality. In order to prove feasibility of the lower 

bound it suffices to show that Ge has no negative-weight cycles for c = f ~/(l + l)l. 

Equivalently, since the maximum number of -1 edges in any path is 

l 6 - 1 J 
f6/(l+l)l , 

it suffices to show that 

l 6 - 1 J 
l- f6/(l+l)l 2:0. 



32 CHAPTER 3. !11INI1\1 UM CLOCK-PERIOD CHARACTERIZATION 

We have 

l 6 - 1 J 
\6/(l+l)l 

< l6~z-+\)J 
l(l + 1)(6 - 1)/6J 

l(l + 1)(1- 1/6)J 

ll+l-(l+l)/6J 

l, 

since (l + 1)/6 :'.S 1. Therefore, Ge has no negative-weight cycles, which implies that 

\6/(l + l)l is a feasible clock-period in addition to being a lower bound for «Pmin(G). 

Therefore «Pmin(G) = \6/(/ + l)l 0 

Now, we give the following algorithm for the problem of minimum clock-period 

pipelining. The correctness of the algorithm follows from Theorem 2.11 and Lemma 3. 7. 

Algorithm UDMPP (Unit-Delay Minimum Period Pipelining) Given a unit-delay 

combinational circuit G = (1/, E', 1,0) with input interface VJ and output interface vo, 

and a positive integer l, determine a retiming r such that Gr is a pipelined combina

tional circuit with latency l and minimum clock-period. 

1. Determine the number of vertices 6 in the longest path Pt. in G from VJ to vo. 

2. Run Algorithm MLP on G with clock-period \ 6/(l + l)l 0 

The algorithm terminates in 0( E) steps, since step 1 is a depth-first-search in the 

graph and Algorithm MLP runs in 0( E) steps. 

Now, we consider the case of general combinational circuitry. The problem of 

minimum clock-period pipelining is defined in an analogous way: Given a unit-delay 

combinational circuit G = ( \/, E, d, 0) und a positive integer l, determine a retiming 

r such that Gr is a pipelined co1nbinational circuit with latency no greater than l and 

minimum clock-period. The following lemma characterizes the minimum feasible clock

period in terms of the delay 6 of the longest path in the circuit, the latency l, and 

the longest component delay D. 

Lemma 3.8 Let G = ( V, E, d, 0) be a combinational circuit with input interface v J 

and output interface vo. Let 6 be the delay of the path Pt. = VJ "'-+ vo in G with 



3.4. ALGORITHMIC IAiPLICATIONS 33 

the longest propagation delay, and let l be a positive integer. Then the minimum 

clock-period <I> min( G) fo·r any pipelined ver·sion of G with latency l satisfies: 

I l ~ 11 ~ <I>min(G) ~ I l ~ 11 + D, 

where D is the longest component delay in the circuit. 

Proof: Any retiming r of the circuit that gives a pipelined version of the circuit with 

latency l satisfies constraints (2.3) and (2.4) as well as a latency constraint. Specifically, 

it satisfies 

r·(v) - r(u) ~ 0 

for every edge u _:_.. v in E, 

r(v)- r(u) ~ -1 

for all vertices u, v E 11 such that D( 1L, v) > c, 

First, we derive the lower bound of the inequality. Consider the constraint graph 

Ge induced by the above constraints. Let r be a feasible retiming of the circuit with 

latency l and clock-period c. Every path in Gr from VJ to va has l + 1 register-free 

parts. Adding up all the delays of the register-free parts along the longest such path 

Pt:. yields!::,. :'.S c(l + 1), which implies c ~ !::,./(l + 1). Therefore, <I>min(G) ~!::,./(I+ 1), 

or <I>min(G) ~ f !::,./(l + l)l, since <I>min(G) must be an integer as a consequence of the 

fact that d( v) E Z for every vertex v E 11. 

Now, we establish the upper bound of the inequality by proving that f t::,,/(l + 1)1 + 
D is a feasible clock-period. In order to achieve this it suffices to show that Ge has no 

negative-weight cycles for c = f .0./(l + 1 )l The maximum number of -1 edges in any 

path is 

l (1.0. / (l + ~ )l ~ D) - D J - l It::,,~ l-+ \) 1 J . 
But we have already shown in Lemma 3.7 that 

l t::,, - 1 J 
l ~ ft./(l+ l)l . 

Hence Ge has no negative-weight cycles. D 



34 CHAPTER 3. MINIMUM CLOCK-PERIOD CHARACTERIZATION 

We give an O(Elg D) algorithm for minimum period pipelining of combinational 

circuitry. Its correctness follows from Theorem 2.11 and Lemma 3.8. 

Algorithm MPP (Minimum Period Pipelining) Given a combinational circuit G = 
(V, E, d, 0) with input interface VJ and output interface vo, and a positive integer l, 

determine a retiming r such that Gr is a pipelined combinational circuit with latency 

l and minimum clock-period. 

1. Determine the delay .0. of the longest path pt:;. in G from VJ to vo. 

2. Binary search among the D possible values of <I> min( G) applying Algorithm MLP 

on G. D 

Step 1 is a depth-first search in G and Step 2 performs O(lg D) applications of Algo

rithm MLP. Therefore, Algorithm MPP terminates in O(E lg D) steps. 

3.4.2 Minimum clock-period retiming 

In this section we study the implications of the minimum period characterization for 

retiming of sequential circuitry. Specifically, we consider the problem: Given a sequen

tial circuit G = (V,E,d,w), determine a retiming r such that <I>(Gr) is minimum. 

We consider unit-delay circuitry first. In order to compute the minimum feasible 

period of the circuit we can use Karp's O(V E) algorithm for finding minimum mean 

cycles in a graph [11]. Then, using Bellman-Ford's shortest-paths algorithm on G-1/ c 

we can find a retiming r such that <Ii( Gr) is minimum, according to Theorem 3.1. The 

overall running time is O(V E ), which is an improvement over the best previously 

known strongly polynomial algorithm by a lg V factor, since it eliminates the need for 

binary search. Using sea.ling we obtain an O(V112 Elg(VW)) algorithm for the same 

problem, where 1¥ is the maximum register count among the edges. This algorithm 

utilizes Orlin-Ahuja.'s O(V 112 E lg(VW)) algorithm for minimum mean cycles [20], fol

lowed by Gabow-Tarjan's O(V 112 Elg(VW)) sea.ling algorithm for shortest-paths [8]. 

For general circuits we obtain an O(V Elg D) running time by binary searching 

with the general rctiming algorithm described in [17] the range of the D possible 

values for the clock -period of the circuit. An interesting open question is whether we 

can obtain a better running time by using scaling. 



3.4. ALGORITHMIC IMPLICATIONS 35 

3.4.3 Approximately minimum clock-period retiming 

In this section we give an algorithm for determining a retiming of a general circuit 

such that the clock-period is approximately minimized. Specifically, we consider the 

following problem: Given a sequential circuit G = (V,E,d,w) determine a retiming r 

such that <I>( G1.) ~ <I> min( G) + D ~ 2<Pmin( G), where D is the maximum propagation 

delay of the circuit components. We show that using scaling this problem can be solved 

faster than minimum clock-period retiming by a factor of V112 /(lg(VW) lg(V D)). 

The algorithm for approximately minimum clock-period retiming is based on the 

lemma that follows. We denote by G - d / c the graph with vertex set V, edge set E 

and edge weight w(e)- d(v)/c on each edge u ~ v EE. 

Lemma 3.9 Let G = (V, E, d, w) be a circuit graph with maximum delay-to-register 

ratio R(C*(G)) and let <Pmin(G) be the minimum clock-period we can obtain by retim

ing G. Moreover, let n = jR(C*(G))l, and let l(v) be the solutions of a single-source 

shortest-paths problem on G-d/n. Then, the assignment r( v) = fl( v )l for each vertex 

v E V is a retiming of G such that 

<P(G,.) ~ <Pmin(G) + D. (3.4) 

Proof: Nate that the shortest-paths lengths l ( v) are well-defined, since G-d/ IR( C*( G) )l 
has no negative-weight cycles. In order to prove that r(v) = fl(v)l is a legal retiming 

with clock-period <I>(G,.) :::; <I>min(G) + D, we show that it satisfies constraints (2.1) 

and (2.2) with c = IR(C*(G))l + D. Then, we conclude inequality (3.4) directly from 

Corollary 3 .4. 

First, we prove that r(v) = ll(v)l for each v EV satisfies constraints (2.1). For 
e 

every edge u ___,. v we have : 

ll(v)l - ll(u)l < fl(v)- l(u)l 

< r w( e) - d( v) In l 

< fw(e)l 

w(e), 

since ix - Yl:::; lxl - ivl for every real x,y, and w(e) is an integer. Therefore, fl(v)l 
satisfies (2.1). 



36 CHAPTER 3. MINIM UM CLOCK-PERIOD CHARACTERIZATION 

Now, we prove that the assignment r(v) = fl(v)l for each v E V satisfies con-

( ) 
ea ei ek-2 ek-I • h d 1 straints 2.2 . Consider any path p = u0 __., u1 __., . . . __., Uk-I __., Uk w1t e ay 

L:f=o d( ui) > c. For this path we have: 

l(uk) - l(u0 ) ~ (~ w(e;))- (t. d(:i)) 

(~ w(e;)) _ (t, d~i)) + d(:o) 

< (~ w(e;)) _ (c + 1): d(uo) 

< (~ ( ·)) _ fR(C*(G))l + D + 1- d(uo) 
~ w e1 f R(C*(G))l 

< (~ w(ei)) - 1, 

since D + 1 - d( uo) ~ l. Therefore, 

fl('uk)l - fl(uo)l < fl(uk)- l(uo)l 

r (~ w(e;)) - 11 

(~w(e;))-1, 

which implies that fl( v )l satisfies constraints (2.2). 

Therefore, the assignment of lead fl(v)l to each vertex v EV yields a legal retim

ing with clock-period <I>(G,.):::; ffl(C*(G))l + D. From Corollary 3.4 it follows that 

cI>( Gr) ~ <I> min( G) + D. D 

The algorithm for approximately minimum clock-period is based on Lemma 3.9 

and it proceeds as follows: 

Algorithm ApproxCPM ( Appro:rimate Clock-Period Minimization) Given a circuit 

G = (V,E,d,w) with maximum delay-to-register ratio R(C*(G)), minimum feasible 

clock-period <Pmin( G) and maximum component delay D, determine a retiming r of 

the circuit, such that <I>(G,.):::; f R(C*(G))l + D:::; <Pmin(G) + D. 

1. Compute n = f R( C*( G) )l by binary searching in the range [1, ... , VD]. 



3.4. ALGORITHMIC IMPLICATIONS 37 

2. Let l( v) be the lengths of the shortest-paths in G - d/ n from some source vertex 

s EV. 

3. Set r( v) = fl( v )l, for every vertex v E V. 0 

Step 1 of the algorithm binary searches for the smallest integer n, which exceeds the 

maximum delay-to-register ratio R(C*(G)). This ratio is positive and cannot exceed 

VD, since the maximum propagation delay of the circuit components is D and since the 

longest simple path in the circuit has at most V vertices. Each one of the O(lg(V D)) 

iterations of the binary search checks for negative-weight cycles in G -d/n. The value 

of f R( C*( G) )l equals the smallest integer n in the range that induces no negative

weight cycles in G - d/n [12]. Negative-weight cycles can be detected in O(V E) steps, 

using Bellman-Ford's algorithm [12], or in O(V 112 Elg(VW)) steps, where Wis the 

maximum register count along any connection in the circuit, using Gabow-Tarjan's 

shortest-paths algorithm [8]. Step 2 requires a single-source shortest-paths algorithm 

and Step 3 terminates in O(l') steps. Step 1 of the algorithm dominates the total 

running time yielding an O(min{1f 1/ 2 £lg(VW)lg(VD), VElg(VD)}) running time 

overall. 

In summary, in this chapter we presented a novel and concise characterization of 

the minimum clock-period, that can be obtained by retiming a synchronous circuit 

G, in terms of the maximum delay-to-register ratio of the cycles in the circuit graph 

and the maximum propagation delay of the circuit components. Based on the ideas 

behind this characterization, we gave an optimal algorithm for optimal pipelining of 

unit-delay combinational circuitry and an efficient algorithm for optimal pipelining of 

general combinational circuitry. We also gave improved algorithms for minimum clock

period retiming of unit-delay and gcueral circuitry. Finally, we described a technique 

which yields a retiming with clock-period that does not exceed the minimum by more 

than a factor of 2 and is asymptotically faster than the known algorithms for minimum 

clock-period retiming. 



Chapter 4 

The Closed Semiring Structure 
of Retiming 

This chapter investigates group-theoretic properties of retiming on unit-delay circuitry. 

Specifically, we show that retirning of unit-delay circuitry can be described in terms 

of a closed semiring. The three sections of this chapter are organized as follows. In 

Section 4.1 we review the notion of a closed serniring. In Section 4.2 we construct the 

closed semiring, that captures the structure of unit-delay circuitry retiming. Finally, in 

Section 4.3 we utilize the additive and multiplicative operations of the closed semiring 

in order to design an O(V E) algorithm for unit-delay circuitry retiming. 

4.1 Preliminaries 

In this section we review the notion of a closed semiring. A more detailed exposition 

can be found in [4]. 

Let S be a set of clements, and let EB and® be binary operations on S. A system 

(S, EB,®, O, 1) is a closed semiring if it satisfies the following properties: 

1. (S, EB, 0) is a morwid: 

• Sis closed under EB: a EB b E S for all a, b E S. 

• EB is associative: (a EB b) EB c = a EB ( b EB c) for all a, b, c E S. 

• 0 is an identity element for EB: a EB 0 = a for all a E S. 

2. (S, ®, 1) is a monoid: 

38 



4.2. THE CLOSED SEMIRING CONSTRUCTION 39 

• Sis closed under ®: a 0 b E S for all a, b E S. 

• ® is associative: (a ® b) ® c = a ® ( b ® c) for all a, b, c E S. 

• 1 is an identity element for ®: a® 1 =a for all a E S. 

3. 0 is an annihilator: 0 ® a = 0 for all a E S. 

4. E9 is commutative: a E9 b = b E9 a for all a, b E S. 

5. E9 is idempotent: a EB a = a for all a E S. 

6. ®distributes over (}l: a (b Eb c) =(a® b) EB (a® c) for all a,b, c ES. 

7. For any infinite, countable sequence a 1 , .•• , a;, ... the sum a 1 EB ... EB ai EB ... 

exists and is unique. Associativity, commutativity, idempotence applies to finite 

as well as infinite sums. 

8. ® distributes over countably infinite sums. 

4.2 The Closed Semiring Construction 

In this section we present the closed semiring construction which captures unit-delay 

retiming on the original circuit graph. 

We define the set S as follows: 

S={(r,d): rEN,dE{O,l, ... ,c-l}}U{oo,oo}. 

We denote the additive operation by MIN and define it as follows: 

where 

and 

if 7'1 ::; 7'2' 

if r1 > r2; 

{ 

d1 if r1 < r2, 
I(d1, d2; r1, r2) = max{d1, d2} if r1 = r2, 

d2 if r1 > r2. 

We denote the multiplicative operation by 8 and define it as follows: 



40 CHAPTER 4. THE CLOSED SEMIRING STRUCTURE OF RETIMING 

where 

d d 
_ { (di + d2) mod c if di and d2 are finite, 

i +c 2 - 'f d d · · fi · oo l 1 or 2 is m mte; 

and + is the ordinary addition between integers. 

The identity element for the additive operation is 0 ~f ( oo, oo ). 

The identity element for the multiplicative operation is 1 ~f (0, 0). 

Theorem 4.1 The system (S, MIN, 8, 0, 1) is a closed semiring. 

Proof: We prove the theorem by showing that the system satisfies all the properties 

of a closed semiring. 

1. (S, MIN, 0) is a monoid. The following properties hold: 

• Closedness under JvlIN. Obvious. 

• Associativity of 8. We must show that 

((r1,di) MIN (r2,d2)) ~fiN (r3,d3) = (r1,d1) MIN ((r2,d2) MIN (r3,d3)). 

( 4.1) 

The left hand side of equation (4.1) can be rewritten as 

The right hand side of equation (4.1) can be rewritten as 

Since min { { r1, r2}, r3} = min { ri, { r 2, 7'3}}, the first coordinates of the two sides 

are clearly equal. For associativity to hold, it remains to show that 

I(I(di,d2; r1,r2),d:i; min{r1,r2},r3) = I(di,I(d2,d3; r2,r3); ri,min{r2,r3}). 

( 4.2) 

Applying the definitions of the opera.tions to both sides of equation ( 4.2) we 

obtain the same expression: 

if Tj < Tj, Tk, 

if r; = Tj < rk, 

if r 1 = r2 = r3, 

for distinct i, j, k E { 1, 2. 3}. Therefore, MIN is associative. 



4.2. THE CLOSED SEMIRING CONSTRUCTION 41 

• 0 is an identity element. We have 

(r,d) MIN (oo,oo) = (oo,oo) MIN (r,d) 

= (min { r, oo} ,I ( d, oo ; r, oo)) 

= (r, d). 

2. (S, 8, 1) is a monoid. The following properties hold: 

• Closedness under 8. Obvious. 

• Associativity of(:). We must show that 

((a,b)C:J (r,d))8 (e,J) = (a,b)8 ((r,d)8 (e,J)). (4.3) 

If one of the pairs equals (oo,oo) the relation holds. In general, now, the left 

hand side of equation ( 4.3) equals 

(a+r+e- (b+d)clivc - (J+(b+d)modc)divc,(b+d+J)modc) 

and the right hand side of equation ( 4.3) equals 

(a+ r + e - (f + d) div c - (b + (J + d) mod c) div c, (b + d + J) mod c). 

In order to prove associativity it remains to show that 

(b+d)divc + (J + ( b+ d) mod c )dive = (J +d)divc + (b+(J +d)modc)divc. ( 4.4) 

The left hand side of equation (4A) can be written as: 

(b + d) div c + (f + (b + d) mod c) div c 

= lb : d J + l f + ( b + cd) mod c J 

= b+d-(b+d)modc+lf+(b+d)modcj 
c c 

= lb + d - ( b: d) mod c + f + ( b + cd) mod c J 

= lb+c:+fj. 

Similarly, the right hand side of equation ( 4.4) can be shown to be equal to 

l(b+ d+ f)/cj. Therefore, 1:::J is associative. 



42 CHAPTER 4. THE CLOSED SEMIRING STRUCTURE OF RETIMING 

• 1 is an identity element. We have 

(r,d)8(0,0) = (0,0)8(r,d) 
d 

= ( r + 0 - l - J, d +c 0) 
c 

= (r, d). 

3. 0 is an annihilator: We have 

(oo,oo)8(r,d) = (r,d)8(oo,oo) 

= (oo + r,oo +c d) 

= (oo,oo). 

4. MIN is commutative: We haYP 

(a,b)MIN(r,d) = (min{a,r},I(b,d; a,r)) 

= (min{r,a},I(d,b; r,a)) 

= (r, d) MIN (a, b) 

since it is clear that I(b, d; a, r) = I(d, b; r, a). 

5. MIN is idempotent: Dy a simple application of the definition 

(r,d)~1IN(r,d) = (min{r,r},I(d,d; r,r)) 

= (r, d). 

6. 8 distributes over MIN: \1Ve must show that 

(a,b)8 ((r,d)MIN (e,J)) = ((a,b)8 (r,d))MIN ((a,b)8 (e,J)). (4.5) 

For convenience, let (L 1 ,L2 ) = (a,b) 8 ((r,d) MIN (e,J)) and (R1 ,R2) = ((a,b) 8 

(r,d)) MIN ((a,b)8 (e,J)). Applying the definitions we have that 

and 

Li = min{a+1·,a+e}-I(b+rl,b+f; r,e)divc, 

L2 = (b+l(d,f; r,e))modc); 

Ri = min{a + r - (b + d) div c, a+ e - (b + J) div c}, 

R2 = I( (b + d) mod c, (b + f) mod c; a+ r - (b + d) div c, a+ e - (b + J) div c ). 



4.2. THE CLOSED SEMilUNG CONSTRUCTION 43 

First we show that L1 = R1. 

L 1 = min{a+r,a+e}-I(b+d,b+J;r,e)divc 

min{ a+ r,a + e} - I((b + d) div c, (b + f) div c; r,e) 

{ 

a + r - ( b + d) div c if r < e, 
= a+r-rnax{(b+d)divc,(b+J)divc} ifr=e, 

a + e - ( b + J) div c if r > e 

= min{ a+ r - (b + d) div c, a+ e - (b + J) div c} 

Now, we show that L2 = R2. 

L2 = (b+I(d,f;r,e))modc 

= (J(b+d,b+f; r,e))modc. 

Consider the following three possible com bi nations of values for ( b + d) div c and 

(b + f) div c. 

Case 1: (b + d) div c = (b + f) div c. Then: 

L2 I((b+ d) mod c, (b+ f) mod c; r,e) 

I((b + d) mod c, (b + f) mod c; a+ r - (b + d) div c, a+ e - (b + f) div c) 

R2. 

Case 2: (b + d) div c = l and (b + J) div c = 0. In this case J < d and 

(b+d) mod c < (b+ f) mod c, since (b+d) mod c = b+d-c < b+ f = (b+ J) mod c 

and f, d < c. Now, consider the two possible relations between rand e. 

r ~ e: In this case a+ r - (b + d) div c < a+ e - (b + J) div c and consequently 

L2 = R2 

= ( b + d) mod c. 

r > e: In this case 

Lz = ( b + J) mod c 

= max{(b + d) mod c, (b + J) mod c} 



44 CHAPTER 4. TJIE CLOSED SEMIRING STRUCTURE OF RETIMING 

Case 3: (b + d) div c = 0 and ( b + !) div c = 1. Symmetric to Case 2. 

From Cases 1, 2, and 3, we conclude that L2 = R 2. Therefore, equality ( 4.5) holds, 

since (Li, L2) = (R1, R2), and consequently 8 distributes over MIN. 

7. MIN gives a unique result when operating on countably infinite sequences of argu

ments. Also, associativity, commutativity and idempotence applies to finite as well as 

infinite sums, as it can be readily seen from the definitions of the operations. 

8. The multiplicative operation (:) distributes over countably infinite sums, as we can 

easily demonstrate by a simple induction. 

Items 1 through 8 demonstrate the correctness of the theorem. D 

4.3 An Algorithm for Unit-Delay Circuitry Retiming 

In this section we give a Bellman-ford type algorithm for retiming of unit-delay cir

cuitry, which operates on the original circuit graph. Specifically, given a unit-delay 

circuit G = (V, E, 1, w) and a positive integer c, we determine a retiming r of G such 

that the clock-period <I>(Gr) of the retimed circuit Gr satisfies <I>(Gr) ~ c. Our algo

rithm terminates in O(V E) steps and it matches the best previously known strongly 

polynomial algorithm for the same problem [17], which, according to Theorem 3.1 is 

obtained by running Dellman-Forcl on C - 1/c. 

For the reader's convenience, we give here, without proof of correctness, the Bellman

Ford algorithm on C - l/ c for unit-delay circuitry retiming. 

Algorithm BF This algoritlnn, given a unit-delay circuit graph G = (V, E, 1, w) and 

an upper bound c for the clock-period, determines a function p : V ---+ R, such that 

the retimed circuit Gr Pl satisfies the clock-period constraint <P( Gr Pl) ~ c. 

1. For some vertex s E \I set p( s) = 0. For all vertices v in V - { s} set p( v) = oo. 

2. Repeat V - 1 times: 

For each edge u .!.... v EE set p(v) = min{p(v),p(u) + w(e)- 1/c}. 

3. For each edge u .!.... v E f; sPt w,.(c) = w(e) + lp(u)l - lp(v)l D 

In our algorithm, the additive and multiplicative operations utilized are the MIN 

and 8 operations introduced in the previous section. The elements of the set S of the 



4.3. AN ALGORITH!l1 FOR UNIT-DELAY CIRCUITRY RETIMING 45 

semiring are labels h( v) = ( r( v), d( v)) associated with each vertex v of the graph. The 

algorithm proceeds as follows: 

Algorithm R This algorithm, given a unit-delay circuit graph G = (V,E,l,w) and 

an upper bound c for the clock-period, determines a retiming r, such that the retimed 

circuit satisifes the clock period constraint Cf>( Gr) ::; c. 

1. For some vertex s E 11 set h( s) = (0, 0). For all vertices v m V - { s} set 

h(v) = (oo,oo). 

2. Repeat V - 1 times: 

For each edge 11 __::_, v EE set h(v) = 11IN(h(v),h(u) 8(w(e),1)). 

3. For each edge 11 .!:__, v EE set w,.(e) = w(e) + r(u)- r(v). 0 

The correctness of Algorithm R is ensured by the following lemma, which shows 

that the operation of Algorithm Ron G' simulates the operation of Algorithm BF on 

G - 1/c. 

Lemma 4.1 Let G = ( 11, E, 1, w) be a unit-delay circuit graph. Let p( v) be the vari

ables of Bellman-Ford on G - 1/c for each vertex v E V. Moreover, let (r(v),d(v)) 

be the variables of Algorithm n on G for each vertex v E V. If both Algorithm BF 

and Algorithm R relm: edges in the same order, then after each relaxation of an edge 

11 --+ v E E we have p( v) = r( v) - d( v) / c for every vertex v E V. 

Proof: The proof is by incluctiou on the relaxations. Let pb(v) and (rb(v),db(v)) denote 

the values of the variables of Algorithms 13F and R respectively before the relaxation of 

an edge x --+ y. Similarly, let p 0
( v) an cl ( r 0

( v), d0
( v)) denote the values of the variables 

after the relaxation of an edge :r ~ y. We shall show that if pb( v) = rb( v) - db( v) / c 

for every vertex v E V and both algorithms relax the same edge x --+ y E E, then 

p0 (v) = r0 (v)- d0 (v)/c for every vertex v EV after the relaxation. 

Initially, before any relaxation is performed, the statement holds, assuming oo - oo/c = oo 

for every vertex v EV - {s} and since 0 - O/c = 0 for v = s. Now, let x _:. y be the 

edge to be relaxed. The11 



46 CHAPTER tl. THE CLOSED SEMIRING STRUCTURE OF RETIMING 

for every vertex v -f y, and 

ra(y) = min{rb(y),rb(x)+w(e)-l(db(x)+l)/cJ}, 

da(y) = I(db(y),(db(x)+l)modc; rb(y),rb(x)+w(e)-l(db(x)+l)/cJ). 

We consider the following three cases, based on whether rb(y) is smaller than, greater 

than or equal to rb(x) + w(e)- l(db(x) + 1)/cJ. 

1. rb(y) < rb(x)+w(e)- l(d6(x) + 1)/cj. In this case the relaxation of edge x ~ y 

by Algorithm R yields 

(4.6) 

Now, we want to find p"(y) due to the relaxation of edge x ~ y by Algorithm 

BF. Since rb(v) E Z for all vertices v EV, the inequality rb(y) < rb(x) + w(e) -

l(db(x) + 1)/cj implies that: 

r6(y) < rb(:r) + w(e) - l(db(x) + 1)/cj - 1 

< r 6(x)+w(c)-(db(x)+l)/c 

= p6(:r)+w(e)-1/c, 

given that 1+l(d6(x)+1)/cj > (db(x) + 1)/c, for db(x) E {O, ... ,c - 1}, and 

that rb(x) - db(x)/c = pb(:1:) by the inductive assumption. We also have that 

pb(y) = rb(y) - db(y)/c 

< rb(y). 

Therefore pb(y) < p6( :r) + w( c) - 1/ c and the relaxation of edge x ~ y by 

Algorithm BF yields 

(4.7) 

From equations (4.6) and (4.7) and the inductive assumption we have that 

pa(y) = ra(y) - da(y)/c. 

2. rb(y) > rb(x) + w( e) - l (rl6(:r) + l )/c J. In this case the relaxation of edge x ~ y 

by Algorithm R yields 



4.3. AN ALGORITHM Fon UNIT-DELAY CIRCUITRY RETIMING 47 

Now, we want to find pa(y) clue to the relaxation of edge x ..:+ y by Algorithm 

BF. Since rb(v) E Z and db(v)/c < 1 for all vertices v E V, the inequality 

rb(y) > rb(x) + w(e)- l(db(x) + 1)/cj implies that: 

pb(y) = rb(y) - db(y)/c 

> r b ( x ) + w ( e) - l (db ( x) + 1) / c J - db ( v) / c 

> rb(.T) + w(e) - (db(x) + 1)/c - db(v)/c 

= p0(:r)+w(e)-1/c. 

Therefore the relaxation of ed~e :r ...S. y by Algorithm BF yields 

pa(y) = p6(x) + w(e)- 1/c. ( 4.9) 

From equations (4.8) a11d (4.9) and the inductive assumption we have that 

ra(y)- da(y)/c = rb(:c) + w(e)- l(db(x) + l)/cj - ((db(x) + 1) mod c) /c 

since 

= p0(:r)+rl6(.T)/c+w(e)-l(db(x)+l)/cj-((d6(x)+1)modc)/c 

= p 11 (:1:)+(rlb(:1:)+l)/c- l(d6(x)+l)/cj-((db(x)+l)modc)/c 

= p"(:r), 

(db(x) + 1)/c = l(d6(:r) + 1)/cj + ((db(x) + 1) mod c) /c (4.10) 

for d6(x) E {0, .. .,c -1}, as it can be easily verified by checking the cases for 

db(x) = c - 1 and d6(:r) < c - l. 

3. r6(y) = r6(x)+w(e)- l(db(:r) + l)/cj. In this case, the relaxation of edge x ..:+ y 

by Algorithm R yields 

(ra(y),da(y)) = (r6(y),max{d6(y),(d0(x)+ 1) mod c}). (4.11) 

Now, we want to find p"(y) due to the relaxation of edge x ..:+ y by Algorithm BF. 

By the inductive assumption and equation (4.10) the equality r6(y) = r6(x) + 

w(e)- l(d6(x) + 1)/cj implies that 

p6(y) = pb(x)+w(e)+(rl6(.T)-db(y))/c-l(d6(x)+l)/cJ 

= p6(x) + w(e) + (db(:r) - r/6(y))/c - (d6(x) + 1)/c + ((d6(x) + 1) mod c) /c 

= p6(:r) + w(c) - l/c + ((d6(:r) + 1) mod c - d6(y)) /c. 



48 CHAPTER 4. TIIE CLOSED SEMIRING STRUCTURE OF RETIMING 

We consider two cases, depending on the ordering of ( d6( x) + 1) mod c and d6(y ). 

Case A: (d6(x) + 1) mod c - d6(y) > 0. In this case p6(y) > p6(x) + w(e)- 1/c 

and Algorithm BF yields 

( 4.12) 

From equations (4.11), (4.12), and (4.10), and the inductive assumption we have 

that 

ra(y)-da(y)/c = r6(:1:) + w(e) - l(d6(x) + l)/cJ - ((d6(x) + 1) mod c) /c 

= p6(.0)+d6(x)/c+w(e)-l(d6(x)+l)/cj-((d6(x)+l)modc)/c 

= p6(:r) + d6(a:)/c + w(e) - (d6(x) + 1)/c 

= r}(a:)+w(e)-1/c 

Case B: (d6(x) + 1) mod c - d0(y) :S 0. In this case Algorithm BF yields 

pa(y) = p6(y). (4.13) 

From equations (4.11) and (4.13) and the inductive assumption we have that 

r"(y)-d"(y)/c = r 6(y)-d6(y)/c 

= pb(y) 

= pa(y). 

Therefore, we still have r"(y) - d"(y)/c = pa(y). 

From cases 1, 2 and :3 we concllldc that if both algorithms relax edges in the same 

order then p( v) = r( v) - d( v )/ c for every v E \I after each relaxation. D 

Now, the following theorem shows that the set of values r(v) computed by Algo

rithm R yields a legal retirni11g of the unit-delay circuit G. 

Theorem 4.2 Let G = ( V, E, 1, w) be a unit-delay circuit graph and let c be a positive 

integer. Also, let ( r( v ), d( v)) be the variables of Algorithm R on G for each vertex 

v E V. Then, after the tcnninolion of A lgm·ithm R, r( v) yields a re timing of G such 

that <I>( Gr) $ c. 



4.3. AN ALGORITIIll.f FOil UNIT-DELAY CIRCUITRY RETIMING 49 

Proof: Let p( v) be the variables of Bellman-Ford on G - 1/ c for each vertex v E V. 

From Theorem 4.1 and the facts that r( v) E Z and d( v) < c for every v E V, we have 

that f p(v)l = r(v). This equality and the correctness of Algorithm BF imply that 

r( v) yields a legal retiming of G, such that if>( Gr) :::::; c. 0 

In summary, this chapter exhibits the closed semiring structure of retiming on 

a unit-delay circuit G and demonstrates a Bellman-Ford type algorithm, which uses 

the additive and multiplicative operations of the semiring in order to compute a legal 

retiming of the circuit. The algorithm operates only on the original graph G and its 

running time matches that of' tl1e lwst previously known strongly polynomial algorithm 

for the same problem. 



Chapter 5 

A Mixed-Integer Optimization 
Problem 

This chapter investigates a mixed-integer optimization problem which anses rn the 

mixed-integer optimization frarnework of retiming, as it was introduced in [17]. We 

present a polynomial time algorithm for the problem, that is based on the technique 

of introducing additional constraints, known as cuts, in such a way that the integrality 

constraints of the mixed-integer problem arc met by the optimum solution of its linear 

programming relaxation. 

The five sections of the chapter are organized as follows. Section 5.1 reviews the 

problem of finding a minimum-cost flow on a network. It also presents the dual prob

lem of a minimum-cost flow and givc>s optimality conditions which relate primal and 

dual solutions. Section 5.2 introduces the mixed-integer optimization problem that we 

solve in this chapter. The prohk'rn is identified as the restricted case of a mixed-integer 

dual of an uncapacitated minimum-cost flow, because the relaxation of its integrality 

constraints reduces it to the dual of an uncapacitated minimum-cost flow problem. 

Based on this observation, we develop feasibility and optimality conditions for the 

mixed-integer problem in Section .5.:L Section 5.4 describes an algorithm that solves 

the mixed-integer problem in 0( vci lg\/) steps. Finally, Section 5.5 gives an applica

tion of our algorithm by reducing the problem of state minimization of synchronous 

circuitry to the mixed-integer probkm that we solve in this chapter. 

50 



5.1. PRELIMINARIES 51 

5.1 Preliminaries 

In this section we give some basic background material on the problem of finding a 

minimum-cost flow in a network. 

A flow network G = CV, E, w, c) is an edge-weighted directed graph in which each 

edge u ~ v E E has a weight w( e) and capacity c( e) ~ 0. Let each vertex v E V have 

an associated real value b(v) such that LvEV b(v) = 0. A flow in G is a real-valued 

function f : E -+ R that satisfies the following two properties: 

L .f(c) - L f(e) = b(u) ( 5.1) 

l'~uEF 

for all vertices u E V, aud 

0::; .f(c)::; c(e) (5.2) 

for all edges u ~ v E E. 

A flow network G = (V, E, w, c) with c(e) = oo for all edges e E E is called 

uncapacitated. For simplicity, in the rest of this paper we shall denote an uncapaci

tated network by G = (V, E, w). The problem of finding a minimum-cost flow on an 

uncapacitated network G = ( V, E, w) is defined as follows. 

Problem UMC-Flow ( Uw:n1mcitolcrl Minimum-Cost Flow) Let G = (V, E, w) be 

an uncapacitated flow network. Let each vertex v E V have an associated real value 

b(v) such that LvEV b(v) = 0. A minimum-cost flow f on G is a flow that minimizes 

L w(e)f(e). D 

The linear programmiug dual of Problem Utv1C-Flow is defined as follows. 

Problem DUMC-Flow (!Jun! {!11Nqmcitatcd Afinimum-Cost Flow) Let G = (V, E, w) 

be an uncapacitated flow network. Let each vertex v E V have an associated real value 

b(v) such that LvEV b(v) = 0. Determine a value x(v) for each vertex v EV that max

imizes L x( v )b( v) subject to 
vEV 

:i:(v) - x(u)::; w(e) (5.3) 

for all edges u _:___ v E E. D 



52 CHAPTER 5. A MIXED-INTEGER OPTIMIZATION PROBLEM 

Note that there are no integrality constraints on the solutions x. The mixed-integer 

problem that we solve, and that we present in the following section, has the form of 

Problem DUMC-Flow with the addition of integrality constraints on a subset of the 

variables in x. 

The following theorem is a direct consequence of the primal-dual relation of Prob

lems UMC-Flow and DUJvIC-Flow. 

Theorem 5.1 Let f* be a jlou 1 that solves Problem UMC-Flow and let Zp(f*) = 

2:: e Ew(e)f*(e). Similarly, let :1:~ be a flow that solves Problem DUMC-Flow and 
u--+vE · 

let Zd(x*) = LvEV x*(v)b(u). Then Zp(f*) = Zd(x*). D 

Almost all algorithms for Problems UMC-Flow and DUMC-Flow rely on Theo

rem 5.1 and they usually yield a solution for both problems at the same time. A basic 

concept used in these algorithms is that of the r·esidual network G(f). The residual 

network G(J) corresponding to a flow J is defined as follows: we replace each edge 
I 

u __,. v E E by two edges u .':.___ v and 1' ~ u. The edge u -=+ v has cost w( e) and a 

residual capacity r(e) = 11.(e) - f(c), and the edge v.::.. u has cost -w(e) and residual 

capacity r(e') = f(e). The residual network consists only of arcs with positive residual 

capacity. 

The following theorem gives a necessary and sufficient solution for a flow f to be 

optimum in terms of the residual network G(J). 

Theorem 5. 2 Let G = ( V, F', w, u.) be a flow network. Then a flow f on G is optimum 

if and only if G(J) contains no n.cr;alive-weight dfrected cycles. 0 

Finally, the following Lemma [:Z] dPrnonstrates how to obtain an optimum solution 

x for Problem DUMC-Flow once an optimum flow f for Problem UMC-Flow is known. 

Lemma 5 .3 Let G = ( V, L', 1u, u) be a flow network and let f* be an optimum flow on 

G. Moreover, let l(v) denote I.hr length of the shortest-path in G(J) from some source 

s EV to vertex v EV. Thrn the assignrncnt x(v) = l(v) for every vertex v EV is an 

optimum solution for Pm/J!em ]) UM C-Flow. 0 



5.2. MIXED-INTEGER DUA.L kJJNIMUM-COST FLOW 53 

5.2 Mixed-Integer Dual Minimum-Cost Flow 

In this section we present the mixed-integer optimization problem that we solve in this 

chapter. We refer to the prohlc~rn as the restricted mixed-integer dual of uncapacitated 

minimum-cost flow and we identify it as a special case of a general mixed-integer 

optimization problem. 

The restricted mixed-integer dual of uncapacitated minimum-cost flow is defined 

as follows. 

Problem RMI-Dual-Flow ( Hcslrictcd Mi.ud-Integer Dual of Uncapacitated Minimum

Cost Flow) Given an uncapacitatecl flow network G = (V,E,w)with w(e) ER, a set Vi 

such that Vi~ V, and an integer b(v) for each vertex v E Vi such that LvEVJ b(v) = 0 

and b( v) = 0 for all v ~ \/1 , fi 11 d a val 11 e x ( v) for each vertex v E V that maximizes 

Z(x) = LvEVI x(v)b(v) subject to 

.r(v) - .T(u)::::; w(e) (5.4) 

for every edge u ..:_.. v E E, and 

:z:(v)EZ (5.5) 

for every v E Vi. D 

Observe that the maximization of the sum is performed over the subset V1 of V, which 

is required to take on integer vah1cs. The reason that we identify the problem as the 

mixed-integer dual of an uncapacitatecl minimum-cost flow is that if we relax the inte

grality constraints (5.5) it reduces to Problem DUMC-Flow, the linear programming 

dual of an uncapacitated minimum-cost flow problem [12, 21]. Based on this observa

tion, we describe in Section 5.4 an 0( V3 lg V) time procedure, which solves Problem 

RMI- D ualFlow. 

We can generalize Problem IU\fl-Dna.1-Flow by extending the set over which the 

maximization is performed to include the entire vertex set V of the graph. 

Problem MI-Dual-Flow (Mixed-integer Du.al of Uncapacitated Minimum-Cost Flow) 

Given an uncapacitated network G = ( V, E, w ), with w( e) E R, a set Vi such that 

V1 ~ V, and an integer b( v) for each vertex v E V such that LvEV b( v) = 0, find a 



54 CIIAPTER 5. A MIXED-INTEGER OPTIMIZATION PROBLEM 

value x( v) for each vertex v E V that maximizes l:vEV x( v )b( v) subject to 

:i:(v)- x('U) s; w(e) 

for every edge 'U .!:-;. v E E, and 

.i:(v) E Z 

for every v E V1. D 

We conjecture that, contrary to Problem RMI-Dual-Flow, Problem Ml-Dual-Flow 

is not tractable. 

Conjecture. Problem !vfl-Dual-Flow is NP-Complete. D 

Two facts support our conjecture. First, the feasible vectors of Problem RMI-Dual

Flow do not form a cou vex sc~t, due to the integrality constraints. Lack of convexity 

rules out linear programming approaches that lead to polynomial time algorithms [21, 

2]. In addition, the solutions to Problem MI-Dual-Flow do not necessarily exhibit the 

optimal substructure property. There exist instances of Problem Ml-Dual-Flow which 

in order to be solved require a locally suboptimal assignment of values to the unknowns. 

The lack of optimal substructure rnles out dynamic programming approaches that 

could lead to polyI1omial time algorithms [4]. 

5.3 Feasibility and Optimality Conditions 

In this section we develop feasibility allCl optimality conditions for Problem RMI-Dual

Flow. Specifically, we construct an auxiliary problem by augmenting the constraint-set 

of Problem RMI-Dual-Flow with new constraints, which are derived from the given 

constraint-set. The auxilia.ry problem has no explicit integrality constraints and we 

prove that it is feasible if and only if Problem RMI-Dual-Flow is feasible. Finally, we 

prove that a solution of tl1e auxiliary problem solves Problem RMI-Dual-Flow as well. 

First, let us describe how the additiona.l constraints are obtained. Let G = 

(V, E, w) be an edge-weighted graph and let Vi <:;:; V. We define the short-cut graph 

Gs= (V, Es, ws) as follows. 

Es 

ws(u!!_.v) 

{u---+ v : 'U,V E V1, 'U,.Z:. v E G}, 

min{w(p) : 'U ,.Z:. v E G}. 



5.3. FEASIBILITY AND OPTIMALITY CONDITIONS 55 

We also define the dense graph GD= (V,EUEs,wD) with edge-weights defined as 

follows. 

WD(u~v) = { 
w(e) 

lws(e)J 
if e E E, 
if e E Es. 

The edges in Es impose the additional constraints of Problem AUX. We define the 

auxiliary problem AUX in terms of the original graph G and its corresponding short

cut graph Gs. 

Problem AUX (A uxilia·1·y /J11ol of Uncapacitated Minimum-Cost Flow) Let G = 
(V,E,w) with w(e) ER, be an edge-weighted graph and let Gs= (Vs,Es,ws) be its 

corresponding short-cut graph. Given a set Vi such that Vi~ V, and an integer b(v) 

for each vertex v E Vi such that LvEVr b(v) = 0 and b(v) = 0 for all v ~Vi, find a 

value x(v) for each vertex v E \f tl1at maximizes Z(x) = LvEVi x(v)b(v) subject to 

.r{u) - :r(u)::; w(e) (5.6) 

for every edge u..:.,. v E E, and 

;c(u) - :z·(u)::; lws(e)J (5.7) 

for every edge u _.:.. v E Es. 

First, we shall prove that foasihility of RMI-Dual-Flow implies feasibility of AUX 

by showing that the set of solutions of RMI-Dual-Flow encompasses all solutions of 

AUX. We denote by ,YRM I the ~ct of' feasible vectors for RMI-Dual-Flow and by XRMI 

the set of optimum vectors for HJ\11-Dual-Flow. Similarly for AUX, we denote its set 

of feasible vectors by XAux and its set of optimum vectors by XA.ux· 

Lemma 5.4 If x E .Yn~JI then :1: E .1:',wx. 

Proof: Let x = (x(l), .. . ,:t(IVI)) he any vector in XRMI· Then, from inequality (5.4) 

we have that x( v) - x( 11) ::; 11'( r) for every edge u _.:.. v E E. Therefore, x satisfies 

inequality (5.6). 

Also, for every u, v E \11 let ;1 = u "-- v be the shortest path in G from u to v. 

By applying inequality (5.'l) along p and the definition of the short-cut graph Gs we 

have that x(v)- x(u)::; ws(c) for 1l _:. v E Es. Since x(u) and x(v) are integers from 



56 CHAPTER 5. _.'\MIXED-INTEGER OPTIMIZATION PROBLEM 

constraint (5.5), we can write x(v) - :c(u) s; lws(e)J for u..::...,, v E Es. Therefore, x 

satisifies inequality ( 5. 7) as well and consequently x E XAu x. D 

As an immediate consequence we han' the following. 

Corollary 5.5 For any x E rYnMI with Z(.t:) = LvEVi x(v)b(v) and for any y EX.Aux 

with Z(y) = LvEVi y(v)b(v), we hove 

l:(x) s; Z(y). 

Proof: Since x E .YJu,11 we also have x E ,yRM I. From Lemma 5.4 we infer that 

x E XAux and therefore Z(.2:):::; Z(y) for every y E X,4ux· D 

Now, we shall prove that feasibility of Problem AUX implies feasibility of Problem 

RMI-Dual-Flow: 

Lemma 5.6 If XAux t 0 thc11 ,l'm11 t 0. 

Proof: From Lemma 2.:3 and the definition of Gs and GD we have that XAuX -/= 0 

exactly when Gs is well-defined and there exists no negative-weight cycle in GD. Let 

x( v) be the length of the shortest path in GD from some source s E V to the vertex 

v E V. Then, from Lemma 2.2, :r satisfic>s 

:r(v) - :r(n) s; w(e) 

for every ·u..::...,, v EE, and 

:c(v) - :r('u) s; lws(e)J 

for every edge u..::...,, v E Es. Therefore, x satisfies inequality (5.4). 

Moreover, since for any path p = u ~ v in E with u, v E V1 there always exists an 

edge u..::...,, v E ED with wn(e) s; w(p) aud wD(e) E Z, the shortest path in ED from 

the sources to any vertex v E V1 will be 011 integer-weight edges only, provided s E V1. 

Thus, by setting x(s) = 0 we ca.11 l'11sure :r(v) E Z for all vertices v E V1. Therefore, x 

satisfies inequality (5 .. 5) as well and coIIsequently x E Xm.11· D 

As a consequence of Lemrnat.a 5.4 and 5.6, we have the following corollary. 



5.3. FEASIBILITY AND OPTIMALITY CONDITIONS 57 

Corollary 5. 7 Problem RM I-Dua !-Plow is feasible if and only if the short-cut graph 

Gs is well-defined and the dense gr·aph GD has no negative-weight directed cycles. D 

In the remaining of this section we show how to obtain a solution of Problem AUX 

that solves Problem Rl\1I-Dual-Flow as well. 

First, we shall show that there exists a primal solution of Problem AUX which has 

a special structure. Then we demonstrate how we can exploit this special structure 

in order to find a solution for Problem RMI-Dual-Flow. Recall that, according to 

section 5.1, the primal of Problc1n AUX is an uncapacitated minimum-cost flow on 

Gn = (Vn, En, wn). 

Lemma 5.8 Let f be a flow on Cn that solves the primal of Problem AUX. Also, let 

E'fy(J) = {u ~ v E ED : f(e) > O}. Then there exists a flow f' on Gn that solves 

the primal of Problem AUX such thot 

Proof: Consider an optimum Jon Gn with f(e) > 0 for some edge u ~ v ti, Es. We 

show that by rerouting flow we ca11 always convert f to a new flow J' such that Zp(J) = 
Zp(J') and E'JJ(J') ~ Es. Since u _..::_ v ~ Es there exists a path P1 = uo ~ u1 ~ 

... Uk-I e~1 u with uo E l'r, 11 1 , ... ,111:-1 ~Vi, and J(ei) > 0 for i = 0,1, ... k-1, 
e1-1 "1-2 eo • d d and a path JJ2 = v --.... v,_ 1 ~ ... 111 --+ Vo with Vo E V1, v1, ... , v1-1 'F- V1, an 

f(ei) > 0 for i = 0, l, .. . l - l. Note that as long as there exists an edge u ~ v ti. E1 

with J(e) > 0, we can always find pa.ths P1 and JJ2 constructed in the way above. If 

there were no such paths, then tit(' node-balance constraints (5.1) would have been 

violated, since b( v) = 0 for eV('J'Y 1,1 ~ V1. 

Now, since uo, Vo E Vi, and J is optimum, there exists an edge uo ~Vo E Es with 

wn( e1) = wn(P1; e; p2), where p1 ; e; p2 de11otes the path formed by concatenating P1, e, 

and P2· Therefore, we can reroute min{f(e;) : e; E p1 ;e;p2} units of flow through ff 

and still maintain an optimum flow. Let fa be the new optimum flow. Then 

Therefore, repetition of this proccdurl' until Et(Ja) n E = 0 yields an optimum flow 

J' such that E'f;(J') ~ Es. 0 



58 CIIAPTEIL 5 . .i\ MIXED-INTEGER OPTIMIZATION PROBLEM 

Now, we show how we ca11 get a solution for Problem AUX that satisfies the 

integrality constraints of Problem RMI-Dual-Flow. The proof relies on Lemma 5.8 

above and on Lemma 5.3 of Section 5.1. 

Lemma 5.9 Let f be a solution for the primal of Problem AUX with Kf;(f) ~ Es. 

Then there exists x E A'.4u x such that: 

:c(v) E Z 

for all v E VJ. 

Proof: Let dD(f, v) denote the length of a shortest-path in the residual graph GD(!) 

from a source s E Vi to a vertex v E V. From Lemma 5.3 we know that once an 

optimum flow f for the primal of Problem AUX is known, the assignment x(v) = 
dD(J, v) for every vertex v E \I yields a solution x to Problem AUX. 

It remains to show that :r satisfies x( v) E Z for all v E VJ. Let us denote by 

lD(J,s) the length of a paths in Go(f) and let p be a shortest-path in GD(!) from 

the sources E VJ to a vertex v E V1. We shall prove that lD(f,p) = dD(J,v) E Z. 

L ea ei e k - ' e ,, - I b f h h V et q = vo ---+ V1 -" ... -- u1,:_ 1 __... v1.: e a part o p sue t at vo,vk E 1 

and v1, ... ,v1.:-1 ~ Vi. Since K/y(f) ~ Es, we have that either ei E EU Es for 

all edges ei E p, or that k = l and v0 - v1 is a backward edge of a flow-carrying 

edge v1 -+ v0 E Es. In the first case lo(!, q) E Z, since q has to be a shortest-path 

from Vo to v1.: and there always exists an edge e E Es such that wD(e) s; lw(q)J. 

In the second case lo(J, q) E Z. since v1 -+ v0 E Es implies WD( v1 -+ vo) E Z and 

lD(J, q) = -wo( v1 - Vo) by definition. Therefore, lo(!, q) E Z for every q and 

consequently lD(f, p) E Z. D 

Now, we can easily infer that tile solution of Problem AUX derived according to 

the way suggested in Lemma 5.9 is a solution for Problem RMI-Dual-Flow. 

Theorem 5.10 Let f be a sofution for the p1'imal of Problem AUX with Efj(J) ~ Es. 

Let x be a solution of a single-source shortest-paths problem on G DU) from a source 

s E VJ. Then x is a solulirm for Fmblem RMI-Dual-Flow. 

Proof: From Lemma 5.:1 we infer that x E XAUX and consequently x satisfies con

straint (5.6): 

.r(v) - :r(u)::::; w(e) 



5.4. THE ALGORITHM 59 

for all e E E. Therefore, :r satisfies constraint (5.8) of Problem RMI-Dual-Flow. 

From Lemma 5.9 we have that x also satisfies the integrality constraint (5.9) of 

Problem RMI-Dual-Flow. Therefore, :r E XRMJ, which implies that Z(y) 2: Z(x) 

for every y E XRMJ· But from Corollary 5.5 we have that Z(y) :S Z(x). Therefore, 

x E XRMI as well. D 

5.4 The Algorithm 

In this section we give the 0( V 3 lg V) algorithm that solves Problem RMI-Dual-Flow. 

Its correctness relies on the theory developed in the previous section. 

Algorithm RMI-Dual-Flow This algorithm determines a solution x for Problem 

RMI-Dual-FLow. 

1. Compute the edges in Es by solving an all-pairs shortest-paths problem on G. 

Fail if a negative-weight cycle is found. 

2. Compute a min-cost flow Jon the graph GD· 

3. Transform J into .f' by rerouting flow in such a way that if J'(e) > 0 then 

u _:. v E Es. 

4. Compute the sltortest-patl1s lengths x( v) for each vertex v in GD(!') from a 

source s E V1. D 

Step 1 requires V shortest-paths algorithms. The total cost is O(V(E + VlgV)) 

using Johnson's all-pairs shortest-paths algorithm [10]. Step 2 executes one uncapac

itated min-cost flow algorithm, which requires O(VlgV(ED + VlgV)) steps, using 

Orlin's strongly polynomial algorithm [19]. Step 3 runs for O(V E) time, since each 

rerouting eliminates flow from at least one edge in E and requires O(V) steps. Step 4 

can be implemented in O(V ED) time, using Bellman-Ford's algorithm for shortest

paths. Therefore, the overall running time is O(V3 lg V). 

5.5 An Application to State Minimization 

In this section we present the stale minimization prnblem for retiming from the math

ematical prograrnmiug pc~rspect ive descrihed in [17], and we give a reduction of the 



60 CHAPTER 5. A Jv!IXED-INTEGER OPTIMIZATION PROBLEM 

problem to Problem RMI-Dual-Flow. The state minimization problem is defined as 

follows: For a given circuit G' = ( V, E, d, w ), determine a retiming of the circuit such 

that the total number of registers LeEE wr( e) of the retimed circuit is minimized. 

First, we give without proof the following theorem from [17]. This theorem de

scribes retiming as a mixed-integer programming problem. 

Theorem 5 .11 Let G = ( V, E, d, w) be a synchronous circuit, and let c be a positive 

real number. Ther·e exists a re timing r of G such that ct>( Gr) :::; c if and only if there 

exists an assignment of a real urilue R( v) and an integer value r( v) to each vertex 

v E V such that 

R(v) - r(v) < -d(v)/c, 

r(v)-R(v) < 1, 

for every vertex v E V, and 

wherever u _:.. v. 

r(v) - r(u) < w(e), 

R(v)-R(u) < w(e)-d(v)/c, 

The number of registers S( G,.) in the rctirned circuit Gr is 

S ( G 7 ) = L 1l',. ( e) 
eEE 

L (w(e) + r(u) - r(v)) 

L u1(e) + L(r(u)- r(v)) 
" 'U.-V 

S(G) + L i·(v)(outdegree(v)-indegree(v)), 
vEV 

0 

where S( G) is the number of registers in the original circuit. Since S( G) is constant, 

minimizing S(G,) is equivalent to minimizing the quantity 

L r( v )( ou tdcgree( v) - in degree( v)), 
vEV 



5.5. AN APPLICATION TO STATE MINIMIZATION 61 

which is a linear combination of the r( v ), since ( ou tdegree( v) - indegree( v)) is constant 

for each v. Now, using Theorem 5.11 we can state the register minimization problem 

in its mixed-integer form: 

Problem STMIN (State Minimization) Given a synchronous circuit G = (V, E, d, w) 

and a positive number c, determine a retiming r of G such that <I>( Gr) :::; c and 

Gr has the minimum number of registers. Equivalently, find an assignment of a 

real value R( v) and an integer value r( v) to each vertex v E V that minimizes 

Z:vEV r( v )(out degree( v) - indegrcC'(v)) subject to 

H(v) - r(v) < -d(v)/c, 

r(v)-R(v) < 1, 

for every vertex v E V, and 

wherever u -=-+ v. 

r(v) - r(u) < w(e), 

R(v)-H(u.) < w(e)-d(v)/c, 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

0 

The state minimization problem 011 G = (V, E, d, w) can be seen from the per

spective of the mixed-integer problem RMI-Dual-Flow on an uncapacitated network 

G' = (V',E',w'). The graph G' is defined as follows. 

V' {Vi v E V, i = 1, 2}, 

E' E~ u E~ u E~ u E~, 

where 

E' 11 {v1 ~ V2 'VJ' V2 E 11'}' 

E' '2 { V2 ----+ Vj V1' V2 E 11'}, 

F' ~3 { '11.J ----+ VJ u----+ v EE}, 

E:1 {112 ~ V2 u----+ v E £}. 



62 CHAPTER 5. A JvIIXED-INTEGER OPTIMIZATION PROBLEM 

The edge-weight of each edge e E E' is 

{

-d(v)/c 

w'( e) = 
1 

w(e) 

w(e)- d(v)/c 

'f e E' I Vj --+ V2 E 1, 

'f e E' I V2 --+ V1 E 2, 

'f e E' 1 u--+ v E 3 , 

'f e E' I u--+ v E 4· 

The unknown r( v) of the state minimization problem corresponds to x( v1 ) and the 

unknown R( v) corresponds to x( v2 ). The function b is defined on V' as b( vi) = 
(indegree(v) - outdegree(v)) for every vertex v1 EV, and b(v2 ) = 0 for every vertex 

v2 EV. Finally, V1 = {v 1 : v1 EV'}. 

In summary, in this chapter we gave a solution to a mixed-integer optimization 

problem. We identified the problem as the restricted mixed-integer dual of an unca

pacitated minimum-cost flow by observing that its linear programming relaxation is 

the dual of an uncapacitated minimum-cost flow problem. Based on this observation 

we developed a theoretical framework for its solution and we gave a procedure that 

solves it in O(V3 lg V) steps. Finally, we gave an application of our algorithm by re

ducing the state minimization problem for retiming to the mixed-integer problem that 

we solved. 



Chapter 6 

Conclusion 

In this paper we have investigated properties of retiming, a synchronous circuitry 

optimization technique. We presented specialized, fast algorithms for retiming of 

combinational circuitry. Specifica.lly, we showed that combinational circuitry can be 

pipelined with minimum latency in O( E) steps, which is optimal within a constant fac

tor. clock-period minimization of cornbinational circuitry can be achieved in O(Elg D) 

steps, where Dis the maxim11rn component delay in the circuit. We presented a novel 

and concise graph theoretic characterization of the minimum clock-period of a circuit. 

Based on this characterization we gave improved techniques for minimum clock-period 

retiming of sequential circuitry. We presented an 0( min {V112 E lg(V D), VE}) algo

rithm for minimum clock-periocl rNirning of unit-delay circuitry, and an O(V Elg D) 

algorithm for minimum clock-period retiming of general circuitry. We also showed that 

a retiming of a general cirrnit with clock-period that does not exceed the minimum 

by more than D can be found in 0(rnin{V112Elg(VW)lg(VD), VElg(VD)}) steps. 

Subsequently, we exhibited the closed semiring structure of retiming and we gave an 

algorithm which operates based 011 this structure. Finally, we gave an O(V3 lg V) 

time algorithm for a mixed-intq~er optimization problem, which arises in the linear 

programming framework of retirning. 

There are still open cp1est.ions of both practical and theoretical interest in the area. 

It is an interesting question whether there exists an algorithm for minimum clock

period retiming of general circuits that matches the running time of the algorithm for 

the same problem on unit-delay cirrnitry. Decoupling the running time of our algo

rithm for the mixed-integer optimization Problem RMI-Dual-Flow from the number of 

G3 



64 CHAPTER 6. CONCLUSION 

the new constraints introduced will also be an interesting extension of the techniques 

presented in this thesis. Finally, proving the conjecture that Problem MI-Dual-Flow 

is intractable will fully elucidate the problem of optimizing mixed-integer difference 

constraints. Our conjecture is supported by the fact that the feasible vectors of Prob

lem MI-Dual-Flow do not form a convex set as well as by the fact that the solutions to 

Problem MI-Dual-Flow do not necessarily exhibit the optimal substructure property. 

Lack of convexity and optimal substructure rules out linear programming and dynamic 

programming approaches, that could lead to polynomial-time algorithms. 



Bibliography 

[1] R. Aharoni, P. Erdos, and N. Linial. Dual integer linear programs and the rela

tionship between their optima. JJroceedings of the 17th Annual A CM Symposium 

on Theory of Comzmtin[J, .\lay 198.S. 

[2] R. Ahuja, J. Orlin, and T. Iviagnanti. Network flows. Technical Report OR 185-88, 

Operations Research Center, l\IJT, August 1988. 

[3] V. Chvatal. Linear Pro9rarnrnin9. W. H. Freeman, New York, 1983. 

[4] T. H. Carmen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. 

McGraw-Hill, MIT Press, 1990. 

[5] J. Edmonds and R. Karp. Theoretical improvements in algorithmic efficiency. 

Journal of the Associalion for Comzrnting Machinery, 19(2):248-264, 1972. 

[6] M. Fredman and IL Tarj;w. Fibonacci heaps and their uses in improved network 

optimization problems. Proceedings of the 25th Annual Symposium on Founda

tions of Computer Science, pages 338-346, October 1984. 

[7] IL Gabow. Scaling algorithms for 11etwork problems. Journal of Comput_er and 

System Sciences, 31:148-Hi8, 1985. 

[8] H. Gabow and R. Tarjan. Faster scaling algorithms for network problems. SIAM 

J. Computing, October 1989. 

[9] M. R. Garey and D. S . .Jolinso11. Comp11tc1's and Intmctability. W. H. Freeman 

and Co., San Francisco, 1919. 

[10] D. B. Johnson. Efficient algorithms for shortest paths in sparse networks. Journal 

of the Association for C:ompulin[J Machinery, 24(1):1-13, January 1977. 

65 



66 BIBLIOGRAPHY 

[11] R. Karp. A characterization of the minimum cycle mean in a digraph. Discrete 

Mathematics, 23:309-311, 1978. 

[12] E. L. Lawler. Comuinat01·ial Optimization, Networks and Matroids. Holt, Rine

hart and Winston, New York, 197(). 

[13] C. E. Leiserson. Airn.-cf]icient. VLSI Computation. PhD thesis, Carnegie-Mellon 

University, 1981. Published in book form by the MIT Press, Cambridge, Mas

sachusetts, 1983. 

[14] C. E. Leiserson, F. J..L Tiose, and .J. B. Saxe. Optimizing synchronous circuitry 

by retiming. 3rd Caltech Conference on VLSI, 1981. R. Bryant, ed., pp. 87-116. 

[15] C. E. Leiserson and .J. B. Saxe'. Optimizing synchronous systems. Journal of 

VLSI and Computer Syslc111.s, l( 1):-11-67,1983. 

[16] C. E. Leiserson and J. B. Saxe. A mixed-integer programming problem which is 

efficiently solvable. Joum.al of Algorithms, 9:114-128, 1988. 

[17] C. E. Leiserson and J. B. Saxe. lletirning synchronous circuitry. Technical Report 

TM-372, MIT Laboratory for Computer Science, October 1988. 

[18] G. L. Nemhauser and L. A. WolsPy. Integer and Combinatorial Optimization . 

.John Wiley & Sons, New York, l988. 

[19] J. B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Pro

ceedings of the 20th A nnuo/ A CM Symposimn on Theory of Computing, pages 

377-387, May 1988. 

[20] J. B. Orlin and R. h:. Ahuja. New scaling algorithms for the assignment and 

minimum cycle mean problem. Technical Report 2019-88, Sloan WP, 1988. 

[21] C. Papadimitriou and K. Steiglitz. Combinatorial Optimization, Algorithms and 

Complexity. Prenticc'-llall, Inc., 1982. 

[22] F. M. Rose. Models for VLSI circuits. Ivfaster's thesis, Massachusetts Institute of 

Technology, May 1982. Also available as MIT VLSI Memo No. 82-114. 



~.gt t J.U lcttJktiL.At,,A! ... lJtlttAtCJJL.JQR,J.!XLUib:U .. JD M .i!LIEQLU-$(£4#,JJ!LlUl@lQJUL,,IJt!h44i DC!flJj 

~.· 1· 

r· 

'>" .,,. ,:!' °'."'_ ,._,.' 

1241 N. W.. aa4 K. EW.-. CMOS VUI DIJ ... ~Mj1'il!19 Wall ft •u• lillw ,, .. ')};~ . . 

~-. ~------~"""'-~--------"-""-~~~_,;_------------





CS-TR Scanning Project 
Document Control Form 

Report# Le_~ -JP.- 4Q1l 

Date: -2..J I 0 1 'lS 

Each of the following should be identified by a checkmark: 
Originating Department: 

D Artificial lntellegence Laboratory (Al) 
~ Laboratory for Computer Science (LCS) 

Document Type: 

~Technical Report (TR) D Technical Memo (TM) 

D Other: 
·----------~ 

Document Information Number of pages: '1("1<.· ifflAG:-Cs) 
- Not to include DOD forms, printer lntstructions, etc ... or1glnal pages only. 

Originals are: Intended to be printed as : 

)2( Single-sided or D Single-sided or 

D Double-sided ~ Double-sided 

Print type: 
D Typewrier D Offset Press X Laser Pm 

D Ink.Jet Printer D Unknown D Other:. ______ _ 

Check each if included with document: 

~ DOD FormJ(f'G'..;) D Funding Agent Form 

D Spine 'l8( Printers Notes 

D Other: ------------
Page Data: 

,9(. Cover Page J:...( {np i r:;) 
D Photo negatives 

Blank Pages(by119numbef):_.j...,,J1-Lf'-t
7 
.... c .... 

1 
...... ?. ______ _ 

Photographs/Tonal Material (by11999 number): ________ _ 

Description : Page Number: 

i mAG;f/ /Y)fJ r (I-~ ·z) fAG-F:'S -# fr:D 1-C-? (/rJcL..'-1.D :vc; f.JL~ fA<;f) 

(61- ] ] ) ~.,,,.,""'IR' L q v .-r.>..G;, J fe,; wl/:1¥ ;L>TDJ DoD("-' P~"'-) 
(J':i· -J~ f ::tBGJ:S J) 

Scanning Agent Signoff: 

Date Received: .3 1~1is· Date Scanned: .l...JJ!f:_I 7 S Date Returned: _}_1.Ji_19S 

Scanning Agent Signature: __ /1..;..._"-~_..._'..ru..=...A~, ..... 111"'""'v..__J _c:;J ............... '~---



Unclassified 
SECURITY CLASSIFICATION OF THIS PAGE 

REPORT DOCUMENTATION PAGE 

1a. REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGS 

Unclassified 
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRl!;!UTION I AVAILABILITY OF REPORT 

Approved for public release; distribution 
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE is unlimited. 

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) 

MIT/LCS/TR 486 N00014-87-K-0825 -

Ga. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL la. NAME OF MONITORING ORGANIZATION 

MIT Lab for Computer Science 
(If applicable) 

Office of Naval Research/Dept. of Navy 

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) 

545 Technology Square Information Systems Program 
Cambridge, MA 02139 Arlington, VA 22217 

Sa. NAME OF FUNDING I SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 
ORGANIZATION (If applicable) 
DARPA/DOD 

Be. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS 

1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT 
ELEMENT NO. NO. NO. ACCESSION NO. 

Arlington, VA 22217 

1 1. TITLE (Include Security Classification) 

On Retiming Synchronous Circuitry and Mixed-Integer Optimization 

12. PERSONAL AUTHOR(S) 
Mario Christos Papaefthymiou 

13a. TYPE OF REPORT 113b. TIME COVERED 14. DA TE OF REPORT (Year, Month, Day) T 5. PAGE COUNT 

Technical FROM TO -9..L9Jl 68 
16. SUPPLEMENTARY NOTATION 

17. COSA Tl CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block numbe_r) 

FIELD GROUP SUB-GROUP Digital circuitry, systolic systems, parallel computation, 
computer-aided design, re timing, pipeling, propagation d~' 

delay, group theory, semirings, mixed-integer optimization, 

19. ABSTRACT (Continue on reverse if necessary and identify by block number)~ TTUW. 

A. In this paper we investigate properties of retiming, a circuit transformation which 
preserves the behavior of the circuit as a whole. We present an algorithm which 

transforms a given combinational circuit into a functionally equivalent pipelined cir-
cuit with minimum latency and clock-period no greater than a given upper bound c. 
The algorithm runs in O(E) steps, where E is the number of interconnections in 
the circuit, and is optimal within a constant factor. We give a novel and concise 

characterization of the minimum clock-period of a circuit in terms of the maximum 
delay-to-register ratio cycle in the circuit. We show that this ratio does not exceed the 
minimum feasible clock-period by more than the maximum delay D of the elements in 
the circuit. This characterization leads to an O(Elg D) algorithm for minimum clock-

20. DISTRIBUTION I AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 
Ql UNCLASSIFIED/UNLIMITED D SAME AS RPT. D DTIC USERS Unclassified 

22a. NAME OF RESPONSIBLE INDIVIDUAL 

Carol Nic.olora 
DD FORM 1473, 84 MAR 

22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL 
(617) 

83 APR ed1t1on may be used until exhausted. 
All other editions are obsolete 

253-5894 

SECURITY CLASSIFICATION OF THIS PAGE 

'A'US. Go-t 1'1-inting Office: 1986-007«7 
Unclassified 



B. period pipelining of combinational circuitry with latency no greater than a given up
per bound l, an O(min{V112 E lg(V D), VE}) algorithm for minimum clock-period re
timing of unit-delay circuitry, an O(V Elg D) algorithm for minimum clock-period 
retiming of general circuitry and an O(min{V112Elg(VW)lg(VD), VElg(VD)}) al
gorithm for approximately minimum clock-period retiming, where Vis the number of 
processing elements in the circuit. \Ve demonstrate the closed semiring structure of 
retiming on unit-delay circuits under a given clock-period constraint. Finally, we give 
an 0(\13 lg V) algorithm for a mixed-integer optimization problem which arises in the 
linear programming framework of retiming. 


