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Abstract 

This research addresses the problem of proving lower bounds on the complexity of alge­
braic computations involving the floor operation. The model of computation considered 
is a computation tree with the set of basic operations { +, -, *, /, l·J, ~}. The constants 
available to the computation are 0 and 1, and every other constant needs to be generated 
explicitly. The problems that are considered may be broken down into the following 
categories: 

1. Functions of a single input. A general lower bound technique is developed for a class 
of functions that have as their input a single n-bit integer. A characterization of the 
functions to which this technique applies is given. The characterization is general, 
and applies to many natural functions, such as perfect square root (deciding if the 
square root of the input is integral or not) and computing the value of l log log x J. 
Every function that with this characterization requires at least fl( y1IC)gn) opera­
tions. 

Upper bounds are given which use the floor function in non-trivial ways. The most 
surprising result is that the computation of 22

k can be accelerated in the presence 
of the floor function. Using only rational operations (i.e. { +, -, *, /} ), it requires 
O(k) operations to compute (by repeated squaring), and this bound is tight (for 
ratioual operations). In contrast, we show that with the use of the floor operation 
and an additional input greater than 22

k, the number 22
1c can be generated in 

8( v'k) operations. Using the upper bounds developed, an 0( y1IC)gn) upper bound 
for computing lloglogxJ is given (where xis an n-bit integer). This upper bound 
matches the lower bound proved for this function. 

2. Functions of two inputs. A very natural example of a function that has two integer 
inputs is the Greatest Common Divisor function. Grotschel, Lovasz and Schrijver 
posed as an open problem the problem of showing that computing the greatest 
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Chapter 1 

Introduction 

It is very natural to define the complexity of an algorithm with respect to the number of 

operations that it performs. Computation trees give a way to formalize such a model. A 

computation tree, intuitively, has a set of basic operations, each requires unit time, and 

the complexity of the algorithm is measured with respect to this set of operations. (See 

Chapter 2 for both motivation and definition of the computation tree model.) 

Arithmetic operations, e.g., addition, multiplication, etc, are natural candidates for 

the set of allowable unit time operations. Deriving lower bounds for computations that 

involve arithmetic operations has received much attention. As one would expect, at first 

lower bounds were developed for limited sets of arithmetic operations, and with time, 

the results were extended to richer sets of operations. Probably the simplest model is 

one that has only comparisons, which is used to show an O(n log n) lower bound for 

sorting (see [Knu81]). A considerably richer model is one that allows linear operations 

in addition to comparisons. Lower bounds for computations with linear operations can 

be found in [Rei71, Dob76, DL 78, DL80, Yao75, YRSO]. As for rational operations, i.e. 

{ +, -, *, /}, the first lower bound is [Rab72], which is an information theoretic lower 

bound. 

9 
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inputs. If the size of numbers is not restricted then "too many" functions are computed 

with a polynomial number of operations. For example, any PSPACE-computation can 

be simulated in polynomial time [BMSSl, PS76, Sim81]. Moreover, it is known that hard 

problems, e.g., factoring, can be solved in linear time [Sha79]. Restricting the size of 

the intermediate results to be polynomial in the size of the inputs ensures that strongly 

polynomial time is contained in polynomial time. 

Lower bounds techniques for computations that use the floor operation have been 

much less successful than for rational operations. Perhaps one reason for the lack of 

progress in this area is that this set of operations does not possess the "nice" algebraic 

properties that rational functions possess. 

Previously there have been a few lower bound techniques developed to handle the 

floor operation. In [BJM88], a computation tree that operates on real numbers and has 

the floor operation in its repertoire was studied. They show, using topological arguments, 

that there are certain classes of languages which can not be decided by analytic compu­

tation trees. [JMW89], compares the expressive power of computation trees with various 

sets of operations, and proves lower bounds for computation trees with the operations 

{ +,-,DIV';,}, where DIV';, denotes integer division by constants. Based on proof tech­

niques of [JMW89], [Bas90a] shows an D.(n/ log n) lower bound for computing the GCD, 

using { +, -, l·J, Xe, /e}, where Xe and /e are multiplication and division by constants. 

(Note that in such a model the mod operation cannot be performed in 0(1) operations.) 

The work of [IMR83] discusses the relation of the floor operation and indirect address­

ing. In [D085, Jia79], an D.(n log n) lower bound for sorting rational numbers, using a 

restricted floor operation, is given. 

The aim of our research is to establish lower bounds for computations that use the 

floor operation, in addition to rational operations. The main motivation for considering 

the floor operation, is that it is simple to implement in practice, and that it exists as a 

basic operation in most computers and programming languages. 
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the average error is less than E, requires at least D( )log log ~) operations. (In the lower 

bound we assume that the computation receives only the input x E [1, 2], as in the case of 

Newton iterations, and tries to produce the best approximation it can, given a bound on 

the number of operations.) In a somewhat different setting, we show how to approximate 

the sth root, for any x E [1, 2]. The approximated value, for any input x E [1, 2], is at 

most E away from \IX, and the number of operations is 0( )log log~). (In the upper 

bound, the computation receives both the input x E [1, 2] and the accuracy parameter 

E.) 

All our lower bounds assume that we have to generate all the constants that are used 

m the computation explicitly. \Ve show that without this restriction any polynomial 

could be computed in 0(1) operations (independent of its degree). In order to avoid any 

possible confusion, we quantify our lower bounds by stating that the computation has 

initially only the constants {O, 1}. 

The research in this work was done in collaboration with Baruch Schieber and Prasoon 

Tiwari, and preliminary versions of it appear in [MST88, MST89b, MST89a]. 

This thesis is organized as follows. In Chapter 2 we define the computation model 

and prove a few results concerning polynomials and rational functions. In Chapter 3 

we develop the proof technique for one variable functions. In Chapter 4 we extend the 

technique from one variable to two variables, and show the lower bound for computing 

the greatest common divisor of two integers. In Chapter 5 we show the lower bounds for 

approximation. In Chapter 6 we show the upper bounds. In Chapter 7 we summarize 

the results and suggest directions for future research. 



Chapter 2 

Preliminaries 

2.1 Computation Tree Model 

In this section, we define the computation tree model. Let us motivate the definition 

chosen. Consider a specific computer, it has some set of instructions that are built into 

it. A program that runs on that computer uses this set of operations, usually referred to 

as "machine instructions". A natural measure of the time complexity of a program is the 

number of machine instructions that it performs. Although this approach assumes that 

each machine instruction requires the same amount of time, in many cases this gives a 

good approximation. 

This means that it is natural to fix some set of operations, and consider them as basic 

operations. The time complexity of computing a certain function is the number of basic 

operations performed. 

We would like a formal model that would make it "easy" to define time complexity. 

If the set of basic operations does not include a branching operation, then the number of 

operations performed, on any input, is simply the number of open'ltions in the program. 

15 



2.1. COMPUTATION TREE MODEL 17 

Definition 1 A computation tree T consists of a labeled binary tree, and a set of 

operations OP. Each vertex of the tree is labeled in one of the following ways. 

• Input vertices: An input vertex is labeled by a certain input, e.g. X1. Each input 

vertex has at most one child. 

• Computation vertices: Each computation vertex u is labeled with an operation fu = 

o( v1 , ... , vk), where o E 0 P, and v; is either a computation or an input vertex that 

appears on the path from the root to node u. Each computation vertex has at most 

one child. 

• Comparison vertices: Each comparison vertex u is labeled with v1 ~ v2, where, 

again, v; is either a computation or an input vertex that appears on the path from 

the root to node u. Each comparison vertex has two children. 

Given an input the computation tree defines a computation. The computation tra­

verses a path from the root to a leaf and assigns values to the input and computation 

vertices on the path in the following way. 

The computation starts at the root of the tree T, and proceeds as follows: 

1. When the computation arrives at an input vertex u, labeled by Xi, it assigns u the 

value of the input x;, and continues to the child of u. 

2. When the computation arrives at a computation vertex u, labeled by fu = op( vi, ... , 

vk), it assigns u the value val(u), which is op(val(v1), ••• , val(vk)), where val( vi) is 

the value of vertex Vi· Note, that since Vi appears on the path from the root to u, 

the computation already assigned some value to v;. The computation continues to 

the child of u. 

3. When the computation arrives at a comparison vertex u, labeled with v1 ~ v2 , it 

proceeds to the left child of u, if val( v1) ~ val( v2 ), and to the right child of u, 

otherwise. (A comparison node does not have a value.) 
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2.2 Polynomials and rational expressions 

This section includes some basic definitions and results about polynomial and rational 

expressions. These results will be used extensively in the following chapters. 

The degree of a polynomial P(.T 1 , ..• , xk) with respect to a variable x;, denoted 

degx;(P), is the maximum exponent of x; appearing in any monomial of P(x 1 , .•• , xk)· 

The degree of P, denoted deg(P), is max; degx, (P). 

The size of the coefficients plays a crucial role in the lower bounds that we prove 

later. For this reason we add another parameter, which is the maximum coefficient of P, 

denoted max-coef(P). The value of max-coef(P) is defined to be the maximum among 

the absolute values of the coefficients of P. 

We extend the notion of degree and maximum coefficient of a polynomial to a set of 

polynomials, in a rather straightforward way. For a set A of polynomials, the degree of 

A, denoted deg(A), is maxPEA deg(P). Similarly, the maximum coefficient of A, denoted 

max-coef(A), is maxPEA max-coef(P). 

The following lemma relates the degree and maximum coefficient of polynomials and 

the operations { +, -, * }. 

Lemma 2.1 Let P(x 1 , •.• , xk) and Q(xi, ... , xk) be two multivariate polynomials. 

Then, 

1. deg(P ± Q) $ max{deg(P), deg(Q)}, 

2. max-coef(P ± Q) $ max-coef(P) + max-coef(Q), 

3. deg(P * Q) $ deg(P) + deg(Q), and 

4- max-coef(P * Q) $ (1 +min{ deg(P), deg(Q)} lmax-coef(P)max-coef(Q). 
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A lexicographic order on polynomials 

We define a lexicographic order on the set of multivariate polynomials. For this purpose, 

we use the following lexicographic order on the set of multivariate monomials. 

D fi "t" 2 D t · [ i1 ik d d i1 ik th [ t · i1 ik e n1 ion 1·or wo monomia s cx1 ... xk an x 1 ••• xk , e re a ion cx1 ..• xk 

>- dxi1 
••• x~k holds if either (1) there exists an m, such that im > Jm, and for any l < m, 

i1 = j,, or (2) i1 = j1, for 1 ~ l ~ k, and Jcl > ldl. 

We say that a polynomial is written in its normal form if it is written as a minimal 

sum of monomials, and these monomials are sorted in descending lexicographic order. 

\Ve assume that all polynomials are written in their normal form. 

Definition 3 For two multivariate polynomials P(x1 , •.• , xk) and Q(xi, ... , xk), P(x1 , 

... , Xk) >- Q(x1, ... , xk) if, when written in their normal forms, there exists some i ~ 1, 

such that (the i-th monomial in P) >- (the i-th monomial in Q), and all the monomials 

preceding it are identical in both P and Q. 

Given a polynomial P(x 1 , ••• , xk), let the leading monomial of P be the first monomial 

in the normal form of P(xi, ... , Xk)· Let the leading coefficient of P(x1 , .•• , xk) be the 

coefficient of this monomial. Define 

sign(a) = 

+1 for a> 0 

0 for a= 0 

-1 for a< 0 

The sign of a polynomial P, denoted by sign(P), is the sign of the leading coefficient of 

P. Note that sign(P) = 0 if and only if P is the zero polynomial. A sign of a rational 

expression R( x) = ~~:l, is sign( P) sign( Q). 
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To complete the proof we show that if b > 7r2 (P) = MtL then (1 - Lk=I lftJ) > 0, or 

equivalently, Lk=l 1ftJ < 1. This later inequality follows from 

t ILk~ ~ J\1 t b-k < 111 t ( L )k < M L 1 L = 1. 
k=l Lb L k=l L k=l Af + L L M + L 1 - M+L 

Similarly, we can prove the Lemma for the case L < 0. D 

From Lemma 2.3 we can infer a sufficient condition for univariate polynomials. 

Corollary 2.4 For each polynomial P(y), there exist a positive integer 7r(P) such 

( ) 
max-coe/(P) 

that for all b > 7r(P), sign(P(b)) equals sign(P). Furthermore, 7r P ~ ILi + 1, 

where L is the leading coefficient of P. 

Corollary 2.4 enables to argue along the following lines. Consider a comparison be­

tween Q(x) and P(x), where both Q and Pare polynomials. By Corollary 2.4, there 

exists a value e = 7r(P-Q), such that for x > e, either P(x)-Q(x) = 0, P(x)-Q(x) > 0, 

or P(x) - Q(x) < 0. This means that, for x > e, the value of the comparison between Q 

and P is fixed. In a similar way, Lemma 2.3 allows us to argue about the comparison of 

bivariate polynomials. 

Polynomial division 

The lemma below shows how the degree and the maximum coefficients of bivariate poly­

nomials are affected, when we perform polynomial division. Note that the following 

lemma is restricted to the case that the leading monomial has only one variable. 

Lemma 2 .5 Let P( x, y) and Q( x, y) be two bivariate polynomials with integer coeffi­

cients. Let max-coef(P) = A1, max-coef(Q) = N, and 8 = max{-1, degx(P) - degx(Q)}, 

If Lxd is the leading monomial of Q(x,y), where d 2: 1, then there exists A(x,y) and 
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Therefore we can bound the maximum coefficient of R, using the inductive hypothesis, 

as follows, 

max-coef(R) < (2 + degy(Q)) 8 max-coeftS)N8 

Furthermore, degx(R) < degx(Q){= d}, and degy(R) < degy(S) + (8 - I)degy(Q) 

:::; degy(P) + 8' degy( Q). 

In a similar way the bounds on max-coeftA) and deg(A) follow. D 

For most of our applications the following simplified version of Lemma 2.5 would be 

sufficient. 

Corollary 2.6 Let P(x, y) and Q(x, y) be two bivariate polynomials such that deg(Q), 

deg(P) :::; D, and max-coef(P), max-coeftQ) :::; 111. If Lxd is the leading monomial of of 

Q(x,y), then there exists A(x,y) and R(x,y) such that 

1 1 
P(x,y)= LH1 A(x,y)Q(x,y)+ LH1 R(x,y), 

where8 = max{-1,degx(P)-degx(Q)}:::; D. Furthermore, A(x,y) andR(x,y) are 

polynomials with integer coefficients, that satisfy, 

1. max-coeftR) :::; ((D + 2)M)D+2 , 

2. max-coef(A) :::; ((D + 2).M)D+l, 

3. degx(R) < D, and degy(R) :::; (D + l)D. 



Chapter 3 

One Variable Functions 

3.1 Overview 

Proving that a polynomial cannot compute a certain boolean function, using only a 

certain number of { +, -, *} operations, can be done by arguing about the degree of 

the polynomial. In order to make the case more interesting, assume that we relax the 

requirement on the output of the polynomial such that it evaluates to a non-negative 

number if and only if the computed function is TRUE on that input. On the one hand, 

the number of alternations between TRUE and FALSE of the output of the computed 

function gives a lower bound on the degree of the polynomial. On the other hand, in order 

to evaluate a polynomial of degree d, one must perform at least log d multiplications. 

This degree argument is independent of the size of the coefficients of the polynomial, 

and applies even if the input is restricted to be integer. The degree argument can be 

extended also to rational functions, and to computation tree with rational operations 

(i.e. { +, -, *, /} ). Stockmeyer [Sto76] showed, using a similar argument, an fl(n) lower 

bound for the depth of any computation tree that computes the parity, for any n bit 

integer, using rational operations. 

27 
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Doing it in a straightforward way may cause a "huge" increase in the degree. 

For example, consider the expression l ~ J , where x is an n bit integer. If R is a 

rational function such that R( x) = l ~ J, then R has degree 2n-l. We are interested in a 

transformation that keeps the degree and the coefficients "small". In this specific case, 

a good solution would be to set l ~ J = 0, and restrict x to integers that are divisible by 

2, i.e. only even integers. 

The general solution has a similar flavor. \Ve restrict the input, so we can set the 

value of the floor operation equal to a rational function. In this transformation, the 

degree remains the same, and the size of the coefficients may grow at most exponentially 

in the degree. Based on this technique, we show how to derive lower bounds for a decision 

tree. 

In Section 3.3 we show how to derive lower bound for various functions, using the 

general technique. Although our proof technique is for decision problem we can use it 

to derive lower bounds for computation problems as well. In the cases that we consider, 

the decision problem is the parity of the output of the computation problem. Since the 

floor is a basic operation, we can compute the parity from the output in 0(1 ). This 

implies that for such decision problems, the computation problem is at least as hard as 

the decision problem. 

3.2 Proof Technique 

We start by defining the subsets of the input that will be used in our proof. 

Definition 4 Let the set S(n, ;q be the set of all n-bit integers that are multiples of 

an integer ,\. 
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The interesting case of the proof technique is the floor operation. This is by far more 

involved than the previous cases. After proving this lemma, we show how to combine 

the techniques we developed to derive a lower bound for decision trees. Recall that we 

restrict the floor operation to non-negative inputs. 

Lemma 3.4 Let P be a rational expressions with integer coefficients, of degree at 

most D and maximum coefficient at most NI, defined over S(n, .\), such that P(x) 2 0 

for any x E S(n, .\). There there exists 7r:::; (2.M)D+2 , and a rational expression Q with 

integer coefficients, where deg( Q) :::; D and max-coef( Q) :::; (2M)D+l, such that for any 

x E S(n, .\7r), Q(x) = lP(x)J. 

Proof: If sign(P) = 0, i.e. P is the zero function, then let Q(x) = 0/1 and 7r = 1, 

and the lemma follows. Otherwise, let P( x) = ~~l;j. Without loss of generality we may 

assume that sign(P2 ) = +l. We would like to restrict our attention to a subset of the 

inputs, for which the sign of P(x) is fixed. By Corollary 2.4 for x 2 max{7r(P1 ), 7r(P2 )}, 

sign(P(x)) equals sign(P), which equals sign(Pi)sign(P2 ). Since the operand of the floor 

is non-negative, sign(P) = +1, which implies that sign(P1 ) = +l. 

We consider three cases of relations between P1 and P2 • 

Case 1: Pi(x) = P2(x). This is the trivial case. Let Q(x) = 1/1, and the lemma follows. 

Case 2: Pi(x)-< P2(x). Let B(x) = P2(x) - P1 (x). Since the leading coefficient of P2 is 

positive then sign( B) = + 1. Corollary 2.4 guarantees the existence of a positive integer 

7r(B) such that B(a) > 0, for all a > max{7r(P1 ), 7r(P2), 7r(B)} = 7r. Since P2(x) > 0, 

the expression P2(x) - P1 (x) > 0 is equivalent to 1 > ~~f;j = P(x). Since P(x) 2 0, 

for x E S(n, .\), 1 > ~~f~j 2 0, for a E S(n, A7r). We conclude that for any integer 

a E S(n,.\7r), lP(a)J = 0. Let Q(x) = 0/1. Since 7r:::; 2(D + l)M2 + 1, the lemma 

follows. 
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We need to bound the parameters 71', deg(Q) and max-coef(Q). To bound deg(Q) 

and max-coefl Q) it is sufficient to consider the polynomial A( x) + cLd. Clearly, 

deg(A(x) + cLd) SD. The value of max-coef(Q) is the maximum between Ld and 

max-coef(A(x) + cLd). By definition, max-coef(A(x) + cLd) S max-coef(A) + Ld. 

Using Corollary 2.7, max-coef(A) < 2D AJD+1 . Therefore max-coef(Q) S (2M)D+1
. 

To bound the value of 71', we bound 7r(B); the bounds for 7r(/P2 + R), 7r(P1), 

and 7r(P2 ) are smaller, and derived similarly. Recall that LdB(x) = LdP2 (x) -

(1g(x)+R(x)). Therefore, max-coef(LdB) S (Ld-1) max-coef(P2) + max-coef(R) 

< MD+1Af+2D+ 1 JvJD+ 2. Since L > 0, for any x, sign(B(x)) = sign(LdB(x)). 

Hence, in order to bound 7r(B) it is sufficient to bound 7r(LdB). Since LdB(x) is a 

polynomial with integer coefficients, its leading coefficient is at least one. Therefore, 

by Corollary 2.4, 7r(Ld B) s max-coef(Ld B) +l. By requiring that 7r is divisible by 

Ld, we may add Ld -1 to 7r(B), therefore, 7r S 7r(LdB) + 1 + (Ld -1) S (21U)D+2 • 

Subcase 2: r = 0. Clearly R( x) -< Ld P2 ( x). Using Corollary 2.4, let 7r be the 

minimum multiple of Ld such that 7r ~ max { 7r(R), 7r(Pi), 7r(P2 ), 7r(Ld P2 ± R) }. 

Then, for all a> 71', Lf~;{a) = 0, if sign(R) = 0, 0 < LfAala) < 1, if sign(R) = +l, 

and -1 < L:Aala) < 0, if sign(R) = -1. Recall that the free term of A is Ldc + r· 
Let c be c if sign(R) ~ 0, and c - 1 if sign(R) = -1. We conclude that for each 

a E S(n, .\7r), l~:f:~J = L-d A(a) + c. Let 

A(x)+cLd 
Q(x) = Ld = lP(x)J for x E S(n, .\7r). 

vVe can bound the parameters 71', deg(Q) and max-coef(Q) as in the previous subcase. 

Since one of the above relations has to hold between P 1 and P 2 , the lemma follows. D 

To summarize, so far we considered each operation by itself. Lemma 3.4 guarantees 

that each floor operation can be replaced by an evaluation of a rational expression. 
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3. Let E; = {Fv
1
,Gv

1 
I VJ is a computation vertex, j:::; i}. Define D; = deg(E;) + 1 

and J\;f; = max-coef(Ei). Then, D; < 2i, and max{,\(il,Mi} < 224
'

2

• 

\Ve show how to define ,\(i+l) and how to choose the vertex v;+2 such that Properties 

1-3 will be satisfied by the set S(n, ,\(i+l)) and the prefix of P that starts at v1 , and ends 

at v;+2 • The parameter ,\(i+l) will be a multiple of ,\(i). By Claim 3.1 this implies that 

S(n, ,\(i+l)) ~ S(n, ,\(i)), therefore, by the induction hypothesis we have that Properties 

1-3 are satisfied by the set S(n, ,\(i+l)) and the prefix of P that starts at v1 and ends 

at v;+1 • In order to complete the proof of the lemma we need to show that (a) there 

exists an outgoing edge of Vi+i such that for each input a E S(n, ,\(i+l)) the computation 

follows this edge, and (b) Properties 2-3 are satisfied also for the vertex v;+1 and the set 

S(n, ,\(i+1l). 

By the definition of the tree T, the vertex v;+i is either an input vertex, a comparison 

vertex or a computation vertex. For an input vertex both (a) and (b) hold trivially. 

For a comparison vertex we need to show that (a) holds. Let the comparison be 

g ~ h, such that g, h E {O, 1} U {fv
1 

I VJ is a computation vertex, j :::; i}. By the 

induction hypothesis both h and g can be represented as rational expressions of degree 
·2 

at most D; :::; 2i, and maximum coefficient A1; :::; 2241 
• By Lemma 3.2, there is a 

( ·+1) (") 2 (") 4(i+1)
2 

,\ i :::; 2,\ ' ( D; + 1 )M; + ,\ ' :::; 22 . For a comparison vertex (b) holds trivially. 

For a computation vertex (a) holds trivially, so we need to show only that (b) holds. At 

a computation vertex, either fv;+i =go h, for o E { +, -, *,/},or fv;+i = lgJ is evaluated, 

where, g, h E {O, 1} U {fv
1 

I VJ is a computation vertex, j :::; i}. If o E { +, -, *, /}, 

then the induction step follows from Lemma 3.3. If fv;+i = lgJ, then, by Lemma 3.4, 

there is a rational expression Q, such that Q = lgJ. By Lemma 3.4, D;+1 :::; D; :::; 2', 
2 ( 2 (. )2 

M;+ 1 :::; (2M;)D,+i :::; 2< 1+2•• H2'+l) :::; 224 •+IJ , and ,\(i+i) :::; ,\Ul(2M;)D,+2 :::; 224 •+1 
• D 
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The following corollary states that for A1(n) = D(zn<), the lower bound is still D( y'IOg"n). 

This corollary is used later to derive an D( ~) lower bound for various functions. 

Corollary 3.7 Let f be an 1\I(n)-invariant function, such that M(n) = D(zn•) for 

some fixed E > 0. Then any computation free with OP= { +, -, *, /, l·J}, that computes 

f(x)i for all n-bit integers, must have depth n( ~). 

Using Corollary 3. 7 we show lower bounds for the following problems. 

1. Decide if llog aJ is odd or even, for any n-bit integer a. (choose M(n) 

a1 = ,\ and a2 = 2,\.) 

2. Decide if lloglogaJ is odd or even, for any n-bit integer a. (choose M(n) = 2n/2, 

a1 =,\and a2 = ,\2.) 

3. Decide if Ja is an integer. (choose Af(n) = zn/2- 1, a1 = ,\2 and a2 = 2,\2.) 

Theorem 3.6 gives an D( ~) lower bound on the depth of any decision tree with 

OP= { +, -, *, /, l·J}, that solves the above problems. 

At first sight it seems that all of the above lower bounds are for decision problems, 

and may be unrelated to the similar computation problems. In general this may be the 

case, but our examples have the property that the decision problem is closely related to 

the corresponding computational problem. For all the above decision problems, given a 

solution to the corresponding computation problem, one can decide the decision problem 

in 0(1) operations. 



Chapter 4 

Lower bound for GCD 

4.1 Overview 

In this chapter we extend the proof technique developed in Chapter 3 to functions with 

two variables and apply it to show a lower bound for computing the greatest common 

divisor of two integers. Although this chapter does not depend on chapter 3, it is advisable 

that the reader would read chapter 3 prior to reading this chapter. 

Before explaining the lower bound technique for functions of two variables, we argue 

why the technique for one variable does not extend immediately to two variables. The 

most obvious reduction would be to concatenate the two i11puts, each of size n bits, to 

one input of size 2n bits, and define the function with respect to this single variable. In 

order for the reduction to work, we need to argue that given this input, we first extract 

the two n bit integers, and continue the computation using them. The problem is that 

in order to extract the two integers one may be required to perform O(log n) operations. 

This O(log n) additive factor would be more than the lower bound that we can prove for 

the one variable function. 

39 
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4.2 Inputs structure 

We start by defining the subsets of inputs that we will consider in the proof. Recall that 

for the one variable case, the subsets of the input that we considered were all the integers 

divisible by some integer. Unfortunately, the structure of the subsets of the inputs is 

substantially more complex in the two variable case. 

Definition 6 Let r, a 2 and a 3 be non-negative integers, and a 1 a positive integer. Let 

~ = ( 81, 82, ... , 8r) and A = (,\ 1 , A2, ... , Ar) be r-dimensional vectors of positive integers. 

For positive integers uo, Ui, Ur, and Ur+1, the pair (uo,u1) is< r,a1,a2,a3,~,A >­

generated by the pafr (Ur, Ur+i) if there exist positive integers u 2, u3, ... , Ur-l such that: 

Uo ( 4.1) 

Ur-1 Ar( Ur )8
r + Ur+li 

Ur > (ur+1)a
1

, (4.2) 

llr+l > a2, 

Ur llr+l = 1 (mod a 3). ( 4.3) 

In this case, (ur,Ur+i) is the< r,a1 ,a2 ,a3,~,A >-generator of (u0 ,ui), and u2,u3, 

... ,ur+l is the <r,a1,a2,a3,~,A>-generatingsequencefor(u0,u1 ). 
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The following lemma shows that when we add another variable, and thus adding 

another element to 6. and A, we restrict the "allowable" inputs to be a subset of the 

previous "allowable" inputs. 

Lemma 4.2 (The Containment Property): Let 6.' and A' be (r+ !)-dimensional 

vectors of positive integers, obtained from r-dimensional vectors 6. and A by appending 

positive integersb and>., respectively. Then, S(r+l,ai,a2,a3,6.',A') ~ S(r,a1,a2,a3,6., 

A), provided 8 2 a 1 and>.= 0 (mod 0:3). 

Proof: Suppose that (a 0 ,ai) E S(r + l,n:i,0:2,0:3,6.',A'), and let a2 > a3 > ... > ar > 

llr+l > llr+2 be its generating sequence. By definition, Ur = >.a~+l + ar+2· Therefore, 

1 ( d ) d °'1 I dd"t' °'1 H ( ) ar = mo 0:3 , an ar > ar+l · n a I 10n, llr+l > ar+2 > 0:2. ence, ao, a1 E 

0 

4.3 The proof technique 

As in the proof technique for one variable, we start by showing how to handle a compar­

ison. vVe show that we can restrict the inputs to the comparison, so as to ensure that 

the value of the comparison is fixed. 

Lemma 4.3 Let P(x, y) and Q(x, y) be two rational expressions with integer coeffi­

cients, of degree at most D and maximum coefficient at most M, defined over S(O, n:i, n:2, 

0:3). There exists 0:1 '.S: a; :::; max{ n:1, 2D + 1}, and a 2 :::; a~ :::; max{ n:2, 2(D+ 1)2M 2+1}, 

such that for all (a, b) E S(O, a;, a~, n:3 ), the comparison between P(a, b) and Q(a, b) is 

determined (i.e. either P(a,b) = Q(a,b), P(a,b) > Q(a,b), or P(a,b) < Q(a,b), for 

(a,b) E S(o,a;,a~,0:3)), and S(o,a;,a~,a3 ) c S(0,0:1,0:2,0:3). 

Proof: If P(x,y) = Q(x,y), for (x,y) E S(O,n:1,n:2,0:3), then let a~= n:1 and a~= a2, 

and the lemma follows. 
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1. There is a rational expression Q(x,y) with integer coefficients, and integers a~, a~, 

7r such that 

lP(x,y)J = Q(x,y) 

for each (x,y) E S(O,o:~,o:~,7ra3 ). Furthermore, max{a~, deg(Q),}:::; 4D4, and 

max{7ro:3, a~, max-coef(Q),}:::; 2(4D2 lvf) 2D
3

, or 

2. There is a rational expression Q(y, z) with integer coefficients, and integers a~, a~, 

7r, A and 8 such that 

LP(x, y)J = Q(y, z) 

where (y,z) is the generator of (x,y) E S(l,o:~,o:~,7r0'.3 , {8}, {.\}). Furthermore, 

max{ a~, deg( Q), 8} :::; 4D4 , and max{ 7ro:3, a~, max-coef( Q), A} :::; 2( 4D2 M)2D
3

• 

Proof: Let dx = degx(P2 ), dy = degy(P2 ), and let Lxd:ry1 be the leading monomial of 

P2 (x, y). Without loss of generality we may assume that L > 0, i.e. sign(P2) = +l. 

In order to simplify the proof, we would like to fix the inputs such that sign( P( x, y)) = 

sign(P). By Lemma 2.3, there are two integers 7r1(P1) and 7r2(P1), such that for each 

(u,v) E S(0,7r1(P1),7r2(Pi),1), sign(P1(u,v)) = sign(Pi). By a similar argument there 

are 7r1(P2) and 7r2(P2) such that for each (u,v) E S(O, 7r1(P2), 7r2(P2), 1), sign(P2 (u,v)) 

= sign(P2) = +l. Since the input to the floor operation is non-negative, sign(P) = 
+ 1. Recall that sign( P) = sign( Pi) sign( P2 ); this implies that sign( Pi) = + 1. Let 

6:1 = max{o:i, 7r1(P1), 7r1(P2)} and 6:2 = max{a2, 7r2(P1), 7r2(P2)}. Note that for each 

(u,v) E S(0,6:1,6:2,l), both P1(u,v) > 0 and P2 (u,v) > 0. Since the coefficients of Pi 

and P2 are integers, by Lemma 2.3, a1 :::; D + 1 and &2 :::; M + 1. 

In the remainder of the proof we consider the following five cases in the following 

order: 
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and / is a non-negative integer such that 0 ::S / < L. Let 7r = L, a; = a1 , and a; = 6:2. 

Then, for each (u,v) E S(o,a;,a;,7ra3 ), 

Pi(u,v) mod L = P1 (1,1) mod L = /, 

Since u = v = 1 mod L. By writing the mod operation explicitly, we have, 

P ( ) _ l P1 ( u, v) j L 
1 u,v - L +I 

Therefore, for (x,y) E S(o,a;,a;,7ra3 ), 

Clearly, deg( Q) ::S D, max-coefi Q) ::S 2M, and 7r = L ::S A1. 

Case 4: The leading monomial of P2(x,y) is Lxd"', i.e., no power of y appears in the 

leading monomial of P2 (x,y). We use Corollary 2.6 to divide P1 (x,y) by P2 (x,y) as 

polynomials in x. By Corollary 2.6 there are polynomials A( x, y) and R( x, y) with 

integer coefficients such that 

p ( ) _ A(x,y)P2(x,y) + R(x,y) 
i x, y - Ld . 

Note that since Case 3 does not hold, degx(P2) ;:::: 1. Furthermore, the following properties 

hold: (i) d ::S D, (ii) degx(R) < degx(P2). (iii) max-coef(R) ::S ((D + 2)M)D+2, (iv) 

max-coefiA) ::S ((D + 2)M)D+i, (v) degx(R) < D, and degy(R) ::S (D + l)D. (vi) 

degx(A) ::SD, and degy(A) ::SD. 
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Consider input (u,v) E S(O,a~,a~,7ra3 ). Then, both V(u,v) < P2(u,v) and 0 < 

V(u,v). Since P2(u,v) > 0, this implies that, 

0 < V(u,v) = 1P2(u,v) + R(u,v) < 1. 
P2(u, v) LdP2(u,v) 

We conclude that for each (x,y) E S(O,a~,a~,7ra3), 

A(x,y)-1 
lP(x,y)J = Ld = Q(x,y). 

Clearly, deg(Q) = deg(A) :::; D, and max-coef(Q) :::; max-coef(A) +Md :::; ((2 + 
D)A1)D+i + AfD :'.S 2((D + 2)AJ)D+2 . 

Subcase 4.2: / = 0. In this subcase we restrict the input, such that the value of 

l-yP2l~~;~~S"·v) J is either 0 or -1, depending on sign(R). Define R(x, y) as follows: 

- { R( x, y) if sign( R) 2: 0 
R(x, y) = 

LdP2(x,y) + R(x,y) if sign(R) = -1 

Note that, 

l R( x, y) J ( R) l R( x, y) J 
LdP2(x,y) +p = LdP2(x,y) 

where p(R) = 0, if sign(R) 2: 0, and p(R) = -1, if sign(R) = -1. The leading 

coefficients of the polynomials R(x, y) and Ld P2(x, y)-R(x, y) are positive, assum­

ing that sign(R)-/= 0 (the case sign(R) = 0 is trivial). Recall that 7r = Ld. Using 

Lemma 2.3, let 
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We substitute x by >.y6 + z. Therefore, deg(Q) s; D(D + 1) =band max-coef(Q) 

s; >.D2D A1 s; 2D 1\1v+1 = M. By Using Case 4, we get a rational expression Q'(y, z), and 

a~, a; and 7r, such that for each (x, y) E S(l, a~, a;, 7ra3, { 8}, { >.} ), 

Q'(y,z) = lCJ(y,z)j = lP(x,y)J 

where (y,z) is the (unique) generator of (x,y). Now substitute z = x - >.y6 in Q'(y,z) 

to get Q(x,y). We compute the following bounds for Q, 

max{ deg( Q), a~} < (D + 1 )2 

< (D(D + 1) + 1)2 

< 4D4
, 

and 

< ~ ((DA + ~)AfA ) fJ+2 max{max-coef{Q),a;,7ra3} L. L. 

< 2( 4D2 M)2va. 

Since the relation between P1 and P2 belongs to one of the five cases, this concludes 

the proof of this lemma. D 

The following lemma combines the previous lemmas into a proof technique for the two 

variable case. This lemma shows, that given a computation tree, one can find a subset, 

S(r, 01, a2, a 3, ~'A), such that all the inputs from this subset follow the same path. Once 

we establish this property, we can derive a lower bound for any boolean function that, 

for any such subset, has at least two elements which differ in their outcome. In the next 

section we show that deciding if two integers are relatively prime is one such function. 
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1. For each input (a, b) E S(i) the computation follows the path from the root to Vi+ii 

2. For each computation vertex v on the path from the root to the vertex Vi+1, ex­

cluding the vertex v;+ 1 , there is a pair of bivariate polynomials (Fi(x,y),G~(x,y)) 

with integer coefficients, such that for each input (a, b) E S(i), G~(u, v) =I 0, and 

val(v) = GFr((u,v))' where (u,v) is the< r(il,a~i),a~i),a~i),fl(i),A(i) >-generator of 
u u,v 

(a, b); and 

3. Let Ei = {F~ (x,y),G~ (x,y) I j:::; i}. Define D; = max{deg(Ei),4} and M; = 
J J 

max{max-coe.ftE;),4}. Then, r(i):::; i, max{a~i),Di} < 224
;, and max{a~i),a~i),Mi} 

24i 
< 22 . 

We construct the set s(i+I) s; S(i) such that Property 2 is satisfied also for the vertex 

Vi+1 and each input (a, b) E 5(i+l). We also select an outgoing edge of v;+l and prove 

that for each input (a, b) E S(i+l) the computation follows this edge. It is easy to check 

that r(i+l) :::; i + 1. Therefore, in order to complete this proof, it is sufficient to show that 

the following two inequalities hold: 

(i) 

Let us first resolve the case when Vi+I is a comparison vertex. Then by Lemma 4.3, we 

can extend P. Furthermore, a~i+l) :::; 2D; + 1 < 22•<•+ll, and a~i+l) :::; 2M?(D; + 1)2 +1 < 
4(•+1) 

2
22 

. Clearly, inequalities (i) and (ii) hold in this case. 

Next, consider the case when v;+1 is a computation vertex. We divide the discussion 

to two cases. The first case is when the operation is a rational operation, and the second 

case is when the operation is floor. 

Suppose v;+l is v o µ, where v and µ are prev10us computation vertices, and o E 

{ +, -, *, /}. By the induction hypothesis, val(v) = GF.,((u,v)) and val(µ) = GFµ((u,v)), where 
v u,v µ u,v 
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(ao, ai) = ((1 + a3)(e+l)a-i, (1 + a3)e), and (bo, b1) = (1 + a3(l + a3)(e+l)a-i, (1 + a3)e). In 

order to see that (a 0 ,ai) E S(O,a1,a2 ,a3 ), one can verify that (1) ao > af1, (2) a1 = 

(1 + a 3 )e > a 2 , and a0 _ a1 = 1 mod a 3 • (A similar argument holds for (bo, b1).) Clearly, 

gcd(ao, ai) = (1+a3)e=/.1, and gcd(bo, b1) = 1. 

In order complete this lemma, it is sufficient to prove each of the numbers ao, a1, bo, 

and b1 is less than 22t(t+1l. Since e is the least exponent such that (1 + a3)e > a2, 

then ( 1 + a 3 )e < 22t. The desired upper bounds are an immediate consequence of this 

observation. D 

Intuitively, the previous lemma shows, that if we terminate with a large subset S( · ), 

there is still a pair of inputs, one of which is misclassified. 

Theorem 4.8 Any decision tree with OP = { +, -, *, /, l·J} and constants {O, l}J 

that decides if a and b are relatively prime, for all integers 2n > a > b > OJ must have 

depth O(log log n). 

Proof: Without lost of generality we may assume that the leaves are labeled by the 

constants zero and one, and that the two first vertices are input vertices. (This can 

increase the depth of the tree by at most four.) Suppose that we are given a decision 

tree T of depth h < i log log(n115
), with OP = { +, -, *, /, l·J }, that decides if a and 

b are relatively prime, for all integers 2n > a > b > 0. By Lemma 4.6 we have the 

following: (i) there is a path P from the root of T to a leaf v, and a set of inputs 

S = S(r,a11 a2 ,o:3,~,A)n {(a,b): 0 < a,b < 2n}, such that for each input (a,b) ES, 

the computation follows the path P; (ii) The leaf v is labeled by a constant (zero or 

one) (iii) a < 22411 < n 115 a a < 'J
22411 < 2n115 max-coef( Fv(x,y)) < 2n115 and 

· 1 , 2, 3 - ' G,,(x,y) ' 

deg( b~~: .. ~p < n l/5
. Our goal is to arrive at a contradiction using Lemma 4. 7. 

Towards this end, let t = n l/5 
- 1. We claim that each pair ( u, v) E S(O, a 1, a 2 , a 3 )n 

{(u,v) : 1 ::; u,v < 22t(t+l)} generates a pair (a,b) ES = S(r,ai,0:2,0'.3,~,A) = 
S(r,a1 ,a2 ,a3,~,A)n {(a,b): 0 < u,v < 2n}. Recall that the first two vertices of the 



Chapter 5 

Approximation of Real Functions 

5.1 Motivation 

It is not hard to show that the square root function cannot be computed using ratio­

nal operations only. For example V'J, is not a rational number; therefore it cannot be 

represented by rational operations on {O, 1, 2}. The floor operation would not resolve 

this problem, since its output is always an integer. Still, we would like to argue about 

computations that involve such functions. 

One direction of research may be to assume that the square root function is one of our 

basic operations in the computation tree, and consider the complexity of computing other 

functions, given it as a basic operation. Another direction is to relax the requirement on 

the output of the computation tree. Instead of requiring it to be equal to the computed 

function, we can require it to "approximate" the computed function. 

The first approach, where the square root is consider as a basic operation, was m­

vestigated in [SY76, Pip81, Ja'81]. The main complexity measure that they considered 

was the number of square root operations that have to be performed. It was shown, for 

57 
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The norm L= is defined as, 

Jilli== sup Jl(x)J 
xEA 

It is well known that the norm of a function Jllllk is monotonically non-decreasing in the 

parameter k, i.e. llllli S 1111'2 :::; · · · :::; Jilli=· This implies that showing a lower bound 

for 111111, implies a lower bound for any Lk, including L=. 

We still need to make a connection between the norm of a function and the quality 

of an approximation. Given a certain point x, the difference between g(x) and h(x) is 

a measure of how well g approximates h at that point. This suggests that the norm of 

g - h would be a good indicator of how well g approximates h. More formally, we define 

a function erTork(g, h) as follows, 

errork(g, h) = JJg - hJJk = kl Jg(x) - h(x)Jkdx 

The function errork(g, h) is how well g approximates h in norm Lk. A function g(x) 

approximates a function h(x), within t:, in norm Lk, if error(g, h)k St:. 

The more intuitive norms are probably L= and L 1 (although norm L2 plays an im­

portant role in many applications). The norm L= is intuitively the worst case, for 

approximation it would mean the worst case approximation, over any input. An t: ap­

proximation in norm L= implies that for any input in A, the difference between the two 

functions is at most t:. The other norm is L1 , which intuitively captures the average case. 

In the case of approximation one can view it as the expected error for a randomly chosen 

input. 

In this chapter we show a technique to derive lower bounds for approximation in 

norm L1. Clearly any lower bound in norm L1, implies a lower bound in any other norm, 

including L=. 
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path, P, in the computation tree. Note that this would not be true for an integer input, 

since, for example, branching according to whether the input is odd or even, divides the 

integers to two sets, such that neither set has two successive integers. The other point is 

that we need l to be "large", otherwise we will not be able to establish a lower bound at 

the end. For example, if l ::; E, then the square root function can be approximated by a 

constant over such an interval. 

The proof that there exists a path P is done by constructing it inductively. The 

inductive claim uses a prefix Pi of P, that includes the first i vertices, and a subinterval 

[ai, ai + l;], such that the value of each vertex in P;, for inputs from [ai, ai + /;], can be 

expressed as a rational expression, and any input from [ai, a;+/;] follows P;. 

In the inductive step we show that Pi can be extended to P;+l and maintain the 

inductive claim. Here we have two cases, depending on the type of last vertex of P;. 

If the last vertex in Pi is a comparison vertex, we need to show how to choose one 

of its sons as the next vertex Vi+l· In this case we need to show that there is a "large" 

subinterval [ai+1, ai+l + /i+i], where all the inputs continue to Vi+l· 

The other case is when the next vertex on P is a computation vertex. If the computa­

tion vertex has a rational operation, then the inductive claim is maintained trivially. The 

interesting case is when the vertex computes the floor function. Such a vertex receives as 

an argument the value of some previous vertex on Pi, which by the induction hypothesis 

can be expressed as a rational expression. Using the above argument about lr( x )J, there 

is a "large" subinterval [a;+1, a;+ 1 + li+i], in which the value of this vertex is constant. 

We continue by setting the value of the vertex to that constant, and restrict the inputs 

to the subinterval [a;+l, a;+1 + /;+i]· 

To summarize, the construction so far shows that for any computation tree T, defined 

over inputs x E [1,2], there is a subinterval [a,a+l], and a rational expression r(x), such 

that T(x) = r(x) for any x E [a, a+/]. This by itself does not imply any lower bound 

but reduces the problem of proving the lower bound for T, over [l, 2], to the problem of 
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lemma shows that the "penalty" of restricting the rational function to a subinterval in 

which it has no roots or poles is rather limited. 

Lemma 5.2 Given an interval [a, a + l] and a rational function r(x) of degree d} 

there exists a subinterval [a, a+ /d] C [a, a+ l] that does not contain any poles or zeros 

of r( x), and furthermore, r( x) is monotone in this subinterval. 

Proof: Let r(x) = ~~~~where p(x) and q(x) are polynomial of degree at most d. Consider 

the 6d + 1 subintervals [a,a + 6d~ 1 ],[a + 6d~ 1 ,a + 6}~ 1 ], ... ,[a + 6~~1 ,a + l]. In each 

subinterval in which r(x) has a pole, the polynomial q(x) has a zero. In the worst case, 

each zero of q(x) can be at the boundary of two adjacent subintervals. Since q(x) has 

at most d zeros, the number of subintervals that contain a pole of r( x) is at most 2d. 

Similarly, the number of intervals that contain a zero of r( x) (which is a zero of p( x)) is 

bounded by 2d. Therefore, there are k ~ 2d + 1 intervals that do not contain any pole 

or zero of r(x). 

Now, consider these remaining k intervals. Each interval where r(x) is not monotone 

contains either a local maxima or a local minima in its interior. At each local maxima 

or local minima, the derivative of r' ( x) has a zero. Since the degree of r' ( x) is at most 

2d, it can have at most 2d zeros. (Notice that the poles of r'(x) are same as the poles of 

r( x).) Hence, there exist k - 2d ~ 1 subintervals that do not contain any poles or zeros 

of r(x), and furthermore, r(x) is monotone in each of these subintervals. D 

The following lemma is a classical result, known as the Markoff inequality. It relates 

the value of the derivative of a polynomial to the polynomial value and degree. 

Lemma 5.3 (Markoff [Che66, page 91]) Let p(x) be a polynomial of degree d} and 

p'(x) the derivative of p(x) with respect to x. Then 

max {lp'(x)I} ~ d2 max {lp(x)I}. 
xE[-1,l] xE[-1,1] 
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on polynomials, we can also bound the value of a rational expressions. Using the above 

lemma, we can derive the following lower bound for a polynomial. 

Lemma 5.6 Given an interval [a, a+ /] and a polynomial p( x) of degree d ~ 1 with 

integer coefficients, there exists a subinterval [a,a+ 8~3 ] C [a,a+l] such that (i) p(x) is 

monotone in this subinterval, and (ii) IP( x) I ~ ( ~ )d for all x E [a, a + 8~3 ]. 

Proof: Let b be the leading coefficient of p. Since d ~ 1 then b =j:. 0, furthermore, since 

bis an integer, this implies that !bl ~ 1. Assume that J( is the largest value of jp(x)I in 

the interval [a, a+ I]. First, we argue that there is a subinterval of length 8 = 8~3 such 

that p( x) is monotone and is greater than J( /2, throughout this subinterval. Then, we 

show that K/2 ~ (l/4)d. 

Let Yi = a + 8~3 for i - 0, 1, ... , 8d3
• Consider the 8d3 subintervals [Yi-1, Yi], for 

i = 1, 2, ... , 8d3
• Choose x 0 E [a, a+/] such that jp(xo)I = K. Choose j such that 

Xo E [YJi Yj+1]. Assume that j :S: 4d3
, and consider d consecutive subintervals [Yj+i, Yi+i+i] 

for i = 0, 1, ... , d - 1. (The case j ~ 4d3 is similar.) Since the polynomial p( x) has a 

total of at most d - 1 local maxima and local minima, p( x) is monotone in one of these 

d subintervals. 

Next, we show that jp(x)I ~ K/2 for all x E [YJiYj+dl· For all real u such that 

Xo + u E (a, a+/], Lemma 5.4 implies that jp(x0 + u)I ~ lp(xo)I - u 2f I<. Therefore, for 

all x E [yj,Yj+d], lp(x)I ~I< - 8~ 2t
2 

I<= I<(l - ~) > tI<. 

It remains to show now that J( /2 is larger than ( i )d. In order to prove this assertion, 

transform the polynomial p( x) into a polynomial q( z) with leading coefficient one, in the 

interval (-1, 1] by setting 

1 2 d l 2a + l . 
q(z) = b(l) p(z2 + -

2
-), where bis the leadmg coefficient of p(x). 
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exists a subinterval [a,a+ 5~d4 ], such that j1·(x)j ~ (2M)- 1 (~)-d for all x E [a,a+ 5~d4], 
and r( x) is monotone in this subinterval. 

The following lemma is the main technique that we use to bound the value of the 

floor function. This lemma guarantees that there is a "large" subinterval in which the 

value of the floor function is constant. This implies that if we restrict our attention only 

to this subinterval, the value of the floor operation is constant. 

Lemma 5.9 Given an interval [a, a + l], where 1 :::; a :::; 2 and 0 < l :::; 2 - a, 

and a rational function r(x) of degreed with integer coefficients and max-coef(r) :::; M; 

there exists a such that lr(x)J equals a fixed integer J for all x E [a, a+ M-1(µ/)d+l] 

C [a, a + l], where µ < 1 is a fixed constant that can be chosen to be 0.02. Moreover, 

!JI :::; M(µZ)-d. 

Proof: By Lemma 5.7, there exists a subinterval [,8,,8+ 5~d4 ] in which r(x) is monotone, 

and jr(x)j :::; 2M(~)d for all x E [,8,,8 + 5~d4 ]. This implies that lr(x)J takes on at most 

4M( ~ )d distinct integer values in this subinterval. By the pigeon-hole principle, there is 

a subinterval of length at least 56d44~(f)d where r(x) is a constant. Let J equal the value 

of r( x) in that interval. D 

So far we were interested in the behavior of rational functions and the floor function. 

The next lemma shows a property of the sth root function. This lemma establishes a 

connection between the degree of a rational expression, its maximum coefficient, and how 

well it approximates the sth root. 

We should note that one can bound the approximation as a function of the degree, 

independent of the size of the maximum coefficient. The techniques used to achieve such 

bounds are more involved, and are not needed in our case. (See, for example, [Bra86].) 

Lemma 5.10 For an integers ~ 2, given an interval [a, a+l] C [1, 2] where 1 :::; a< 2 

and 0 < l :::; 2 - a, and a rational function r( x) of degree d with integer coefficients and 
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2. For each computation vertex v on the path P, there is a rational function rv(x), 

with integer coefficients, such that for any input a E [a, a+ l], the value computed 

at vertex v equals r11 (a). 

Finally, we conclude the desired lower bound on the length of P (and hence, a lower 

bound on the depth of T) by applying the result of Lemma 5.10 to rational functions 

that approximate \(X over the interval [a, a+ l]. 

Denote the vertices on the path P from the root of T to its leaf v1 by vi, v2, ... , v1, 

in that order, where v1 is the root of the tree T and v; is a child of v;_ 1 . We define the 

path P and the subinterval inductively, starting with the empty path and the interval 

[1, 2]. As part of the induction hypothesis, we maintain three properties of the path and 

the interval under consideration. These properties are described below. 

Suppose that (a) we have selected a prefix of P, which starts at vi, and ends at a 

vertex v;+1, and (b) defined a subinterval [a;, a; + l;] with the following properties: 

1. For each input x E [a;, a;+ l;] the computation follows the path from the root to 

2. For each computation vertex Vj on the path from the root to the vertex v;+l, 

excluding the vertex v;+l, there is a rational function rj(X ), with integer coefficients, 

such that val( Vj) = rj(X ), for any input x E [a;, a;+/;], 

3. Let 'E; = {rj(x)lvi is a computation vertex, j ~ i}. Define D; = deg('E;) + 1 and 
2 ·2 2 ·2 

M; = max-coef('E;). Then, Di ~ 2i, Mi < µ- 2 ' , and li ~ µ 2 ' , whereµ is the 

constant in the statement of Lemma 5.9. 

The basis of the induction is i 0, and the path is v1 , which is the root. All the 

claims hold trivially in this case. 

We show how to define [a;+1 , ai+l + l;+1] and how to choose the vertex v;+2 such that 

Properties 1-3 will be satisfied by the interval [a;+1 , a;+1 + li+il and the prefix of P that 
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bounded by 2( Di + 1 )Ml. Therefore, Di+l < 2Di, Mi+l ::.; 2( Di + 1 )Ml. For each 

x E [ai+1, ai+1 + l;+1] and T'i+1(x), Properties 1-3 are satisfied. 

Suppose that fv;+i = lfv;J = lg(x)J, for some 1 ::.; j ::.; i. By our hypothesis, 

deg(g) < Di and max-coef(g) ::.; I'vf;. By Lemma 5.9, there exists an integer J, and 

an interval [ai+li ai+l + li+1J, such that (i) for any x E [a;+i, a;+1 + /i+i], lg(x)J = J, 

IJI -< M;(µl,-)-D· <_ -22;2 -2i(1+22'2) < -22(i+l)2. d (") l· > _1 ( l·)D;+l > µ22'2 . µ µ _ µ , an 11 1+1 _ M; µ 1 _ 

(1+22i2)(2i+1) > 22<•+1)2 D fi . ( ) - J Th D D d M { ~1 J} µ _ µ . e ne r,+1 x - . en, i+l = ; an i+1 =max 111 ;, , 

and properties 1-3 are satisfied. 

Thus, we have proved the existence of a path P and an interval [a, a+ l] such that 

properties 1-3 are satisfied for all vertices on P. We have also established that there 

is a rational function r( x) such that for all a E [a, a + /] the value produced by T (at 

the end of the path P) on input a is given by r(a). Furthermore, that deg(r) < 2h, 
2h2 2h2 

NI = max-coef( r) ::.; µ- 2 
, and l 2: µ 2 

• 

By Lemma 5.10 there exists a subinterval [a, a+ l'], l' = 4 (sBs(2
1
sd+2)4 ) = DC/d4 ), such 

that for any v in the subinterval, lv 1fs - r(v)I 2 c(NI(sd + 2)t4UJ2sd+3 = 8, where c is 

a constant. This implies that we can lower bound error1 (T, ylx) as follows, 

error1 (T, y'X) 2: 81' 

2 

The value of 8 is !1(M-4 (~)0(sd)), and we can show 8 2: c~4 h , where c3 is a constant 

that depends only on s. Since T approximates \(X, in L1 , within t, then 

Therefore, h = !1( Jlog log~). D 



Chapter 6 

Upp er Bounds 

In this chapter we show how the power of the floor function can be used to accelerate 

computations. Clearly the floor function can help in computing the floor function and 

the mod function, but the interesting fact is that it can accelerate computations which 

we normally do not associate with the floor function. 

One issue of interest is the constants that the computation tree uses. A uniform com­

putation tree has as constants only {O, 1}, and every other constant has to be generated 

explicitly. On the other hand a non-uniform computation tree may have arbitrary initial 

constants. 

We show that many functions can be computed by non-uniform computation trees 

of depth 0(1). This justifies the reason that the lower bounds proved in the previous 

chapters are for the uniform computation trees. For uniform computation trees we show 

upper bounds that, in some cases, match the lower bound that we proved in the previous 

chapters. 

We start, in Section 6.1, by showing that any polynomial has a non-uniform computa­

tion tree of depth 0(1) that evaluates it, and this constant does not depend on the degree 

73 
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First we show how to construct a constant that encodes all the coefficients of a 

polynomial P(y ). The constant has simply all the coefficients in order, each padded 

to m bits, where m will be chosen latter. More formally, let P(y) = L,f=o PiYi, where 

the coefficients, Pi, are integers. Define c'; = P(2m) = L,f=oPi2mi. Form, such that 

2m > max-coef(P), it is easy to verify that them-bit integer obtained by considering bit 

positions im to (i + l)m - 1 of c; is equal to Pi· 

The polynomial evaluation algorithm: 

The algorithm is constructed to evaluate the inputs of a specific polynomial Pin constant 

number of operations. The algorithm receives as an input an n-bit integer a. The 

algorithm output is the value of P(a). The polynomial evaluation algorithm consists of 

two steps. 

Step 1. Compute b = l 1_
2
2
".'..:.aj. Letting 1( a) = L,f=o ai2m(d-i), we show that b = 1( a). 

For Ix I < 1, the following identity holds, l~x = L,~0 xi. Recall that a < 2n. We will chose 

m such that 2n < 2m, and therefore 2-ma < 1. This implies that 
1

_
2
1-ma = L,~0 (2-ma)i, 

and therefore 

For m, such that ad+1/2m < 1/2 the sum "?" 2m(d-i)ai is less than one. This, m 
' L..i=d+l 

combination with the fact that a is an integer, implies that 

The constants used in this step are 2md and 2m, and the requirement on m is that 

m~n(d+l)+l. 

Step 2. Extract them-bit integer obtained by considering bit positions md tom( d + 1 )-1 
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6.2 Approximations 

The non-uniform case 

We show how to use the construction in the previous section, to approximate Vb for any 

b E [1, 2] in constant time. The existence of such a program does not contradict the 

lower bounds of Chapter 5, because it assumes that certain large constants are available 

for "free". In other words, we show a 0( 1) non-uniform upper bound on the depth of 

computation trees for approximating y'X. 

For b E [1, 2], let a = l4b/c2J. It is not difficult to see that if Iva - al < 1 then 

/Vb - ac/21 < t. Below, we present an 0(1) step algorithm for computing a. 

Our algorithm is based on Newton iteration for computing square roots. Recall that 

Newton iteration for computing the square root of a is given by 

a+ x 2 

Xi+1 = 
2 

' , where x 0 is the starting point. 
Xi 

Define 8; to be the relative error of x;, i.e. (1 + 8;).Ja = x;. It is easy to verify that 

8·- 8f-1 <2(80)2i . h 8 1 , - 2(1 + 8i-i) _ 2 , assummg t at o < 

Let xo = l3/cj, this implies that Ja ~ x 0 ~ ~Va· Since 0 ~ 80 ~ 1/2, this implies that 

8i ~ 2 · 4-2
;. Our aim is to reach an index t, such that l.Ja - Xtl < 1. This occurs when 

/8t.Jal < 1, or equivalently /8tl < fa· For t = O(log log a) = O(log log(l/ c)), the value 

of 8t satisfies, 0 ~ 8t < 1/ Ja. Thus, in order to compute a, it is sufficient to perform t 

Newton iterations, starting at x 0 . 

Notice that upon starting the Newton iterations at x 0 , the value of x 1 is obtained 

by evaluating the rational function R1 (y) = ~~ ~~~ at y = a, where P1 (y) = y + x6 and 
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The uniform case 

The general idea in this case is similar to the idea in the non-uniform case. Using the same 

logic as before, for any b E [l, 2] and a= l4b/E2j, if Iva - al< 1 then !Vb - o:E/21 < f. 

The main difference between the construction in the uniform case and the non-uniform 

case is the following. In the uniform case we will consider the approximation, Xi, com­

puted at the ith Newton iteration, as a function of the starting point x0 , while assuming 

that a is constant. Recall that for the non-uniform case the roles were reversed; Xi was 

viewed as a function of a, while x 0 was fixed. 

For a starting point x 0 , the value of the i 1h approximation, Xi, is given by evaluating 

a rational function Hi(x) = ~:1:} at the point x = x0 , where F1(x) = x 2 +a, G1 (x) = 2x; 

and for i > 1, Fi(x) = aGL 1 +F?_1 , Gi(x) = 2F;_ 1(x)Gi-i(x). (Note that the coefficients 

of Fi and G; are integers.) 

The above identities can be used to define a straight line program, of length 0( t) that 

computes Ht. The rational expression Ht performs t Newton iteration for a certain input 

a. This implies that Ht( Ht( xo)) can be viewed as first performing t iterations, starting 

at Xo and ending at Xt = H1(x0 ), and then performing t more iterations, starting at Xt 

and ending at x2t = H1(x1); and therefore, H1(H1(x)) = H21(x). 

For the sake of simplicity we assume that f is a power of two1 • Let dt = deg(H1), 

Mt= max-coef(Ht), and 2n = ~· Initially, max-coef(F1 ), max-coef(G1 ) ~ ~~ = M0 • From 

the definition of Fi and G; it is clear that deg(Fi), deg(G;) ~ 2i. One can verify that 

max-coef(F;), max-coef(Gi) ~ (A10 +1) 22
;. Therefore, dt = 2t = d and ]\;ft~ (M0 +1) 221 ~ 

(!~) 221 = M. 

We choose m, such that 2m = 2( !~ )221+
1 2: 2M22nd. Clearly 2m and 2md can be 

computed in O(t) steps. Since Ht has a straight line program of length O(t), and we 

1 For an arbitrary t we can use the powers of two subroutine, describe in the next section, to find an 

t
1 < t which is a power of two. The running time of this procedure would be 0( J1og log:). 
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input: b, E 

computation: 

output /3. 

Compute 2m, 2dm and c][t = Ht(2m ). 

Xo = l~ J 
FOR i = ltok DO 

ii = l Ht( xt .... 1 )J /* invoke the polynomial evaluation procedure * / 
a= i'k - 1 

f3 _CH 
- 2 

Figure 6-2: Approximating the square root uniformly 

would be aE/2. To conclude we proved the following theorem. 

81 

Theorem 6.3 There exists a computation tree T( E, x), whose depth is 0( Jlog log ~), 

such that for any b E [1, 2], 

IT(E, b) - Vbl s E 

Note that the algorithm receives two inputs, E and b, and outputs T(E, b). 

Approximating the square root of an integer is closely related to deciding if an integer 

is a perfect square (i.e. whether an integer has an integral square root). We could decide 

if an n bit integer is a perfect square by first approximating its square root within one, 

and then checking the integers within one of that value. Note that in the approximation 

procedure above, a approximates y1a within one, where a is an integer. The problem 

in extending the result to deciding perfect squares is that we need to compute a "good" 

initial point, (i.e. such that 0 S 80 S 1/2) and a bound on M0 . For the approximation 

case, we chose the value of a such that it would be easy to compute a "good" initial 

point for it. The following lemma states that given a "good" initial point, and a constant 

21 > a, we can decide the perfect square problem in 0( Jlog log a). 

Lemma 6.4 There exists a computation treeT(x,x0 ,21), whose depth isO(y'loglogx), 
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computing b; = ak mod (a - b;_i), we can raise b to the ik power in 0( i) steps, as long 

as bik < a - b(i-lJk. 

2 ~ 

For a given an integer a, we show how to compute 22
' for all i, such that 22

' < a. 

The computation is done in i steps. Starting with a1 = (2a )2 and b1 = 22 we compute: 

a; = at_1 and b; = a; mod (2a - bi-I). (Recall that the floor and the mod operations are 

computationally equivalent, i.e. mod can be computed in 0(1) operations using the floor 

operation.) 

We prove the correctness of the computation by induction. It is easy to see that 

a; = (2a) 22
'-

1
• Recall. that x - y divides xk - yk, for any positive integer k, therefore 

2a - b;_ 1 divides (2a)k -b7_1 , fork= 22i-l. Thus, 

(2 )22i-1 ((2 )22•-1 b22i-l) d (2 b ) a - a - i-l mo a - i-l 

Ob h b
22i-l 2;2 • 22•-l 2;2 

serve t at i-l = 2 . We get that if b;_1 < 2a - b;_1 then bi = 2 . By the 

. d . h h . b 22«-1l
2 

Th 'f 2i
2 h 2i

2 b m uct1on ypot es1s i-l = < a. us, i 2 < a, t en 2 < 2a - i-l · Clearly 

the computation is done in O(i) steps. 

2 

Seemingly, the above procedure gives us a way to compute 22
' for i = 1, ... , 

l v1JOog log a J. However, note that l v1JOog log a J is not known in advance. Thus, we are left 

with the following problem: How can we identify when to stop? That is, how to find the 
2 ·2 

first i for which 22
' > a and thus b; #- 22 ' • We cannot spend the time testing whether 

b; = bf~·1-
1 

by successive squaring, for each i, since it requires too many steps. 

·2 

The solution is to compute another variable di, such that d; = 22 ' , for i = 1, ... , l + 1, 

where l is the greatest integer such that b1 = 2
212

. This implies that d; = b; for i :::; l and 

d1+1 #- b1+1 · This allows us to detect the termination by simply comparing b; to di and 
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Applications 

We can now show a few applications of the powers of two subroutine. The first application 

is computing l yllog log a j. Let t be the last iteration in which bt = dt. Then, 

lv J { t - 1 if bt > a log log a = 
t if bt ::; a 

Thus, we can compute l Jlog log a j in 0( .JIQgri") time, for all n-bit integers. 

We extend the result of computing l Jlog log x j and show how to compute llog log x J. 
2 

Using the powers of two procedure we can compute in O(t) steps, the number 221 
, such 

that 2
212 

::; a < 22 Ct+
1
l
2

• Th 'd . h . 0( ) dd' . 1 fi d . h e I ea is t at m t a 1t10na steps, we can n a J sue 

2 

This is done by simply squaring 221 successively, until the first time it is larger than 

a. Note that since (t + 1)2 - t 2 = 2t - 1, at most 2t - 1 successive squaring will be 

performed. We conclude that given an n-bit input a we can compute j = lloglogaJ 

in 0( Jlog log a) = 0( .JIQgri") time. In Chapter 3 we proved an 0( .JIQgri") time lower 

bound for the respective decision problem. Therefore we have proved the following tight 

bounds. 

Theorem 6.5 There is a decision tree with OP = { +, -, *, /, l·J} and constants 

{ 0, 1} that computes llog log a J J for all n-bit integers a, and has depth 0( .JIQgri"). Fur­

thermore, any decision tree for this problem has depth n( .JIQgri"). 

We can also use the powers of two subroutine to show that for infinitely many n, there 

is a decision tree, of depth 0( .JIQgri"), that decides if an n-bit integer is a perfect square. 

In this case we restrict the integer input to be from the interval [2n-1 , 2n ). Suppose that 

n = 2t
2
+1

. In 0( .JIQgri") time we can compute 2
212 = 2n/2 , and 22<

1
+

1
)

2 

> 2n, starting 

from the constants zero and one, and the input. Using Lemma 6.4, with the initial point 



Chapter 7 

Conclusions 

In this Chapter we give a brief overview of the results that were presented in this thesis. 

We also mention a few open problems and possible directions for future research. 

In Chapter 3 we developed a lower bound technique for decision tree with operations 

{ +' - ' *' I' l · J } ' This lower bound technique could be used to prove n ( ~) lower 

bounds for problems, such as deciding perfect squares, computing l log log x J, and other 

problems. 

As a historical remark, it is interesting that when the lower bounds were proven, there 

was a gap between the lower bound of D( ~) and the upper bounds of O(log n). At 

that time it was believed that the gap could be closed by improving the lower bounds. 

Only later, when considering closely the lower bound argument to see where it could be 

tightened, did the technique of achieving the upper bound emerge. This, and the other 

upper bounds in Chapter 6, show that the floor operation can add significant power to 

the computation. 

In Chapter 4 we have proved an D(log log n) lower bound on the depth of any compu­

tation tree with operations from the set { +, -, *, /, l·J }, that decides if two n-bit integers 
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are relatively prime. An upper bound for this problem can be obtained from the parallel 

algorithms of [CG90, KMR84]. Analyzing those algorithms, with respect to the number 

of arithmetic operations, reveals an upper bound of 0( n/ log n) for computing the gcd. 

Notice that the gcd can be written as an Integer Linear Program. Therefore, one 

of the consequences of our results is that there is no algorithm for the Integer Linear 

Programming problem, using operations only from the set { +, -, *, /, l·J }, whose running 

time depends only on the number of variables and the number of constraints, and not on 

the size of the coefficients. 

In Chapter 5 we prove lower bounds for approximating the sth root of a real number. 

We show that approximating the sth root, such that the average error is less than t:, 

requires at least 0( jlog log~) operations. On the other hand, in Chapter 6, we prove 

an 0( Jlog log~) upper bound, when the computation receives both the number to ap­

proximate and the accuracy parameter €. This procedure approximates within t: in the 

worst case (i.e. for each input the approximated value is within t: of the correct value). 

Bashouty [Bas90b] has shown an O(log log~) lower bound for worst case approximation. 

It still remains as an open problem the complexity of the average approximation for the 

s 1h root. 

We know that if the intermediate results in the computation can be exponential in the 

size of the input then any PSPACE computation can be done in a polynomial number of 

operations (see [BMS81]). On the other hand, if the intermediate results are restricted 

to be polynomial in the size of the inputs, then any computation with a polynomial 

number of operations is in polynomial time. One very interesting direction of research 

would be to show tradeoffs between the size of the intermediate results and the number 

of operations required. 
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input: a 
initialization: bI = 22 , aI = (2a )2 , CI = (2a )4

, dI = 22
, and i = 1. 

computation: 

output di 

WHILE bi= di DO 

END 

i = i + 1; 
a . - a4 . 

i - i-I• 
c· - cI6 . 

I - i-I• 

;2 
/* d; = 22 *I 

bi = ai mod (2a - bi_i) 

di= Ci mod (ai - di-I) 

Figure 6-3: Computing powers of two 

terminating when they are not equal. It remains to show how to construct di. 

In addition to the computation of ai and bi, we compute c; and di, where: cI = (2a)4, 

dI = 22
, ci = c;~I and di= Ci mod (ai - di-I)· It is easy to see that Ci= (2a) 24

i-
2

• Notice 

that Ci = at'-1
• Suppose that bi-I = di-I = 22<i-i)

2

, and consider the ith iteration: 

Th. l" h ·r d22i-i d h d 2;
2 

Cl l ·r d22i-i b d is imp ies t at i i-I < ai - i-I t en i = 2 . ear y, I i-I < 2a - i-I an 

bi-I =di-I, then d?~iI-i < ai -di-I· We conclude that for all i such that 22
;
2 

< 2a - bi-I, 
2 ·2 2 

bi = di = 2
21 

. Consider the least i such that 22
' > 2a - bi-I· Clearly, for this i, bi -=/:- 22

' • 

However, we claim that di is still equal 22;
2

• This is true since 22(i-i)
2 

< 2a - bi-I, 

implying that 

Thus, the first time bi -=/:- di, we stop the computation. Let t be the last index such 

that bt = dt, this guarantees that bt = 22
t

2

, and a < 22(t+l)
2 

(Figure 6-3 gives a full 

description of our algorithm for computing powers.) 
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such that if ylx ~ Xo ~ ~Vx and 21 > x, then 

Proof: Let n = l, di = deg(Hi) and A1i = max-coef(Hi). We show how to compute 

2m ~ 2Aift2 2ndt in 0( t) steps. Once we show this, the rest of the algorithm and the proof 

is identical to the approximation case. Recall that Mt ~ (Mo + 1 )22
t. Since x < 21, 

then Mo ~ 21, which implies that Aft ~ (21+1 )
22

t = M. Since dt = 2t and 2n < 21, 

we can compute 2m = 2(21)
22

t+i ~ 2lvl2 2dtn in O(t) steps. Fort= O(Jloglogx), the 

above computation time is 0( Jlog log x ). Therefore the total running time of the entire 

procedure is 0 ( Jlog log x). 0 

Later we show how to use the above lemma to prove that for infinitely many n, for 

any n bit integer, we can compute a "good" initial point in 0( .jIOg'n) steps. 

6.3 Computing powers of two 

·2 

Suppose that we want to compute 221 
, for some i. Intuitively, it seems that the fastest 

way to do it is by successive squaring. This gives an O(i 2 ) step procedure for computing 

this number. Surprisingly, using the floor operation, and given a large enough number, 

we can compute this power in 0( i) steps. 

The main idea is based on the following observation. Let a, b and k be positive 

integers, and a > b. Then, 

ak mod (a - b) = bak-l mod (a - b) =bk mod (a - b). 

If bk < a - b then the value of the above computation is simply bk. That suggests that 

once we raised a to the kth power, we can raise b to the kth power in 0(1) operations. By 
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already computed 2m, we can compute cJi, = Ht(2m) in O(t) steps. To summarize, so 

far we have computed 2m, 2md and cJi, in O(t) steps. Thus, we have computed all the 

constants necessary for Theorem 6.1, and therefore an evaluation of Ht can be performed 

in 0( 1) operations. 

The computation evaluates Ht k times; the input to the ith evaluation of Ht, x;, is 

the output of the (i-1)th computation, i.e. x; = Ht(x;_ 1 ). Each evaluation of Ht costs 

only 0(1), therefore the length of the program is O(t + k), and it performs tk Newton 

iterations. This implies that it can perform O(log log~) iterations in 0( )log log~) steps 

(by choosing t = k). 

However, we are still left with a slight implementation problem. Notice that x;, for 

i > 0, may be non-integer, while the polynomial evaluation procedure is valid only if Xi 

is an integer. (Another condition is that x; < 2n, but this is always true.) To fix this 

problem, suppose that in each iteration instead of computing x;, we compute the smallest 

integer greater than Xi· Formally, define the modified iteration as follows. 

We claim that this does not change the convergence rate by more than a constant factor. 

Let i:; = (1 + S;)Ja. It can be verified that, 

As long as 8; > j;;, this implies that 2( 8;;- 1 
)

21 ~ fa, and therefore, 

On the other hand, if 0 :::; 8; :::; Ja, then Ja :::; i:; :::; Ja + 2. This implies that 

/Ja - (i:; - 1)/ :::; l. Therefore, we can set a = i:; - 1, and the approximation to Vb 
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input: b,€ 
computation: 

output {3. 

a= l~J 
a= Rt( a)/* invoke the polynomial evaluation procedure*/ 
a - Q'.f 
fJ - 2 

Figure 6-1: Approximating the square root non-uniformly 

Q1 (y) = 2xo. In general, x; is obtained by evaluating a rational function 

vQL1(Y) + Pl-1(Y) 
2P;-1(y)Q;-1(Y) 

at the point y = a. This implies that P;(y) = yQL1 (y) + P;2_1 (y) and Q;(y) = 2P;_1 (y) 

Q;-1(y), for i > 1. (Note that the coefficients of P; and Q; are integers.) We are interested 

in computing a= Rt(a) = Pt(a)/Qt(a). Note that given x 0 and t the polynomials Pt and 

Qt are defined. Furthermore, x0 depends only on E, and not on a. Since, the coefficients 

of Pi and Q; are integers, by Theorem 6.1, we can compute Pt( a) and Qt( a) in constant 

time, for any n-bit integer a. Hence, we can compute a= Rt(a) in constant time. 

Let /3 = ac/2. Since a can be computed in 0(1) steps, /3 can be computed in 0(1) 

steps. As we discussed before, JVb - /31 :S E, therefore we have shown the following 

theorem. 

Theorem 6.2 There exists a constant C such that, for any 0 < E < 1 there zs a 

straight line program LE of length C, such that for any b E [l, 2], 
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of 1( a )c;'. More formally, compute 

We claim that P(a) = /3. Consider the product 1(a)c;', then 

d d 

1(a)c;;1 L LPiaj2m((i-j)+d) 
i=O j=O 

d min{d,d+k} 
L ( L Piai-k)2m(k+d) 

k=-d i=max{O,k} 

Note that P(a) = L,f=oPiai = g0 • Form, such that 2m > maxi{gi}, them-bit integer 

obtained by considering bit positions md to m(d + 1) - 1 of 1(a)c;' is go = /3. This 

concludes the description of the polynomial evaluation algorithm. Below we bound the 

value of m that meets the above requirements. 

Let, max-coef( P) = M. Since a < 2n, then the value of ai is bounded by 2ni. Thus, 

each gk is bounded by dM2nd. In step 1 we required that m 2n(d+1) + 1, therefore it 

is sufficient to chose m 2 2nd+ flog A1l + 1. (Note that this implies that the size of the 

constants used are polynomial in d, n and log A1.) 

Recall that a straight line program is a computation tree without any comparison 

nodes. Thus, we have shown the following theorem. 

Theorem 6.1 There exists a fixed constant C such that, for any polynomial P with 

integer coefficients, there is a straight line program L of length C, that computes P( x) 

for all n-bit positive integers. If deg(P) = d and max-coef(P) = M, then the constants 

used in L are 2m, 2md, and c;, for any m 22nd+ flog Ml+ 1. 
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of the polynomial. In section 6.2 we apply the techniques developed for evaluation of 

polynomials to the problem of approximation of square roots. For the non-uniform case, 

we show a straight line program that approximates the square root in 0(1) steps. For the 

uniform case, we show a computation tree T that, on input E > 0 and x E [1, 2] computes 

T(c,x) such that lv'X -T(c,x)I::; E, and the has length O(yhoglog~). In contrast, it 

is known that using only rational operation, G(log log~) steps are both necessary and 

sufficient (see [Bra86]). 

Note that when we are considering approximation of square roots, we are considering 

two classes of algorithms. The first class is algorithms that receive only the input, x, and 

although they have a guarantee that the output is at most E from the square root, they 

do not use the value of E in the computation. An example of such an algorithm is the 

Newton iteration method; the lower bound that we show is for this class of algorithms. 

The second class, is an algorithm that has two inputs, the point x, and the desired 

approximation t. Unlike the previous type, here the algorithm uses the value of E during 

the computation. The upper bound belongs to the second class of algorithms. 

Section 6.3 shows that the floor function can be used to accelerate exponentiation. 
·2 

Suppose we would like to generate the number 221 
. Using repeated squaring this can be 

done in 0( i2
) steps. We show that this number can be generated in 0( i) steps, given 

2 

any integer x > 221 (and using the floor function). Using this procedure we show that 

part of the lower bounds proved in Chapter 3 are tight. 

6.1 Computing polynomials 

We consider the complexity of evaluating a polynomial, whose coefficients are integers, 

on an n-bit integer input. \Ve show that this problem can be solved in constant time, 

using arbitrary constants and the floor function. 
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starts at v 1 , and ends at Vi+ 2 • We choose [ai+i, ai+i + l;+i] as a subinterval of [a;, ai + l;]. 

Therefore, by the induction hypothesis we have that Properties 1-3 are satisfied by the 

interval [a;+l, a;+l + l;+iJ and the prefix of P that starts at v1 and ends at v;+i· In order to 

complete the proof of the lemma we need to show that (a) there exists an outgoing edge of 

v;+1 such that for any input x E [a;+ 1 , a;+1 + l;+iJ the computation follows this edge, and 

(b) Properties 2-3 are satisfied also for the vertex v;+l and the interval [ a;+l, a;+l + l;+i] · 

By the definition of the tree T, the vertex v;+1 is either a comparison vertex or a 

computation vertex. If it is a comparison vertex, then a comparison g(x) ~ h(x) is 

performed. If it is a computation vertex, then either fv;+i = r;+ 1(x) = g(x) o h(x) 

for o E {+,-,*,/},or fv;+i = lg(x)J is evaluated. Here, g(x),h(x) E {0,1} U {fv
1

lvi 

is a computation vertex, j ~ i}. 

By the induction hypothesis, g(x) and h(x) are rational functions of degree less than 

D; and max-coeftg), max-coej{h) ~ Jl.1;. 

The proof is based on a case by case analysis. In each case, we define the next vertex 

v;+2 on the path P, the interval [a;+1 , a;+1 + l;+1J, and the rational function r;+ 1 (x) 

(whenever Vi+i a computation vertex). 

First, we resolve the case when v;+1 is a comparison vertex. The comparison is of the 

form g( x) ~ h( x). By the induction hypothesis, both h( x) and g( x) can be represented 

as polynomials of degree less than D;. Consider the rational function g( x) - h( x), which 

is of degree less than 2D;. Use Lemma 5.2 and choose a subinterval [a;+l, a;+1 + 1 ~bJ 
where g(x) - h(x) does not have any poles or zeros. Set l;+l = l~D;. It is now easy to 

check that properties 1-3 are satisfied in this case. 

Next, consider the case when v;+1 is a computation vertex. The following possibilities 

may anse. 

Suppose that o E { +, -, *, /}. Let r;+ 1 (x) = g(x) o h(x), a;+l = a;, and /;+1 = l;. 

By Lemma 2.1 the degree of r;+l ( x) is less than 2D;, and its maximum coefficient is 
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max-coef(r):::; M, there exists a subinterval [a, a+ 448(s~+l)4 ] such that for any v in the 

subinterval, lvlfs - r(v)j ~ (2(2A1) 2
)-1( 3;J(sd+i). 

Proof: Let X
8 = v, such that fo:::; x :=:; fo + 

4
1
3 

:=:; y/ a + l Consider the rational function 

E(x) = x-r(x3
). Clearly, the degree of E(x) is bounded bysd+l and max-coef(E) :S; 2M. 

By Corollary 5.8, there exists a subinterval [,B, ,B + -\] C [ fo,, fo + ~J, such that 

A= 224s(~d+i)•' and for any x E [,B,,B+ -\], IE(x)I ~ (2(2.M) 2
)-1 ( 3;

8
)(sd+l)_ 

Let a = ,as and the subinterval be [a, a+ s-\/2]. For any v E [a, a+ s-\/2], then 

x E [,B,,B+-\]. This implies that on the subinterval [a,a+s-\/2], then difference between 

v11s and r(v) is at least (2(2NI) 2
)-1 (

3
;

3
)(sd+I)_ D 

5.5 Lower bound for approximation 

In this section we use the technique that we developed in the previous section to establish 

the lower bound on approximating VX· We show an n( /log log ~) lower bound on the 

depth of any computation tree T, with OP= { +, -, *, /, l·J} and constants {O, 1}, that 

t:-approximates .y!X, wheres is any fixed constant, for x E [1,2], in norm L 1 • 

Theorem 5.11 For any integer s ~ 2, if a computation tree T, with operations 

0 P = { +, - , *, /, l ·J} and constants { 0, 1}, approximates -\IX, for a fixed s and x E [1, 2], 

such that 

error1(T(x), y'x):::; t: 

then T has depth h = !1( /log log ~). 

Proof: The bulk of the proof involves constructing (i) a path P from the root of T to 

one of its leaves, and (ii) a subinterval [a, a+ l] of [1, 2], with the following properties: 

1. On input a E [a, a+/] to T, the computation follows the path P; and 
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Note that q( z) and p( x) have the same degree and, 

l 
lbl(~)d max {jq(z)I} = max {jp(x)j}. 

2 zE[-1,l] xE[a,a+I] 

By Lemma 5.5, there exists zo E [-1,1] such that jq(zo)I ~ 2-d+1
. Therefore, I<> 

2-d+Ilbl (~)d. (Recall that lbl ~ 1.) Hence J</2 ~ (~)d, which completes the proof. D 

The following lemma combines the above lemma, which enables us to give lower 

bounds for the value of a polynomial, with the first lemma, that observed how to upper 

bound a polynomial, to establish a technique to upper bound a rational expression. 

Lemma 5. 7 Given an interval [a, a+ l], where 1 ~ a ~ 2 and 0 < l ~ 2 - a, and 

a rational function r( x) of degree d with integer coefficients and max-coef( r) ~ M; there 

exists a subinterval [o:, o: + sdd•], such that (i) r(x) is monotone in this subinterval, and 

(ii) lr(x)I ~ 2M(y)d for all x E [o:,o: + s~d.]. 

Proof: Let r(x) = :!;~ where p(x) and q(x) are polynomials of degree at most d with 

integer coefficients. By Lemma 5.1, the maximum value of lp(x)I for x E [1, 2] is bounded 

from above by M2d+l. By Lemma 5.2, there is a subinterval [,8, ,8 + /d] in which r( x) is 

monotone. By Lemma 5.6, there is a subinterval of [,B, ,8 + ./d], denoted by [o:, o: + sdd4], 

such that jq(x)I ~ (~)d for all x E [o:,o: + sdd4 ]. Therefore, lr(x)I ~ 2M(y)d for all 

x E [ o:' o: + sdd4 ] . D 

Let ri ( x) be a rational expression and r 2 ( x) = ri (x). Since both the degree and 

the maximum coefficient of r 1 and r 2 are identical, a lower bound for the value of r 1 

would imply an upper bound for the value of r 2 • The following corollary formalizes this 

observation. 

Corollary 5.8 Given an interval [a, a+ l], where 1 ~ a ~ 2 and 0 < l ~ 2 - a, and 

a rational function r( x) of degree d with integer coefficients and max-coef( r) ~ M; there 



64 CHAPTER 5. APPROXIAfATION OF REAL FUNCTIONS 

We need to use a slight modification of Markoff inequality. The segments that we are 

interested in are not necessarily [-1, + 1]. Therefore the following formulation would be 

more convenient. 

Lemma 5.4 Let p(x) be a polynomial of degreed, and p'(x) the derivative of p(x). 

Then 
2d2 

max {lp'(x)I}::::; -
1 

max {lp(x)I}. 
xE[a,a+I] xE[a,a+I] 

Proof: Consider the substitution x = zfr + 2~+1 . If z E [-1, 1] then x E [a, a+/]. Let 

q(z) = p(zfr + 2;+1
). By Lemma 5.3 

max {lq'(z)I} ::::; d2 max {lq(z)I}. 
zE[-1,1] zE[-1,1] 

S. :!:J.. dz 5I£. d dz 2 th 1 f 11 Ince dz dx = dx' an dx = T• e emma o ows. 0 

The importance of this lemma is that using it we can claim, that if over the interval 

[a, a+ /] the maximum value of a polynomial is p(x'), then there is a neighborhood of 

x', in which the value of the polynomial is O(p(x')) and the size of the neighborhood is 

The family of polynomials, known as Chebyshev polynomials, have many application 

in Numerical Analysis. We use here only one aspect of the Chebychev polynomials, and 

that is their ability to give a lower bound for the value of a polynomial. 

Lemma 5.5 (Chebyshev [Riv69, page 31]) Let p(x) be a polynomial of degreed 2: 1 

defined over [-1, l]. If the leading coefficient of p(x) is one, then there exists x0 E[-1,1] 

such that IP( Xo) I 2:: 2L1 · 

The importance of the above lemma is to enable us to establish a lower bound on 

the value of a polynomial. Once we are able to show a lower bound and upper bounds 
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proving a lower bound for rational expression, over [a, a+ l]. 

The last part of the proof involves proving lower bounds for rational functions. We 

show that for a rational expression r( x ), defined over [a, a + l], there is a subinterval 

[a, a+,\], such that for any input x E [a, a+,\], the difference between r(x) and y'x is 

at least 8. This implies that 

llr(x) - Vfxlli ~ 8,\. 

5.4 Lower bound technique 

We would like to establish a technique to bound the value of a rational function over an 

interval. In general, a rational function may be unbounded; therefore we are seeking a 

"large" subinterval in which the rational function is bounded. The techniques that we 

develop show how to both upper bound and lower bound the value of a polynomial. The 

first lemma shows a very trivial upper bound on the value of a polynomial defined over 

[1, 2]. Much of the remainder of the section is devoted to showing that given a polynomial, 

there is a subinterval in which we can lower bound the value of the polynomial. 

Lemma 5 .1 Let p( x) be a polynomial of degree d and max-coef(p) ~ M. Then, for 

all x E [1, 2], lp(x )I < M2d+i. 

Proof: Let p(x) = L,f=o aixi. Then clearly, 

d d d 

lp(x)I = IL aixil ~ L lailxi ~ L M2i < M2d+l 
i=O i=O i=O 

0 

It would be conve: -1t that the rational functions that we are dealing with would 

not have any poles (i.e. rnputs for which they go to infinity) or any roots. The following 
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Recently, Bashouty [Bas90b] has shown that approximating the square root of two, 

requires D(log log~) operations, when the only input is x, and c is not an input. This 

implies a lower bound in norm L 00 • It is still an open problem what is the bound for 

norm L 1 , where the only input is the number to be approximated, and not c. 

5.3 Overview 

In this section we give a general overview of the proof that we show in the next two 

sections. At a very high level, we establish the proof along the following lines. First, we 

show that there is a "large" subinterval, such that all the inputs from this subinterval 

follow the same path. Second, the output that the computation tree computes for this 

subinterval can be expressed as a rational function. Third, any rational function, of a 

given degree and coefficient size, would have to be "far" from the sth root function, on 

a "substantial" part of the subinterval. Clearly we would have a tradeoff between how 

"far" the functions are, and how "substantial" is the part of the subinterval on which 

they are "far". Combining those two parameters translates to a lower bound on the 

approximation in norm L 1 • 

Now we elaborate slightly more on each component of the proof. We start with 

the main tool that enables us to show how to handle the floor function. Consider the 

expression lr(x)J, where r is a rational expression, defined over [a,a + l]. We show that 

there is a sub-interval, [a', a'+/'], such that the value of lr(x )J is constant in it and the 

ratio between l and /' is bounded as a function of deg( r) and max-coef( r). The smaller the 

ratio between I' and /,the better lower bound we can prove at the end. The proof of this 

claim quite involved, and uses theorems from Approximation Theory, such as Chebyshev 

polynomials and the Markoff inequality. 

Given a computation tree T that receives an input x E [1, 2], we show that there 

exists an interval, [a, a+ /] C [1, 2], such that any input x E [a, a+/] follows the same 
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example, that computing the average distance of n points in the plane requires exactly 

(;) operations. (For average distance, [SY76] showed that it can be approximated with 

substantially less than (;) operations.) 

This work pursues the second direction. Rather than computing a function exactly, 

we are interested in approximating the function's value. The set of basic operations 

does not change and remains the set of rational operations and the floor function, i.e. 

{+,-,*,/, l·J}. 

This chapter is organized as follows. In the following section we define formally the 

meaning of an approximation. In section 5.3 we give a general overview of the lower 

bound technique that we develop. In section 5.4 we develop the lower bound technique, 

that we later use in Section 5.5 to prove the lower bound for approximating the s 1h root 

of a real number. 

5.2 Definitions 

The main aim of this section is to define formally the notion of approximation. We start 

by a very brief background, and define inner product of real functions, and a norm of a 

real function. The inner product of two real functions f and g, over a region A, is defined 

as follows, 

< f,g >= l f(x)g(x)dx 

Given the definition of the inner product, We define the norm Lk, of a function f, 
over a region A, to be 

llfllk = k f lf(x)Jkdx 
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tree are input vertices of the inputs a and b. If (u, v) is the generator of (a, b), then, by 

Lemma 4.6, a and bare polynomials in u and v of maximum coefficient and degree less 

than 2n
115 

and n 115
, respectively. This implies that the number of monomials in each 

of these polynomials is at most n 215 and that the value of each monomial is at most 

2n1/s (22n2/5 )2n1/s. Therefore, a, b :=:; n2/52n1/s 22n2/52nI/5 = n2/524n4/5 < 2n' for large enough 

n. 

Lemma 4. 7 asserts that some pairs in the set ( u, v) E S(O, a 1 , o:2 , o:3 )n { ( u, v) : 1 ::::; 

u, v < 22t(t+l)} are relatively prime, and some are not. The Correspondence Property, 

Lemma 4.1, guarantees that the gcd of the inputs is the same as the gcd of the generators. 

Since the leaf v is labeled by a constant, the inputs that reach this leaf are either all 

relatively prime, or all not relatively prime. Since all the pairs reach the same leaf, we 

reach a contradiction. 0 
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(u,v) is the generator of (x,y). By Lemma 4.4, the degree of ~:t::~) o ~:~:',~))is less than 
4( +l) 2•(i+l) 

2Di :::; 22 
' , and its maximum coefficient is bounded by 2Ml(Di + 1)2 

:::; 22 
• 

Suppose Vi+i is lv J, where v is a previous computation vertex. By the induction 

hypothesis, val( v) = ~~t:'.~), where ( u, v) is the generator of (x, y ). By Lemma 4.5, there is 

a rational expression Q(x, y), and a subset of the inputs S(i+l), such that val(v) = Q(u, v), 

where (u,v) is the generator of (x,y). The degree of Q is at most Di+l:::; 4Dt:::; 224<•+
1

>, 
3 2•(i+1) 

and the maximum coefficient of Q is at most M;+1 :::; 2(4Di.Nfi) 2D :::; 22 
. 

We are not done yet with this case. The substitution of Ui by .\;+1 ( u;+i) 6
;+i + Ui+2, 

affects not only the rational expression Q, which is stated in Lemma 4.5. It also changes 

all the polynomials in E;. Since 8;+1 :::; Di+ 1, the degree of the rational expressions in E; 

is at most D;+1 :::; D;(D; + 1), and the maximum coefficient is at most M;+1 :::; .\~1 2Di M;. 

Note that the degree and maximum coefficients of previous vertices change, but they are 

bounded by the current D; and Ah 0 

4.4 GCD Lower bound 

In this section we show how to apply the proof technique that we developed in the 

previous section to derive a lower bound for computing the greatest common divisor of 

two integers. 

We start by showing that in any set of inputs S( · ), there is one input that is relatively 

prime, and another one that is not relatively prime. 

Lemma 4. 7 Let ai, a 2 , a 3 , and t be positive integers such that a 1 < t, and a 2 , a 3 < 

2t. Then the set S(O,a1,a2,a3 )n {(u,v): 0 < u,v < 22t(t+l)} contains two pairs (a0 ,at) 

and (b0 ,b1 ), such that gcd(a0 ,ai) =f.1 and gcd(b0 ,bi) = 1. 

Proof: Let e be the least positive integer exponent such that (1 + a 3 )e > a 2 • Define 
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Lemma 4.6 Let T be a computation tree of depth h, with two inputs, the operations 

{ +, -, *, /, l·J} and constants {O, 1}. Then, there is a path P from the root of T to a 

leaf, and a subset S of inputs1 with the the following properties: 

1. S = S(r,a1,a2 ,a3,.6.,A)n {(a,b) : 0 < a,b < 2nL for some positive inte-

2. For each input (a, b) E S. the computation follows the path P; 

3. For each computation or input vertex v on the path P, there is a pair of bivaria · 

polynomials (F,,(x,y),G,,(x,y)) with integer coefficients, such that for each in;' 

(a,b) E S 1 G,,(u,v) =J 0, andval(v) = ~: ~'.~) 1 where(u,v) is the <r,a1 ,a2,a3,.6.,A>­

generator of (a, b); i.e., the value computed at v on input (a, b) ES, is the value of 

the rational expression GF.,((x,y)) at (u,v); and 
"'x,y 

4. Let E = {F,,(x,y),G,,(x,y) Iv E P}. Define D and M to be the degree and the 

maximum coefficient of E, respectively. Then, r ~ h, max{a1 ,D} < 224
h, and 

{ } 
224h 

max a 2 ,a3 ,M < 2 . 

At first sight it might be surprising that the above lemma does not claim explicitly 

any bound on the values in .6. and A. The reason is that we can add the input as two 

input vertices in the tree T, and therefore, we express the input as a rational expression 

of the "generators". This guarantees the connection of the values in E with .6. and A. 

Proof: We denote the vertices on the path P by v1 , v2 , ... , v1, in that order, where V1 

is the root of the tree T, Vi is a child of Vi_ 1, and v1 is a leaf of the tree T. The path 

P and the set S are defined inductively, starting with the path v1 , v2 , v3 and the set 

S(2
) = S(0,1,0,1) (which consists of all pairs (a,b), where a> b > 0). Following that 

proof, suppose that (a) we have selected a prefix of P, which starts at v1 , and ends at 

a vertex Vi+i, and (b) constructed the set S(i) = S(r(il,a~i),a~i),a1i),.6.(i),A(i)) with the 

following properties: 
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and, 

This guarantees that for any (u,v) E S(O,a~, a~, 7ra3 ), 0 < R(u,v) and R(u,v) < 

LdP2 (u,v). This implies that 

R( u, v) 
O < £dP2(u,v) < 1. 

We conclude that for (x,y) E S(O,a~,a~,7ra3 ), 

lP(x,y)J = A(x,y)-zd+ p(R)Ld = Q(x,y) 

Clearly, deg(Q) = deg(A)::; D, and max-coef(Q) ::; max-coef(A) + 21\;[D ~ 2((2 + 
D)M)D+i. 

In Case 5 we show how to reduce the general case to Case 4. In order to summarize the 

effect of Case 4, observe that max{ a~, deg(Q)}::; (D+1) 2 , and max{ a~, 7ra3 , max-coef(Q)} 

::; 2((D + 2)M)D+2. 

Case 5: The leading monomial of P2(x,y) is Lxd"'y1• Our goal is to reduce this case 

to Case 4 where no powers of y appear in the leading monomial. We introduce a new 

variable z and substitute x using it. Let 8 = max{a1 , deg(P2 ) + 1} ~ D + 1 and A= a3. 

we substitute x by .\y8 +z and consider the polynomial Q(y, z) = P2(.\y8 +z, y). Observe 

that the leading monomial in Q(y, z) is a constant times a power of y, i.e., no power of z 

appears in the leading monomial of Q(y, z). Thus, we have reduced this case to Case 4. 
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As in Case 3, let A(l, 1) = cLd + /, where c is an integer and / is a non-negative 

integer such that 0 :::; / < Ld. 

P1(u,v) 1P2(u,v)+R(u,v) A(u,v)-1 ---- +----
P2(u, v) - LdP2(u, v) Ld · 

Let 7r = Ld. Then, for each (u,v) E S(0,6:1 ,6:2 ,7ra3 ), A(u,v) =I (mod Ld). Hence, 

for each such pair (u,v), the expression A(u[,v)--y evaluates to an integer. Therefore, 

lP1(u,v)j = l1P2(u,v) + R(u,v)j + A(u,v)-1. 
P2(u,v) LdP2(u,v) Ld 

Our aim is to restrict the inputs such that the value of l -yP2Lu;
2 
+u~v)u,v J is fixed. We 

distinguish between two subcases, according to the value of I· 

Subcase 4.1: r > 0. In this subcase we restrict the input, such that the value 

of l-yP2},~~;t:S·v)J 1s zero. Consider the polynomial V(x,y) = L-d(r P2(x,y) 

+R(x,y)). Since degx(R) < degx(P2 ) the leading coefficient of V is pL. Let 

B(x,y) = P2(x,y)- V(x,y). The leading coefficient of B(x,y) is (1- i;r)L. Since 

0 < ia < 1, the leading coefficient of B(x, y) is positive, i.e. sign(B) = +l. Recall 

that 7r = Ld. Let, 

and, 
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3. P2(x, y) is a constant, i.e., dx = dy = 0. 

4. l = 0, i.e. y does not appear in the leading monomial of P2(x,y). 

5. l > 0, i.e. the general case. 

1/1, 7r 1, 

Case 2: P1(x,y) ~ P2(x,y). Let B(x,y) = P2(x,y)- P1(x,y). Since the leading coeffi­

cient of P2 is positive and greater than the leading coefficient of P1, then sign(B) = +l. 

Using Lemma 2.3 let a~= max{6:1 ,7r1 (B)} and a~= max{6:2 ,7r2(B)}. Lemma 2.3 guar­

antees that for each ( u, v) E S(O, a~, a~, 1 ), B( u, v) > 0. Observe that B( u, v) > 0 implies 

that P2(u, v) > P1(u, v). Since a~ ~ 7r1 (P2 ) and a~~ 7r2(P2 ), then P2(u, v) > 0. Thus, 

P1 ( u, v) 

( ) < 1. 
P2 u,v 

For each ( u, v) E S(O, a~, a~, 1) both P1 ( u, v) > 0 and P2( u, v) > 0. Therefore, 

0 
P1(u,v) 

<P( )<l. 
2 u,v 

Let 7r = 1. This implies that for (x,y) E S(O,a~,a~,1), 

l P1 
( u, v) J = Q = Q ( x' y) 

P2 ( u, v) 1 

Clearly, deg(Q) = 0 and max-coef(Q) = 1. Since deg(B) ~ D, and max-coef(B) ~ 2M, 

then by Lemma 2.3, a~ ~ D + 1 and a~ ~ 2M + 1. 

Case 3: P2 ( x, y) is the integer L ~ 1. Recall that all coefficients of P1 ( x, y) are integers, 

and P1(x, y) > 0, for (x, y) E S(O, 6:1 , 6'2 , 1). Let P1 (1, 1) = cL +/,where c is an integer 
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Otherwise, let B(x,y) = P(x,y) - Q(x,y) = ~~~~:~~· Since P # Q then sign(B) "I 0, 

which implies that sign(B1 ) "I 0 and sign(B2 ) "I 0. By Lemma 2.2, deg(B) :::; 2D, and 

max-coef(B) :::; 2(D + 1)2 .M2. Let a; =max{ a 1 , 7r1(B1), 7r1(B2)}, and a; =max{ 

a 2, 7r2(B1), 7r2(B2)}. Lemma 2.3 gives the bounds a~ :::; max{ai,2D + 1} and a;:::; 

max{a1 ,2(D + 1)21\12 + 1}. Since the comparison P(x,y) > Q(x,y) is equivalent to 

B( x, y) > 0, the lemma follows. 0 

The next step is showing the effect of rational operations on our parameters. This 

case is a rather simple case. 

Lemma 4.4 Let P(x,y) = PP.i((x.y)) and Q(x,y) = QQi((x,y)) be two multivariate rational 
2 x,y 2 x,y 

expressions, where deg(P), deg(Q) :::; D, and max-coef(P), max"-coef(Q) :::; M. Then, 

deg(R o S):::; 2D, and max-coef(R o S):::; 2(1 + D) 2 /l;/2, where o E { +, -, *, /, }. 

Proof: A special case of Lemma 2.2. 0 

In the following lemma we show how to "handle" the floor operation, which is the most 

interesting case. As for one variable, the main objective is to find a rational expression 

that coincides with the value of the floor operation on some subset of the inputs. In 

order to get control over the degree and maximum coefficient of the rational expression 

we restrict the input to a subset of the previous inputs. The proof is similar in spirit to 

Lemma 3.4, and is also done cases. The cases represent different relationships between 

the lexicographic order of the two polynomials in the rational expression (to which the 

floor is applied). The main conceptual difference with the one variable proof technique 

is in Case 5 of the proof, where we introduce new variables. 

Lemma 4.5 Let P(x, y) = P.Pi((x,y)) be a rational expression with integer coefficients, 
2 x,y 

defined over S(O,a1,a2,a3), such that P(x,y) ~ 0 for (x,y) E S(O,a1 ,a2,a3). Define 

max{4, ai, deg(P)} = D, and max{4, a 2, a 3, max-coef(P)} = M. Either 
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The intuition is that the sequence u0 , ... , Ur+i includes all the variables that we 

introduce. Notice that equations 4.1 and 4.2 imply that uo > u 1 > u2 > U3 > ... > Ur > 

Ur+l· The following definition relates the first pair (u 0 , u1 ), and the last pair (ur, Ur+i). 

Definition 7 Let S(r, a 1 , a2, a 3, ~'A) denote the following set of ordered pairs of 

positive integers: 

{(uo,ui) there exist integers Un Ur+I such that ( uo, u 1 ) 

For convenience we omit the null vectors 6. and A whenever r = 0. In this case, the set 

S(O,a1 ,a2,a3) consists of all pairs (u0,u1) such that uo > (u1 )°'1
, u1 > a2, uo = u1 = 1 

(mod a 3 ) (in accordance with the above definition). 

Perhaps the most important characteristic of the above definitions is its similarity to 

the Euclidean algorithm for solving the gcd problem. As an immediate consequence of 

the definition, we get the two properties stated below. These properties are the key to 

our proof strategy. 

Lemma 4.1 (The Correspondence Property): There is an one-to-one corre­

spondence between the elements of the sets S(r,a1 ,a2 ,a3 ,~,A) and S(O,a1,a2,a3). 

Specifically, each pair (u0 , u 1) E S(r, a 1, a 2, a 3 , 6., A) corresponds to the unique pair 

(ur,Ur+1) E S(O,ai,a2,a3) such that (ur,Ur+1) is the <r,ai,a2,a3,6.,A>-generator of 

(uo,ui). Furthermore, if(uo,u1) corresponds to (ur,Ur+i) thengcd(uo,u1) = gcd(ur,Ur+i)· 

Proof: Let a2 > a3 > ... > ar+1 and b2 > b3 > ... > br+i, be the generating sequences 

for (ao,a1) and (bo,b1), respectively. It is easy to check that if (ai,ai+I) =J. (bi,bi+I) for 

some 0:::; i:::; r, then (aJi aj+i) =J. (bj, bj+i) for any j, 0:::; j:::; r. The assertion about the 

gcd's follows from the Euclidean algorithm. D 
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We give here a very brief description of the differences between the technique for 

two and one variables. The main difference between the two proof techniques is in 

the handling of the floor operation. Consider the expression l~ J. If we assume that 

x > y > 0, then we can claim that the value of this floor operation is zero. On the other 

hand, consider l; J. Since we assume that x > y > 0, we have to find a new solution for 

such an expression. We overcome the problem by adding a new variable, z, and requiring 

that both y > z > 0, and y + z = x, which implies that l;J = 1. In some sense we 

transformed a computation based on the inputs x and y to a computation based on the 

input y and the "new input" z. The problem is that we introduce a new dependency 

between x and y, e.g. in our example x = y + z < 2y. The general solution has a similar 

flavor: we substitute x by ).y 8 + z. The values of b and ). are chosen to guarantee that 

previous requirements on the relationship between x and y hold. 

The introduction of a new variable is the main difference between the technique for 

two variables and for one variable. Note that we may have to introduce many new 

variables, one for each floor operation. This causes additional complications in the proof 

technique that we need to resolve. 

Using this proof technique we show a lower bound on the depth of any computation 

tree with OP= { +, -, *, /, L·J }, that computes the gcd of all pairs of n-bit integers. The 

important part of the lower bound is that it is non-constant; quantitatively, the lower 

bound is O(log log n). 

This chapter is organized as follows. In section 4.2 we describe the way that we 

structure the inputs that will be used in the proof. In section 4.3 we develop the proof 

technique. In section 4.4 we use the proof technique to show a lower bound for computing 

the greatest common divisor of two integers. 
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3.3 Applications 

We start this section by characterizing a class of problems for which our technique gives 

non-trivial lower bounds. In the previous section we showed, that given a computation 

tree, we can find a path and a set of inputs S(n, >.),such that all those inputs follow the 

path. The following defines an Af ( n )-invariant function to be one which has two inputs 

in S(n, >.),for which the output is different. 

Definition 5 Let J(x) be a boolean Junction whose domain is the set of n-bit integers, 

and let M(n) > 0. Then f is Af(n)-invariant if, for any integer>. < M(n), there are 

two n-bit integers a1 and a2, satisfying (i) a1 = a 2 = 0 mod >., and (ii) J( ai) =/= f( a2). 

The following theorem states that the lower bound technique that we developed in 

the previous section gives a lower bound for any M( n )-invariant function. 

Theorem 3.6 Any decision tree with OP= {+,-,*,/,l·J} and constants {0,1}, 

that computes an M(n)-invariant function, f(x), for all n-bit integers, must have depth 

0( Jlog log M(n)). 

Proof: Since f is a boolean function, we can assume that the leaves are labeled by 

either zero or one. (This adds at most two to the depth of the tree.) We prove the 

lower bound by contradiction. Suppose that we are given a decision tree T of depth 

h < !Jlog log M(n). that decides f. In Theorem 3.5 we prove that there is a >. :::; 

224
,.

2 

< M(n), such that all the inputs in S(n, >.) reach the same leaf. Since J is M(n)­

invariant, there are a1 and a 2, such that ai, a 2 E S(n, >.) and f(ai) =/= f(a2). 

Both ai and a2 follow the same path in T. Therefore T either accepts or rejects both 

f ( ai) and f( a2)· This contradicts the fact that T computes f. D 

Clearly, the larger the value of M(n), the better the lower bound that we can show. On 

the other hand, since Af(n):::; 2n, we can not show lower bounds greater than O(y'10gri). 
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This enables us to transform all the floor operations, on a specific path, to evaluations 

of rational expressions. Lemma 3.2 gives a way to restrict the input such that the 

comparison value is fixed. This will enable us to find an integer ,\ and a path P, such 

that any integer in S(n, .\) follows the path P. Lemmas 3.2, 3.3, 3.4 also bound how 

fast the degree and the size of the coefficients of the rational expressions can grow. The 

bounds on the degree and maximum coefficients enable us to bound the value of .\, which 

is essential for showing the lower bound on complexity. For example, note that if,\ > 2n, 

then S(n, .\) = 0, which would not enable us to derive any interesting lower bounds. 

Theorem 3.5 Let T be an decision tree of depth h with OP= { +, -, *, /, l·J }. There 

zs an integer A < 2
24112 

and a leaf v1 of T 1 such that for each input a E S( n, ,\), the 

computation follows the path from the root of T to its leaf v1. 

Proof: Denote the vertices on the path P from the root of T to its leaf v1 by v11 v2 , .•. , v1, 

in that order, where v1 is the root of the tree T and Vi is a child of Vi-t· We define the 

path P and the integer,\ inductively, starting with the empty path and ,\(o) = 1. (S(n, 1) 

consists of all n-bit integers.) As part of the induction hypothesis, we maintain three 

properties of the path and the set under consideration. These properties are described 

below. 

Suppose that (i) we have selected a prefix of P, which starts at v1 , and ends at a 

vertex Vi+i, and (ii) defined a parameter _\(i) with the following properties: 

1. For each input a E S(n,_\(i)) the computation follows the path from the root to 

2. For each computation vertex v on the path from the root to the vertex Vi+i, ex­

cluding the vertex Vi+i, there is a pair of polynomials (F11 (x), G11 (x)) with integer 

coefficients, such that for each input a E S(n,_\(i)), G11 (a) =I 0, and val(v) = ~=~:~. 
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Case 3: P2 (x) ~ P1(x). Let L be the leading coefficient of P2(x). Note that since 

sign(P2 ) = +1, then L > 0. Corollary 2.7 implies that 

p ( ) = A(x)P2 (x) + R(x) 
1 x LD+I ' 

where A(x) and R(x) are polynomials with integer coefficients such that, max-coef(A) 5 

2D AfD+l, max-coef(R) 5 2D+1 .11.1D+2 , deg( A) 5 D and deg(R) < D. 

Consider the constant term of A(x). We denote this constant by cLd+1, where c is an 

integer and I is a non-negative integer such that 0 5 I < Ld. Let A( x) = A( x) + cLd + 1; 

that is, A( x) is equal to the polynomial A( x) minus its constant term. The parameter 

?Twill be chosen to be a multiple of Ld. This implies that for each a E S(n, A?T), each 

monomial of L-d A( a) evaluates to an integer. Hence, for each integer a E S( n, A?T ), 

We distinguish between two subcases: 

Subcase 1: / > 0. Consider the polynomial V(x) = L-d(IP2(x) + R(x)). The 

leading coefficient of Vis L-d(!L), therefore sign(V) = +l. Let B(x) = P2 (x) -

V(x). The leading coefficient of B(x) is (1 - L-d1)L. Since 0 < L-dl < 1, the 

leading coefficient of B(x) is positive, i.e. sign(B) = +l. Using Corollary 2.4, let ?T 

be the minimum multiple of Ld such that ?T ? max{ 7r(B), 7r( 1P2 +R), 7r(P1 ), 7r(P2 ) }. 

Consider a E S(n, A7r). Since ?T? 7r(B), then V(a) < P2 (a). Since 7r? 7r(/P2 +R), 

then 0 < V(a), which implies that 0 < V(a) < P2 (a). Since 7r? 7r(P2 ), then P2 (a) 

0 Th• . l" th t 0 ~ T'P2 (a)+R(a) 1 £ W 1 d > . IS Imp Ies a < P
2

(a) = L'aP
2

(a) < , or any a > ?T. e cone u e 

that for each a E S(n, A?T), l~~f:lJ = L-dA.(a) + c. Let 

Q(x)= A(x)L~cLd = lP(x)J forxES(n,.\?T). 
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The following claim shows how we can restrict the input by changing the parameter of 

S( ·). Namely, multiplying the parameter by another integer and considering only integers 

that are divisible by the product. 

Claim: 3.1 For any integer 7r;:::: 1, S(n, A7r) C S(n, A). 

The following lemma enables us, each time the computation reaches a comparison 

vertex, to fix one of the directions. This involves restricting the inputs, from S(n, A) to 

a subset of it, S( n, A7r ). An important part of the lemma is to bound the value of 7r. 

Lemma 3.2 Let P(x) and Q(x) be two rational expression, of degree at most D and 

maximum coefficient at most AI, defined over S(n, A). There exists 7r::; 2(1+D)M2 +1, 

such that for all x E S(n, A7r), the comparison P(x) ;:::: Q(x) is determined (i.e. either 

P(x) = Q(x), P(x) > Q(x), or P(x) < Q(x), for x E S(n, A7r)). 

Proof: Let B(x) = P(x) - Q(x) = ~~~;j. If P(x) = Q(x) for x E S(n, A), let 7r = 1, and 

the lemma follows. Otherwise both sign(B1 ) #- 0 and sign(B2 ) #- 0. By Lemma 2.2 the 

degree of B is at most 2D and max-coeflB) ::; 2(D + 1)1\!!2. 

Corollary 2.4 guarantees the existence of a positive integer 7r = max{7r(B1 ), 7r(B2)}, 

such that for all integers x > 7r, either B(x) > 0, or B(x) < 0. Furthermore, it guarantees 

that 7r::; 2(D + l)M2 + 1. Since the expression P(x) > Q(x) is equivalent to B(x) > 0, 

the lemma follows. D 

Next, we consider the case of a computation vertex. First we discuss rational opera­

tions, and restate Lemma 2.2, for univariate rational expressions. 

Lemma 3.3 Let P and Q be two rational expressions, of degree at most D and max­

imum coefficient at most M, defined over S(n,A). Let R(x) = P(x) o Q(x), where 

o E { +, -, *, /}. Then, deg(R)::; 2D and max-coeflR)::; 2(D + l)M2 • 
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Essentially, the degree argument uses the fact that a polynomial cannot change "too 

fast". Namely, a polynomial of degreed can change its sign at most d+ 1 times. Therefore 

a polynomial of degreed can "disconnect" the inputs to at most d + 1 different connected 

components. The number of connected components of the function to be computed 

implies a lower bound on the degree of the polynomial, which implies a lower bound on 

the depth. 

The degree argument can be extended to rational functions, and also in higher 

dimensions. The arguments for higher dimensions are much more complex than for 

one dimension, and they are the main part of the lower bound technique developed in 

[B083, SY82, Yao89J. 

Adding the floor function as a basic operation changes the situation dramatically. 

First, using the floor function, one can trivially compute the parity function in 0(1) 

steps. Second, the floor function may increase the number of connected components in 

an unbounded way. For this reason the number of connected components is not relevant 

in computations with the floor function. 

In the remainder of this section we give a general overview of the proof technique 

that we develop. Given a decision tree, the proof constructs a path from the root to a 

leaf, such that a certain set of inputs follows that path. The property of the set, is that 

it includes all the integers that are divisible by a certain integer A. A main part of the 

proof technique is to bound A as a function of the depth of the decision tree, i.e. to show 

that A ~ g( h), where h is the depth of the tree. In Section 3.3 we show applications 

of this proof technique. We define a boolean function to be Jl.1( n )-invariant if for any 

integer A < M(n), there are at least two n bit integers, both divisible by A, for which 

the value of the function differs. We argue that any M(n)-invariant boolean function 

requires depth at least h, where g(h) = M(n). 

As one can expect, the main part of the proof technique is devoted to handling the 

floor function. The main idea is to transform the floor function to a rational function. 
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For uni variate polynomial the sit nation is even simpler, and is summarized in the 

following corollary of Lemma 2.5. 

Corollary 2. 7 Let P( x) and Q( x) be two polynomials with integer coefficients, of 

degree at most D, and maximum coefficient at most M. Let L be the leading coefficient 

of Q ( x), then there exists A( x) and R( x) such that, 

1 1 
P(x) = LD+l A(x)Q(x) + LD+i R(:r), 

where A(x) and R(x) are polynomials with integer coefficients, and max-coeftA) $ 2D AfD+i, 

max-coeftR) $ 2D+i AfD+ 2 , deg(A) $ D, and deg(R) < D. 
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R(x, y) such that 

1 1 
P(x,y) = L6+t A(x,y)Q(x,y) + L6+t R(x,y), 

where A( x, y) and R( x, y) are polynomials with integer coefficients. Furthermore, 

1. max-coef( R) s; (2 + degy( Q) )6+1 ]\1 N6+ 1
, 

3. degx(A) s; max{O, 8}, and degy(A) s; degy(P), and 

4. max-coef( A) s; (2 + degy( Q) )8 A1 N 8
• 

Proof: The proof is by induction on 8. The hypothesis holds for the basis case 8 = -1 

with A(x, y) = 0 and R(x, y) = P(x, y ). 

For the induction step, assume that the hypothesis holds for all 8 < k, for some 

k > -1. We prove it for k. Let P(x,y) = p1(y)xe + p2 (y)xe-l + ... , be such that 

k = e - d. Consider the polynomial 

S(x, y) = LP(x, y) - xkp1 (y )Q(x, y ). 

One can verify that, max-coef(S) s; (2 + degy( Q))M N, degx(S) < degx(P) - 1, and 

degy(S) s; degy(P) + degy(Q). 

Applying the hypothesis to the pair S ( x, y) and Q ( x, y), yields 

S(x,y)= ;
8
A'(x,y)Q(x,y)+ ;

8
R'(x,y). 

Substituting for S(x, y ), we get 

P(x,y) = LL1 (A'(x,y) + L8xkp1(y)) Q(x,y) + LL
1 

R'(x,y). 
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Bivariate and univariate polynomials 

A bivariate polynomial is a polynomial with two variables. Below, we relate the lexico­

graphic order defined on the bivariate polynomials, and the order among their values at 

certain points. We concentrate on bivariate and univariate polynomials since those are 

the cases that we would be interested in later. 

Consider a bivariate polynomial P( x, y). \Ve would like to give a simple sufficient 

condition on the inputs of P, such that for any input (x,y) that satisfies the condition, 

the sign of P(x, y) would be the same as sign( P). The sufficient condition that we give in 

the lemma below guarantees that the value of the leading monomial is larger than all other 

monomials combined. This is clearly sufficient to ensure that sign(P(a, b)) = sign(P), 

for such inputs (a, b). 

Lemma 2.3 For each bivariate polynomial P(x, y), such that sign(P) =J 0, there 

exist positive integers 7r1(P) and 7r2 (P) such that for all (a, b) satisfying a > b1ri(P) and 

b > 7r2(P), sign(P(a,b)) equals sign(P). Furthermore, 7r1 (P):::; degy(P)+I, and7r2(P):::; 

max-cf:{ P)+ILI, where L is the leading coefficient of P. 

Proof: Let M = max-coef(P). Let P(x,y) = L.k'=oLkxi"yi1c, where P(x,y) is written in 

its normal form, and Lk is the coefficient of the kth monomial (Lo= L). Note that since 

sign(P) =J 0, then L =J 0. Denote tk(x, y) = xikyi1c. Let 7r1(P) = l+maxo9::;m-l {O,)k+1-

jk}, and 7r2(P) = MtL. Clearly, 7r1(P) :::; degy(P) + 1. 

From the lexicographic order it follows that t~ ( (x,y = xiyi, where either i < 0 and j < 
k x,y 

(p) ' - O d · 0 Th 'f b1"1(P) th t1c i(a,b 1 d h tk a,b 1 7r1 or z - an J < . us, 1 a > en t" a,b) < b' an ence, to(a,b < pc· 

Suppose that L > 0, i.e. sign(P) = +l. We show that for (a, b), satisfying a> b1ri(P) 

and b> 7r2 (P), P(a,b) > 0, i.e. sign(P(a,b)) = +l. For (a,b), such that a> b7ri(P), 

P(a, b) ~ L to( a, b) - t ILklai1c[Jik > L to( a, b)(I - t ~:~ ). 
k=l k=l 



20 CHAPTER 2. PRELIMINARIES 

Proof: We only prove the bound on max-coef(P * Q). (The other bounds are straightfor­

ward.) Note that a multivariate polynomial of degreed has at most (1 + d)k monomials. 

Therefore, when we multiply two multivariate polynomials, each of the coefficients of the 

product is the sum of at most (1 + min{deg(P), deg(Q)})k terms, each of them being 

the product of a coefficient in P by a coefficient in Q. Since the product of a coeffi­

cient of P and a coefficient of Q is bounded by max-coef( P) max-coef( Q), the bound on 

max-coef( P * Q) follows. 0 

A rational number is a number that can be expressed as n/m, where n and m are 

integers. Similarly, a rational expression R(x1 , .•. , xk) can be written as ~ti,. .. ,x" , where 
X1, ... ,Xk 

P and Q are polynomials. 

For a rational expression R(x1 , .•• , xk) = ~(1'""x" , where P and Q are multivariate 
X1, ... ,Xk 

polynomials, define the degree of R to be the larger of the degrees of P and Q. Similarly, 

define the maximum coefficient of R to be the larger of the maximum coefficients of P 

and Q. 

Lemma 2.2 Let R(x1, ... , xk) = ~1 fxi, .. .,x1c~ and S(x1 , ... , xk) 
2 Xl , ... ,Xk 

multivariate rational expressions. Then, 

1. deg(R ± S) ~ deg(R) + deg(S), 

2. max-coef(R ± S) ~ 2(1 +min{ deg(R), deg(S)} )kmax-coef(R)max-coef(S), 

3. deg( R * S) ~ deg( R) + deg( S), and 

4. max-coef(R * S) ~ (1 +min{ deg(R), deg(S)} )kmax-coef(R)max-coef(S). 

Proof: The bounds follow from Lemma 2.1 and from the fact that for o E { +, - }, 

0 
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The computation terminates at a leaf ll and outputs the value of u. The time com­

plexity of a given input is the length of the path that the computation traverses using 

that input. The time complexity of a computation tree is the maximum time complexity 

over all inputs, which is equal to the depth of the tree1 , assuming that each vertex can 

be reached by some computation. 

As one can note, we did not mention how constants appear in the tree. We can 

introduce constants as additional operations, and view a constant as a constant function. 

In many cases it is simpler to state separately the basic operations and the allowed 

constants. However, the formal interpretation of such a statement is that there is one set 

of basic operations, that includes the constants and basic operations. 

A decision tree is a computation tree whose output values are either 0 or 1. For 

decision trees we can assume that each leaf is labeled by a constant, either 0 or 1. This 

can increase the depth of the tree by an additive factor of at most two. 

A straight line program is a computation tree that does not include any comparison 

vertices. 

The operations { +, -, *} are defined in the natural way. The rational division opera­

tion returns a rational function of the inputs, e.g. 2/3 = 0.666 · · ·. (In case a division by 

zero occurs during a computation, the output of the entire computation is undefined.) 

The set of rational operations includes the operations { +, -, *, /}. We define the floor 

operation in the following way. The floor operation receives as an operand a non-negative 

real number and returns the largest integer smaller than or equal to the operand. 

Our assumption that the operand to the floor function is non-negative simplifies our 

proofs and does not change the depth of the computation tree by more than a constant 

factor. Using this floor operation, one can implement either a general floor operation 

(i.e. the operand is an arbitrary real number) or a mod operation using 0(1) depth. 

1The depth of a tree is the length of a longest path from the root to a leaf. 
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However, this is not the case in general. In most cases we would desire some con­

ditional branching mechanism. The time complexity of a program that includes such a 

mechanism cannot be estimated by the number of instructions that appear in the pro­

gram. This is best illustrated in the following example. Consider the following program: 

z := 0 

WHILE y 2:: 1 DO 

z .- z + x 

y y-1 

END WHILE 

For y E [1, n], the complexity of the above procedure is O(n) operations. The follow­

ing program, that looks very similar requires only O(log n) operations. 

z := 0 

WHILE y 2:: 1 DO 

z z+x 

y ·- y/2 

END WHILE 

In order to avoid such problems, we "unroll" the loop structure. This means that the 

program is represented as a tree, possibly an infinite tree. The time complexity of a given 

input is the length of the path in the tree traversed by the input. We would consider 

only finite trees. 

After the above motivation, we can give a precise definition of the computation tree 

model. 
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Unlike much of the pr .s research, ot;r work concentrates on functions with a 

constant number of input variables. This allows us to get a better understanding of the 

complexities that are involved with the floor operation. Since there are only a constant 

number of inputs, we define the complexity measures as a function of the complexity of 

the input, e.g., the number of bits that represent an integer input. We develop a general 

technique for deriving lower bounds for such functions. In combination with the lower 

bounds, we show upper bounds that use the floor function in new and novel ways. In 

some cases we are able to derive matching lower and upper bound, up to a constant 

multiplicative factor. 

We develop a general technique to handle functions of a single n-bit integer input. 

Using this technique we derive 0( y'Iagn) lower bounds for problems such as computing 

l log log x J , deciding if the in put is a perfect square (i.e. whether its square root is also an 

integer), and other problems. For computing l log log x J, we give a 0( y'Iagn) algorithm, 

and thus show that this lower bound is tight. (Note that using only rational operations, 

computing llog log x J requires 8(1og n) operations.) 

We extend this technique to handle two variable functions, and show that computing 

the greatest common divisor of two integers requires a non-constant number of operations. 

More precisely, we show an O(log log n) lower bound for computing the greatest common 

divisor of two n-bit integers. This lower bound holds even if we restrict our attention to 

deciding if a pair of integers are relatively prime or not. 

We also develop a lower bound technique for approximating real valued functions. 

We consider approximating the s 1h root of a real number from the interval [1, 2], on 

the "average", where s is a fixed constant. We define an average approximation by 

considering the function which gives the absolute difference between the approximated 

value and the correct value, for each x E [1, 2], and integrating this function over the 

interval [l, 2]. The value of this integral is the "average error" of the approximation. 

We show that in order to approximate the s th root of an input from [1, 2], such that 
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At the beginning of this decade, a general technique, based on topological arguments, 

was developed in [B083, SY82]. The technique relates the logarithm of the number 

of connected components of a decision problem and the number of rational operations 

the problem requires. Based on this technique, many problems, whose inputs are either 

real or rational numbers, have been given tight bounds. This technique, under some 

restrictions, was extended to handle integral input by [Yao89]. 

Another model that uses abstract arithmetic operations, rather than explicit bit op­

erations, is the strongly polynomial model. The motivation for this model is to achieve 

polynomial time algorithms that would not depend on the representation of the input. 

This would allow inputs with infinite representation, as in the case of real numbers. The 

aim is that the number of operations would be polynomial in the number of inputs, and 

not depend on the size of the input. Grotschel, Lovasz, and Schrijver, in their book "Ge­

ometric Algorithms and Combinatorial Optimization", asked if there exists a strongly 

polynomial algorithm for the greatest common divisor of two integers. (See [GLS88], 

pp. 32-33, p. 225.) Notice that since there are only two integer inputs to the problem, 

any strongly polynomial algorithm for this problem must have a constant number of 

arithmetic operations. 

There are two "standard" sets of operations that are considered in strongly polynomial 

computations. The weaker model considers only rational operations, i.e. { +, -, *• /}. 

The more powerful model has an additional "rounding down" operation (i.e. floor). 

Stockmeyer [Sto76] proves an !1( n) lower bound for deciding if an n-bit integer is odd 

or even, in the weaker model, where only rational operations are allowed. We show in 

this work that there is no strongly polynomial algorithm for the greatest common divisor 

problem in the stronger model, where rounding operations are allowed. Our result implies 

that strongly polynomial time is different from polynomial time. 

When defining strongly polynomial computations one normally restricts the size of 

the integers involved in the computation to have size polynomial in the size of the original 
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common divisor of two integers requires a non-constant number of operations; such 
a lower bound would separate polynomial time and strongly polynomial time. 

We resolve this open problem and show that there is no computation tree that 
computes the greatest common di visor in a fixed number of operations; in fact, 
we prove an O(log log n) lower bound for computing the greatest common divisor 
of two n-bit integers. Thus separating polynomial time and strongly polynomial 
time. 

3. Approximation problems. In this category we consider the complexity of computing 
an approximation to the s 1

h root of a real number. The notion of approximation 
that we consider is "on the average", which is modeled by an L1 norm. We show a 

n( Jlog log~) lower bound for approximating the sth root of inputs in the interval 
[1, 2], within ton the average. (The inputs to the computation, in this case, is the 
number for which the s 1

h root is approximated.) 

We also show interesting upper bounds. Using Newton's method one can approx­
imate the s 1h root in O(log log~) rational operations, and this bound is tight (for 
rational operations). Using the floor function, one can accelerate the computation, 

and compute an approximation in 0( Jlog log~) operations. (The input to the com­
putation, in this case, are both the number for which the s 1h root is approximated, 
and the error parameter c) 
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