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Abstract

This research addresses the problem of proving lower bounds on the complexity of alge-
braic computations involving the floor operation. The model of computation considered
is a computation tree with the set of basic operations {+, —,*,/, ||, >}. The constants
available to the computation are 0 and 1, and every other constant needs to be generated
explicitly. The problems that are considered may be broken down into the following
categories:

1.

o

Functions of a single input. A general lower bound technique is developed for a class
of functions that have as their input a single n-bit integer. A characterization of the
functions to which this technique applies is given. The characterization is general,
and applies to many natural functions, such as perfect square root (deciding if the
square root of the input is integral or not) and computing the value of |loglog z|.
Every function that with this characterization requires at least 2(1/logn) opera-
tions.

Upper bounds are given which use the floor function in non-trivial ways. The most
surprising result is that the computation of 22° can be accelerated in the presence
of the floor function. Using only rational operations (i.e. {+,—,*,/}), it requires
O(k) operations to compute (by repeated squaring), and this bound is tight (for
rational operations). In contrast, we show that with the use of the floor operation
and an additional input greater than 22*, the number 22* can be generated in
O(V'k) operations. Using the upper bounds developed, an O(y/Togn) upper bound
for computing [loglog x| is given (where z is an n-bit integer). This upper bound
matches the lower bound proved for this function.

Functions of two inputs. A very natural example of a function that has two integer
inputs is the Greatest Common Divisor function. Grétschel, Lovdsz and Schrijver
posed as an open problem the problem of showing that computing the greatest
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Chapter 1

Introduction

It is very natural to define the complexity of an algorithm with respect to the number of
operations that it performs. Computation trees give a way to formalize such a model. A
computation tree, intuitively, has a set of basic operations, each requires unit time, and
the complexity of the algorithm is measured with respect to this set of operations. (See

Chapter 2 for both motivation and definition of the computation tree model.)

Arithmetic operations, e.g., addition, multiplication, etc, are natural candidates for
the set of allowable unit time operations. Deriving lower bounds for computations that
involve arithmetic operations has received much attention. As one would expect, at first
lower bounds were developed for limited sets of arithmetic operations, and with time,
the results were extended to richer sets of operations. Probably the simplest model is
one that has only comparisons, which is used to show an Q(nlogn) lower bound for
sorting (see [Knu8l}). A considerably richer model is one that allows linear operations
in addition to comparisons. Lower bounds for computations with linear operations can
be found in [Rei71, Dob76, DL78, DL80, Yao75, YR80]. As for rational operations, i.e.
{+,—,*,/}, the first lower bound is [Rab72], which is an information theoretic lower

bound.
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inputs. If the size of numbers is not restricted then “too many” functions are computed
with a polynomial number of operations. For example, any PSPACE-computation can
be simulated in polynomial time [BMS81, PS76, Sim81]. Moreover, it is known that hard
problems, e.g., factoring, can be solved in linear time [Sha79]. Restricting the size of
the intermediate results to be polynomial in the size of the inputs ensures that strongly

polynomial time is contained in polynomial time.

Lower bounds techniques for computations that use the floor operation have been
much less successful than for rational operations. Perhaps one reason for the lack of
progress in this area is that this set of operations does not possess the “nice” algebraic

properties that rational functions possess.

Previously there have been a few lower bound techniques developed to handle the
floor operation. In [BJM88], a computation tree that operates on real numbers and has
the floor operation in its repertoire was studied. They show, using topological arguments,
that there are certain classes of languages which can not be decided by analytic compu-
tation trees. [JMW89], compares the expressive power of computation trees with various
sets of operations, and proves lower bounds for computation trees with the operations
{+,—,DIV,}, where DIV, denotes integer division by constants. Based on proof tech-
niques of [JMW89], [Bas90a] shows an (n/log n) lower bound for computing the GCD,
using {+,—, -], X¢, /c}, where x. and /. are multiplication and division by constants.
(Note that in such a model the mod operation cannot be performed in O(1) operations.)
The work of [IMR83] discusses the relation of the floor operation and indirect address-
ing. In [DO85, Jia79], an Q(nlogn) lower bound for sorting rational numbers, using a

restricted floor operation, is given.

The aim of our research is to establish lower bounds for computations that use the
floor operation, in addition to rational operations. The main motivation for considering
the floor operation, is that it is simple to implement in practice, and that it exists as a

basic operation in most computers and programming languages.
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the average error is less than e, requires at least Q(y/loglog %) operations. (In the lower
bound we assume that the computation receives only the input z € [1,2], as in the case of
Newton iterations, and tries to produce the best approximation it can, given a bound on
the number of operations.) In a somewhat different setting, we show how to approximate
the s™ root, for any « € [1,2]. The approximated value, for any input z € [1,2], is at
most ¢ away from /z, and the number of operations is O(y/loglog ). (In the upper

bound, the computation receives both the input = € [1,2] and the accuracy parameter
€.)

All our lower bounds assume that we have to generate all the constants that are used
in the computation explicitly. We show that without this restriction any polynomial
could be computed in O(1) operations (independent of its degree). In order to avoid any
possible confusion, we quantify our lower bounds by stating that the computation has

initially only the constants {0, 1}.

The research in this work was done in collaboration with Baruch Schieber and Prasoon

Tiwari, and preliminary versions of it appear in [MST88, MST89b, MST89a).

This thesis is organized as follows. In Chapter 2 we define the computation model
and prove a few results concerning polynomials and rational functions. In Chapter 3
we develop the proof technique for one variable functions. In Chapter 4 we extend the
technique from one variable to two variables, and show the lower bound for computing
the greatest common divisor of two integers. In Chapter 5 we show the lower bounds for
approximation. In Chapter 6 we show the upper bounds. In Chapter 7 we summarize

the results and suggest directions for future research.



Chapter 2

Preliminaries

2.1 Computation Tree Model

In this section, we define the computation tree model. Let us motivate the definition
chosen. Consider a specific computer, it has some set of instructions that are built into
it. A program that runs on that computer uses this set of operations, usually referred to
as “machine instructions”. A natural measure of the time complexity of a program is the
number of machine instructions that it performs. Although this approach assumes that
each machine instruction requires the same amount of time, in many cases this gives a

good approximation.

This means that it is natural to fix some set of operations, and consider them as basic
operations. The time complexity of computing a certain function is the number of basic

operations performed.

We would like a formal model that would make it “easy” to define time complexity.
If the set of basic operations does not include a branching operation, then the number of

operations performed, on any input, is simply the number of operations in the program.

15
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Definition 1 A computation tree T consists of a labeled binary tree, and a set of

operations OP. FEach vertex of the tree is labeled in one of the following ways.

e Input vertices: An input vertex is labeled by a certain input, e.g. z1. Fach input

verter has at most one child.

e Computation vertices: Fach computation vertex u is labeled with an operation f, =
o(vi,...,vk), where o € OP, and v; is either a computation or an input vertez that
appears on the path from the root to node u. Fach computation vertex has at most

one child.

e Comparison vertices: Fach comparison vertex u is labeled with vy < vy, where,
again, v; is either a computation or an input vertex that appears on the path from

the root to node u. Each comparison vertex has two children.

Given an input the computation tree defines a computation. The computation tra-
verses a path from the root to a leaf and assigns values to the input and computation

vertices on the path in the following way.

The computation starts at the root of the tree T, and proceeds as follows:

1. When the computation arrives at an input vertex u, labeled by z;, it assigns u the

value of the input z;, and continues to the child of u.

2. When the computation arrives at a computation vertex u, labeled by f, = op(vy, ...,
vk), it assigns u the value val(u), which is op(val(v1),...,val(vg)), where val(v;) is
the value of vertex v;. Note, that since v; appears on the path from the root to wu,
the computation already assigned some value to v;. The computation continues to

the child of u.

3. When the computation arrives at a comparison vertex u, labeled with v; < vy, it
proceeds to the left child of w, if val(v;) < wval(vz), and to the right child of u,

otherwise. (A comparison node does not have a value.)
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2.2 Polynomials and rational expressions

This section includes some basic definitions and results about polynomial and rational

expressions. These results will be used extensively in the following chapters.

The degree of a polynomial P(zi,...,zx) with respect to a variable z;, denoted
deg,.(P), is the maximum exponent of z; appearing in any monomial of P(zy,...,zk).

The degree of P, denoted deg(P), is max; deg, (P).

The size of the coefficients plays a crucial role in the lower bounds that we prove
later. For this reason we add another parameter, which is the mazimum coefficient of P,
denoted maz-coef{ P). The value of maz-coef(P) is defined to be the maximum among

the absolute values of the coefficients of P.

We extend the notion of degree and maximum coeflicient of a polynomial to a set of
polynomials, in a rather straightforward way. For a set A of polynomials, the degree of
A, denoted deg(A), is maxpep deg(P). Similarly, the marimum coefficient of A, denoted

maz-coef(A), is maxpep maz-coef( P).

The following lemma relates the degree and maximum coefficient of polynomials and

the operations {+, —, x}.

Lemma 2.1 Let P(zy,...,2x) and Q(ay,...,zx) be two multivariate polynomials.

Then,

1. deg(P + Q) < max{deg(P), deg(Q)},
2. maz-coef( P £ Q) < maz-coef( P) + maz-coeflQ),
3. deg(P * Q) < deg(P) + deg(Q), and

4. maz-coef([P * Q) < (1 + min{deg(P), deg(Q)})*maz-coef( P)maz-coef(Q).
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A lexicographic order on polynomials

We define a lexicographic order on the set of multivariate polynomials. For this purpose,

we use the following lexicographic order on the set of multivariate monomials.

Definition 2 For two monomials ca} ... z}* and dz?? ...1:{:", the relation cz'l ...z
- da! wi" holds if either (1) there exists an m, such that ¢,y > jn, and for anyl < m,

u=g, or (2)u=yg, forl <1<k, and |c] > |d|.

We say that a polynomial is written in its normal form if it is written as a minimal
sum of monomials, and these monomials are sorted in descending lexicographic order.

We assume that all polynomials are written in their normal form.

Definition 3 For two multivariate polynomials P(zy,...,zx) and Q(z1,...,zk), Pz,
oy Zg) = Q(a1, ..., xx) if, when written in their normal forms, there exists some 1 > 1,
such that (the ¢-th monomial in P) > (the i-th monomial in @), and all the monomials

preceding it are identical in both P and Q.

Given a polynomial P(z1,...,zx), let the leading monomial of P be the first monomial
in the normal form of P(z1,...,zx). Let the leading coefficient of P(x,,...,zx) be the

coeflicient of this monomial. Define

+1 for a>0
sign{a) = 0 for a=0

-1 for a<O0

The sign of a polynomial P, denoted by sign(P), is the sign of the leading coefficient of
P. Note that sign(P) = 0 if and only if P is the zero polynomial. A sign of a rational

expression R(z) = g—g%, is sign(P) sign(Q).
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To complete the proof we show that if b > m(P) = M—LLL then (1 — Y7, l,%‘;l) > 0, or

equivalently, >°7% 4 ][%";[ < 1. This later inequality follows from

mNLyl o M I, M L \* M L 1
[ M Mg Ly N
Similarly, we can prove the Lemma for the case L < 0. O

From Lemma 2.3 we can infer a sufficient condition for univariate polynomials.

Corollary 2.4 For each polynomial P(y), there exist a positive integer m(P) such
that for all b > w(P), sign(P(b)) equals sign(P). Furthermore, m(P) < M-Iiloem + 1,
where L 1is the leading coefficient of P.

Corollary 2.4 enables to argue along the following lines. Consider a comparison be-
tween ((z) and P(z), where both @ and P are polynomials. By Corollary 2.4, there
exists a value e = 7(P—Q), such that for > e, either P(z)—Q(z) =0, P(z)—Q(z) > 0,
or P(z) — Q(z) < 0. This means that, for z > e, the value of the comparison between @
and P is fixed. In a similar way, Lemma 2.3 allows us to argue about the comparison of

bivariate polynomials.

Polynomial division

The lemma below shows how the degree and the maximum coefficients of bivariate poly-
nomials are affected, when we perform polynomial division. Note that the following

lemma is restricted to the case that the leading monomial has only one variable.

Lemma 2.5 Let P(z,y) and Q(z,y) be two bivariate polynomials with integer coeffi-
cients. Let maz-coeff P) = M, maa-coeflQ) = N, and § = max{—1, deg,(P) — deg,(Q)},
If Lz? is the leading monomial of Q(x,y), where d > 1, then there exists A(z,y) and
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Therefore we can bound the maximum coefficient of R, using the inductive hypothesis,

as follows,

maz-coef(R) < (2-}-degy(Q))‘5ma:z:-coej(S)N‘S
< (24 deg,(Q))° (2 + deg,(Q)MN) N

< (24 deg, (@) MNYY,

Furthermore, deg,(R) < deg,(Q){= d}, and deg,(R) < deg,(S5) + (8§ — 1)deg,(Q)
< deg,(P) + 8'deq,(Q).

In a similar way the bounds on maz-coefl A) and deg(A) follow. o

For most of our applications the following simplified version of Lemma 2.5 would be

sufficient.

Corollary 2.8 Let P(x,y) and Q(z,y) be two bivariate polynomials such that deg(Q),
deg(P) < D, and maz-coef( P), maz-coef{Q) < M. If Lx? is the leading monomial of of
Q(z,y), then there exists A(z,y) and R(z,y) such that

1 1

where § = max{—1, deg,(P) — deg,(Q)} < D. Furthermore, A(z,y) and R(z,y) are

polynomials with integer coefficients, that satisfy,

1. maz-coef[R) < ((D +2)M)P*2,
2. maz-coef(A) < ((D + 2)M)P+!,
3. deg.(R) < D, and deg,(R) < (D +1)D.

4. deg.(A) < D, and deg,(A) < D.



Chapter 3

One Variable Functions

3.1 Overview

Proving that a polynomial cannot compute a certain boolean function, using only a
certain number of {+, —, %} operations, can be done by arguing about the degree of
the polynomial. In order to make the case more interesting, assume that we relax the
requirement on the output of the polynomial such that it evaluates to a non-negative
number if and only if the computed function is TRUE on that input. On the one hand,
the number of alternations between TRUE and FALSE of the output of the computed
function gives a lower bound on the degree of the polynomial. On the other hand, in order
to evaluate a polynomial of degree d, one must perform at least logd multiplications.
This degree argument is independent of the size of the coefficients of the polynomial,
and applies even if the input is restricted to be integer. The degree argument can be
extended also to rational functions, and to computation tree with rational operations
(i.e. {+,—,*,/}). Stockmeyer [Sto76] showed, using a similar argument, an ((n) lower
bound for the depth of any computation tree that computes the parity, for any n bit

integer, using rational operations.

27
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Doing it in a straightforward way may cause a “huge” increase in the degree.

For example, consider the expression {%J, where z is an n bit integer. If R is a
rational function such that R(x) = {%J, then R has degree 2"~1. We are interested in a
transformation that keeps the degree and the coefficients “small”. In this specific case,
a good solution would be to set [%j = 0, and restrict z to integers that are divisible by

2, 1.e. only even integers.

The general solution has a similar flavor. We restrict the input, so we can set the
value of the floor operation equal to a rational function. In this transformation, the
degree remains the same, and the size of the coefficients may grow at most exponentially
in the degree. Based on this technique, we show how to derive lower bounds for a decision

tree.

In Section 3.3 we show how to derive lower bound for various functions, using the
general technique. Although our proof technique is for decision problem we can use 1t
to derive lower bounds for computation problems as well. In the cases that we consider,
the decision problem is the parity of the output of the computation problem. Since the
floor is a basic operation, we can compute the parity from the output in O(1). This
implies that for such decision problems, the computation problem is at least as hard as

the decision problem.

3.2 Proof Technique

We start by defining the subsets of the input that will be used in our proof.

Definition 4 Let the set S(n,\) be the set of all n-bit integers that are multiples of

an integer A.
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The interesting case of the proof technique is the floor operation. This is by far more
involved than the previous cases. After proving this lemma, we show how to combine
the techniques we developed to derive a lower bound for decision trees. Recall that we

restrict the floor operation to non-negative inputs.

Lemma 3.4 Let P be a rational expressions with integer coefficients, of degree at
most D and mazimum coefficient at most M, defined over S(n, ), such that P(z) > 0
for any z € S(n,\). There there exists 1 < (2M)P*2, and a rational expression Q with
integer coefficients, where deg(Q) < D and maz-coeflQ) < (2M)P*! such that for any
v € S(n,Am), Q(z) = [P(x)].

Proof: If sign(P) = 0, i.e. P is the zero function, then let Q(z) = 0/1 and = = 1,
and the lemma follows. Otherwise, let P(z) = }—;;—((%%. Without loss of generality we may
assume that sign(FP2) = +1. We would like to restrict our attention to a subset of the
inputs, for which the sign of P(z) is fixed. By Corollary 2.4 for z > max{x(P),7(P2)},
sign(P(z)) equals sign(P), which equals sign( Py )sign(P;). Since the operand of the floor
is non-negative, sign(P) = +1, which implies that sign(P,) = +1.

We consider three cases of relations between P, and P,.

Case 1: Pi(z) = Py(z). This is the trivial case. Let @(z) = 1/1, and the lemma follows.

Case 2: Pi(z) < Py(z). Let B(z) = P(z) — Py(z). Since the leading coefficient of P, is
positive then sign(B) = +1. Corollary 2.4 guarantees the existence of a positive integer
7(B) such that B(a) > 0, for all @ > max{r(P,),7(P,),7(B)} = 7. Since Py(z) > 0,
the expression Py(z) — Pi(z) > 0 is equivalent to 1 > & = P(z). Since P(z) > 0,
for z € S(n,A), 1 > % > 0, for a € S(n,Ar). We conclude that for any integer
a € S(n,Ar), [P(a)] = 0. Let Q(z) = 0/1. Since 7 < 2(D + 1)M? + 1, the lemma

follows.
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We need to bound the parameters 7, deg(@Q) and maz-coef(Q}). To bound deg(Q)
and maz-coef{@) it is sufficient to consider the polynomial A(z) + cL?. Clearly,
deg(A(z) + cL?) < D. The value of maz-coef(Q) is the maximum between L? and
magz-coef{ A(z) + cL?). By definition, maz-coef{ A(z) + cL?) < maz-coef(A) + L°.
Using Corollary 2.7, maz-coef(A) < 2P MP+!, Therefore maz-coef(Q) < (2M )P+,

To bound the value of 7=, we bound n(B); the bounds for #(yP: + R), n(F1),
and 7(P;) are smaller, and derived similarly. Recall that L¢?B(z) = L*Py(z) —
(vPy(z)+ R(z)). Therefore, maz-coef{ L*B) < (L*—~) maz-coef( P;) + maz-coef( R)
< MPHIAf + 2P+ MP+2. Since L > 0, for any z, sign(B(z)) = sign(L¢B(z)).
Hence, in order to bound = (B) it is sufficient to bound 7 (L%B). Since L‘B(z) is a
polynomial with integer coefficients, its leading coefficient is at least one. Therefore,
by Corollary 2.4, 7(L?B) < maz-coef{ L*B) +1. By reqﬁiring that = is divisible by
L% we may add L¢ — 1 to n(B), therefore, 7 < n(L¢B)+ 1+ (L¢ —1) < (2M)P+2.

Subcase 2: v = 0. Clearly R(z) < L¢Py(z). Using Corollary 2.4, let 7 be the
minimum multiple of L¢ such that 7 > max {7(R), 7(P), 7(P,), 7(L*P, + R)}.
Then, for all a > , Fﬁ‘;ﬁ—;‘(% =0, if stign(R) = 0,0 < Fﬁ}é% < 1, if sign(R) = +1,
and —1 < LRP:(a < 0, if sign(R) = —1. Recall that the free term of A is L% + 7.
Let ¢ be c if sign(R) > 0, and ¢ — 1 if sign(R) = —1. We conclude that for each
a € S(n,Am), B8] = L-4A(a) + ¢. Let

A(z) + éL? _

Q(z) = 7 = |P(z)| for z € S(n,Ar).

We can bound the parameters 7, deg(@) and maz-coef(Q) as in the previous subcase.

Since one of the above relations has to hold between P, and P;, the lemma follows. O

To summarize, so far we considered each operation by itself. Lemma 3.4 guarantees

that each floor operation can be replaced by an evaluation of a rational expression.
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3. Let &; = {F,,,G,, | v; is a computation vertex, j < i}. Define D; = deg(X;) +1

and M; = maz-coef{(¥;). Then, D; < 2%, and max{\®), M;} < 924"

We show how to define A(+1) and how to choose the vertex v, such that Properties
1-3 will be satisfied by the set S(n, At*1)) and the prefix of P that starts at v;, and ends
at viys. The parameter AU*+?) will be a multiple of A(). By Claim 3.1 this implies that
S(n, A1) C S(n, A)), therefore, by the induction hypothesis we have that Properties
1-3 are satisfied by the set S(n,A(+1)) and the prefix of P that starts at v; and ends
at viy1. In order to complete the proof of the lemma we need to show that (a) there
exists an outgoing edge of v;4; such that for each input a € S(n, A(+1)) the computation
follows this edge, and (b) Properties 2-3 are satisfied also for the vertex v,y and the set

S(n, AG+1),

By the definition of the tree T, the vertex v;4; is either an input vertex, a comparison

vertex or a computation vertex. For an input vertex both (a) and (b) hold trivially.

For a comparison vertex we need to show that (a) holds. Let the comparison be
g 2 h, such that g,h € {0,1} U {f,, | v; is a computation vertex, j < ¢}. By the
induction hypothesis both 2 and ¢ can be represented as rational expressions of degree
at most D; < 2', and maximum coefficient M; < 22“2. By Lemma 3.2, there is a

AGHD < 2X6N(D; + 1)ME + A0 < 922" por a comparison vertex (b) holds trivially.

For a computation vertex (a) holds trivially, so we need to show only that (b) holds. At
a computation vertex, either f,,,, = goh, foro € {+,—,*,/},or f,.,, = |g] is evaluated,
where, g,h € {0,1} U {f,, | v; is a computation vertex, j < i}. If o € {+,—,%,/},
then the induction step follows from Lemma 3.3. If f,,, = [g], then, by Lemma 3.4,
there is a rational expression @, such that Q = |g|. By Lemma 3.4, D;y; < D; < 2,
Mip1 < (2M;)PH1 < o(1+24%)(2'+1) < 224(x+1>2, and AG+D) < A0 (2M;)Pi42 < g2+
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The following corollary states that for M(n) = Q(2™), the lower bound is still 2(y/logn).

This corollary is used later to derive an Q(+/logn) lower bound for various functions.

Corollary 3.7 Let f be an M(n)-invariant function, such that M(n) = Q(2"°) for
some fized € > 0. Then any computation tree with OP = {+,—,*,/, ||}, that computes
f(z), for all n-bit integers, must have depth Q(\/Togn).

Using Corollary 3.7 we show lower bounds for the following problems.

n-1

1. Decide if |loga] is odd or even, for any n-bit integer a. (choose M(n) = 2"~1,

a; = A and az = 2).)

2. Decide if |logloga] is odd or even, for any n-bit integer a. (choose M(n) = 2M?,

a; = A and a3 =A%)

3. Decide if /a is an integer. (choose M(n) = 2"/2-1 a;, = A\? and a; = 2)%.)

Theorem 3.6 gives an 2(y/Iog n) lower bound on the depth of any decision tree with
OP = {+,—,%,/, -]}, that solves the above problems.

At first sight it seems that all of the above lower bounds are for decision problems,
and may be unrelated to the similar computation problems. In general this may be the
case, but our examples have the property that the decision problem is closely related to
the corresponding computational problem. For all the above decision problems, given a
solution to the corresponding computation problem, one can decide the decision problem

in O(1) operations.



Chapter 4

Lower bound for GCD

4.1 Overview

In this chapter we extend the proof technique developed in Chapter 3 to functions with
two variables and apply it to show a lower bound for computing the greatest common
divisor of two integers. Although this chapter does not depend on chapter 3, it is advisable

that the reader would read chapter 3 prior to reading this chapter.

Before explaining the lower bound technique for functions of two variables, we argue
why the technique for one variable does not extend immediately to two variables. The
most obvious reduction would be to concatenate the two inputs, each of size n bits, to
one input of size 2n bits, and define the function with respect to this single variable. In
order for the reduction to work, we need to argue that given this input, we first extract
the two n bit integers, and continue the computation using them. The problem is that
in order to extract the two integers one may be required to perform §2(logn) operations.
This Q(logn) additive factor would be more than the lower bound that we can prove for

the one variable function.
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4.2 Inputs structure

We start by defining the subsets of inputs that we will consider in the proof. Recall that
for the one variable case, the subsets of the input that we considered were all the integers
divisible by some integer. Unfortunately, the structure of the subsets of the inputs is

substantially more complex in the two variable case.

Definition 6 Letr, a; and az be non-negative integers, and oy a positive integer. Let
A = (61,8q,...,8,) and A = (A1, Aa, ..., A;) be r-dimensional vectors of positive integers.

For positive integers ug, u1, u,, and u,41, the pair (ug,u1) is < r,ay, az,a3, A, A >-

generated by the pair (u,,u,41) if there exist positive integers usz,us,...,ur—1 such that:
Uy — /\1(u1)6‘ -+ Uz, (41)
ur = Ag(u2)® + us,
wi = Aipr(wig)’ 4 i,
Ury = /\r(ur)ar + tri1,
U > (), (4.2)

Urp1l > O,

ur41 =1 (mod a3). (4.3)

U

In this case, (u,,ur41) is the < r,a1, @, a3, A, A >-generator of (uo,u;), and ug,us,

ooy Urgr 18 the <7 aq, oy, a3, A, A >-generating sequence for (ug,u;).
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The following lemma shows that when we add another variable, and thus adding
another element to A and A, we restrict the “allowable” inputs to be a subset of the

previous “allowable” inputs.

Lemma 4.2 (The Containment Property): Let A’ and A’ be (r+1)-dimensional
vectors of positive integers, obtained from r-dimensional vectors A and A by appending
positive integers § and ), respectively. Then, S(r+1, a1, az, az, A’,A') C S(r, a1, az, a3, A,
A), provided § > a; and A =0 (mod as).

Proof: Suppose that (ag,a;) € S(r + 1,03, a2,a3,A’,A’), and let a2 > az > ... > a, >
ary1 > Q4o be its generating sequence. By definition, a, = /\af+1 + ar42. Therefore,
ar =1 (mod a3), and a, > af},. In addition, a,41 > a7}y > az. Hence, (ao,a1) €

S(rvalaa2’(137A’A)' .

4.3 The proof technique

As in the proof technique for one variable, we start by showing how to handle a compar-
ison. We show that we can restrict the inputs to the comparison, so as to ensure that

the value of the comparison is fixed.

Lemma 4.3 Let P(z,y) and Q(z,y) be two rational expressions with integer coeffi-
cients, of degree at most D and mazimum coefficient at most M, defined over S(0, oy, az,
asz). There exists oy < o) < max{a;,2D+1}, and a; < o) < max{az,2(D+1)2M?+1},
such that for all (a,b) € S(0,a},a%, a3), the comparison between P(a,b) and Q(a,b) is
determined (i.e. either P(a,b) = Q(a,b), P(a,b) > Q(a,b), or P(a,b) < Q(a,b), for
(a,b) € 5(0,0f,a},a3)), and S(0,a},ay, a3) C S(0, a1, a2, as).

Proof: If P(z,y) = Q(=,y), for (z,y) € S(0,01,as,a3), then let of = a; and o} = ay,

and the lemma follows.
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1. There is a rational expression Q(x,y) with integer coefficients, and integers oy, of,

7w such that
1P(z.y)] = Q(z,y)

for each (z,y) € S(0,a},d, ras). Furthermore, max{c}, deg(Q), } < 4D*, and
max{Tas, oy, maz-coef(Q), } < 2(4D*M)?P°, or

2. There is a rational expression Q(y, z) with integer coefficients, and integers o, oy,

m, A and & such that
[P(z,y)] = Qy, )

where (y,z) is the generator of (z,y) € S(1,ay, ah, mas, {6}, {A}). Furthermore,
max{ca,, deg(Q), 6§} < 4D*, and max{ras, o}, maz-coef(Q), \} < 2(4D2M)?D°,

Proof: Let d, = deg,(P,), dy = deg,(P,), and let Lz%y' be the leading monomial of
Py(z,y). Without loss of generality we may assume that L > 0, i.e. sign(P;) = +1.

In order to simplify the proof, we would like to fix the inputs such that sign(P(z,y)) =
sign{P). By Lemma 2.3, there are two integers m;1(P;) and w2(P;), such that for each
(u,v) € S(0,71(P), m2(P1), 1), sign(P,(u,v)) = sign(Py). By a similar argument there
are m1(P;) and m3(P;) such that for each (u,v) € S(0, 71(P2), m2(P2), 1), sign(Pa(u,v))
= sign(P,) = +1. Since the input to the floor operation is non-negative, sign(P) =
+1. Recall that sign(P) = sign(P;)sign(P,); this implies that sign(P;) = +1. Let
é&; = max{a;,™1(P1), 1 (P2)} and &; = max{az,m2(P;), m2(P;)}. Note that for each
u,v) € 5(0,4,,as,1), both Pi(u,v) > 0 and Py(u,v) > 0. Since the coefficients of P

and P, are integers, by Lemma 2.3, a; < D+ 1and a; < M + 1.

In the remainder of the proof we consider the following five cases in the following

order:

1. P(z,y) = Paz,y).

2. Pl(x’y) = Pg(l',y)-
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and v is a non-negative integer such that 0 <y < L. Let 7 = L, a} = &, and o = a,.

Then, for each (u,v) € S(0, ], af, 7az),
Pi(u,v) mod L = P(1,1) mod L =4,

Since u = v = 1 mod L. By writing the mod operation explicitly, we have,

Py(u,v) = [———PI(Z’U)J L+

Therefore, for (z,y) € S(0, o}, o), mas),

= Q(l',y)

[Pl(u,v)J _ Py(u,v) —~
L L

Clearly, deg(Q) < D, maz-coeflQ) <2M,and n = L < M.

Case 4: The leading monomial of Py(z,y) is Lz%, i.e., no power of y appears in the
leading monomial of Pa(z,y). We use Corollary 2.6 to divide Pi(z,y) by Pi(z,y) as
polynomials in z. By Corollary 2.6 there are polynomials A(z,y) and R(z,y) with

integer coefficients such that

Az, y)Py(z,y) + R(:v,y)_

Pl(a:’y): Ld

Note that since Case 3 does not hold, deg,(P,) > 1. Furthermore, the following properties
hold: (i) d < D, (ii) deg,(R) < deg,(P;). (iii) maz-coef(R) < ((D + 2)M)P+2 (iv)
maz-coeflA) < (D + 2)M)P+, (v) deg,(R) < D, and deg,(R) < (D + 1)D. (vi)
deg,(A) < D, and deg,(A) < D.
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Consider input (u,v) € S(0,a},a}, mas). Then, both V(u,v) < Py(u,v) and 0 <
V(u,v). Since Py(u,v) > 0, this implies that,

V(u,v)  ~vP(u,v)+ R(u,v)

= 1.
Py(u,v) LiP,(u,v) <

0<

We conclude that for each (z,y) € S(0, o}, oy, 7as),

Play)] = 220 — Qe y),

Clearly, deg(Q) = deg(A) < D, and maz-coef(Q) < maz-coef{A) + M* < ((2 +
DYM)P+ 4 MP < 2((D + 2)M)P+2,

Subcase 4.2: v = 0. In this subcase we restrict the input, such that the value of

[%%%MJ is either 0 or —1, depending on sign(R). Define R(z,y) as follows:

u,v

R(z.y) R(z,y) if sign(R) > 0
z,y) =
LéPy(z,y) + R(z,y) if sign(R) = —1

Note that, :
R(z,y) _ | _B(=z,y)
{Ldp2(-73v y)J * p(R) B [LdP2($a y)
where p(R) = 0, if sign(R) > 0, and p(R) = —1, if sign(R) = —1. The leading
coefficients of the polynomials R(z,y) and L4P,(z,y) — R(z,y) are positive, assum-
ing that sign(R) # 0 (the case sign(R) = 0 is trivial). Recall that 7 = L%. Using
Lemma 2.3, let
a'l = max{dl,m(f?),ﬂ'l(LdPg - R)} S D(D -+ ].)

< (D+1)%
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We substitute = by Ay’ + z. Therefore, deg(Q) < D(D + 1) = D and maz-coef(Q)
< AP2D ) < 2D MP+ = M. By Using Case 4, we get a rational expression Q'(y, z), and
o}, ay and 7, such that for each (z,y) € S(1,q}, o}, 7as, {6}, {A}),

Ql(y7z) = l@(yvz)J = I.P(‘T,y)J

where (y,z) is the (unique) generator of (z,y). Now substitute z = ¢ — Ay’ in Q'(y, 2)
to get Q(z,y). We compute the following bounds for @,
max{deg(Q),a} < (D+1)

< (D(D+1)+1)?

and

max{maz-coef(Q), af, Taz} < 2 ((D + Q)M) Dt

)D2+2

IN

2 ((D(D +1) +2)(2P MP+)

2(4D*M)?P°.

IN

Since the relation between P, and P, belongs to one of the five cases, this concludes

the proof of this lemma. O

The following lemma combines the previous lemmas into a proof technique for the two
variable case. This lemma shows, that given a computation tree, one can find a subset,
S(r, a1, az, a3, A, A), such that all the inputs from this subset follow the same path. Once
we establish this property, we can derive a lower bound for any boolean function that,
for any such subset, has at least two elements which differ in their outcome. In the next

section we show that deciding if two integers are relatively prime is one such function.



4.3. THE PROOF TECHNIQUE 53

1. For each input (a,b) € S the computation follows the path from the root to viy1;

2. For each computation vertex v on the path from the root to the vertex v;41, ex-
cluding the vertex v;, 1, there is a pair of bivariate polynomials (F(z,y), G%(z,y))
with integer coefficients, such that for each input (a,b) € S, G*(u,v) # 0, and
val(v) = gii(%%, where (u,v) is the < r(i),agi),agi),agi),A(i),A(i) >-generator of
(a,b); and

3. Let &, = {Fj}(r,y),Gi}(:v,y) | 7 < i}. Define D; = max{deg(X;),4} and M; =
max{maz-coef(L;),4}. Then, r) <, max{agi),D,-} < 22" and max{agi),agi),Mi}

< 22"

We construct the set SU+Y) C 8 such that Property 2 is satisfied also for the vertex
vi41 and each input (a,b) € SU*+Y. We also select an outgoing edge of v;;; and prove
that for each input (a,b) € S(+1) the computation follows this edge. It is easy to check
that 70+ < {41, Therefore, in order to complete this proof, it is sufficient to show that

the following two inequalities hold:

(]) maX{aY-*-l), Di+1} < 224(i+1),

. . 4(i+1)
(i) max{alV ol*) M) <2

Let us first resolve the case when v;,; is a comparison vertex. Then by Lemma 4.3, we
can extend P. Furthermore, agﬂ'l) <2D;+1 < 22 and agi'“) <2MED;+1)2+1<

(i+1)
92" Clearly, inequalities (i) and (ii) hold in this case.

Next, consider the case when v;,; is a computation vertex. We divide the discussion
to two cases. The first case is when the operation is a rational operation, and the second

case is when the operation is floor.

Suppose vi41 is v o u, where v and u are previous computation vertices, and o €

{+,—,*,/}. By the induction hypothesis, val(v) = g—zﬁ(-’ﬁ% and val(p) = %, where
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(ag,ar) = ((1 + az)EtV (1 + a3)%), and (bo, by) = (1 + @3(1 + a3)*V* (1 + a3)°). In
order to see that (ag,a;) € S(0, a1, s, as), one can verify that (1) ap > ai*, (2) a1 =
(1+a3)® > s, and ap = a1 = 1 mod @3. (A similar argument holds for (bo, b1).) Clearly,

ged(ag, a1) = (1 + @3)® # 1, and ged(bg, by) = 1.

In order complete this lemma, it is sufficient to prove each of the numbers ag, a1, by,
and by is less than 2%(*1) Since e is the least exponent such that (1 + a3)® > as,
then (1 + a3)® < 2%. The desired upper bounds are an immediate consequence of this

observation. a

Intuitively, the previous lemma shows, that if we terminate with a large subset S(-),

there is still a pair of inputs, one of which is misclassified.

Theorem 4.8 Any decision tree with OP = {+,—,*,/,|-]} and constants {0,1},
that decides if a and b are relatively prime, for all integers 2® > a > b > 0, must have
depth Q(loglogn).

Proof: Without lost of generality we may assume that the leaves are labeled by the
constants zero and one, and that the two first vertices are input vertices. (This can
increase the depth of the tree by at most four.) Suppose that we are given a decision
tree T of depth h < 1loglog(n!/%), with OP = {+,—,%,/,[-]}, that decides if a and
b are relatively prime, for all integers 2 > a > b > 0. By Lemma 4.6 we have the
following: (i) there is a path P from the root of T to a leaf v, and a set of inputs
S = S(r,a1,02,a3,A,A)N {(a,b) : 0 < a,b < 2"}, such that for each input (a,b) € S,
the computation follows the path P; (ii) The leaf v is labeled by a constant (zero or
1/5

' 4h
one). (iii) a1 < 22" < nl/5, ay, a3z < 2% < 22'° maz-coef( 2429 < 97'° and
H + ) Gy(x,y)

deg(g‘f(i—"%) < n'/5, Our goal is to arrive at a contradiction using Lemma 4.7.

Towards this end, let ¢t = n'/® — 1. We claim that each pair (u,v) € S(0, a1, az, a3)N
{(u,v) + 1 < u,v < 2%(+1)} generates a pair (a,b) € S = S(T,Ql,QQ,a;;,A,A) =
S(r, a1, az, a3, A,A)N {(a,d) : 0 < u,v < 2"}. Recall that the first two vertices of the



Chapter 5

Approximation of Real Functions

5.1 Motivation

It is not hard to show that the square root function cannot be computed using ratio-
nal operations only. For example v/2 is not a rational number; therefore it cannot be
represented by rational operations on {0,1,2}. The floor operation would not resolve
this problem, since its output is always an integer. Still, we would like to argue about

computations that involve such functions.

One direction of research may be to assume that the square root function is one of our
basic operations in the computation tree, and consider the complexity of computing other
functions, given it as a basic operation. Another direction is to relax the requirement on
the output of the computation tree. Instead of requiring it to be equal to the computed

function, we can require it to “approximate” the computed function.

The first approach, where the square root is consider as a basic operation, was in-
vestigated in [SY76, Pip81, Ja’81]. The main complexity measure that they considered

was the number of square root operations that have to be performed. It was shown, for
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The norm L, is defined as,

£l = sup | (=)

It is well known that the norm of a function || f||x is monotonically non-decreasing in the
parameter k, i.e. ||fll1 < |Ifllz <+ <||fllee. This implies that showing a lower bound

for || f]|1, implies a lower bound for any Ly, including L.

We still need to make a connection between the norm of a function and the quality
of an approximation. Given a certain point z, the difference between g(z) and k(z) is
a measure of how well g approximates A at that point. This suggests that the norm of
g — h would be a good indicator of how well ¢ approximates h. More formally, we define

a function error(g, k) as follows,

erroralg, ) = llg =l = f [ lox) ~ hio)lde

The function errory(g,h) is how well ¢ approximates h in norm L. A function g(z)

approximates a function h(z), within €, in norm Ly, if error(g, h)r < €.

The more intuitive norms are probably L., and L; (although norm L, plays an im-
portant role in many applications). The norm L., is intuitively the worst case, for
approximation it would mean the worst case approximation, over any input. An € ap-
proximation in norm L, implies that for any input in A, the difference between the two
functions is at most €. The other norm is L;, which intuitively captures the average case.
In the case of approximation one can view it as the expected error for a randomly chosen

input.

In this chapter we show a technique to derive lower bounds for approximation in
norm L;. Clearly any lower bound in norm L, implies a lower bound in any other norm,

including L.
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path, P, in the computation tree. Note that this would not be true for an integer input,
since, for example, branching according to whether the input is odd or even, divides the
integers to two sets, such that neither set has two successive integers. The other point is
that we need I to be “large”, otherwise we will not be able to establish a lower bound at
the end. For example, if [ < ¢, then the square root function can be approximated by a

constant over such an interval.

The proof that there exists a path P is done by constructing it inductively. The
inductive claim uses a prefix P; of P, that includes the first 7 vertices, and a subinterval
[a;, a; + [;], such that the value of each vertex in P;, for inputs from [a;, a; + /], can be

expressed as a rational expression, and any input from {a;, a; + {;] follows P;.

In the inductive step we show that P; can be extended to P;;; and maintain the

inductive claim. Here we have two cases, depending on the type of last vertex of P;.

If the last vertex in P; is a comparison vertex, we need to show how to choose one
of its sons as the next vertex v;;;. In this case we need to show that there is a “large”

subinterval [a;41, @i+1 + l41], where all the inputs continue to vit;.

The other case is when the next vertex on P is a computation vertex. If the computa-
tion vertex has a rational operation, then the inductive claim is maintained trivially. The
interesting case is when the vertex computes the floor function. Such a vertex receives as
an argument the value of some previous vertex on P;, which by the induction hypothesis
can be expressed as a rational expression. Using the above argument about |r(z)], there
is a “large” subinterval [ai41, @41 + li+1], in which the value of this vertex is constant.
We continue by setting the value of the vertex to that constant, and restrict the inputs

to the subinterval [a;41, i1 + lig1].

To summarize, the construction so far shows that for any computation tree T', defined
over inputs z € [1,2], there is a subinterval [a,a + (], and a rational expression r(z), such
that T(z) = r(z) for any « € [a,a + {]. This by itself does not imply any lower bound
but reduces the problem of proving the lower bound for T', over [1,2], to the problem of
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lemma shows that the “penalty” of restricting the rational function to a subinterval in

which it has no roots or poles is rather limited.

Lemma 5.2 Given an interval [a,a + ] and a rational function r(z) of degree d,
there exists a subinterval [, a + ;%} C [a,a + [] that does not contain any poles or zeros

of r(z), and furthermore, r(z) is monotone in this subinterval.

Proof: Let r(z) = ﬂ(ﬂ where p(z) and ¢(x) are polynomial of degree at most d. Consider

the 6d + 1 subintervals [a,a + 6d+1] [a + 6d1+17 Ja+ 24 o +1]. In each

6:1+l]’ te 6d+1’

subinterval in which r(z) has a pole, the polynomial ¢(z) has a zero. In the worst case,
each zero of g(z) can be at the boundary of two adjacent subintervals. Since ¢(z) has
at most d zeros, the number of subintervals that contain a pole of r(z) is at most 2d.
Similarly, the number of intervals that contain a zero of r(z) (which is a zero of p(z)) is
bounded by 2d. Therefore, there are &k > 2d + 1 intervals that do not contain any pole

or zero of r{z).

Now, consider these remaining & intervals. Each interval where r(z) is not monotone
contains either a local maxima or a local minima in its interior. At each local maxima
or local minima, the derivative of '(z) has a zero. Since the degree of r’(z) is at most
2d, it can have at most 2d zeros. (Notice that the poles of r’(z) are same as the poles of
r(z).) Hence, there exist k — 2d > 1 subintervals that do not contain any poles or zeros

of r(z), and furthermore, r(z) is monotone in each of these subintervals. a

The following lemma is a classical result, known as the Markoff inequality. It relates

the value of the derivative of a polynomial to the polynomial value and degree.

Lemma 5.3 (Markoff [Che66, page 91]) Let p(x) be a polynomial of degree d, and
p'(x) the derivative of p(z) with respect to x. Then

max {[p()]} < ¢ max (Ip(z)}.
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on polynomials, we can also bound the value of a rational expressions. Using the above

lemma, we can derive the following lower bound for a polynomial.

Lemma 5.6 Given an interval [a,a + ] and a polynomial p(z) of degree d > 1 with
integer coefficients, there exists a subinterval [o, o + 8—55] C la,a+ 1] such that (i) p(z) is

monotone in this subinterval, and (ii) |p(z)| > (1) for all z € [0, + 53]

Proof: Let b be the leading coeflicient of p. Since d > 1 then b # 0, furthermore, since
b is an integer, this implies that |b] > 1. Assume that K is the largest value of |p(z)| in
the interval [a,a + {]. First, we argue that there is a subinterval of length é§ = —8-;—3 such
that p(z) is monotone and is greater than K/2, throughout this subinterval. Then, we

show that K/2 > (1/4)%.

Let yi = a + g5 for ¢ = 0,1,...,84%. Consider the 84° subintervals [y;_1,y:], for
i = 1,2,...,8d% Choose zp € [a,a + [] such that |p(zo)] = K. Choose j such that
To € [¥j,Y;+1]. Assume that ; < 4d°, and consider d consecutive subintervals [y;+i, Y;+i+1)
for i =0,1,...,d — 1. (The case j > 4d° is similar.) Since the polynomial p(z) has a
total of at most d — 1 local maxima and local minima, p(z) is monotone in one of these

d subintervals.

Next, we show that |p(z)] > K/2 for all z € [yj,yj+4]. For all real u such that
zo+ u € [a,a + 1], Lemma 5.4 implies that |p(zo + u)| > [p(z0)]| — u#K. Therefore, for
all = € [y;,yj4dl, Ip(2)| 2 K — 555K = K(1 - 1) > 1K,

It remains to show now that K/2 is larger than (4)¢. In order to prove this assertion,
transform the polynomial p(z) into a polynomial ¢(z) with leading coefficient one, in the

interval [—1,1] by setting

l+2a+l

), where b is the leading coeflicient of p(z).
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exists a subinterval [, + 5], such that |r(z)| > (2M)~1(3)™¢ for all z € [a,a + =),

and r(z) is monotone in this subinterval.

The following lemma is the main technique that we use to bound the value of the
floor function. This lemma guarantees that there is a “large” subinterval in which the
value of the floor function is constant. This implies that if we restrict our attention only

to this subinterval, the value of the floor operation is constant.

Lemma 5.9 Given an interval [a,a + I}, where 1 < a < 2 and 0 < 1 £ 2 —aq,
and a rational function r(z) of degree d with integer coefficients and maz-coef(r) < M;
there exists o such that |r(z)| equals a fived integer J for all z € [o, 0 + M7 (pul)?+!]
C [a,a + 1], where u < 1 is a fized constant that can be chosen to be 0.02. Moreover,
|J] < M(ul)~%.

Proof: By Lemma 5.7, there exists a subinterval [, 8+ 3—61(1—4] in which r(z) is monotone,
and [r(z)| < 2M(8)? for all = € [3, 8+ z2ix]. This implies that [r(z)] takes on at most
4M(?)d distinct integer values in this subinterval. By the pigeon-hole principle, there is
a subinterval of length at least m where r(z) is a constant. Let J equal the value

of r(z) in that interval. O

So far we were interested in the behavior of rational functions and the floor function.
The next lemma shows a property of the s* root function. This lemma establishes a
connection between the degree of a rational expression, its maximum coefficient, and how

well it approximates the s* root.

We should note that one can bound the approximation as a function of the degree,
independent of the size of the maximum coefficient. The techniques used to achieve such

bounds are more involved, and are not needed in our case. (See, for example, [Bra86).)

Lemma 5.10 For an integer s > 2, given an interval [a,a+!] C [1,2] wherel < a < 2

and 0 <1 <2 —a, and a rational function r(z) of degree d with integer coefficients and
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2. For each computation vertex v on the path P, there is a rational function r,(z),
with integer coefficients, such that for any input « € [a,a + {], the value computed

at vertex v equals r,(a).

Finally, we conclude the desired lower bound on the length of P (and hence, a lower
bound on the depth of T') by applying the result of Lemma 5.10 to rational functions
that approximate /z over the interval [a,a + [].

Denote the vertices on the path P from the root of T' to its leaf v; by vy,ve,..., v,
in that order, where v; is the root of the tree T" and v; is a child of v;_;. We define the
path P and the subinterval inductively, starting with the empty path and the interval
[1,2]. As part of the induction hypothesis, we maintain three properties of the path and

the interval under consideration. These properties are described below.

Suppose that (a) we have selected a prefix of P, which starts at v, and ends at a

vertex viy1, and (b) defined a subinterval [a;, ¢; + [;] with the following properties:

1. For each input z € [a;,a; + [;] the computation follows the path from the root to
Vit1;
2. For each computation vertex v; on the path from the root to the vertex viii,

excluding the vertex vi41, there is a rational function r;(z), with integer coefficients,

such that val(v;) = rj(z), for any input z € [a;, a; + ],

3. Let X; = {rj(z)|v; is a computation vertex, j < i}. Define D; = deg(Z;) + 1 and
M; = maz-coef(¥;). Then, D; < 2', M; < #_22,2, and [; > ;["2{2, where p is the

constant in the statement of Lemma 3.9.

The basis of the induction is : = 0, and the path is v;, which is the root. All the

claims hold trivially in this case.

We show how to define [a;;1, @iy1 + li41] and how to choose the vertex v;y, such that

Properties 1-3 will be satisfied by the interval [a;41,a;41 + l;41] and the prefix of P that
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bounded by 2(D; + 1)M2. Therefore, Dit1 < 2D;, My, < 2(D; + 1)M?. For each

T € [@iy1, @ip1 + liy1] and ri41(z), Properties 1-3 are satisfied.

Suppose that f,, , = [fUJJ = lg(z)], for some 1 < j < i. By our hypothesis,
deg(g) < D; and maz-coef{g) < M;. By Lemma 5.9, there exists an integer J, and
an interval [a;q1,@iy1 + liy1], such that (i) for any z € [ai41,ai41 + liva], L9(2)] = J,
] < Mi(ule) ™D < p 27 pm 202 < P and () Gy 2 g (ul)PH 2 p

L0224 > 22040% Define () = J. Then, Dipy = Di and Mip; = max{M;, J},

and properties 1-3 are satisfied.

Thus, we have proved the existence of a path P and an interval [a,a + {] such that
properties 1-3 are satisfied for all vertices on P. We have also established that there
is a rational function r(z) such that for all @ € [a,a + [] the value produced by T (at
the end of the path P) on input « is given by r(a). Furthermore, that deg(r) < 2P,
M = maz-coef(r) < p‘22h2, and [ > uzzhz.

By Lemma 5.10 there exists a subinterval [a,a+ '], I' = m = Q(#), such
that for any v in the subinterval, [v/* — r(v)| > (M (sd 4 2))~*(& )%+ = 6, where c is

a constant. This implies that we can lower bound error, (T, /) as follows,

errory(T,~/z) > 8V

2
The value of § is Q(M~*($)°(9)), and we can show § > " where c, is a constant

that depends only on s. Since T approximates /z, in L;, within ¢, then

25h2
3

Therefore, h = Q(,/loglog ). a

e > errory (T,v/z) > 6l' > ¢



Chapter 6

Upper Bounds

In this chapter we show how the power of the floor function can be used to accelerate
computations. Clearly the floor function can help in computing the floor function and
the mod function, but the interesting fact is that it can accelerate computations which

we normally do not associate with the floor function.

One issue of interest is the constants that the computation tree uses. A uniform com-
putation tree has as constants only {0,1}, and every other constant has to be generated
explicitly. On the other hand a non-uniform computation tree may have arbitrary initial

constants.

We show that many functions can be computed by non-uniform computation trees
of depth O(1). This justifies the reason that the lower bounds proved in the previous
chapters are for the uniform computation trees. For uniform computation trees we show
upper bounds that, in some cases, match the lower bound that we proved in the previous

chapters.

We start, in Section 6.1, by showing that any polynomial has a non-uniform computa-

tion tree of depth O(1) that evaluates it, and this constant does not depend on the degree

73
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First we show how to construct a constant that encodes all the coeflicients of a
polynomial P(y). The constant has simply all the coefficients in order, each padded
to m bits, where m will be chosen latter. More formally, let P(y) = %, piy’, where
the coeflicients, p;, are integers. Define cy = P2m) = ?:o p;2™. For m, such that
2™ > maz-coef( P), it is easy to verify that the m-bit integer obtained by considering bit

positions i to (¢ + 1)m — 1 of ¢ is equal to p;.

The polynomial evaluation algorithm:

The algorithm is constructed to evaluate the inputs of a specific polynomial P in constant
number of operations. The algorithm receives as an input an n-bit integer a. The
algorithm output is the value of P(a). The polynomial evaluation algorithm consists of
two steps.

2md

—2-Mg

Step 1. Compute b = [1 J Letting v(a) = Y%, 2™ we show that b = y(a).

For |z| < 1, the following identity holds, 7= = 3°%2, z*. Recall that a < 2". We will chose

m such that 2" < 2™, and therefore 2-™a < 1. This implies that == = 324(27™a)’,
and therefore
2md - mdio-—m \i = m(d—s3) i
m—_m—a——‘ZQ (2 a)ZZQ( )a.

=0 =0
For m, such that a**!/2™ < 1/2, the sum Y"2,., 2™(@=9q is less than one. This, in

combination with the fact that a is an integer, implies that

o0 d o
b= [Z 2m(d—:)atJ _ Z2m(d_-')ai+ Z gm(d=i)gi| ~(a).
1=0 1=0 i=d+1

The constants used in this step are 2™¢ and 2™, and the requirement on m is that

m>n(d+1)+1.

Step 2. Extract the m-bit integer obtained by considering bit positions md to m(d+1)—1
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6.2 Approximations

The non-uniform case

We show how to use the construction in the previous section, to approximate Vb for any
b € [1,2] in constant time. The existence of such a program does not contradict the
lower bounds of Chapter 5, because it assumes that certain large constants are available
for “free”. In other words, we show a O(1) non-uniform upper bound on the depth of

computation trees for approximating 1/z.

For b € [1,2], let @ = |4b/€?]|. It is not difficult to see that if |\/a — «| < 1 then

|v/b — ae/2| < €. Below, we present an O(1) step algorithm for computing a.

Our algorithm is based on Newton iteration for computing square roots. Recall that

Newton iteration for computing the square root of a is given by

a+ z? . . .
Tip1 = 5 -, where zg is the starting point.
1

Define é; to be the relative error of z;, i.e. (1 + 6;)v/a = z;. It is easy to verify that

& 8o .5
214 6_4) = (2) , assuming that 6o <

Let zo = |3/¢], this implies that \/a < zo < 2/a. Since 0 < § < 1/2, this implies that
8§ <2-47%. Qur aim is to reach an index ¢, such that |\/a — z;| < 1. This occurs when
|6:1/al < 1, or equivalently |6;] < 71; For t = O(logloga) = O(loglog(1/¢)), the value
of &, satisfies, 0 < é, < 1/y/a. Thus, in order to compute «, it is sufficient to perform ¢

Newton iterations, starting at zq.

Notice that upon starting the Newton iterations at z,, the value of z, is obtained

by evaluating the rational function R;(y) = %(% at y = a, where Pi(y) = y + z2 and
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The uniform case

The general idea in this case is similar to the idea in the non-uniform case. Using the same

logic as before, for any b € [1,2] and a = [4b/€?], if |v/a — a| < 1 then |Vb — ae/2| < e.

The main difference between the construction in the uniform case and the non-uniform
case is the following. In the uniform case we will consider the approximation, z;, com-
puted at the i*» Newton iteration, as a function of the starting point o, while assuming
that a is constant. Recall that for the non-uniform case the roles were reversed; r; was

viewed as a function of a, while zq was fixed.

For a starting point zo, the value of the i** approximation, z;, is given by evaluating
a rational function H;(z) = g—:%% at the point ¢ = z¢, where Fy(z) = z? + a, Gi(z) = 2a;
and for i > 1, Fi(z) = aG?_+ F%,, Gi(z) = 2F;_1(2)Gi_1(z). (Note that the coefficients

of F; and G; are integers.)

The above identities can be used to define a straight line program, of length O(¢) that
computes H;. The rational expression H; performs ¢t Newton iteration for a certain input
a. This implies that H,(H(xo)) can be viewed as first performing ¢ iterations, starting
at zo and ending at z; = H(zo), and then performing ¢ more iterations, starting at z;

and ending at zy, = H,(z,); and therefore, H,(H;(z)) = Ho(z).

For the sake of simplicity we assume that ¢ is a power of two!. Let d; = deg(H;),
M, = maz-coef(H,), and 2" = 5—82—. Initially, maz-coef{ F1), maz-coef(G1) < E% = My. From
the definition of F; and G; it is clear that deg(F}),deg(G;) < 2. One can verify that
maz-coef( F;), maz-coef(G;) < (Mo+1)*". Therefore, d; = 2! = d and M, < (Mp+1)%" <
(2 =M.

We choose m, such that 2™ = 2(18)?*" > 2M227d. Clearly 2™ and 2™¢ can be

computed in O(t) steps. Since H, has a straight line program of length O(t), and we

!For an arbitrary € we can use the powers of two subroutine, describe in the next section, to find an
¢’ < ¢ which is a power of two. The running time of this procedure would be O(,/loglog -i-)
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input: b, e
computation:
Compute 2™, 2¢™ and cfp, = Hy(2™).

- _ |4
£ = | 8]

FOR ¢ = 1tok DO
Z; = |Hy(zi_1)]/* invoke the polynomial evaluation procedure */
£

I
8
~

i
M’Q

a
B
output 3.

Figure 6-2: Approximating the square root uniformly

would be ae/2. To conclude we proved the following theorem.

Theorem 6.3 There exists a computation tree T'(e, z), whose depth is O(,/loglogt),
such that for any b € [1,2],
IT(e,b) — Vb < €

Note that the algorithm receives two inputs, € and b, and outputs 7'(e, b).

Approximating the square root of an integer is closely related to deciding if an integer
is a perfect square (i.e. whether an integer has an integral square root). We could decide
if an n bit integer is a perfect square by first approximating its square root within one,
and then checking the integers within one of that value. Note that in the approximation
procedure above, a approximates \/a within one, where a is an integer. The problem
in extending the result to deciding perfect squares is that we need to compute a “good”
initial point, (i.e. such that 0 < 6, < 1/2) and a bound on M,. For the approximation
case, we chose the value of a such that it would be easy to compute a “good” initial
point for it. The following lemma states that given a “good” initial point, and a constant

2! > a, we can decide the perfect square problem in O(y/Iog log a).

Lemma 6.4 There exists a computation tree T'(z, zo,2'), whose depth is O(\/loglog ),
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computing b; = a* mod (a — bi—1), we can raise b to the ¢k power in O(7) steps, as long

as b** < g — bUi—1)k,

For a given an integer a, we show how to compute 92" for all ¢, such that 92" < a.
The computation is done in ¢ steps. Starting with a; = (2a)? and & = 2% we compute:
a; = a!_; and b; = a; mod (2a — b;—;). (Recall that the floor and the mod operations are
computationally equivalent, i.e. mod can be computed in O(1) operations using the floor

operation.)

We prove the correctness of the computation by induction. It is easy to see that
a; = (2a)*"7". Recall that z — y divides z*¥ — y*, for any positive integer k, therefore

2a — b;_; divides (Qa)’c — bf_l, for k = 2%-1, Thus,
b,’ = a,-mod (2a - b,‘_l)
= (2007 — ((20)™"7 = b%7") mod (2a — b;_y)

b2 mod (2a — bi_y).

1

Observe that b2°]" = 22° We get that if 827" < 2a — b;_; then b; = 92" By the
i—1)2 . i i
induction hypothesis b;_; = 22" g Thus, if 22 i < a, then 22 ’ < 2a — b;_y. Clearly

the computation is done in O(7) steps.

Seemingly, the above procedure gives us a way to compute 22 for i = 1,...,
[ﬂ@o_g_aJ. However, note that lWJ is not known in advance. Thus, we are left
with the following problem: How can we identify when to stop? That is, how to find the
first i for which 22° > a and thus b; # 92 We cannot spend the time testing whether

2:—1 . . . . . .
b; = b?_l by successive squaring, for each ¢, since it requires too many steps.

The solution is to compute another variable d;, such that d; = 92 Jfore=1,...,1+1,
where [ is the greatest integer such that b = 92 This implies that d; = b; for : <[ and

di41 # bip1. This allows us to detect the termination by simply comparing b; to d; and
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Applications

We can now show a few applications of the powers of two subroutine. The first application

is computing {\/|og log aJ. Let ¢ be the last iteration in which b; = d;. Then,

t—1 lf bt>a
[\/log log aj =

t 1fbt§a

Thus, we can compute b/[og log aJ in O(y/Togn) time, for all n-bit integers.

We extend the result of computing {\/log log zJ and show how to compute [loglog z].
2

Using the powers of two procedure we can compute in O(t) steps, the number 22 | such
t2 2 . ] . oy .

that 22 < a < 22*"". The idea is that in O(t) additional steps, we can find a j such

that 2% < a < 29",

This is done by simply squaring 92" successively, until the first time it is larger than
a. Note that since (t + 1) — 2 = 2t — 1, at most 2t — 1 successive squaring will be
performed. We conclude that given an n-bit input a we can compute j = |logloga]
in O(y/lTogloga) = O(y/logn) time. In Chapter 3 we proved an Q(/Togn) time lower
bound for the respective decision problem. Therefore we have proved the following tight

bounds.

Theorem 6.5 There is a decision tree with OP = {+,—,%,/,|']} and constants
{0,1} that computes |logloga], for all n-bit integers a, and has depth O(\/logn). Fur-
thermore, any decision tree for this problem has depth Q(/logn).

We can also use the powers of two subroutine to show that for infinitely many n, there
is a decision tree, of depth O(\/logn), that decides if an n-bit integer is a perfect square.
In this case we restrict the integer input to be from the interval [27~!,2"). Suppose that
n = 28+l In O(y/Iogn) time we can compute 92 — 2™/2 and 92(+V" 2", starting

from the constants zero and one, and the input. Using Lemma 6.4, with the initial point



Chapter 7

Conclusions

In this Chapter we give a brief overview of the results that were presented in this thesis.

We also mention a few open problems and possible directions for future research.

In Chapter 3 we developed a lower bound technique for decision tree with operations
{+,—,%,/,1]}, This lower bound technique could be used to prove Q(y/logn) lower
bounds for problems, such as deciding perfect squares, computing |{loglogz], and other

problems.

As a historical remark, it is interesting that when the lower bounds were proven, there
was a gap between the lower bound of 2(y/logn) and the upper bounds of O(logn). At
that time it was believed that the gap could be closed by improving the lower bounds.
Only later, when considering closely the lower bound argument to see where it could be
tightened, did the technique of achieving the upper bound emerge. This, and the other
upper bounds in Chapter 6, show that the floor operation can add significant power to

the computation.

In Chapter 4 we have proved an 2(log log n) lower bound on the depth of any compu-

tation tree with operations from the set {4, —,*,/, |-]}, that decides if two n-bit integers
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are relatively prime. An upper bound for this problem can be obtained from the parallel
algorithms of [CG90, KMR84]. Analyzing those algorithms, with respect to the number

of arithmetic operations, reveals an upper bound of O(n/logn) for computing the gcd.

Notice that the ged can be written as an Integer Linear Program. Therefore, one
of the consequences of our results is that there is no algorithm for the Integer Linear
Programming problem, using operations only from the set {+, —, *, /, |-] }, whose running
time depends only on the number of variables and the number of constraints, and not on

the size of the coefficients.

In Chapter 5 we prove lower bounds for approximating the s* root of a real number.
We show that approximating the s™ root, such that the average error is less than e,
requires at least (y/loglog %) operations. On the other hand, in Chapter 6, we prove
an O(y/loglog ) upper bound, when the computation receives both the number to ap-
proximate and the accuracy parameter e. This procedure approximates within € in the
worst case (i.e. for each input the approximated value is within € of the correct value).
Bashouty [Bas90b] has shown an Q(loglog 1) lower bound for worst case approximation.
It still remains as an open problem the complexity of the average approximation for the

st* root.

We know that if the intermediate results in the computation can be exponential in the
size of the input then any PSPACE computation can be done in a polynomial number of
operations (see [BMS81]). On the other hand, if the intermediate results are restricted
to be polynomial in the size of the inputs, then any computation with a polynomial
number of operations is in polynomial time. One very interesting direction of research
would be to show tradeoffs between the size of the intermediate results and the number

of operations required.
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input: a
initialization: b, = 2%, a; = (2a)?, ¢; = (2¢)4, d; = 2%, and ¢ = 1.
computation:
WHILE b; =d; DO
t=1+1;
a; = al_j; b; = a; mod (2a — b;_)
Cc; = C}_l; d; = ¢; mod (a,' — di—l)
END
output d; /¥ di = 92* */

Figure 6-3: Computing powers of two

terminating when they are not equal. It remains to show how to construct d;.

In addition to the computation of a; and b;, we compute c; and d;, where: ¢; = (2a)*,
di = 2%, ¢; = c}8, and d; = ¢; mod (a; — d;_;). It is easy to see that ¢; = (2a)2"_2. Notice

i— i—1)2 . . . .
that ¢; = 032 ". Suppose that b;_; = d;_, = 92(=1 , and consider the :'* iteration:

21-1

d; =d¥, mod (a; — di_1).

This implies that if d?*," < a; — di—, then d; = 2" . Clearly, if "7’ < 2a — b;_; and
bi_y = di_1, then d¥" < a; — di_;. We conclude that for all i such that 2 < 2a — b;_y,
b =d; = 92 Consider the least i such that 22" > 2a — b;_;. Clearly, for this 7, b; # 92
However, we claim that d; is still equal 92 This is true since 227 < 2a — b;_y,

implying that

i2

i—1)2  52i— 2i-1 i-1 2i—
22" = (22T ¢ (20— b)) < (20)7T 0T = a4 — diy.
Thus, the first time b; # d;, we stop the computation. Let ¢ be the last index such
that b, = d;, this guarantees that b, = 22'2, and a < 22(t+1)2 (Figure 6-3 gives a full

description of our algorithm for computing powers.)
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such that if \/z < o < %\/a_: and 2! > z, then

T (2, 20,2') — V| < 1.

Proof: Let n = [, d; = deg(H;) and M; = maz-coef( H;). We show how to compute
2™ > 2M,2%4 in O(t) steps. Once we show this, the rest of the algorithm and the proof
is identical to the approximation case. Recall that M; < (Mo + 1)2”. Since z < 2,
then My < 2!, which implies that M; < (2’“)22‘ = M. Since d; = 2! and 2" < 2,
we can compute 2™ = 2(2/)¥" > 20224 in O(t) steps. For t = O(y/Ioglogz), the
above computation time is O(y/loglog z). Therefore the total running time of the entire

procedure is O(y/loglog z). a

Later we show how to use the above lemma to prove that for infinitely many n, for

any n bit integer, we can compute a “good” initial point in O(y/logn) steps.

6.3 Computing powers of two

i2 . " .
Suppose that we want to compute 22 | for some :. Intuitively, it seems that the fastest
way to do it is by successive squaring. This gives an O(z?) step procedure for computing
this number. Surprisingly, using the floor operation, and given a large enough number,

we can compute this power in O(z) steps.

The main idea is based on the following observation. Let a, b and k be positive

integers, and a > b. Then,
a* mod (a — b) = ba*"! mod (a — b) = b* mod (a — b).

If 5% < a — b then the value of the above computation is simply 4*. That suggests that

once we raised a to the k™ power, we can raise b to the k™ power in O(1) operations. By
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already computed 2™, we can compute ¢, = H,(2™) in O(t) steps. To summarize, so
far we have computed 2™, 2™¢ and cf;, in O(t) steps. Thus, we have computed all the
constants necessary for Theorem 6.1, and therefore an evaluation of H; can be performed

in O(1) operations.

The computation evaluates H, k times; the input to the i** evaluation of H;, zi, is
the output of the (i-1)* computation, i.e. z; = Hy(x;—,). Each evaluation of H; costs
only O(1), therefore the length of the program is O(t + k), and it performs tk Newton
iterations. This implies that it can perform O(loglog 1) iterations in O(\/log—log_%) steps
(by choosing t = k).

However, we are still left with a slight implementation problem. Notice that z;, for
¢ > 0, may be non-integer, while the polynomial evaluation procedure is valid only if z;
is an integer. (Another condition is that x; < 2%, but this is always true.) To fix this
problem, suppose that in each iteration instead of computing z;, we compute the smallest

integer greater than z;. Formally, define the modified iteration as follows.

s Fi(z:)
We claim that this does not change the convergence rate by more than a constant factor.

Let & = (1 4 &;)v/a. It can be verified that,

O

P+ o
7

t

l$i+1| < 2(

o |

As long as 6; > 72;, this implies that 2(5'—;l)2' > ﬁ, and therefore,

~

. i1

<42 < 8

)

On the other hand, if 0 < §; < then v/a < %; < v/a + 2. This implies that

2
\/a—’
Iva — (#; — 1)] € 1. Therefore, we can set a = #; — 1, and the approximation to v/
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input: b,e
computation:
R
a = Ry(a)/* invoke the polynomial evaluation procedure */
B = o
=32
output 3.

Figure 6-1: Approximating the square root non-uniformly

@1(y) = 2z¢. In general, z; is obtained by evaluating a rational function

Pi_1(y)
P(y) v+ (@=2%)"  yQi.(y)+ PL(y)

Ri(y) - Qi(y) - 25«":1}(3!//)! - 2P,~..1(y)Qi—'1(y)

at the point y = a. This implies that Pi(y) = yQZ%_,(y) + P2,(y) and Q;(y) = 2P,_1(y)
QRi-1(y), for ¢ > 1. (Note that the coeflicients of P; and Q; are integers.) We are interested
in computing a = Ri(a) = P;(a)/Q:(a). Note that given zo and ¢ the polynomials P; and
@): are defined. Furthermore, zo depends only on €, and not on a. Since, the coefficients
of P; and Q; are integers, by Theorem 6.1, we can compute P;(a) and Q;(a) in constant

time, for any n-bit integer a. Hence, we can compute o = R;(a) in constant time.

Let 8 = a¢/2. Since a can be computed in O(1) steps, B can be computed in O(1)
steps. As we discussed before, |vb — 3| < ¢, therefore we have shown the following

theorem.

Theorem 6.2 There exists a constant C such that, for any 0 < € < 1 there is a

straight line program L. of length C, such that for any b € [1,2],

[Vb— L (b)] < e
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of v(a)cy'. More formally, compute
8= h(a)c;”‘l_mdj - [’y(a)c;"Q_md"mJ 2™,

We claim that P(a) = 3. Consider the product y(a)c;’, then

2,

d
ey = Y prer2r e

=0 ;=0
min{d,d+k}

d
= S CS pahne

k=-—d i=max{0,k}

d
— Z ngm(k-f-d)
k=-d

Note that P(a) = Y% ,pia' = go. For m, such that 2™ > max;{g}, the m-bit integer
obtained by considering bit positions md to m(d + 1) — 1 of vy(a)c]* is go = B. This
concludes the description of the polynomial evaluation algorithm. Below we bound the

value of m that meets the above requirements.

Let, maz-coef(P) = M. Since a < 2", then the value of a* is bounded by 2™. Thus,
each gi is bounded by dM2™, In step 1 we required that m > n(d + 1) + 1, therefore it
is sufficient to chose m > 2nd + [log M| + 1. (Note that this implies that the size of the

constants used are polynomial in d, n and log M.)

Recall that a straight line program is a computation tree without any comparison

nodes. Thus, we have shown the following theorem.

Theorem 6.1 There exists a fized constant C such that, for any polynomial P with
integer coefficients, there is a straight line program L of length C, that computes P(z)
for all n-bit positive integers. If deg(P) = d and maz-coef(P) = M, then the constants
used in L are 2™, 2™, and e, for any m > 2nd + [log M| + 1.
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of the polynomial. In section 6.2 we apply the techniques developed for evaluation of
polynomials to the problem of approximation of square roots. For the non-uniform case,
we show a straight line program that approximates the square root in O(1) steps. For the
uniform case, we show a computation tree T that, on input € > 0 and z € [1, 2] computes
T(e,x) such that |\/z — T(¢,z)| < ¢, and the has length O(\/@o—g—%). In contrast, it
is known that using only rational operation, ©(loglog %) steps are both necessary and

sufficient (see [Bra86]).

Note that when we are considering approximation of square roots, we are considering
two classes of algorithms. The first class is algorithms that receive only the input, z, and
although they have a guarantee that the output is at most € from the square root, they
do not use the value of ¢ in the computation. An example of such an algorithm is the
Newton iteration method; the lower bound that we show is for this class of algorithms.
The second class, is an algorithm that has two inputs, the point z, and the desired
approximation e. Unlike the previous type, here the algorithm uses the value of ¢ during

the computation. The upper bound belongs to the second class of algorithms.

Section 6.3 shows that the floor function can be used to accelerate exponentiation.
Suppose we would like to generate the number 92" Using repeated squaring this can be
done in O(i?) steps. We show that this number can be generated in O(i) steps, given
any integer = > 02" (and using the floor function). Using this procedure we show that

part of the lower bounds proved in Chapter 3 are tight.

6.1 Computing polynomials

We consider the complexity of evaluating a polynomial, whose coefficients are integers,
on an n-bit integer input. We show that this problem can be solved in constant time,

using arbitrary constants and the floor function.
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starts at vy, and ends at v;;;. We choose [a;41,a;41 + li+1] as a subinterval of [a;, a; + L]
Therefore, by the induction hypothesis we have that Properties 1-3 are satisfied by the
interval [a;41, @41+ {;41] and the prefix of P that starts at v, and ends at v;4;. In order to
complete the proof of the lemma we need to show that (a) there exists an outgoing edge of
vi+1 such that for any input z € [ai41, ai41 + li41] the computation follows this edge, and

(b) Properties 2-3 are satisfied also for the vertex v;;; and the interval [a;41, @it1 + liy1)-

By the definition of the tree 7', the vertex v;4; is either a comparison vertex or a
computation vertex. If it is a comparison vertex, then a comparison g(z) < h(zx) is
performed. If it is a computation vertex, then either f,,, = ripi(z) = g(z) o A(z)
for o € {+,—,*,/}, or fu,, = lg(z)] is evaluated. Here, g(z),h(x) € {0,1} U {f,,|v;

is a computation vertex, j <1i}.

By the induction hypothesis, g(z) and h(z) are rational functions of degree less than

D; and maz-coeflg), maz-coef(h) < M;.

The proof is based on a case by case analysis. In each case, we define the next vertex
vit2 on the path P, the interval [a;41,aiy1 + li41], and the rational function ri4i(z)

(whenever v;4; a computation vertex).

First, we resolve the case when v;4, is a comparison vertex. The comparison is of the
form g(z) < h(z). By the induction hypothesis, both ~(z) and g(z) can be represented
as polynomials of degree less than D;. Consider the rational function g(z) — h(z), which
is of degree less than 2D;. Use Lemma 5.2 and choose a subinterval [a;y1, @iy1 + 1—;*5]
!

: .
Tab; It is now easy to

where g(z) — h(z) does not have any poles or zeros. Set liy; = 3

check that properties 1-3 are satisfied in this case.

Next, consider the case when v}, is a computation vertex. The following possibilities

may arise.

Suppose that o € {4+, —,*,/}. Let riyi(z) = g(z) o A(z), ajy1 = a;, and L4y = ;.

By Lemma 2.1 the degree of r;41(z) is less than 2D;, and its maximum coefficient is
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maz-coef(r) < M, there ezists a subinterval [o, a + Eé—(?IET)—‘] such that for any v in the

subinterval, |v'/* — r(v)| > (2(2]\4)2)-’1(_3%;)(3(14-1)'

Proof: Let z° = v, such that va < z < a+ ﬁ < /a + | Consider the rational function
E(z) = z—r(z*). Clearly, the degree of E(z) is bounded by sd+1 and maz-coef( £) < 2M.

By Corollary 5.8, there exists a subinterval [3,8 + A] C [v/a,/a + ], such that

A= Ws(slﬂ_l)" and for any z € [8,08 + A, |E(z)]| > (2(2]&1)2)“1(#)(’”1).

Let @ = (3° and the subinterval be [@,a + sA/2]. For any v € [a,a + sA/2], then
z € {3,8+ A]. This implies that on the subinterval [a, @+ sA/2], then difference between

v!/* and r(v) is at least (2(2]\/1)2)‘1(3’3)(8d+1)_ O

5.5 Lower bound for approximation

In this section we use the technique that we developed in the previous section to establish
the lower bound on approximating /z. We show an (y/loglog 1) lower bound on the
depth of any computation tree T', with OP = {4+, —,*,/, ||} and constants {0,1}, that

e-approximates /z, where s is any fixed constant, for z € [1,2], in norm L,.

Theorem 5.11 For any integer s > 2, if a computation tree T, with operations
OP = {+,—,%,/,|-|} and constants {0,1}, approzimates /z, for a fized s and z € [1,2],
such that

errori(T(z), vz) < e

then T has depth h = Q(y/loglog 2).

Proof: The bulk of the proof involves constructing (i) a path P from the root of T to

one of its leaves, and (ii) a subinterval [a,a + ] of [1,2], with the following properties:

1. On input a € [a,a + {] to T, the computation follows the path P; and
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Note that ¢(z) and p(z) have the same degree and,

BIE) max {lg(=))) = max {lp(=)]}-

2 z€[—1,1] z€[a,a+i]

By Lemma 5.5, there exists zp € [—1,1] such that |g(z0)] > 27**!. Therefore, K >
2-4+11p| (L)9. (Recall that |b| > 1.) Hence K/2 > (%)%, which completes the proof. O

The following lemma combines the above lemma, which enables us to give lower
bounds for the value of a polynomial, with the first lemma, that observed how to upper

bound a polynomial, to establish a technique to upper bound a rational expression.

Lemma 5.7 Given an interval [a,a + ], where 1 < a <2 and0 << 2—a, and
a rational function r(z) of degree d with integer coefficients and Tﬁaz-coef(r) < M; there
ezists a subinterval [, o + iz], such that (i) r(z) is monotone in this subinterval, and

(i) |r(z)] < 2M(3)? for all z € [a, @ + 7]

Proof: Let r(z) = %&% where p(z) and ¢(z) are polynomials of degree at most d with
integer coeflicients. By Lemma 5.1, the maximum value of |p(z)| for z € [1,2] is bounded
from above by M2¢+!, By Lemma 5.2, there is a subinterval [3, 8 + %] in which r(z) is
monotone. By Lemma 5.6, there is a subinterval of [3, 8 + =], denoted by [a, o + géld—,],
such that |g(z)| > (1)¢ for all ¢ € [o,a + ziz). Therefore, |r(z)| < 2M(})? for all

me[a,a+ﬁ]. 0

Let ri(z) be a rational expression and ry(z) = Since both the degree and

-1
ri{z)’
the maximum coefficient of r; and r, are identical, a lower bound for the value of r;
would imply an upper bound for the value of r,. The following corollary formalizes this

observation.

Corollary 5.8 Given an interval [a,a + 1], where1 <a <2 and 0 <1 <2 —a, and

a rational function r(z) of degree d with integer coefficients and maz-coef(r) < M; there
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We need to use a slight modification of Markoff inequality. The segments that we are
interested in are not necessarily [—1, +1]. Therefore the following formulation would be

more convenient.

Lemma 5.4 Let p(z) be a polynomial of degree d, and p'(z) the derivative of p(z).
Then

max (@)} < 2 _masx {|p(a)]}.

z€[a,a+l] r€la,a+l]
Proof: Consider the substitution z = z4 + 2. If 2 € [~1,1] then « € [a,a +]. Let
q(z) = p(z3 + 2&t). By Lemma 5.3

I < 2
zg[lf»;fu{lq ()} <d zé?}fl]{lq(ff)!}-

Since 44z — 4

dz __ 2
2L = %2 and £ = %, the lemma follows. a

The importance of this lemma is that using it we can claim, that if over the interval
[a,a + ] the maximum value of a polynomial is p(z’), then there is a neighborhood of
z', in which the value of the polynomial is Q(p(z’)) and the size of the neighborhood is
Ql/d?).

The family of polynomials, known as Chebyshev polynomials, have many application
in Numerical Analysis. We use here only one aspect of the Chebychev polynomials, and

that is their ability to give a lower bound for the value of a polynomial.

Lemma 5.5 (Chebyshev [Riv69, page 31]) Let p(z) be a polynomial of degree d > 1
defined over [—1,1]. If the leading coefficient of p(x) is one, then there exists z¢ € [—1,1]

such that |p(zo)| > 57 .

The importance of the above lemma is to enable us to establish a lower bound on

the value of a polynomial. Once we are able to show a lower bound and upper bounds
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proving a lower bound for rational expression, over [a,a + {].

The last part of the proof involves proving lower bounds for rational functions. We
show that for a rational expression r(z), defined over [a,a + {], there is a subinterval
[, @ 4+ A], such that for any input = € [a, @ + A}, the difference between r(z) and /= is
at least 8. This implies that

Ir(z) — V=1 2 86X

5.4 Lower bound technique

We would like to establish a technique to bound the value of a rational function over an
interval. In general, a rational function may be unbounded; therefore we are seeking a
“large” subinterval in which the rational function is bounded. The techniques that we
develop show how to both upper bound and lower bound the value of a polynomial. The
first lemma shows a very trivial upper bound on the value of a polynomial defined over
[1,2]. Much of the remainder of the section is devoted to showing that given a polynomial,

there is a subinterval in which we can lower bound the value of the polynomial.

Lemma 5.1 Let p(x) be a polynomial of degree d and maz-coef(p) < M. Then, for
all z € [1,2], |p(z)] < M2+,

Proof: Let p(z) = Y%, a;z*. Then clearly,
d ' d o d _
p(z)| = Y aix’| < Y laila’ <5 M2 < M2t
1=0 t=0 1=0

O

It would be conve: -1t that the rational functions that we are dealing with would

not have any poles (i.e. inputs for which they go to infinity) or any roots. The following
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Recently, Bashouty [Bas90b] has shown that approximating the square root of two,
requires {}(loglog 1) operations, when the only input is z, and € is not an input. This
implies a lower bound in norm L. It is still an open problem what is the bound for

norm L;, where the only input is the number to be approximated, and not e.

5.3 Overview

In this section we give a general overview of the proof that we show in the next two
sections. At a very high level, we establish the proof along the following lines. First, we
show that there is a “large” subinterval, such that all the inputs from this subinterval
follow the same path. Second, the output that the computationvtree computes for this
subinterval can be expressed as a rational function. Third, any rational function, of a
given degree and coeficient size, would have to be “far” from the s root function, on
a “substantial” part of the subinterval. Clearly we would have a tradeoff between how
“far” the functions are, and how “substantial” is the part of the subinterval on which
they are “far”. Combining those two parameters translates to a lower bound on the

approximation in norm L.

Now we elaborate slightly more on each component of the proof. We start with
the main tool that enables us to show how to handle the floor function. Consider the
expression |r(z)|, where r is a rational expression, defined over [a,a + {]. We show that
there is a sub-interval, [a’,a’ + '], such that the value of |r(z)] is constant in it and the
ratio between / and I’ is bounded as a function of deg(r) and maz-coef(r). The smaller the
ratio between I’ and [, the better lower bound we can prove at the end. The proof of this
claim quite involved, and uses theorems from Approximation Theory, such as Chebyshev

polynomials and the Markoff inequality.

Given a computation tree T that receives an input = € [1,2], we show that there

exists an interval, [a,a + [] C [1,2], such that any input z € [a,a + {] follows the same
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example, that computing the average distance of n points in the plane requires exactly
(g) operations. (For average distance, [SY76] showed that it can be approximated with

substantially less than (g) operations.)

This work pursues the second direction. Rather than computing a function exactly,
we are interested in approximating the function’s value. The set of basic operations

does not change and remains the set of rational operations and the floor function, i.e.
{+a ¥ /’ '.J }

This chapter is organized as follows. In the following section we define formally the
meaning of an approximation. In section 5.3 we give a general overview of the lower
bound technique that we develop. In section 5.4 we develop the lower bound technique,
that we later use in Section 5.5 to prove the lower bound for approximating the s* root

of a real number.

5.2 Definitions

The main aim of this section is to define formally the notion of approximation. We start
by a very brief background, and define inner product of real functions, and a norm of a
real function. The inner product of two real functions f and g, over a region A, is defined

as follows,

< f.9>= [ f()g(a)ds

Given the definition of the inner product, We define the norm Ly, of a function f,

over a region A, to be

1l = f [ 1£(@) kda
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tree are input vertices of the inputs « and b. If (u,v) is the generator of (a,b), then, by
Lemma 4.6, ¢ and b are polynomials in u and v of maximum coefficient and degree less
than 2*'° and n/%, respectively. This implies that the number of monomials in each
of these polynomials is at most n?/® and that the value of each monomial is at most
2"”5(22"2/5)2"1/5. Therefore, a, b < n?/52n'/°92nP:m/s — ,2/504n*% - 9n {61 Jarge enough

n.

Lemma 4.7 asserts that some pairs in the set (u,v) € S(0, a1, a2, a3)N {(y,v) : 1 £
u,v < 22+D} are relatively prime, and some are not. The Correspondence Property,
Lemma 4.1, guarantees that the gcd of the inputs is the same as the gcd of the generators.
Since the leaf v is labeled by a constant, the inputs that reach this leaf are either all
relatively prime, or all not relatively prime. Since all the pairs reach the same leaf, we

reach a contradiction. g
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(u,v) is the generator of (z,y). By Lemma 4.4, the degree of g:((:‘;)) 0 IGT:((Z?) is less than

24(3+1) . . . . 2 9 224("+1)
2D; <2 , and its maximum coefficient is bounded by 2M?(D; +1)* < 2 .

Suppose v;4+1 is |v], where v is a previous computation vertex. By the induction
hypothesis, val(v) = g—i%%%, where (u, v) is the generator of (z,y). By Lemma 4.5, there is
a rational expression Q(z,y), and a subset of the inputs SG+1), such that val(v) = Q(u,v),
where (u,v) is the generator of (z,y). The degree of @ is at most D;y; < 4D} < 92!+

£(i+1)
and the maximum coefficient of Q is at most M < 2(4D; M;)?P° < 22’

We are not done yet with this case. The substitution of u; by Aipq(uis1)5+ + uiya,
affects not only the rational expression @), which is stated in Lemma 4.5. It also changes
all the polynomials in ¥;. Since ;41 < D;+1, the degree of the rational expressions in ¥;
is at most D;;, < D;(D;+1), and the maximum coefficient is at most M;;; < /\,-D;12D‘M,-.
Note that the degree and maximum coeflicients of previous vertices change, but they are

bounded by the current D; and M;. O

4.4 GCD Lower bound

In this section we show how to apply the proof technique that we developed in the
previous section to derive a lower bound for computing the greatest common divisor of

two integers.

We start by showing that in any set of inputs S(+), there is one input that is relatively

prime, and another one that is not relatively prime.
Lemma 4.7 Let oy, 2,3, and t be positive integers such that a; < t, and az,a3 <
2t. Then the set S(0, a1, az, az)N {(u,v) : 0 < u,v < 22E+VY} contains two pairs (ao, a;)

and (b, by), such that gcd(ag,a1) # 1 and ged(bo, b;) = 1.

Proof: Let e be the least positive integer exponent such that (1 + a3)® > ;. Define
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Lemma 4.6 Let T be a computation tree of depth h, with two inputs, the operations
{+,—,%/, -]} and constants {0,1}. Then, there is a path P from the root of T to a

leaf, and a subset S of inputs, with the the following properties:

1. § = S(ryan, 00,03, A,A)N {(a,b) : 0 < a,b < 2™}, for some positive inte-
gers ryay, 0, a3, 61,82, ...,6,, A1, e, ..., A, where A = (61,62,...,6,), and A =
(/\1,)\2,...,/\.,‘),'

2. For each input (a,b) € &. the computation follows the path P;

3. For each computation or input vertex v on the path P, there is a pair of bivaric
polynomials (F,(z,y),G.(z,y)) with integer coefficients, such that for each in, .
(a,b) € S, G, (u,v) # 0, andval(v) = %, where (u,v) is the <7, oy, g, a3, A, A>-
generator of (a,b); i.e., the value computed at v on input (a,b) € S, is the value of

v T,y
(

the rational expression 24;—1 at (u,v); and
v vy)

4. Let ¥ = {F,(z,y),G.(z,y) | v € P}. Define D and M to be the degree and the
mazimum coefficient of ¥, respectively. Then, r < h, max{a;, D} < 22" and

max{az, a3, M} < 927"

At first sight it might be surprising that the above lemma does not claim explicitly
any bound on the values in A and A. The reason is that we can add the input as two
input vertices in the tree T', and therefore, we express the input as a rational expression

of the “generators”. This guarantees the connection of the values in £ with A and A.

Proof: We denote the vertices on the path P by v, vs,...,v;, in that order, where vy
is the root of the tree T', v; is a child of v;_;, and v; is a leaf of the tree T'. The path
P and the set & are defined inductively, starting with the path v;,v2,vs and the set
S = $§(0,1,0,1) (which consists of all pairs (a,b), where a > b > 0). Following that
proof, suppose that (a) we have selected a prefix of P, which starts at v;, and ends at
a vertex v;y1, and (b) constructed the set S = S(r(i),agi),a(;),ag),A("),A(")) with the

following properties:
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and,

oy = max{dy, mp(R), ma(LPy — R)} < MP*' 4 ((D+2)M)P* +1

< 2((D +2)M)P*2,

This guarantees that for any (u,v) € S(0, o}, o, 7a3), 0 < R(u,v) and R(u,v) <
L?Py(u,v). This implies that

0< F(u,v) <1
LdP2(uav) ‘
We conclude that for (z,y) € S(0, af, o), Ta3),
A(z,y) — v+ p(R)L?
|Pla,y)) = 2EL=TEADE _ o, )

Clearly, deg(Q) = deg(A) < D, and maz-coef(Q) < maz-coef(A) + 2MP < 2((2 +
D)M)D+1.

In Case 5 we show how to reduce the general case to Case 4. In order to summarize the
effect of Case 4, observe that max{a}, deg(@)} < (D+1)?, and max{a}, Tas, maz-coef(Q)}
< 2((D + 2)M)P+2,

Case 5: The leading monomial of Py(z,y) is Lz%y'. Our goal is to reduce this case
to Case 4 where no powers of y appear in the leading monomial. We introduce a new
variable z and substitute z using it. Let § = max{a;, deg(P)+1} < D +1 and A = as.
we substitute z by Ay’ + z and consider the polynomial Q(y, z) = P,(Ay® +2,y). Observe
that the leading monomial in Q(y, z) is a constant times a power of y, i.e., no power of z

appears in the leading monomial of Q(y, z). Thus, we have reduced this case to Case 4.
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As in Case 3, let A(1,1) = ¢L? + v, where ¢ is an integer and v is a non-negative

integer such that 0 < v < L4,

Pi(u,v)  ~vP(u,v)+ R(u,v) A(u,v) -7
Py(u,v) LiP;(u,v) L )

Let # = L% Then, for each (u,v) € S(0, 4y, &y, Tas), A(u,v) =4 (mod L?). Hence,

for each such pair (u,v), the expression ﬂ“—}ﬁ}——A’ evaluates to an integer. Therefore,

[PI(U’U)J _ [fyPg(u,v) + R(u,v)J N A(u,v) — v
Pg(u,v) - LdP2(u,U) Lé -

Our aim is to restrict the inputs such that the value of [%‘%{%;‘—'UIJ is fixed. We

distinguish between two subcases, according to the value of +.

Subcase 4.1: v > 0. In this subcase we restrict the input, such that the value

of [f%’;—;%f%"—’vlj is zero. Consider the polynomial V(z,y) = L%y Pi(z,y)

+R(z,y)). Since deg,(R) < deg,(P,) the leading coefficient of V is 75L. Let
B(z,y) = Py(z,y) - V(z,y). The leading coefficient of B(z,y) is (1 — 74)L. Since
0 < 75 < 1, the leading coefficient of B(z,y) is positive, i.e. sign(B) = +1. Recall
that = = L%, Let,

o) = max{&,m1(B),m(vP,+ R)} < D(D+1)+1

< (D+1)?
and,

ay = max{&y, m3(B), ma(YPe + R)} < MPH' 4 (D +2)M)P+? 41

< 2((D+2)M)P*2,
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3. Py(z,y) is a constant, l.e., d; =d, = 0.
4. 1 =0, i.e. y does not appear in the leading monomial of P,(z,y).

5. 1 > 0, i.e. the general case.

Case 1: P](.’E,y) = P2($ay)7 for (x,y) € S(Oaalaa2aa3) Let Q(.’L‘,y) = 1/1’ T =1,

A L
o) = a1 and o) = ay.

Case 2: Pi(z,y) < Py(z,y). Let B(z,y) = Py(z,y) — Pi(z,y). Since the leading coeffi-
cient of P; is positive and greater than the leading coefficient of Py, then sign(B) = +1.
Using Lemma 2.3 let of = max{d&i,71(B)} and &} = max{a,,n2(B)}. Lemma 2.3 guar-
antees that for each (u,v) € S(0, o}, a}, 1), B(u,v) > 0. Observe that B(u,v) > 0 implies
that P(u,v) > Pi(u,v). Since af > m1(P2) and o} > m2(P2), then Py(u,v) > 0. Thus,

Pl(u, U)
PZ(U’ U)

<1

For each (u,v) € S(0, ¢}, aj,1) both P(u,v) > 0 and Pp(u,v) > 0. Therefore,

Pr(u,v)

Pa(w,0) <1

0<

Let 7 = 1. This implies that for (z,y) € S(0,a}, a5, 1),

pl) 2= Qe

Pz(U,'U) 1

Clearly, deg(Q) = 0 and maz-coeflQ) = 1. Since deg(B) < D, and maz-coef(B) < 2M,
then by Lemma 2.3, of < D + 1 and o) < 2M + 1.

Case 3: Py(z,y) is the integer L > 1. Recall that all coefficients of P;(z,y) are integers,
and Py(z,y) > 0, for (z,y) € S(0,&;,42,1). Let Pi(1,1) = cL + v, where c is an integer
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Otherwise, let B(z,y) = P(z,y) — Q(z,y) = B—g—ﬂ Since P # Q then sign(B) # 0,
which implies that sign(B;) # 0 and sign(B;) # 0. By Lemma 2.2, deg(B) < 2D, and
maz-coef{ B) < 2(D + 1)?M?. Let o, = max{ a;, m(By), m(B2)}, and o = max{
ag, T(B1), 72(B2)}. Lemma 2.3 gives the bounds o) < max{a;,2D + 1} and o; <
max{ai,2(D + 1)2M? + 1}. Since the comparison P(z,y) > Q(x,y) is equivalent to

B(z,y) > 0, the lemma follows. a

The next step is showing the effect of rational operations on our parameters. This

case is a rather simple case.

Lemma 4.4 Let P(z,y) = F_%Z_Zl and Q(z,y) = G;J(Z—Z% be two multivariate rational
ezpressions, where deg(P), deg(Q) < D, and maz-coef(P), maz:coef(Q) < M. Then,

deg(Ro S) < 2D, and maz-coef(Ro S) < 2(1 + D)2 M?, where o € {+,—,%,/,}.

Proof: A special case of Lemma 2.2. a

In the following lemma we show how to “handle” the floor operation, which is the most
interesting case. As for one variable, the main objective is to find a rational expression
that coincides with the value of the floor operation on some subset of the inputs. In
order to get control over the degree and maximum coeflicient of the rational expression
we restrict the input to a subset of the previous inputs. The proof is similar in spirit to
Lemma 3.4, and is also done cases. The cases represent different relationships between
the lexicographic order of the two polynomials in the rational expression (to which the
floor is applied). The main conceptual difference with the one variable proof technique

is in Case 5 of the proof, where we introduce new variables.

Lemma 4.5 Let P(z,y) = ﬁ—;((i—‘z% be a rational expression with integer coefficients,

defined over S(0,ay,az,as), such that P(z,y) > 0 for (z,y) € S(0,a1,az,a3). Define
max{4, a1, deg(P)} = D, and max{4, az, az, maz-coef(P)} = M. Either
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The intuition is that the sequence ug,...,ur4; includes all the variables that we
introduce. Notice that equations 4.1 and 4.2 imply that uo > uy > uz > uz > ... > u, >

u,4+1. The following definition relates the first pair (ug,u;), and the last pair (ur, Urs1).

Definition 7 Let S(r,a;, aq,a3,A,A) denote the following set of ordered pairs of

positive integers:

{(uo,u1) : there exist integers u,,u,4+1 such that (uo,u1)

s <r,ap,ay, a3, A, A> —generated by (Ur, Ury1)} -

For convenience we omit the null vectors A and A whenever r = 0. In this case, the set
S(0, ay, ag, a3) consists of all pairs (ug,uy) such that up > (u1)*, v1 > az, wo = u; =1

(mod a3) (in accordance with the above definition).

Perhaps the most important characteristic of the above definitions is its similarity to
the Euclidean algorithm for solving the gcd problem. As an immediate consequence of
the definition, we get the two properties stated below. These properties are the key to

our proof strategy.

Lemma 4.1 (The Correspondence Property): There is an one-to-one corre-
spondence between the elements of the sets S(r,a;,az, a3, A, A) and S(0, a1,z 3).
Specifically, each pair (uo,uy) € S(r,a1,az,as, A,A) corresponds to the unique pair
(ur, ur41) € S(0, 1, a2, 3) such that (u,,uryy1) is the <7, 1,2, a3, A, A >-generator of

(uo,u1). Furthermore, if (uo, u1) corresponds to (ur, ur41) then ged(ug, u1) = ged(ur, ursr).

Proof: Let a; > as > ... > a,41 and by > b3 > ... > b,41, be the generating sequences
for (ag,a1) and (bg, by), respectively. It is easy to check that if (a;,ai4+1) # (i, biy1) for
some 0 < ¢ < r, then (aj,a;41) # (b;,b;41) for any j, & < 7 < r. The assertion about the

ged’s follows from the Euclidean algorithm. .
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We give here a very brief description of the differences between the technique for
two and one variables. The main difference between the two proof techniques is in
the handling of the floor operation. Consider the expression l%J If we assume that
xz >y > 0, then we can claim that the value of this floor operation is zero. On the other
hand, consider [%J Since we assume that z > y > 0, we have to find a new solution for
such an expression. We overcome the problem by adding a new variable, z, and requiring
that both y > z > 0, and y + z = z, which implies that EJ = 1. In some sense we
transformed a computation based on the inputs ¢ and y to a computation based on the
input y and the “new input” z. The problem is that we introduce a new dependency
between x and y, e.g. in our example z = y + z < 2y. The general solution has a similar

flavor: we substitute by Ay® + z. The values of § and X are chosen to guarantee that

previous requirements on the relationship between z and y hold. |

The introduction of a new variable is the main difference between the technique for
two variables and for one variable. Note that we may have to introduce many new
variables, one for each floor operation. This causes additional complications in the proof

technique that we need to resolve.

Using this proof technique we show a lower bound on the depth of any computation
tree with OP = {4, —,*,/, ||}, that computes the ged of all pairs of n-bit integers. The
important part of the lower bound is that it is non-constant; quantitatively, the lower

bound is Q(log logn).

This chapter is organized as follows. In section 4.2 we describe the way that we
structure the inputs that will be used in the proof. In section 4.3 we develop the proof
technique. In section 4.4 we use the proof technique to show a lower bound for computing

the greatest common divisor of two integers.
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3.3 Applications

We start this section by characterizing a class of problems for which our technique gives
non-trivial lower bounds. In the previous section we showed, that given a computation
tree, we can find a path and a set of inputs S(n, \), such that all those inputs follow the
path. The following defines an M (n)-invariant function to be one which has two inputs

in S(n, A), for which the output is different.

Definition 5 Let f(x) be a boolean function whose domain is the set of n-bit integers,
and let M(n) > 0. Then f is M(n)-invariant if, for any integer A < M(n), there are
two n-bit integers a; and a,, satisfying (i) a; = a; = 0 mod A, and (i) f(a1) # f(as).

The following theorem states that the lower bound technique that we developed in

the previous section gives a lower bound for any M(n)-invariant function.

Theorem 3.6 Any decision tree with OP = {+,—,%,/,|:]|} and constants {0,1},

that computes an M(n)-invariant function, f(z), for all n-bit integers, must have depth

Q(y/loglog M(n)).

Proof: Since f is a boolean function, we can assume that the leaves are labeled by
either zero or one. (This adds at most two to the depth of the tree.) We prove the
lower bound by contradiction. Suppose that we are given a decision tree T of depth
h < % loglog M(n). that decides f. In Theorem 3.5 we prove that there is a A <
92"’ < M(n), such that all the inputs in S(n,\) reach the same leaf. Since f is M(n)-

invariant, there are a; and as, such that ay,a; € S(n,A) and f(a;) # f(a2).

Both a; and a, follow the same path in 7. Therefore T either accepts or rejects both

f(a1) and f(as). This contradicts the fact that T computes f. a

Clearly, the larger the value of M(n), the better the lower bound that we can show. On

the other hand, since M(n) < 2", we can not show lower bounds greater than (y/Togn).
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This enables us to transform all the floor operations, on a specific path, to evaluations
of rational expressions. Lemma 3.2 gives a way to restrict the input such that the
comparison value is fixed. This will enable us to find an integer A and a path P, such
that any integer in S(n,A) follows the path P. Lemmas 3.2, 3.3, 3.4 also bound how
fast the degree and the size of the coeflicients of the rational expressions can grow. The
bounds on the degree and maximum coefficients enable us to bound the value of A, which
is essential for showing the lower bound on complexity. For example, note that if A > 2",

then S(n,A) = @, which would not enable us to derive any interesting lower bounds.

Theorem 3.5 Let T be an decision tree of depth h with OP = {+,—,*,/,|']}. There
is an integer A < 22" 4nd a leaf v; of T, such that for each input a € S(n,A), the

computation follows the path from the root of T to its leaf v).

Proof: Denote the vertices on the path P from the root of T to its leaf v; by vy, va, ..., vy,
in that order, where v; is the root of the tree T' and v; is a child of v;_;. We define the
path P and the integer A inductively, starting with the empty path and A(® = 1. (S(n,1)
consists of all n-bit integers.) As part of the induction hypothesis, we maintain three
properties of the path and the set under consideration. These properties are described

below.

Suppose that (i) we have selected a prefix of P, which starts at v;, and ends at a

vertex vi41, and (ii) defined a parameter A() with the following properties:

1. For each input a € S§(n,A)) the computation follows the path from the root to

Vi1,

2. For each computation vertex v on the path from the root to the vertex v;y;, ex-
cluding the vertex v;;1, there is a pair of polynomials (F,(z),G,(z)) with integer

coefficients, such that for each input a € S(n, (")), G,(a) # 0, and val(v) = g—:%%
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Case 8: P(z) < Pi(z). Let L be the leading coefficient of P,(z). Note that since
sign(P2) = +1, then L > 0. Corollary 2.7 implies that

A(z) Py(z) + R(z)

where A(z) and R(z) are polynomials with integer coefficients such that, maz-coef{ A) <

2D MP+ | maz-coef{ R) < 2P+1MP+2 deg(A) < D and deg(R) < D.

Consider the constant term of A(z). We denote this constant by cL?++, where cis an
integer and 7 is a non-negative integer such that 0 < v < L?. Let A(z) = A(z)+cL*+7;
that is, /i(:c) is equal to the polynomial A(z) minus its constant term. The parameter
7 will be chosen to be a multiple of L?. This implies that for each a € S(n, A7), each

monomial of L=%A(a) evaluates to an integer. Hence, for each integer a € S(n, Ar),

P(@)| _ 1 |1Pia) + R(@)
7] = s+ e+ [PR)

We distinguish between two subcases:

Subcase 1: v > 0. Consider the polynomial V(z) = L~¢(vP:(z) + R(z)). The
leading coefficient of V is L=¢(yL), therefore sign(V) = +1. Let B(z) = P(z) —
V(z). The leading coefficient of B(z) is (1 — L™%v)L. Since 0 < L™%y < 1, the
leading coeflicient of B(z) is positive, i.e. sign(B) = +1. Using Corollary 2.4, let =
be the minimum multiple of L? such that 7 > max{r(B), 7(yPa+R),7(P.), 7(P2)}.
Consider a € S(n, An). Since 7 > n(B), then V(a) < P,(a). Since 7 > n(yP+ R),
then 0 < V(a), which implies that 0 < V(a) < P,(a). Since # > n(P,), then P;(a)

> 0. This implies that 0 < },/2((?) = 7PZ(£:ES(“) < 1, for any a > 7. We conclude
that for each a € S(n, Ar), [%%J = L %A(a) + c. Let
A(z) + cL?

Qz) = = |P(z)] for z € S(n,Ar).

Ld
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The following claim shows how we can restrict the input by changing the parameter of
S(+). Namely, multiplying the parameter by another integer and considering only integers

that are divisible by the product.
Claim: 3.1 For any integer # > 1, S(n,Ax) C S(n,A).

The following lemma enables us, each time the computation reaches a comparison
vertex, to fix one of the directions. This involves restricting the inputs, from S(n, A) to

a subset of it, S(n, A7). An important part of the lemma is to bound the value of 7.

Lemma 3.2 Let P(z) and Q(x) be two rational expression, of degree at most D and
mazimum coefficient at most M, defined over S(n, ). There ezisis T <2(1+D)M? +1,
such that for all x € S(n,Ar), the comparison P(z) > Q(z) is determined (i.e. either
P(z) = Q(z), P(z) > Q(z), or P(z) < Q(z), for x € S(n,Ar)).

Proof: Let B(z) = P(z) — Q(z) = %;—z:—%. If P(z) = Q(z) for z € S(n,A), let # =1, and
the lemma follows. Otherwise both sign(B;) # 0 and sign(B;) # 0. By Lemma 2.2 the

degree of B is at most 2D and maz-coef(B) < 2(D + 1)M?.

Corollary 2.4 guarantees the existence of a positive integer 7 = max{r(B),x(B;)},
such that for all integers > 7, either B(z) > 0, or B(z) < 0. Furthermore, it guarantees
that 7 < 2(D + 1)M? + 1. Since the expression P(z) > Q(z) is equivalent to B(z) > 0,

the lemma follows. O

Next, we consider the case of a computation vertex. First we discuss rational opera-

tions, and restate Lemma 2.2, for univariate rational expressions.

Lemma 3.3 Let P and Q be two rational expressions, of degree at most D and maz-
imum coefficient at most M, defined over S(n,\). Let R(z) = P(z) o Q(z), where
o € {+,—,*,/}. Then, deg(R) < 2D and maz-coef( R) < 2(D + 1)M?.
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Essentially, the degree argument uses the fact that a polynomial cannot change “too
fast”. Namely, a polynomial of degree d can change its sign at most d+1 times. Therefore
a polynomial of degree d can “disconnect” the inputs to at most d + 1 different connected
components. The number of connected components of the function to be computed
implies a lower bound on the degree of the polynomial, which implies a lower bound on

the depth.

The degree argument can be extended to rational functions, and also in higher
dimensions. The arguments for higher dimensions are much more complex than for
one dimension, and they are the main part of the lower bound technique developed in

[BO83, SY82, Yao89].

Adding the floor function as a basic operation changes the situation dramatically.
First, using the floor function, one can trivially compute the parity function in O(1)
steps. Second, the floor function may increase the number of connected components in
an unbounded way. For this reason the number of connected components is not relevant

in computations with the floor function.

In the remainder of this section we give a general overview of the proof technique
that we develop. Given a decision tree, the proof constructs a path from the root to a
leaf, such that a certain set of inputs follows that path. The property of the set, is that
it includes all the integers that are divisible by a certain integer A. A main part of the
proof technique is to bound A as a function of the depth of the decision tree, i.e. to show
that A < g(h), where h is the depth of the tree. In Section 3.3 we show applications
of this proof technique. We define a boolean function to be M(n)-invariant if for any
integer A < M(n), there are at least two n bit integers, both divisible by A, for which
the value of the function differs. We argue that any M (n)-invariant boolean function

requires depth at least 2, where g(h) = M(n).

As one can expect, the main part of the proof technique is devoted to handling the

floor function. The main idea is to transform the floor function to a rational function.
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For univariate polynomial the situation is even simpler, and is summarized in the

following corollary of Lemma 2.5.

Corollary 2.7 Let P(z) and Q(z) be two polynomials with integer coefficients, of
degree at most D, and mazimum coefficient at most M. Let L be the leading coefficient

of Q(z), then there exists A(z) and R(z) such that,

P(z) = 257 ARIQ(E) + 5 R(2),

where A(z) and R(z) are polynomials with integer coefficients, and maz-coefl A) < 20 MP+1

maz-coef(R) < 2PT1MP+2 deg(A) < D, and deg(R) < D.
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R(z,y) such that

1 1
where A(x,y) and R(z,y) are polynomials with integer coefficients. Furthermore,

1. maz-coef(R) < (2 + deg,(Q)) ' MN*H,

2. deg.(R) < deg,(Q){= d}, and deg,(R) < deg,(P) + (6 + 1)deg,(Q).

3. deg.(A) < max{0,6}, and deg,(A) < deg,(P), and

4. maz-coeflA) < (2 + deg,(Q)) MN°.
Proof: The proof is by induction on 6. The hypothesis holds for the basis case § = —1
with A(z,y) =0 and R(z,y) = P(z,y).

For the induction step, assume that the hypothesis holds for all § < k, for some
k > —1. We prove it for k. Let P(z,y) = p1(y)z® + p2(y)z°~! + ..., be such that
k = e — d. Consider the polynomial

S(z,y) = LP(z,y) — *p1(y)Q(z, ).

One can verify that, maz-coef(S) < (2 + deg,(Q))MN, deg,(S) < deg,(P) — 1, and
deg,(S) < deg,(P) + deg,(Q).

Applying the hypothesis to the pair S(z,y) and Q(z,y), yields

S(2,9) = 242, 1)Q(,v) + 7:R(z,v).

Substituting for S(z,y), we get

1

P(2,y) = o (A(2,0) + L2 n(3) Qe9) + 73 B (@:9).
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Bivariate and univariate polynomials

A bivariate polynomial is a polynomial with two variables. Below, we relate the lexico-
graphic order defined on the bivariate polynomials, and the order among their values at
certain points. We concentrate on bivariate and univariate polynomials since those are

the cases that we would be interested in later.

Consider a bivariate polynomial P(z,y). We would like to give a simple sufficient
condition on the inputs of P, such that for any input (z,y) that satisfies the condition,
the sign of P(z,y) would be the same as sign(P). The sufficient condition that we give in
the lemma below guarantees that the value of the leading monomial is larger than all other
monomials combined. This is clearly sufficient to ensure that sign(P(a,b)) = sign(P),

for such inputs (a, b).

Lemma 2.3 For each bivariate polynomial P(z,y), such that sign(P) # 0, there
exist positive integers m1(P) and m3(P) such that for all (a,b) satisfying a > ¥ and
b > m(P), sign(P(a,b)) equals sign(P). Furthermore, m(P) < deg,(P)+1, and m3(P) <

max—ciolflf(P)HLI, where L is the leading coefficient of P.

Proof: Let M = maz-coef( P). Let P(z,y) = S jv, Lez**y’*, where P(z,y) is written in
its normal form, and L is the coefficient of the £*P monomial (Lo = L). Note that since
sign(P) # 0, then L 96 0. Denote t(z,y) = z*y’*. Let m1(P) = 1+ maxock<m—1{0, Je41—
jx}, and my(P) = MEL. Clearly, m(P) < deg,(P) + 1.

From the lexicographic order it follows that %‘%%2 = z'y’, where either: < 0 and j <

m1(P) or i = 0 and j < 0. Thus, if a > ™(*) then t"t ’a“bb < %, and hence, :g(:z < &.

Suppose that L > 0, i.e. sign(P) = +1. We show that for (a, b), satisfying a > s™(F)
and b > m2(P), P(a,b) >0, i.e. sign(P(a,b)) = +1. For (a,b), such that a > bmP),

h'h

P(a,b) > L to(a,b) — Z|Lkla”‘b”‘>Ltoa b)( Z
k=1 k=1
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Proof: We only prove the bound on maz-coef( P *@Q). (The other bounds are straightfor-
ward.) Note that a multivariate polynomial of degree d has at most (1 + d)* monomials.
Therefore, when we multiply two multivariate polynomials, each of the coefficients of the
product is the sum of at most (1 + min{deg(P), deg(@)})* terms, each of them being
the product of a coefficient in P by a coefficient in (). Since the product of a coeffi-
cient of P and a coefficient of @ is bounded by maz-coefl P) maz-coef{Q), the bound on
maz-coef{ P x Q)) follows. o

A rational number is a number that can be expressed as n/m, where n and m are

.....

P and @ are polynomials.

: : P(z1,.... “
For a rational expression R(zy,...,2x) = Q(zi z: , where P and ) are multivariate

polynomials, define the degree of R to be the larger of the degrees of P and @. Similarly,
define the mazimum coefficient of R to be the larger of the maximum coefficients of P

and @.

Lemma 2.2 Let R(zq,...,z) = Alzinse) gng S(zy,...,2k) = 8;(2 “““ :‘;) be two

.....

multivariate rational expressions. Then,

1. deg(R + S) < deg(R) + deg(5),
2. maz-coef{ R £ S) < 2(1 + min{deg(R), deg(S)})*maz-coefl R)maz-coef(S),
3. deg(R* S) < deg(R) + deg(S), and

4. maz-coef(R* S) < (1 + min{deg(R), deg(S)})* maz-coefl R)maz-coef(S).

Proof: The bounds follow from Lemma 2.1 and from the fact that for o € {+,-},

RoS§ = BGuaifs 8
2Q2
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The computation terminates at a leaf u and outputs the value of u. The time com-
plezity of a given input is the length of the path that the computation traverses using
that input. The time complerity of a computation tree is the maximum time complexity
over all inputs, which is equal to the depth of the tree!, assuming that each vertex can

be reached by some computation.

As one can note, we did not mention how constants appear in the tree. We can
introduce constants as additional operations, and view a constant as a constant function.
In many cases it is simpler to state separately the basic operations and the allowed
constants. However, the formal interpretation of such a statement is that there is one set

of basic operations, that includes the constants and basic operations.

A decision tree is a computation tree whose output values are either 0 or 1. For
decision trees we can assume that each leaf is labeled by a constant, either 0 or 1. This

can increase the depth of the tree by an additive factor of at most two.

A straight line program is a computation tree that does not include any comparison

vertices.

The operations {+, —, *} are defined in the natural way. The rational division opera-
tion returns a rational function of the inputs, e.g. 2/3 = 0.666---. (In case a division by
zero occurs during a computation, the output of the entire computation is undefined.)
The set of rational operations includes the operations {+,—,*,/}. We define the floor
operation in the following way. The floor operation receives as an operand a non-negative

real number and returns the largest integer smaller than or equal to the operand.

Our assumption that the operand to the floor function is non-negative simplifies our
proofs and does not change the depth of the computation tree by more than a constant
factor. Using this floor operation, one can implement either a general floor operation

(i.e. the operand is an arbitrary real number) or a mod operation using O(1) depth.

!The depth of a tree is the length of a longest path from the root to a leaf.
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However, this is not the case in general. In most cases we would desire some con-
ditional branching mechanism. The time complexity of a program that includes such a
mechanism cannot be estimated by the number of instructions that appear in the pro-

gram. This is best illustrated in the following example. Consider the following program:

z =0
WHILE y > 1 DO

zi=z4zx
yi=y—1
END WHILE

For y € [1,n], the complexity of the above procedure is O(n) operations. The follow-

ing program, that looks very similar requires only O(logn) operations.

z:=10

WHILE y > 1 DO

z=z4z
y = y/2
END WHILE

In order to avoid such problems, we “unroll” the loop structure. This means that the
program is represented as a tree, possibly an infinite tree. The time complexity of a given
input is the length of the path in the tree traversed by the input. We would consider

only finite trees.

After the above motivation, we can give a precise definition of the computation tree

model.
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Unlike much of the pr s research, our work concentrates on functions with a
constant number of input variables. This allows us to get a better understanding of the
complexities that are involved with the floor operation. Since there are only a constant
number of inputs, we define the complexity measures as a function of the complexity of
the input, e.g., the number of bits that represent an integer input. We develop a general
technique for deriving lower bounds for such functions. In combination with the lower
bounds, we show upper bounds that use the floor function in new and novel ways. In
some cases we are able to derive matching lower and upper bound, up to a constant

multiplicative factor.

We develop a general technique to handle functions of a single n-bit integer input.
Using this technique we derive Q(y/log n) lower bounds for problems such as computing
lloglog z|, deciding if the input is a perfect square (i.e. whether its square root is also an
integer), and other problems. For computing |loglog =], we give a O(y/Togn) algorithm,
and thus show that this lower bound is tight. (Note that using only rational operations,

computing |log log z| requires ©(logn) operations.)

We extend this technique to handle two variable functions, and show that computing
the greatest common divisor of two integers requires a non-constant number of operations.
More precisely, we show an 2(log logn) lower bound for computing the greatest common
divisor of two n-bit integers. This lower bound holds even if we restrict our attention to

deciding if a pair of integers are relatively prime or not.

We also develop a lower bound technique for approximating real valued functions.

th

We consider approximating the s root of a real number from the interval [1,2], on

the “average”, where s is a fixed constant. We define an average approximation by
considering the function which gives the absolute difference between the approximated

value and the correct value, for each z € [1,2], and integrating this function over the

<

interval [1,2]. The value of this integral is the “average error” of the approximation.
g g pPp

th

We show that in order to approximate the s* root of an input from [1,2], such that
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At the beginning of this decade, a general technique, based on topological arguments,
was developed in [BO83, SY82]. The technique relates the logarithm of the number
of connected components of a decision problem and the number of rational operations
the problem requires. Based on this technique, many problems, whose inputs are either
real or rational numbers, have been given tight bounds. This technique, under some

restrictions, was extended to handle integral input by [Yao89].

Another model that uses abstract arithmetic operations, rather than explicit bit op-
erations, is the strongly polynomial model. The motivation for this model is to achieve
polynomial time algorithms that would not depend on the representation of the input.
This would allow inputs with infinite representation, as in the case of real numbers. The
aim is that the number of operations would be polynomial in the number of inputs, and
not depend on the size of the input. Grétschel, Lovasz, and Schrijver, in their book “Ge-
ometric Algorithms and Combinatorial Optimization”, asked if there exists a strongly
polynomial algorithm for the greatest common divisor of two integers. (See [GLS88],
pp. 32-33, p. 225.) Notice that since there are only two integer inputs to the problem,
any strongly polynomial algorithm for this problem must have a constant number of

arithmetic operations.

There are two “standard” sets of operations that are considered in strongly polynomial
computations. The weaker model considers only rational operations, i.e. {+,—,*,/}.
The more powerful model has an additional “rounding down” operation (i.e. floor).
Stockmeyer [Sto76] proves an §2(n) lower bound for deciding if an n-bit integer is odd
or even, in the weaker model, where only rational operations are allowed. We show in
this work that there is no strongly polynomial algorithm for the greatest common divisor
problem in the stronger model, where rounding operations are allowed. Qur result implies

that strongly polynomial time is different from polynomial time.

When defining strongly polynomial computations one normally restricts the size of

the integers involved in the computation to have size polynomial in the size of the original
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common divisor of two integers requires a non-constant number of operations; such
a lower bound would separate polynomial time and strongly polynomial time.

We resolve this open problem and show that there is no computation tree that
computes the greatest common divisor in a fixed number of operations; in fact,
we prove an {(loglogn) lower bound for computing the greatest common divisor
of two n-bit integers. Thus separating polynomial time and strongly polynomial
time.

3. Approzimation problems. In this category we consider the complexity of computing
an approximation to the s* root of a real number. The notion of approximation

that we consider is “on the average”, which is modeled by an L; norm. We show a
Q(y/loglog 1) lower bound for approximating the s* root of inputs in the interval

[1,2], within € on the average. (The inputs to the computation, in this case, is the
number for which the s* root is approximated.)

We also show interesting upper bounds. Using Newton’s method one can approx-
imate the s* root in O(loglog 1) rational operations, and this bound is tight (for
rational operations). Using the floor function, one can accelerate the computation,
and compute an approximation in (,/loglog %) operations. (The input to the com-

putation, in this case, are both the number for which the s* root is approximated,
and the error parameter e.)
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