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Optimistic Concurrency Control 
for Nested Distributed Transactions 

by 

Robert Edward Gruber 

Abstract 

Optimistic concurrency control techniques allow atomic transactions (or actions for 
short) to execute without synchronization, relying on commit-time validation to ensure 
serializability. Previous work in this area has focussed on single-level actions. This thesis 
extends previous work on optimistic concurrency control to distributed systems with nested 
actions. 

The thesis presents two contrasting models for managing nested actions, which we call 
the fixed action model and the fixed object model. In the fixed action model, an action 
executes at only a single network node; if an action accesses an object whose storage is 
provided by another node, it brings a copy of the object to its node. In this model, caching 
copies of non-local objects can be used to improve performance by reducing the number of 
non-local object requests. We show that optimistic concurrency control has an advantage 
over pessimistic concurrency control with respect to this object caching. In the fixed object 
model, actions can span network nodes: an action at one node can start a nested action 
at another node. However, an object's state is never moved from the node providing its 
storage. VVhile there is a clear reason for using optimistic concurrency control for systems 
following the fixed action model, there is no clear reason for choosing either optimism or 
pessimism for systems following the fixed object model; however, the development of this 
model is an important step in the study of hybrid models. 

Keywords: Concurrency control, Optimistic concurrency control, Transactions, Nested 
transactions, Atomicity, Commit protocols, Distributed computer systems. 

This report is a minor revision of a Master's thesis of the same title submitted to the 
Department of Electrical Engineering and Computer Science on May 12, 1989, in partial 
fulfillment of the requirements for the degrees of Master of Science in Computer Science 
and Engineering and Bachelor of Science in Electrical Engineering and Computer science. 
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Chapter 1 

Introduction 

Optirn istic concurrency control techniques allow atomic transactions (or actions for short) to 

execute without synchronization, relying on commit-time validation to ensure serializability. 

Previous work in this area has focused on single-level actions for both centralized and 

distributed systems. This thesis extends previous work on optimistic concurrency control 

to distributed systems with nested actions. 

The thesis presents two contrasting models for managing nested actions, which we call 

the fixed object model and the fixed action model. These models mirror the two basic 

approaches that have been taken by the designers of transaction systems. In the fixed 

action model, an action is restricted to execute at a single network node; if an action 

accesses an object whose storage is provided by another node, the action brings the object's 

state to its node. When an action commits, its updates are sent to the nodes where the 

updated objects are located so that those nodes can install the updates. In the fixed object 

model, actions can span network nodes: an action at one node can move to another node. 

However, an object's state is never moved from the node providing its storage; all accesses 

occur locally, and at commit time each node where updates were performed is asked to 

install those updates. Informally, in the fixed action model the objects move to the actions, 

while in the fixed object model the actions move to the objects. 

\i\Thile there have been numerous studies comparing optimistic techniques to the more 

common pessimistic techniques, these studies have focussed on single-site systems, or on 

systems similar to the fixed object model. As a result, they have ignored a significant 

advantage of optimistic concurrency control for systems similar to the fixed action model. 

In that model, it is natural for nodes running actions to cache copies of non-local objects, so 

that multiple accesses to a given object (by one or more actions) will require only a single 

netv.lOrk request for the object's state. In a pessimistic system, it would be necessary to 

9 
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keep such object caches coherent. In practice, this would mean requesting a non-local lock 

before allowing an access to a local cached object. Since a lock request is almost as costly as 

requesting the entire object, caching in a pessimistic system will not significantly improve 

performance. In an optimistic system, however, there is no coherency requirement: an 

out-of-date object can be read, since commit-time validation will detect this. Thus, cached 

values can be accessed asynchronously with respect to the commit of object updates, and 

caching should result in significant performance gains. 

For systems like the fixed action model, optimistic concurrency control has an advantage 

over pessimistic concurrency control. For systems following the fixed object model, although 

there are currently no clear reasons for chasing one concurrency control method over the 

other, the development of this model is an important step in studying two interesting 

hybrid models - a combination of the fixed action and the fixed objects models, and a 

hybrid pessimistic-optimistic system with fixed object restrictions. 

The next section provides motivation for nested actions and describes m more detail 

why it is advantageous to use optimistic methods for systems like the fixed action model. 

1.1 Motivation 

Atomic transactions (or actions for short) are a mechanism for building reliable distributed 

systems in the presence of failures. They provide two important properties: recoverability 

and serializability. Recoverability means that actions have an "all-or-nothing" behavior: an 

action either executes to completion, in which case we say it commits, or it has no effect on 

the persistent state of the system, in which case we say it aborts. Serializability means that 

the actual effect of executing actions concurrently is equivalent to the effect of executing 

those actions in some serial order. 

Recoverability protects us from failures, while serializability allows us to reason about 

concurrency by considering the effect of each action separately. For example, consider a 

banking system, where the persistent state of the system is a set of account balances. To 

transfer money from account A to account B, we test balance A to see if there is enough 

money: if there is, we decrement A and increment B. If a failure were to occur midway 

through this process, money could be lost from the system. However, if we run the test, 

decrement and increment as a single action, then the recoverability property guarantees 

that either the action will commit, in which case both accounts are updated, or the action 

will abort, in which case no change to the accounts occurs. If two identical transfers from 
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A to B run concurrently, we might worry that both could pass the test for sufficient funds 

(observing the same initial value), even if there were not enough money for both transfers. 

However, by running each transfer as an action, serializability guarantees that the effect of 

these actions must be equivalent to running one action and then the other, in some order, 

so we do not have to concern ourselves with potential problems arising from concurrent 

execution. 

Nested actions (or subactions) are a natural generalization of top-level actions (or 

topactions) as described above. A subaction is an action that is started within another 

action. Nesting can occur to an arbitrary depth; the resulting structure can be described 

using action trees, and we use standard tree terminology (such as parent, child, sibling, and 

so on) when discussing relationships between actions. Like the topactions described above, 

subactions have the recoverability and serializability properties. Usually, an action that 

starts some su bactions will wait for them to complete (commit or abort) before continu

ing. A subaction fails independently of its parent action, providing a kind of checkpointing 

mechanism: the work done by a parent action prior to starting a child will not be lost if 

the child aborts. A parent action can start one subaction at a time, forcing the subactions 

that it executes to run in a given order, or it can start several subactions at the same time, 

allowing them to run concurrently. The children of a given parent action are serialized with 

respect to each other, i.e., each set of sibling actions is serialized. Thus, just as topactions 

allow us to reason about concurrency at the system level, subactions allow us to reason 

about concurrency within an action. 

The mechanism in an action system that guarantees the serializability property of actions 

is called a concurrency control mechanism. Two basic approaches to concurrency control 

have been studied: pessimistic concurrency control and optimistic concurrency control. 

Herlihy [Herlihy 1986] has informally described the difference between the two approaches 

as the difference between asking permission first and apologizing later. In a pessimistic 

system, we assume that actions will conflict, and we use some mechanism (such as a locking 

mechanism) to ensure that the actions in the system can always be serialized - as an 

action executes, it is not allowed (e.g., because of the locking rules) to conflict with any 

other active action, and all actions can therefore be serialized. In an optimistic system, we 

assume that actions will not conflict; concurrent actions are allowed to execute without any 

synchronization. \iVhen an action attempts to commit, it enters a validation phase where 

we verify our optimistic assumption. An action passes validation only if it can be serialized 
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with respect to other actions in the system. Actions that pass validation are allowed to 

commit; the others are aborted and restarted. 

In pessimistic systems, actions can delay unnecessarily. In addition, pessimistic systems 

can get into deadlock situations, where a group of actions is unable to proceed because each 

action in the group is waiting for a lock held by some other action in the group. In optimistic 

systems, actions that fail validation abort and restart, redoing work that would not be 

redone in a pessimistic system. In addition, while optimistic systems can not deadlock, 

they can suffer from livelock: a long-lived action can continually abort and restart, failing 

validation each time because of a continuous series of short-lived actions that conflict with it. 

A number of studies [Agrawal 1983, Badal 1981, Carey 1983, Franaszek & Robinson 1985, 

Menasce & Nakanishi 1982, Tay et al. 1984] have attempted to compare the performance 

of the two approaches; however the results are still inconclusive. Both approaches work well 

when there are few conflicting actions in the system, while neither approach works very well 

when there are many conflicting actions in the system. At best, we can say that pessimistic 

systems seem to be slightly more robust under a wider range of system parameters (average 

number of concurrent actions, percentage of read-only actions, average length of an action, 

etc.). 

The above studies have not considered systems like the fixed action model, where we 

do object caching. In these systems, there is a distinct advantage to using an optimistic 

approach. In the fixed action model, when an action accesses a non-local object, it acquires 

a copy of the object by sending a request over the network. Thus, an action brings to one 

network node copies of all of the objects that it accesses. Since a number of different actions 

running at the same node might access an object within a short span of time, it makes sense 

for a node to cache the object copies that it has requested. If a non-local object's state 

is cached locally, an action would like to access this state rather then using a network 

request. However, the choice of concurrency control mechanism affects the performance of 

accessing a cached object. In a pessimistic system with locking, it is necessary to acquire 

the appropriate lock (by sending a lock request) before accessing an object. Thus, a round

trip network delay is required even when reading a cached object. This delay is necessary 

to ensure two things: the action must read (or modify) an up-to-date copy of the object, 

and the locking rules must be maintained. Note that a network lock request is almost as 

costly as a request for a copy of the object, since the cost of a message is independent of 

message size, for objects of reasonable size. Thus, object caching becomes almost useless in 
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a pessimistic system. In contrast, in an optimistic system an action can read an out-of-date 

object copy; this is exactly what validation is designed to detect. Thus, an action can read 

cached objects without using any network messages. 

In fixed action systems, optimism helps us with two factors that play important roles in 

distributed system performance. One factor is delay due to synchronization with a remote 

location: where possible, we would like to avoid having to block while a round-trip message is 

sent to another node. Above, we saw that optimism allows us to avoid the delay associated 

with sending lock requests. The second factor is the number of messages that have to 

be processed by the system: as more messages are sent, message transmission times and 

message processing times both increase. In a pessimistic fixed action system, we would have 

to send one message for each lock request, along with some messages at action commit time. 

\Vith an optimistic approach, we would only send messages at commit time, assuming all 

objects needed by the action were already cached. (The optimistic commit-time messages 

would be larger than the pessimistic commit-time messages, since they must include some 

extra information used for validation. However, the number of messages is more important 

than the size of each message.) 

An interesting hybrid optimistic-pessimistic method is used by Symbolic's Statice system 

[Weinreb et al. 1988]. Statice is essentially a pessimistic version of the fixed action model. 

As an action reads or writes pages, the pages are sent to the action's node; nodes cache 

pages across actions to reduce the number of network page requests. The system uses read

write locking, so it is mostly a pessimistic system. However, when accessing a cached page, 

it optimistically assumes that it will be able to get the lock for the page - it sends a lock 

request, but does not wait for the response before reading the page. If the lock request is 

denied, the requesting action is aborted and restarted [Gerson 1989]. Thus, Statice is using 

optimism in one of the two places where it has an advantage over pessimism: it avoids the 

synchronization cost of lock requests. Using a fully optimistic approach results in fewer 

messages, since the lock requests do not need to be sent. (However, it should be possible 

to "piggy-back" lock requests on other messages, such as commit-time messages or requests 

for pages that are not cached. Alternatively, several lock requests could be grouped into a 

single message. Using optimism, the lock requests become asynchronous, and this kind of 

piggy-backing is possible.) 

There is currently no fully optimistic system that supports subactions. In fact, the 

combination of optimism and nested actions has never been described in the literature. 
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In this thesis, we explore this combination. As we have shown here, the most interesting 

application of optimism will be in systems like the fixed action model. A number of groups 

are currently (or will soon be) building object repositories, or object-oriented databases (for 

example, see [Hornick & Zdonik 1987] and [Moss & Sinofsky 1988]). These object reposi

tories are similar to the fixed action model; the designers of these repositories will clearly 

be interested in that model. Caching will be used, and, as we argue here, an optimistic or 

hybrid approach is called for. 

For models such as the fixed object model, there is currently no clear reason to consider 

an optimistic approach over a pessimistic one. The model is inclu <led in the thesis for 

two reasons. First, developing the model allows us to compare it to current pessimistic 

approaches with the same fixed object restrictions. We believe that there are no clear 

disadvantages to using optimism in a system with fixed object restrictions. Second, although 

it may not be worthwhile to use strict optimism for a pure fixed object model, we would 

eventually like to explore two interesting combinations: the combination of the fixed action 

and fixed object models, and the combined use of optimism and pessimism in a system with 

fixed object restrictions. By developing the fixed object model, we have a starting point for 

exploring these hybrid models. 

1.2 Related Work 

The earliest concurrency control scheme to use validation may be that of [Thomas 1978]. 

Kung and Robinson proposed a centralized optimistic concurrency control method and 

gave arguments for such an approach in [Kung & Robinson 1981]. Since then a num

ber of papers have been written that have: extended optimistic concurrency control to 

distributed systems [Ceri & Owicki 1982]; proposed new validation techniques that can 

serialize more actions than Kung and Robinson's method [Lausen 1983, Herlihy 1986]; 

studied alternative validation methods [Harder 1984]; and compared optimistic and pes

simistic techniques [Agrawal 1983, Badal 1981, Carey 1983, Franaszek & Robinson 1985, 

Menasce & Nakanishi 1982, Tay et al. 1984]. 

Nested actions are proposed in [Davies 1978, Reed 1978]. Several approaches to us

ing pessimistic concurrency control for nested actions have been studied. Read-write 

locking for nested actions is described in [Moss 1981] and has been implemented by sys

tems such as Argus [Liskov 1984, Liskov et al. 1987a] and Camelot [Spector et al. 1987, 

Spector & Swedlow 1987], using locking approaches that are variants of Moss's approach. 
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Reed describes a static timestamping approach to concurrency control for nested actions 

in [Reed 1983].1 Recently, a formal model for studying nested actions has been developed 

[Lynch et al. 1988]. 

Lausen has proposed a concurrency control method that combines optimistic and pes

simistic techniques [Lausen 1982]; recent object repository (object-oriented database) sys

tems, such as ObServer [Hornick & Zdonik 1987] and Mneme [Moss & Sinofsky 1988] pro

vide support for this sort of combination. 

As we mentioned above, Symbolic's Statice system [Weinreb et al. 1988] uses a hybrid 

optimistic-pessimistic approach, where reading cached pages occurs asynchronously with 

respect to page updates [Gerson 1989]. Servio Logic's Gemstone system [Maier et al. 1986] 

is a fully optimistic system that is similar to the fixed action model and does caching as 

we described above. It is the only fully optimistic system we know of that follows the fixed 

action model; however, there are two differences between our model and the Gemstone 

system: Gemstone does not have nested actions, and there is only a single network node 

where persistent objects are stored. The fixed action model allows for any number of nodes 

to store objects. 

To improve the performance of read-only actions, and to ensure that actions always 

see a consistent state of the objects in the system, it is possible to retain multiple ver

sions of committed objects. Multi-version schemes have been studied for both optimistic 

[Agrawal et al. 1987] and pessimistic [Weihl 1986] systems. The Agrawal paper also dis

cusses parallel validation issues; all of our parallel validation algorithms are based on ideas 

presented there. 

An important part of a concurrency control mechanism is its commit protocol, which in 

a distributed system is a protocol that ensures that the nodes participating in an action 

either all commit or all abort. To commit top-level actions, our models use a variation of a 

standard two-phase commit protocol [Gray 1979, Mohan & Lindsay 1983, Lampson 1981, 

Lindsay et al. 1979, Lindsay et al. 1984]. Non-blocking and three-phase commit protocols 

have also been studied [Skeen 1981, Dwork & Skeen 1983]. 

Two-phase commit and the other protocols mentioned above ensure that all partici-

1 In a timestamping approach, an action's serialization order is chosen when it is created; at each read or 

write, the action verifies that its in tended access is consistent with this order. This scheme is similar to both 

pessimistic and optimistic schemes. Like pessimistic schemes, an action is synchronized at each step; an 

action can end up delaying, waiting for another action to commit or abort. Like optimistic schemes, there 

can be no deadlocks, but there can be livelock, where an action is continually aborted and restarted. 
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pants find out about the agreed-upon outcome. Such a protocol is clearly necessary for 

topaction commit. However, these protocols are expensive, and we would like to avoid us

ing them for subaction commit. It is not necessary for all participants in a subaction to 

learn about its outcome at the time that the subaction commits or aborts. All participants 

will eventually learn the outcome at topaction commit time; thus the subaction commit 

protocol need not guarantee the same thing, and we can design protocols for subaction 

commit where participants of a subaction learn about its outcome in a "lazy" fashion. Spe

cial protocols for subaction commit have been studied for fixed object pessimistic systems 

(Liskov et al. 1987a, Perl 1988]. 

1.3 Roadmap 

The remainder of the thesis is organized as follows. Before presenting our models, we 

describe in Chapter 2 the model of nested action systems upon which we base our protocol. 

vVe then use a process of step-wise refinement to present our models. Chapter 3 presents 

a basic optimistic concurrency control model for a single-site system with topactions only. 

It describes optimistic concurrency control in more detail and introduces relevant terms. 

Chapter 4 extends this model to include nested actions, still for a single-site system. We then 

present our distributed system models: Chapter 5 presents the fixed action model, while 

Chapter 6 presents the fixed object model. Finally, Chapter 7 gives a brief comparison 

of the two distributed models, summarizes the thesis, and mentions some areas for future 

work. 



Chapter 2 

Definitions and Model 

In this chapter we define actions, nested actions, and related terms, and we describe a 

high-level model of a distributed system, which we use for our distributed models. 

2.1 Low-level System 

At a lower level of abstraction, a distributed system is a collection of nodes connected by a 

communications network. Distinct nodes communicate with each other by sending messages 

(of unrestricted length) over the network. Nodes are typically individual computers. Nodes 

may crash or otherwise fail, although we do assume that when a node fails any messages 

it sends are detectably invalid. The network may fail by partitioning; messages may be 

lost, duplicated, delayed, or delivered out of order. We assume that failures arc eventually 

repaired: nodes eventually recover from crashes, and partitions are eventually mended. 

Nodes have access to both volatile and stable storage. Volatile storage is lost in a crash, 

while stable storage is intact upon the recovery of a node [Lampson 1981]. 

2.2 High-level System 

At a higher level of abstraction, we view a distributed system as a collection of active 

communicating entities, where each entity resides at a single node in the network. Entities 

arc resilient; with high probability, they survive crashes of their nodes (this is done, e.g., 

by storing in stable storage information necessary for recovery). 

Each entity has a message interface, which describes a set of messages to which it will 

respond. Each message has a set of inputs and results, and is similar to an operation of 

an abstract data type. Message invocation follows the semantics of remote procedure calls, 

with call-by-value semantics. Unless we state otherwise, message invocation is assumed to 
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use a communication mechanism that reliably delivers a call and corresponding response. 

(Reliable delivery has a cost associated with it; where appropriate, we point out cases where 

it is not required.) 

Each entity E has a globally unique identifier id(E). 

2.3 Objects and Object Managers 

Objects encapsulate data. For simplicity, our models assume that there are two types of 

operations on objects, read operations and write operations. A read operation observes the 

state of an object, but does not change it, while a write operation modifies the state of an 

object. Our optimistic concurrency control algorithms are based on the reads and writes 

that an action performs; i.e., they use read-write conflict detection. 

One type of entity that will exist in some form in all of our models is an object manager 

entity, or OM. Although OM's will differ from model to model, all OM's have some things 

in common. Each OM manages a set of persistent objects, storing the state of each object 

in stable storage. (Normally, an OM's stable storage will be provided by the node where the 

OM is running. There are other possibilities; for example, stable storage might be provided 

as a network service [Daniels et al. 1987, Cohen 1989].) 

An object 0 managed by object manager OM-X has an identifier, id{O ), that is unique 

across all object managers. (A typical approach is to form id{O) from id{OM-X) and an 

additional identifier that is unique within OM-X.) Associated with each object identifier is 

a version of the object that is stored in stable storage. This version is called the base version 

of the object. An OM can atomically update a set of its objects: if an update succeeds, 

each object's base version is replaced with a new base version; if the update fails, all of the 

old base versions are unchanged. 

2.4 Actions and Distributed Action Systems 

Atomic transactions are a mechanism for maintaining the consistency of data in the presence 

of concurrency and failures. While actions are important in centralized systems, and have 

been used in database work for quite some time, they are particularly useful in distributed 

systems where the failure modes are more numerous and complex. Programs that execute 

at multiple entities may partially fail, if only some of the entities crash. In addition, com

munication failures (such as network partitions) may prevent such programs from running 

to completion. Actions provide a means for the programmer to cope with such failures. 
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A distributed action system is composed of a set of communicating entities that support 

actions. Some or all of these entities will be object managers. An action runs as a process 

\vithin an entity, and delimits a computation over a set of objects managed by one or more 

OM's. Two properties of actions, recoverability and serializability, ensure that the state 

of the objects in the system remains consistent in the presence of failures. Recoverability 

means that an action either runs successfully to completion (it commits) or else has no effect 

at all (it aborts). If a failure occurs during an action, the action may simply abort, undoing 

all modifications that the computation has made. Serializability means that when actions 

are executed concurrently, the effect is as if they were run sequentially in some order. This 

allows a programmer to ignore concurrency when reasoning about the effects of an action. 

Transaction systems usually provide a third property for actions, persistence. Persistence 

means that the system ensures with very high probability that the effects of actions that 

commit will not be lost due to failures. Our models provide persistence by storing object 

state (base versions) and commit information in stable storage. 

Our models only guarantee serializability for committed actions. An action that ends 

up aborting has no effect on the persistent state of objects; however, while it is executing 

it may observe an object state that is not consistent with a serial execution of the actions 

in the system. (This is only a problem for actions that perform operations that cannot be 

unclone if the action aborts, such as writing to an output device.) 

2.4.1 Nested Actions 

A nested action is an action that is started from within another action. Actions can be 

nested to arbitrary levels, forming action trees with topactions at the roots. Actions that 

are not topactions are called nested actions or subactions. vVe use standard tree terminology 

to describe the relationships between actions, such as parent, child, sibling, ancestor and 

descendant. For convenience, we define an action to be its own ancestor and descendant, 

while an action's proper ancestors and proper descendants do not include the action itself. 

A nested action system will have one topaction tree for each topaction in the system. 

It can be useful to consider the set of all topactions in the system to be siblings with a 

common parent; the common parent is the root of a single global action tree. 

Actions are named by action identifiers. An action identifier is structured and contains 

information about the action tree of the action it describes. In particular, an action identifier 

for an action contains a name for the action, the entity at which the action executes, and 
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A@OM-1 

A.1 @OJl.1-2 A.2@0M-3 

A.1.1 @OM-4 A.1.2@0M-5 

Figure 2.1: An Action Tree. 

(except for topactions) the identifier of the action's parent action. (Thus, an action identifier 

includes the action identifiers of all of its proper ancestors.) For example, in Figure 2.1 we 

show an action tree for topaction A: each action identifier indicates at what entity the 

action is running, and each subaction's identifier should be thought of as including its 

parent's identifier, which we indicate by using a nested numbering scheme. (In the figure, 

each action is running at a different entity. This can only occur in the fixed object model 

only; in the fixed action model, all actions in a topaction's tree run at the same entity.) 

Nested actions are useful for obtaining checkpoints and managing concurrency within an 

action. A subaction fails (aborts) independently of its parent. Thus, an action can create 

a subaction to attempt some computation, and if that computation fails, either go on with 

other computations or create another subaction to retry the computation. In this way, the 

parent's state at the time it starts the subaction is "checkpointed". 

Concurrency within an action is obtained by allowing a parent to start concurrent subac

tions. \i\Thile a child action is running, its parent is suspended. A parent action can choose 

whether or not to run its children concurrently. For example, if action A in Figure 2.1 

wanted A.1 to execute strictly before A.2, it would first start just A.1: A would suspend 

until A.1 (and its descendants) had committed or aborted up to A. After A resumed, it 

would start A.2. If A wanted to execute both A.1 and A.2 concurrently, it could start 

them both; it would be suspended until they both either committed or aborted. 
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Siblings are serialized at each level of the action tree. Thus, concurrent siblings do not 

interfere with one another. 

In the fixed action model, all descendants of a topaction must execute at the same entity 

as the topaction; a parent action always knows when its child has finished executing. In the 

fixed object model, however, a parent action at one entity can start a subaction at another 

entity; it then waits for a message from the other entity indicating that the subaction is 

finished. This message may never arrive, because of network or node failures; the parent 

can decide (after waiting for some time period) to abort the subaction and continue. 

The commit of a subaction is always relative to its parent. If a subaction commits and 

its parent aborts, the effects of the subaction will be undone. \i\Then an action A and all 

its ancestors up to its topaction commit, we say that A has committed to the top. If A's 

topaction then commits, we say that A has committed through the top. 



Chapter 3 

Basic Single-Site Model 

In this chapter, we describe a basic optimistic concurrency control model that uses read

write conflict detection. The model is for single-level actions ( topactions) executing in a 

single-site transaction system. It is based on the original optimistic algorithm proposed 

in [Kung & Robinson 1981]. In that algorithm, an action's start time is used to represent 

the read time of each object in the action's read set. In fact, for a long-lived action, the 

read time for a given object may be significantly later than the action's start time. For this 

reason, our basic model keeps track of an initial read time for each object in an action's read 

set. \Vhile this takes more space, it prevents some actions from being aborted unnecessarily. 

Except for this change to the algorithm, the model presented here is simply a re-expression 

of prior work; our original work begins in the next chapter. Kung and Robinson present 

both a serial and a parallel validation algorithm; we do the same here. All of our models owe 

a great deal to a paper by Agrawal et. al. [Agrawal et al. 1987], which presents optimistic 

algorithms for a single-level multiversion system. In particular, we use the same approach 

to parallel validation. 

3.1 Shadow Versions 

In this and the following chapter, we present models for a centralized system. A centralized 

system consists of one entity, an OM executing at a single node. The OM manages both 

stable storage and all actions in the system. Each object 0 managed by the OM has a 

unique identifier, id(O). The state of 0 that is stored in stable storage is called the base 

version of 0. 

In the model presented in this chapter, only top actions are allowed. A topaction begins, 

reads and writes one or more objects, and then attempts to commit. (A topaction can also 

explicitly abort.) If a topaction does not perform any write operations, \Ve say that it is 
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read-only; otherwise we say that it is read-write. 

The updates of a read-write topaction are not performed directly on the base versions 

of the objects that it modifies. Instead, at the time when a topaction T first attempts to 

write an object 0, a private copy of the base version of 0 is created for T's use, and T 

makes all modifications on this private copy. We call this copy a shadow version; while T 

is executing, T's version of 0 shadows the base version, meaning that T reads and writes 

the shadow version rather than the base version. If T aborts, all of its shadow versions 

are thrown away, and the persistent state of the database (the state of the base versions) 

is not changed. If T commits, its shadow versions replace the base versions that they arc 

shadowing. Installing shadow versions is clone atomically: either it succeeds completely, or 

not at all. Thus, shadow versions provide the recoverability property of actions. If an action 

commits, all of its updates are applied; otherwise none of them are. 

Note that an action can only read the base versions of objects and its own shadow 

versions. Thus, if a topaction Ti observes a modification made by another topaction T2 

to an object 0, T2 must have committed before Ti read 0. 

Figure 3.1 gives an example of the use of shadow versions. Part (a) shows a system with 

three objects, x, y, and z, and two topactions, A and B. The current base versions for x, y, 

and z are integer values (objects can be of any type in general). Topaction A has modified 

objects x and y (it has incremented each of them), while topaction B has modified object 

z. At this point, neither action has attempted to commit. Ignoring the reasons, suppose 

action A commits and action B aborts. Part (b) shows the system after action A commits: 

A's shadow versions of x and y have been moved up to become new base versions. Part (c) 

shows the system after action B aborts: its shadow versions have been thrown away, and 

the base version for object z is unchanged. 

3.2 Overview of Validation 

When a topaction T attempts to commit, it enters its validation phase. If it passes valida

tion, it is allowed to commit; otherwise it is aborted, and its shadow versions are discarded. 

An action that fails validation will usually be restarted; i.e., a new action will be started 

that attempts to perform the same computation. If a read-write action commits, it enters 

an update phase, where it installs its shadow versions as base versions. 

Validation ensures that the net effect of all of the topactions that are allowed to com

mit is the same as the net effect of executing those topactions in some non-overlapping 
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order. There are two basic approaches to validation: backward validation and forward 

validation [Harder 1984]. In backward validation, a validating action V is compared to 

already-committed actions; if any of these already-committed actions has invalidated V, 

V fails validation. In forward validation, a validating action V is compared to currently 

active actions; if allowing V to commit will in validate any of these active actions, V fails 

validation. 

In this thesis, we use backward validation for our models. Forward validation requires 

all active actions to block while a validating action is compared to them. This might be 

reasonable for the single-site models, but it is not feasible for our distributed models. In 

our distributed models, validating a topaction involves a distributed commit process that 

can be quite lengthy; it is not feasible to block other topactions whenever some topaction is 

performing a distributed validation. For backward validation, a validating action does not 

cause active actions to block, since it is compared to already-committed actions. 

In this model, a topaction T validates in the following manner: if T has read a base 

version of an object that has since been replaced with a new base version, then T fails 

validation; otherwise, T succeeds. Intuitively speaking, if T has read an out-of-date value, 

then T fails validation. 

For now, we assume that topactions may execute concurrently, but that they must 

validate serially (only one top action validates at a time). Here is another way of viewing 

validation for topaction T: if T were to be re-executed in zero time, at the current instant 

in time, would it read the same base versions that it read when it actually executed? If 

the answer is yes, then the actual execution of T is equivalent to executing T at the time 

that it is validated. The effect of executing all committed actions is therefore equivalent to 

executing them one at a time, in the order that they validate and commit: we say that the 

topactions are serialized in commit order. 

Below, two validation algorithms are described that implement this simple validation 

technique. The first algorithm validates actions serially, and is a straightforward implemen

tation of what we have already described. For this algorithm, the validation and update 

phases must be placed in a critical section, resulting in a bottleneck. The second algorithm 

validates actions in parallel, thus avoiding the bottleneck. 
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Topaction Treads Object 0: 

if id( 0) tf_ rs(T) then add the pair [id( 0), tnc] to rs(T) end 
if T has a shadow version of 0 then 

read the shadow version 
else 

read the base version 
end 

Topaction T writes Object 0: 
if id(O) tf_ ws(T) then 

add id( 0) to ws(T) 
create a new shadow version of 0 for topaction T from 0 's base version 
end 

modify T's shadow version of 0 

Figure 3.2: Read and Write - Basic Single-Site Model 

3.3 Data Structures 

The following data structures need to be maintained. First, there is a monotonically in

creasing transaction counter, tnc, which keeps a count of committed read-write actions. For 

each topaction T, there is a read set rs{T) and a write set ws(T). Finally, for validation 

purposes, the set rw-committed contains information about each committed read-topaction: 

for read-write action RW, it contains a pair of the form [ws(RW), et(RW)], where ws(RW) 

is RW's write set and et(RW) is RW's end time. (A read-write action's end time is chosen 

when its updates are installed.) 

3.4 Read and Write 

Figure 3.2 summarizes the rules for reading and writing an object. When topaction T first 

reads an object 0, the pair [id(O), tnc] is added to T's read set. This pair indicates 

what object was read and when; the transaction counter is used as a "clock" for recording 

read times. Our algorithm differs from Kung and Robinson's: their read sets only contain 

object identifiers, and the action's start time is used as the read time of each object in rs{T). 

Their algorithm works because the start time is an underestimate of the actual read time; 

however, actions can unnecessarily fail validation because of this sirn plification. When T 

first writes an object 0 (and a shadow version is created), id{O) is added to T's write set 

(no write time is recorded). 
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To make our validation algorithms simpler, we assume throughout the thesis that an 

object is always read before it is written: actions do not perform "blind writes". This is not 

a limiting assumption; to include blind writes, we could simply add an appropriate entry 

to an action's read set before performing a blind write. (VVe did not take this approach 

because would complicate the descriptions of the write operation.) 

3.5 Serial Validation 

Pseudo-code for our serial validation algorithm is given in Figure 3.3. The algorithm works 

as follows. vVhen a topaction T attempts to commit, it enters validation. T's start time, 

st(T), is set to the earliest read time in rs(T). Tis then compared to each committed read

write action RW that ended after T started. If an object in T's read set is also in RW's 

write set, and if RW committed (installed its write to the object) after the read occurred, 

then T fails validation: it will abort and restart. If T does not fail validation, it commits. 

\Vhen a read-write action T commits, it is assigned an end time, et(T) ( tnc is incremented, 

and T's end time is set to tnc's new value), its shadow versions are installed as base versions, 

and a pair containing its end time and write set is added to the set rw-committed. (\,Yhen 

a read-only action passes validation, it has no further work to do to commit.) 

This algorithm uses a single critical section to ensure that two topactions cannot execute 

the validation and update process concurrently. This creates a bottleneck, and a parallel 

a1gorithm is clearly needed. 

Figure 3.4 gives an example of validation. In part (a), topactions A and B are still 

active. Action A has read objects x and y, and modified object x, while action B has read 

object x. Since tnc is 25, 25 read-write actions have committed since the system started. 

However, none of these actions invalidated either A or B; to keep the figure simple, we 

do not show their entries in the set rw-committed. Part (b) shows what happens when 

action A commits. Action A passes validation: as we just mentioned, there are no actions 

in rw-committed that invalidate it. A is a read-write action, so it is assigned an end time 

(26) after tnc is incremented, its shadow versions are moved up to become base versions 

(not shown in the figure), and a pair containing its end time and write set is added to 

nu-committed. VVhen action B attempts to commit, it will fail validation, since it has read 

an out-of-date version of object x. 
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Topaction T Attempts to Commit: 
begin critical section 
st(T) := the earliest read time in rs(T) 
for each [ws(RW), et(RW)] pair in rw-committed with st(T) < et(RW) do 

for each [readobj, readtime] pair in rs(T) do 
if readobj E ws(RW) and readtime < et(RW) then signal FAILED end 
end 

end 
if T is read-write then 

tnc := tnc + 1; et(T) := tnc 
install shadow versions of T as base versions 
add the pair [ws(T), et(T)] to rw-committed 
end 

(T is now a committed topaction) 
end critical section 

Figure 3.3: Serial Validation ---- Basic Single-Site Model 

3.6 Parallel Validation 

To convert our serial validation algorithm to a parallel algorithm, we introduce a validating 

queue, VQ. VQ contains entries for topactions that are either in their validating phase or 

have completed validation but have not yet installed their shadow versions. En tries in the 

queue can validate concurrently, but the updates of successfully validated topactions are 

applied in the order that the actions entered the queue: topactions are still serialized in 

commit order, i.e., the order they entered the queue. 

Upon entry into the queue, a topaction's entry type is set to VALIDATING. If an action 

passes validation, its entry type is set to READY, which means it is ready to have its updates 

applied; if an action fails validation, its entry is removed from the queue. Whenever the 

topaction at the head of the queue has type READY, it is removed and its updates are 

applied. 

Figure 3.5 gives a pseudo-code implementation of the parallel validation algorithm. A 

topaction T must still validate against the committed topactions in rw-committed. In 

addition, T validates against all topactions that are in front of it in the queue. Since both 

the queue and rw-committed can change while Tis validating, when T first enters the queue 

it takes a "snapshot" (makes copies) of VQ and rw-committed. If a topaction from either of 

these sets has a write set that overlaps T's read set, then T fails validation. Note that the 

transaction counter is incremented as a topaction's updates arc installed (not when each 
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(a) Topactions A a.nd Bare active. 

tne: 26 

rw-comaitted: {} 

Topactioa A ToJ*ctica B 

n(.l): { [x,20], [J ,22]} 111<•>: {b.2tl} 
••Ci): {z} n(I): {} 

(b) Topaction A commits with end time::: 26. 

ue: 28 

n-eomaitted: {[{z} ,28]} 

l 
Toput-t-. B 

ra(I): {[x,21l} 
n(I): {} 

Topaction B will fail validation when it attempts to commit. 

Figure 3.4: Validation Example - Basic Single--Site Model 
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read-write action enters the queue); the counter's value is used for read times, and therefore 

must indicate the end time of the latest committed action to install updates. 

This parallel algorithm is equivalent to the serial algorithm, except for one detail. Con

sider the case where a topaction Tl conflicts with a topaction T2 that is in front of it in 

the queue, but T2 has not finished validating yet. (Assume this is the only conflict for Tl.) 

The algorithm given aborts Tl; it assumes that T2 will commit, and therefore Tl must 

abort. However, if T2 fails validation, then Tl can commit. To be identical to the serial 

algorithm, the parallel algorithm would wait to see whether T2 passed validation before 

deciding the validation outcome for Tl. 

There is a final synchronization issue that should be mentioned here. When a read-write 

commits, inc is incremented and shadow versions are installed as base versions. During this 

update process, actions can not read base versions, i.e., a base version/inc update must 

appear to be atomic with respect to reading base versions (and recording read times). 

Throughout this thesis, we assume that this restriction is enforced; however, we do not 

show critical sections for this purpose in our figures. 

3. 7 Optimizations 

In the descriptions above, we did not discuss when action information can be discarded. 

When an action aborts, all information about the action (read set, write set, start and end 

times, shadow versions) can be discarded. When an action commits, its write set and end 

time are recorded in rw-commiiied, and its shadow versions are installed as base versions; 

after this is done, all of the action's information can again be discarded. Finally, the set 

rw-commiiied can be pruned. The system can keep track of the oldest start time, OST, for 

any active topaction; all topaction entries with end times less than OST can be removed 

from rw-committed at any convenient time. 

\Ve do not want to scan an entire read set to determine an action's start time. Note that 

the first [id(O), tnc] pair to be entered in an action's read set contains the start time for 

the action; if the read set structure keeps entries in order, it will be easy to determine the 

start time. If the pairs are reordered (perhaps to make it easier to compare the set to write 

sets), then it makes sense to record the start time separately. 

By choosing the right data structure, it should be possible to avoid making a copy of 

the queue when entering validation. For example, if the queue is represented as an array, 

two pointers can be used to record the scope of the queue that a particular action must 



Topaction T Attempts to Commit: 
begin 

begin critical section 
st(T) := the earliest read time in rs(T) 
VQcopy := copy of VQ ; rw-copy := copy of rw-committed 
allocate entry E for topaction T 
E.type :=VALIDATING ; add E to VQ 
end critical section 

for each [ws(RW), et(RW)] pair in rw-copy with st(T) < et(RW) do 
for each [readobj, readtime] pair in rs(T) do 

if readobj E ws(RW) and readtime < et(RW) then exit FAIL end 
end 

end 
for each read-write topaction RW in VQcopy do 

for each [readobj, readtime] pair in rs(T) do 
if readobj E ws(RW) then exit FAIL end 
end 

end 
begin critical section 
E.type := READY 

while head(VQ).type =READY do 
let H be the topaction at the head of VQ 
remove H's entry from VQ 
if H is read-write then 

tnc := tnc + 1; et(H) := tnc 
install shadow versions of H as base versions 
add the pair [ws(H), et(H)] to rw-committed 
end 

(H is now a committed topaction.) 
end 

end critical section 
end 

except when FAIL: 
begin critical section 
delete E from VQ 
exit critical section 

signal FAILED 
end 

Figure 3.5: Parallel Validation - Basic Single-Site Model 
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validate against. Similarly, we should be able to avoid copying rw-committed. 

The performance of the validation queue can be improved by allowing READY topactions 

to move ahead of VALIDATING topactions. A topaction can move ahead of another topaction 

if its write set does not overlap the read set of the action that it is passing. As a special 

case of this queue movement, a read-only action can be placed at the front of the queue 

when it enters validation; i.e., it can be moved in front of all other actions. 

Action reordering in the validation queue can also be used to reduce the number of 

actions that fail validation: an action that conflicts with another action that is in front of 

it in the queue might be able to move in front of that action; in this case, it no longer has 

to validate against the conflicting action. This idea is explored in [Agrawal et al. 1987]. 



Chapter 4 

Single-Site Nested Action Model 

In the basic single-site model, our main contribution was to introduce a read time for each 

object in an action's read set (as opposed to using the start time of an action as the read 

time for each object in the read set). This should reduce the number of unnecessary aborts. 

Beginning with this chapter, we present original work. In the topaction-only model, 

we used shadow versions to provide the recoverability property of actions, and we used 

validation algorithms (based on read-write conflict detection) to provide the serializability 

property. In this chapter, we extend the use of shadow versions to provide the recoverability 

property for subactions, and, starting with a definition of serializability for nested actions, 

we develop several algorithms for validating nested actions in a single-site system. The 

result is a centralized system with nested actions. For an overview of nested actions, see 

Chapter 2 and Moss's Ph.D. thesis [Moss 1981]. 

As we did with the basic single-site model, we present both serial and parallel valida

tion algorithms. First, we give a single serial algorithm that can be used to serialize all 

actions. Only one action (topaction or subaction) is validated at a time. We then add some 

parallelism by introducing a validation queue. All actions in the system are placed in this 

queue, and each action in the queue validates against any of its siblings that are in front of 

it in the queue. Placing topactions and subactions in the same queue tends to slow down 

subaction processing; we also present a second parallel validation algorithm that uses two 

queues, one for subactions and one for topactions. 

Finally, we generalize our approach by showing that it is possible to partition the set 

of subactions into disjoint sets, where one validation queue can used for the validation of 

each set. Additional validation queues introduce additional concurrency, which is useful on 

a multiprocessor (or in a distributed system). 
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4.1 Shadow Versions and Nested Actions 

Recall that in the basic single-site model, when a topaction modifies an object, a shadow 

version of the object is created. We say that this shadow version shadows the base version 

of the object, which is stored in stable storage; the topaction reads and writes the shadow 

version rather than the base version. If a topaction aborts, its shadow versions are thrown 

away, and the topaction has no effect on the base versions of the objects; if a topaction 

commits, its shadow versions are installed as base versions in one atomic step. The result 

is that topactions have recoverability. 

Shadow versions can be used in the same way to provide recoverability for subactions. 

\Vhen a subaction reads an object, it reads the version of the object located at the nearest 

ancestor that has a shadow version. In other words, a subaction reading object 0 first 

checks to sec whether it has its own shadow version of O; if it does not, it checks to see 

whether its parent has a shadow version of O; if not, it checks its parent's parent; and so 

on. If no ancestor has a shadow version, then it reads the base version of the object. 

For convenience, we say that stable storage is the "parent" of all topactions in the 

system. This allows us to formulate a general rule for any action: when reading an object 

0, the version located at the nearest ancestor that has a version is read. (From now on, we 

will simply say that the nearest version is read.) 

vVe can also give a general rule for writing an object: when an action A is about to 

write an object 0 for the first time, a shadow version of the object is created for A, based 

on the nearest version. All modifications made by A to 0 are made to this shadow version. 

Thus, we can have shadows of shadows, and shadows of shadows of shadows, and so on. 

If an action aborts, its shadow versions are discarded, and it has no effect on its parent 

action's versions. If an action commits, its shadow versions arc moved up to become versions 

of its parent, possibly replacing versions already located at the parent. Note that this rule 

works for topactions: when a topaction commits, its shadow versions are moved up to its 

parent (stable storage) to become base versions. 

After a su baction commits, its parent action might abort, causing the shadow versions 

that were moved up to the parent to be thrown away. The modifications made by a com

mitted subaction only become permanent if all of its ancestors commit; i.e., if the subaction 

commits through the top. If an ancestor of a committed subaction aborts, we say that the 

effects of the subaction are undone. 

Figure 4.1 gives an example of the use of shadow versions for snbactions. Part (a) shows 
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a system with three objects, x, y, and z, and a topaction A that has modified object x and 

started t\vo concurrent subactions, A.J and A.2. A.J has modified object y, while A.2 

has modified z. Note that if A.J reads object y, it will read its own version, while if A.2 

reads y it will read A's version of y. Part (b) shows the system after A.J commits: its 

shadow version for y has been moved up to its parent, A. Note that this update will not 

become permanent unless A commits: if A commits, its shadow versions will be moved up 

to become base versions, while if it aborts its shadow versions will be thrown away. 

4.2 Defining Serializability for Subactions 

Validation is used to ensure the serializability of actions. For a system with topactions 

only, this property can be defined as follows: the net effect of all committed topactions is 

the same as the net effect of executing those topactions in some non-overlapping order. 

\Vhat is the corresponding property for a system with both topactions and subactions? 

The answer is that each set of sibling actions is serialized (where all topactions are considered 

siblings). The property can be stated as follows: for each set of siblings S, the net effect 

of executing all actions in S that commit is the same as the net effect of executing those 

actions in some non-overlapping order. 

The net effect of executing an action A includes the effects of all descendants that have 

committed up to A. Thus, if SJ and S2 are committed siblings, with SJ ordered before 

S2, then any action committed up to SJ is ordered before S2 and any action committed up 

to S2. In other words, an ordering on siblings also gives an ordering for all actions in the 

system that commit through the top. Actually, a parent action is not ordered with respect 

to its children. In practice, this is not an issue, since a parent blocks while its children run, 

and it is easy to reason about the interaction between parent and child. Formal models 

of nested actions consider each access to an object (e.g., each read or write) to run as a 

subaction. With this addition, ancestors are ordered after descendants [Lynch et al. 1988]. 

4.3 Overview of Validation 

As we mentioned above, we serialize each set of sibling actions (where the topactions are 

a set of siblings). Validation for each set of siblings is essentially equivalent top action 

validation in the basic model. Sibling actions are serialized in the order that they enter 

validation: we only allow an action to commit if it can be serialized after all of its siblings 

that have already committed. 



Function nearest-version(A, id(O)): 

if shadow( A, id(O)) exists then return shadow(A, id(O)) end 
if A is a topaction then 

return base-version(id(O)) 
else 

return nearest-version(parent-of(A), id( 0)) 
end 

Figure 4.2: The nearest-version Function - Nested Single-Site Model 
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vVe begin by presenting a serial algorithm; we then modify it as necessary to produce 

a single-queue parallel algorithm (one queue for all actions) and a double-queue parallel 

a.lgorithm (one queue for top actions and one queue for sub actions). 

4.4 Data Structures 

There is a single monotonically increasing transaction counter, tnc. Each action A 

(topaction or subaction) has a read set rs{A) and a write set ws(A), as in with the ba

sic model. Because shadow version management is more complicated, we introduce formal 

data structures for shadow versions and base versions: shadow(A, id(O)) gives A's shadow 

version for 0, if it exists, and base-version{id{O)) gives the base version for object 0. The 

function nearest-version returns the nearest version of an object (see Figure 4.2). 

4.5 Read and Write 

The rules for reading and writing an object are shown in Figure 4.3. They are similar 

to the topaction-only operations from Figure 3.2, except for the use of the nearest-version 

function. 

4.6 Comrnit-Time Update 

VVhen a sub action commits, the update phase is responsible for installing the effects of the 

subaction at its parent. As we have already mentioned, one aspect of installing its effects is 

to transfer its shadow versions to its parent. In addition, the subaction's read set and write 

set must be transferred to the parent, since the result of the commit is that the parent has 

adopted the reads and writes of the child. 

The commit-time update process for subactions and topactions is shown in Figure 4.4. 
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Action A reads Object 0: 
if id(O) rf. rs( A) then add the pair [id(O), tnc] to rs( A) end 
read nearest-version(A, id(O)) 

Action A writes Object 0: 

if id(O) rf. ws(A) then begin 
add id(O) to ws(A) 
shadow(A, id(O)) := copy(nearest-version(A, id(O)) 
end 

modify shadow(A, id(O)) 

Figure 4.3: Read and Write - Nested Single-Site Model 

Commit Action C: 

If C is a Topaction: 

As one atomic step: 
for each id(O) in ws(C) do 

base-version(id(O)) := shadow(C, id(O)) 
end 

If C is a Subaction with Parent P: 

for each id(O) in ws(C) do 
shadow(P, id(O)) := shadow(C, id(O)) 
end 

for each [id(O), rcadtime-C] in rs(C) do 
if there is an [id(O), readtime-P] in rs(P) then 

replace [id(O), readtime-P] with 

end 
else 

[id(O), min(readtime-C, readtime-P)] in rs(P) 

add [id(O), readtime-C] to rs(P) 
end 

end 
for each id(O) in ws(C) do 

if id(O) rf_ ws(P) then add id(O) to ws(P) end 
end 

Figure 4.4: Commit-Time Update - Nested Single-Site Model 



Action C with Parent P Attempts to Commit: 
begin critical section 
st(C) :=the earliest read time in rs(C) 
for each [ws(RW), et(RW)] pair in rw-committed(P) with st(C) < et(RW) do 

for each [readobj, readtime] pair in rs(C) do 
if readobj E ws(RW) and read time < et(RW) then signal FAILED end 
end 

end 
if C is read-write then 

tnc := tnc + 1; et( C) := tnc 
add the pair [ws(C), et(C)] to rw-committed(P) 
end 

commit action C 
(C is now a committed action) 
end critical section 

Figure 4.5: Serial Validation - Nested Single-Site Model 
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For a topaction, we install the action's shadow versions as base versions. For a subaction, 

we move the action's shadow versions to its parent and merge its read and write sets into 

its parent's sets. Since write sets are sets of object identifiers, the parent's new write set is 

simply the union of its current write set and the subaction's write set. Read sets, on the 

other hand, are sets of pairs of the form [id(O), readtime]. We take the union of the 

parent's read set and the subaction's read set, with the following extra rule. If both the 

sets have a pair with the same identifier, we keep only one of these pairs in the union -

the pair with the earlier read time. 

4. 7 Serial Validation 

Figure 4.5 gives pseudo-code for the validation of any action, subaction or topaction. Each 

set of siblings has its own set of committed read-write actions: if Pis the parent of C, then 

rw-committed(P) gives the committed read-write siblings of C. Thus, rw-committed(P) is 

the read-write committed set for all of P's children. If C is a topaction, then its parent 

is the special value STABLE-STORAGE, and rw-committed(STABLB-STORAGE) gives the set 

of committed read-write topactions. This algorithm is very similar to the serial algorithm 

that was presented for the basic model (Figure 3.3). 

Figure 4.6 gives a validation example. Topaction A has started three subactions, A.1, 

A.2, and A.3, where A.1 has already committed. We can see from the set rw-committed(A) 
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tnc: 27 

rw-committed(STABLE-STORAGE): {} 

Action 

rs(A.2): 

ws(A.2): 

Action A 

rs(A): {[x,20]} 

ws(A): {x} 

rw-committed(A): {[{x},25]} 

L ~ 
A.2 Action 

{[x,22]} rs(A.3): 

{} ws(A.3): 

A.3 

{ [x,27]} 

{} 
rw-committed(A.2): {} rw-committed(A.3): {} 

Action A.1 committed at time 25, updating object x. Action A.2 will fail validation, 

while action A.3 will pass. 

Figure 4.6: Validation Example - Nested Single-Site Model 
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that action A.1 ended at time 25 and updated object x. Concurrent siblings A.2 and A.3 

have both read x, where A.2 read x before time 25 and A.3 read x after time 25. Thus, 

A.2 will fail validation, while A.3 will pass. 

4.8 Parallel Validation 

In this section we present several parallel validation algorithms. The first algorithm uses 

a single validation queue for both su bactions and top actions. The second algorithm uses 

two queues, one for subactions and one for topactions. Finally, we discuss the possibility of 

introducing additional queues. 

4.8.1 Parallel Validation: One Queue 

A parallel validation algorithm is given in Figure 4.7. The algorithm works for both subac

tions and topactions. It is similar to the algorithm from Figure 3.5: it introduces a single 

validation queue, VQ, where all actions enter at validation time. Queue entries are marked 

as either VALIDATING or READY. Entries for actions that fail validation are removed. At 

the front of the queue, READY actions are removed, and their updates are applied. 

A given action C validates against two sets of siblings: read-write siblings that have 

already committed, as recorded in rw-committed(P) (where Pis the parent of C), and read

write siblings that are in VQ at the time that Centers the queue. Because rw-committed(P) 

and VQ can both change while C is validating, a "snapshot" of the two sets is taken at the 

time that C enters the queue. A complete copy of rw-committed(P) is made, and a copy 

of VQ is made that only records entries for read-write siblings of C. (In the code, the call 

rw-sibling-copy(VQ ,C) performs this selective copy.) 

4.8.2 Parallel Validation: Two Queues 

\\Thile actions can va.lidate in parallel using the above algorithm, their updates are applied 

serially, as READY entries are removed from the front of the queue. For the topaction-only 

case, this was reasonable, since all updates were to stable storage. However, for this model 

there is a problem: updates for topactions (to stable storage) take considerably longer than 

updates for subactions. If a subaction finishes validating, but a topaction that is ahead of 

it is READY, the subaction will have to wait until the topaction finishes updating before 

applying its mvn updates. 
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Action C with Parent P Attempts to Commit: 
begin 

begin critical section 
VQcopy := rw-sibling-copy(VQ,C) ; rw-copy := copy(rw-committed(P)) 
allocate entry E for action C 
E.type := VALIDATING; add E to VQ 
end critical section 

st(C) := earliest read time in rs(C) 
for each [ws(RW), et(RW)] pair in rw-copy with st(C) < et(RW) do 

for each [readobj, readtimc] pair in rs(C) do 
if readobj E ws(RW) and readtime < et(RW) then exit FAIL end 
end 

end 
for each read-write action RW in VQcopy do 

for each [readobj, readtimc] pair in rs(C) do 
if readobj E ws(RW) then exit FAIL end 
end 

end 
begin critical section 
E.type :=READY 

while head(VQ).type =READY do 
let H be the action at the head of VQ 
remove H's entry from VQ 
if II is read-write then 

tnc := tnc + 1; et(H) := tnc 
add the pair [ws(H), et(H)] to rw-committed(P) 
end 

commit action If 
(H is now a committed action.) 
end 

end critical section 
end 

except when FAIL: 
begin critical section 
delete E from VQ 
end critical section 

signal FAILED 
end 

Figure 4. 7: Single-Queue Parallel Validation - Nested Single-Site Model 
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Since su bactions do not validate against topactions, it is actually possible to move 

subactions forward over topactions in the queue. However, a subaction can not be moved 

in front of a topaction that is currently installing its updates, since the update process 

occurs in a critical section. In addition, subactions can not enter the queue during a critical 

section. Thus, the relative slowness of topaction updates will slow down the processing of 

subactions. 

One solution is to introduce two validation queues, one for topactions and one for subac

tions. This allows subactions to be processed at a faster rate. Since each queue has its own 

critical section, fewer actions use a given critical section: this will speed up the processing 

of both topactions and subactions. (In general, we can split up the actions in the system 

into N sets, and use N validation queues, thus speeding up validation for all N sets. This 

idea will be discussed later.) 

Using two queues is not as straightforward as it might seem: it is no longer possible to 

use a single transaction counter. The transaction counter records the end time of the last 

committed read-write action to have its updates applied. With two queues concurrently 

making updates (topaction updates and subaction updates) we need two such counters. 

Counter tnc-top records the end time of the last topaction to have its updates applied, and 

counter tnc-sub records the encl time of the last subaction to have its updates applied. 

\Ve must now record both counter values when recording subaction read times. Suppose 

an subaction reads an object 0. When it validates, its read time for 0 must be compared 

to the end times of committed siblings; thus, the tnc-sub value must be recorded. If this 

subaction commits up to a topaction, and the topaction then commits, then the subaction's 

read time for 0 (inherited by the topaction) must be compared to the end times of com

mitted topactions; thus, the tnc-top value must be recorded. As a result, we now record 

the triple [id(D), tnc-sub, tnc-top] when an action reads object 0. Note that, when 

merging a child's read set into its parent's read set, as we do in Figure 4.4, if both the child 

and parent had a triple for object 0, the earlier tnc-sub and tnc-top times are retained. 

Figure 4.8 gives the new validation algorithm for subactions. It uses subaction queue 

VQ-SUB for adding subaction entries, counter tnc-sub for subaction end times, the middle 

( tnc-sub) en try from read set triples for testing read times, and a critical section for sub ac

tions. The topaction algorithm is identical, except that it uses top action queue VQ-TOP, 

counter tnc-top, the third ( tnc-top) entry from read set triples, and a critical section for 

top actions. 
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Subaction C with Parent P Attempts to Commit: 
begin 

begin critical section for subactions 
VQcopy := rw-sibling-copy(VQ-SUB, C) ; rw-copy := copy(rw-committed(P)) 
allocate entry E for action C 
E.type :=VALIDATING; add E to VQ-SUB 
end critical section for subactions 

st(C) :=the earliest tnc-sub read time in rs(C) 
for each [ws(RW), et(RW)] pair in rw-copy with st(C) < et(RW) do 

for each [readobj, readtime-sub, readtime-top] triple in rs(C) do 
if readobj E ws(RW) and readtime-sub < et(RW) then exit FAIL end 
end 

end 
for each read-write action RW in VQcopy do 

for each [readobj, readtime-sub, readtime-top] triple in rs(C) do 
if readobj E ws(RW) then exit FAIL end 
end 

end 
begin critical section for subactions 
E.type := READY 
while head(VQ-SUB).type =READY do 

let H be the action at the head of VQ-SUB 
remove H's entry from VQ-SUB 
if H is read-write then 

tnc-sub := tnc-sub + l; et(H) := tnc-sub 
add the pair [ws(H), et(H)] to rw-committed(P) 
end 

commit action H 
(H is now a committed action.) 
end 

end critical section for subactions 
end 

except when FAIL: 
begin critical section for subactions 
delete E from VQ-SUB 
end critical section for subactions 

signal FAILED 
end 

Figure 4.8: Two-Queue Parallel Validation~· Nested Single-Site Model 
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Topactions: 

VQ-TOP, tnc-top 

Subactions: 

VQ-SUB, tnc-sub 

Figure 4.9: A Horizontal Partition Between Topactions and Su bactions 

4.8.3 Additional Validation Queues 

At this point, it should be clear that one can use any number of validating queues, not just 

one or two. The actions in the system can be partitioned into any number of disjoint sets, 

and one validation queue can be used for each set. Since an action must validate against 

its siblings, only partitions that do not separate siblings are acceptable. For the two-queue 

case, we say that there is a horizontal partition between the set of topactions and the set 

of subactions; this is depicted in Figure 4.9. 

vVe can make further horizontal partitions. A complete horizontal partitioning would 

have one queue for the topactions, one for the children of topactions, one for the children 

of the children of topactions, and so on, as depicted in Figure 4.10. 

vVhile introducing more queues improves the performance of each queue, there is a 

reason to avoid introducing horizontal partitions: for N horizontal sets, we need N-part 

timestamps for read times. For example, for two horizontal sets (topactions and su bactions) 

read times are two-part timestamps. This is needed because each queue validates a read 

time by comparing it to the encl times of committed read-write actions that were validated 

by that queue. As an item in a read set moves up the action tree, each partition's queue 

validates the read time. Thus, for the complete horizontal partition above, when an action 

at level k in the action tree reads an object, it needs to record a k-part timestamp, one 

part for each queue that might validate the read. A topaction that reads an object only 

needs to record a single tnc value, a child of a topaction would record two tnc values, and 

so on. (As read sets entries move up an action tree, k-part timestamps can be truncated to 
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Top actions: 

VQ-TOP, tnc-top 

... Descendants of Tl: Descendants of T2: ... 

... VQ(Tl), tnc(Tl) VQ(T2), tnc(T2) ... 

Figure 4.11: A Vertical Partitioning of the Subactions 

(k - 1)-part timestamps.) 

It is also possible to create vertical partitions. For example, returning to our original 

horizontal partition (topactions and subactions), we can partition the set of subactions into 

disjoint sets, one for the descendants of each topaction in the system; this is depicted in 

Figure 4 .11. 

Here, there is a subaction queue and corresponding counter for each topaction in the 

system. All descendants of topaction Tl will be placed in subaction queue VQ(Tl) for 

validation, and will take end times from tnc(Tl). Since there is still only one horizontal 

partition, read times will still be two-part timestamps. A descendant of topaction Tl 

records tnc(Tl) and tnc-top in its read set entry: the tnc(Tl) value is used to validate 

it with respect to other descendants of topaction Tl, while the tnc-top value is used to 

validate topaction Tl with respect to other topactions. 

A horizontal partition between the topactions and the subactions is always useful: 

topaction processing involves stable storage updates, while subaction processing does not. 

Further horizontal partioning is probably not useful, since the size of a read-time timestamp 

grows with the number of horizontal partitions. Using a vertical partition for subactions 

is prob-ably only useful on a multiprocessor. Additional queues allow us to apply multiple 

subaction updates concurrently; however, on a uniprocessor, only one subaction update can 

be processed at a time. 

Our two distributed models both use partitions. The fixed action model uses a single 

horizontal partition, between topactions and subactions, while the fixed object model uses 
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a complete horizontal partioning. Thus, the fixed action model uses 2-part timestamps for 

read times, while the fixed object model uses multi-part timestamps. Although we just 

stated that we would like to avoid a complete horizontal partition, we can not avoid using 

one in the fixed object model. Both models use vertical partitioning within each horizontal 

set of subactions. 

4.9 Optimizations 

In the topaction-only parallel validation algorithm (Figure 3.5), a READY entry can switch 

places with a VALIDATING entry in front of it in the queue as long as the read set of the 

VALIDATING entry does not overlap the write set of the READY entry. For both the one

queue or two-queue algorithms presented above, this condition still holds for sibling entries. 

In addition, any two non-sibling entries can always be switched, since they do not validate 

against each other. This switching process could take place as part of the second critical 

section of the algorithms: when an action sets its entry type to READY, it could push itself as 

far forward in the queue as possible before performing the loop that removes READY entries 

from the front of the queue. (For the one-queue algorithm, however, READY topactions 

should not push beyond REA DY sub actions.) 

Once again, action information can be discarded. \Vhen an action commits or aborts, 

all information about the action can be thrown away. (For a commit, information that must 

be kept is recorded elsewhere: shadow versions are moved, an entry is added to the parent's 

rw-committed set, and read set and write set information is inherited by the parent.) Note 

that all rw-committed sets will be thrown away except one - the set for topactions. The 

topaction set can be pruned as we described in the last chapter. 



Chapter 5 

Fixed Action Model 

This chapter and the following one present our two models for nested distributed transac

tions. They present simple abstract models for the validation of subactions and topactions 

in a distributed system. We hope that they demonstrate that real implementations of the 

models are feasible; however, they do not present the most efficient ways to build such 

implementations. Having said this, there are some optimizations that can be presented 

without discussing low-level implementation details. We discuss these optimizations in the 

final section of each chapter. 

For the single-site model described in Chapter 4, we assumed that there was only one 

entity in the system. This entity managed all of the objects in the system and also managed 

all of the actions. In a distributed system, we would like to have any number of entities: 

some manage objects and some manage actions. 

This chapter presents the first of our two distributed models, the fixed action model. The 

fixed action model has the constraint that a topaction and all of its descendants must run at 

a single entity. This entity need not be an object manager (OM). In fact, we introduce a ne\v 

entity type for managing actions, an action manager (AM). Actions run at AJ\1's, whereas 

objects are managed by OM's. An action running at an AM can read or write objects 

managed by any of the OM's in the system; if an action needs to read the base version of 

an object, the action's AM sends a base-version-request message to the object's OM, 

and the OM returns a copy of the base version. All shadow versions for a given topaction 

and its descendants are located at the topaction's AM, while the base versions accessed by 

the topaction are located at any number of OM's. Figure 5.1 gives an example of a set of 

AM's and OM's. 

The serial validation algorithms presented in the previous two chapters were useful for 

demonstration purposes, but are too inefficient to be practical. For our distributed models, 
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Object Managers 

Base Versions 

X1: 3 

X2: 5 

OM-X 

Action Managers 

Actions 

Action A 

X1: 4 

Y1: ii 

Action A.1 Action A.2 

X2: 6 Y2: 16 

A111-1 

Base Versions 

Yi: iO 

Y2: 15 

OM-Y 

Actions 

Action B 

Xi: i3 
X2: i5 Action C 

l Y1: 4 

Action B.1 

Yi: 20 

AM-2 

Figure 5.1: Object Managers and Action Managers - Fixed Action Model 
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we only describe parallel algorithms. Validation in the fixed action model is similar to the 

two-queue parallel algorithm from the last chapter (see Section 4.8.2). Each AM has a single 

queue for validating subactions that run at the AM, and each OM has a single queue for 

validating topactions that have requested base versions from that 0 M. Although there are 

multiple topaction queues in the system (one at each OM), the topaction validation process 

is synchronized; one can think of the OM's in the system as implementing a single topaction 

queue. The multiple subaction queues (one at each AM) do not have to be synchronized. 

There is a vertical partition of the subactions in the system, where the subactions that run 

at a given AM are placed in the same set. (If a subaction runs at an AM, all of its siblings 

also run at that AM. Since all descendants of a topaction run at the same AM, we could 

use one subaction queue per topaction instead of one per AM; this extra parallelism would 

only be useful on a multiprocessor.) 

5.1 Action Managers and Object Managers 

Recall that our abstract model for a distributed system (described in Chapter 2) is a set of 

communicating entities. The fixed action model has two types of entities, object managers 

(OM's) and action managers (AM's). 

Each entity has a globally unique identifier. An OM manages a set of objects whose 

base versions are kept in stable storage. A given object 0 at an object manager OM-X 

has a globally unique identifier, id(O), that includes the identifier of O's object manager, 

id(OAf-X). Thus, if an action has an object identifier for an object that it wants to read, 

the identifier tells the action's AM which OM it should contact to request a copy of the 

base version. 

Each AM manages some topactions and their descendants. OM's manage the base 

versions of objects, while AM's manage all shadow versions of objects. \Vhen an action 

reads an object, it still reads the nearest version; however, if no ancestor has a version, the 

action's AM gets a copy of the base version by sending a base-version-request message 

to the object's OM and waiting for the response. 

5.2 Data Structures at an Action Manager 

All actions A have a read set rn(A), a write set ws(A), and a set rw-committed(A) that 

contains information about the committed read-write children of A. At each action manager, 

there is a subaction validation queue VQ-sub and a transaction counter tnc-sub. Each AM 
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also has its own shadow version data structure: shadow( A, id(O)) gives A's shadow version 

for 0, if the shadow version exists. 

Figure 5.2 shows the nearest-version function for this model. An action's ancestors 

are all located at the same AM as the action, but the base versions of objects are located 

at the various OM's in the system - reading the nearest version of an object often involves 

sending a message to an object manager. Compare this to Figure 4.2, where the base version 

is accessed directly. The OM returns a response that includes two values: a copy of the 

base version of 0, and the value of its transaction counter. The OM's counter is recorded 

as part of the read time for the object; when the topaction commits, this read time will be 

sent back to the OM so that it can validate the read. 

Topactions record read set entries of the form [id(D), DM-readtime], while subac

tions record read set entries of the form [id(O), tnc-sub, DM-readtime]. Note that 

the nearest-version function returns both an object and the appropriate value for 

OM-readtime, which is recorded as part of a topaction or subaction read set entry. \Vhen 

a topaction calls nearest-version to read an object for the first time, the OM-readtime 

returned will always be the result of a base-version-request message. When a subac

tion calls nearest-version to read an object for the first time, the 01~1-readtime returned 

will be from one of two places. If a base version is read, nearest-version returns the 

Q}vf-readtime from the result of the base-version-request; if a shadow version from an 

ancestor is read, then the function returns the OM-readtime that the ancestor recorded. 

5.3 Data Structures at an Object Manager 

Object managers manage the base versions of objects. At an OM, base-version(id{O)) gives 

the base version of an object 0 that the OM manages. Object managers are also responsible 

for the validation oftopactions. If a topaction requests one or more base versions from object 

manager OM-X, we say that OM-X is a participant in the top action. 

Each OM has a validation queue VQ-TOP, a transaction counter tnc-top, a queue entry 

time counter qet, and a set rw-top-committed. The use of the new counter qet is described 

in Section 5.6, where we describe topaction validation. The set nu-top-committed contains 

information about committed read-write topactions in which the OM participated. 



Function nearest-version(A, id(O)): 

if shadow( A, id(O)) exists then 
if A is a topaction then 

look up the tuple [id(O), OM-readtime] in rs(A) 
else 

look up the tuple [id(O), sub-readtime, OM-readtime] in rs(A) 
end 

return two values: shadow(A, id(O)) and OM-readtimc 
elseif A is a topaction then 

OM-0 := O's object manager 
send the message base-version-request(id(O)) to OM-0 
return the result of this message 
(the result will be a copy of O's base version 
and the value of OM-O's transaction counter) 

else 
return nearest-version (parent-of( A), id( 0)) 

end 

Figure 5.2: The nearest-version Function - Fixed Action Model 

5.4 Read and Write 
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The rules for reading and writing an object (which only occurs at action managers) are 

shown in Figure 5.3. They are essentially the same as the single-site rules, except that the 

function nearest-version returns both an object and a read time, as we just described. 

Reading an object at an A1f can cause a base-version-request to be sent to an OM: OM 

processing of a base-version-request message for object 0 is described in Figure 5.4. The 

current value of tnc-top is returned along with the value of O's base version; this tnc-top 

value is recorded by the requesting action as part of the read set entry for 0. 

5.5 Subaction Commit Process 

Each set of sibling subactions runs at a single action manager; each action keeps the same 

information that actions kept in the single-site model. Subaction validation for the fixed 

action model is no different from subaction validation for the single-site model. 

5.5.1 Commit-Time Update 

\Vhen a subaction commits, its read set, write set, and shadow versions are moved up to its 

parent; this is shown in Figure .5.5. The figure is similar to Figure 4.4 in the last chapter; 
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Action A reads Object 0: 
obj, OM-readtime := nearest-version(A, id(O)) 
if id(O) rf. rs(A) then 

if A is a topaction then 
add the pair [id(O), OM-readtime] to rs(A) 

else 
add the triple [id(O), tnc-sub, OM-readtime] to rs(A) 

end 
end 

read obj 

Action A writes Object 0: 

if id(O) rf. ws(A) then 
obj, OM-readtime := nearest-version(A, id(O)) 
add id(O) to ws(A) 
shadow(A, id(O)) := copy(obj) 
end 

modify shadow(A, id(O)) 

Figure 5.3: Read and Write - Fixed Action Model 

OM receives message: base-version-request(id(O)) 
begin 
return two values: base-version(id(O)) and tnc-top 
end 

Figure 5.4: Processing a base-version-request Message - Fixed Action Model 

the only difference is that subaction read set entries have two-part timestamps, so that the 

merging of read sets is different. If the parent of a committing subaction is a topaction, 

then the two-part timestamps are truncated to one-part timestamps: the tnc-sub read times 

are removed. 

5.5.2 Validation 

Each action manager has a single queue VQ-SUB for validating subactions. Figure 5.6 gives 

the validation algorithm for this queue; it is identical to Figure 4.8, the parallel validation 

algorithm for the two-queue approach described in the last chapter. The function call 

rw-sibling-copy(VQ-SUB,C) is a selective copy of VQ-SUB, where only the read-write 

siblings of C are copied. 



Commit Subaction C (to Parent P): 
for each id( 0) in ws( C) do 

shadow(P, id(O)) := shadow(C, id(O)) 
end 

if P is a topaction then 
for each (id(O), C-rt-sub, C-rt-top] in rs(C) do 

if there is an [id(O), P-rt-top] in rs(P) then 
replace [id(O), P-rt-top] with 

[id(O), min(C-rt-top, P-rt-top)] in rs(P) 
else 

add [id(O), C-rt-top] to rs(P) 
end 

end 
end 

if P is a subaction then 
for each [id(O), C-rt-sub, C-rt-top] in rs(C) do 

if there is an [id(O), P-rt-sub, P-rt-top] in rs(P) then 
replace [id(O), P-rt-sub, P-rt-top] with 

[id(O), min(C-rt-sub, P-rt-sub), min(C-rt-top, P-rt-top)] in rs(P) 
else 

add [id(O), C-rt-sub, C-rt-top] to rs(P) 
end 

en<l 
end 

for each id( 0) in ws( C) do 
if id(O) is not in ws(P) then add id(O) to ws(P) en<l 
end 

Figure 5.5: Subaction Commit-Time Update -- Fixed Action Model 
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Subaction C with Parent P Attempts to Commit: 
begin 

begin critical section 
VQcopy := rw-sibling-copy(VQ-SUJ3, C) ; rw-copy := copy(rw-committed(P)) 
allocate entry E for action C 
E.type := VALIDATING; add E to VQ-SUB 
end critical section 

st(C) := the earliest tnc-sub read time in rs(C) 
for each [ws(RW), et(RW)] pair in rw-copy with st(C) < et(RW) do 

for each [readobj, readtime-sub, readtime-top] triple in rs(C) do 
if readobj E ws(RW) and readtime-sub < et(RW) then exit FAIL end 
end 

end 
for each read-write action RW in VQcopy do 

for each [readobj, readtime-sub, readtime-top] triple in rs(C) do 
if readobj E ws(RW) then exit FAIL end 
end 

end 
begin critical section 
E.type := READY 

while head(VQ-SUB).type =READY do 
let H be the action at the head of VQ-SUB 
remove H's entry from VQ-SUB 
if H is read-write then 

tnc-sub := tnc-sub + l; et(H) := tnc-sub 
add the pair [ws(H), et(H)] to rw-committed(P) 
end 

commit action H 
(H is now a committed action.) 
end 

end critical section 
end 

except when FAIL: 
begin critical section 
delete E from VQ-SUB 
end critical section 

signal FAILED 
end 

Figure 5.G: Subaction Validation - Fixed Action Model 
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5.6 Topaction Commit Process 

Unlike a su baction, a top action can not be validated locally by its AM. A top action running 

at one AM might conflict with a committed topaction that ran at some other AM. If two 

topactions have a read-write conflict over some object 0, then O's OM will be a participant 

in both topactions; we can use the object managers to validate topactions. Each OM is 

responsible for detecting topaction conflicts over any of its own objects; topaction validation 

is a distributed process, where each participating OM validates the topaction with respect 

to its own objects. The validation that occurs at each OM is described below, after we 

describe the overall distributed process. 

\Vhen a topaction T attempts to commit, each participant in T is asked to validate T: 

the topaction's AM sends validate-request messages to all participants, and waits for the 

responses. The topaction is allowed to commit only if every participant OK's the commit. If 

Tis allowed to commit, T's AM sends a commit message to all participants in T. Commit 

messages include the shadow versions that T has updated, so that the participants can 

install these shadow versions as new base versions. 

5.6.1 Two-Phase Commit 

\Ve must ensure that a topaction either commits or aborts at all participants; i.e., we must 

ensure that its updates are either installed at all of the read-write participants or at none 

of them. A two-phase commit protocol [Gray 1979] is used for this purpose. The details of 

this protocol can be found elsewhere [Gray 1979, Mohan & Lindsay 1983, Lampson 1981, 

Lindsay et al. 1979, Lindsay et al. 1984]; we omit many of for details here. For a pessimistic 

system, the first phase of the two-phase commit is the prepare phase, where all participants 

must agree that they are prepared to commit. For an optimistic system, the first phase is a 

combined validate and prepare phase, where all participants must agree that the topaction 

has been successfully validated and that they are prepared to commit. In other words, 

we send validate-request messages instead of prepare messages during phase one of the 

two-phase commit. 

The topaction 's AM acts as coordinator of the two-phase commit. In the first phase, the 

coordinator sends a validate-request message to each participant, and waits for responses. 

Participants respond with eitl1cr OK or FAILED. If any participant responds with FAILED, 

then the topaction is aborted. The coordinator can also give up on a participant that it is 
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unable to contact, in which case the topaction is aborted. If all participants respond with 

OK, then the topaction is committed. Once the topaction has aborted or committed, the 

second phase of the process is entered, where the coordinating AM informs each participant 

of the outcome, by sending either a commit message or an abort message. The coordinator 

continues to send result messages until all participants have acknowledged that they have 

received and processed a result message. 

5.6.2 A Total Order for Topaction Validation 

Topaction validating is now a distributed process that occurs at a number of OM's simulta

neously. It is necessary to devise a mechanism that ensures that topactions are validated in 

some consistent global order. At each OM, there is a topaction validation queue, VQ-TOP; 

we must guarantee that topactions enter each OM's VQ-TOP in the same relative order. In 

other words, if topactions Tl and T2 have common participants, and Tl enters a topaction 

validation queue before T2 at any common participant, then Tl must enter before T2 at 

every common participant. The topaction ordering relation is transitive: if Tl enters before 

T2 at one OM, and T2 enters before T3 at another OM, then Tl must enter before T3 at 

all OM's. 

The following example shows why a total ordering is necessary. Suppose two top actions, 

Tl and T2, both read objects x and y, located at object managers OM-X and OM-Y, and 

suppose Tl modifies x and T2 modifies y. Tl and T2 will both send validate-request 

messages to OM-X and OM- Y when they attempt to commit. Suppose that Tl's 

validate-request message arrives at Oli1- Y first, and that T2's message arrives at O.M-X 

first. If the topactions simply enter the queues in the order that their validate-request 

messages arrive, then Tl will enter before T2 at OM-Y, while T2 will enter before Tl at 

OM-X. Each OM validates topactions with respect to its own objects. At OM-X, the queue 

has T2 reading x followed by Tl reading and writing x; both would validate successfully. 

At OM-Y, the queue has Tl reading y followed by T2 reading and modifying y; both 

would again validate successfully. However, Tl and T2 are conflicting actions - there is 

no equivalent serial order for them. To ensure a correct validation of these topactions, we 

must ensure that either Tl validates before T2 at both OM-X and OM-Y, or that Tl 

validates after T2 at both OM's. 

A global queue-entry order can be achieved using the following approach, which is due 

to Agrawal, Bernstein, Gupta, and Sengupta [Agrawal et al. 1987]. At each OM we keep 
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a new monotonically increasing counter qet, the queue entry time counter. The idea is 

to choose the same queue entry time for a topaction at each participating OM. When a 

topaction T attempts to commit, T's coordinator proposes a global queue entry time for 

the topaction. The proposed entry time is included in validate-request messages. At a 

participant, if the local qet counter is less than the proposed queue entry time, then qet is 

set to the proposed time, and topaction Tis added to the validation queue. However, if qet 

is greater than or equal to the proposed entry time, qet can not be set to this time, since 

it is monotonically increasing: the participant responds with a special BAD-GLOBAL-TIME 

response, to inform the coordinator that the proposed time is unacceptable. In this case, 

the coordinator will choose a later global entry time and send another round of phase-one 

messages, using revalidate-request messages. 

This process guarantees a unique global order for entry into OM validation queues. Its 

only drawback is that choosing a global entry time is potentially a multi-round process. 

Other possible approaches are discussed in Section 5. 7 at the end of the chapter. 

5.6.3 Validation at The Coordinator 

When topaction T attempts to commit, its AM acts as coordinator of the two-phase commit 

process. By examining the object identifiers in the read set rs(T), the coordinator can 

determine the set of participating OM's. During the first phase, each participant is sent 

a validate-request message with the following information: T's action identifier id(T), 

read set rs(T), write set ws(T), update set updates(T), and a proposed global queue entry 

time global-qet(T). The update set has pairs of the form [id (0) , shadow-version-value], 

indicating that the shadow version should be installed as the base version of object 0. \Vhile 

the updates are not installed until the second phase of the commit, the update set is sent 

in the validate-request message so that OM's can prepare to commit the updates. For 

example, after responding with an OK response, an OM can assume that the action will 

commit and start writing out the updates to stable storage. This form of early prepare will 

result in improved processing for commits, which we assume will be more frequent than 

aborts. 

Note that the entire read and write sets are sent to each participant, while the update 

set sent to participant P only contains updates for objects that P manages. It would also 

be possible to just send partial read and write sets to each participant P; we could send 

only the read set or write set entries for objects that P manages. However, sending the 
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entire sets allows reordering within a given OM's topaction queue. (Recall that a topaction 

can move in front of another topaction as long as its read set does not intersect with the 

write set of the second topaction. It is not possible to determine whether an action can 

move with only partial read and write sets.) 

Figure 5.7 sketches the two-phase commit process managed by topaction T's action 

manager when T commits. It is only a sketch of the process - it does not cover such 

occurrences as resending lost messages, aborting because of a timeout, recording the state 

of the two-phase commit on stable storage, and so on. In addition, it does not show how an 

appropriate global queue entry time is chosen. \Ve would like to choose a time that is likely 

to be accepted at all participants; several ways of doing this arc discussed Section 5. 7. If 

the coordinator receives a BAD-GLOBAL-TIME response from any participant, it chooses a 

new global entry time and sends out revalidate-request messages; these messages need 

not include the read set, write set, or update set, since the participants received these in the 

original validate-request messages. (This assumes messages are delivered reliably. If we 

are using a protocol where messages can be lost or reordered, a participant might receive a 

revalidate-request message without having received a corresponding validate-request 

message. If this were to occur, the participant would ask the coordinator for the missing 

information.) 

5.6.4 Validation at a Participant 

The processing of a validate-request message by a participant is shown in Figure 5.8. The 

figure does not cover some of the details of two-phase commit, such as the acknowledgement 

of a commit or abort message or the recording of the state of the commit process in stable 

storage. The processing of a revalidate-request message would be similar, except that 

the topaction's original queue entry would first be removed from the queue. 

vVhen a read-write topaction commits, we do not add its entire write set to the par

ticipant's rw-top-committed set; we only add the part of the write set that is relevant to 

the participant. This is done because an OM is responsible only for detecting conflicts over 

its own objects. The function ca.ll DM-copy(ws(H), id(DM-X)) copies only those object 

identifiers in ws(H) that are identifiers of objects managed by participant OM-X. 

In a distributed pessimistic system, it is usually not necessary to send commit or abort 

messages to read-only participants in a topaction, since these participants take exactly 

the same action (they release the topaction's read locks) regardless of the outcome of the 



Top action T Attempts to Commit: 

global-qet(T) := a proposed queue entry time for T 
participants(T) := empty 
for each [id(O), readtime-top] in rs(T) do 

0:\1-0 :=O's OM 
if id(OM-0) rf_ participants(T) then add id(OM-0) to participants(T) end 

for each id(Ol\1-P) in participants(T) do 
updates(OM-P) := empty 
end 

for each id(O) in ws(T) do 
OM-0 := O's OM 
add the pair [id(O), shadow-version(id(O),T)] to updates(OM-0) 
end 

for each id(OM-P) in participants(T) do 
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send the message validate-request(id(T), rs(T), ws(T), updates(OM-P), global-qet(T)) to OI1I-P 
end 

gather responses ... 
if any response is FAILED then 

for each id(OM-P) in participants(T) do 
send the message abort(id(T)) to OM-P 
end 

else if any response is BAD-GLOBAL-TIME then 
global-qet(T) := a new proposed queue entry time for T 
for each id(OM-P) in participants(T) do 

send the message revalidate-request(id(T), global-qet(T)) to OM-P 
end 

go back to gather responses ... above 
else if all responses are OK then 

for each id(OM-P) in participants(T) do 
send the message commit(id(T)) to OM-P 
end 

end 

Figure 5.7: Coordinator, Topaction Validation - Fixed Action Model 
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OM-X receives inessage: 
validate-request(id(T), rs(T), ws(T), updates(T), global-qet(T)) 

begin 
begin critical section 
if global-qet(T) ::; qet then return BAD-GLOBAL-TIME end 
qet := global-qet(T) 
VQcopy := copy(VQ-TOP) ; rw-top-copy := copy(rw-top-committed) 
allocate entry E for action T; E.type :=VALIDATING; add E to VQ-TOP 
end critical section 

st(T) := the earliest read time in rs(T) 
for each [ws(RW), et(RW)] pair in rw-top-copy with st(T) < et(RW) do 

for each [id(O), readtime-top] pair in rs(T) do 
if 0 is managed by this OM and 

id(O) E ws(RW) and readtime-top < et(RW) then exit FAIL end 
end 

end 
for each read-write action RW in VQcopy do 

for each [id(O), readtime-top] pair in rs(T) do 
if id(O) E ws(RW) then exit FAIL end 
end 

end 
return value OK 
wait for the message commit (id(T)) or abort(id(T)) 
if the message is abort then exit FAIL end 
the message is commit ... 

begin critical section 
E.type := READY 
while head(VQ-TOP).type =READY do 

- let H be the action at the head of VQ-TOP 
remove H's entry from VQ-TOP 
if H is read-write then 

tnc-top := tnc-top + l; et(H) := tnc-top 
OM-ws := 01\1-copy(ws(II), id(OM-X)) 
add the pair [OM-ws, et(H)] to rw-top-committed 
for each [id(O), shadow-version-value] in updates(H) do 

base-version(id(O)) :=shadow-version-value 
end 

end 
(H is now a committed action.) 
end 

end critical section 
end 

except when FAIL: 
begin critical section 
delete E from VQ-TOP 
end critical section 

return value FAILED 
end 

Figure 5.8: Participant, Topaction Validation - Fixed Action Model 
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action. Since read-only participants in this model have no commit or abort processing 

to do, it would seem that they can simply be removed from the queue after returning an 

OK response during phase one of the commit, and no second phase message is required. 

However, this is not the case. An OM might receive and process a revalidate-request 

message at any time, up until the point that it receives a commit or abort message. (Once it 

has received a commit or abort message, it knows that the global entry time was acceptable 

and the topaction was validated.) Thus, a topaction's entry cannot be removed from an 

Ol'vf's queue until a commit or abort is received~ even if the topaction is read-only. 

5. 7 Optimizations 

This section outlines several optimizations for the fixed action model. In general, our 

models do not reflect low-level implementation concerns; the optimizations in this section 

also avoid low-level details. They point out some potential changes that would improve the 

performance of the model, rather than efficient ways to implement it. 

5.7.1 Improving the Global Ordering Protocol 

When a coordinator chooses a global en try time for top action T, we would like it to choose 

a time that is likely to be greater than all of the qet times at T's participants. One way 

to do this is to have the coordinator poll the participants, asking each for its current qet 

value; the coordinator would choose a global entry time larger than all of these by taking 

the maximum value and adding some extra amount 8. However, we would like to avoid the 

extra round of messages that this method requires. One way to do this is to have OM's 

include their qet times in messages that they send to AM's. For example, an OM's response 

to a base-version-request message could include the OM's current qet value. An action 

manager would keep track of the maximum qet value it had seen from any OM; it would 

choose a global queue entry time equal to this maximum plus 8. Conversely, an AM could 

send OM's the maximum qet value it had seen; an OM would set qet to the maximum of 

its current value and the value it received. In this scheme, the maximum values at AM's 

and the qet values at OM's would essentially be a set of loosely synchronized clocks, as 

described by Lamport [Lamport 1978]. This loose synchronization would mean that most 

proposed queue entry times would be accepted in one round; there would be conflicts only 

when two or more actions committed at nearly the same time. 

The algorithm as given tests whether a proposed global entry time is later than the 
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entry time of the last action to enter the queue; this is done because we want to add the 

action to the end of the queue. However, if the proposed entry time would place the action 

somewhere in the middle of the queue, it is not necessary to reject the entry time if the 

action can be inserted at the indicated place in the queue. An action can be inserted ahead 

of other actions in the queue if its write set does not overlap any of their read sets. (Action 

en try times must be kept in the queue to be able to determine the insertion point for an 

action entering validation.) A proposed entry time would only be rejected if it was not 

possible to insert the action in the queue. 

Note that some OM's might accept a global queue entry time, and begin validation, while 

another OM rejects the proposed time. \Vhen a revalidate-request for a topaction Tis 

received at an OM, T moves back in the queue. If the OM has already started validating 

T, it does not have to restart validation; it can determine what extra validation must be 

done, which depends only on the actions that T moved behind. 

5. 7.2 Another Global Ordering Protocol 

Instead of using a set of loosely synchronized clocks to choose queue entry times, it is 

possible to use a set of tightly synchronized clocks, i.e., a distributed set of clocks where 

the maximum time difference between any two clocks is less than some known value £ ( £ 

can be chosen to be a very small number) [Mills 1988]. In such a system, a topaction uses 

its OM's local clock time as its proposed queue entry time; actions choose entry times that 

correspond to their real commit order. 

Topaction validate-request messages will tend to arrive at a given OM with proposed 

queue entry times properly ordered, since these times correspond to the times that the 

messages were sent. However, message transit times are not uniform: validate-request 

messages sent at nearly the same time can arrive with proposed entry times that are out of 

order. At a participant, topaction T can enter the validation queue as soon as it arrives, as 

long as its proposed entry time glolml-qet(T) is not earlier than the entry time of the last 

action to enter the queue. However, it makes sense to wait until local time global-qet(T) + 8 

before allowing T to enter the queue, where the extra amount 8 is an attempt to compensate 

for possible reorderings due to cliff er en t message transit times. \Vhile waiting for time 

global-qet(T) + 8, if another validate-request message arrives with a proposed time that 

is earlier than global-qet(T), then this action is added to the queue before T. 

If a validate-request message with proposed time global-qet(T) arrives before local 
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time global-qet(T) + 8, it will a1ways be allowed into the queue, even if some earlier message 

with an out-of-order entry time has already arrived. Thus, a good choice for 8 would he a 

time slightly larger than the expected message transit time. Even if a message for topaction 

T arrives after local time global-qet(T) + 8, T can still enter the queue as long as its 

proposed entry time is greater than the entry time of the latest action to enter the queue; a 

BAD-GLOBAL-TIME response is only used if this is not the case. (Note that 8 can be adjusted 

dynamically according to the frequency of BAD-GLOBAL-TIME responses.) 

5. 7.3 Caching 

Compared to reading a local shadow version of an object, reading a base version over the 

network is extremely expensive. For this reason, the most important performance gains for 

this model will result from reductions in the number of base-version-request messages 

that are sent. One obvious optimization that has this effect is object caching. 

As the model is described above, a base-version-request message is sent every time 

a base version is read - if an action reads an object 20 times, 20 base-version-request 

messages will be sent (assuming no shadow versions exist, i.e., the object has not been 

modified). vVe would like to cache base versions to avoid this kind of redundancy; at most 

one message should be sent per object read by an action. We would also like to cache 

objects across topactions, so that if one topaction reads a base version, other topactions at 

the same A~vI can read the cached version afterwards. Thus, each AM should have a single 

base version cache that is updated each time a base version is requested from an OM. A 

base-version-request message will only be sent if this cache does not have a base version 

for the object being read. vVhen a base version is stored in an AM's cache, its OM-readtime 

is stored along with it. This read time is recorded in read set entries when a cached base 

version is read. Thus, read set entries still record the time that the base version was read 

at its OM. 

Introducing a cache at each AM introduces a cache consistency problem: after an object 

0 is updated at its object manager, caches can have out-of-date base versions for 0, and 

actions can read these out-of-date values. Since an action that reads an out-of-date value 

will fail validation, this consistency problem does not affect the correctness of the system. 

(As we pointed out in the introduction, this is an advantage over pessimistic systems, where 

reading an out-of-date value is not allmved.) Ho\vever, the caches do need to be updated 

eventually. 
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There arc two general approaches to cache updating: lazy and eager. In a lazy approach, 

we wait until an action fails validation to update out-of-date caches. If an OM validating 

topaction T find that T had read out-of-elate base versions, it includes the new values for 

these base versions in the FAILED response that it returns to T's AJ\.1; these new values are 

installed in the AM's cache. 

In an eager approach, OM's keep track of which AM's are caching which values. \IVhen 

an object 0 is updated, its OM sends update messages to all AM's that are caching 0. 

Although this approach attempts to inform AM's of out-of-elate values as early as possible, 

there is no constraint on when these update messages arrive: validation will catch all out-of

date reads. Thus, update messages can be grouped together and sent as a single message, 

or "piggy-backed" on other messages sent to the AM's, such as base-version-request 

responses. 

Eager updating has the advantage that it may prevent some actions from aborting 

due to a read of an out-of-date cache. Lazy updating has the advantage that less update 

information is sent. 

5. 7.4 Grouping Base Versions 

Another optimization that reduces the number of base-version-request messages stems 

from the following observation: when a base version of an object is retrieved from an OM, if 

the value includes object identifiers of objects then the action reading the object may later 

read some of these referenced objects. If any of these other objects are managed by the 011 

responding to the base-version-request, then we can send copies of their base versions 

along with the copy of the base version that \Vas requested. All base versions returned 

from a base-version-request would be installed in the action manager's cache. Each OM 

would keep track of the objects it has sent to an AM, so that it would not resend objects 

that it had already sent. The number of related objects sent would depend on parameters 

such as the size of the objects referenced, the maximum size of a network packet, statistics 

of object usage, and so on. Note that returning additional base versions does not affect the 

probability of committing. An action still sends its read set to OM's for validation; objects 

that were sent but not read will not lead to additional conflicts. 

Systems could support explicit grouping of base versions by programmers or a database 

administrator. Rather than traversing an object's references dynamically, the object's group 

is used: when a base version from a given group is requested, copies of all base versions in 
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the group a.re returned. 

6. 7 .6 Action Manager Topaetion Validation. 

H two con1licting topactiona run at the 8&1De AM-, tlait caa be detected by the AM before 

it acts a.s the coordinator of a distributed commit.. WMa a topaeiion attempts to commit 

at an AM, the AM fi.rat validates the topaction apiut aft co9tniiied local topacti01l8; to 

do this, a.n AM keeps its own no-top-commi«ed •~ Aa AM .,_ to the full distributed 

commit process only if the topaction pUleB the local topadiOa ~ process. 
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Fixed Object Model 

The single-site model described in Chapter 4 has the following constraints: 

1. A subaction can only run at the same entity as its parent action. 

2. An action can only read or write objects managed by the entity where it is running. 

The first constraint simplifies the validation of subactions, since all sibling subactions must 

run at the same entity; the second constraint simplifies the management of base versions, 

since the nearest-version function will always be able to access base versions directly. 

If we eliminate either of these constraints, the result is a distributed transaction system. 

In the last chapter, the fixed action model eliminates the second constraint: subactions are 

required to run at the same action manager as their parent, but an action can read any 

object in the system. Subaction validation remains as simple as in the single-site model, 

but base version management becomes more complicated. Reading a base version involves 

sending a base-version-request message; installing shadow versions at topaction commit 

time involves sending update sets to object managers. 

In this chapter, we present the fixed object model, which eliminates the first constraint 

but keeps the second: a subaction does not need to run at the same entity as its parent, but 

an action can only read or write objects managed by the entity where it is running. In this 

model, managing base versions remains as simple as in the single-site model, but subaction 

validation becomes complicated. 

In this model we only have one type of entity, the object manager. Since an action can 

only read or write an object located at the entity where it is running, actions must run at 

OM's; we do not have Al'vf's. Object managers manage both suba.ctions and topactions, as 

well as performing base-version management. Shadow versions are created when an action 
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first writes an object: in this model all shadow versions arc located at the OM of their base 

version. 

In the fixed action model the objects move to the actions; in this model the actions move 

to the objects. If an action at one OM wants to access some objects located at another 

OM, the action starts a subaction at the other OM that will perform the desired reads and 

writes. 

The models are equivalent in terms of computational power; however, more actions 

may be necessary in this model to perform the same computation. The following example 

illustrates the differences between the two models. Suppose objects A and B are located at 

distinct object managers OM-A and OM-B, respectively, and the computation we wish to 

perform is to read object A, read object B, and then write object B. 

• In the fixed action model, a single topaction is required, executing at any AM in the 

system. 

One base-version-request is used to read A, and another is used to read B. A 

third base-version-request is used when writing B; the copy of B that is returned 

is installed as a shadow version of the topaction, and this shadow version is modified. 

'Vhen the topaction commits, the shadow version is sent to Ofvf-B in an update set, 

and is installed as B's base version. 

• In the fixed object model, two actions are required to perform the computation: a 

topaction at OM-A and a subaction at Olvf-B. 

The topaction at OM-A reads the base version of A. It then starts a subaction 

at OA1-B, which reads the base version of B. To write B, the subaction creates a 

shadow version of B which it then updates. When the topaction commits (at OM-A), 

it informs OM-B that it has committed; OM-B then installs the shadow version of B 

as a new base version. The shadow version is not sent in a message, since it is already 

located at OM-B. 

Figure 6.1 gives an example of a set of object managers in the fixed object model. 

Topaction A has started two subactions, A.1 and A.2; A.1 is running at A's OM, 0111-X, 

while A.2 is running at O.M-Y. The figure shows the shadow versions for each action; these 

versions are always shadows of local base versions. 
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6.1 Overview 

Because this model is more complicated than any of the previous models, we give a brief 

overview before describing it in detail. 

In this model, subaction management involves communication between the OM's in 

the system. Three message types are used: start-subaction messages, which we use to 

start a subaction; a commit-request messages, which we use to commit a subaction; and 

subaction-commi t messages, which we use to inform OM's about a subaction commit. 

\\Then an action at one 0 M wishes to start a su baction at another 0 M, it sends a 

start-subaction message to the other OM. Since a subaction need not run at the same 

OM as its parent, sibling actions might run at different OM's. The obvious place to validate 

a set of siblings is at the OM where their parent is running. \'\Then a subaction attempts 

to commit, its OM sends a commit-request message to the OM of its parent. Thus, a 

message is sent to start a subaction, and a return message is sent to commit the subaction. 

In the fixed action model, a committed subaction's shadow versions, which are all located 

at the same AM, become shadow versions of its parent action in one local step. In the fixed 

object model, a subaction's shadow versions are not necessarily all located at the same 

entity; an action's descendants may have modified objects at any number of OM's. \Vhen a 

subaction C attempts to commit to parent I', P's OM validates C; if validation succeeds, 

P's OM sends a subaction-commit message to each OM that is a read-write participant in 

C. An object manager OM-Xis a read-write participant in C if C or any descendant that 

committed up to Cran at OM-X and modified one of OM-X's objects. \Vhen a read-write 

participant receives a subaction-commit message for C, it moves the appropriate shadow 

versions up to parent P. Read-only participants do not have to be informed of a subaction 

commit, since they do not have any shadow versions that need to be moved. 

Unfortunately, the approach of validating a subaction at its parent's OM results in 

a complete horizontal partitioning of the actions in the system; i.e., the actions in the 

system are partitioned into the following sets: the top actions, the children of top actions, the 

children of the children of topactions, and so on. If every ancestor of an action is located at 

a different OM, then each validation of a subaction's read set (when the subaction commits, 

when its parent commits, when the parent of its parent commits, etc.) will take place at 

a different OM. For a complete horizontal partitioning, a subaction at level kin an action 

tree (where a topaction is at level one) must record a k-part timestamp for read times. 

Topaction validation turns out to be almost identical to topaction validation in the fixed 
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action model. \Vhen a topaction attempts to commit, its OM acts as the coordinator of a 

two-phase commit, just as a topaction's AM acted as coordinator in the fixed action model. 

Every OM that ran a descendant of the topaction is a participant in the topaction, and is 

asked by the coordinator to validate it. The only difference between an AM coordinator for 

the :fixed action model and an OM coordinator for this one is that an OM coordinator does 

not send update sets to participants, since the shadow versions are already located at the 

participants. 

6.2 Data Structures at an Object Manager 

Subaction management and validation is considerably more complicated here; we need 

a number of data structures that were not needed in either the single-site model or the 

fixed action model. The most important change is the need for multi-part timestamps, or 

multistamps. 

6.2.1 Multistamps for Subaction Read Times 

Each OM has a data structure latest, which keeps track of the latest subaction-cornmit 

it has received from each other OM. When object manager OM-P of a parent action P 

validates and commits a child C, it sends out subaction-cornmit messages to each read

write participant; these messages include the end time et(C) of the committed subaction. 

When read-write participant OM-X receives the subaction-cornmit message from OM-P, 

it moves the appropriate shadow versions up to P and sets the value of latest(OM-P) to 

et(C). Object managers must use a message protocol that ensures that subaction-cornmit 

messages are applied in the same order that they are sent.1 Thus, if the value latest(OM-P) 

is 27 at object manager OM-X, then OA1-X has processed all subaction-cornmi t messages 

sent from OM-P with end times less than or equal to 27. The latest data structure gives a 

compact summary of what subaction-cornmit messages have been processed by an OM. 

The latest data structure is used for recording the multi-part timestamps that are needed 

for subaction read times. Consider a subaction C running at OA1-C, where C has parent 

B running at OM-B, and B has topaction parent A running at OM-A. vVhen C reads an 

object, what must be recorded in the three-part timestamp? \iVhen C attempts to commit, 

object manager OM-B will validate the read time; when B attempts to commit, object 

1 More precisely, the subaction-cornrni t messages sent from one 011 to another must be processed by the 

receiving OM in the same order that they were sent by the sending OM, with no "gaps" in the sequence. 
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manager 0111-A will validate the read time; and when topaction A commits, object manager 

OM-C will validate the read time (as a participant in the two-phase commit process). For 

topaction validation, OM-C's tnc-top value, the transaction counter for OM-C's topaction 

validation queue, is recorded. Since the read is occurring at OM-C, this is a local value. 

For subaction validation, the values latest(OM-B) and latest(A) are recorded. Consider 

latest(OM-B), which is the end time of the latest subaction commit that occurred at OM-B 

to have been processed at OM-C. This end time was a tnc-sub value from OlVI-B, and is 

precisely what Olif-B will need to know when it validates the read that occurred at OM-C. 

At commit time, we record a single tnc-top value and a number of latest(OM-X) values. 

For convenience, we separate the two: a read set entry for a subaction read set has the form 

[id(O), multistarnp, tnc-top-value]. 

Multistamps are used for subaction validation: they only record latest(OM-X) values. 

For a subaction A, we define take-multistarnp(A) to mean: create and return a multistamp 

that contains the latest(OM-X) value of each object manager OM-X that is running a proper 

ancestor of A. If M is a multistamp, then M [OM-X] extracts the latest(OM-X) value that 

was recorded for OM-X. The function call truncate(M, P) returns a new multistamp that 

is a copy of M that does not include latest(OM-X) if OM-Xis not running a proper ancestor 

of P. \Vhen a child C commits to parent P, each k-part multistamp M in C's read set 

can be converted to a (k- 1)-part multistamp using truncate(M, P). Finally, if Ml and 

M2 are multistamps, then the function call merge(Mi, M2) returns a new multistamp that 

has values for all of the OM's in either Ml or M2. If both Ml and M2 have a latest value 

for OM-X, then the earlier OM-X value is retained. When child C commits to parent P, 

if both C and P have read an object 0, then merge can be used to merge C's and P's 

multistamps for 0. 

Figure G.2 shows a system with three object managers, OM-A, OM-B, and OM-C. Each 

OM has two 1atesl values, one for each of the other OM's. At object manager OM-A, inc-sub 

is 22; 22 read-write subactions have committed at OM-A. Examining the latest(OM-A) 

val11es at the other OM's, we can see that Oli1-B has processed all OM-A commits through 

commit 20, while OM-C has processed all OM-A commits through commit 19. The most 

recent commit, at time 22, caused a subaction-commit message to be sent to OM-C, as is 

shown in the figure; OM-C must be a read-write participant in the action that committed. 

The subaction-commit message includes the end time of the committing action, 22, and 

OM-C will change its latest(OM-A) value from 19 to 22 when it processes this message. 
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Part (a) of Figure 6.3 shows an action tree for the same system: subaction Cat OM-C 

has parent Bat OM-B, and B has parent A at OM-A; it also shows OM-C's current state. 

Part (b) shows the read set entry that is recorded at OM-C when action C reads object 

0. The tripple consists of O's identifier, the current tnc-top value, and a multistamp 

that records latest values for all OM's running proper ancestors of action C. In this case, 

the current tnc-top value is 25, and the multistamp records the values latest(OM-B) and 

latest(OM-A). If this multistamp is M, then M[OM-A] is 22 and M[OM-B] is 35. 

6.2.2 The Remaining Data Structures 

In addition to the latest data structure, each OM has the following data structures. For 

topaction validation, each OM has a validation queue VQ-TOP and associated counter 

tnc-top. For global topaction ordering, each OM has a queue entry time counter, qet. For 

subaction validation, each OM has a validation queue VQ-SUB and associated counter 

tnc-sub. At each OM, base-version(id(O )) gives the base version of object 0, and 

shadow( A, id(O )) gives action A's shadow version of object 0, if it exists. 

Each OM also has a status data structure. For any action A, status( A) indicates the 

status of the action, one of the following: ACTIVE, COMMITTED, or ABORTED. Dy default, 

an action's status is ACTIVE; its status is explicitly set to COMMITTED (or ABORTED) when 

its shadow versions are moved (or discarded). 

For every action A that runs at an OM, the OM keeps some information about A and its 

children. The information about A's children is used to validate them when they attempt 

to commit: A's OM keeps the set rw-committed(A), which contains information about the 

read-write committed children of A. The information about A is a read set rs( A), a write 

set ws(A), an aborted set aborted(A), and a participants set participants(A). When A 

attempts to commit, these sets are sent to the OM of A's parent. 

A topaction's read set contains pairs of the form [id(O), tnc-top]; a subaction's read 

set contains triples of the form [id(O), multistamp, tnc-top]. The write set for any 

action contains object identifiers, as in the other models. 

For any action A, aborted( A) contains the action identifiers of aborted descendants of 

A; participants(A) keeps identifies the OM's that ran A or one of its descendants. Each 

entry in participants( A) is a pair [id(OM-X), read-write]: id(OM-X) is the identifier of 

participant OM-X, and read-write is a boolean indicating whether A (or a descendant that 

has committed up to A) has modified any objects at OM-X. If the boolean is true, the object 



Function nearcst-version(A, id(O)): 
if shadow( A, id(O)) exists then return shadow( A, id(O)) end 
if A is a topaction then 

return base-version(id(O)) 
else 

return nearest-version(parent-of(A), id(O)) 
end 

Figure 6.4: The nearest-version Function - Fixed Object Model 

manager 0111-X is a read-write participant in A, otherwise it is a read-only participant. 
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Note the differences from the fixed action model. In the fixed object model, information 

about an action's committed read-write siblings is kept at the OM of its parent. In addition, 

there are two new sets for each action, aborted( A) and participants( A), and there are two 

new data structures at each OM, latest and status. Each OM manages base versions and 

shadow versions. 

Figure 6.4 gives the nearest-version function for this model. Base versions are ac

cessed directly, as was done in the single-site model: Figure 6.4 is identical to Figure 4.2. 

6.3 Read and Write 

The rules for reading and writing an object are given in Figure 6.5. They are very similar 

to those for the single-site model (Figure 4.3); the only difference is the use of multistamps 

for subaction read times. \Vhen an object is read, both topactions and subactions record 

the current tnc-top value, which is used for topaction validation; a subaction A also uses 

take-multi stamp (A) to record a multistamp to be used for sub action validation. 

6.4 Starting a Subaction 

A subaction can be started at the same OM as its parent action, or at another OM; we 

call the first kind of subaction a local subaction, and the second a remote subaction. In 

general, we will only discuss remote subactions; i.e., we assume that starting a subaction or 

committing a subaction involves sending a message from one OM to another. The discussion 

nevertheless applies to local subactions, with two differences. First, start-subaction 

and commit-request messages are not required for a local subaction. Second, the failure 

modes for the subaction and its parent are not independent. Messages are not lost, and a 
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Action A reads Object 0: 
if id(O) rt rs( A) then 

if A is a topaction then 
add the pair [id(O), tnc-top] to rs(A) 

else 
add the triple [id(O), take-multistamp(A), tnc-top] to rs(A) 

end 
end 

read nearest-version(A, id(O)) 

Action A writes Object 0: 
if id(O) rt ws(A) then 

add id(O) to ws(A) 
shadow(A, id(O)) := copy(nearest-version(A, id(O))) 
end 

modify shadow(A, id(O)) 

Figure 6.5: Read and Write - Fixed Object Model 

subaction's OM cannot fail while its parent's OM does not; any discussion of message or 

OM failure does not apply to local subactions. 

When an action Pat OM-P wants to start a remote action Cat OM-C, it creates an 

action identifier for C, id(C}, and sends the message start-subaction(id(C)) to OM-C. 

An action's identifier includes the identifier of the OM where it is running, as well as the 

action identifiers of all parent actions. Thus, we can determine from id(C} that OM-P is 

the OM of C's parent action. Action P then blocks until action C sends a commit-request 

message to OM-P. At OM-C, when the start-subaction message is received, C is started 

and run; when C attempts to commit, a commit-request is sent to OM-P. OM-P validates 

C when the commit-request message arrives; P proceeds with its own execution after C 

has committed or aborted. 

If an action wishes to start a number of concurrent children, it sends a set of 

start-subaction messages and then blocks; each child is validated when it sends the par

ent's OM a commit-request, and the parent only continues its own execution after all of its 

active children have committed or aborted. In some cases, however, the parent may wish to 

continue before some of the concurrent children have sent commit-request messages. For 

example, a parent that starts two equivalent children might want to continue after either 

of the children has committed. A parent can unilaterally abort any of its active children 

by adding them to its aborted set. Thus, if a parent wanted to continue before some of its 
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children had finished, it would abort all remaining active children and then continue. 

Because there can be communications failures or node crashes, a response that an action 

is waiting for may never arrive. For example, a commit-request from a sub action may never 

arrive. After waiting a reasonable period of time for a commit-request (and possibly after 

sending query messages to find out if a subaction is still running) the OM of the parent 

action can decide that there has been a failure, in which case it can unilaterally abort the 

child. 

6.5 Subaction Commit Process 

The subaction commit process involves a number of OM's: the subaction's OM sends a 

commit-request; the subaction's parent's OM validates the subaction; and, if validation 

succeeds, the parent's OM sends subaction-commit messages to the read-write participants 

in the subaction. The next three sections cover these three processes. 

6.5.1 Processing at a Subaction's OM 

The process of sending a subaction commit-request message is shown in Figure 6.6. When 

a child C running at OM-C wants to commit to its parent P running at OM-P, it first it 

adds its own OM to its participants set: it adds the pair [id(DM-C), read-write], where 

read-write is a boolean indicating whether C or any of its descendants has modified an 

object managed by C. This boolean is determined by examining C's write set. Nate that 

C may have a descendant that ran at OM-C and committed up to C; in this case, there 

\Vill already be an entry for OM-C in C's participants set, which we remove before adding 

the new one. The read-write boolean is still calculated correctly by examining C's write 

set, since the write set includes the writes of committed descendants. Next, the sub action 

sends a commit-request to the OM of its parent. This message includes the subaction 's 

identifier, read set, write set, participants set, and aborted set. 

From the point of view of the subaction, subaction commit process is now finished. If 

validation succeeds at the parent, then the subaction's OM may be one of the read-write 

participants that is informed of its commit. However, it is treated like any other read-write 

participant. 
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Subaction C at OM-C with Parent P at OM-P Attempts to Commit: 

if there is pair [id(OM-C), boolean] in participants(C) then remove it end 
if there is an id(O) E ws(C) such that 0 is managed by OM-C then 

read-write := true 
else 

read-write := false 
end 

add the pair [id(OM-C), read-write] to participants(C) 
send the message commi t-request(id( C), rs( C), ws( C), participants( C), aborted( C)) 

to OM-P 

Figure G.6: Sending a cornmi t-request Message - Fixed Object Model 

6.5.2 Processing at a Subaction's Parent's OM 

When the cornmi t-request is received at the parent's OM, the subaction is validated against 

its committed read-write siblings. Information about these siblings is available, since the 

siblings must have been validated by the OM of the parent. If validation fails, the parent's 

01,f simply adds the subaction's identifier to its aborted set. If validation succeeds, the 

information about the child (read set, write set, participants set, aborted set) is merged 

with its parent's information. The parent's OM then sends subaction-cornmit messages 

to all read-write participants in the action. The purpose of these messages is to move the 

appropriate shadow versions up to the level of the parent. Messages are not sent to read

only participants, since these have no shadow versions to be moved. Similarly, no messages 

are sent if the subaction is aborted, since an abort does not result in any shadow version 

movement. A subaction-cornmit message includes the committed subaction's end time 

and aborted set; the end time is used for setting the value latest(OM-P) at each read-write 

participant, and the aborted set is used to make sure that the shadow versions of aborted 

actions are not moved up to the parent. 

Figure 6.7 shows the validation process for object manager 01\1-P when it receives 

a cornmi t-request message. OM-P's sub action validation queue, VQ-SUB, is used for 

validation. OM-P extracts its own value, M{OM-P}, from each read-time multistamp M. 

This value, which was recorded at OM-R, the OM where the read occurred, is the encl time 

from the last subaction-cornmi t message from OM-P to have been processed by OM-R 

when the read occurred. The value is compared to the end times of committed siblings that 

has written the object; if any sibling's encl time is greater than the end time extracted from 

the multistamp, then the committing subaction must have read an out-of-elate value, and 
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validation fails. 

At OM-P, action C is committed to P by merging its various sets (read set, write set, 

aborted set, participants set) into P's sets. Figure 6.8 shows this merging process. vVhen 

merging read sets, the subaction's multistamp is truncated from a k-part multistamp to 

a (!;; - 1)-part multistamp using the truncate operation. If the subaction and its parent 

both have a multistamp read time for the same object, then the merge operation is used to 

produce a new multistamp. (Section 6.2.1 describes the truncate and merge operations for 

multistamps.) When merging participants sets, if the sub action and its parent both have an 

entry for the same OM, then the boolean-or of their two read-write booleans is used; i.e., if 

either entry indicates that the participant is read-write, then the participant is read-write 

in the merged set. 

6.5.3 Processing at a Read-Write Participant 

As subaction-commi t messages arrive at a read-write participant, they are processed 

in the same order that they were sent. In other words, if an object manager sends 

subaction-commit messages Ml and M2 to OM-X (in that order), then OM-X first pro

cesses M 1 , and then processes M2. 

The processing of a subaction-commi t message that commits child Cup to parent Pis 

shown in Figure 6.9. First, C's shadow versions are moved up to P. The value latest(OM-P) 

is then set to the end time that was sent in the subaction-commi t message; this indicates 

that all subaction-commi t messages from OM-P with end times less than or equal to that 

end time have been processed. This value is only updated after the shadow versions have 

been moved; read times must not record the new latest(OM-P) time prior to this point, since 

actions can continue to run while subaction-commit messages are processed. However, an 

action can read a new value but record an old latest(OM-P) value, which would lead to an 

unnecessary abort. Actions could block during subaction-commit processing, in which case 

this would not occur. Whether actions should block depends on how the cost of blocking 

compares to the cost of restarting those actions that abort because they record an older 

latest(OM-P) value. 

Shadow versions movement occurs as follows. First, the set aborted( CJ is used to change 

the status of each aborted action and its descendants to ABORTED. Actions are marked as 

ABORTED so that their shadow versions will not be moved during the next step. The function 

call descendants (A) gives all descendants of A about which the OM has information: some 
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The message commit-request(id(C), rs(C), ws(C), aborted(C), participants(C)) 
is received at OM-P (C's Parent is P): 

begin 
begin critical section for subactions 
VQcopy := rw-sibling-copy(VQ-SUB, C) ; rw-copy := copy(rw-committed(P)) 
allocate entry E for action C 
E.type := VALIDATING; add E to VQ-SUB 
end critical section for subactions 

st(C) :=the earliest OM-C read time M[OM-C] from any multistamp Min rs(C) 
for each [ws(RW), et(RW)] pair in rw-copy with st(C) < et(RW) do 

for each [readobj, M, readtime-top] triple in rs(C) do 
if readobj E ws(RW) and M[OM-P] < et(RW) then exit FAIL end 
end 

end 
for each read-write action RW in VQcopy do 

for each [readobj, M, readtime-top] triple in rs(C) do 
if readobj E ws(RW) then exit FAIL end 
end 

end 
begin critical section for subactions 
E.type := READY 
while head(VQ-SUB).type =READY do 

let H be the action at the head of VQ-SUB 
remove H's entry from VQ-SUB 
if H is read-write then 

tnc-sub := tnc-sub + l; et(H) := tnc-sub 
add the pair [ws(H), et(H)] to rw-committed(P) 
for each [id(OM-X), read-write] in participants(H) do 

if read-write then 
send the message subaction-commit(id(II), aborted(H), et(H)) to OM-X 
end 

end 
end 

commit action II 
(II is now a committed action.) 
end 

end critical section for subactions 
end 

except when FAIL: 
begin critical section for subactions 
delete E from VQ-SUB 
add id(C) to aborted(P) 
end critical section for subactions 

signal FAILED 
end 

Figure 6.7: Subaction Validation - Fixed Object :Model 



Commit Action C (to Parent P): 
if P is a topaction then 

for each [id(O), M, C-rt-topl in rs(C) do 
if there is an [id(O), P-rt-topl in rs(P) then 

replace [id(O), P-rt-topl with 
[id(O), min(C-rt-top, P-rt-top)l in rs(P) 

else 
add [id(O), C-rt-topl to rs(P) 

end 
end 

end 
if P is a subaction then 

for each [id(O), C-M, C-rt-topl in rs(C) do 
new-C-M := truncate(C-M, P) 

if there is an [id(O), P-M, P-rt-topl in rs(P) then 
replace [id(O), P-M, P-rt-top] with 

[id(O), merge(new-C-M, P-M), min(C-rt-top, P-rt-top)] in rs(P) 
else 

add [id(O), new-C-M, C-rt-top] to rs(P) 
end 

end 
end 

for each id(O) in ws(C) do 
if id(O) is not in ws(P) then add id(O) to ws(P) end 
end 

for each id(A) in aborted(C) do add id(A) to aborted(P) end 
for each [id(OM-X), boolean-CJ in participants(C) do 

if there is an (id(OM-X), boolean-Pl in participants(P) then 
replace [id(OM-X), boolean-Pl with 

[id(OM-X), (boolean-C or boolean-P)l in participants(P) 
else 

add [id(OM-X), boolean-CJ to participants(P) 
end 

end 

Figure 6.8: Subaction Commit-Time Update - Fixed Object Model 
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The message subaction-commit(id(C), aborted(C), et(C)) 
is received at OM-X (C's Parent is P): 

for each id(A) in aborted(C) do 
for each Din descendants(A) do 

abort D if it is still running 
status(D) := aborted 
end 

end 
for each A in descendants(C) do 

if status( A) = active then 
for each existing shadow(A, id(O)) do 

shadow(P, id(O)) := shadow(A, id(O)) 
end 

status(A) :=committed 
end 

end 
latest(OM-P) := et(C) 

Figure 6.9: Processing a subaction-cornmi t Message - Fixed Object Model 

appropriate data structure should be kept so that this set can be computed quickly for any 

action A. Note that the descendants of A includes A itself. Some of the actions that have 

their status changed to ABORTED may still be running. For example, if an action starts a 

subaction, but never receives a commit-request from that subaction, it might abort, while 

its child action continues to run. This child action is called an orphan. If an action whose 

status is being changed to aborted is still running, then it is aborted: it is forced to stop 

running, and its data structures are discarded. Next, the shadow versions of C and any 

descendant of C that still has status active are moved up to P. 

If all subaction-cornmi t messages for C's descendants have already been processed, 

then all shadow versions for actions that have committed up to C have already been moved 

up to C: only C itself will have shadow versions to be moved up to P. However, it is possible 

that some subaction-cornmit messages for C's descendants have not been processed yet; 

subaction-cornmi t messages can arrive out of order, if they originate from different OM's. 

For example, an action might commit at one OM, causing subaction-cornmit messages 

to be sent for it, and its parent might commit at another OM, causing subaction-commi t 

messages to be sent for the parent. Since two different OM's send these messages, there is no 

guarantee that the parent's subaction-cornmit message will arrive second at a given read

\vrite participant. This potential reordering does not matter: our shadow version update 
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Action P 0111-P 

Action C OM-C 

Action LCA 0111-LCA 

Action DJ Action D2 0111-0 

Figure 6.10: Subaction Commit Example---- Fixed Object Model 

algorithm works correctly regardless of the subaction-commit arrival order. 

Our a.lgorithm is idempotent. Committed action remain committed, aborted actions 

remain aborted, active actions become committed or aborted only once, and shadow versions 

are always moved up to an active action. Thus, regardless of order, actions will be given 

the correct status, and only the shadow versions of committed actions will be moved up to 

an active action. (It will never be the case that the shadow version of an aborted action is 

moved up to an active action.) 

\i\Thile idempotence guarantees some properties, there is one other concern. Suppose two 

descendants of a committing subaction C, DJ and D2, have both written an object 0 at 

object manager OM-0, but a subaction-commit message has not been received by OM-0 

for either DJ or D2. This situation is shown in Figure G.10. vVhen the subaction-commit 

for action C arrives, if neither DJ nor D2 is a descendant of an aborted action, then both 

DJ and D2 have a version of 0 to be moved up to P -- it is not clear which version should 
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become P's new shadow version. 

It turns out that this scenario can never occur; it leads to a contradiction, as follows. 

Both DJ and D2 must have run at O's OM, OM-0. Note that DJ can not be an ancestor 

of D2, or vice versa: an ancestor does not commit until its descendants have committed or 

aborted, and neither DJ nor D2 is known (at OM-0) to have committed or aborted. DJ 

and D2 must have committed up to their least common ancestor, LCA (which will either 

be committing action C or some descendant of C that has committed up to C). DJ must 

have read D2's version of 0, or vice versa; otherwise, a conflict would have been detected 

when the updates of 0 were committed to LCA's object manager. Neither DJ nor D2 is a 

descendant of an aborted action; thus, a conflict was not detected. Since one has read the 

other's version, at the time of that read it must have been the case that one or the other was 

already committed up to LCA at OM-0 ~ but this contradicts our premise that neither 

has status committed at O!Yl-0 when the subaction-commi t message for C arrives. 

This shows that for any subaction-commi t from a child C to a parent P, no two 

shadow versions moved up to P will be for the same object 0. This result holds even when 

subaction-commi t messages arrive out of order or are lost. 

6.5.4 Discussion 

It is worthwhile to step back and examme the subaction commit process we have just 

described. In the fixed action model, all processing of a subaction commit occurs locally. 

The action is validated locally, and, if it commits, its shadow versions are moved up to its 

parent locally, at the same time. In the fixed object model, an action is validated by the 

OM of its parent, and, if it commits, a set of subaction-commi t messages is sent to all 

OM's that are read-write participants in the action, which then move the action's shadow 

versions. Some of these messages may never arrive, and they certainly do not all arrive at 

the same time. 

Thus, at any time after a subaction commits, the commit may or may not have been 

processed by one of the OM's where it ran. Ilecause of this, we must record at each OM 

information about which subaction commits have been processed. The latest data structure 

is used for this purpose. If object manager OM-A has a value of 27 for latest(OM-X), then 

the subaction-commit for every subaction that committed at object manager OA!f-X with 

an end time of 27 or earlier has been processed by OA1-A. To maintain this data structure, 

it is necessary for an OM to process subaction-commi t messages sent from a given Ol'vI in 
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the order of their end times - messages between each pair of OM's must be ordered. 

The latest data structure is used to record subaction read times. A read by subaction 

will potentially be validated by all of its ancestors' OM's. At a given object manager 

OM-X, validation is concerned with actions that committed at OM-X. To validate the 

reading of some object 0, OM-X must know which actions that committed at OM-X had 

been processed by O's OM at the time that 0 was read; i.e., it must know what the value 

of latest(OM-X) was at the time of the read. Thus, when an action A reads an object, a 

multistamp read time is recorded that includes the latest value for each OM that is running 

a proper ancestor of A. 

N" o OM has to block after sending a message while another OM processes the message. 

\Vhen a subaction attempts to commit, its OM sends a commit-request message, and can 

then continue executing other activities. If the parent's OM commits the subaction, it sends 

out subaction-commi t messages and forgets about them. As we showed, it does not matter 

if subaction-commit messages are lost; the commit of an action can always be processed, 

even if the commits for some of its descendants were lost or have not arrived yet. In the 

worst case, the arrival of a topaction commit message will cause all remaining subaction 

commit processing to be done, as described below. 

6.6 Topaction Commit Process 

The topaction commit process is almost identical to the topaction commit process in the 

fixed action model. A global ordering for topation validation is still required, and we use the 

same approach of having the coordinator choose a global queue entry time for its topaction. 

(Other alternatives were discussed in the Section 5.7.) The main difference here is that 

the shadow versions of the topaction are already located at the OM's where they will be 

installed as base versions. In the fixed action model, the shadow versions of the topaction 

were located at the topaction's AM, which sent these versions to the OM's in update sets 

as part of the commit process. The other major difference is that the coordinator includes 

the topaction's aborted set in validate-request messages. 

6.6.1 Validation at a Coordinator 

As in the fixed action model, the entity running the topaction (in this case an OM) acts as 

coordinator for the two-phase commit. The coordinator's role is shown in Figure 6.11. (This 

figure does not include some of the details of the coordinator's role in a two-phase commit, 
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Topaction T Attempts to Commit: 
global-qet(T) := a proposed queue entry time for T 
for each OM-P in participants(T) do 

send the message validate-request(id(T), rs(T), ws(T), aborted(T), global-qet(T)) 
to OM-P 

end 
gather responses ... 
if any response is FAILED then 

for each id(OM-P) in participants(T) do 
send the message abort(id(T)) to OM-P 
end 

else if any response is BAD-GLOBAL-TIME then 
global-qet(T) := a new proposed queue entry time for T 
for each id(OM-P) in participants(T) do 

send the message revalidate-request(id(T), global-qet(T)) to OM-P 
end 

go back to gather responses ... above 
else if all responses are OK then 

for each OM-P in participants(T) do 

end 

send the message commit(id(T)) to OM-P 
end 

Figure 6.11: Coordinator, Topaction Validation - Fixed Object Model 

such as dealing with lost messages or recording the state of the commit in stable storage.) 

During the first phase, the coordinator sends validate-request messages to participating 

OM's; these messages include the topaction's read set, write set, and aborted set, and a 

global queue entry time. In the fixed action model, we computed the set of participants 

from the topaction's read set; for this model, we maintain an explicit participants set, so we 

do not need to do this computation. (The participants set is used for both subaction and 

topaction commit processing; it makes sense to keep an explicit set, rather than computing 

it each time from the read set.) Note that the topaction's OM also acts as a participant in 

the commit; of course, it does not send messages to itself, but otherwise it plays the same 

role as any other participant. 

6.6.2 Validation at a Participant 

A subaction-cornmi t message can be lost, and a validate-request message for a topaction 

might arrive before the subaction-cornmit messages for some of its descendants arrive; thus, 

a participant may not have completed some subaction commit processing when a topaction's 



Move Shadow Versions up to Topaction T: 

for each id(A) in aborted(T) do 
for each Din descendants(A) do 

abort D if it is still running 
status(D) := aborted 
end 

end 
for each A in proper-descendants(T) do 

if status( A) = active then 
for each existing shadow(A, id(O)) do 

shadow(T, id(O)) := shadow(A, id(O)) 
end 

status(A) := committed 
end 

end 

Figure 6.12: J\foving Shadow Versions at Topaction Commit -- Fixed Object Model 
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validate-request message arrives. Thus, there may be some shadow versions located at 

descendants of a committing topaction T that should have been moved up to T. 

Before validating a topaction, we perform this shadow version movement; this is shown 

in Figure 6.12. First, the status of all aborted descendants of T is changed to ABORTED; 

some of these may be orphans that are still running, in which case they are aborted. The 

shadow versions of any active proper descendant of the topaction are then moved up to 

the topaction. This processing is essentially the same as that for a subaction commit. For 

the same reasons outlined in Section 6 .5 .3, it is safe to do this processing even if some 

subaction-cornmi t messages have not been processed. 

The processing of a validate-request message for topaction Tis shown in Figure 6.13. 

This figure does not include some of the details of the participant's role in the two-phase 

commit process, such as acknowledging commit and abort messages or recording the state 

of the commit process in stable storage. As shown, T is validated after moving any shadow 

versions up to T. In fact, these two processes could occur concurrently. 

The validation algorithm is similar to the topaction validation algorithm in the fixed 

action model (Figure 5.8). The participant returns an OK or FAILED response. If it responds 

with or<, and the coordinator sends a cornmi t message, then the top action's shadow versions 

are installed as base versions. Note that the topaction's shadow versions are already located 

at the participant; the validate-request message does not include an update set, as it 
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did in the fixed action model. 

6. 7 Optirnizations 

This section outlines several optimizations for the fixed object mod<~l. Unlike the fixed 

action model, there is no optimization, such as caching, that radically changes the design 

of the model. 

6. 7.1 Discarding Information 

Action information can be garbage collected. When action C at OM-C attempts to commit 

to parent P at OM-P by sending a cornmi t-request, all information at OM-C about C 

except its shadow versions can be discarded after OM-P acknowledges the cornmi t-request. 

We ass11me here that OM's send an acknowledgement in response to cornmi t-request mes

sages. After C commits or aborts at OJlll-P, all information about C can be discarded, since 

it is transferred to action P. vVhen a subaction-cornmit message is processed, information 

about each action that is marked as committed or aborted can be discarded; i.e., shadow 

versions are either be moved or discarded. \Vhen a topaction commits or aborts, all infor

mation about the topaction can be discarded after it has either installed its shadow versions 

as base versions or discarded its shadow versions. At each OM, the set rw-top-committed 

can be garbage collected as was described in Section 3. 7. 

6. 7.2 Additional Message Ordering 

The use of the latest data structure depends on message ordering. At 01vf-X, all 

subaction-cornmit messages sent from OM-Y with end times less than or equal to 

latest(OJ1.f-Y) have been processed. For this to hold, it must be true that subaction-cornmit 

messages are processed in the order of their end times; i.e., in the order that they are sent 

from 0111- Y to 0111-X. A special ordered-message protocol (such as using sequence num

bers) must be used to guarantee this. 

There is an additional message-ordering constraint that OM's should guarantee to 

improve the chances that a su baction will validate successfully. If OM- Y sends a 

start-subaction message to OM-X after it sends a subaction-cornmit message to Olvf-X, 

then the su baction should be started after the sub act ion-cornmi t is processed. Suppose 

a parent action starts a child action CJ at OM-C, waits until it commits, and then starts 

another child C2, also at OM-C. Note that the start-subaction message for C2 is sent 



OM-X receives message: 
validate-request(id(T), rs(T), ws(T), aborted(T), global-qet(T)) 

begin 
l\fove Shadow Versions up to Topaction T 

begin critical section for topactions 
if global-qet(T) <::: qet then return BAD-GLOBAL-TIME end 
qet := global-qet(T) 
VQcopy := copy(VQ-TOP) ; rw-top-copy := copy(rw-top-committed) 
allocate entry E for action T; E.type :=VALIDATING; add E to VQ-TOP 
end critical section for topactions 

st(T) := the earliest read time in rs(T) 
for each [ws(RW), et(RW)] pair in rw-top-copy with st(T) < et(RW) do 

for each [id(O), readtime-top] pair in rs(T) do 
if 0 is managed by this OM and 

id(O) E ws(RW) and readtime-top < et(RW) then exit FAIL end 
end 

end 
for each read-write action RW in VQcopy do 

for each [id(O), readtime-top] pair in rs(T) do 
if id(O) E ws(RW) then exit FAIL end 
end 

end 
return value OK 

wait for the message commit(id(T)) or abort(id(T)) 
if the message is abort then exit FAIL end 
the message is commit ... 

begin critical section for topactions 
E.type := READY 

while head(VQ-TOP).type = READY do 
let H be the action at the head of VQ-TOP 
remove H's entry from VQ-TOP 
if H is read-write then 

tnc-top := tnc-top + 1; et(II) := tnc-top 
OM-ws := OM-copy(ws(H), id(OM-X)) (copies only OM-X's objects) 
add the pair [OM-ws, et(II)] to rw-top-committed 
for each id(O) in OM-ws do 

base-version(id(O)) := shadow(II, id(O)) 
end 

end 
(II is now a committed action.) 
end 

end critical section for topactions 
end 

except when FAIL: 
begin critical section for topactions 
delete E from VQ-TOP 
end critical section for topactions 

return value FAILED 

end 

Figure 6.13: Participant, Topaction Validation~ Fixed Object Model 
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to OM-C after the subaction-cornmi t message for Cl. If the subaction-commi t message 

is not processed at OM-C before subaction C2 starts, then C2 will not see the changes 

made by Cl, even though the parent action explicitly waited until Cl committed before it 

started C2. 

6.7.3 Message Buffering 

It is possible to buffer subaction-cornmit messages. So far, we have considered all messages 

to follow the semantics of remote procedure call; when a message is invoked, we have 

assumed that it is sent immediately. While messages such as start-subaction messages or 

the messages sent during two-phase commit should be sent immediately, it is not necessary 

to send subaction-cornmi t messages immediately. Instead, an OM can group together a 

number of subaction-cornmit messages destined for the same OM and use a single message 

for the set. In addition, an OM can "piggy-back" subaction-cornmi t messages on messages 

that must be sent immediately. \Ve can think of each OM as having a buffer for each other 

OM that it sends messages to. vVhen it sends a subaction-cornmi t message, it simply adds 

the message to the appropriate buffer; the buffer keeps message properly ordered. When it 

sends a message that must be sent immediately, it attaches the contents of the appropriate 

buffer to the message. As we described above, if the message being sent immediately is a 

start-subaction message, then any subaction-cornmit messages that get sent along with 

it should be processed before the subaction is started. 

As usual, there is a tradeoff here. Message buffering improves communication perfor

mance, but it means that subaction-cornmi t messages will arrive later than they would 

otherwise: some subactions will read older versions of objects, which can cause them to fail 

validation. 



Chapter 7 

Conclusion 

In this chapter we summarize our work, compare our two distributed models, and outline 

a number of interesting areas for future research. 

7.1 Summary 

This thesis began by describing transaction systems and nested actions. Nested actions are 

a natural and desirable extension of top-level actions: they allow us to reason about con

currency within an action, and to divide an action into components that fail independently. 

\Ve then discussed optimistic concurrency control, comparing it to pessimistic concurrency 

control, which is more widely used. \Ve showed that, for systems with fixed action con

straints and object caching, optimism should perform better than pessimism for accessing 

a cached object. Unfortunately, no current optimistic system supports nested actions, and 

the combination of optimism and subactions has not been studied in the literature. This 

thesis extends prior work in optimistic concurrency control to nested distributed actions. It 

begins by describing a model with nested actions in a single-site system, and then presents 

two distributed models with nested actions, the fixed action and fixed object models. 

Our two models reflect the two different approaches that are taken when building trans

action systems. In the fixed action model, an action brings copies of the objects that it 

accesses to the node where it is running; if it updates any of these copies, it sends the 

updates back as part of the topaction commit process. The most interesting research for 

this model was in the area of trying to reduce the number of object requests sent over the 

net\vork. At this point we have only sketched out possible approaches: the most important 

approach will be to use object caching, while another important approach will be to use 

an object grouping mechanism to return more than one object copy in response to a single 

object request. To research the caching and object grouping strategies, it will be necessary 
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to build a simulation. 

In the fixed object model, all shadow versions of an object are kept at the same location 

as its base version. Most pessimistic systems have the same fixed object approach. The most 

interesting research for this model was in the area of trying to reduce the cost of subaction 

commit for non-local subactions. In general, the commit of an action requires an agreement 

protocol; i.e., synchronization between two or more nodes in the system. For example, we 

use a two-phase commit protocol for topaction commit. For subactions, we would like to 

avoid the overhead associated with this kind of synchronization. This problem has been 

studied for pessimistic systems, and a viable solution has been found [Liskov et al. 1987a]. 

There would be a clear disadvantage to using optimism for fixed object systems if we did 

not have a method that avoids synchronization for subactions. Our approach, which uses 

asynchronous "courtesy" messages (messages that are not required to arrive), allows us to 

group together and "piggy-back" messages, significantly reducing network loading and the 

cost of subaction commit. 

\iVhile our two models are not implementations, we do consider some efficiency issues and 

possible optimizations. From these discussions, it should be clear that either model could 

be used as the basis for a real system. In other words, including subactions in optimistic 

systems is not only desirable but feasible. 

In systems following the fixed action model, optimistic concurrency control has an ad

vantage over pessimistic concurrency control with respect to caching. In contra.st, in the 

fixed object model (where there is no non-local object caching, since there are no non-local 

object copies), there are no clear reasons for choosing one concurrency control method over 

the other. In this sense, the fixed action model is more interesting for optimistic concur

rency control. It is likely that future systems using optimism will be closer to the fixed 

action model than the fixed object model. However, the requirements of a given system will 

dictate which model is used. 

7.2 Comparing the Distributed Models 

In the fixed action model, a major issue is the cost of object movement. If objects are very 

large, or if actions frequently access a large number of objects, the cost of object movement 

will be high. Caching will help; in addition, one can use special methods to avoid the cost 

of transmitting large objects. For example, it is possible to transmit only relevant portions 

of large objects. Also, when sending commit information, we can send a list of changes to 
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a large object instead of sending back the entire modified object. 

One advantage of object movement is that it off-loads work from object managers. If 

objects are not moved, an object manager must perform all computation that is performed 

on its objects. In the fixed action model, the work is distributed to various action managers 

that can be located at different network nodes. In the fixed object model, if an OM is 

overloaded with work, we can distribute its set of objects over several OM's. However, this 

approach is not as flexible as the dynamic distribution of work in the fixed action model. 

A potential problem in the fixed action model is security. Consider an employee 

database, where an employee is allowed to find out the average salary of the employees 

in the company, but not the salary of a specific employee. In the fixed object model, an 

object manager has complete control over all accesses to its own objects. Thus, it might 

respond to a request to compute the average, but not to a request for a particular salary. 

In the fixed action model, object state is passed out over the network to other locations. 

To compute the average, all employee objects would be passed out to the action manager 

doing the averaging - this may be unacceptable if the node running the averaging action 

is not considered secure. 

This example raises another issue: locality. The fixed object model is designed to take 

advantage of static locality, while the fixed action model with caching is designed to take 

advantage of dynamic locality. Static locality is locality inherent in the placement of the 

objects in the system. We can place objects that are frequently accessed together at a single 

location. Dynamic locality is locality inherent in the computations that are performed by 

the system. An object that is accessed once tends to be accessed frequently by the same 

computation. 

In the fixed object model, the location of objects is fixed. If objects can be statically 

arranged so that actions tend to use many objects at a single object manager, this will 

result in good performance. For example, if all employee objects are located at the same 

object manager, computing the average salary will have good performance. However, if 

the dynamic pattern of object accesses does not match the static placement of objects, 

performance will be significantly worse. In the fixed action model with caching, objects 

that are accessed frequently will be cached locally. If most employee objects are already 

cached, the computation of the employee average will have good performance. However, 

access to a large number of objects that are not accessed frequently (e.g., computing the 

employee average when none of the employee objects is currently cached) will be expensive. 
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However, in addition to taking advantage of dynamic locality, the fixed action model can 

also attempt to take advantage of static locality. As was discussed in Section 5.7.4, an 

object manager can use grouping information to return a set of related objects in response 

to a single base-version request. 

The relative performance of the two models depends heavily on many factors: the 

number, kind, and frequency of the actions in the system; object size; the number of objects 

accessed per action; object placement; caching strategy (for the fixed action model); and 

so on. For a given set of system requirements, one model may clearly be appropriate, but 

there will be cases when the choice is not clear - it may be necessary to run simulations 

to predict which model will be better. 

There are a few distinctions between the models that do not deal directly with perfor

mance issues. For example, we did not mention the issue of code placement when describing 

the two models. If the objects in the system are typed objects with associated operations, 

it is necessary to have a local copy of the code for type T's operations to execute operations 

on some object 0 of type T. In the fixed object model, each object manager must have the 

code for its own objects' types. In the fixed action model, however, each action manager 

that accesses an object 0 must have the code for O's type. In the worst case, each AM will 

have to have the code for every type in the system. 

One of the most interesting distinction between the two models is the cost of including 

subactions. First, imagine a fixed action model without subactions. We still have action 

managers and objects managers: AM's run topactions, while OM's do not change - they 

still respond to base-version requests and participate in the topaction commit process. 

The introduction of subactions merely entails local changes to the AM's, since subaction 

management, shadow versions management, and validation is all local. The messages sent 

in the system also do not change. 

ln contrast, imagine a fixed object model without subactions. Here, it is not necessary 

for an 01'1 to keep transaction counters for other OM's, to send its own transaction counter 

in commit messages, or to record multistamps. Courtesy commit messages are not used -

only topaction commits occur, so only full two-phase commit is used. To add subactions, 

every OM in the system must be modified: each OM must keep track of more information, 

send more information, and be ah le to process an additional message type (the courtesy 

commit). In the fixed action model it would be possible to add subactions to only some of 

the AM's; in the fixed object model, all OM's must add subactions at the same time. 
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7.3 Future Work 

There is still much work to be done in the area of optimistic concurrency control. This 

work will be able to build upon what we have already studied. In particular, future work 

should explicitly state whether the results apply to fixed action or fixed object systems. In 

addition, it should not ignore subactions: something feasible (or infeasible) for topactions 

may prove to be infeasible (or feasible) for subactions, and in any case subaction processing 

will usually be different from the topaction processing. In this section, we outline some 

areas for future work. 

7.3.1 Combining the Fixed Action and Fixed Object Models 

A hybrid model that distributes both actions and shadow versions is probably possible. 

However, it would not be a trivial combination of the two models. For example, reading 

the nearest version of an object is non-trivial, since the nearest version might be at any 

ancestor's object manager. 

7.3.2 Caching and Object Grouping Strategies 

As we mentioned above, it will be necessary to build a simulation of the fixed action model 

to study various object caching and object grouping strategies. To drive such a simulator, 

traces from real systems will have to be obtained. Some objects ("hot spot" objects that 

are frequently modified) should not be cached - it should be possible for the system to 

dynamically detect such objects and mark them as "hot". as well as detect when they are 

no longer hot. Dynamic hot-spot detection is done at the page level in the Statice system 

[Gerson 1989). Similarly, dynamic object grouping may be possible: the system can observe 

object access patterns to learn which objects should be grouped together. 

For systems with integrated programming language support, the programmer may be 

able to help with caching (for example, by suggesting which objects will be hot spots), and 

will definitely be able to help with object grouping (by explicitly forming object groups). 

A number of groups have including object grouping mechanisms in their object-repository 

projects, including Observer [Hornick St Zdonik 1987) and Mneme [Moss & Sinofsky 1988). 
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7.3.3 Combining Optimism and Pessirnisrn 

In general, we would like to have a system that applies optimism and pessimism where they 

are most useful: optimism where synchronization is unacceptable, and pessimism where 

conflicts are likely. 

A hybrid optimistic-pessimistic system would be interesting for both the fixed action and 

fixed object models. Imagine a system with two kinds of objects, optimistic and pessimistic 

ones, where actions acquire locks for pessimistic objects and record read set and write entries 

for optimistic objects. If an optimistic object is found to be a hot-spot, it can be changed 

to a pessimistic object. 

In an optimistic-pessimistic fixed action model, when a base-version-request is processed, 

ifthe object requested was pessimistic it would be locked at its OM; if other base versions for 

pessimistic objects were also returned (because of an object grouping mechanism) we would 

not want to lock these objects. Thus, we can have pessimistic objects that are cached but 

are not locked. \Vhen accessing a cached pessimistic object that is not locked, an action can 

send the lock request before accessing the object; alternatively, it can concurrently access 

the object and send the lock request, as is clone in Statice [Gerson 1989]. 

Thus, when caching is taken into account, there can be several categories of pessimistic 

objects. Once again, the system can attempt to determine dynamically what the appropriate 

category for an object is, or the programmer can specify the category if the system is 

integrated with a programming language. 

7.3.4 Object Movement in Pessimistic Systems 

Object movement and caching are interesting for optimistic systems; are they also interest

ing for pessimistic systems? It seems at first glance that a pessimistic version of the fixed 

action model with base version caching probably does not make sense because of strict 

cache coherency requirements. However, as the Statice system shows, it is possible to have 

a mostly pessimistic system with a hybrid approach to accessing cached objects. 

For pessimistic systems similar to the fixed object model, a limited form of object 

movement may be interesting. Consider a system such as Argus [Liskov 1984] that executes 

remote procedure calls as subactions, where some or all of the parameters are passed by 

reference. To improve locality during the execution of the subaction, it may make sense to 

pass copies of some of the objects that are passed by reference. Moving objects to improve 

locality has been studied in Emerald [Hutchinson 1987] and REV [Stamos 1986]. Emerald 
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has no transaction mechanism, and REV has only topactions with pessimistic concurrency 

control; it \vould be interesting to re-examine this work, considering pessimistic systems 

with nested actions. An important part of this work would be to determine when to move 

objects; again, the system may be able to learn this by monitoring its own performance, 

and the programmer may be able to help if appropriate linguistic constructs are provided. 

7.3.5 Type-Specific Conflict Detection 

Read-write conflict detection can lead to unnecessary action conflicts. If the objects are 

of abstract type, a type-specific conflict detection scheme can be used [Herlihy 1986]. We 

did not consider such a scheme, as it would have unnecessarily complicated our models. 

In addition, because of its extra overhead, it is not clear that switching to a type-specific 

scheme will result in improved performance. We believe that our models can be adapted to 

use type-specific methods, but we have not examined the issue in detail. 

7.3.6 User-Defined Atomic Types 

One way to provide type-specific conflict detection is to allow programmers to define their 

own atomic data types; this has been studied for Argus [Weihl 1984] and for Avalon, an 

extension to C++ [Herlihy & Wing 1987]. Neither study has considered support for op

timistic objects. In Avalon, one develops user-defined (but system-invoked) commit and 

abort operations; to develop optimistic objects, it would also be necessary to have a vali

date operation. 

7.3.7 Linguistic Issues 

In addition to some of the linguistic issues a.lready mentioned, there is the more basic issue 

of designing optimistic action constructs for a programming language. The usual begin 

action, end action, commit, and abort used for pessimistic actions may not be sufficient for 

optimistic actions. For example, what is the correct action to take if validation fails: do 

we want the system to restart the action automatically, or should the programmer specify 

what to do? 

In a pessimistic system, the same kinds of issues arise. For example, an action can be 

aborted to resolve a deadlock, in which case it \Vould normally be restarted automatically. 

Again, automatic restart is not appropriate in all cases. 
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A related issue is that of providing constructs to help programmers write actions th at 

include user-visible input or output. It is often not possible to simply restart an action that 

involved user-visible operations. In an optimistic system, if an action that has user-visible 

operations conflicts with an action that does not, we would prefer that the system aborted 

the latter action. Similarly, in a deadlock situation, we want a pessimistic system try to 

avoid aborting an action with user-visible operations. 

7.3.8 Orphans 

An orphan is a computation that continues to run even though its results are no longer 

needed. In an optimistic concurrency control system, orphans arise in three ways: from 

aborts, commits, and crashes. Abort orphans and crash orphans occur in both optimistic 

and pessimistic systems, and have been studied previously [Liskov et al. 1987b]. Commit 

orphans are unique to optimistic systems. 

If a parent action aborts (or its node crashes) while its child is still executing at another 

entity, the child action is an abort orphan: it continues to execute, but its results are not 

needed, and will be ignored if they are returned to the entity of the parent. vVhen an action 

commits, if a concurrent sibling has read a set of objects that overlaps with the write set 

of the committed action, then the sibling is a commit orphan: it will fail validation, and 

its results will be thrown away. If an object manager that is managing one or more objects 

that have been modified by an action crashes while the action is still active, then the action 

is a crash orphan: it will not be able to commit through the top, since it will not be able 

to install its changes at the crashed object manager. 

Orphans fail when they try to commit; however, it is desirable to abort orphans as 

soon as possible, for two reasons: they waste resources such as processor time, and, if they 

perform user-visible operations, they can present inconsistent information to the user, since 

they are not serialized with respect to committed actions. The process of detecting and 

destroying orphans is commonly referred to as orphan detection. If orphans are always de

tected before they can see an inconsistent state, this solves one of the major drawbacks of 

optimistic systems: namely, the fact there are additional orphans that can see inconsistent 

state. (See Section 7.3.9 for another approach to this inconsistent state problem.) Unfor

tunately, orphan detection itself has overhead, and tends to slow down the processing of 

all actions (both orphans and non-orphans) throughout the system. It is an open question 

whether orphan detection actually improves performance. 
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The models in this thesis use backward validation, where actions validate against 

already-committed actions. Another possibility is to use forward validation, where actions 

validate against active actions. A major advantage of forward validation is that it does not 

create commit orphans, since an action is only allowed to commit if it does not invalidate 

active actions. However, forward validation does not make sense for topactions: it would be 

necessary for an action's siblings to block while it validates and commits, and the two-phase 

validation and commit process is too lengthy to consider blocking active topactions during 

topaction validation. Forward validation for subactions might be useful, however. It would 

be especially easy to use forward validation for subactions in the fixed action model, since 

this validation is local to a single action manager. 

7.3.9 Multiversion Schemes 

Some systems have explored the possibility of keeping a timestamped sequence of base 

versions for each object, where the timestamps indicate the time that the versions were 

committed, and the version with the most recent timestamp is the current value of the 

object. In these systems, it is possible to separate the commit processing of read-only 

actions from the commit processing of read-write actions. Vlhen a read-only action reads 

an object 0, it reads the version of 0 with the largest tirnestamp that is less than or equal 

to its start time. \Ve can picture the read-only action as taking a "snapshot" of all of the 

objects in the system at the time it begins, and then reading objects from that snapshot. 

Such an action can always be serialized with respect to all other actions in the system. 

Thus, in an optimistic system with multiple versions, it is not necessary to validate read

only actions; read-only actions always commit, and read-write actions only need to validate 

against other read-write actions. An additional advantage of this approach is that actions 

always see a consistent state, since they are reading from a consistent "snapshot" of the 

objects in the system 

An optimistic multi version scheme has already been proposed [Agrawal et al. 1987]. 

However, this work only considers a fixed object approach without subactions. In addi

tion, some aspects of the approach need to explored in more depth. For example, if a 

read-write action uses its start time to select object versions, this ensures that the action 

will see a consistent state, but makes it more likely that it will read older versions of objects 

and end up failing validation. For actions that perform user-visible operations, viewing 

a consistent state is essential; perhaps two kinds of actions should be provided, one that 
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ensures a consistent view and one that does not. Actions that do not ensure a consistent 

view would always read the most recent versions of objects. 

7.3.10 Concurrency Control in Shared-Memory Multiprocessors 

Small-scale shared-memory multiprocessors can be considered physical instances of the fixed 

action model: the distributed memories correspond to object managers, the processors 

correspond to action managers, and the caches at the processors correspond to base ver

sion caches at action managers. Currently, shared-memory multiprocessors maintain strict 

cache coherence, using a "snoopy" cache-coherency scheme such as the Dragon scheme 

[McCreight 1984] that maintains consistency across each read and write that occurs at any 

processor. However, it can be argued that concurrent programs for these machines will be 

written using some sort of concurrency control mechanism, such as critical sections; there

fore, coherency only needs to be maintained at certain points in time, such as at the end of 

a critical section, before the section's semaphore is released. 

Rather than using critical sections, one can imagine using transactions. Can traditional 

optimistic or pessimistic techniques normally used for distributed systems be applied to this 

domain? 
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