
Network Layer Protocols

"With Byzantine Robustness

by

Radia Perln1an

S.B., I\lassachusetts Institute of Technology (1973)

S.t\t, Massachusetts Institute of Technology (1976)

Submitted to the Department of

Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

N1assachusetts Institute of Technology

August 1988

© Radia Perlman, 1988. All rights reserved

The author hereby grants to MIT permission to reproduce and to

distribute copies of this thesis document in whole or in part.

Signature of Author_ .. /. ; · (' i / ·

Department of Electrical Engineering and Computer Science
24 August I 988

Certified by~~~~~~~~·~~~~
Davf1 CJ;irk

Senior Research Scie11 ti st
Thesis Supervisor

Accepted by
/·

i/
I • \. I

Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

1

llAA.IAJCR

Network Layer Protocols
With Byzantine Robustness

by

Radia Perlman

Submitted to the Department of
Electrical Engineering and Computer Science on August 24, 1988

in partial fulfillment of the requirements for the Degree of
Doctor of Philosophy in Computer Science

Abstract

The Network Layer ..>fa network architecture is a distributed protocol that facilitates packet
delivery across multiple hops. One of its chief functions is the calculation of routes throughout
the network. Traditional Network Layer protocols have addressed robustness in the face of
simple failures, i.e. nodes or links becoming inooerative. This thesis examines Network Layer
protocol designs that are robust in the presence of Byzantine failures, i.e., nodes that through
malice or malfunction exhibit arbitrary behavior such as corrupting, forging, or delaying routing
protocol messages.

2

Acknowledgments
I'd like to thank my arlvisor, Dr. Dave Clark. He encouraged me to return to graduate school

in the computer science department, and guided me through all the requirements, especially,
of course, this thesis.

Prof. Robert Gallager's papers have been quite an inspiration for me through the years.
His technical advise and feedback have been quite valuable, and I am grateful to have had him
on my thesis committee.

I'd also like to thank the third m(!mber of my thesis committee, Prof. Nancy Lynch. I was
introduced to the more theoretical side of the distributed algorithm field in her course, and her
input into my thesis has helped in its clarity.

One member of Prof. Lynch's group, Ala.n Fekete, has been particularly helpful. He has read
more drafts of my thesis than anyone else (possibly even me!), found bugs, made suggestions,
and provided moral support and encouragement.

I'd especially like to thank Whit Diffie. He happened to be on the East Coast at just the
right time to stop by, discuss my thesis, and suggest a very nice simplification, which allowed
the complete removal of a clumsy mechanism.

Other people from whom I've received valuable technical feedback are Michael Speciner,
George Varghese, and Lixia Zhang. Lixia deserves special thanks for putting up with me as an
office mate for two years.

I'd also like to thank Digital Equipment Corporation for providing my financial support
during graduate school. The members of the Network Architecture group at Digital created a
stimulating and enjoyable work environment. In particular, I'd like to thank Tony Lauck, our
group's leader and chief inspiration. I have learned almost everything I know about networks
from him, and this thesis topic was his suggestion. I really appreciate his thoughtful and
thorough review of this thesis.

And of course, I wish to thank my family, especially my children, Dawn and Ray. Without
them life just wouldn't be as wonderful, or as much fun.

3

'

Contents

1 Introduction
1.1 Overview
1.2 Byzantine Generals Problem .
1.3 Public Key Cryptography
1.4 OSI Reference Model ...
1.5 Network Layer Protocols .
1.6 Levels of Robustness . . .
1. 7 Our Model of Net work Layer
1.8 Motivation
1.9 Current Network Robustness Designs .

1.9.1 Prevention of Byzantine Faults
1.9.2 Non-Automatic Networks ..
1.9.3 Data Corruption Prevention .
1.9.4 Firewalls
1.9.5 Fault Isolation ...
1.9.6 Overcoming Failure
1.9.7 Legal Topologies

1.10 Overview of Approach

2 Robust Flooding
2.1 Overview
2.2 A Robust Flooding Design .

2.2.1 Overview
2.2.2 Databases
2.2.3 Public Key Distribution
2.2.4 Packet Types
2.2.5 Packet Reception Rules
2.2.6 Transmission Rules . . .
2.2. 7 Restarting
~.2.8 Additional Check on "Public Key List" Packet

2.3 Costs of This Design
2.4 Motivations Behind the Above Design

2.4.1 Review of the Design .
2.4.2 Buffer Pool
2.4.3 Trusted Node Service
2.4.4 Sequence Number ..
2.4.5 Public Key in Packet Formats .

4

6
6
6
8
8
9

12
14
16
17
17
18
19
21
22
23
23
24

26
26
28
29
32
33
35
37
40
40
40
41
43
43
44
46
49
54

. . ~ . . ' . . .
• , • j 1

2.5 Fault Detection
2.5.1 Faulty Trusted Nodes ..
2.5.2 Faulty Forwarding Nodes ..

2.6 Variants ,
2.6.1 Multiple Outstanding Packets .
2.6.2 Less Persistent Data Packet Flooding
2.6.3 Elimination of Acknowledgments .. .
2.6.4 Hierarchical Networks ,
2.6.o Flooding Without Network Layer Cryptography

3 Robust Link State Routing
3.1 Overview , .. , , ,

3.1.l Manifestations of Byzantine faults .
3.2 A Robust Link State Design .

3.2.1 Overview
3.2.2 Packet Types
3.2.3 Stable Storage for Sequence Numbers
3.2.4 Propagation of Public Keys
3.2.5 Information in Non-Volatile Storage
3.2.6 Dynamic Database
3.2.7 Propagation of LSPs
3.2.8 Route Calculation

3.3 Neighbor Discovery
3.4 Packet Forwarding

3.4.1 Source Routing ..
3.4.2 Initial Packet Checks ..
3.4.3 Data Packet Forwarding Rules

3.5 Finding a Route
3.6 Design Choices •

3.6.1 Data Packet Sequence Numbers
3.6.2 Stable Storage for Sequence Numbers
3.6.3 Faulty Neighbor Restart Problem .. .

3.7 Hierarchical Networks
3.8 Route Setup Variant of Source Routing ,

3.8.1 Dynamic Database
3.8.2 Route Setup , .
3.8.3 Data Packets
3.8.4 Assuring Fairness . . .
3.8.5 Why This Works . . .
3.8.6 Performance

4 Conclusions
4.1 Results
4.2 Basic Tools

4.2.1 Flooding Mechanisms ...
4.2.2 Link State Mechanisms . .

4.3 Further Application of These Ideas
4.4 Future Research , .

5

55
55
57
58
58
.58
59
60
65

69
69
70
76
76
77
81
82
83
83
85
86
89
91
91
93
93
94
98
98
99

• . 102
. 103

... 104
. . 106

. 107
.. 110
. . 110
. . 111
.. 111

113
. 113

.... 114
. 114
. 115
. 117
. 118

Chapter 1

Introduction

1.1 Overview

The purpose of this thesis is to present the design of a computer network that will be resistant

to malfunctions due to such causes as hardware faults, software bugs, and network misconfig­

uration. A tradeoff is made between absolute robustness and practicality. The focus of this

thesis is on one specific "layer" of a computer network architecture, the "Network Layer",

which is responsible for delivery of packets across multiple hops. This is a particularly inter­

esting layer because it is a protocol in which all nodes participate. Most network protocols are

2-party protocols, offering neighbor to neighbor communication, or end system to end system

communication. The Network Layer, in contrast, requires cooperation of all nodes.

In this chapter, we introduce some of the basic concepts necessary for an appreciation of

this problem.

1. We introduce the "Byzantine Generals Problem" 1 because that was where the term

"Byzantine fault" was first defined and usf!d.

2. We explain the model of Network Layer used in this thesis.

3. We discuss the types of faults against which we wish to defend.

1.2 Byzantine Generals Problem

The term "Byzantine failure" was first defined in connection with the consensus problem,

which is commonly known a.s the "Byzantine Generals Problem". Briefly, in the Byzantine

Generals Problem, there are some number, n, of processors, known as "generals". They a.re

fully connected, in the sense that any pair of generals can communicate over a private channel.

6

One distinguished general transmits a binary value to the other n - 1 generalsj "attack", or

''retreat".

Some number of generals may be faulty (traitorous), possibly including the distinguished

general. A faulty general may behave in an arbitrary manner, such as somatimes failing to send

messages, sending malformed messages, sending well formed messages with incorrect informa­

tion, or sending contradictory messages to different nodes. Given that, the problem is for all

the nonfaulty generals to agree on the same value, with the following correctness conditions.

termination All nonfaulty generals eventually reach a decision.

agreement All nonfaulty generals reach the same decision.

validity If the distinguished general is nonfaulty, the decision reached is the value transmitted

by the distinguished general.

This problem has generated considerable interest in the computer science community, re­

sulting in over a hundred published articles and several theses. A good overview of the state of

the problem as of 1983 is given in [Fis]. Some of the major results in the subject are:

• No solution exists if more than 1/3 of the processors are faulty. [PSL]

• If t faults are to be tolerated, at least t rounde are required for any deterministic algorithm.

[FL]

• In an asynchronous system, the problem is unsolvable [FLP].

On the face of it, designing a. Network Layer to be robust in the face of Byzantine failures

would seem far more complex than the Byzantine Generals' Problem, because:

• The network is not fully connected.

• The network is asynchronous.

• The decision a. nonfaulty node must make is far more complex than a binary value -

it involves a conclusion as to the topology of the network, decisions about allocations of

finite resources, and route calculations.

This thesis will show that a Network Layer robust in the face of Byzantine faults can be

built, and although it will be more expensive than traditional Network Layers, it will actually

be practical to implement, at least in modest sized networks (thousands of nodes).

7

The differences between the Byzantine Generals problem and the Byzantine Network Layer

problem that cause the Byzantine Network Layer problem to be tractable (despite the difficulties

of the Byzantine Generals problem) are:

simultaneity We will show that the Network Layer can be designed to work even if the

nonfaulty nodes do not simultaneously agree on the topology.

agreement We will show that the Network Layer can be designed so that agreement between

nonfaulty processors is not necessary - a nonfaulty processor just needs to have an ap­

proximate idea of the correct topology in order for routing to work.

termination The Network Layer never terminates, or commits to a decision - decisions change

over time.

cryptography We resort to cryptographic means to solve the problem. The Byzantine Gen­

erals Problem also becomes more tractable with the use of cryptography [Lf.P].

1.3 Public Key Cryptography

We make use of public key cryptography throughout this thei:iis. The concept of public key

cryptography was introduced by Diffie and Hellman in [DH]. Briefly, it assumes the capability

of a node X to choose a pair of functions, E and D, such that E and D are inverses, and

that knowledge of E does not yield knowledge of D. The function E becomes X's "public key",

whereas D is X's "private key".

Encryption of a packet destined for X can be accomplisheJ by any node with knowledge of

E. Assuming Eis widely known (because it is a "public key"), any node can encrypt packets

destined for X, but because Eis assumed hard to invert, no node other than X can decrypt the

packet (though X can easily decrypt by using D, its private key).

Digital "signatures" are possible with a public key scheme as well. The assumption is that

X can construct a signature for some set of data, which is a function of the data and D. Any

node, using E, can verify a signature, but cannot construct one.

1.4 OSI Reference Model

The ISO (International Standards Organization) has defined the OSI Reference Model as a

framework for network architectures [ZIM]. Although most networks do not strictly conform to

8

the model, the OSI Reference Model is useful as a basis for discussion.

To make the network architecture problem tractable, functionality is broken into "layers",

much like a large computer program being partitioned into subroutines. The layers are num­

bered from 1 ton. Layer k uses the services provided by layer k-1, and in turn adds functionality

and provides services to layer k+ 1. Communication is logically between peer layers (i.e., layer k

communicates with layer kin another node). However, except for the lowest layer, layer k must

communicate with a peer layer k by presenting packets of information to layer k - 1 for delivery,

with the peer layer k receiving the packets directly from the layer k - 1 in the destination node.

See (Zim) or (Tan] for a discussion of why ISO chose to layer networks, and how they chose

where to place the layers. The networking community tends to agree with the functionality

of the lower 4 layers! but disagrees about the function of higher la.yers. Layers above 4 are

irrelevant to this thesis.

1 - Physical This layer delivers bits across one hop. rt deals with such problems as modula­

tion, docking, voltage levels, and connector shapes.

2 - Data Link This layer is responsible for delivering packets of information across one hop.

It deals with framing of packets, error detection, and link usage coordination on shared

media.

3 - Netwot'k This layer is responsible for storing and forwarding packets across many hops,

so that a mesh network (arbitrary multi-hop topology) will be logically fully connected.

It deals with issues such as route calculation, allocation of finite resources, and packet

fragmentation and reassembly.

4 - Transport This layer is responsible for adding end to end reliability. It deals with con­

versation setup, packet numbering for reordering and retransmission of lost packets, and

addressing of processes within a node.

5-7 - Session, Presentation, User These are the layers that actually use the network. Typ­

ical protocols defined are file transfer, packet voice, mail, and remote terminals.

1.5 Network Layer Protocols

The purpose of the Network Layer is to extend the functionality in a mesh network so that the

network appears to be fully connected. The Network Layer's job is to forward packets across

9

multiple hops so that any pair of nodes connected to the network may communicate with each

other.

There are differing views of the Network Layer within the networking community. Some of

the important areas of controversy are:

• Type of Service.

The ''connection-oriented" model of a Network Layer requires the Network Layer to re­

liably deliver a stream of packets from source to destination, without loss, duplkation,

corruption, or misordering. In this type of service, before packets can be transmitted be­

tween nodes A and B, one of A or B must first initiate a connection. Following connection

completion, a stream of packets in each direction can be sent. And after the conversation

is completed, a ctisconnection is executed. The Codex network implements this type of

Network Layer (BG), and the X.25 standard [Ryb) specifies this type of Network Layer.

The "datagram" model of a Network Layer requires only a "best-effort" service. Packets

entrusted to the Network Layer should have a high probability of being delivered, but no

guarantees are made against possibly lost, duplicated, or corrupted packets, and order of

receipt is not guaranteed to be the same as order of transmittal. In this type of service,

each packet is independently addressed, and self-contained. No "connect" or "disconnect"

operations are performed. It is up to the Transport Layer, using the Network Layer

datagram service, to provide connection-orienteJ services, if they are required for higher

layer protocols. The ISO "Connectionless" Network Layer specifies this type of Netv.rork

Layer.

• Degree of Self-Configuration.

Some Network Layers rely heavily on manual maintenance of routes. The SNA Network

Layer [SNA] is of this type. Complete routes to each destination are calculated and

manually maintained at each source node.

An alternate approach is to make the network as self-configuring as possible. The ideal

network of this type would automatically a.c;similate new nodes as they are hooked in,

and automatically reconfigure around failed components. The ARPANET, DNA, ISO

connectionless Network Layer, and Codex designs all favor automatic operation.

In this thesis we will assume a datagram form of Network Layer, and will strive for minimal

manual maintenance. The Network Layer model we use is that of a distributed protocol,

10

implemented on all the nodes in the network, that accepts as input (from the Transport Layer)

packets with a DestinatiorL address. The Network Layer must then, with reasonable probability,

deliver the packet to that Destination node. The Network Layer is just a datagram service,

and as such is allowed to lose, misorder, duplicate, misdeliver, and even corrupt data packets.,

just so long as when a physical path exists between source and destination nodes, each packet

independently has a "reasonable" probability (for instance, > 1/2) of successful dP.livery,

A Network Layer protocol fitting the above model often acts as follows.

• It discovers and disseminates topological information about the network.

• It calculates routes, based on the disseminated topological information.

• It forwards data packets, based on the calculated routes.

The two most popular classes of distributed routing algorithms that are widely used in

networks are:

Distance Vector In this form .:>f routing algorithm, the routing computation is done in a

distributed fashion. Each node is responsible for maintaining a vector consisting of its

distance to each destination. Each entry in the vector is computed either by default (the

destination which is the node itself is zero distance a.way), or by minimizing based on

neighbors' distances to that destination.

The original ARPANET algorithm [McQ74] was a Distance Vector scheme.

Link State In this form of routing algorithm, local topological information is ascertained by

each node, and broadcast throughout the network, so that ea.ch node has a database

giving complete topological details of the network.

The "New ARPANET algorithm" [MRR] is a Link State scheme.

In this thesis we use a. modified link state scheme to achieve robustness. The distance

vector form of algorithm is less promising as a candidate because in that form of routing there

is much more dependence on cooperation. By its very definition, raw topological information

is not disseminated - only the results of computation. There seems to be no way to confirm

the validity of information, when the only information is the completed computation.

11

1.6 Levels of Robustness

Failures in a network are caused by faults involving nodes or links. A "simple failure" consists

of a node or link becoming inoperative, and ceasing to function at all. "Byzantine failures",

on the other hand, are caused by nodes or links which continue to operate, but incorrectly. A

node with a Byzantine failure may corrupt messages, forge messages, delay messages, or send

conflicting messages to different nodes.

There are various levels of robustness that can be achieved:

Simple Robustness Traditional Network Layer algorithms achieve robustness in the face of

"simple failures", i.e. nodes or linJrs becoming inoperative. Some currently operating

Network Layer protocols were designed assuming zero probability of incorrect behavior

such as corrupted control messages or partially functioning nodes. In such a network,

complex and tedious manual intervention may be required to restore the network to

proper operation after such an event. (Ros].

Self Stabilization The next stage of robustness is an algorithm that is "self-stabilizing",

which guarantees correct convergence, even with a history including Byzantine faults.

Self-stabilizing algorithms were introduced in (Dij]. Self-stabilizing algorithms guaran­

tee correctness once any malfunctioning nodes are disconnected from the network, but

do not make any guarantees about behavior while a malfunctioning node is participat­

ing in the network. The original ARPANET algorithm was described and proven to be

self-stabilizing, by this definition, in [Taj]. The "new" ARPANET algorithm, described

in [MRR], does not have this property, as documented in [Ros]. Improvements to the

ARPANE'l' algorithm that would ensure the self-stabilizing property were suggested in

[Pe].

Byzantine Detection Another form of robustness is an algorithm that may not operate cor­

rectly in the face of Byzantine failure, but in which the identity of the failed node can

be easily discovered. Such an algorithm, especially if it also has the "self-stabilizing"

property, is for practical reasons almost as good as an algorithm that has full Byzantine

Robustness, since once the identity of the malfunctioning equipment is known, it can be

disconnected from the network1 , and the network will continue normal operation.

1 Disconnection o(a malfunctioning node might require robust network management, for instance an out of
band method o{ node elimination

12

With this combined form of robustness (self-stabilization plus Byzantine detection) even a

malicious malfunctioning node can do little damage, since it must remain active to cause

disruption, and its identity can be easily determined.

This form of robustness has not previously been attempted.

Byzantine Robustness An algorithm with Byzantine Robustness is defined to be one that

exhibits correct behavior while arbitrarily malfunctioning nodes (nodes with Byzantine

failures) participate in the network. In (Doi), an attempt to provide communication in an

environment containing Byzantine failures was made. The observation was made in that

paper that flooding would theoretically provide a foundation on which communication

could be provided, but the unrealistic assumptions were made that:

1. Links have infinite capacity.

2. Nodes have infinite processing power.

Byzantine robustness in a realistic network model has not been previously attempted.

Note that Byzantine Robustness does not imply Byzantine detection. In other words, it

is possible for a network with Byzantine robustness not to have the property of Byzantine

detection. In practice, although it is very desirable for a network to continue operation

in the presence of faults, it is also desirable for the network to detect faults and identify

faulty components while the number of such faults is still small enough that the network

can continue operation. The alternative is that the network would continue operation,

oblivious to the existence of faults, until so many components were faulty that the network

was nonfunctional, at which point the existence of faults would be obvious. Thus the ideal

network would have both Byzantine Robustness and Byzantine Detection.

This thesis presents a ha.sic design of a Network Layer with Byzantine Robustness, with some

measure of Byzantine Detection as well. Variants of the design achieve slightly different versions

of "robust". The exact form of robustness of each variant will be given with the definition of the

scheme. Most forms achieve some form of robustness approximating the following definition.

If a path of currently nonfaulty processors and links exists between currently non­

faulty processors A and B, and no more than t faults (Byzantine or simple) simul­

taneously exist in the network, A and B will be able to communicate.

13

Note that we use the term ''currently nonfaulty", to indicate that a faulty nod~ should be

able to participate correctly in a network after it has been repaired. In other words, no form

of failure should prevent a node from participating correctly in the future, after it has been

restored to correct operation.

1. 7 Our Model of Network Layer

A Network Layer is a distributed algorithm implemented cooperatively at the nodes composing

a network. Each node has a finite amount of processing power, a finite (and small) amount of

non-volatile storage, and a finite amount of volatile storage. A node may fail and restart, in

which case it loses any information in non-volatile storage. A failure of this type is considered

to be common~ and is not considered a Byzantine failure.

In addition to nodes1 the network contains some number of links. Each link, L, has a pair

of nodes, A and B, as its endpoints. The link enables bidirectional communication between A

and B. Each link has finite capacity, and may lose, misorder, duplicate, or corrupt messages.

There is an amount of time, ; , such that with high probability a message is delivered within ; ,

or not delivered at all. Links may also fail and restart, and such failures are not considered to

be "Byzantine".

Since simple failures of links and nodes are considered part of ''normal operation", the

n~twork must efficiently deal with such failures. Byzantine failures, in which nodes or links

do not follow the protocol, are also allowed, but are considered more rare, and the network

performance is allowP.d to degrade somewhat in the presence of Byzantine failures.

We choose this model because it is realistic. Network nodes are computers, with finite

amounts of memory and processing capacity. Links in networks provide a fixed amount of

bandwidth. Links in networks often have a Data Link Layer protocol implemented which

attempts to make communication between the neighbor nodes reliable (no d1wlicates, no lost

messages, no out of order messages). But we do not need to assume a reliable link, and it is

safer not to rely on it since sometimes the underlying technology behind what appears to the

network to be a "link" is an entire multi-hop network. Some Data Link Layer protocols, in

particular those on LANs, provide only best effort service, and even those links with a "reliable"

Data Link Layer protocol may lose, duplicate, or misorder messages when the link fails and

restarts.

We make no provision in any of our designs for allocation of processing resources, since it is

14

possible to engineer a node so that its processing capacity is not a bottleneck. The processing

capacity need only be large enough to k~ep up with the combined speed of the links. We

assume therefore that each node has sufficient processing capacity. It is essential that a node

have sufficient processing capacity, since if it is forced to discard packets before it has read

them, there is no way to ensure fairness. Packets for a particular conversation might always be

dropped.

The Network Layer accepts a packet from a higher layer "client", with a specified destination

address. The Network Layer must, with high probability, deliver the packet to the specified

destination. We define a Network Layer with "Byzantine robustness" to be one that, with high

probability, delivers packets between a pair of nonfaulty processors if they are connected via a

nonfaulty path (a path consisting of nonfaulty processors and nonfaulty links). We strive for

this form of robustness in our design.

We explicitly retain the character of a. "datagram" Network Layer, which is not required to

be error-free. In particular:

• No guarantee is made that all messages sent by A for B will arrive at B; ju~t that each

packet independently has a high probability of reaching its destination. Node A can

compensate for lost packets by using acknowledgments and retransmissions at a higher

layer.

• No attempt by the Network Layer is made to keep conversations private. U privacy is

necessary, encryption must be done at a higher layer.

• The Network Layer does not certify packets that it delivers. Although the robust form

of Network Layer guarantees that each packet launched by a nonfaulty processor has a

high probability of arriving undamaged, it does not guarantee that only those packets

get delivered. For instance, some faulty processor C might send data packets with source

address A, and those packets might get delivered in addition to the packets being delivered

from genuine source A. Also, some faulty processor could corrupt the data in the packets

from A, and the damaged copies might get delivered to B, again in addition to the

undamaged packets.

Again, it is up to A and B to have a higher level mechanism to extract correct data from

the data that gets delivered. This is a solvable problem, using cryptography at the higher

layer, given that the network does deliver the correct data.

15

• No guarantee is made about delivery of data generated by a faulty source.

1.8 Motivation

In a practical sense designing networks with Byzantine robustness is important, and is growing

more so for the following reasons.

network size Networks are becoming very large. Hardware faults can cause arbitrary behav­

ior, as evidenced by [Ros]. As the number of nodes grows, the probability increases that

the network contains a malfunctioning node with just the right form of fault to disrupt

the network.

Also, networks unfortunately do not come equipped wi'h a "reset" button. The difficulty

of restoring a disrupted network to proper operation grows with the size of the network.

Restoring the ARPANET after the disruption documented in [Ros] involved reloading

every node in the net with patched software, one at a time, and then after all nodes were

successfully loaded with patched software deaigned to quiet the disturbance, each node

needed to be reloaded again with the original program.

The ARPANET maintainers were very lucky in this incident. The ARPANET was reason­

ably small (hundreds of IMPs), all IMPs were identical (so that a single patched version

of software was required), and the people maintaining the net were the same ones that

designed the algorithm and wrote the code. Typical field service personnel are not the

algorithm designers and network implementors.

st.andards As standards emerge, nodes will be implemented using different hardware by differ­

ent organizations. Each organization has some probability of interpreting an ambiguous

specification differently from other organizations, misinterpreting an unambiguous speci­

fication, or simply delivering an implementation with some incorrect code. In addition to

increasing the probability of failure, having a network implemented with different software

in different nodes makes the approach in [Ros] of quelling a disturbance much less viable.

In order to reload every node with patched code in such a network, program sources for

every implementation would need to be acquired, along with individuals familiar enough

with each implementation to devise the correct patch. During this time, the network

would remain nonfunctional.

16

distributed network management As different portions of the net are managed by different

individuals, the probability increases that parameter settings or manual databases will be

inconsistent across different portions of the net.

sabotage Additionally, sabotage is a real threat, especially as networks become more prevalent

for financial or military institutions, or we become dependent on them for basic societal

needs, such as transportation and communication. A network that may remain broken

after a history of Byzantine failure (a network that lacks seh'-stabilization) is particularly

vulnerable to sabotage, since an intruder can inject a few had packets into the network

and leave the scene before the problem is diagnosed. A network that is guaranteed to

converge despite history, provided that no Byiantine nodes currently exist, is much less

vulnerable to sabotage, because the intruder (or intruder's equipment) must remain active

in order to keep the network from returning to proper operation. And once the equipment

is found, simple disconnection of it will return the network to correct operation.

1.9 Current Network Robustnesg Designs

In this section, we will discuss current approaches towards building robustness into networks,

together with ideas for enhancing the approaches for increased robustness.

1.9.1 Prevention of Byzantine Faults

The ARPANET requires the routers to checksum the Network Layer code periodically, to

prevent a hardware or software error from modifying the code.

This sort of check can safeguard against many nonmalicious faults that typically occur in

networks. However, note that only the code itself (not the databases which are dynamically

changing) is tested with this form of checksum.

In Digital's DNA architecture, several robustness enhancing features were included in the

design:

• All routing control information is generated by the source with a (non-cryptographic)

checksum that is not modified by succeeding nodes. Thus it is very unlikely for a node to

inadvertently modify another node's routing information.

• The distance vector routing scheme, upon which early phases of DNA were built, was

guaranteed correct and self stabilizing (in the absence of active Byzantine faults) provided

17

that each node started with a correct idea. of its own ID. The ID was thus stored in

multiple places and the node was required to check that all locations agreed on the ID

before generating a routing message.

lj In later phases of DNA, when routing was built upon a Link State Routing scheme, and

Link State Packets contained a (non-cryptographic) checksum, the nodes were required

to prestore the computed value of the checksum following the initial portion of the Link

State Packet (the portion that contained the source ID, and other static information) and

use the prestored value when computing a checksum for the generated Link State Packet.

In this way, if the node's image of its own ID became corrupted, it would probably no

longer generate Link State Packets with correct checksum.

• DNA requires all routing data to be regenerated and rebroadcast periodically.

Note that all the above checks rely on the faulty node to be honest in its self-diagnosis.

A node with a true Byzantine fault must be assumed capable of bypassing any sorts of self­

checks. So while in practice these sorts of checks are sometimes useful, they give no guarantees

for correct behavior for the sorts of faults we consider in this thesis.

1.9.2 Non-Automatic Networks

One approach to making more robust networks is to rely more heavily on manual maintenance.

For instance, if routes are precalculated and manually maintained at each source node (as done

in SN A), then th~ network cannot, by definition, miscalculate routes.

On the other hand, manual databases introduce another form of Byzantine failure, namely

incorrect databases. Manual databases often are entered incorrec~ly at a node, entered in­

compatibly in a. set of nodes, or become incorrect due to topological changes occurring without

manual table updates. The ARPA EGP protocol (EGP] requires manually configured databases,

and the ARPA internet has experienced many network-wide disruptions as the result of a single

node's incorrect database.

The SNA architecture is not vulnerable to this form of network-wide disruption in the case

of incorrect databases. If a source's routes are correct, they will work, regardless of the state

of the databases at other nodes.

18

1.9.3 Data Corruption Prevention

A Data Link Layer checksum can be thought of as a safeguard against Byzantine failure of a

single link, in that it protects against the link corrupting data. In practice, this sort of failure

is so common that virtually all Data Link Layer protocols include a checksum.

However, data corruption does not occur only while a packet is traversing a link. Data can be

corrupted at a relay between the time the relay verifies its correctness after being received (and

strips off the checksum which had been placed by the Data Link Layer protor.ol on the receiving

link), and the time a new Data Link Layer checksum is computed for transmission across the

next link. Data Link Layer checksums cannot guard against this sort of data. corruption.

Another mechanism which can introduce data corruption by the Network layer protocol is

fragmentation and reassembly. In typical Network Layer fragmentation and reassembly, the

source Network Layer writes a "unique packet identifier" (UPI) into each packet. This UPI

enables the destination Network Layer to recognize fragments of the same datagram. If a UPI

with the same source/destination pair is used within a packet lifetime, a fragment from an

old packet might mistakenly be pieced in with data from a newer packet. UPI reuse can occur

because the source has crashed and lost state, or because of wrap-around. Large packet lifetimes

exist due to queuing delays and Data Link retransmissions of damaged packets. In the ARPA

IP [IP] protocol and the ISO Connectionless Network Layer protocol, the UPI is only 16 bits

long. At 56 KB transmission speed, typical for when ARPA IP was designed, and 256 byte

packets, wraparound would occur in roughly 1/2 hour, making UPI wraparound without source

failure a very low probability event. However, as technology pushes transmission speeds beyond

1 Mbit, UPI wraparound becomes more likely (unless the protocol evolves with the technology,

and increases the length of the UPI field).

Thus data corruption, not detectable by Data Link Layer checksum, can and does occur in

networks. The solution is an end-to-end checksum, computed at the source, and not modified

until the packet reaches the destination. TCP [TCP] and the ISO Class 4 Transport [TP4]

protocols utilize a Transport layer checksum to reduce vulnerability from Network layer packet

corruption. In practice, Network layer packet corruption is a frequent event.

19

Suggested Modification - End to End Network Layer Checksum

The Transport Layer checksum does identify packets damaged due to Network Layer data

corruption. However, it does not allow the faulty intermediate node to be isolated. A better

approach is to have an end-to-end Network Layer checksum. The advantage of a Network Layer

checksum is that intermediate nodes can check (but not modify) the checksum at each hop, and

the node one hop closer to the destination than the faulty node will detect immediately that

the packet has been damaged, and the culprit is identified.

It may be deemed too computationally expensive for intermediate nodes to check the check­

sum on every packet they forward. Thus if a Network Layer checksum is employed, it might be

desirable to have a flag in the packet indicating whether intermediate nodes should check the

checksum. In ordinary operation, the flag would be off, for efficiency. When some destination

D starts detecting corrupted packets from some source S, D can notify S so that S can flag

future packets to D for fault isolation.

However, if the efficiency option is chosen, the Network Layer might not isolate the faulty

node, since the corrupting node might corrupt the flag, so that subsequent nodes would not

check the checksum.

In practice, the Network Layer check would be useful, since a node that is corrupting packets

is likely to sometimes leave the flag on {if the node is corrupting packets due to hardware

problems and not malice). But there are options that will guarantee a Network Layer check's

effectiveness:

• The efficiency option could be eliminated, forcing all nodes to compute the checksum on

every packet. If the checksum is implemented in hardware, and engineered to keep up

with the speed of the link, then it is completely practical to comput\3 the checksum on

every packet.

• The efficiency option could be selected on a per node basis instead of on a per packet basis.

In other words, an intermediate node could be told to check all packets, or all packets

destined to a particular destination, or all packets with a particular source/ destination

pair. In this way a source could use "binary search" on a route to find the culprit node.

When source Sis informed by destination D that the S-D packets are arriving corrupted,

Scan inform the midpoint of the route, node M, to start computing checksums on packets.

If M reports no checksum problems, but packets still arrive damaged, then some node on

20

the path starting at M must be the culprit.

• Packets could contain two checksums, one for the header portion (including the "check

data checksum" flag), and one for the data. Since the header is reasonably short, it would

not be so much cf a computational burden to require every node to check the header

checksum on every packet.

Th~ third scheme (two checksums) has the disadvantage that a node might be "selectively

faulty", in that it might only corrupt data in packets in which the "check data checksum" flag

was off. Thus a faulty node could force the network to use the more expensive form of packet

forwardlng at all times.

A Network Layer checksum need not include all of the Network Layer header. For simplicity,

it might be desirable to exclude from the checksum any fields in the Network Layer header that

must be modified by intermediate nodes, such as a hop count field. ff protection of those fields

is deemed vital, a checksum that allows incremental updating may be employed.

A simple checksum is sufficient to guard against non-malicious data corruption, for instance,

due to hardware error. Cryptographic public key signatures can be utilized to guard against

malicious threats.

None of the popular Network Layer protocols employ end to end Network Layer checksums.

Thus all the popular protocol suites allow corrupted data to be discarded (by the Transport

Layer), but they do not allow easy detection of the relay which is corrupting the data. The

simple change of moving the end-to-end checksum down one layer introduces no extra overhead

in terms of processing, memory, or header size. Utilizing the extra capability it presents (the

ability to isolate the faulty node on a data corrupting path) does add a computational burden

on forwarding nodes, but as pointed out above, this capability can be turned off when not

needed, and does not increase computational burden if done in hardware.

1.9.4 Firewa.lls

Hierarchical Routing consists of partitioning a network into subnetworks. Routing within one

subnetwork is done completely independently from routing within another subnetwork.

A separate layer of routing concerns itself with routing between subnetworks. This layer of

routing is also usually independent of the routing within the subnetworks.

Hierarchical routing allows important savings in database overhead. It also protects the

network by preventing malfunctions from spreading:

21

• If routing within one subnetwork becomes nonfunctional, it will not affect routing within

a different subnetwork.

• If hierarchical routing is carefully designed, a malfunctioning subnetwork will not affect

routing between subnets either (except that traffic to and from the nonfunctional subnet­

work would not work).

• If the inter-subnetwork routing algorithm becomes nonfunctional, then inter-subnet rout­

ing would no longer work, of course, but again if the hierarchical routing scheme is designed

carefully, failure of the inter-subnet routing should not affect intra-subnet routing.

1.9.5 Fault Isolation

Network designs often build mechanisms into the architecture for determining what is wrong

when routes don't work. Various popular approaches are:

Network Management Network Management is a distributed service that collects data from

all the network layers within a node, and communicates with other Network Management

modules in order to exchange information. Using Network Management, it is possible to

ascertain what routes have been computed, and the direction in which each node would

forward a packet to a particular destination.

However, it is often the case that a route will not work, even though a correct route has

been computed by the netwmk. In cases such as that, further tools must be available to

discover where and why packets are being lost.

Route Recording Route Recording is usually designed as an option to be selected on a per

packet basis, in which nodes that forward the packet add their IDs to a route which is

being collected in the packet's header.

This mechanism is not very effective at discovering why a route does not work, since data

is only collected when the recorded route arrives at the destination.

Trace Packets This mechanism is also usually designed as an option on a per packet basis.

When this option is selected, each node that forwards the packet additionally sends a

packet back to the source, informing the source that the packet had proceeded up to that

point.

22

1.9.6 Overcoming Failure

Some networks provide "source routing" as a backup mechanism to force route delivery when

the routes computed by the Network Layer do not work. Source Routing allows a route to be

placed in the packet header, and the network will route the packet according to the route in

the header, inst~ad of using a dynamically computed route.

Such a mechanism can often succeed in communicating across a malfunctioning network.

The ARP A and IS 0 (connectionless) network layer protocols allow source routing for this

purpose, but no guidance is given as to how the route would be obtained by the source. The

source node must generate the source route, and often the source node is an "endnode" (ARPA

terminology is "host", ISO terminology is "end system") that does not receive dynamic routing

information. Therefore, the burden is presumably placed on manually maintained databases,

or on a human to know the network topology and guess where the faults may lie.

In Chapter 3, we will recommend use of a form of source routing, though in our scheme a

router (ARPA terminology is "IMP", ISO terminology is "Intermediate System"), which is a

node participating in the routing algorithm (as opposed to a human, or an "endnode") computes

the route to be placed in the header.

1.9.7 Legal Topologies

Some architectures place certain requiremeL.ts on topologies. If these topological principles are

violated, then the Network Layer will not work.

Examples of restrictions are:

1. The simplest form of "bridge", a node that performs forwarding at the Data Link Layer,

is one that simply forwards every packet it sees on one link to all its other links. This form

of routing will work provided that the topology is a tree. If the topology is not a tree,

consequences can be disastrous since packets will not only loop forever, but proliferate at

each hop.

2. Routers have finite capacity. If a network is larger than a router is configured to handle,

then information must be selectively discarded, or the router must shut down entirely.

3. Hierarchical networks frequently require certain topological restrictions, such as that sub­

networks be physically intact, that the net consisting of inter-subnet routers be physically

intact, or that no links exist between intra-subnet routers in different subnetworks.

23

4. Networks which rely a great deal on manual databases require the physical topology

and manual databases to a~ree. For instance, the ARPA EGP protocol [EGP] has been

plagued by problems when manual databases are incorrect.

If a topology is legal, it is important that all subsets of that topology also be legal, if at all

possible, since a network manager can configure a legal network, which can become an illegal

topology because of simple node or link failure.

Approaches to dealing with topological restrictions (in order from weakest to strongest) are:

1. Do nothing - rely on network managers to carefully read and follow the documentation.

2. Have the machines recognize and report a misconfiguration, without attempting to control

behavior while the net is misconfigured.

3. Have the machines prevent misconfiguration, for instance by having machines shut down

links or shut down completely if misconfiguration is detected.

4. Design the architecture so that all topologies are legal.

The last approach has been accomplished in some instances. In the IEEE 802.1 bridge archi­

tecture, a spanning tree algorithm was adopted so that physical topology could he an arbitrary

mesh, from which a spanning tree subset was automatically and continuously calculated by the

bridges. [Pe2]

Various designs have been proposed to allow the requirement that subnets be physically

intact to he eliminated. For instance, in [Pe4], a design is proposed in which level 2 routers detect

a partitioned subnetwork, and send a copy of a packet destined for a partitioned subnetwork into

each partition. In a contribution to ANSI [ANSI], the partitioned subnetworks are automatically

"repaired" by incorporation of inter-subnetwork paths as intrt..-~;ubnet links.

1.10 Overview of Approach

In Chapter 2, we present a design for robust packet delivery based on flooding. The key to

accomplishing this is to structure databases in such a way that every source is guaranteed

resources, and utilize authentication so that only the source can use its reserved resources.

This is accomplished as follows.

24

1. Distribute public keys for every node in the network, through a "trusted node service",

consisting of some number of nodes that broadcast a list of node/key pairs throughout

the network.

2. Consider each node/key pair to be a separate entity, entitled to its own resources. In

this way, if a Byzantine "trusted node" advertises a fictional node, or an incorrect public

key for a network node, it will not interfere with resources reserved for the real network

nodes.

3. Reserve one buffer for each source/key pair at each node.

4. Use a public key cryptographic signature, so that it is guaxanteed that only a node with

knowledge of the associated private key generated a particulax packet.

5. Use a nonwrapping sequence number on each packet, so that earlier packets from a par­

ticular source will not compete for resources with its later data. packets.

6. Scan the database of packets to be transmitted round-robin, so that the latest packet

from every source will be output on the link.

In Chapter 3, we present a design for robust packet delivery in which routes are calculated,

and packets are directed along a particular path (instead of flooded throughout the network).

This is accomplished as follows.

1. As before, employ a "trusted node service" to broadcast public keys, so that every node

in the net knows the identities and public keys for all other nodes in the network.

2. Have nodes ascertain the identities of their neighbors.

3. Have each node generate a "Link State Packet", containing a list of the node's neighbors.

4. Use the robust flooding of Chapter 2 for dissemination of Link State Packets.

5. Use the database of Link State Packets to compute routes in the network.

6. Have the source compute a route and place the route in the packet header.

7. U!)e a route calculation algorithm capable of calculating, when available, node disjoint

paths in the case in which a calculated route does not work.

8. Also use fault diagnosis to isolate malfunctioning nodes and links.

25

Chapter 2

Robust Flooding

2.1 Overview

As stated in the introduction, we will begin by designing robust routing based on flooding. We

are doing this for two reasons.

1. Robust flooding will work as a data packet delivery system, although it is expensive in

terms of bandwidth.

2. Flooding can be used as the delivery mechanism for control messages in a more intelligent

routing protocol. In Chapter 3, we will use the flooding mechanism designed in this

chapter.

Flooding is the simplest form of routing. In basic flooding, each data packet is forwarded

to each neighbor except the one from which the packet was received. Some route history is

recorded in the data packet, so that packets can eventually be discarded. Some typical strategies

are:

• The route history cons! ,. 1 of a count, indicating the number of nodes that the packet has

visited. A packet is discarded after it has traversed some bounded numbe.r of nodes. [Git]

• The route history consists of a list of nodes that the packet has visited. A packet is

discarded if it revisits a node (i.e., a node B discards a packet if B is included in the list

of nodes in the packet. If B is not included in the list of nodes, B adds itself to the list

and forwards a copy of the packet to each neighbor). [DP]

With flooding, no routing control messages are required and no routing computation is

performed.

26

Note the communications overhead involved in basic flooding is exponential, since th~re are

an exponential number of routes in a network with moderate connectivity. For instance, if every

node had k neighbors, and the hop count strategy of packet discard were used, with a limit of

h hops, then every data packet would spawn on the order of k"' copies.

Since flooding does not involve route computation, it is vacuously true that a faulty node

cannot interfere with route computation. Also, since in flooding, packets traverse every possible

path between source and destination, it might be thought that flooding ensures packet delivery

provided a path of nonfaulty processors exists between source S and destination D. However,

because networks have finite resources, this is not true. Links have finite capacity, so packets

must be queued at the nodes waiting to forward packets onto the links. The switching nodes

can be engineered so that their processing capacity can keep up with the maximum speed of

all attached links; however, they will have finite buffering capacity. Thus some packets will

need to be dropped when buffering capacity is exceeded. If no intelligent strategy is designed

for dropping packets, the packets for the conversation from S to D might always get dropped,

preventing S from successfully getting a packet to D. To ensure successful communication, even

across a path of nonfaulty processors, a method of resource allocation that ensures fairness is

required.

This chapter presents a Network Layer protocol design based on flooding. The top level

description of the algorithm is that each node stores the most recently generated packet from

each source node, and ensures fairness in link utilization.

To implement this, the following aspP.cts of the algorithm are required.

• At each node, one fixed length buffer is reserved for each source.

• To assure a packet generated by the proper source node occupies the buffer reserved for

that source, a digital signature scheme based on public key cryptography is used.

• To limit the amount of manual configuration necessary to manage the network, the list

of nodes, together with public keys, is broadcast by a "trusted node service".

• To prevent a "trusted node" with a Byzantine failure from disrupting the network by

broadcasting ficticious nodes, or incorrect keys for network nodes, resources are reserved

for (node, key) pairs. In this way, if any trusted node is nonfaulty, and therefore broadcasts

the correct pair (A,key) for node A, then A will be assured resources in the network.

27

• To enable nodes to compare generation times of packets from the same source, a source­

specific monotonically ~ncreasing sequence number is included with each packet.

• To assure orderly use of link bandwidth, waiting packets are served in round robin or­

der according to source node. Associated with each packet stored in memory are flags

indicating onto which links the packet needs to be transmitted. The database is scanned

round robin, so that every source is guaranteed access to each link.

• Reliability is assured by explicit hop by hop acknowledgments and retransmissions, and

state is reacquired after recovery from simple failures.

• We do not require that a node keep its own sequence number in non-volatile storage.

Instead, we provide a mechanism for a source to reacquire its own sequence number

following its own simple failure.

Note that many networks are configured such that there are "routers" ("IMP"s, in ARPA

terminology, "DCE"s in ISO terminology) and "endnodes" ("hosts" in ARPA terminology,

"DTE"s in ISO terminology). Each router serves as the point of attachment into the network

for tens of endnodes. Thus there is typically an order of magnitude more endnodes than

routers. Furthermore, within an endnode, there may be many different processes that are

holding conversations across the network. In this thesis, we assume that an endnode internally

enforces fairness among its resident processes, and that a router locally enforces fairness among

its attached endnodes. Thus endnodes (and processes within endnodes) need not be visible to

the rest of the network. The entities with which the distributed Network Layer is concerned

are the set of routers. Thus "source" refers to the first router that receives the packet from

one of its attached endnodes, and reserved network resources aie proportional to the numbe~

of routers in the network.

This chapter starts with a detailed description of the basic design, and then argues its

correctness. At the end of the chapter, variants of the design are presented.

2.2 A Robust Flooding Design

In this section we will present the design of a robust flooding-based routing strategy. To meet

our robustness goals, we require some number of distinguished "trusted" nodes, responsible for

distribution of public keys for each node in the network to each node in the network.

28

The flooding design we present in this chapter assureR that each pai:ket generated by node

A destined for node B will have a high probability of reaching B provided that:

• Nodes A and B are nonfaulty.

• At least one path between A and B exists such that for each link L and node C along the

path:

1. L is nonfaulty1

2. C is nonfaulty

3. C is connected, via a path of nonfaulty processors and links, to at least one nonfaulty

"trusted" node.

• Node A waits a sufficient amount of time before generating a new packet such that the

packet is not "overtaken" by the source's next packet.

Note that we do not place a limit on the number of faults in a network. This scheme is

robust in the above sense, regardless of how many faults occur in the network.

2. 2 .1 Overview

Routing based on flooding is conceptually simple because no computation of routes is performed.

If a packet is received by nonfaulty node A, it will be forwarded to nonfaulty neighbor, B, of

node A, provided that A is not forced to drop the packet due to lack uf resources.

There are three types of resources that are required for a packet to make progress from node

to node:

bandwidth The transmitting node must guarantee, in reasonable time, to output the packet

onto the link.

memory The receiving node must have room in memory to store the received packet.

processing capacity The receiving node must have enough processing capacity to read the

packet and store it in the appropriate location in memory. We assume the node is engi­

neered properly so that there is sufficient processing power.

1 Although links usually do not involve sophisticated intelligence, they can exhibit Byzantine behavior such
as corrupting dat.a, or discriminatorily passing through packets based on characteristics such as pll.("ket length or
specific bit patterns. It is also possible for a link to include an intelligent node, such as a Data Link Layer relay,
so that more sophisticated Byzantine behavior might be possible.

29

The subtleties in our design are the result of:

1. ernmring fair usage of finite memory and link bandwidth,

2. minimizing the amount of manual configuration necessary to maintain the network, and

3. minimizing the use of non-volatile storage.

The database at each node B is structured so that B reserves a fixed number (e.g., one)

of buffers for packets generated by each possible source. B doel:i not know, a priori, the set of

possible sources. Instead, we employ a "trusted node service" that broadcasts the identities of

the sources. The set of trusted nodes must be known a priori.

In order to prevent a node A from generating packets with source address S, and thereby

using the buffer reserved for S at some node B, (causing packets generated by S to be dropped

by B because oflack of buffers) we utilize a signature scheme based on public key cryptography.

The "trusted node service" broadcasts the public key of each node, in addition to the identity

of the node.

Thus each node B is dynamically informed of the complete set of network nodes, together

with a public key for each node. This allows B to reserve resources for each node, and allows B

to verify that a packet was generated by node S before devoting resources reserved for S to that

packet. However, B only reserves a fixed number, x, of buffers for S. If S generates more than

x packets, and B receives more than x packets generated by S, then B will need to drop some

of S's packets. It is necessary to give B enough information so that it can make an intelligent

choice as to which of S's packets to retain. The packet which B should retain is the packet

most recently generated by S. In order for B to recognize the packet most recently generated by

S, we include in the packet a "sequence number", which is a monotonically increasing counter

maintained by S.

We do not require S to keep its own sequence number in non-volatile storage. We instead

provide for S to reacquire the highest sequence number it had used prior to its own simple failure,

by having the packet with highest sequence number rebroadcast automatically to any portion

of the net which has lost knowledge of the packet with highest sequence number generated by

S. This is accomplished through two mechanisms:

1. The network persistently attempts to ensure that the packet with highest sequence number

from each (source, key) pair reaches all portions of the network. This is accomplished

30

by having a node B transmit a received packet to each neighbor C, until C acknowledges

the packet. If C restarts, it informs neighbor B, and B then retransmits all packets in its

database to C.

2. If a node B receives a packet from neighbor C with source S, and sequence number smaller

than that stored in B's memory, B transmits the packet in memory (also with source S,

but higher sequence number than the one received from C) to C.

In order to defend against faults in the "trusted node service", we allow multiple "trusted

nodes", and reserve resources for each (ID, key) pair broadcast by any "trusted node,,. In this

way, if a "trusted node" is faulty, and broadcasts nonexistent nodes, or incorrect public keys

for existing nodes, resources will still be reserved for the set of true (node, key) pairs, provided

that at least one "trusted node" is nonfaulty.

The types of packets required in our scheme are:

Data These packets are generated by a higher layer, and are the packets which the Network

Layer is to deliver. The Network Layer does not interpret the contents of a data packet,

though it adds control information (a "header") for its own purposes. This control in­

formation is deleted by the destination i~etwork Layer so the original packet is delivered

unmodified to the destination.

Public Key List (PKL) These packets are generated by "trusted nodes11 and broadcast

throughout the network. They contain the list of (ID, key) pairs for all nodes in the

network.

Restart Notification This packet is generated by node C to inform C's n~ighbor B that C

has restarted.

Data ACK The Data ACK packet serves as a neighbor to neighbor acknowledgment of a Data

packet.

PKL ACK The PKL ACK packet serves as a neighbor to neighbor acknowledgment of a

Public Key List packet.

Restart Notification Ack This packet serves as a neighbor to neighbor acknowledgment of

a Restart Notification packet.

31

Because we do not require a node to keep its own sequence number in stable storage, it is

possible for a node, after its own simple failure, to issue a Data or PKL packet with a sequence

number it had used prior to its failure. We wish one packet to successfully flood. In this

way, either the source's most recently generated packet will successfully flood throughout the

network (which is the desired result), or the old packet will successfully flood, reaching the

source. If this occurs, and the source is nonfaulty, the source will receive the older packet,

recognize it is not the packet the source just generated, and the source will reissue the newer

packet with a higher sequence number.

In order to assure one of the packets will flood, in the case of packets with equal sequence

numbers, we use the packet signature as a "tie breaker". For Public Key List Packets, to

defend against the very unlikely case in which two distinct Public Key List Packets have the

same sequence number and the same valid signature, we additionally use the data inside the

PKL as a tie breaker.

2.2.2 Databases

A Priori Information

Each node must have stable storage for the following information which is manually entered

and maintained:

its own identity
its own keys (public and private)

7,an upper bound on the total number of network nodes
the identities of, and public keys for, each of the t "trusted" nodes
the size of the maximum sized data packet

All other state information can be kept in volatile storage. When a node is initialized, for

the first time or after a crash, it knows only the information from stable storage.

32

Dynamic Database

Each node keeps the followmg_ database m volatile stor~e:
OWN-SEQ-NUM The next sequence number to be assigned when this node generates

its next data _p_acket
OWN-SEQ-NUM-PKL The next s~quence number to be assigned when this node generates

a Public Key List packet (this is only kept by "trusted nodes", since
other nodes do not generate Public Key List Packets).
Note that there is no correlation between "OWN-SEQ-NUM" and
"OWN-SEQ-NUM-PKL". If a node is operating both as a "trusted
node" and an ordinary data node (generating data packets), it keeps
both counters, and the values of the counters are not correlated with
each_ othPr.

Public Key Lists For each trusted node:

Data Packets

Restart Flags

• The Public Key List Packet with highest sequence number re­
ceived from that trusted node, in a buffer of sufficient size to
hold a Public Key List Packet listing N nodes

• For each neighbor of this node, two flags:

1. Send-flag - indicating whether this Public Key List Packet
needs to be transmitted to this neighbor

2. Ack-flag-indicating whether an ACK for this Public Key
List Packet needs to be transmitted to this neighbor

For each node/public key pair reported by any trusted node:

• The data packet with highest iiequence number from that
node/public key

• Fat each neighbor of this node, two flags:

1. Send-flag - indicating whether this packet needs to be
transmitted to this neighbor

2. Ack-flag - indicating whether an ACK for this packet
needs to be transmitted to this neighbor

for each neighbor, "Send-Restart" and "Send-Restart-ACK" flags

2.2.3 Public Key Distribution

Our design requires each node to have knowledge of the identity of, and public key for, every

other node in the network. This is accomplished with a "trusted node service", which generates

and broadcasts Public Key List packets.

Some number, say t, of nodes are designated to cooperate in providing this service.

• Each "trusted node" contains a manually maintained database consisting of the identities

33

of, and public keys for, each other node in the network.

• Every node in the network contains a manually maintained databaBe consisting of the

identities of, and public keys for, each "trusted node".

• Each "trusted node" periodically floods (using the robust flooding described in this chap­

ter) a packet containing a list of all nodes in the net together with public keys for each

node. Since we are assuming that keys for the "trusted nodes" are manually maintained

at each network node, there is no recursive problem here - packets from "trusted nodes"

that are validly signed will automatically be accepted and forwarded by nonfaulty network

nodes.

• Installation of a new "trusted node" requires manual modification of all nodes in the

network. Installation of a new network node requires manual modification of all the

"trusted nodes". Changing of a node's public key requires modification of all the "trusted

nodes".

Note that information does not "expire" in this scheme. If a trusted node T ever issues a

report of source/key pairs, that information remains with the network, and is reacquired by

any node A that has lost state unless one of the following occur:

1. T issues a new report (with higher sequence number).

2. T is manually "deinstalled" by having its (manually maintained) public key modified or

deleted at node A.

3. The manually maintained parameter N, which is an upper bound on the number of nodes

in the network, and is manually maintained independently at each node in the network,

(see Section 2.2.2), is modified at node A to be smaller than the number of source/key

pairs listed in T's last report.

4. All nodes in the net lose state at about the same time so that all memory of T's last

report is lost.

34

2.2.4 Packet Types

Data Packets

The purpose of a data packet is to allow delivery of data from a higher layer process at a "source"

node, to a higher layer process at a "destination" node. The "user data" is furnished by the

upper layer process and is not interpreted by the Network Layer. In addition to furnishing the

data to be delivered, the upper layer process informs the Network Layer process of the identity

of the destination node. The Network Layer at the source node then furnishes the "header" of

the packet, consisting of all fields defined below except "user data". A data packet contains the

t ll o owmg.
source node The identity of the source node
destination node The identity of the destination node
sequence number Assigned by the source node, in a monotonically increasing way, except

after a loss of state ~the source node.
public key The public key under which this packet has been signed.
user data Information provided by a layer higher than the Network Layer at the

source node, that is not meant to be interpreted in any way by the
Network Layer, but is to be delivered without modification to the peer
l~er at the destination node.

packet signature A digital signature, verifiable based on the public key listed in the
_Q_acket coverin_g_ the entire contents of the_Q_acket.

Public Key List Packets

A "Public Key List" packet is generated by each "trusted node" and it contains the identities

of, and public keys for, every node in the network (other than "trusted nodes", whose keys

must be manually maintained at every node in the network). It contains:
source The trusted node that generated this packet
sequence number Assigned as iu a data packet by "source"
key list Identity /public key for each node in the network
packet signature A digital signature, verifiable based on the (manually maintained) public

k~ for the trusted node..i. coverin_g_ the entire contents of the .J!.acket.
A "Public Key List" packet will be quite large, but the maximum size can be derived from

N, an upper hound on the number of network nodes, a manually configured parameter (see

Section 2.2.2). Given that its size is known, a buffer of appropriate size can be allocated.

The only reason a "Public Key List" packet might need to be fragmented is because the link

technology connecting two neighbors might limit the size of a packet. If this is the case,

then some single hop fragmentation and reassembly protocol can be invoked, (which is just

a straightforward encoding problem), so that for the purpose of this thesis we can assume a

35

"Public Key List" packet can be transmitted and stored intact.

Data ACK

The next form of packet is a Data ACK packet. Its purpose is to acknowledge receipt of a

particular Data Packet from a neighbor. It is transmitted only between neighbors, and never

forwarded.

Note that the node generating the ACK does not sign the ACK, or even include its ID.

All fields in the ACK are copied from the packet being ACK'ed. In this chapter, in which

we are building a Network Layer based on flooding, the identity of the neighboring node is

irrelevant. The "neighbor" is really the link itself, and a (nonfaulty) node is assumed capable

of distinguishing which link a packet was received from.

Thus the information in the ACK is just enough so that the neighbor can match the ac­

knowledgment with the packet to be acknowledged. In the case of a Data ACK, it is necessary

to indude the packet signature of the packet being ACK'ed in addition to the sequence number,

since it is possible there are two distinct packets in the network from the same source, with the

same sequence number.

Note that there is no way to verify the packet signature, based solely on receipt of the ACK.

Nothing prevents a faulty neighbor from claiming to have received a packet it in fact never did

receive. This does not concern us, because even if we made it impossible for a faulty node to

ACK a packet unless it had indeed successfully received the packet, there would be no way to

h ~event t at same f d f a .• /no e rom d' 1sca.r di th ng_ k t aft 't k l d d 't. e pace er 1 ac now e ~e 1
source node The source of the packet being ACK 'ed
sequence number The ACK'ed packet's sequence number
public key The public key under which the ACK'ed packet was signed
packet signature The signature copied from the ACK'ed packet

PKL ACK

The next form of packet is a PKL ACK packet. Its purpose is to acknowledge receipt of a

particular PKL Packet from a neighbor. It is transmitted only between neighbors, and :never

forwarded.

Like a Data ACK, there needs to be enough information in the PKL ACK to unambiguously

determine which packet is being ACK'ed. Because we use the data inside the PKL packet as a

tie breaker in the case of distinct packets with identical sequence numbers and signatures, we

36

include the PKL's data in the ACK. Thus a PKL ACK contains the entire PKL which is being

A_c_K'ed.
source Source of PKL
sequence number Sequence number from PKL
key list Data from PKL
packet signature Signature from PKL

Restart-Notification

The next form of packet is a Restart-Notification. Its purpose is to inform a node M's neighbor,

that M has lost state.

No information is necessary within a Restart-Notification except enough to identify the

packet as a Restart-Notification. As with the ACK packet, no verification of the source of the

Restart-Notification is necessary, because the node can tell which link the packet was received

from.

Restart-Notification-ACK

The next form of packet is a Restart-Notification-ACK. Its purpose is to inform a node M's

neighbor B, that B has received M's Restart-Notification message.

No information is necessary within a Restart-Notification-ACK except enough to identify

the packet as a Restart-Notification-ACK, because of the assumption that the node can tell

which link the packet was received from.

2.2.5 Packet Reception Rules

Receipt of Data Packet

The following is executed when node V receives the following Data Packet from neighbor W,

(with contents of unspecified fields irrelevant).

source address s
destination address Dest-rev
public key p
sequence number sn-rcv
packet si~ature PSig-rcv

First, verify that a buffer is reserved for source/key pair S/p (as a result of having received

S/p in a valid Public Key List Packet). If not, drop the packet.

Next, verify that PSig-rcv is valid, based on public key p. If not, drop the packet.

37

Next check if S=V (and the public key matches this node's). If so, check if the sequence

number on the received packet is greater than this node's OWN-SEQ-NUM (or equal to, but

PSig-rcv does not match the signature of the most recently generated packet by this node). If

so, set OWN-SEQ- NUM to sn-rcv + 1, and regenerate the most recently generated data packet.

Now assume that the packet stored in memory in the butfer reserved for source/key pair

S/p is:
source address s
destination address Dest-mem
public key p
sequence number sn-mem
packet signature PSig-mem

• If sn-mem < sn-rcv, then overwrite the packet in memory and send copies of the received

packet to all neighbors except W. This is accomplished by setting the flags for this packet

as follows:

1. Set "Send-Flag", and clear "ACK-Flag" for all neighbors except W.

2. Clear "Send-Flag" and set "ACK-Flag" for W.

Also, if Dest-rev = V, then deliver the packet to the higher layer process that is the client.

• If sn-mem = sn-rcv:

1. If PSig-mem = PSig-rcv, assume the packet received is a duplicate to the one in

memory. Drop the received packet and set "ACK-flag" for W.

2. Else, (PSig-mem ~ PSig-rcv), use the packet signature as a tie breaker, so that th~

packet with the numerically higher signature is flooded.

If PSig-mem < PSig-rcv, overwrite the packet in memory and send copi<is of the

received packet to all neighbors except W, by setting "Send-Fig" and clearing

"Ack-Flg" for all neighbors except W, and clearing "Send-Fig" and setting "Ack­

Flg" for W.

- If PSig-mem > PSig-rcv, drop the received packet and send the one in memory

to W, by setting "Send-Flg" and clearing "Ack-Flg" for W.

• If sn-mem > sn-rcv, then transmit the one from memory (the one with the larger sequence

number) to W, the single neighbor from which the one with the smaller sequence numbel'

38

was received. This is accomplished by clearing "Ack-Flag" and setting "Send-Flag" for

w.

Receipt of PKL Packet

Receipt of a PKL Packet from neighbor Wis handled almost identically with receipt of a Data

Packet from neighbor W. As with a Data Packet, the received packet is first checked for validity,

and then compared to the stored packet to determine whether it is older, a duplicate, or newer.

The only modification necessary when dealing with a PKL is tha.t an additional check is

made, in the case where the sequence numbers and signatures match. If the sequence numbers

and signatures match, the "key list" field is compared. If the "key list" matches in the two

packets they are truly duplicates. Otherwise, a lexicographic comparison of the "key list" fii~lds

serves as a tie breaker to determine which packet is considered newer.

Receipt of a Data ACK Packet

When receiving a Data ACK Packet from neighbor W, find the corresponding packet in memory.

If no such packet, drop the ACK packet with no further processing. If the ACK does match a

packet in memory, clear "Send-Flag" for W for that packet.

Receipt of a PKL ACK Packet

As with a Data ACK Packet, find the cGrresponding packet in memory. If no such packet, drop

the ACK packet with no further processing. If the ACK does matchh a PKL packet in memory,

clear "Send-Flag" for the neighbor from whom the ACK was received.

Receipt of a Restart Notification

If a Restart Notification is received from neighbor W, set "Send-Restart-ACK" for W, and, for

all packets (Data and PKL), clear "ACK-Flag" and set "Send-Flag" for neighbor W.

Receipt of a Restart Notification ACK

If a Restart Notification ACK is received from neighbor W, clear "Send-Restart" flag for W.

39

2.2.6 Transmission Rules

Reliability of the broadcasts is done by acknowledgments and retransmissions. The rules above

set flags, indicating the need to accomplish certain actions in the future. The actual transmission

of packets is done as follows:

When the link to a neighbor is ready to transmit a packet, scan the database in a round

robin order, starting at the flag that caused the last packet transmission. Any round robin

ordering is legal, as long as it guarantees to scan every flag on every packet. Find the first place

in which a flag is set. The flag will be associated with some neighbor, W. The flag is one of the

following:

1. If the flag is "Send-Restart", queue a Restart Notification packet to W.

2. If the flag is "Send-Restart-ACK", queue a Restart Notification ACK to W and clear

"Send-Restart-ACK" for W.

3. If the flag is "Send-Flag" for a data packet or a PKL, queue that packet to W.

4. If the flag is "ACK-Flag" for a data packet or a. PKL, queue an ACK for that p~cket to

W and clear "ACK-Fla.g" for that packet for W.

2.2. 7 Restarting

The last event which causes modification to the database is restarting. When restarting, ini­

tialize the database and set "Send-Restart-Notification" flag for each neighbor.

2.2.8 Additional Check on "Public Key List" Packet

Two distinct packets with the same sequenc.e number can be generated by source S if Sis faulty,

or if S uses a sequence number following its own simple failure, which it had used prior to its

own simple failure. In this case, we'd like one packet or the other to successfully flood through

the network. If the most recently generated packet is successfully flooded, then everything

works properly. If the older packet floods instead of the more recently generated packet, then

the older packet will flood back to the source, which will recognize that the packet is not its own

most recently generated packet, and the source will retransmit the latest packet, with higher

sequence number.

With data packets, when sequence numbers are equal, the check for whether the received

packet is a true duplicate of the one in memory is made by comparing the packet signatures.

40

If two distinct packets mapped to the same packet signature, this scheme would not detect a

conflict, in a very low probability occurrence. Since the Network Layer is a datagram service,

loss of a data packet under this circumstance would not be an issue.

However, it is more critical that "Public Key List" packets propagate throughout the net­

work. Thus we require that the data itself be compared against the data in the packet in

memory, in order to determine if the packet is a duplicate.

If the received packet is a duplicate of the one in memory, it is dropped. If it is not a

duplicate, and the packet signatures are distinct, then the packet signature will act as a "tie

breaker" resulting in the successful flooding of one of the packets. If the packet signatures

are equal (perhaps because a malicious "trusted node", through use of its own private key,

was capable of constructing two distinct packets with the same packet signature), then the

mechanism does uot allow one packet to successfully flood. Instead, one portion of the network

may retain one packet and a different portion of the network may retain a diatinct packet.

Thus in the case of Public Key List packets, we will not assume packets are duplicates if the

signatures match, but instead require a comparison of the data. If the signatures in two Public

Key List packets match, but the data does not, then the da.ta itself acts as a "tie-breaker" in

this case.

Thus for data. packets, the signature acts as a low order portion of the sequence number field

(and we ignore the potential of a data. packet being lost due to appearing to be a duplicate),

For Public Key List packets, the data. field is an even lower order field, to be considered only

in the case of ties with both the sequence number and signatures.

This portion of the design may be overly defensive. It is extremely unlikely for two distinct

PKL packets to have the same valid signature, and a. comparison of the data may be too

computationally expensive, especially as it must be done every time a duplicate PKL is received.

It may be preferable to treat PKL packets the same way as data packets (assume packets with

equal sequence numbers and equal signatures are duplicates, with no further processing).

2.3 Costs of This Design

The costs of the above design over basic flooding are:

memory In each node, O(t * N) buffers must be reserved, one for each possible source/public

key pair. (In contrast to basic flooding in which 0(1) buffers are reserved.)

41

As mentioned before, the "N" in the O(N) refers to the number of routers, not the number

of endnodes. Provided that each router ensures fairness among the endnodes that it serves,

signatures and buffer reservations are on behalf of the router.

A separation of nodes into "routers" and ''endnodes" is a simple form of introducing

hierarchy into the network, which is further discussed at the end of the chapter.

manual maintenance A database must be maintaine<l consisting of the identities of, and

public keys for, the set of "trusted nodes".

extra nodes Some nodes must act as the "trusted node" service. There must be enough

trusted nodes so that at least one will not exhibit a Byzantine fault. A simple fault by

a "trusted node" is not a problem, assuming the trusted node issued a Public Key list

packet before it crashed, and the network retains its Public Key list packet (which it will,

as long as some nonfaulty nodes remain up at all times).

communications bandwidth Extra overhead in data packets is required for sequence num­

bers and signatures. Also, the public key list must be periodically broadcast by each

"trusted node".

processing power Each node forwarding a data packet must cryptographically check the

signature (to check that it was the source node that generated the packet and that no

part of the packet has been corrupted).

The gains of the above design over basic flooding are:

robustness This design achieves robustness in the face of Byzantine failures.

communications bandwidth In basic flooding, each packet spawns an exponential number of

copies. With this design, since nodes keep state about the latest packet, a node normally

floods a particular packet once. Thus each packet traverses each (one-way) link once.

Since there are at most N 2 links, this form of flooding is dramatically more efficient (in

terms of communications bandwidth usage) than basic flooding. In fact, networks are

usually designed in such a way that nodes have a fixed maximum number of neighbors.

In this case, there are actually 0(N) linki; in the network.

42

2.4 Motivations Behind the Above Design

2.4.1 Review of the Design

We wish to assure that if a nonfaulty path exists between a pair of nonfaulty nodes, a packet

will successfully travel between the pair of nodes. The critical resources that must exist in order

for the packet to successfully reach the destination along the nonfaulty path are memory at

each node, and ban<lv•idth at each link.

We reserve a buffer for each source at each network node, and scan the database in an

orderly fashion to guarantee every stored packet access to the finite link bandwidth. To assure

that only the source coukl have generated the packet that is to occupy the reserved buffer, we

include a signat'ure in the packet.

To verify a signature, every node must have a "public key" for every other node in the

network. To assure this, with a minimal amount of necessary manually configured information,

we use "trusted nodes" which act as a public key distribution service. Keys for all nodes are

manually configured at the trusted nodes, and the trusted nodes flood a list of (node, key)

pairs throughout the network. To enable the successful flooding of the Public Key List Packets,

public keys for the trusted nodes must be manually entered at all the network nodes.

Flooding is accomplished by having each node recognize whether a received packet is older,

a duplicate, or newer than the packet from the same source that is stored in the database. This

is accomplished by use of a "sequence number" which is a monotonically increasing counter kept

by the source. If the received packet is deemed older, the packet from memory is transmitted

to the neighbor which sent the older looking packet. If the received packet is a duplicate, it is

ignored. If the received packet is deemed newer, the packet in memory is overwritten and the

received packet is transmitted to all neighbors except the one from which it was received.

We allow a source to lose state regarding its own sequence number after .it experiences a

simple failure. Most likely, a source will reacquire its own sequence number because the network

persistently attempts, through neighbor to neighbor acknowledgments, to keep databases at all

nodes up to date. If the source issues a packet with a lower sequence number than it had

used prior to its failure, the source will eventually (if the net retains memory of the pre-crash

packet) receive the pre-crash packet, and the source will reissue its post-crash packet with higher

sequence number.

If the source issues a packet with a sequence number matching one it used prior to its own

43

failure, the packet signature (and in the case of a PKL, additionally the data inside the PKL)

acts as a low order field to the sequence number, so that either the post-crash packet will flood

successfully through the net (despite the sequence number reuse), or the source will receive the

pre-crash packet, and then reissue its post-crash packet with higher sequence number.

2.4.2 Buffer Pool

With flooding, since every packet theoretically traverses every possible path, communication

between two nonfaulty nodes should be possible if at least one nonfaulty path connects them.

However, in practice, since networks have finite bandwidth and finite buffering capabilities,

packets must be dropped. If packets are dropped indiscriminately, there is no way to guarantee

fairness. A particular traffic stream (source/destination pair) might have all of its packets

dropped.

We wish to design a network in which a traffic stream has a high probability of successful

delivery of a single packet at a time. In other words, if a source does not generate a new packet

until the old packet has had time to be delivered, then each packet should arrive safely at the

destination, provided a path of nonfaulty processors existed during the packet delivery time,

and provided that a reliable Data Link layer recovered from occasional corruption caused by

the data link.

It is sufficient for the network to assure fairness on a per source basis (instead of on a per

source/ destination pair basis, or worse yet, on a per source process/ destination process pair

basis), since the source can be held responsible for assuring fairness between traffic streams it

originates.

To assure fairness on a per source basis, with N being the number of sources, a node needs

to keep O(N) state. Otherwise it may continually drop the same source's packets.

Since faulty "trusted nodea" can report nonexistent nodes, or false public keys for existent

nodes, we actually require 0(t*N) buffers, where tis the number of trusted nodes and N is the

maximum number of nodes any single "trusted node" is assumed capable of reporting.

If an otherwise nonfaulty node A has too low a value for N, i.e. a nonfaulty "trusted

node" does indeed report more than N nodes, then A becomes essentially a faulty node, and

its behavior under the circumstances becomes irrelevant (though if it reports the problem to

Network Management, the problem is easily diagnosed and repaired - either the "trusted node"

reporting more than N nodes is faulty, or A's value for N is incorrect and should be modified).

44

Since buffers are reserved on a per source basis, a source S must authenticate itself in order

to allow its packet to occupy the buffer. Otherwise, a faulty node could claim to be S and have

its own packets occupy buffers reserved for S.

It is necessary to include all the contents of the packet in the signature, so that no node

other than the source can modify any portion of a packet.

Delivery of a corrupted packet to the destination is not a problem. We have assumed that

a higher layer protects the destination from mistaking faulty data as valid. Our design does

not protect against delivery of faulty data, since a faulty trusted node could construct a private

key /public key pair for some node S, broadcast the fraudulent public key for S, and issue

packets, masquerading as S. We have specifically required that higher layers recover from such

problems.

We only require that nonfaulty data get delivered. Thus it is essential that a corrupted

packet for S not compete for network resources with the nonfaulty copy.

An alternative scheme, attractive for performance reasons, is to require the signature just

to cover the header of the packet. It takes less computation to verify a signature if the object

being signed is smaller. Thus it might be attractive to attempt to design a scheme whereby

only the header of a packet is signed. Then faulty nodes might corrupt the data, but a higher

layer protocol will protect the destination.

The problem with this approach is that distant nodes will not be able to detect (without

looking at all the bytes of the packet) that a. corrupted packet and the original packet are not

simply duplicates. If they are assumed to be duplicates, then the corrupted packet might be

delivered instead of the correct copy, and the scheme does not meet the robustness criteria we

have required.

Thus it is necessary for forwarding nodas to examine the complete contents of each data

packet. If duplicate detection were done by comparing the data, with a signature scheme that

only covered the header of tile packet, then a rlistant node would detect that at least one of

the copies was a corrupted packet, but it would not be able to determine which one was the

valid packet. This would prevent the Network Layer from meeting the correctness condition

that the correct copy be guaranteed resources. If a node cannot differentiate the correct copy

from corrupted copies, then no fixed number of buffers will suffice to ensure a correct copy gets

delivered, since there is no (practical) limit to the number of variations of the data that a faulty

node can generate.

45

Thus the signature is required to distinguish the correct packet. Once the signature covers

the entire packet, it is not necessary to further do a byte by byte comparison of the data, since

different data will yield distinct signatures2 (with overwhelming probability).

2.4.3 Trusted Node Service

Every node must be capable of verifying each other node's signature, without being able to

forge signatures. This can be done with a public key scheme, provided that every node knows

every other node's public key.

Manual databases at every node could be used for distribution of public keys. However,

maintenance of such databases would be extremely tedious. Adding a new node to the network

would require modification of all the existing nodes.

With a trusted node service, each node need only know, a priori, the number of trusted

nodes, together with public keys for each of the trusted nodes. When a new node is to be

added to the network, or a node's public key is to be changed, manual modification only of the

trusted nodes is required. However, if a new trusted node is to be added to the network, or

if the public key of a trusted node is to be modified, manual modification of all the nodes is

required.

Usually, all nonfaulty trusted nodes will have the same public key for each node. However,

when their databases are in the process of changing (being manually modified), due to a node's

public key changing or a new node being added, nonfaulty trusted nodes will have non-identical

versions of the network node identities and keys.

Faulty trusted nodes can advertise faulty public keys for other nodes, and even collaborate

with other faulty trusted nodes so that a majority of trusted node reports might contain the

same faulty public key for some node or group of nodes.

Routing will continue to work between nonfaulty nodes A and B despite faulty trusted nodes,

provided that at least one reachable trusted node did not exhibit a Byzantine failure. That is

because we have required each nonfaulty node to reserve a. buffer for ea.ch possible source/public

key pair. Since there are a fixed number, t, of trusted nodes, each of which is limited to reporting

identities of and keys for N nodes, there are at most N•t possible source/public key pairs that

any network node could know a.bout at any time. We call this the "source/key pair" ~cheme.

:ior course, byte by byte examination of data is required in order to verify the packet signature, oo the
performance benefit derived from not needing to compare the data on two packets is not dramatic.

46

An alternative approach is to require receipt of the same public key for some node S from

a majority of trusted nodes, before the public key for S is used. We call this the "majority"

scheme. The majority scheme has the advantages of:

smaller memory requirements With the majority scheme, only one buffer is required per

source, since the trusted nodes in effect "vote" on the public key to be used for that buffer.

more efficient communications bandwidth usage With the majority scheme, each source

S can utilize 1/ N of the communications bandwidth of each link (where N is the total

number of nodes in the network).

With the source/key pair scheme, if all but one of the t trusted nodes were faulty, and

the faulty nodes each broadcast a distinct (and incorrect) set of N source/key pairs, then

the true sources' access to communications bandwidth is decreased by a factor oft.

less manual information With the majority scheme, a faulty trusted node cannot report

nonexistent nodes in an attempt to force network nodes to allocate extra meIP..ory and

communications bandwidth, since no new node or node/key pair will be believed by

network nodes unless a majority of the trusted nodes report it.

With the source/key pair scheme, an extra manually maintained parameter, N, an upper

bound on the size of the network, must be maintained so that there is a limit to the

a.mount of resources that a faulty trusted node can impose on the network by reporttng

and simulating nonexistent network nodes.

However, we decided the enhanced robustness offered by our scheme outweighed the per­

formance implications. With our scheme, only a single trusted node need be reachable and

nonfa.ulty (in the Byzantine sense) in order for communication to be possible. This has the

following fortunate consequences.

1. Fewer trusted nodes a.re needed. With the majority scheme, at least 2*/ + 1 trusted nodes

are required, where f is the number of faulty trusted nodes the network should tolerate.

With the source/key pair scheme, only f + 1 trusted nodes would be required.

Note that f is actually the number of Byzantine faults the network can handle. Simple

faults by trusted nodes are not a problem, as long a.s the trusted node issued a node list

report before its simple failure, and at least one network node was up at any time (with

47

enough overlap so that network state can he passed to the node that will be up), so that

memory of its report persists in the network.

2. With the majority scheme, network partitions could cause all routing in the network to

cease, even in the absence of any Byzantine faults. If the network partitioned such that

no partition contained a majority of trusted nodes, then routing throughout the network

would cease (unless a majority of non faulty trusted nodes had issued node list reports

before the partition occurred, and knowledge of the reports persists in the partition.)

With the source/key pair scheme network partitions are, of course, not a problem. Routing

will operate correctly in any partition containing at least one nonfaulty trusted node.

3. With the majority scheme, if a node changes its own public key, there will be a potentially

long period during which it will not be able to send packets, since it cannot use its new

key until the new key has been installed on the majority of trusted nodes. With the

source/key pair scheme, a node can use its new key as soon as it has been installed on a

single nonfaulty trusted node.

The performance penalty associated with rejection of the majority scheme might at first

seem severe. However, in practice the source/key pair scheme will perform as well as the

majority scheme because:

• In practice, Byzantine failure of a trusted node can he assumed very unlikely. Thus, one

or perhaps two trusted nodes will be sufficient.

Note that either scheme would work with only a single trusted node, provided that node

never experienced any Byzantine failures, since the network will not even detect a simple

failure of the trusted node.

Once a trusted node issues a node report, there is no reason for it to ever issue a new one

unless the information has changed (new node, node deletion, or key change.)

• Byzantine failure of a trusted node is very easy to detect.

Any node in the network can be alerted, and report a potential problem, if it receives

conflicting reports of any node's public key, or receives nonidentical lists of nodes from

different trusted nodes.

48

If the faulty information is an incorrect public key for a node A, then A knows which

trusted node is faulty. If the faulty information consists of leaving a node A out of the

list of nodes, again A knows which trusted node is faulty. If a trusted node adds new,

nonexistent nodes to its node list, there is no obvious single node that can know for certain

whether the trusted node with the expanded list is faulty, or a different node is faulty

because of omitting nodes. However, the faulty node cannot report more than N nodes,

so if N is not significantly larger than the true network size, a Byzantine trusted node will

not be able to add many new nonexistent nodes without either leaving out a true node

(in which case that node will know the trusted node is faulty), or reporting more than N

nodes (in which case its reports will not be believed by any node whose network bound

is set to N.)

Since Byzantine failure of trusted nodes is quickly diagnosable and correctable, in practical

networks the number of trusted nodes can be very small.

In practical networks, we can provide 2 buffers per source plus a few (say .x) extras. These

2 * N + x buffers would allow routing to continue for normal operational scenarios (key changes

for x nodes simultaneously), and allow a single one of the trusted nodes to be maliciously

Byzantine (which would be quickly detected by all the other nodes if the faulty trusted node

were really reporting N false node/key pairs, since each nonfaulty node wnuld either be left off

the list, or be reported with a false public key).

2.4.4 Sequence Number

Public key cryptography can prevent a faulty node from generating a packet that looks like it

was generated by a different source node S, usurping resources reserved for S. However, without

additional design, a faulty node could replay old packets from S, and have the old packets

usurp the resources, locking out S's current packets from the resources necessary for successful

delivery.

For this reason w~ require a sequence number, which is a counter maintained by each source

node, incremented for each packet generated by that source node. Sequence numbers from

different sources have no relationship.

Sequence numbers traditionally introduce problems [Pe). The basic problems are:

• Sequence Number reaching maximum value - due to the field being of fixed length

49

• Incorrect Ordering - due to the finite length field being allowed to "wrap-around"

• Loss of State by Source - so that after a crash its new packets are incorrectly ordered

with respect to pre-crash packets.

There are various strategies for dealing with a fixed length sequence number field:

1. Wrapping - With this strategy, when the field reaches its highest numerical value it is

allowed to "overflow" back to 0. Arithmetic comparisons can be made in a circular space.

If the size of the sequence number space is n (with n odd), then an ordering a LT b is

defined as:

• la - bl < n/2 and a < b, or

• la - bl > n/2 and a > b

With this strategy, the size of the sequence number space is chosen to be sufficiently large

so that a source (under normal circumstances) would not use as much as half the sequence

number space within a packet lifetime.

However, this non-well ordered space can cause severe problems. It was just this ordering

that caused the ARPANET disaster documented in [Ros]3.

2. Resets - Another strategy is to allow a sequence number to be "reset" after it reaches

its maximum value, by some process involving flooding of a reset packet throughout the

net.

This strategy is very risky as well, for two reasons:

(a) If not all memory of the previous use of high numbers for the sequence number is

purged, the nodes that remember the high value might reintroduce memory of the

high values into the network. A single node with memory of a high value can reflood

the net with the high value, undoing the reset operation.

3The sequence number wa.s being used to order Link State Packets in & Link State form of Network Layer.
The ha.sic algorithm wa.s that a node would accept a Link State Packet and flood it if it was newer than the one
stored in memory from that source. Then one day a malfunctioning source generated packets with three sequence
numbers a, b, c such that a LT b LT c LT a, These packets proliferated a.round the network like a virus, since
each node, when accepting one of the LSPs, would ma.ke several copies for each of its neighbors. Furthermore,
the order in which LSPs would be flooded by a node were a, b, c, a, b, etc. - just the order so that the neighbor
would regard each packet received a.a newer and flood it (making even more copies).

50

(b) If one of the packets that execute the reset continues to reside inside the network, it

can cause a reset at a later time. This creates a new flood of reset packets, creating

the possibility that in the future the reset can again mistakenly be restarted, with

no guarantee that the process will ever halt.

3. Large Enough Field If the sequence number field is sufficiently large, it should never

need to wrap around. For instance, if the field is 64 bits long, and a source geuerates

packets every microsecf)nd, i~ would take over 400,000 years for the field to overflow.

However various types of errors in a traditional system could cause the field to prematurely

reach its maximum value:

(a) A faulty node other than the source could masquerade as the source, generating

packets with the source's ID, and with a high value for the sequence number.

(b) The source itself could fail and issue packets with high sequence numbers on behalf

of itself.

(c) A node forwarding the source's packet could corrupt the sequence number.

Another problem with sequence numbers is loss of state following simple failures. This is

particularly critical when a node loses state about its own sequence number.

If a source S were to restart with the lowest sequence number, its new packets (the ones

generated after the crash) would be ignored by the rest of the network until S's post crash

sequence number increments past the pre-crash value.

Some obvious approaches for a node to acquire its own pre-crash sequence number do not

work:

1. The source, upon recovery, can query a neighbor as to the pre-crash value of its sequence

number. This does not work because the neighbor could also have lost state. Also, if

naively done, the neighbor could give the source a faulty answer, such as an overly high

sequence number which might prematurely cause the field to overflow.

2. The source might broadcast a message requesting anyone with knowledge of its pre-crash

value to respond. Again, this does not work because the network might be partitioned at

the time of the source)s recovery, and knowledge of the pre-crash value might exist only

in some partition that is temporarily unreachable at the time of the request.

51

These problems which are normally associated with sequence numbers are avoided with our

design.

1. We allocate a "large enough" field, precluding resets and wraparound.

2. Nodes are persistent about keeping state synchronized with their neighbors. When a node

informs its neighbor that it is restarting, the neighbor marks all packets in the database as

needing to be retransmitted to that neighbor. Thus, theoretically, the packet with latest

sequence number from each source should automatically be reflooded into any portion of

the network that has lost state.

3. Additional mechanism for recovery of state following a crash is accomplished by having

a node send a stored packet with a higher sequence number in response to receipt of

a packet with a lower sequence number. In this way, if a source issues a packet with

sequence number k, and any reachable node R has memory of a packet from that source

with higher sequence number h, then when packet k reaches R, it will cause a reflooding

of the packet h back into the region that does not have memory of that packet, including

the source, which will know at this point that it must increase its sequence number to

h + 1, and reissue the last packet.

Theoretically, this mechanism should be redundant - without it, the source should even­

tually receive the old packet with higher sequence number anyway. However, there are

reasons for including this mechanism:

• It is basically free - it adds no extra memory or communications bandwidth, nor

does it significantly complicate the algorithm.

The entire mechanism consists of the rule, "If neighbor B transmits a packet from

source S, with sequence number smaller than the one in memory for source S, set

"Send-Flag" on the packet it memory for neighbor B." Theoretically, "Send-Flag"

should already be set for B, if this node has a packet with sequence number larger

than B has yet seen, or if B has lost state. But there is no significant burden pl&.ced

on the protocol to make sure "Send-Flag" for B is in the correct state (set) when

this case occurs.

• In practice, with nodes restarting, lost messages, delayed messages, and out of order

messages, (which can occur even on a point to point link with some technologies),

52

it is possible for neighbors to get out of synchronization. If this were to occur, this

mechanism causes resynchronization automatically (again, at no additional cost).

• It may be desirable to modify the robust flooding, especially for data packets, to be

less "persistent", since the Network Layer is assumed to be a datagram service. See

Section 2.6.2 for more discussion of this issue.

In the modified scheme (where "Send-Flag" for W for all data packets is not set as

a result of receipt of a "Restart-Notification" from W), the mechanism ensures that

data packets that really do need to be reflooded (those informing the source of its own

sequence number) will. Without this mechanism, in the modified scheme, the source

might not reacquire its old sequence number, and its newly issued packets might not

successfully flood in the network until their the source issued enough packets so that

the sequence number became larger than the previously used sequence number.

4. Premature overflow of the "large enough" field due to faulty nodes other than the source

is avoided through the use of cryptography. No node other than the source can (with

non-negligible probability) generate a packet with the source's address, since it cannot

generate a signature. Likewise, no node other than the source can modify a packet, since

that will make the signature invalid.

5. Thus the only node which can cause the field to prematurely overflow is the source.

Through Byzantine fault, the source can cause its own sequence number to overflow. If

this occurs, then the faulty source will no longer be able to generate packets, which is not

a problem (we make no guarantees that faulty nodes be able to communicate). However,

if the source is repaired, the algorithm must then enable the source to communicate, since

at that point it will be a nonfaulty node. This is accomplished by changing the source's

public key, which will not compete for buffers with packets issued and signed with the

source's previous public key.

An alternative method of marking packets so that the times of their generations can be

ordered is to use a timestamp, globally synchronized throughout the network. A timestamp of

global significance has nice properties.

• The space is totally ordered (it is "large enough"), avoiding wraparound and reset issues.

53

• Recovery of pre-crash values is not an issue, since a node is not considered "recovered"

until it is synchronized with the other nodes' clocks.

• Faulty timestamps (e.g., those for the future) can be recognized, and packets with faulty

timestamps can be discarded.

However, global clock synchronization is not an easy problem, and there are currently no

practical implementations of networks with globally synchronized clocks, especially globally

synchronized clocks robust against Byzantine failure. Thus we prefer to build our design upon

sequence numbers, since it can be implemented without special hardware, and without solving

the global clock synchronization problem.

It is possible for a source to reuse a sequence number if

• the source is faulty (Byzantine fault), or

• the source experienced a s!mple failure, and lost state regarding its own sequence number.

In this case we use the signature (and possible the data itself in the case of PKL packets)

as a low order field appended to the sequence number, so that in the case of sequence number

reuse, one packet is unambiguously considered "newer" than the other. If the correct packet

(i.e., the post-crash packet) is deemed newer, then everything works properly. If the pre-crash

packet is deemed newer, then it will flood instead of the post-crash packet, reach the source,

and the source (if nonfaulty) will reissue the post-crash packet with higher sequence number.

2.4.5 Public Key in Packet Formats

We have included the field "public key" in Data Packets, and Data Packet ACKs, but not in

PKL Packets or PKL ACKs.

It is not necessary to include "public key" in the Data Packet format. Instead, we could

require nodes to infer the public key being used, by trying all public keys known for that source

node, until one yields a valid signature. At most t public keys could be known for a particular

source node, since at worst each trusted node could report a distinct key for that source. The

decision about whether to include "public key" is a tradeoff between communications bandwidth

(the necessity of increasing the header length to include the extra field) and processing overhead

(the necessity to try multiple public keys).

The field "source node" in Data Packets is also not necessary. The identity of a node could be

its public key. Of course if the field "source node" is excluded, then the field "public key" would

54

be essential, since otherwise the only method of identifying the source node would be trying all

known public keys, of which there can be up tot* N. We have included the field "source node"

for conceptual clarity, and since the field is likely to be very small (certainly small compared

to a public key, or a signature), a network protocol designer wishing to minimize header length

would be better off excluding the "public key" field rather than the "source node" field.

However, even if the field "public key" is excluded from the Data Packet, it remains essential

in the Data Packet ACK Packet. Suppose the source node S has public key p1 • Suppose a

malicious trusted node, T, broadcasts the pair (S,p2). Then Tis capable of constructing validly

signed packets from (S,p2). It is possible that knowledge of the private key associated with

public key p2 enables T to construct a Data Packet for which a particular signature would be

valid. In that case, T could, on receipt of packet with sequence number x and signature s from

(S,Pt), construct a packet with sequence number x and signature s from (S,p2). In this case,

without the field "public key" in the Data Packet ACK, the ACK packet would be ambiguous

as to which packet was being acknowledged.

In PKL packets, the field "public key" is not necessary because each node holds only one

key for each trusted node (the key which is manually maintained).

2.5 Fault Detection

Certain failures are easy to detect with the flooding scheme described in this chapter. Others

are not. This section will discuss which sorts of errors can be automatically diagnosed and

reported, so that a network manager can then investigate the problem.

2.5.1 Faulty Trusted Nodes

Since the task of a "trusted node" is to generate a Public Key List Packet with the latest

information, failure of a "trusted node" can only consist of one of the following:

1. Failing to send any Public Key List packet.

2. Having its Public Key List packet with highest sequencf.: number contain incorrect infor­

mation:

(a) It can contain too many nodes (more than N).

(b) It can leave out nodes.

55

(c) It can contain incorrect nodes.

(d) It can contain correct nodes with incorrect public keys.

Symptoms of such failures do not necessarily prove failure of the "trusted node" 1 since the

same symptoms can also result from other causes. However, as long as these symptoms can be

detected by at least one nonfaulty node, they can be reported and investigated.

Failure to generate Public Key List Packets

If a trusted node T fails to send any Public Key List packet, then every nonfaulty node will

detect that, due to having a manual key for trusted node T, and never receiving a Public Key

List packet with source T. However, this symptom (no knowledge in a nonfaulty node of any

Public Key List packet generated by T) could also occur with nonfaulty T, for instance if all

of T's neighbors are faulty and fail to forward T's Public Key List packet to the rest of the

network.

Including Too Many Nodes in PKL

If T's latest (one with highest sequence number) Public Key List Packet contains Mnodes, then

any node V with parameter N set such that N < M will detect and report the problem. "The

problem", in this case can be either that T is faulty, or that V's parameter N is set incorrectly.

Omitting nodes or Reporting Incorrect Keys

If T's latest Public Key List Packet leaves out node V, or reports V with an incorrect public

key, then if V receives T's Public Key List Packet, V will detect and report the problem. T's

latest Public Key List Packet will reach V if a path of nonfaulty nodes connects T with V, and

there is no other validly signed Public Key List Packet from V with the same sequence number.

Inclusion of Nonexistent Nodes

If T's PKL contains incorrect nodes, but its report also contains all the nonfaulty nodes, together

with correct keys for them, this problem will not be automatically detected by the network,

unless a comparison is made between T's PKL and the PKL issued by a different "trusted node'',

However, as long as T's PKL is correct regarding the nonfaulty network nodes, the inclusion of

incorrect nodes will not interfere with the correct functioning of the Network Layer.

56

2.5.2 Faulty Forwarding Nodes

Detection of faulty forwarding nodes is not easy with our scheme. The very robustness of

our scheme is somewhat of a disadvantage because a problem will not be detected unless no

nonfaulty path exists between source and destination. For instance, if several paths exist

between S and D, hut failures have occurred along some of those paths, it would be desirable

to detect and report the problem so that those paths can be repaired, even though they are not

needed at the time. It is undesirable to detect failures only after all paths have failed, and the

network is no longer operating.

Let us assume the following conditions in the network:

1. At least one nonfaulty path exists between all pairs of nonfaulty nodes in our network.

2. Some number of faulty forwarding nodes exist, that fail to forward packets, but do ac­

knowledge them correctly when received from a neighbor.

This situation cannot be detected with our scheme. Every nonfaulty node will successfully

receive the packet with largest sequence number from every other node, and no hint of trouble

will be evidenced by the state of the "Send-Flag" and "Ack-Flag" on each packet.

It is only when all nonfaulty paths fail that any evidence exists that there is a problem,

evidenced by some nonfaulty nodes not receiving the latest packet from some sources. This

situation cannot be detected automatically by the Network Layer with our scheme, since nodes

do not know whether later packets exist, unless they receive them. However, the upper layer

protocol can inform the Network Layer when it fails to get acknowledgments to its packets

launched to a destination node.

In this case (when no nonfaulty route exists), node by node query can determine which nodes

have received the latest packet from a particular source/key pair, which will allow a network

manager to have a good idea of which nodes have failed. This manual query assumes that the

network manager knows the topology of the network. With our scheme, the Network Layer is

not aware of the identity of neighbors, so a node by node query done without knowledge of the

topology will just yield a list of nodes reporting they have seen the latest sequence number,

and list of nodes reporting they have not, Without knowledge of the topology, this information

does not narrow down the candidate failing nodes at all - a.ny node on either list can be either

faulty or nonfaulty.

57

2.6 Variants

2.6.1 Multiple Outstanding Packets

The above design assumes S will not generate a packet with sequence number k+ 1 until its

packet with sequence number k has been delivered. If S fails to follow this rule, and instead

issues two packets in rapid succession, its second packet may overta.ke its first packet, and the

older packet will be dropped before delivery.

Note however, that there might be slow paths in the network, in addition to fast paths. If

the source issues packet k+l after packet k has been successfully delivered over the faste~t path

in the network, but while k is still in transit over slower paths, le+ 1 may overtake k over some

of the slower paths, causing no ill effects (in fact, causing the positive effect of limiting some

redundant traffic).

Unfortunately, the source has no way of knowing when at least one copy of its packet has

been successfully delivered to the destination. It can learn of that fact in approximately twice

the time, since the destination can send an acknowledgment. If the source wishes to maximize

its throughput, therefore, it must es· .. !mate the time of delivery. If the source issues packets

too quickly, some of its packets may get lost due to being overtaken by packets with higher

sP.quence numbers. Bu.t since the Network Layer is assumed to be a datagram service this is in

fact legal.

A modification to our algorithm allows safer "pipelining" of packets. ("Pipelining" is al­

lowing multiple packets from the same source/key pair to be in transit simultaneously.) The

modification is to require nodes to keep, instead of a single buffer per source (and per key), m

buffers per source/key pair, where m is the number of packets desired in the pipeline. If the

largest sequence number seen so far by node B from source/key pt>Jr S/p is k, then node B

keeps any packets with sequence numbers between k-m+l and k with source/key pair S/p.

2.6.2 Less Persistent Data Packet Flooding

It is not essential that a node B reacquire the database of data packets received prior to its own

simple failure. Most likely, these packets havE' already reached their destinations, or (if the only

path to the destination was through B, which was down at the time), the packets are so old

that upper layers no longer need them. In fact, it is usually preferable, from the point of view

of the highe1· layer protocols, that very old data packets do not get delivered. Public Key List

58

packets are different, since it is essential that every node store the most recently issued PKL

from each trusted node. The "persistent" design is necessary for PKL1>.

In the design above, we used the same mechanism for distributing data packets and PKL

packets. Since the design is overly reliable for data packets, it could be modified to be less

"persistent" in the case of data packets.

The modification consists of not modifying "Send-Flag" for neighbor Won all data packets,

when receiving a Restart Notification message from W. As a result, recovering node W does not

receive old data packets that it had acknowledged prior to its own failure. The only case in which

an old data packet should be reflooded is the case in which a source is issuing packets when

memory of packets from tha~ source with higher sequence numbers remains in the network. The

mechanism of having receipt of an older looking packet trigger reflooding of the stored packet

ensures that the reflooding will occur in this case.

The modification results in some bandwidth efficiency gain, since the entire database of

old data packets need not be transmitted on each link to a recovering node. If the node were

nonfunctional for long enough, it would never have acknowledged most of the data packets

stored by its neighbors, so upon recovery the majority of the data packet database will be

transmitted anyway.

Temporarily wasting bandwidth on links to a recovering node is not a very important

problem, since the links were of no benefit to the network while the node was nonfunctional,

and wasting the bandwidth after the node recovers is equivalent to the node having been down

slightly longer. However, a more radical modification prevents wasting the bandwidth. The

more radical modification consists of clearing "Send-Flag" for W on all data packets, upon

receipt of a "Restart-Notification" from W.

The theory behind this proposal is that the majority of packets in the database either have

an alternati'le path to the destination, or were generated sufficiently long ago that they will be

of no use if delivered now. Only packets generated prior to W's recovery will fail to be flooded

through W. A source cannot expect packets to reach a destination through a node which is

nonfunctional. Packets ~enerated after W's recovery will be transmitted to W.

2.6.3 Elimination of Acknowledgments

It is interesting to note that acknowledgments are needed only as an optimization, for efficient

use of bandwidth. They are not needed for correctness.

59

The design would be correct if we eliminated all of the following:

• Packets

1. Data Ack

2. PKL Ack

3. Restart Notification

4. Restart ACK

• Flags

1. Per Packet, Per Neighbor "Send-Flag" and "Ack-Flag", for both Data Packets and

PKL Packets

2. Per Neighbor, Restart Flags

The result is a design with only two types of packets:

1. Data Packets

2. Public Key List Packets

The volatile database consists only of the node's own sequence numbers, and the latest Data

and PKL packet from each source/key pair.

The database is scanned in order. Every packet in the database is transmitted in order, If

no new packet is received from a pa.rticular source/key pair, its old packet will be retransmitted

every time the database is rescanned.

Since packets are transmitted without maintaining state regarding acknowledgments, there

is no need for a node to be informed when its neighbor restarts. Thus the need for Restart

Notification packets is also eliminated.

This modification yields a simpler, equally robust design, but it is fa1· less efficient in band­

width usage.

2.6.4 Hierarchical Networks

An O(N) database can be impractically large in very large networks. The same trick of adding

hierarchy to make a routing algorithm tractable can be used to make robust Rooding practic?.l.

In this section we present a design for accomplishing Rooding in a hierarchical network. We

60

present a two level hierarchy, though the scheme can be easily extended to arbitrary numbers

of levels, for even larger networks.

Topology and Addressing

The network will be partitioned into subnetworks, such that each subnetwork is of manageable

size.

Addressing will be hierarchical, consisting of two parts,

SUBNET This portion specifies which subnetwork the node belongs to.

NODE This portion specifies the individual node within the subnetwork SUBNET.

Within a subnetwork, all nodes will have the same value for the SUBNET portion of their

address, and all will have distinct NODE values.

There will be two types of routing:

1. Level 1 routing - this type of routing concerns itself with all the individual nodes and

links within a subnetwork.

2. Level 2 routing - this type of routing concerns itself with paths to subnetworks, and the

subnetwork consisting of level 2 routers, but does not concern itself with the details inside

of subnetworks4•

Nodes that participate only in level 1 routing are known as "level 1 routers". Nodes that

participate in level 2 routing are known as "level 2 routers". Level 2 routers reside in a subnet,

and additionally participate in level 1 routing within the single subnetwork in which they reside.

The subnetwork consisting of level 2 nodes is known as the "level 2 subnetwork".

General Routing Pattern

When source and destination nodes of a packet are in the same subnetwork, the packet is flooded

only within that subnetwork. When source and destination are in different subnetworks,

1. First the packet is flooded throughout the source subnetwork.

*Note that we assume the subnetwork of level 2 routers is connected directly (though not fully connected),
In some models of hierarchical networks, the level 2 routers are connected to each other via paths through
subnetworks.

61

2. Next the packet is picked up by ea.ch of the Level 2 routers in the source subnetwork, and

signed.

3. Each of those Level 2 routers flood their copy of the packet throughout the Level 2

subnetwork.

4. Each of the Level 2 routers in the destination subnetwork pick up and sign each copy of

the packet, and flood them within the destination subnetwork.

Thus the destination will receive multipl~ copies of the packet, equal to the product of the

number of level 2 routers in the source subnetwork and the number of level 2 routers in the

destination subnetwork.

subnet o

subnet f3

subnet 1

For example, in the picture above, source s generates a packet with destination d. The

SUBNET portion of s's address indicates that s resides in subnet a. The SUBNET portion of

d's address indicates that d resides in subnet {3.

The packet is first flooded throughout subnet a, using the resources and signed by the public

key of s. Since the destination address indicates the destination is in a different subnet, all level

2 routers residing in subnet a, i.e. A, B, and C, pick up the packet for flooding throughout the

level 2 subnetwork.

Each of A, B, and C independently supply their signature and sequence number to the

packet. Since the nodes in the level 2 subnet, and the nodes in subnet (J have no knowledge of

the ultimate source s, s's identity, sequence number, and signature are at this point irrelevant

62

pieces of information in the packet, from the point of view of the Network Layer5 •

Thus each of A, B, and C independently overwrite the header fields:

• source node

• sequence number

• public key

• packet signature

with their own ID, sequence number, public key, and signature.

At this point, the packet becomes three independent packets as far as the level 2 subnet can

detect.

When one of the level 2 routers in subnet f3 (E or F) receives a flooded packet destined for

subnet {3 (as indicated by the SUBNET portion of the "destination node" field in the packet

header), it picks up the packet for flooding throughout destination subnet (3. As before, since

nodes A, B, and C are not known within subnet (3, the fields overwritten by A, B, and C

(source node, sequence number, etc.) are now irrelevant inside of subnet (3. Thus each of E

and F independently overwrite the same header fields:

• source node

• sequence number

• public key

• packet signature

with their own ID, sequence number, public key, and signature.

Since E and F cannot correlate the packets they receive from A, B, and C as all having

originated from the same ultimate source, (because they cannot remember more than a constant

number of packets from each level 2 router, and the packets from A, B, and C resulting from

s's original packet may arrive at different times), each of E and F will originate three separate

packets into subnet /3, one for each packet of A, B, and C.

~Of course the higher layer process at d which is the ultimate destination of the packet will want to know the
identity of the ultimate source, but that can and should be handled at a higher layer.

63

Databases

As in the non-hierarchical flooding scheme, nodes within a subnetwork keep state about all the

other nodes in their own subnetwork. In other words, public keys are kept for, and buffers are

reserved for, each other node in the subnetwork. Level 2 routers participate within a single

subnetwork, but in addition keep state about all the other level 2 routers. A level 2 "trusted

node service" broadcasts public keys for all level 2 routers, within the level 2 subnetwork. Each

level 2 router keeps public keys and buffers for each other level 2 router.

Why This Works

• Flooding within a subnetwork (Source ID and Destination ID have identical "SUBNET"

fields) works identically with flooding in a nonhierarchical network.

• When Source and Destination are in different subnets, each level 2 router acting on behalf

of the source subnetwork must guarantee fairness for all sources within that subnetwork.

Then each source in the source subnetwork is guaranteed some resources within the level 2

subnetwork (1/ N of the resources g-J.aranteed to the level 2 router, where Nis the number

of level 2 routers).

Each level 2 router R which introduces level 2 traffic into the destination subnetwork must

guarantee fairness to each level 2 router (each "source" in the level 2 subnetwork), for

the introduction of traffic into the destination subnetwork. Then each level 2 router will

be guaranteed 1/ M of the resources guaranteed to R within the destination subnetwork,

where Mis the total number of level 2 router ID/key pairs within the level 2 subnetwork.

This assures that source subnetworks are guaranteed access into the destination sul;hct.­

work. Thus the fraction of bandwidth guaranteed to source node S within a foreign

destination subnetwork is the fraction of bandwidth guaranteed per node in the source

subnetwork, times the fraction of bandwidth guaranteed to each level 2 router in the level

2 subnetwork, times the fraction of bandwidth guaranteed per node in the destination

subnetwork.

64

2.6.5 Flooding Without Network Layer Cryptography

It is interesting that a flooding scheme can meet the Byzantine robustness criteria without

Network Layer cryptography and without O(N) buffers6 • We present here a scheme that the­

oretically accomplishes the robustness goal without using Network Layer cryptography, but is

totally impractical due to the negligible performance it achieves.

This scheme requires use of reasonably accurate elapsed time timers (as opposed to globally

synchronized clocks). Some threshhold, say 10%, is set, such that if a node's elapsed time clock

is not within that percentage of true elapsed time, the node would be considered faulty.

The robustness achieved by this scheme is "A packet from nonfaulty source A to nonfaulty

destination D will have a high probability of reaching D provided that at least one path of

nonfaulty processors and links connects A and D, regardless of the number of other faulty

components in the network".

A Priori Knowledge

The manually configured information required at each node consists of:

• H - the maximum path length in the network

• PktSize - the maximum sized data packet to be processed

• Nbrs - the maximum number of neighbors of any node in the network

• ClkTol - the maximum allowable ratio of measured time between two non faulty processors.

To ensure this, we require the ratio of time measured by any nonfaulty processor to true

elapsed time to be between l/v'ClkTol and v'ClkTol.

Adt k t t . th fi ll a a pac e con a.ms e o owmg:
source node The identity of the source node ·-destination node The identity of the destination node
remaining hops The number of hops further this packet is allowed to traverse
user data. to be delivered, but not interpreted by the Network Layer

Each node keeps H buffers, each of size PktSize. Each buffer is reserved for packets with

a specific hop count. A packet occupies the buffer corresponding to the hop count specified in

the packet's "remaining hops" field.

11 Cryptography at a higher layer will still be needed to recognize falsely injected packets and corrupted packets,
but the point in this section is that the Network Layer, and in particular intermediate nodes which are forwarding
packets, do not need to use cryptography.

65

Since routing is via flooding, each packet must be transmitted to all neighbors except the

one from which it was received. Thus associated with each buffer is a flag for each neighbor, in­

dicating whether the packet occupying the buffer still needs to be transmitted to that neighbor.

When all flags are clear, the buffer is free for acceptance of another packet with the specified

''remaining hops".

When a node S initiates a packet, it initializes "remaining hops" to H7 . When a nodE:

receives a packet, it decrements "remaining hops". If "remai:aing hops" becomes 0, or is not in

the proper range (0 through H), the packet is discarded.

The hop count strategy of organizing buffer pool is taken from the Merlin-Schweitzer dead­

lock avoidance scheme (MS]. The M/S scheme does prevent deadlock (in the absence of Byzan­

tine faults in the network), but it does not assure fairness. To ensure fairness, we employ a

round-robin use for each buffer by e;i..ch neighbor. Each neighbor in turn is given the opportu­

nity to transmit a packet with hop count i+l when buffer #i becomes vacant. Thus additional

state is kept with each buffer, indicating the last neighbor from whom a packet was received

for that buffer.

The M/S scheme, with per neighbor fairness added, assures fairness a.nd packet progress in

the absence of Byzantine failures. However, a single Byzantine failure in the network can cause

zero throughput on a nonfaulty path in the network.

3 2 1

In the picture above, the path A-B-C is nonfaulty, and A has a packet with "remaining

hops" of 3, waiting to be transmitted to B. Nonfaulty B has a packet with "remaining hops" of

2, waiting to be transmitted to D, who is faulty and will never accept a packet from B. Thus A

7 Actually, S could initialixe "remaining hops" to any number H or smaller. Since timer values, as explained
later, increase exponentially with the value of "remaining hops", S could first attempt to reach the destination
with smaller values for "remaining hops", and increase the initial value of the field until it successfully reaches
H. However, given that the scheme obviously has no practical utility, optimizations to it seem unwarranted.

66

will never be able to transmit to B even though B is nonfaulty, with this scheme. To prevent

Byzantine failures from blocking the progress of a packet through a nonfaulty path, we must

also add timers.

We make the rule that a nonfaulty processor must process a packet within some time limit,

say 1 time unit. Thus, if a processor P holds a packet with "remaining hops" of 1, it will expect

that the processor Q to which the packet is queued will be ready to receive the packet within 1

time unit* the number of Q's neighbors. The multiplicative factor of the number of neighbors

is required due to the round robin scheduling of the buffer.

Since P does not know how many neighbors Q has, P multiplies by "Nbrs", the manually

configured parameter that gives an upper bound on the number of neighbors of any node in the

network. Also, since we only require elapsed time estimates to be within ClkTol, an 4dditional

factor of ClkTol is multiplied to the waiting time.

Thus, if processor P holds a pa<.ket with "remaining hops" of 1, waiting to be forwarded to

processor Q, P waits ClkTol*Nbrs for Q to receive the packet. If Q fails to request a packet

from P with hop count 1 within that time, P drops the packet.

Unfortunately, each extra hop requires an additional factor of Nbrs. Thus if processor P

holds a packet with "remaining hops" of k, queued for neighbor Q, P must hold the packet for

(ClkTol•Nbrs)k time units before discarding it, in case Q has not yet requested the packet.

This scheme can be shown to meet the correctness conditions by induction:

Suppose a nonfaulty path Ai, A2, ... Ak exists between nonfaulty processors S and

D. Assume that the path is exactly H long, and that S initialized "remaining hops"

to H. Since D, assuming it is nonfaulty, will process each packet within 1 time unit,

and since D has at most Nbrs neighbors, D will accept the packet within Nbrs time

units (times the fudge factor of ClkTol).

Assuming Ak is nonfaulty, it will forward each packet occupying the buffer for

"remaining hops" of 1 each time the neighbor to which it is queued requests it.

Since a neighbor is required to rP.qUE;St a packet with "remaining hops" of 1 within

Nbrs time units, from each neighbor, Ak-l can expect that Ak will be ready for

receiving the packet within an extra factor of Nbrs.

If the path is actually shorter than H, the proof still holds. The only consequence

of setting "remaining hops" higher than necessary (though a value greater than

67

I

H is illegal and would be discarded), is that the timers are longer than would be

necessary for the S to D path.

This scheme has the obviously undesirable property that the throughput on a nonfaulty path

of m hops is only guaranteed to be one packet for every (ClkTol+Nbrs)m time units, making

this scheme clearly without practical utility.

An additional point of note is that the scheme does not necessarily yield a storage advantage

over the crytographic, per-neighbor scheme discussed in the main portion of this chapter, since

His likely to be O(N). In order to meet the robustness requirement that nonfaulty node pair A

and B should be able to communicate provided that any nonfaulty path between theM exi.sts,

then H must be at least as large as the longest possible path between any pair of nodes i11 the

network. Thus H is quite likely to be very close to N - 1, the longest possible path in any

network of N nodes.

68

Chapter 3

Robust Link State Routing

3.1 Overview

A Link State Algorithm consists typically of the following steps:

1. Each node probes its neighbors, in order to discover the identity and state of the link to

each of its neighbors.

2. Each node constructs a "Link State Packet", containing its own identity and a list of its

neighbors.

3. These Link State Packets (LSPs) get flooded throughout the network.

4. Each node stores a copy of the latest LSP from ea.ch other node in the network

5. The LSP database gives complete topological information about the network, and each

node uses its database to calculate paths in the network.

In Chapter 2 we presented a design of a Network Layer based on flooding in which commu­

nication between nonfaulty processors A and B was guaranteed provided that any nonfaulty

path existed between A and B. Unfortunately, that scheme required that every packet traverse

every link.

In this chapter we present the design of a Network Layer in which packets traverse a specified

path. In this way, if a source S has packets for destinations Dl and D2, where the path to Dl

does not intersect the path to D2, then the bandwidth used by the S-Dl conversation does not

diminish the bandwidth available for the S-D2 conversation. This increases the total bandwidth

available (over that provided by robust flooding) to S by a factor that (depending on topology)

can be as great as the total number of links in the network.

69

The components of our Link State based Network Layer are:

• We utilize a "trusted node service" exactly as in Chapter 2, i:;o that we may assume each

node has a complete list of (ID, key) pairs, including (but unfortunately not necessarily

restricted to) all the real nodes in the network.

• We require some subtlety in the protocol for automatic discovery of the identity of neigh­

bors, to defend against Byzantine nodes creating fictitious links between nonfaulty nodes.

• We use the flooding design in Chapter 2 for propagation of Link State Packets.

• We include a route in the header of a packet, generated at the source Network Layer.

This allows a packet to be routed successfully even if Link State databases at nodes are

not synchronized, and allows alternate paths to be explored easily if the primary route

chosen does not work.

• We use computation of node disjoint paths and fault isolation of a faulty path, to facilitate

selection by the source of a nonfaulty route.

Our design assures that communication between nonfaulty nodes A and B will succeed

provided that the number of node disjoint paths connecting A and Bis greater than the number

of Byzantine failures in the network. In practice, however, the network will approach the

robustness exhibited in Chapter 2 (if a path of nonfaulty processors connects nonfaulty nodes

A and B, they will be able to commu.rJcate, regardless of the total number of Byzantine faults

in the network) when fault isolation is used to intelligently eliminate suspicious nodes from the

database.

3.1.1 Manifestations of Byzantine faults

Byzantine behavior can create problems for many different aspects of a Link State Algorithm.

These problems are briefly introduced here, but discussed at length after the description of the

algorithm.

Discovering Neighbors

In a traditional Link State algorithm, discovering the identity of neighbors is simple - a hand­

shake is executed, in which each endpoint of a link transmits a packet with itR own identity

across the link.

70

If the neighbor F is faulty, however, F can incorrectly identify itself.

"I am B" "I am A"

If identification messages are signed, F may he prevented from claiming to be a nonfaulty

node A. However, if F conspires with a faulty "trusted node" that constructs and broadcasts an

incorrect public key fer A, F can use A's incorrect public key and sign an identification message

claiming to be A.

"I am 8 11

"A's key is X"

"private key
tor X is XX"

I oigned using XI

"I am A"

G--8
Even without collusion with a faulty trusted node: a faulty node F can confuse its nonfaulty

neighbor B into thinking B has a link to nonfaulty node A. This can be accomplished, ar.suming

both A and B are neighbors of F, by having F act as a "dumb relay", forwarding messages

between A and B.

"I am B" "I am A" "I am B" "I am A"

G,____-8--8

Our safeguards against such behavior :...re:

71

• Identification Messages (which identify a node to its neighbor) explicitly contain the public

key being used by the neighbor. Thus a neighbor is an (ID,key) pair, not simply an ID.

If A's true public key is key 1 , and a faulty trusted node broadcasts key2 for A (and also

shares the associated private key for key2 with a faulty network node F), then F can

masquerade as the pair (A,key 2), but F cannot simulate the true node A, because that is

pair (A,keyi).

• All messages except identification messages between neighbors a.re encrypted, using the

receiver's public key (so that a faulty neighbor, acting as a "dumb relay", cannot discrim­

inatorily forward packets).

Currently, private key schemes are more efficient than public key schemes. A private key

can be used for encryption between neighbors. Once a pair of neighbors discover each

other's identity through use of public key signatures, they can use public key encryption

to exchange information allowing them to share a private key, and future encryption on

the link can be accomplished with private key technology. [GMT)

• Data messages are acknowledged hop by hop, and statistics are kept by the transmitting

node to determine the reliability of thP. link. If the link does not satisfactorily forward

data packets, perhaps because the link includes a faulty neighbor acting as a "dumb relay"

for unencrypted identification messages, but not data messages, then the link is no longer

considered operational.

Propagating LSPs and Public Keys

Propagation of LSPs and Public Key List Packets is done through flooding. As seen in Chapter

2, there are many attacks a faulty node can execute that will interfere with traditional flooding

algorithms. However, as described in Chapter 2, there are also sa,tisfactory solutions to all

the threats. Thus the design in Chapter 2 can be used to ensure Byzantine behavior will not

interfer.:: either with propagation of LSPs or Public Keys.

In the ARPANET, propagation of LSPs is accomplished with a scheme based on flooding

[MRR]. An improved design was described in (Pe]. Surprisingly, the flooding design in Chapter

2 is simpler than the ones recommended in [MRR] and [Pe], which is ironic since the ones in

(MRR] and (Pe] are not robust against active malfunctioning nodes.

The flooding design in Chapter 2 is simpler because:

72

• Sequence Number wraparound need not be considered. Given a large enough field, se­

quence number wraparound will only occur because of Byzantine failur,~ by the source

itself. After such an event, it is reasonable to require manual intervention, in the form

of reregistering the source with a new public key, with the "trusted service". Thus the

manipulation of sequence numbers becomes much simpler.

Manual intervention of the same form is not possible in a truly distributed scheme such

as in [Pe), since there is no central repository of stable storage (no analog to the "trusted

node service").

• There is no need for an age field in Link State Packets. There is never any reason to

purge LSPs, or consider them "too old". If the information in them is out of date then

the source will issue a new LSP, unless the source is not reachable. If the source is not

reachable, then the contents of its last LSP are irrelevant, because there is no path to it.

• If a node really has permanently left the network, its LSP need not clutter all the other

nodes' databases, since de-registering the departed node with the "trusted service" will

signal other nodes that they no longer should keep that LSP. (They only keep LSPs for

nodes registered with the trusted service, and for which they have an up-to-date public

key).

However, this simplicity is bought at a price. The additional cost of the Byzantine Update

Process is:

----•-Neaes-must-have-mG~sta.ble-,w:m1.ge..-Tli.e-on4c-a-Priori knowlPdge rPqni..red in the scheme

in [Pe) is a node's own ID. In the Byzantine Update Process additional stable storage is

required for the node's own private key, and the public keys of the "trusted nodes".

• Several nodes must be reserved as "trusted nodes"

• New nodes must register public keys with the trusted nodes before they can operate \n

the network

• Other nodes must verify signatures on all LSPs.

73

Calculating Routes

Since route calculation is not done in a distributed fashion, a faulty node cannot interfere with

the route .:alculation done by a nonfaulty node as long as the database from which the nonfaulty

node calculates routes is reasonably correct.

However, with Byzantine faults, there is no way to know what subset of the reported topol­

ogy is truly operational. A node can operate correctly in all aspects of the protocol except

forwarding of data. packets. Thus we provide the ability for the source to calculate multiple

routes, and specify a route to the destination in each packet.

Unfortunately, the number of routes that might need to be tried before a working route is

found can be too large for practical purposes.

For instance, consider the following topology:

In the above diagram, there are 27 paths between A and B, since at hop i, either Ri or

Si can be chosen. (Actually there are more paths than that if paths longer than 8 hops are

considered.)

A simple failure of a node or link will be detected by the routing algorithm, and the network

will automatic.ally calculate routes that do not include the nonfunctional component. However,

a Byzantine failure is harder to detect, since a node may participat~ correctly in all aspects of

the Network Layer protocol, and then fail to forward packets. Thus the Network Layer cannot

automatically calculate functlonal routes.

With flooding, any number of faults is tolerated, provided that at each ho1,>, at least one of

Ri or Si is nonfaulty. With explicit route calculation, if there were 7 failures, such that exactly

one of Ri or Si were faulty for each i, then 27 paths must be tried to discover the one nonfaulty

path.

It is possible to calculate a set of independent paths, using the Max Flow problem (Orl),

(GT]. In the above topology, given any path, there is only one other independent path between

A and B. If there were a single Byzantine failure in the above topology, switching to the second

independent path will guarantee a functional route, with no need to identify the malfunctioning

74

component. However, if there were more than one Byzantine failure, there might still be many

functional routes, but the Max Flow solution will probably not find a working one, since it will

only calculate 2 routes.

There are various approaches that can be taken to deal with this problem.

• Require stronger conditions to be met by the network. For instance, limit the number of

faults to be tolerated to be less than some constant c, and require the network to have

more than c independent paths between each pair of nodes.

With this approach, the Network Layer only guarantees delivery of packets between non­

faulty sources A and B when the number of Byzantine failures in the network is less than

the number of node disjoint paths connecting A and B.

• Use flooding as a backup - if the route calculated by the Network Layer fails to work,

then select flooding as an option for delivery on a per packet basis.

This approach yields a Network Layer as robust as one built entirely on flooding. ~n other

words, it guarantees delivery of packets between nonfaulty sources A and B provided that

any nonfaulty path connects them. Unfortunately, its performance in the presence of

many Byzantine faults is no greater than the simpler design, of building the Network

Layer entirely on flooding (as in Chapter 2).

• Use fault diagnosis as a backup - if a route fails, then the source must investigate to

discover and report the problem node or link.

This form of Network Layer has the advantage in practice that Byzantine failures will

be discovered and reported before so many occur that the network no longQr functions.

However, since each Byzantine failure also casts suspicion on a potentially nonfaulty n'.>de

(if the 4th hop on a packet's route claims to have receivE:d the packet but the 5th hop

claims not to have received it, then either 4 is faulty for not forwarding the packet or 5 is

faulty for not receiving it), it take impractically many attempts to find a functional route,

in the presence of many Byzantine faults. Thus the theoretically attainable robustness of

this approach is the same as the disjoint paths approach, but in practice this approach

will be even more robust than flooding, since Byzantine faults will be detected.

75

3.2 A Robust Link State Design

3.2.1 Overview

We use the same mechanism as in Chapter 2 to broadcast a list of (node, key) pairs. Thus we

can assume that every node knows the set af network nodes, together with public keys for each

node. Also, as in Chapter 2, because of the possibility of a Byzantine "trusted node,,, some of

the (node, key) pairs may be incorrect, though we assume that the list of true (node, key) pairs

is contained in the received list.

We provide a mechanism for each node B to discover the identity of its neighbors. This

information is included in a "Link State Packet", which is generated by B and flooded through

the network, again using the meciianism described in Chapter 2.

The Link State Packet database contains complete topological information about the net­

work, and each node uses its database to compute routes. In traditional packet switching net­

works, each node makes an independent decision as to the direction in which a packet should

be forwarded. We instead require that the entire route be computed by the source node. Then

the source includes the route in the packet header, and the packet is routed according to the

source's computed path.

Thus we have added a new type of packet, a "Link State Packet", and we have modified the

Data Packet to include a route. Routing of Data Packets is very similar to routing in Chapter

2, in that sequence numbers are still used, and only the data packet with highest sequence

number is stored from each (source, key) pair. The only modification is that, when a new Data

Packet is received, only one "Ack-Flag" will be set (the one for the neighbor from whom the

packet was received, which must also be the neighbor preceding this node in the route or the

packet will be deemed invalid and dropped), and one "Send-Flag" will be set (the one for the

next node specified in the route).

Other modifications include:

• We require stable storage for Data packet sequence numbers. The reason for this is that

we do not wish Data packets to be flooded in this scheme (otherwise, the design in Chapter

2 would suffice), and so we did not have a satisfactory means for a source to reacquire its

own sequence number after a failure.

• We use hop by hop encryption, so that in the case of a faulty node acting as a relay, creat­

ing a link between two nonfaulty nodes, the relay node will not be able to discriminatorily

76

corrupt or drop packets.

• We add a.n additional packet type "Destination Data Packet Ack" so that the source Net­

work Layer can discover, without hints from the client layer, whether the comp11ted route

successfully delivers packets. All previous Acknowledgment packets have been neighbor

to neighbor only.

3.2.2 Packet Types

To prevent two nonfaulty nodes, A and B, from mistakenly assuming they have a functional

link between them, when instead the link is being simulated by a faulty node acting as a relay,

B encrypts all packets it is forwarding to A using A's public key. Upon receipt, A decrypts all

packets it receives. In this way, if a faulty node is acting as a relay, it cannot distinguish packets,

and as such cannot discriminatorily fail to forward packets based on such characteristics as type

of packet, source node, or destination node. To prevent discrimination based on packet length,

all packets should be padded to maximum length.

All packet types below are encrypted and decrypted at each hop, except for the "Identifi­

cation" packet, which is sometimes not encrypted.

Identification

The purpose of an "Identification" packet is to inform the node at the other end of a link of this

node's identity. The public key is also included, because a node is really defined as an ID /key

pair, to differentiate the real node from an imaginary node with the same ID and different key,

that can be created by a faulty trusted node.

This is the only form of packet that is sometimes not encrypted as it is transmitted over a

link. An "Identification" packet is transmitted only between neighbors, and never forwarded

(except _E_erhaps b_.r_ faulty node'!)_.
identity The identity of the node
public key The node's public key

Public Key List Packets

A "Public Key List" packet is generated by each "trusted node" and it contains the identities

of, and public keys for, every node in the network (other than "trusted nodes", whose keys

must be manually maintained at every node in the network). It is flooded, using the robust

fl d' d fi d . Ch t 2 It t . oo ll!S._ e ne m ~er . con ams:
source The trusted node that generated this r :icket
sequence number Assigned as in a data packet by "source"
key list Identity /public key for each node in the network
signature A digital signature, verifiable based on the public key for the trusted

node, manually maintained at each node, covering the entire contents
of the ..E_acket.

LSP

The purpose of a Link State Packet (LSP) is to inform other nodes about the links in the

network. Each node generates a Link State Packet identifying its own neighbors. This packet is

flooded, using the robust flooding in Chapter 2. Each node keeps the most recently generated

Link State Packet from each other node in the network.

A Link State Packet must be smaller than some network-wide defined maximum length. It

contains the following fields:

source node The identity of the source node
destination node The identity of the destination node
sequence number Assigned by the source node in a monotonically increasing way for each

packet generated by that source, (regardless of destination address),
exce_pt after a loss of state ~the source node.

public key The public key under which this LSP has been signed.
neighbor list A list consisting of the identities of, and costs to, each neighbor of this

_nrulp.
signature A digital signature, verifiable based on the public key listed in the

_Q_ackett_ coverin_g_ the entire contents of the _Q_acket.

Data Packet

The next form of packet is a data packet. It is generated by a layer higher than the Network

Layer, and passed to the Network Layer for delivery to a specified destination node,

There is a network-wide maximum length for a data packet, A data packet contains the

following information:

78

source node The identity of the source node
destination node The identity of the destination node
sequence number Assigned by the source node, in a monotonically increasing way, except

after a loss of state by the source node.
public key The public key under which this packet has been signed.
route A route, written by the source node, that the packet is to follow. The

route consists of a sequence of node ID /public key pairs, or else is omit-
ted indicatin_g_ the source wants this data Qacket to be flooded.

user data Not interpreted by Network Layer.
signature A digital signature covering the entire contents of the packet.

Note that the sequence number node A writes into the LSPs it generates is totally indepen­

dent of the sequence number node A writes into the data packets that it generates.

Destination Data Packet Ack

The purpose of a Destination Data Packet Ack is to inform the source Network Layer that the

packet was received by the destination Network Layer. Since the Network Layer is a datagram

service, without an explicit acknowledgment from the destination, or feedback from a higher

layer protocol, there is no way for the Network Layer to know whether a route works.

It is quite likely for a network to require feedback from the higher layer to the Network

Layer, so that the responsibility would be placed on the higher layer to discover when a route

did not work. In this case, the Destination Data Packet ACK would not be necessary.

The Destination Data Packet Ack contains the following:

source node Source of data packet being Ack'd
destination node The destination of data packet being Ack'd
sequence number Sequence number from data packet
source key The public key of the data packet's source.
destination key The public key of the data packet's destination.
route copied from data packet
signature Copied from data packet
Ack signature A digital signature covering the entire contents of the ACK packet,

generated by the Destination (which is generating the ACK _..E.ackeij_.

The Destination Data Packet Ack travels along "route", but in the reverse direction. If

"route" indicates the data packet was to be flooded, then the Destination Data Packet Ack is

also flooded.

The Ack packet is stored with the source's data packet, rather than stored with resources

associated with the destination node.

79

LSP-ACK

The next form of packet is an LSP-ACK packet. Its purpose is to acknowledge receipt of a

particular LSP from a neighbor. It is transmitted only between neighbors, and never forwarded.
--- ------ ---- ------------------- -- -- - ----------- ---------- --- ---- - ·-·------·-·- -··- .. ·-·-····- --- . ·····--···-··· -·- -···· . -····-··-· ·-· ··--.

Note that if public key hop by hop 1mcryp1;ion is done, the node generating the LSP-ACK

needs to sign the packet, (see "ACK-sig:nature" field, below), to protect against a faulty node,

F, acting as a relay on the link between two nonfaulty nodes, A and B, generating LSP-ACKs

on behalf of B and thereby lowering the reliability of the LSP flooding, by making A assume

the LSPs it had forwarded successfully reached B.

Although an LSP-ACK transmitted by B and sent to A is encrypted, so that F cannot

distinguish an LSP-ACK from any other encrypted packet, encryption alone does not prevent

F from forging an LSP-ACK using A's public key. Thus it is necessary for B to sign the

LSP-ACK, even though B also encrypts it.

However, if private key hop by hop encryption is done, for efficiency, then the ACK-signature

is not needed.

source node The identity of the LSP's source
sequence number The LSP's sequence number
public key The public key under which the LSP was signed
data signature Copied from LSP
header signature Copied from LSP
ACK-signature Signature proving neighbor generated the ACK

Restart-Notification

The next form of packet is a Restart-Notification. Its purpose is to inform a node M's neighbor,

that M has lost state.

The only information in a. Restart-Notification is the packet type ("Restart-Notification").

Restart-Notification-ACK

The next form of packet is a Restart-Notification-ACK. Its purpose is to inform a node M's

neighbor B, that B has received M's Restart-Notification message.

No information is necessary within a Restart-Notification-ACK except enough to identify

the packet as a Restart-Notification-ACK.

80

Note that even though hop by hop encryption is assumed (to defend against a faulty node

F acting as a relay between nonfaulty nodes M and B), F can capture a previous Restart­

Notification transmitted by M, and cause extra traffic on the M-B link because B will assume the

entire packet database needs to be retransmitted to M (since M restarted). Also, F can ca.pture a

previous Restart-Notification-Ack transmitted by M, fail to forward B's Restart-Notification (if

it can guess which packet is a Restart-Notification), and transmit M's Restart-Notification-Ack

to B, causing M not to retransmit the packet database to B.

However, neither of these threats cause great harm to the network, so we do not add extra

mechanism into our main scheme for this purpose. This is discussed further in Section 3.6.3.

3.2.3 Stable Storage for Sequence Numbers

In Chapter 2, we did not require stable storage for a node's own sequence numbers, since the

mechanism whereby a node reacquired its own sequence number after a crash was simple and

low cost. With flooding, the Wa) a node reacquires its sequence number is:

• The packet with largest sequence number is flooded everywhere, and reflooded when por­

tions of the network lose state, so a recovering source would automatically receive·its own

packet with highest sequence number (assuming network nodes don't lose synchronization

with ea.ch other).

• In case nodes lose synchronization, and fail to reflood the largest sequence number after a

portion of the net loses state, the mechanism of reflooding upon receipt of a packet with

lower sequence number causes the source's largest sequence number to be reflooded back

to the source as soon as the source issues its first post-crash packet.

• The use of the signature field (plus data field, in the case of a Public Key List packet) as

a tie breaker handles the case where the post-era.sh and pre-crash sequence numbers are

the same.

As a result of the above, in our robust flooding design, stable storage was required only

for information that remained reasonably static, and only changed with manual modification.

In fact, the storage required in Chapter 2 could have been read-only technology. In contrast,

a node's own sequence number changes dynamically, and must be automatically updated in

_ __the_stable_storag~_ Thus this _r~uirement4Q.~~lndee4 h~Y~!!!!P!!<'.~~!~I!~ ~~}'()~~the a4~ti()n~

space required.

81

In this chapter we do require a. node to keep an "estimate" of its own sequence numbers on

stable storage. The reason for this will be discussed in detail later on in the chapter. Briefly,

we require this because an extension of the reaquisition mechanism for sequence numbers on

flooded packets into a scheme for directed data packets would allow a Byzantine node to easily

increase the traffic in the network, to the point where this scheme would approach the data

traffic burden of a scheme in which data packets are flooded.

Given that this chapter requires stable storage for a sequence number for data packets, there

is no reason for avoiding requiring a node to keep similar state regarding its sequence numbers

for PKLs and LSPs. Keeping state regarding PKL and LSP sequence numbers offers a modest

simplification to flooding.

Depending on the technology, it might be inconvenient to update the stable copy of the

sequence number after every packet. Indeed there is no reason to keep the stable copy consistent

with the sequ~nce numbers actually in use. The only constraint is that the copy on stable storage

be larger than the one in use, so that if the node restarted and used the number on stable storage

as a starting point, it would be guaranteed to be greater than any sequence number the node

had generated in the past.

Thus the sequence number on stable storage can be set to, say, 100,000 more than the

current value, and when the sequence number in use gets close to the one on stable storage, the

one on stable storage can be increased by another 100,000.

3. 2.4 Propagation of Public Keys

Our design requires knowledge of public keys for every node in the net. This is accomplished

as described in Chapter 2.

Since we have required keeping a value for a nodes' own sequence number for data packets

on stable storage, we might as well require the node to additionally keep a similar value for use

on its own Public Key List packets, in the case of a restart.

No design simplifications result. To check for a Byzantine "trusted node", we still require

nodes to compare signatures and data in Public Key List packets to determine whether two

packets with the same sequence number are indeed duplicates. If indeed reuse of the same

sequence number was detected, (given that we are requiring nodes to keep their own sequence

numbers on stable storage) we might record such packets so that the "trusted node11 could be

investigated for malfunction.

82

Given that in the robust flooding design, the mechanism for reacquiring a sequence number

was so simple and efficient, we did not think the increase in use of stable storage was warranted

in Chapter 2. We have only required the additional stable storage here because it was already

required for data packet sequence number.

3.2.5 Information in Non-Volatile Storage

Each node must have stable storage for the following information which is manually entered

and maintained:

its own identity
its own keys (public and private)
N, an upper bound on the total number of network nodes
the identities of, and public keys for, each of the "trusted nodes"
the size of the maximum sized LSP (or alternatively, the maximum number of neigh-
ho.rs an_y node can have_,_ from which the maximum sized LSP can be derivedl
the size of the maximum sized data packet

In addition, the following information must be kept in stable storage, but this information

is dynamically and automatically maintained.

a safely large data packet sequence number to use on restart
a safely large LSP sequence number to use on restart
a safely large PKL sequence number to use on restart

3.2.6 Dynamic Database

Each node keeps the following database in volatile storage:

83

OWN-LSP-SEQNUM The next sequence number to be assigned when this node
_g_enerates its own next LSP

OWN-DATA-SEQNUM The next sequence number to be assigned when this node
_g_enerates a data .Q_acket

OWN-PKL-SEQNUM The next sequence number to be assigned when this node
generates a PKL packet. This is kept only by nodes acting
::is ':.tr.ust.f.d_no_dps"

LSP database For ~g..;;h nQde/P-ubli<; key i>air !~por~ed QY any tru~~ed g()dE:::

data packets

• The LSP with highest sequence number from that
node/public key

• For each neighbor of this node, two flags:

1. Send-Flag - indicating whether this LSP needs to
be transmitted to this neighbor

2. Ack-Flag - indicating whether an ACK for this
LSP needs to b~ transmitted to this neighbor

For each node/public key pair reported by any trusted norle:

• The data packet with highest sequence number from
that node/public key

• For each neighbor of this node, two flags:

1. Send-Flag - indicating whether this data packet
needs to be transmitted to this neighbor

2. Ack-Flag - indicating whether an ACK for this
data packet needs to be transmitted to this neigh­
bor

Note that for data packets (other that ones for which
the "flooding" option was selected), Send-Flag will be
on for at most one neighbor, for any particular data
packet, and likewise Ack-Flag will be set for an most
one neighbor, for any particular data packet.

• The Destination Data Packet Ack associated with this
data packet

• For each neighbor of this node, two flags:

1. Send-Flag - indicating whether this end to end
Ack packet needs to be transmitted to this neigh­
bor

2. Ack-Flag - indicating whether a (next hop) ACK
for this end to end Ack packet needs to be trans­
mitted to this neighbor

neighbors identity of and public key for each neighbor 1--_;;:__ ______________ I--____ :__ ____ ...,:_ ____ __:; ________ __;:~----------.,.......,,.=:"'.":-_--~

Restart Flags for each neighbor, "Send-Restart" and "Send-Restart-ACK" flags

3.2. 7 Propagation of LSPs

Propagation of LSPs is done via the robust flooding scheme described in Chapter 2. Although

the si;heme in Chapter 2 is quite robust, it does not ensure absolute reliability. The justification

in Chapter 2 for the adequacy of the scheme (in the absence of total reliability) was that the

occasional lost packets, or forged packets, would be recovered from by a higher layer process.

However, with LSP propagation, there is no higher layer process, since LSPs are destined to

the Network Layer itself.

I!l particular, thP. following can occur:

• A faulty trusted node can broadcast an incorrect public key for nonfaulty node A, and

can then forge packets on behalf of A, which would get delivered in addition to packets

from genuine source A.

We prevent this situation from being a problem by identifying nodes by ID/public key

pair. In other words, if there are two public keys broadcast for node A, then the Network

Layer treats (A/keyl) as one node, and (A/key2) as a different node.

• A faulty trusted node can broadcast up to N incorrect node/key pairs, and then generate

LSPs on behalf cf all those node/key pairs. In this case, enough of the LSP database is

incorrect that it might be thought difficult for any node to compute a correct route.

This is not a problem because we partition the LSP database and compute paths based

on the assumption of correctness of a particular "trusted node". As a consequence, if one

or more faulty trusted nodes broadcast imaginary nodes, or imaginary ID /key pairs, the

extraneous information will be filtered with an efficiency degradation factor equal at most

to the total number of trusted nodes.

In other words, if only one of the t trusted nodes is nonfaulty, and all the others broadcast

imaginary ID/key pairs and simulate the imaginary nodes by generating LSPs on behalf

of them, then only 1/ t of the LSPs in the database are legitimate. If n. node were to

--naivelytry-to calculate routes from an-unstructured version ef the database, it-would-be

very unlikely to find a correct route.

If instead it did t different calculations, each assuming a different one of the trusted nodes

was nonfaulty, one of the calculations would be operating on legitimate data.

When using the view of trusted node T:

85

1. Ignore LSPs generated by node/key pairs not listed by T.

2. Ignore links to node/key pairs not listed by T, even if reported in the LSP of a

node/key pair listed by T.

• LSPs take time to propagate, and during the propagation time of an LSP, databases

at nodes will be different. Non-identical LSP databases will not be a problem with our

scheme. \Ve use source routing rather than hop by hop incremental decisions on a packet's

route. Therefore, if the database at the single source node is reasonably corrE.ct, and the

source is able to calculate a working route, the state of the databases at other nodes is of

no relevance.

• A nonfaulty source F may issue two packets in quick succession, in which case the one

with the higher sequence number may "overtake" the one with the lower sequence number,

resulting in the earliPr packet not being delivered.

In the case of LSPs, th.a is exactly the service we want, so it is not a problem. We only

want the latest I.SP to be delivered.

• A fau)t.y node may include incorrect information in its own LSP.

This is not a problem because we recognize that a path may not work due to Byzantine

fault of some component along the computed path, and enable the source to compute

alternate and independent paths, in the event that a path does not work.

3.2.8 Route Calculation

The LSP database gives each node a complete view of the network, so that any efficient graph al­

gorithm for computing paths can be utilized, such as the SPF algorithm used in the ARPANET

(MRR), based on Dijkstra's algorithm (Dk). However, there are certain problems:

Byzantine Trusted Nodes

Not all the information in the LSP database is necessarily correct. In particular, a faulty truf:ted

node could disseminate incorrect 1:.ublic keys for network nodes, and then generate LSPs on

behalf of those nodes. The LSP dissemination scheme guarantees each node will have the LSP

with largest sequence number from each node/key pair reported by any trusted node.

86

Thus each faulty trusted node can introduce up to N nonexistent node/public key pairs.

If the set of node/key pairs were treated eqllally, then it would take an impractical number

of route calculation attempts to discover a set of node/key pairs that really existed. However,

if the node/key pairs are structured according to the assumption of a particular trusted node

being nonfaulty, then at most t independent route calculations need be performed, one for each

"view" of the network (consisting of a list of node/key pairs) reported by a trusted node. If

all trusted nodes agree on the list of nodes and public keys, then only one view is necessary. If

one trusted node's list differs from all the others, but the others all agree, then two views are

required.

If more than one view exists, then routes to each destination can be computed for each

view. Packets ·can be duplicated, with a copy for each route computed based on different views.

Or routes can be tried in turn, with a route based on a different view attempted only when

a previous route is discovered not to work. (Based on lack of receipt of a Destination Data

Packet ACK.)

Byzantine Nodes

The information in the LSP database is not guaranteed to be correct, even if the trusted node's

node/key list being used is correct, since a Byzantine node can generate incorrect information

in its own LSP, or even generate a correct LSP but fail to forward packets correctly.

One easy defense against false information in LSPs is to require links to be two-way in order

to be used for route calculation. Iu other words, if A's LSP reports a link to B, the link is only

used in calculating routes if B's LSP also reports a link to A. In this way a faulty node F's

report of a link to nonfaulty node A will be ignored by nonfaulty network nodes unless A also

reports the link. Likewise, if faulty node F failed to include its link to nonfaulty node A, the

network '·'Juld also ignore the A-F link.

However, even if information in all LSPs was magically guaranteed to be correct (all reported

links actually existed), there is still no guarantee that a computed route would work. A node

along the path could still fail to forward data. packets, forward data packets in the wrong

direction, or corrupt data packets it forwards.

If it were known that a.t most k nodes could exhibit Byzantine behavior, then to be guar­

anteed of finding a functioning route (assuming at least one existed between source and desti­

nation), it would be necessary to try all posi:iible ways of excluding k or. fewer nodes from the

87

route computation. In other words, a guess would be made as to which nodes were nonfaulty,

and routes computed according to the LSPs of those nodes alone. This obviously presents too

many routes to attempt and still be practical.

A better method, which yields slightly less robust behavior, is to compute node disjoint

paths, meaning paths between source and destination that do not share intermediate nodes.

This can be accomplished with any solution to the Max Flow problem. First ~ransform the

graph into a new directed graph, as follows.

1. Represent ea.ch node M in the original graph by two nodes, Min, and Mout·

2. For ea.ch node M in the original graph, add a directed link of capacity one in the new

graph from Min to Mout·

3. For ea.ch link in the original graph, say between nodes A and B, add a directed link of

capacity infinity from Aout to Bin and a directed link of capacity infinity from Bout to

Ain·

Then, use the Max Flow problem on the transformed graph. This yields the maximum

possible number of link disjoint paths in the transformed graph, which maps to the maximum

possible number of node disjoint paths between a pair of nodes in the original graph.

If it is desired to compute the set of independent paths with minimal cost (and still the

maximum possible number of paths in the set), the Min Cost Max Flow problem, again with

capacity 1 for ea.ch link, will yield the desired set. (Orl]

If some bound, k is assumed on the total numlJer of Byzantine failures in the network, it

might be desired to calculate at most k-1 independent paths. Again, the solutions to the Max

Flow and min cost Max Flow problems can be used to calculate a lhnited number of paths.

capacity
{;:;\ k f;;\S ___--- rest of
~ network

capacity

The method of applying the Max Flow problem to compute at 1 t k independent paths

between source S and destination D is to do the following:

88

1. Mark each network link as having capacity "l".

2. Add two dummy nodes, S' and D'.

3. Add a link of capacity k between S' and S, and a iJnk of capacity k between D and D'.

4. Solve the Max Flow (or Min Cost Max Flow) problem between S' and D'.

3.3 Neighbor Discovery

As discussed briefly in Section 3.1.1, neighbor discovery in a Byzantine environment can be

difficult, since a faulty node can act as a transparent forwarder.

In some sense, this is not a problem. If a link between A and B appears to work, and only

exists due to the cooperation of faulty nodes, it still does exist: A and B still communicate.

However, there are two possible problems caused by such links:

1. The link might work in a di&criminatory fashion, such as forwarding routing control

information but not data packets.

2. The node acting as a relay could forge neighbor to :.:1eighbor control packets.

The result of these attacks is that a link now has a. capability of becoming an intelligent

Byzantine component in the network. This was not an issue in the flooding scheme because

knowledge of the identity of a neighbor was not relevant. If a link managed to exhibit intel­

ligent Byzantine behavior, it would be handled by the network like (and indeed could not be

distinguished from) two ordinary links on either side of an intelligently Byzantine node ..

The defenses against an intelligently Byza.ntine link in Link State Routing is:

encryption All messages transmitted over the link must be encrypted and padded to maximum

length so that an observer of the messages across the link could not distinguish messages

based on type, length, source address, or other characteristics, and in particular has no

choice other than to forward all packets faithfuUy, drop an acceptably small number of

packets at random, or drop a sufficiently large number of packets (again at random) to

convince the nonfaulty nodes at opposite ends of the link th~.t tlae link is too unreliable

to report to the network.

Sometimes a link might be sensitive to specific bit patterns. If probabilistic encryption is

used, then when a packet is retransmitted (du.e to a bit pattern in the encrypted original

89

tha.t could not pa.ss over the da.ta. link), the retransmitted packet will most likely succeed.

If detenninistic encryption is used, a. packet retransmitted by the source will be likely

to succeed since it will have a different sequence number, and thus it will encrypt to a

different value.

The only packet that will not be encrypted is an "Identification" message, when transmit­

ted while the endpoint of the link is unknown. (If the identity of the neighbor is known,

or assumed known, the "Identification" message is encrypted. An unencrypted ''Iden­

tification" message is transmitted when a node restarts, or when a message is received

that is not properly signed, given the assumption of the neighbor's identity, or when a

message is received that cannot be decrypted (indicating loss of synchronization between

neighbors regarding identities).

When node B is not aware of the identity of its neighbor across a particular link, B sends

an unencrypted "Identification" message across the link, though B also includes its own

signature. When node A receives an unencrypted "Identification" message from neighbor

B, A responds with an encrypted "Identification" message, signed using A's private key,

and encrypted using B's public key.

signatures Messages generated by a neighbor must be signed by the neighbor. Otherwise, a

faulty node acting as a relay could forge neighb•'r to neighbor control packets.

performance monitoring Every packet transmitted over a link is acknowledged with our

scheme. Nonfaulty nodes can therefore keep statistics on the reliability of the link. As

stated above, if the link only exists due to a faulty node acting as a relay, since encryption

is used, the relay can only drop packets at random.

If less than a.n "acceptable" percentage of packets get acknowledged, the link is no longer

reported to the network, or is reported to the network with a flag warning that it is of

dubious reliability.

manually configured information The above three defenses when used simultaneously pre­

vent a faulty node acting as a relay from unduly disturbing the operation of the network.

However, an alternative strategy is to manually configure, at each node, the (ID,public

key) pair corresponding to the other end point of each of its links.

Since that introduces a lot of extra manual burden, and since this problem has a solution

90

that does not involve additional manual configuration, we advocate the use of encryp­

tion, signatures, and performance monitors (all simultaneously), rather than manually

configured information (which by itself would solve the problem, assuming the manual

information was correct at virtually all tht nodes).

Note that <s. link can have only a single neighbor. A faulty node cannot cause its nonfaulty

neighbor's LSP to grow overly large by causing the link to appear to contain many neighbors,

since nodes know that a point to point link can have only one other endpoint. If a node were

to receive "Identificationn messages from more than one node, it would only believe the latest

received, and never assume multiple neighbors simultaneously.

Also note that we ha.ve not discussed multiaccess links in this thesis - all links are assumed

to be point to point.

3.4 Packet Forwarding

3.4.1 Source Routing

In current packet switching networks, (ARPANET, ISO connectionless Network Layer, DNA),

routes will work only if consistent routes are calculated by all the nodes in the network. In these

networks, each forwarding node makes an independent decision as to t.he direction in which a

packet should be forwarded. If Link State databases in two nodes along a packet's path differ

by knowledge of even a single link, the packet may loop, since each of the nodes might view the

other as closer to the destination.

With Byzantine behavior, our scheme cannot guarantee that LSP databases at nodes will

remain consistent for sufficiently long periods of time so that a reasonable number of data

packets might successfully reach their destinations. Although a node cannot generate LSPs on

behalf of a nonfaulty node, it can generate enough LSPs on behalf of itself to keep the network

in an unstable state for the majority of the time.

A possible defense is to set a minimum time between generation of LSPs by any source, and

ignore a source that has issued too many LSPs (assume it is faulty).

However, a timer scheme such as thio would be extremely difficult to design for many reasons:

• A nonfaulty node that generates LSPs just within threshold in one portion of the network

may a.ppear as if it is genera.ting LSPs just beyond threshold in another portion of the

net, as propagation skew becomes an effect.

91

If the result is that some nodes assume the source faulty, and ignore its LSP, while others

do not, databa.c;es at network nodes will not be identical.

• The value of the timer would need to be extremely large, since if any single node is allowed

to issue an LSP every unit of time, then the average number of LSPs in the network can

be N times as great, since every node is allowed to issue a new LSP within the unit time.

Thus it seemed difficult to devise a scheme in which the databases at different nodes in

the network would be consistent for a sufficiently large fraction of the time to make routing

acceptably reliable.

Another factor that caused us to reject the hop by hop routing decision was the need to

compute alternate routes when a route was failing. If an alternate route strategy were to

be performed in a distributed manner, each network node would have to be able to do the

identical computation as the source node, and have knowledge about which of the routes the

packet should follow. For instance, if the source computed k different routes to a particular

destination, the packet could be marked by route number, such that a forwarding node would

know that this packet should traverse the ith route to be computed. A strategy such as that

would be computationally very complex. Having the source compute the route and place it in

the header is far simpler.

Including the route in the header has the following nice properties.

• Databases at different nodes do not need to agree.

• Different nodes do not need to use the same strategy for ronte computation.

• Arbitrarily complex strategies for finding a working route can be used by any node,

independently of the strategies at other nodes. For instance, a node ca~ avoid links that

have changed state "recently", making the assumption that links that have been up for a

very long time are more likely to be reliable.

The costs of preselecting the entire route are:

• Extra room in the header to list the route.

• No ability to reroute a packet after it has been launched.

92

3.4.2 Initial Packet Checks

When a node A receives a data packet from neighbor B, from source/key pair S/p, it makes

the following checks, dropping the packet if all the following conditions are not met:

• The pair S/p must have been reported by at least one trusted node.

• The signature in the packet must be valid for S/p.

• If a route is specified in the header (as opposed to specifying that the packet is to be

flooded), then the route must contain (somewhere within) the adjacent pair B, then A.

3.4.3 Data Packet Forwarding Rules

In traditional datagram Network Layers, data packets are not acknowledged hop by hop at the

Network Layer, although on links with non-negligible error rates, a reliable Data Link Layer

protocol is usually employed, which does hop by hop acknowledgment and retransmission.

In our scheme, in order for the Network Layer to monitor the reliability of a link, neighbors

are required to send Network Layer acknowledgments for data. packets. Neighbor to neighbor

Data Link Layer acknowledgments will not yield the proper information. The purpose of our

Network Layer neighbor to neighbor acknowledgment is to force a Byzantine node acting as

a relay to act as a reliable relay. A Data Link Layer acknowledgment would just verify that

the packet successfully traversed the link from tht'. nonfaulty node to the relay node. It cannot

verify that the relay node will forward the packet to the node which is assumed to be the

Network Layer neighbor.

Additionally, our scheme requires a node to retain indefinitely the data packet with high­

est sequence number received from each source/key pair. Thus, since acknowledgments are

required, and storage of the packet is required, it is no extra burden on the Network Layer to

enhance reliability of data packet delivery by having a forwarding node A persistently transmit

the latest data packet from source S until:

1. A's neighbor (the next hop specified in the route in the packet header) acknowledges

receipt of S's packet,

2. or A receives a packet with source S with later ser,uence number.

This is accomplished through manipulation of the "Ack-Flag"s and "Send-Flag"s.

93

Suppose the packet in memory at node A from source S has sequence number sn-rnem.

Suppose A receives, from neighbor B, a valid (i.e. signature is correct, packet is well-formed)

data packet with source S and sequence number sn-rcv.

• If sn-mem < sn-rcv, then overwrite the packet in memory with the received packet. If the

received packet specifies (in the route field) forwarding to node C, then clear Send-Flag

for all neighbors except C and set Send-Flag for neighbor C. (If C is not a neighbor, then

no Send-Flag will be set for this packet). If the received packet specifies (in the route

field) that the packet is to be flooded, clear Send-Flag for B, and set Send-Flag for all

other neigh hors.

Also, clear ACK-Flag for all neighbors, and set ACK-Flag for B.

• If sn-mem ~ sn-rcv, then clear Send-Flag for B and set Ack-Flag for B.

Note that if sn-mem > sn-rcv, the packet with smaller sequence number will not succeed

in reaching the destination, since it has been overtaken by a packet with a higher sequence

number traveling on a different route. This is unfortunate, but the source is not supposed

to pipeline packets too quickly for this very reason. If it mis-estimates the time of arrival,

and loses packets for this reason, a higher layer protocol at the source will recover (since

the Network Layer has advertised it is a datagram service).

Note also that we assume the packet with smaller sequence number is really older thau

the one with greater sequence number. This will indeed be the case, since a nonfaulty

source is required to keep its own sequence number on non-volatile storage, and thus be

assured, upon restart, of not reusing old sequence numbers.

3.5 Finding a Route

Our scheme requires the source to choose a route to the destination. As stated before, the

source does not have enough information to be assured of computing a functional route. The

Link State Database contains a list :>fall nonfaulty nodes and links, but it also will contain

some number of faulty nodes and links. If there are many Byzantine nodes, it is unlikely that

a route calculated from the database will not include at least one Byzantine node. There are

exponeutially many routes in the network, and the source cannot try all of them. Therefore, in

order for our scheme to be practical, there must be some backup strategy the source can use to

find a functional route.

94

Various strategies:

• node disjoint paths - As indicated earlier, the source can compute node disjoint paths.

Thus if the first route calculated does not work, due to inclusion of a Byzantine node, then

a node disjoint path is guaranteed not to include the same Byzantine node. However, this

strategy (of using node disjoint paths) only works if there are fewer Byzantine failures

than node disjoint paths.

If the source computes node disjoint paths, and gives up if none of them work, then the

form of robustness the scheme achieves is:

If at least /+l node disjoint paths connect nonfaulty nodes A and B, then

A and B will be able to communicate provided that no more than f Byzantine

faults exist in the network.

Note that the "disjoint paths" refer to the existing topology, not to the original topology.

The disjoint paths must consist of nonfaulty components.

• Flood when route fails - Another strategy is for the source to flood a packet when all

node disjoint paths fail. This allows increased robustness when the number of Byzantine

faults exceeds the number of node disjoint paths. Backup flooding might be particularly

useful for Network Management messages in a malfunctioning network.

Note that resources should first be allotted equally to each source, and then, given the

source's share of resources, allocated amongst routes of that source. With this strategy,

a source that relies heavily on flooding will not be able to degrade resources for the other

sources.

• Intermediate Acks - We have provided a mechanism for the destination Network Layer to

explicitly acknowledge a data packet to the source. The same mechanism can be utilized

for having any intermediate node along the route acknowledge a packet.

Since an Ack from a node closer to the source (in the route) is redundant, if an Ack

from a node further from the source is received, it is only necessary, in terms of database

structure, for intermediate nodes to hold a single Ack associated with a data packet. If

an Ack is received from a node further from the source than the Ack being held, then the

Ack being held is overwritten.

95

The strategy of requiring intermediate Acks can be implemented in several ways:

1. We could require every forwarding node to transmit an Ack, on every packet it

forwards. This causes the burden on the first link of the route to be increased by a

factor equal to the number of hops in the route. Since we would like the network

to work efficiently in the hopefully usual case (when there are few or no Byzantine

failures), this is not a good strategy.

2. We could have the source request Acks from all intermediate nodes, on selected data

packets, by including one additional bit in the packet header, indicating intermediate

nodes should generate Acks for this data packet.

3. We could have the source request Acks from selected intermediate nodes, by including

an extra bit "request Ack" in each hop specified in the "route" field in the data packet

header.

4. We could explicitly tell an intermediate node (perhaps by flooding a Network Man­

agement packet to it), that it should Ack packets from a particular source.

All strategies except the first place no extra burdens on network resources when a route

is working correctly. Of strategies 2 through 4, 2 is the simplest to implement. Strategy

3 uses the least network resources, and is not significantly more complex than strategy 2.

The disadvantage of both 2 and 3 is that it marks packets as special. A Byzantine node

could forward packets with any of the bits set, and fail to forward other packets, and then

the source is left without any information a.bout which nodes along a path may be faulty.

Thus to guard against that form of Byzantine failure, strategy 4 is necessary.

Note however, that if a Byzantine node forwards only packets for which the source has

requested Acks, then the source can communicate with the destination through the route.

It will unfortunately be somewhat more expensive than communicating over a truly non­

faulty path, since all data packets along the path will require Acks, but data packets will

succeed in reaching the destination.

Strategy 4 is sufficiently more complex than 2 and 3 that the increased robustness it might

yield does not warrant its use.

A variation of strategy 3 could be used in which the "request ACK" bits are hidden to

other nodes by the use of encryption. For instance, each "request ACK" bit, concatenated

96

with a random number, can be encrypted according to that node's public key. Previous

and next addresses for each node in the route can be encrypted in the same operation,

hiding global route information from forwarding nodes. This strategy is also sufficiently

more complex (and requires more header space) that it is not recommended. More space

efficient mechanisms may be possible, bnt they will also be computationally expensive,

and a simple strategy of finding a node disjoint path will probably work sufficiently well

in practice.

Note that Acks cannot be forged. A node cannot generate an Ack unless it in<leed has seen

the data packet it is Ack'ing (since the Ack contains the signature from the data packet),

and no node can forge an Ack on behalf of another node (since the node generating the

Ack signs it).

Now suppose, using the information from Acks, that source S discovers that packets along

route:

are Ack'ed by nodes up to and including C, but not by E. Then S can conclude that one

of C or E must be faulty, and S can compute a new route that does not include nodes C

or E. This gives S more freedom in route selection than requiring S to choose a route that

is node disjoint from the original route. There will likely be more rout.es to select from if

only a. subset of nodes from the original route are avoided.

Note that this method of fault diagnosis gives "advice" to the source as to which nodes

might be useful to exclude when computing a. route. It has disadvantages.

For each faulty node noted as suspicious, a poseibly nonfaulty node is also noted a.R

suspicious. If too many nonfaulty nodes are excluded from the database, a nonfaulty

path may exist, and may not be found.

If there are two Byzantine failures along a path, say nodes A and E in. the example

above, then S can be fooled into eliminating nonfaulty nodes B and C from the

97

database, and not eliminating either A or E. This can occur if E's fault consists of

failing to forward S's data packets to D, and A's fault consists of discriminatorily

failing to forward ACKs from C, so that S receives ACKs from B, but not from any

nodes further along the path.

In practical networks, this form of fault diagnosis would be useful, but it does not enhance

the theoretical robustness of the design. We still require the number oi Byzantine faults

to be smaller than the number of node disjoint paths between a pair of nonfaulty nodes

in order for communication between the node pair to be guaranteed.

• Explicit query - Another possible method of route debugging is explicit query of nodes

along the path through Network Management.

Because nodes keep a record of the latest packet seen so far from a given source, it is

possible for Network Management, at any time, to query intermediate nodes and discover

which nodes have seen the latest packet from a given source.

This form of fault diagnosis is most robust against Byzantine behavior, especially if nodes

are queried locally, since the network is not required to route Ack packets properly. How­

ever, it is far more cumbersome to impiement than Ack packets, since it involves Network

Management, and is not confined to the Network Layer.

This concludes the description of our Link State Routing scheme. Following will be expla­

nations for our choice of design.

3.6 Design Choices

3.6.1 Data Packet Sequence Numbers

We wish to guarantee a certain minimum amount of resources so that a source's latest data

packet will have a high probability of s11ccessfully reaching the destination, provided that the

calculated path consists of all nonfaulty components. We allocate a fixed number (for simplicity,

one) of buffers per source at each node.

It might be assumed that a nonfaulty path will not reorder packets from S (that contain

the same route), and will not retransmit an old packet from S. Thus it might be assumed that

we could avoid the use of sequence numbers on data packets. However, a faulty component can

98

introduce old packets from <) into a node along a nonfaulty path.

+---18

For instance, if F is faulty, and at some point in the past S issued a packet with route

(S,F,B,D), then F can disrupt packets along path (S.A,B,D) by reintroducing the old packet

to node B, and without sequence numbers, B cannot intelligently decide which of the packets

should reside in the single buffer reserved for data packets with source S, and which should be

discarded.

A mechanism such as that described in Section 2.6.5 can insure progress of a packet along

a nonfaulty path, but as in Section 2.6.5, the scheme would be totally impractical due to the

exponentially small bandwidth it would guarantee.

Sequence numbers on data packets assure that:

• No nonfaulty node will accept the same packet twice (so that a packet cannot loop, or be

reintroduced into the network at a later time, consuming resources).

• The latest packet issued by a source S is guaranteed resources, and will not compete at

any node for resources with a packet issued earlier by S (since the earlier packet will have

a smaller sequence number).

3.6.2 Stable Storage for Sequence Numbers

In Chapter 2, a node, A, kept its sequence numbers in volatile storage, and reacquired them

dynamically from information stored in the network (if some component in the network did

retain memory of A's sequence numbers). The reacquisition mechanism consisted of node B

99

transmitting A's stored packet to neighbur C, in response to C transmitting a pad:~t to B with

source A, and sequence number smaller than the one in B's database.

This mechanism caused a flooding of the packet with higher sequence number throughout

the portion of the network without memory of A's higher sequence number packet. A Byzantine

node B cannot create an extra burden on the network with this mechanism because:

... B cannot construct a packet from A with higher sequE:nce number than the rest of the

network has seen, since B cannot generate a correct signature. Thus B can only retain

packets that were legitimately constructed by A.

• Once B floods a packet witll sequence number k, B can create no additional network traffic

with that packet, since a nonfaulty neighbor of B will simply acknowledge the packet to

B, and not forward it further. Thus B can congest its own links to its neighbors, but it

cannot create additional packets on any other links in the network.

In this chapter, we do not want data packets to be flooded, since we want to increase the

network capadty by utlizing parallelism in the network. With data packets traveling over di­

rected paths, network nodes will not all see the latest sequence number from a particular source.

For instance, if S's packet with highest sequence number contained route (S,A,C,E,G,H),

then nodes B, D, and F would not know of S's highest sequence number.

Suppose we wanted to allow S to reacquire its own sequence number. The idea would be,

as in Chapter 2, that S would always restart using sequence number 0. U its data packet with

sequence number k encountered a node that had knowledge of ~. packet from S with higher

sequence number, that node would send information back to S, informing S of the higher

sequence number.

100

The mechanism in Chapter 2 of reaching the source was flooding. If we allowed a node to

flood a later packet in response to a packet with earlier sequence number, then a Byzantine

node along the path chosen by S could cause each of S's new packets to be flooded. Again,

using our example network, although packets along path (S,A,C,E,G,H) are supposed to be

contained within that path (and not to use resources anywhere else in the network), any of the

nodes along the path could flood the packet into the rest of the network, ostensibly to inform

S of the highest sequence number.

A slight improvement to having a node flood the higher sequence numbered packet from

S, in response to receiving a packet with smaller sequence number, is to have a node send the

higher sequence numbered packet backwards along the route from which it received a packet

with smaller sequence number. This limits the ability of a Byzantine node to flood all packets,

since it can only send a packet back along a directed path. The node can be further restricted

by making the reverse path packet self proving. The reverse path packet must contain enough

information to prove that the node initiating it has seen two packets generated by source S,

and the route by which the reverse path packet is traveling was constructed by S.

Again, looking at our example topology:

• Assume S issued a packet with sequence number k and route (S,B,D,A), at some point in

the past.

• Now assume source S issues a packet with sequence number j and route (S,A,C), where j

> k.

• Node A can construct a "Reverse Path Packet" with enough of the header from the packet

#i to prove S did generate a. packet with sequence number j, and enough of the header

(including the route) from the packet with sequence number k, to prove S generated it.

• The "Reverse Path Packet" is sent backwards along the route (S,B,D,A), consuming

resources at nodes B and D and the links along the path. Each node along the path of the

"Reverse Path Packet" updates its memory of the largest sequence number from source

S to be j.

The problem is we can no longer enforce that packets consume resources only along the

path they are directed onto, once we allow nodes along the path to "divert" the packets onto

101

alternate paths. This cancels the pott'ntial bandwidth advantages we gained by attempting the

more complex Link State Routing instead of the Flooding Routing.

Thus, in the absence of a satisfactory scheme for reacquisition of sequence numbers, we

require each node to keep an estimate of its own sequence number on stable storage.

3.6.3 Faulty Neighbor Restart Problem

Recognizing the possibility that a faulty node F could act as a relay between nonfaulty nodes

M and B, we provided that M and B encrypt all traffic across the presumed link between M

and B. Thus in general F cannot differentiate packets. However, if we assume F captures a

"Restart-Notification" packet transmitted by M, then F can cause B to erroneously believe its

neighbor M has restarted, which will cause B to retransmit all its stored packets to B.

This is not a very serious problem, since the exi;ra traffic will be localized to the M-B link

(B, receiving a packet with the same sequence number as it has stored, will acknowledge the

packet, but will not transmit it further). With M and B monitoring the quality of the link,

they can declare the link down if frequent restarts become a performance problem for the link.

A second threat is that F could capture a Restart-Notification-Ack generated by M. In this

case, when B lost state and issued a Restart-Notification to M, F could fail to forward B's

Restart-Notification (if it could guess which packet was a Restart-Notification, which might be

easy if, for instance, a Restart-Notification is usually the first packet transmitted after a long

period of link idleness), and retransmit M's old Restart-Notification-Ack to B.

In this case, B will not receive an updated database from M. So, for instance, B will not

receive (through its link to M) the latest Public Key List Packets. This is also U:ot a very serious

problem because if B has a nonfaulty path to the resource from which it needs packets, it will

receive those packets along that path. If B does not have a nonfaulty path, then we do not

guarantee B will be able to operate, and its behavior under the circumstances is irrelevant.

It is, however, possible to design a scheme to defend against the Restart-Notification and

Restart-Notification-Ack replay threats. Instead of two messages (Restart-Notification and

Restart-Notification-Ack), the restarting protocol would use 4 messages.

102

Restart Request, x

Request Granted, x, y

(Restart, x, y) signed by B

(Restart-Ack, x, y) signed by M

In the first message, B transmits its intention to restart, with a random number, x. M

responds with its own random number y. With high probability, x and y will be different from

random numbers chosen on previous restart hand&hakes between B and M. The third message

is a Restart-Notification, including both random numbers x and y, and signed by B. The fourth

message is a Restart-Notification-Ack, including x and y, signed by M. Since F cannot generate

a Restart-Notification with B's signature for numbers x and y, F cannot cause an unnecessary

restart. Since F cannot generate a Restart-Notification-Ack with M's signature with numbers

x and y, F cannot prevent (without B's knowledge) B's restart from reaching M.

3. 7 Hierarchical Networks

Just as in Chapter 2, the design in this chapter can be adapted for hierarchical networks. See

Section 2.6.4 for an overview of hierarchical addressing and routing.

To support hierarchic?.l routing, one additional field, "ultimate destination" is required in a

data. packet. Initially, the source places the destination address into the "ultimate destination"

103

field.

When source and destination nodes of a packet are in the same subnetwork (as evidenced

by the "SUBNET" portion of the destination address), the source writes the destination into

the "destination" field in the packet header, calculates a route to the destination, and places

that route in the packet header.

When source and destL1ation are in different subnetworks,

1. The source calculates a path to a level 2 router, L1 , writes L1 into the "destination" field

in the packet header, and places the path to L1 in the "route" field of the packet header.

2. Next, L1 calculates a path to a Level 2 router, L2, in the destination subnetwork (as

specified by the ;'SUBNET" field in "ultimate destination"). L1 removes all of the header

except ''ultimate destination", and overwrites the header with its own ID, key, sequence

number, L2 as "destination", route to L2 as "route", and generates its own signature.

3. When L2 receives the packet, it calculates a path to the destination specified by "ultimate

destination", and overwrites the header with its own ID, key, sequence number, "ultimate

destination", route to "ultimate destination", and generates its own signature.

This scheme works for the same reason that hierarchical routing worked in Chapter 2.

Basically, each level 2 router guarantees fair access to the level 2 net, to each source within its

subnet, and each level 2 router also guarantees fair access into its subnet for each level 2 router.

3.8 Route Setup Variant of Source Routing

In this section we show an alternate form of routing which also exhibits Byzantine robustness. It

is interesting because it allows data packets to be forwarded without the need for cryptographic

checks by the nodes which are forwarding. The basic modification is that with this scheme, data

p<1.ckets travel alorkg a route which needs to be "set up" before a conversation takes place, instead

of using " packet specified source routing", where the route is placed in the packet header. In

both methods the source chooses the route. Cryptography is still needed to authenticate the

route setup procedure, but cryptography is not needed for forwarding data packets. Rather, a

set up route is assumed by the intermediate nodes to be nonfaulty, and a data packet is assumed

to be legitimate based on its being received from the expected direction (the previous hop of

the route set up by the source).

104

This variant has advantages and disadvantages with respect to the packet specified scheme

described in Section 3.2.

The advantages of this scheme are:

1. We eliminate the requirement that the packet contain the route, which saves bandwidth.

2. We eliminate the requirement that forwarding nodes verify a signature when forwarding

data packets, saving processing overhead.

The disadvantages of this scheme are:

1. Memory requirements in this scheme are O(N2) per node, as contrasted with O(N) per

node with the packet specifie1l source routing scheme.

2. Fault isolation of Byzantine forwarding nodes is impossible in this scheme, because (by

its very nature of avoiding cryptographic checks on data packets), <la.ta packets bP.come

impossible to trace.

However, additional mechanism can be employed to aid fault isolation. For instance, we

c.an continue to use sequence numbers and signatures in Data packets, eliminating the

disadvantage of reduced fault isolation, but it also eliminates the advantage of relieving

forwarding nodes from computing the signature.

Thus if we use cryptography in the Route Setup scheme on packet 7orwarding, and include

the fields "signature" and "sequence number" in data packets, the tradeoff between the Route

Setup method of Source Routing and the Packet Specified Route Setup scheme becomes one

of memory versus communications bandwidth (smaller headers in Route Setup scheme because

the route is not included in each data packet).

The portions of the Link State Routing Scheme that remain without modjfication are:

• Public Key List Packets are generated and propagated as before.

• Link State Packets are generated and propagated as before.

• Routes are computed as before.

The main differences between this scheme and the packet specified source routing scheme

are:

105

• Memory is reserved to hold a route and the latest packet for each source/destination pair.

• An additional packet type is required, a "Route Setup Packet", which contains a route,

and is flooded by the source.

• Data packets no longer carry the route. Additionally, if fault isolation is not considered

important (for instance, if reliance on nod~ disjoint paths is considered sufficiently robust),

the sequence number and signature can also be eliminated from data packets.

3.8.1 Dynarric Database

Th fi 11 • f, f . k t b e o ow1~ m orma ion 1s ep y eac h d . l t'l t no e m vo a 1 e s or~e, as b fi e ore:
OWN-LSP-SEQNUM The next sequence number to be assigned when this node gen-

_e.raJP!: lts_nwn__ne.xt__L.S_E_

OWN-PKL-SEQNUM The next sequence number to be assigned when this node gener-
ates a PKL packet. This is kept only by nodes acting as "trusted
nod&S"

LSP database For each node/public key pair reported by any trusted node:

•The LSP with highest sequence number from that
node/public key

• For each neighbor of this node, two flags:

1. Send-Flag - indicating whether this LSP needs to be
transmitted to this neighbor

2. Ack-Flag - indicating whether an ACK for this LSP
needs to be transmitted to this neighbor

neighbor identity of and public key for each neighbor
Restart Flags "Send-Restart" and "Send-Restart-Ack" flags for each neighbor

The following information is also kept by each node in volatile storage (but is listed sepa­

rately because it is different than before:

106

OWN-RT-SETUP-SN The next sequence number to be assigned when this node gen­
erates a Route Setup Packet. Note that, as with LSP and PKL
sequence numbers, stable storage contains a sequence number
that can be used on restart, which is guaranteed larger than any

_Q_revious!Y_ used bv this node.
Routes For each source/destination pair:

• The "Route Setup" packet with largest sequence number,
for this source/ destination pair.

• For each neighbor:

1. Send-Flag - indicating whether this "Route Setup"
packet needs to be transmitted to this neighbor.

2. Ack-Flag - indicating whether this "Route Setup"
packet needs to be acknowledged to this neighbcr.

• Data Packet Buffer - A buffer for the most recently re­
ceived data packet on this route.

3.8.2 Route Setup

A "Route Setup" packet contains the following:
source The node that generated this packet
destination The destination of the route, or if 0, indicates "all destinations"

(used for clearing out all of the source's routes from the network,
and a packet with "0" for destination would also have "0" for

t---;-·
route}.

public key Public key for "source"
sequence number Assigned by "source"
route A sequence of ID /key /link triples
signature A digital signature, verifiable based on the public key for this

node, manually maintained at each node 1 covering the entire con-
tents of the _Q_acket. . .

Note that the same pau of nodes might have multiple links connectmg them. A route mu.st

then specify a particular link. The method of specifying a particular link is just an encoding

problem. For instance, we could use the ordering of the links within the Lin~ State Packet of

the previous node along the path, to specify a particular link. For example, if one hop in the

path is between nodes G and H, then the route setup would specify G/key /2/H, and the link

to be used when forwarding from G to H would be the 2th listed link in G's LSP that has H as

the neighbor.

The encoding scheme should minimize the problems caused when node G issues a new LSP

- it would be desirable if routes going through G not be disrupted because the ordering of

information in G's LSP has changed. If this cannot be accomplished, the correctness of the

107

scheme is not affected - it' a route changes and still is correct, then there is no problem. If a

route changes to a nonfunctional route, then the protocol would handle it the same way as any

route failure.

We could require the network not to allow multiple links between the same pair of nodes,

but we cannot avoid them, due to the possibility of a common faulty neighbor F, between

two nonfaulty nodes A and B (which are neighbors of each other) creating an additional link

between A and B by acting as a "dumb relay".

However, the simple mechanism of explicitly stating the link in the Route SetuR packet

avoids any problems caused by multiple links between neighbors.

• When a source S reinitializes after having lost state, it sends a Route Setup packet with

null destination and route. This packet will be flooded, and will purge from the nonfaulty

nodes in the network any knowledge of previous routes involving S.

• When a source S wishes to initiate a conversation with destination D, S computes a path

to D and includes that path in a Route Setup Packet.

• The Route Setup Packet is flooded by the network, using the same mechanism as flooding

of LSPs, except that a Route Setup Packet with specified destination D will be accepted

and flooded by node B provided that B has no knowledge of any other Route Setup Packet

with higher sequence number from source S that involves destination D.

If the Route Setup Packet specifies destination D, and B has seen another Route Setup

Packet with source S, different destination, and higher sequence number, the S/D Route

Setup packet will still validly overwrite the S/D route stored at B. A Route Setup Packet

with source S, sequence number k, and null destination received by B will overwrite every

route stored at B with source S and sequence number less than k.

108

Thus a node can remember at most one route for each source/destination pair. The re­

quirement to remember a route, possibly for each source/destination pair, makes the database

O(N2).

Note that since a. Route Setup packet is flooded, only one S/D path can exist in the network

of nonfaulty nodes. If S sets up a new path to D, then nodes along the old path will overwrite

their route with the new route, on which they are not included, so that they will not accept

any data packets from with source S and destination D.

We could have provided that Route Setup Packets traverse the path specified in the packet,

and not be flooded. In that case, knowledge of old routes would remain in the network. It is not

necessary for correctness that routes ever be purged. The latest Route Setup packet generated

by a source will be guaranteed to successfully set up a route (if the route selected is nonfaulty),

and once set up, a nonfaulty route is guaranteed resources. We provide a mechanism for purging

faulty routes, because faulty routes can utilize network bandwidth.

For instance, suppose node F is faulty, and all other nodes are nonfaulty. Assume at some

point in the past, S, in attempting to find a good route to G, set up routes (S ,F ,D,G) a.nd

(S,F,B,C,G) before finally setting up the good route (S,A,E,G). Especially since there is no

cryptographic authentication of data packets, F can generate an unlimited number of packets

along both paths (F,D,G) and (F,B,C,G). Since nodes D, B, and C have no knowledge of the

(S,A,E,G) route, they will assume they are part of a correct route, and will forward any packets

with source/destination pair S/G that they receive from the appropriate direction according to

their stored route for S/G.

109

In some sense the other two routes are irrelevant, since they do not interfere with S's

resources along path S-A-E-G. In fact, packets fal!aciously launched by F along those paths do

not actually reach G, since G knows the only link from which it should be receiving packets

from S is its link to E. However, network bandwidth is consumed unnecessarily. The entire

reason for choosing to continue our design beyond the robust flooding provided by Chapter 2

was to enable the resources consumed by a tl'affic stream to be "localized", and not be seen by

every node. Unless old routes are purged from the network by t,he source, there is no limit to

thf! number of nodes (other than N, the total number of nodeii) that can be allocating resources

for a particular source/ destination pair.

3.8.3 Data Packets

The only relevant information in a data packet is the source and destination (each of which is

an ID/key pair). There is no need for any signature, or sequence number.

When a data packet with source/destination pair is received by node A, from neighbor B:

1. If B is not the previous node listed in the Route database, A drops the packet.

2. Else, A stores the packet for forwarding towards the next node specified in A's Route

database.

Data packets are not acknowledged hop by hop, and have no sequence numbers. Once a

forwarding node transmits a data packet, it deletes it from the database.

3.8.4 Assuring Fairness

Each forwarding node guarantees resources for one Route Setup packet for each source/destination

pair. Additionally, each forwarding node guarantees resources for one data packet for each

source/destination pair for which a route is set up.

At any time in the database, there will be some number of stored Rout,e Setup Packets,

with Send-Flag and/or Ack-Flag set. Also, there will be some number of stored data packets.

The forwarding node must cycle through the database, sending an ACK for every ACK-Flag

set, forwarding each Route Setup for which Send-Flag is set, and forwarding each stored data

packet.

110

3.8.5 Why This Works

Assuming node S calculates a nonfaulty path to destination D, S's Route Setup will succeed,

because it will be the Route Setup Packet with highest sequence number. Also, once the route

is successfully set up, no other node can disrupt the route, since the only situation in which the

nodes along the path will discard or overwrite the information about the route is receipt of a

validly signed Route Setup packet with higher sequence number, with source/destination pair

S/D.

Assuming the set up route is nonfaulty, each node along the path is responsible for making

sure packets traversing the route never arrive from the wrong direction. Thus, assuming the

route is nonfo.ulty, a no<le outside the route cannot inject packets into the fl.ow along the route.

3.8.6 Performance

The chief advantage of the Route Setup method over the Packet Specified Source Routing

method is bandwidth efficiency - packets no longer need to carry a route.

An additional benefit is that r..odes which are forwarding data packets do not need to do

cryptography as part of the forwarding process, saving computation for what would presumable

be the vast majority of network packets (data packets). (However, this advantage creates the

disadvantage of decreased ability to diagnose why a route has failed.) End to end cryptography

by the source and destination of each data packet, and signature verification by each forwarding

node along the path of a Route Setup packet would still be performed, however.

With the Source Routing method of packet delivery, a source can utilize 1/ N of the band­

width of any link for a conversation to a particular destination (it will get more than that

usually since usually not all sources will be directing packets along that link at any time).

With the Route Setup method, each source is guaranteed only 1/ N 2 of the bandwidth of a

link for a conversation to a particular destination, if resourcns are allocated in a simple round­

robin fashion for stored routes. However, allocation of the link can be done per source, and

then the source's share can be suballocated for each of the (up to N - 1) routes with source S,

in which case with the Route Setup method the source would still be able to utilize 1/ N of the

bandwidth of any link.

The advantage of the Packet Specified Source Routing method is that memory per node is

O(N), whereas in the Route Setup method memory is O(N 2) per node.

The Route Setup method would probably prove impractical unless Data Packets continued

111

to include sequence numbers and signatures, since forwarding nodes with Byzantine faults nodes

would be difficult to isolate. Adding sequence numbers to data packets (so that forwarding

nodes could be queried as to receipt of specific packets) without also adding signatures would

not be useful in the presence of true Byzantine failures, since nodes along the path could corrupt

sequence numbers, or generate faulty data. Without cryptographic checks there is no way to

verify that the sequence number was generated by the source. Thus, if the path from source

S to destination D consists of nodes (S,A,B,C,D), and node B were faulty, then B could fail

to forward S's true data packets, and instead inject bogus packets with the same sequence

numbers, and since (by the very nature of the scheme) nodes C and D do not verify the packets

in any way, all nodes along the path would claim to have seen the packets with those sequence

numbers, but node D would not receive them (cryptographic verification still needs to be done

at the destination).

Likewise, with an unverified sequence number scheme, any node could generate data packets

with source address S, and arbitrarily high sequence numbers, making any scheme in which

packets were rejected based on comparison of sequence numbers non-robust.

Thus the Route Setup variant is probably only a viable alternative if cryptography is still

performed by intermediate nodes. In this case, the real tradeoff is memory (Route Setup is

O(N 2) vs O(N) for packet specified source routing) vs bandwidth (Packet Specified Source

Routing requires longer headers, to contain the route, though this is partially offset by the

bandwidth consumed by Route Setup packets in the Route Setup method).

112

Chapter 4

Conclusions

4.1 Results

In Chapter 2, we presented a form of routing based on flooding in which a pair of nonfaulty

nodes are guaranteed to be able to communicate provided that a nonfaulty path connects them.

Alth?ugh based upon flooding, a simple form of routing in which communications bandwidth

consumed per packet can be exponential in the size of the network, the design in Chapter

2 actually gives reasonable performance because each packet will traverse each link only once

(except for link retransmissions due to transmission errors on the link, or restart of the adjacent

node, or Byzantine behavior by one of the endpoints of the link). When Byzantine behavior is

likely to be common, a network based upon this design should be practical and robust.

The key to the design was structuring data.bases and providing authentication in such a way

that fairness was enforced.

In Chapter 3, we presented a form of routing based on Link State Routing, in which a

pair of nonfaulty nodes are guaranteed to be able to communicate provided that at least f+ 1

node disjoint paths connect them, and at most f failures exist simultaneously in the network.

This form of guarantee makes a. network with the design in Chapter 3 considerably less robust.

Design modifications yield higher robustness at greater cost.

1. Flooding (as done in Chapter 2) could be selected as a backup option when a functional

route cannot be easily found. In this case, the robustness is equivalent to that provided

in Chapter 2, but the performance is no longer guaranteed superior to that provided by

the simpler scheme in Chapter 2.

2. Fault isolation by the source can be executed to attempt to discover which components are

malfunctioning. This enables the source to find a functional route with higher probability.

113

Since in non-military settings, Byzantine behavior would probably be falrly rare, a design

based on that presented in Chapter 3 would probably be practical and sufficiently robust. If

many Byzantine nodes are expected in a network, the design presented in Chapter 2 would

probably be preferable, since it is simpler and more robust.

We concluded in Chapter 3 that hop by hop routing decisions were not viable, and instead

the entire route should be computed by the source. Two variants of specifying the route were

given, one in which the route was specified in the packet header, and one in which the route

was first set up by the source and stored in the intermediate nodes. The packet specified option

was more memory efficient and the route setup option was more bandwidth efficient, but both

are practical.

4.2 Basic Tools

To accomplish Byzantine robustness, we made use of certain "tricks". First we describe the

observations and mechanisms that made robust flooding possible.

4.2.1 Flooding Mechanisms

Bootstrapping Service We require certain information to exist throughout the network; in

particular, the complete list of nodes and public keys. Rather than requiring manual

maintenance of such information at all nodes in the network, we instead employ a central

repository of the information, where the information is maintained. This centralized

service then broadcasts the information throughout the network.

This approach minimizes the amount of manually maintained state that must exist at

each network node (the information necessary to enable the bootstrapping service to do

a network-wide broadcast). It also minimizes the locations at which the large database

must be maintained (it must be maintained at the central repository only).

Signatures '~Ve use public key cryptography, so that any node can verify a source's signature,

but only the source can generate a correct signature for itself. This technique, of course,

is well known.

(Node,key) pairs By considering each distinct (node,key) pair as a different node, we ensure

no disruption of service to a node that is in the process of changing its own key, or to a

114

node whose key is being mis-reported by one or more "trusted nodes" (as long as at least

one "trusted node" reports the node's key correctly).

Non-wrapping, Finite length Sequence Numbers We require a method of packet com­

parison so that distant nodes can intelligently decide which packet generated by a partic­

ular source should occupy resources reserved for that source.

Our sequence numbe1 mechanism is extremely simple because we do not require sequence

number wrap-around, or reeets. This is accomplished because:

1. The sequence number field is chosen to be large enough so that exhaustion of the

field is a rare event.

2. A mechanism is provided for a source, following a simple failure, to reacquire the

value of its own sequence number in use prior to the simple failure. The primary

mechanism for this purpose is persistence by the network (hop by hop acknowl­

edgments and retransmissions, and retransmissions following node restart). An ad­

ditional mechanism, particularly crucial when a source reuses the same sequence

number following a simple failure, is for smaller (or conflicting) sequence numbers to

cause a reflooding of the packet with larger sequence number (or a notification that

a sequence number has been reused).

3. A source whose sequence number does reach the limit can become a "new node",

and restart with the lowest sequence number, by changing its public key. This is

accomplished by choosing a new public key and manually installing it at the "trusted

nodes".

Structured Database A node can receive an unlimited number of packets. We structure the

database so that the la.test packet from each source is guaranteed storage.

Guaranteed Fairness We provide rules for scanning the database in an orderly manner, so

that every packet that needs to be transmitted is guaranteed fair access to link bandwidth.

4.2.2 Link State Mechanisms

Additional mechanisms used to provide directed routing were:

Source Routing The source chooses the packet's complete path. This enables routing to

work even if routing databases are not synchronized and even if nodes choose different

115

strategies for ro-ute computation.

We use two variants of source routing. In the first part of Chapter 3, we use the form

of source routing in which the route is placed in the header of each data packet. Jn

Section 3.8 we use the form of source routing in which the route is carried in a special

"route setup" packet which must be flooded prior to a conversation.

Disjoint Path Computation We use disjoint paths when primary paths do not function.

The computation of disjoint paths is a trivial extension of the min cost max flow problem,

which has been extensively studied in the literature.

Link Encryption Because a Byzantine node can simulate a link between two nonfaulty nodes,

we use Network Layer hop by hop encryption to prevent a Byzantine component, along

what is assumed to be a link by the Network Layer, from discriminatorily forwarding

packets.

Fault Isolation Because nodes keep the data packet with highest sequence number from each

source, querying of the network nodes can reconstruct a packet's progress and find two

nodes along the path, of which at least one is faulty.

Packet Verification Based on Direction of Receipt In the Route Setup option, we con­

cluded that correctness could be ensured without cryptographic checks when forwarding

Data packets, by having a forwarding node reject packets unless they arrive from the

expected direction. In this case1 packets will travel correctly on nonfaulty paths, and no

guarantees are made about packets on faulty paths.

Parallel Networks A single faulty "trusted node" can simulate many faulty network nodes.

Directed routing will not efficiently find a functional path if too much of the Link State

database contains faulty nodes. Thus we model the network as t parallel networks, one

for each of the "trusted nodes". If all "trusted nodes" agree on the list of (node, key)

pairs, then all parallel networks are equivalent. However, if they differ, and at least one

"trusted node" is nonfaulty, then one of the "networks" will be (mostly) correct. This

model allows efficient computation of a functional route no matter what information is

given by faulty "trusted nodes".

116

4.3 Further Application of These Ideas

Some of the mechan;'isms designed for Byzantine robustness can be applied to simplifying or

increasing the robustness of other protocols.

For example, a noncryptographic adaptation of the flooding scheme in Chapter 2 can be

used as the algorithm for propagation of Link State Packets in a traditional Link State Routing

scheme, yielding a more efficient and robust Link State Packet distribution scheme than current

designs.

The most complicated aspects of a traditional LSP propagation scheme are the timers and

the wrapping sequence numbers. Instead, we can use the approach in Chapter 2 and avoid both

problems. We will giv·e an overview of a noncryptographic Link State Propagation scheme that

does not provide Byza.ntine robustness, but achieves self-stabilizing robustness (like the design

in [Pe] - the design in (MRR] is not even self-stabilizing), is simpler than the designs in (Pe]

and [MRR], and is comparable in implementation costs to the designs in [Pe] and [MRR].

Associated with ea.ch node in the network is a "key", analogous to the "public key" used in

this thesis. However, in this design. the "key" is not used for computation - instead it acts as

a descriptor to the ID of a node, to identify what is roughly an "incarnation" of a node.

We use a "trusted node service", like the ''trusted node service" in the thesis, which broad­

casts a list of (ID,key:1 pairs. To cover simple failures of the trusted node, there could be several

nodes in the service, and the accepted list of (ID,key) pairs would be the union of all the lists

received from all the "trusted nodes".

As in the thesis, each node in the network would need to be manually configured with the

ID and key of each of the "trusted nodes". Likewise, the "trusted nodes" would need to be

manually configured with the complete set of (ID,key) pairs in the network.

Link State Packets would contain a sequence number, but no age field (an. age f.eld is used

in the designs in [Pe] and [MRR]). The sequence number would be monotonically increasing,

and chosen to be of sufficient length so that reaching the maximum value would be a rare event.

If a node B (due to its own Byzantine fault, or due to actually reaching the maximum value of

a sequence number with moderate range) did reach the sequence number limit, the node would

change its "key" and the "trusted nodes" would need to be manually modified to associate the

new "key" with B.

Nodes would keep the LSP with highest sequence number from each (ID,key) pair listed by

117

any "trusted node". If a node is to permanently leave the network, it can be deinstalled, and

all resources associated with it released, by manually removing its entry at the "trusted nodes".

If a "trusted node" is to be added or deleted from the network, manual modification of

all the network nodes is required. This inconvenience can be avoided by making the entire

"trusted node service" appear to the network like a single node. This can be accomplished

by the techniques employed in distributed databases. The group of trusted nodes can elect a.

"leader" which will broadcast (ID,key) pairs. In the event that the leader crashes, the group

of trusted nodes can elect a new "leader", which can take over transparently. Updates to the

database can be manually done at each site, or a protocol to share updates can be carried out

among the "trusted node" servers.

4.4 Future Research

This is a first attempt at construction of an implementable Network Layer robust in the face

of active Byzantine failures. It is possible that more efficient, or more strongly robust designs

are possible. The impractical scheme presented in Chapter 2, for flooding without any use of

cryptography, gives an existence proof that radically different designs may achieve the same

functionality.

Also, this thesis concentrated narrowly on Network Layer protocols. It is possible that some

of the techniques used can be extended to the design of other types of protocols.

118

References

[ANSI] "Information processing systems - Data communicationi; - Intermediate System to

Intermediate System Intra-Domain Routing Exchange Protocol", Contribution ISO/IEC

JTC l/SC 6 N4945 to ANSI X3S3.3 Committee, October 1987.

(BG] D. Bertseka.s and R. Gallager, "Data Networks", Prentiss-Hall, 1987, pp 403-405.

[Dij] E.W. Dijkstra, "Self-Stabilization in Spite of Distributed Control", Comm. ACM, Nov.

1974.

(Dk] E.W. Dijkstra, "A Note on Two Problems in Connection with Graphs," Numer. Math.

Vol. 1, pp. 269-271, 1959.

(DH] W. Diffie and M. Hellman, "New Directions in Cryptography", IEEE Trans. Inf. Theory,

vol. IT-22, pp. 644-654, Nov. 1976a.

[Doi] D. Dolev, "Unanimity in an Unknown and Unreliable Environment", Proc 22nd IEEE

Symposium on the Foundations of Computer Science, 1981, pp 159-168.

[DP] R. Dixon and D. Pitt, "Addressing, Bridging and Source Routing", IEEE Network,

January 1988.

(EGP] "Exterior Gateway Protocol Formal Specification", RFC 904, 1984.

[Fis] M. Fischer, "The Consensus Problem in Unreliable Distributed Systems (A Brief Sur­

vey)", Yale University Technical Report YALEU /DCS/RR-273, 1983.

[FL] M. Fischer and N. Lynch, "A Lower Bound for the Time to Assure Interactive Consis­

tency", Information Processing Letters 14, 4, 183-186, 1982.

[FLP] M. Fischer, N. Lynch, and M. Paterson, "Impossibility of Distributed Consensus with

One Faulty Process", JACM, 32, 2, 374-382, 1985.

[Git] I. Gitman, R.M. Van Slyke, and H. Frank, "Routing in Packet-Switching Broadcast Radio

Networks,", IEEE Transacations on Communications, vol COM-24, August, 1976.

[GMT] S. Goldwasser, S. Micali, and P. Tong. "Why and How to Establish a Private Code on

a Public Network", Proc. 23rd IEEE Symposium on Foundations of Computer Science,

1982, pp 134-144.

119

[GT) Goldberg, A.V., and Tarjan, R.E. "Solving Minimum Cost Flow Problem by Successive

Approximation", Proc. 19th ACM Symposium on the Theory of COmputation, 1987.

[IP] Department of Defense, "Military Standard Internet Protocol", MIL-STD-1777, August

1983.

[LSP] L.Lamport, R. Shostak, and M. Pease, "The Byzantine Generals Problem", ACM Trans­

actions on Programming Languages and Systems, Vol. 4, No. 3, July 1982, pp 382-401.

[Mcq74] J.M. McQuillan, "Adaptive Routing Algorithms for Distributed Computer Networks",

Bolt Beranek and Newman, Inc., BBN Rep. 2831, May 1984.

[MRR] J.M .. McQuillan, I.Richer, and E.C. Rosen, "The New Routing Algorithm for the

ARPANET", IEEE Transactions on Communications, Vol. COM-28, No. 5, May 1980.

[MS] P.M. Merlin and P.J. Schweitzer, "Deadlock Avoidance - Store and Forward Deadlock",

IEEE Transactions on Communications, March 1980.

[Ori] Orlin, J.B., "Genuinely Polynomial Simplex a.nd Non-Simplex Algorithms for the Mini­

mum Cost Flow Problem", Technical Report No. 1615-84, Sload School of Management,

MIT, Cambridge, 1984.

[Pe] R. Perlman, "Fault-Tolerant Broadcast of Routing Information", Computer Networks,

December 1983.

[Pe2] R. Perlman, "A Protocol for Distributed Computation of a Spanning Tree in an Extended

LAN", Ninth Data Communications Symposium, Vancouver, 1985.

[Pe3] Perlma.a, Radia, "Incorporation of Multiaccess Links Into a Routing Protocol", Eighth

Data Communications Symposium, Massachusetts, 1983.

[Pe4] Perlman, Ra.dia, subnet partition problem paper (PR] reference on ARPA Packet Radio

Network design, I believe November 1978 Transactions on Communications

[PSL] M. Pease, R. Shostak, L. Lamport, "Reaching Agreement in the Presence of Faults",

JACM 27, 2, 228-234, 1980.

[Ros) E.C. Rosen, "Vulnerabilities of Network Control Protocols: An Example", Computer

Communications Review, July 1981.

120

[RSA] R. L. Rivest, A. Shamir, and L. Adleman, "On Digitai Signatures and Public Key

Cryptosystems, "Communications ACM, vol. 21, pp. 120-126, Feb. 1978.

[RYB] A. Rybczynski, "X.25 Interface and End-to-End Virtual Circuit Service Characteris­

tics", IEEE Transactions on Communications, April 1980.

[SNA] R. J. Cypser, "Communications Architecture for Distributed Systems", Reading, Mass,

Addison- Wesley, 1978.

[Taj] W.D. Tajibnapis, "A Correctness Proof of a Topology Information Maintenance Protocol

for Distributed Computer Networks", Communications of the ACM, Vol 20, No. 7, July

1977, pp. 477-485.

(Tan) Andrew Tanenbaum, Computer Networks, Prentiss Hall, 1981.

[TCP] Department of Defense "Military Standard Transmission Control Protocol", MIL-STD-

1778, August 1983.

[TP4] Internation Organization for Standardization, "Connection Oriented Transport Proto­

col", DP 8073, 1983.

[Zim] H. Zimmerman, "OSI Reference Model - The ISO Model of Architecture for Open

Systems Interconnection", IEEE Transactions on Communications, Vol. COM-28, No. 4,

April 1980, pp. 425-432.

121

