
LABORATORY FOR tt· MASSACHUSEITS ·. INSTITUfE OF 
COMPUTER SCIENCE TECHNOLOGY 

MIT/LCS{IR-425 

CODE-MAPPING POLICIES 
FOR THE 

TAGGED-TOKEN 
DATAFLOW ARCHITECTURE 

Gino K. Maa 

May 1988 

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139 

' v 





Code-Mapping Policies for the Tagged-Token Dataflow Architecture 

by 

Gino K. Maa 

Submitted to the Department of Electrical Engineering and Computer Science 
on January 27, 1988 in partial fulfillment of the requirements 

for the degree of Master of Science 

Abstract 

Multiprocessing seems to be the only viable way to gain significant speedup beyond that af
forded by performance advances in semiconductor devices and hardware construction, which 
are beginning to face the limitations of physics. Although it is relatively easy to improve the 
"raw" computational performance of a system simply by adding more processors to it, the 
far more difficult task is to insure that the additional resources actually reduce a program's 
computing time. Thus, the ultimate success of multiprocessing as a means of increasing com
putation speed rests on the ability to parallelize computation: to partition, allocate, distribute, 
and schedule work efficiently amongst the large collection of available system resources, while 
maintaining a high rate of utilization of these resources. 

To keep many processors busy with work, it is necessary that the program has enough 
concurrent operations to map to those processors. But given that there is much concurrency 
in many large programs, the onus lies on the code-mapping process to maintain as much con
currency as is feasible without compromising its efficiency. This goal maximizes the scalability 
of the system. Our study is based on a data.flow computer, the MIT Tagged-Token Data.flow 
Architecture (TTDA). 

This study focuses on analyzing the effectiveness of the code-mapping policies for the 
TTDA. It develops metrics and a practical method for evaluating the effectiveness of map
ping policies on a given benchmark program and proceeds to apply it to a variety of readily 
implementable schemes. This approach provides answers to the following important questions: 

• What is the maximum gain achievable by any code-mapping strategy and, therefore, 
whether it is worthwhile to seek a more sophisticated strategy? 

• If some of the processors are idle, does it mean that the program lacks sufficient paral
lelism, and therefore either should be rewritten or perhaps is entirely unsuitable for a 
multiprocessor, or that the code-mapping process is too inefficient? 

• What is the effect of communications latency, an inherent part of all multiprocessor 
systems, on the performance of the system and the code-mapping strategy? 

Thesis supervisor: Dr. Arvind 
Title: Associate Professor of Electrical Engineering and Computer Science 

Keywords: Dataflow, Multiprocessors, Code Mapping, Program Partitioning, Processor Allo
cation, Scheduling, Granularity, Multiprocessor Performance Scalability, Parallel Computing. 



Acknowledgments 

I am grateful to a host of people whose generous support and contributions made this work 

possible. I thank my advisor, Arvind, for offering me this wonderfully enriching opportunity to 

participate in a challenging, revolutionary research, and for imparting his enthusiasm, wisdom, 

and guidance on this work. 

I am obliged to David Culler and Beruz Vafa for bringing my attention to the multiprocessor 

resource mapping problem initially, Ken Traub for making the Id compiler spiffy, Natalie Tarbet 

for generously proofreading and editing this report, and all other members of the Computation 

Structures Group past and present for developing the essential tools and pioneering concepts 

that this work bases on. I thank Andrew Chien, who has patiently put up with all my gripes 

along the years, and acknowledge the efforts of Andy Boughton and Natalie Tarbet, who have 

built the vital infrastructure that holds this research group together. 

I am forever indebted to my parents and my brother, Ray, and sister, Anne, for their uncon

ditional sacrifice, love, understanding, and support. I thank my dear friends John Chang, Mark 

Tapley, and Joey Chang, for their interest in my endeavors and their moral encouragement. 

This research was supported by the Defense Advanced Research Projects Agency under 

the Office of Naval Research contract N00014-84-K-0099. 



Contents 

1 Introduction 

2 Dataflow Parallel Computing 

2.1 The Dataflow Paradigm of Computing ......... . 

2.1.1 The Dataflow Instruction Execution Mechanism 

2.1.2 The Parallelism Profile of a Datafiow Graph . 

2.1.3 Generating Dataflow Graphs ...... . 

2.2 Speedup and Utilization of a Parallel Computer . 

2.3 Why dataflow is a good vehicle for studying mapping policies 

2.4 The SIMPLE Code: an Application Kernel in Id . . . . . . . 

3 System Simulation Issues and Techniques 

3.1 Program Graph and Data Value Representation . 

3.2 The Tagged-Token Dataflow Architecture ... 

3.2.1 The Instruction-Set Processor Pipeline . 

3.2.2 The PE Controller .... 

3.2.3 The I-Structure Memory . 

3.3 The TTDA Simulator ..... 

3.4 The Graph Interpreter Models 

3.4.1 The Idealized GITA .. 

3.4.2 The "Finite-Processor" GITA with Latency 

3.4.3 The Multiple-Queue GITA 

3.5 A Validation of GITA ...... . 

3.5.1 Experimental Specification and Results Using the Simulator . 

3.5.2 Correlating the Experimental Results from GITA ...... . 

1 

5 

6 

7 

8 

11 

12 

14 

15 

21 

22 

24 

24 

27 

27 

29 

33 

35 

36 

40 

40 

41 

43 



4 The Effects of Code-Mapping Policies on Performance Scalability 

4.1 The Code-Mapping Process of the TTDA 

4.2 Datafiow Ta.<ik Scheduling 

4.3 Task-Allocation Policies 

4.4 Task Granularity .... 

4.4.1 Choices of Ta.<ik Granularity . 

4.5 

4.6 

4.4.2 Program Parallelism under Different Task Granularities 

The Impact of Task-Allocation Policies on System Speedup 

The Impact of Latency on System Speedup 

5 Conclusion 

5.1 Summary of Significant Results 

5.2 Future Research ....... . 

11 

47 

49 

49 

53 

57 

60 

61 

65 

68 

75 

76 

77 



List of Figures 

2-1 Program Graph and Parallelism Profile for Inner Product, n = 3 

2-2 Compiler-Output Program Graph for Inner Product 

2-3 Block diagram of SIMPLE. . . . . . . . . 

2-4 Code-block-size Distribution of SIMPLE. 

2-5 Parallelism Profile of SIMPLE (3 iterations, 20 x 20). 

2-6 Parallelism Profile of SIMPLE (1 iteration, 32 x 32). 

3-1 Representation of an Instruction ..... . 

3-2 Split-Phase I-Structure Memory Reference . 

3-3 The Tagged-Token Datafl.ow Architecture 

3-4 I-structure Memory Cells . . . 

3-5 I-structure Memory Controller 

10 

13 

17 

18 

19 

20 

23 

24 

25 

28 

28 

3-6 Simulation Analogue of the TTDA 31 

3-7 Simulation Analogue of the Interconnection Network 32 

3-8 Structure of the Graph Interpreter . . . . . . . . . . 34 

3-9 (n = 1000,l = 0) Parallelism Profile for SIMPLE (1 iteration, 32 x 32). . 37 

3-10 Speedup in the Presence of Latency for SIMPLE (1 iteration, 32 x 32). . 39 

3-11 Effect of Latency on Speedup of SIMPLE (1 iteration, 10 X 10). . 44 

4-1 The TTDA Code-Mapping Process. 50 

4-2 Anomaly in Instruction Scheduling . 53 

4-3 Work Distributed to Processor Groups by a Static Allocation Policy. 58 

4-4 Ideal Parallelism Profiles of SIMPLE(32) under Various Task Granularities. 63 

4-5 Speedup of SIMPLE(32) as Computed from Its Parallelism Profiles. 64 

4-6 The Efficiency and Scalability of Some Allocation Policies. . 69 

4- 7 Effect of Latency on Speedup of SIMPLE(32). . . 72 

4-8 Effect of Latency on Speedup of MatrixMul(20). 73 

lll 





Chapter 1 

Introduction 

Recent advances in technology have made computers smaller, cheaper, more reliable and energy 

efficient. These developments afford us the opportunity to exploit the potentials of networking 

several computers together over operating each as a stand-alone machine. An immediate 

benefit of networked computers is sharing of both information and resources. Data residing 

or programs running on one computer may be accessed by another; hardware resources such 

as printers or special-purpose processors connected to one computer can be made available to 

others. The advantage of modularity is inherent in a network of specialized computers where 

each computer is designed and programmed to serve a particular subset of operations that are 

required of the system. This modularity may simplify the development and maintenance of very 

complex systems. Multiple computers can cooperate to work on one large problem, with the 

goal of reducing the solution time significantly from that achievable with only one computer. 

Multiple computers may also be interconnected to provide redundancy in operations. The 

replicated resources can insure system availability even when some of the computers should 

fail. This concept can be further extended to provide fault tolerance, meaning that a system 

would be able to detect failure of some component, recover, and bypass the fault to continue 

operating correctly. These are some very attractive motivations for exploring networking and 

multiprocessing. 

The objective of the research described here is to exploit the potential of using multiple 

computers to speed up the execution of a program, thus allowing large, complex problems 

to be solved faster and some of those problems which are beyond the capabilities of today's 

supercomputers to be tackled at all. Multiprocessing seems to be the only viable way to gain 

1 



significant speedup beyond that afforded by performance advances in semiconductor devices 

and hardware construction, which are beginning to face the limitations of physics. Although 

it is relatively easy to improve the "raw" computational performance1 of a system simply by 

adding more processors to it, the far more difficult task is to insure that the additional resources 

actually reduce a program's computing time. Thus, the ultimate success of multiprocessing 

as a means of increasing computation speed rests on the ability to parallelize computation: 

to partition, allocate, distribute, and schedule work efficiently amongst the large collection of 

available system resources, while maintaining a high rate of utilization of these resources. 

In order to exploit multiprocessing to speed up computations, there must initially be suf

ficient concurrency in the program to make use of redundant hardware. But the subsequent 

process of actually parallelizing the computation, or mapping the code to processor, must pre

serve enough of the initial concurrency of the program to saturate the machine with work. We 

shall assume that there is sufficient concurrency in large programs and concentrate on examin

ing the latter problem in detail. Our study of the specific code-mapping issues is based on the 

datafiow machine and the datafiow programming paradigm because of the elegant simplicity it 

offers in accounting explicitly for the costs and benefits of various aspects of the code-mapping 

strategies. 

This study mainly concentrates on the "effectiveness" part of an entire cost-effective anal

ysis needed to determine the exact code-mapping policy for the TTDA. As such it develops 

metrics and a valuable method for evaluating the effectiveness of mapping policies on a given 

benchmark program and proceeds to apply it to a variety of readily implementable schemes. 

The "cost" part of the analysis of code-mapping policies is mostly neglected here, since many 

operating-system related implementation details have not yet been explored adequately to 

provide specific timing and throughput parameters needed to complete that phase. 

Chapter 2 introduces the principles of datafiow computing and presents an abstract inter

preter of datafiow graphs. It establishes some metrics for characterizing program parallelism 

under the abstract interpreter and for evaluating the performance of a multiprocessor. Then 

it describes a large computational physics kernel known as SIMPLE, coded in a datafiow lan

guage, Id. This kernel will be used almost exclusively throughout the rest of the dissertation. 

1 The "raw" performance being the MIPS rate of one processor multiplied by the number of processors in the 
system, which gives the absolute upper-bound performance that the given hardware can ever attain. 

2 



Chapter 3 documents the MIT Tagged-Token Dataflow Architecture, the target machine 

of this code-mapping study, and the operating conditions and assumptions under which it is 

conducted. We show the program development and execution processes and the simulation 

and emulation tools used. 

Chapter 4 presents the results of this datafiow code-mapping study. Three fairly orthogonal 

phases can be identified in the code-mapping process: task partitioning, task allocation to 

processors, and instruction scheduling. Finding the optimal strategy for each of these phases 

is an NP-complete problem[18, 13]. Instead, we shall show, for a particular program, how 

to obtain the theoretical best-case scenario for each code-mapping phase, and use it as a 

comparison with what some realistic strategies can achieve. This approach provides answers 

to some important code-mapping questions, including the following: 

• What is the maximum gain achievable by any code-mapping strategy and, therefore, 

whether it is worthwhile to seek a more sophisticated strategy? 

• If some of the processors are idle, does it mean that the program lacks sufficient paral

lelism and, therefore, either should be rewritten or perhaps is entirely unsuitable for a 

multiprocessor, or that the code-mapping process is too inefficient? 

• What is the effect of communications latency, an inherent part of all multiprocessor 

systems, on the performance of the system and the code-mapping strategy? 

3 





Chapter 2 

Dataflow Parallel Computing 

Many approaches have been suggested to exploit the potentials of parallel computing. An al

gorithm for solving a particular problem or a class of problems can be implemented directly in 

hardware, so that the concurrency in replicated hardware structures may be fully utilized. Re

cent advancements in VLSI technology and CAD (computer-aided design) tools promote this 

approach. They can be found from dedicated chess computers 1 to systolic arrays and FFT 

and other sorting networks. Alternatively, algorithms can be designed to repeat some simple, 

regular pattern of execution during run-time, such as a regular data access pattern. Then a 

machine can be instructed either to use its vector hardware to pipeline this repeated pattern 

more expediently by overlapping several iterations at once or, instead, to use many processing 

elements which work simultaneously, each operating on one iteration of the execution using dis

tinct data, to complete the task quickly without repetition. Vector supercomputers and SIMD, 

single-instruction multiple-data, systems such as the Crays and the Connection Machine are 

manifestations of such an approach, which works well for algorithms whose parallelism is well 

organized into these distinct (in data to be processed), yet similar (in execution procedure) 

loops. Of course, an entire program can be manually decomposed into concurrent processes 

which communicate with each other via messages, as in CSP or Ada, or it can be infused with 

explicit fork and join operations to create multiple subprocesses and synchronize their compu

tations. Lastly, a method for automatically exposing a large degree of unorganized parallelism 

inherent in most programs can be adopted to spare the engineer the task of designing special 

1The Hitech chess computer developed at Carnegie Mellon University, for example, uses special parallel 
hardware to search and evaluate state space rapidly. 

5 



hardware for each problem, as in the first approach, or the programmer the task of finding the 

algorithm optimally suited for a particular problem/hardware combination, as in the second 

approach. 

To this latter end we may start by adopting a functional language discipline (e.g., FP [10], 

ML [23],) which permits one, whenever there is a function application, to evaluate all of its 

arguments concurrently. This parallel evaluation yields results identical to a conventional top

down, left-right sequential evaluation because the rewrite semantics of functional languages 

guarantees side-effect-free execution [20]. Since programs written in a functional language 

consist entirely of compositions of more primitive functions, there is much concurrency in most 

programs. One execution paradigm to exploit the parallelism offered by functional languages 

is a data-driven style of computing known as dataflow [15]. 

In this chapter, we introduce the dataflow paradigm of program development and execu

tion under some abstract interpreter models, then define some important metrics such as the 

parallelism profile, speedup, and utilization for characterizing aspects of the program and the 

performance of a multiprocessor2 • These definitions will be used throughout the rest of the 

dissertation. We then argue why the datafiow approach is a much more appropriate basis for 

attempting to understand and analyze the issues of code-mapping for a multiprocessor than the 

von Neumann style of programming. Lastly, we present a large kernel written in the datafiow 

style as the benchmark for our study. Relevant statistics such as its dynamic instruction count, 

instruction mix, and parallelism profile are noted for reference. Certainly, the conclusions of 

any set of experiments are as dependent on the choice of the benchmark programs as they are 

on the computer itself, but we believe the choice of a large, realistic kernel will produce a more 

balanced view of all aspects of the system. 

2.1 The Dataflow Paradigm of Computing 

Datafiow computers execute a program by directly interpreting a datafiow graph consisting of 

nodes, which represent machine instructions, connected by directed arcs, which represent the 

data dependencies, and hence the partial execution ordering, among the nodes. This section 

begins with descriptions of the dataflow instruction execution mechanism followed by a short 

2 As we shall see in Chapter 3, there are functions relating these program and performance metrics. 

6 



example program graph and the derivation and meaning of its ideal parallelism profile. Then 

we shall show the actual graphs generated automatically from the source program by the Id 

compiler. 

2.1.1 The Dataftow Instruction Execution Mechanism 

In the conventional, sequential computing model, computation is performed by the underlying 

hardware and various levels of firmware and software emulating a fetch-decode-execute cycle. 

First the machine fetches an instruction from the memory; it is decoded to determine which 

operation is needed and where its operands are. Then the operands are fetched; the specified 

operation is carried out on the operands and the results stored back. The cycle thus repeats to 

process the next instruction, which defaults to the one logically succeeding in the instruction 

stream. Lying at the heart of this computing model is the notion of a control sequence which 

is passed from one instruction to the next: the currently active instruction chooses its suc

cessor based on the state of the system. Although multi-threaded program execution can be 

accommodated by special fork and join operations, they require operating-system-level support 

because the machine-instruction level scheduling does not support the necessary synchroniza

tion and context switching to make this style of operation efficient. Inherent in this computing 

model also is the relation that the instruction dictates its operand fetches, so that the operand 

fetches are a part of the primitive fetch-decode-execute cycle and they must complete before 

further work can resume. 

A basic machine instruction cycle begins when all the operands required by an activity are 

present at the processor, then the activity becomes enabled. The instruction corresponding to 

an enabled activity is then fetched out of the program memory, decoded, and executed using 

the available operands. The results of the operation are delivered to the succeeding activi

ties which may cause them to be enabled for execution. In the dataflow model, instruction 

scheduling is based upon the availability of operand data to an activity, thus freeing from 

the single-threaded control structure of sequential computers. The dataflow scheduling mech

anism provides machine-instruction level synchronization and context switching to provide 

efficient multi-threaded computation. In this model the program instruction fetch, instead 

of the operand fetches, becomes part of the primitive fetch-decode-execute cycle and it must 

complete before further work can be initiated. 

7 



If we view data and code as two distinct types of input required by a machine for execution, 

(i.e., the Harvard architecture view,) then there is an important contrasting point worth noting: 

program code is static and completely defined prior to runtime. As such, it is more amenable 

for distribution to and caching by several processors without concerns for synchronization or 

consistency problems. Data, on the other hand, is continually changing (or in the functional 

programming paradigm, is continually being defined.) The data store must thus constantly be 

updated to reflect the state of the computation. Given these differences, then, it is obvious 

that instruction fetch should be dictated by available data and so become part of the execution 

cycle. Since the program can be distributed safely among processors, the program fetch will 

always be local and therefore immune to network access latency, resulting in a non-blocking 

processor pipeline. 

2.1.2 The Parallelism Profile of a Dataflow Graph 

Dataflow graphs have a well-defined meaning without any timing assumptions, and dataflow 

execution is generally viewed as asynchronous. Nonetheless, in order to simplify the char

acterization of parallelism in dataflow programs, we shall consider a synchronous execution 

model. 

The pamllelism profile for a dataflow graph on a given input is a function pp(t) which 

gives the number of instructions executed at each step ton an abstract machine. The abstract 

machine has the following characteristics: 

• All enabled instructions are immediately executed. 

• Each operator takes unit time to execute. 

• Results of an instruction are available to its successors instantaneously. 

• Unbounded computation resources. 

We illustrate the method for generating parallelism profiles through an example. Figure 2-1 

shows a program graph which computes the inner products of two vectors, A and B, of size 

n. Initially, a token corresponding to sum with value zero is input to the left switch and a 

token corresponding to i with value one is presented to the right switch and the ~ predicate. 

The value n, as well as descriptors for the two vectors, are loop invariants and thus can be 

8 



considered to be embedded in the graph. Assume that the value of n is 3. In step 1, instruction 

1 (i.e., the instruction ~,)fires, producing tokens with value TRUE for the control inputs of 

the two switches. Instructions 2 and 3 fire in the second step and produce the tokens carrying 

the value of sum for instruction 8 and i for instructions 4, 5, and 6. In step 3, instructions 4, 

5, and 6 execute while the token for sum waits for the other input to instruction 8. Firing of 

instruction 6 provides input to the predicate and the right switch. In step 4, the value of sum 

that has been waiting is added to the result of instruction 7 while the new value of i passes 

through the switch. Note in step 5 of the parallelism profile in Figure 2-1 that the second 

iteration has begun while the first is still active. Execution continues in this manner until step 

14 when it produces a token on the false side of the switch in instruction 2. The pattern in 

steps 4 to 6 covers all eight instructions and repeats for every iteration. Note, a node is fired 

at the step corresponding to the maximum of the times of its input tokens. 

The step beyond which pp( t) is uniformly zero is called the critical path length, that is, 

the length of the longest chain of data-dependencies in the program. The area under the 

curve pp(t) gives the total number of operations executed. The ratio of these is the average 

parallelism. It can be seen from the parallelism profile of the inner-product n = 3 shown in 

Figure 2-1 that the critical path length is 12 and the total number of operations is 27. Note, 

this describes the parallelism for this particular method of computing the inner-product and 

does not imply that this is the maximum achievable parallelism. However, other methods with 

more parallelism would be described by different graphs. 

The fine-grained scheduling underlying a dataflow computer treats each instruction as an 

independent process, complete with its own context and environment. We define a single thread 

of computation as a set of instructions which can never execute concurrently. In Figure 2-1, 

instructions 1, 3, 4, 7, 8, for instance, constitute a thread of computation and instructions 4, 

5, and 6 are in different threads of computation. The number of active threads of computation, 

then, is the number of instructions competing for processor usage at a given time3 . This notion 

is analogous to that of the concurrent processes for sequential computers. 

3 This is only true if pipeline effects are ignored. Given a pipelined machine, the actual number of competing 
tasks would be the number of active threads of computation minus the number of pipeline stages. 

9 



sum=O i=l 

"' "' 6 6 Q, 

0 9 
~ = 6 5 5 Q,) 

~ ! 
I.) 

3 5 3 4 1 4 1 3 = 1 3 
0 1 0 

1 2 4 
0 

7 8 2 7 8 2 7 8 2 

1 2 s 4 5 6 7 8 9 10 11 12 T 

Figure 2-1: Program Graph and Parallelism Profile for Inner Product, n = 3 

10 



2.1.3 Generating Dataflow Graphs 

Although dataflow graphs provide a precise representation of parallel execution, the utility of 

the model is limited by our ability to generate the graphs themselves. We shall consider only 

graphs generated by a reasonably sophisticated compiler for the language Id. Id is a functional 

language extended with I-structures to provide efficient array manipulation. A broad class of 

algorithms are easily expressed in Id, although it is difficult, perhaps impossible, to express 

certain types of algorithms in Id efficiently. This section explores the implications of the 

language and the compiler on parallelism profiles. 

The inner product function may be expressed in Id as follows. 

Def ip A B = {(l,h) = bounds(A) ; 

s = 0 

In 

{For j From 1 To h Do 

Next s = s + A [j] * B [j] 

Finally s }} 

The dataflow graphs produced by the Id compiler are based on a fixed set of schema 

and rules for composition [27] which ensure deterministic behavior under all execution orders. 

Arithmetic expressions and let-blocks are described by acyclic graphs. Conditional expressions 

are constructed using switch instructions to steer values to the appropriate arm, based on a 

predicate, allowing portions of the conditional to execute before all the inputs of the expression 

are present. Iteration is captured by a loop schema, which permits arbitrary overlap of itera

tions, unless constrained by data dependencies. Values which are arguments to an invocation 

of a loop but are constant over all iterations are not circulated, but are explicitly stored in 

a constant area [8] in the loop preamble. User-defined functions and loops are compiled into 

code-blocks, which are invoked by an application schema, permitting arbitrary recursion. The 

class of graphs generated in this manner is deterministic and self-cleaning [6]. Furthermore, 

graphs are embellished so that each code block receives a trigger to enable nodes with constant 

input and produces a signal indicating that all nodes without outputs have fired [27]. 

The graph generated by the Id compiler for ip, the inner product program, contains 31 

instructions. Most are for setting up and cleaning up the loop and are thus executed only 

11 



once. The graph for ip shown in Figure 2-2, though stylized, captures the essential features 

of the compilation for drawing the parallelism profile. The output of the Id compiler can be 

executed on the TTDA simulator or GITA [25], the Graph Interpreter for the Tagged-token 

Architecture, which generates parallelism profile graphs as a part of its runtime statistics 

reports. As can be seen in the profile in Figure 2-2, the compiler-generated graph executes five 

more instructions per iteration than the graph in Figure 2-1. These additional instructions 

are generated for tag manipulation and control of loop unfolding, which are discussed further 

in [2]. Graphs generated by the current Id compiler incur roughly 150% overhead in terms 

of the number of instructions executed beyond the essential computation in order to allow 

maximal parallelism [16] while preserving determinacy. 

The dataflow graph for a program is divided into units called Code-Blocks. Typically there 

is a separate code-block for each separately compiled function and for each loop. 

2.2 Speedup and Utilization of a Parallel Computer 

Some basic concepts and definitions of metrics must first be established before the performance 

of a multiprocessor can be evaluated. One of the most important metrics for a multiprocessor 

system is its speedup in running a program, defined as 

S( ) = t(l) 
n t( n)' 

where t( n) is the execution time required for a configuration of n processors. The speedup factor 

predicts the throughput of the system as a function of its hardware size and also the degree 

to which its performance can be cost-effectively scaled up, simply by modularly increasing the 

hardware. t(l) ~ nt( n ); otherwise, we shall be able to emulate the multiprocessor by n-way 

interleaving the uniprocessor's instruction stream with then-way partitioned code and reduce 

t(l) thus. 

The fact that during the course of a computation some processors may be idle gives rise to 

the concept of the utilization or efficiency of a multiprocessor system, 

S(n) t(l) 
ry=--=--. 

n nt(n) 

In general, 'T/ < 1 because of synchronizations, both explicit and implicit. Explicit synchro

nizations are those dependencies dictated by the program logic - the flow, anti, and output 

12 



sum=O 

9:---- 10: _ __._.,. 

D-N D-N 

-4 .., 
c.. 

0 9 .... = ~ 

!:: t = <.) 
10 1 13 2 4 10 1 13 2 4 10 1 13 2 = 0 1 0 

1 13 2 4 7 8 9 11 12 7 8 9 11 12 7 8 9 11 
0 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 T 

Figure 2-2: Compiler-Output Program Graph for Inner Product 

13 



dependencies described by Kuck in (22], and the macroscopic-level data structure producer

consumer relationships. In von Neumann parallel computing, this cost is often ascribed to 

the overhead of parallelizing or decomposing an algorithm. But in dataflow computing, this is 

more properly unified under the overhead of synchronization. Of course, there may be large 

variations in the amount of explicit synchronization among different algorithms computing the 

same problem. We assume that the problems amenable to multiprocessor solution are either 

inherently parallel or some parallel algorithm can be found. Implicit synchronizations - bus 

contention or collision in the routing network and memory bank access conflicts - are the ar

tifacts of the architectural specification and hardware implementation. These synchronizations 

force processors to defer execution of certain instructions until their prerequisites are met. 

2.3 Why dataflow is a good vehicle for studying mapping poli-
. c1es 

Data:flow is an excellent vehicle for studying code-mapping policy issues confronting multipro

cessor systems because the costs and benefits of each choice at each phase of the code-mapping 

process can be accounted for explicitly and thus evaluated easily. Unlike parallel von Neumann 

programs, which are sequential code annotated with extra instructions to switch contexts and 

to synchronize or fork computation, data:flow programs perform context switching, synchro

nization, and forking at every instruction. Each data:flow instruction executes entirely context 

independent of all other instructions in the program, its results determined solely by its inputs. 

Efficiency arguments aside for now, this scheme already includes the full cost of parallelizing a 

program, so that when task granularity is varied or more processors are added to the system, 

no further instructions or work is needed to run the program in the new configuration. Any 

gain in execution speed or loss in processor utilization can be readily attributed either to a 

lack of parallelism in the program itself, or the algorithm, or to an inefficient code-mapping 

strategy. Most von Neumann parallel programs would have to be recompiled and many even 

completely restructured and rewritten if they were to run on a system with, for instance, 

ten times more processors. The very high cost of forking and joining parallel processes and 

synchronizing computation on von Neumann computers, in addition to the tedious explicitly

specified decomposition, results in these programs' being parallelized only as much as they 

are necessary for the target system. This approach, unfortunately, destroys the metric for any 

14 



valid scalability comparison so that we are not able to discern the effects of program parallelism 

and code-mapping strategies in accounting for scalability anomalies. 

By using the dataflow parallelism profile, it is possible to quantify precisely the amount of 

parallelism available in the program itself, as we have already seen. As the program is actually 

mapped onto a set of processors and executed, its characteristics can be determined at each 

phase of the mapping process. Since no more instructions are executed4 nor is the program 

structure altered, the cost and effectiveness of that phase can be evaluated in terms of the 

amount of parallelism it preserves. 

2.4 The SIMPLE Code: an Application Kernel in Id 

In order to characterize the behavior and performance of a computing system, we must un

fortunately introduce a highly variant agent, the test or benchmark program. Any choice of 

benchmark program necessarily biases the emphasis placed on particular aspects of the system 

design and therefore influences the outcome of the experiments. We eschew most small, single 

function kernels: inner product, linear combination, FFT, convolution, etc. , precisely because 

they tend to spotlight particular features and thus give a more artificial characterization of the 

system as a whole. In searching for a candidate, we considered complete application kernels 

which are mostly computation-bound - in particular, the computational physics problems 

which account for a large proportion of the load of many supercomputers in service. These 

problems need to solve numerically a set of partial differential equations, which describe a 

certain physical system, usually by either the finite-element, finite-difference, or Monte Carlo 

methods. A large program based on each of the finite-difference and Monte Carlo methods 

has been written in Id as benchmarks for the TTDA. Since both the finite-difference and 

the finite-element methods are reduced to a large sparse matrix inversion problem, the finite

element method has not been represented. We have chosen the SIMPLE code, an instance of 

the finite-difference method, as the primary benchmark for this study. It is a large, 1200-line 

program with complex data and control structures, exhibiting non-trivial producer/consumer 

relationships5 . 

4 This means that potential speedup is directly proportional to the average parallelism. 
5 The Monte Carlo benchmark is an electrodynamics application (PIC) using a particle-in-cell approach. 

15 



The SIMPLE code solves a two-dimensional hydrodynamics and heat conduction problem. 

It has been studied extensively both analytically [14] and empirically. It has become one of 

the standards for benchmarking high-performance computers, so performance data from many 

commercial and research systems exist. A detailed discussion of the program appears in [5]6 . Its 

top-level structure, main subcomponents, and data.flow dependencies are depicted in Figure 2-

3. With the exception of the procedures world and generate, which set up the program 

constants and generate the initial conditions, the entire program is iterated once for each 

simulated time step. Each iteration starts with calculating the positions of the border zones 

surrounding the grid boundary by reflecting the adjacent interior point across the boundary, 

and by calculating their physical attributes (i.e., mass density, viscosity, and pressure.) The 

problem is then partitioned into a hydrodynamics and a heat conduction phase. During the 

first phase, the velocity and position of the nodes are incremented based on the acceleration 

vector at each node. Then, new values of area, volume, and density at the new positions of 

the nodes are computed along with their intermediate values of pressure and temperature. 

The second phase transfers energy between adjacent zones to account for the heat conduction. 

This involves solving a system of linear difference equations by the alternating direction implicit 

(ADI) method to determine the final pressure and temperature of each zone. For a grid size 

of n x n, both of the major phases consist of doubly nested loops generating O(n2 ) work for 

each simulated time step. 

Figure 2-5 shows the parallelism profile of three iterations of the outer loop (three time 

steps) of SIMPLE on a 20 x 20 mesh, while a typical simulation run would perform 100,000 

iterations on 100 x 100 mesh. The critical path is 4371 and the instruction count is 2,338,792. 

The profile of the first iteration is biased by the initialization procedures. But as can be seen 

from the identical latter two of the three distinct sections of the profile, there is no significant 

parallelism among the outer loop iterations (i.e., successive time steps) of SIMPLE; the profile 

for n iterations can be obtained by repetition of a single-iteration profile. Table 2.1 lists a 

breakdown of instruction mix classes for the same run. To show how the profile changes with 

the size of the problem, we have drawn the profile for the 32 X 32 mesh in Figure 2-6. (Critical 

path = 2393, instruction count = 2, 207, 156.) It is noteworthy that the potential parallelism 

6 This reference actually describes a version of the program written in a more recent dialect of Id, Id
Nouveau [24]. Except for its more flexible syntactic style, much of the semantics of the program still remains 
the same as, or has close counterparts in the original Id version that is used throughout this study. 

16 



Size of Mesh 

Initial Environment 

x p 

A,D 

Boundary Node 
Reflection 

X' A,D,P 

v 
Velocity-Position 

A = Artificial Viscosity 
D =Density 
E =Energy 

E' = Intermediate Energy E', T' 
P =Pressure 
T = Temperature 
T' = Intermediate Temperature ~thydr 
V = Node Velocity 
X = Node Position 
X' = Reflected Node Position Conduction 
~t = Time Step 

Boundary Node 
Reflection 

D,P 

E,T ~t 

Min 

Figure 2-3: Block diagram of SIMPLE. 

17 



"tj 12.., 101 I c)q" 
i::: 

lOJ ~ 
>-; 
lb 

I'-.? 
I ..,.. 

C":l 
0 
p... Cl) 
<? ..¥: 
O"' u 

81 ~ 
- 0 0 
n -:>;" ~ I 
00 

Cl) 
to-" I~-00 ""O 

~ 
0 

00 u 6~ ~ -:::!. C+--1 
O"' 0 
i::: 1-4 - Cl) <:» ..0 ::::; 

El 0 4 ....... ;:j 
00 z -~ 
""d 
t'-4 
~ 2 

1000 2000 

SIMPLE Code 

Histogram of Code Block Size 

Compiled with the Id Compiler, Vl.22 (1/29/86) 

~ Loop Code Blocks (39) 53 ,350 Total Bytes 

II Procedure (Non-Loop) Code Blocks (18) 35,332 Total Bytes 

(55) 88,682 

Inner Loop 
Procedure HYDRO-ENERGY 

\ Pro<0dr GENERATE 
Outer Loop, 

r7A 1111111 Procedure SIMPLE 

~ 
3000 4000 

Code Block Size in Bytes 

...... · ·.·.·.· 
li/: 

5000 6000 7000 



varies tremendously during execution, a behavior which in our experience is typical of even the 

most highly parallel programs. We believe that any large program that runs for a long time 

must have sufficient parallelism to keep hundreds of processors utilized; several applications 

that we have studied support this belief. 

!l) £000 
= .sa ..., 
"' "" Cll 
Q.. 

0 .... 
= Cll 

t: 
::I 
u 1000 = 0 

0 

0 
1000 2000 8000 4000 T 

Figure 2-5: Parallelism Profile of SIMPLE (3 iterations, 20 X 20). 

19 



I Type Count I Percentage I 
IDENTITY 643,520 27.52% 
I-FETCH 622,746 26.63% 
PP-ARITHMETIC/LOGICAL 313,893 13.42% 
I-STORE 180,430 7.713 
INT-ARITHMETIC /LOGICAL 168,522 7.21% 
MISC-TAG-AND-CONTROL 98,190 4.20% 
SWITCH 87,301 3.73% 
EXPAND-COMPRESS 84,193 3.60% 
DEC-RC 65,490 2.80% 
USE 34,496 1.47% 
D 32,232 1.38% 
SUPER-ARITHMETIC 2,403 0.10% 
MISC-I-STRUCTURE 798 0.03% 

Table 2.1: Dynamic Instruction Mix of SIMPLE (3 iterations, 20 x 20). 

~000 

"' = .9 .... 
o$ 

'"' II> 9000 c.. 
0 .... = II> 

I:: := 1!000 u = 0 
0 

1000 

1000 2000 T 

Figure 2-6: Parallelism Profile of SIMPLE (1 iteration, 32 x 32). 

20 



Chapter 3 

System Simulation Issues and 

Techniques 

Developed by the Computation Structures Group at MIT, the Tagged-Token Dataflow Ar

chitecture (TTDA) [3] is a multiprocessor system based on the dataflow principle of program 

execution. It is a mechanization of the U-interpreter abstract model of computation [6]. Its 

distinguishing feature, compared to Dennis's pioneering static data:flow architecture [15], is 

that every token in the machine is tagged with a field which encodes the activity name, or the 

context, of the token. It exposes more parallelism in the graph by enabling tokens from dif

ferent contexts to coexist on any arc of the graph, which has the identical effect as replicating 

the actual graph once for each active context. 

The TTDA is a conceptual prototype data:flow system; it has never seen an actual hardware 

implementation. It is intended to guide our investigation into the requirements and rewards 

of dataflow computing and to focus our attention on the relevant issues. The definition of the 

TTDA includes a complete specification of its machine instruction set, the various token and 

data types and value representation, the processor pipeline structure and the functional specifi

cations of each stage, and the I-structure memory controller operations. With this definition it 

is possible to construct high-level-language compilers producing dataflow machine instructions 

and instruction-set interpreters emulating or simulating candidate processor designs. 

Although the instruction processing aspect of the TTDA has been fully specified, the higher

level operations issues of code-mapping policies have not been explored and those of resource 

21 



management [l, 2] have not been settled. In order to study the behavior and investigate these 

undecided issues and to evaluate the merits and deficiencies of the TTDA, before actually 

committing it to some hardware realization, some emulation facilities have been constructed 

to allow these experiments to be performed. We shall first present the encoding of the datailow 

program graphs and data tokens, and then a block-diagram-level description of the TTDA, 

which processes instructions and data in these representations. We then discuss the salient 

features and justify the design decisions of two emulation tools: the TTDA simulator, which 

faithfully follows the proposed hardware functional specification of the TTDA, and several 

variants of GITA, the graph interpreter, which is an abstract implementation of a TTDA 

instruction interpreter. Both of these will be used later to conduct experiments in evaluating 

code-mapping policies for the TTDA. Finally, we shall verify GITA as a valid simulation tool 

for the TTDA by establishing a correspondence between the results from the two facilities, so 

that GITA results can be cited with confidence, and normalized and meaningfully compared 

to the simulator results. 

3.1 Program Graph and Data Value Representation 

A datailow source program is translated into a set of code-blocks, each of which corresponds 

to an Id function or a loop construct. A code-block is a piece of dataflow graph with some 

number of inputs and outputs. The graph for the code-block is encoded as a linear sequence of 

instructions to be stored in the Program Memory. The address for each instruction in the linear 

sequence is chosen arbitrarily1 . Instructions in the graph are encoded as shown in Figure 3-

1. The literal/constant field may be a literal value or an offset into the constant-area. The 

destinations are merely the addresses of the successor instructions in the graph. To facilitate 

relocation, addressing within a code-block is relative to the beginning of the code-block. 

A specific invocation of a code-block is determined by a context, which identifies two reg

isters: the Code-Block Register (CBR) which points to the base address in Program Memory 

for the code-block's instructions, and the Data Base Register (DBR) which points to the base 

address in Constant Memory for the constant area in Constant Memory. At code-block in

vocation time, the system manager must therefore allocate space in Program and Constant 

1 Except for certain conventions as to where input tokens to a code-block are received. 

22 



s : Opcode 

Literal/Constant 

Destination s'
1 

• • • 

Destination s' 
n 

Figure 3-1: Representation of an Instruction 

Memory for the designated function and allocate and initialize a CBR/DBR pair to point to 

the instruction- and constant-base addresses. 

There are two classes of tokens in the TTDA: data-value tokens and system-services tokens. 

The value tokens correspond exactly to the tokens traveling along the arcs of the datafiow 

program graph. Each value token has a tag field and a data field. The tag of each value token 

specifies an instance of an instruction activity to which it is destined. Each tag consists of five 

sub-fields: 

• Processor number - the destination processor. 

• Context register number - the context of the token. 

• Instruction offset - instruction within the code-block. 

• Token Arity - whether token needs a partner. 

• Operand port number - which instruction operand the token is for. 

The data field consists of a type tag and an encoding of the value itself. 

The system-services tokens have no counterpart in the datafl.ow graph; they are manifesta

tions of the architectural implementation. These appear in I-structure operations (for example 

an I-fetch, which is actually a split-phase transaction as shown in Figure 3-2) as the request and 

reply /acknowledgment tokens traveling along the dashed arcs between the I-structure memory 

units and the program instructions. Other instances are system-manager requests (e.g., func

tion invocation/termination, memory allocation/deallocation.) System-services tokens carry 

processor- or memory-controller-specific information. 

23 



t--:. < a, ""ad" ,c.• > 

--+- I-structure 

8 : 

.---·-
! : r--'""""I ~ ' 

'--<c.s,v > 

Storage 

Figure 3-2: Split-Phase I-Structure Memory Reference 

3.2 The Tagged-Token Dataflow Architecture 

The Tagged-Token Dataflow Architecture incorporates a set of processing nodes interconnected 

by a short-distance, high-bandwidth packet-switching communications network. Each node 

consists of a processing element (PE) and an I-structure memory module, and the packets that 

are routed by the network consist of dataflow tokens or service request and acknowledgment 

tokens. Although this underlying implementation uses message-passing communications pro

tocols, the uniform address space of the system and the machine-instruction-level packetization 

presents only a shared-memory architecture to the programs. The specifications of the network 

are deliberately left nebulous in the TTDA definition in order not to preclude any innovative 

developments in network topology and design. 

As shown in Figure 3-3, the processing element is a dataflow computer which is radically 

different in organization from its standard von Neumann counterpart. Within each PE, there 

are three parallel paths for incoming tokens: the instruction-set processor, the processor

controller, and the I-structure memory. 

3.2.1 The Instruction-Set Processor Pipeline 

The instruction-set processor branch comprises a pipeline of asynchronous stages coupled by 

staging FIFO buffers: 

Input Stage: An input token is extracted from the incoming packet and checked to deter

mine whether it is a data token, an I-structure memory request, or an auxiliary service 

request/acknowledgment token. For data tokens, those which do not require a partner to 

24 



From Network 

Input 

WM 

IS Mem PE Controller 

To Network 

Figure 3-3: The Tagged-Token Dataflow Architecture 

25 



become active2 are passed directly to the instruction fetch stage, while those which do will 

enter the wait-match stage to seek its partner. I-structure memory requests are forwarded 

to the I-structure memory controller stage and auxiliary service request/acknowledgment 

tokens are forwarded to the PE con trailer. 

Wait-Match Stage: The associative token store is searched in attempt to locate the partner 

of the input token. Partner tokens have identical tag field, except for the instruction 

port number. If a partner is found, then it is extracted from the store and the pair of 

operands are then forwarded to the instruction fetch stage. If a match cannot be found, 

then the incoming token must wait in the wait-match store for its partner to arrive 

eventually. The Wait-Match unit serves two distinct functions: It provides the hardware 

mechanisms for synchronization by deciding whether to store or fetch an operand, and 

it provides for the actual storage of the operands. Obviously, the wait-match associative 

store must have sufficient capacity to hold all incoming unmatched tokens, otherwise the 

overflowing tokens can never hope to get matched and thus exit out of this stage. The 

scenario potentially leads to a deadlock of the system. 

Instruction-Fetch Stage: The context base register and the destination instruction address 

in the tag of the token are used to fetch the instruction from program memory. The 

tokens' data fields are sent to the ALU and their tags are forwarded to the compute-tag 

stage, along with the necessary instructions to control the processing function of these 

two succeeding stages. 

ALU: The workhorse of the pipeline. It receives its operands and function codes from the 

instruction-fetch stage. 

Compute-Tag Stage: The tag sub-fields of the tokens are manipulated, according to the 

type of executing instruction, to produce output tags that will direct the result tokens 

to their in tended destinations. 

Form-Token Stage: The results of the ALU and compute-tag stages are combined as the 

data and tag fields in building the output tokens. 

2 Note that there is no correlation between the arity of an operator and whether a token destined to that 
operator requires a partner. This is because a dyadic operator may have a constant operand and a monadic 
operator may need a signal trigger. See the instruction-set definition [7]. 

26 



Output Stage: The results from the three branches of the PE are serialized to be delivered 

to the network. 

3.2.2 The PE Controller 

The PE controller branch serves to provide a "backdoor" access to the entire state of each 

processing element to facilitate diagnostics and block-code and -data transfer to or from any of 

its internal memory units. It also provides basic input-output capability, and non-deterministic 

merging for stream and resource management operations. 

3.2.3 The I-Structure Memory 

Memory operations in the TTDA are all split-transaction processes: a request for memory 

service is sent to the memory module to initiate a transaction. An acknowledgment is eventu

ally delivered to the sender to complete the memory operation. The salient characteristic of 

this type of memory access cycles is that even though there may be an arbitrary time delay 

between the request and its corresponding acknowledgment, the processor issuing the request 

is immediately freed to start work on another thread of computation. 

The I-structure memory [9] supports this split-transaction memory operation by requiring 

each request to specify a continuation, a forwarding destination, so that upon completion of 

the operation, the results or an acknowledgment can be delivered to the forwarding address, 

and further processing can resume on that thread of computation. 

To synchronize the read and write requests to a memory location, the I-structure memory 

controller manipulates the presence bits that are associated with each location, as in Figure 3-4. 

The presence bits indicate the state of a memory cell: present, absent, or deferred. Writing into 

an absent location puts it into the present state, and future reads would obtain copies of the 

written content as expected, although any writes would cause an error. Reading from an absent 

location puts it into a deferred state, in which all read requests are remembered, until the write 

data arrives. A write into the deferred location will, in addition to setting it to the present 

state, also have to reply to each entry of the pending-request list. A simplified state transition 

diagram for the I-structure memory controller is in Figure 3-5. The hardware enforcement of 

the write-once behavior of the I-structure is consistent with the single-assignment semantics 

of Id, and is necessary to guarantee determinacy of computation. 

27 



n: 

n+l: 

n+2: 
n+3: 

n+4: 

p datum 

A 

w 
w 
A 

Data Storage 

Presence Bits (Present, Absent, Waiting) 

Data or 
Deferred Read Pointer 

Tag Z 

Tag Y 

Deferred Read Requests 

Possible execution sequence producing this structure: 

* Attemi:>_t to READ(n+2) for instruction X 
* WRITE(n+m) 
* Attempt to READ(n+3) for instruction Z 
* WRITE(n) 
* Attempt to READ(n+2) for instruction Y 
* READ(n) 

Figure 3-4: I-structure Memory Cells 

Deallocate 

Write 

Figure 3-5: I-structure Memory Controller 

28 



The I-structure memory implementation does incur some overhead compared to a conven

tional memory system. The operational overhead includes the space needed to remember the 

deferred-read list and the extra processing time when a deferred-read is satisfied. If we assume 

unit time accounting, then each read demands one r of work to get a response value or to be 

placed on a list. Similarly, a write normally requires one r of work to update the memory 

location, plus, if there is a deferred-read list, one more r to respond to each pending read. 

Hence, if all reads becomes deferred, then there is a 100% degradation in throughput, whereas 

when no reads are deferred, then the I-structure memory performs on a par with conventional 

memory. The management overhead includes the costs of initializing, allocating, and deallo

cating blocks of I-structure memory. Conventional memory also needs such management work, 

but since each of its locations can only be written once, the I-structure memory probably needs 

to be recycled much more often. Reference counts or other storage reclamation methods are 

needed to recycle inaccessible cells. 

3.3 The TTDA Simulator 

The simulator models, at the register transfer level, the time behavior as well as the input

output behavior of the system and executes the TTDA instruction set described in [7]. It 

simulates a system of dataflow processors and I-structure storage elements, communicating 

through a multistage (butterfly) interconnection network of size n x (1/2) log2 n, where n is 

the number of processors plus the number of storage elements3 • 

There are three fundamental aspects to the simulation: modeling the functional compo

nents, modeling the finite intermediate staging buffers, and scheduling the activities throughout 

the system. At the core of the simulator is an event-driven scheduler. It schedules time

stamped packets to be processed by a collection of target-architecture-dependent stations and 

finite buffers, each of which increments the timestamps and may also update the contents of 

the packets according to its functional descriptions. When a buffer becomes full, it blocks 

upstream stations from producing output and the scheduler from enabling those stations. The 

3 This facet of the simulator differs from the TTDA machine configuration, in which a processing element 
and an I-structure module are packaged together as a node of the network, making all nodes homogeneous. The 
separation of the memory from the processor is intended to facilitate studies of memory capacity and throughput 
requirement issues. The original case of a one-to-one coupling of memory to processor can be easily simulated 
by this more general scheme. 

29 



simulated analogue of the architecture is described in Figure 3-6. The ovals correspond to the 

hardware components and are the stations in the simulation. The boxes correspond to the 

finite buffers on the inputs to the various components. The resource manager in the simula

tor is currently modeled as a hardware component. A precise description of the construction 

and operation of the simulator's scheduler and finite buffers, and full functional and timing 

specifications for its stations are found in [11]. 

The aspect of the system specification that is of particular relevance to our central topic 

of code-mapping is the interconnection network, so its design choice needs some further justi

fication. For the purpose of the following discussion, interconnection networks can be divided 

into two broad classes according to topology: static and dynamic. Static topologies (excluding 

complete connections, i.e., full cross-bars,) such as tree, mesh, and n-cube networks, provide 

different length geodesic paths between different pairs of nodes, thus giving rise to "neighbor

hoods" within the network. (The n-neighborhood of a node is the set of all nodes which have 

a path with length not more than n from the given node.) The locality among nodes imposed 

by these networks can conceptually be used to guide the mapping policy to make better use of 

the available bandwidth by assigning highly interacting tasks to neighboring processors. But 

if the network topology were ignored by the mapping policy, the usable network bandwidth 

could be drastically reduced by forcing a large fraction of packets to traverse a great many 

links to arrive at their destinations. Dynamic topologies, such as shuffle-exchange, baseline, 

banyan, and butterfly multistage networks, route directly from any node to any other node 

without going through a third node. Routing between any pair of nodes in these networks 

takes equal effort and expends equal amount of network resources. 

Although the TTDA definition gives no specifications for the design and topology of the 

communications network, the simulator's processor and I-structure storage elements are all 

interconnected to each other by a multistage packet-switching network. A multistage butterfly 

network is chosen as a representative from the dynamic topology class. Consequently, the 

mapping policy can no longer attempt to match locality in programs with locality in network 

topology, resulting in non-optimal communications bandwidth and latency. Although it shall 

later be argued that optimal mapping for a static topology is not likely to be achievable anyway, 

we shall for now assume the network has enough bandwidth to support the computation, which 

is not difficult as long as the network traffic distribution is fairly random. Further, we contend, 

and shall also later demonstrate, that the TTDA tolerates a large degree of communications 

30 



Processor 

Figure 3-6: Simulation Analogue of the TTDA 

31 

I-Structure 
Memory 



latency without incurring a significant performance loss. Given these premises, the selection of 

a multistage butterfly network, also known as an FFT network, as the network model for the 

simulator would seem appropriate. It consists of log2 n stages of n/2 2 x 2 cross-bar switches, 

where n is the total number of nodes (i.e., the sum of the number of processing and storage 

elements.) Figure 3- 7 shows an 8-node network and the simulation analog of each of its 12 

2 x 2 switches. The packet-switching attribute refers to the store-and-forward switch operation, 

which mandates data buffering in the switches. 

- - ------ - -1 

\ 
\ 

\ 
\J_ _____ _J 

Figure 3- 7: Simulation Analogue of the Interconnection Network 

The simulator, including data collection instrumentation and user interface facilities, con

sists of over 70,000 lines of Pascal code. The level of simulation detail forces the simulator 

to demand a remarkable amount of resources: due to the size of the available address space 

(12 Mbytes) of the IBM 4381/VM host and the simulation speed (~80 ops/sec), the practical 

upper limit for the simulated system size is around 16 processors and for the SIMPLE kernel is 

about one iteration on a 10 by 10 grid, which generates just over 200,000 dataflow instructions. 

The intent is to observe the behavior of a relatively small workload4 on a fairly small system 

and to extrapolate the probable behavior of a life-size problem running on a full-scale TTDA 

~The computation itself is by no means more trivial; the small workload only refers to the reduced number 
of iterations of the algorithm in order to limit the simulation time and resources needed. 

32 



multiprocessor. We believe in the validity of such extrapolation of the results implicitly when 

using the simulator because the dataflow paradigm of execution gives us a very clean way of 

decomposing a program, without having to rewrite the code or to introduce extra instructions 

or any other overhead save that of the traffic in the network. Fortunately, the bandwidth 

of a multistage interconnection network is automatically scaled up linearly as the number of 

processors and storage elements is increased. Note also that its latency, however, grows as 

O(log n ), which is a primary reason why it is essential that a multiprocessor must be able to 

tolerate long latency. 

3.4 The Graph Interpreter Models 

GITA [25], the Graph Interpreter for the Tagged-token Architecture, is designed to execute a 

dataflow program graph by tracing the progression of data-value tokens along its arcs, mod

ifying their contents as specified by the operator nodes in accordance with the semantics of 

the TTDA instruction set. It does not try to simulate the operations of a specific machine 

implementation model, as the TTDA simulator does. Rather, its only goal is to produce result 

values given the program graph and input values, and to do so quickly enough and to maintain 

sufficient context information for program debugging as to be useful for program development. 

GITA operates in one of two modes: idealized or "finite-processor" mode. 

GITA consists of three operating components: a TTDA instruction interpreter, an !

structure memory, and a systems manager, each being fed by a FIFO queue of tokens, or

ganized as in Figure 3-8. The top-level interpreter loop scans the queues for tokens, then 

calls the appropriate operating component to process the token. Often, this process generates 

output tokens, which are then placed onto the respective queues. The queues are strict FIFO, 

thus enforcing an eager FIFO instruction scheduling policy. 

In contrast to the TTDA simulator, GITA is much less involved with architectural details, 

thus enabling its operations to be greatly simplified and accelerated. Supported further by the 

Multiprocessor Emulation Facility (MEF) [4], which links up to 32 Lisp machines together to 

alleviate both time and storage constraints, GITA can execute much larger dataflow programs 

than the simulator is able to handle. There are some fundamental differences in the design of 

GITA, however, that are irreconcilable with the characteristics of the simulator, which make a 

33 



Token 
Queue 

Wait-Match 
Section 

Input 

I-Struct 
Request 
Queue 

I-Structure 
Controller 

Output 

Manager 
Request 
Queue 

Systems 
Manager 

Figure 3-8: Structure of the Graph Interpreter 

34 



direct comparison of their results difficult, if not impossible: the execution engine of GITA is 

not pipelined and there is no concept of a network. There is only one token queue in GITA and 

its "finite-processor" mode merely adds a counter to restrict the number of operations that 

can be executed in one time step, although it places no bounds on the number of wait-match 

operations per time step. The execution time is accounted for in an abstract step time, which 

charges the same for an identity operator as it does for a floating-point function. I-structure 

accesses and manager requests are implemented differently and are also only charged one step 

time. Because of this step-time accounting, the "performance" results are not meaningful 

by themselves, but only significant as ratios, or speedups, in going from m to n processors. 

But with an augmentation to this basic interpreter, we shall show in Section 3.5 that the 

multiple-queue GITA can be a very useful tool in studying resource mapping issues in the 

large, for which the simulated environment necessary for the experiments to be meaningful 

would completely overwhelm the capacity of the simulator. 

3.4.1 The Idealized GITA 

To study some global aspects of the program graph, a simple timestamping scheme is used 

to provide such information as the critical path and the parallelism profile of a program run, 

both of which are concepts defined previously. This scheme models an ideal scenario based on 

the following assumptions: 

• All enabled tokens are immediately processed in the current time step. 

• Each operation takes unit time to execute, i.e., all result tokens produced in the i-th 

time step are labeled i + 1. 

• There is no communications delay for delivering result tokens to their destinations. 

• Unbounded resources are available. 

With the exception that we are counting tokens instead of instructions5 , these assumptions 

exactly mirror the specifications of the abstract machine defined in Section 2.1.2. The critical 

path, then, is simply the largest of all timestamps issued and the parallelism profile the num

ber of tokens carrying each distinct timestamp. Since the full program graph is dynamically 

5 There is either one or two tokens for every dataflow instruction. 

35 



spliced from individual code-block graphs based on runtime conditions, these global charac

teristics cannot be computed from the static compiler output graphs. The instrumentation 

on GITA also collects the dynamic instruction mix and other execution statistics: wait-match 

and I-structure storage usage, I-structure reference frequency, and profile of active contexts, 

none of which, because of the ideal timing assumptions, necessarily reflect corresponding statis

tics from a real machine accurately. For actual resource usage issues, the TTDA simulator is 

still the penultimate validation vehicle, next to some real hardware; although often the GITA 

statistics do agree, at least qualitatively, with the simulator's results. The parallelism profile 

obtained from GITA, however, is enormously useful in characterizing a program and explain

ing its observed runtime behavior on a realistic system. It provides a means by which the 

properties of the programs can be isolated from the properties of the machine when analyzing 

the performance of a benchmark system. 

3.4.2 The "Finite-Processor" GITA with Latency 

The first step towards a realistic execution model is to bound the amount of available processing 

resources. Instead of allowing an arbitrary number of tokens to be processed during each step, 

a maximum limit of n tokens during each step is imposed. This represents n processors only 

in a very abstract sense. We do not assign activities to processors, but rather choose up 

to n input tokens in each step. It can be viewed as representing a dataflow system where 

the mapping of activities on to processors is perfect in that there can never be a situation 

where n tokens are ready, but not all of them can be processed because some are on the same 

processor. In addition, we introduce communications latency by assuming that the output of 

every instruction takes l steps to be delivered to its destination. This is consistent with the 

view that activities are distributed arbitrarily over all the processors. This "finite-processor" 

latency model has the following attributes: 

• Not more than n tokens are processed per step, 

• "Fair" (FIFO) scheduling. 

• Each operator takes unit time to execute. 

• Fixed communications delay for delivering result tokens to their destinations. 

36 



• Unbounded resources are available. 

Obviously, for a program whose parallelism profile is less than n throughout, this restriction 

will not alter its behavior at all. But when it exceeds n, then the effect of execution on 

n processors may be visualized by drawing a horizontal line at n on the parallelism profile 

and then "pushing" all the tokens which are above the line to the right and below the line. 

Figure 3-9 shows the profile for SIMPLE, with the same parameters as those used for Figure 2-

6, generated under this model with n = 1000, slightly greater than the average parallelism. 

The length of the critical path is increased from 2393 to 3252. 

~ = Q) 

~ 
u = 0 

0 

1000 

900 

800 

700 

600 

500 

SOD 

!00 

100 

0 
1000 2000 sooo T 

Figure 3-9: (n = 1000,l = 0) Parallelism Profile for SIMPLE (1 iteration, 32 x 32). 

The "finite-processor" model is somewhat imprecise as a subset of the input tokens must 

be chosen in each step and different choices may result in different profiles. A "fair" choice is 

assumed, by which we require that if activity Sl precedes S2 under the ideal model, then it does 

so under any "finite-processor" model. Instruction scheduling will be addressed in Chapter 4. 

The discussion thus far has assumed no communications latency. When latency is intro

duced in the model, the results of an I-structure operation (for example an I-fetch, which is a 

split-phase transaction as shown in Figure 3-2) is available at the destination node 21+1 units 

after the later of the I-fetch and the I-store for the particular elements. 

37 



Speedup and Utilization 

The amount of parallelism available in a program in the context of the "finite-processor" model 

can be expressed in terms of speedup and utilization as follows. Let t( n, l) be the number of 

steps required to execute the program with at most n tokens per step and fixed communications 

latency of l units. 

S(n,l) = t(l,O) 
t( n, I) 

t(l, 0) 
TJ( n, l) = nt( n, I)' 

t(l, 0) is simply the total number of tokens processed, i.e., the area under the parallelism profile. 

These numbers indicate the limits to improved performance imposed by data dependencies in 

the algorithm itself, modulo influences of instruction scheduling. For example, for 3 iterations 

of SIMPLE (20x 20), S(lOO, 0) = 97, and TJ(lOO, 0) = 973. Thus, even on an idealized machine, 

i.e., one with instantaneous communication and synchronization, it is not possible to utilize 

all the processors all of the time. 

Estimating Speedup on Finite Machines from Parallelism Profiles 

Without actually running the program repeatedly under the "finite-processor" model for each 

n and I, an estimate fort( n, l) can be made from the ideal parallelism profile as follows. For any 

T, if pp( T) ~ n, we process all pp( T) tokens in one step. However, if pp( T) > n, then we assume 

it Will take the least integer greater than ppl'T) Steps to proCeSS pp( T) tokens. If / ~ r pp£T) l' 
then computation of pp(r + 1) may start immediately after the last token for pp(r), because 

the earliest results from pp( T) have already arrived at their destinations. Otherwise, it must 

wait l steps from the start of the first n operations of pp( r) to begin computing pp( T + 1). This 

estimate is optimistic, for consider if all the tokens of pp( T + 1) depended on the last operation 

performed for pp( T ). Assuming that dependencies are uniform, then 

t(oo,O) r ( )l 
t(n, I)= :; max( I, ppnr ), (3.1) 

where t( oo, 0) is the length of the critical path. Figure 3-10 shows the speedup curves derived 

in this manner for SIMPLE. The points in the figure show the speedup measured under the 

"finite-processor" model for various settings of n and I. 

As these curves show, the estimate oft( n, I) tends to be conservative because some of the 

operations from the next step may be performed along with the last few operations of pp( T ). 

38 



L=O 

L=l 
300 

c.. 
::> 
"O 

Q,) 
Q,) 

c.. 
00 

200 

fl. 
1=5 

100 
L = 10 

0 ltlO 200 300 400 500 N 

Figure 3-10: Speedup in the Presence of Latency for SIMPLE (1 iteration, 32 x 32). 

The dynamic instruction scheduling capability of dataflow machines can be partially accounted 

with the following, more optimistic formula. 

t( oo,O) ( ) 
'"' pp T t(n,l) = L max(l,1,--). 

n 

"Finite-processor" execution gives t(lOOO, 0) = 2763 and t(lOO, 0) = 15, 176, while the estima

tion technique shows them to be 2551 and 15, 120, respectively. The accuracy of the estimate 

is better at lower values of n, which is the range of greater interest. Note that the speedup esti

mation equation and the ''finite-processor" GITA model both provide us functions for mapping 

parallelism profiles into speedup and utilization quantities. 

For realistic architectures the latency is determined by the depth of the processor and 

storage-controller pipeline, as well as the number of stages in the communications network, 

which is expected to grow as the log of the number of processors. This suggests that we should 

consider fairly large latencies. At the same time, since our data comes from an artificially 

small problem size, we should consider a fairly small number of processors, and extrapolate to 

realistic problem sizes on more processors. 

39 



3.4.3 The Multiple-Queue GITA 

One of the fundamental differences, cited earlier in the introduction, between GITA and the 

TTDA simulator is that GITA has only a single token queue, with which the only way to 

model an n-processor system is its rather artificial "finite-processor" mode. It is thus unable 

to simulate the necessary environment for experimenting with code-mapping issues at all, and of 

course unable to match the behavior of the TTDA, as will be demonstrated shortly. A solution 

is to incorporate multiple token queues in GITA and then apply the following operational rules: 

• At most one token per step per queue. 

• "Fair" (FIFO) scheduling within each queue. 

• No more than n queues may execute at each step. 

• Unit time per operation. 

• Fixed communications delay for delivering result tokens to their destinations. 

• Unbounded resources. 

The multiple-queue model requires an accompanying mapping scheme to assign tokens to 

queues, the crux of which is the main topic of Chapter 4. This model, with the appropriate 

extensions, will be the basis for much of the experimental support cited for our study of the 

code-mapping issues. The immediate implication of the multiple-queue model is that it can no 

longer exploit parallelism within a queue in ways that the original GITA is able to do. Several 

enabled operators within a queue can at best be fired in sequence, but not concurrently as 

GITA is allowed, although it is still able to use the parallelism to mask latency effectively. 

This restriction is, of course, also present in the simulator and in a real parallel machine. 

3.5 A Validation of GITA 

GITA is much more ideal and abstract than a realizable implementation of the Tagged-Token 

Data:flow Architecture. Before the results obtained on GITA can be accepted with any degree 

of certainty as those actually reflecting the behavior of a TTDA machine, it must first be 

validated against the simulator, the penultimate vehicle for verifying all conjectures about the 

40 



TTDA. The following experiment to show the TTDA's tolerance of an extraordinary amount 

of communications and memory access latency is thus devised to show also that GITA, without 

actually modeling the processor pipeline and the network structure, can still provide veritable 

predictions of the TTDA's behavior. It is therefore an important link in establishing the 

validity of the discussions of the subsequent chapter, whose supporting results are all drawn 

from experiments based on GITA rather than the TTDA simulator. 

3.5.1 Experimental Specification and Results Using the Simulator 

In an attempt to verify the effects of communications and memory access latency on the 

performance of the TTDA, the TTDA simulator is used to run SIMPLE and the collected 

run-time statistics are analyzed to assess the extent to which the processor utilization rate can 

be sustained in the presence of large latencies. To simulate varying amounts of access latency, 

delay elements are inserted at the inputs to each processor and storage element. The effect of 

this arrangement is that by inserting k delay elements, each access (i.e., a read operation or 

a write plus an acknowledgment) is actually deferred by 2ktdelay since it involves two passes 

through the network. To avoid pipeline imbalances caused by mismatched timing which could 

produce certain congestions in the network arising only as a result of inserting these delay 

elements, tdelay is always set equal to the network switch's arbitration time. The artificially 

induced latency affects only network-bound tokens, which are related to I-structure access or 

manager requests, but not to the majority of the tokens which circulate, via an internal data 

path, back to the input of the local processor pipeline. For a run of SIMPLE, the ratio of 

network-bound to locally-circulated tokens is approximately one to four. 

The timing parameters for the simulation are set so that all stations have lr of processing 

time and 1 r per word of memory access. This has been done to simplify the analysis of 

the results of the simulations slightly, and to facilitate comparison with the GITA results. 

Assuming that r = lOOnsec, for example, means that each processor in the model at best could 

process 10 million tokens per second, or, assuming the ratio of monadic to dyadic instructions 

is approximately one to one for SIMPLE, around 7.5 million dataflow instructions a second. 

Since the processor pipeline itself is 6r for dyadic instructions and 5r for monadic instructions, 

which bypass the wait-match station, the average latency incurred by every token would be 

41 



(for large k, the number of unit-delay elements inserted) 

L 
3 1 
45.5T + 4(2k + 5.5)T 

k 
(5.5 + 2)r 

k 
-T 
2 

The code-block allocation policy selected is round-robin, with all domain sizes set uniformly 

to one. This of course means that a code-block instance is executed entirely on one processor 

and that iterations of a loop all unfold on the same processor. The I-structure allocation 

policy and access method selected is the interleaved-address mode, which maps consecutive 

I-structure addresses horizontally across all the storage elements. This scheme better equalizes 

allocation and utilization among the storage elements as compared to the old round-robin 

vertical allocation in which each I-structure array is allocated entirely on one processor. 

The results of the simulation runs are most succinctly presented as a set of speedup curves, 

shown in Figure 3-11. The horizontal scale is the number of processors actually participating 

in computing the task; the curves are sampled at two, four, six, eight, twelve, and sixteen 

processors. The vertical scale is the performance of the simulated system in million dataflow 

operations per second, based on the timing parameters given to the simulator. Although 

the program was never run with only one processor because each simulated processor lacks 

sufficient resources to run the whole program, it is still possible to normalize the performance 

based upon the two-processor performance. The latency is varied from L = 0 to L = 100 

(i.e., 0 to 100 delay elements per network port) through this set of runs. It is evident from 

the curves that the TTDA can indeed sustain an extraordinary amount of latency while still 

retaining much of its speed. The significance of this accomplishment must be viewed in light of 

the relatively small size of the run (200,000 instructions, or roughly one second of execution on 

one microcomputer.) Based on these parameters for the simulator, a system with 16 dataflow 

processors only incurs a 50% loss in performance with an introduction of 200r of delay on every 

network-bound token. A smaller system, which is much more realistic given the size of the 

run, fares even better. In comparison, a single von Neumann processor with blocking memory 

references would expect to experience 3/4 + 1/4 x 200::::: 50 times reduction in speed given a 

similar arrangement6 • The reason that von Neumann processors fare so poorly in the presence 

6 Assuming that a 253 mix of the von Neumann machine's instructions executed require a memory reference 

42 



of memory latency is that such processors must idle during an entire memory reference. On 

the other hand, the dataflow instruction scheduling mechanism will issue a memory request, 

then immediately schedule another instruction from a parallel thread of computation belonging 

to either the same or an entirely different code-block. Thus, the datafiow processor is busy 

doing useful work between the request and its completion, rather than idling uselessly as a 

van Neumann processor would. In this way datafiow processors can take full advantage of the 

pipelining of the processor and the network, whereas van Neumann processors can do so only 

to a very limited extent. 

3.5.2 Correlating the Experimental Results from GITA 

As a second confirmation of this property, the same experiments were performed using GITA. 

The latency specified applies to all tokens, not just the network-bound ones. So the latency 

setting for the GITA runs are varied from L = 0 to L = 50. The resulting curves bear the same 

general trend as those from the simulator, but whose absolute speedup values do not resemble 

each other at all. The induced latency affects the behavior of GITA much more than it does 

the simulator, but only because GITA performs so much better under little or no latency. This, 

as we shall see next, is due to GITA's ability to exploit all the parallelism not expended in 

masking latency to speed up its own execution. 

We are indeed able to get a very close match in the speedup curves with the multiple-queue 

version of GITA, with each queue modeling a single processor. The code-block invocations are 

assigned queues according to a round-robin 7 . The speedup curves are normalized by the same 

constant as that used for the "finite-processor" GITA curves, which defines the two-processor 

GITA as having a speedup of two. It is obvious that this set of curves is very similar to that 

of the simulator. The slightly irregular results manifest in the intersection of the curves are 

due to the variations in the round-robin mapping assignment: When there are relatively few 

tasks, such as when the run size is small and the code-blocks are large, mapping assignments 

start to have a greater impact on the completion time, as we shall examine in detail in the 

next chapter. Results similar to these have increased our confidence in the validity of GITA, 

across the network, and that instructions are fetched locally on the processor. And although 200 delay units 
for global reference is excessive except for the largest of systems, a high-performance computer, the Cray 2, for 
example already requires 52 clocks for each memory access, and that is only a bus transaction which doesn't 
even include network delays yet. 

7The issues of allocation policies will be discussed at length in Chapter 4. 

43 



1=0 
Simulator 1=20 

so 1=40 
1=60 

u 
QI 

00. 1=80 -"' JW 1=100 0.. 
0 
::::s 

10 

0 
1 2 3 4 6 6 7 8 9 10 11 12 13 14 16 16 PEs 

1=0 
15 

"Finite-Processor" GITA 1=10 1,./. 
13 
1! 

0.. 
11 1=20 

p 10 

1l 
g 
8 1=30 

QI 7 0.. 1=40 00. 6 
5 1=50 

../. s 
! 
1 
0 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16PEs 

1=0 
6 1:~~8 

1=30 
s 1=40 

0.. 
p ../. 1=50 

"tl 
QI 

9 QI 
0.. 

00. 

! 

1 

0 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16PEs 

Figure 3-11: Effect of Latency on Speedup of SIMPLE (1 iteration, 10 x 10). 

44 



t·, ., 

.. aot jut .. &Wnet ............ ..,, -··· ::••~ .. ,...,,.,. •• , . . .>' _'.;_.·.:.·;_'· .. _'":.':, ~r~:.~f:?-':·~' ... ·.· . . 

iatw*·• ......... , •• ··~··•·•• •·••~1111r.1•tJN1:~·,. - --. ·,"\,' 
' " '/). 

··.;; ·~ 

.. 
. - ~ '' ., 

.:.' 





Chapter 4 

The Effects of Code-Mapping 

Policies on Performance Scalability 

The ultimate success of multiprocessing as a means of increasing computation speed beyond 

that afforded by advances in semiconductor device technology rests on the ability to parti

tion, allocate, distribute, and schedule work efficiently amongst the large collection of available 

system resources. Optimizing the efficiency of this mapping process can be viewed as mini

mizing required overhead to parallelize the computation while maximizing system utilization. 

The problems of partitioning, allocating, distributing, and scheduling tasks optimally are NP

complete, but we shall present a method for examining these code-mapping problems which will 

show that some very simple strategies indeed work surprisingly well relative to the theoretically 

optimal strategy. 

This chapter examines some policy issues governing the partitioning, allocation, distri

bution, and scheduling of tasks on the MIT Tagged-Token Dataflow Architecture. Some of 

the major issues that arise in formulating effective code-mapping policies for a multiprocessor 

system include the following: 

• Manual vs. automatic: The partitioning, allocation, distribution, and scheduling can be 

specified either manually with explicit program annotation or automatically by program

development tools or an ubiquitous run-time supervisor. 

• Static vs. dynamic allocation: Many other mapping-policy choices are affected by whether 

tasks are assigned to processors by some compiler phase or during run-time. 

47 



• Fine vs. coarse granularity: Datafl.ow graphs allow very fine-grained task-mapping, but in 

order to establish the proper trade-off between communications overhead and exploitation 

of parallelism, the granularity of the tasks must be adjusted by grouping many datafiow 

operators into a single task because there is no more benefit in favoring a finer granularity, 

once there are enough tasks to keep all the processors utilized. 

• Intelligent vs. oblivious policy: The allocation policy is considered intelligent if its de

cisions are dependent functions of processor load or network topology or some other 

run-time environmental factors, so that it appears to be actively attempting to balance 

and regulate processor activity or to minimize network delay and traffic. An oblivious 

policy does not try to sense or regulate the run-time environment. 

• Balance vs. locality: Although the ideal policy is one that achieves both balanced pro

cessor load and maximized locality, in reality these are conflicting goals and striking the 

proper compromise seems to be an elusive art. 

• Data vs. program locality: In the attempt to exploit computational locality to minimize 

network delay and traffic, the allocation decisions based on program locality are often 

incompatible with those based on data locality. 

Our predilection is for an automatic code-mapping process which needs very little or no pr0-

grammer instruction or intervention. Our contention is that manual program decomposition 

for MIMD computers will discourage most programmers from ever using more than a sin

gle processor at a time, as usage statistics from most Cray X-MP and other multiprocessor 

supercomputer installations have borne out. 

Faced with an array of complex and interdependent issues, we shall start this chapter by 

clarifying the code-mapping process of the TTDA with a simple model. It identifies some 

mutually independent phases of the process, which allow us to begin unraveling the factors 

shaping the final observed behavior of the datafl.ow machine. A further significance of this 

process model is that for each phase, a theoretical, optimal performance scenario can be de

termined for a given program, thus allowing the effectiveness of many allocation policies and 

partitioning granularities to be evaluated in absolute terms. Lastly, we examine the impact of 

communications latency on code-mapping strategies and on system performance. 

48 



4.1 The Code-Mapping Process of the TTDA 

The code-mapping process of the TTDA can be conceptualized as a controlled progression 

of tasks through a series of states. Figure 4-1 describes this code-mapping process logically; 

the solid lines indicate paths of task status transitions while the dashed lines indicate paths 

of choices controlling the transitions. At the start of the computation, all tasks are in the 

dormant wait state. An initial task is enabled and enters the ready state. The processor

allocation policy chooses an execution host for each enabled task and moves it into the run 

state associated with the target host. From the pool of runnable tasks, the priority scheduler 

selects a single favored task for execution. At the completion of the execution, some succeeding 

tasks are then enabled. This process continues until all the processors are idle and there are 

no more enabled tasks. There are, then, three individual phases to the entire code-mapping 

process: task-partitioning, -allocation, and -scheduling. In the next few sections, we shall 

first determine the lower-bound performance of any eager scheduling discipline, such as the 

one implied by the FIFO token queue, because a proof exists for establishing a lower bound 

and because its effect pervades throughout the empirical investigation of both the partitioning 

and the allocation policies. Then, we shall discuss the goals and issues involved in the task

partitioning and -allocation and develop some abstract models to characterize the ideal, upper

bound performance of any such policies. These abstract models also serve to separate the 

mutual interactions between partitioning and allocation concerns and help to identify the 

relevant factors affecting each phase of the code-mapping process. Although we cannot devise 

the optimal policy and demonstrate its performance, the observed behavior of some realistic 

and readily conceivable policies will be presented in light of the upper bounds given by these 

abstract models so that their effectiveness may be evaluated. 

4.2 Datafl.ow Task Scheduling 

We first establish an abstract scheduling model and use it to prove some bounds on anomalies 

inherent in the scheduling process. We shall then turn to examine the scheduling problem 

for the TTDA in terms of this abstract model and demonstrate the effect of the scheduling 

anomalies on the behavior of the TTDA. 

A scheduling model consists of a set of system resources, some task systems, sequencing 

49 



I 
I 
I 
L 

Figure 4-1: The TTDA Code-Mapping Process. 

50 

Processor 

Processor 

Processor 

• 
• 
• 
• 

Processor 

_J 



constraints, and a set of criteria the execution must meet. Of the system resources, only 

homogeneous processors, P = {P1,P2 , ... ,Pn}, are actually considered for our scheduling 

purposes. Each task system is a three-tuple, (T,-<,µ), where 

• T = {Ti, T2 , ••• , Tm} is the set of tasks constituting the program to be executed. 

• -< is a partial-order relation defined on T such that Ti -< Tj denotes the precedence 

constraint that Tj cannot start executing until Ti has terminated first. 

• µ is an m-vector of task execution times. µi > 0, 1 ::; ::; m, is the time a processor 

takes to execute task Ti. 

For now, assume the precedence constraint relation -<is acyclic. The task system can then be 

represented by a directed acyclic graph, where the tasks form the nodes and the precedence re

lation forms the directed arcs. We shall also assume the scheduling discipline is non-preemptive; 

a task, once scheduled, cannot be suspended to be resumed later. The scheduler always assigns 

a ready task, one that has satisfied the precedence constraint relation, to an idle processor at 

the earliest moment, i.e., right when the last of its predecessors have completed. This is known 

as eager scheduling. When there are more ready tasks than idle processors, the scheduler con

sults a (possibly dynamic) priority list to decide which of the tasks are scheduled first. The 

rest are left pending until some processors become available, during which time the priority 

list is used to serialize the pool of ready tasks again and the favored tasks are then scheduled. 

When a processor becomes idle and there is no ready task for it to execute, it is said to be 

executing an empty task </>i until the next time the scheduler is invoked by the system. After 

which, if it is still idle, it will execute another idle task </>j, i "! j. 

Consider the case when two different priority lists, L and L', are used to serialize ready 

tasks for an n-processor system. We wish to determine how much variation there is between 

their completion times, t( n) and t'( n ). For a valid schedule S, first let </>ii be the last empty 

task to finish. There may be several, but they will all have the same starting and finishing 

time. Let Ti 1 be the corresponding non-empty task which finishes at that same time. There 

must be one by the definition of the scheduler; if there are several, then arbitrarily choose one. 

Then let </>i2 be the last empty task to complete before the starting of Ti 1 , and proceed to 

define Ti2 • Inductively repeat this process until there are no earlier empty tasks left. Let Ti. 

be the last task picked thus. Ti1c -< Ti1c-i for 1 < k ::; r since there is an idle processor doing </>i1c 

51 



that would otherwise be able to do Tik-l. So there is a chain of tasks Tir -< Tir-l -< ... -< T;1 

such that whenever a processor is idle, some other processor is executing one of these tasks. 

Thus 

r 

L µ(</>i) S (n -1) Lµ(T;k). 
k=l 

So 

1 1 r 
t(n) = -( L µ(Ti)+ L µ(<f>i)) s -( L µ(T;) + (n - 1) L µ(T;,J). 

n T;ET </>;ES n T;ET k=l 

Since 

1 r 

t'(n) ~ - L µ(Ti) and t'(n) ~ L µ(TiJ, 
n T;ET k=l 

substituting for t'(n), 

t(n) S ..!:.(nt'(n) + (n - l)t'(n)) 
n 

and rearranging terms, 

t( n) < 1 n - 1 ~ 2 t'(n) - + n ' 
for large n. 

This result indicates that the performance of any eager-scheduling choice would be less than a 

factor of two worse than the optimum schedule. A more general proof for bounds on scheduling 

anomalies when -<,µ,and n are also varied is given in [19]. 

To see how the scheduling choice affects the parallelism of a program, we show two different 

parallelism profiles, based on two scheduling policies: FIFO and LIFO. FIFO scheduling is 

fair, as defined in Section 3.4.2. With LIFO scheduling, the most recently enabled instructions 

are considered before any enabled activities carried over from earlier steps. Figure 4-2 shows 

the results of applying the scheduling orderings to the inner product program graph introduced 

in Section 2.1.2, with only two processors, executing in the style of the "finite-processor" mode 

described in Section 3.4.2. In general, when scheduling a large number of small tasks, as is 

the case for dataflow instructions, the variance due to scheduling anomalies is not significant. 

"Finite-processor" mode completion times using FIFO and LIFO scheduling for some kernels 

are shown in the following table: 

52 



Number of "Processors" 

Kernel Policy 100 500 1000 

SIMPLE 32 FIFO - 7014 4114 

LIFO - 7503 4352 

MatrixM ul 20 FIFO 2805 709 -

LIFO 2859 795 -

FIFO 
£ 

3 5 7 1 3 5 7 1 3 5 7 1 3 
1 

.., 1 2 4 6 8 2 4 6 8 2 4 6 8 2 
p. 0 

0 1 2 ll " 5 6 7 8 9 10 11 12 lll 14 T 
~ 

= 
~ 
u LIFO 
= 0 £ 

0 
3 6 1 3 6 1 3 6 1 3 

1 

1 2 5 4 7 5 4 7 5 4 7 8 2 8 2 8 2 
0 

1 2 ll " 5 6 7 8 9 10 11 12 lll H 15 16 17 T 

Figure 4-2: Anomaly in Instruction Scheduling 

4.3 Task-Allocation Policies 

Since every control in the code-mapping process affects the ultimate performance of the system 

and also affects the optimal choice of other controls in the processing loop, picking a proper 

starting point for the study could only be arbitrary. The first control point we shall examine 

is the effect of task-allocation policies on execution performance. This cursory study is done 

with the other controls and parameters set to what are deemed reasonable, but still arbitrary, 

choices. To remedy this fallacy, in a later section the task-allocation issue will be revisited, 

after other issues have been considered more fully. 

The program graphs for the first dataflow machines proposed were statically allocated 

onto the processors. This approach necessarily forbids recursive function calls in the source 

language. Other than this limitation, it was thought that complex and intelligent allocation 

53 



strategies should be implemented in the post-compiler phase [17, 12]. The entire program 

graph, with all function calls expanded, must be traversed and nodes annotated with firing 

times, based on a timing chart of instruction execution and assumed communications latencies. 

The code graph can be partitioned to maximize concurrency by attempting to assign nodes 

with similar firing time to distinct processors, and to minimize interprocessor communications 

cost by attempting to assign preceding and succeeding nodes to the same processor. 

This type of datafiow graph analysis is intractable for several reasons. Unlike the usual 

task scheduling problems which work with procedures or even entire processes, the number of 

fine-grain datafiow operators that has to be scheduled for each realistic program overwhelms 

most scheduling algorithms. Also, unlike coarse-grain task-scheduling problems which are 

often plagued by inadequate concurrency, datafiow program graphs give too much concurrency. 

Although parallel threads of computation can be executed independently, there is no reason 

that they should be allocated to different processors unless they will actually be scheduled 

simultaneously. But determining the simultaneity of events requires, besides just knowing 

the topology of the graph, much run-time information as well. The status of the processing 

pipeline, (e.g., the fill level of the buffers, and the number and variety of the other instructions 

in the pipeline,) contributes to variations in the timing of each instruction. The network's 

performance is similarly critically dependent on dynamic traffic load. Under heavy traffic, 

the communications latency increases as more packets are in transit state within the network 

and even the network throughput may decrease as congested nodes could block upstream 

nodes from delivering packets to elsewhere [26]. Furthermore, the asynchronous instructions 

such as memory fetches and manager requests can take an arbitrary amount of time. The 

execution semantics only guarantees that, for any logically-correct program, these operations 

will eventually complete. Indeed, it is impossible to tell a priori how long an I-structure fetch 

will take in general, as that depends on when the corresponding I-structure store completes, 

which cannot be inferred from the text of the program. The I-structure memory provides 

dynamic arcs between stores and fetches and the exact topology of these arcs is dictated by 

the array indices computed at run-time. 

Thus, in searching and exploring candidate task-allocation policies, we eschew automatic 

static partitioning on these grounds. The viable alternatives, then, are manual-static and 

automatic-dynamic partitioning. Manual-dynamic partitioning is obviously infeasible since a 

programmer would be overwhelmed by the volume of run-time allocation decisions. 

54 



To survey the range of possibilities, the following task-allocation policies have been chosen 

and implemented on the emulation facilities: 

Round-robin At run-time, successive procedure invocations are dispatched to processors 

based on a global round-robin processor pointer. This policy is fair, assuming procedure 

code-blocks are of approximately the same size, in the total amount of work allocated to 

each processor and also in the temporal distribution of work among the processors. 

Random At run- time, procedure invocations are assigned to processors chosen by a pseudo

random number stream. This policy is fair only statistically but does not require global 

synchronization. 

Hashing Each procedure is allocated on every processor in the system. During run-time, a 

hashing function on the tag field of the tokens destined for an instruction determines the 

actual processor that will receive the tokens and thus execute the given instruction. This 

is the classic scenario for dataflow machine instruction mapping. 

Load-leveling At each procedure invocation time, the load factor of each processor is queried 

and the procedure is assigned to the processor with the lowest load factor. The load factor 

of a processor is determined by the amount of active code (i.e., the sum of the sizes of 

all the active code-blocks on that processor, where a code-block is active if an invocation 

of it is outstanding.) 

Static The programmer specifies a semi-static assignment of procedures to processors. Cur

rently there are four hierarchical procedure-mapping categories and three processor groups 

for the SIMPLE kernel: 

1. Outer-level procedures and loops are allocated on group one processors on the round

robin basis. 

2. Procedures and loops called by outer-level loops are distributed by the outer loops' 

context indices. Thus, all activities spawned off by the first loop iteration are 

dispatched to the first processor in group two, and so on. 

3. Procedures and loops called by inner loops are distributed by the inner loops' context 

indices to group three processors. 

55 



4. Short-procedure calls are effectively "inlined" by invoking them on the same pro

cessor hosting the caller. 

Obviously, this policy maps a program well only onto a certain number of processors, 

depending on the problem size. 

The following table shows system performance and variations in processor utilization (one 

iteration of SIMPLE 10 x 10): 

Policy Execution Rate (MOps/sec) PE Utilization Rates (%) 

Round-Robin 38.197 56, 49, 59,41, 54,57, 

56, 35,49,64,40,38 

Random 37.772 56, 43, 47,44, 54,47, 

53, 55,41,69,38,44 

Hashing 19.147 30, 26, 26, 26, 26, 26, 

26, 27,26,26,26,26 

Load-Leveling 44.940 61, 58,55,55,54,63, 

60, 60,59,56,62,61 

Static 32.885 45, 57,41,39,39,40, 

42, 37,48,46,40,40 

These results seem to indicate that, in the absence of complete information about the 

topology of the runtime program graph and instruction timing, the simple, oblivious dynamic 

allocation policies actually perform up to par against either a more intelligent static allocation 

policy, which imposes a specific processor assignment based on knowledge of the structure and 

behavior of the program, or a load-leveling allocation policy, which senses the "load-level" of 

the processors in the system in determining the processor assignment. 

A real implementation of the load-leveling policy requires the resource manager either to 

probe the status of processors in the system to determine their load factor or to maintain 

knowledge of all outstanding task invocations. Either of these methods would force the system 

to do some global operations, which will be inherently non-scalable1 . Furthermore, sensing load 

factor can produce undesirable results: An allocated task can actually be inactive, waiting for 

1The SIGMA-I has addressed this scalability problem by implementing a scheme in which distributed load
leveling is performed through the communications network [21]. 

56 



data from another task. It is nevertheless counted the same as an active task by our scheme. Or, 

if a more direct method to examine the processor token queue is implemented, an underutilized 

processor may be swamped with tasks before its load status starts to reflect that. 

The intelligent static policy, which divides the processor pool into three disjoint groups 

to support the logical mapping described, showed low utilization for all the processors. This 

results from the difficulty in balancing the workload evenly among the processor groups at 

compile-time without knowing the time domain behavior (i.e., the footprint) of the computa

tion, which often concentrates in one group, thus leaving other groups idle, and then moves 

on to another group leaving the previously busy processor group idle. Figure 4-3 shows the 

activities of each group over the time domain. The run is a 16 by 16 SIMPLE using GITA, 

with 16 PEs in each processor group. Note how well groups 2 and 3 could be effectively merged 

with little impact on execution time, and how underutilized group 1 is. In fact, when the two 

groups are merged, so that PEs 0 to 15 host group 1 and PEs 16 to 31 host groups 2 and 

3, the execution time only degraded from 59268 steps to 71802 steps, a 203 increase. When 

all three groups are merged onto one set of 16 processors, the execution time becomes 89016, 

a 50% increase over that for the original 45 processor system, with only 36% the computing 

resources. 

System Size Execution Time % Increase Relative Utilization (%) 

45 59268 - 100 

31 71802 20 175 

16 89016 50 422 

4.4 Task Granularity 

Not a part of the runtime code-mapping process, but nonetheless an influential factor in it is the 

task granularity, the amount of work parceled into each unit of task that the allocation process 

distributes to each processor. The granularity of a program is chosen for the compiler before it 

can generate the object code graph. The criteria for choosing an optimum task granularity are 

to balance the system load (which favors fine-grain) and to minimize the overhead of parallel 

operation (which favors coarse-grain.) These are highly dependent on the characteristics of 

the machine as well as on that of the programs themselves. 

57 



Figure 4-3: Work Distributed to Processor Groups by a Static Allocation Policy. 

58 



Machine-hardware-related factors such as network throughput (bandwidth) and latency, 

processor throughput and the number of its pipeline stages, and memory operation speed, 

dictate how much parallelism each processor needs to keep itself busy and where the trade-off 

point is for a processor executing an instruction itself, versus sending it to another processor 

for execution, thereby incurring the communications cost through the network. Having more 

processors in a system would, no doubt, favor a finer partition granularity in general. On the 

other hand, constants within a large task can be stored in one or a few processors as con

text information, and thereafter used repeatedly without paying the distribution cost. Other 

systems-related factors, such as the number of task-allocation managers and the complexity 

of task-allocation policies and operations, determine the rate at which the system can process 

task invocations and terminations and how much overhead is associated with each task alloca

tion. Lastly, the program itself presents factors to complicate the case. When more parallelism 

is available in a program, there is more to gain from a fine-grain partition; whereas, when the 

program is largely serial, a similar approach becomes less profitable. Furthermore, the amount 

of I-structure memory references and the inherent locality of the logic of the program impose 

a minimum (best-case) traffic load on the network. When this requirement is light, i.e., the 

program activities are very local, the mapping policy can afford to be more generous in trading 

communications bandwidth for finer granularity. 

Note that, on parallel machines consisting of a collection of van Neumann processors, once 

a task has been allocated to a processor, it is eventually scheduled to gain processor attention 

and complete in one, or a few, continuous time spans. Thus, it is convenient to refer to the 

task granularity. Unlike these van Neumann parallel computers, for the TTDA we need to 

distinguish between the distribution, or allocation, granularity and the scheduling granularity. 

Although a real code-mapping decision would inevitably group many dataflow instructions 

into a single task in order to increase the code distribution granularity to reduce the immense 

overhead that would otherwise be incurred in a fine-grained task allocation system (as the 

hashing policy results had indeed verified,) the underlying fine-grained datafiow instruction 

scheduling is still invaluable in providing the intra-processor parallelism that keeps the pipeline 

saturated with activity and enables the system to tolerate large communications latencies. The 

task granularity of interest here refers to the distribution granularity, whose indirect constraint 

on instruction scheduling is that, at any given time step, at most one instruction from each task 

can be executing. Coarse-grain tasks thus reduce the parallelism available for multiprocessing 

59 



(as opposed to the intra-processor parallelism.) 

4.4.1 Choices of Task Granularity 

Since the machine- and systems-related factors affecting choice of granularity cannot be deter

mined until a real hardware implementation of the TTDA is available, setting these to some 

arbitrary values on the emulation facility to obtain runtime data in support of a particular 

granularity is futile. Instead, we shall attempt to investigate the effects of task granularity 

along more broad, qualitatively distinct lines of division: at the instruction, iteration, and 

code-block levels, and evaluate their relative merits. We have already seen that instruction

level partitioning destroys locality and places heavy demand on the network bandwidth, but it 

will be examined again for the sake of having a reference point at the very end of one spectrum 

that will make interpolations possible. The code-block invocation, which corresponds to an in

stance of an Id function or loop, also provides a convenient granularity for partitioning. There 

are enough such invocations in most complex programs to yield a sufficient number of tasks 

for distribution among the processors, and the code-blocks also form natural boundaries of lo

calized activities and minimized communication, the arguments and results of the invocation. 

In between the instruction and the code-block task granularities is iteration task-allocation 

granularity. There are two motivations for distributing iterations of a loop code-block: 

• Consecutive iterations of a loop do not have to compete against each other for processor 

time, as they are allocated onto distinct processors. This is significant for two reasons. 

First, the activities of the iterations of a loop are largely concurrent, consecutive itera

tions lagging only by the loop index calculation and context change, so that distributing 

iterations is almost always worthwhile. Secondly, the loop index calculation and context 

change operations within a loop are invariably part of the local, if not global, critical 

path of the program, so that distributing iterations, and thus increasing the priority of 

the loop code-block if the system is lightly loaded, often improves the execution time by 

the same virtue that critical-path scheduling is often better than plain-list scheduling. As 

a result, the distributed loop unfolds quicker and thus exposes more parallelism, within 

its body, and generates more concurrent activities. 

• Distributing iterations makes the task size roughly proportional to the textual length 

of the source code-blocks (i.e., functions and loops.) Since the modern programming 

60 



practice of top-down, modular design discourages writing long routines, the size of most 

tasks thus partitioned should be approximately the same, within an order of magnitude. 

Whereas, should loops be allowed within a task, the task size may become arbitrarily 

large, depending on the number of iterations specified. 

A partitioning policy can also implicitly assign priority to different components of a pro

gram. Assume a particular section of code with k concurrently active threads of computation 

has been partitioned so that it maps optimally onto n processors, each of which is already 

preoccupied with I threads of computation. The partitioned version of this code thus receives 

k + l 
! +I n 

times the processing time relative to the unpartitioned code. When l is small, as would occur 

when the program is trivial or the number of processors is large for the program, we could 

expect the partitioned section of code to run up to n times faster. When I is large, however, 

and each new code-block invocation only marginally increases a processor's load (i.e., l ~ k) as 

would happen in most situations where the problems one wishes to solve are always hopelessly 

larger than the available computing resources can support, the partitioning would change the 

behavior little. 

4.4.2 Program Parallelism under Different Task Granularities 

The series of experimental results that will be used to study the impact of task granularity 

on the runtime behavior of the TTDA are, again, from runs of the SIMPLE code. But be

fore the results of these varying task granularity choices from a more realistic execution with 

allocation policy and latency accounted for can be analyzed meaningfully, we should first de

termine the intrinsic parallelism of the program under each chosen task granularity. This can 

be obtained by allowing an unbounded number of concurrent tasks and isolating tasks from 

competing for processing resources. Within each task operations are scheduled fairly, as in the 

"finite-processor" model, based on availability of data; instructions are not statically ordered. 

Scheduling of operations within different tasks is entirely independent, except as dictated by 

data dependencies. Any number of tasks can be active concurrently, and in a single step an 

operation is processed from each task that has any enabled operations. In this way, the effects 

of intra-task scheduling constraints are isolated so that additional effects due to mapping tasks 

61 



onto a fixed set of processors can be completely negated. The parallelism available under this 

model can therefore be viewed as the upper bound on that available under the chosen partition 

policy and granularity. This ideal scenario is achieved by assigning each task to a unique queue 

on the multiple-queue GITA described in Section 3.4.3 while not charging for latency. The 

data are program intrinsic because they are independent of particular machine configurations 

or allocation policies, and affected only by the program graph topology and its logical progres

sion dictated by the datafl.ow execution rules. Figure 4-4 shows the ideal parallelism profiles 

of one iteration of SIMPLE 32 x 32 under the three task granularities. Note these profiles 

all show operations per step, so the areas under the curves are the same. The leading and 

trailing edges of the peaks generated by the main nested loops of the program are noticeably 

steeper in the iteration case than in the code-block case, indicating that the successive itera

tions of the loops are more skewed in the latter case, as we have predicted earlier. This skew 

reduces the parallelism of the loop; it becomes worse with relatively short loops. While the 

peak parallelism is reduced to 1/21.5 and 1/74 from instruction to iteration and to code-block 

grain size, the more telltale critical paths are lengthened to 8.4 and 32 times, respectively, so 

the average parallelism is 1/8 and 1/32 that under the instruction level model. These ratios 

represent the loss in potential pamllelism arising from the scheduling constraints imposed by 

the combination of the larger task granularity and the single-instruction-per-time-step-per-task 

scheduling discipline. The same observation is also apparent in Figure 4-5, which shows the 

estimated speedup, using the speedup function described in Chapter 2, with l = 0 from the 

ideal parallelism profiles of SIMPLE 32 x 32, 50 x 50, and 64 x 64. Note that for size n x n of 

this program, the plateaus in the curves of code-block-level partitioning indicate that it lacks 

more than approximately n-folds parallelism. 

Since the size of computations for a real dataflow supercomputer would be much larger 

than what could be attempted here with the emulation tools, it is perhaps more useful to look 

instead at the asymptotic ratios of the critical paths as the problem size is scaled up, so that 

we may predict the relative merits in choosing from one of these task granularities for a more 

realistic size workload run on an appropriate size system. Because there is very limited overlap 

between successive iterations, it would be easy to extrapolate the behavior of computing more 

iterations; therefore, variations in the size of the mesh are far more interesting. The following 

62 



00 = 0 
·~ 
t 
Q, 

0 
~ 

= 
~ 
v = 0 

0 

0 
5000 

Bo Code-Block 

70 

60 

50 

90 

£0 

10 

0 
10000 20000 

10000 15000 T 

30000 40000 50000 60000 70000 T 

Figure 4-4: Ideal Parallelism Profiles of SIMPLE(32) under Various Ta.sk Granularities. 

63 



--- Code-Block 
- Iteration Partitioning 

· Instruction 
"-00 -

900 -I 

~ 
::::! 

'"d ..,...--Q) 
Q) 

!WO -I 
. 

~ ' .. / / ----en . 
~~ --:,......---

I 'l - --
100.., 

~ 
0 

100 200 300 

~ -- .------ ----

400 

.,...,. 

-

SIMPLE(64l 
SIMPLE(50 

SIMPLE(32) 

.,...,. SIMPLE(64) 

_ SIMPLE(50) 

- SIMPLE(32) 

SIMPLE(64) 
SIMPLE(50) 

SIMPLE(32) 

500 PEa 

Figure 4-5: Speedup of SIMPLE(32) as Computed from Its Parallelism Profiles. 

table shows the average parallelism2 for one iteration of SIMPLE with various mesh sizes 

under the three granularities. Figure 4-4 represents the middle column. Across the columns 

the average parallelism changes with problem size. 

Mode Mesh Size 10 x 10 16 x 16 32 x 32 50 x 50 64 x 64 

Ops 201,806 532,148 2,207,156 5,472,974 9,023,418 

Instruction 178 361 922 1584 2108 

Iteration 19 40 110 199 270 

Code-block 8 14 29 46 59 

To observe the trend more clearly, consider the ratio of average parallelism, which effectively 

normalizes the problem size, given in the following table. 

2This is identical to the reciprocal of the critical path. 

64 



Ratio Mesh Size 10 x 10 16 x 16 32 x 32 50 x 50 64 x 64 

Ops 201,806 532,148 2,207,156 5,472,974 9,023,418 

Instruction / Code-block 22.3 27.8 32.9 35.2 35.7 

Instruction / Iteration 9.9 9.0 8.4 8.0 7.8 

Iteration / Code-block 2.25 3.1 3.9 4.4 4.6 

The ratios indeed seem to be stabilizing for larger size runs, reassuring that the scenario noted 

would not change much even with an appreciable increase in the size of computation. The 

phenomenon also can be intuitively justified, since the critical-path ratio of instruction to 

iteration granularity, for example, just equals to the amount of parallelism within an iteration, 

which only the instruction-level allocation scheme can exploit. Another noteworthy observation 

here is that, while the critical-path ratios for the instruction to code-block and iteration to 

code-block granularity rise with larger runs, that for the instruction to iteration granularity 

actually falls. The rising ratio curves, which indicate that the code-block-level task allocation 

performs even worse relative to the other two for increasing size of SIMPLE runs, are due 

to the two shortcomings of code-block-level task allocation previously enumerated: slow loop 

unfolding due to contention within the loop code-block, and the task granularity's increasing 

with an increase in the number of loop iterations. The falling ratio curve is due to the fact 

that, as increasing size SIMPLE runs are used, most tasks are either inner loops or those 

spawned by inner loops3 . Since the inner-loop iterations are often tight and compact, especially 

in comparison to the top-level initialization routines and the more bulky outer loops, their 

proliferation in larger runs would be expected to reduce the total effective granularity of the 

iteration-level allocation scheme. 

4.5 The Impact of Task-Allocation Policies on System Speedup 

The previous discussion assumed that the execution vehicle has an infinite number of proces

sors, so that every task invoked can be allocated on a separate processor, thus, there would 

never be any contention for computation resources between activities of different tasks. Un

der this and the zero communications latency assumptions, then, it is not surprising that the 

3 The number of inner loop instances is proportional to the size of SIMPLE squared, whereas the number of 
top-level functions and outer loops remain fairly constant. 

65 



finer-grain partition would undoubtedly be favored. When limits are imposed on the number 

of available processors, however, a policy must be selected to map the potentially unbounded 

set of tasks onto a finite set of processors. An effective allocation policy tries to minimize the 

possible contention among tasks allocated to the same processor, which would further constrain 

the useful parallelism originally present in the partitioned program graph. 

The simulation study presented in section 4.3 seems to indicate that, in the absence of 

complete information about the topology of the runtime program graph and instruction tim

ing, the simple, oblivious dynamic allocation policies actually perform up to par against either 

a more sophisticated static allocation policy, which imposes a specific processor assignment 

based on knowledge of the structure and behavior of the program, or a load-sensing allocation 

policy, which detects the "load-level" of the processors in the system in determining the pro

cessor assignment. The following discussion, therefore, will focus on the performance of some 

instances of the simple, oblivious dynamic allocation policies under the bounded-queue GITA 

described in Section 3.4.3 sans communications latency, because they are easy to arrange4 and 

incur the least runtime overhead. 

A useful metric to establish first is the speedup performance of an "unbiased" allocation 

policy, one we approximate by the "finite-processor" emulation using the multiple-queue GITA. 

The n-processor "finite-processor" version assumes there is a processor for each task as before, 

but it only allows n of them to execute during a time step. When there are more than n enabled 

processors, the scheduling order is determined by a round-robin. This model differs from one 

with a real allocation policy in that, when there are n + 1 instead of n enabled tasks, every 

task is slowed by l/n, whereas a real allocation policy would force two tasks onto the same 

processor, thus causing a load imbalance. Note that the only reason this does not produce the 

shortest-critical-path execution is because the scheduling order, and not the allocation policy, 

is nonoptimal. 

The speedup curves of SIMPLE 32 x 32 under various combinations of grain sizes and 

allocation policies are plotted in Figure 4-6. The allocation policies, real and idealized, sampled 

here are as follows: 

Estimated Speedup computed from the ideal parallelism profile using the estimation function 

given by Equation 3.1 with l = 0. 

4 No programmer input or complex compile-time analysis is needed. 

66 



Finite-processor Idealized allocation policy. This is expected to show better speedup over 

the estimated mode due to a pessimistic assumption the speedup function makes about 

instruction scheduling;. 

Round-robin Successive procedure invocations are dispatched to processors based on a global 

round-robin processor pointer. Global synchronization is implicit. 

Own Round-robin Successive procedure invocations are dispatched to processors based on 

the local round-robin processor pointer residing on each processor. No global synchro

nization is required. 

Random Procedure invocations are assigned to processors chosen by a pseudo-random num

ber stream. No global synchronization is required. 

Evidently the performance of the system, under the current set of idealized conditions, is 

much more strongly influenced by its task granularity than by its allocation policy, realistic or 

otherwise. The results also show that these oblivious allocation policies really serve adequately 

in view of their simplicity, which is very important because the time it takes to decide which 

processor to use often directly contributes to the overall execution time. In the 75 to 400 

processor range, the code-block-level partitioning has long exhausted its usable parallelism 

to saturate the system with work, as its two flattened ideal-mode curves hint. Any speedup 

indicated by the curves from the three real allocation policies is directly attributable to the fact 

that the probability of two or more active code-blocks being allocated on the same processor 

decreases as the system size increases. We can expect a more intelligent allocation policy 

to improve this scenario somewhat, but clearly there is much more to gain by reducing task 

granularity instead. The instruction-level partitioning has more than enough parallelism to 

keep every processor populated with tasks, so that the impact of incrementally allocating 

a task to any processor has negligible effect on the system's load balance, as long as the 

policy remains statistically unbiased towards all the processors. In this situation, even a 

more sophisticated allocation policy cannot be expected to improve performance. Lastly, the 

iteration-level partitioning has characteristics in between the two extremes. The two round

robin policies are consistently 80% effective relative to the "finite-processor" mode throughout 

the sampled range, with even higher ratio (around 90%) approaching the low-end (25-processor 

5 lmplicit in the equation's taking the floor function of the fraction. 

67 



system.) The random allocation policy behaves noticeably more poorly than either of the 

round-robins, conceivably because it causes more "collisions" in assigning successive tasks 

than the more disciplined round-robin scheme. 

Although these speedup curves of different task granularities seem qualitatively different, 

they are really manifestations of the same phenomenon on different scales. That is, for SIMPLE 

32 x 32, if we execute iteration-size tasks on a smaller system, less than 50 processors for 

instance, its behavior would be much like that of the instruction-level partitioning observed 

above, whereas if it is executed on a much larger system, 500 to 1500 processors for instance, 

then it would experience the same symptoms plaguing the code-block-level tasks above. There 

is one element clearly not in common among the three task granularities, however: uniformity 

of task size. Instructions are all uniform (i.e., take one time step to execute) in our timing 

model, but code-blocks can vary widely in size. Furthermore, an insufficient number of task 

partitions to keep processors loaded with enough tasks to statistically smooth out the load 

variations among them exacerbates the effects of the disparity in task size. 

4.6 The Impact of Latency on System Speedup 

All experimental data presented thus far have unreservedly favored fine-grain tasks. We shall 

now introduce one facet of all real multiprocessor systems which biases against fine-grain parti

tion: communications latency. Its related issue of communications bandwidth is also extremely 

important, but it will not be addressed because it depends too heavily on the nature of the 

program, such as the percentage of instruction mix that accesses I-structure, or, in general, the 

ratio of computation to communications bandwidths, which would involve specifying network 

designs and their particular idiosyncrasies. Instead, we shall assume that the network has been 

designed such that it can support the communications bandwidth requirement of the system, 

or, rather, we can imagine that the processors' speed is scaled down such that the network will 

not become the bottleneck, so that all the results concluded here may still apply. The other 

major concern left out is the work required of the managers to allocate and distribute tasks 

throughout the system. This overhead, as was pointed out earlier, can contribute significantly 

to the execution time of a program, especially if the managers, by necessity of some global 

aspects to the policy algorithm, must be centralized. The issue of implementing managers, 

nonetheless, is a whole different topic onto itself and cannot be adequately dealt with here. 

68 



/ 
Finite-Proc Token 

I 
I 

I . Estimated Token 

I 
I 

I 
!JOO I 

I 
I 

I 
I 

I 
0.. I 
;:I 

/. "t:I £00 
Cl) 
Cl) 

0.. 
I U"1 

/· Finite-Proc Iteration 

I. -- Estimated Iteration -I· --,,.- ~wg-1,R Itlration ;· 
/ 

n - obin teration 

I / _..-:;;:::; 
Random Iteration 

/ -100 ~ -.b- --..---

linjte-Prqc CQd~lk 

~~--=· ::.-. ...,...· _._.:;:::.. :-:::::· ~---· ::--·---=-·- ~~l1f?~~1~~i flt < ~ , :a= andom c'.1ode-B 
< 

0 

100 200 300 400PEs 

Figure 4-6: The Efficiency and Scalability of Some Allocation Policies. 

69 



With the introduction of communications latency we come to realize the utility of both 

program locality and intra-processor parallelism, which is automatically exploited by the in

struction scheduling mechanism of a dataflow computer, but not by a von Neumann computer. 

To begin, according to the speedup estimation function of Equation 3.1, any latency would be 

completely masked by execution whenever there is enough work for each processor to do until 

the network message completes. Otherwise, the extra latency would increase the total running 

time by forcing processors to idle until the network delivers the packets and more work for the 

next time step is generated. For a properly mapped program, a large amount of the processing 

should be internal to a processor, so that only the network-bound tokens would incur this 

latency. The interprocessor latency, IL, is the amount of time charged to each token whose 

destination is a different processor and to each I-structure request and acknowledgment token. 

I= 1 X (1- X) + (1 +IL) x X, where Xis the fraction of the network-bound tokens, then 

gives the average latency incurred by each token in the program. This is the value of latency 

which should be substituted into the above speedup equation. 

The fraction of network-bound tokens is certainly a function both of the program itself and 

of its partitioning strategy. The decomposition of token types for two kernel programs and 

three partitioning granularities are summarized below: 

Sample Token type 

Kernel Granularity Local Inter-PE I-structure Access % Non-Local 

Instruction 0 2,760,796 1,393,631 100.0 

SIMPLE 32 Iteration 2,662,938 97,858 1,393,631 35.9 

Code-Block 2,760,796 0 1,393,631 33.5 

Instruction 0 237,079 79,225 100.0 

MatrixM ul 20 Iteration 182, 714 54,366 79,224 42.2 

Code-Block 237,079 0 79,225 25.0 

Note that these are the locality figures from the partitioning granularity. During actual execu

tion, the processor allocation policy may assign two tasks to the same processor, thus causing 

their communication to become local and improving upon these values. This effect is min

imal, however, when there is a large number of processors; with n processors, only l/n of 

such global traffic would be internalized when the allocation policy is oblivious to minimizing 

network traffic (e.g., the round-robin case). There is no inter-PE communication in code-block 

70 



partitioning because all inter-code-block (procedure linkage) information exchange currently 

takes place through I-structure accesses to allow dynamic procedure-linking. 

The empirical results are based on the "finite-processor" mode of the multiple-queue GITA, 

which, introduced in Section 4.5, reflects an optimal allocation policy. It is further modified 

by the following latency charges: 

• Zero communications delay for tokens between operations within a task, as was assumed 

for the ideal GITA model. 

• Fixed communications delay for tokens crossing between tasks or to or from I-structures. 

Figure 4-7 shows the effect of communications latency on SIMPLE 32 x 32 under various task 

granularities. IL varies from 0 to 80, while the task sizes used are instruction, iteration, and 

code-block. The instruction-level version experiences this latency on every token; the code

block-level version experiences it only in transfer of arguments and results, and in I-structure 

requests. The iteration-level version experiences additional latency on values circulated across 

iterations. Therefore, we expect that for sufficiently high latency, the reduction in speedup due 

to latency may be greater than that due to intra-task scheduling constraints. Indeed, at l = 10 

instruction- and iteration-level versions cross at roughly 50 processors. At l = 40 performance 

of the instruction-level tasks falls below that of the code-block level. However, we should note 

that the crossovers observed here occur at high latency relative to the number of processors, at 

a large number of processors given the problem size, and without accounting for the internal 

latency due to processor pipelining. Figure 4-8 shows a similar trend for matrix multiply. The 

smaller average code-block size of the matrix multiply leads to much better speedup under 

code-block partitioning than that for SIMPLE, although it also has become more sensitive to 

latency increases. 

Caveats 

It should be duly noted that there are a few designs in the organization of the system which 

predisposes the outcome of the experimental results towards distribution rather than locality: 

• The butterfly multistage interconnection network keeps all other nodes in the system 

equidistant from a particular node, so that there is no "neighbor" locality to exploit; 

71 



11=0 

--- Code-Block 
- Iteration Partitioning 

· Instruction 

900 -

0.. 
;::; 

£00 -"O 
Cl) 
Cl) 

0.. 
00. 

- 11=0 ---------/ 11=10 ---/ -- 11=10 ,,,,..---
100 - / / 11=20 

/ -

~ 
------- ·-· - lt~i8 -· 

If ~ii ~ p 
11=80 

0 
T T T 

100 200 300 PEs 

Figure 4- 7: Effect of Latency on Speedup of SIMPLE(32). 

72 



!WO 

100 

0 

. IL=O 

--- Code-Block 
- Iteration Partitioning 

· Instruction 

100 

/ 
IL=O 

/ 
/ _..., IL=5 

/ / 
/ / 

/ / _ IL=lO 
/ --/ ------ . IL=5 --

- IL=20 ---

-:--.. -... -. . l~~li 
---------------- IL=SO 

200 

. IL=40 

. IL=SO 

300 PEs 

Figure 4-8: Effect of Latency on Speedup of MatrixMul(20). 

73 



every access or token is either local or global. 

• Data structures stored in I-structure are interleaved throughout every memory module 

in the system. This strategy favors distribution of work, but reduces the gain achievable 

in mapping function calls to the same processor executing the caller because the data 

references that are often shared between function calls become global. 

• I-structures are used to pass arguments and results between function calls. This reduces 

the gain achievable in mapping function calls to the same processor executing the caller, 

because the I-structure references needed to access arguments and results are al ways 

global6
. 

Compared to a van Neumann program, the dataflow program already includes all of the 

synchronization costs down to individual machine instructions, hence, there are no more in

structions to execute when using finer granularity (and no instruction count savings, either, 

when using coarser granularity.) Finally, the innate tolerance of dataflow processor to com

munications latencies also greatly contributes to this system's remarkable indifference towards 

network structure and locality issues, thereby allowing us to concentrate more effort on bal

ancing processor load and maximizing processor utilization. 

6 The most recent versions of the Id-Nouveau compiler can generate direct argument/result-passing code. 

74 



Chapter 5 

Conclusion 

Supercomputers that push to the limits of hardware technology and incur great costs doing 

so have not begin to satisfy the demands of computationally intensive problems. Currently 

multiprocessing is touted as the only means of increasing computation speed significantly 

beyond that afforded by advances in semiconductor device technology. Since it has become 

relatively easy to provide an abundance of hardware and the communications medium needed 

for such pursuit, its ultimate success then rests on our ability to partition, allocate, distribute, 

and schedule work, with minimum overhead costs, amongst a large collection of processors, 

while maintaining high utilization of them. 

To keep many processors busy with work, it is necessary that the program and therefore 

the algorithm that it expresses have sufficient concurrent operations that can be mapped to 

those processors. But given that there is much concurrency in many large programs, the onus 

lies on the code-mapping process to maintain as much concurrency as is feasible without com

promising its efficiency. This goal maximizes the scalability of the system. Our study is based 

on a dataflow computer, the MIT Tagged-Token Dataflow Architecture, because dataflow pro

gram graphs explicitly express parallelism down to the machine instruction level and explicitly 

account the cost of the parallel operation. These properties are invaluable since they permit 

the mapping strategies to be changed or the number of processors scaled through a very wide 

range without having to modify the program, which would have made analysis of the empirical 

results difficult or impossible. 

This study mostly concentrates on the "effectiveness" part of the whole cost-effective anal-

75 



ysis needed to determine the exact code-mapping policy for the TTDA. As such it develops 

metrics and a valuable method for evaluating the effectiveness of mapping policies on a given 

benchmark program and proceeds to apply it to a variety of readily implementable schemes. 

The "operational cost" part of the analysis is mostly neglected here since many operating

system related implementation details have never been specified. For example, the structure 

of the hierarchy, and thus the number, of resource managers a system would have have not 

been explored, so we cannot determine the throughput at which system services requests are 

processed. Also, no resource managers have been written yet in Id, so it is uncertain just how 

long it would take to allocate or terminate a task. These issues await future research efforts. 

5.1 Summary of Significant Results 

The initial step towards understanding the complex code-mapping process of the TTDA is 

to identify some relatively mutually independent phases of it and to examine the effects of 

each phase and its input variables on the behavior of the system independent of all other 

factors. These phases are task-partitioning, task-allocation, and instruction-scheduling. The 

ideal interpreters we have defined enable the effectiveness of the various realistic code-mapping 

strategies to be evaluated in absolute terms for a given benchmark program. 

Observations of results from this study suggest the following: 

• Dataflow instruction scheduling choices affect the performance of the machine by at most 

a factor of two. In general, when scheduling a large number of small tasks, as in this 

case, the variance in completion time due to scheduling anomalies is not significant (less 

than 103 in our experiments.) 

• Task-partitioning1 divides the available parallelism of the program into two classes: The 

interprocessor parallelism, provided by concurrent activities assigned to different tasks, 

allows the system to be scaled by adding more processors, while the intraprocessor par

allelism, provided by those within a task, allows each processor to pipeline its operation 

and to mask the effects of communications latency. Instruction-level granularity gener-

ates heavy network traffic and scatters context information across the entire system, thus 

1 Partitioning for the sake of allocating work to processors; it is not for scheduling of work as on von Neumann 
processors. Scheduling is still done at the instruction level, by the dataflow instruction scheduling mechanism. 

76 



complicating resource management tasks. Iteration- and code-block-level granularity in

ternalize much of the token traffic, but iteration-level produces more even-sized tasks 

and exposes much more program parallelism at the cost of creating more network traffic 

relative to code-block level, which also permits context information such as each loop 

constant to be consolidated on a single processor. 

• The goal of task allocations is not to insure that all processors perform an equal amount 

of work; it is not even to minimize the critical path. Rather, since the dataflow multi

processor never busy-waits or otherwise executes any more operations than the program 

graph requires, the real goal is to reduce processor idle time, or to maximize proces

sor utilization rate. When there is a sufficient number of tasks (i.e., there are several 

times more active tasks than the number of processors) throughout most of the program 

execution, many simple task allocation policies, such as a round-robin scheme, work re

markably well with respect to the theoretically optimal task allocation. But when there 

is insufficient number of tasks, the statistical variations may cause some processors to 

be assigned several tasks and others to have no work to do at all. On the other hand, 

programmer- or compiler-specified task allocation mostly fails because it is very difficult 

to predict before runtime, due to the asynchronous nature of dataflow computing, when 

a procedure is actually invoked and when it terminates. 

• With the introduction of communications latency, we observe the crossover points be

tween latency and granularity from our model, which demonstrates that an increase in 

latency should have greater effect on a finer-grained partition, although at lower latency 

the finer-grained partition would be more scalable by exposing more program parallelism. 

These crossovers occur at fine granularity and high latency settings, indicating that, given 

the operating conditions and assumptions of our model and the particular benchmark 

program used, the optimal granularity should be on a fairly small scale - around the 

size of an iteration. 

5.2 Future Research 

As we articulated previously, certain implementation-specific parameters are necessary to com

plete the cost analysis to determine the particular code-mapping policy best suited for the 

77 



architecture. These refer to the design of resource managers mentioned earlier. In addition, 

the cost of distribution of loop constants and context information when successive iterations 

are mapped onto distinct processors and the overhead for managing the distributed itera

tions also depend on the implementation strategy and cannot be usefully estimated. The 

domain/subdomain approach described in [3] should perhaps be considered more carefully, 

since our work points to the merits of distributing iterations across the system. 

This research uses one kernel throughout for consistency and conciseness of presentation 

and also because large kernels are difficult to produce and characterize. This method of analysis 

should be applied to other benchmark programs to get a broad perspective of how adequate a 

candidate code-mapping policy might be. Similarly, other policies can be devised and analyzed. 

Finally, we would like to be able to verify the results of these experiments against a real 

dataflow machine, although it would not be a substitute for the abstract interpreters introduced 

here since the abstract interpreters provide us with ideal performance with which we can 

evaluate the effectiveness of the code-mapping policy implemented on the real machine. 

78 



Bibliography 

[1] Arvind and J. Dean Brock. Resource Managers in Functional Programming. Journal of 
Parallel and Distributed Computing, 1(1), June 1984. 

[2] Arvind and David E. Culler. Managing Resources in a Parallel Machine. In Proceedings 
of IFIP TC-10 Working Conference on Fifth Generation Computer Architecture, Manch
ester, England, North-Holland Publishing Company, July 15-18 1985. 

[3] Arvind, David E. Culler, Robert A. Iannucci, Vinod Kathail, Keshav Pingali, and 
Robert E. Thomas. The Tagged Token Dataftow Architecture. Technical Report, Com
putation Structures Group, MIT Lab. for Computer Science, 545 Technology Square, 
Cambridge, MA 02139, August 1983. Revised October, 1984. 

[4] Arvind, M. L. Dertouzos, and R. A. Iannucci. A Multiprocessor Emulation Facility. Tech
nical Report TR 302, Massachusetts Institute for Technology, Laboratory for Computer 
Science, 545 Technology Square, Cambridge, MA 02139, October 1983. 

[5] Arvind and Kattamuri Ekanadham. Future Scientific Programming on Parallel Machines. 
In Proceedings of the International Conference on Supercomputing (JCS), Athens, Greece, 
June 1987. 

[6] Arvind and K. P. Gostelow. The U-Interpreter. COMPUTER, 15(2), Feburary 1982. 

[7] Arvind and Robert A. Iannucci. Instruction Set Definition for a Tagged Token Dataftow 
Architecture. Technical Report 212-3, Computation Structures Group, MIT Lab. for Com
puter Science, 545 Technology Square, Cambridge, MA 02139, February 1983. 

[8] Arvind and Rishiyur S. Nikhil. Executing a Program on the MIT Tagged-Token Dataflow 
Architecture. In Proceedings of the PARLE Conference, Eindhoven, The Netherlands. 
(LNCS Volume 259), Springer-Verlag, June 15-19 1987. 

[9] Arvind and R. E. Thomas. I-Structures: An Efficient Data Type for Functional Lan
guages. Technical Report TM 178, Massachusetts Institute for Technology, Laboratory 
for Computer Science, 545 Technology Square, Cambridge, MA 02139, September 1980. 

[10] .John Backus. Can Programming Be Liberated from the von Neumann Style? A Functional 
Style and its Algebra of Programs. Communications of the Association for Computing 
Machinery, 21(8):613-641, August 1978. 

[ll] Stephen A. Brobst. Instruction Scheduling and Token Storage Requirements in a Dataftow 
Supercomputer. Master's thesis, Dept. of Electrical Engineering and Computer Science, 
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, 
May 1986. 

79 



[12] M. Campbell. Static Allocation for a Dataflow Multiprocessor. In Proceedings of tht 
International Conference on Parallel Processing, pages 511-517, 1985. 

[13] E. G. Coffman, Jr., editor. Computer and Job Shop Scheduling Theory. John Wiley and 
Sons, New York, 1976. 

[14] W. P. Crowley, C. P. Hendrickson, and T. E. Rudy. The SIMPLE Code. Technical 
Report UCID 17715, Lawrence Livermore Laboratory, February 1978. 

[15] Jack B. Dennis. Data Flow Supercomputers. IEEE Computer, 48-56, November 1980. 

[16] Kattamuri Ekanadham, Arvind, and David E. Culler. The Price of Parallelism. Technical 
Report 278, Computation Structures Group, MIT Lab. for Computer Science, 545 Tech
nology Square, Cambridge, MA 02139, December 1987. Submitted to the Fifteenth Annual 
International Symposium on Computer Architecture, Honolulu, Hawaii, May 1988. 

[17] C. Gao, J. Liu, and M. Railey. Load Balancing in Homogeneous Distributed Systems. In 
Proceedings of the International Conference on Parallel Processing, pages 302-306, 1984. 

[18] Michael R. Garey and David S. Johnson. Computers and Intractability, pages 236-244. 
W. H. Freeman and Company, San Fransisco, 1979. 

[19] R. L. Graham. Bounds for Certain Multiprocessing Anomalies. Bell System Technical 
Journal, 45:1563-1581, 1966. 

[20] P. Henderson. Functional Programming: Application and Implementation. Prentice/Hall 
International, Englewood Cliffs, New Jersey, 1980. 

[21] Kei Hiraki, Satoshi Sekiguchi, and Toshia Shimada. Load Scheduling Schemes Using Inter
PE Network. Technical Report, Computer Systems Division, Electrotechnical Laboratory, 
1-1-4 Umezono, Sakura-mura, Niihari-gun, Ibaraki, 305, Japan, 1987. 

[22] D. J. Kuck, R.H. Kuhn, D. A. Padua, B. Leasure, and Wolfe M. Dependence Graphs and 
Compiler Optimizations. In Proceeding of ACM Symposium on Principles of Programming 
Languages, January 1981. 

[23] Robin Milner. A Proposal for Standard ML. In Proceedings of the ACM Symposium 
on LISP and Functional Programming, pages 184-197, The Association for Computing 
Machinery, Inc., New York, August 1984. 

[24] Rishiyur Sivaswami Nikhil. Id Nouveau Reference Manual, Part I: Syntax. Technical 
Report, Computation Structures Group, MIT Lab. for Computer Science, 545 Technology 
Square, Cambridge, MA 02139, April 1987. 

[25] Rishiyur Sivaswami Nikhil. Id World Reference Manual. Technical Report, Computation 
Structures Group, MIT Lab. for Computer Science, 545 Technology Square, Cambridge, 
MA 02139, April 1987. 

[26] G. F. Pfister and V. A. Norton. Hot Spot Contention and Combining in Multistage 
Interconnection Networks. IEEE Transactions on Computers, C-34(10):943-948, October 
1985. 

80 



[27) Keueth B.. Trub. A QI ..... /M' dN Mir; ..... ~...,,._ AldaitectuN. Tecluli· 
cal .Report LCS TLm, Ma11ultwlta lrufl1111ta•r . · ·'·q· · ,,_..,__,fer Computer 
Sr.iaee, M5 Tect••lllf ....,., Camllltfja/ ..... ·. . . : 1111• (lfttt••• TlMeit, 
Dept. of Electdal B·pud11at10., iuOhftlllli·J~ . 

81 





CS-TR Scanning Project 
Document Control Form 

Report# Les- -TR-~ 15" 

Each of the following should be identified by a checkmark: 
Originating Department: 

0 Artificial lntellegence Laboratory {Al) 
.;( Laboratory for Computer Science (LCS) 

Document Type: 

)( Technical Report (TR) 0 Technical Memo (TM) 

0 Other: 
~-------------------------------------

Date : 3 I 17 I ~; 

Document Information Number of pages: 870.s~ r m4G.<s) 
- Not to include DOD forms, printer lntstructions, etc ... original pages only. 

Originals are: 

)( Single-sided or 

Intended to be printed as : 

0 Single-sided or 

0 Double-sided )(.Double-sided 

Print type: 
D Typft1ier D Offset Pre&8 D Laser Print 

D Ink.Jet Printer 0 Unknown 0 Other:.~~~~~~-
Check each if included with document: 

)( DOD Fonn (Jtj 0 Funding Agent Fonn 

)( Spine 0 Printers Notes 

~Cover Page 

0 Photo negatives 

D Other: 
~--------------------------------------------

Page Data: 

Blank Pages(by.-eenuinberl: fACF: Al'I"~-~ i .·\, l'AG"i;:5U ~(, 
I J..) 

Photographs/Tonal Material (by119119number): _________ _ 

Other <nm. c1w:1iplio;JP11119 numbel): 
Description : Page Number: 

imtJCia· {Y)gf· (1-C )14tiJ#17rb..f/~ck fAU:K:)j;j/t"'D; ,;,),', l3L.At)i~ 
r } J ' ) 

(7-K?'j fA£1'? #'..re /-'ti 

. I J ) 

( T3- 9 Y) TA.G'l's 

Scanning Agent Signoff: 

Date Received: 2_1.[!_1~ Date Scanned: J 1J:h9's 

Scanning Agent Signature: _ __._?n_~..;...J. ...... ~ ....... A-+-..... fN~,_C __ ~""""· '-"--"-
\, 

Date Returned: 3 I JJ I tr 

Rev 111114 DSILCS DoculY*lt Conlral Form Cllllform.vsd 



Unclassified 
SECURITY CLASSIFICATION OF THIS PAGE 

REPORT DOCUMENTATION PAGE 
la. REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGS 

Unclassified 
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRl1JUTION I AVAILABILITY OF REPORT 

2b. DECLASSIFICATION I DOWNGRADING SCHEDULE Approved for public release; distribution 

is unlimited. 

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) 

HIT/LCS/TR-425 N00014-84-K-0099 

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION 
MIT Laboratory for Computer (If applicable) 

Science 
Office of Haval Research/Department of Navy 

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) 

545 Technology Square Information Systems Program 

Cambridge, MA 02139 Arlington, VA 22217 

Ba. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 
ORGANIZATION (If applicable) 

DARPA/DOD 

Be. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS 
1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT 

Arlington, VA 22217 ELEMENT NO. NO. NO. ACCESSION NO. 

11; TITLE (Include Security Classification) 

Code-l1aE:eing Policies for the Tagged-Token Dataflow Architecture 

12. PERSONAL AUTHOR(S} 

Maa_,_ Gino K. 
13a. TYPE OF REPORT I13b. TIME COVERED 14. DA TE OF REPORT (Year, Month, Day) T 5. PAGE COUNT 

Technical FROM TO 1988 June 81 

16. SUPPLEMENTARY NOTATION 

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 

FIELD GROUP SUB-GROUP Dataflow, Multiprocessors, Code Mapping, Program Partition 

ing, Processor Allocation, Scheduling, Granularity, Multi-

processor Performance Scalability, Parallel Computing 

19. ABSTRACT (Continue on reverse if necessary and identify by block number) 

Multiprocessing seems to be the only viable way to gain significant speedup beyond that 

afforded by performance advances in semiconductor devices and hardware construction, which 

are beginning to face the limitations of physics, Although it is relatively easy to im-

prove the "raw" computational performance of a system simply by adding more processors to 

it, the far more difficult task is to insure that the additional resources actually reduce 
a program's computing time. Thus, the ultimate success of multiprocessing as a means of 
increasing computation speed rests on the ability to parallelize computation: to partition, 

allocate, distribute, and schedule work efficiently amongst the large collection of avail-
able system resources, while maintaining a high rate of utilization of these resources. 

To keep many processors busy with work, it is necessary that the program has enough con-

current operations to map to those processors. But given that there is much concurrency 

in many large programs, the onus lies on the code-mapping process to maintain as much (cont ) 

20. DISTRIBUTION I AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 

Q UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS Unclassified 
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code)l 22c. OFFICE SYMBOL 

Jud_y Little~ Publications Coordinator (617) 253-5894 

DD FORM 1473, B4 MAR 83 APR ed1t1on may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE 
All other editions are obsolete 

Unclassified 



19. concurrency as is feasible without compromising its efficiency. This goal 
maximizes the scalability of the system. Our study is based on a dataflow 
computer, the MIT Tagged-Token Dataflow Architecture (TTDA). 

This study focuses on analyzing the effectiveness of the code-mapping policies 
for the TTDA. It develops metrics and practical method for evaluating the 
effectiveness of mapping policies on a given benchmark program and proceeds to 
apply it to a variety of readily implementable schemes, This approach provides 
answers to the following important questions: 

• What is the maximum gain achievable by any code-mapping strategy and, 
therefore, whether it is worthwhile to seek a more sophisticated strategy? 

• If some of the processors are idle, does it mean that the program lacks 
sufficient parallelism, and therefore either should be rewritten or 
perhaps is entirely unsuitable for a multiprocessor, or that the code
mapping process is too inefficient? 

• What is the effect of communications latency, an inherent part of all 
multiprocessor systems, on the performance of the system and the code
mapping strategy? 


