
LABORATORY FOR ~~ ~ir~sgrrs
COMPUTER SCIENCE JE11ft_ TECHNOLOGY

MIT/LCS{fR-423

VIEWST AMPED REPLICATION
FOR HIGHLY AVAILABLE
DISTRIBUTED SYSTEMS

Brian Masao Oki

August 1988

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Viewstamped Replication for

Highly Available Distributed Systems

by

Brian Masao Oki

August 1988

© Massachusetts Institute of Technology, 1988

This research was supported in part by the Advanced Research Projects Agency of the De­
partment of Defense, monitored by the Office of Naval Research under contract N00014-
83-K-0125, and in part by the National Science Foundation under grants DCR-8503662
and DCR-8510014.

Massachusetts Institute of Technology
Laboratory for Computer Science

Cambridge, Massachusetts

Viewstamped Replication for
Highly Available Distributed Systems

by

Brian Masao Oki

Abstract

This dissertation presents viewstamped replication, a new algorithm for the imple­

mentation of highly available computer services that continue to be usable in spite of

node crashes and network partitions. Our goal is to design an efficient mechanism that

makes it easy for programmers to implement these services without complicating the pro­

gramming model. Our replication method is based on a primary copy technique, where

one replica is the primary and others are backups, and is integrated into the fabric of an

atomic transaction mechanism. Transactions are run only at the primary and need not

involve the backups; the primary propagates the effects of transaction processing to the

backups in the background. The method exhibits low delay during normal operation,

has low overhead, and increases the likelihood that transactions will commit in spite of

failures.

When failures occur, replicas are reorganized automatically and a new primary is

selected if the old one becomes inaccessible. This reorganization is called a view change

and is accomplished by a view management algorithm. Since the primary only commu­

nicates with the backups in background mode, the effects of some processing may be

lost after a view change; the affected transactions must abort. If the effects are known

at the new primary, then no information is lost and the transaction can commit. Fur­

thermore, if transactions commit, we guarantee that their effects are not lost. A special

kind of timestamp, called a viewstamp, allows the algorithm to distinguish these cases

inexpensively.

Keywords: Primary copy, Replication, Viewstamp, View management, High availabil­
ity, Fault-tolerance, Transactions, Nested transactions, Atomicity, Distributed computer
systems

This report is a minor revision of a dissertation of the same title submitted to the De­
partment of Electrical Engineering and Computer Science on May 20, 1988 in partial
fulfillment of the requirements for the Degree of Doctor of Philosophy in Computer Sci­
ence. The dissertation was supervised by Professor Barbara H. Liskov.

2

Contents

Acknowledgments

1 Introduction
1.1 Contributions
1.2 Roadmap . .

2 Argus Programming Language and System
2.1 Guardians ...
2.2 Atomic Actions

3 Viewstamped Replication
3.1 Overview of the New Method
3.2 Managing View Changes
3.3 Running Transactions

3.3.1 Timestamps ...
3.3.2 Viewstamp history
3.3.3 Transaction processing

3.4 Correctness

4 Integrating Replication with a Transaction System
4.1 Implementing Actions

4.1.1 Action trees
4.1.2 Implementing two-phase commit.
4.1.3 Queries

4.2 Implementing Viewstamped Replication
4.2.1 Communication buffer ...
4.2.2 Cohort State
4.2.3 Locating the primary cohort

4.3 Running Nested Transactions ...
4.3.1 Active primaries of replicated clients
4.3.2 Active primaries of replicated servers
4.3.3 Other processing at cohorts
4.3.4 Queries
4.3.5 Non-replicated clients
4.3.6 Discussion

4.4 Running Non-Nested Transactions .
4.5 Performance

3

6

8
10
12

14
15
16

20
21
23
25
26
26
28
30

32
32
33
35
37
37
38
40
40
42
43
47
51
52
52
54
55
56

4

5 View Management Algorithm
5.1 Overview of the Algorithm ..
5.2 The Full Algorithm

5.2.l Cohort state-view changes
5.2.2 The active state
5.2.3 The view manager state
5.2.4 The underling state .

5.3 Why the Algorithm Works . . .
5.3.1 The simple case
5.3.2 The case of two active primaries .
5.3.3 Concurrent view managers

5.4 Performance
5.4.1 Simple case
5.4.2 Preventing concurrent view managers
5.4.3 Lost messages
5.4.4 Other optimizations

5.5 Robustness and Making Progress
5.6 Discussion

6 Related Work
6.1 Voting ...
6.2 Virtual Partitions
6.3 Isis
6.4 Circus
6.5 Tandem's NonStop System .
6.6 Auragen

7 Conclusions
7.1 Summary
7.2 Directions for Future Work .

References

Biography

Contents

58
59
60
62
62
65
69
70
72
74
75
76
76
77
78
78
79
79

81
81
82
83
84
86
88

90
90
92

95

99

Figures

2.1 Rules for locking and version management for a subaction S, on object X. 18

3.1 Normal operation. Client C sends requests to server G and receives replies.
The dashed lines emanating from the primary cohort represent information
flowing to the backups in background mode. 22

3.2 Client and server in the presence of communication failures. 23
3.3 View changes. Guardian group G reacts to communication failures, such

as a network partition, by changing views to v2 to exclude inaccessible
cohort a.. 25

3.4 Handler calls. Client makes a call to a server, which processes it and replies
to the caller. Viewids flow on call messages, and viewstamps flow back on
reply messages. 29

3.5 Can topaction Tl commit? . 30

4.1 Action tree, showing the location and status of topaction A and its de-
scendants. 34

4.2 Format of event records. 39
4.3 State of a cohort. {}denotes a set, [] denotes a sequence, oneof means a

tagged union with component tags and types as indicated, and<> denotes
a record, with component names and types as indicated. 41

4.4 Representation of atomic objects. 42
4.5 Processing at active primaries of clients . 44
4.6 Processing at active primaries of servers. 49
4. 7 Performance. 56

5.1 View management algorithm: Finite State Machine. 61
5.2 State machine code. 61
5.3 Cohort state. {}denotes a set, oneof means a tagged union with compo-

nent tags, and <> denotes a record, with component names and types as
indicated. 63

5.4 Active state. 64
5.5 View manager state. 66
5.6 View manager state (continued).. 67
5. 7 View underling state. 71
5.8 Simple case-Detecting a communication failure triggers the view man-

agement algorithm. 73

5

Acknowledgments

My years at MIT have been a revealing voyage of self-discovery through the hardships

and triumphs of graduate school.

I thank my thesis supervisor, Barbara Liskov, for reading countless drafts of this

dissertation and for signficantly improving its presentation. I am grateful to her for

teaching me how to do research and how to write. I thank my thesis readers, Dave

Gifford and Bill Weihl, for reading quickly the draft I submitted for my defense and

providing me with invaluable comments. I am grateful to Dave for his wise counsel,

constant support, and encouragement. He listened patiently when I needed to talk. Bill

deserves many thanks for innumerable kindnesses, both while we were fellow graduate

students and later as a thesis reader. Shrewd and wise John Guttag provided much sound

advice about job interviewing.

I thank Debbie Hwang and Sanjay Ghemawat, my officemates, for goodnaturedly

tolerating my grumpy moods and occasional sour demeanor, especially during the final

few weeks as I wrote and revised furiously in order to finish. I thank Debbie for many

enlightening conversations, technical and otherwise. My thanks go to her for helping me

to work out a way of repairing my view management algorithm, which did the wrong thing

in the presence of any sequence of crashes and partitions. I thank group members, past

and present-Boaz Ben-Zvi, Mark Day, Ken Goldman, Elliot Kolodner, Rivka Ladin,

Gary Leavens, Eliot Moss, Sharon Perl, Liuba Shrira, Ed Walker, and Andrew Xu-for

their friendship and for serving as sounding boards for my ideas. Speci <i 1 thanks to Gary

Leavens for his support during trying times. To those who read my thc~is, in whole and

in part, I thank you for your comments and suggestions: Alan Fekete, Sanjay, Debbie,

Elliot, Gary, Liuba, and Andrew.

I thank Maurice Herlihy for his practical suggestions regarding the kinds of thesis top­

ics that one should do and that one should avoid. Craig Schaffert advised me to abandon

my original Ph.D. thesis topic with cogent, compelling, and utterly sound arguments.

I'm glad I listened to him. I thank Sheng-Yang Chiu, ex-officemate, for his friendship

and moral support. Brian Coan was responsible for my taking up bicycling and joining

6

Acknowledgments 7

the 5th floor bikers on various trips and going to Talbot House. Jennifer Welch, Kathy

Yelick, and Jeannette Wing understood me and listened when I needed to talk, and I am

grateful to them. I thank my friend, Janice Chung, not only for understanding me, but

also for putting up with my horrible leads when we both learned to dance Swing four

years ago.

Gracious, supportive, and always encouraging, Jim Gray of Tandem told me over

lunch about his years in graduate school at UC Berkeley and his ideas on how one ought

to go about doing a doctoral thesis. I am grateful to him for listening to my ideas and

asking hard questions. I thank Pat Helland of Tandem for taking the time to answer my

questions about Tandem's commit protocol a few days before I submitted the dissertation;

I hope I got it right. From UC Irvine's Tim Standish and George Lueker, I learned a lot

about data structures and the analysis of algorithms, and had a fleeting glimpse of the

world of research.

To the Ashdown gang, for several years of camaraderie and conversation: Sam Cooper,

Ziyad Duron, Eugene Gath, Glen Kissel, Monty McGovern, Mark Smith, and Robin

Vaughan. I thank Nancy Lee for her friendship and for the many hours of delightful

companionship and conversation we've had. She has tried to teach me to relax and to

enjoy life more, and helped make my last semester at MIT the happiest ever. I thank

my friends-Bob Gounley, Rob Granville, Jim Restivo, and Su-Ming Wu-whose moral

support and friendship over the years made my stay at MIT more enjoyable.

Ballroom dancing has been a welcome and fun diversion for me over the last five

years from the labors of graduate school. My thanks go to Ron Gursky, Dan Radler, and

Suzanne Hamby, for teaching me how to dance the international style Latin-American

and Modern ballroom dances.

Finally, I thank Mom and Dad and my sister, Lisa, for always believing in me, inspir­

ing me to do the best I was capable of doing, and never doubting that I would finish.

Introduction

High availability is essential to many computer-based services. For example, imagine

trying to withdraw money from your savings account at your local savings and loan bank.

As you present your passbook to the teller, he tells you, red-faced with embarrassment,

that he cannot process your request because the system is down and will be for some

time. I actually found myself in the teller's position some years ago, apologizing profusely

to customers. The entire customer database resided on a single mainframe computer

located somewhere in Beverly Hills, California. All branches in Los Angeles County were

connected directly to this computer, and its problems affected everybody. In a fit of rage,

some customers later closed out their accounts and took their money elsewhere, much to

the bank's chagrin.

Consider another example, TWA's airline reservation system (Gifford 84]. Reserva­

tion agents in Boston, Chicago, and Los Angeles might be booking flights on behalf of

customers and accessing the monolithic reservation system from different parts of the

country. If the reservation system resided on a single computer, a failure of that com­

puter could immobolize the entire airline because the airline is critically dependent on

the system. An agent is Chicago, for example, would be unable to book flights because

the system is unavailable. This is a bad situation for the airline to be in because it will

definitely lose revenue and possibly passenger goodwill.

8

1. Introduction 9

The key to achieving high availability is replication. Historically, the idea was to

replicate each hardware component to such an extent that the likelihood of all replicas

failing became vanishingly small [von Neumann 56]. Likewise, we can replicate important

information at several computers. Flight information, for example, is more likely to be

usable by a reservation agent if there are several copies, because the failure of a single

computer leaves other copies available. We say that a service is highly available if it

continues to be usable with high probability in spite of failures.

This dissertation addresses the problem of constructing highly available computer­

based services that automatically tolerate computer crashes and communication failures.

Ideally, programmers would write programs to implement these services in some dis­

tributed programming language that supports our model of computation, without wor­

rying about availability. Our goal is to design a mechanism that can be used by a language

implementation to take care of the details of implementing availability automatically.

This dissertation presents a new replication method. Our method operates in a dis­

tributed computer system that consists of many nodes connected by a communication

network. Distinct nodes communicate with each other only by sending messages over the

network. Nodes are individual computers, and may be uniprocessors, multiprocessors,

timesharing machines, or single-user workstations.

Both the nodes and the network may fail; we assume these failures are not Byzantine

[Lamport 82]. Nodes may crash, but we assume they are failstop [Schneider 83], that is,

they fail by halting. Each node has volatile storage that is lost in a crash. The network

may lose, duplicate, or delay messages, or deliver them out of order. Link failures may

cause the network to partition into isolated subnetworks that cannot communicate with

one another. We assume that failures are eventually repaired: nodes eventually recover

from crashes and partitions are eventually reconnected.

We have integrated our replication method into a system that supports transactions.

We assume that programmers write distributed programs consisting of modules, each of

which resides at a single node in the network. Atomic transactions [Eswaran 76] perform

computations involving these modules. Each module contains within it both data objects

and code that manipulates the objects; modules can recover from crashes with some of

their state intact. No other module can access the data objects of another module

directly. Instead, each module provides procedures that can be used to access its objects;

10 1. Introduction

modules communicate by means of remote procedure calls (RPCs) [Nelson 81]. Atomic

transactions guarantee serializable and recoverable execution, preserving consistency of

the data in the presence of failures and concurrent activities. Our scheme also works

with nested transctions [Moss 81, Davies 78]. An action that is nested inside another is

called a subaction.

Any replication method must solve two problems: maintaining the consistency of rep­

licated data and synchronizing concurrent operations on the replicated data. Our method

solves both problems and thus guarantees the one-copy serializability correctness crite­

rion [Bernstein 83, Papadimitriou 79]. That is, the concurrent execution of transactions

on replicated data is equivalent to a serial execution on non-replicated data.

1.1 Contributions

This dissertation makes several contributions.

The first contribution is viewstamped replication, a new pnmary copy replication

algorithm, which was inspired by Alsberg and Day's primary copy technique [Alsberg 76].

The module is the unit of replication in a distributed program. Each replicated module

consists of several instances, called cohorts, constituting a module group. One cohort

is designated the primary; the others are backups. The primary is responsible for the

module group's activity; it executes remote procedure calls and modifies its state. After a

call executes, the primary propagates the effects of the call to the backups in background

mode asynchronously. In this dissertation, we have worked out the details of a primary

copy method, capitalizing on its advantages that other methods, such as weighted voting

[Gifford 79] and quorum consensus [Herlihy 86], have not exploited. The advantages are

as follows. First, the primary can be placed at an advantageous location, for example,

at the main place of use or where there is a more powerful computer. Second, there

are no synchronization problems because remote procedure calls are executed entirely at

the primary and need not involve synchronizing with the backups. Third, the method

exhibits low delay since users need only communicate with the primary copy.

The second contribution is a view management algorithm that limits the impact of

node crashes and communication failures efficiently. Our algorithm is a simplification

and modification of El Abbadi et al. 's virtual partitions protocol [El Abbadi 85]. When

1.1. Contributions 11

nodes or communication links fail and then recover, the cohorts are reorganized and a

new primary is selected if the old one becomes inaccessible. Following El Abbadi and

Toueg [El Abbadi 86], we refer to this reorganization as a view change. Once the view

change is complete, the module group can continue to be used.

When a module group undergoes a view change, the effects of any remote procedure

calls that ran on behalf of a transaction at the primary of the old view may or may not

survive into the new view. We use a special kind of timestamp called a viewstamp to

determine inexpensively whether needed information did survive. If the effects of calls

survived, the transaction can commit; otherwise, it must abort.

The third contribution is integrating the replication method with transactions, rather

than building it on top of a transaction mechanism, in contrast to most methods. This

integration is beneficial in two ways. First, it is efficient because the replication method

can take advantage of messages that must flow as part of transaction processing; mes­

sages can thus serve a dual purpose. Second, it allows us to fine-tune the system to

varying levels of performance and availability. We can trade off computation at the pri­

mary in exchange for reducing the probability of aborting transactions. At one end of

the continuum of possibilities, the primary might perform more computations, eagerly

propagating updates to its backups when remote procedure calls complete. Although

performance may suffer, we have reduced the probability that the transaction will abort;

when the call returns, we can be certain its effects will not be lost in a view change. At

the other end, the primary might do very little and let the updates propagate lazily after

calls complete. If we are too lazy, however, transactions may abort more often.

The fourth contribution is that our method is an experiment in using the backups to

record committed information instead of stable storage1 as in a conventional transaction

system. In such a conventional system the effects of committed transactions are made

permanent by writing information at commit time to stable storage. In a replicated

system, however, it seems redundant and expensive to record information both at the

backups and on stable storage. In our method we assume that most of a cohort's state is

volatile. Such an assumption means that a module group can potentially lose information

about the effects of committed transactions if certain catastrophes befall the group. We

1Stable storage is an abstraction of a reliable memory device that does not lose information entrusted
to it with high probability [Lampson 81].

12 1. Introduction

analyze the effect of our method with respect to catastrophes.

1.2 Roadmap

We developed our replication method in the context of the Argus language and system

[Liskov 88], which is described in Chapter 2. To make our discussion in later chapters

more concrete we draw heavily on the Argus terminology. The Argus model is an instance

of the general transaction model, however, and our method can be applied to any system

with the same properties. Distributed programs written in Argus consist of guardians

(corresponding to modules) and atomic actions (transactions).

In Chapter 3, we present an overview of our replication method and discuss how it

interacts closely with transaction processing. In particular, we introduce the concepts of

view, viewstamp, and viewstamp history. A view consists of a primary and its backups,

which must constitute a majority of cohorts of a group; it represents the shared belief of

cohorts in a group about who is accessible. The view management algorithm reorganizes

the cohorts to form new views under certain conditions. Viewstamps represent how much

a cohort "knows" about the effects of transactions that have run. The viewstamp history

represents the sequence of view changes seen by a cohort; the cohort state reflects the

effects of all events that happened in all views in the history. What a cohort does know

and what it should know are used to determine whether transactions can commit or must

abort. We state informally the conditions that transaction processing and our replication

and view management algorithms must satisfy for correct operation of the system.

In Chapter 4, we describe in detail how to integrate our replication method into a

transaction system. We use the Argus implementation as the basis for this work. In

particular, we describe how our method works with both nested and flat transactions.

We show that nested actions are useful to further reduce the probability of transaction

abort by masking view changes.

In Chapter 5, we present our view management algorithm. In response to a failure,

the algorithm reorganizes the cohorts, and if a majority agree to the change, it chooses a

new primary and assembles a new view. The algorithm guarantees that the effects of all

committed transactions survive successive view changes. If every view consists of at least

a majority of cohorts of a group, then it must contain at least one cohort that knows

1.2. Roadmap 13

about committed transactions in the previous view. What that cohort knows is used to

bring all other cohorts in the new view up to date. The algorithm relies on properties of

transaction commit to ensure that the effects of committed transactions are recorded at

all the backups in the current view.

In Chapter 6, we discuss how our method compares with other replication techniques.

In Chapter 7, we conclude with a summary of what we have accomplished and a

discussion of directions for future research.

Argus Programming
Language and System

Argus is an integrated programming language and system [Liskov 88] that supports

the implementation and execution of distributed programs. Distribution gives rise to

some problems that either do not exist in a centralized system or exist in a less complex

form. For example, a centralized system is either running or crashed, but a distributed

system may be partly running and partly crashed. Argus provides mechanisms that help

programmers cope with these problems.

Argus is intended to be used primarily for programs that maintain on-line data for

long periods of time, such as file systems, mail systems, and banking systems. These

programs require on-line information to remain consistent in spite of failures and also in

spite of concurrent access. Programmers may need to control placement of information

and processing at nodes to improve performance, since information is cheaper to access if

it is nearby. Finally, programs may need to be reconfigured dynamically, for example, by

adding and removing components, or by moving a component from one node to another.

In this chapter, we present the Argus model of computation. We focus on guardians

and atomic actions.

14

2.1. Guardians 15

2.1 Guardians

Argus modules are called guardians. An Argus guardian is a special kind of abstract

data object that encapsulates and controls access to resources, such as databases or de­

vices. It permits its resources to be accessed by means of special procedures, called

handlers, that can be called from other guardians. For example, a guardian might en­

capsulate some or all of the accounts at a bank branch, and provide handlers to open and

close accounts, and to withdraw and deposit money in accounts. As another example, a

guardian might control a printing device, and provide a handler called enq to allow files

to be enqueued for printing and a handler called check_queue to check the state of the

queue.

Guardians are the logical nodes of the system. Each guardian resides at a single

physical node of the network and may not span node boundaries. A node, however, may

support several guardians.

A guardian contains within it data objects that store the state of its resource. These

objects are not accessible outside the guardian; the only way they can be accessed or

modified by another guardian is by calls of their guardian's handlers. Handler calls are

remote procedure calls [Nelson 81]. The caller supplies the name of the called handler

and some arguments. When the handler returns, the caller receives the results and can

then continue processing. Arguments and results are passed by value. This rule ensures

that a guardian retains control of its own objects and cannot be accessed directly by any

other guardian. The Argus implementation takes care of all details of constructing and

sending messages.

Inside a guardian are one or more processes. These processes can access all of the

guardian's objects directly. Some processes carry out handler calls; whenever a handler

call arrives at a guardian, a process is created to run the call. In addition, there may be

background processes that carry out tasks independently of particular handler calls. For

example, the enq handler of the printer guardian might merely record information about

the request; a background process would carry out the actual printing.

A guardian is resilient to failures of its node. After a crash and recovery of its node,

the guardian can recover with its code and objects intact. The objects have the values

they possessed as of the last time they were written to stable storage. Stable storage

16 2. Argus Programming Language and System

preserves information written to it with very high probability [Lampson 81]. The objects

in the guardian state are of two kinds: stable and volatile; only the stable objects survive

crashes.

A crash destroys all volatile objects of a guardian and also all processes that were

running at the time of the crash. After the crash, the Argus system restores the guardian's

code and recovers the stable objects from stable storage. Then it creates a special recovery

process, which runs code defined by the guardian to initialize the volatile objects. When

this finishes, the guardian is ready to accept new handler calls and to run background

processes. Since the volatile state does not survive crashes, it should be used only to

record redundant information, such as an index into a database, or information that can

be discarded in a crash, such as current printing information in the printer spooler. For

example, in the printer guardian, information about queued requests would be stored in

stable objects so that requests are not lost in a crash. Detailed information about the

exact processing of the current request need not be stable, however, since the request can

be redone after a crash.

A guardian can create other guardians dynamically, and the names of guardians and

handlers can be sent as arguments of handler calls. A programmer can specify the node

at which the new guardian is to reside; in this way individual guardians can be placed

at the most advantageous locations. Handler calls are location-independent, so that one

guardian can use another without knowing its location.

2.2 Atomic Actions

To solve the problems of concurrency and failure, computations in Argus run as atomic

transactions, or actions for short. Atomic transactions have two properties. First, they

are serializable, that is, the effect of running a group of actions is the same as if they

were run sequentially in some order. Serializability permits concurrent execution, but

ensures that concurrent actions cannot interfere with one another. Second, actions are

total, that is, an action either completes entirely or it is guaranteed to have no visible

effect. An action that completes is said to commit; otherwise, the action aborts. In

addition, the effects of committed actions are permanent, that is, the effects persist and

are guaranteed to survive failures.

18 2. Argus Programming Language and System

Acquiring a read lock:

• All holders of write locks on X must be ancestors of S.

Acquiring a write lock:

• All holders of read and write locks on X must be ancestors of S.

• If this is the first time S has acquired a write lock on X, push a copy of the object
on top of the version stack.

Commit:

• S's parent acquires S's lock on X.

• If S holds a write lock on X, then S's version (which is on the top of the version
stack for X) becomes S's parent's version.

Abort:

• S's lock and version (if any) are discarded.

Figure 2.1: Rules for locking and version management for a subaction S, on object X.

are summarized in Figure 2.1. A subaction can acquire a read lock only if all holders of

write locks are ancestors (that is, itself, its parent, its parent's parent, and so on); it can

acquire a write lock only if all holders of read or write locks are ancestors, and in this case

a new version is created for its use the first time it acquires a write lock. When a subaction

aborts, its locks and versions are discarded and its parent action can continue from the

state at which the subaction started. If a subaction commits, its locks and versions are

inherited by its parent. If the parent aborts later, all modifications of the subaction

will be undone. The rules make sense because Argus does not permit a parent to run

concurrently with its children, neither does it permit any concurrency within an action

except by creating subactions. For example, if a parent could run concurrently with a

child, then the commit of the child could overwrite changes made by the parent since the

child was created. The rules are implemented by a stack of versions, one version for each

active action that is modifiying the object. When a subaction needs a new version, the

version on top of the version stack is copied and the result pushed on the stack.

Every handler call runs as a subaction; this subaction runs on the caller's side and is

called the call action. This extra action ensures that calls have a zero or one semantics:

2.2. Atomic Actions 19

If the call is successful and the called guardian returns a reply, it is guaranteed that the

call happened exactly once. If it is not possible to complete the call, we abort the call

action, thus guaranteeing that the call, effectively, did not happen at all. Running a

call as a subaction ensures that calls have a clean semantics, which is a non-trivial and

desirable property in a distributed system.

The processing of a handler call at the called guardian runs as a subaction of the

call action; this subaction is called the handler action. The handler action gives a clean

separation of the calling and called guardians and ensures that each individual action

runs at just one guardian. It avoids anomalies such as an action that commits at one

guardian and aborts at another. It allows the handler to commit or abort unilaterally,

without concern about what the calling guardian does, and similarly for the caller.

A distributed program in Argus consists of a collection of guardians that may be

dispersed geographically over the nodes of the network. A computation starts up as a

topaction at some guardian and spreads to other guardians by means of handler calls.

Executing a handler call might spawn further calls and might cause some objects to be

modified. When the topaction commits, modifications made to stable objects by the top­

action or its descendants at all the guardians it visited must be written to stable storage.

To ensure that committing is atomic, we use the standard two-phase commit protocol

[Gray 78]. The guardian where the action started acts as the coordinator; guardians

visited by descendants of the action are the participants. The protocol is used only for

topaction commits; a subaction commit is processed locally at the guardian where the

subaction is running.

Viewstamped
Replication

The semantics of Argus makes it easy for programmers to construct services that

are highly reliable, that is, with high probability, the service does not lose information

entrusted to it. But it provides no special support for availability. Instead, the Argus

programmer must implement availability explicitly, by replicating important information

at several guardians and implementing operations so that they run at enough places.

Even though the semantics of Argus is helpful in implementing replication algorithms

(operations can run within transactions), implementing availability can nevertheless be

a difficult job. Our replication method addresses this difficulty by providing availability

automatically without complicating the programming model. Programmers continue to

write Argus programs as before, and the services implemented by the resulting programs

are highly available.

This chapter provides an overview of our replication method. Section 3.1 describes

the new primary copy method, which we call viewstamped replication. We state what

the method achieves and give a sketch of its implementation. There are two parts to the

method: section 3.2 describes the view management algorithm, which, when invoked,

automatically reorganizes the replicas of a service to keep it available in spite of fail­

ures; section 3.3 describes transaction processing, which ensures that a topaction knows

whether it can continue execution and eventually commit in spite of node and commu-

20

3.1. Overview of the New Method 21

nication link failures. Finally, section 3.4 discusses the correctness conditions that must

be satisfied.

3.1 Overview of the New Method

Our method works as follows. We replicate each individual guardian to obtain a

guardian group. Each group consists of several instances called cohorts. These cohorts

behave as a single, logical entity. Each cohort has a unique name called a guardian id (or

gid, for short); the group as a whole bears a unique groupid. The set of cohorts is the

group's configuration. Each cohort knows the groupid and the configuration to which it

belongs. We assume that the configuration never changes, that is, the set of cohorts is

fixed when the configuration is defined at guardian creation time; we briefly discuss this

issue in Chapter 7.

A distinguished cohort is designated as the primary; it executes handler calls and

participates in two-phase commit. The remaining cohorts are called backups; these are

passive and receive state information from the primary. If a cohort fails or is partitioned,

the remaining cohorts are reorganized and a new primary is selected, should the old one

become inaccessible.

For the sake of illustration, let us look at a simple system consisting of a server and a

client making requests to the server. The system is illustrated in Figure 3.1. The server

is implemented as a guardian group bearing groupid G. In this particular example, there

are five cohorts, a, b, c, d, and e. Cohort a is the primary Pl. The remaining cohorts b, c,

d, and e are backups. In the figure, the large circle enclosing the smaller ones represents

the guardian group G and is meant to suggest that logically the cohorts are a single

entity, even though physically they may be dispersed throughout a network.

When there are no failures, the client C communicates only with the primary cohort

a of server G. The request is processed at a and the primary replies to the client. In the

background, the primary communicates with backups, sending checkpoint information

about the completed request.

Now suppose that a failure causes cohorts b, c, d, e to stop hearing from their primary;

whether there is a network partition or a node crash is irrelevant. This situation is shown

in Figure 3.2. In response to such a failure, the server reorganizes itself automatically to

22
Client

request

reply

3. Viewstamped Replication
Server

Figure 3.1: Normal operation. Client C sends requests to server G and receives replies.
The dashed lines emanating from the primary cohort represent information flowing to
the backups in background mode._

keep the service available. We call this reorganization a view change, and the algorithm

that carries it out, the view management algorithm. In this example, the algorithm

excludes cohort a and chooses a cohort, say b, as the new primary P2. Any new requests

from the client will be sent to the new primary. A new primary can be chosen from the

remaining backups as long as the backups and new primary together constitute at least

a simple majority of all cohorts in the guardian configuration.

At this point an interesting question is whether actions can commit in spite of these

view changes.

Consider the following scenario. Suppose topaction Tl made handler calls to server G

before the view change. Now Tl attempts to commit; its coordinator sends out prepare

messages to server G. When the new primary P2 (cohort b) receives the message, how

does it know what to do with it? Can it prepare successfully? If P2 could somehow know

whether the effects of Tl made at Pl propagated to the backups before the view change

3.2. Managing View Changes
Client

b

Server

communication failure

Figure 3.2: Client and server in the presence of communication failures.

occurred, then it could decide whether to accept the prepare.

23

Our replication method solves this problem, allowing the primary to determine in­

expensively whether it can commit in spite of view changes. We have developed some

additional mechanism to make it possible for a topaction to continue execution without

aborting unless absolutely necessary. Our new method captures the notion of what co­

horts "know" and furthermore, whether they know "enough" to permit a transaction to

commit.

Our method consists of two parts: view changes and running transactions. These are

discussed further below.

3.2 Managing View Changes

Over time, nodes and communication links may fail and recover arbitrarily, changing

the topology of the network. These failures obviously affect the cohorts making up

guardian groups. To mask these failures automatically and efficiently, and to preserve

24 3. Viewstamped Replication

the single-image appearance of a guardian group, we introduce the notion of a view.

Intuitively, a view reflects the changing communication capability among members of a

configuration. For a guardian group, a view consists of a primary and some backups,

together with who the primary is, and contains at least a majority of cohorts of the

configuration. Each view is named by a unique identifier called a viewid; we guarantee

that viewids are totally ordered.

For example, Figure 3.2 shows a new view { b : c d e} containing cohorts b, c, d, and

e in which b is the new primary P2; the old view was {a : b c d e} with primary Pl. In

either case, the configuration is still {a b c d e }. Note that a view is always a subset of

the guardian group's configuration.

In response to changes in communication capability in a view, the cohorts switch to a

new view by executing the view management algorithm; our algorithm is a simplification

and modification of the original virtual partitions protocol proposed by El Abbadi, Skeen,

and Cristian (El Abbadi 85]. The view management algorithm tries to assemble a new

view containing at least a majority of cohorts in the configuration; otherwise, cohorts

remain in their old views. As part of the view change, the algorithm generates a new

viewid.

In Figure 3.3, we illustrate what the view management algorithm achieves. Guardian

group G has configuration {a b c d e }, and suppose its initial view vl is {a : b c d e },

where a is the primary. Now suppose a communication failure makes it impossible for

cohort a to talk to the others. When this failure is noticed, the system initiates a change

in view. In our example, cohorts b, c, d, and e discover that they cannot talk to cohort

a, their primary. G switches to new view v2 = { b : c d e} where cohort b is the new

primary P2. Notice that v2 consists of a majority of cohorts of the configuration.

In addition, a view change will be initiated at cohort a, but it will not succeed because

there is no majority. In this case, cohort a continues to be in old view v 1, but becomes

inactive, which means that it refuses to process client requests.

As part of the view change, the algorithm selects an initial state of the guardian for

the new view; all cohorts in the new view will be initialized with this state. The state

consists of objects, together with their locks and tentative versions, if any. This initial

state is obtained by finding a cohort that was in the previous view and had the most

"recent" information; we use viewstamps to accomplish this, as explained in the next

3.3. Running Transactions 25

communication failure

G G - -..- ob / Gb ' / \.

I \ oc oc
==?

I a

8 '8 od \ od
Oe

\

Oe
I

/
/

........ ..-- -
view vl view v2

Figure 3.3: View changes. Guardian group G reacts to communication failures, such as
a network partition, by changing views to v2 to exclude inaccessible cohort a.

section. We are guaranteed that at least one such cohort will exist because majorities

must intersect.1 That is, if the previous view contained a majority of cohorts, and the

current view also consists of a majority, then both views must have at least one cohort

in common that was in the last view and now is in the current view. Therefore, the new

view starts out knowing what happened in the previous view. And since this intersection

of majorities is true for all pairs of views, this cohort will also know what happened in all

previous views, that is, everything that happened since creation of this guardian group.

3.3 Running Transactions

The view management algorithm guarantees that events that happened in the pre­

vious view are known in the next view. Transaction processing guarantees that needed

events have "happened." Effects of a topaction that committed in that view or that

prepared and did not abort will survive a view change; in addition, the effects of handler

calls that committed locally in that view may survive. If the effects of its handler calls

1 A sequence of failure events can invalidate this guarantee. We ignore this complication in our
overview, but the situation is handled properly by our algorithm. The details are discussed in Chapter 5.

\

)

I

26 3. Viewstamped Replication

do survive a view change and are therefore known at the primary, we allow a topaction

T to prepare. We use timestamps to determine whether the effects of a handler call are

known.

3.3.1 Timestamps

The primary generates a new timestamp each time it needs to communicate informa­

tion to its backups; each such occurrence is called an event. An event record identifies

the type of the event, and contains the event's timestamp and other relevant information,

which we defer discussing until later. An example of an event is the completion of the

processing of a handler call or the commit of a topaction.

Timestamps are unique within a view and form a total order; they are easy to produce,

for example, by incrementing a counter maintained by the primary. Each event is assigned

a timestamp, and later events receive later timestamps. We require that the primary send

event records to the backups in timestamp order.

Each backup receives event records from its primary in timestamp order and must

process them in this order. Therefore, if a cohort knows about event x, it knows about

all events that happened before x. More formally, we can state this prefix property as

an invariant.

Invariant 1 Within a view, for each event e with timestamp t, if a cohort knows e then
it knows about all events e' with timestamps t' < t.

A primary maintains its timestamp to be the timestamp of the most recent event that

has occurred. Each backup must record the timestamp for each event record it processes.

Backups are inactive and shadow their respective primaries as far as what information

they know; they only know what they have been told in checkpoint messages from their

respective primaries, and are privy to nothing more. Therefore, their timestamps only

reflect information received in checkpoint messages. Thus, the latest timestamp recorded

at a cohort captures a portion of the past history of execution within the current view.

These timestamps are an inexpensive way of determining what a cohort "knows."

3.3.2 Viewstamp history

To capture the fact that a timestamp is defined within a view, we also define view­

stamps. A viewstamp is simply a timestamp paired with the viewid of the view in which

3.3. Running Transactions 27

the timestamp was generated. We refer to the parts of a viewstamp v as v.id and v.ts.

Each cohort maintains a viewstamp history that represents the sequence of events from

all views seen by this cohort. As noted above, the last timestamp within a view represents

all past events for that view, so the history consists of a sequence of viewstamps, each

with a different viewid.

For example, suppose we take a snapshot of a cohort at an instant in time, obtaining

the following viewstamp history:

< vl, 10 >,< v2, 16 >,< v3, 4 >

From the first viewstamp < v 1, 10 >, we can see that the state of the cohort reflects all

events that occurred in view vl up to timestamp 10: the cohort knows events < vl, 1 >

through < vl, 10 > inclusive. Then the view changed to v2; the cohort now knows

events < v2, 1 > through < v2, 16 > inclusive and those events are reflected in the

cohort's state. Finally, in view v3, the cohort's state reflects only those events in that

view whose timestamps are less than or equal to 4. Given the viewstamp history we

know exactly what events are recorded at the cohort. In general, we guarantee that for

each viewstamp v in the sequence, invariant 1 holds for each viewstamp, which we can

also state as an invariant:

Invariant 2 For each viewstamp vs E viewstampJiistory, a cohort's state reflects all
events e that occurred in the view of vs.id, such that t ::::; vs.ts, where t is the timestamp
of e.

Let us summarize.

1. Views automatically reorganize cohorts for availability.

2. Timestamps capture how much a cohort knows about the events that have hap­

pened in a view.

3. The viewstamp history captures how much a cohort knows about the events that

happened in all views in the history.

In the next section, we show how this machinery allows topactions to determine whether

they can commit.

28 3. Viewstamped Replication

3.3.3 Transaction processing

Running transactions requires the collaboration of both clients and servers. Clients

create topactions, make handler calls to servers, and coordinate two-phase commit.

Servers process handler calls, make further handler calls to other servers (thus acting

as clients), and participate in two-phase commit.

Clients. When a client makes handler calls to servers, it includes the action identifier

(or aid, for short) of the call action, the viewid that the client knows for the server in

question, and other relevant information. The primary of the server processes the call

and assigns the call a new viewstamp. This viewstamp flows back on the reply message

to the caller, which remembers it in association with the groupid of the guardian group

that ran the call. For example, in Figure 3.4, aid Tl and viewid v2 flow on the call

message to server G. Viewstamp <v2, 6> flows back on the reply message.

At topaction commit, the client has a collection of viewstamps: there is at least one

viewstamp associated with each server that participated in the topaction. 2 The client

now acts as coordinator of two-phase commit. It determines who the participants are and

sends prepare messages to their primaries; each prepare message contains the appropriate

viewstamps for that server. The servers use these viewstamps to determine whether all

effects of the topaction are known to them, as discussed further below.

Servers. When servers receive handler calls from clients, the calls are processed,

viewstamps are assigned and returned, and, as noted above, are collected by clients.

Later, the client sends the prepare message. Now consider the following situation. Each

participant server receives a prepare message from the coordinator, containing the ap­

propriate viewstamps. These viewstamps represent what must be known at the primary.

The viewstamp history at the primary represents what is known. By simply checking

that the received viewstamps are less than or equal to the associated viewstamps in the

viewstamp history, we can determine whether servers remember enough to commit a

topaction.

Figure 3.5 shows a prepare message arriving at the primary of participant server G,

bearing some viewstamps for topaction Tl with respect to G. Recall that viewstamp

2If more than one call were made to the same server, there will be more than one viewstamp. We
can optimize this situation by retaining the latest viewstamp for the set of viewstamps with the same
viewid.

3.3. Running Transactions
Client

(a).

(b).

call(Tl,v2, ...)

reply(<v2, 6> ...)

Server

Process call

view v2

0
0

Assign new viewstamp

view v2

0
0

29

Figure 3.4: Handler calls. Client makes a call to a server, which processes it and replies
to the caller. Viewids flow on call messages, and viewstamps flow back on reply messages.

< vl, 10 >msg (the subscript distinguishes viewstamps sent in the prepare message from

those in the viewstamp history) means that the coordinator expects the cohort to know

about all events in vl up to timestamp 10; the history's viewstamp < vl, 10 >hist means

that P really does know everything up to timestamp 10. No information is missing,

and we are okay so far. Moving on to viewstamp < v2, 6 >msg, we see that in view

v2 the coordinator expects P to know at least timestamp 6. The history's viewstamp

< v2, 7 >hist says that the cohort itself knows all events up to timestamp 7, inclusive.

Since 6msg ~ 7hist, P knows at least as much as the coordinator expects; in fact, it knows

more, as indicated by event with timestamp 7. Since needed events for the preparing

action are truly known at P, it is possible for topaction Tl to prepare at this participant.

Checking that needed events are known at the primary is not sufficient for preparing;

30 3. Viewstamped Replication

b

0
<vl, 10 ><v2, 5>

prepare(<vl, 10 >< v2, 6>)

<vl, 10 ><v2, 5>

Figure 3.5: Can topaction Tl commit?

we must also ensure that the events are known at enough backups to survive a view

change. The primary ensures this by forcing event records to the backups in the current

view and waiting until a sub-majority know (a sub-majority is one less than a simple

majority of the configuration) before responding ok to the coordinator. Other critical

information is similarly forced to the backups, such as the committed record at the

coordinator.

If any pairwise comparison fails, P is m1ssmg some events and topaction Tl must

abort. To see this, instead of viewstamp < vl, 10 >msg suppose we had < vl, 12 >msg·

In this case, the test would fail (since 12 is greater than the timestamp in < vl, 10 >hist)

and the topaction must abort. This situation could arise because the view change from v 1

to v2 happened before information about the handler call assigned viewstamp < vl, 12 >
was propagated to the backups.

3.4 Correctness

The correctness of our algorithm depends on the interaction of transaction processing

and the view management algorithm. In this section, we discuss informally the conditions

that must be met for correct operation. The conditions are the following:

3.4. Correctness 31

1. In the absence of view changes, the system behaves as a non-replicated transaction
system would.

2. A transaction can commit only if all of its events are known to at least a majority
of cohorts.

3. The events known to a majority of cohorts of a configuration survive into all sub­
sequent views.

Condition 1 is guaranteed by transaction processing. In a world in which failures

never happen, our system behaves in the same fashion as a non-replicated transaction

system.

Condition 2 is guaranteed by transaction processing. While a transaction is running

at a server, event records are flowing to the backups from their primary. The transaction

can commit at this server if all needed events are known at the primary as well as at at

least a sub-majority of backups (at least a majority of cohorts in the configuration). To

ensure that all needed events are known at the backups, the primary forces event records

to the backups in the current view and waits for at least a sub-majority to respond.

Condition 3 is guaranteed by the view management algorithm. Since the previous

view contained a majority of cohorts, and the new view also consists of a majority, both

views must have at least one cohort in common. Furthermore, we select one of these

cohorts that had the highest viewstamp, indicating the latest information. The new view

starts out knowing what happened in the previous view. Thus, the effects of committed

transactions survive in serialization order into all subsequent views.

Integrating Replication
with a Transaction

System

This chapter describes an implementation of the viewstamped replication method. In

particular, we show how the implementation is integrated with the implementation of

actions. We use the Argus implementation as a basis for this work.

Section 4.1 gives an overview of the Argus implementation of actions and the phi­

losophy behind the design. Section 4.2 discusses the additional mechanisms that are

needed to implement our replication method. Section 4.3 integrates our method with

the implementation of actions. In particular, it describes transaction processing using

nested actions. Section 4.4 describes what can be done in a system without nested ac­

tions to decrease the probability of topaction aborts when views change. Finally, section

4.5 discusses the performance of our algorithm.

4.1 Implementing Actions

In the Argus action system, the goal of avoiding unnecessary delays of user compu­

tations (while actions run and during two-phase commit) guided the implementation of

atomic actions.

Delays assume either of two forms: extra communication and writes to stable stor­

age. To avoid extra communication we piggyback information on messages that must be

32

4.1. Implementing Actions 33

exchanged as a matter of course, and send other information in background mode. To

minimize delay during writes to stable storage, several guardians participating in an ac­

tion can write concurrently, and furthermore, can do some writing in background mode.

We shall see shortly how the implementation has been tailored to accomplish these goals.

Some delays are unavoidable, however. For example, to commit a topaction it is

necessary to communicate with all the guardians where descendants ran, and some writes

to stable storage are needed (unless the action is read-only). As another example, lock

conflicts between actions may introduce occasional delays.

In this section we describe the implementation of atomic actions in Argus. We describe

the action tree, a useful way of visualizing the distributed state of a topaction at several

guardians, explain the implementation of the two-phase commit protocol, and describe

briefly how query messages hold the system together. More details are contained in the

Argus implementation paper [Liskov 87).

4.1.1 Action trees

We can capture the distributed state of a topaction at a particular instant in time

with an action tree. Each node of the tree is an action; the root is the topaction, and

all the nodes descending from it are descendant subactions of the topaction. In this

dissertation we will use the standard terms, ancestor, sibling, and descendant, to refer

to the relationships among actions in the tree.

We label the root of the tree by the topaction's action identifier, or aid for short;

the interior nodes are labeled by the aids of the descendant subactions of the topaction.

Each node of the tree contains information about the status of its action, that is, whether

it is active, committed, or aborted. For example, Figure 4.I shows the status of topaction

A and all of its descendants. A is active at guardian G (thus, A@G), A.I and A.2.3

aborted, and the rest of the actions committed. For simplicity, we show only handler

actions for handler calls. Recall that each handler call creates a call action at the calling

guardian, and a handler action at the called guardian. All actions in the figure except

A are handler actions, and each has as its parent a call action that is not shown in the

figure. The notation A.I means that A.I is the first descendant subaction of action A;

similarly for A.2. A.I and A.2 may be subactions that ran either sequentially (A.I then

A.2) or concurrently.

34 4. Integrating Replication with a Transaction System

0 committed
AQG

38{ aborted

D active

A.1.10G3 A.1.20G4 A.2.1CG3 A.2.20G5 A.2.30G6

Figure 4.1: Action tree, showing the location and status of topaction A and its descen­
dants.

We encode the structure of this abstract action tree in the aids themselves. Aids have

the following properties:

1. An aid is globally unique.

2. An aid contains the identifier of the guardian where the action is executing.

3. An aid contains the aids of all ancestors of its action.

4. Given two aids, it is possible to tell whether one is an ancestor of the other.

To make the aid unique, each subaction appends the gid of the guardian at which it

runs to a locally unique identifier, resulting in a pair <uid, gid> that is guaranteed to

be globally unique. When a new handler subaction is created, a new aid is generated for

it and is concatenated to the aid of the call action. Thus, an aid is a concatenation of

<uid, gid> pairs.

A.2, A.2.1, and A.2.2 have committed to the top, which means that each has com­

mitted and so did all of its ancestors up to, but not including, the topaction A. A.1.1

and A.1.2 did not commit to the top, since A.1 aborted. If A commits at this point, all

modifications to atomic objects made by A and all descendants that committed to the

top must be installed and written to stable storage.

4.1. Implementing Actions 35

4.1.2 Implementing two-phase commit

When a topaction A attempts to commit, the system initiates a two-phase commit

protocol at A's guardian. This guardian acts as the coordinator of the commit protocol,

and communicates with the participants, which are the guardians where the descendants

of A that committed to the top ran. If A commits in the example above, the participant

guardians are G2, G3, and GS; it is not necessary to communicate with Glor G6 because

only aborted descendants of A ran there, and it is not necessary to communicate with

G4 because the abort of A.1 undoes the effects of A.1.2. Note that information about

the action tree must be communicated to the participants. For example, at G3 it must

be possible to deduce that A.2.l's changes should be written to stable storage but not

A.l.l's.

We use an algorithm in which the coordinator communicates with the participants

directly in the first phase. To permit this, needed information is collected as handler

calls commit at guardians and is passed up the tree to the next, higher level, when calls

return. The collected information at the lower levels is merged with more information at

the higher levels, until we reach the root, which will then know about all guardians that

participated in the action. The coordinator can then communicate with all participants

directly, passing them action tree information. This approach is consistent with our goal

of limiting delay.1

The information collected is the action tree, but we keep it in a compressed form.

On the assumption that commits are far more frequent than aborts, an aborts_set is

maintained consisting of the highest aborted descendants, that is, aborted descendants

for which no ancestor has aborted. Subactions that abort locally and have no non-local

committed descendants are not remembered in the aborts_set, since all effects of such

an action can be undone immediately without remote communication. In addition, a

parts._set is maintained, containing the guardians of all committed descendants that are

not descendants of the actions in the aborts_ set; these guardians will become participants

if the subactions eventually commit to the top. For example, just before action A in

Figure 4.1 commits, we have parts_set = {G2,G3,G5} and aborts_set = {A.l}.

To commit a topaction, we need to know what objects it (or its descendants) used,

1 An alternative approach in which two-phase commit messages fan out downward, level by level
according to the action tree, may entail considerable delay for deep trees.

36 4. Integrating Replication with a Transaction System

and, if it modified an object, we need to know the new version. This information is

kept at the guardians where the objects reside. When an action is running, its guardian

remembers all local atomic objects read or modified by it. When a subaction commits

locally, this information is simply merged into the parent's information. When a sub­

action aborts, object information is discarded. When a handler commits, its guardian

remembers its obj...set in a local, volatile data structure called committed. The obj_set

records all the local atomic objects on which the subaction holds read or write locks.

Two-phase commit occurs as follows. The coordinator sends prepare messages, in­

cluding the aborts...set, to the participants in the parts...set. The participants use the

aborts...set to abort actions, if necessary, such as A.1.1. They use local information in

committed to write the necessary information to stable storage, and then reply ok after

the prepare record is written. If all say ok, the coordinator writes a committing record to

stable storage and then enters phase two, sending commit messages to all participants.

The participants use information in committed to install new versions, write a commit

record to stable storage, and then reply done. When all reply, the protocol is over.

The information in the coordinator's parts...set and aborts...set plus the information

in the participants' committed structure are sufficient to commit the topaction properly,

provided that no guardians crashed. If a guardian crashes after running some handler calls

that are subactions of topaction A, and then runs more handler calls that are subactions

after it recovers, only the latter calls will be listed in committed. If a handler call that ran

before the crash committed to the top, its versions should be written to stable storage.

Since the versions were lost in the crash, the guardian ought to refuse to prepare. But

given the information discussed so far, it cannot know this.

A guardian can recognize such problems by using a crashcount. Each guardian main­

tains a stable crashcount that records the number of times it has recovered from crashes.

Whenever a handler commits, the current crashcount of its guardian is sent in the reply

message. If another handler call is made to the guardian, the crashcount of the previous

call is sent in the call message; if this number is less than the current crashcount, the

call is rejected and the topaction aborts. Similarly, the crashcount is sent in the prepare

message; if it is too small, the prepare is rejected.

4.2. Implementing Viewstamped Replication 37

4.1.3 Queries

Consistent with the goal of avoiding unnecessary delay is our decision that information

about aborts and commits of subactions is not guaranteed to be propagated. For example,

suppose a handler subaction aborted. We could immediately notify guardians where

descendant actions ran and committed about the abort, but this would delay sending

the reply message to the caller. Instead, we reply to the caller immediately and then

communicate later at a convenient time with the guardians of descendant subactions.

Furthermore, we do not try very hard to communicate, so there is no guarantee that

the message will arrive. To mask lost messages, if some guardian needs to know what

happened and did not receive a message, it can send a query message to the appropriate

party. For example, if the coordinator aborts the topaction after phase one, it sends abort

messages to the participants, but these messages may be lost. If an abort message fails

to arrive at a participant that prepared in phase one, all is not lost, however, because

that participant can query the coordinator to find out the fate of the action.

When a subaction commits, information about the action is stored locally and passed

up the action tree, but never down. So if a concurrent or sequential relative of that

committed subaction wants to obtain locks, the guardian must send query messages.

In general, query messages eliminate the need for reliable communication, placing

the responsibility for making sure information is communicated on the guardian that

needs to know what happened. Other guardians are thus relieved of the responsibility

for delivering messages.

4.2 Implementing Viewstamped Replication

In this section, we describe the additional mechanisms needed to implement our repli­

cation method.

The new mechanism uses a buff er to communicate information from the primary to the

backups, as described in the next section. Usually this information is sent in background,

without the primary having to wait. Sometimes, however, the primary must wait until

information has been recorded at enough backups. These times correspond to times in a

conventional system when it is necessary to wait for information to be stored on stable

storage. In effect, our system uses the backups as a replacement for stable storage.

38 4. Integrating Replication with a Transaction System

4.2.1 Communication buffer

Recall that event records flow from the primary to its backups in timestamp order

via checkpoint messages. In particular, instead of checkpointing event records directly

to the backups, the primary maintains a communication buffer (similar to a fifo queue)

to which it writes the event records. The primaries of both clients and servers make use

of their own buffers to communicate information to their backups. The buffer provides

the following operations:

1. create{). Creates a new, empty buffer.

2. add{e: evenLrecord) returns {viewstamp). This operation advances the timestamp
of the current view, stamps the event record with the new timestamp, updates the
viewstamp history, and appends the entry to the buffer. These four steps must be
done atomically. It returns a viewstamp consisting of the current viewid and the
timestamp created for this record.

3. force-to{vs: viewstamp}. The operation returns immediately if vs is not a view­
stamp for the current view. Otherwise, it delays the primary until a sub-majority
of backups have received all event records in the current view with timestamps less
than or equal to vs.ts.

In the add operation, the four steps must be done atomically. Recall that each cohort

may have several processes running concurrently that could be calling the add operation.

The implementation of add must serialize the use of the buffer and ensure that event

records are recorded in the buff er in timestamp order.

Force-to delays its caller, but other work, including adding and forcing the buffer,

can still go on at the cohort in other processes. If communication with some backups is

impossible, the call of force-to will be abandoned, and the cohort will switch to running

the view management algorithm.

The primary need not wait to hear from all backups in the current view. To reduce

the period of waiting during a call to force-to, it is sufficient that the primary be delayed

until only a sub-majority of backups knows all events whose timestamps are less than or

equal to vs.ts. If a sub-majority of backups know about an event, a majority of cohorts in

the configuration know about that event. Even though the primary is delayed until only

a sub-majority know about events, the remaining backups in the view will eventually

know about those same events unless a view change occurs in the meantime.

4.2. Implementing Viewstamped Replication

committing

parts-set
done

aborts-set

topaction aid topaction aid

completed-call

aborts-set
committed

handler aid aborts-set

object-set topaction aid

newv1ew

view

viewstamp history

object-info

Figure 4.2: Format of event records.

39

aborted

topaction aid

Figure 4.2 shows the format of the six kinds of event records that can be written to

the buffer. "Committing" and "done" are written by the coordinator of a committing

action. "Completed-call", "committed", and "aborted" are written by the primaries of

participants ("aborted" is also written by the primary coordinator). The "newview"

event record is written by the new primary to its buffer after a view change. This record

informs the backups in the new view of the view's membership (including who the new

primary is), the viewstamp history, and the current state; it is discussed in Chapter 5.

The implementation of the buffer must deliver event records in timestamp order to

guarantee the prefix property that any backup that knows about event e also knows

about all events with timestamps less than e's. Furthermore, the buffer provides reliable

delivery: any record added to the buffer will be delivered to all backups unless a failure

occurs that will cause a view change. Acknowledgements from the backups are used at

the primary to allow the force-to operation to complete. Also, event records that have

40 4. Integrating Replication with a Transaction System

arrived at all the backups can be removed from the primary's buffer.

4.2.2 Cohort State

The abstract state of a cohort is summarized in Figure 4.3. We show only the infor­

mation relevant to transaction processing.

Each cohort has a state: it is "active" if it can participate in transaction processing,

and otherwise it is involved in a view change. We say that a cohort is active if its state

is "active"; otherwise, it is inactive. In particular, we will speak of active primaries of

servers, that is, the active primaries receive client requests and process them.

Each object in the gstate has a unique name uid (relative to the group), a base version,

and a set of lockers that identifies actions holding locks on the object, the kinds of locks

held, and any tentative versions created for it. Figure 4.4 gives a pictorial representation

of an atomic object as it might look in volatile memory.

Each cohort has a unique identity (mygid) and belongs to a configuration. The

configuration is a set of identifiers that name the cohorts making up the group. Each

configuration bears a globally unique groupid, which each cohort knows (mygroupid).

Timestamps are generated only by the primary of a guardian group. Each cohort main­

tains a viewstamp_history that represents the sequence of view changes it has seen during

its lifetime. Each member of the sequence is a viewstamp; for each viewstamp vs in the

history, the cohort's state reflects each event in the view of vs.id whose timestamp is less

than or equal to vs.ts.

The event-record data type is a oneof, each of whose component tags corresponds to

a different event record; the pictorial counterpart was shown in Figure 4.2.

4.2.3 Locating the primary cohort

How does system code at a guardian locate the primary of a guardian group? To

find a server it has not used before, a cohort fetches the configuration from the location

server and communicates with a majority of members of the configuration to determine

the current primary and viewid. It stores this information in a local cache. It uses the

cache when sending messages and updates it whenever it learns about view changes.

Although it would be possible to encode information about the configuration in the

groupid, a better approach is to use a highly available location server that maps groupids

4.2. Implementing Viewstamped Replication

gstate: {object}
state: status

% cohort state
% cohort is active or doing a view change
% unique name of this cohort
% lists unique names of cohorts
% unique name of guardian group
% timestamp generator

mygid: int
configuration: {int}
mygroupid: int
timestamp: int
viewstamp_ history:
cur_viewid: viewid
buffer: [event-record]

[viewstamp] % indicates events known to cohorts
% identifier of the current view
% communication buffer

where
object= <uid: int, base: T, lockers: {lock-info}>
lock-info= <locker: aid, info: oneof[read: null, write: T]>
vid = <cnt: int, gid: int>
view = <primary: int, backups: {int}>
viewstamp = <id: vid, ts: int>
status = oneof[active, view_manager, underling: null]
event-record= oneof[committing: <parts...set: {groupid}, aborts...set: {aid},

action: aid>
done: <topaction: aid>
completed-call: <aborts...set: {aid}, handler aid: aid,

object-set: {object}>
committed: <aborts....set: {aid}, topaction: aid>
aborted: <topaction: aid>
newv1ew: <cur_view: view, vs: viewstamp_history,

ob jectinfo: {object}>

41

Figure 4.3: State of a cohort. {} denotes a set, [] denotes a sequence, oneof means a
tagged union with component tags and types as indicated, and <> denotes a record,
with component names and types as indicated.

42

Object

uid base

4. Integrating Replication with a Transaction System

version stack

lockers

Figure 4.4: Representation of atomic objects.

to configurations. A location server can allow configurations to change; it also permits

groupids to be smaller than would be the case if they contained configuration information

within them. There are several ways of implementing such a server; see for example,

Hwang's thesis [Hwang 87], forwarding addresses[Fowler 85], rendezvous [Mullender 85],

and migratory objects [Henderson 82]. Note that the location server defines the limits of

availability; no guardian group can be more available than it is.

All call messages contain the cached viewid for the server; replies indicate whether

the view has changed. The system uses this information to keep the cache up to date.

4.3 Running Nested Transactions

Our replication system runs transactions in a manner similar to a system without

replication. There are two main differences. First, we use viewstamps to determine

whether a transaction can commit. Second, instead of writing information to stable

storage during two-phase commit, the primary sends it to the backups using the commu­

nication buffer.

In this section, we describe an implementation for a replication system with nested

actions. In particular, we explain what active primaries of clients and servers do, how

cohorts process information they receive, and how query messages are used to compensate

for lost information and to reduce the window of vulnerability in the two-phase commit

protocol. We assume both clients and servers are replicated. In section 4.3.5, we discuss

the usefulness of replicating clients and propose a way of making two-phase commit more

4.3. Running Nested Transactions 43

robust for clients that are not replicated by using a replicated "coordinator-server."

4.3.1 Active primaries of replicated clients

Clients start topactions, make handler calls to servers, and coordinate two-phase

commit. Figure 4.5 summarizes the processing that takes place at the primaries of

clients.

Starting a topaction. To start a topaction, the primary of the client produces an

aid. Since aids for topactions must be globally unique across view changes, we make the

primary's mygroupid and cur_viewid part of the name, so we have <uid: int, groupid:

groupid, viewid: vid>.

As in a non-replicated system, we must maintain an aborts_set and a pset, both

initially empty. The aborts..set is the same as in our previous discussion of the imple­

mentation of actions. The pset is an analogue of the parts...set. Recall that each time

the topaction makes a handler call, the server that processes the call assigns the call

a new viewstamp upon completion of the call and returns the new viewstamp in the

reply message. The coordinator collects these viewstamps in the pset, which is a set of

<groupid: groupid, vs: viewstamp> pairs. Every committed handler call made by the

topaction or its descendants has a pair in the pset showing the group where it ran and

the viewstamp assigned to it. By the time the topaction is ready to commit, the pset

represents the latest information known by the topaction about each of the participant

guardian groups.

Making handler calls. To make a handler call, the system generates an aid for the

call action. We produce the unique subaction aid by appending a <uid: int, groupid:

int> pair to the parent's aid. Then the system looks up the primary and viewid for the

group in its cache; if the server is not there the system communicates with the location

server to fetch the configuration and then communicates with a majority of members of

the configuration to find out the primary and current viewid; it stores this information

in its cache. The call message is sent to the primary; the message contains the viewid

from the cache, the call action aid, the handler id, and the arguments of the call.

There are two possible results of such a message. The first result is either a reply

44 4. Integrating Replication with a Transaction System

Starting a topaction: Create the topaction aid and an empty pset and aborts..set.

Making a handler call:

1. Create the aid for the call subaction. Look up the server in the cache; if the server
is not there then communicate with the location server to fetch the configuration
and communicate with a majority of members to find out the primary and current
viewid; store this information in the cache. Send the call message to the primary;
the message contains the call aid, the cached viewid, handler id, and arguments.

2. If there is no reply or the reply indicates that the view has changed, abort the call
action and add its aid to the parent's aborts..set. Then attempt to find out the
new primary and viewid. If this succeeds, add the new information to the cache
and go back to step 1. Otherwise, terminate the call and return to the user code
with an exception indicating that the call cannot be completed right now.

3. If a successful reply message arrives, commit the call action, adding elements of
the pset and aborts...set in the reply message to the parent's pset and aborts..set,
respectively. Then return normally to the user code.

Coordinator for two-phase commit:

1. Determine who the participants are from the pset, and then send prepare messages
containing the aid, aborts...set, and pset to the primaries of participants. Then
act as a participant locally: release any read locks held by descendants of the
topaction and discard any local locks and versions held by descendants of actions
in the aborts...set.

2. Wait for responses.

(a) If all participants agree to prepare, add a "committing" <parts..set, aborts..set,
topaction aid> event record to the buffer; the parts...set is a list of non-read­
only participants. Perform a force-to{new_vs}, where new_vs is the viewstamp
returned by the add operation.

If all participants are read-only, we are done.

Send commit messages containing the aborts..set to the non-read-only partic­
ipants; when all of them acknowledge the commit, add a "done" <topaction
aid> event record to the buffer.

(b) If any participant refuses to prepare, discard any local locks and versions held
by the topaction's descendants. Add "aborted" <topaction aid> event record
to the buffer and send abort messages to the participants.

(c) If there is no answer after repeated tries, resend the prepare message to the
new primary if there is one. Otherwise, abort the topaction.

Figure 4.5: Processing at active primaries of clients

4.3. Running Nested Transactions 45

indicating that the view has changed, or no reply at all (after a sufficient number of

probes). In either case, the primary aborts the call action and adds the call action's aid

to the parent's aborts..set. Then it tries to determine the current viewid and primary of

the server. Hit discovers new information, it updates its cache and tries the call again,

generating a new call action with a different aid. Otherwise, it returns to the user code

with a special exception indicating that the destination cohort is not responding. As in

Argus, the intent of this exception is to inform the user code that an immediate retry is

unlikely to succeed, but that a later attempt might succeed.

The second, and most likely outcome, is a reply message for the call. In this case,

the call action commits. The reply message contains a pset and an aborts....set. The

pset contains pairs for this call and any further handler calls made in processing it; the

aborts....set contains aids of aborted descendants of the call action. The pairs in the reply's

pset are added to the parent's pset, and the aids in the reply's aborts....set are added to

the parent's aborts....set. In doing these additions, certain optimizations are possible to

keep the sizes of the set small. For example, if some action A in the aborts..set is a

descendant of a second action B, then only B need be retained since aborting it will undo

the effects of all its descendants, including A. If there are two pairs in the pset for the

same guardian group, and if the two viewstamps have the same viewid, then only the

pair with the larger viewstamp need be retained, since any cohort that knows about the

later viewstamp will also know about the earlier one.

Note that more than one pair for a server may appear in the pset due to view changes.

We must keep pairs corresponding to different views because viewstamps are meaningful

only for their own view; they imply nothing about events belonging to earlier views. For

example, suppose action A makes a call A.1 to server G, and that this call runs and

commits in view vl, and is assigned viewstamp <vl, 12>. This viewstamp is passed

along in the reply message and is merged into the pset, resulting in pset { <G, <vl,

12>> }. G undergoes a view change, switching to new view v2. Then A makes call A.2

to G. A.2 commits and is assigned viewstamp <v2, 7>, which is sent in the reply message

to the parent. If we tried to retain just the "later" viewstamp, G could agree to prepare

by mistake, for example, if its viewstamp_history contained <vl, 6> since it would not

know that it needs to know about <vl, 12>.

46 4. Integrating Replication with a Transaction System

Coordinator for two-phase commit. When the topaction completes, the primary

of the replicated client acts as the coordinator of two-phase commit.

The primary determines who the participants are from the pset. It sends prepare

messages to the primaries of participants containing the committing topaction aid, the

pset, and the aborts_set. The pset allows the participants to determine whether all effects

of descendants of the top action at that participant are known. The aborts_set allows

participants to undo effects of aborted descendants.

The primary of the coordinator then acts as a participant locally: it releases any read

locks held by descendants of the topaction and discards any locks and versions for any

action that is a descendant of some action in the aborts_set. 2

If all participants agree to prepare, the coordinator adds a "committing" <parts_set,

aborts_set, topaction aid> event record to its buffer, and forces the entire buffer to

its backups. This ensures that the commit will be known across a view change of the

coordinator. The parts_set lists only the participants where the topaction holds write

locks, since only these must take part in phase two; the reply from the participant

indicates whether or not it is read-only. Note that user code can continue running as

soon as the "committing" record has been forced to the backups.

Then the coordinator sends commit messages containing the aborts_set. It continues

to retransmit commit messages to a participant until it receives a done response. When

it has received done messages from all participants, it adds a "done" <topaction aid>

event record to its buffer.

We can optimize the coordinator protocol for read-only actions as follows: If the

topaction is entirely read-only, there is no phase two. If the topaction is read-only at

some participants, those participants need not participate in phase two; the coordinator

sends commit messages only to the remaining participants (non-read-only) listed in the

parts_set.

If any participant refuses to prepare (sends back a refused message), the coordinator

sends abort messages to all participants. Abort messages are sent just once; they are

not retransmitted and are not acknowledged. The primary of the coordinator adds an

"aborted" <topaction aid> event record to its buffer. If some participant fails to respond

2The reason for this is that some descendant in the call chain might have made a handler call to the
topaction's primary. But in reality these locks would have already been released.

4.3. Running Nested Transactions 47

after a reasonable attempt to communicate with it, the coordinator should try to find

out if the view has changed and whether a new primary was chosen and then resend the

prepare message to the new primary. Otherwise, abort the topaction.

The coordinator need not communicate with its backups upon aborting a topaction,

that is, it need not add any information about the abort to its buffer. Suppose the

coordinator's group later suffered a view change that led to a new primary. Since the

coordinator's state is not checkpointed, any view change of the coordinator must cause

any of the group's topactions to abort automatically. To avoid sizable amounts of lost

work in the case of failures, the topaction should be structured to run as a series of

short topactions [Gifford 85]. Short topactions have the added benefit of minimizing lock

conflicts. Even though writing an "aborted" record to the coordinator's buffer is not

necessary, we do it in order to speed up queries. For example, suppose a backup is cut

off from the majority by a partition; if it received the "aborted" record, it can respond

to a query about that topaction.

4.3.2 Active primaries of replicated servers

Servers process handler calls and act as participants in two-phase commit. They

may also make further calls (thus behaving as clients) on other servers in the course of

processing calls. Figure 4.6 summarizes the processing at the primary of a server.

The state of a cohort was described in Figure 4.3. Recall that the gstate contained

the objects accessed by user actions. Actions that run at the primary acquire locks on

objects in the gstate and create and modify tentative versions for them. (They may also

create new objects.) In addition, while a handler call is running, it may use temporary

objects that are discarded when it returns. To record the effects of a call, it is sufficient

to record its effects on the objects in the gstate.

Processing a handler call. If the call message's viewid is not equal to cur_viewid

the call is refused because in general it is not possible to know if this call is a duplicate.

Otherwise, the primary creates an empty aborts_set and pset for the handler action and

runs the call, possibly making further nested calls as described in section 4.3.1. When the

call completes, it adds a "completed-call" <aborts....set, handler aid, object-set> event

record to the buffer. Each member in the objecLset identifies an atomic object that was

48 4. Integrating Replication with a Transaction System

read or written in the course of processing the call and indicates the type of lock obtained;

if it is a write lock, the object contains the tentative version created for the subaction.

Then the primary adds a pair <mygroupid, new_vs> for this call to the handler action's

pset, where new_vs is the viewstamp returned by the buffer add operation, and returns

the pset and aborts...set in the reply message. Finally, as in Argus, the primary records

information about the handler action and the objects it used in committed.

If the handler action aborts, the pset in the reply message is empty. If the aborting

handler action made no remote calls that may have committed at other guardian groups

(that is, its pset and aborts...set are empty), the aborts...set in the reply is empty; otherwise,

it contains the aid of the aborting handler action. Information about the action is

discarded, and so are its locks and versions for local objects. Abort messages are sent in

the background to all guardian groups in the pset.

When a primary of a server receives a call message for a handler call after the server

had undergone a view change, there is in general no way for it to know whether the call

had been run before the change. In particular, if the call aid in the message is not known

to the primary, this might mean that this is a new call, or it might mean that the call

ran before the view change or was running when the view change happened. In the first

case, we need to redo the call; in the second case, we must not redo the call. To resolve

this uncertainty, the server rejects the call. The client can then abort the call action,

update its cache with the returned information, and retry in a new call action with a

new call aid and new viewid. Aborting the old call action ensures that the nested call

has no effect, and so there is no chance that the call will run more than once. Note that

typically aborting the call is cheap because the call did not actually run. At worst we

lose the work done by a subaction, but not the work done by the topaction.

Processing a prepare message. The primary can agree to prepare only if it knows

about all handler calls it has done on behalf of the topaction. To determine if it knows,

it uses its viewstamp_history and the pset in the prepare message: the pset tells it what

"completed-call" events must be known, and the viewstamp_history tells it what events

are known. If needed events are not known, it rejects the prepare and adds an "aborted"

record for the topaction to the buffer. Otherwise, it forces the buffer enough to ensure

that all "completed-call" records for the topaction are known at the backups and then

4.3. Running Nested Transactions 49

Processing a handler call:

1. If the call message contains the wrong viewid, send back a rejection message con­
taining the new viewid and primary.

2. Create an empty pset and aborts..set. Then run the call. If it makes any nested
calls, process them as described in Figure 4.5.

3. If the action commits, add a "completed-call" <aborts....set, handler aid, object..set>
event record to the buffer; the object..set lists all objects used by the handler call,
together with the type of lock acquired and the tentative versions if any. Add a
<mygroupid, new _vs> pair to the pset, where new _vs is the viewstamp returned
by the buffer add operation, and send a reply message containing the pset and
aborts..set. Record the handler aid and obj..set in committed.

4. If the handler action aborts, send a reply message containing an empty pset. The
aborts..set contains the handler action aid if there are committed, non-local descen­
dants; otherwise it is empty.

Processing a prepare message:

1. If compatible(pset, mygroupid, viewstamp_history) is true perform a force­
to (vsmax (pset, mygroupid)). Release read locks held by descendants of the top­
action, discard locks and versions held by descendants of actions in the aborts..set,
and reply ok. In the reply, indicate whether the topaction held only read locks
at this participant. If the topaction is read-only, add a "committed" <aborts..set,
topaction aid> event record to the buffer.

2. Otherwise, send a refused message to the coordinator refusing the prepare and
abort the topaction; discard locks and versions held by its descendants and add an
"aborted" <topaction aid> event record to the buffer.

Processing a commit message:

1. Add a "committed" <aborts..set, topaction aid> event record to the buffer. Per­
form a force-to(new_vs), where new_vs is the viewstamp returned by the buffer
add operation. Discard locks and versions held by descendants of actions in the
aborts....set and then release locks and install versions held by descendants of the
topaction. Finally, send a done message to the coordinator.

Processing an abort message:

1. Discard locks and versions held by descendants of the aborted action. If the aborted
action is a topaction, add an "aborted" <topaction aid> event record to the buffer.

Figure 4.6: Processing at active primaries of servers.

50 4. Integrating Replication with a Transaction System

sends a prepared message to the coordinator.

When the primary receives a prepare message, it compares the pset of the message

with its viewstamp_history. We say the pset is compatible with the viewstamp_history

of the primary if the primary knows about all handler calls done at its group on behalf

of the topaction. More formally, we define compatible as a predicate on psets, as follows:

compatible(ps, g, vh) -

V p E ps (p.groupid = g ::::} 3 v E vh (p.vs.id = v.id::::} p.vs.ts ~ v.ts))

where ps is a pset, g is a groupid, and vh is the viewstamp_history.

We also need an auxiliary operation on psets. The vsmax(ps, g) function, where ps

is a pset and g is a groupid, returns the largest viewstamp associated with a handler call

to the group (this is the viewstamp of the most recent "completed-call" event):

vsmax(ps, g) - max({p.vs I p E ps A p.groupid = g})

max(vs_set) - v1 E vs...set s.t. V v2 E vs...set

(v2 .id<v1.id) V (v2 .id=v1.id A v2 .ts~v1.ts)

Note that vs max is well-defined because there must be at least one pair p in the pset for

this group.

If compatible(pset, mygroupid, viewstamp_history) is true, the primary forces the

buffer by performing force-to (vsmax(pset, mygroupid)). Forcing ensures that the backups

know about all events that preceded the reply of the last handler call to this group for the

preparing action. The primary releases read locks held by descendants of the topaction

that committed to the top. Locks and versions are discarded for any action that is a

descendant of some action in the aborts...set. If the action now holds no locks, that is, all

descendants that committed to the top only did reads, the primary adds a "committed"

<aborts..set, topaction aid> event record to the buffer and sends an ok-readonly message

back to the coordinator. Otherwise, the primary sends a ok message to the coordinator.

Even when an action has only read locks, we must force the "completed-call" records

to the backups when preparing to ensure that read locks are held across a view change. A

view change may have happened without this primary being aware of it, and there may

be a new primary already processing user requests in the other view. Furthermore, the

preparing action's read locks may not be known in the new view, so the new primary may

4.3. Running Nested Transactions 51

allow other transactions to obtain conflicting locks. Forcing the buffer guarantees that

the prepare can succeed only if the topaction's locks survived the view change. Without

the force, the prepare could succeed at the old primary even if the locks did not survive.

If the pset in the message is not compatible with the viewstamp_history, the primary

rejects the prepare: It adds an "aborted" <topaction aid> event record to the buffer,

discards all locks and versions held for descendants of the topaction, and sends a refused

message to the coordinator.

Processing a commit message. When a primary receives a commit message, it

adds a "committed" <aborts...set, topaction aid> event record to the buffer and does a

force-to(new_vs), where new_vs is the viewstamp returned by the buffer add operation. It

discards the locks and versions for descendants of actions in the aborts...set, installs new

base versions and releases write locks, and sends a done message to the coordinator. If no

commit message is received from the coordinator, the participant periodically retransmits

its ok message.

We include the aborts...set in the commit message for the following reason. Having

agreed to prepare, a participant may later undergo a view change that results in a new

primary. Before committing the topaction, this new primary must discard the same locks

and versions for descendants of actions in the aborts...set, as the old primary did. This

new primary does not know what effects of the committing topaction to discard because

it did not receive the prepare message that carried the aborts...set. Hence, the commit

message must bear the the aborts...set.

Processing an abort message. When a pnmary receives an abort message, it

releases locks and versions held by descendants of the action. If the aborted action is a

topaction, it adds an "aborted" <topaction aid> event record to the buffer.

4.3.3 Other processing at cohorts

Cohorts that are not active primaries reject messages sent to them by other guardian

groups, except for queries as discussed in the next section. The rejection message contains

information about the current viewid and the identity of the primary if the cohort knows

them (for example, if it is a backup in an active view).

52 4. Integrating Replication with a Transaction System

Backups also receive messages containing information sent from the primary's com­

munication buffer. Each such message contains the current viewid of its sender and a

sequence of event records. Inactive backups discard such messages. An active backup

discards any message whose viewid does not match the cur_viewid, and any duplicate

entries in a message whose viewid does match. It processes accepted event records in

timestamp order, updating its state accordingly, and sends an acknowledgement to the

primary. It can simply store the entries, or it can perform them, for example, by setting

locks and creating versions for a "completed-call" entry. Perhaps a good compromise is to

store "completed-call" entries (as part of the gstate) until the "committed" or "aborted"

entry for the call's topaction is received.

4.3.4 Queries

Recall from the earlier discussion in section 4.1.3 that the Argus implementation does

not guarantee that all messages about transaction commits and aborts arrive where they

might be needed. Query messages compensate for lost information. Under viewstamped

replication, query messages are used in the same fashion. For example, the primary of

the participant can send a query to the primary of the coordinator if the participant

needs to know whether a topaction aborted. (The groupid in the aid of an action enables

a cohort to find out to which guardian group it should direct its query.)

The only difference is that a query can be sent to other cohorts in a guardian group

besides the primary; we allow any cohort to respond to a query whenever it knows the

answer, in order to speed up the processing of queries. For example, queries are used

in our system to reduce the window of vulnerability of two-phase commit. A cohort

from the coordinator's group could be in an old view and may know that a topaction

committed because this happened before the view change, and will respond committed

to the participants. As another example, a cohort that is not a primary may know about

the abort of a topaction because it received the "aborted" event record from the primary.

4.3.5 Non-replicated clients

This section discusses the usefulness of replicating clients, and proposes a way of

making two-phase commit more robust for clients that are not replicated.

Why might replicated clients be useful? There are two kinds of clients. First, a client

4.3. Running Nested Transactions 53

might actually be a server that does some tasks independently of handler calls. For

example, a mail system might run this way, spooling mail for later delivery, and then

delivering it in background mode. Replication is clearly useful for such a server.

Second, a client might act as a front-end module that interacts with a person at

a console. The usefulness of replication is less clear in this instance. If the node on

which the client is running fails (crashes or is partitioned), there may be no way some

backup can take over communication with that particular console. Instead, the person

may resort to some duplicate mechanism, such as another console or the telephone, that

will put him in touch with a different front-end. These kinds of clients should probably

run unreplicated.

Even when clients are unreplicated, however, it is useful to have a replicated coor­

dinator, because this reduces the window of vulnerability during the two-phase commit

protocol. When the coordinator is replicated, a participant will be able to determine the

outcome of a topaction for which it is prepared if it can communicate with any cohort

that knows the outcome. Furthermore, if the primary in the new view does not know

about the commit, then the action can abort.

A replicated coordinator can be provided by means of a coordinator server. This is a

guardian group that is used by an unreplicated client to start and end topactions. The

client sends a start-action message to the coordinator server, which returns a topaction

aid that the client then uses in all of its calls to regular servers. When the client is ready

to commit, it sends a ready-commit message containing the aid, aborts..Bet, and pset to

the server. The server then takes over coordinating the commit of the topaction. The

primary of the server sends prepare messages containing the aid, aborts..Bet, and pset to

the participants, and the protocol proceeds as described above. After the "committing"

event record has been forced, it sends commit messages to the other participants and

notifies the client that the topaction has committed. It also responds to queries about

the outcome of the topaction; its groupid is part of the topaction's, so that participants

know who it is. In answering a query about a topaction that appears to be still active it

would check with the client but if no reply is forthcoming, it can abort the transaction

unilaterally.

54 4. Integrating Replication with a Transaction System

4.3.6 Discussion

There is a one-to-one correspondence between event records and information written

to stable storage in a conventional system and therefore our system works because a

conventional one does. The "completed-call" event records are equivalent to the data

records that must be forced to stable storage before preparing, and the "committed" and

"aborted" event records are the same as their stable storage counterparts.

The only difference is our treatment of topaction prepare. A peculiarity of our algo­

rithm is that there is no analog of the prepare record that is written to stable storage in

an ordinary two-phase commit. Prepares are not recorded in the communication buffer;

they are only processed by waiting until a sub-majority of backups know about the ef­

fects of the prepared topaction. However, if a majority of the configuration (the primary

plus the sub-majority of backups) know about the processing of the topaction, this is

sufficient to ensure that the action's effects will survive subsequent view changes, and

therefore the action will be able to commit.

In a conventional system, the prepare record serves two functions. First, it says who is

prepared, so that we know to honor these promises. Second, it says who is not prepared;

for these we can abort unilaterally.

In our method, the pset in the prepare message and the viewstamp_history tell the

coordinator who is prepared; this information provides for the first function. The second

function is much less important for our method. In a conventional system, recovering

from a crash of a guardian can take a long time; a transaction that has not yet prepaed

at this crashed guardian cannot commit and must abort. In our system view changes

mask failures and are fast; the probability that an unprepared transaction will commit

is high because the effects may have already been recorded at backups. Therefore, we

try to commit here too. In a non-replicated system, if we want to try to commit after

recovering, our method should be used. The added advantage is that preparing may

sometimes be faster since information about the effects of handler calls can be recorded

early. H all needed information is on stable storage at prepare time, we can avoid the

synchronous delay.

4.4. Running Non-Nested Transactions 55

4.4 Running Non-Nested Transactions

Nested actions are useful in our system because they are an economical way of masking

the effects of view changes: We only abort the subaction, not the topaction. Furthermore,

only when the view changes, do we need to abort and retry a subaction; thus, we do extra

work only when the problem arises.

Without nested actions, however, aborting the call action is not an option. Instead,

we must abort the entire topaction, in which case we are likely to lose work that has been

done. In this section, we discuss how non-nested transactions run in a system that uses

our replication method, and describe various ways of reducing the number of situations

in which aborts occur.

To make a handler call, the system sends the call message to the primary. There are

three possible results of such a message. The first, and most likely, is a reply message for

the call; this result is handled in the same way as for nested actions.

The second possibility is no reply at all (after a sufficient number of probes by the

system). In this case, we abort the topaction because we cannot know whether the call

message would be a duplicate if we sent it to a new primary. The message might be a

new one, or it might be a duplicate for a call that ran before the view change or was

running when the view change happened. In the first case, we need to redo the call; in

the second case, we must not redo it. To resolve this uncertainty, we abort the topaction.

The third possibility is a normal reply that also informs the caller that the view has

changed. We update the cache with the new information. This possibility can arise if the

server has undergone one or more view changes since the last handler call from the client

but the primary remains the same throughout. In this case, the primary could maintain

enough connection information to enable it to determine whether the call is a duplicate;

if not, it can run the call and send back the special normal reply.

There are various ways of reducing the probablity that a topaction will abort. For

example, we can keep client caches up-to-date by sending probes to find out the current

view when a call is made to a group that has not been used for a while. Then when the

call is made, it is highly likely to be made in the right view. Whether such an approach

is practical depends on communication patterns. If the patterns are essentially static,

that is, the client talks to a fixed set of servers and talks to them frequently, then the

56 4. Integrating Replication with a Transaction System

Non-replicated system Viewstamped replication

RP Cs larger reply messages

prepare larger prepare messages

best force prepare record no delay

worst write changes; force buff er
force prepare record
to stable storage

commit force commit record add commit record to
to stable storage buff er and force

Figure 4.7: Performance.

information in the cache is likely to be up-to-date and probes will not be needed. If

patterns are not static, however, then we may end up having to make two calls for each

call, one to probe, and the second to make the call. Note that it will not work to combine

the two calls; once the call message is sent, we must assume the worst (duplicate messages)

if it is rejected. As another example, the primary could force a special "start_call" record

to the backups before making any nested remote calls; in the absence of such a record,

it would be safe for a primary to accept the call message even if the viewid in the call

message is old. Neither of these techniques is satisfactory, however, since they delay

normal processing.

4.5 Performance

In this section, we discuss how our method performs when running transactions and

changing views.

Since operation calls execute only at the primary cohort and need not involve the

backups at all, their performance is comparable to that in a non-replicated system. Mes­

sages under viewstamped replication are slightly larger because viewids must flow on

every call message and possibly several viewstamps on every reply message.

4.5. Performance 57

In the best case, we expect that prepare messages will be processed entirely at the pri­

mary because the needed "completed-call" event records for handler calls of the preparing

topaction will already be stored at a sub-majority of cohorts. In a non-replicated system,

we incur a synchronous delay while the prepare record is written to stable storage. In the

worst case, the primary must wait while the relevant part of the buffer is forced to the

backups. Careful engineering is needed here to provide both speedy delivery and small

numbers of messages. In a non-replicated system, we must write the modifications to

stable storage, followed by the prepare record.

Committing a topaction requires forcing the "committing" event record to the co­

ordinator's backups; the remainder of the protocol can run in background. For both

preparing and committing, our method will be faster than using non-replicated clients

and servers if communication is faster than writing to stable storage, which is often the

case. Figure 4. 7 summarizes this comparison.

View Management
Algorithm

Transaction processing depends upon forcing information to the backups so that a

majority of cohorts of a configuration know about particular events. The job of the view

management algorithm is to ensure that events known to a majority of cohorts survive

into subsequent views. The algorithm makes sure that every view contains at least a

majority of cohorts and starts up the new view in the latest possible state.

If every view has at least a majority of cohorts, then it contains at least one cohort

that knows about any event that was known to a majority of cohorts in the last view .1

(The members in the last view have at least one cohort in common with the current

view.) Thus, we need only make sure that the state of the new view includes what that

cohort knows. We do this using viewstamps: the state of the cohort with the highest

viewstamp for the previous view is used to initialize the state in the new view. This

scheme works because event records are sent to the cohorts in timestamp order, and

therefore a cohort with a later viewstamp for some view knows everything known to a

cohort with an earlier viewstamp for that view.

This chapter describes the algorithm in detail. The next section gives an overview of

the algorithm. Then we present the details. Next, we argue that the algorithm works by

1There is a situation involving a sequence of failure events that would invalidate this guarantee. We
defer discussion of this point until section 5.2.

58

5.1. Overview of the Algorithm 59

discussing its behavior in a variety of situations. Finally, we discuss the performance of

the algorithm.

5.1 Overview of the Algorithm

Each cohort sends probe messages periodically to all other cohorts in its configuration,

checking to see if the others are alive. If a cohort notices that it is not communicating

with some other cohort in its view, or if it notices that it is communicating with a cohort

that it could not communicate with previously, then it initiates a change in view. We

call that cohort the view manager; the other cohorts are the underlings.

The algorithm operates in two phases. In phase one, the view manager invites all

cohorts in the configuration to join the new view it will attempt to establish and waits for

responses. It computes a new, unique viewid to name the new view and sends invitation

messages to the other cohorts in its configuration. A cohort accepts the invitation only

if it has not already received another invitation to join a higher-numbered view; each

acceptance message contains the latest viewstamp known to that cohort, and also an

indication of whether that cohort was the primary in the view of that viewstamp.

If less than a sub-majority accept the invitation, then the cohorts remain inactive

and in their old views for a time, and then the algorithm is restarted.

If a sub-majority of cohorts accept the invitation, the view manager enters phase two

to complete the view change. The cohort returning the largest viewstamp is selected as

the new primary; the old primary of the view of that viewstamp is selected, if possible,

to minimize disruption in the system. The manager sends a message to the new primary,

notifying it about the new view; if the manager is itself the new primary, no message is

sent.

If the cohort designated as the new primary does not refuse the message, it notifies

the backups lazily about the new view by adding a special "newview" event record to

the buffer. This event record contains the new view, the viewstamp history, and the

primary's current state. The current state is a complete description of all object uids,

base versions, lock information, and tentative versions if any. After adding the record, the

cohort immediately becomes active and starts responding to handler calls. Eventually,

during the course of normal transaction processing at the new primary, this "newview"

60 5. View Management Algorithm

record will reach all the backups in the new view. Each backup adopts the new view and

updates its state to be the same as the primary's state contained in the event record.

5.2 The Full Algorithm

We now examine in some detail the algorithms to implement view management. Fig­

ure 5.1 illustrates the view management algorithm modeled as a finite state machine. A

copy of the algorithm runs at each cohort. The state machine comprises three states:

ACTIVE, VIEW _MANAGER, and UNDERLING.

A cohort is usually in the ACTIVE state. For the purposes of exposition in this

chapter, there is little difference between the primaries and backups. It changes to

the VIEW_MANAGER state when it detects any changes in the communication capability

amongst cohorts. It makes a transition to the UNDERLING state upon accepting an

invitation from another cohort.

In the VIEW ..MANAGER state, a cohort changes state to UNDERLING if it accepts an

invitation to join another cohort's view, or if it is not the new primary. If the cohort

times out waiting for responses, it stays in the VIEW _MANAGER state. If it becomes the

new primary, it makes a transition to ACTIVE; if some other cohort is chosen, it changes

to the UNDERLING state.

In the UNDERLING state, if a cohort times out waiting for a newview message to arrive

from the new primary, it switches to the VIEW _MANAGER state to start the algorithm all

over again. When it receives either the newview message notifying it that it is the new

primary or the buffer messages from the new primary, it switches to the ACTIVE state.

Figure 5.2 shows the program structure corresponding to the finite state machine. It

is structured as an infinite loop. State is a tagged, discriminated union with component

tags, each tag showing what state the machine is in. Associated with each tag is a

program that is executed while the machine is in that state.

The remainder of this section shows the programs run in the various states. These

programs communicate by using the send and receive statements.

The send m(args) to d statement sends message m to destination d. Send is

unreliable; messages can be lost. A process receives messages by executing the re­

ceive statement; if there is more than one message waiting for it, one is selected non-

5.2. The Full Algorithm

buffer
message

client
requests

I am
pnmary

detect change

timeout

accept invite,
not primary

Figure 5.1: View management algorithm: Finite State Machine.

while true do
tagcase state

tag active: active()
tag view _manager: viewmanager()
tag underling: underling()
end% tag

end

Figure 5.2: State machine code.

61

62 5. View Management Algoritbm

deterministically. Then the arm corresponding to the name of that message is executed.

The receive statement has an optional timeout parameter associated with it. For ex­

ample, receive within t says that we wait for t time units for messages to arrive. If

none arrive within the allotted time, the statement terminates with the timeout excep­

tion. Messages are sent both by other cohorts and by the system when probes indicate

a change in communication capability.

5.2.1 Cohort state--view changes

Figure 5.3 shows the entire cohort state, including the variables associated with view

management. In this section, we discuss this aspect of the cohort state.

Each cohort knows the view (cur _view) it is a member of as of the last view change

and the identifier (cur _viewid) that uniquely names the view. M ax_viewid is used during

a view change to record the viewid of the view that is being formed and represents the

highest-numbered viewid known by a cohort. Cur _vs is the current viewstamp and could

be implemented as a pointer to the top of the viewstampJiistory. State represents the

three states of the finite state machine.

We assume that a cohort's state is stored in volatile memory and is lost in a node crash

with the exception of the following four variables: mygid, mygroupid, configuration,

and cur _viewid. We must remember these after a crash: mygid says who the cohort is,

mygroupid says what group it belonged to, conj iguration says who the members of the

configuration are, and cur _viewid says what the current viewid was before the crash.

We assume a small amount of stable storage to which every cohort has access. When

the cohort is created as part of creation of the guardian group, the cohort stores mygid,

mygroupid, configuration, and cur _viewid. Furthermore, we must write the cur _viewid

as part of every view change. When a cohort recovers from a crash, it must initialize

these variables by reading their values stored in stable storage. Then it initializes the

variable up_to_date to be false. Finally, it starts up in the view _manager state.

5.2.2 The active state

Figure 5.4 shows a code fragment for the ACTIVE state.

In this state, a cohort could be either a primary or a backup. We do not show this

part of processing, but just the processing pertaining to view management. There are

5.2. The Full Algorithm

gstate: {object} % cohort state
state: status % cohort is active or doing view changes
mygid: int % unique name of this cohort
configuration: {int} % lists unique names of cohorts
mygroupid: int % unique name of guardian group
timestamp: int % timestamp generator
viewstamp_history: [viewstamp] % indicates events known to cohorts
buffer: [event-record] % communication buffer
cur_viewid: vid % identifier of current view
cur_view: view % the primary and backups
max_viewid: vid % highest viewid seen so far
cur_vs: viewstamp % current viewstamp
up_to_date: bool % true if gstate is meaningful

where
object = <uid: int, base: T, lockers: {lock-info}>
lock-info= <locker: aid, info: oneof[read: null, write: T]>
vid = <cnt: int, gid: int>
view= <primary: int, backups: {int}>
viewstamp = <id: vid, ts: int>
status = oneof[active, view..manager, underling: null]
event-record= oneof[committing: <parts-set: {groupid}, aborts-set: {aid},

action: aid>
done: <topaction: aid>
completed-call: <aborts-set: {aid}, handler-aid: aid,

object-set: {object}>
committed: <aborts-set: {aid}, topaction: aid>
aborted: <topaction: aid>
newv1ew: <cur_view: view, vs: viewstampJ:iistory,

objectjnfo: {object}>

63

Figure 5.3: Cohort state. {} denotes a set, oneof means a tagged union with component
tags, and <> denotes a record, with component names and types as indicated.

64 5. View Management Algorithm

active = proc{)
receive

detect_change(new_viewid: vid): % sent by probe monitor
ifnew_viewid -:f cur_viewid then return end% if
state := view _manager

invite(new_viewid: vid, g: int):
if new _viewid ~ max_viewid then return end % if
max_viewid := new _viewid
if up_to_date

then send accept(mygid, max_viewid, cur_vs, is_primary?(mygid)) to g
else send crash_accept(mygid, max_viewid, cur_viewid) tog
end% if

state := underling
others: % this is where transaction messages and queries are processed

% and also (for backups) event records from the primary
end % receive

end

Figure 5.4: Active state.

two ways to change state: detecting changes in communication capability and accepting

an invitation message.

We imagine that some process associated with each cohort monitors the "health"

of other cohorts in the configuration. It probes other cohorts, checking to see if they

are alive. If the set of responses differs from the current view, the process sends a

detecLchange message containing the cur_viewid to its cohort; otherwise, it starts another

round of probing.

If a cohort receives a detecLchange message from this probe monitor, it compares the

incoming viewid in the message with the cur_viewid. If the viewids are the same, the

cohort assumes the role as view manager and changes state to VIEW ..MANAGER. Oth­

erwise, the cohort ignores the message. We include the cur_viewid in the detecLchange

message to prevent unnecessary view changes. For example, if a cohort joined a view, be­

came active, and then received an old detect_change message an unnecessary view change

would be started. Why might a detecLchange message be considered old? One reason

is that the probe monitor was slow in delivering it. Another reason is that there could

be several messages waiting and the process executing the receive statement selected

another message, not the detecLchange message.

A cohort gl receiving an invitation message from some other cohort g2 accepts the

5.2. The Full Algorithm 65

invitation only if g2 knows a higher-numbered viewid. gl records the new_viewid in

max_viewid, sends an accept, and becomes an underling. M ax_viewid represents the

largest viewid seen so far by this cohort.

There are two kinds of acceptance messages, "normal" ones and "crashed" ones. If the

cohort is up to date (that is, up.lo_date =true), it sends a normal acceptance containing

its identity, its max_viewid, its cur _vs, and an indication of whether it is the primary

in the current view. ls_primary?(mygid) is a function that returns true if mygid is the

primary in the view of the current viewstamp, or false otherwise. If the cohort is not up

to date, it sends a "crash_accept" response; this response contains its max_viewid and

its cur _viewid, and indicates that it has forgotten its gstate.

5.2.3 The view manager state

Figures 5.5 and 5.6 show the details of the algorithm run by the view manager. The

view manager first discards the contents of its buffer. Then it computes a new, unique

viewid composed of the successor of the largest sequence number in a viewid seen so far

and its gid, mygid, and records it in max_viewid. It sends a message to all cohorts in the

configuration (excluding itself), inviting them to join the view identified by max_viewid.

Responses are recorded in a responses data structure that maps gids to normal accep­

tances or crash acceptances. The cohort records a crash acceptance for itself if up.lo..date

is false; otherwise, it records a normal acceptance.

In the receive statement, the cohort waits on three kinds of messages: accept and

crash..accept messages from cohorts that agree to accept the invitation and invitation

messages from other cohorts that think they are view managers. The 81 parameter

indicates that the cohort waits 81 time units to cover the time needed to transmit the

invitation messages and the time for the acceptances to fl.ow back to the sender.

Upon receiving a normal accept message, the cohort checks the viewid in the message

against its max_viewid. If they are the same, then the cohort inserts a normal response

in responses, keyed to the gid of the sending cohort. If the insert operation discovers

that there is already an entry for g, it remaps g to the newly created response record.

This handles the situation in which the view manager receives several messages from

some underling. If the number of responses is equal to the number of cohorts in the

configuration, the cohort has heard from everyone before the timeout expired and breaks

66 5. View Management Algorithm

viewmanager = proc()
buffer := buffer$new()
max_viewid := vid${cnt: max_viewid.cnt + 1, gid: mygid}
for c: int E configuration - {mygid} do

send invite(max_viewid, mygid) to c
end% for

response= oneof1normal: <cur_vs: viewstamp, prim?: bool>, crash: <cur_viewid: vid>]
responses: map[gid,response] := create()
resp: response
if up_to_date

then resp := make..normal(max_viewid, cur_vs, is_primary?(mygid))
else resp := make_crash(cur_viewid)

insert(responses, g, resp)

while true do
receive within 61

accept(g: int, new_viewid: vid, new_vs: viewstamp, prim?: bool):
if new_viewid = max_viewid

then insert(responses, g, make..normal(new_vs, prim?))
if size(responses) = iconfigurationl then break end % if

end% if
crash..accept(g: int, new_viewid, cur_viewid: vid):

if new_viewid = max_viewid
then insert(responses, g, make_crash(cur_viewid))

if size(responses) = lconfigurationl then break end% if
end% if

invite(new_viewid: vid, g: int):
if new_viewid ~ max_viewid then continue end % if
max_viewid := new_viewid
if up_to_date

then send accept(mygid, max_viewid, cur_vs, is_primary?(mygid)) to g
else send crash..accept(mygid, max..viewid, cur_viewid) to g
end% if

state := underling
return

others: % Queries are processed here
end % receive

end% while
except when timeout: end% except

Figure 5.5: View manager state.

5.2. The Full Algorithm

if -maj(responses, configuration) then return end% if

new_primary: int := choose_primary(responses) % Have majority
except when no_view: % wait some time

return end % except
backups: {int}:= all(responses) - {new_primary}
new_view: view := <new_primary, backups>
if new _primary # mygid

then send newview(new_view, max..viewid) to new_primary
state := underling

else if cur_view.primary # new_primary then abort topactions end% if
cur_viewid := max_viewid % view manager is new primary . .
cur_v1ew := new_view
timestamp := 0
cur_vs := <cur_viewid, timestamp>
append cur_vs to viewstamp..history
add "newview" <cur_view, viewstamp..history, objectjnfo> to buffer
write cur_viewid to stable storage
state := active

end% if

end

Figure 5.6: View manager state (continued).

67

the loop. The view manager processes a crash...accept message from a cohort g like a

normal accept, except that it inserts a special crash response record in the responses

map, keyed to g. (In the code, a break statement causes an exit from the smallest

containing loop.)

In an incoming invitation message if the new_viewid is greater than the max_viewid,

the recipient records the new_viewid in max_viewid, sends either a normal accept mes­

sage or crash...accept message to the manager, and changes state to UNDERLING as dis­

cussed below. Otherwise, it ignores the message because it comes from a cohort with a

smaller viewid. (In the code, continue causes control to continue with the next iteration

of the smallest containing loop.)

When the receive statement times out we need to know whether at least a majority

has responded. Figure 5 .6 shows the remainder of the view manager code. Maj is a

predicate that returns true if the number of responses is at least a majority of cohorts

of the configuration. If it returns false, then we wait for a while and then restart the

algorithm in the VIEW_MANAGER state.

68 5. View Management Algorithm

If we have at least a majority, the function choose_primary selects the cohort with

the highest viewstamp as the new primary, using the old primary if possible; the view

manager is itself selected if there is a tie and no old primary can be chosen (we do

this to avoid extra messages). It may raise an exception no_view if a view cannot be

formed; we defer discussion of the precise rules governing view formation. The function

all returns the set of gids of all cohorts that responded; we then compute the backups by

excluding the new_primary's gid from the set. The view manager assembles the new view

consisting of the new primary and the backups. H the new primary is another cohort,

the view manager sends that cohort a newview message containing max_viewid and the

new view and enters the UNDERLING state to await information from the new primary.

If the new primary is the same as the view manager, then it does the following. It

checks to see if it was the primary in its previous view; if not, it aborts any of its active

topactions, that is, those for which it would be the coordinator. It records max_viewid

in cur _viewid and also the new view in cur _view. It initializes timestamp to 0. It creates

a new viewstamp <cur_viewid, timestamp>, denoted by cur _vs, and appends it to the

viewstamp_history. It adds a "newview" <cur_view, viewstamp_history, objectinfo>

event record to the buffer, where objectinfo contains the full gstate. This information

can be sent in the background, but should be sent quickly to prevent another cohort from

starting a view change. Finally, it writes the cur_viewid to stable storage. Then it enters

the ACTIVE state. At this point in time, the view "takes effect," so to speak. Only the

new primary knows which cohorts are in the view and what the new viewid is.

View formation can succeed only if two conditions are satisfied: at least a majority

of cohorts must have accepted the invitation, and at least one of them must know all

forced information from previous views. The latter condition may not be true if some

acceptances are of the "crashed" variety. To see why forming a view is wrong if the latter

condition is false, suppose a guardian group G consists of five cohorts gl, g2, g3, g4,

g5 in view vl = {gl: g2 g3 g4 g5}, where gl is the primary. A partition separates g4

and g5 from the rest; they remain in the old view vl, while v2 = {gl: g2 g3} is formed

from the others. Next, gl crashes and recovers, losing its state. Then the old partition

is repaired, making g4 and g5 accessible once again, but a new partition isolates g2 and

g3. Cohorts gl, g4, and g5 are able to talk to one another. In the previous view v2,

gl knew about events that were forced to a majority of backups, but since it crashed, it

5.2. The Full Algorithm 69

now knows nothing at all. If gl, g4, and g5 were to form a new view, gl 's state would

be updated with that of g4's and g5's, which is out of date. This new view v3 would not

contain what gl knew, because gl crashed.

To prevent this erroneous view formation, the last thing the new primary does during

a view change is to record its cur_viewid on stable storage; the backups record the

cur_viewid on stable storage while processing the newview event record. After a crashed

cohort recovers, it sets upJ,o..date to false and starts up in the VIEW_MANAGER state.

U p_to..date allows us to detect a situation like the one above and prevent view formation.

In the example above, gl has a larger cur _viewid than g4 or g5, but gl is not up-to-date.

Thus, we avoid forming the erroneous view, and instead, we wait a bit and then restart

the algorithm in the VIEW _MANAGER state.

The correct rule for view formation is as follows: A majority of cohorts have accepted

invitations and, in addition,

1. a majority of cohorts accepted normally, or

2. crash_viewid < max_viewstamp.id, or

3. crash_viewid = max_viewstamp.id and the primary of view max_viewstamp.id has

indicated a normal acceptance of the invitation.

where crash_viewid represents the largest viewid returned in a "crashed" acceptance, and

max_viewstamp represents the largest viewstamp returned in a "normal" acceptance.

Condition (1) says we can ignore crashed acceptances if we have enough normal ones;

condition (2) says we can ignore crashed acceptances if they are from old views; and

condition (3) says we can ignore a crashed acceptance if we have information from the

primary of its view, because the primary always knows at least as much as any backup.

5.2.4 The underling state

Figure 5.7 shows the code executed in the UNDERLING state. First, the cohort discards

the buffer; as before, this has an effect only if it was the primary. Three things can cause

a change in state: receiving invitation messages, newview messages, or buffer messages.

If the underling receives an invitation message from another cohort it accepts the

invitation provided that the incoming viewid is greater than or equal to max_viewid;

70 5. View Management Algorithm

otherwise, it ignores the invitation because it comes from a view manager that knows a

smaller viewid. The new_viewid is recorded in max_viewid. ff up_to_date is true, then

it sends a normal acceptance message; otherwise, it sends a crash...accept message. It

remains in the UNDERLING state.

If the underling receives a newview message, this means that the view manager whose

view it agreed to join has appointed it the new primary. The message contains the new

view nv and viewid max_v of the new view. The message is accepted only if the underling

knows the same viewid; this ensures that since agreeing to join this view manager's

view, the underling has not joined another, higher-numbered view. Also, if the cohort

designated as the new primary crashed and lost its state before receiving the new view,

it would be wrong for it to be the primary; in this case (up_to_date is false) the cohort

discards the message. Otherwise, the underling records the max_viewid as the current

viewid and so on, just as the view manager did when it appointed itself as the new

primary.

The final possibility is that the underling receives a buffer message from the new

primary. This message contains a sequence of event records and their timestamps. The

cohort discards the message if its viewid is not equal to max_viewid. Otherwise, the

cohort uses the first event record in the message (the "newview" record) to initialize the

cohort state and writes cur_viewid to stable storage. Then, up.10...date is set to true, the

other event records are processed, and the cohort becomes active.

The reason for the 82 timeout is the following. 82 covers the time for the underling

to send an accept message to the view manager. If the view manager is not the new

primary, it takes additional time for the view manager to notify the new primary, and it

may take even longer for the new primary to begin informing its backups.

5.3 Why the Algorithm Works

We claim that our view management algorithm assembles a new view and that the

new view is initialized with the latest state information. Each view intersects with the

next view, so that each view contains at least one cohort that knows about previous

events.

In this section, we argue that the view management algorithm is robust in the face

5.3. Why the Algorithm Works

underling = proc()
buffer := buffer$new()
while true do

receive within 62

end

invite(new_viewid: vid, g: int):
if new_viewid :::; max_viewid then continue end% if
max_viewid := new_viewid
if up_to_date

then send accept(mygid, max_viewid, cur_vs, is_primary?(mygid)) to g
else send crash...accept(mygid, max..viewid, cur_viewid) to g
end% if

return

newview(nv: view, max..v: vid):
if max_v -:/= max.. viewid I -uptodate then return end % if
cur_viewid := max_viewid
cur_view := nv
timestamp := 0
cur_vs := <cur_viewid, timestamp>
append cur _vs to viewstamp..history
add "newview" <cur_view, viewstamp..history, object.info> to buffer
write cur _viewid to stable storage
state := active
return

buffer(viewid: vid, msg: [<ts: timestamp, e: event..record>]):
if viewid -:/= max..viewid then return end % if
for ts: timestamp, e: event..record in messages$elements(msg) do

tagcase e
tag newview(nv: view, hist: [viewstamp], objs: {object}):

viewstamp..history := hist
gstate := objs
cur_view := nv
cur_viewid := max_viewid
cur_ vs := top of viewstamp..history
write cur_viewid to stable storage
up_to_date := true

others: % handle "regular" event records here
end % tagcase

end% for
state := active
return

others: % Queries are processed here
end % receive
except when timeout: state :=view.manager

return end % except
end% while

Figure 5.7: View underling state.

71

72 5. View Management Algorithm

of simple failures, concurrent view managers, and two coexisting primaries.

5.3.1 The simple case

Figure 5.8 illustrates the operation of the algorithm. We assume for simplicity that

following the initial failure, no additional failures occur; once cohort gl becomes inac­

cessible, it remains inaccessible for the duration of the algorithm. In this section, we

describe how the algorithm operates in this simple case.

Figure 5.8(a) shows guardian group G consisting of five cohorts. gl is the primary,

and the remainder are backups. For group G, viewid vl identifies view {gl: g2 g3 g4

g5}. Each cohort, as usual, has its own viewstamp history. Cohorts send and receive

probe messages.

A communication failure makes cohort gl inaccessible, as we can see in Figure 5.8(b),

and g2, g3, g4, and g5 stop hearing from it. We suppose that g3 detects this change

and galvanizes the algorithm into action.2 g3 becomes the view manager and enters the

first phase of the algorithm. It computes a new viewid <2, g3> by incrementing the first

component of its max_viewid and concatenating its my_gid. This viewid is higher than

anything g3 has seen. Next, it sends invitation messages containing the new viewid <2,

g3> to other cohorts in the configuration (gl, g2, g4, and g5) and waits for responses.

In Figure 5.8(c) each cohort that received the invitation message sends back an accep­

tance message containing, among other things, its current viewstamp. To avoid cluttering

the picture, we ignore the viewid and whether that cohort was the primary in the view

of that viewstamp. No reply is forthcoming from gl since it is inaccessible. g3 collects

the responses.

In phase two of the algorithm, illustrated in Figure 5.8(d), g3 considers the responses

and arbitrarily selects g2 to be the new primary (all underlings have the same latest

viewstamp). g3 assembles the new view {g2: g3 g4 g5}, identified by v2 = <2, g3>.

Finally, g3 sends a newview message to g2 containing {g2: g3 g4 g5} and <2, g3>. If g3

were the new primary, no message would be sent. The algorithm is done.

We noted earlier that at this point in time the new view exists only after the new

primary receives the newview message. The other cohorts do not yet know (with the

2 More than one cohort may detect this change and trigger the algorithm, but we defer discussion of
that possibility until the next subsection.

5.3. Why the Algorithm Works

<vl,5>

<vl,7> <vl,4>

vl = <1, gl>

(a). Cohorts send probe messages

communication failure

(c). Phase 1
g3 waits for responses

communication failure

<1, gl >

(b). Phase 1
g3 is view manager
g3 sends out invitations

communication failure

(d). Phase 2

<vl,5>
<v2,0>

g2 chosen as new primary
g3 assembles new view

<vl,4>

g3 sends newview message to g2

73

Figure 5.8: Simple case-Detecting a communication failure triggers the view manage­
ment algorithm.

74 5. View Management Algorithm

possible exception of the old view manager that formed the view) what the view actually

consists of; they will discover that fact when they receive the "newview" event record

from the new primary.

In the meantime, while all this is going on gl is also running the algorithm and is

trying to form a view. As the view manager, it becomes inactive and computes a new

viewid and sends invitation messages to g2, g3, g4, and g5. No responses are forthcoming

due to the communication failure. It waits in vain for acceptances and eventually times

out, remaining inactive.

In this scenario, the algorithm forms a new view, excluding inaccessible cohorts.

Although not illustrated, the algorithm also works in the case of including cohorts that

become accessible when a failure is repaired.

5.3.2 The case of two active primaries

Suppose a primary is slow to detect a communication failure that has separated it

from its backups; it may be slow, for example, because it is doing a lot of work and

has not noticed the failure. For example, in Figure 5.8, this might happen to primary

Pl. So Pl assumes that it can still communicate with its backups and still sees view

vl. Transactions continue to execute there, unaware that anything is wrong. In the

meantime, a more alert backup cohort initiates the view management algorithm and

creates a new view v2 with a new primary P2. We now have coexisting primaries Pl and

P2, each residing in overlapping views vl and v2. At first blush, this situation may seem

intolerable, since it makes no sense for two primaries to coexist; in fact, we rely on the

two-phase commit protocol to prevent incorrect behavior.

There are two cases to consider.

First, the information in Pl's buffer may have already propagated to Pl's backups

before the view change happened. Suppose Pl receives a prepare message from the

coordinator, after the view change. Since needed information is already at the backups

(force-to returns immediately), Pl will reply ok to the coordinator. When Pl receives

the commit message from the coordinator, Pl tries to force its buffer to the backups

and fails. Pl rejects the commit message. Ultimately, the coordinator's commit message

will find its way to the new primary P2, where the topaction will finally commit. The

prepare succeeded at Pl, but the commit could not. A variation on this is the following.

5.3. Why the Algorithm Works 75

Suppose Pl receives a prepare message from the coordinator, forces its buffer, and replies

ok, all before the view change. As just discussed, the prepare can succeed at Pl, but the

commit cannot.

Second, suppose all information on behalf of a preparing action is not known to have

propagated to the backups before the communication failure. The prepare cannot succeed

because Pl will discover that, as part of preparing, it cannot force the event records to

its backups in view vl for the preparing topaction. Ultimately, the prepare message will

be sent to P2; it will succeed there just in case all its effects survived the view change.

5.3.3 Concurrent view managers

If more than one cohort detects a change in the communication capability within a

guardian group, several cohorts may become view managers simultaneously. Clearly, this

is inefficient, but any optimization cannot guarantee that only one cohort can act as view

manager, as we shall see in a later section. Our view management algorithm handles this

case of multiple concurrent view managers in the following way.

Recall that viewids generated by different cohorts are distinct; we achieve this by

making a gid a part of the viewid. A viewid consists of two parts, a counter cnt and the

identity of the cohort initiating the view change. Gids are themselves unique, and we

can use them to break ties between different cohorts computing a new viewid. Viewids

are compared using the ~ relation:

In the previous example, let us imagine that gl through g5 are labeled in increasing

order. Suppose cohorts g2 and g3 start up as view managers. g2 computes <2, g2>

and g3 computes <2, g3>. Both send invitation messages to everybody else in the

configuration. Now things suddenly become a little more complicated.

1. g2 receives an invitation from g3. Since <2, g3> >- <2, g2>, g2 accepts the
invitation, sets its max_viewid to <2, g3> and stops acting as view manager. It
sends accept(g2, <vl, 5>, <2, g3>, false) to g3.

2. g3 receives an invitation from g2. Since <2, g2> ~ <2, g3>, g3 knows of a higher
viewid, so it ignores the message from g2.

3. g4 and g5 receive invitation messages from both g2 and g3. What do they do?
They might receive the messages in different orders, that is, g4 might receive <2,

76 5. View Management Algorithm

g2> and then <2, g3>, and g5 might receive <2, g3>, and then <2, g2>, but that
scarcely matters.

• Since the incoming viewid <2, g2> from g2 is bigger than max_viewid <l,
gl>, g4 stores it in max_viewid. It sends accept(g4, <vl, 5>, <2, g2>, false)
to g2.

• Since the incoming viewid <2, g3> from g3 is bigger than max_viewid <2, g2>,
g4 stores it in max_viewid, and sends accept(g4, <vl, 5>, <2, g3>, false) to
g3.

• Since the incoming viewid <2, g3> from g3 is bigger than max_viewid <l, gl>,
g5 stores it in max_viewid, and sends accept(g5, <vl, 5>, <2, g3>, false) to
g3.

• g5 compares its max_viewid <2, g3> with the incoming <2, g2>. g5 ignores
the message since <2, g2> is smaller than what it currently knows.

g4 accepts g2's invitation to join its view and then accepts g3's invitation; if g4 had

received invitations in the opposite order, it would have ignored g2's invitation since g2's

viewid is smaller. Thus, g3 prevails. g5 accepts g3's invitation, but ignores g2's since

g2's viewid is smaller. Again, g3 prevails. Thus, g3 is the view manager. Clearly, the

higher viewid prevails in the absence of additional failures. Anything smaller is rejected.

In other words, no matter what order the messages arrive in the outcome is the same:

g3's new viewid is the one that prevails because its viewid is larger. Since a view manager

has been selected, this case reduces to the previous, simple one, and the protocol proceeds

as above.

5.4 Performance

In this section we discuss the performance of the view management algorithm. We

assume that a single failure or recovery event triggers the algorithm; there are no addi­

tional failures or recovers and no lost messages. In the simple case, only one cohort acts

as view manager. Next, we present several policies to prevent multiple managers from si­

multaneously starting a view change, again assuming no additional failures or recoveries.

Then we comment on the problem of lost messages and present some optimizations.

5.4.1 Simple case

When failures or recoveries are detected by the system, the view management algo­

rithm runs in each affected guardian group. If a new view can be formed, the algorithm

5.4. Performance 77

requires relatively little message-passing in the simple case of one view manager. We

analyze the time and message complexity.

Time complexity. The time complexity of our view management algorithm requires

one round of messages, a single message, plus a single write to stable storage.

1. The manager sends invite messages.

2. The underlings reply with accept messages.

3. The view manager sends a single newview message to the cohort selected as the

new primary.

In the case in which the view manager is the primary, no newview message need be sent;

the algorithm requires just one round of messages plus a single write to stable storage.

Message complexity. To analyze the message complexity, let n be the number of

underlings, so the total number of cohorts is n + 1, including the primary. Thus, n

invitation messages are sent to the underlings and at most n acceptance messages are

sent to the view manager. Then a single message may be sent to the new primary. Thus,

the algorithm uses at most 2n + 1 messages. In the case in which the new primary is not

the same as the view manager, only 2n messages are needed.

5.4.2 Preventing concurrent view managers

The algorithm tolerates several cohorts starting up as view managers simultaneously.

Having several managers at once will slow things down, since there will be more message

traffic, but the slowdown will be slight. We can, however, avoid these parallel view

changes to some extent by various policies.

One possible policy is to impose a static order on the cohorts in a configuration.

Based on its position in this ordering, each cohort waits longer than its predecessor, thus

giving its predecessor a chance to take over as the view manager. For example, suppose

we have the following configuration {gl g2 g3 g4 g5} consisting of an ordered set of gids.

The idea is to give the predecessor a chance to take over as the view manager and inform

the others. That is, gl immediately begins executing the algorithm, inviting the others

to join its view. In the meantime, g2 waits a certain amount of time that is longer than

gl 's; if g2 has not received an invitation from gl after the waiting time has elapsed, then

g2 takes over as view manager and sends invitation messages; and so on.

78 5. View Management Algorithm

Most of the time this "backoff" strategy will lead to only one cohort acting as view

manager (unless the configuration is split due to a network partition). But the strategy

does not guarantee that only one cohort will be view manager. Due to timing problems

it is possible that two or more cohorts might start up as view managers, a situation

that can arise in the following way. Suppose gl runs on a slow node relative, say, to

g2's node. gl becomes the view manager and sends out invite messages to the other

cohorts. In the meantime g2's fast node figures it has waited long enough and starts

the view management algorithm. Two view managers now coexist; the cohort with the

higher viewid prevails, while the other becomes an underling. Problems raised by timing

difficulties can manifest themselves in other ways, too. For example, gl 's invitation to

g2 might be delayed by the network or it might be lost entirely. In either case, g2 would

start up as view manager.

Another, better technique is to give priority to the primary of a view. If the primary

is lost, the backups will take over in some predetermined order; this order could either

be static or set up when the view was created. Inactive cohorts will delay waiting for

an active cohort to take over. Again, such a strategy does not guarantee that only one

cohort acts as a view manager.

5.4.3 Lost messages

Recall that the send statement does not send messages reliably. For example, the

newview message sent by a view manager to the new primary might be lost. To avoid

waiting forever when messages do not arrive, we set a timeout; when the timeout expires,

this cohort becomes the view manager, starting a new view change. Starting a view

change just to mask a lost message is not efficient, however. Instead, messages should be

retransmitted.

5.4.4 Other optimizations

Not all view changes described above really need to be done. One special case occurs

when a primary notices that it cannot communicate with a backup, but it still has a

sub-majority of other backups. In this case, the primary can unilaterally exclude the

inaccessible backup from the view. Similarly, the primary can unilaterally include a

backup in its current view.

5.5. Robustness and Making Progress 79

5.5 Robustness and Making Progress

In our algorithm we assumed that most of a cohort's state was volatile. Such an

assumption means that if a majority of cohorts are crashed "simultaneously," we may

lose information about the guardian group's state. Here we view a cohort as crashed if

either it is really down, or if it has recovered from a crash but its up..to_date variable is

false. Note that a catastrophe does not cause a group to enter a new view missing some

needed information. Rather, it causes the algorithm to never again form a new view.

Whether it is worthwhile to worry about such catastrophes depends on how likely they

are and the importance of the information in the group state. The considerations here

are similar to decisions about when it is necessary to store information in stable storage

in a non-replicated system, except that replication makes the probability of catastrophe

smaller to begin with.

If protection against catastrophes is desired, there are various techniques that could

be tried. We might have stable storage in use only at the primary. We might supply each

cohort with a uninterruptible power supply and have them write information to non­

volatile storage in background. Or, we might force events to all backups, thus decreasing

the situations in which a new view cannot be formed.

5.6 Discussion

After some event, either a failure or a recovery, triggers the algorithm, the algorithm

proceeds unimpeded and eventually terminates with a new view, as long as no additional

such events occur. We assume that these events are rare, since otherwise the system would

do no useful work but instead would spend all its time responding to such events. Such

an assumption is reasonable as long as node and communication failures and recoveries

are rare events. Hence, the time between these events is large enough that the algorithm

will eventually terminate, forming a new view.

The algorithm does not tolerate decisions being made too quickly. For example,

suppose a manager waits only until it hears from a sub-majority even though there are

other cohorts that could respond. This would result in excluding those other cohorts

from the new view, which in turn will mean another round of view changing will occur

shortly. If that next view change also excludes some potential members, that will lead to

80 5. View Management Algorithm

yet another view change, and so on. To avoid such a situation, a view manager should

use a fairly long timeout while it waits to hear from all cohorts that the probe messages

indicate should reply.

If the same cohort is the primary both before and after the view change, then no

user work is lost in the change. Otherwise, we guarantee the following: Topactions that

prepared in the old view will be able to commit, and those that committed will still

be committed. Topactions that had not yet prepared before the change may be able to

prepare afterwards, depending on whether the completion events of their handler calls are

known in the new view. Aborts of topactions may have been forgotten, but delivery of

abort messages is not guaranteed in any case; recovery from lost messages was mentioned

in Section 4.3.4. To minimize disruption while a view change is happening, queries can

be answered by any cohort that knows the answer.

Whenever possible, our algorithm chooses the primary of the last view to be the new

primary. This is a good strategy because it makes the algorithm run quickly and ensures

that the least amount of work is lost; even handler calls that were running before the

view change can continue to run after the change. However, in some systems there may

be a favored cohort that should be the primary whenever it is a member of the new

view. For example, that cohort may run on a more powerful node than the others. Such

a policy matches the needs of some applications. To accommodate such a requirement,

we would need to change our algorithm since the new primary may need to read the

current state from one of the backups in phase two. The modified algorithm is probably

best combined with a strategy that makes the favored primary most likely to be the

view manager; in this case, one round plus two messages are needed before the favored

primary could become active after it had crashed or become inaccessible because of a

partition.

The policy would not necessarily cause loss of information: if the old primary is a

member of the new view, all its events will survive into the new view. However, work

in progress at the old primary, including aborting active transactions for which it is the

coordinator, would be lost in the change, unless some additional mechanism is included.

Related Work

In this chapter we discuss the relationship of our approach to other work on replication

and on view changes.

6.1 Voting

The best known replication technique is voting [Gifford 79]. Gifford presents a simple

and elegant protocol for maintaining the consistency of replicated data in a distributed

computer system. 1 The basic idea of the protocol rests on the notion of quorum inter­

sections. Each copy of a replicated data item is assigned some number of votes. To read

a data item, a transaction must collect a read quorum of votes; to write a data item,

it must collect a write quorum of votes. To maintain the consistency of the replicated

data, these read and write quorums must satisfy two constraints. First, read and write

quorums must intersect, guaranteeing that any read quorum has a current copy of a data

item. Second, write quorums must intersect, imposing an order on updates. Together,

these two rules ensure one-copy serializability. The protocol has several additional ben­

efits: it continues to operate correctly even if some copies are inaccessible, it is possible

to change a data item's performance and reliability characteristics by altering quorum

1The replication scheme is built on top of a transaction system, which is a major reason for its
simplicity.

81

82 6. Related Work

sizes, and it also copes with partitions without explicit detection. Herlihy [Herlihy 86]

extended Gifford's voting protocol to take advantage of operation semantics, thus making

the protocol more efficient.

Our method is faster for write operations because we communicate with only the

primary; with voting we must write to at least a simple majority of copies. Also, we

avoid deadlocks that can arise if messages for concurrent updates arrive at the replicas

in different orders. Our method will also be faster for read operations if the reads take

place at several replicas. If read operations take place at only one replica, voting may

outperform our method because reading can occur at any replica, while reading in our

scheme must happen at the primary, which could become a performance bottleneck. On

the other hand, the real source of a bottleneck is a node, not a cohort, and we can

organize our system so that primaries of different groups usually run on different nodes.

Furthermore, the system can be configured to place primaries at more powerful nodes

most of the time. This organization could lead to better performance than voting.

6.2 Virtual Partitions

Our view change protocol is a simplification and modification of the original virtual

partitions protocol [El Abbadi 85], a variation on Gifford's weighted voting. Like our

notion of views, virtual partitions attempt to track real changes in the network topol­

ogy as closely as possible without being constrained by the need to cope with changes

instantaneously. A virtual partition is a set of processors that have agreed that they can

communicate with each other and further agree that they will not communicate with

any processors outside the partition. Although communication with processors outside

a virtual partition may be physically possible, this communication may not be initiated

until a special protocol is run to form a new virtual partition. A logical data item is

accessible in a virtual partition that includes a majority of its sites. A transaction reads

or writes only those logical data items that are accessible in its virtual partition. The

principal advantage of this scheme is that transactions can always read from a single

copy; this advantage comes at the expense of an update sub-protocol that updates every

item in the database when partitions are repaired.

The protocol requires three phases. In phase 1, a processor starts a view change by

6.3. Isis 83

sending a "newvp" message to every processor in the network; it waits for "ok" messages

to flow back. In phase 2, that processor sends "commit" messages to all accepting

processors. In phase 3, each processor in the newly formed virtual partition updates its

local copies of replicated data objects with the most recent values; it does so by sending

"read" messages to all copies in parallel and waiting for responses. Our algorithm is more

efficient because it requires only one and one-half phases. We avoid extra work by using

viewstamps in phase 1 (the first round) to determine what each cohort knows.

Virtual partitions force transactions that were active across a view change to abort.

For example, a transaction that did a remote procedure call in the old view will not be

able to prepare in the new view. We use viewstamps to avoid the abort and we rely on

the fact that knowledge of later events implies knowledge of earlier ones.

6.3 Isis

A different approach to replication is taken in Isis [Birman 85]. Because Isis's view

change protocol does not tolerate partitions, it only works in a local area network; in this

sense, it is is not comparable with viewstamped replication. However, it does have some

interesting characteristics. As with our technique, Isis has resilient modules consisting

of instances [Birman 85]. Like Argus guardians with handlers, these modules have state

that is modified only by calling their operations, issued as RPCs. A resilient module

guarantees that computations in progress complete as long as at least one component is

operational. Computations run as atomic actions and satisfy the one-copy serializability

correctness criterion.

Isis uses an unusual sort of replication scheme to implement resilient modules. Rather

than designating one component as the primary to which all clients direct all requests,

any component in a resilient module can act as the primary on a per request basis. This

primary is called the coordinator for the request and the other components are called

cohorts. Each component of the resilient module knows the other operational components

of the module. Since all components of a resilient module can be coordinators for different

client requests, these invocations must be synchronized.

Isis uses two-phase locking for concurrency control. If the operation is a read, a com­

ponent acquires a read lock locally and performs the operation. H the operation is a

84 6. Related Work

write, a component first acquires locks at all operational components before doing the

update. The locks are acquired using an expensive two-phase algorithm that prevents

deadlocks in the case of concurrent writes. After acquiring the needed locks, the coor­

dinator performs the operation. The correct serialization order with respect to a failure

or recovery event is guaranteed by imposing the same relative order at all the compo­

nents, and by preserving all read and write locks across failures. Three atomic broadcast

protocols were proposed [Birman 87] to enforce varying ordering constraints.

Effects of reads and writes are communicated to other components in background

mode, are piggybacked on reply messages, and accompany further client messages such as

prepare and commit messages. This means that information needed to process these later

messages is always available to the component that receives them. The disadvantage of

their scheme, however, is the large amount of extra information flowing on every message,

the high storage overhead, and the difficulty in garbage-collecting that information. Isis

works only in a local area net, both because their garbage collection algorithm depends

on broadcast and because the protocol cannot tolerate partitions.

Our method avoids these problems at the cost of possible delay at prepare time (to

force the buffer), and at the cost of an occasional abort when there is a view change. The

viewstamps in our method represent the information flowing in Isis. Since the viewstamps

only indicate that certain events have occurred, but not what these events are, we must

sometimes wait for information about events to arrive in buffer messages. We must

sometimes abort a transaction because information about events is lost in a view change.

6.4 Circus

Cooper [Cooper 84, Cooper 85] proposed replicated remote procedure call as the mech­

anism with which to construct highly available distributed programs. Each program

module is replicated; the set of replicas is called a troupe. The troupe behaves as a single

logical module with state that may change over time.

In a distributed program made up of troupes, a remote procedure call from a client

to a server is actually a replicated remote procedure call from client troupe to server

troupe. Each client troupe member makes a one-to-many call to all the server troupe

members. Each server troupe member, which will receive as many calls as there are client

6.4. Circus 85

troupe members, executes the call (and may make calls to other troupes) exactly once,

possibly changes its state, and returns a result. Changing the individual states changes

the collective state of the server troupe.

To guarantee the single-view image, troupe members must be consistent and must

behave in a deterministic fashion: two replicas in the same state must execute the same

remote call in the same order, produce the same side effects, and return the same re­

sult. Requiring programs to be deterministic is severely restrictive because it reduces

concurrency in each module and is unrealistic because it burdens the programmer with

the responsibility for finding all sources of non-determinism and overcoming them. To

weaken the assumption of complete determinism the application programmer can define

a collator procedure that reduces a set of messages to a single message; this violates repli­

cation transparency because the programmer is now aware that a module is replicated.

To handle the problem of concurrent, replicated remote calls to the same server from

different clients, Cooper introduced transactions. Independent serialization of transac­

tions at each troupe member is insufficient; to preserve troupe consistency, concurrent

calls from different clients must not only be serialized by each server troupe member but

they must be serialized in the same order at all server troupe members. Cooper proposed

two protocols to solve this problem. The troupe commit protocol detects any attempt

by troupe members to serialize transactions differently and transforms such attempts

into deadlocks. It operates on the assumption that concurrent transactions are unlikely

to conflict; this protocol suffered from starvation under heavy loads. The starvation­

free protocol does not introduce any additional chance of deadlock. It uses an ordered

broadcast protocol that guarantees that concurrent broadcasts are never interleaved, and

requires a deterministic local concurrency control protocol at each troupe member. It

has the disadvantage that it limits the potential concurrency.

The replicated remote procedure call mechanism is expensive during normal system

operation, exhibiting high overhead. Each replicated call from an m-member client troupe

to an n-member server troupe requires m · n messages in both directions; the execution

time of each call is determined by the slowest member in each troupe. The mechanism

wastes computational power because all replicas are involved in executing each remote

call; the time per call increases linearly with the size of the troupe. Its chief virtue is

that performance in the presence of failures and recoveries is essentially unaffected.

86 6. Related Work

A further problem is that in the presence of partitions, the state of troupe members

in different partitions will become inconsistent. To solve this problem, Cooper suggests

that each troupe member receive a majority of the expected set of messages before

computation is allowed to proceed there. After the partition is repaired it is not clear

how the divergent states are reconciled.

Our method is simpler than Cooper's, requires far fewer messages, and imposes no

determinism requirement on programs.

6.5 Tandem's NonStop System

Tandem's NonStop System [Bartlett 78, Bartlett 81] is the first general-purpose, com­

mercially available, fault-tolerant computer system that was designed for on-line trans­

action processing and that could expand over its lifetime to accommodate growth of

applications. Tandem modified conventional hardware so that all components are backed

up in hardware; for example, there are the dual interprocessor bus, dual port disk con­

trollers, and mirrored disks (stable storage); if any single piece of hardware fails, the

corresponding backup can take over its function. A Tandem node consists of two to six­

teen processors, each with its own memory, which communicate via a dual interprocessor

bus; a Tandem network would consist of many such nodes.

At the software level, process-pairs and messages are the abstractions that hide the

boundaries of the processors. Process-pairs are used as the uniform mechanism for access­

ing system resources, such as 1/0 devices, in a fault-tolerant fashion. The process-pair

consists of two processes, each of which runs in a distinct processor within the same node.

The primary process is active and sends information via checkpoint messages to it backup

process, which is ready to take over control whenever the primary process fails. For ex­

ample, each disk volume (mirrored drives) is accessed through a process-pair running in

the two processors physically connected to the controllers. This process-pair is called the

disk process.

Bartlett suggested that process-paJ.rs could be used to make application programs

fault-tolerant. Before transactions were introduced, fault-tolerant application programs

were coded in this fashion to preserve database consistency. But writing these programs

was hard for two reasons. First, the programmer had to insert, by careful design, the

6.5. Tandem's NonStop System 87

appropriate checkpoint statements in his programs. Second, process-pairs always carried

a computation to completion. To handle failures, the programmer also had to write code

to backout a computation. Organizing application programs as transactions to handle

failures automatically was a better idea; to this end Tandem introduced the Transaction

Monitoring Facility (TMF) [Borr 81].

The application programmer typically brackets a sequence of operations with BEGIN­

TRANSACTION and ENDTRANSACTION' indicating that the sequence should be treated as

one transaction. Transactions update a database by sending requests to Disk Processes

(DP) that maintain lock information for those database records and files residing on its

volume only. Each DP is a process-pair that synchronizes concurrent access to the data­

base. During transaction processing, a request is sent to the primary DP, which locks

the record. It alters the record in a cache buffer and writes the before and after images

to its internal log. A distinguished DP that maintains the log on stable storage is called

the Audit Disc Process (ADP).

During phase one of two-phase commit, the primary of each DP that participated

in the transaction ensures that its log records have been flushed first to its backup and

then to the ADP. In phase two, the coordinator writes a commit record to the ADP; the

ADP is flushed to disk. Any failures before the commit record makes it to disk causes

transaction UNDO; a failure after this point causes transaction REDO. The transaction is

committed when the commit record is on disk; all DPs release locks.

Process-pairs and TMF together make it possible for application programs to con­

tinue execution even if there are hardware faults [Helland 85, Gray 86]: all uncommitted

transactions associated with a failed primary process are aborted and then restarted with

the backup process as the new primary. This is a new design and is described by Borr

[Borr 84]. The new primary "falls back" and aborts some transactions. This new im­

plementation required half as many messages and a fifth as many bytes [Helland 85] as

in the original design of the DP, in which one always rolled forward after a crash and

continued execution.

Tandem's NonStop system survives only a single failure and requires that a process­

pair reside at a single node. If a processor crash causes a backup to takeover as the new

primary, that primary runs without a backup until the crashed processor comes back

on-line. If these contraints are acceptable, then this method is efficient. Our replication

88 6. Related Work

method is more general.

6.6 Auragen

Auragen [Borg 83] is fault-tolerant computing system that is used in an on-line trans­

action processing environment. It is based on the notions of primary /backup process

pairs, the three-way message send, automatic synchronization of the primary and backup,

and user determinism. The design goals of this system are similar to Tandem's but were

realized in a different manner.

Like Tandem, Auragen's hardware base contains redundant components. The cluster

is the basic processing unit. The Auragen 4000 computer consists of two to thirty-two

clusters connected by a dual high-speed intercluster system bus. Each cluster contains

between three and seven Motorola M68000s and a large shared memory. Two processors

in the cluster run user and system server processes to handle input/output via messages

and global system resources. Other processors control intercluster message traffic, com­

munication ports, and dual-ported peripheral devices. Overlapping the execution using

different processors is claimed to lead to more efficient overall operation, even though the

shared memory might be a bottleneck.

Processes can run backed-up or not. For the purposes of this description, we assume

that each process consists of a primary and a backup, which execute in different clusters

and communicate by passing messages. Whenever the primary crashes, its backup is

notified and takes over execution as the new primary.

The system automatically brings the backup process up to date with its primary pe­

riodically, a procedure called synchronization. Upon failure of the primary, the backup

rolls foward, recomputing based on the messages in its queue (received from the primary)

since it was last synchronized with the primary. User processes are required to be de­

terministic because the backup process must reconstruct a state that is the same as the

primary's state before the primary failed. The rule for determinism states that if two

processes start out in identical states and receive the same set of messages in precisely the

same order, then after reading those messages and computing based on them, their final

states will be identical. To enforce this rule, a message in the Auragen system is sent by

a sender process to three destinations atomically: the receiver process, its own backup

6.6. Auragen 89

process, and the receiver's backup process. (The hardware and software guarantee that

message delivery is atomic.)

The Auragen system survives only a single failure and, like Tandem, requires that

a process-pair reside at a single location. In addition, Auragen scales poorly because

the message-passing mechanism depends on special hardware support for interprocess

communication. New backup processes are not automatically created when old backups

fail or a backup takes over as the new primary. Our replication method is more general.

Conclusions

This dissertation has presented a new replication method to solve the problem of con­

structing highly available computer-based services. We believe that programmers should

write distributed programs without worrying about availability; the underlying language

implementation uses our replication technique to replicate modules automatically. The

resulting services implemented by these distributed programs are highly available. Our

method performs well in the normal case, does view changes efficiently, and loses little

information in a view change.

In the remainder of this chapter, we summarize our accomplishments and suggest

directions for future work.

7.1 Summary

Our replication algorithm works out for the first time the details of a primary copy

replication scheme, which others have only hinted at. We take advantage of the method's

intuitive appeal: placing the primary copy where it is needed or where there is a more

powerful node, avoiding synchronization problems, and incurring low delay when execut­

ing transactions. As discussed in Chapter 4, the performance of our method is compa­

rable to that of a system in which modules are not replicated, and is better than other

replication methods.

90

7.1. Summary 91

Each replicated module consists of several instances, called cohorts, constituting a

module group. One cohort is designated the primary; the others are backups. The

primary is responsible for the module group's activity; it executes remote procedure calls

and modifies its state. When remote procedure calls complete, the primary sends the

effects of the calls to its backups in background mode.

Since the primary only communicates with the backups in background mode, the

effects of some calls may be lost after a view change. If the effects of all calls made a

transaction are known at the new primary, then no information is lost and the trans­

action can commit; otherwise, it must abort. Furthermore, if transactions commit, we

guarantee that their effects are not lost in subsequent view changes. We use viewstamps,

a special kind of timestamp, to represent how much a cohort "knows" about the effects

of transactions that have run. The viewstamp history represents the sequence of view

changes seen by a cohort. Each member of the sequence is a viewstamp; for each view­

stamp vs in the history, the cohort's state reflects each event in the view of vs.id whose

timestamp is less than or equal to vs.ts. What a cohort does know and what it should

know are used to determine whether transactions can commit or must abort.

Our view management algorithm reorganizes the cohorts of a configuration to form

new views under certain conditions. It is efficient, since it requires just one round of

messages (invitation and acceptances) and one message (to notify the new primary).

Viewstamps are again used here; they indicate which cohort knows the most. The cohort

with the largest viewstamp is chosen as the new primary. The new primary's state is

used to initialize the state of all other cohorts in the new view.

Our view management algorithm is highly likely not to lose work in a view change.

Our policy of choosing the primary of the last view to be the new primary whenever

possible avoids losing work altogether; even remote calls that were running before the

view change can continue to run afterwards. Note that the probability of aborts can be

decreased further if desired. There is a tradeoff here between loss of information in view

changes and speed of processing calls. For example, if "completed-call" records were

forced to the backups before the call returned, there would be no aborts due to view

changes, but calls would be processed more slowly.

The correctness of our algorithm depends on the interaction of transaction processing

and the view management algorithm. Transactions must still be serializable and recov-

92 7. Conclusions

erable. Transaction processing guarantees that a transaction can commit only if all its

events are known to at least a majority of cohorts. The view management algorithm

guarantees that events known to a majority of cohorts survive into subsequent views.

Thus, events of committed transactions will survive view changes.

7.2 Directions for Future Work

In this section, we suggest some areas for further work.

Implementation. To understand how well the replication algorithm performs, it

must be implemented, and performance measurements taken. We are planning to imple­

ment the algorithm as part of the Argus system and to run experiments to measure its

performance.

Optimizations. Another area of interest is optimizations. We point out some general

directions that further research might take.

1. Efficiently updating the backup state. We send the entire guardian state from the

new primary to the backups. Since this is clearly inefficient, we must investigate
other methods of updating the backup's state. For example, if the primary knew

the old viewstamps for the backups, and if it had recorded information about events

and their viewstamps, then it could send the difference between what it knows and
what the backups know to the backups.

2. Event records that arrive at backups can be performed immediately and the state

updated, or they could be stored and then performed at a convenient time, say,

when the committed or aborted record arrives. It is a matter of future research

to understand the right tradeoff between processing during normal operation and
after a view change.

3. A voiding unnecessary view changes. View changes really need to happen only when
the primary becomes inaccessible, or the current view loses enough members that

it no longer constitutes a majority. A view change need not be done if a backup
fails and the view still has a majority, for that backup can be excluded unilaterally.
Similarly, a view change is unnecessary if a backup becomes accessible. These
protocols need to be worked out.

4. Garbage-collecting the viewstamp history. Over time, the viewstamp history can
grow without bound. To remove a viewstamp from the history, the system might,
for example, wait until all transactions that depended on the view of that viewstamp

have committed. How this is determined is a matter of future research.

7.2. Directions for Future Work 93

Performance/cost model. Comparing the performance of our replication method

with that of a conventional, non-replicated system is straightforward. Comparing our

scheme with other replication methods is much harder because other methods make

different assumptions and have different goals. It would be interesting to develop a

performance/ cost model that provided a basis for comparison.

Reconfiguration. After defining a configuration initially, we may wish to change it.

For example, we might add backups to increase the resiliency of the group to failure or

we might delete old backups deemed permanently inaccessible. This process of changing

the configuration is called reconfiguration. We need to invent extensions to our method

to support reconfiguration.

Dealing with catastrophes. In designing our algorithm, we chose to make as little

use of stable storage as possible because we were interested in understanding the extent

to which having several replicas eliminated the need for stable storage. We found that

catastrophes (loss of a group's state) could sometimes occur in our system that would

not happen if more information had been recorded on stable storage. Whether we should

worry about catastrophes depends on how likely they are to happen, how important the

group's state is, and the environment in which the system runs. Engineering decisions

must be made here. The probability of a catastrophe depends on the configuration, such

as whether the cohort's nodes are failure-independent. To reduce this probability, the

algorithm can be modified in various ways. What these ways are is a matter of future

research.

Formal proof of correctness. We have stated some conditions for correct operation

of our system. It would be interesting to characterize precisely what our algorithm

achieves under certain failure assumptions and what invariants must be preserved by

our implementation. In other words, we should undertake a formal proof of correctness

of the replication algorithm. These conditions are safety properties that ensure that

nothing bad ever happens during execution of the algorithm. Of equal importance is

stating liveness properties that eventually something good will happen; in particular,

what guarantees can we make that another view will eventually be formed?

Viewstamps. Viewstamps are an interesting subject in their own right. First, we

might investigate how viewstamps could be used in a non-replicated system. For example,

in such a system records containing the effects of calls could be written to stable storage

94 7. Conclusions

in background mode; these records, like our event records, would contain viewstamps.

When the prepare message arrives, it would only be necessary to force the records; no

delay would be encountered if the records had already been written. A crash would

not cause active transactions to abort automatically; instead, queries would be sent to

coordinators to determine the outcomes. The result would be a system that is more

tolerant of crashes (by a voiding aborts) and also faster at prepare time.

Second, we can investigate how viewstamps might be used in conjunction with other

replication methods. For example, our technique can be used with voting when writes are

done at all members of a view. Just as we use viewstamps, in such a system timestamps

that are assigned when transactions commit could be used to determine which replica

has the most information about transaction commits (the timestamps would not contain

information about the state of active transactions). Systems in which writes only go to a

majority are more difficult to optimize in this way since there is usually no cohort whose

state contains at least as much information as the state of any other cohort. A total

order on viewstamps would be costly to implement with voting since there is no single

place (like our primary) to generate the viewstamp. Whether we could use multipart

viewstamps [LiskovLadin 86, Ladin 88] is a matter of further investigation.

[Alsberg 76]

[Bartlett 78]

[Bartlett 81]

[Bernstein 83]

[Birman 85]

[Birman 87]

[Borg 83]

[Borr 81]

References

Peter A. Alsberg and John D. Day. "A Principle for Resilient Shar­
ing of Distributed Resources." In Proceedings of the 2nd Interna­
tional Conference on Software Engineering, pages 627-644, October
1976. Also available in unpublished form as CAC Document number
202 Center for Advanced Computation University of Illinois, Urbana­
Champaign, Illinois 61801 by Alsberg, Benford, Day, and Grapa.

Joel F. Bartlett. "A 'NonStop' Operating System." In Eleventh
Hawaii International Conference on System Sciences, pages 103-117,
January 1978.

Joel F. Bartlett. "A NonStop Kernel." In Proceedings of the 8th
ACM Symposium on Operating System Principles, pages 22-29, De­
cember 14-16 1981. Appeared in a special issue of SIGOPS Oper­
ating System Review, Vol. 15, No. 5. Held at Asilomar Conference
Grounds, Pacific Grove, California.

Philip A. Bernstein and Nathan Goodman. "The Failure and Recov­
ery Problem for Replicated Databases." In Second ACM Symposium
on the Principles of Distributed Computing, pages 114-122, August
1983.

Kenneth P. Birman, Thomas A. Joseph, Thomas Rauchle, and
Amr El Abbadi. "Implmenting Fault-tolerant Distributed Objects."
IEEE Transactions on Software Engineering, 11(6):502-508, June
1985.

Kenneth P. Birman and Thomas A. Joseph. "Reliable Communica­
tion in the Presence of Failures." A CM Transactions on Computer
Systems, 5(1):47-76, February 1987.

Anita Borg, Jim Baumbach, and Sam Glazer. "A Message System
Supporting Fault Tolerance." In Proceedings of the 9th ACM Sym­
posium on Operating System Principles, pages 90-99, October 10-13
1983. Appeared in a special issue of SIGOPS Operating System Re­
view, Vol. 17, No. 5. Held at the Mt. Washington Hotel, Bretton
Woods, New Hampshire.

Andrea J. Borr. "Transaction Monitoring in Encompass: Reliable
Distributed Transaction Processing." In Proceedings of the Seventh
International Conference on Very Large Data Bases, pages 155-165,
September 9-11 1981. Held in Cannes, France. Sponsored by ACM
SIGMOD SIGBDP and SIGIR IEEE and INRIA.

95

96

[Borr 84]

[Cooper 84]

[Cooper 85]

[Davies 78]

[El Abbadi 85]

[El Abbadi 86]

[Eswaran 76]

[Fowler 85]

[Gifford 79]

[Gifford 84]

[Gifford 85]

References

Andrea J. Borr. "Robustness to Crash in a Distributed Database:
A Non Shared-Memory Multi-Processor Approach." In Proceedings
of the Tenth International Conference on Very Large Data Bases,
pages 445-453, August 1984. Held in Singapore, Malaysia.

Eric C. Cooper. "Replicated Procedure Call." In Proceedings of the
3rd Annual A CM Symposium on the Principles of Distributed Com­
puting, pages 220-232, August 27-29 1984. Sponsored by SIGACT
and SIGOPS. Held in Vancouver, British Columbia, Canada.

Eric C. Cooper. Replicated Distributed Programs. Technical Re­
port UCB/CSD 85/231, U. C. Berkeley, EECS Dept., Computer Sci­
ence division, May 1985. Ph.D. thesis.

Charles T. Davies. "Data Processing Spheres of Control." IBM
Systems Journal, 17(2):179-198, February 78.

Amr El Abbadi, Dale Skeen, and Flaviu Cristian. "An Efficient,
Fault-Tolerant Protocol for Replicated Data Management." In Pro­
ceedings of the 4th ACM SIGACT/SIGMOD Conference on Princi­
ples of Data Base Systems, 1985.

Amr El Abbadi and Sam Toueg. "Maintaining Availability in Par­
titioned Replicated Databases." In Proceedings of the 5th ACM
SIGACT/SIGMOD Conference on Principles of Data Base Systems,
1986. Held at the Hyatt Regency Hotel, Cambridge, Massachusetts,
March 24-26, 1986.

Kapal P. Eswaran, James N. Gray, Raymond A. Lorie, and Irv­
ing L. Traiger. "The Notion of Consistency and Predicate Locks in
a Database System." Communications of the ACM, 19(11):624-633,
November 1976.

Robert J. Fowler. Decentralized Object Finding Using Forwarding
Addresses. Technical Report 85-12-1, University of Washington, De­
partment of Computer Science, Seattle, Washington, December 1985.

David K. Gifford. "Weighted Voting for Replicated Data." In Pro­
ceedings of the 7th A CM Symposium on Operating Systems Princi­
ples, pages 150-162, December 10-12 1979. Appeared in a special
issue of Operating Systems Review, Vol. 13, No. 5. Held at Asilomar
Conference Grounds, Pacific Grove, California.

David K. Gifford and Alfred Z. Spector. "Case Study: The TWA
Reservation System." Communications of the ACM, 27(7):650-665,
July 1984.

David K. Gifford and James E. Donahue. "Coordinating Independent
Atomic Actions." In Proceedings of IEEE CompCon85, pages 92-95,
Feburary 1985.

References

[Gray 76]

[Gray 78]

[Gray 86]

[Helland 85]

[Henderson 82]

[Herlihy 86]

[Hwang 87]

[Ladin 88]

[Lamport 82]

[Lampson 81]

[Liskov 87]

[Liskov 88]

97

James N. Gray, Raymond A. Lorie, G.F. Putzolu, and Irving L.
Traiger. "Granularity of locks and degrees of consistency in a
shared data base." In Modeling in Data Base Management Systems,
pages 365-394, Elsevier North-Holland, New York, 1976.

James N. Gray. "Notes on Database Operating Systems." In Lec­
ture Notes in Computer Science 60, pages 393-481, Springer-Verlag
Berlin, 1978.

Jim Gray. "Why Do Computers Stop and What Can Be Done About
It?." In Proceedings of the Fifth IEEE Symposium on Reliability in
Distributed Software and Database Systems, pages 3-12, January 13-
15 1986. Held at the Marriott Hotel, Los Angeles, CA.

Pat Helland. "Transactions and Fault Tolerance." February 14, 1985.
Helland is with Tandem Computers, Inc., Cupertino, California. Un­
published paper.

Cecilia Henderson. "Locating Migratory Objects in an Internet."
1982. Master's thesis, MIT Laboratory for Computer Science. Avail­
able as Computation Structures Group Memo 224, MIT LCS.

Maurice P. Herlihy. "A Quorum-Consensus Replication Method for
Abstract Data Types." ACM Transactions on Computer Systems,
4(1):32-53, February 1986.

Deborah J. Hwang. Constructing a Highly-Available Location Service
for a Distributed Environment. Master's thesis, M.I.T. Laboratory
for Computer Science, November 1987. Master's thesis.

Rivka Ladin, Barbara Liskov, and Liuba Shrira. "A Tech­
nique for Constructing Highly-Available Services". Technical Re­
port MIT/LCS/TR-409, M.I.T. Laboratory for Computer Science,
Cambridge, MA, January 1988. To be published in Algorithmica.

Leslie Lamport, Robert Shostak, and Marshall Pease. "The Byzan­
tine Generals Problem." ACM Transactions on Programming Lan­
guages and Systems, 4(3):382-401, July 1982.

Butler W. Lampson. Atomic Transactions. In Distributed Sys­
tems: Architecture and Implementation, chapter 11, pages 246-265,
Springer-Verlag Berlin, 1981.

Barbara Liskov, Dorothy Curtis, Paul Johnson, and Robert Schielfer.
"Implementation of Argus." In Proceedings of the Eleventh ACM
Symposium on Operating Systems Principles, pages 111-122, Novem­
ber 8-111987. Appeared in a special issue of SIGOPS Operating Sys­
tems Review, Vol. 21, No. 5. Held at Austin, Texas. Also available
as Programming Methodology Group Memo 57, MIT LCS, August
1987.

Barbara Liskov. "Distributed Programming in Argus." Communi­
cations of the CACM, 31(3):300-313, March 1988.

98 References

[LiskovLadin 86] Barbara Liskov and Rivka Ladin. "Highly-Available Distributed Ser­
vices and Fault-Tolerant Distributed Garbage Colletion." In Proceed­
ings of the Fifth ACM Symposium on the Principles of Distributed
Computing, pages 29-39, August 11-13 1986. Held at the Skyline
Hotel, Calgary, Alberta, Canada. Also Programming Methodology
Group Memo 48, M.I. T. Laboratory for Computer Science, Cam­
bridge, MA, 1986.

[Moss 81] J. Eliot B. Moss. Nested Transactions: An Approach to Reliable
Distributed Computing. Technical Report MIT /LCS/TR-260, M.I.T.
Laboratory for Computer Science, June 1981. Ph.D. thesis.

[Mullender 85] Sape Mullender and Paul Vitanyi. "Distributed Match-Making for
Processes in Computer Networks-Preliminary Version." In Proceed­
ings of the Fourth ACM Symposium on the Principles of Distributed
Computing, August 1985. Held at Minaki, Ontario, Canada. Spon­
sored by ACM.

[Nelson 81] Bruce Jay Nelson. Remote Procedure Call. Technical Report CMU­
CS-81-119, Carnegie-Mellon University, May 1981. Ph.D. thesis.

[Papadimitriou 79] Christos H. Papadimitriou. "Serializability of Concurrent Database
Updates." Journal of the ACM, 24(4):631-653, October 1979.

[Schneider 83] Fred B. Schneider. "Fail-Stop Processors." In Digest of Papers
from Spring CompCon '83 26th IEEE Computer Society Interna­
tional Conference, pages 66-70, March 1983. Held in San Francisco
California.

[von Neumann 56] John von Neumann. Probabilistic logics and the synthesis of reliable
organisms from unreliable components. In Claude E. Shannon and
John McCarthy, editors, Automata Studies, pages 43-98, Princeton
University Press, 1956.

[Weihl 85] William Weihl and Barbara Liskov. "Implementation of Resilient,
Atomic Data Types." ACM Transactions on Programming Lan­
guages and Systems, 7(2):244-269, April 1985.

Biography

Brian Masao Oki was born in Inglewood, California, a suburb of Los Angeles, and

raised in Gardena, where he attended the Los Angeles public schools. He graduated from

Peary Junior High School in June 1973 and from Gardena High School in June 1976. At

Gardena High he shared the Science Departmental Award with a fellow student, won

the California Savings and Loan League Association's Outstanding Student Award, and

received Bank of America's specific field of mathematics award.

Tiring of the University of Southern California after a one-year stint as a freshman,

he transferred to the University of California at Irvine, where he majored in Information

and Computer Science. He graduated summa cum laude with a B.S. in June 1980 and

was elected to Phi Beta Kappa.

To avoid working in the real world, he enrolled in graduate schoool in the fall of

1980 at the Massachusetts Institute of Technology. He received the S.M. degree in May

1983, the E.E. degree in June 1985, and the Doctor of Philosophy degree in May 1988,

all in Computer Science from the Department of Electrical Engineering and Computer

Science. He interrupted his career as a perpetual student by spending the summer of

1983 at what was then the IBM San Jose Reseach Laboratory. He is presently with

the Computer Science Laboratory of Xerox's Palo Alto Research Center in Palo Alto,

California.

99

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRl.BUTION I AVAILABILITY OF REPORT

2b. DECLASSIFICATION I DOWNGRADING SCHEDULE Approved for public release; distribution

is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TR-423 N00014-83-K-0125

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

HIT Laboratory for Computer (If applicable)
Office of Haval Research/Department of Navy

Science

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

545 Technology Square Information Systems Program

Cambridge, MA 02139 Arlington, VA 22217

Ba. NAME OF FUNDING /SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

DARPA/DOD

Be. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22217 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

Views tamped Replication for Highly Available Distributed Systems

12. PERSONAL AUTHOR(S)
Oki, Brian Masao

13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day)
115

PAGE COUNT
Technical FROM TO 1988 A~ust 99

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Primary copy, replication, viewstamp, view management,
high availability, fault-tolerance, transactions, nested
transactions, atomicity, distributed computer systems

19. ABSTRACT (Continue on reverse if necess;iry and identify by block number)

This dissertation presents viewstamped replication, a new algorithm for the imp le-
mentation of highly available computer services that continue to be usable in spite of
node crashes and network partitions. Our goal is to design an efficient mechanism that
makes it easy for programmers to implement these services without complicating the pro-
gramming model. Our replication method is based on a primary copy technique, where one
replica is the primary and others are backups, and is integrated into the fabric of an
atomic transaction mechanism. Transactions are run only at the primary and need not
involve the backups; the primary propagates the effects of transaction processing to the
backups in the background. The method exhibits low delay during normal operation, has low
overhead, and increases the likelihood that transactions will commit in spite of failures.

When failures occur, replicas are reorganized automatically and a new primary is
selected if the old one becomes inaccessible. This reoganization is called a view change
and is accomplished by a view management algorithm. Since the primary only (continued ..)

20. DISTRIBUTION I AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
Q UNCLASSIFIED/UNLIMITED D SAME AS RPT. D DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) l 22c. OFFICE SYMBOL

Judv Little. Publications Coordinator (617) 253-5894

DD FORM 1473, 84 MAR 83 APR ed1t1on may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

Unclassified

·0

j;__;,_j

-o-::

•'·

·./.:.._ ..L \/

~:.~~:;:··:~; j·~~
-L?-~'.>-r_~--!· ;)!ll'o;,-o-:\!~'\,-·$0 '·-----.. ~~-..,,Jtr .. ~;;~,_.'l-'l'°>,'"~';..,.~<'!Y.i-~.,~ ·~.,,~"·,~·~·~

Vi".'·j; ~. --~·~.lMU)O(j T'lO '?! ~
'"f--.1~·~.....-....,,,,,.,'lt'··.., ~~~.,..,~·-...,""""""'---- ,._"'~'

;._:

:;~i,~;r:.- .. t_}: ·· ~ ·,q~~;. £1

i .
~•~:...,....,.-,,;•er·~~·--,.,.;,~·-·~ ,.,._.,..,.._ . .->n'< • ..,e»_-.~.~· ,.,_,,,iw-...,.,.."" """"*

;.'10h ~ ~-·,.; ")

I
l ,

l
~
~
i

""""'·~ ... ~~_,_....,,...,,._1'«'~--_,.··""~.-a_...,~.-.- ·--.-~-·.,·w· ... ~.:: ·''"'"""""' !<.....--·..;.\-..i;

<,., -~E·-: ;.~ .. :0~""/tY2 ~~:;.;:;·1() ":~f! l ·,,.''\- :·~-~:;"\ «

: •. ,,;,~ ·:.\ .. ,.;;. "r• J

. -- ---~l-,~~-·--·-·----J- ~---~-·
/--:'.<. :11· 5

, - .• ~-,,...:i:.,,,-...~

• <
;'. l '- '1~~!\.~: l

--~~{;~1
i

- •• & .. -.~;.:~:,~.'. '.~"'"."'rl
~

"_,:~;:; c•~-t :.;idL;ilsv:c ' ~"<:l1: ·rn' iW-::i ---'-·- Su. -~.~~:::'.r;:..~~:--.. ·.- 1,!·· ,,. --····"· -'"~··">·-··-'"--·"--~-. ---·- .. ~--~~- ·-· ----~--· . . . ~
o.Lc:.LL n.sl-:rii .1 .. :u j

,..,...~--·~··~'··-·-- ··-~~,..,..-~
·.- · .. <',. . • .• , .,,, . .,~ . ~. 1·

v>,.J ...lJ~ <' ~ ~(..

-~-: -~ ~-ii::-~·:
~...-~-~~~

... ,~ J\/ ·~'.•i·> ~V j

~
I

~~.--..--~~4 •',-;.,,-m-,;,t._,.----~~--~'>'<.>'!-~~~>'<IJ_,_ . ..,:)MJ'Jl-~-~------<~._,.. ... c

~.-r ·~·i,_;..;;:~,-·;':t(, .;::~\",~::; ',~)~;t_;.;~.: :~~-- ' .~~{.~~~
;--- ·'- --·-··---"-----

,- .;__..:; c. .• ·;..;...J... \/ t .rru.I:.i :~:.>Lt.J9r.! ·,~qo~ ·c:r.sml-:r(: . ·~i.,.:-;:-.~-:-~ .. ~~
0., ___ ~--~=:~~~~~~~ ·=-1

·:~_..:..)

r------------- -·-''"'"''"
.• L.. 0~~.:.;..c:_,c...1.~L-1J ,. s~_ .. :-::i~~s.loj JlLJn~; ~ ··~~li...:..Un..LJ::svr5 rl~~lii u ,

.. _;~Ji; :_.~~r:.; ell; ~ Vj 1.:>l;:-ruj B ""a.aoij ~sa.a.r;:rj r---~"- ----- ____._. __ , .. ___ ... ,,....~
--~~,,.~-""""'~ ... ~-"''"" -.>t~~,.,,_-............. -""'"""'"",,._.,_,,

~-D .j~;- ., -lj :,.'.)~-~c·::-' ;::,~:;,::::~: ~~:!:~:~~-:~~ ~olj::~-:r::,a~~u·,~:li·;-~,-;·'' .,
1

A i' I
:,;;::;j:_, .i_ ::,_;_"; oJ :__.;_;n.i.:::c<;::.1 J£,f[j ;:.9.'.)lv-:rsa -:rsj.tJGr:TO.'.) 9LiBil:sv.c \'.l1;· .l:;'. 'o noJ:jr;jnsr:i -

.;~~;.l~:L.u:.;s,:r ~l:~..:..:..._;_-- J.s .i:.f; rr::'.l~-~· o.:J 2.l: Ir~o"''. -:ruO .. (~noljlj'"!r,: ..1I"10\·1.:J0n ~JfII~ 2s1~2.c-:r.:> 9iJOI1 I·
!JL.j ;;l.:;.c:;ll·: ' .. ~, .:.d~O;.:.ji·.l ~-. .9.'Jlv-:r~JC! ..':-)29.fij jf:-Dt1ol;;r.1l Qj B"!!)jr!IIT.G""l)~O"'Iq :rol ..-{~'.£9 j_t 89.i~f>lil

e:r0i;,; ::...;[; ;.;L.:::~;J o::i - _-:rr.r:u.-ic :-. ;10 Ic02.sc al I)Ofij.9rT nolj.s::i.tlrrs-:r -:ruC. _[:::: om ;;rr.i:nt:Lc:-.-:rg i

• 0 .:;l-:r;..:.:1 -'i.j (._; . .L .:.u <r.sjGl '-'-'- b;;r .. 2qu.:>f:i.sJ e-:r.s a'!ef;jo :Jm:> ·c:r.sml:rq ::.;,.:.; c:l .s:illq9-:r I
:J<,L ;;::,,::,;, . . ;;u; · ·sL ,_;_:re :c;riJ jL ··.L;;o r:u-:r .CJ'IC 2rro.l:j.')r;2n.c-:rT .r:-rnlrrnrh9m fFc_'::::t::H»?.,:£.:U ::d:r;rojn f
o.:, ;,.re;;_,:._,~Hj: .• O-:i:JL2:1;;-:r,:; lo ;;j::;::.i}}s ~.;::! ;::.;j.s~sqo:rq 'f!Bml-:rr: 9r{j : 8(f1l.'1:J.f\d SL::i civlovnl I

f .1ul "- ,:.c~:.;.:r::; ,u · _,.,: :;_c~u;D ··.L.i.::J1..· \fol <.jl. . .rn;:::::; - 01ij.9£rI s11·,· • :::uio:r~;A.::iE>J srjj nl 8'JL~'.)£G I
t .2s:r0LL·;; ·o .:.-j_:jc: .:i_,_ ;.;o:: .. Li..i.\J c:;:o.~:J:iu::;.1:-::::: :::m]j hood.ils>fll .9fij 298Lc.'J:JfI.i: b:r.c ·,r,9rl":r0vo
i ~ j_ l: ''< -.1::.;,: j; _._J.£.'.)..:.::J£,',,-.1oj LB 09:· ".f 09'I 9-:£ £ 2£.J.i..l_ r: :'.)]' , 'J:lJ.'.).'.)0 8'3:U.ll.l:: ': li9fl'. ,· t"

~
,:,,-;;,);·· :~ J..~-~: 0' ,1u_;._j.£;::.c;~;;,,09·1 <-J.;. .::i.id.laa:.;:i:iLnl es::m.::isd srro blc s;,::l J: L9::l:J9l9a .

__ (':.::)~=-,;;;,_,,:.,_!_ -;_=~=--- ~-. --":c· -·•-~ :.J:::>-'1.L"' .::a:jl'!osls Jnsm971-nns;:1 iuslv E \l !)9i.i«ll .-;0~.::..£ 21 _..,r;J.: I
'·-~~~:~~ ~~~- ~ ,, ~ ·,,·~~~·~;~.·: ~ ·-~~-'-~ '"=-=-~-,~ .. ~-,~~:,::_:,~t::~~~-~; ,'-' -~~~ ~~~~:~~·r;· ;.~;-;si

!' ··-· ., y • ~- .,,f:~!'::.t:'a..G.-~:.::.,i ~,.,,, ,:;;;;; :::IT, ,,.:;~~·(.0S:Jcf
>t:~ ,:...··... t ~ 1•:JJ;~n.tU·i_:,-_:..).,.i ··---:.10.i .::-.1 ~:.:_::::;: "- ',1~:<1C.
""' ..-.. ":1"-11-'lQo.."'.";~~"~~-.'I.,,~*': .'e~'i;r\~1 .t:W'•ill WI .-. 3f II.: ill!l!lllll~i--~~~.,.,,, ,o"!fl-C.-.<Jl>~~W.~~~?•I ii 111

;,. l:, .~:x:o:. .. "'.:-1'~· ... ·j(~ t&,"'-"' -·::.1.:-i~* ~:.~.·: ?·5 ~..:,;",,~ ~:,; '."~\~~ r"1.s;01. GC
.'". ,f,;:

