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Abstract 

This dissertation presents viewstamped replication, a new algorithm for the imple­

mentation of highly available computer services that continue to be usable in spite of 

node crashes and network partitions. Our goal is to design an efficient mechanism that 

makes it easy for programmers to implement these services without complicating the pro­

gramming model. Our replication method is based on a primary copy technique, where 

one replica is the primary and others are backups, and is integrated into the fabric of an 

atomic transaction mechanism. Transactions are run only at the primary and need not 

involve the backups; the primary propagates the effects of transaction processing to the 

backups in the background. The method exhibits low delay during normal operation, 

has low overhead, and increases the likelihood that transactions will commit in spite of 

failures. 

When failures occur, replicas are reorganized automatically and a new primary is 

selected if the old one becomes inaccessible. This reorganization is called a view change 

and is accomplished by a view management algorithm. Since the primary only commu­

nicates with the backups in background mode, the effects of some processing may be 

lost after a view change; the affected transactions must abort. If the effects are known 

at the new primary, then no information is lost and the transaction can commit. Fur­

thermore, if transactions commit, we guarantee that their effects are not lost. A special 

kind of timestamp, called a viewstamp, allows the algorithm to distinguish these cases 

inexpensively. 

Keywords: Primary copy, Replication, Viewstamp, View management, High availabil­
ity, Fault-tolerance, Transactions, Nested transactions, Atomicity, Distributed computer 
systems 

This report is a minor revision of a dissertation of the same title submitted to the De­
partment of Electrical Engineering and Computer Science on May 20, 1988 in partial 
fulfillment of the requirements for the Degree of Doctor of Philosophy in Computer Sci­
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Introduction 

High availability is essential to many computer-based services. For example, imagine 

trying to withdraw money from your savings account at your local savings and loan bank. 

As you present your passbook to the teller, he tells you, red-faced with embarrassment, 

that he cannot process your request because the system is down and will be for some 

time. I actually found myself in the teller's position some years ago, apologizing profusely 

to customers. The entire customer database resided on a single mainframe computer 

located somewhere in Beverly Hills, California. All branches in Los Angeles County were 

connected directly to this computer, and its problems affected everybody. In a fit of rage, 

some customers later closed out their accounts and took their money elsewhere, much to 

the bank's chagrin. 

Consider another example, TWA's airline reservation system (Gifford 84]. Reserva­

tion agents in Boston, Chicago, and Los Angeles might be booking flights on behalf of 

customers and accessing the monolithic reservation system from different parts of the 

country. If the reservation system resided on a single computer, a failure of that com­

puter could immobolize the entire airline because the airline is critically dependent on 

the system. An agent is Chicago, for example, would be unable to book flights because 

the system is unavailable. This is a bad situation for the airline to be in because it will 

definitely lose revenue and possibly passenger goodwill. 
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1. Introduction 9 

The key to achieving high availability is replication. Historically, the idea was to 

replicate each hardware component to such an extent that the likelihood of all replicas 

failing became vanishingly small [von Neumann 56]. Likewise, we can replicate important 

information at several computers. Flight information, for example, is more likely to be 

usable by a reservation agent if there are several copies, because the failure of a single 

computer leaves other copies available. We say that a service is highly available if it 

continues to be usable with high probability in spite of failures. 

This dissertation addresses the problem of constructing highly available computer­

based services that automatically tolerate computer crashes and communication failures. 

Ideally, programmers would write programs to implement these services in some dis­

tributed programming language that supports our model of computation, without wor­

rying about availability. Our goal is to design a mechanism that can be used by a language 

implementation to take care of the details of implementing availability automatically. 

This dissertation presents a new replication method. Our method operates in a dis­

tributed computer system that consists of many nodes connected by a communication 

network. Distinct nodes communicate with each other only by sending messages over the 

network. Nodes are individual computers, and may be uniprocessors, multiprocessors, 

timesharing machines, or single-user workstations. 

Both the nodes and the network may fail; we assume these failures are not Byzantine 

[Lamport 82]. Nodes may crash, but we assume they are failstop [Schneider 83], that is, 

they fail by halting. Each node has volatile storage that is lost in a crash. The network 

may lose, duplicate, or delay messages, or deliver them out of order. Link failures may 

cause the network to partition into isolated subnetworks that cannot communicate with 

one another. We assume that failures are eventually repaired: nodes eventually recover 

from crashes and partitions are eventually reconnected. 

We have integrated our replication method into a system that supports transactions. 

We assume that programmers write distributed programs consisting of modules, each of 

which resides at a single node in the network. Atomic transactions [Eswaran 76] perform 

computations involving these modules. Each module contains within it both data objects 

and code that manipulates the objects; modules can recover from crashes with some of 

their state intact. No other module can access the data objects of another module 

directly. Instead, each module provides procedures that can be used to access its objects; 
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modules communicate by means of remote procedure calls (RPCs) [Nelson 81]. Atomic 

transactions guarantee serializable and recoverable execution, preserving consistency of 

the data in the presence of failures and concurrent activities. Our scheme also works 

with nested transctions [Moss 81, Davies 78]. An action that is nested inside another is 

called a subaction. 

Any replication method must solve two problems: maintaining the consistency of rep­

licated data and synchronizing concurrent operations on the replicated data. Our method 

solves both problems and thus guarantees the one-copy serializability correctness crite­

rion [Bernstein 83, Papadimitriou 79]. That is, the concurrent execution of transactions 

on replicated data is equivalent to a serial execution on non-replicated data. 

1.1 Contributions 

This dissertation makes several contributions. 

The first contribution is viewstamped replication, a new pnmary copy replication 

algorithm, which was inspired by Alsberg and Day's primary copy technique [Alsberg 76]. 

The module is the unit of replication in a distributed program. Each replicated module 

consists of several instances, called cohorts, constituting a module group. One cohort 

is designated the primary; the others are backups. The primary is responsible for the 

module group's activity; it executes remote procedure calls and modifies its state. After a 

call executes, the primary propagates the effects of the call to the backups in background 

mode asynchronously. In this dissertation, we have worked out the details of a primary 

copy method, capitalizing on its advantages that other methods, such as weighted voting 

[Gifford 79] and quorum consensus [Herlihy 86], have not exploited. The advantages are 

as follows. First, the primary can be placed at an advantageous location, for example, 

at the main place of use or where there is a more powerful computer. Second, there 

are no synchronization problems because remote procedure calls are executed entirely at 

the primary and need not involve synchronizing with the backups. Third, the method 

exhibits low delay since users need only communicate with the primary copy. 

The second contribution is a view management algorithm that limits the impact of 

node crashes and communication failures efficiently. Our algorithm is a simplification 

and modification of El Abbadi et al. 's virtual partitions protocol [El Abbadi 85]. When 
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nodes or communication links fail and then recover, the cohorts are reorganized and a 

new primary is selected if the old one becomes inaccessible. Following El Abbadi and 

Toueg [El Abbadi 86], we refer to this reorganization as a view change. Once the view 

change is complete, the module group can continue to be used. 

When a module group undergoes a view change, the effects of any remote procedure 

calls that ran on behalf of a transaction at the primary of the old view may or may not 

survive into the new view. We use a special kind of timestamp called a viewstamp to 

determine inexpensively whether needed information did survive. If the effects of calls 

survived, the transaction can commit; otherwise, it must abort. 

The third contribution is integrating the replication method with transactions, rather 

than building it on top of a transaction mechanism, in contrast to most methods. This 

integration is beneficial in two ways. First, it is efficient because the replication method 

can take advantage of messages that must flow as part of transaction processing; mes­

sages can thus serve a dual purpose. Second, it allows us to fine-tune the system to 

varying levels of performance and availability. We can trade off computation at the pri­

mary in exchange for reducing the probability of aborting transactions. At one end of 

the continuum of possibilities, the primary might perform more computations, eagerly 

propagating updates to its backups when remote procedure calls complete. Although 

performance may suffer, we have reduced the probability that the transaction will abort; 

when the call returns, we can be certain its effects will not be lost in a view change. At 

the other end, the primary might do very little and let the updates propagate lazily after 

calls complete. If we are too lazy, however, transactions may abort more often. 

The fourth contribution is that our method is an experiment in using the backups to 

record committed information instead of stable storage1 as in a conventional transaction 

system. In such a conventional system the effects of committed transactions are made 

permanent by writing information at commit time to stable storage. In a replicated 

system, however, it seems redundant and expensive to record information both at the 

backups and on stable storage. In our method we assume that most of a cohort's state is 

volatile. Such an assumption means that a module group can potentially lose information 

about the effects of committed transactions if certain catastrophes befall the group. We 

1Stable storage is an abstraction of a reliable memory device that does not lose information entrusted 
to it with high probability [Lampson 81]. 
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analyze the effect of our method with respect to catastrophes. 

1.2 Roadmap 

We developed our replication method in the context of the Argus language and system 

[Liskov 88], which is described in Chapter 2. To make our discussion in later chapters 

more concrete we draw heavily on the Argus terminology. The Argus model is an instance 

of the general transaction model, however, and our method can be applied to any system 

with the same properties. Distributed programs written in Argus consist of guardians 

(corresponding to modules) and atomic actions (transactions). 

In Chapter 3, we present an overview of our replication method and discuss how it 

interacts closely with transaction processing. In particular, we introduce the concepts of 

view, viewstamp, and viewstamp history. A view consists of a primary and its backups, 

which must constitute a majority of cohorts of a group; it represents the shared belief of 

cohorts in a group about who is accessible. The view management algorithm reorganizes 

the cohorts to form new views under certain conditions. Viewstamps represent how much 

a cohort "knows" about the effects of transactions that have run. The viewstamp history 

represents the sequence of view changes seen by a cohort; the cohort state reflects the 

effects of all events that happened in all views in the history. What a cohort does know 

and what it should know are used to determine whether transactions can commit or must 

abort. We state informally the conditions that transaction processing and our replication 

and view management algorithms must satisfy for correct operation of the system. 

In Chapter 4, we describe in detail how to integrate our replication method into a 

transaction system. We use the Argus implementation as the basis for this work. In 

particular, we describe how our method works with both nested and flat transactions. 

We show that nested actions are useful to further reduce the probability of transaction 

abort by masking view changes. 

In Chapter 5, we present our view management algorithm. In response to a failure, 

the algorithm reorganizes the cohorts, and if a majority agree to the change, it chooses a 

new primary and assembles a new view. The algorithm guarantees that the effects of all 

committed transactions survive successive view changes. If every view consists of at least 

a majority of cohorts of a group, then it must contain at least one cohort that knows 
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about committed transactions in the previous view. What that cohort knows is used to 

bring all other cohorts in the new view up to date. The algorithm relies on properties of 

transaction commit to ensure that the effects of committed transactions are recorded at 

all the backups in the current view. 

In Chapter 6, we discuss how our method compares with other replication techniques. 

In Chapter 7, we conclude with a summary of what we have accomplished and a 

discussion of directions for future research. 



Argus Programming 
Language and System 

Argus is an integrated programming language and system [Liskov 88] that supports 

the implementation and execution of distributed programs. Distribution gives rise to 

some problems that either do not exist in a centralized system or exist in a less complex 

form. For example, a centralized system is either running or crashed, but a distributed 

system may be partly running and partly crashed. Argus provides mechanisms that help 

programmers cope with these problems. 

Argus is intended to be used primarily for programs that maintain on-line data for 

long periods of time, such as file systems, mail systems, and banking systems. These 

programs require on-line information to remain consistent in spite of failures and also in 

spite of concurrent access. Programmers may need to control placement of information 

and processing at nodes to improve performance, since information is cheaper to access if 

it is nearby. Finally, programs may need to be reconfigured dynamically, for example, by 

adding and removing components, or by moving a component from one node to another. 

In this chapter, we present the Argus model of computation. We focus on guardians 

and atomic actions. 

14 
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2.1 Guardians 

Argus modules are called guardians. An Argus guardian is a special kind of abstract 

data object that encapsulates and controls access to resources, such as databases or de­

vices. It permits its resources to be accessed by means of special procedures, called 

handlers, that can be called from other guardians. For example, a guardian might en­

capsulate some or all of the accounts at a bank branch, and provide handlers to open and 

close accounts, and to withdraw and deposit money in accounts. As another example, a 

guardian might control a printing device, and provide a handler called enq to allow files 

to be enqueued for printing and a handler called check_queue to check the state of the 

queue. 

Guardians are the logical nodes of the system. Each guardian resides at a single 

physical node of the network and may not span node boundaries. A node, however, may 

support several guardians. 

A guardian contains within it data objects that store the state of its resource. These 

objects are not accessible outside the guardian; the only way they can be accessed or 

modified by another guardian is by calls of their guardian's handlers. Handler calls are 

remote procedure calls [Nelson 81]. The caller supplies the name of the called handler 

and some arguments. When the handler returns, the caller receives the results and can 

then continue processing. Arguments and results are passed by value. This rule ensures 

that a guardian retains control of its own objects and cannot be accessed directly by any 

other guardian. The Argus implementation takes care of all details of constructing and 

sending messages. 

Inside a guardian are one or more processes. These processes can access all of the 

guardian's objects directly. Some processes carry out handler calls; whenever a handler 

call arrives at a guardian, a process is created to run the call. In addition, there may be 

background processes that carry out tasks independently of particular handler calls. For 

example, the enq handler of the printer guardian might merely record information about 

the request; a background process would carry out the actual printing. 

A guardian is resilient to failures of its node. After a crash and recovery of its node, 

the guardian can recover with its code and objects intact. The objects have the values 

they possessed as of the last time they were written to stable storage. Stable storage 
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preserves information written to it with very high probability [Lampson 81]. The objects 

in the guardian state are of two kinds: stable and volatile; only the stable objects survive 

crashes. 

A crash destroys all volatile objects of a guardian and also all processes that were 

running at the time of the crash. After the crash, the Argus system restores the guardian's 

code and recovers the stable objects from stable storage. Then it creates a special recovery 

process, which runs code defined by the guardian to initialize the volatile objects. When 

this finishes, the guardian is ready to accept new handler calls and to run background 

processes. Since the volatile state does not survive crashes, it should be used only to 

record redundant information, such as an index into a database, or information that can 

be discarded in a crash, such as current printing information in the printer spooler. For 

example, in the printer guardian, information about queued requests would be stored in 

stable objects so that requests are not lost in a crash. Detailed information about the 

exact processing of the current request need not be stable, however, since the request can 

be redone after a crash. 

A guardian can create other guardians dynamically, and the names of guardians and 

handlers can be sent as arguments of handler calls. A programmer can specify the node 

at which the new guardian is to reside; in this way individual guardians can be placed 

at the most advantageous locations. Handler calls are location-independent, so that one 

guardian can use another without knowing its location. 

2.2 Atomic Actions 

To solve the problems of concurrency and failure, computations in Argus run as atomic 

transactions, or actions for short. Atomic transactions have two properties. First, they 

are serializable, that is, the effect of running a group of actions is the same as if they 

were run sequentially in some order. Serializability permits concurrent execution, but 

ensures that concurrent actions cannot interfere with one another. Second, actions are 

total, that is, an action either completes entirely or it is guaranteed to have no visible 

effect. An action that completes is said to commit; otherwise, the action aborts. In 

addition, the effects of committed actions are permanent, that is, the effects persist and 

are guaranteed to survive failures. 
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Acquiring a read lock: 

• All holders of write locks on X must be ancestors of S. 

Acquiring a write lock: 

• All holders of read and write locks on X must be ancestors of S. 

• If this is the first time S has acquired a write lock on X, push a copy of the object 
on top of the version stack. 

Commit: 

• S's parent acquires S's lock on X. 

• If S holds a write lock on X, then S's version (which is on the top of the version 
stack for X) becomes S's parent's version. 

Abort: 

• S's lock and version (if any) are discarded. 

Figure 2.1: Rules for locking and version management for a subaction S, on object X. 

are summarized in Figure 2.1. A subaction can acquire a read lock only if all holders of 

write locks are ancestors (that is, itself, its parent, its parent's parent, and so on); it can 

acquire a write lock only if all holders of read or write locks are ancestors, and in this case 

a new version is created for its use the first time it acquires a write lock. When a subaction 

aborts, its locks and versions are discarded and its parent action can continue from the 

state at which the subaction started. If a subaction commits, its locks and versions are 

inherited by its parent. If the parent aborts later, all modifications of the subaction 

will be undone. The rules make sense because Argus does not permit a parent to run 

concurrently with its children, neither does it permit any concurrency within an action 

except by creating subactions. For example, if a parent could run concurrently with a 

child, then the commit of the child could overwrite changes made by the parent since the 

child was created. The rules are implemented by a stack of versions, one version for each 

active action that is modifiying the object. When a subaction needs a new version, the 

version on top of the version stack is copied and the result pushed on the stack. 

Every handler call runs as a subaction; this subaction runs on the caller's side and is 

called the call action. This extra action ensures that calls have a zero or one semantics: 
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If the call is successful and the called guardian returns a reply, it is guaranteed that the 

call happened exactly once. If it is not possible to complete the call, we abort the call 

action, thus guaranteeing that the call, effectively, did not happen at all. Running a 

call as a subaction ensures that calls have a clean semantics, which is a non-trivial and 

desirable property in a distributed system. 

The processing of a handler call at the called guardian runs as a subaction of the 

call action; this subaction is called the handler action. The handler action gives a clean 

separation of the calling and called guardians and ensures that each individual action 

runs at just one guardian. It avoids anomalies such as an action that commits at one 

guardian and aborts at another. It allows the handler to commit or abort unilaterally, 

without concern about what the calling guardian does, and similarly for the caller. 

A distributed program in Argus consists of a collection of guardians that may be 

dispersed geographically over the nodes of the network. A computation starts up as a 

topaction at some guardian and spreads to other guardians by means of handler calls. 

Executing a handler call might spawn further calls and might cause some objects to be 

modified. When the topaction commits, modifications made to stable objects by the top­

action or its descendants at all the guardians it visited must be written to stable storage. 

To ensure that committing is atomic, we use the standard two-phase commit protocol 

[Gray 78]. The guardian where the action started acts as the coordinator; guardians 

visited by descendants of the action are the participants. The protocol is used only for 

topaction commits; a subaction commit is processed locally at the guardian where the 

subaction is running. 



Viewstamped 
Replication 

The semantics of Argus makes it easy for programmers to construct services that 

are highly reliable, that is, with high probability, the service does not lose information 

entrusted to it. But it provides no special support for availability. Instead, the Argus 

programmer must implement availability explicitly, by replicating important information 

at several guardians and implementing operations so that they run at enough places. 

Even though the semantics of Argus is helpful in implementing replication algorithms 

(operations can run within transactions), implementing availability can nevertheless be 

a difficult job. Our replication method addresses this difficulty by providing availability 

automatically without complicating the programming model. Programmers continue to 

write Argus programs as before, and the services implemented by the resulting programs 

are highly available. 

This chapter provides an overview of our replication method. Section 3.1 describes 

the new primary copy method, which we call viewstamped replication. We state what 

the method achieves and give a sketch of its implementation. There are two parts to the 

method: section 3.2 describes the view management algorithm, which, when invoked, 

automatically reorganizes the replicas of a service to keep it available in spite of fail­

ures; section 3.3 describes transaction processing, which ensures that a topaction knows 

whether it can continue execution and eventually commit in spite of node and commu-

20 
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nication link failures. Finally, section 3.4 discusses the correctness conditions that must 

be satisfied. 

3.1 Overview of the New Method 

Our method works as follows. We replicate each individual guardian to obtain a 

guardian group. Each group consists of several instances called cohorts. These cohorts 

behave as a single, logical entity. Each cohort has a unique name called a guardian id (or 

gid, for short); the group as a whole bears a unique groupid. The set of cohorts is the 

group's configuration. Each cohort knows the groupid and the configuration to which it 

belongs. We assume that the configuration never changes, that is, the set of cohorts is 

fixed when the configuration is defined at guardian creation time; we briefly discuss this 

issue in Chapter 7. 

A distinguished cohort is designated as the primary; it executes handler calls and 

participates in two-phase commit. The remaining cohorts are called backups; these are 

passive and receive state information from the primary. If a cohort fails or is partitioned, 

the remaining cohorts are reorganized and a new primary is selected, should the old one 

become inaccessible. 

For the sake of illustration, let us look at a simple system consisting of a server and a 

client making requests to the server. The system is illustrated in Figure 3.1. The server 

is implemented as a guardian group bearing groupid G. In this particular example, there 

are five cohorts, a, b, c, d, and e. Cohort a is the primary Pl. The remaining cohorts b, c, 

d, and e are backups. In the figure, the large circle enclosing the smaller ones represents 

the guardian group G and is meant to suggest that logically the cohorts are a single 

entity, even though physically they may be dispersed throughout a network. 

When there are no failures, the client C communicates only with the primary cohort 

a of server G. The request is processed at a and the primary replies to the client. In the 

background, the primary communicates with backups, sending checkpoint information 

about the completed request. 

Now suppose that a failure causes cohorts b, c, d, e to stop hearing from their primary; 

whether there is a network partition or a node crash is irrelevant. This situation is shown 

in Figure 3.2. In response to such a failure, the server reorganizes itself automatically to 
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Figure 3.1: Normal operation. Client C sends requests to server G and receives replies. 
The dashed lines emanating from the primary cohort represent information flowing to 
the backups in background mode._ 

keep the service available. We call this reorganization a view change, and the algorithm 

that carries it out, the view management algorithm. In this example, the algorithm 

excludes cohort a and chooses a cohort, say b, as the new primary P2. Any new requests 

from the client will be sent to the new primary. A new primary can be chosen from the 

remaining backups as long as the backups and new primary together constitute at least 

a simple majority of all cohorts in the guardian configuration. 

At this point an interesting question is whether actions can commit in spite of these 

view changes. 

Consider the following scenario. Suppose topaction Tl made handler calls to server G 

before the view change. Now Tl attempts to commit; its coordinator sends out prepare 

messages to server G. When the new primary P2 (cohort b) receives the message, how 

does it know what to do with it? Can it prepare successfully? If P2 could somehow know 

whether the effects of Tl made at Pl propagated to the backups before the view change 
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Figure 3.2: Client and server in the presence of communication failures. 

occurred, then it could decide whether to accept the prepare. 
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Our replication method solves this problem, allowing the primary to determine in­

expensively whether it can commit in spite of view changes. We have developed some 

additional mechanism to make it possible for a topaction to continue execution without 

aborting unless absolutely necessary. Our new method captures the notion of what co­

horts "know" and furthermore, whether they know "enough" to permit a transaction to 

commit. 

Our method consists of two parts: view changes and running transactions. These are 

discussed further below. 

3.2 Managing View Changes 

Over time, nodes and communication links may fail and recover arbitrarily, changing 

the topology of the network. These failures obviously affect the cohorts making up 

guardian groups. To mask these failures automatically and efficiently, and to preserve 
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the single-image appearance of a guardian group, we introduce the notion of a view. 

Intuitively, a view reflects the changing communication capability among members of a 

configuration. For a guardian group, a view consists of a primary and some backups, 

together with who the primary is, and contains at least a majority of cohorts of the 

configuration. Each view is named by a unique identifier called a viewid; we guarantee 

that viewids are totally ordered. 

For example, Figure 3.2 shows a new view { b : c d e} containing cohorts b, c, d, and 

e in which b is the new primary P2; the old view was {a : b c d e} with primary Pl. In 

either case, the configuration is still {a b c d e }. Note that a view is always a subset of 

the guardian group's configuration. 

In response to changes in communication capability in a view, the cohorts switch to a 

new view by executing the view management algorithm; our algorithm is a simplification 

and modification of the original virtual partitions protocol proposed by El Abbadi, Skeen, 

and Cristian (El Abbadi 85]. The view management algorithm tries to assemble a new 

view containing at least a majority of cohorts in the configuration; otherwise, cohorts 

remain in their old views. As part of the view change, the algorithm generates a new 

viewid. 

In Figure 3.3, we illustrate what the view management algorithm achieves. Guardian 

group G has configuration {a b c d e }, and suppose its initial view vl is {a : b c d e }, 

where a is the primary. Now suppose a communication failure makes it impossible for 

cohort a to talk to the others. When this failure is noticed, the system initiates a change 

in view. In our example, cohorts b, c, d, and e discover that they cannot talk to cohort 

a, their primary. G switches to new view v2 = { b : c d e} where cohort b is the new 

primary P2. Notice that v2 consists of a majority of cohorts of the configuration. 

In addition, a view change will be initiated at cohort a, but it will not succeed because 

there is no majority. In this case, cohort a continues to be in old view v 1, but becomes 

inactive, which means that it refuses to process client requests. 

As part of the view change, the algorithm selects an initial state of the guardian for 

the new view; all cohorts in the new view will be initialized with this state. The state 

consists of objects, together with their locks and tentative versions, if any. This initial 

state is obtained by finding a cohort that was in the previous view and had the most 

"recent" information; we use viewstamps to accomplish this, as explained in the next 
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Figure 3.3: View changes. Guardian group G reacts to communication failures, such as 
a network partition, by changing views to v2 to exclude inaccessible cohort a. 

section. We are guaranteed that at least one such cohort will exist because majorities 

must intersect.1 That is, if the previous view contained a majority of cohorts, and the 

current view also consists of a majority, then both views must have at least one cohort 

in common that was in the last view and now is in the current view. Therefore, the new 

view starts out knowing what happened in the previous view. And since this intersection 

of majorities is true for all pairs of views, this cohort will also know what happened in all 

previous views, that is, everything that happened since creation of this guardian group. 

3.3 Running Transactions 

The view management algorithm guarantees that events that happened in the pre­

vious view are known in the next view. Transaction processing guarantees that needed 

events have "happened." Effects of a topaction that committed in that view or that 

prepared and did not abort will survive a view change; in addition, the effects of handler 

calls that committed locally in that view may survive. If the effects of its handler calls 

1 A sequence of failure events can invalidate this guarantee. We ignore this complication in our 
overview, but the situation is handled properly by our algorithm. The details are discussed in Chapter 5. 

\ 

) 

I 



26 3. Viewstamped Replication 

do survive a view change and are therefore known at the primary, we allow a topaction 

T to prepare. We use timestamps to determine whether the effects of a handler call are 

known. 

3.3.1 Timestamps 

The primary generates a new timestamp each time it needs to communicate informa­

tion to its backups; each such occurrence is called an event. An event record identifies 

the type of the event, and contains the event's timestamp and other relevant information, 

which we defer discussing until later. An example of an event is the completion of the 

processing of a handler call or the commit of a topaction. 

Timestamps are unique within a view and form a total order; they are easy to produce, 

for example, by incrementing a counter maintained by the primary. Each event is assigned 

a timestamp, and later events receive later timestamps. We require that the primary send 

event records to the backups in timestamp order. 

Each backup receives event records from its primary in timestamp order and must 

process them in this order. Therefore, if a cohort knows about event x, it knows about 

all events that happened before x. More formally, we can state this prefix property as 

an invariant. 

Invariant 1 Within a view, for each event e with timestamp t, if a cohort knows e then 
it knows about all events e' with timestamps t' < t. 

A primary maintains its timestamp to be the timestamp of the most recent event that 

has occurred. Each backup must record the timestamp for each event record it processes. 

Backups are inactive and shadow their respective primaries as far as what information 

they know; they only know what they have been told in checkpoint messages from their 

respective primaries, and are privy to nothing more. Therefore, their timestamps only 

reflect information received in checkpoint messages. Thus, the latest timestamp recorded 

at a cohort captures a portion of the past history of execution within the current view. 

These timestamps are an inexpensive way of determining what a cohort "knows." 

3.3.2 Viewstamp history 

To capture the fact that a timestamp is defined within a view, we also define view­

stamps. A viewstamp is simply a timestamp paired with the viewid of the view in which 
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the timestamp was generated. We refer to the parts of a viewstamp v as v.id and v.ts. 

Each cohort maintains a viewstamp history that represents the sequence of events from 

all views seen by this cohort. As noted above, the last timestamp within a view represents 

all past events for that view, so the history consists of a sequence of viewstamps, each 

with a different viewid. 

For example, suppose we take a snapshot of a cohort at an instant in time, obtaining 

the following viewstamp history: 

< vl, 10 >,< v2, 16 >,< v3, 4 > 

From the first viewstamp < v 1, 10 >, we can see that the state of the cohort reflects all 

events that occurred in view vl up to timestamp 10: the cohort knows events < vl, 1 > 

through < vl, 10 > inclusive. Then the view changed to v2; the cohort now knows 

events < v2, 1 > through < v2, 16 > inclusive and those events are reflected in the 

cohort's state. Finally, in view v3, the cohort's state reflects only those events in that 

view whose timestamps are less than or equal to 4. Given the viewstamp history we 

know exactly what events are recorded at the cohort. In general, we guarantee that for 

each viewstamp v in the sequence, invariant 1 holds for each viewstamp, which we can 

also state as an invariant: 

Invariant 2 For each viewstamp vs E viewstampJiistory, a cohort's state reflects all 
events e that occurred in the view of vs.id, such that t ::::; vs.ts, where t is the timestamp 
of e. 

Let us summarize. 

1. Views automatically reorganize cohorts for availability. 

2. Timestamps capture how much a cohort knows about the events that have hap­

pened in a view. 

3. The viewstamp history captures how much a cohort knows about the events that 

happened in all views in the history. 

In the next section, we show how this machinery allows topactions to determine whether 

they can commit. 
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3.3.3 Transaction processing 

Running transactions requires the collaboration of both clients and servers. Clients 

create topactions, make handler calls to servers, and coordinate two-phase commit. 

Servers process handler calls, make further handler calls to other servers (thus acting 

as clients), and participate in two-phase commit. 

Clients. When a client makes handler calls to servers, it includes the action identifier 

(or aid, for short) of the call action, the viewid that the client knows for the server in 

question, and other relevant information. The primary of the server processes the call 

and assigns the call a new viewstamp. This viewstamp flows back on the reply message 

to the caller, which remembers it in association with the groupid of the guardian group 

that ran the call. For example, in Figure 3.4, aid Tl and viewid v2 flow on the call 

message to server G. Viewstamp <v2, 6> flows back on the reply message. 

At topaction commit, the client has a collection of viewstamps: there is at least one 

viewstamp associated with each server that participated in the topaction. 2 The client 

now acts as coordinator of two-phase commit. It determines who the participants are and 

sends prepare messages to their primaries; each prepare message contains the appropriate 

viewstamps for that server. The servers use these viewstamps to determine whether all 

effects of the topaction are known to them, as discussed further below. 

Servers. When servers receive handler calls from clients, the calls are processed, 

viewstamps are assigned and returned, and, as noted above, are collected by clients. 

Later, the client sends the prepare message. Now consider the following situation. Each 

participant server receives a prepare message from the coordinator, containing the ap­

propriate viewstamps. These viewstamps represent what must be known at the primary. 

The viewstamp history at the primary represents what is known. By simply checking 

that the received viewstamps are less than or equal to the associated viewstamps in the 

viewstamp history, we can determine whether servers remember enough to commit a 

topaction. 

Figure 3.5 shows a prepare message arriving at the primary of participant server G, 

bearing some viewstamps for topaction Tl with respect to G. Recall that viewstamp 

2If more than one call were made to the same server, there will be more than one viewstamp. We 
can optimize this situation by retaining the latest viewstamp for the set of viewstamps with the same 
viewid. 
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Figure 3.4: Handler calls. Client makes a call to a server, which processes it and replies 
to the caller. Viewids flow on call messages, and viewstamps flow back on reply messages. 

< vl, 10 >msg (the subscript distinguishes viewstamps sent in the prepare message from 

those in the viewstamp history) means that the coordinator expects the cohort to know 

about all events in vl up to timestamp 10; the history's viewstamp < vl, 10 >hist means 

that P really does know everything up to timestamp 10. No information is missing, 

and we are okay so far. Moving on to viewstamp < v2, 6 >msg, we see that in view 

v2 the coordinator expects P to know at least timestamp 6. The history's viewstamp 

< v2, 7 >hist says that the cohort itself knows all events up to timestamp 7, inclusive. 

Since 6msg ~ 7hist, P knows at least as much as the coordinator expects; in fact, it knows 

more, as indicated by event with timestamp 7. Since needed events for the preparing 

action are truly known at P, it is possible for topaction Tl to prepare at this participant. 

Checking that needed events are known at the primary is not sufficient for preparing; 
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Figure 3.5: Can topaction Tl commit? 

we must also ensure that the events are known at enough backups to survive a view 

change. The primary ensures this by forcing event records to the backups in the current 

view and waiting until a sub-majority know (a sub-majority is one less than a simple 

majority of the configuration) before responding ok to the coordinator. Other critical 

information is similarly forced to the backups, such as the committed record at the 

coordinator. 

If any pairwise comparison fails, P is m1ssmg some events and topaction Tl must 

abort. To see this, instead of viewstamp < vl, 10 >msg suppose we had < vl, 12 >msg· 

In this case, the test would fail (since 12 is greater than the timestamp in < vl, 10 >hist) 

and the topaction must abort. This situation could arise because the view change from v 1 

to v2 happened before information about the handler call assigned viewstamp < vl, 12 > 
was propagated to the backups. 

3.4 Correctness 

The correctness of our algorithm depends on the interaction of transaction processing 

and the view management algorithm. In this section, we discuss informally the conditions 

that must be met for correct operation. The conditions are the following: 
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1. In the absence of view changes, the system behaves as a non-replicated transaction 
system would. 

2. A transaction can commit only if all of its events are known to at least a majority 
of cohorts. 

3. The events known to a majority of cohorts of a configuration survive into all sub­
sequent views. 

Condition 1 is guaranteed by transaction processing. In a world in which failures 

never happen, our system behaves in the same fashion as a non-replicated transaction 

system. 

Condition 2 is guaranteed by transaction processing. While a transaction is running 

at a server, event records are flowing to the backups from their primary. The transaction 

can commit at this server if all needed events are known at the primary as well as at at 

least a sub-majority of backups (at least a majority of cohorts in the configuration). To 

ensure that all needed events are known at the backups, the primary forces event records 

to the backups in the current view and waits for at least a sub-majority to respond. 

Condition 3 is guaranteed by the view management algorithm. Since the previous 

view contained a majority of cohorts, and the new view also consists of a majority, both 

views must have at least one cohort in common. Furthermore, we select one of these 

cohorts that had the highest viewstamp, indicating the latest information. The new view 

starts out knowing what happened in the previous view. Thus, the effects of committed 

transactions survive in serialization order into all subsequent views. 



Integrating Replication 
with a Transaction 

System 

This chapter describes an implementation of the viewstamped replication method. In 

particular, we show how the implementation is integrated with the implementation of 

actions. We use the Argus implementation as a basis for this work. 

Section 4.1 gives an overview of the Argus implementation of actions and the phi­

losophy behind the design. Section 4.2 discusses the additional mechanisms that are 

needed to implement our replication method. Section 4.3 integrates our method with 

the implementation of actions. In particular, it describes transaction processing using 

nested actions. Section 4.4 describes what can be done in a system without nested ac­

tions to decrease the probability of topaction aborts when views change. Finally, section 

4.5 discusses the performance of our algorithm. 

4.1 Implementing Actions 

In the Argus action system, the goal of avoiding unnecessary delays of user compu­

tations (while actions run and during two-phase commit) guided the implementation of 

atomic actions. 

Delays assume either of two forms: extra communication and writes to stable stor­

age. To avoid extra communication we piggyback information on messages that must be 

32 
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exchanged as a matter of course, and send other information in background mode. To 

minimize delay during writes to stable storage, several guardians participating in an ac­

tion can write concurrently, and furthermore, can do some writing in background mode. 

We shall see shortly how the implementation has been tailored to accomplish these goals. 

Some delays are unavoidable, however. For example, to commit a topaction it is 

necessary to communicate with all the guardians where descendants ran, and some writes 

to stable storage are needed (unless the action is read-only). As another example, lock 

conflicts between actions may introduce occasional delays. 

In this section we describe the implementation of atomic actions in Argus. We describe 

the action tree, a useful way of visualizing the distributed state of a topaction at several 

guardians, explain the implementation of the two-phase commit protocol, and describe 

briefly how query messages hold the system together. More details are contained in the 

Argus implementation paper [Liskov 87). 

4.1.1 Action trees 

We can capture the distributed state of a topaction at a particular instant in time 

with an action tree. Each node of the tree is an action; the root is the topaction, and 

all the nodes descending from it are descendant subactions of the topaction. In this 

dissertation we will use the standard terms, ancestor, sibling, and descendant, to refer 

to the relationships among actions in the tree. 

We label the root of the tree by the topaction's action identifier, or aid for short; 

the interior nodes are labeled by the aids of the descendant subactions of the topaction. 

Each node of the tree contains information about the status of its action, that is, whether 

it is active, committed, or aborted. For example, Figure 4.I shows the status of topaction 

A and all of its descendants. A is active at guardian G (thus, A@G), A.I and A.2.3 

aborted, and the rest of the actions committed. For simplicity, we show only handler 

actions for handler calls. Recall that each handler call creates a call action at the calling 

guardian, and a handler action at the called guardian. All actions in the figure except 

A are handler actions, and each has as its parent a call action that is not shown in the 

figure. The notation A.I means that A.I is the first descendant subaction of action A; 

similarly for A.2. A.I and A.2 may be subactions that ran either sequentially (A.I then 

A.2) or concurrently. 
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Figure 4.1: Action tree, showing the location and status of topaction A and its descen­
dants. 

We encode the structure of this abstract action tree in the aids themselves. Aids have 

the following properties: 

1. An aid is globally unique. 

2. An aid contains the identifier of the guardian where the action is executing. 

3. An aid contains the aids of all ancestors of its action. 

4. Given two aids, it is possible to tell whether one is an ancestor of the other. 

To make the aid unique, each subaction appends the gid of the guardian at which it 

runs to a locally unique identifier, resulting in a pair <uid, gid> that is guaranteed to 

be globally unique. When a new handler subaction is created, a new aid is generated for 

it and is concatenated to the aid of the call action. Thus, an aid is a concatenation of 

<uid, gid> pairs. 

A.2, A.2.1, and A.2.2 have committed to the top, which means that each has com­

mitted and so did all of its ancestors up to, but not including, the topaction A. A.1.1 

and A.1.2 did not commit to the top, since A.1 aborted. If A commits at this point, all 

modifications to atomic objects made by A and all descendants that committed to the 

top must be installed and written to stable storage. 
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4.1.2 Implementing two-phase commit 

When a topaction A attempts to commit, the system initiates a two-phase commit 

protocol at A's guardian. This guardian acts as the coordinator of the commit protocol, 

and communicates with the participants, which are the guardians where the descendants 

of A that committed to the top ran. If A commits in the example above, the participant 

guardians are G2, G3, and GS; it is not necessary to communicate with Glor G6 because 

only aborted descendants of A ran there, and it is not necessary to communicate with 

G4 because the abort of A.1 undoes the effects of A.1.2. Note that information about 

the action tree must be communicated to the participants. For example, at G3 it must 

be possible to deduce that A.2.l's changes should be written to stable storage but not 

A.l.l's. 

We use an algorithm in which the coordinator communicates with the participants 

directly in the first phase. To permit this, needed information is collected as handler 

calls commit at guardians and is passed up the tree to the next, higher level, when calls 

return. The collected information at the lower levels is merged with more information at 

the higher levels, until we reach the root, which will then know about all guardians that 

participated in the action. The coordinator can then communicate with all participants 

directly, passing them action tree information. This approach is consistent with our goal 

of limiting delay.1 

The information collected is the action tree, but we keep it in a compressed form. 

On the assumption that commits are far more frequent than aborts, an aborts_set is 

maintained consisting of the highest aborted descendants, that is, aborted descendants 

for which no ancestor has aborted. Subactions that abort locally and have no non-local 

committed descendants are not remembered in the aborts_set, since all effects of such 

an action can be undone immediately without remote communication. In addition, a 

parts._set is maintained, containing the guardians of all committed descendants that are 

not descendants of the actions in the aborts_ set; these guardians will become participants 

if the subactions eventually commit to the top. For example, just before action A in 

Figure 4.1 commits, we have parts_set = {G2,G3,G5} and aborts_set = {A.l}. 

To commit a topaction, we need to know what objects it (or its descendants) used, 

1 An alternative approach in which two-phase commit messages fan out downward, level by level 
according to the action tree, may entail considerable delay for deep trees. 
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and, if it modified an object, we need to know the new version. This information is 

kept at the guardians where the objects reside. When an action is running, its guardian 

remembers all local atomic objects read or modified by it. When a subaction commits 

locally, this information is simply merged into the parent's information. When a sub­

action aborts, object information is discarded. When a handler commits, its guardian 

remembers its obj...set in a local, volatile data structure called committed. The obj_set 

records all the local atomic objects on which the subaction holds read or write locks. 

Two-phase commit occurs as follows. The coordinator sends prepare messages, in­

cluding the aborts...set, to the participants in the parts...set. The participants use the 

aborts...set to abort actions, if necessary, such as A.1.1. They use local information in 

committed to write the necessary information to stable storage, and then reply ok after 

the prepare record is written. If all say ok, the coordinator writes a committing record to 

stable storage and then enters phase two, sending commit messages to all participants. 

The participants use information in committed to install new versions, write a commit 

record to stable storage, and then reply done. When all reply, the protocol is over. 

The information in the coordinator's parts...set and aborts...set plus the information 

in the participants' committed structure are sufficient to commit the topaction properly, 

provided that no guardians crashed. If a guardian crashes after running some handler calls 

that are subactions of topaction A, and then runs more handler calls that are subactions 

after it recovers, only the latter calls will be listed in committed. If a handler call that ran 

before the crash committed to the top, its versions should be written to stable storage. 

Since the versions were lost in the crash, the guardian ought to refuse to prepare. But 

given the information discussed so far, it cannot know this. 

A guardian can recognize such problems by using a crashcount. Each guardian main­

tains a stable crashcount that records the number of times it has recovered from crashes. 

Whenever a handler commits, the current crashcount of its guardian is sent in the reply 

message. If another handler call is made to the guardian, the crashcount of the previous 

call is sent in the call message; if this number is less than the current crashcount, the 

call is rejected and the topaction aborts. Similarly, the crashcount is sent in the prepare 

message; if it is too small, the prepare is rejected. 
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4.1.3 Queries 

Consistent with the goal of avoiding unnecessary delay is our decision that information 

about aborts and commits of subactions is not guaranteed to be propagated. For example, 

suppose a handler subaction aborted. We could immediately notify guardians where 

descendant actions ran and committed about the abort, but this would delay sending 

the reply message to the caller. Instead, we reply to the caller immediately and then 

communicate later at a convenient time with the guardians of descendant subactions. 

Furthermore, we do not try very hard to communicate, so there is no guarantee that 

the message will arrive. To mask lost messages, if some guardian needs to know what 

happened and did not receive a message, it can send a query message to the appropriate 

party. For example, if the coordinator aborts the topaction after phase one, it sends abort 

messages to the participants, but these messages may be lost. If an abort message fails 

to arrive at a participant that prepared in phase one, all is not lost, however, because 

that participant can query the coordinator to find out the fate of the action. 

When a subaction commits, information about the action is stored locally and passed 

up the action tree, but never down. So if a concurrent or sequential relative of that 

committed subaction wants to obtain locks, the guardian must send query messages. 

In general, query messages eliminate the need for reliable communication, placing 

the responsibility for making sure information is communicated on the guardian that 

needs to know what happened. Other guardians are thus relieved of the responsibility 

for delivering messages. 

4.2 Implementing Viewstamped Replication 

In this section, we describe the additional mechanisms needed to implement our repli­

cation method. 

The new mechanism uses a buff er to communicate information from the primary to the 

backups, as described in the next section. Usually this information is sent in background, 

without the primary having to wait. Sometimes, however, the primary must wait until 

information has been recorded at enough backups. These times correspond to times in a 

conventional system when it is necessary to wait for information to be stored on stable 

storage. In effect, our system uses the backups as a replacement for stable storage. 
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4.2.1 Communication buffer 

Recall that event records flow from the primary to its backups in timestamp order 

via checkpoint messages. In particular, instead of checkpointing event records directly 

to the backups, the primary maintains a communication buffer (similar to a fifo queue) 

to which it writes the event records. The primaries of both clients and servers make use 

of their own buffers to communicate information to their backups. The buffer provides 

the following operations: 

1. create{). Creates a new, empty buffer. 

2. add{e: evenLrecord) returns {viewstamp). This operation advances the timestamp 
of the current view, stamps the event record with the new timestamp, updates the 
viewstamp history, and appends the entry to the buffer. These four steps must be 
done atomically. It returns a viewstamp consisting of the current viewid and the 
timestamp created for this record. 

3. force-to{vs: viewstamp}. The operation returns immediately if vs is not a view­
stamp for the current view. Otherwise, it delays the primary until a sub-majority 
of backups have received all event records in the current view with timestamps less 
than or equal to vs.ts. 

In the add operation, the four steps must be done atomically. Recall that each cohort 

may have several processes running concurrently that could be calling the add operation. 

The implementation of add must serialize the use of the buffer and ensure that event 

records are recorded in the buff er in timestamp order. 

Force-to delays its caller, but other work, including adding and forcing the buffer, 

can still go on at the cohort in other processes. If communication with some backups is 

impossible, the call of force-to will be abandoned, and the cohort will switch to running 

the view management algorithm. 

The primary need not wait to hear from all backups in the current view. To reduce 

the period of waiting during a call to force-to, it is sufficient that the primary be delayed 

until only a sub-majority of backups knows all events whose timestamps are less than or 

equal to vs.ts. If a sub-majority of backups know about an event, a majority of cohorts in 

the configuration know about that event. Even though the primary is delayed until only 

a sub-majority know about events, the remaining backups in the view will eventually 

know about those same events unless a view change occurs in the meantime. 
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committing 

parts-set 
done 

aborts-set 

topaction aid topaction aid 

completed-call 

aborts-set 
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handler aid aborts-set 

object-set topaction aid 

newv1ew 

view 

viewstamp history 

object-info 

Figure 4.2: Format of event records. 
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aborted 

topaction aid 

Figure 4.2 shows the format of the six kinds of event records that can be written to 

the buffer. "Committing" and "done" are written by the coordinator of a committing 

action. "Completed-call", "committed", and "aborted" are written by the primaries of 

participants ("aborted" is also written by the primary coordinator). The "newview" 

event record is written by the new primary to its buffer after a view change. This record 

informs the backups in the new view of the view's membership (including who the new 

primary is), the viewstamp history, and the current state; it is discussed in Chapter 5. 

The implementation of the buffer must deliver event records in timestamp order to 

guarantee the prefix property that any backup that knows about event e also knows 

about all events with timestamps less than e's. Furthermore, the buffer provides reliable 

delivery: any record added to the buffer will be delivered to all backups unless a failure 

occurs that will cause a view change. Acknowledgements from the backups are used at 

the primary to allow the force-to operation to complete. Also, event records that have 
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arrived at all the backups can be removed from the primary's buffer. 

4.2.2 Cohort State 

The abstract state of a cohort is summarized in Figure 4.3. We show only the infor­

mation relevant to transaction processing. 

Each cohort has a state: it is "active" if it can participate in transaction processing, 

and otherwise it is involved in a view change. We say that a cohort is active if its state 

is "active"; otherwise, it is inactive. In particular, we will speak of active primaries of 

servers, that is, the active primaries receive client requests and process them. 

Each object in the gstate has a unique name uid (relative to the group), a base version, 

and a set of lockers that identifies actions holding locks on the object, the kinds of locks 

held, and any tentative versions created for it. Figure 4.4 gives a pictorial representation 

of an atomic object as it might look in volatile memory. 

Each cohort has a unique identity ( mygid) and belongs to a configuration. The 

configuration is a set of identifiers that name the cohorts making up the group. Each 

configuration bears a globally unique groupid, which each cohort knows (mygroupid). 

Timestamps are generated only by the primary of a guardian group. Each cohort main­

tains a viewstamp_history that represents the sequence of view changes it has seen during 

its lifetime. Each member of the sequence is a viewstamp; for each viewstamp vs in the 

history, the cohort's state reflects each event in the view of vs.id whose timestamp is less 

than or equal to vs.ts. 

The event-record data type is a oneof, each of whose component tags corresponds to 

a different event record; the pictorial counterpart was shown in Figure 4.2. 

4.2.3 Locating the primary cohort 

How does system code at a guardian locate the primary of a guardian group? To 

find a server it has not used before, a cohort fetches the configuration from the location 

server and communicates with a majority of members of the configuration to determine 

the current primary and viewid. It stores this information in a local cache. It uses the 

cache when sending messages and updates it whenever it learns about view changes. 

Although it would be possible to encode information about the configuration in the 

groupid, a better approach is to use a highly available location server that maps groupids 
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gstate: {object} 
state: status 

% cohort state 
% cohort is active or doing a view change 
% unique name of this cohort 
% lists unique names of cohorts 
% unique name of guardian group 
% timestamp generator 

mygid: int 
configuration: {int} 
mygroupid: int 
timestamp: int 
viewstamp_ history: 
cur_viewid: viewid 
buffer: [event-record] 

[viewstamp] % indicates events known to cohorts 
% identifier of the current view 
% communication buffer 

where 
object= <uid: int, base: T, lockers: {lock-info}> 
lock-info= <locker: aid, info: oneof[read: null, write: T]> 
vid = <cnt: int, gid: int> 
view = <primary: int, backups: {int}> 
viewstamp = <id: vid, ts: int> 
status = oneof[active, view_manager, underling: null] 
event-record= oneof[committing: <parts...set: {groupid}, aborts...set: {aid}, 

action: aid> 
done: <topaction: aid> 
completed-call: <aborts...set: {aid}, handler aid: aid, 

object-set: {object}> 
committed: <aborts....set: {aid}, topaction: aid> 
aborted: <topaction: aid> 
newv1ew: <cur_view: view, vs: viewstamp_history, 

ob jectinfo: {object}> 
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Figure 4.3: State of a cohort. {} denotes a set, [ ] denotes a sequence, oneof means a 
tagged union with component tags and types as indicated, and <> denotes a record, 
with component names and types as indicated. 
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version stack 

lockers 

Figure 4.4: Representation of atomic objects. 

to configurations. A location server can allow configurations to change; it also permits 

groupids to be smaller than would be the case if they contained configuration information 

within them. There are several ways of implementing such a server; see for example, 

Hwang's thesis [Hwang 87], forwarding addresses[Fowler 85], rendezvous [Mullender 85], 

and migratory objects [Henderson 82]. Note that the location server defines the limits of 

availability; no guardian group can be more available than it is. 

All call messages contain the cached viewid for the server; replies indicate whether 

the view has changed. The system uses this information to keep the cache up to date. 

4.3 Running Nested Transactions 

Our replication system runs transactions in a manner similar to a system without 

replication. There are two main differences. First, we use viewstamps to determine 

whether a transaction can commit. Second, instead of writing information to stable 

storage during two-phase commit, the primary sends it to the backups using the commu­

nication buffer. 

In this section, we describe an implementation for a replication system with nested 

actions. In particular, we explain what active primaries of clients and servers do, how 

cohorts process information they receive, and how query messages are used to compensate 

for lost information and to reduce the window of vulnerability in the two-phase commit 

protocol. We assume both clients and servers are replicated. In section 4.3.5, we discuss 

the usefulness of replicating clients and propose a way of making two-phase commit more 
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robust for clients that are not replicated by using a replicated "coordinator-server." 

4.3.1 Active primaries of replicated clients 

Clients start topactions, make handler calls to servers, and coordinate two-phase 

commit. Figure 4.5 summarizes the processing that takes place at the primaries of 

clients. 

Starting a topaction. To start a topaction, the primary of the client produces an 

aid. Since aids for topactions must be globally unique across view changes, we make the 

primary's mygroupid and cur_viewid part of the name, so we have <uid: int, groupid: 

groupid, viewid: vid>. 

As in a non-replicated system, we must maintain an aborts_set and a pset, both 

initially empty. The aborts..set is the same as in our previous discussion of the imple­

mentation of actions. The pset is an analogue of the parts...set. Recall that each time 

the topaction makes a handler call, the server that processes the call assigns the call 

a new viewstamp upon completion of the call and returns the new viewstamp in the 

reply message. The coordinator collects these viewstamps in the pset, which is a set of 

<groupid: groupid, vs: viewstamp> pairs. Every committed handler call made by the 

topaction or its descendants has a pair in the pset showing the group where it ran and 

the viewstamp assigned to it. By the time the topaction is ready to commit, the pset 

represents the latest information known by the topaction about each of the participant 

guardian groups. 

Making handler calls. To make a handler call, the system generates an aid for the 

call action. We produce the unique subaction aid by appending a <uid: int, groupid: 

int> pair to the parent's aid. Then the system looks up the primary and viewid for the 

group in its cache; if the server is not there the system communicates with the location 

server to fetch the configuration and then communicates with a majority of members of 

the configuration to find out the primary and current viewid; it stores this information 

in its cache. The call message is sent to the primary; the message contains the viewid 

from the cache, the call action aid, the handler id, and the arguments of the call. 

There are two possible results of such a message. The first result is either a reply 
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Starting a topaction: Create the topaction aid and an empty pset and aborts..set. 

Making a handler call: 

1. Create the aid for the call subaction. Look up the server in the cache; if the server 
is not there then communicate with the location server to fetch the configuration 
and communicate with a majority of members to find out the primary and current 
viewid; store this information in the cache. Send the call message to the primary; 
the message contains the call aid, the cached viewid, handler id, and arguments. 

2. If there is no reply or the reply indicates that the view has changed, abort the call 
action and add its aid to the parent's aborts..set. Then attempt to find out the 
new primary and viewid. If this succeeds, add the new information to the cache 
and go back to step 1. Otherwise, terminate the call and return to the user code 
with an exception indicating that the call cannot be completed right now. 

3. If a successful reply message arrives, commit the call action, adding elements of 
the pset and aborts...set in the reply message to the parent's pset and aborts..set, 
respectively. Then return normally to the user code. 

Coordinator for two-phase commit: 

1. Determine who the participants are from the pset, and then send prepare messages 
containing the aid, aborts...set, and pset to the primaries of participants. Then 
act as a participant locally: release any read locks held by descendants of the 
topaction and discard any local locks and versions held by descendants of actions 
in the aborts...set. 

2. Wait for responses. 

(a) If all participants agree to prepare, add a "committing" <parts..set, aborts..set, 
topaction aid> event record to the buffer; the parts...set is a list of non-read­
only participants. Perform a force-to{new_vs}, where new_vs is the viewstamp 
returned by the add operation. 

If all participants are read-only, we are done. 

Send commit messages containing the aborts..set to the non-read-only partic­
ipants; when all of them acknowledge the commit, add a "done" <topaction 
aid> event record to the buffer. 

(b) If any participant refuses to prepare, discard any local locks and versions held 
by the topaction's descendants. Add "aborted" <topaction aid> event record 
to the buffer and send abort messages to the participants. 

( c) If there is no answer after repeated tries, resend the prepare message to the 
new primary if there is one. Otherwise, abort the topaction. 

Figure 4.5: Processing at active primaries of clients 
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indicating that the view has changed, or no reply at all (after a sufficient number of 

probes). In either case, the primary aborts the call action and adds the call action's aid 

to the parent's aborts..set. Then it tries to determine the current viewid and primary of 

the server. Hit discovers new information, it updates its cache and tries the call again, 

generating a new call action with a different aid. Otherwise, it returns to the user code 

with a special exception indicating that the destination cohort is not responding. As in 

Argus, the intent of this exception is to inform the user code that an immediate retry is 

unlikely to succeed, but that a later attempt might succeed. 

The second, and most likely outcome, is a reply message for the call. In this case, 

the call action commits. The reply message contains a pset and an aborts....set. The 

pset contains pairs for this call and any further handler calls made in processing it; the 

aborts....set contains aids of aborted descendants of the call action. The pairs in the reply's 

pset are added to the parent's pset, and the aids in the reply's aborts....set are added to 

the parent's aborts....set. In doing these additions, certain optimizations are possible to 

keep the sizes of the set small. For example, if some action A in the aborts..set is a 

descendant of a second action B, then only B need be retained since aborting it will undo 

the effects of all its descendants, including A. If there are two pairs in the pset for the 

same guardian group, and if the two viewstamps have the same viewid, then only the 

pair with the larger viewstamp need be retained, since any cohort that knows about the 

later viewstamp will also know about the earlier one. 

Note that more than one pair for a server may appear in the pset due to view changes. 

We must keep pairs corresponding to different views because viewstamps are meaningful 

only for their own view; they imply nothing about events belonging to earlier views. For 

example, suppose action A makes a call A.1 to server G, and that this call runs and 

commits in view vl, and is assigned viewstamp <vl, 12>. This viewstamp is passed 

along in the reply message and is merged into the pset, resulting in pset { <G, <vl, 

12>> }. G undergoes a view change, switching to new view v2. Then A makes call A.2 

to G. A.2 commits and is assigned viewstamp <v2, 7>, which is sent in the reply message 

to the parent. If we tried to retain just the "later" viewstamp, G could agree to prepare 

by mistake, for example, if its viewstamp_history contained <vl, 6> since it would not 

know that it needs to know about <vl, 12>. 
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Coordinator for two-phase commit. When the topaction completes, the primary 

of the replicated client acts as the coordinator of two-phase commit. 

The primary determines who the participants are from the pset. It sends prepare 

messages to the primaries of participants containing the committing topaction aid, the 

pset, and the aborts_set. The pset allows the participants to determine whether all effects 

of descendants of the top action at that participant are known. The aborts_set allows 

participants to undo effects of aborted descendants. 

The primary of the coordinator then acts as a participant locally: it releases any read 

locks held by descendants of the topaction and discards any locks and versions for any 

action that is a descendant of some action in the aborts_set. 2 

If all participants agree to prepare, the coordinator adds a "committing" <parts_set, 

aborts_set, topaction aid> event record to its buffer, and forces the entire buffer to 

its backups. This ensures that the commit will be known across a view change of the 

coordinator. The parts_set lists only the participants where the topaction holds write 

locks, since only these must take part in phase two; the reply from the participant 

indicates whether or not it is read-only. Note that user code can continue running as 

soon as the "committing" record has been forced to the backups. 

Then the coordinator sends commit messages containing the aborts_set. It continues 

to retransmit commit messages to a participant until it receives a done response. When 

it has received done messages from all participants, it adds a "done" <topaction aid> 

event record to its buffer. 

We can optimize the coordinator protocol for read-only actions as follows: If the 

topaction is entirely read-only, there is no phase two. If the topaction is read-only at 

some participants, those participants need not participate in phase two; the coordinator 

sends commit messages only to the remaining participants (non-read-only) listed in the 

parts_set. 

If any participant refuses to prepare (sends back a refused message), the coordinator 

sends abort messages to all participants. Abort messages are sent just once; they are 

not retransmitted and are not acknowledged. The primary of the coordinator adds an 

"aborted" <topaction aid> event record to its buffer. If some participant fails to respond 

2The reason for this is that some descendant in the call chain might have made a handler call to the 
topaction's primary. But in reality these locks would have already been released. 
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after a reasonable attempt to communicate with it, the coordinator should try to find 

out if the view has changed and whether a new primary was chosen and then resend the 

prepare message to the new primary. Otherwise, abort the topaction. 

The coordinator need not communicate with its backups upon aborting a topaction, 

that is, it need not add any information about the abort to its buffer. Suppose the 

coordinator's group later suffered a view change that led to a new primary. Since the 

coordinator's state is not checkpointed, any view change of the coordinator must cause 

any of the group's topactions to abort automatically. To avoid sizable amounts of lost 

work in the case of failures, the topaction should be structured to run as a series of 

short topactions [Gifford 85]. Short topactions have the added benefit of minimizing lock 

conflicts. Even though writing an "aborted" record to the coordinator's buffer is not 

necessary, we do it in order to speed up queries. For example, suppose a backup is cut 

off from the majority by a partition; if it received the "aborted" record, it can respond 

to a query about that topaction. 

4.3.2 Active primaries of replicated servers 

Servers process handler calls and act as participants in two-phase commit. They 

may also make further calls (thus behaving as clients) on other servers in the course of 

processing calls. Figure 4.6 summarizes the processing at the primary of a server. 

The state of a cohort was described in Figure 4.3. Recall that the gstate contained 

the objects accessed by user actions. Actions that run at the primary acquire locks on 

objects in the gstate and create and modify tentative versions for them. (They may also 

create new objects.) In addition, while a handler call is running, it may use temporary 

objects that are discarded when it returns. To record the effects of a call, it is sufficient 

to record its effects on the objects in the gstate. 

Processing a handler call. If the call message's viewid is not equal to cur_viewid 

the call is refused because in general it is not possible to know if this call is a duplicate. 

Otherwise, the primary creates an empty aborts_set and pset for the handler action and 

runs the call, possibly making further nested calls as described in section 4.3.1. When the 

call completes, it adds a "completed-call" <aborts....set, handler aid, object-set> event 

record to the buffer. Each member in the objecLset identifies an atomic object that was 
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read or written in the course of processing the call and indicates the type of lock obtained; 

if it is a write lock, the object contains the tentative version created for the subaction. 

Then the primary adds a pair <mygroupid, new_vs> for this call to the handler action's 

pset, where new_vs is the viewstamp returned by the buffer add operation, and returns 

the pset and aborts...set in the reply message. Finally, as in Argus, the primary records 

information about the handler action and the objects it used in committed. 

If the handler action aborts, the pset in the reply message is empty. If the aborting 

handler action made no remote calls that may have committed at other guardian groups 

(that is, its pset and aborts...set are empty), the aborts...set in the reply is empty; otherwise, 

it contains the aid of the aborting handler action. Information about the action is 

discarded, and so are its locks and versions for local objects. Abort messages are sent in 

the background to all guardian groups in the pset. 

When a primary of a server receives a call message for a handler call after the server 

had undergone a view change, there is in general no way for it to know whether the call 

had been run before the change. In particular, if the call aid in the message is not known 

to the primary, this might mean that this is a new call, or it might mean that the call 

ran before the view change or was running when the view change happened. In the first 

case, we need to redo the call; in the second case, we must not redo the call. To resolve 

this uncertainty, the server rejects the call. The client can then abort the call action, 

update its cache with the returned information, and retry in a new call action with a 

new call aid and new viewid. Aborting the old call action ensures that the nested call 

has no effect, and so there is no chance that the call will run more than once. Note that 

typically aborting the call is cheap because the call did not actually run. At worst we 

lose the work done by a subaction, but not the work done by the topaction. 

Processing a prepare message. The primary can agree to prepare only if it knows 

about all handler calls it has done on behalf of the topaction. To determine if it knows, 

it uses its viewstamp_history and the pset in the prepare message: the pset tells it what 

"completed-call" events must be known, and the viewstamp_history tells it what events 

are known. If needed events are not known, it rejects the prepare and adds an "aborted" 

record for the topaction to the buffer. Otherwise, it forces the buffer enough to ensure 

that all "completed-call" records for the topaction are known at the backups and then 
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Processing a handler call: 

1. If the call message contains the wrong viewid, send back a rejection message con­
taining the new viewid and primary. 

2. Create an empty pset and aborts..set. Then run the call. If it makes any nested 
calls, process them as described in Figure 4.5. 

3. If the action commits, add a "completed-call" <aborts....set, handler aid, object..set> 
event record to the buffer; the object..set lists all objects used by the handler call, 
together with the type of lock acquired and the tentative versions if any. Add a 
<mygroupid, new _vs> pair to the pset, where new _vs is the viewstamp returned 
by the buffer add operation, and send a reply message containing the pset and 
aborts..set. Record the handler aid and obj..set in committed. 

4. If the handler action aborts, send a reply message containing an empty pset. The 
aborts..set contains the handler action aid if there are committed, non-local descen­
dants; otherwise it is empty. 

Processing a prepare message: 

1. If compatible(pset, mygroupid, viewstamp_history) is true perform a force­
to (vsmax (pset, mygroupid)). Release read locks held by descendants of the top­
action, discard locks and versions held by descendants of actions in the aborts..set, 
and reply ok. In the reply, indicate whether the topaction held only read locks 
at this participant. If the topaction is read-only, add a "committed" <aborts..set, 
topaction aid> event record to the buffer. 

2. Otherwise, send a refused message to the coordinator refusing the prepare and 
abort the topaction; discard locks and versions held by its descendants and add an 
"aborted" <topaction aid> event record to the buffer. 

Processing a commit message: 

1. Add a "committed" <aborts..set, topaction aid> event record to the buffer. Per­
form a force-to(new_vs), where new_vs is the viewstamp returned by the buffer 
add operation. Discard locks and versions held by descendants of actions in the 
aborts....set and then release locks and install versions held by descendants of the 
topaction. Finally, send a done message to the coordinator. 

Processing an abort message: 

1. Discard locks and versions held by descendants of the aborted action. If the aborted 
action is a topaction, add an "aborted" <topaction aid> event record to the buffer. 

Figure 4.6: Processing at active primaries of servers. 
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sends a prepared message to the coordinator. 

When the primary receives a prepare message, it compares the pset of the message 

with its viewstamp_history. We say the pset is compatible with the viewstamp_history 

of the primary if the primary knows about all handler calls done at its group on behalf 

of the topaction. More formally, we define compatible as a predicate on psets, as follows: 

compatible(ps, g, vh) -

V p E ps (p.groupid = g ::::} 3 v E vh (p.vs.id = v.id::::} p.vs.ts ~ v.ts)) 

where ps is a pset, g is a groupid, and vh is the viewstamp_history. 

We also need an auxiliary operation on psets. The vsmax(ps, g) function, where ps 

is a pset and g is a groupid, returns the largest viewstamp associated with a handler call 

to the group (this is the viewstamp of the most recent "completed-call" event): 

vsmax(ps, g) - max( {p.vs I p E ps A p.groupid = g}) 

max( vs_set) - v1 E vs...set s.t. V v2 E vs...set 

(v2 .id<v1.id) V (v2 .id=v1.id A v2 .ts~v1.ts) 

Note that vs max is well-defined because there must be at least one pair p in the pset for 

this group. 

If compatible(pset, mygroupid, viewstamp_history) is true, the primary forces the 

buffer by performing force-to (vsmax(pset, mygroupid)). Forcing ensures that the backups 

know about all events that preceded the reply of the last handler call to this group for the 

preparing action. The primary releases read locks held by descendants of the topaction 

that committed to the top. Locks and versions are discarded for any action that is a 

descendant of some action in the aborts...set. If the action now holds no locks, that is, all 

descendants that committed to the top only did reads, the primary adds a "committed" 

<aborts..set, topaction aid> event record to the buffer and sends an ok-readonly message 

back to the coordinator. Otherwise, the primary sends a ok message to the coordinator. 

Even when an action has only read locks, we must force the "completed-call" records 

to the backups when preparing to ensure that read locks are held across a view change. A 

view change may have happened without this primary being aware of it, and there may 

be a new primary already processing user requests in the other view. Furthermore, the 

preparing action's read locks may not be known in the new view, so the new primary may 
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allow other transactions to obtain conflicting locks. Forcing the buffer guarantees that 

the prepare can succeed only if the topaction's locks survived the view change. Without 

the force, the prepare could succeed at the old primary even if the locks did not survive. 

If the pset in the message is not compatible with the viewstamp_history, the primary 

rejects the prepare: It adds an "aborted" <topaction aid> event record to the buffer, 

discards all locks and versions held for descendants of the topaction, and sends a refused 

message to the coordinator. 

Processing a commit message. When a primary receives a commit message, it 

adds a "committed" <aborts...set, topaction aid> event record to the buffer and does a 

force-to(new_vs), where new_vs is the viewstamp returned by the buffer add operation. It 

discards the locks and versions for descendants of actions in the aborts...set, installs new 

base versions and releases write locks, and sends a done message to the coordinator. If no 

commit message is received from the coordinator, the participant periodically retransmits 

its ok message. 

We include the aborts...set in the commit message for the following reason. Having 

agreed to prepare, a participant may later undergo a view change that results in a new 

primary. Before committing the topaction, this new primary must discard the same locks 

and versions for descendants of actions in the aborts...set, as the old primary did. This 

new primary does not know what effects of the committing topaction to discard because 

it did not receive the prepare message that carried the aborts...set. Hence, the commit 

message must bear the the aborts...set. 

Processing an abort message. When a pnmary receives an abort message, it 

releases locks and versions held by descendants of the action. If the aborted action is a 

topaction, it adds an "aborted" <topaction aid> event record to the buffer. 

4.3.3 Other processing at cohorts 

Cohorts that are not active primaries reject messages sent to them by other guardian 

groups, except for queries as discussed in the next section. The rejection message contains 

information about the current viewid and the identity of the primary if the cohort knows 

them (for example, if it is a backup in an active view). 



52 4. Integrating Replication with a Transaction System 

Backups also receive messages containing information sent from the primary's com­

munication buffer. Each such message contains the current viewid of its sender and a 

sequence of event records. Inactive backups discard such messages. An active backup 

discards any message whose viewid does not match the cur_viewid, and any duplicate 

entries in a message whose viewid does match. It processes accepted event records in 

timestamp order, updating its state accordingly, and sends an acknowledgement to the 

primary. It can simply store the entries, or it can perform them, for example, by setting 

locks and creating versions for a "completed-call" entry. Perhaps a good compromise is to 

store "completed-call" entries (as part of the gstate) until the "committed" or "aborted" 

entry for the call's topaction is received. 

4.3.4 Queries 

Recall from the earlier discussion in section 4.1.3 that the Argus implementation does 

not guarantee that all messages about transaction commits and aborts arrive where they 

might be needed. Query messages compensate for lost information. Under viewstamped 

replication, query messages are used in the same fashion. For example, the primary of 

the participant can send a query to the primary of the coordinator if the participant 

needs to know whether a topaction aborted. (The groupid in the aid of an action enables 

a cohort to find out to which guardian group it should direct its query.) 

The only difference is that a query can be sent to other cohorts in a guardian group 

besides the primary; we allow any cohort to respond to a query whenever it knows the 

answer, in order to speed up the processing of queries. For example, queries are used 

in our system to reduce the window of vulnerability of two-phase commit. A cohort 

from the coordinator's group could be in an old view and may know that a topaction 

committed because this happened before the view change, and will respond committed 

to the participants. As another example, a cohort that is not a primary may know about 

the abort of a topaction because it received the "aborted" event record from the primary. 

4.3.5 Non-replicated clients 

This section discusses the usefulness of replicating clients, and proposes a way of 

making two-phase commit more robust for clients that are not replicated. 

Why might replicated clients be useful? There are two kinds of clients. First, a client 
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might actually be a server that does some tasks independently of handler calls. For 

example, a mail system might run this way, spooling mail for later delivery, and then 

delivering it in background mode. Replication is clearly useful for such a server. 

Second, a client might act as a front-end module that interacts with a person at 

a console. The usefulness of replication is less clear in this instance. If the node on 

which the client is running fails (crashes or is partitioned), there may be no way some 

backup can take over communication with that particular console. Instead, the person 

may resort to some duplicate mechanism, such as another console or the telephone, that 

will put him in touch with a different front-end. These kinds of clients should probably 

run unreplicated. 

Even when clients are unreplicated, however, it is useful to have a replicated coor­

dinator, because this reduces the window of vulnerability during the two-phase commit 

protocol. When the coordinator is replicated, a participant will be able to determine the 

outcome of a topaction for which it is prepared if it can communicate with any cohort 

that knows the outcome. Furthermore, if the primary in the new view does not know 

about the commit, then the action can abort. 

A replicated coordinator can be provided by means of a coordinator server. This is a 

guardian group that is used by an unreplicated client to start and end topactions. The 

client sends a start-action message to the coordinator server, which returns a topaction 

aid that the client then uses in all of its calls to regular servers. When the client is ready 

to commit, it sends a ready-commit message containing the aid, aborts..Bet, and pset to 

the server. The server then takes over coordinating the commit of the topaction. The 

primary of the server sends prepare messages containing the aid, aborts..Bet, and pset to 

the participants, and the protocol proceeds as described above. After the "committing" 

event record has been forced, it sends commit messages to the other participants and 

notifies the client that the topaction has committed. It also responds to queries about 

the outcome of the topaction; its groupid is part of the topaction's, so that participants 

know who it is. In answering a query about a topaction that appears to be still active it 

would check with the client but if no reply is forthcoming, it can abort the transaction 

unilaterally. 
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4.3.6 Discussion 

There is a one-to-one correspondence between event records and information written 

to stable storage in a conventional system and therefore our system works because a 

conventional one does. The "completed-call" event records are equivalent to the data 

records that must be forced to stable storage before preparing, and the "committed" and 

"aborted" event records are the same as their stable storage counterparts. 

The only difference is our treatment of topaction prepare. A peculiarity of our algo­

rithm is that there is no analog of the prepare record that is written to stable storage in 

an ordinary two-phase commit. Prepares are not recorded in the communication buffer; 

they are only processed by waiting until a sub-majority of backups know about the ef­

fects of the prepared topaction. However, if a majority of the configuration (the primary 

plus the sub-majority of backups) know about the processing of the topaction, this is 

sufficient to ensure that the action's effects will survive subsequent view changes, and 

therefore the action will be able to commit. 

In a conventional system, the prepare record serves two functions. First, it says who is 

prepared, so that we know to honor these promises. Second, it says who is not prepared; 

for these we can abort unilaterally. 

In our method, the pset in the prepare message and the viewstamp_history tell the 

coordinator who is prepared; this information provides for the first function. The second 

function is much less important for our method. In a conventional system, recovering 

from a crash of a guardian can take a long time; a transaction that has not yet prepaed 

at this crashed guardian cannot commit and must abort. In our system view changes 

mask failures and are fast; the probability that an unprepared transaction will commit 

is high because the effects may have already been recorded at backups. Therefore, we 

try to commit here too. In a non-replicated system, if we want to try to commit after 

recovering, our method should be used. The added advantage is that preparing may 

sometimes be faster since information about the effects of handler calls can be recorded 

early. H all needed information is on stable storage at prepare time, we can avoid the 

synchronous delay. 



4.4. Running Non-Nested Transactions 55 

4.4 Running Non-Nested Transactions 

Nested actions are useful in our system because they are an economical way of masking 

the effects of view changes: We only abort the subaction, not the topaction. Furthermore, 

only when the view changes, do we need to abort and retry a subaction; thus, we do extra 

work only when the problem arises. 

Without nested actions, however, aborting the call action is not an option. Instead, 

we must abort the entire topaction, in which case we are likely to lose work that has been 

done. In this section, we discuss how non-nested transactions run in a system that uses 

our replication method, and describe various ways of reducing the number of situations 

in which aborts occur. 

To make a handler call, the system sends the call message to the primary. There are 

three possible results of such a message. The first, and most likely, is a reply message for 

the call; this result is handled in the same way as for nested actions. 

The second possibility is no reply at all (after a sufficient number of probes by the 

system). In this case, we abort the topaction because we cannot know whether the call 

message would be a duplicate if we sent it to a new primary. The message might be a 

new one, or it might be a duplicate for a call that ran before the view change or was 

running when the view change happened. In the first case, we need to redo the call; in 

the second case, we must not redo it. To resolve this uncertainty, we abort the topaction. 

The third possibility is a normal reply that also informs the caller that the view has 

changed. We update the cache with the new information. This possibility can arise if the 

server has undergone one or more view changes since the last handler call from the client 

but the primary remains the same throughout. In this case, the primary could maintain 

enough connection information to enable it to determine whether the call is a duplicate; 

if not, it can run the call and send back the special normal reply. 

There are various ways of reducing the probablity that a topaction will abort. For 

example, we can keep client caches up-to-date by sending probes to find out the current 

view when a call is made to a group that has not been used for a while. Then when the 

call is made, it is highly likely to be made in the right view. Whether such an approach 

is practical depends on communication patterns. If the patterns are essentially static, 

that is, the client talks to a fixed set of servers and talks to them frequently, then the 
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Non-replicated system Viewstamped replication 

RP Cs larger reply messages 

prepare larger prepare messages 

best force prepare record no delay 

worst write changes; force buff er 
force prepare record 
to stable storage 

commit force commit record add commit record to 
to stable storage buff er and force 

Figure 4.7: Performance. 

information in the cache is likely to be up-to-date and probes will not be needed. If 

patterns are not static, however, then we may end up having to make two calls for each 

call, one to probe, and the second to make the call. Note that it will not work to combine 

the two calls; once the call message is sent, we must assume the worst (duplicate messages) 

if it is rejected. As another example, the primary could force a special "start_call" record 

to the backups before making any nested remote calls; in the absence of such a record, 

it would be safe for a primary to accept the call message even if the viewid in the call 

message is old. Neither of these techniques is satisfactory, however, since they delay 

normal processing. 

4.5 Performance 

In this section, we discuss how our method performs when running transactions and 

changing views. 

Since operation calls execute only at the primary cohort and need not involve the 

backups at all, their performance is comparable to that in a non-replicated system. Mes­

sages under viewstamped replication are slightly larger because viewids must flow on 

every call message and possibly several viewstamps on every reply message. 
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In the best case, we expect that prepare messages will be processed entirely at the pri­

mary because the needed "completed-call" event records for handler calls of the preparing 

topaction will already be stored at a sub-majority of cohorts. In a non-replicated system, 

we incur a synchronous delay while the prepare record is written to stable storage. In the 

worst case, the primary must wait while the relevant part of the buffer is forced to the 

backups. Careful engineering is needed here to provide both speedy delivery and small 

numbers of messages. In a non-replicated system, we must write the modifications to 

stable storage, followed by the prepare record. 

Committing a topaction requires forcing the "committing" event record to the co­

ordinator's backups; the remainder of the protocol can run in background. For both 

preparing and committing, our method will be faster than using non-replicated clients 

and servers if communication is faster than writing to stable storage, which is often the 

case. Figure 4. 7 summarizes this comparison. 



View Management 
Algorithm 

Transaction processing depends upon forcing information to the backups so that a 

majority of cohorts of a configuration know about particular events. The job of the view 

management algorithm is to ensure that events known to a majority of cohorts survive 

into subsequent views. The algorithm makes sure that every view contains at least a 

majority of cohorts and starts up the new view in the latest possible state. 

If every view has at least a majority of cohorts, then it contains at least one cohort 

that knows about any event that was known to a majority of cohorts in the last view .1 

(The members in the last view have at least one cohort in common with the current 

view.) Thus, we need only make sure that the state of the new view includes what that 

cohort knows. We do this using viewstamps: the state of the cohort with the highest 

viewstamp for the previous view is used to initialize the state in the new view. This 

scheme works because event records are sent to the cohorts in timestamp order, and 

therefore a cohort with a later viewstamp for some view knows everything known to a 

cohort with an earlier viewstamp for that view. 

This chapter describes the algorithm in detail. The next section gives an overview of 

the algorithm. Then we present the details. Next, we argue that the algorithm works by 

1There is a situation involving a sequence of failure events that would invalidate this guarantee. We 
defer discussion of this point until section 5.2. 

58 



5.1. Overview of the Algorithm 59 

discussing its behavior in a variety of situations. Finally, we discuss the performance of 

the algorithm. 

5.1 Overview of the Algorithm 

Each cohort sends probe messages periodically to all other cohorts in its configuration, 

checking to see if the others are alive. If a cohort notices that it is not communicating 

with some other cohort in its view, or if it notices that it is communicating with a cohort 

that it could not communicate with previously, then it initiates a change in view. We 

call that cohort the view manager; the other cohorts are the underlings. 

The algorithm operates in two phases. In phase one, the view manager invites all 

cohorts in the configuration to join the new view it will attempt to establish and waits for 

responses. It computes a new, unique viewid to name the new view and sends invitation 

messages to the other cohorts in its configuration. A cohort accepts the invitation only 

if it has not already received another invitation to join a higher-numbered view; each 

acceptance message contains the latest viewstamp known to that cohort, and also an 

indication of whether that cohort was the primary in the view of that viewstamp. 

If less than a sub-majority accept the invitation, then the cohorts remain inactive 

and in their old views for a time, and then the algorithm is restarted. 

If a sub-majority of cohorts accept the invitation, the view manager enters phase two 

to complete the view change. The cohort returning the largest viewstamp is selected as 

the new primary; the old primary of the view of that viewstamp is selected, if possible, 

to minimize disruption in the system. The manager sends a message to the new primary, 

notifying it about the new view; if the manager is itself the new primary, no message is 

sent. 

If the cohort designated as the new primary does not refuse the message, it notifies 

the backups lazily about the new view by adding a special "newview" event record to 

the buffer. This event record contains the new view, the viewstamp history, and the 

primary's current state. The current state is a complete description of all object uids, 

base versions, lock information, and tentative versions if any. After adding the record, the 

cohort immediately becomes active and starts responding to handler calls. Eventually, 

during the course of normal transaction processing at the new primary, this "newview" 
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record will reach all the backups in the new view. Each backup adopts the new view and 

updates its state to be the same as the primary's state contained in the event record. 

5.2 The Full Algorithm 

We now examine in some detail the algorithms to implement view management. Fig­

ure 5.1 illustrates the view management algorithm modeled as a finite state machine. A 

copy of the algorithm runs at each cohort. The state machine comprises three states: 

ACTIVE, VIEW _MANAGER, and UNDERLING. 

A cohort is usually in the ACTIVE state. For the purposes of exposition in this 

chapter, there is little difference between the primaries and backups. It changes to 

the VIEW_MANAGER state when it detects any changes in the communication capability 

amongst cohorts. It makes a transition to the UNDERLING state upon accepting an 

invitation from another cohort. 

In the VIEW ..MANAGER state, a cohort changes state to UNDERLING if it accepts an 

invitation to join another cohort's view, or if it is not the new primary. If the cohort 

times out waiting for responses, it stays in the VIEW _MANAGER state. If it becomes the 

new primary, it makes a transition to ACTIVE; if some other cohort is chosen, it changes 

to the UNDERLING state. 

In the UNDERLING state, if a cohort times out waiting for a newview message to arrive 

from the new primary, it switches to the VIEW _MANAGER state to start the algorithm all 

over again. When it receives either the newview message notifying it that it is the new 

primary or the buffer messages from the new primary, it switches to the ACTIVE state. 

Figure 5.2 shows the program structure corresponding to the finite state machine. It 

is structured as an infinite loop. State is a tagged, discriminated union with component 

tags, each tag showing what state the machine is in. Associated with each tag is a 

program that is executed while the machine is in that state. 

The remainder of this section shows the programs run in the various states. These 

programs communicate by using the send and receive statements. 

The send m( args) to d statement sends message m to destination d. Send is 

unreliable; messages can be lost. A process receives messages by executing the re­

ceive statement; if there is more than one message waiting for it, one is selected non-
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buffer 
message 

client 
requests 

I am 
pnmary 

detect change 

timeout 

accept invite, 
not primary 

Figure 5.1: View management algorithm: Finite State Machine. 

while true do 
tagcase state 

tag active: active() 
tag view _manager: viewmanager() 
tag underling: underling() 
end% tag 

end 

Figure 5.2: State machine code. 
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deterministically. Then the arm corresponding to the name of that message is executed. 

The receive statement has an optional timeout parameter associated with it. For ex­

ample, receive within t says that we wait for t time units for messages to arrive. If 

none arrive within the allotted time, the statement terminates with the timeout excep­

tion. Messages are sent both by other cohorts and by the system when probes indicate 

a change in communication capability. 

5.2.1 Cohort state--view changes 

Figure 5.3 shows the entire cohort state, including the variables associated with view 

management. In this section, we discuss this aspect of the cohort state. 

Each cohort knows the view (cur _view) it is a member of as of the last view change 

and the identifier (cur _viewid) that uniquely names the view. M ax_viewid is used during 

a view change to record the viewid of the view that is being formed and represents the 

highest-numbered viewid known by a cohort. Cur _vs is the current viewstamp and could 

be implemented as a pointer to the top of the viewstampJiistory. State represents the 

three states of the finite state machine. 

We assume that a cohort's state is stored in volatile memory and is lost in a node crash 

with the exception of the following four variables: mygid, mygroupid, configuration, 

and cur _viewid. We must remember these after a crash: mygid says who the cohort is, 

mygroupid says what group it belonged to, conj iguration says who the members of the 

configuration are, and cur _viewid says what the current viewid was before the crash. 

We assume a small amount of stable storage to which every cohort has access. When 

the cohort is created as part of creation of the guardian group, the cohort stores mygid, 

mygroupid, configuration, and cur _viewid. Furthermore, we must write the cur _viewid 

as part of every view change. When a cohort recovers from a crash, it must initialize 

these variables by reading their values stored in stable storage. Then it initializes the 

variable up_to_date to be false. Finally, it starts up in the view _manager state. 

5.2.2 The active state 

Figure 5.4 shows a code fragment for the ACTIVE state. 

In this state, a cohort could be either a primary or a backup. We do not show this 

part of processing, but just the processing pertaining to view management. There are 
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gstate: {object} % cohort state 
state: status % cohort is active or doing view changes 
mygid: int % unique name of this cohort 
configuration: {int} % lists unique names of cohorts 
mygroupid: int % unique name of guardian group 
timestamp: int % timestamp generator 
viewstamp_history: [viewstamp] % indicates events known to cohorts 
buffer: [event-record] % communication buffer 
cur_viewid: vid % identifier of current view 
cur_view: view % the primary and backups 
max_viewid: vid % highest viewid seen so far 
cur_vs: viewstamp % current viewstamp 
up_to_date: bool % true if gstate is meaningful 

where 
object = <uid: int, base: T, lockers: {lock-info}> 
lock-info= <locker: aid, info: oneof[read: null, write: T]> 
vid = <cnt: int, gid: int> 
view= <primary: int, backups: {int}> 
viewstamp = <id: vid, ts: int> 
status = oneof[active, view..manager, underling: null] 
event-record= oneof[committing: <parts-set: {groupid}, aborts-set: {aid}, 

action: aid> 
done: <topaction: aid> 
completed-call: <aborts-set: {aid}, handler-aid: aid, 

object-set: {object}> 
committed: <aborts-set: {aid}, topaction: aid> 
aborted: <topaction: aid> 
newv1ew: <cur_view: view, vs: viewstampJ:iistory, 

objectjnfo: {object}> 
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Figure 5.3: Cohort state. {} denotes a set, oneof means a tagged union with component 
tags, and <> denotes a record, with component names and types as indicated. 
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active = proc{) 
receive 

detect_change(new_viewid: vid): % sent by probe monitor 
ifnew_viewid -:f cur_viewid then return end% if 
state := view _manager 

invite(new_viewid: vid, g: int): 
if new _viewid ~ max_viewid then return end % if 
max_viewid := new _viewid 
if up_to_date 

then send accept(mygid, max_viewid, cur_vs, is_primary?(mygid)) to g 
else send crash_accept(mygid, max_viewid, cur_viewid) tog 
end% if 

state := underling 
others: % this is where transaction messages and queries are processed 

% and also (for backups) event records from the primary 
end % receive 

end 

Figure 5.4: Active state. 

two ways to change state: detecting changes in communication capability and accepting 

an invitation message. 

We imagine that some process associated with each cohort monitors the "health" 

of other cohorts in the configuration. It probes other cohorts, checking to see if they 

are alive. If the set of responses differs from the current view, the process sends a 

detecLchange message containing the cur_viewid to its cohort; otherwise, it starts another 

round of probing. 

If a cohort receives a detecLchange message from this probe monitor, it compares the 

incoming viewid in the message with the cur_viewid. If the viewids are the same, the 

cohort assumes the role as view manager and changes state to VIEW ..MANAGER. Oth­

erwise, the cohort ignores the message. We include the cur_viewid in the detecLchange 

message to prevent unnecessary view changes. For example, if a cohort joined a view, be­

came active, and then received an old detect_change message an unnecessary view change 

would be started. Why might a detecLchange message be considered old? One reason 

is that the probe monitor was slow in delivering it. Another reason is that there could 

be several messages waiting and the process executing the receive statement selected 

another message, not the detecLchange message. 

A cohort gl receiving an invitation message from some other cohort g2 accepts the 
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invitation only if g2 knows a higher-numbered viewid. gl records the new_viewid in 

max_viewid, sends an accept, and becomes an underling. M ax_viewid represents the 

largest viewid seen so far by this cohort. 

There are two kinds of acceptance messages, "normal" ones and "crashed" ones. If the 

cohort is up to date (that is, up.lo_date =true), it sends a normal acceptance containing 

its identity, its max_viewid, its cur _vs, and an indication of whether it is the primary 

in the current view. ls_primary?(mygid) is a function that returns true if mygid is the 

primary in the view of the current viewstamp, or false otherwise. If the cohort is not up 

to date, it sends a "crash_accept" response; this response contains its max_viewid and 

its cur _viewid, and indicates that it has forgotten its gstate. 

5.2.3 The view manager state 

Figures 5.5 and 5.6 show the details of the algorithm run by the view manager. The 

view manager first discards the contents of its buffer. Then it computes a new, unique 

viewid composed of the successor of the largest sequence number in a viewid seen so far 

and its gid, mygid, and records it in max_viewid. It sends a message to all cohorts in the 

configuration (excluding itself), inviting them to join the view identified by max_viewid. 

Responses are recorded in a responses data structure that maps gids to normal accep­

tances or crash acceptances. The cohort records a crash acceptance for itself if up.lo..date 

is false; otherwise, it records a normal acceptance. 

In the receive statement, the cohort waits on three kinds of messages: accept and 

crash..accept messages from cohorts that agree to accept the invitation and invitation 

messages from other cohorts that think they are view managers. The 81 parameter 

indicates that the cohort waits 81 time units to cover the time needed to transmit the 

invitation messages and the time for the acceptances to fl.ow back to the sender. 

Upon receiving a normal accept message, the cohort checks the viewid in the message 

against its max_viewid. If they are the same, then the cohort inserts a normal response 

in responses, keyed to the gid of the sending cohort. If the insert operation discovers 

that there is already an entry for g, it remaps g to the newly created response record. 

This handles the situation in which the view manager receives several messages from 

some underling. If the number of responses is equal to the number of cohorts in the 

configuration, the cohort has heard from everyone before the timeout expired and breaks 
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viewmanager = proc() 
buffer := buffer$new() 
max_viewid := vid${cnt: max_viewid.cnt + 1, gid: mygid} 
for c: int E configuration - {mygid} do 

send invite(max_viewid, mygid) to c 
end% for 

response= oneof1normal: <cur_vs: viewstamp, prim?: bool>, crash: <cur_viewid: vid>] 
responses: map[gid,response] := create() 
resp: response 
if up_to_date 

then resp := make..normal(max_viewid, cur_vs, is_primary?(mygid)) 
else resp := make_crash( cur_viewid) 

insert( responses, g, resp) 

while true do 
receive within 61 

accept(g: int, new_viewid: vid, new_vs: viewstamp, prim?: bool): 
if new_viewid = max_viewid 

then insert(responses, g, make..normal(new_vs, prim?)) 
if size( responses) = iconfigurationl then break end % if 

end% if 
crash..accept(g: int, new_viewid, cur_viewid: vid): 

if new_viewid = max_viewid 
then insert( responses, g, make_crash( cur_viewid)) 

if size( responses) = lconfigurationl then break end% if 
end% if 

invite(new_viewid: vid, g: int): 
if new_viewid ~ max_viewid then continue end % if 
max_viewid := new_viewid 
if up_to_date 

then send accept(mygid, max_viewid, cur_vs, is_primary?(mygid)) to g 
else send crash..accept(mygid, max..viewid, cur_viewid) to g 
end% if 

state := underling 
return 

others: % Queries are processed here 
end % receive 

end% while 
except when timeout: end% except 

Figure 5.5: View manager state. 
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if -maj(responses, configuration) then return end% if 

new_primary: int := choose_primary(responses) % Have majority 
except when no_view: % wait some time 

return end % except 
backups: {int}:= all(responses) - {new_primary} 
new_view: view := <new_primary, backups> 
if new _primary # mygid 

then send newview(new_view, max..viewid) to new_primary 
state := underling 

else if cur_view.primary # new_primary then abort topactions end% if 
cur_viewid := max_viewid % view manager is new primary . . 
cur_v1ew := new_view 
timestamp := 0 
cur_vs := <cur_viewid, timestamp> 
append cur_vs to viewstamp..history 
add "newview" <cur_view, viewstamp..history, objectjnfo> to buffer 
write cur_viewid to stable storage 
state := active 

end% if 

end 

Figure 5.6: View manager state (continued). 
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the loop. The view manager processes a crash...accept message from a cohort g like a 

normal accept, except that it inserts a special crash response record in the responses 

map, keyed to g. (In the code, a break statement causes an exit from the smallest 

containing loop.) 

In an incoming invitation message if the new_viewid is greater than the max_viewid, 

the recipient records the new_viewid in max_viewid, sends either a normal accept mes­

sage or crash...accept message to the manager, and changes state to UNDERLING as dis­

cussed below. Otherwise, it ignores the message because it comes from a cohort with a 

smaller viewid. (In the code, continue causes control to continue with the next iteration 

of the smallest containing loop.) 

When the receive statement times out we need to know whether at least a majority 

has responded. Figure 5 .6 shows the remainder of the view manager code. Maj is a 

predicate that returns true if the number of responses is at least a majority of cohorts 

of the configuration. If it returns false, then we wait for a while and then restart the 

algorithm in the VIEW_MANAGER state. 
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If we have at least a majority, the function choose_primary selects the cohort with 

the highest viewstamp as the new primary, using the old primary if possible; the view 

manager is itself selected if there is a tie and no old primary can be chosen (we do 

this to avoid extra messages). It may raise an exception no_view if a view cannot be 

formed; we defer discussion of the precise rules governing view formation. The function 

all returns the set of gids of all cohorts that responded; we then compute the backups by 

excluding the new_primary's gid from the set. The view manager assembles the new view 

consisting of the new primary and the backups. H the new primary is another cohort, 

the view manager sends that cohort a newview message containing max_viewid and the 

new view and enters the UNDERLING state to await information from the new primary. 

If the new primary is the same as the view manager, then it does the following. It 

checks to see if it was the primary in its previous view; if not, it aborts any of its active 

topactions, that is, those for which it would be the coordinator. It records max_viewid 

in cur _viewid and also the new view in cur _view. It initializes timestamp to 0. It creates 

a new viewstamp <cur_viewid, timestamp>, denoted by cur _vs, and appends it to the 

viewstamp_history. It adds a "newview" <cur_view, viewstamp_history, objectinfo> 

event record to the buffer, where objectinfo contains the full gstate. This information 

can be sent in the background, but should be sent quickly to prevent another cohort from 

starting a view change. Finally, it writes the cur_viewid to stable storage. Then it enters 

the ACTIVE state. At this point in time, the view "takes effect," so to speak. Only the 

new primary knows which cohorts are in the view and what the new viewid is. 

View formation can succeed only if two conditions are satisfied: at least a majority 

of cohorts must have accepted the invitation, and at least one of them must know all 

forced information from previous views. The latter condition may not be true if some 

acceptances are of the "crashed" variety. To see why forming a view is wrong if the latter 

condition is false, suppose a guardian group G consists of five cohorts gl, g2, g3, g4, 

g5 in view vl = {gl: g2 g3 g4 g5}, where gl is the primary. A partition separates g4 

and g5 from the rest; they remain in the old view vl, while v2 = {gl: g2 g3} is formed 

from the others. Next, gl crashes and recovers, losing its state. Then the old partition 

is repaired, making g4 and g5 accessible once again, but a new partition isolates g2 and 

g3. Cohorts gl, g4, and g5 are able to talk to one another. In the previous view v2, 

gl knew about events that were forced to a majority of backups, but since it crashed, it 
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now knows nothing at all. If gl, g4, and g5 were to form a new view, gl 's state would 

be updated with that of g4's and g5's, which is out of date. This new view v3 would not 

contain what gl knew, because gl crashed. 

To prevent this erroneous view formation, the last thing the new primary does during 

a view change is to record its cur_viewid on stable storage; the backups record the 

cur_viewid on stable storage while processing the newview event record. After a crashed 

cohort recovers, it sets upJ,o..date to false and starts up in the VIEW_MANAGER state. 

U p_to..date allows us to detect a situation like the one above and prevent view formation. 

In the example above, gl has a larger cur _viewid than g4 or g5, but gl is not up-to-date. 

Thus, we avoid forming the erroneous view, and instead, we wait a bit and then restart 

the algorithm in the VIEW _MANAGER state. 

The correct rule for view formation is as follows: A majority of cohorts have accepted 

invitations and, in addition, 

1. a majority of cohorts accepted normally, or 

2. crash_viewid < max_viewstamp.id, or 

3. crash_viewid = max_viewstamp.id and the primary of view max_viewstamp.id has 

indicated a normal acceptance of the invitation. 

where crash_viewid represents the largest viewid returned in a "crashed" acceptance, and 

max_viewstamp represents the largest viewstamp returned in a "normal" acceptance. 

Condition (1) says we can ignore crashed acceptances if we have enough normal ones; 

condition (2) says we can ignore crashed acceptances if they are from old views; and 

condition (3) says we can ignore a crashed acceptance if we have information from the 

primary of its view, because the primary always knows at least as much as any backup. 

5.2.4 The underling state 

Figure 5.7 shows the code executed in the UNDERLING state. First, the cohort discards 

the buffer; as before, this has an effect only if it was the primary. Three things can cause 

a change in state: receiving invitation messages, newview messages, or buffer messages. 

If the underling receives an invitation message from another cohort it accepts the 

invitation provided that the incoming viewid is greater than or equal to max_viewid; 
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otherwise, it ignores the invitation because it comes from a view manager that knows a 

smaller viewid. The new_viewid is recorded in max_viewid. ff up_to_date is true, then 

it sends a normal acceptance message; otherwise, it sends a crash...accept message. It 

remains in the UNDERLING state. 

If the underling receives a newview message, this means that the view manager whose 

view it agreed to join has appointed it the new primary. The message contains the new 

view nv and viewid max_v of the new view. The message is accepted only if the underling 

knows the same viewid; this ensures that since agreeing to join this view manager's 

view, the underling has not joined another, higher-numbered view. Also, if the cohort 

designated as the new primary crashed and lost its state before receiving the new view, 

it would be wrong for it to be the primary; in this case ( up_to_date is false) the cohort 

discards the message. Otherwise, the underling records the max_viewid as the current 

viewid and so on, just as the view manager did when it appointed itself as the new 

primary. 

The final possibility is that the underling receives a buffer message from the new 

primary. This message contains a sequence of event records and their timestamps. The 

cohort discards the message if its viewid is not equal to max_viewid. Otherwise, the 

cohort uses the first event record in the message (the "newview" record) to initialize the 

cohort state and writes cur_viewid to stable storage. Then, up.10...date is set to true, the 

other event records are processed, and the cohort becomes active. 

The reason for the 82 timeout is the following. 82 covers the time for the underling 

to send an accept message to the view manager. If the view manager is not the new 

primary, it takes additional time for the view manager to notify the new primary, and it 

may take even longer for the new primary to begin informing its backups. 

5.3 Why the Algorithm Works 

We claim that our view management algorithm assembles a new view and that the 

new view is initialized with the latest state information. Each view intersects with the 

next view, so that each view contains at least one cohort that knows about previous 

events. 

In this section, we argue that the view management algorithm is robust in the face 
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underling = proc() 
buffer := buffer$new() 
while true do 

receive within 62 

end 

invite(new_viewid: vid, g: int): 
if new_viewid :::; max_viewid then continue end% if 
max_viewid := new_viewid 
if up_to_date 

then send accept(mygid, max_viewid, cur_vs, is_primary?(mygid)) to g 
else send crash...accept(mygid, max..viewid, cur_viewid) to g 
end% if 

return 

newview(nv: view, max..v: vid): 
if max_v -:/= max.. viewid I -uptodate then return end % if 
cur_viewid := max_viewid 
cur_view := nv 
timestamp := 0 
cur_vs := <cur_viewid, timestamp> 
append cur _vs to viewstamp..history 
add "newview" <cur_view, viewstamp..history, object.info> to buffer 
write cur _viewid to stable storage 
state := active 
return 

buffer(viewid: vid, msg: [<ts: timestamp, e: event..record>]): 
if viewid -:/= max..viewid then return end % if 
for ts: timestamp, e: event..record in messages$elements(msg) do 

tagcase e 
tag newview(nv: view, hist: [viewstamp], objs: {object}): 

viewstamp..history := hist 
gstate := objs 
cur_view := nv 
cur_viewid := max_viewid 
cur_ vs := top of viewstamp..history 
write cur_viewid to stable storage 
up_to_date := true 

others: % handle "regular" event records here 
end % tagcase 

end% for 
state := active 
return 

others: % Queries are processed here 
end % receive 
except when timeout: state :=view.manager 

return end % except 
end% while 

Figure 5.7: View underling state. 
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of simple failures, concurrent view managers, and two coexisting primaries. 

5.3.1 The simple case 

Figure 5.8 illustrates the operation of the algorithm. We assume for simplicity that 

following the initial failure, no additional failures occur; once cohort gl becomes inac­

cessible, it remains inaccessible for the duration of the algorithm. In this section, we 

describe how the algorithm operates in this simple case. 

Figure 5.8(a) shows guardian group G consisting of five cohorts. gl is the primary, 

and the remainder are backups. For group G, viewid vl identifies view {gl: g2 g3 g4 

g5}. Each cohort, as usual, has its own viewstamp history. Cohorts send and receive 

probe messages. 

A communication failure makes cohort gl inaccessible, as we can see in Figure 5.8(b ), 

and g2, g3, g4, and g5 stop hearing from it. We suppose that g3 detects this change 

and galvanizes the algorithm into action.2 g3 becomes the view manager and enters the 

first phase of the algorithm. It computes a new viewid <2, g3> by incrementing the first 

component of its max_viewid and concatenating its my_gid. This viewid is higher than 

anything g3 has seen. Next, it sends invitation messages containing the new viewid <2, 

g3> to other cohorts in the configuration (gl, g2, g4, and g5) and waits for responses. 

In Figure 5.8(c) each cohort that received the invitation message sends back an accep­

tance message containing, among other things, its current viewstamp. To avoid cluttering 

the picture, we ignore the viewid and whether that cohort was the primary in the view 

of that viewstamp. No reply is forthcoming from gl since it is inaccessible. g3 collects 

the responses. 

In phase two of the algorithm, illustrated in Figure 5.8( d), g3 considers the responses 

and arbitrarily selects g2 to be the new primary (all underlings have the same latest 

viewstamp). g3 assembles the new view {g2: g3 g4 g5}, identified by v2 = <2, g3>. 

Finally, g3 sends a newview message to g2 containing {g2: g3 g4 g5} and <2, g3>. If g3 

were the new primary, no message would be sent. The algorithm is done. 

We noted earlier that at this point in time the new view exists only after the new 

primary receives the newview message. The other cohorts do not yet know (with the 

2 More than one cohort may detect this change and trigger the algorithm, but we defer discussion of 
that possibility until the next subsection. 
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<vl,5> 

<vl,7> <vl,4> 

vl = <1, gl> 

(a). Cohorts send probe messages 

communication failure 

(c). Phase 1 
g3 waits for responses 

communication failure 

<1, gl > 

(b). Phase 1 
g3 is view manager 
g3 sends out invitations 

communication failure 

(d). Phase 2 

<vl,5> 
<v2,0> 

g2 chosen as new primary 
g3 assembles new view 

<vl,4> 

g3 sends newview message to g2 
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Figure 5.8: Simple case-Detecting a communication failure triggers the view manage­
ment algorithm. 
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possible exception of the old view manager that formed the view) what the view actually 

consists of; they will discover that fact when they receive the "newview" event record 

from the new primary. 

In the meantime, while all this is going on gl is also running the algorithm and is 

trying to form a view. As the view manager, it becomes inactive and computes a new 

viewid and sends invitation messages to g2, g3, g4, and g5. No responses are forthcoming 

due to the communication failure. It waits in vain for acceptances and eventually times 

out, remaining inactive. 

In this scenario, the algorithm forms a new view, excluding inaccessible cohorts. 

Although not illustrated, the algorithm also works in the case of including cohorts that 

become accessible when a failure is repaired. 

5.3.2 The case of two active primaries 

Suppose a primary is slow to detect a communication failure that has separated it 

from its backups; it may be slow, for example, because it is doing a lot of work and 

has not noticed the failure. For example, in Figure 5.8, this might happen to primary 

Pl. So Pl assumes that it can still communicate with its backups and still sees view 

vl. Transactions continue to execute there, unaware that anything is wrong. In the 

meantime, a more alert backup cohort initiates the view management algorithm and 

creates a new view v2 with a new primary P2. We now have coexisting primaries Pl and 

P2, each residing in overlapping views vl and v2. At first blush, this situation may seem 

intolerable, since it makes no sense for two primaries to coexist; in fact, we rely on the 

two-phase commit protocol to prevent incorrect behavior. 

There are two cases to consider. 

First, the information in Pl's buffer may have already propagated to Pl's backups 

before the view change happened. Suppose Pl receives a prepare message from the 

coordinator, after the view change. Since needed information is already at the backups 

(force-to returns immediately), Pl will reply ok to the coordinator. When Pl receives 

the commit message from the coordinator, Pl tries to force its buffer to the backups 

and fails. Pl rejects the commit message. Ultimately, the coordinator's commit message 

will find its way to the new primary P2, where the topaction will finally commit. The 

prepare succeeded at Pl, but the commit could not. A variation on this is the following. 
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Suppose Pl receives a prepare message from the coordinator, forces its buffer, and replies 

ok, all before the view change. As just discussed, the prepare can succeed at Pl, but the 

commit cannot. 

Second, suppose all information on behalf of a preparing action is not known to have 

propagated to the backups before the communication failure. The prepare cannot succeed 

because Pl will discover that, as part of preparing, it cannot force the event records to 

its backups in view vl for the preparing topaction. Ultimately, the prepare message will 

be sent to P2; it will succeed there just in case all its effects survived the view change. 

5.3.3 Concurrent view managers 

If more than one cohort detects a change in the communication capability within a 

guardian group, several cohorts may become view managers simultaneously. Clearly, this 

is inefficient, but any optimization cannot guarantee that only one cohort can act as view 

manager, as we shall see in a later section. Our view management algorithm handles this 

case of multiple concurrent view managers in the following way. 

Recall that viewids generated by different cohorts are distinct; we achieve this by 

making a gid a part of the viewid. A viewid consists of two parts, a counter cnt and the 

identity of the cohort initiating the view change. Gids are themselves unique, and we 

can use them to break ties between different cohorts computing a new viewid. Viewids 

are compared using the ~ relation: 

In the previous example, let us imagine that gl through g5 are labeled in increasing 

order. Suppose cohorts g2 and g3 start up as view managers. g2 computes <2, g2> 

and g3 computes <2, g3>. Both send invitation messages to everybody else in the 

configuration. Now things suddenly become a little more complicated. 

1. g2 receives an invitation from g3. Since <2, g3> >- <2, g2>, g2 accepts the 
invitation, sets its max_viewid to <2, g3> and stops acting as view manager. It 
sends accept(g2, <vl, 5>, <2, g3>, false) to g3. 

2. g3 receives an invitation from g2. Since <2, g2> ~ <2, g3>, g3 knows of a higher 
viewid, so it ignores the message from g2. 

3. g4 and g5 receive invitation messages from both g2 and g3. What do they do? 
They might receive the messages in different orders, that is, g4 might receive <2, 
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g2> and then <2, g3>, and g5 might receive <2, g3>, and then <2, g2>, but that 
scarcely matters. 

• Since the incoming viewid <2, g2> from g2 is bigger than max_viewid <l, 
gl>, g4 stores it in max_viewid. It sends accept(g4, <vl, 5>, <2, g2>, false) 
to g2. 

• Since the incoming viewid <2, g3> from g3 is bigger than max_viewid <2, g2>, 
g4 stores it in max_viewid, and sends accept(g4, <vl, 5>, <2, g3>, false) to 
g3. 

• Since the incoming viewid <2, g3> from g3 is bigger than max_viewid <l, gl>, 
g5 stores it in max_viewid, and sends accept(g5, <vl, 5>, <2, g3>, false) to 
g3. 

• g5 compares its max_viewid <2, g3> with the incoming <2, g2>. g5 ignores 
the message since <2, g2> is smaller than what it currently knows. 

g4 accepts g2's invitation to join its view and then accepts g3's invitation; if g4 had 

received invitations in the opposite order, it would have ignored g2's invitation since g2's 

viewid is smaller. Thus, g3 prevails. g5 accepts g3's invitation, but ignores g2's since 

g2's viewid is smaller. Again, g3 prevails. Thus, g3 is the view manager. Clearly, the 

higher viewid prevails in the absence of additional failures. Anything smaller is rejected. 

In other words, no matter what order the messages arrive in the outcome is the same: 

g3's new viewid is the one that prevails because its viewid is larger. Since a view manager 

has been selected, this case reduces to the previous, simple one, and the protocol proceeds 

as above. 

5.4 Performance 

In this section we discuss the performance of the view management algorithm. We 

assume that a single failure or recovery event triggers the algorithm; there are no addi­

tional failures or recovers and no lost messages. In the simple case, only one cohort acts 

as view manager. Next, we present several policies to prevent multiple managers from si­

multaneously starting a view change, again assuming no additional failures or recoveries. 

Then we comment on the problem of lost messages and present some optimizations. 

5.4.1 Simple case 

When failures or recoveries are detected by the system, the view management algo­

rithm runs in each affected guardian group. If a new view can be formed, the algorithm 
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requires relatively little message-passing in the simple case of one view manager. We 

analyze the time and message complexity. 

Time complexity. The time complexity of our view management algorithm requires 

one round of messages, a single message, plus a single write to stable storage. 

1. The manager sends invite messages. 

2. The underlings reply with accept messages. 

3. The view manager sends a single newview message to the cohort selected as the 

new primary. 

In the case in which the view manager is the primary, no newview message need be sent; 

the algorithm requires just one round of messages plus a single write to stable storage. 

Message complexity. To analyze the message complexity, let n be the number of 

underlings, so the total number of cohorts is n + 1, including the primary. Thus, n 

invitation messages are sent to the underlings and at most n acceptance messages are 

sent to the view manager. Then a single message may be sent to the new primary. Thus, 

the algorithm uses at most 2n + 1 messages. In the case in which the new primary is not 

the same as the view manager, only 2n messages are needed. 

5.4.2 Preventing concurrent view managers 

The algorithm tolerates several cohorts starting up as view managers simultaneously. 

Having several managers at once will slow things down, since there will be more message 

traffic, but the slowdown will be slight. We can, however, avoid these parallel view 

changes to some extent by various policies. 

One possible policy is to impose a static order on the cohorts in a configuration. 

Based on its position in this ordering, each cohort waits longer than its predecessor, thus 

giving its predecessor a chance to take over as the view manager. For example, suppose 

we have the following configuration {gl g2 g3 g4 g5} consisting of an ordered set of gids. 

The idea is to give the predecessor a chance to take over as the view manager and inform 

the others. That is, gl immediately begins executing the algorithm, inviting the others 

to join its view. In the meantime, g2 waits a certain amount of time that is longer than 

gl 's; if g2 has not received an invitation from gl after the waiting time has elapsed, then 

g2 takes over as view manager and sends invitation messages; and so on. 
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Most of the time this "backoff" strategy will lead to only one cohort acting as view 

manager (unless the configuration is split due to a network partition). But the strategy 

does not guarantee that only one cohort will be view manager. Due to timing problems 

it is possible that two or more cohorts might start up as view managers, a situation 

that can arise in the following way. Suppose gl runs on a slow node relative, say, to 

g2's node. gl becomes the view manager and sends out invite messages to the other 

cohorts. In the meantime g2's fast node figures it has waited long enough and starts 

the view management algorithm. Two view managers now coexist; the cohort with the 

higher viewid prevails, while the other becomes an underling. Problems raised by timing 

difficulties can manifest themselves in other ways, too. For example, gl 's invitation to 

g2 might be delayed by the network or it might be lost entirely. In either case, g2 would 

start up as view manager. 

Another, better technique is to give priority to the primary of a view. If the primary 

is lost, the backups will take over in some predetermined order; this order could either 

be static or set up when the view was created. Inactive cohorts will delay waiting for 

an active cohort to take over. Again, such a strategy does not guarantee that only one 

cohort acts as a view manager. 

5.4.3 Lost messages 

Recall that the send statement does not send messages reliably. For example, the 

newview message sent by a view manager to the new primary might be lost. To avoid 

waiting forever when messages do not arrive, we set a timeout; when the timeout expires, 

this cohort becomes the view manager, starting a new view change. Starting a view 

change just to mask a lost message is not efficient, however. Instead, messages should be 

retransmitted. 

5.4.4 Other optimizations 

Not all view changes described above really need to be done. One special case occurs 

when a primary notices that it cannot communicate with a backup, but it still has a 

sub-majority of other backups. In this case, the primary can unilaterally exclude the 

inaccessible backup from the view. Similarly, the primary can unilaterally include a 

backup in its current view. 
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5.5 Robustness and Making Progress 

In our algorithm we assumed that most of a cohort's state was volatile. Such an 

assumption means that if a majority of cohorts are crashed "simultaneously," we may 

lose information about the guardian group's state. Here we view a cohort as crashed if 

either it is really down, or if it has recovered from a crash but its up..to_date variable is 

false. Note that a catastrophe does not cause a group to enter a new view missing some 

needed information. Rather, it causes the algorithm to never again form a new view. 

Whether it is worthwhile to worry about such catastrophes depends on how likely they 

are and the importance of the information in the group state. The considerations here 

are similar to decisions about when it is necessary to store information in stable storage 

in a non-replicated system, except that replication makes the probability of catastrophe 

smaller to begin with. 

If protection against catastrophes is desired, there are various techniques that could 

be tried. We might have stable storage in use only at the primary. We might supply each 

cohort with a uninterruptible power supply and have them write information to non­

volatile storage in background. Or, we might force events to all backups, thus decreasing 

the situations in which a new view cannot be formed. 

5.6 Discussion 

After some event, either a failure or a recovery, triggers the algorithm, the algorithm 

proceeds unimpeded and eventually terminates with a new view, as long as no additional 

such events occur. We assume that these events are rare, since otherwise the system would 

do no useful work but instead would spend all its time responding to such events. Such 

an assumption is reasonable as long as node and communication failures and recoveries 

are rare events. Hence, the time between these events is large enough that the algorithm 

will eventually terminate, forming a new view. 

The algorithm does not tolerate decisions being made too quickly. For example, 

suppose a manager waits only until it hears from a sub-majority even though there are 

other cohorts that could respond. This would result in excluding those other cohorts 

from the new view, which in turn will mean another round of view changing will occur 

shortly. If that next view change also excludes some potential members, that will lead to 
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yet another view change, and so on. To avoid such a situation, a view manager should 

use a fairly long timeout while it waits to hear from all cohorts that the probe messages 

indicate should reply. 

If the same cohort is the primary both before and after the view change, then no 

user work is lost in the change. Otherwise, we guarantee the following: Topactions that 

prepared in the old view will be able to commit, and those that committed will still 

be committed. Topactions that had not yet prepared before the change may be able to 

prepare afterwards, depending on whether the completion events of their handler calls are 

known in the new view. Aborts of topactions may have been forgotten, but delivery of 

abort messages is not guaranteed in any case; recovery from lost messages was mentioned 

in Section 4.3.4. To minimize disruption while a view change is happening, queries can 

be answered by any cohort that knows the answer. 

Whenever possible, our algorithm chooses the primary of the last view to be the new 

primary. This is a good strategy because it makes the algorithm run quickly and ensures 

that the least amount of work is lost; even handler calls that were running before the 

view change can continue to run after the change. However, in some systems there may 

be a favored cohort that should be the primary whenever it is a member of the new 

view. For example, that cohort may run on a more powerful node than the others. Such 

a policy matches the needs of some applications. To accommodate such a requirement, 

we would need to change our algorithm since the new primary may need to read the 

current state from one of the backups in phase two. The modified algorithm is probably 

best combined with a strategy that makes the favored primary most likely to be the 

view manager; in this case, one round plus two messages are needed before the favored 

primary could become active after it had crashed or become inaccessible because of a 

partition. 

The policy would not necessarily cause loss of information: if the old primary is a 

member of the new view, all its events will survive into the new view. However, work 

in progress at the old primary, including aborting active transactions for which it is the 

coordinator, would be lost in the change, unless some additional mechanism is included. 



Related Work 

In this chapter we discuss the relationship of our approach to other work on replication 

and on view changes. 

6.1 Voting 

The best known replication technique is voting [Gifford 79]. Gifford presents a simple 

and elegant protocol for maintaining the consistency of replicated data in a distributed 

computer system. 1 The basic idea of the protocol rests on the notion of quorum inter­

sections. Each copy of a replicated data item is assigned some number of votes. To read 

a data item, a transaction must collect a read quorum of votes; to write a data item, 

it must collect a write quorum of votes. To maintain the consistency of the replicated 

data, these read and write quorums must satisfy two constraints. First, read and write 

quorums must intersect, guaranteeing that any read quorum has a current copy of a data 

item. Second, write quorums must intersect, imposing an order on updates. Together, 

these two rules ensure one-copy serializability. The protocol has several additional ben­

efits: it continues to operate correctly even if some copies are inaccessible, it is possible 

to change a data item's performance and reliability characteristics by altering quorum 

1The replication scheme is built on top of a transaction system, which is a major reason for its 
simplicity. 

81 



82 6. Related Work 

sizes, and it also copes with partitions without explicit detection. Herlihy [Herlihy 86] 

extended Gifford's voting protocol to take advantage of operation semantics, thus making 

the protocol more efficient. 

Our method is faster for write operations because we communicate with only the 

primary; with voting we must write to at least a simple majority of copies. Also, we 

avoid deadlocks that can arise if messages for concurrent updates arrive at the replicas 

in different orders. Our method will also be faster for read operations if the reads take 

place at several replicas. If read operations take place at only one replica, voting may 

outperform our method because reading can occur at any replica, while reading in our 

scheme must happen at the primary, which could become a performance bottleneck. On 

the other hand, the real source of a bottleneck is a node, not a cohort, and we can 

organize our system so that primaries of different groups usually run on different nodes. 

Furthermore, the system can be configured to place primaries at more powerful nodes 

most of the time. This organization could lead to better performance than voting. 

6.2 Virtual Partitions 

Our view change protocol is a simplification and modification of the original virtual 

partitions protocol [El Abbadi 85], a variation on Gifford's weighted voting. Like our 

notion of views, virtual partitions attempt to track real changes in the network topol­

ogy as closely as possible without being constrained by the need to cope with changes 

instantaneously. A virtual partition is a set of processors that have agreed that they can 

communicate with each other and further agree that they will not communicate with 

any processors outside the partition. Although communication with processors outside 

a virtual partition may be physically possible, this communication may not be initiated 

until a special protocol is run to form a new virtual partition. A logical data item is 

accessible in a virtual partition that includes a majority of its sites. A transaction reads 

or writes only those logical data items that are accessible in its virtual partition. The 

principal advantage of this scheme is that transactions can always read from a single 

copy; this advantage comes at the expense of an update sub-protocol that updates every 

item in the database when partitions are repaired. 

The protocol requires three phases. In phase 1, a processor starts a view change by 
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sending a "newvp" message to every processor in the network; it waits for "ok" messages 

to flow back. In phase 2, that processor sends "commit" messages to all accepting 

processors. In phase 3, each processor in the newly formed virtual partition updates its 

local copies of replicated data objects with the most recent values; it does so by sending 

"read" messages to all copies in parallel and waiting for responses. Our algorithm is more 

efficient because it requires only one and one-half phases. We avoid extra work by using 

viewstamps in phase 1 (the first round) to determine what each cohort knows. 

Virtual partitions force transactions that were active across a view change to abort. 

For example, a transaction that did a remote procedure call in the old view will not be 

able to prepare in the new view. We use viewstamps to avoid the abort and we rely on 

the fact that knowledge of later events implies knowledge of earlier ones. 

6.3 Isis 

A different approach to replication is taken in Isis [Birman 85]. Because Isis's view 

change protocol does not tolerate partitions, it only works in a local area network; in this 

sense, it is is not comparable with viewstamped replication. However, it does have some 

interesting characteristics. As with our technique, Isis has resilient modules consisting 

of instances [Birman 85]. Like Argus guardians with handlers, these modules have state 

that is modified only by calling their operations, issued as RPCs. A resilient module 

guarantees that computations in progress complete as long as at least one component is 

operational. Computations run as atomic actions and satisfy the one-copy serializability 

correctness criterion. 

Isis uses an unusual sort of replication scheme to implement resilient modules. Rather 

than designating one component as the primary to which all clients direct all requests, 

any component in a resilient module can act as the primary on a per request basis. This 

primary is called the coordinator for the request and the other components are called 

cohorts. Each component of the resilient module knows the other operational components 

of the module. Since all components of a resilient module can be coordinators for different 

client requests, these invocations must be synchronized. 

Isis uses two-phase locking for concurrency control. If the operation is a read, a com­

ponent acquires a read lock locally and performs the operation. H the operation is a 
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write, a component first acquires locks at all operational components before doing the 

update. The locks are acquired using an expensive two-phase algorithm that prevents 

deadlocks in the case of concurrent writes. After acquiring the needed locks, the coor­

dinator performs the operation. The correct serialization order with respect to a failure 

or recovery event is guaranteed by imposing the same relative order at all the compo­

nents, and by preserving all read and write locks across failures. Three atomic broadcast 

protocols were proposed [Birman 87] to enforce varying ordering constraints. 

Effects of reads and writes are communicated to other components in background 

mode, are piggybacked on reply messages, and accompany further client messages such as 

prepare and commit messages. This means that information needed to process these later 

messages is always available to the component that receives them. The disadvantage of 

their scheme, however, is the large amount of extra information flowing on every message, 

the high storage overhead, and the difficulty in garbage-collecting that information. Isis 

works only in a local area net, both because their garbage collection algorithm depends 

on broadcast and because the protocol cannot tolerate partitions. 

Our method avoids these problems at the cost of possible delay at prepare time (to 

force the buffer), and at the cost of an occasional abort when there is a view change. The 

viewstamps in our method represent the information flowing in Isis. Since the viewstamps 

only indicate that certain events have occurred, but not what these events are, we must 

sometimes wait for information about events to arrive in buffer messages. We must 

sometimes abort a transaction because information about events is lost in a view change. 

6.4 Circus 

Cooper [Cooper 84, Cooper 85] proposed replicated remote procedure call as the mech­

anism with which to construct highly available distributed programs. Each program 

module is replicated; the set of replicas is called a troupe. The troupe behaves as a single 

logical module with state that may change over time. 

In a distributed program made up of troupes, a remote procedure call from a client 

to a server is actually a replicated remote procedure call from client troupe to server 

troupe. Each client troupe member makes a one-to-many call to all the server troupe 

members. Each server troupe member, which will receive as many calls as there are client 
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troupe members, executes the call (and may make calls to other troupes) exactly once, 

possibly changes its state, and returns a result. Changing the individual states changes 

the collective state of the server troupe. 

To guarantee the single-view image, troupe members must be consistent and must 

behave in a deterministic fashion: two replicas in the same state must execute the same 

remote call in the same order, produce the same side effects, and return the same re­

sult. Requiring programs to be deterministic is severely restrictive because it reduces 

concurrency in each module and is unrealistic because it burdens the programmer with 

the responsibility for finding all sources of non-determinism and overcoming them. To 

weaken the assumption of complete determinism the application programmer can define 

a collator procedure that reduces a set of messages to a single message; this violates repli­

cation transparency because the programmer is now aware that a module is replicated. 

To handle the problem of concurrent, replicated remote calls to the same server from 

different clients, Cooper introduced transactions. Independent serialization of transac­

tions at each troupe member is insufficient; to preserve troupe consistency, concurrent 

calls from different clients must not only be serialized by each server troupe member but 

they must be serialized in the same order at all server troupe members. Cooper proposed 

two protocols to solve this problem. The troupe commit protocol detects any attempt 

by troupe members to serialize transactions differently and transforms such attempts 

into deadlocks. It operates on the assumption that concurrent transactions are unlikely 

to conflict; this protocol suffered from starvation under heavy loads. The starvation­

free protocol does not introduce any additional chance of deadlock. It uses an ordered 

broadcast protocol that guarantees that concurrent broadcasts are never interleaved, and 

requires a deterministic local concurrency control protocol at each troupe member. It 

has the disadvantage that it limits the potential concurrency. 

The replicated remote procedure call mechanism is expensive during normal system 

operation, exhibiting high overhead. Each replicated call from an m-member client troupe 

to an n-member server troupe requires m · n messages in both directions; the execution 

time of each call is determined by the slowest member in each troupe. The mechanism 

wastes computational power because all replicas are involved in executing each remote 

call; the time per call increases linearly with the size of the troupe. Its chief virtue is 

that performance in the presence of failures and recoveries is essentially unaffected. 
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A further problem is that in the presence of partitions, the state of troupe members 

in different partitions will become inconsistent. To solve this problem, Cooper suggests 

that each troupe member receive a majority of the expected set of messages before 

computation is allowed to proceed there. After the partition is repaired it is not clear 

how the divergent states are reconciled. 

Our method is simpler than Cooper's, requires far fewer messages, and imposes no 

determinism requirement on programs. 

6.5 Tandem's NonStop System 

Tandem's NonStop System [Bartlett 78, Bartlett 81] is the first general-purpose, com­

mercially available, fault-tolerant computer system that was designed for on-line trans­

action processing and that could expand over its lifetime to accommodate growth of 

applications. Tandem modified conventional hardware so that all components are backed 

up in hardware; for example, there are the dual interprocessor bus, dual port disk con­

trollers, and mirrored disks (stable storage); if any single piece of hardware fails, the 

corresponding backup can take over its function. A Tandem node consists of two to six­

teen processors, each with its own memory, which communicate via a dual interprocessor 

bus; a Tandem network would consist of many such nodes. 

At the software level, process-pairs and messages are the abstractions that hide the 

boundaries of the processors. Process-pairs are used as the uniform mechanism for access­

ing system resources, such as 1/0 devices, in a fault-tolerant fashion. The process-pair 

consists of two processes, each of which runs in a distinct processor within the same node. 

The primary process is active and sends information via checkpoint messages to it backup 

process, which is ready to take over control whenever the primary process fails. For ex­

ample, each disk volume (mirrored drives) is accessed through a process-pair running in 

the two processors physically connected to the controllers. This process-pair is called the 

disk process. 

Bartlett suggested that process-paJ.rs could be used to make application programs 

fault-tolerant. Before transactions were introduced, fault-tolerant application programs 

were coded in this fashion to preserve database consistency. But writing these programs 

was hard for two reasons. First, the programmer had to insert, by careful design, the 
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appropriate checkpoint statements in his programs. Second, process-pairs always carried 

a computation to completion. To handle failures, the programmer also had to write code 

to backout a computation. Organizing application programs as transactions to handle 

failures automatically was a better idea; to this end Tandem introduced the Transaction 

Monitoring Facility (TMF) [Borr 81]. 

The application programmer typically brackets a sequence of operations with BEGIN­

TRANSACTION and ENDTRANSACTION' indicating that the sequence should be treated as 

one transaction. Transactions update a database by sending requests to Disk Processes 

(DP) that maintain lock information for those database records and files residing on its 

volume only. Each DP is a process-pair that synchronizes concurrent access to the data­

base. During transaction processing, a request is sent to the primary DP, which locks 

the record. It alters the record in a cache buffer and writes the before and after images 

to its internal log. A distinguished DP that maintains the log on stable storage is called 

the Audit Disc Process (ADP). 

During phase one of two-phase commit, the primary of each DP that participated 

in the transaction ensures that its log records have been flushed first to its backup and 

then to the ADP. In phase two, the coordinator writes a commit record to the ADP; the 

ADP is flushed to disk. Any failures before the commit record makes it to disk causes 

transaction UNDO; a failure after this point causes transaction REDO. The transaction is 

committed when the commit record is on disk; all DPs release locks. 

Process-pairs and TMF together make it possible for application programs to con­

tinue execution even if there are hardware faults [Helland 85, Gray 86]: all uncommitted 

transactions associated with a failed primary process are aborted and then restarted with 

the backup process as the new primary. This is a new design and is described by Borr 

[Borr 84]. The new primary "falls back" and aborts some transactions. This new im­

plementation required half as many messages and a fifth as many bytes [Helland 85] as 

in the original design of the DP, in which one always rolled forward after a crash and 

continued execution. 

Tandem's NonStop system survives only a single failure and requires that a process­

pair reside at a single node. If a processor crash causes a backup to takeover as the new 

primary, that primary runs without a backup until the crashed processor comes back 

on-line. If these contraints are acceptable, then this method is efficient. Our replication 
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method is more general. 

6.6 Auragen 

Auragen [Borg 83] is fault-tolerant computing system that is used in an on-line trans­

action processing environment. It is based on the notions of primary /backup process 

pairs, the three-way message send, automatic synchronization of the primary and backup, 

and user determinism. The design goals of this system are similar to Tandem's but were 

realized in a different manner. 

Like Tandem, Auragen's hardware base contains redundant components. The cluster 

is the basic processing unit. The Auragen 4000 computer consists of two to thirty-two 

clusters connected by a dual high-speed intercluster system bus. Each cluster contains 

between three and seven Motorola M68000s and a large shared memory. Two processors 

in the cluster run user and system server processes to handle input/output via messages 

and global system resources. Other processors control intercluster message traffic, com­

munication ports, and dual-ported peripheral devices. Overlapping the execution using 

different processors is claimed to lead to more efficient overall operation, even though the 

shared memory might be a bottleneck. 

Processes can run backed-up or not. For the purposes of this description, we assume 

that each process consists of a primary and a backup, which execute in different clusters 

and communicate by passing messages. Whenever the primary crashes, its backup is 

notified and takes over execution as the new primary. 

The system automatically brings the backup process up to date with its primary pe­

riodically, a procedure called synchronization. Upon failure of the primary, the backup 

rolls foward, recomputing based on the messages in its queue (received from the primary) 

since it was last synchronized with the primary. User processes are required to be de­

terministic because the backup process must reconstruct a state that is the same as the 

primary's state before the primary failed. The rule for determinism states that if two 

processes start out in identical states and receive the same set of messages in precisely the 

same order, then after reading those messages and computing based on them, their final 

states will be identical. To enforce this rule, a message in the Auragen system is sent by 

a sender process to three destinations atomically: the receiver process, its own backup 
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process, and the receiver's backup process. (The hardware and software guarantee that 

message delivery is atomic.) 

The Auragen system survives only a single failure and, like Tandem, requires that 

a process-pair reside at a single location. In addition, Auragen scales poorly because 

the message-passing mechanism depends on special hardware support for interprocess 

communication. New backup processes are not automatically created when old backups 

fail or a backup takes over as the new primary. Our replication method is more general. 



Conclusions 

This dissertation has presented a new replication method to solve the problem of con­

structing highly available computer-based services. We believe that programmers should 

write distributed programs without worrying about availability; the underlying language 

implementation uses our replication technique to replicate modules automatically. The 

resulting services implemented by these distributed programs are highly available. Our 

method performs well in the normal case, does view changes efficiently, and loses little 

information in a view change. 

In the remainder of this chapter, we summarize our accomplishments and suggest 

directions for future work. 

7.1 Summary 

Our replication algorithm works out for the first time the details of a primary copy 

replication scheme, which others have only hinted at. We take advantage of the method's 

intuitive appeal: placing the primary copy where it is needed or where there is a more 

powerful node, avoiding synchronization problems, and incurring low delay when execut­

ing transactions. As discussed in Chapter 4, the performance of our method is compa­

rable to that of a system in which modules are not replicated, and is better than other 

replication methods. 
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Each replicated module consists of several instances, called cohorts, constituting a 

module group. One cohort is designated the primary; the others are backups. The 

primary is responsible for the module group's activity; it executes remote procedure calls 

and modifies its state. When remote procedure calls complete, the primary sends the 

effects of the calls to its backups in background mode. 

Since the primary only communicates with the backups in background mode, the 

effects of some calls may be lost after a view change. If the effects of all calls made a 

transaction are known at the new primary, then no information is lost and the trans­

action can commit; otherwise, it must abort. Furthermore, if transactions commit, we 

guarantee that their effects are not lost in subsequent view changes. We use viewstamps, 

a special kind of timestamp, to represent how much a cohort "knows" about the effects 

of transactions that have run. The viewstamp history represents the sequence of view 

changes seen by a cohort. Each member of the sequence is a viewstamp; for each view­

stamp vs in the history, the cohort's state reflects each event in the view of vs.id whose 

timestamp is less than or equal to vs.ts. What a cohort does know and what it should 

know are used to determine whether transactions can commit or must abort. 

Our view management algorithm reorganizes the cohorts of a configuration to form 

new views under certain conditions. It is efficient, since it requires just one round of 

messages (invitation and acceptances) and one message (to notify the new primary). 

Viewstamps are again used here; they indicate which cohort knows the most. The cohort 

with the largest viewstamp is chosen as the new primary. The new primary's state is 

used to initialize the state of all other cohorts in the new view. 

Our view management algorithm is highly likely not to lose work in a view change. 

Our policy of choosing the primary of the last view to be the new primary whenever 

possible avoids losing work altogether; even remote calls that were running before the 

view change can continue to run afterwards. Note that the probability of aborts can be 

decreased further if desired. There is a tradeoff here between loss of information in view 

changes and speed of processing calls. For example, if "completed-call" records were 

forced to the backups before the call returned, there would be no aborts due to view 

changes, but calls would be processed more slowly. 

The correctness of our algorithm depends on the interaction of transaction processing 

and the view management algorithm. Transactions must still be serializable and recov-
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erable. Transaction processing guarantees that a transaction can commit only if all its 

events are known to at least a majority of cohorts. The view management algorithm 

guarantees that events known to a majority of cohorts survive into subsequent views. 

Thus, events of committed transactions will survive view changes. 

7.2 Directions for Future Work 

In this section, we suggest some areas for further work. 

Implementation. To understand how well the replication algorithm performs, it 

must be implemented, and performance measurements taken. We are planning to imple­

ment the algorithm as part of the Argus system and to run experiments to measure its 

performance. 

Optimizations. Another area of interest is optimizations. We point out some general 

directions that further research might take. 

1. Efficiently updating the backup state. We send the entire guardian state from the 

new primary to the backups. Since this is clearly inefficient, we must investigate 
other methods of updating the backup's state. For example, if the primary knew 

the old viewstamps for the backups, and if it had recorded information about events 

and their viewstamps, then it could send the difference between what it knows and 
what the backups know to the backups. 

2. Event records that arrive at backups can be performed immediately and the state 

updated, or they could be stored and then performed at a convenient time, say, 

when the committed or aborted record arrives. It is a matter of future research 

to understand the right tradeoff between processing during normal operation and 
after a view change. 

3. A voiding unnecessary view changes. View changes really need to happen only when 
the primary becomes inaccessible, or the current view loses enough members that 

it no longer constitutes a majority. A view change need not be done if a backup 
fails and the view still has a majority, for that backup can be excluded unilaterally. 
Similarly, a view change is unnecessary if a backup becomes accessible. These 
protocols need to be worked out. 

4. Garbage-collecting the viewstamp history. Over time, the viewstamp history can 
grow without bound. To remove a viewstamp from the history, the system might, 
for example, wait until all transactions that depended on the view of that viewstamp 

have committed. How this is determined is a matter of future research. 
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Performance/cost model. Comparing the performance of our replication method 

with that of a conventional, non-replicated system is straightforward. Comparing our 

scheme with other replication methods is much harder because other methods make 

different assumptions and have different goals. It would be interesting to develop a 

performance/ cost model that provided a basis for comparison. 

Reconfiguration. After defining a configuration initially, we may wish to change it. 

For example, we might add backups to increase the resiliency of the group to failure or 

we might delete old backups deemed permanently inaccessible. This process of changing 

the configuration is called reconfiguration. We need to invent extensions to our method 

to support reconfiguration. 

Dealing with catastrophes. In designing our algorithm, we chose to make as little 

use of stable storage as possible because we were interested in understanding the extent 

to which having several replicas eliminated the need for stable storage. We found that 

catastrophes (loss of a group's state) could sometimes occur in our system that would 

not happen if more information had been recorded on stable storage. Whether we should 

worry about catastrophes depends on how likely they are to happen, how important the 

group's state is, and the environment in which the system runs. Engineering decisions 

must be made here. The probability of a catastrophe depends on the configuration, such 

as whether the cohort's nodes are failure-independent. To reduce this probability, the 

algorithm can be modified in various ways. What these ways are is a matter of future 

research. 

Formal proof of correctness. We have stated some conditions for correct operation 

of our system. It would be interesting to characterize precisely what our algorithm 

achieves under certain failure assumptions and what invariants must be preserved by 

our implementation. In other words, we should undertake a formal proof of correctness 

of the replication algorithm. These conditions are safety properties that ensure that 

nothing bad ever happens during execution of the algorithm. Of equal importance is 

stating liveness properties that eventually something good will happen; in particular, 

what guarantees can we make that another view will eventually be formed? 

Viewstamps. Viewstamps are an interesting subject in their own right. First, we 

might investigate how viewstamps could be used in a non-replicated system. For example, 

in such a system records containing the effects of calls could be written to stable storage 
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in background mode; these records, like our event records, would contain viewstamps. 

When the prepare message arrives, it would only be necessary to force the records; no 

delay would be encountered if the records had already been written. A crash would 

not cause active transactions to abort automatically; instead, queries would be sent to 

coordinators to determine the outcomes. The result would be a system that is more 

tolerant of crashes (by a voiding aborts) and also faster at prepare time. 

Second, we can investigate how viewstamps might be used in conjunction with other 

replication methods. For example, our technique can be used with voting when writes are 

done at all members of a view. Just as we use viewstamps, in such a system timestamps 

that are assigned when transactions commit could be used to determine which replica 

has the most information about transaction commits (the timestamps would not contain 

information about the state of active transactions). Systems in which writes only go to a 

majority are more difficult to optimize in this way since there is usually no cohort whose 

state contains at least as much information as the state of any other cohort. A total 

order on viewstamps would be costly to implement with voting since there is no single 

place (like our primary) to generate the viewstamp. Whether we could use multipart 

viewstamps [LiskovLadin 86, Ladin 88] is a matter of further investigation. 
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