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Abstract 

We analyze how much the FX-87 static effect system can improve the 
execution times of five benchmark programs on a parallel graph interpreter. 
Three of our benchmark programs do not use side-effects (factorial, fibonacci, 
and polynomial division) and thus did not have any effect induced con
straints. Their FX-87 performance was comparable to their performance in a 
purely functional langauge. Two of our benchmark programs use side-effects 
(DNA sequence matching and Scheme interpretation) and our compiler was 
able to use effect information to reduce their execution times by factors of 1. 7 
to 5.4 when compared with sequential execution times. These results sup
port our thesis that a static effect system is a powerful tool for compilation 
to multiprocessor computers. However, the graph interpreter we used was 
based on unrealistic assumptions, and thus our results may not accurately 
reflect the performance of a practical FX-87 implementation. The results 
also suggest that conventional loop analysis would complement the FX-87 
effect system. 

Categories and Subject Descriptions: D.1.3 [Programming Techniques] 
Concurrent Programming; D.3.4 [Programming Languages]-Processors: 
Compilers; D.3.m [Programming Languages]-Miscellaneous 

General Terms: Benchmarks, Testing, Parallelism 

Additional Key Words and Phrases: functional programs, imperative pro
grams, side-effects, effect systems, DNA sequence matching, Scheme inter
preter, datafl.ow graphs 



1 Introduction 

This report documents a series of experiments that we performed to explore 
our thesis that the FX-87 effect system permits a compiler to schedule imper
ative programs (i.e., programs that may contain side-effects) for execution 
on a parallel computer. We will assume that the reader is familiar with the 
details of the FX-87 language [Gif87, Luc87] and with dataflow [Arv87a]. 

Our major results are as follows: 

• On programs that do not contain side-effects, such as fibonacci and fac
torial, FX-87 performs just as well as functional languages. Although 
FX-87 programs can include expressions with side-effects, the compiler 
takes full advantage of the parallelism in a program written without 
them. 

• The FX-87 effect system improved the performance of an imperative 
DNA sequence matcher by a factor of 3. 7 to 5.4 (depending upon 
the method of compilation) over sequential execution. DNA sequence 
matching is a scientific application that entails stepping over the ele
ments of a two-dimensional matrix and mutating them. Loop analysis 
or parallel vector operators would greatly improve the performance of 
FX-87 on this application. 

• The FX-87 effect system improved the performance of the Scheme in
terpreter, a program strewn with side-effects, by a factor of 1. 7 over 
sequential execution. The Scheme interpreter is a large, complex, het
erogeneous program, which presents a very difficult challenge to the 
effect system. 

These results support our thesis that an effect system can be used to 
schedule imperative programs for execution on a parallel computer. How
ever, our experiments were run on a simulated graph interpreter using a 
set of assumptions that does not accurately model the real constraints on a 
practical implementation. This affects our analysis in two ways. First, the 
improvement factors quoted here must be regarded as optimistic. Second, 
problems associated with real implementations of functional languages are 
hidden by the ideal environment, and therefore we are unable to investigate 
the efficiency benefits of using masked side-effects in functional programs. 
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Future FX implementations will permit us to more accurately measure what 
performance improvements might be expected in practice. 

The rest of the paper describes our results in greater detail. We first 
describe the dataflow compiler that we built (Section 2), then we examine the 
experimental results (Section 3). For a detailed description of the compiler 
and complete listings of the source code for the benchmarks, see [Ham88]. 

2 The FX-87 Dataftow Compiler 

The FX-87 dataflow compiler translates FX-87 programs into dataflow graphs 
suitable for interpretation by the GITA dataflow simulator [Arv87a]. The 
eight stages in the compiler are as follows: 

• Parsing. A simple recursive-descent, predictive parser performs the 
following tasks: 

Checks that the program is syntactically correct, and associates 
an empty information node with each expression. The informa
tion node will be used by some of the following modules to store 
information about the associated expression. 

Alpha-renames all the bound variables. 

Transforms syntactic sugar to its desugared equivalent. 

• Type and Effect Checking. This is the same type checker used in the 
FX-87 interpreter [Jou88]. It steps recursively through the parse trees 
and annotates each expression with its statically computed type and 
effect. 

• Type Removal. FX-87 has a typeless semantics. In other words, after 
the type checking module, we can remove all type-related expressions 
from the parse tree. For example, this module replaces plambda, proj, 
and the expressions by the expression they contain. The information 
nodes for the remaining expressions are left unchanged. 

• Lambda Lifting. This module moves moves lambda expressions to top 
level, and uses closures to model the environment associated with a 
procedure. The output of this module is a group of parse trees for 
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top-level definitions. Each parse tree is a lambda expression whose 
body contains no lambda expressions. For more information on lambda 
lifting, see [Joh86]. 

• Adding effect-synchronizer instructions. To handle effect constraints 
in the dataflow graph, special sorts of synchronization are required at 
the ends of procedures. This module adds effect-synchronizer in
structions to the parse tree, placing one around the body of each pro
cedure. Here is an example: 

(define goo 
(lambda ( ... ) 

(effect-synchronizer 

... ) ) ) . 

Later, when the parse tree is transformed to a dataflow graph, we will 
see exactly what the effect-synchronizer instruction does. 

• Computing Effect Constraints. Using the effect information m the 
parse tree, this module annotates each expression with the expres
sions for which it must wait to ensure proper sequencing of side-effects. 
Effect-synchronizer expressions are annotated to wait for any ex
pression that has side-effects and is contained within its body. We will 
refer to the constraints computed by this module as conflict edges. 

• Generating a Datafiow Graph. This module transforms the parse tree 
for each top level definition into a program graph, an intermediate form 
used by the ID compiler [Tra86a]. Program graphs, a type of dataflow 
graph, are easily transformed into a machine level graph that runs on 
GITA (Graph Interpreter for a Tagged Token dataflow Architecture) 
[Arv87a]. To transform the parse tree into a program graph, the module 
must handle several different types of expressions: 

Sequencing instructions, such as begin and let, have no corre
sponding graph constructs. This is because, in a dataflow graph, 
sequencing is based only on the flow of data. 
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Applications become apply nodes in the graph. If an application 
must be delayed because of side-effects, then an extra arc is drawn 
to the application to prevent it from executing prematurely. 

Effect-synchronizer instructions simply return the value of a 
procedure invocation, but they delay it until all the side-effects in 
the procedure have taken place. Therefore, if application B must 
wait for application A because their side-effects interfere, then a 
return value from A can be used as an indicator that application 
B may proceed. 

• Transforming Program Graph to Machine Graph. We use the same 
modules as the ID compiler to go from program graph to GITA ma
chine graph. Several optimization modules make changes to the pro
gram graph, and then each program graph node is macro-expanded into 
machine graph nodes, each of which corresponds to a GITA machine
level instruction. 

2.1 The FX-87 Library 

The previous section suggests that the graphs produced by the FX compiler 
contain nothing but apply nodes and arcs (for data and effect constraints). 
This is not quite correct; these are the exceptions: 

• There are nodes that handle the overhead of resource allocation, pro
cedure invocation, and other low-level operations. 

• Some simple applications are transformed directly into a node that 
performs the operation, as opposed to a procedure invocation. For 
example, ( + 3 4) is translated into a plus node, not an invocation of 
the procedure called +. 

Despite these exceptions, a large part of the computation in a compiled 
FX-87 program is performed by calling the many library functions described 
in the FX-87 reference manual. Therefore, we will briefly describe the FX-87 
library for GITA. 

We have augmented the FX-87 compiler with the directive #inline. 
When the compiler sees #inline wrapped around an application, it com
piles the application into a machine-level instruction, and not a procedure 
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invocation. Using this directive, we write the FX library procedures in FX, 
and compile them using the compiler we have described. For example, 

(define + (lambda ((x int) (y int)) (#inline (+ x y)))) 

defines the library procedure +. As an example of storage allocation proce
dures, here is the definition for new: 

(define new 
(plambda ((r region)) 

(plambda ((t type)) 
(lambda ((y t)) 

(let ((empty-ref 
(#inline (primitive-make-vector 1)))) 

(#inline (primitive-vector-set! empty-ref 0 y)) 
empty-ref))))) 

This procedure uses a machine-level instruction called 
primitive-make-vector to allocate a vector of length one. It initializes 
the vector using the machine-level instruction primitive-vector-set!, and 
then returns it. In FX-87 it is important that the storage allocation proce
dures atomically allocate and initialize storage. In the above example, we 
do not want the new procedure to return the new structure uninitialized. 
We are assured that this will not happen because of the way we compiled 
effect-synchronizer instructions. Remember that a procedure does not 
return its value until its side-effects have completed. Therefore, the new 
structure will not be returned until it has been initialized. 

The code for new, as it appears here, cannot be type checked because the 
types of primitive-make-vector and primitive-vector-set! are unde
fined. For a detailed explanation of the modifications that must be made to 
the type checker to allow it to type check the above code, see [Ham88]. 

2.2 Changes to GITA 

GITA is a datafiow machine designed to interpret graphs compiled from the 
language ID [Nik86]. ID is a high-level functional language enhanced with 
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I-structures [Arv87b]. In order to run FX-87 programs on GITA we had to 
make the following changes to the machine: 

• GITA uses a memory architecture called I-structure memory. I-structure 
memory maintains deferred read lists for every location, and it pro
hibits the programmer from writing any location more than once. For 
the purposes of FX, we added a more standard memory module. Each 
location in this new memory module can be written any number of 
times, and it is an error to read an uninitialized location. 

• We added an I/O module for FX's I/0 instructions. 

• ID is an untyped language, therefore each alu operation must check 
that its arguments are of the correct type. FX is typed, therefore we 
were able to simplify the alu. 

3 Analysis of Parallelism in FX 

Using the compiler described in Section 2, this section analyzes the ability of 
FX-87's static effect system to discover parallelism in a number of different 
types of programs. Our primary goal is to determine the power of a static 
effect system under ideal conditions; therefore we will ignore some of the 
realistic influences on parallelism, like communication latency and synchro
nization costs, by running GITA in idealized mode. Specifically, we assume 
the following: 

• All alu operations take one time unit. 

• Any number of operations can be performed in one time unit. 

• Communication is instantaneous. 

• Each operation executes as early as possible, i.e. as soon as all its input 
data are available. 

As a result of these idealizations, the graphs in this section are useful 
only in the way they compare to each other, and do not purport to reflect 
the intricacies of execution on any real machine. 
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3.1 Some Simple Functional Examples 

In order to assess the power of the FX effect system, we need to compile 
the example programs both with and without effect information and then 
compare the results. To this end, the compiler was constructed with a switch 
to select one of the following: 

Compilation Method 1- Forced Sequential Execution: 
The compiler module described earlier, which uses effect infor
mation to annotate the parse tree with conflict edges, is replaced 
by a module that simply draws conflict edges from one application 
to the next in the order dictated by the sequential semantics of 
the language. This does not completely remove parallelism from 
the resulting compiled code; GITA is still permitted to exploit 
any parallelism in lower level operations, such as procedure invo
cation and resource allocation. Furthermore, parallelism remains 
in library routines. The goal of this method of compilation is to 
simulate the execution of the program in the absence of any effect 
information, but with all other factors the same. 

Compilation Method 2- Parallel with Effect-Synchronizers: 
Programs are compiled with all the modules described in section 
2. The effect-synchronizers around procedure bodies delay 
the return of a value until all the effects in the procedure body 
have occurred. Later, we will reduce the barrier introduced by 
these effect-synchronizers. 

3.1.1 Factorial 

Here is the function factorial written recursively in FX: 

(define factorial (lambda ((x int)) 
(the pure int (if (= x 1) 

1 

(* x (factorial (- x 1))))))) 

Compiling this function and running it on GITA produces many statistics 
that allow us to examine the characteristics of the compiled code. Three of 
the graphs produced, the alu operations profile, the dynamic operation mix 
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Figure 1: (Factorial 30): Alu Operations Profile- Sequential Execution 

table, and the invocation tree profile, are of particular interest and will be 
examined frequently throughout this section. 

The first of these graphs, the alu operations profile, is a plot of alu oper
ations versus time. The alu operations are, for the most part, simple binary 
or unary operations that can be executed in a single cycle. The unit of time 
in these graphs is one GITA cycle. The alu operations profile shown in figure 
1 was produced by calling the factorial function, compiled using method 
1, on a value of 30. Figure 2 shows the same function called on the same 
value, but compiled using method 2. 

Comparing these graphs, we make two observations. First, the sequential 
execution profile shows as many as three operations occurring at a single 
time step. This concurrency results from parallelism in GITA's procedure 
invocation mechanism. This sort of low-level parallelism is allowed to re
main, because our goal in forcing sequential execution is to avoid only that 
parallelism gained by the compiler's static effect analysis. Second, the se
quential and parallel executions took almost the same amount of time. This 
is because the dataflow constraints in the factorial function do not permit 
any parallel computation. 

Next, we examine the dynamic operations table. This table shows the 
makeup of the set of instructions executed by the alu during the execution 
of the program. Tables 1 and 2 show the results produced by running the 
two different compilations. 
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Figure 2: (Factorial 30): Alu Operations Profile- Parallel 

Instruction Type Count Percentage 
Identity 266 40.86 
Tag 176 27.04 
Arithmetic 88 13.52 
Switch 60 9.22 
Resource 59 9.06 
Constant 2 0.31 
Total 651 100 
Critical Path 355 

Table 1: (Factorial 30): Dynamic Operations Mix- Sequential 
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Instruction Type Count Percentage 
Identity 237 38.10 
Tag 176 28.30 
Arithmetic 88 14.15 
Switch 60 9.65 
Resource 59 9.49 
Constant 2 0.32 
Total 622 100 
Critical Path 326 

Table 2: (Factorial 30): Dynamic Operations Mix- Parallel 

Most of the instruction type categories in the dynamic operations table 
are clear. The type called tag includes all those instructions that alter the tag 
of a token (i.e., for procedure calls and manager requests). The type called 
switch is for the switch instruction used to send tokens to the selected arm of a 
conditional. Resource instructions include getting new contexts for procedure 
invocations and the allocation of new memory structures. The critical path is 
the same as total execution time on the alu operations profile. It represents 
the longest chain of data and conflict dependencies in the program. 

The above tables immediately suggest two questions: why so many iden
tity instructions? and why are there more identity instructions in the se
quential run? The answer to both is that identity instructions are used to 
perform synchronizations. They do this in two distinct ways: first, they are 
placed in the machine graph to handle some low-level runtime chores, such 
as completion detection. Second, they are used by the FX-87 compiler to 
control the sequencing of instructions. In the case of parallel execution, they 
enforce side-effect constraints. In the case of sequential execution, they are 
used to force the applications to proceed in sequence. Since forced sequen
tial execution requires more constraints than parallel execution, sequential 
runs will, in general, execute more identity instructions. Fortunately, the 
additional instructions needed to force sequential execution are a negligible 
percentage of the total number of instructions executed, and therefore do not 
introduce any significant unfair bias against sequential execution. 

Finally, we look at the invocation tree profile. This graph plots the number 
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Figure 3: (Factorial 30): Invocation Tree Profile- Parallel 

of procedures that have been invoked but not terminated versus time. Since 
the profiles for sequential and parallel execution look practically the same, we 
show only the latter (Figure 3). As we would expect, the factorial function 
applied to the number 30 results in a maximum recursion depth of 30, as 
shown in the profile. 

3.1.2 Fibonacci 

As we saw in the last section, some programs, such as factorial, may afford 
very little parallelism because of dataflow constraints. Now we will look at 
another simple pure program that is less constrained by the flow of data. 

(define fibonacci (lambda ((x int)) 
(the pure int (if (or (= x 1) (= x 2)) 

1 
(+ (fibonacci (- x 1)) 

(fibonacci (- x 2))))))) 

Compiling fibonacci using both methods 1 and 2, and then evaluating 
(fibonacci 10) for both cases, results in the two alu operations profiles 
shown in figures 4 and 5. Clearly, there is plenty of parallelism in this pro
gram: sequential execution takes approximately 1200 time steps, compared 
to approximately 110 for parallel. Both runs executed around 2600 instruc
tions, with the sequential one needing 108 more identity instructions. 
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Figure 4: (Fibonacci 10): Alu Operations Profile- Sequential 

The source of parallelism in fibonacci is in the two recursive calls. The 
type checker reports that both calls are pure and thus do not interfere, 
and there are no dataflow constraints between them. Hence, the parallel 
execution simultaneously pursues computation down both branches of the 
recursion. Incidentally, the profile in figure 5 is exactly like that produced 
by fibonacci code written in ID and compiled for GITA. In general, FX-87 
performs just as well as ID on functional programs that do not use data 
structures. 

3.1.3 Polynomial Division 

To close this section on functional examples, we'll look at a somewhat more 
complicated program that computes the quotient and remainder of polyno
mial division. (See [Ham88] for source code.) For example, div-polys called 
on a dividend of x3 + 3x2 + 4x + 5 and a divisor x + 1 returns the quotient 
x2 + 2x + 2 and remainder 3. 

Compiling for sequential execution and calling di v-polys on the above 
example produced the statistics in figures 6 and 7 and table 3. Similarly, com
piling for parallel execution and using the same example resulted in figures 
8 and 9 and table 4. The most interesting difference between the two sets of 
statistics is in the invocation tree profile. In the case of sequential execution, 
the procedure applications within the body of a procedure occur one after 
another, each one terminating before the next one begins. Therefore, the 
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Figure 5: (Fibonacci 10): Alu Operations Profile- Parallel 

invocation tree profile represents the depth of invocations versus time, i.e., 
the number of stack frames on the control stack of a traditional sequential 
machine versus time. In the case of parallel execution, however, any applica
tion within the body of a procedure is allowed to proceed if it is sure to be 
executed and does not need to be constrained because of its effect. Perusing 
the code for di v-polys reveals that there is no effect interference, but there 
is a conditional which contains a recursive call to div-polys. Hence, the 
invocation tree profile for the parallel execution is explained as follows: upon 
entering di v-polys for the first time the branch containing the recursive 
call is selected and many of the invocations entailed therein are quickly exe
cuted. The wild spread of invocations is stopped only by conditionals whose 
predicates are unknown (i.e., no speculative parallelism). The recursive call 
to di v-polys encounters exactly that, undetermined conditional execution. 
Some time later when the predicate finally arrives it sets off another wave of 
invocations. The invocation tree profile shows four such waves, corresponding 
to the order of the dividend. 

The dynamic operations table contains a few new categories that deserve 
explanation. Fetch and Store are counters for accesses to the standard store 
that we added to GITA; these accesses are like those in a standard memory 
architecture in that they do not rely on deferred reads or write-once enforce
ment. Accesses that do rely on this more sophisticated I-structure memory 
are counted in I-Fetch and I-Store. This raises the obvious question: why 
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Figure 6: Polynomial Division: Alu Operations Profile- Sequential 

Figure 7: Polynomial Division: Invocation Tree Profile- Sequential 
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Instruction Type Count Percentage 
Identity 7,883 49.13 
Tag 4,709 27.35 
Resource 1,690 10.53 
Switch 623 3.88 
Fetch 253 1.58 
Arithmetic 244 1.52 
Store 236 1.47 
Address 236 1.47 
Closure 105 0.65 
I-Store 42 0.26 
I-Fetch 21 0.13 
Constant 2 0.01 
Total 16,044 100 
Critical Path 5,342 

Table 3: Polynomial Division: Dynamic Operations Mix- Sequential 
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Figure 8: Polynomial Division: Alu Operations Profile- Parallel 

are I-structures being used in a program compiled from FX? The answer is 
that closures are built using I-structures, just as they are in compiled ID 
programs. There is no reason why regular memory could not be used for 
this task, except that this would require more changes to the compiler back
end and would sacrifice a small amount of parallelism gained through the 
non-strictness inherent in argument-passing with I-structures. The category 
closures is just a count of all the instructions related to the construction and 
manipulation of closures. 

Unfortunately, the speedup with parallel execution, about 1. 7, is less than 
phenomenal. Like factorial, the computation in this program is severely 
constrained by the flow of data from one application to the next. However, if 
we consider a case where some client uses di v-polys to perform many unre
lated polynomial divisions, then, since the effect system assures the compiler 
that multiple calls to the polynomial division function cannot possibly inter
fere, the client's requests will be scheduled in parallel. For example, in figures 
10 and 11 and table 5, we have run a small program that calls di v-polys on 
4 separate sets of dividends and divisors and puts the results in a list. As we 
expected, the polynomial divisions completely overlap, and the resulting ex
ecution time is essentially the same as that for a single division, even though 
approximately 4 times as many instructions have been executed. 
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Figure 9: Polynomial Division: Invocation Tree Profile- Parallel 

Instruction Type Count Percentage 
Identity 7,772 48.78 
Tag 4,709 29.56 
Resource 1,690 10.61 
Switch 623 3.91 
Fetch 253 1.59 
Arithmetic 244 1.53 
Store 236 1.48 
Address 236 1.48 
Closure 105 0.66 
I-Store 42 0.26 
I-Fetch 21 0.13 
Constant 2 0.01 
Total 15,993 100 
Critical Path 3,183 

Table 4: Polynomial Division: Dynamic Operations Mix- Parallel 
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Figure 10: Four Polynomial Divisions: Alu Operations Profile- Parallel 

,,, 

·-
Figure 11: Four Polynomial Divisions: Invocation Tree Profile- Parallel 
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Instruction Type Count Percentage 
Identity 26,162 48.82 
Tag 15,824 29.53 
Resource 5,685 10.61 
Switch 2,086 3.89 
Fetch 843 1.57 
Arithmetic 819 1.53 
Store 804 1.50 
Address 804 1.50 
Closure 350 0.65 
I-Store 140 0.26 
I-Fetch 70 0.13 
Constant 2 0.00 
Total 53,589 100 
Critical Path 3,341 

Table 5: Four Polynomial Divisions: Dynamic Operations Mix- Parallel 
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3.2 Sequence Matching 

DNA sequence matching determines how similar two DNA sequences are us
ing a metric that assigns penalties for base pair insertions, deletions, and 
substitutions. Since the sequences are from hundreds to thousands of ele
ments long and DNA databases are very large, it is necessary to rely on a 
computer program to match sequences. In this section, we look at an FX-87 
program that finds the best way to align two sequences. 

[Ham88] shows an encoding of a DNA sequence matching algorithm in FX. 
The program takes two vectors of symbols representing two DNA sequences, 
and, by inserting blanks in either one, produces two new vectors of symbols 
representing the match with the lowest cost. Cost is assigned for inserting 
gaps (the longer the gap the greater the cost) and for matching elements that 
are not the same. Without delving into too much detail, the program has 
three main parts: 

1. Assuming sequence 1 has length x and sequence 2 length y, allocate 
two new matrices of size (x + 1) x (y + 1) and initialize them. We will 
call these the match and path matrices. 

2. Conceptually, the two sequences and the match matrix are aligned as 
shown in figure 12. Each element mi,j of the match matrix represents 
the lowest possible cost of matching the first i elements of sequence 1 
with the first j elements of sequence 2. Each element of the path matrix 
Pi,j records three things: 

(a) the coordinates of the match matrix element that were used to 
compute mi,j (either (i - 1,j - 1), (i,j - 1), or (i - 1,j)) 

(b) the length of the current gap. 

( c) the length of the match. 

The elements of the match and path matrices are filled in by stepping 
i from 1 to x and j from 1 to y, and filling in m;,j and Pi,j as follows: 

(a) Using the value of mi-l,j and the length of the current gap from 
Pi-l,j, and assuming we are matching the ith element of sequence 
1 against a blank for sequence 2, compute a new cost. Do the 
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Figure 12: Alignment of sequences with match matrix 

same for the indices (i - 1,j - 1), matching the ith element of 
sequence l against the j'h element of sequence 2, and for the 
indices ( i, j - 1 ), matching a blank for sequence 1 against the j'h 
element for sequence 2. The minimum of these three costs is the 
new value for mi,J· 

(b) Fill in Pi,J to record which of the three new costs computed were 
used as the value for mi,j. Also, record how this choice effects the 
length of the current gap and the length of the alignment produced 
thus far. 

3. Once the match and path matrices are filled in, use the path matrix to 
trace back through the decisions that were made to achieve the lowest 
cost alignment, and construct it. 

The important thing to notice is that each element (i,j) in the match and 
path matrices depends only on the values in the match and path matrices at 
indices (i - 1,j - 1), (i - 1,j), and (i,j - 1), and on element i of sequence 
1 and element j of sequence 2. Therefore, it is possible to compute all the 
elements of each diagonal in parallel. 
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Figure 13: DNA Sequence Matching: Alu Operations Profile- Sequential 

3.2.1 Sequential Execution, Parallel Execution, and ID 

We begin the analysis of the DNA sequence matching program with the 
statistics from sequential execution (fig 13, fig 14, table 6). These numbers 
were produced by comparing C A T A C G C C against A T U U A G C C to 
produce a best match, C A T A C - G C C against - A T U U G C C 

Looking first at the alu operations profile, we see that it looks very se
quential, except for a few small bursts of activity near the beginning of 
the computation. These are caused by the many calls to library function 
make-vector entailed in the allocation of the match and path matrices. Even 
in forced sequential execution, library routines are still allowed to exploit any 
parallelism within their bodies. Make-vector is a library routine that takes 
two arguments, an integer and some initial element, allocates a vector of the 
length given by the first argument, and fills it with the second argument. All 
the memory writes to fill the new vector can, and do, run in parallel. 

The invocation tree profile shown in figure 14 clearly reflects the three 
phases of the computation: in the first 4500 time steps, there are two large 
spikes for all the procedures that allocate and initialize the large matrices. 
Then around time step 5000, there are two smaller spikes for setting the edges 
of the matrices to properly reflect the edge conditions. From about 6000 to 
35000, the computation settles into a steady ascent topped by eight smaller 
ascents. This pattern reflects the nested do loops that step the two indices 
through each element of 8 x 8 submatrices of the match and path matrices. 

22 



Figure 14: DNA Sequence Matching: Invocation Tree Profile- Sequential 

Instruction Type Count Percentage 
Identity 41,652 44.77 
Tag 26,232 28.20 
Resource 8,625 9.27 
Switch 5,282 5.68 
Arithmetic 4,429 4.76 
Closure 2,245 2.41 
Fetch 1,604 1.72 
Store 1,138 1.22 
Address 1,138 1.22 
I-Store 424 0.46 
I-Fetch 255 0.27 
Constant 2 0.00 
Total 93,026 100 
Critical Path 37,074 

Table 6: DNA Sequence Matching: Dynamic Operations Mix- Sequential 
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As stated earlier, do is desugared into a tail-recursive function, where each 
iteration is handled by making a recursive call. So in the profile, the overall 
ascent is the result of the recursive calls made by the outer do loop, and the 
eight smaller ascents the result of recursive calls by the inner one. Finally, 
the last spike is for the procedures that trace back through the path matrix 
and construct the result. 

Before trying the parallel run, we will briefly examine the way DNA 
sequence matching can be approached in the functional language ID. At 
first, the above algorithm seems inherently side-effecting, and in a language 
like FX-87, where the allocation and initialization of data structures are an 
atomic operation, it is indeed side-effecting. In ID, however, the programmer 
explicitly allocates an uninitialized I-structure and then explicitly writes val
ues to its elements; hardware restricts him to writing each element only once. 
As an example, here is code, written in both ID and FX-87, that allocates a 
two element vector and puts the value 1 in the first element and the value 2 
in the second. 

{id-vector = array (0,1) 
id-vector [OJ = 1 
id-vector [1] = 2} 

'l. new vector, uninitialized 

(let ((fx-vector ((proj make-vector ©R1) 2 0))) new vector with 
each element 
initialized to 
0. 

(vector-set! fx-vector 0 1) 
(vector-set! fx-vector 1 2)) 

Thus, in ID, the first step in the sequence matching algorithm allocates 
uninitialized matrices. The second step iterates over all their elements, com
puting new values based on values already written, and writing each element 
once and only once. The third and final step is just as before: trace back 
over the path matrix, constructing the result. 

Looking at the statistics in figures 15, 16, 17, and table 7, we can see 
that the ID version of DNA sequence matching discovered the parallelism 
available in the algorithm. The alu operations profile shows a large start-up 
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Figure 15: DNA Sequence Matching: Alu Operations Profile- ID 

Figure 16: DNA Sequence Matching: Invocation Tree Profile- ID 
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Figure 17: DNA Sequence Matching: Deferred I-fetches Profile- ID 

Instruction Type Count Percentage 
Identity 8,950 39.41 
Tag 5,545 24.42 
Resource 2,121 9.34 
Arithmetic 1,816 8.00 
I-Fetch 1,474 6.49 
Switch 1,168 5.14 
I-Store 728 3.21 
D 407 1.79 
Loop 258 1.14 
Address 163 0.72 
Constant 75 0.33 
Bounds 4 0.02 
Total 22,709 100 
Critical Path 667 

Table 7: DNA Sequence Matching: Dynamic Operations Mix- ID 

26 



transient in the first 120 time steps, where the loops unroll and all the !
structure reads take place. Then we see a series of spikes where the diagonals 
of the matrices are filled in. Finally, there is a small burst of activity to 
search the path matrix and construct the answer. Note that even though 
all the I-structure reads take place early in the computation, along with the 
unfolding of the loop indices, most of them cannot be immediately satisfied 
and must be put in deferred read queues in the memory. This is shown in 
the total deferred i-fetches profile in fig 17. The dynamic operations table 
shows considerably fewer instructions have been executed than in the FX-87 
version. This is mostly accounted for by the fact that ID makes use of special 
GITA mechanisms for efficient tail-recursion, and the FX-87 compiler does 
not. 

Returning now to FX, the statistics for parallel execution in figures 18 
and 19 and table 8 show a 3. 7 speedup over the earlier sequential run, but 
the shapes of the alu operations profile and the invocation tree profile are 
essentially unchanged. FX was able to discover parallelism in two places. 
First, notice that the two large spikes near the beginning of the invocation 
tree profile for sequential execution are combined into one very large spike 
in parallel execution. This is because the allocations of the match and path 
matrices do not interfere and have no data dependencies, and are therefore 
allowed to proceed in parallel. Second, FX discovered some parallelism in 
the body of the main loop, thereby shortening the time spent on computing 
each element of the matrices. 

Unfortunately, the potentially largest gain, computing the elements of 
each diagonal in parallel, was not exploited. The problem here is funda
mental to the idea of static interference calculation, and is best explained 
by examining two constraints put on the programmer by FX. The first con
straint was alluded to earlier and concerns the allocation of data structures. 
All the built-in functions in FX-87 that dynamically allocate new storage 
also initialize it to some value provided by the caller. For the programmer, 
allocation and initialization are an atomic operation. So in the case of the 
DNA algorithm, wherein the ma.trices must be filled in based on other ele
ments already computed, a procedure must be called that allocates a new 
matrix (filling it with some initial value) and then iterates over its elements, 
reading and writing them as necessary. The operative word here is writing; 
this implies that the matrices must be allocated in a mutable region. 

The second constraint is a simple issue of static versus dynamic infor-
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Figure 19: DNA Sequence Matching: invocation tree profile- parallel 
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Instruction Type Count Percentage 
Identity 39,825 43.49 
Tag 26,232 28.65 
Resource 8,625 9.42 
Switch 5,922 6.47 
Arithmetic 4,157 4.54 
Closure 2,245 2.45 
Fetch 1,604 1.75 
Store 1,138 1.24 
Address 1,138 1.24 
I-Store 424 0.46 
I-Fetch 255 0.28 
Constant 2 0.00 
Total 91,567 100 
Critical Path 10,145 

Table 8: DNA Sequence Matching: Dynamic Operations Mix- parallel 
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mation. In FX a region is a static concept, whereas memory allocation 
is a dynamic one. In other words, if the programmer wants to dynami
cally allocate matrices, as in the DNA example, then by the way regions 
are expressed he is forced to repeatedly allocate in the same statically de
clared regions. For example, consider the function make-vector. When the 
programmer uses this function, he must project it over some region (e.g., 
( (proj make-vector ©R1) 10 0) ). Every element in a vector created with 
make-vector is in the same region, and a write to any element will, by the 
FX effect system, interfere with a write or read to any other element, even 
if the indices are different. Saying that each element is in a different region 
forces interference calculations to leave the realm of static computation. 

Considering these two constraints, it is now clear why FX failed to exploit 
some of the parallelism exposed by ID. By constraint 1 we were forced to put 
the match and path matrices in a mutable region, and by constraint 2, every 
write to any element of a matrix interfered with every other read or write to 
that matrix. Hence, each element had to be updated sequentially, making the 
resulting graphs look very similar to those for sequential execution. Later, 
in the section on parallel operators, we will try to address this problem, but 
for now we will look at some other optimizations. 

3.2.2 Procedure Invocation Barriers 

In Section 2, we said that an effect-synchronizer was compiled so that 
the return value of a procedure was delayed until the procedure completed 
all of its side-effects. Furthermore, we added that if application A precedes 
application B in sequential execution and A and B interfere, then a return 
value from A could be used as an indicator that B may proceed. This puts 
an unnecessary barrier, however, to parallelism between expressions in differ
ent procedures. Consider this example: procedure X and procedure Y have 
latent effects that interfere, and procedure Y contains a significant amount 
of pure computation. Procedure Z makes a call to X, then to Y. Under our 
old method of compilation, the body of Z would be compiled so that Y is not 
invoked until X has returned. But there is no reason why the pure compu
tation in Y, or for that matter any computation in Y that does not interfere 
with the latent effect of X, cannot be started before procedure X finishes. 
In an attempt to reduce the barrier to parallelism between procedures, we 
introduce a new method of compilation: 
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arguments effect-control argument 

procedure 

result effects-completed 
indicator 

Figure 20: New procedure model 

Compilation Method 3- Removing Procedural Barrier: 
The problem with compilation method 2 is that after invoking a 
procedure, we have no way of preventing the effects in the body of 
that procedure. Therefore, we must be careful that no procedure 
is invoked before its effects can occur. Compilation method 2 also 
has the dual restriction that there is no way for a procedure to 
indicate that its effects have completed other than by returning 
a value. We can partially correct these unnecessary restrictions 
by compiling each procedure as indicated in figure 20. 

Now, in addition to its regular arguments, every procedure takes 
an effect-control argument, which is used by a caller to indicate 
that a called procedure can go ahead and execute side-effecting 
operations. Similarly, in addition to returning a value, every pro
cedure will also return an effects-completed indicator to indicate 
that all of its effects have completed. Note that a procedure may 
return a value before or after indicating that its effects have com
pleted. 

The difference between compilation methods 2 and 3 is best viewed as 
an issue of atomicity. In method 2 procedures were atomic units. We could 
start them and receive their results, but there was no way to look inside them 
and control when their effects took place. In method 3 we have added an 
extra input and output that are used as effect control linkage between caller 
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and callee; we have separated the flow of data from the flow of effect control, 
and thereby avoided the cost of synchronizing data and effect information at 
procedure boundaries. As an obvious generalization of method 3, one might 
suggest that we pass to every procedure an extra argument for every one of 
the region constants appearing in the user's program, and likewise return an 
indicator for every region constant. In this way, the flow of effect information 
across procedure boundaries would be as unconstrained as within a procedure 
body. Unfortunately, this more aggressive approach runs into complications 
when we consider abstraction over regions and effects. For example: 

(define increment-ref 
(plambda ((r region)) 

(lambda ((a-ref (ref int r))) 
(set a-ref (+ 1 (get a-ref)))))) 

When we compile increment-ref we will notice that the get and set ex
pressions have effects on region r. The set expression will be forced to follow 
the get, which should be delayed until the arrival of one of the effect-control 
arguments. We have an effect-control argument for every static region con
stant, but there is no way for the compiler to know which static regions 
constants are contained in region variable r. To overcome this lack of infor
mation, we have to move to runtime abstraction and projection over regions 
and effects. Although there is nothing conceptually difficult about doing 
this, it would require fundamental changes to the compiler and may involve 
considerable runtime overhead. 

The issue of atomicity is of critical importance when we try to compile the 
FX library under method 3. The FX-87 effect system relies on the atomicity 
of its basic storage allocation procedures. Consider the library routine for 
function new: 
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(define new 
(plambda ((r region)) 

(plambda ((t type)) 
(lambda ((y t)) 

(let ((empty-ref 
(#inline (primitive-make-vector 1)))) 

(#inline (primitive-vector-set! empty-ref 0 y)) 
empty-ref))))) 

Suppose we compile this library procedure under method 3, exactly as 
described above. Then new can allocate an empty structure, quickly return 
it, and then initialize it some time later. Consider the following caller of new: 

(let ((new-ref ((proj new ©R1) 1))) 
(get new-ref)) 

There is not a problem in this case. The get expression has effect (read 
©R1) and the new expression has effect (alloc ©R1). In method 3 these 
two effects interfere, therefore the get will will wait for the effects-completed 
indicator from the new. But consider the following case: 

(let ((new-ref ((proj new ©=) 1))) 
(get new-ref)) 

The new expression in this case is pure. Therefore, the get will not interfere; 
it will not wait for the effects-completed indicator from the new, and may 
therefore try to read an uninitialized location. To prevent this problem, we 
compile the FX library by method :3, but add the additional constraint that 
no procedure return a value before its effects have completed. 

Now, we can interpret the statistics from the DNA sequence matching 
code compiled under method 3 (fig. 21, 22, table 9). Since effect constraints 
no longer present a barrier to procedure invocation, we would expect a large 
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Figure 21: DNA Sequence Matching: Alu Operations Profile- Method 3 

startup transient in which the loops unfold, and all the procedures that are 
sure to execute are invoked. The alu operations profile and the invocation 
tree profile show exactly what we would expect. After the huge burst of 
operations at the beginning, however, the computation reverts to the gener
ally sequential task of handling one matrix element after another, and slowly 
terminating the hundreds of procedures that have been invoked. Unfortu
nately, the critical path is only slightly less than before. We knew that this 
new method of compilation would not overcome the problem discussed at 
the end of section 3.2.1; however, we had hoped that by quickly exposing 
the pure computation in the body of each iteration, we might shorten the 
time spent on each element of the matrix, and thereby shorten the overall 
execution time. The problem is that, in this program, the body of the main 
loop is dominated by sequentialized, side-effecting operations. Indeed, when 
we introduced large amounts of pure computation into the body of the loop, 
method 3 performed significantly better than method 2. 

The dynamic operations table (table 9) shows approximately a 50 percent 
increase in the number of instructions executed over method 2. Most of 
these are accounted for by the overhead of handling an extra argument and 
an extra return value for each procedure. Specifically, there is a large increase 
in the number of i-stores and i-fetches, because we used I-structures as part 
of the new procedure linkage. 
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Figure 22: DNA Sequence Matching: Invocation Tree Profile- Method 3 

Instruction Type Count Percentage 
Identity 66,595 44.42 
Tag 29,444 19.64 
Resource 14,019 9.35 
I-Store 11,212 7.48 
I-Fetch 8,381 5.59 
Switch 7,901 5.27 
Arithmetic 4,157 2.77 
Closure 3,858 2.57 
Fetch 2,074 1.38 
Store 1,138 0.76 
Address 1,138 0.76 
Constant 2 0.00 
Total 149,919 100 
Critical Path 9,201 

Table 9: DNA Sequence Matching: Dynamic Operations Mix- Method 3 
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3.2.3 Futures in FX 

In the last section, when we were discussing the FX library and atomicity, we 
mentioned returning structures before they were initialized and showed why 
this would not work for structures in the immutable region. The problem 
was that in the FX effect system, allocating and referencing an immutable 
structure were pure operations and therefore were only constrained by the 
flow of data. We could not allow a built-in procedure to return an im
mutable structure before initializing it, lest some other procedure might try 
to read one of the uninitialized locations. There was no problem with muta
ble structures; they were handled correctly by the FX effect system and the 
effects-completed indicator. 

In this section, by using GITA's deferred read mechanism to handle im
mutable structures, we allow the built-in FX allocation procedures to return 
futures [Hal85], i.e. uninitialized locations that will eventually be filled in. 
The goal is to expose parallelism in the handling of pointers. Consider a situ
ation where procedure A allocates and initializes a structure and then returns 
it to procedure B. Suppose that procedure B then performs many operations 
on the newly allocated structure without accessing it, such as storing it in 
some other structure or passing it to some other procedure. There is op
portunity for parallelism in this example: if procedure A quickly returned 
a pointer to the new structure, then procedure B could store it and pass 
it while procedure A initializes it. Of course, procedure A must have some 
way of notifying procedure B that the initialization has completed, so that 
procedure B can begin accessing the new structure. By including futures in 
the FX implementation, we can exploit this sort of parallelism. 

Compilation Method 4- Futures: This is like compilation 
method 3, except that we compile the FX library without restric
tions; in other words, we allow FX built-in functions to return 
values before their effects have completed, thereby exposing the 
structure allocating procedures as nonatomic operations. This 
means that early in the execution of any program, all the mem
ory allocating subroutines that are sure to be executed will be in
voked and will thereupon return pointers to the newly allocated, 
but uninitialized, structures. In the case of mutable structures, 
premature accesses to uninitialized locations will not occur, be
cause all the accessing procedures will interfere with the allocation 
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Figure 23: DNA Sequence Matching: alu operations profile- futures 

procedure and will therefore wait for an effects-completed indica
tor. In the case of immutable structures, structure reads may 
occur before initialization is complete, but they will be handled 
by GITA's deferred read mechanism. 

The results for the DNA sequence matching example using method 4 are 
shown in figures 23, 24, and table 10. Comparing these statistics to those 
for method 3, we see that the dynamic operations table shows considerably 
fewer identity instructions in method 4. This is accounted for by the removal 
of restrictions on the library routines. The alu operations profile for method 
4 shows a larger initial spike, corresponding to the extra instructions for 
returning and manipulating uninitialized structures; furthermore, we can see 
that using futures has shaved a couple thousand steps off the total execution 
time resulting in a 1.3 speedup over method 3 and 5.4 speedup over sequential 
execution. 

3.2.4 Parallel Operators 

In section 3.2.1 we discussed two constraints on the FX programmer: the 
static nature of regions and the atomicity of allocation and initialization. 
We showed how these two constraints prevented the FX effect system from 
exploiting the diagonal parallelism in the DNA sequence matching program. 
In this section we want to explore how we can overcome these constraints. 
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Figure 24: DNA Sequence Matching: invocation tree profile- futures 

Instruction Type Count Percentage 
Identity 61,785 42.75 
Tag 29,444 20.37 
Resource 14,019 9.70 
I-Store 11,212 7.76 
I-Fetch 8,273 5.72 
Switch 7,901 5.47 
Arithmetic 4,157 2.88 
Closure 3,858 2.67 
Fetch 1,604 1.11 
Store 1,138 0.79 
Address 1,138 0.79 
Constant 2 0.00 
Total 144,531 100 
Critical Path 6,850 

Table 10: DNA Sequence Matching: Dynamic Operations Mix- futures 
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At first we might consider making regions a dynamic concept. For ex
ample, we could overcome the problems in the sequence matching example 
by dynamically assigning a different region for every element of a vector. 
Unfortunately, following this line a reasoning eventually leads to the point 
where the FX effect system becomes nothing more than an expression of the 
runtime manipulation of locks. The static nature of the language's effect 
system is lost to complicated and costly runtime calculations. This seems 
like an unattractive approach. 

Another alternative is to change the way data structures are allocated and 
initialized. Remember that in FX the programmer is forced to regard alloca
tion and initialization as an atomic operation. In section 3.2.3 we exposed the 
nonatomicity of these operations, but only at the implementation level; the 
programmer is still not allowed to allocate a structure without giving some 
initialization value. Suppose we removed this restriction; suppose we al
low the programmer to write something like ( (proj make-vector <D=) 10). 
This would return an uninitialized, immutable 10-element vector. Since the 
vector is immutable, we would be forced to have runtime overhead to insure 
that each element is written (initialized) only once. Also, reads to uninitial
ized locations would have to be deferred until their value arrives. It is clear 
that we have simply introduced I-structures into FX, along with all the run
time overhead they entail. Furthermore, I-structures do not have a sequential 
semantics [Arv87c], so we have also destroyed the sequential semantics of FX. 

Another less drastic change is to introduce parallel operators. Parallel 
operators do not change the fact that allocation and initialization are an 
atomic operation, but they do give the programmer more control over how 
structures are initialized. Consider adding make-vector-wi th-ini t to the 
language: 

make-vector-with-init (poly ((r region)) 
(poly ((t type)) 

(subr (alloc r) 
(int (subr pure (int) t)) 
(vectorof t r)))) 

Make-vector-wi th-ini t takes two arguments: an integer and a pure pro
cedure. It then allocates a vector of length given by the first argument and 
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Figure 25: DNA Sequence Matching: Alu Operations Profile- Parallel Op
erator 

fills each element with the result of calling the second argument on the ele
ment's index. Make-vector-with-init is true to the spirit of FX in that it 
atomically allocates and initializes a vector, and it has sequential semantics. 
Of course, since the second argument to make-vector-wi th-ini t is a pure 
function the invocations for all of the elements can proceed in parallel. 

We have rewritten the DNA sequence matching code using this new par
allel operator. Figures 25, 26, and table 11 show the results of running code 
compiled under method 3. The alu operations p1·ofile and the invocation tree 
profile have the same general shape as those from the ID run, albeit con
siderably stretched. Compared to the other methods of compiling FX, the 
dynamic operations table shows more instructions in every category. The is 
accounted for by the fact that much of the computation that goes on inside 
of make-vector-wi th-ini t to compute elements for the match matrix has 
to be repeated for each element of the path matrix. It is possible that a more 
clever encoding could have avoided this repetition, but the really important 
point is that this approach has exploited the parallelism along the diagonals 
of the match and path matrices. 

Unfortunately, parallel operators, such as make-vector-with-init, vio
late the spirit of FX-87 in two ways. First, they introduce data parallelism 
into the language. Until now we have used the FX-87 effect system to make 
control decisions that afford parallelism (i.e., decisions about procedure in
vocation). GITA, with its ability to pursue concurrently multiple branches 
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Figure 26: DNA Sequence Matching: Invocation Tree Profile- Parallel Op
erator 

Instruction Type Count Percentage 
Identity 93,692 42.64 
Tag 35,576 16.19 
Resource 19,648 8.94 
I-Store 18,204 8.28 
Switch 17,310 7.88 
I-Fetch 14,466 6.58 
Closure 9,569 4.35 
Arithmetic 6,835 3.11 
Fetch 2,380 1.08 
Store 1,032 0.47 
Address 1,032 0.47 
Constant 2 0.00 
Total 219,746 100 
Critical Path 4,080 

Table 11: DNA Sequence Matching: Dynamic Operations Mix- Parallel Op
erator 
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of procedure invocation, was well suited to our approach. Now, however, we 
have introduced an operator with clear-cut, homogeneous parallelism. We 
would like a SIMD-style machine, wherein a front processor issues instruc
tions to a large collection of slave processors, each with its own memory. 
To see this more clearly consider the DNA example. After the large start-up 
spike, we see a series of smaller spikes that grow progressively larger and then 
smaller. Each of these corresponds to the calls to make-vector-with-init 
to create a match and path diagonal. The width of these spikes results from 
the execution of all the procedures to compute the value for each element of 
the new vector. The whitespace between spikes reflects time in which GITA 
is passing values from one iteration to the next. On a SIMD machine, we 
could assign one element per processor and issue a single stream of instruc
tions to properly fill the vector. Iterations would be handled by the front-end 
processor. The overhead of this style of computation would be markedly less 
on a SIMD machine. 

The second and more disturbing reason why parallel operators seem to 
violate the spirit of FX is that they require the programmer to think about 
parallelism. The programmer has written the main loop of the program to 
iterate over the diagonals of the matrices, using make-vector-with-init to 
build each diagonal. In other words, the programmer was aware of parallelism 
in the algorithm and wrote code with that in mind. A major goal of the 
effect system was to relieve the programmer of the burden of reasoning about 
parallelism, and now we have forced him to reshoulder that burden. 

Before ending this section, we should point out that there may be a 
way for the programmer to use a parallel operator without considering the 
possibilities for parallelism in his program. Consider this: A parallel operator 
gives the programmer the power to initialize a vector as he pleases. Why, 
then, does the FX programmer have to think about parallelism and the ID 
programmer does not? The answer is that in ID we could define elements of 
a newly allocated vector to depend on other elements of that vector. But by 
passing a recursive function to make-vector-wi th-ini t we can do the same 
thing in FX: 
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(define init 
(lambda ((i int)) 

(the pure int 
(if (= i 0) 

0 
(+ i (init (- i 1))))))) 

(define new-vector ((proj make-vector-with-init ©=) 4 init)) 

New-vector in the above example will be #(0 1 3 6). That is, for each 
element v; of the vector, vi= i + v;_1 . For the DNA example we could have 
written a large recursive function defining each element of the match and 
path matrices in terms of its neighbors and then passed this to the parallel 
operator. The problem is that the initialization function may get called many 
times on the same argument. The solution to this problem is memoization, 
i.e., remembering results and returning previously computed results when 
called on the same arguments. Note that it is always possible to memoize 
the initialization function since it must be pure. The way memoization is 
performed will greatly affect the results of this approach; we are currently 
investigating the various alternatives. 

3.3 Scheme Interpreter 

Our final benchmark is a scheme interpreter written in FX-87. Scheme 
[Ree86] is an imperative, sequential dialect of lisp. The FX-87 code ap
pearing in [Ham88] is based on the interpreter implemented and discussed 
in [Abe85]. This benchmark presents a particularly difficult challenge for 
systems designed to exploit parallelism. The computation is heterogeneous 
and strewn with side-effecting operations. It would be impossible to write 
this code in ID, since the program uses interactive I/O and other side-effects. 
Furthermore, simple parallel operators, effective in homogeneous, scientific 
computation, are of little help here. 

The computation begins by initializing an environment of built-in func
tions. Then a prompt is printed and a scheme expression is read from the 
user. The program parses the user's expression and then steps recursively 
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Figure 27: Scheme Interpreter: Alu Operations Profile- Sequential 

down the parse tree to perform the evaluation. Finally, the answer is printed, 
the user is prompted for another expression, and the whole process begins 
again. For those familiar with lisp interpreters, this is just a read-eval-print 
loop. 

In the examples that follow, the scheme interpreter was started and given 
the definition for fibonacci. It was then asked to evaluate (fibonacci 5). 
Since scheme is a sequential language, we cannot expect the FX implemen
tation to overlap the evaluation steps of the scheme interpreter. In other 
words, interpreting a scheme program means evaluating one expression after 
another, where any expression can have an effect on the store. Since FX has 
no information about effects in the scheme programs it is interpreting, it is 
forced to evaluate scheme expressions sequentially. The only opportunity for 
parallelism is within each evaluation. 

The statistics for sequential execution (figures 27, 28, and table 12) are 
uninteresting except for the invocation tree profile. In all the other examples 
the number of pending procedures at the end of the computation was zero; 
in this example it is not. This is accounted for by the fact that the top level 
read-eval-print loop is a tail recursive function that loops forever, continually 
prompting the user for an expression and then evaluating it. 

Pulling out all the stops, we compiled the interpreter by method 4 (fu
tures) and ran it to produce the statistics in figures 29, 30, and table 13. 
This run executed 1. 7 times as many instructions and produced a speedup of 
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Figure 28: Scheme Interpreter: Invocation Tree Profile- Sequential 

Instruction Type Count Percentage 
Identity 103,813 46.00 
Tag M,515 28.59 
Resource 22,698 10.06 
Switch 15,813 7.01 
Closure 4,793 2.12 
Arithmetic 3,983 1.76 
Fetch 3,648 1.62 
Store 1,817 0.81 
Address 1,817 0.81 
I-Store 1,402 0.62 
I-Fetch 1,082 0.48 
I/O 268 0.12 
Other 19 0.01 
Total 225,668 100 
Critical Path 88,000 

Table 12: Scheme Interpreter: Dynamic Operations Mix- Sequential 
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Figure 29: Scheme Interpreter: Alu Operations Profile- Futures 

about 1. 7. The invocation tree profile is comparitively choppy, reflecting the 
waves of invocations that follow the arrival of a predicate value at a condi
tional. Also, we notice that, unlike the sequential run, the number of pending 
procedures at the end of computation is zero. This is because we modified 
the top level read-eval-print loop to loop only three times. We were forced to 
do this because running an infinitely tail recursive function compiled under 
methods 3 or 4 swamps the machine with procedure invocations. Remem
ber that with the new procedure linkage introduced in method 3 nothing 
prevents a procedure that is sure to be executed from being invoked. There
fore, an infinite tail recursive loop procedure sets off a never-ending wave of 
invocations. 
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Figure 30: Scheme Interpreter: Invocation Tree Profile- Futures 

Instruction Type Count Percentage 
Identity 165,820 43.51 
Tag 68,784 18.05 
Resource 40,533 10.64 
I-Store 36,413 9.55 
I-Fetch 26,807 7.03 
Switch 23,591 6.19 
Closure 7,598 1.99 
Arithmetic 3,994 1.05 
Fetch 3,650 0.96 
Store 1,819 0.48 
Address 1,819 0.48 
I/O 270 0.07 
Other 19 0.00 
Total 381,118 100 
Critical Path 53,500 

Table 13: Scheme Interpreter: Dynamic Operations Mix- Futures 
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