
"'" ;f
"•

\

r:
I
i, ---
,._'

......... ,,tJi' -
Mayl ..

[\

\ ' I

LABO RA TORY FOR ~~ ~ir~s~;;rs + COMPUTER SCIENCE JE! lift. TECHNOLOGY

MIT/LCS{fR-413

DIVERSITY-BASED
INFERENCE OF

FINITE AUTOMATA

Robert Elias Schapire

May 1988

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Diversity-Based Inference of Finite Automata

by

Robert Elias Schapire

Sc.B., Mathematics and Computer Science
Brown University

{1986)

submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment
of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology
May 1988

© Massachusetts Institute of Technology 1988

Signature of Author--------------------------
Department of Electrical Engineering and Computer Science

April 21, 1988

Certified by-----------------------------
Ronald L. Rivest

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by-----------------------------
Arthur C. Smith

Chairman, Department Committee on Graduate Students

1

Diversity-Based Inference of Finite Automata
by

Robert Elias Schapire

Submitted to the Department of Electrical Engineering and Computer Science
on April 21, 1988 in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

Abstract

We present a new procedure for inferring the structure of a finite-state automaton (FSA)
from its input/output behavior, using access to the automaton to perform experiments.

Our procedure uses a new representation for FSA's, based on the notion of equivalence
between tests. We call the number of such equivalence classes the diversity of the automaton;
the diversity may be as small as the logarithm of the number of states of the automaton. For
the special class of permutation automata, we show that our inference procedure runs in time
polynomial in the diversity and log(~), where f is a given upper bound on the probability
that our procedure returns an incorrect result. (Since our procedure uses randomization to
perform experiments, there is a certain controllable chance that it will return an erroneous
result.) \Ve also discuss techniques for handling more general automata.

We present evidence for the practical efficiency of our approach. For example, our
procedure is able to infer the structure of an automaton based on Rubik's Cube (which
has approximately 1019 states) in about 2 minutes on a DEC Micro Vax. This automaton
is many orders of magnitude larger than possible with previous techniques, which would
require time proportional at least to the number of global states. (Note that in this example,
only a small fraction (10-14) of the global states were even visited.)

Finally, we present a new procedure for inferring automata of a special type in which the
global state is composed of a vector of binary local state variables, all of which are observable
(or visible) to the experimenter. Our inference procedure runs provably in time polynomial
in the size of this vector (which happens to be the diversity of the automaton), even though
the global state space may be exponentially larger. The procedure plans and executes
experiments on the unknown automaton; we show that the number of input symbols given
to the automaton during this process is (to within a constant factor) the best possible.

Portions of this thesis are joint work with Ronald Rivest.

Thesis Supervisor: Ronald L. Rivest

Title: Professor of Computer Science and Engineering

Keywords: Learning, Automata, Induction, Inference of Finite Automata

This paper prepared with support from NSF grant DCR-8607494, ARO Grant DAAL03-86-K-Ol 71, and
a grant from the Siemens Corporation.

2

Acknowledgements

First and foremost, I wish to thank my advisor Ron Rivest for his help, patience and

encouragement, and for the many things I have learned working with him.

For their contributions to particular results included in this thesis, I thank Dana Angluin,

Satish Rao and Neal Young. I also thank Bob Sloan for his comments on an earlier draft, as

well as Be Hubbard, Jon Riecke, my officemates, my parents, and especially Roberta Sloan

for their personal support.

Finally, I gratefully acknowledge the :financial support I received from MIT, Siemens

Corporation, and the Center for Intelligent Control Systems.

3

Contents

1 Introduction
1.1 Previous Work

2 A New Representation of Finite Automata
2.1 Automata and Environments .. .
2.2 Tests
2.3 Equivalence of Tests and Diversity
2.4 The Update Graph
2.5 The Simulation Theorem
2.6 Simple Assignment Automata . . .
2.7 Characterizing Diversity and the Update Graph .
2.8 Two Example Environments.

2.8.1 n x n Grid World ..
2.8.2 n-bit Register World .

3 Our Inference Procedure
3.1 Inferring the Values of the Test Equivalence Classes
3.2 An Inference Procedure Using an Oracle for Equivalence .
3.3 Determining If Two Tests Are Equivalent
3.4 Determining Test Equivalence in Permutation Environments .

3.4.1 Overcoming Irreversibility of Actions
3.4.2 Overcoming Accessibility of Counterexamples

3.5 Determining Test Equivalence in General
3.6 Experimental Results

3.6.1 Three More Toy Environments ..
3.6.2 Summary of Results

4 Inference of Visible Simple Assignment Automata with Planned Experi-

5
5

8
8
9
9

11
11
12
12
14
14
15

17
17
18
18
19
19
22
30
33
33
34

ments 36
4.1 Definitions. 36
4.2 Example 38
4.3 Our Inference Procedure 39

4.3.1 The Basic Inference Algorithm 41
4.3.2 The Experiment Planning Subroutine 42

4.4 Optimality 45

5 Conclusions and Open Problems 46

4

Chapter 1

Introduction

We address the problem of inferring a description of a deterministic finite-state automaton

from its input/output behavior.

Our motivation is the "artificial intelligence" problem of identifying an environment

by experimentation. We imagine a robot wandering around in an unknown environment,

whose characteristics must be discovered. Such an environment need not be deterministic,

or even finite-state, so the approach suggested here is only a beginning on the more general

problem.

In line with our motivation, our inference procedures experiment with the automaton

to gather information.

A unique and valuable feature of our procedures is that they do not need to have the

automaton "reset" to some start state or "backed-up" to a previous state; the data-gathering

is one continuous experiment (as in real life).

Our procedures are practical; their time and memory requirements are quite reasonable.

For example, our procedures do not need to store the entire observed input/output history.

In Chapters 2 and 3, we present a new representation of finite automata based on

the notion of test equivalence. We present and prove the effectiveness of a probabilistic

algorithm for inferring permutation automata. We also discuss possible techniques for

handling more general automata, and give some preliminary experimental results.

In Chapter 4, we extend the work of the preceding chapters focusing on one aspect of

the inference problem, namely, that of planning experiments for gathering information.

Portions of this thesis were previously described in [14,15].

1.1 Previous Work

For a fascinating discussion of the problem of inferring an environment from experience,

the reader is encouraged to read Drescher [5], whose approach is based on the principles of

Piaget.

Kohavi [12] gives a fine introduction to the theory of finite-state automata, as do Hart

manis and Stearns [11]. An excellent overview of the entire field of inductive inference is

5

given by Angluin and Smith [4).

The problem of inferring a finite-state automaton from its input/output behavior has

a long history. In [9), Gold presents a number of recursion theoretic results concerning

several language classes, including the regular languages. Gold looks first at the problem of

identifying a language when given a particular presentation of the language. In one case, the

learner is provided with an infinite stream in arbitrary order of all strings in the language.

In the second case, the learner is given an infinite stream of all finite strings generated by

the alphabet, each string labeled as to whether it is or is not an element of the language.

In his model, the learner guesses the identity of the language after each example, and is

said to learn the language "in the limit" if, after a finite number of examples, the learner's

guesses converge to the right answer and the learner never again changes its guess. Gold

shows regular languages can be learned in the limit in the second case described above, but

not in the first.

In the same paper, Gold describes the problem of "black box" identification, closely

related to the particular problem that we are here addressing. In this situation, the learner

is able to experiment with an unknown black box. At each time step, the learner supplies

the black box with one of a finite number of input symbols and the black box in turn

outputs an output symbol calculated as a function of the input symbols provided to it up

to that point in time. Gold shows that if the black box is a finite automaton, then it can be

identified in the limit. Note that Gold's results were recursion theoretic and did not address

the time complexity of any of these problems.

In [10), Gold examines more closely the problem of inferring a black box finite automa

ton. In this paper, Gold assumes that the experimenter has available to it a means of

resetting the automaton to some initial state. He describes how the automaton can be

identified in the limit, how experiments can be efficiently planned, and how the automaton

can be identified in a finite amount of time if the learner is given beforehand the number

of states of the automaton.

Angluin [2) elaborates this algorithm to show how to infer an automaton with active

experimentation. In her model, the learner has a "minimally adequate teacher" who can

answer two kinds of queries: First, the teacher will tell the learner whether any particular

string is a member of the unknown language. Second, the teacher is able to supply the

learner with a counterexample to an incorrect conjecture of the automaton's identity. An

gluin shows that the number of queries required by her algorithm to correctly identify the

unknown automaton is only polynomial in the number of states of the automaton.

Angluin [3) and Gold [8) prove that finding an automaton of n states or less agreeing

with a given sample of input/output pairs is NP-complete. Note that in this situation the

6

inference algorithm does not have access to the automaton-the input/output pairs are

given and the learner is not able to experiment with the automaton it is trying to identify.

Finally, Angluin [1] shows how to infer in polynomial time a special-class of finite-state

automata, called "k-reversible" automata, from a sample of input/output behavior. Later,

we will give special consideration to the class of permutation automata of which the zero

reversible automata are a subclass.

7

Chapter 2

A New Representation of Finite Automata

2.1 Automata and Environments

Our definition of a finite-state automaton is a generalization of the usual Moore automa

ton. [12]. (Our approach generalizes to handle Mealy automata; however, we find Moore

automata more natural.)

Definition 1 A finite-state automaton £ is a 6-tuple (Q, B, P, qo, o, /) where

• Q is a finite nonempty set of states.

• B is a finite nonempty set of input symbols, also called basic actions.

• P is a finite nonempty set of predicate symbols, also called sensations.

• qo, a member of Q, is the initial state.

• o is a function from Q x B into Q; o is called the next-state function.

• / is a function from Q x P into {true, false}.

When P only contains a single predicate (e.g. accept), we have the standard definition

of a Moore automaton. We allow multiple predicates to correspond to the notion of a robot

having multiple sensations in a given state of the environment.

We assume henceforth that we are dealing with a particular finite-state automaton

£ = (Q, B, P, qo, o, /),which we call the environment of the learning procedure.

We say that£ is a permutation environment if for each b EB, the function 6(·,b) is a

permutation of Q.

We let A = B* denote the set of all sequences of zero or more basic actions in the

environment £; A is the set of actions possible in the environment £, including the null

action .X.

If q is a state in Q, and a = bi b2 ... bn is an action in A, we let qa = qb1 b2 ... bn denote

the state resulting from applying action a to state q:

qa = o(... o(o(q,b1),b2) ... ,bn)· (2.1)

8

(The basic actions are performed in the order bi, b2, ... , bn.) Similarly, if q is a state and p

is a predicate, we let qp = 1(q, p) denote the result of applying predicate p to state q.

We say that £ is strongly connected if

(Vq E Q)(Vr E Q)(3a E A)qa = r. (2.2)

~

We do not assume that £ is strongly connected in our general discussion of automata and

diversity.

However, when we describe our inference procedure, we will make this assumption with

little loss of generality: If £ is not strongly connected, then an experimenting inference

procedure, having no "reset" operation, will sooner or later fall into a strongly connected

component of the state space from which it cannot escape, and so will have to be content

thereafter learning only about that component.

2.2 Tests

A test is an element of AP, that is, an action followed by a predicate. We let T denote the

set of tests AP. We say that a test t = ap succeeds at state q if qt = q(ap) = qap = (qa)p

is true. Otherwise we say that t fails at q. The length ltl of a. test t is the number of basic

actions and predicates it contains.

We say that £ is reduced if every pair of states can be distinguished by executing some

test:

(Vq E Q)(Vr E Q)(q :/; r =? (3t E T)qt :/;rt) (2.3)

We assume henceforth that £ is reduced.

We say that a robot has a perfect model of its environment if it can predict perfectly

what sensations would result from any desired sequence of basic actions, that is, if it knows

the value of every test in the current state. The goal of our inference procedures is to build

a perfect model of the given environment.

2.3 Equivalence of Tests and Diversity

A central notion in our development is that of test equivalence.

We say that tests ti and t2 are equivalent, written ti = t2, if

(Vq E Q)(qt1 = qt2); (2.4)

that is, from any state the two tests yield the same result.

The equivalence relation on tests partitions the set T of tests into equivalence classes.

The equivalence class containing a test t will be denoted [t].

9

The diversity of the environment £,denoted D(t:), is the number of equivalence classes

of tests of£:

D(t:) = l{[t] It E T}I. (2.5)

The following theorem demonstrates that the diversity of a finite-state automaton is

always finite, but is only loosely related to the size (i.e. number of states) of the automaton.

Theorem 1 For any reduced finite-state automaton£= (Q,B,P,qo,6,1),

lg(IQI) $ D(t:) $ 2IQI.

Proof: The first inequality lg(IQI) $ D(t:), or equivalently IQI $ 2D(e), holds because a

state is uniquely identified by the set of (equivalence classes of) tests which are true at that

state, since [is reduced. The second inequality holds because the equivalence class that a

test belongs to is uniquely defined by the set of states at which that test succeeds. •

Theorem 2 The lower and upper bounds on D(£) given in Theorem 1 are best possible.

Proof: For the lower bound, consider an environment where the states are n-bit words,

and, for 1 $ i $ n, there is a predicate p; which tests whether the i-th bit is one. The

set B consists of a single action, which is the identity operation (no state change). Then

D(£) = n but JQ I = 2n. Note that the state space in this example is unconnected.

For the upper bound, consider an automaton whose states are represented by an element

x which is either an n-bit vector (xi, ... , xn) or the special value hit; there are 1 +2n states.

The only predicate tests whether x = hit. The following actions are available:

• For each i E {1, ... , n }, an action which flips x; if x f. hit, and leaves x alone

otherwise.

• An action which sets x to hit if xis the all-zero vector on, and leaves x alone otherwise.

Using these actions, for any subset X of the n-bit vectors, it is possible to construct a

test which is true if and only if the initial state begins with x E X or x = hit initially.

(Selective complementation can bring x into the all-zero state iff it was originally in some

particular n-bit state y; this state can then be transformed to hit, otherwise the original

state can be restored by undoing the selective complementation. This can be repeated for

each y E X.) Actually, this environment only comes within a factor of two of the upper

bound; its diversity is 21Ql-1 .

However, the following alternative environment does achieve the upper bound, although

its set of basic actions is enormous. The environment consists of n states numbered 0

10

through n - 1, and has a single predicate p which succeeds only at state 0. For each subset

X of the states, there is an action bx which moves state x to state 0 if x E X, or to

state 1 otherwise. Thus, the test bxp is true iff we are in one of the states in X. Hence,

D(£) = 2IQI. •

We propose that the notion of diversity is more suitable than that of size for many

natural applications. To support this viewpoint, we will demonstrate that there exists a

natural encoding of a finite-state automaton, whose size is polynomial in the diversity of the

automaton. Furthermore, it is straightforward to use this representation to simulate the

behavior of the automaton.

2.4 The Update Graph

As a convenient means of representing the test classes, we may build a directed graph in

which each vertex is an equivalence class, and an edge labeled b E B is directed from test

class [t] to [t'] iff t = bt'. We call this the update graph of the environment.

Since there is one vertex for each equivalence class, the size of the update graph is

precisely the diversity of £. Note that, for b E B, every vertex has exactly one b-edge

directed into it, since if t = t' then bt = bt'.

Also, for any test t = ap where p is a predicate and a = b1 b2 ... bn is a sequence of basic

actions, there is a path in the update graph along which vertex [p] can be reached from [t]

by following the edges labeled bi, b2, .. . bn. Put another way, we can find t's equivalence

class in the update graph by tracing backwards from [p] along the unique path bn, ... , b1 •

We associate with each vertex [t] the value oft at the current state q. (This value is

well defined since if t = t' then by definition of equivalence, qt = qt'.) When action b is

executed, the test [t'] gets its value from [t], where t = bt', yielding the new value of each

test in state qb. Thus, the update graph may be used to simulate the automaton, as we

prove in the following theorem.

2.5 The Simulation Theorem

Theorem 3 To simulate £ it suffices to know:

1. The update graph.

2. For each equivalence class [t], the value qt at the current state q.

Proof: Suppose the automaton moves from state q to state qb, for some b E B. We need

to compute (qb)t = q(bt) for each equivalence class [t]. However, the test bt belongs to that

11

(unique) equivalence class [s] for which an edge labeled bis directed from [s] to [t] in the

update graph. By assumption, we know qs; this is the desired value of (qb)t. •

2.6 Simple Assignment Automata

We may regard the test equivalence classes as (local) state variables each of which is updated

under the execution of some basic action with the value of one other (or the same) variable.

We call such a structure a simple assignment automaton (SAA). The output of an SAA

consists of the current values of one or more its variables-in this case the equivalence

classes of the predicates.

If we regard the current state of an SAA as the assignment of values to all the variables,

then it is clear that every SAA is deterministic and finite state, and so can be simulated by

some FSA. Conversely, our construction and the simulation theorem show that every FSA

can be simulated by some SAA (the one we have constructed is the smallest such SAA).

Thus, we have proved:

Theorem 4 Every SAA can be simulated by an FSA, and every FSA can be simulated by

an SAA.

2. 7 Characterizing Diversity and the Update Graph

Neal Young and Dana Angluin have pointed out the following relationship between the

update graph of an environment with a single predicate, and the original automaton:

Let £ be an environment with a single predicate, (Q, B, {p }, q0 , o,;), and let £' =
(Q',B,{p'},q{J,o',;') be defined as follows:

• Q' = {[t] I t E T}

• q{J = [p]

• o'([t], b) = [bt], for (t] E Q', b EB

• ;'([t],p') = qot, for [t] E Q'.

In this construction, Q' is just the vertex set of £'s update graph so that IQ'I = D(t:).

Furthermore, by the definition of o', we see that the transition graph of £' is exactly this

update graph with all of the edges reversed in direction.

Theorem 5 Let£ and£' be as described above. Then for any action a E A, q0ap = qbaRp'

where aR is the reverse of a.

12

Proof: Let a= bi .. . bn, where each bi E B. Then by the definition of 6', we have:

qhaR [p]bnbn-i bn-2 · · ·bi

= [bnp]bn-ibn-2 ·•.bi

[bn-i bnp]bn-2 · • ·bi

= [bi .. · bnp]

[ap].

Thus, q0aRp' = ;'(q0aR,p') = ;'([ap],p') = qoap. •

The language L(£) accepted by automaton £ is the set of actions a E A which move £

from its starting state to an "accepting" state in which the the environment's only predicate

is true. That is, L(£) = {a E A I q0 ap =true}. Theorem 5 shows that the diversity of£

is exactly the state size of the minimum FSA which accepts the reverse of L(£).

When £ = (Q, B, {p}, q0 , 6,;) is a permutation environment with a single predicate, the

diversity and update graph can be characterized in a different manner. In this case, the set

of basic actions generates a permutation group G on the states of£. Let H be the subgroup

of G which stabilizes the accepting states of£. That is, H consists of those group elements

a of G such that qp = qap for all q E Q. (Equivalently, G is the permutation group on the

test equivalence classes of £, and H is the subgroup of G which stabilizes [p].)

We define the left coset graph of H as follows: The vertices of the graph are the left

cosets of H, and an edge labeled b is directed from aH to a' H iff aH = ba' H.

Then the following theorem shows that the diversity of £ is exactly the index of H in

G:

Theorem 6 The update graph of£ is isomorphic to the left coset graph of H.

Proof: For any two tests xp and yp, we have:

xp: YP ¢} y-ixp = p

¢} (Vq E Q)qy-ixp = qp

¢} y-ix EH

¢} x E yH

¢} xH = yH.

•
The generalization of both these characterizations to environments with multiple pred

icates is straightforward.

13

Figure 2.1: The 5 x 5 Grid World

2.8 Two Example Environments

The motivation for the introduction of the notion of diversity was the realization that many

interesting "robot environments" can be modeled as finite automata which, although they

have a large number of states, have low diversity. In this section, we make this point explicit

by describing two particular small "robot environments".

2.8.1 n x n (;rid "'\V'orld

Consider a robot on an n x n square grid (with "wraparound", so that it is topologically a

torus). See Figure 2.1. The robot is on one of the squares and is facing in one of the four

possible directions. Each square is either red, green, or blue. The robot can sense the color

of the square it is facing. (This corresponds to the predicates of our previous development.)

The following actions are available to the robot: It can paint the square it faces red,

green, or blue. The robot can turn left or right by 90 degrees, or step forward one square in

the direction it is facing. Stepping ahead has the curious side effect of causing the square

it previously occupied to be painted the color of the square it has just moved to, so moving

around causes the coloring to get scrambled up.

This environment is a finite-state automaton which, even after reducing by factoring

out some obvious symmetries, has an exponentially large (3"
2

-
1) number of states.

However, the diversity of this environment is only O(n2). The state of this environment

is completely characterized by knowing the color of each square (using a robot-relative

coordinate system). It is not hard to devise a set of O(n2) tests whose results give all the

14

F

F

F F

Figure 2.2: Update Graph of 3-bit Register World

desired information. (For example, the square behind the robot is red if and only if the test

"tum-left tum-left see-red" is true.)

Given this information, it is easy to see how to predict the state of the environment

after a given sequence of actions. In fact, it becomes clear that this is the "natural"

representation of this environment, and that the intuitive representation and simulation

procedure one would use for this environment are captured almost exactly by the diversity

based representation and simulation procedure given in the previous section.

We note that because of the "paint" operations, this environment is not a permutation

environment.

2.8.2 n-bit Register World

In this environment, the robot is able to read the leftmost bit of an n-bit register. Its actions

allow it to rotate the register left or right (with wraparound) or to flip the bit it sees.

Clearly, this automaton consists of 2n global states, but its diversity is only 2n since

there is one test for ea.ch bit, and one for the complement of each bit. We note that the

register world is a permutation automaton.

The update graph of this environment is depicted in Figure 2.2. The name "1" in the

figure refers to the predicate which returns true if the leftmost bit is a 1, and "L", "R"

and "F" refer to the actions which rotate left and right, and which flip the leftmost bit. In

the current state, the register contains the values 101. The borders of the tests which are

15

Chapter 3

Our Inference Procedure

The inference procedure tries to construct a perfect model of its environment by meeting

the two requirements of the simulation theorem (Theorem 3). That is, the procedure first

infers the structure of the update graph, and then maneuvers itself into a state q where it

knows the value qt for every equivalence class [t].

We will see that the first problem of constructing the update graph is by far the harder

of the two. We therefore begin with the second problem of determining the associated value

of each test equivalence class.

3.1 Inferring the Values of the Test Equivalence Classes

Suppose then that the update graph's structure is entirely known, and we now wish to

determine the value associated with each vertex (equivalence class) of the graph.

Assign to each vertex a variable Xi which will stand for the value of that vertex in the

starting state. Since the execution of any action causes each vertex to be updated with the

value of one of the other vertices, we see that the value of each vertex in every future state

will just be one of these variables Xi. Our goal is to reach a state in which all of the variables

still in existence are known. (Some variables may disappear, but this is of no consequence

since, for perfect predictability, we only need to know the values of those that still exist.)

Initially, all of the variables are unknown. We can "solve" for a particular variable Xi

by causing one of the predicates p to be updated with the value Xi. In this state, Xi is the

value of p which is directly observable.

If all of the existing variables are known, then we are done. Otherwise, there must be a

vertex [t], where t = ap, with unknown value Xi. Then by executing action a, we move the

value oft to predicate p, and thus we learn the value of variable Xi· Repeating this process,

we solve for all existing variables.

Note that the executed action sequence a above need not be longer than the size of the

update graph D(£). Further, each iteration of this loop decreases the number of unknown

variables by one. Since there are initially only D(£) variables, we see that this part of the

inference problem can be solved in O(D(£)2) time.

17

We focus for the remainder of this chapter on the problem of inferring the structure of

the update graph.

3.2 An Inference Procedure Using an Oracle for Equiva
lence

We begin by supposing that we have an oracle available that can tell us whether two tests

s and t are equivalent.

Our algorithm (Figure 3.1) builds up the update graph, adding one edge at a time and

creating new vertices when necessary, until no more edges can be added. Here, the program

variable V represents the current set of vertices (equivalence classes). We assume that the

predicates are inequivalent to one another, so initially V consists of one equivalence class

for each of the predicates.

The edges of the graph are represented by the function x: For each equivalence class [t],

and each basic action b, the program computes the vertex at the tail of the unique b-edge

directed into [t], so that x([t], b) = [bt]. If this is a vertex already in V, then an edge is

simply added; otherwise, a new vertex [bt] is first created and added to V before noting the

new edge.

Since IVI is bounded by D(£), we see that the procedure must halt, and in particular,

makes no more than

calls to the equivalence testing oracle.

3.3 Determining If Two Tests Are Equivalent

We now turn our attention to the problem of determining whether or not two tests are

equivalent. The inference procedure can prove that tests s and t are inequivalent if it can

find a state q such that qs # qt; a single counterexample to the conjecture s = t suffices.

We wish to experiment with the available automaton£ in order to proves ¢ t. There

are two problems we face:

• {Accessibility of Counterexamples) It may be difficult or impossible to get the automa

ton into a state q where qs '# qt, even if such states exist.

• {Irreversibility of Actions) Even if we can get the automaton into such a state q, once

we run test s we are in general unable to "back up" so as to be able to run test t.

Let us define two tests to be compatible if the action sequence of one is a prefix of the

action sequence of the other. We note that irreversibility of actions is not a problem when

18

Input:
P - set of predicates
B - set of basic actions
Oracle for testing if s = t for any tests s and t

Output:
V - set of equivalence classes
x : V x B --+ V such that x([t], b) = [bt]

Procedure:

v - {[p] I p E P}
while x([t], b) is undefined for some [t] EV, b EB do

if bt = s for some [s] E V then
x([t], b) - [s]

else
v - vu {[bt]}
x([t], b) - [bt]

end if
end

Figure 3.1: An Inference Algorithm Using an Oracle for Equivalence of Tests.

testing the equivalence of two compatible tests since they can be executed simultaneously.

In particular, a predicate is compatible with all other tests.

We present solutions to these difficulties for the special class of permutation environ

ments, and then discuss progress toward a solution in the general case.

3.4 Determining Test Equivalence in Permutation Environ
ments

Assume then that £ is a permutation environment. It is easy to show that each action

permutes not only the global states, but the set of test equivalence classes as well. That is,

(Vt E T)(Vs E T)(Vb E B)s :::: t ¢> bs:::: bt. (3.1)

3.4.1 Overcoming Irreversibility of Actions

We show first how the problem of irreversibility of actions can be overcome by modifying

the control structure of the basic algorithm so that any test can effectively be made compat

ible to any other test (Figure 3.2). This is essentially the same algorithm as in Figure 3.1;

every new equivalence class is being compared against (nearly) all the known equivalence

classes. However, the order in which these comparisons are made has been altered to ensure

that every test in V can later be made compatible to any other test.

19

Input:
P - set of predicates
B - set of basic actions
Oracle for testing if s = t for any tests s and t

Output:
V - set of equivalence classes
x: V x B __.. V such that x([t], b) = [bt]

Procedure:
v f- {[p] I p E P}
while x([t], b) is undefined for some [t] E V, b E B do

n +- 1
while ('v'[s] E V)bnt ¢ s do

n+-n+l
for 1 Si< n

v f- vu {[bit]}
x([bi- 1t], b) +- [bit]

x([bn-lt],b) +- [s] {wheres=: bnt and [s] EV}

end

Figure 3.2: A Modified Inference Algorithm for Permutation Environments

The following theorem shows that no equivalence class is added twice to V by this

algorithm, and furthermore that the inner loop is guaranteed to halt:

Theorem 7 Let [t] be a vertex in the program variable V, b a basic action in B, and n a

positive integer such that for all [s] E V and all 1 S i < n we have s ¢ bit. Then the tests

bt, b2t, ... bn-lt are pairwise inequivalent.

Proof: Suppose to the contrary that bit= bit for some i,j, 1 ~ i < j < n. Then by (3.1),

t = f>.i-it contradicting the hypothesis since 1 ~ j - i < n but [t] E V. •

Essentially, the preceding theorem shows that the modified algorithm of Figure 3.2 is

"just as good" as that of Figure 3.1 in the sense that both will correctly infer the update

graph in roughly the same number of calls to the equivalence testing subroutine. Both

algorithms also share the property that, at all times, the value of any equivalence class [t]

in V can be "read" directly simply by executing t. That is, if t = ap, a E A,p E P, then

by executing a, we pass the current value of t to the predicate p where it can be observed

directly.

The following theorem shows that the modified version of the algorithm has the addi

tional property that the value of any [t] in V can be not only "read," but "set up" as well.

The theorem states that a path a can always be found in the current state of the update

graph from some predicate class [p] to [t]. Thus, by executing a, we pass the observable

20

value of [p] to [t]. This property is crucial to the equivalence testing subroutine presented

below.

Theorem 8 Between each iteration of the outer loop of Figure 3.2, if [t] is any vertex in V

then a path exists in the current state of the update graph from some predicate 's equivalence

class to [t].

Proof: By induction on the number of iterations of the outer loop.

Initially, V consists only of predicate equivalence classes, and so the property holds

trivially.

Suppose the theorem's statement holds at the top of one iteration of the loop. Consider

the end of this iteration. We need to show there is a path from some predicate to each

new [bit], 1 ~ i < n, added to V. We have bnt = s, for some (s] E V, and therefore, by the

inductive hypothesis, we know of some a E A,p E P for which a is a path from [p] to [s].

Thus, p =as= abnt = (abn-i)bit. In other words, abn-i is a path to [bit] from the predicate

equivalence class [p]. •

Theorem 8 is used by the equivalence testing subroutine below. Although this procedure

could be generalized for testing the equivalence of any two tests t and s, we assume here

that the equivalence class of one of the tests, s, is already represented by a vertex [s] in V.

Then there is a path a from some predicate equivalence class [p] to [s]; that is, p = as. By

(3.1) then, t = s if and only if at= as= p. Note that p, being a predicate, is compatible to

at, and so the values of the two tests in a given state can be compared directly by executing

both simultaneously.

Here is the algorithm for testing ifs and t are equivalent:

1. Find a path a in the update graph from some predicate's equivalence class [p] to [s].

2. Get the environment into some random state q.

3. Execute p and at (simultaneously) to find their values in q: If qp f. qat, then s "¢ t.

4. Repeat steps 2 and 3 until confident that s = t.

Thus, we have overcome the problem of irreversibility of actions in permutation environ

ments by applying knowledge already gathered about the structure of the update graph to

effectively force the compatibility of any two tests which we might be interested in compar

ing for equivalence. Still missing from this algorithm are a method of effectively randomizing

the environment (step 2), and a corresponding bound on the number of iterations of steps 2

and 3 necessary to confidently conclude that s = t.

21

3.4.2 Overcoming Accessibility of Counterexamples

To rigorously prove that two tests are equivalent, we would have to show that their values

are the same at each of the global states. In general, this is infeasible (one reason being

that the state space may be enormous). Essentially, the preceding algorithm overcomes this

difficulty by selecting a random sample from the state space. If at a single state the tests

have different values, then the inference procedure may conclude with absolute certainty

that the tests are inequivalent. Otherwise, the procedure concludes, with some possibility

of error, that the tests are equivalent. We show below how this probability of error can be

made vanishingly small. We prove that, in permutation environments, we have an adequate

chance of finding a state in which the values of two inequivalent tests differ simply by taking

an appropriate random walk.

We begin with a general discussion of random walks on directed graphs and of cer

tain properties of point symmetric graphs (defined below), and next apply these results in

proving a probabilistic upper bound on the running time of our algorithm.

3.4.2.1 Random Walks on Directed Graphs

We are concerned with random walks on a strongly connected (every vertex reachable from

every other vertex) directed graph G which has n vertices and which is regular of degreed in

the sense that every vertex has in-degree and out-degree equal to d. G may have self-loops

and multiple edges between vertices. Let A = { aij} denote the adjacency matrix of G, so

that llij is the number of edges between vertex i and vertex j.

The random walk we are concerned with has the following form. We begin at an arbitrary

vertex. At each step we first flip a fair coin. If we see "heads" then we stay at the current

vertex, otherwise we pick one of the d outgoing edges uniformly at random and traverse it.

This random walk defines a finite Markov chain with transition matrix

(3.2)

If we let Pt denote the vector whose i-th component Pti is the probability of the Markov

chain being in state i (i.e. at vertex i) at time t, then we have the recurrence:

T TB Pt+1 =Pt · (3.3)

The initial vector Po describes the probability of picking each vertex as the starting vertex.

We observe that the matrix Bm contains all positive entries for some positive integer

m. Thus by the Perron-Frobenius theorem, B has an eigenvalue .X1 = 1 with multiplicity

1 and corresponding eigenvector 11". For any other eigenvalue .X of B, l>-1 < 1. Also, it is

22

easy to see that since G is regular, the eigenvector 7r = (~, ~' ... , ~). This is the stationary

distribution for our Markov chain.

As we take more and more steps in our random walk, the probability vector Pt converges

to 7rj we lose track of where we began and are more or less equally likely to be at any vertex.

Theorem 9 If t = cdn2, then

(3.4)

where I Ix 11 is the ordinary Euclidean norm.

Proof: Let Ai, ... , An be the eigenvalues of B, where Ai = 1 and the other eigenvalues are

arbitrary complex numbers arranged in order so that

(3.5)

(We note that if A is an eigenvalue of B, then so is X, since B is real.)

We now argue that the theorem follows if it can be shown that the maximum magnitude

of any of A2 , ••• , An is bounded above by 1 - b·
Indeed, if we let qt = Pt - 7r denote the "error vector" at time t, then it follows that

(3.6)

(This follows, for example, from the algebraic treatment of finite Markov chains given in

[6].)

Since llqoll ~ 1, it follows from our assumption that l.X21 ~ 1 - b that

(3.7)

This is at most e-2c if t = cdn2 , as desired.

We now proceed to show that the maximum magnitude among .X2, ... , An is at most

1 - b·
Let Ki, ... , Kn denote the eigenvalues of the matrix ~A, where Ki = l. By the Perron

Frobenius theorem, all of the Kj lie on or within the unit circle. Assuming that the indices

for the K/s have been chosen appropriately, it follows from equation (3.2) that

1 1
Aj = 2 + 2Kj for j = l, ... ,n. (3.8)

Therefore, all of the A/s lie within the circle in the complex plane with center at ! and

d. i ra ms 2.

We begin with a result due to Fiedler [7] that applies to any doubly stochastic matrix

in our case the matrix ~A. (This is a combination of his Lemma 3.5 and his Theorem 3.2.)

23

Define an eigenvalue"' of ~A to be "nonstochastic" if"' f: 1. Fiedler's result says that the

real part of any nonstochastic eigenvalue "' of ~A is bounded above:

7r
Re(K) ~ 1 - 2(1 - cos(-))µ(S)

n

where S = ~(~AT+ ~A) and µ(S) is defined by

µ(S) = min L Sij,
0i=X~V iEX,jEV-X

(3.9)

(3.10)

where V = {1, ... ,n}. Here µ(S) is a "measure of the irreducibility" of S, Scan be

interpreted as the adjacency matrix for a graph H which is the average of the graph G and

its inverse, and µ(S) is the minimum (over all partitions of the vertex set V into nonempty

parts X and V - X) of the sum of the weights of the edges going from X into V - X.

In our case we can only say that

1
µ(S) ~ d' (3.11)

since all we know is that A is strongly connected. Thus Fiedler's theorem implies that

7r 1
Re(K) ~ 1 - 2(1- cos(;;))d.

Since cos(~)~ 1 - ~for n ~ 2, we have

8
Re("') ~ 1 - dn2 .

(3.12)

(3.13)

It now follows that if >. is a "nonstochastic" eigenvalue of B, then >. must lie in the

shaded region of the complex plane shown in Figure 3.3: From equation (3.8) and the fact

that !Kl < 1, we see that>. must lie inside the circle C in the figure. Furthermore, combining

equations (3.13) and (3.8), we see that the real part of>. is bounded above, and so >. must

lie to the left of some line L. Thus, applying some elementary trigonometry, we obtain

(3.14)

•
If we set c to be approximately log(n), we have the following easy corollary:

Corollary 1 After t = dn 2 log(n) steps we have a chance of at least 2~ of being at any

given vertex.

24

Im

Re

Figure 3.3: Region of Complex Pla.ne in Which Nonstochastic Eigenvalues May Lie

3.4.2.2 Point Symmetric Graphs

Next, we turn to a discussion of point symmetric graphs, and prove a lemma needed in

proving Theorem 10 below.

Definition 2 A graph G is point symmetric if for all pairs of vertices v, w in G, there

exists an automorphism on G which maps v tow.

Definition 3 A bipartite graph G is bipartite point symmetric if for all pairs of vertices

v, won the same side of the graph, there exists an automorphism on G which maps v tow.

It is easy to see that all vertices have the same degree in a point symmetric graph, and

likewise for all vertices on the same side of a bipartite point symmetric graph.

The proof of the following lemma is due in large part to Satish Rao:

Lemma 1 Let G = (V, E) be an undirected, connected point symmetric or bipartite point

symmetric graph with degree at least d at every vertex. Let m be the minimum number of

edges that must be removed to separate G into two non-empty pieces. Then m ~ d.

Proof: For arbitrary subsets S, T of vertices, let D(S, T) be the number of edges connecting

points in S with points in T, and let C(S) be the number of edges cut in separating S from

the rest of the graph:

D(S,T) = l{{s,t} EE Is E S,t E T}I.

25

C(S) = D(S, V - S).

Then m = min{C(S) 10 =I S<;;Y}.

Suppose, to the contrary of the theorem's statement, that m < d, and let S be the

smallest non-empty subset of V for which C(S) = m.

Since C(S) > 0, S contains some boundary point j, that is, a vertex j connected to some

vertex outside of S.

We claim S contains an interior point i as well, i.e., a vertex not on the boundary. If

this were not the case, then all k = ISi vertices in S are boundary points so that k ~ m.

The number of edges connecting vertices in S is at least

dk-m
2

dk- d
> 2

d(k - 1)
2

k(k - 1)
> 2

Clearly, it is impossible for more than (;) edges to connect k points.

In the case that G is only bipartite point symmetric, we can assume that i and j are

on the same side of the graph. Suppose otherwise. Then the k1 vertices on one side of the

graph are interior, and the k2 vertices on the other side are boundary points. Thus k2 ~ m,

and so the number of interior edges is at most k1k2 ~ k1m < k1d, a contradiction since the

k1 vertices on the first side are interior.

Therefore, in either case, we may conclude that there is an automorphism u on G

mapping i to j. Let S' be the image of Sunder u. Then ISi = IS'I and C(S') = C(S) = m.

Since j is a boundary point of S but an interior point of S', S ::p S'.

Let I= Sn S', X = S - I, X' = S' - I, and Z = V - (SUS') (Figure 3.4). Since j E J,

I is not empty. The sets X and X' are also non-empty since S and S' are unequal sets of

the same size. Therefore, 0 < IXI < ISi and so C(X) > m. Similarly, C(X') > m.

We have:

C(S) = D(X, Z) + D(X, X') + D(I, X') + D(I, Z)

C(S') D(X', Z) + D(X', X) + D(I, X) + D(I, Z)

C(X) = D(X, Z) + D(X,X') + D(X,I)

C(X') D(X', Z) + D(X',X) + D(X',I)

Thus, we have the following contradiction:

2m C(S) + C(S')

C(X) + C(X') + 2D(I, Z)

26

Figure 3.4: Construction for Lemma 1

> C(X) + C(X')

> 2m .

•
3.4.2.3 Finding Counterexamples with Random Walks

With these results, we are finally able to prove:

Theorem 10 Let s and t be two inequivalent tests of a permutation environment £ of

diversity D. We take a random walk of length 2IBID4 log(D) beginning at an arbitrary

start state. At each step, with equal probability, we either do nothing, or we execute a

uniformly and randomly chosen basic action from B. Then the probability that the values

of s and t differ at the state where we complete this walk is at least 2h.

Proof: Consider the graph P defined as follows: The vertices of P are all ordered pairs

([as], [at]) for all a E A, and an edge b is directed from vertex ([s1], [t1]) to ([s2], [t2]) iff

s1 = bs2 and t1 = bt2. Clearly, P has no more than D(D - 1) :5 D 2 vertices. Further, as

with the update graph, the vertices are permuted by each basic action, so there is exactly

one ingoing and one outgoing edge for each basic action at each vertex. (Alternatively, P

can be viewed as the left coset graph of the subgroup which stabilizes both [s] and [t].)

Let a = b1 ... bn be the chosen random sequence of basic actions, and let q be the

starting state. When a is executed, the environment moves to state qa where s and t have

the values qas and qat. In other words, s and t are updated with the values of as and at in

27

state q. The tests as and at have different values at q if and only ifs and t have different

values at the completion of a.

Thus, we can regard the reverse of the random walk a as an equally random

walk through P; at each step, we move from vertex ([bi+t .. . bns], [b;+l .. . bnt]) to

([b;b;+l ... bns], [b;b;+l ... bnt]) by traversing the reversed edge b;, and finally arriving at

([as], [at]).

Since we are taking a random walk of just the form and length described in the hypothesis

of Corollary 1 for a graph such as P with at most D 2 vertices, and both indegree and

outdegree equal to IBI at each vertex, we see that our (reversed) random walk has a roughly

equal chance of finishing at any of the vertices of P.

We now argue that, for at least b of the vertices ([s'], [t1) of P, we have qs' =/= qt'. This,

combined with the preceding arguments, will prove the lower bound on the probability of

finding a counterexample.

Let the orbit of any test u be the set Ou = {[au] I a E A}.

Consider the graph C defined as follows: The vertex set V of C is the union 0 8 U Ot,

and an (unlabeled) edge is directed from [s'] to [t'] if ([s'], [t1) is a vertex of P-that is, if

s' = as and t' = at for some action a E A.

We argue first that C is (bipartite) point symmetric. If [s1], [s2] are in 0 8 , then there

is some action a for which s2 = as1 • Let <7 be the permutation mapping each vertex [u]

to [au]. Then u maps [s1] to [s2] and furthermore defines an automorphism on C since

if ([s'], [t1) is an edge, then so are ([as'], [at1) and ([a-1s'], [a- 1t']). Similarly, for any two

tests in Oti there is an automorphism on C mapping the first to the second.

By the definition of orbits, we have that 0 8 and Ot are either equal or disjoint. In the

former case, the preceding argument shows that C is point symmetric. In the other case,

C is a bipartite point symmetric graph.

In either case, let d8 be the outdegree of each vertex in 0 8 (necessarily the same at each

vertex by the preceding argument) and similarly define dt as the indegree of each vertex in

Ot. Then the number of edges in C is exactly d8 l0al = dtlOtl· Let d = min{d8 ,dt}·

Let X be the set of vertices [u] of C for which qu is true. Then each edge connecting

(in either direction) a vertex in X with another in its complement corresponds to a vertex

([s'], [t']) in P for which qs' =/=qt'. We therefore would like to show that at least b of the

edges of C connect X to its complement. This will be the case if we can find at least d such

edges.

Since s ¢. t, there is at least one such edge. Let C' be the subcomponent of C connected

to this edge. The graph C' is still (bipartite) point symmetric. Therefore, simply regarding

the edges of C' as undirected, and applying Lemma 1 to it, we see that at least d edges are

28

cut in separating X from its complement in C, as desired.

This completes the theorem. •

Using this result, we can show the following theorem, the main result of this section:

Theorem 11 Let [be a permutation environment with diversity D. Given € > 0, our

algorithm will infer the structure of [in time

O(IBl 2 D7 (log(IBID))(log(D)))
€

(3.15)

with probability of error less than €.

Proof: The preceding theorem states that the probability of distinguishing two inequivalent

tests, having taken an appropriate random walk, is at least '2h· Thus, the probability of

failing to do so after n trials is no greater than (1- '2h)n. This error probability is bounded

by a parameter o when
logo

n > 1 •
- log(l - m)

As many as I= IBID2 inequivalence tests may be made in the course of inferring the

automaton. The probability, then, of successfully distinguishing all of the inequivalent pairs

of tests is at least (1 - o)1 . Our goal is to make this probability more than 1 - €. We have

been given € and choose o ::; j. Then

1 - € ::; 1 - 10 ::; (1 - o)1

as desired.

Finally, if we choose n ~ 2D log f, then our probability of error on an individual exper

iment is sufficiently small since

I
2Dlog- >

€

>

log f
1 2D
og 2n-1

log]

log(l - -k)
logo

log(l - °2h) ·
Here, we have used the fact that log x ::; x - 1 for all x. (In particular, if x < 1 then

log x ::; x - 1 ~ 10~ f ::; 1_:x. Above, we have applied this formula with x = 1 - '2h.)
Hence, our procedure requires I inequivalence tests. Each of these requires up to 2D log f

experiments, each of which can involve a random walk of length 2IBID4 log(D). (The time

to run the actual experiment, or to determine which experiment is to be performed next is

negligible.) We thus arrive at the running time stated in the theorem. •

29

Thus we have completed our algorithm by exhibiting an effective random walk technique.

Note that, implicitly, we have assumed that the diversity, or an upper bound Dmax on the

diversity, has been given to the inference procedure since the diversity must be known to

calculate the length and number of random walks needed. If no such bound is available, the

algorithm can be executed repeatedly with Dmax = 1, 2, 4, 8, If Dmax is smaller than the

true diversity D, then either the algorithm will be unable to build a small enough update

graph, or it will construct an incorrect update graph which will sooner or later make a wrong

prediction. When either of these occur, we double Dmax and run the inference procedure

again.

The bounds stated in the preceding theorems have been tightened significantly since

our original presentation of the algorithm. Empirically, however, we have found that much

shorter random walks and far fewer experiments are sufficient, and we therefore conjecture

that the bounds are still not tight.

3.5 Determining Test Equivalence in General

We discuss now the general case in which £ is not necessarily a permutation environment.

We don't at the moment know how to handle in a rigorous manner the first difficulty of

finding a state in which two inequivalent tests can be distinguished, even if we assume that

£ is strongly connected. Nonetheless, in practice this may often not be a concern; if two

tests s and t are inequivalent then there are usually many easily reached states q such that

qs f:. qt.

We now propose a technique for handling the irreversibility of actions in general envi

ronments.

We need to figure out how to get £ into a state q where we know the value of the test

qt, even though we haven't run test t yet, so that we can run test s instead.

Let t = ap; here a is the action part of test t and p is the predicate.

Suppose we run action a repeatedly. Eventually the predicate p will exhibit periodic

behavior. Once we know that this periodic behavior has been established, and once we

know the period m of this behavior, then we can figure out the value of qt for the current

state q without having to run the test t.

We have to address the problem that for general finite-state automata, it is well known

that the eventual period can be as large as IQ!, the size of the automaton. This would be a

serious problem for our proposed approach, since the size can be an exponential function of

the diversity. However, the following theorem shows that the period is no larger than the

diversity.

30

whole cube

Figure 3.5: The Rubik's Cube World

Theorem 12 Let D = D(£). If we nm action a repeatedly, then the behavior of predicate

p will exhibit transient behavior for no more than D steps, and then will settle down into

periodic behavior with period at most D.

Proof: This follows easily from our simulation theorem {Theorem 3). Consider the sequence

of tests p, ap, a2p, . .. , aDp. Since there a.re only D test equivalence classes, by the pigeon

hole principal, at least two of these tests a.re equivalent. Say aip = ai p where i < j. Recall

that p is passed its value from akp under action ak. Therefore, p will exhibit transient

behavior for at most the first i executions of a, and will then settle into periodic behavior

with period j - i. •

To complete the description of our inference procedure, we suppose as above that an

upper bound Dmax is available on the diversity D(£) of the automaton being inferred.

To run the algorithm of Figure 3.1, we need a way to test sand t = ap for inequivalence.

The following procedure is suggested by the previous theorem:

• Get the environment into some random state.

• Run action a for Dmax steps. (This is to eliminate transient behavior of p.)

• Run action a for 2Dmax steps, keeping track of qp for each state q reached.

31

*
*

Figure 3.6: The Little Prince's Pia.net

• Use the information gathered in the previous step to determine the period of predicate

p under action a. Use this information to determine whether qt is true or false in

the current state q (without running test t).

• Run test s to determine qs.

• If qs f qt, then s "¢ t.

• Repeat until confident that s = t.
As before, this is a one-sided test: a report that s ~ t is certainly correct, but a report

that s = t may be erroneous.

The test must be re-run a number of times before concluding that s = t. To make the

trials as independent as possible, we may:

• Take a "random walk in C" between each trial, by executing some randomly chosen

sequence of actions.

• Repeatedly execute an action ab instead of just a in each trial, where bis an arbitrarily

chosen action in A.

32

)!~ ti
classical rock news

~
@~

select station 00 0

<::J [:> auto-tune 00
t-@ set station

Figure 3.7: The Car Radio World

These heuristics may not help to find a counterexample in all cases; but are reasonably

effective in practice. (We hope to prove the effectiveness of these techniques as we did in

the permutation environment case for a broader class of finite automata.)

Also, for efficiency, we are in many instances able to force compatibilities as in the

permutation environment case, and can often compare many tests against many other tests

in single experiments. These heuristics lead to many-fold improvements of our running

times.

3 .6 Experimental Results

3.6.1 Three More Toy Environments

Consider the following permutation environment based on "Rubik's Cube" (Figure 3.5).

The robot is allowed to see only three of the fifty-four tiles: a corner tile, an edge tile and

a center tile, all on the front fa.ce. Each of these three senses can indicate any one of six

colors. The robot may rotate the front fa.ce, and may turn the whole cube about the x and

y axes. (By reorienting the cube he can thus turn and view any of the six faces.)

As another example environment, consider a robot just delivered to the "Little Prince"

[16] on his home planet (an asteroid, really). This planet has a rose and a volcano, which

the robot can see when he is next to them; the available sense values are "See Volcano" and

"See Rose". The planet is very small-it takes only four steps to go all the way around it.

The basic actions available to the robot are "Step Forward", "Step Backward", and "Turn

Around". See Figure 3.6. In the state shown, the robot has no sensations, but he will see

33

Diver- I Global Ver- Experi-
Environment sity States IBI !Pl sion Time Moves Senses men ts

Little Prince 4 4 3 2 p 0.1 303 102 51
M 0.2 900 622 50

Car Radio 9 27 6 1 M 3.7 27,695 9,557 1,146
Grid World 27 ;::::: 1011 6 1 M 90.4 583,195 123,371 9,403
Rubik's 54 ;::::: 10-rr 3 3 p 126.3 58,311 4,592 2,296

Cube M 401.3 188,405 79,008 2,874
32-bit 64 ;::::: 10!1 3 1 p 29.8 270,771 10,914 5,457

Register M 18.3 52,436 29,884 300

Table 3.1: Experimental Results

the volcano if he takes a step forward, and will see the rose if he takes a step backwards (or

turns around and takes a step forwards).

In the last micro-world, the robot can fiddle with the controls of a car radio (see Fig

ure 3.7) and can detect what kind of music is being played. There are three distinctive

stations which define the robot's sensations: rock, classical, and news. The robot can use

the auto-tune to dial the next station to the left or right (with wrap-around), or can select

one of the two programmed stations, or can set one of these two program buttons to the cur

rent station. Unlike the last two environments, the Car Radio World is not a permutation

environment because of the robot's ability to program stations.

3.6.2 Summary of Results

Table 3.1 summarizes how our procedures handled these environments, as well as the

5 x 5 Grid World environment and the 32-bit Register environment described in Section 2.8.

The most complicated environment (Rubik's Cube) took less than two minutes of CPU

time to master-we consider this very encouraging.

Rubik's Cube, the Little Prince and the 32-bit Register Worlds were explored with an

implementation (version "P") which exploits the special properties of permutation envi

ronments, but which only compares one pair of tests at a time. All worlds were explored

as well by version "M", which tries to compare many tests against many other tests in a

single experiment. The run times given are in seconds. The last three columns give the

number of basic actions taken by the robot, the number of sense values asked for, and

the number of experiments performed. (An experiment is defined loosely as a sequence of

actions and senses from which the robot deduces a conclusion about equivalence between

tests. Information about several tests may be obtained in a single experiment, and the same

sequence of actions and senses may be repeated several times, each repetition counting as

one experiment. Also, we have generalized the notion of a test here to allow the function 7

to map Q x Pinto an arbitrary set of sensations, not necessarily the set {true, false}. For

34

~·if,fl~,,LllLJl.fMllJ.MGik"JLJLW£JILJ .· . ,~ ·"' ...

I

i

i·

..

1 •.···.

example, ia tiae Gdcl l•••Pl•• *·1•tRf::(M~:..- • .._) oftlr.e
........ ..,) n.tat4lr1trJ .,Blli[J1~.l.llJ •• ,,, •. f.1 .. •DIC ----B

•

Chapter 4

Inference of Visible Simple Assignment
Automata with Planned Experiments

In this chapter, we focus on the problem of planning experiments when trying to infer the

structure of a finite automaton by experimentation. In the preceding chapters, we were

concerned with the same general problem. However, our focus was on the identification of

hidden state variables, rather than on the planning of experiments.

The experimental technique used in the preceding chapters was a simple one based on

the properties of random walks. As a consequence, we could only prove our techniques to

be effective for a restricted class of automata (permutation automata). The key difficulty in

extending our proof is that random walks are not in general guaranteed to get the automaton

into a desired state (or set of states) with sufficiently high probability. For the general case,

it seems clear that experiments have to be planned carefully.

This chapter does not address the issue of hidden state variables; we assume that all state

variables are visible to the observer. We make this simplification to bring to the foreground

the issues regarding the planning of experiments. Of course, at some point we would like

to merge the techniques developed here with those for identifying hidden state variables.

Aside from this difference in the visibility of state variables, the automata we study are

structurally identical to those studied up to this point. Recall from Section 2.6 that every

finite-state deterministic system can be represented as a simple assignment automaton in

which each variable stands for one test equivalence class. In this chapter, to simplify our

discussion, we drop the equivalence class terminology, and instead formally redefine an

environment as a simple assignment automaton.

4.1 Definitions

We define a simple assignment automaton to be a tuple (V, B, 6, q0) such that

• V = {xi, ... , xn} is a finite nonempty set of n binary state variables,

• B is a finite nonempty set of input symbols, also called basic actions,

36

• o is a function from { 1, ... , n} x B into { 1, ... , n}; o is called the update function, and

• q0 (the initial state of the automaton) is a function mapping V into {O, 1}.

The (global) state of the automaton is an assignment of a binary value to each variable

in V.

On input a E B, the automaton makes a transition from its current state x

(x1, .. . ,xn) to the state x' = (x~, ... ,x~) where

I
xi = Xo(i,a)i (4.1)

each variable is updated by a simple assignment from the value of some other variable (or

possibly the same variable).

As before, we let Q denote the set of all global states q reachable from the initial state

qo of the automaton.

In Section 2.6 we argued that every finite-state binary output Moore automaton is

equivalent to a simple assignment automaton where one or more of the state variables

specifies the output. The number of state variables in the smallest corresponding simple

assignment automaton is just the diversity of the original finite-state automaton.

We say that a simple assignment automaton is visible if all of its local state variables

are observable.

We assume henceforth that we are dealing with a particular visible simple assignment

automaton £ = (V, B, 6, qo), which we call the environment of the learning procedure.

We assume that £ is reduced in the sense that, for each pair of distinct variables x j, x k E

V, there is a state q E Q such that Xj f; Xk at q. (This assumption is made for simplicity

here to avoid degenerate but easily handled cases where variables are indistinguishable.)

We let A = B* denote the set of all sequences of zero or more basic actions in the

environment £; A is the set of actions possible in the environment £, including the null

action A.

We extend 6 to the domain {1, ... ,n} x A in the natural way: 6(i,A) = i and 6(i,ba) =
6(6(i, a), b) for i E {1, ... , n }, b E B, a E A. Thus 6(i, a) identifies the variable whose value

Xi takes under action a; equation (4.1) now holds for any a EA.

Finally, we assume that £is strongly connected: it is possible to get from any state in Q

to any other. (Otherwise, it may be impossible to infer£ completely, since £ will get stuck

in one of its several strongly connected components.)

37

X1 X3 X5 X7 Xg

~ @)

c®-® ®
Xi X4 Xe Xa X1 o

Figu,re 4.1: The Effect of Action pin Our Example Simple Assignment Automaton

4.2 Example

To make things concrete, consider the simple assignment automaton £ illustrated in Fig

ure 4.1.

Here£ has n binary state variables {xi, ... , Zn}, where n is even. We think of the values

of these variables as being drawn from the set {Red, Green}.

We imagine the n variables as being divided into n/2 "columns", where Z2i-1 and X2i

are in the same column, for i = 1, ... , n/2.

There are four input symbols, or "basic actions": p,q,r,s. On any input, the variables

in the i-th column are updated in some way from the variables in the i - 1st column. (We

assume that the variables in the first column never change valu~x1 is always Red and x2

is always Green.) Since each of z2i-l a.nd z2i ca.n be assigned one of x2i-3 or Z2i-2 in two

ways, there are a total of four distinct ways in which the variables in column i ca.n depend

upon those in column i - 1. Each input symbol is associated with one of these possibilities,

but in a manner that is arbitrary and varies from column to column. Figure 4.1 illustrates

the effect of action p, and a typical state of the automaton; the other three actions could

be illustrated with similar diagrams.

It is important to note that two of the four possibilities are guaranteed to give a column

a monotone coloration, independent of whether the column to the left has a monotone or a

mixed coloration.

This automaton has a number of states which is exponential in n - it is easy to see

that every column except the first can be made all Red or all Green. And there are many

38

other states where columns other than the first have a mixed coloration.

However, it is easy to see that in order for a column to receive a mixed coloration, its

neighbor to the left must have had a mixed coloration on the previous step. Furthermore,

mixed colorations are easily destroyed as the column colorations move rightwards. Once a

column has a monotone coloration, this coloration propagates to the right unchanged with

each input. It should be clear that a random string of input will have a small chance of

giving a mixed coloration to any columns except a few of the leftmost ones.

We now observe that in order for an inference algorithm to figure out how the later

columns are wired together, the algorithm must propagate the mixed colorations all the

way down to the right. This can only be accomplished by careful planning and execution

of experiments, and not by random walk techniques.

We view this example as a fancy kind of "combination lock", since the algorithm must

figure out a correct "combination" for giving column i - 1 a mixed coloration before it

can figure out a correct combination for column i. (Of course, there are many correct

combinations, but there are many more incorrect ones.)

It is not too hard to figure out how to approach this particular example, given all of the

"side information" stated above. However, we must remember that the inference algorithm

we seek is only told that it is to infer a simple assignment automaton where all local state

variables are visible - it is not told such things as that the variables are paired up into

columns, each column is updated from the one to the left, etc. In the absence of such side

information, the general problem can be challenging.

4.3 Our Inference Procedure

We now present a procedure for inferring £ by systematic experimentation. Our procedure

is given as input V, B, and the ability to experiment with£ by executing basic actions (i.e.

giving the automaton inputs) and observing the state changes. Our procedure outputs the

unknown function 6, in time polynomial inn= !VI and IBI.
The algorithm maintains, as its fundamental data structure, a candidate set C(i, b) of

possible values for the update function 6(i, b), for each variable Xi and each b EB. Initially

C(i,b) = V for all i and b.

Our basic strategy is to repeatedly plan and execute experiments which cause at least

one C(i,b) to shrink. When no such experiment is possible C(i,b) = {6(i,b)} for all i and

b, so that 6 has been identified.

Definition 4 We say b E B is an immediately useful experiment if there exist i, j, k such

that j and k are both in C(i,b), and Xj f. Xk.

39

If we execute the immediately useful experiment b then either j or k is removed from

C(i, b) (e.g. j is removed if the new value for Xi differs from the old value for x j).

Finding an immediately useful experiment (if one exists) is easy since it requires knowl

edge of C but not of o. But what shall we do if there are no immediately useful experiments

to do?

In such a case, there may exist some "setup action" a E A that will make b E B an

immediately useful experiment. We call the combined action ab a "useful experiment".

Definition 5 Let a= ab where a E A, b E B. We call a a useful experiment if there exist

i,j, k such that Xii(j,a) =/= XS(k,a) and j and k are both in C(i, b).

The trouble with this notion is that to tell if ab is a useful experiment requires knowing

the unknown function o, in order to predict the effect of setup action a. We need an effective

way of finding useful experiments.

We introduce the notion of a "plausible experiment" to remedy this defect.

First, as with the function o, we extend C to the domain {1, ... , n} x A: C(i, A)= {i}

and C(i, ba) = U1ec(i,a) C(j, b) for i E {1, ... , n}, a EA, b EB.

Definition 6 We call a E A a plausible experiment if there exist i,j, k such that j and k

are both in C(i,a), and Xj =/= Xk·

Knowledge of C, but not o, is all that is required to find plausible experiments.

Note that all useful experiments are plausible since o(i,a) E C(i,a) always. However,

not all plausible experiments are useful. Our inference procedure depends on the following

critical theorem.

Theorem 13 The shortest plausible experiment is also the shortest useful experiment.

Proof:

Because every useful experiment is plausible, we need only show that the shortest plau

sible experiment is useful.

Let a = ab, a E A, b E B be the shortest plausible experiment. Let j, k be members

of C(i,a) for which Xj =I= Xk. Then there exist r,s E C(i,b) for which j E C(r,a) and

k E C(s, a). Since a is the shortest plausible experiment, and because !al < Jal, all the

variables in C(r, a) must have the same value. In particular, Xii(r,a) = Xj, and likewise,

Xs(s,a) = Xk· Therefore XS(r,a) =/= Xii(a,a)' so that a is useful. •

Not only is the shortest plausible experiment useful, but there always exists a plausible

experiment up until the point when the inference task is finished.

40

Theorem 14 If there exists an i and b such that IC(i, b)I > 1, then there exists a plausible

experiment (and thus a shortest plausible experiment).

Proof: Let Xr and x 8 be two distinct variables in C(i,b). By assumption, there exists a

global state q for which Xr and x 8 obtain differing values, and such a state q is reachable

from the current state (via some action a). Then a = ab is a useful (and therefore plausible)

experiment. •

4.3.1 The Basic Inference Algorithm

We now give a high-level description of our inference procedure, assuming the availability

of a subroutine which plans the shortest useful experiment.

Initially, each C(i,b) = V. Our procedure then repeatedly finds and executes useful

experiments, each of which eliminates at least one variable from at least one candidate set.

How many experiments are performed before each candidate set is a singleton? Since

there are IBln candidate sets, each initially of size n, at most IBln2 experiments are per

formed. The following theorem gives a tighter bound.

Theorem 15 After no more than IBln useful experiments are performed, each candidate

set will be a singleton set.

Proof: An easy induction shows that, between each experiment, for fixed b E B, two

candidate sets C(i, b) and C(j, b) must either be disjoint or identical. (Two such sets will

be identical if and only if Xi = Xj in every global state seen so far. When a state is first

observed for which Xi/; Xj, the common set C(i,b) = C(j,b) is split into two disjoint

nonempty blocks, one of which becomes the new C(i, b) and one of which becomes the new

C(j,b).) Thus each set C(i,b) is a block of a partition Sb of a subset of V into pairwise

disjoint, non-empty subsets. Initially, Sb = {V}; there is only one block. Each useful

experiment ending in b causes at least one set C(i, b) to shrink, and so causes one or more

of the blocks in Sb to either split or shrink. After n such operations, each block of Sb (and

therefore each candidate set C(i, b) as well) will be a singleton. Thus, at most n experiments

are performed ending in each of the IBI basic actions. •

The proof of this theorem suggests an efficient representation of the candidate sets.

Rather than storing the sets explicitly, we maintain the partition Sb, and represent each

C(i, b) as a pointer to one of the blocks in Sb. This allows faster updating of the candidate

sets between each experiment.

Figure 4.2 gives a high-level description of our procedure (less the assumed experiment

planning subroutine PLAN-EXP).

41

Input: V, B, and access to the environment£= (V,B,8,qo).
Output: 8
Procedure:

for b EB
Sb,._ {V}
for i E {l, ... ,n}: C(i,b) ,._ V.

while PLAN-EXP can find a useful experiment a= ab do
Execute a. Let (x1, ... , Xn) be the resulting state.
Execute b. Let (xi, ... , x~) be the resulting state.
for s E Sb

Let 11"(s,O) = {i Es Ix;= O}.
Let 11"(s,1) = {i Es I Xi= 1}.

for i E {1, ... ,n}: C(i,b) ,._ 7r(C(i,b),xD
Sb ,._ LJiE{l,. .. ,n} { C(i, b)}

for i E { 1, ... , n}, b E B
Output "t5(i,b) = x", where C(i,b) = {x}.

Figure 4.2: The Basic Inference Algorithm

Observe that each step of the main while loop takes O(n) time, except possibly for the

execution of the experiment returned by PLAN-EXP whose length we discuss below.

4.3.2 The Experiment Planning Subroutine

The subroutine PLAN-EXP is given the candidate sets and the current state, and is asked

to find the shortest useful experiment. By Theorem 13, this experiment is also the shortest

plausible experiment.

We can find the shortest plausible experiment by searching the space of unordered pairs

of variables {j,k}, both in some set C(i,a), until we find one for which Xj i= Xk. More

precisely, we do a breadth-first search of the forest of trees in which the root of each search

tree is a pair { i, i}, and the b-children of each node {j, k} are the pairs {j', k'} for which

j' E C(j,b),k' E C(k,b). When a pair {j,k} is found for which Xj f Xk, we return the

experiment which is the path from the node {j, k} to the root of its tree.

Since we search a forest of O(n2) vertices, each of degree O(IBln2), this experiment

planning subroutine runs in time O(IBln4). Furthermore, the length of the experiment

returned is bounded by the size of the search space, n2 • Thus, the entire inference algorithm

will run in time O(IBl 2 n5
), having executed 1Bln3 basic actions.

We now improve these bounds with a more efficient subroutine (Figure 4.3) which main

tains equivalence classes of variables using a "weighted union and collapsing find" data

structure. Initially, all the elements of each candidate set (or, equivalently, of each parti-

42

Input: C(i, b) for i E {1, ... , n}, b EB, and Xi, ••• , Xn

Output: a useful experiment a

Procedure:
for i E { 1, ... , n}: Place i in an equivalence class by itself.
for b EB, s E Sb

Let j be an arbitrary member of s.
J +-- FIND(j)
fork Es - {j}

K +-- FIND(k)
if J f: K then

J +-- UNION(J,K)
enqueue ({j,k},b)

while queue not empty do
dequeue ({j,k},a)
ifxj f: Xk then return a
for b EB

let j' be an arbitrary member of C(j, b)
let k' be an arbitrary member of C(k, b)
J +-- FIND(j'), K +-- FIND(k')
if J f: K then

UNION(J, K)
enqueue ({j', k'}, ba)

return FAIL

Figure 4.3: The Experiment Planning Subroutine PLAN-EXP

tion block) are merged into the same equivalence class. To merge a pair {j, k }, we check

that the two are in the same equivalence class; if they are not, their equivalence classes are

UNIONed and the pair is placed on a queue. Thus, a UNION operation is always coupled

with an addition to the queue. When the pair {j, k} is dequeued, the members of C(j, b)

are merged with those of C(k, b) for all the basic actions b, and the process continues.

The subroutine is constructed so that if ({j,k},a) is on the queue, then j,k E C(i,a)

for some i. Thus, if Xj f: Xk, then a is a plausible experiment.

During the execution of the subroutine, if ({j,k},a) was the last pair enqueued, then

the current search depth is defined to be I a I. It is clear that the search depth increases

incrementally.

The next theorem is useful in analyzing and seeing the correctness of the subroutine.

Theorem 16 Suppose j,k E C(i,a). Then the subroutine of Figure 4.3 (if not interrupted

to return an answer) will merge j and k into the same equivalence class before the search

depth exceeds lal.

43

Proof: By induction on jCTj.
If jCTI = 1, then j,k E C(i,b) for some b EB, and j and k are merged into the same

equivalence class during the initialization phase when the search depth is exactly one.

Let h > 1 and suppose that the theorem's statement holds when ICTI < h. Given

j, k E C(i, CT), where jCTj = h, we wish to show that j and k are merged before the search

depth exceeds h.

Let CT= ba,b E B,a E A and let r,s be such that r,s E C(i,a) and j E C(r,b),k E

C(s, b). Since ial = h - 1, r and s have been merged by the time the search depth reaches

h, by our inductive hypothesis. Thus, there must have been a series of UNION operations

performed to bring this about. Since each UNION operation is coupled with an addition to

the queue, there must have been a series of enqueuings of the form:

({r = ro,r1} , CTo)

({r1,r2} , CTi)

({r2,r3} , CT2)

When ({r,nTx+i},CTx) is dequeued, the members of the candidate sets C(rx,b) and

C(rx+i, b) are merged into one equivalence class, so that, transitively, the sets C(r, b) and

C(s, b) are merged into one. In particular, j and k's equivalence classes are merged. Since

each ICTxl < h, this happens before the search depth exceeds h. •

Corollary 2 The first plausible experiment discovered by the subroutine (i.e. the one re

turned) will also be the shortest plausible experiment.

Corollary 3 If there exists a plausible experiment, then the subroutine will discover it.

That is, a return of FAIL by the procedure will be correct.

Clearly, the running time of the procedure is bounded by the number of UNION-FIND

operations. Since we begin with n equivalence classes, no more than n UNION s can be

performed. Therefore, n bounds the total number of enqueuings, and so the search depth

as well. Based on this fact and the fact that Sb is a partition of at most n elements, we see

that O(IBln) FIND operations are performed, yielding a running time for the subroutine of

O(IBln · a(IBln)), where a is an extremely slow growing functional inverse of Ackerman's

function. (See [17].) Finally, the length of the experiment constructed cannot exceed the

maximum search depth of n. Thus, we have:

Theorem 17 Our inference algorithm correctly infers the environment £ m time

O(IBl 2n 2 a(IBln)), having executed no more than 1Bln2 basic actions.

44

4.4 Optimality

In this section, we prove that the upper bound on the number of basic actions executed by

our inference algorithm is (within a constant factor of) the best possible.

Theorem 18 There exists a constant € > 0 such that, for all n ~ 4, m ~ 3, there exists

a simple assignment automaton £for which IBI = m and IVI = n, and which cannot be

inferred by any algorithm which executes fewer than €1Bln2 basic actions.

Proof: Consider the following "combination lock" environment £, similar to the example

described in Section 4.2: n = IVI ~ 4, IBI ~ 3. B contains a special "clear" symbol c.

The "lock's combination" is the sequence al a2 ... an-2 where al = c and ai E B - { c} for

1 < i < n - 1. The update function o is defined as follows:

• o (1, b) = 1 for b E B

• o(n,b)=nforbEB

• o(i, ai-1) = i - 1 for 1 < i < n

• o(i,b) = n for 1 < i < n,b EB - {ai_i}.

Initially, only x1 is true.

It is easy to verify that x 1 is always true, Xn is always false, and no more than one

variable at a time (other than x 1) can be true. If 1 < i < n, the variable Xi will be true if

and only if the action sequence a 1 a2 ... ai-l was just executed.

Consider the set P of pairs (i,b) where 2 < i < n,b EB - {c} and o(i,b) = n (i.e.,

b-/: ai-1). To positively identify£, an inference algorithm must, for each such pair in P,

eliminate the possibility that 6(i, b) = i - 1. It is not hard to see that the only experiment

which will do this is the sequence O'i,b = ca2a3 ... ai-2b. Let E = { O'i,b I (i, b) E P}. Clearly,

IEI = IPI. At some time, each experiment in E must be executed; however, no two of these

experiments can overlap by our construction. Thus, the number of basic actions executed

must be at least

L lal = L (IBI - 2)(i - 1) = n(IBln2
).

uEE 2<i<n

•

45

Chapter 5

Conclusions and Open Problems

We have presented a new representation for finite-state systems (environments), and pro

posed a new procedure for inferring a finite state environment from its input/output be

havior.

In the case of permutation environments, our procedure can infer the structure of the

environment in expected time polynomial in the diversity of the environment, and log(~),

where € is an arbitrary positive upper bound given on the probability that our procedure

will return an incorrect result.

For general environments, our procedure appears to work well in practice, although we

don't have a proof to this effect.

When the environment has lots of "structure", the diversity will typically be many

orders of magnitude smaller than the number of global states of the environment; in these

cases our procedure can offer many orders of magnitude improvement in running time over

previous methods.

Finally, we have shown how to infer any visible simple assignment automaton in time

polynomial in the number of variables and basic actions in that automaton, and have shown

that our procedure is optimal to within a constant factor in terms of the number of basic

actions executed.

Future work should be directed toward methods of handling, or handling better, a

broader class of environments. Environments apparently not handled well by our current

techniques include those with:

• Actions with conditional effects (such as a Grid World with boundaries, so that the

"step ahead" action has no effect i/the robot is facing and up against the boundary).

• Dependence on global state variables or control variables (e.g. an "on-off switch in

the Car Radio World).

• States which are difficult to reach (consider the "combination lock" environment of

Chapter 4 which is almost always in a locked state, and is unlikely to be unlocked by

trying random combinations).

46

• Actions with probabilistic effects (such as a "spin" operator in the Grid World, which

leaves the robot facing in a random direction).

• Actions or sensations which are subject to noise, and so may have unreliable effects

or be providing unreliable information.

• Environments which are infinitely large (such as an infinitely long Register World).

The question of how to apply the planning techniques of the last chapter to the general

problem of inferring automata with hidden variables remains open. Also open is the question

of what other classes of automata can be inferred by techniques similar to those used for

inference of permutation environments. Finally, what other models of learning (such as

mistake bound learning as in [13]) can be applied to the problem of inference of finite

automata?

47

Bibliography

[1] Dana Angluin. Inference of reversible languages. Journal of the ACM, 29(3):741-765,
July 1982.

[2] Dana Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75:87-106, November 1987.

[3] Dana Angluin. On the complexity of minimum inference of regular sets. Information
and Control, 39:337-350, 1978.

[4] Dana Angluin and Carl H. Smith. Inductive inference: theory and methods. Comput
ing Surveys, 15(3):237-269, September 1983.

[5] Gary L. Drescher. Genetic AI - Translating Piaget into Lisp. Technical Report 890,
MIT Artificial Intelligence Laboratory, February 1986.

[6] William Feller. An Introduction to Probability and its Applications. Volume 1, John
Wiley and Sons, third edition, 1968.

[7] Miroslav Fiedler. Bounds for eigenvalues of doubly stochastic matrices. Linear Algebra
and its Applications, 5(3):299-310, July 1972.

[8] E. Mark Gold. Complexity of automaton identification from given data. Information
and Control, 37:302-320, 1978.

[9] E. Mark Gold. Language identification in the limit. Information and Control, 10:447-
474, 1967.

[10] E. Mark Gold. System identification via state characterization. Automatica, 8:621-636,
1972.

[11] J. Hartmanis and R. E. Stearns. Algebraic Structure Theory of Sequential Machines.
Prentice-Hall, 1966.

[12] Zvi Kohavi. Switching and Finite Automata Theory. McGraw-Hill, second edition,
1978.

[13] Nick Littlestone. Learning when irrelevant attributes abound. In Proceedings of the
Twenty-Eighth Annual Symposium on Foundations of Computer Science, pages 68-77,
October 1987.

[14] Ronald L. Rivest and Robert E. Schapire. Diversity-based inference of finite automata.
In Proceeding of the Twenty-Eighth Annual Symposium on Foundations of Computer
Science, pages 78-87, October 1987.

[15] Ronald L. Rivest and Robert E. Schapire. A new approach to unsupervised learning
in deterministic environments. In Pat Langley, editor, Proceeding of the Fourth In
ternational Workshop on Machine Learning, pages 364-375, Irvine, California, June
1987.

48

~'l!llll#QJ!Ul!lllll1f!1111!1!1.!l,.,.,...~•.·· •.~
I
t·

;..:

