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Guide to the Manual
This document serves both as a reference manual and as an introduction to Argus. Sections 1 through
3 present an overview of the language. These sections highlight the essential features of Argus.
Sections 4 through 15 and the appendices form the reference manual proper. These sections describe
each aspect of Argus in detail, and discuss the proper use of various features. Appendices | and Il
provide summaries of Argus’s syntax and data types. Appendix il summarizes some of the pragmatic
rules for using Argus.

Since Argus is based on the programming language CLU, the reader is expected to have some
familiarity with CLU. Those readers needing an introduction to CLU might read Liskov, B. and Guttag, J.,
Abstraction and Specification in Program Development (MIT Press, Cambridge, 1986). A shorter
overview of CLU appears in the article Liskov, B., et &/, “Abstraction Mechanisms in CLU" (Comm. ACM,
volume 20, number 8 (Aug. 1977), pages 564-576). Appendix IV summarizes the changes made to
Argus that are not upward compatible with CLU.

An overview and rationale for Argus is presented in Liskov, B. and Scheifler, R., "Guardians and
Actions: Linguistic Support for Robust, Distributed Programs" (ACM Transactions on Programiming
Languages and Systems, volume 5, number 3 (July 1983), pages 381-404).

The Preliminary Argus Reference Manual appeared as Programming Methodology Group Memo 39 in
October 1983. Since that time several new features have been added to the language; the most
significant of these are closures (see Section 9.8), a fork statement (see Section 10.4), equate modules
(see Section 12.4), and a more flexibie instantiation mechanism (see Section 12.6). An eariler version of
this document appeared as Programming Methodology Group Memo 54 in March 1987, this version is
essentially identical, except that the locking policy for the bulit-in type generator atomic_array has been
simplified.

We would greatly appreciate receiving comments on both the language and this manual. Comments
should be sent to: Professor Barbara Liskov, Laboratory for Computer Science, Massachusetis Institute
of Technology, 545 Technology Square, Cambridge, MA 02139.

The authors thank all the members of the Programming Methodology group at MIT for their help and
suggestions regarding the language and this manual, with special thanks going to Elliot Kolodner,
Deborah Hwang, Sharon Peri, and the authors of the CLU Reference Manual.
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Though her unhappy rival was hers to keep
Queen Juno aiso had a troubled mind:

What would Jove turn to next? Better, she thought,
To give the creature to Aresior's son,

The frightful Argus whose unnatural head
Shone with a hundred eyes, a perfect jailer
For man or beast: the hundred eyes took tums
At staring wide awake in pairs, and two

At falling off to sieep; no matter how or

Where he stood he gazed at lo; even when
His back was turned, he heid his prisoner

In sight and in his care.

— Ovid, The Metamorphoses, Book 1
Transiated by H. Gregory
The Viking Press, Inc., New York, 1958







4 Overview

1.2. Assignment and Calls

The basic events in Argus are assignments and calls. The assignment statement x = E, where x is a
variable and E is an expression, causes x to denote the object resulting from the evaluation of E. The
object is not copied.

A call involves passing argument objects from the cailer to the called routine and returning result
objects from the routine to the caller. For local calls, argument passing is defined in terms of assignment,
or cail by sharing; for remote calis, call by value is used. In a local call, the formal arguments of a routine
are considered to be local variables of the routine and are initialized, by assignment, to the objects
resulting from the evaluation of the argument expressions. In a remote call (see Section 2.3), a copy of
the objects resulting from the evaluation of the argument expressions is made and transmitted to the
calied handler or creator (see Section 2.4). These copies are then used to initialize the formal arguments
as before. Local objects are shared between the caller and a called procedure or Rerator, but local
objects are never shared between the caller and a called handier or creator.

1.3. Type Correctness

The declaration of a variable specifies the type of the objects which the variable may denote. In a legal
assignment statement, x = E, the type of the expression E must be included in the type of the variable x.
Type inclusion is essentially equality of types (see Section 12.6), except for routine types. (A routine type
with fewer exceptions is included in an otherwise identical routine type with more exceptions. See
Section 6.1 for details.)

Argus is a type-safe language, in that it is not possible to treat an object of type 7 as i it were an object
of some other type S (the one exception is when 7 is a routine type and S includes 7). The type salety of
Argus, plus the restriction that only the code in a cluster may convert between the abetract type and the
concrete representation (see Section 12.3), ensure that the behavior of an object can be characterized
completely by the operations of its type.

1.4. Rules and Guidelines

Throughout this manual, and especially in the discussions of atomicity, there are pragmatic rules and
guidelines for the use of the language. Certain properties that the language would ike to guarantee, for
example that atomic actions are really atomic, are difficult or impossible for the language to guarantee
completely. As in any useful programming language, programmers have enough rope to hang
themselves. The rules and guidelines noted throughout the manual (and collected in Appendix IH) try to
make the responsibilities of the language and the programmer clear.
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1.5. Program Structure

An Argus distributed application consists of one or more guardians, defined by guardian modules.
Guardian modules may in tum use all the other kinds of modules that Argus provides. Argus
programmers may aiso write single-machine programs with no stable state, using Argus as essentially a
"concurrent CLU." Such programs may be used to start up multi-guardian applications. Each module is a
separate textual unit, and is compiled independently of other modules. Compilation is discussed in
Section 3.
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2. Concepts for Distributed Programs

In this chapter we present an overview of the new concepts in Argus that support distributed programs.
In Section 2.1, we discuss guardians, the module used in Argus to distribute data. Next, in Section 2.2,
we present aftomic actions, which are used to cope with concurrency and fallure. In Section 2.3 we
describe remote calls, the inter-guardian communication mechanism. In Section 2.4 we discuss
transmissible types: types whose objects can be sent as arguments or resulls of remote calis. Finally, in
Section 2.4 we discuss orphans.

2.1. Guardians

Distributed applications are implemented in Argus by one or more modules called guardians. A
guardian abetraction is a kind of data abstraction, but it differs from the data abstractions supported by
clusters (as found in CLU). In general, data abstractions consist of a set of operations and a set of
objects. In a cluster the operations are considered to belong to the abstraction as a whole. However,
guardian instances are objects and their handlers are their operations. Guardian abstraction is similar to
the data abstractions in Simuta and Smalitalk-80; guardians are like class instances.

A node is a single physical location, which may have multipie processors. A guardian instance resides
at a single node, although a node may support several guardians. A guardian encapsulates and controls
access 10 one or more resources, such as data or devices. Access to the protected resource is provided
by a set of operations called handlers. Internally, a guardian consists of a collection of data objects and
processes that can be used to manipulate those objects. In general, there will be many processes
executing concurrently in a guardian: a new process is created 1o execute each handier call, processes
may be explicitly created, and there may be other processes that carry out background aclivity of the
guardian.

The data objects encapsulated by a guardian are local: they cannot be accessed directly by a process
in another guardian. In contrast, guardians are global objects: a single guardian may be shared among
processes at several different guardians. A process with a reference 10 a guardian can call the guardian's
handiers, and these handiers can access the data objects inside the guardian. Handler calls allow access
to a guardian’s local data, but the guardian controis how that data can be manipulated.

When a node fails, it crashes. A crash is a "clean” failure, as opposed to a "Byzantine” failure. A
guardian survives crashes of its node (with as high a probability as needed). A guardian’s state consists
of stable and volatile objects. When a guardian’s node crashes, all processes running inside the guardian
at the time of the crash are lost, along with the guardian’s volatile objects, but the guardian's stable
objects survive the crash. Upon recovery of the guardian's node, the guardian runs a special recovery
process to reconstruct its volatile objects from its stable objects. Since the volatile objects are lost in a
crash, they typically consist only of redundant data that is used o improve performance (for example, an
index into a database). The persistent state of an appiication shouki be kept in stable objects.

Guardians are impiemented by guardian definitions. These define:
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1. The creators. These are operations that can be called to create new guardian instances
that perform in accordance with the guardian definition.

2. The guardian’s stable and volatile state.
3. The guardian's handlers.

4. The background code. This is code that the guardian executes independent of any handier
calls, for example, 1o perform some periodic activity.

5. The recover code. This is code that is executed after a crash to restore the volatile objects.
Guardians and guardian definitions are discussed in Section 13.

2.2. Actions

The distributed data in an Argus application can be shared by concurrent processes. A process may
attempt to examine and transform some objects from their current states to new states, with any number
of intermediate state changes. Interactions among concurrent processes can leave data in an
inconsistent state. Failures (for exampie, node crashes) can occur during the execution of a process,
raising the additional possibility that data will be left in an inconsistent intermediate state. To suppornt
applications that need consistent data, Argus permits the programmer to make processes stomic.

We call an atomic process an action. Actions are atomic in that they are both serializable and
recoverable. By serializable, we mean that the overall effect of executing muRiple concurrent actions is
as if they had been executed in some sequential order, even though they actually execute concurrently.
By recoverable, we mean that the overall effect of an action is "ali-or-nothing:" either all changes made to
the data by the action happen, or none of these changes happen. An action that completes all its
changes successfully commits; otherwise it aborts, and objects that it modified are restored to their
previous states.

Before an action can commit, new states of all modified, stable objects must be written to stable
storage!: storage that survives media crashes with high probability. Argus uses a two-phase commit
protocol? to ensure that either all of the changes made by an action occur or none of them do. If a crash
occurs after an action modifies a stable object, but before the new state has been written to stable
storage, the action will be aborted.

2.2.1. Nested Actions

Actions in Argus can be nested: an action may be composed of several subactions. Subactions can be
used to limit the scope of failures and to introduce concurrency within an action.

An action may contain any number of subactions, some of which may be performed sequentially, some

Lampson, B. W., "Atomic Transactions®, in Distributed Systems—Architecture and implementation, Lecture Nowss in Computer
Science, volume 105, pages 246-285. Springer-Veriag, New York, 1981,

2Gray, J. N., "Notws on data bage operating systems”, in Operating Systems, An Advanced Course, Bayer, R., Graham, R. M.,
and Seegmufier, G. (editors), Lecture Notes in Computer Science, volume 60, pages 393-481. Springer-Veriag, New York, 1978,
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concurrently. This structure cannot be observed from outside the action; the overall action is still atomic.
Subactions appear as atomic actions with respect to other subactions of the same parent. Thus,
subactions can be executed concurrently.

Subactions can commit and abort independently, and a subaction can abort without forcing its parent
action to abort. However, the commit of a subaction is conditional: even if a subaction commits, aborting
its parent action will abort it.

The root of a tree of nested actions is called a topaction. Topactions have no parent; they cannot be
aborted once they have committed. Since the effects of a subaction can aways be undone by aborting
its parent, the two-phase commit protocol is used only when topactions attempt to cormmit.

In Argus, an action (e.g., a handier call) may return objects through either a normal retum or an
exception and then abort. The following rule shouki be followed to avoid violating serializability: a
subaction that aborts shouid not retum any information obtained from data shared with other concurrent
actions.

2.2.2. Atomic Objects and Atomic Types

Atomicity of actions is achieved via the data objects shared among those actions. Shared objects must
be implemented so that actions using them appear to be atomic. Objects that support atomicity are
referred to as atomic objects. Atomic objects provide the synchronization and recovery needed Yo ensure
that actions are atomic. An afomic type is a type whose objects are all atomic. Some objects do not need
to be atomic: for example, objects that are local 1o a single process. Since the synchronization and
recovery needed to ensure atomicity may be expensive, we do not require that all types be atomic. (For
example, Argus provides all the built-in mutable types of CLU; these types are not atomic.) However, it is
important to remember that atomic actions must share only atomic objects.

Argus provides a number of built-in atomic types and type generators. The built-in scalar types (null,
node, bool, char, Int, real, and string) are atomic. Parameterized types can also be atomic. Typically,
an instance of a type generator will be atomic only ¥ any actual type parameters are aiso atomic. The
built-in immutable type generators (sequence, struct, and oneof) are atomic if their parameter types are
atomic. In addition, Argus provides three mutable atomic type generators: atomic__ amay,
atomic_record, and atomic_variant. The operations on these types are nearly identical to the normal
array, record, and variant types of CLU. Users may also define their own atomic types (see Section 15).

The implementation of the built-in mutable atomic type generators is based on a simple locking model.
There are two kinds of locks: read locks and write locks. When an action calis an operation on an atomic
object, the implementation acquires a lock on that object in the appropriate mode: it acquires a write lock
if it mutates the object, or a read lock if it only examines the object. The built-in types allow multiple
concurrent readers, but only a single writer. If necessary, an action is forced to wait until R can obtain the
appropriate lock. When a write lock on an object is first obtained by an action, the system makes a copy
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of the object's state in a new version, and the operations calied by the action work on this version3. if,
ultimately, the action commits, this version will be retained, and the oid version discarded. A subaction's
locks are given to its parent action when it commits. When a topaction commits, its locks are discarded
and its effects become visible to other actions. if the action aborts, the action’s locks and the new version
will be discarded, and the oid version retained (see Figure 2-1).

Figure 2-1: Locking and Version Management Rules for a Subaction S, on Object X

Acquiring a read lock:
All holders of write locks on X must be ancestors of S.

Acquiring a write lock:
All holders of read and write locks on X must be ancestors of S.
if this is the first time S has acquired a write lock on X,
push a copy of X on the top of its version stack.

Commit:
S's parent acquires S's lock on X.
if S holds a write lock on X, then S's version becomes S's parent’s version.

Abort:
S's lock and version (if any) are discarded.

More precisely, an action can obtain a read lock on an object if every action hokding a write lock on that
object is an ancestor of the requesting action. An action can obtain a write lock on an object if every
action holding a (read or write) lock on that object is an ancestor. When a subaction commits, its locks
are inherited by its parent and its new versions replace those of its parent; when a subaction aborts, its
locks and versions are discarded (see Figure 2-1). Because Argus guarantees that parent actions never
run concurrently with their children, these rules ensure that concurrent actions never hold write locks on
the same object simulaneously.

The ancestors of a subaction are itseff, its parent, its parent’s parent, and so on; a subaction is a
descendant of its ancestors. A subaction commits fo the fop ¥ R and ail s ancestors, including the
topaction, commit. A subaction is a commitied descendant of an ancestor action K the subaction and all
intervening ancestors have committed. When a topaction attempts to commit, the two-phase commit
protocol is used to ensure that the new versions of all objects modified by the action and all s committed
descendants are copied to stable storage. After the new versions have been recorded stably, the old
versions are thrown away.

User-defined atomic types can provide greater concumency than built-in atomic types‘. An

3Thie operational description (and others in this manual) is not meant to constrain implementors. However, this particular
description does reflect our current implementation.

‘Anexupphe-nbofwwhm. W. and Liskov, B., ‘knpleynomimdemﬁcDahTypos,'ACMTmm
Programming Languages and Systeme, volume 7, number 2 (April 1985), pages 244-269.
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implementation of a user-defined atomic type must address several issues. First, ¥ must provide proper
synchronization so that concurrent calls of its operations do not interfere with each other, and so that the
actions that call its operations are serialized. Second, it must provide recovery for actions using its
objects so that aborted actions have no effect. Finally, t must ensure that changes made 10 its objects by
actions that commit to the top are recorded properly on stable storage. The built-in atomic types and the
mutex type generator are useful in coping with these issues. User-defined atomic types are discussed
further in Section 15. ’

2.2.3. Nested Topactions

in addition to nesting subactions inside other actions, it is sometimes useful 10 start a new topaction
inside another action. Such a nested topaction, uniike a subaction, has no special privileges relative to its
"parent”; for exampie, it is not able to read an atomic object modified by its "parent”. Furthermore, the
commit of a nested topaction is not relative to its "parent”; its versions are written to stable storage, and
its locks are released, just as for normal topactions.

Nested topactions are useful for benevolent side effects that change the representation of an object
without affecting its abstract state. For example, in a naming system a name look-up may cause
information to be copied from one location to another, to speed up subsequent look-ups of that name.
Copying the data within a nested topaction that commits ensures that the changes remain in effect even if
the "parent” action aborts.

A nested topaction is used correctly if it is serializable before ks "parent”. This is true K either the
nested topaction performs a benevolent side effect, or i all communication between the nested topaction
and its parent is through atomic objects.

2.3. Remote Calls

An action running in one guardian can cause work 10 be performed at another guardian by calling a
handler provided by the latter guardian. An action can cause a new guardian to be created by calling a
creator. Handier and creator calls are remote calis. Remote calls are similar to local procedure calls; for

exampie, the calling process waits for the call to retum. Remote calls differ from local procedure calls in
several ways, however. ‘

First, the arguments and results of a remote call are passed by value (see below and aiso Section 14)
rather than by sharing. This ensures that the local objects of one guardian remain local to that guardian,
even if their values are used as arguments or results of remote calls 1o other guardians. The only objects
that are passed by sharing in remote calls are the giobal objects: guardians, handiers, creators, and
nodes.

Second, any remote call can raise the exceptions falure and unavaliable. (Unike CLU, not all local
calls can raise failure, see Appendix IV.) The occurrence of faliure means that the call is unilkely 10 ever
succeed, so there is no point in retrying the call in the future. Uinavadable, on the other hand, means that

!
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the call should succeed if retried in the future, but is uniikely to succeed if retried immediately. For
example, failure can arise because it is impossiblie to transmit the arguments or results of the call (see
Section 14); unavailable can arise if the guardian being called has crashed, or ¥ the network is
partitioned.

Third, a handier or creator can be called only from inside an action, and the call runs as a subaction of
the calling action. This ensures that a remote call succeeds al most ance: either a remote call completes
successfully and commits, or it aborts and all of its modifications are undone (provided, of course, that the
actions involved are truly atomic). Although the effect of a remote call coours at most once, the system
may need to attempt it several times; this is why remote calis are made within actions.

2.4. Transmissible Types

Arguments and results of remote calls are passed by value. This means that the argument and result
objects must be copied to produce distinct objects. Not all objects can be copied like this; those that can
are called transmissible objects, and their types are calied ranemigsible Hpes. Only transmissbile
objects may be used as arguments and results of a remote call. In addition, image objects (see Section
6.6) can contain only transmissible objects. Parameterized types may be transmissbie in some instances
and not in others; for example, instantiations of the built-in type generators are transmissible only If their
parameter types are transmissible. While guardians, creators, and handiers are always transmissible,
procedures and Herators are never transmissile.

Users can define new transmissible types. For each transmissible type 7 the external representation
type of T must be defined; this describes the format in which objects of type T are transmitted. Each
cluster that implements a trangmisgible type 7 must contain two procedures, encode and decode, 1o
translate objects of type T to and from their external representation. More information about defining
transmissible types can be found in Section 14.

2.5. Orphans

An orphan is an action that has had some ancestor "perish” or has had the pertinent results of some
relative action lost in a crash. Orphans can arise in Argus due to crashes and explick aborts. For
example, when a parenmt action is aborted, the active descendents & leaves behind become orphans.
Crashes also cause orphans: when a guardian crashes, all active actions with an ancestor at the crashed
guardian and all active actions with commitied descendanis that ran at the crashed guardian become
orphans5. However, having a descendent that is an orphan does not necessarily imply that the parent is
an orphan; as previously described, actions may commit or abort independently of their subactions.

Argus programmers can largely ignore orphans. Argus guarantees that orphans are aborted before

Swalker, E. F., "Orphan Detection in the Argus System", Massachusetts institute of Technology, Laboratory for Computer
Science, Technical Report MITALCS/TR-326, June 1964, .
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3. Environment
The Argus environment ensures complete static type checking of programs. It aiso supports separate
compilation and the independence of guardians.

3.1. The Library

Argus modules are compiled in the context of a library that gives meaning to external identifiers and
allows inter-module type checking. The Argus library contains type information about abstractions; for
each abstraction, the Hbrary contains a description unit, or DU, describing that absiraction and its
implementations. Each DU has a unique name and these names form the basis of type checking.

3.2. Independence of Guardian Images

The code run by a guardian comes from some guardian image. A guardian image contains ail the code
needed to carry out any local activity of the guardian; any procedure, iterator or cluster used by that
guardian will be in its guardian image. Any handier calis made by the guardian, however, are carried out
at the called guardian, which contains the code that performs the call. Thus a guardian is independent of
the implementations of the guardians it calis and the implementation of a guardian can be changed
without affecting the implementations of its clients.

3.3. Guardian Creation

When a guardian is created, it is necessary to select the guardian image that will supply the code run
by the new guardian. To this end, each guardian has an associated creation environment that specifies
the guardian images for other guardians it may create. The creation environment is a mapping from
guardian types to information that can be used to select a guantian image appropriate for each kind of
node. For greater flexibiiity, this infformation can be associated with particular creator objects.

3.4. The Catalog

Somehow, guardians must be able to find other guardians to call for services. A guardian usually has a
reference to any guardian & creates. Algo, if a guardian can call some other server guardian, & can learn
about the guardians that the server "knows", because guaniians can be passed in remote caills. In
addition, Argus provides a built-in subsystem known by all guardiangs. This subsystem is calied the
catalog. The catalog provides an atomic mapping from names to transmissible objects. For example,
when a new guardian is created, it can be catalogued under some well-known name, 8o that other
guardians can find it in the future. Since we are currently experimenting with various interfaces to the
catalog, we do not include an interface specification here.
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4. Notation
We use an extended BNF grammar to define the syntax of Argus. The general form of a production is:
nonterminal .= altemative

| atternative
| atternative
The following extensions are used:
a, e a list of one or more a’'s separated by commas: "a" or "a, a" or "a, a, a" etc.
{a} a sequence of zero or more a's: " " or "a" or "a a" etc.
[a] an optional a: * " or "a".

Nonterminal symbois appear in normal face. Reserved words appear in bold face. All other terminal
symbols are non-aiphabetic, and appear in normal face.

Full productions are not always shown in the body of this manual; often alternatives are presented and
explained individually. Appendix | contains the compiete syntax.
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5. Lexical Considerations

A module is written as a sequence of tokens and separators. A foken is a sequence of "printing” ASCII
characters (vaiues 40 octal through 176 octal) representing a reserved word, an identifier, a literal, an
operator, or a punctuation symbol. A separator is a "blank" character (space, vertical tab, horizontal tab,
carriage return, newline, form feed) or a comment. Any number of separators may appear between
tokens.

5.1. Reserved Words
The foliowing character sequences are reserved word tokens:

Table 5-1: Reserved Words

abort olse leave : signails
action elseif mutex stable
any end nil string
array enter node struct
atomic_array equates null tag
atomic_record except oneof tagcase
atomic_variant oxit others tagtest
background false own tagwait
begin for pause terminate
bind foreach proc ~ then
bool fork process topaction
break guardian proctype transmit
cand handier real true
char handiertype record type
cluster handiles recover up
coenter has rep variant
continue i resignal when
cor image retum where
creator in retums while
creatortype int seize with

ovt is selt wiag
do ter sequence yield
down itertype signal yieids

Upper and lower case letters are not distinguished in reserved words. For example, ‘end’, 'END’, and
'eNd’ are all the same reserved word. Reserved words appear in bold face in this document.

5.2. ldentifiers
An identifier is a sequence of letters, digits, and underscores (_) that begins with a letter or underscore,
and that is not a reserved word. Upper and lower case letters are not distinguished in identifiers.

In the syntax there are two different nonterminals for identifiers. The nonterminal idn is used when the
identifier has scope (see Section 7.1); idng are used for variables, parameters, module names, and as
abbreviations for constants. The nonterminal name is used when the identifier is not subject to scope
rules; names are used for record and structure selectors, oneof and variant tags, operation names, and
exceptional condition names.
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5.3. Literals

There are literais for naming objects of the built-in types null, bool, Int, real, char, and string. Their
forms are described in Appendix I.

5.4. Operators and Punctuation Tokens
The following character sequences are used as operators and punctuation tokens.

Table 5-2: Operator and Punctuation Tokens

( [ . ~ . < ~< =

) | $ v | <= ~<= ~=
{ = " + >= ~>= &
} , @ / - > ~> |

5.5. Comments and Other Separators
A comment is a sequence of characters that begins with a percent sign (%), ends with a newline
character, and contains only printing ASCII characters (including blanks) and horizontal tabs in between.

For example:
Z = ali] + % a comment in an expression

bii]

A separator is a blank character (space, vertical tab, horizontal tab, carriage retumn, newline, form feed)
or a comment. Zero or more separators may appear between any two tokens, except that at least one
separator is required belween any two adjacent non-seli-terminating tokens: reserved words, identifiers,
integer literals, and real literals. This rule is necessary to avoid lexical ambiguities.
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6. Types, Type Generators, and Type Specifications

A type consists of a set of objects together with a set of operations used to manipulate the objects.
Types can be classified according to whether their objecis are mutable or immutable, and atomic or
non-atomic. An immutable object (e.g., an integer) has a value that never varies, while the value (state)
of a mutable object can vary over time. Objects of atomic types provide serializability and recovery for
accessing actions. Non-atomic types may provide synchronization by specifying that particular operations
are executed indivisibly on objects of the type. An operation is indivisible if no other process may affect or
observe intermediate states of the operation’s execution. indivigibility properties will be described for all
the built-in non-atomic types of Argus.

A type generator is a parameterized type definition, representing a {usually infinite} set of related types.
A particular type is obtained from a type generator by writing the generator name along with specific
values for the parameters; for every distinct set of legal values, a distinct type is oblained (see Section
12.6). For example, the array type generator has a single parameter that determines the element type;
array[int], array{real], and array{array{int]] are three dietinct types defined by the array type generator.
Types obtained from type generators are called parameterized types or instaniiations of the type
generator; others are calied simple types.

in Argus code, a type is specified by a symactic construct called a type_spec. The type specification
for a simple type is just the identifier (or reserved word) naming the type. For parameterized types, the
type specitication consists of the identifier (or reserved word) naming the type generator, together with the
actual parameter values.

To be used as arguments or resuits of handier and creator calls, or as image objects (see Section 6.6),
objects must be transmissible. Most of the built-in Argus typee are transmissible, that is, they have
transmissible objects. However, procedures and iterators are never tranemissible. For type generators,
transmissibility of a particular instantiation of the generator may depend upon transmissibillty of any type
parameters. A transmissibie type provides the pseudo-operation tranemit and two imtemal operations
encode and decode. Generally, encode and decode are hidden from clients of the type. They are called
implicitly during message transmission (see Section 14) and in creating and decomposing image objects
(see Section 6.6). Transmissibiiity is discussed further in Section 14.

Argus provides ali the built-in types of CLU as well as some new types and type generators. This
section gives an informal introduction to the buiit-in types and type generators provided by Argus. Many
details are not discussed here, but a complete definition of each type and type generator is given in
Appendix II.
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The binary operations add (+), sub (-), mul (*), div (/), mod (I}, power (**), max, and min are provided, as .
well as unary minus (-) and abs. There are binary comparison operations /t (<), le (<=), equal(=),
ge (>=), and gt(>). There are two operations, from_to and from_to_ by, for kerating over a range of
integers. See Section |1.4 for details.

6.2.4. Real

The type real models (a subset of) the mathematical real numbers. The exact subset is not part of the
language definition. Reals are immutable, atomic, and transmissible, although transmigsion of real
objects between heterogeneous machine architectures may not be exact. Real literals are written as a
mantissa with an optional exponent. A mantissa is either a sequence of one or more decimal digits, or
two sequences (one of which may be empty) joined by a period. The mantissa must contain at least one
digit. An exponent is 'E’ or ‘e’, optionally followed by '+’ or ', foliowed by one or more decimal digits. An
exponent is required if the mantissa does not comain a period. As is usual, mEx = n"'10*. Examples of
real literals are:

3.14 3.14E0 314e-2 .0314E42 3. 14

As with integers, the operations add(+), sub(-), mul(*), div(/), mod (//), power(**), max, min,
minus (-), abe, it (<), le (<=), equal (=), ge (>=), and gt (>), are provided. It is important 1o note that there
is no form of implicit conversion between types. The 2r operation cofwerts an integer 10 a real, r2/ rounds
a real to an integer, and trunc truncates a real to an integer. See Section 1.5 for details.

6.2.5. Char

The type char provides the alphabet for text manipulation. Characters are immutable, atomic,
transmissible, and form an ordered set. Every implementation must provide at least 128, but no more
than 512, characters; the first 128 characters are the ASCII characters in their standard order.

Literals for the printing ASCIl characters (octal 40 through octal 176), other than single quote (). or
backslash (\), can be written as that character enclosed in single quotes. Any character can be written by
enclosing one of the escape sequences listed in Table 6-1 in single quotes. The escape sequences may
be written using upper case letters, but note that escape sequences of the form \&" are case sensitive. A
table of literals is given at the end of Appendix |. Exampies of character literals are:

\7 a " - A" \B' \177

There are two operations, i2c and c2i, for converting between integers and characters: the smallest
character corresponds 10 zero, and the characters are numbered sequentially. Binary comparison
operations exist for characters based on this numerical ordering: X (<), lo (<=), equal (=), ge (>=), and
gt (>). For detalils, see Section |1.6.
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the mutability and atomicity of an any object depend on the mutability and atomicity of the contained
object. Objects of type any are not transmissible.

The create operation is parameterized by a lype; create takes a single argument of that type and
returns an any object containing the argument. The force operation is also parameterized by a type; it
takes an any and extracts an object of that type, signaliing wrong_ fype ¥ the contained object’s type is
not included in the parameter type. The is_lype operation is parameterized by a type and checks whether
its argument contains an object whose type Is included in the parameter type. The detalied specification
is found in Section 11.19.

6.2.8. Sequence Types
Sequences are immutable and they are atomic or transmissible when instantiated with atomic or
transmissible type parameters. Although an individual sequence can have any length, the length and
members of a sequence are fixed when the sequence is created. The elements of a sequence are
indexed sequentially, starting from one. A sequence type specification has the form:
sequence [ type_actual ]
where a type_actualis a type_spec, possibly augmented with operation bindings (see Section 12.6).

The new operation retums an empty sequence. A sequence constructor has the form:

type_spec $ [ [ expression , ... ] ]
and can be used to create a sequence with the given elements.

Although a sequence, once created, cannot be changed, new sequences can be constructed from
existing ones by means of the addh, addl, remh, and remi operations. Other operations include feich,
replace, lop, bollom, size, the elements and indexes Rerators, and subseq. invocations of the fetch
operation can be written using a special form:

qfi] % fetch the element at indexiofq .

Two sequences with equal elements are equal. The equal (=) operation tests if two gsequences have
equal elements, using the equal operation of the element type. Simiar tests if two sequences have
similar elements, using the similar operation of the element type.

Al operations are indivisible except for fill_copy, equal, similar, copy, encode, and decode, which are
divisible at calls to the operations of the type parameter.

For the detailed specification, see Section 11.8.

6.2.9. Array Types
Arrays are one-dimensional, and mutable but not atomic. They are transmissible only if their type

parameter is transmissible. The number of elements in an array can vary dynamically. There is no notion
of an "uninitialized” element.
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A structure is created using a structure constructor. For example, assuming that "info” has been
equated to a structure type:
info = struct]last, first, micklie: string, age: In]
the following is a legal structure constructor:
info $ {last: "Scheifler", first: "Robert”, age: 32, middie: "W.")
An expression must be given for each selector, but the order and grouping of seiectors need not
resembie the corresponding type specification.

For each selector "sel", there is an operation get se/ to extract the named component, and an
operation replace_sel to create a new structure with the named component replaced with some other
object. Invocations of the get operations can be written using a special form:

st.age % get the "age’ component of st

As with sequences, two structures with equal components are in fact the same object. The equa/ (=)
operation tests if two structures have equal components, using the equal/ operations of the component
types. Similar tests if two structures have similar components, using the simifar operations of the
component types.

All operations are indivisible except for equal, simvlar, copy, encode, and decode, which are divisible at
calis to the operations of the type parameter.

For the detailed specification, see Section 11.11.

- 6.2.11. Record Types
A record is a mutable collection of one or more named objects. Records are never atomic, and are
transmissible only i the parameter types are all transmissible. A record type specification has the form:
record [ field_spec , «..]
where (as for structures)
field_spec «:= name , ... : type_actual
Selectors must be unique within a specification, but the ordering and grouping of selectors is unimportant.

A record is created using a record constructor. For example:
professor $ {last: "Herlihy"®;, first: "Maurice”, age:32, middie: "P."}

For each selector "sel", there is an operation gef sef to extract the named component, and an
operation set__se/ to replace the named component with some other object. Invocations of these
operations can be written using a special form:

r.middie % get the ‘middie’ component of r
rage =33 % set the ‘age’ component of r to 33 (by calling set_age)

As with arrays, every newly created record has an identity that is distinct from all other records; two
records can have the same components without being the same record object. The identity of records




28 Types, Type Generstors, and Type Specifications

can be distinguished with the aqual (=) operation. The similar? operation tests if two records have equal
components, using the equa/ operations of the component types. Simvlar tests i two records have similar
components, using the similar operations of the component types.

All operations are indivisible, except similar, similar1, copy, encode, and decode, which are divisible at
calls to operations of the type parameters.

For the detailed specification, see Section 11.12.

6.2.12. Oneof Types
A oneof type is a tagged, discriminated union. A oneof is an immutable labeled object, to be thought of

as "one of" a set of akematives. The label is called the fag, and the object is called the value. A oneof
type specification has the form:

oneof | field_spec, ... ]
where (as for struciures)

field_spec ..= name , ... : type_actual
Tags must be unique within a specification, but the ordering and grouping of tags is unimportant. An
instantiation is atomic or transmissible i and only if all the type parameters are atomic or transmissible.

For each tag "t" of a oneof type, there is a make__t operation which takes an object of the type
associated with the tag, and retums the object (as a oneof) labeled with tag t".

To determine the tag and vaiue of a oneof object, one nonmaily uses the tagcase statement (see
Section 10.14).

The equal (=) operation tests i two oneofs have the same tag, and i so, tests if the two value
components are equal, using the equa/ operation of the value type. Simiar tests if two oneofs have the
same tag, and if 8o, tests i the two value components are similar, using the siméar operation of the value
type.

All operations are indivisible, except equal, similar, similar1, copy, encode, and decode, which are
divisible at calis to operations of the type parameters.

For the detailed specification, see Section 11.14.

6.2.13. Variant Types
A variant is a mutable oneof. Variants are never atomic and are transmissible if and only i their type
parameters are all transmissible. A variant type specification has the form:

variant [ field_spec, ... ]
where (as for oneofs)

field_spec .= name , ... : type_actual
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The state of a variant is a pair consisting of a label called the tag and an object called the value. For each
tag "t" of a variant type, there is a make_t operation which takes an object of the type associated with the
tag, and returns the object (as a variant) labeled with tag "t". in addition, there is a change_t operation,
which takes an existing varian and an object of the type associaled with "t", and changes the state of the
variant to be the pair consisting of the tag "t" and the given object. To determine the tag and value of a
variant object, one normally uses the tagcase statement (see Section 10.14).

Every newly created variant has an identity that is distinct from alt other variants; two variants can have
the same state without being the same variant object. The identity of variants can be distinguished using
the equal (=) operation. The similart operation tests if two variants have the same tag, and ¥ 80, tests if
the two value components are equal, using the equal operation of the value type. Simiar tests if two
variants have the same tag, and if so, tests if the two value components are similar, using the similar
operation of the value type.

All operations are indivisible, except similar, simiiar1, copy, encode, and decode, which are divisible at
calls to operations of the type parameters.

For the detailed specification, see Section 11.15.

6.2.14. Procedure and lterator Types

Procedures and iterators are created by the Argus system or by the bind expression (see Section 9.8).
They are not transmissible. As the identity of a procedure or Herator is immutable, they can be
considered to be atomic. However, their atomicity can be violated if a procedure or iterator has own data
and thus a mutable state. The immutabilty and atomicity of a procedure or Rerator with own data
depends on that operation’s specified semantics.

The type specification for a procedure or iterator contains most of the information stated in a procedure
or iterator heading,aprocemmtype specifica

iertype ( [ type_spec ... ]) [

where
returns <= retumns ( type_spec, .. )
yields «.= yleoids ( type_spec , ... )

signals === signals ( exception , «.. )

exception ::=name[(type SpE
The first list of type specifications describes the number, types, and order of arguments. The returns or
ylekis clause gives the number, types, and order of the objects to be retumed or yieided. The signals
clause lists the exceptions raised by the procedure or Rterator; for each exception m, the number,
types, and order of the objects to be retu is also given. All names used in a sighais clause must be
unique. The ordering of exceptions isnotrI:oﬂam.
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Procedure and iterator types have an equal(=) operation. Invocation is not an operation, but a
primitive in Argus. For the detailed specification of proctype and Rertype, see Section 11.17.

6.3. Atomic_Array, Atomic_Record, and Atomic_Variant

Having described the types that Argus inherited from CLU, we now describe the new types in Argus.
The mutable atomic type generators of Argus are atomic_array, stomic_record, and atomic_variant.
Types obtained from these generators provide the same operations as the analogous types obtained from
array, record, and variant, but they differ in their synchronization and recovery properties. Conversion
operations are provided between each atomic type generator and its non-atomic partner (for exampie,
atomic_array{t}$aa2a converts from an atomic array to a (non-atomic) array).

An operation of an atomic type generator can be classified as a reader or writer depending on whether
it examines or modifies its principal argument, that is, the argument or resul object of the operation’s
type. (For binary operations, such as ar__gets ar, the operation is classified with respect to each
argument.) Intuitively, a reader only examines (reads) the state of ks principal argument, while a writer
modifies (writes) its principal argument. Operations that create objects of an atomic type are classified as
readers. Reader/writer exclusion is achieved by locking: readers acquire a read lock while writers
acquire a write lock. The locking rules are discussed in Section 2.2.2.

If one or more of the type parameters is non-atomic, then the resulting type is not atomic because
modifications to component objects are not controlied. However, read/write locking stil occurs, as
described above. Thus, an atomic type generator instantiated with a non-atomic parameter incurs the
expense of atomic types without gaining any benefit; such an instantiation is uniikely to be a correct
solution to a problem. Atomic type generators yield transmissible types only if the type parameters are all
transmissible.

Special operations are provided for each atomic type generator to test and manipulate the locks
associated with reader/writer exclusion. These operations are useful for implementing user-defined
atomic types (see Section 15). The tagtest and tagwalt siatements (see Section 10.15) provide
additional structured support for atomic_variants. The operations can_read, can_write, Test_and_read,
and test_and_write provide relatively unstructured access to lock information. For compiete definitions of
these operations, see Sections 11.10, i1.13, and I1.16.

Assuming normal termination, the following operations acquire read locks on their principal arguments
or the objects that they create.

atomic_array: create, new, predict, fill, fill_copy, size, low, high, empty, top, botlom, feich, similar,
similar1, copy, copyl, elements, indexes, test__and__read, a2aa, aa2a, encode,
decode

atomic_record:  create, get _, similar, similar1, copy, copy1, test_and_read, ar _gets _ar (second
argument), r2ar, ar2r, encode, decode

atomic_variamt: make_,is_, value_, av_gets_av (second argument), similar, similar1, copy, copy1,
lest_and_read, v2av, av2v, encode, décode
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The operations similar and similar1 acquire read locks on both arguments. The operations copy and
copy1 acquire a read lock on the value retumed as well as their principal argument. Test_and_readis a
reader only if it returmns true; otherwise i is neither a reader nor a writer.

Assuming normal termination, the following operations acquire write locks on their principal arguments.
atomic_array: set_low, trim, store, addh, addl, remh, reml, test_and_write
atomic_record: set_, ar_gets ar (first argument), test_and_wrile
atomic_variant: change_, av_geis_av (first argument), lest_and_write

Test_and_write is a writer only if it returns true; otherwise it is nelther a reader nor a writer.

The equal, can_read, and can_write operations are neither readers nor writers.

When an operation of atomic__array terminates with an exception, ks principal argument is never
modified; however, the atomic_ operations listed above as writers always obtain a write lock before
the principal argument is examined, hence there are cases in which they will obtain a write lock and only
read, but not modify their principal agument. For example, atomic__arrayft}$irim is a writer when it
signals bounds. On the other hand, when an atomic__array operation raises a signal because of an
invalid argument, no locks are obtained. For example, when atomic_array}$rim signals negative_size,
it is neither a reader nor a writer since the array’s state is neither examined nor modified (only the integer
argument is examined).

For the detailed specification of atomic arrays, see Section 11.10; for atomic records, see Section 11.13;
and for atomic variants, see Section 11.16.

6.4. Guardian Types
Guardian types are user-defined types that are impiemented by guardian definitions (see Section 13).
A guardian definition has a header of the form:

idn = guardian [parms] isidn, ... [ handiesidn, ... ] [ where ]
The creators are the operations named in the identifier list following Is; a creator is a special kind of
operation that can be called to create new guardians that behave in accordance with the guardian
definition. Each guardian optionally provides handiers that can be called to interact with it; the names of
these handlers are listed in the identifier list following handies. (See Section 13 for more details.)

A guardian definition named g defines a guardian interface type g. An object of the guardian interface
type provides an interface to a guardian that behaves in accordance with the guardian definition. An
interface object is created whenever a new guardian is created, and then the interface object can be used
to access the guardian’s handlers. Interface objects are trangmissible, and after transmission they still
give access to the same guardian. In this manual a "guardian interface object” ig often called simply a
"guardian object".

The guardian type g for the guardian definition named g has the following operations.
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1. The creators listed in the is list of the guardian definition.

2. For each handler name h listed in the handies list, an operation get h with type:
proctype (g) returns (h1), where htis the type of h.

3. Equal and similar, both of type: proctype (g, g) returns (boof), which return true only if
both arguments are the same guardian object.

4. Copy, of type: proctype (g) returmns (g}, which simply returns its argument.
5. transmit.
A creator may not be named equal, similar, copy, print, or get_h where h is the name of a handler.

Thus if x is a variable denoting a guardian interface object of type g, and h is a handier of g, then
gget_h(x) will return this handler. As usual with get _ operations, this call can be abbreviated o x.h.
Note that the handiers themselves are not operations of the guardian interface type; thus g$h would be
illegal.

A guardian interface type is somewhat like a structure type. lts objects are constructed by the creators,
and decomposed by the get _operations. Guardian interface objects are immutable and atomic.

6.5. Handler and Creator Types
Creators are operations of guardian types. Handier objects are created as a side-effect of guardian
creation. Unlike procedures and Herators, handiers and creators are transmissible.

The types of handiers and creators resembie the types of procedures:

handlertype ( [ type_spec, ... ] ) [ reums ] [ signais ]
creatortype ( [ type_spec, .-.l)[mumllml

The argument, normal result, and exception resuk types must all be transmissible. The signals list for a
handiertype or crestortype cannot include either failure or unavaliable, as these signais are impilicit in
the interface of all creators and handiers.

Handler and creator types provide equal/ and similar operations which return true ¥ and only ¥ both
arguments are the same object, and copy operations which simply retum their argument. For the detailed
specification of handiertype and crestortype, see Section 11.18.

6.6. Image

The image type provides an escape from compiie-time type checking. The main difference between
image and any is that image objects are transmissible. An image object can be thought of as a portion
of an undecoded message or as the information needed to recreate an object of some type. Image
objects are immutable and atomic.

The create operation is parameterized by a transmissible type; R takes a single argument of that type
and encodes it (using the encode operation of that type) into an image object. The force operation is also
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parameterized by a transmissible type; it takes an image object and decodes it (using the decode
operation of that type) to an object of that type, signaliing wrong_fype if the encoded object’s type is not
included in the parameter type. The is_type operation is parameterized by a type and checks whether its
argument is an encoded object of a type included in the parameter type. See Section 11.20 for the
detailed specification.

6.7. Mutex

Mutex objects are mutable containers for information. They are not alomic, but they provide
synchronization and control of writing to stable storage for their contained object. Mutex itself does not
provide operations for synchronizing the use of mutex objects. instead, mutual exclusion is achieved
using the selze statement (see Section 10.16), which allows a sequence of statements to be executed
while a process is in exclusive possession of the mutex object. Mutex objects are transmissible if the
contained object is transmissible.

The type generator mutex has a single parameter that is the type of the contained object. A mutex
type specification has the form:
mutex [type_actual]
Mutex types provide operations to create and decompose mutex objects, and to notify the system of
modifications 1o the mutex object or s contained object.

The create operation takes a single argument of the parameter type and creates a new mutex object
containing the argument object. The gei_value operation obiains the contained object from its mutex
argument, while set_va/ue modifies a mutex object by repiacing its contained object. As with records,
these operations can be called using special forms, for exampie:

m: mutex{int] := mutex{int}$create (0)
x: Int := m.value % extract the contained object
m.vakie := 33 % change the contained object

Set_value and get_value are indivisible.

Mutexes can be distinguished with the equal/ (=) operation. There are no operations that could cause
or detect sharing of the contained object by two mutexes. Such sharing is dangerous, since two
processes would not be synchronized with each other in thelr use of the contained object ¥ each
possessed a different mutex. In general, ¥ an object is contained in a mutex object, it should not be
contained in any other object, nor should it be referred to by a variable except when in a seize statement
that has possession of the containing mutex.

There are some mutex operations that seize the mutex object automatically. Copy seizes its single
argument object. Similar seizes its two argument objects; the first argument object is seized first and then
the second. In both cases possession is retained until the operations retum. Also, when a mutex object
is encoded (for a message or when making an image), the object is seized automaticalty. See Section
il.21 for the detailed specification of mutex.
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Mutexes are used primarily to provide process synchronization and mutual exclusion on shared data,
especially to implement user-defined atomic types. In such implementations, it is important to control
writing to stable storage. The mutex operation changed provides the necessary control. Changed
informs the system that the calling action requires that the argument object be copied to stable storage
before the commit of the action’s top-level parent (topaction). Any mutex is asynchronous: its comtained
object is written to stable storage independently of objects that contain that mutex. See Section 15 for
further discussion of user-defined atomic objects.

6.8. Node
Objects of type node stand for physical nodes. The operation here takes no arguments and retumns
the node object that denotes its caller's node. Equal, similar, and copy operations are also provided.

The main use of node objects is in guardian creation (see Section 13), where they are used to cause a
newly created guardian 1o reside at a particular node. Objects of type node are immutable, atomic, and
transmissible. For the detailed specification, see Section H.2.

6.9. Other Type Specifications
A type specification for a user-defined type has the form of a reference:
reference .=

| idn [ actual_parm, ... ]

| reterence $ name
where each actual_parm must be a compile-time computable constant (see Section 7.2) or a type_actua/
(see Section 12.6). A reference must denote a data abstraction 10 be used as a type specification; this
syntax is provided for referring fo a data abetraction that is named in an equate module (see Section
12.4). For type generators, actual parameters of the appropriate types and number must be supplied.
The order of parameters is always significant for user-defined types (see Section 12.5).

There are two special type specifications that are used when implementing new abstractions: rep, and
cvt. These forms may only be used within a cluster; they are discussed fusther in Section 12.3.

Within an implementation of an abstraction, formal parameters declared with type can be used as type
specifications. Finally, identifiers that have been equated to type specifications can aiso be used as type
specifications.
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7. Scopes, Declarations, and Equates
This section describes how to introduce and use constants and variables, and the scope of constant

and variable names. Scoping units are described first, followed by a discussion of variables, and finally
constants.

7.1. Scoping Units
Scoping units follow the nesting structure of statements. Generally, a scoping unit is a body and an

associated "heading™. The scoping units are as follows (see Appendix | for detalls of the syntax).
1. From the start of a modude to its end.

2. From a cluster, proc, Rer, equates, guardian, handier, or creator to the matching end.

3. From a for, do, begin, background, recover, enter, coenter, or seize to the matching
end.

4. From a then or eise in an If statement to the end of the corresponding body.

5. From a tag, witag, or others in a tagcase, tagwait, or tagtest statement to the end of the
corresponding body.

6. From a when or others in an except statement to the end of the corresponding body.
7. From the start of a type_set to its end.
8. From an action or topaction to the end of the corresponding body.

The structure of scoping units is such that f one scoping unit overiaps another scoping unit (textually),
then one is fully contained in the other. The contained scope Is called a nested scope, and the containing
scope is called a surmounding scope.

New constant and variable names may be introduced in a scoping unit. Names for constants are
introduced by equates, which are syntactically restricted o appear grouped together at or near the
beginning of scoping units (except in type sets). For example, equates may appear at the beginning of a
body, but not after any statements in the body.

In contrast, declarations, which introduce new variabies, are allowed wherever statements are allowed,

and hence may appear throughout a scoping unit. Equates and declarations are discussed in more detail
in the foliowing two sections.

In the syntax there are two distinct nonterminals for identifiers: idn and name. Any identifier introduced
by an equate or declaration is an /dn, as is the name of the mockile being defined, and any operations it
has. An idn names a specific type or object. The other kind of identifier is a name. A name is generally
used to refer to a piece of something, and is always used in comext; for example, names are used as
record selectors. The scope rules apply only to idns.

The scope rules are simple:
1. An idn may not be redefined in its scope.

2. Any idn that is used as an external reference in a module may not be used for any other
purpose in that module.
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Unlike other "block-structured™ languages, Argus prohibits the redefinition of an identifier in a nested
scope. An identifier used as an external reference names a module or constant; the reference is resolved
using the compilation environment.

7.1.1. Variables

Objects are the fundamental "things" in the Argus universe; variables are a mechanism for denoting
(i.e., naming) objects. A variable has three properties: its type, whether i is stable or not, and the object
that it currently denotes (if any). A variable is said to be uninitialized ¥ R does not denote any object.
Attempts to use uninitialized variables are programming errors and (if not detected at compile-time) cause
the guardian to crash.

There are only three things that can be done with variables:

1. New variables can be introduced. Declarations perform this function, and are described
below.

2. An object may be assigned to a variable. After an assignment the variable denotes the
object assigned.

3. A variable may be used as an expression. The vaiue of a variable is the object that the
variable denotes at the time the expression is evaluated.

7.1.2. Declarations
Declarations introduce new variables. The scope of a variable is from ks declaration o the end of the
smaliest scoping unit containing its declaration; hence, variables must be declared before they are used.

There are two sorts of declarations: those with initialization, and those without. Simple declarations
(those without initialization) take the form
decl ..=idn, ... : type_spec
A simple declaration introduces a list of variables, all having the type given by the fype_spec. This type
determines the types of objects that can be assigned to the variable. The variabies introduced in a simple
declaration initially denote no objects, i.e., they are uninkialized.

A declaration with initialization combines deciarations and assignments into a single statement. A
declaration with initialization is entirely equivalent 1o one or more simple deciarations followed by an
assignment statement. The two forms of declaration with inktialization are:

idn : type_spec = expression
and

decl,, «.., decl, := call [ @ primary ]
These are equivalent to (respectively):

idn : type_spec
idn = expression

and
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decl, ... decl, % declaring idn, ... idn,,

idn1, [(TTTH Uﬂm = Ca“ [@ mfy]
In the second form, the order of the idns in the assignment statement is the same as in the original
declaration with initialization. (The call must return m objects.)

7.2. Equates and Constants

An equate allows an identifier to be used as an abbreviation for a congtant, type set, or equate module
name that may have a lengthy textual representation. An equate also permits a mnemonic identifier to be
used in place of a frequently used constant, such as a humerical value. We use the term constant in a
very narrow sense here: constants, in addition to being immutable, must be computable at compile-time.
Constants are either types (built-in or user-defined), or objects that are the results of evaluating constant
expressions. (Constant expressions are defined below.)

The syntax of equates is:

equate .= idn = constant

| idn = type_set
| idn = reference

constant ..= type_spec
| expression

type_set :3= { idn | idn has oper_decl , ... { equate } }

reference .= idn
| idn [ actual_pamm , ... ]
| reterence $ name
References can be used to name equate modules.

An equated identifier may not be used on the left-hand side of an assighment statement.

The scope of an equated identifier is the smallest scoping unit surrounding the equate defining &; here
we mean the entire scoping unit, not just the portion after the equate. All the equates in a scoping unit
must appear grouped near the beginning of the scoping unit. The exact placement of equates depends
on the containing syntactic construct; usually equates appear at the beginnings of bodies.

Equates may be in any order within the a scoping unt. Forward references among equates in the
same scoping unit are atiowed, but cyclic dependencies are illegal. For example,

X=Yy
y=2
z=3

is a legal sequence of equates, but
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Xmy
y=2
ZmX

i8 not. Since equates introcuoe king, the scoping resiricions on idns apply (L.e., the kine may not be
defined more than once).

7.2.1. Abbrevistions for Types , |
identifiers may be equated 10 type specifications, mmumm

7.2.2. Constant Expressions

We define the subsat of objecis that aquated ideniiiens may dencie by sialing which sxpressions are
constant exprassions. mmmumumu S qonatant exprassion is en
"'zmacmm This

expression that can be evalusted at complie-time 10 prodhuss o st
includes:
1. Lterals.

2. identifiers equaied to constants.

3. Formal parameiers.

4. Prooedure, Recsior, and Greaior Names.

5. mm(mmmmnmwmmmm

mmmwu.mum ‘

mwmnmﬂmmamhmsmmm
ﬂtmw
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8. Assignment and Calls

The two fundamental aclivities of Argus programs are calls and assignment of computed objects to
variables.

Argus programs should use mutual exclusion or atomic data to synchronize access to all shared
variables, because Argus supports concurrency and thus processes can interfere with each other during
assignments. For exampile,

i=1

j=2
is not equivalent to

ij=1,2
in the presence of concurrent assignments to the same variables, because any interleaving of indivisible
events is possible in the presence of concurrency.

Argus is designed to aliow complete compile-time type-checking. The type of each variable is known
by the compiler. Furthermore, the type of objects that could result from the evaluation of any expression
is known at compile time. Hence, every assignment can be checked at compiie time to ensure that the
variable is only assigned objects of its declared type. An assignment v := E is legal only i the type of E is
included the type of v. The definition of type inclusion is given in Section 6.1.

8.1. Assignment
Assighment causes a variable to denote an object. Some assignments are implicitty performed as part
of the execution of various mechanisms of the language (in exception handiing, and the tagcase, tagtest,

and tagwalt statements). All assignments, whether implickt or explicit, are subject to the type inclusion
rule.

8.1.1. Simple Assignment
The simplest form of assignment statement is:
idn := expression

In this case the expression is evaluated, and then the resulting object is assigned to the variable named
by the idn in an indivisible event. Thus no other process may observe a "half-assigned” state of the
variable, but another process may observe various states during the expression evaluation and between
the evaluation of the expression and the assignment. The expression must return a single object (whose
type must be included in that of the variable).

8.1.2. Multiple Assignment
There are two forms of assighment statement that assign to more than one variable at once:
idN , «.e = XPression , ...
and
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idn , ... := call [ @ primary ]

The first form of multiple assignment is a generalization of simple assignment. The first variable is
assigned the first expression, the second varable the second expression, and so on. The expressions
are all evaluated (from left to right) before any assignments are performed. The assignment of muitiple
objects to multiple variables is an indivisible event, but evaluation of the expressions is divisible from the
actual assignment. The number of variables in the list must equal the number of expressions, no variable
may occur more than once, and the type of each variable must include the type of the corresponding
expression.

The second form of multiple assignment allows one to retain the objects resulting from a call returning
two or more objects. The first variable is assigned the first object, the second variable the second object,
and so on, but all the assignments are carried out indivisibly. The order of the objects is the same as in
the return statement executed in the called routine. The number of variables must equai the number of
objects returned, no variable may occur more than once, and the type of each variable must include the
corresponding retumn type of the calied procedure.

8.2. Local Calls
in this section we discuss procedure calls; iterator calls are discussed in Section 10.12. However,
argument passing is the same for both procedures and Herators.

Local calis take the form:
primary ( [ expression , ... ])

The sequence of activities in performing a local call are as follows:
1. The primary is evaluated.

2. The expressions are evaluated, from left to right.

3. New variables are introduced corresponding to the formal arguments of the routine being
called (i.e., a new environment is created for the called routine to execiste in).

4. The objects resulting from evaluating the expressions (the actual arguments) are assigned
to the corresponding new variables (the formal arguments). The first formal is assighed the
first actual, the second formal the second actual, and so on. The type of each expression

must be included in the type of the corresponding formal argument.
5. Control is transferred to the routine at the start of its body.
A call is considered legal in exactly those situations where all the (implicit) assignments are legal.

A routine may assign an object to a formal argument variable; the effect is just as ¥ that object were
assigned to any other variabla. From the point of view of the called routine, the only difference between
its formal argument variables and its other local variables is that the formals are initialized by its cafler.

Procedures can terminate in two ways: they can terminate normalfly, relurning zero or more objects, or
they can terminate exceptionally, signalling an exceptional condition. When a procedure terminates
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normally, any result objects become available 1o the caller, and can be assigned to variables or passed as
arguments to other routines. When a procedure terminates exceptionally, the fiow of control will not go to
the point of return of the call, but rather will go to an exception handier (see Section 11).

8.3. Handler Calls

As explained in Section 2 and in Section 13, a handier is an operation that belongs to some guardian.
A handler call causes an activation of the calied handler fo run at the handier's guardian; the activation is
performed at the called handler's guardian by a new subaction created solely for this purpose. Usually
the handler's guardian is not the same as the one in which the call occurs, and the called handler's
guardian is likely to reside at a different node in the network than the calling guardian. However, R is legal
to cail a handier that belongs to a guardian residing at the caller's node, or even to call a handler
belonging to the caller's guardian.

Although the form of a handler call looks like a procedure call:

primary ( [ expression, ... ])
its meaning is very different. Among other things, a handier is called remotely, with the arguments and
results being transmitted by value in messages, and the call is run as a subaction of its caliing action.
Below we present an overview of what happens when executing a handier calf and then a detailed
description.

A handler call runs as a subaction of the calling action. We will refer to this subaction as the call action.
The first thing done by the call action is the transmission of the arguments of the call. Transmission is
accomplished by encoding each argument object, using the encode operation of its type. The arguments
are decoded at the calied guardian by a subaction of the call action called the activation action. Each
argument is decoded by using the decode operation of its type. The effect of transmission is that the
arguments are passed by value from the calier to the handier activation: new objects come into existence
at the handler’s guardian that are copies of the argument objects. Object values are transmitted in such a
way as to preserve the intemal sharing structure of each argument cbject is preserved®, as well as any
sharing structure between the argument objects in a single call. See Section 14 for further discussion of
transmission.

After the arguments have been transmitted, the activation action performs the handler body. When the
handler body terminates, by executing a retum, abort return, signal, or abort sighal staterment, the
result objects are transmitted to the caller by encoding them at the handier's guardian, and committing or
aborting the activation action (as it specified). The call action then decodes the resuits at the caller's
guardian. Once the results have been transmitted to the caller, the call action commits and execution
continues in the caller as indicated by the caller's code. (Note that the call action wili commit even if the
activation action aborts.)

®This is only strictly true for the buift-in types. A user-defined type might not preserve intemal sharing structure.
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8.3.1. Semantics of Handler Calils
in this section we describe the semantics of a handier call in detaill. A handler call causes activity at
both the calling guardian and at the called guardian. At the caliing guardian, the sequence of activities in

performing a handier call is as follows:
1. The primary is evaluated.

2. The argument expressions are evaluated from left to right.

3. A subaction, which we will refer to as the ca¥ action, is created for the remote call.
subsequent activity on behalf of the call will be performed by the call action or one
descendants. For X to be poesibie 10 create the call aclion, the caller must already
running as an action. Remote calis by non-actions are programming errors and cause the
calling guardian to crash.

4. A call message is constructed. As part of constructing this message, éncode operations

action will be aborted.

5. The call message is sent to the guardian of the calied handier, and the call action waits for
the completion of the cail.

6. If the call message arrives at the node of the target guardian, and the target guardian does
not exist, then the call action is aborted with the fadure exception having the string
"guardian does not exist" as iks exception result. '

7. if the systemn determines that it cannot communicate with the called guardian, it aborts the
call action. The call action may be retried seversl times (beginning at step 3) in attenypts to
communicate. ¥ repsated communication falres are ennouniered, the system aborts the
call action and causes the call to terminate with the unavaliable exception. The system wilt
cause this kind of termination only when R is extremely unilkely that retrying the call
immediately will succeed.

8. Ordinarily, a call compietes when a reply message containing the results is received. When
the reply message arrives at the calier, & is decoded using the decode operation for each
result object. if any decode terminates with a faviure exception, the call action is aborted,
and the call terminates with the same exception. Otherwies, the call action commits.

9. The call will terminate normally ¥ the result message indicates that the handier activation
returned (instead of signalled); otherwise it terminates with whatever exception was
signalled.

At the called guardian, the following activities take place.

1. A subaction of the call action is created at the target guardian 0 run the call. We will refer
to this subaction as the activation action. All activity at the target guardian occurs on behalf
of the activation action or one of its descendants.

2Thecallmssaoeisdsoonpoudmnsconstmm As part of this process

decode operations are performed on each argument. ¥ any decode terminates with a

falluroexcepﬁon then the activation action is aborted, and the call terminates with the same
exception.

3. The called handier is called within the activation action. This call is ike a reguiar procedure
call. The objects obtained from deooding the message are the actual arguments, and they
are bound to the formais via implicit assignments.

4.HmehandbrtennmaesbyexommhganwmmwormlbondWMM(m
Section 11.1), then all committed descendents of the activation action are aborted. Then
the reply message is constructed by encoding the resul objects, the activation action is
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aborted, and the reply message is sent to the caller. Otherwise, when the handier
teminatos,hreplymessagelsoomodbyem result objacts, the activation

action commits, and the reply message is sent.to the caller. If one of the calls of encode
tenﬁnatoswﬁham&nuooptbn,tfnntmmmmnhabonod,mdﬂmm
terminates with the same exception.

When the Argus sysiem terminates a call with the unavadable exception, it is possible that the
activation action and/or some of its descendants are actually running. This could happen, for exampie, if
the network partitions. These running processes are called "orphans”. The Argus system makes sure
that orphans will be aborted betore they can view inconsistent data (see Section 2.5).

8.4. Creator Calls

Creators are called to cause new guardians 1o come into existence. As part of the call, the node at
which the newly created guardian will be located may be specified. i the node is not specified, then the
new guardian is created at the same node as the caller of the creator. The form of a creator call is:

primary ( [ expression, ... ] ) [ @ primary ]
The primary following the at-sign (@) must be of type node.

A creator call causes two activities to take place. First, a new guardian is created at the indicated
node. Second, the creator is called as a handier at the newly created guardian. This handler call has
basically the same semantics as the regular handier call described above.

The Argus system may also cause a creator call to abort with the fadure or unavailable exceptions.
The reasons for such terminations are the same as those for handier calis, and the meanings are the
same: the failure exception means that the call should not be retried, while the unavallable exception
means that the call should not be retried immediately.

8.4.1. Semantics of Creator Calls

The activities carried out in executing a creator call are as follows.
1. The (first) primary is evaluated.

2. The argument expressions are evaluated from left to right.

3. The optional primary following the at-sign is evaluated to obtain a node object. If this
primary is missing, the node at which the call is taking place is used.

4. A subaction, which we will refer to as the call action, is created. All subsequent activity
takes place within this subaction. As was the case for handier calis, creators can be called
only from within actions. Acreatorcallbyamn-aaionisapmgwmw\nmmdcms
the calling guardian o crash.

5. A new guardian is created at the indicated node. The creator obtained in step 1 will indicate
the type of this guardian. The selection of a particular load image for this type will occur as
discussed in Section 3.3.

6. As was the case for handler calis, if the system cannot communicate with the indicated
node, the creator call will terminate with the unavaiiable exception. If the system is unable
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to determine what implementation to load, or if there is no implementation of the type that
can run on the indicated node, or K the manager of the node refuses to allow the new
guardian to be created, the creator call will terminate with the falfure exception. In either
case the call action will be aborted.

7. A remote call is now performed to the creator. This call has the same semantics as
described for handier calis above in steps 4 tiwough 9 of the activities at the calling node
and aiso steps 1 through 4 of activities at the called node. However, i either the call action
or the activation action aborts, the newly created guardian will be destroyed.

For example, suppose we execute the creator call
x: G == GScreate(3) @ n
where G is a guardian type, n denotes an object of type node, and creaie has header
create = creator (n: int) returns (G) signais (not_possible(string))
The system will select an implementation of G that is sultable for use a node n, and will then create a
guardian at node n running that implementation. Next cream (3) is performed as a handier call at that
new guardian. If create retums, then the assignment to x will occur, causing x to refer to the new
guardian that create retumed; now we can call the handiers provided by G. The exceptions that can be
signalied by this call are not_possible, failure, and unavaiiable. An example of a call that handies all
these exceptions Is:
x: G == GS$create (3) @ n
except when not_possible (s: string): ...
when failure (s: string): ...

when unavailabie (s: string): ...
end

Creators are described in more detail in Section 13.
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9. Expressions

An expression evaluates 10 an object in the Argus universe. This object is said to be the result or value
of the expression. Expressions are used o name the object to which they evaluate. The simplest forms
of expressions are literals, variables, parameters, equated identiflers, equate module references,
procedure, iterator, and creator names, and self. These forms directly name their result object. More
complex expressions are built up out of nested procedure calis. The result of such an expression is the
value returned by the outermost call.

9.1. Literals

Integer, real, character, string, boolean and null kterals are expressions. The type of a literal
expression is the type of the object named by the lteral. For example, true is of type bool, “abc” is of
type string, etc. (see the end of Appendix | for details).

9.2. Variables

Variables are identifiers that denote objects of a given type. The type of a variable is the type given in
the declaration of that variable. An attempt to use an uninitialized variable as an expression is a
programming error and causes the guardian to crash.

9.3. Parameters

Parameters are identifiers that denote constants supplied when a parameterized module Is instantiated
(see Section 12.5). The type of a parameter is the type given in the declaration of that parameter. Type
parameters cannot be used as expressions.

9.4. Equated Identifiers
Equated idertiflers denote constants. The type of an equated identifier is the type of the constant

which it denotes. Identifiers equated to types, type__sets, and equate modules cannot be used as
expressions.

9.5. Equate Module References
Equate modules provide a named set of equates (see Section 12.4). To use a hame defined in an
equate module as an expression, one writes:
reference $ name
where
reference .=
| idn [ actuai_parm, ... ]
| reterence $ name
The type of a reference is the type of the constant which R denotes. identifiers equated o types,
type_sets, and equate modules cannot be used as expressions.
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The evaiuation of a bind expression proceeds by first evaluating the entity and then evaluating, from
left to right, any bind__arngs that are expressions. The entily may evaluate o a procedure, iterator,
handier, or creator object. Suppose that the entily is a procedure or iterator object. (Creator and handier
bindings are discussed below.) Then the resukt is formed by binding the argument objects to the
corresponding formals of the entity to form a closure; note that the procedure or terator is not called when
the bind expression is evaluated. When the closure is called, the object denoted by the entity is passed
all the bound objects and any actual arguments supplied in the call, all in the corresponding argument
positions.

For example, suppose we have:
p =proc(x: T, y: Int, w: S) returns(R) signais(too_big)
Then
q=bindp(*,3+4,")
produces a procedure whosge type is proctype(7, S) retums(F) signais(too_big) and assigns tto q. A
call of g(a, b) is then equivalent to the call p(a, 7, b).

Bound routines will be stored in stable storage if they are accessible from a stable variable (see
Section 13.1). In this case the entity and the bind_args shouki denote atomic objacts.

There is only one instance of a routine’s own data for each parameterization; thus all the bindings of a
routine share its own data, ¥ any (see Section 12.7). Each binding is generally a new object; thus the
relevant equal operation may treat syntactically identical bindings as distinct.

The semantics of binding a creator or handler are similar to binding a procedure or iterator; the
differences arise from argument transmission. Encoding of bound argument objects happens when the
bind expression is evaluated and sharing is only preserved among objects bound at the same time (see
Section 14). In more detall, the evaluation of a bind expression proceeds by first evaluating the entity
and then evaluating, from left to right, any bind_args that are expressions. Then the argument objects
are encoded, from left to right, preserving sharing among these objects. The result is formed by binding
the encoded argument objects to the corresponding formals of the entity to form a closure. Note that the
entity is not calied when the bind expression is evaluated.

When the closure is called, first any other arguments are evaluated and encoded (not sharing with the
bound objects) and then the call to the entity is initiated. Decoding of the arguments at the called
guardian is done in reverse of the order of encoding; that is, other arguments are decoded before bound
arguments and the most recently bound arguments are decoded first. Sharing is preserved on decoding
only among groups of bound arguments and among the other arguments, not between groups.
Thereatfter the call proceeds as normaily.

For example, if we execute

h1 = bind h(x, y, *)
h1(z)
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then sharing of objects between x and y will be preserved by trangmisgion, but sharing will not be
preserved between x and zor y and z.

Closures can be used in equates, provided all the expressions are constants (see Section 7.2.2).
However, a handler cannot appear in an equate, since it is not a constant.

9.9. Procedure Calls
Procedure calls have the form:

primary ( [ expression , ... ])
The primary is evaluated to obtain a procedure object, and then the expressions are evaluated left to right
to obtain the argument objects. The procedure is called with these arguments, and the object returned is
the result of the entire expression. For more discussion see Section 8.

Any procedure call p(E,, ... E,) must satisfy two constraints to be used as an expression: the type of p
must be of the form:
proctype (T, ..., T,,) returns (R) signals (...)
and the type of each expression E; must be included in the corresponding type 7,. The type of the entire
call expression is given by R.

9.10. Handler Calis
Handier caiis have the form:

primary ( [ expression, ... ] )
The primary is evaluated 10 obtain a handier object, and then the expressions are evaluated left to right to
obtain the argument objects. The handier is then called with these arguments as discussed in Section
8.3. The following expressions are exampies of handier calls:

h{x)
info_guard.who_is_user("john", "doe")
dow_jones.info("XYZ Corporation”)

Any handier call h(E,, ... E,) must satisty the following constraints when used as an expression. The
type of h must be of the form:
handiertype (T,, ... T,) returns (R) signais (...)
and the type of each expression £ must be included in the corresponding type 7;. The type of the entire
call expression is given by R.

As explained in Section 8.3, the execution of a handler call starts by creating a subaction. Therefore
an attempt to call a handier from a process that is not running an action is a programming error and will

cause the calling guardian to crash. This crash occurs after afl of the component expressions have been
evaluated.
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9.11. Creator Calls
Creator calls have the form:

primary ( [ expression, ... ]) [ @ primary ]
The first primary is evaluated to obtain a creator object, the argument expressions are evaluated left to
right to obtain the argument objects, and then the primary following the at-sign (@), i present, is
evaluated to obtain a node object. If the primary following the at-sign is omitted, then node$here() is
used. The guardian is then created at that node, and the creator called, as discussed in Section 8.4. The
following are examples of creator calls:

mailer§create() @ n
spoolerfdevtypel$create()

A creator call ¢(E,,....E,)@n must satisty the following constraints when used as an expression. The
type of ¢ must be of the form:
creatortype (T,,...,T,) retums (R) signais (...)
where each T; includes the type of the corresponding expression £. N must be of type node. The type
of the entire call expression is given by R.

As with handier calis, an attempt to call a creator from a process that is not running an action will cause
the calling guardian to crash after all component expressions have been evaluated.

9.12. Selection Operations

Selection operations provide access to the individual elements or components of a collection. Simple
notations are provided for calling the feich operations of array-like types, and the get operations of record-
like types. In addition, these "syntactic sugarings” for selection operations may be used for user-defined
types with the appropriate properties.

9.12.1. Element Selection
An element selection expression has the form:
primary [ expression ]
This form Is just syntactic sugar for a call of a feich operation, and is computationally equivalent to:
T$tetch{primary, expression)
where T is the type of the primary. T must provide a procedure operation named feich, which takes two
arguments whose types include the types of primary and expression, and which retumns a single result.

9.12.2. Component Selection
The component selection expression has the form:
primary . nhame
This form is just syntactic sugar for a call of a get_name operation, and is computationally equivalent to:
T$get_name(primary)
where T is the type of primary. T must provide a procedure operation named gef_name, that takes one
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argument and returns a single resuit. Of course, the type of the procedure’s argument must include the
type of the primary.

9.13. Constructors
Constructors are expressions that enable users to create and initiaize sequences, arrays, atomic
arrays, structures, records, and atomic records. There are no constructors for user-defined types.

9.13.1. Sequence Constructors
A sequence constructor has the form:

type_spec $ [ [ expression , ... ] ]
The type_spec must name a sequence type: sequence{7]. This is the type of the constructed sequence.
The expressions are eévaluated to obtain the elements of the sequence. They correspond (left to right) to
the indexes 1, 2, 3, etc. For a sequence of type sequence|7], the type of each element expression in the
constructor must be included in T.

A sequence constructor is computationally equivalent t0 a sequence new operation, followed by a
number of sequence addh operations.

9.13.2. Array and Atomic Array Constructors
An array or atomic array constructor has the form:

type_spec $ [ [ expression : ] [ expression , ...] 1

The lype_spec must name an array or atomic array type: array[ 7] or atomic_array{7]. This is the type of
the constructed array. The optional expression preceding the colon (:) must evaluate 1o an integer, and
becomes the low bound of the constructed array or atomic array. |f this expression is omitted, the low
bound is 1. The optional list of expressions is evaluated 10 obtain the elements of the array. These
expressions cofrrespond (left to right) to the indexes low_bound, low_bound+1, low_bound+2, etc. For an
array or atomic array of type array{7] or atomic_array{7], the type of each element expression in the
constructor must be included in T. A constructor of the form array{7]${] has a low bound of 1 and no
elements.

An array constructor is computationally equivalent to a create operation, followed by a number of addh
Operations.

9.13.3. Structure, Record, and Atomic Record Constructors
A structure, record, or atomic record constructor has the form:
type_spec $ { field , u.. }
where
field .i= name , ... . expression
Whenever a field has more than one name, it is equivalent o a sequence of fiekis, one for each name.
Thus, if A =record] a: Int, b: Int, c: Int ], then the following two constructors are equivalent:
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R${a, b:p(), ¢:9}
R${a:p(), b:p{). c:9}

In the following we discuss only record constructors; structure and atomic record constructors are
similar. In a record constructor, the type specification must name a record type: record(S,.7,, ..., S,'T,].
This is the type of the constructed record. The component names in the field list must be exactly the
names S, ..., S,, although these names may appear in any order. The expressions are evakuated left to
right, and there is one evaluation per component name even ¥ several component names are grouped
with the same expression. The type of the expression for component S; must be included in 7, The
results of these evaluations form the components of a newly constructed record. This record is the value
of the entire constructor expression.

9.14. Prefix and Infix Operators

Argus allows prefix and infix notation to be used as a shorthand for the operations listed in Table 9-1.
The table shows the shorthand form and the computationally equivalent expanded form for each
operation. For each operation, the type T is the type of the first operand.

Table 9-1: Prefix and Infix Operators: shorthands and expansions

Shorthand form Expansion
expr, ** expr, T$power(expr,, expr,)
expr, // expr, TS$mod(expr,, 6xpr,)
expr, / expr, T$div(expr,, expr,)
expry * expr, TS$mul(expr,, expr,)
expr, || expr, TSooncat(expr,, expry)
expr, + expr, TSadd(expr,, expr,)
expry — expr, TSaub(expr,, 6xpr,)
expry < expr, T$k(expr,, oxpr,)
expr, <= 8xpr, T$le{expr,, expr,)
expry = éxpr, T$equak{expr,, &Xpr,)
6Xpry >= 8Xpry TSge{expr,, expr,)
expr, > expr, T$gt{expr,, expr,)
expr; ~< expr, ~ (expr, < 6xpry)
e;g, ~<--e expr, ~ Eexpr1 <= oxpr)z)
expr, ~= expf, ~ \OXpry = 8Xpr,
eXpry ~>w= eXpr, ~ (expry >= 8Xpr,)
expr, ~> expr, ~ (expr, > expr,)
expr, & expr, TSand(expr,, expr,)
expr, | expr, TSor{expry, expry)

- expr m.‘( :

~ expr TSM(OX:OM

Operator notation is used most heavily for the built-in types, but may be used for user-defined types as
well. When these operations are provided for user-defined types, they should be free of side-effects, and
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they should mean roughly the same thing as they do for the builk-in types. For example, the comparison
operations should only be used for types that have a natural partial or total order. Usually, the
comparison operations (1, le, equal, ge, gi) will be of type

proctype (T, T) returns (bool)
the other binary operations (e.g., add, sub) will be of type

proctype (T, T) returns (T) signais (...)
and the unary operations will be of type

proctype (T) retumns (T) signals (...

9.15. Cand and Cor
Two additional binary operators are provided. These are the conditional and operator, cand, and the

conditional or operator, cor. The result of evaluating:

expression, cand expression,
is the boolean and of expression, and expression,. However, i expression, is faise, expression, is
never evaluated. The result of evaluating:

expression, cor expression,
is the boolean or of expression, and expression,, but expression, is not evaluated unless expression, is
faise. For both cand and cor, expression, and expression, must have type bool.

Because of the conditional expression evaluation involved, uses of cand and cor are not equivalent to
any procedure call.

9.16. Precedence

When an expression is not fully parenthesized, the proper nesting of subexpressions might be
ambiguous. The following precedence rules are used to resoive such ambiguity. The precedence of
each infix operator is given in the table below. Higher precedence operations are performed first. Prefix
operators always have precedence over infix operators.

Table 9-2: Precedence for infix Operators

Precedence Operators

5 o

4 L /]

3 o=

2 <= = >® > ~< ~<m ~= ~>= ~>
1 & cand

o
g
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The order of evaluation for operators of the same precedence is left to right, except for **, which is right
to left.

9.17. Up and Down
There are no impilicit type conversions in Argus. Two forms of expression exist for explicit conversions.
These are:

up ( expression )
down ( expression )

Up and down may be used only within the body of a cluster operation (see Section 12.3). Up changes
the type of the expression from the representation type of the cluster to the abstract type. Down converts
the type of the expression from the abstract type to the representation type.
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10.2. Update Statements

Two special statements are provided for updating components of record and array-like objects. In
addition they may be used with user-defined types with the appropriate properties. These statements
resembile assignments symactically, but are actually call statements.

10.2.1. Element Update
The element update statement has the form;
primary [ expression, ] := expression,
This form is merely syntactic sugar for a call of a store operation; it is equivalent to the call statement:
T$store(primary, expression,, expression,)
where T is the type of the primary. T must provide a procedure named sfore that takes three arguments
whose types include those of primary, expression,, and expression,, respectively.

10.2.2. Component Update
The component update statement has the form:

primary .« name = expression
This form is syntactic sugar for a call of a set_ operation whose name is formed by attaching set_ to the
name given. For exampie, if the name is 7, then the statement above is equivaient to the call statement:

T$set_f(primary, expression)
where T is the type of the primary. T must provide a procedure operation named set_f, where f is the
name given in the component update statement. This procedure must take two arguments whose types
include the types of primary and expression, respectively.

10.3. Block Statement
The block statement permits a sequence of statements to be grouped together into a single statement.
its form is:
begin body end
Since the syntax already permits bodies ingide control statements, the main use of the block statement is
to group statements together for use with the except statement (see Section 11).

10.4. Fork Statement
A fork statement creates an autonomous process. The fork statement has the form:
fork primary ( [ expression, ... ])
where the primary is a procedure object whose type has no results or signals (see Section 12.1). The
type of each actual expression must be included in the type of the corresponding formal.

Execution of the fork statement starts by evaluating the primary and actual argument expressions from
left to right. Any exceptions raised by the evaluation of the primary or the expressions are raised by the
fork statement. If no exceptions are raised, then a new process is created and execution resumes after
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the fork statement in the old process. The new process starts by calling the given procedure with the
argument objects. This new process terminates i and when the procedure call does. However, if the
guardian crashes the process goes away (like any other process).

Note that the new process does not run in an action, although the procedure called can start a
topaction if desired. There is no mechanism for waiting for the termination of the new process. The
procecure calied in a fork statement cannot retum any results or signal any exceptions.

10.5. Enter Statement
Sequential actions are created by means of the enter statement, which has two forms:

enter topaction body end
and

enter action body end
The topaction qualifier causes the body to execute as a new top-level action. The action qualifier
causes the body to execute as a subaction of the current action; an attempt to execute an enter action
statement in a process that is not executing an action is a programming ervor and causes the guardian to
crash. When the body terminates, k does so either by commitiing or aborting. Normal compietion of the
body results in the action committing. Statements that transfer control out of the enter statment (exit,
leave, break, continue, return, signal, and resignal) normally commit the action unless are prefixed
with abort (e.g., abort exit). Two-phase commit of a topaction may fall, in which case the enter
topaction statement raises an unavailable exception.

10.6. Coenter Statement
Concurrent actions and processes are created by means of the coenter statement:
coenter coarm { coarm } end
where

coarm ::= armtag [ foreach dec! , ... In call ]
body

armtag «.= action
| topaction
| process

Execution of the coenter starts by creating all of the coarm processes, sequentially, in textual order. A
foreach clause indicates that multiple instances of the coarm will be created. The call in a foreach
clause must be an ierator call. At each yield of the Rerator, a new coarm process is created and the
objects yiekied are assigned to newly deciared variables in that process. (This implick assignment must
be legal, see Section 6.1.) Each coarm process has separate, local instances of the variables declared in
the foreach clause.
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The process executing the coenter is suspended until after the coemter is finished. Once all coarm
processes are created, they are started simultaneously as concurrent siblings. Each coarm instance runs
in a separate process, and each coarm with an armiag of topaction or action executes within a new
top-level action or subaction, respectively. An attempt {0 execute a cosmter with a process coarm when
in an action, or {0 execute a coemter with an action coarm when not in an action is an emor and will
cause the guardian to crash (see Table 10-1).

Table 10-1: Legality of coenter statements.

‘ process executing the coenter is:
armtag not in an action running an action
action not legal legsi
topaction legal legal
process legal not legal

A simple example making use of foreach is:

coenter actlon foreach i: Int In Int$from_to (1, 5)
P (i)
end

which creates five processes, each with a local variable J, having the value 1 in the first process, 2 in the
second process, and so on. Each process runs in a newly created subaction. This statement is legal
only if the process executing it is running an action.

A coarm may terminate without terminating the entire coenter (and sibling coarms) either by normal
completion of its body, or by executing a leave statement (see Section 10.7). The commit of a coarm
declared as a topaction may terminate in an unavailable exception if two-phase commit fails. Such an
exception can only be handled outside the cosnter statement, and thus will force termination of the entire
coenter (as explained below). '

A coarm may also terminate by transferring control outside the coenter statement. When such a
transfer of control occurs, the following steps take place.
1. Any containing statements are terminated divigibly, to the outermost level of the coarm, at
which point the coarm becomes the controlling coarm.

2. Once there is a controlling coarm, every other active coarm will be terminated (and abort if
declared as an action) as soon as it leaves all selze statements; the controlling coarm is
suspended until all other coarms terminate.

3. The controlling coarm then commits or aborts if declared as an action; i declared as a
topaction and the two-phase commit fails, an unavaiable exception is raised by the coenter
statement.

4. Finally, the entire coenter terminates, and control fiow continues outside the coenter
statement.

Divisible termination implies, for instance, that a nested topaction may commit while its parent action
aborts.
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A simple example of early termination is reading from a replicated database, where any copy can
supply the necessary information:

coenter action foreach db: database in all_repiicas (...)
return( database$read (db))
end

When one of these coarms completes first, it tries to commit itse¥ and abort the others. The aborts take
place immediately (since there are no selze statements); it is not necessary for the handler calls to finish.
It is possible that some descendants of an aborted coarm may be running at remote sites when the coarm
aborts; the Argus system ensures that such orphans will be aborted before they can make their presence
known or detect that they are in fact orphans (see Section 2.5).

10.7. Leave Statement
The leave statement has the form:
[ abort ] leave
Executing a leave statement terminates the innermost enter statement or coenter coarm in which it
appears. If the process terminated is an action, then it commits uniess the abort qualifier is present, in
which case the action aborts. The abortt qualifier can only be used textually within an enter statement or
within an action or topaction coarm of a coenter statement.

Note that uniike the other control flow statements, leave does not affect concurrent siblings in a
coenter (see Section 10.6).

10.8. Return Statement
The form of the retum statement is:

[ abort ] retumn [ ( expression , ... ) ]
The return statemnent terminates execution of the containing routine. If the return statement occurs in an
fterator no results can be retumed. If the return statement is in & procedure, handier, or creator the type
of each expression must be included in the corresponding retum type of the routine. The expressions (if
any) are evaluated from left fo right, and the objects obtained become the results of the routine.

if no abort qualifier is present, then all containing actions (¥ any) terminated by this statement are
committed. If the abort qualifier is present, then all terminated actions are aborted. Note that unilike the
leave statement, return will abort concurrent silings if executed within a coarm of a coenter statement
(see Section 10.6). The abort qualifier can only be used textually within an enter statement, an action or
topaction coarm of a coenter statement, or the body of a handier or creator.

Within a handler or creator, the result objects are encoded just before the activation action terminates,
but after all control flow and nested action termination. If encoding of any result object terminates in a
failure exception, then the activation action aborts and the handler or creator terminates with the same
exception.
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10.9. Yield Statement
The form of a yleld statement is:

yleld [ ( expression , ... ) ]
The yleld statement may occur only in the body of an Rerator. The effect of a yleld statement is to
suspend execution of the iterator invocation, and retum control to the calling for statement or joreach
clause. The values obtained by evaluating the expressions (left 1o right) are passed back to the caller.
The type of each expression must be included in the comesponding yield type of the iterator. Upon
resumption, execution of the terator continues at the statement following the yleld statement.

A ylekd statement cannot appear textually inside an enter, coenter, or selze statement.

10.10. Conditional Statement
The form of the conditional statement is:
if expression then body

{ elseit expression then body }

[ eise body ]

end
The expressions must be of type bool. They are evaluated successively until one is found to be true.
The body corresponding to the first true expression is executed, and the execution of the i statement
then terminates. If there is an eise clause and ¥ none of the expressions is true, then the body in the
else clause is executed.

10.11. While Statement
The while statement has the form:
while expression do body end
its effect is to repeatedly execute the body as iong as the expression remains true. The expression must
be of type bool. If the value of the expression is true, the body is executed, and then the entire while

statement is executed again. When the expression evaluates to falee, execution of the while statement
torminates.

10.12. For Statement

An Rerator (see Section 12.2) can be called by a for statement. The iterator produces a sequence of
items (where an item is a group of zero or more objects) one item at a time; the body of the for statement
is executed for each item in the sequence.

The for statemem has the form:

for [ decl, ... ] in cait do body end
or

for [ idn, ... ] in call do body end
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The call must be an iterator call. The second form (with an idn list) uses distinct, previously declared
variables to serve as the loop variables, while the first form (with a dec/ list) form introduces new
variables, local to the for staiement, for this purpose. In either case, the type of each variable must
include the corresponding yield type of the called Rterator (see Section 12.2) and the number of variables
must also match the yield type.

Execution of the for statement begins by calling the iterator, which either yields an kem or terminates.
If it yielkds an item (by executing a yleld statement), its execution is temporarily suspended, the objects in
the item are assigned to the loop variables, and the body of the for statement is executed. The next
cycie of the loop is begun by resuming execution of the Rerafor after the yleld statememt which
suspended it. Whenever the iterator terminates, the entire for statement terminates.

10.13. Break and Continue Statements
The break statement has the form:
[ abort ] bresk
lts effect is to terminate execution of the smallest for or while loop statement in which it appears.
Execution continues with the statement following that loop.

The continue statement has the form:
[ abort ] continue
its effect is to start the next cycle (if any) of the smallest for or while loop statement in which it appears.

Terminating a cycle of a loop may also terminate one or more contalning actions. ¥ no abort qualifier
Is present, then all these terminated actions (if any) are committed. if tho abort Qualifier is present, then
all of the terminated actions are aborted. Uniike lesve, break and continue will abort concurrent sibling
actions when control flow leaves a containing coenter (see Section 10.6).

The abort qualifier can only be used textuaily within an enter statement or an action or topaction
coarm of a coenter statement.

10.14. Tagcase Statement

The tagcase statement can be used to decompose oneof and variant objects; atomic_variant objects
can be decomposed with the tagtest or tagwalt statements. The decomposition is indivisible for variant
objects; thus, use of the tagcase statement for variants is not equivalent fo using a conditional statement
in combination with is_ and value_ operations (see Section 11.15). '

The form of the tagcase statement is:
tagcase expression
tag_arm { tag_arm }
[ others : body }
end
where
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tag_arm ::= tag name , ... [ ( idn: type_spec ) ] : body
The expression must evaluate 0 a oneof or varlant object. The tag of this object is then matched
against the names on the tag_arms. When a match is found, if a declaration (idn: type_spec) exists, the
value component of the object is assigned to the new local variable idn. The matching body is then
executed; idn is defined only in that body. If no match is found, the body in the others arm is executed.

In a syntactically correct tagcase statement, the following three constraints are satisfied.
1. The type of the expression must be some oneof or variant type, 7.

2. The tags named in the fag_arms must be a subset of the tags of 7, and no tag may occur
more than once.

3. If all tags of T are present, there is no others arm; otherwise an others arm must be
present.

On any tag__arm containing a declaration (idn: type__spec), type__spec must include the type(s) of 7
corresponding to the tag or tags named in that tag_am.

10.15. Tagtest and Tagwait Statements

The tagtest and tagweit statements are provided for decomposing atomic_variant objects, permitting
the selection of a body based on the tag of the object to be made indivisibly with the testing or acquisition
of specified locks.

10.15.1. Tagtest Statement
The form of the tagtest statement is:
tagtest expression
atag_arm { atag_arm }
[ others : body ]
end
where ’
atag_arm ::= tag_kind name , ... [ ( idn: type_spec ) ] : body
tag_kind .i=
| wiag
The expression must evaluate to an atomic_ variant object. if a read lock could be obtained on the
atomic_variant object by the current action, then the tag of the object is matched against the names on
the atag_arms; otherwise the others arm, if present, is executed. if a matching name is found, then the
tag_kind is considered.
o If the tag_kind is tag, a read lock is obtained on the object and the match is complete.

o if the tag_kind is wtag and the current action can obtain a write lock on the object, then a
write lock is obtained and the match is complete.

When a complete match is found, ¥ a declaration (idn: type__spec) exists, the value component of the
object is assigned to the new local variable idn. The matching body is then executed; idn is defined only
in that body. The entire matching process, inckiding testing and accuisition of locks, is indivisible.
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If a complete maich is not found, or the object was not readable by the action, then the others arm (if
any) is executed; if there is no others arm, the tagteet statement terminates. If no complete match is
found, then no locks are acquired.

The tagtest statement will only obtain a lock if it is possible to do so without "walting”. For example,
suppose that the internal state of the atomic_ variant indicates that some previous action acquired a
conflicting lock. This action may have since aborted, or may have committed up to an ancestor of the
action executing the tagtest, but determining such facts may require system-level communication to other
guardians. In this case the tagtest statement may give misleading information, because it may not
indicate a match. Apparent anomalies in testing locks may occur even K the action executing the tagtest
“knows™ that the lock can be acquired, so that the use of tagtest to avoid deadlocks or long delays may
result in excessive aborts.

10.15.2. Tagwait Statement
The form of the tagwalt statement is:
tagwalt expression

atag_arm { atag_arm }

end
Execution of the tagwalt statement proceeds as for the tagtest statement, but i no complete match is
found, or if the object is not readable by the current action, then the entire matching process is repeated
(after a system-controlied delay), until a complete match is found. Although there is no others arm in a
tagwalt statement, all tag names do not have to be listed.

10.15.3. Common Constraints
Tagteet and tagwait statements may be executed only within an action. An attempt to execute a

tagtest or tagwak statement in a process that is not executing an action is an error and will cause the
guardian to crash after evaluating the expression.

In a syntactically correct tagtest or tagwalt statement, the following three constraints are satisfied.
1. The type of the expression must be some atomic_variant type, 7.

2. The tags named in the afag_arms must be a subset of the tags of T, and no tag may occur
more than once.

3. Finally, on any atag_arm comaining a declaration (idn: type_spec), type_spec must include
the type(s) specified as corresponding in T to the tag or tags named in the atag_arm.

A simple example of a tagtest statement is garbage collecting the elements of an aray that are in the
dequeued state:
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10.18. Terminate Statement
The terminate statement may occur only within a guardian definition (see Sect 13). The form of a
terminate statement is:
terminate
When executed within an action, its effect is to cause the eventual destruction of the guardian after the
enclosing action commits to the top. i a process attempis 10 execute terminate while not running an
action, a topaction is created to execute the terminate and immediately commit.

Let A be the action that is executing the términate. The effect of this statement s the following:
1. Action A must walt until the action that created the gussdian is commitied relative 1o A. In
the case of a permanent guardian whose creation has commilied 1o the top there will be no
wait, but for a recently created guardian thers may be & delay.

2. it muRiple processes are attempting to execute terminale statements, at most one at at
time may proceed 10 the next step.

3. if A commits 10 the top, the guardian will be destroyed at some e after lopaction commit.
it some ancestor of A aborts, however, the guardian will bs unafiected. The guardian is
also unaffected during the time between A exsculing terminale and A commilting 1o the
top.

In order to avoid serialization problems, creation or destruction of a guardian must be synchronized
with use of that guardian via atomic objects auch as the catalog (see Section 3.4).
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11. Exception Handling and Exits

A routine is designed to perform a certain task. However, in some cases that task may be impossible
to perform. In such a case, instead of retuming normally (which woulkd imply successful performance of
the intended task), the routine should notify its caller by signalfing an exception, consisting of a descriptive
name and zero or more result objects.

The exception handling mechanism consists of two parts: signalling exceptions and handiing
exceptions. Signalling is the way a routine notifies its caller of an exceptional condition; handling is the
way the caller responds to such notification. A signalled exception aways goes to the immediate caller,
and the exception must be handied in that caller. When a routine signais an exception, the current
activation of that routine terminates and the corresponding call (in the caller) is sald to raise the exception.
When a call raises an exception, control immediately transfers to the closest applicable exception
handier. Exception handlers are attached to statements; when execution of the exception handler
completes, control passes to the statement following the one 1o which the exception handler is attached.
For brevity, exception handlers will be called "handiers" in this chapter; these shouid not be confused with
the remote call handiers of guardians (see Section 13).

11.1. Signal Statement
An exception is signalied with a signal statement, which has the form:
[ abort ] signat name [ ( expression , ...) ]
A signal statement may appear anywhere in the body of a routine. The execution of a signal statement
begins with evalustion of the expressions (i any), from left 1o right, 1o produce a list of exception results.
The activation of the routine is then terminated. Execution continues in the caller as describad in Section
11.2 below.

The exception name must be one of the exception names listed in the routine heading. I the
corresponding exception specification in the heading has the form:
name(Ty, s, Tp)
then there must be exactly n expressions in the signal statement, and the type of the /th expression must
be included in T;.

if no abort qualifier is present, then all containing actions (f any) terminated by this statement are
committed. If the abort qualifier is present, then all terminated actions are aborted. Uniike the leave
statement, signal will terminate (abort) concurrent sbiings i executed within a cosnter statement (see
Section 10.6). The abort qualifier can only be used texiually within an enter statement, an action or
topaction coarm of a coenter statement, or the body of a handier or creator.

Within a handler or creator, the result objects are encoded just before the activation action terminates,
but after termination of ail control flow and nested actions. If encoding of any result object terminates in a
failure exception, then the activation action aborts and the handier or creator terminates with the failure
exception.
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11.2. Except Statement

When a routine activation terminates by signaliing an exception, the called routine is said to raise that
exception. By attaching exception handiers to statements, the caller can specify the action to be taken
when an exception is raised by a call within a statement or by the siatement itself.

A statement with handiers attached is called an except statement, and has the form:
statement except { when_handier }

[ others_handier ]
end
where
when_handler ::= when name , ... [ (decl, ... ) ] : body
| when name , ... (*) : body

others_handler ::= others [ (idn : string ) ] : body
Let S be the statement to which the handlers are attached, and let X be the entire except statement.
Each when__handler specifies one or more exception names and a body. The body is executed if an
exception with one of those names is raised by a call in S. Each of the hames listed in the
when__handlers must be distinct. The optional others__handier is used to handle all exceptions not
explicitty named in the when_handiers. The statement S can be any form of statement, and can even be
another except statement. As an example, consider the following sxcept statement:

m.send_mall{user, my_message)
except when no_such_user: ... % body 1
when unavailable, failure (s: string): ... % body 2
when others (ename: string): ... % body 3
end

This statement handies exceptions arising from a remote call. If the call raises a no__such__user
exception, then "body 1" will be executed. If the call raises a failure or unavailable exception, then "body
2" will be executed. Any other exception will be handied by "body 3."

if, during the execution of S, some call in S raises an exception E, control transfers to the textually
closest handler for £ that is attached to a statement containing the call. When execution of the handler
completes, control passes to the statement following the one to which the handler is attached. Thus ¥ the
closest handler is attached to S, the statement following X is executed next. If execution of S completes
without raising an exception, the attached handiers are not executed.

An exception raised ingide a handier is treated the same as any other exception: control passes to the
closest handler for that exception. Note that an exception raised in some handier attached to S cannot be
handied by any handier attached to S; the exception can be handied within the handier, or it can be
handied by some handler attached to a statement containing X. For example, in the following except
statement:
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times3_plus1(a)
except when limits:
a=a+a
when overfiow: ... % body 2
end

any overfiow signal raised by the expression a + a will hot be handied in "body 2,” because this overflow
handler is not in an except statement attached to the assignment statement 2 '= 3 + a.

We now consider the forms of exception handlers in more detail. The form:
when name , ... [ (dedl, ...) ] : body
is used to handle exceptions with the given names when the exception results are of interest. The
optional declared variables, which are local to the handier, are assigned the exception results before the
body is executed. Every exception potentially handied by this form must have the same number of results

as there are declared variables, and the types of the variables must include the types of the results. The
form:

when name , ... (*) : body
handles all exceptions with the given names, regardiess of whether or not there are exception results; any
actual results are discarded. Using this form, exceptions with differing numbers and types of results can
be handied together.

The form:

others [ (idn : string ) ] : body
is optional, and must appear last in a handler list. This form handies any exception not handied by other
handlers in the list. if a variable is declared, it must be of type string. The variable, which is local to the
handler, is assigned a lower case string representing the actual exception name; any results are
discarded.

Note that number and type of exception results are ignored when matching exceptions to handlers;
only the names of exceptions are used. Thus the following is illegal, in that Int$div signais zero_divide
without any results (see Section 11.4), but the closest handier has a declared variable:

begin
y:int =0
x:int=3/y
except when zero_divide (z: Imt): return end
end
except when zero_divide: return end

A call need not be surrounded by except statements that handie ali potential exceptions. In many
cases the programmer can prove that a particular exception will not arise; for example, the call
Int$div(x, 7) will never signal zero_divide. However, if some cafl raises an exception for which there is no
handler, then the guardian crashes due to this error®.

%The implementation of the Argus should log unhandied excepions in some fashion, 10 aid fater debugging. During debugging,
an unhandied exception would be trapped by the debugger before the crash.
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11.3. Resignal Statement
A resignal statement is a syntactically abbreviated form of exception handling:
statement [ abort ] resignal name , ...
Each name listed must be distinct, and each must be one of the condlition hames listed in the routine
heading. The resignal statement acts like an except statement containing a handler for each condition
named, where each handler simply signals that exception with exactly the same results. Thus, i the
resignal clause names an exception with a specification in the routine heading of the form:
name(Ty, e, Tp)
then eftectively there is a handler of the form:
when name (x,: T, ..., X,: T,): [ abort ] signet name(x,, ..., x,)
which has an abort qualifier ¥ and only ¥ the resignel statement did. As for an expiicit handier of this
form, every exception potentially handied by this implick handier must have the same number of resuits
as declared in the exception specification, and the types of the results must be included in the types listed
in the exception specification.

If no abort qualifier is present, then all containing actions (if any) terminated by this statement are
committed. if the abort qualifier is present, then all terminated actions are aborted. Uniike the leave
statement, resignal will abort concurrent siblings ¥ executed within a cosnier statement (see Section
10.6). The abort qualifier can only be used textually within an enter siatement, an action or topaction
coarm of a cosnter statement, or the body of a handier or creator.

11.4. Exit Statement
An exit statement has the form:

[ abort ] exit name [ ( expression , ...) ]
An exit statement is similar 10 a sighal statement except that where the signal siatement signals an
exception to the calling routine, the exit statement raises the exception directly in the current routine.
Thus an exit causes a transfer of control within a routine but does not terminate the routine. An
exception raised by an exit statement must be handied explickly by a containing except statement with a
handier of the form:

when name , ... [ (dec!, ... ) ] : body
As usual, the types of the expressions in the exit statement must be included in the types of the variables
declared in the handier. The handler must be an explicit one, i.e., exits 10 the implick handiers of resignal
statements are illegal.

if no abort qualifier is present, then all containing actions (if any) terminated by the exit statement are
committed. |f the abort qualifier is presem, then all terminated actions are aborted. Unilke the leave
statement, exit will abort concument siblings when control flow leaves a containing cosnter statement
(see Section 10.6). The abort qualifier can only be used textually within an enter statement or an action
or topaction coarm of a coenter statement.
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The exit statement and the signal statement mesh nicely to form a uniform mechanism. The signal
statement can be viewed simply as terminating a routine activation; an exit is then performed at the point
of invocation in the caller. (Because this exit is implicit, it is not subject to the restrictions on exits listed
above.)

11.5. Exceptions and Actions

A new action is created by a handier call, creator call, enter statement, or action or topaction arm of a
coenter statement. In addition, the recover code of a guardian runs as an action. When control flows
out of an action, that action is committed unless action is taken to prevent its committing. To abort an
action, &t is necessary to qualify control flow statements such as exit, signal, resignal, and leave with the
keyword abort (see Section 10).

However, there is an additional complication. Not only will explicit termination of actions by exit,
signal, and resignal statements commit actions, but also impiicit termination by flow of control out of an
action body when an exception raised within that body is handied outside the action’s body. Thus, if an
exception which is raised by a call within an action is not to commit the action, then it is necessary to
catch the exception within the action. This is particularly important when dealing with topactions. A
common desire is to catch all "unexpected™ exceptions, but still have the topaction abort. In this case, the
catch-all exception handier must be placed inside the topaction. However, an unavaiable handier must
still be placed outside the topaction, since the two-phase commit may fail.

An action or topaction coarm of a coenter statement will not abort its concurrent siblings when i ends
in either normal compiletion of its body or by a leave statement. However, i control flows otherwise out of
the coenter statement from within one of the coarms, the entire coenter is terminated as described in
Section 10.6. Thus, a coenter statement shouid must be used carefully to ensure the proper behavior in
case of exceptions. There may be circumstances where a separate exception handler will have to be
used for each coarmm to ensure the proper behavior, even when the exception handling is identical for
each coarm.

11.6. Failure Exceptions

Argus responds to unhandied exceptions differently than CLU. In CLU, an unhandied exception in
some routine causes that routine to terminate with the faiure exception. In Argus, however, an
unhandied exception causes the guardian that is running the routine to crash. Our motivation for this
change is that an unhandled exception is typically a symptom of a programming error that cannot be
handled by the calling routine. Furthermore, crashing the guardian limits the damage that the
programming error can cause.

Procedures and iterators in Argus no longer have an implicit failure exception associated with them.
Instead, such a routine may list faifure explicitly in its signals clause and fallure may have any number
(and type) of exception results. Failure should be used to indicate an unexpected (and possibly
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catastrophic) fallure of a lower-level abstraction, for exampie, when there is a fallure in a type parameter’s
routines (for instance in similar or copy operations). Another example is when there is an unwanted side
effect, such as a bounds exception in arrayflj$e/oments caused by a mutation of the amay argument.
Various operations of the built-in types signal faifure under such circumetances.

For handiers and creators, fadure is used to indicate that a remole call has falled; thus the exception
failure(string) is implick in the type of every handier and crestor (see Section 13.5). When a remote call
terminates with the failure exception, this means that not only has this call falled, but that the call is
uniikely to succeed ¥ repeated.

DTSRRI Ll e
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12. Modules

Besides guardian modules, Argus has procedure, iterator, cluster, and equate modules.
module ::= { equate } guardian
| { equate } procedure
| { equate } kerator
| { equate } cluster
| { equate } equates
Guardians are discussed in Section 13, the rest are described below.

12.1. Procedures

A procedure performs an action on zero or more arguments, and when i terminates it returns zero or
more results. A procedure implements a procedural abstraction: a mapping from a set of argument
objects 1o a set of result objects, with possible modification of some of the argument objects. A procedure
may terminate in one of a number of conditions; one of these is the normal condition, while others are
exceptional conditions. Differing numbers and types of results may be retumed in the different conditions.

The form of a procedure is:
idn = proc [ parme ] args [ retums ] [ signais ] [ where ]
routing_body
end idn
where
args v=([dect,...])
returns =.= returns ( type_spec, ... )
signals «:= gignals ( exception , ... )
exception 2= name [ (type_spec , «..) ]
routine_body ti={equate }
{ own_var }
{ statement }

In this section we discuss non-parameterized procedures, in which the parms and where clauses are
missing. Parameterized modules are discussed in Section 12.5. Own variables are discussed in Section
12.7.

The heading of a procedure describes the way in which the procedure communicates with its caller.
The args clause specifies the number, order, and types of arguments required to call the procedure, while
the retums clause specifies the number, order, and types of results returned when the procedure
terminates normally (by executing a retum statement or reaching the end of its body). A missing retumns
clause indicates that no results are retumed.

The signals clause names the exceptional conditions in which the procedure can terminate, and
specifies the number, order, and types of result objects returned in each condition. AN names of
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exceptions in the signals clause must be distinct. The idn following the end of the procedure must be the
same as the idn naming the procedure.

A procedure is an object of some procedure type. For a non-parameterized procedure, this type is
derived from the procedure heading by removing the procedure name, rewriting the formal argument
declarations with one idn per decl, deleting the idns of all formal arguments, and finally, replacing proc by
proctype.

The call of a procedure causes the introduction of the formal variables, and the actual arguments are
assigned to these variables. Then the procedure body is executed. Execution terminates when a return
statement or a sighal siatement is executed, or when the textual end of the body is reached. If a
procedure that should return results reaches the textual end of the body, the guardian crashes due to this
error. At termination the result objects, if any, are passed back to the caller of the procedure.

12.2. lterators

An Rterator computes a sequence of iterns, one ilem at a time, where an item is a group of zero or more
objects. In the generation of such a sequence, the compuiation of each item of the sequence is usually
controlied by information about what previous tems have been produced. Such information and the way
it controls the production of tems is local to the Herator. The user of the Rerator is not concermned with
how the items are produced, but simply uses them (through a for staiement) as they are produced. Thus
the ierator abstracts from the detalis of how the production of the items is controlied; for this reason, we
consider an Rerator to implement a control abstraction. Herators are particularly useful as operations of
data abstractions that are collections of objecis (e.g., sets), since they may produce the objects in a
coliection without revealing how the collection is represented.

An iterator has the form:

idn = iter [ parms ] args [ yields ] [ signais ] [ where ]
routine_body
end idn
where

yields .= ylelds ( type_spec , ...)
in this section we discuss non-parameterized iterators, in which the parmns and where clauses are

missing. Parameterized modules are discussed in Section 12.5. Own variables are discussed in Section
12.7.

The form of an iterator is similar to the form of a procedure. There are only two differences:

1. An iterator has a yleids clause in its heading in place of the retums clause of a procedure.
The yieids clause specifies the number, order, and types of objecls yiekied each time the
tterator produces the next kem in the sequence. If zero objects are yiekied, then the yields
clause is omitted. The idn foliowing the end of the iterator must be the same as the idn
naming the ierator.

2. Within the iterator body, the ylekd statement is used to present the calier with the next item
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in the sequence. An Herator terminates in the same manner as a procedure, but it may not
return any results.

An iterator is an object of some iterator type. For a non-parameterized Rerator, this type is derived from
the iterator heading by removing the Herator name, rewriting the formal argument declarations with one
idn per decl, deleting the idns of all formal arguments, and finally, replacing er by Rertype.

An iterator can be called only by a for statement or by a foreach clause in a cosmer statement.

12.3. Clusters

A cluster is used to implement a new data type, distinct from any other built-in or user-defined data
type. A data type (or data abstraction) congists of a set of objects and a set of primitive operations. The
primitive operations provide the most basic ways of manipulating the objects; ultimately every
computation that can be performed on the objects must be expressed in terms of the primitive operations.
Thus the primitive operations define the lowest level of observable object behavior'©.

The form of a cluster is:
idn = cluster [ parms ] is opidn , ... [ where ]

cluster_body
end idn
where
opidn ii=
| transmit

cluster_body ::= E equate };op = type_spec { equate }
routine { routine }

routine ::= procedure
| iterator
In this section we discuss non-parameterized clusters, in which the parms and where clauses are
missing. Parameterized modules are discussed in Section 12.5. Own variables are discussed in Section
12.7.

The primitive operations are named by the list of opidns following the reserved word is. All of the
opidns in this list must be distinct. The idn foliowing the end of the cluster must be the same as the idn
naming the cluster.

To define a new data type, it is necessary to choose a concrete representation for the objects of the
type. The special equate:

‘mmthhhmmofdemﬁthwm,B.mGth,J..mmﬁonmdSpodﬁcatbnh
Program Development, MIT Press, Cambridge, 1986.
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rep = type_spec
within the cluster body identifies the type_spec as the concrete representation. Within the cluster, rep
may be used as an abbreviation for this type_spec.

The identifier naming the cluster is available for use in the cluster body. Use of this identifier within the
cluster body permits the definition of recursive types.

in addition to giving the representation of objects, the cluster must impiement the primitive operations
of the type. One exception to this, however, is the transmit operation. The transmit operation is not
directly implemented by a cluster; instead, the cluster must implement two operations: encode and
decode (see Section 14 for detalls). The primitive operations may be either procedural or control
abstractions; they are implemented by procedures and iterators, respectively. Any additional routines
implemented within the cluster are hidden: they are private 1o the cluster and may not be named directly
by users of the abstract type. All the routines must be named by distinct identifiers; the scope of these
identifiers is the entire cluster.

Outside the cluster, the type’'s objects may only be treated abetractly (i.6., manipulated by using the
primitive operations). To implement the operations, however, & is usually necessary to manipulate the
objects in terms of their concrete representation. it is also convenient sometimes 10 manipuiate the
objects abstractly. Therefore, inside the cluster i is possible to view the type’s objects either abetractly or
in terms of their representation. The syntax is defined to specify unambiguously, for each variabie that
refers to one of the type’'s objects, which view is being taken. Thus, inside a clusier named T, a
declaration:

v:T
indicates that the object referred to by v is to be treated ahstractly, while a declaration:

w: rep
indicates that the object referred to by w is to be treated concretely. Two primitives, up and down, are
avallable for converting between these two poinis of view. The use of Up permits a type rep object to be
viewed abstractly, while down permits an abstract object 10 be viewed concretely. For example, given
the declarations above, the following two asgignments are legal:

v = Up{w)
w = down(v)

Only routines inside a cluster may use up and down. Note that up and down are used merely to inform
the compiler that the object is going to be viewed abstractly or concretely, respectively.

A common place where the view of an object changes is at the interface to one of the type’s
operations: the user, of course, views the object abstractly, while inside the operation, the object is
viewed concretely. To facilitate this usage, a special type specification, ¢vt, is provided. The use of cvt
is restricted to the args, retumns, yieids and signals clauses of routines inside a cluster, and may be used
at the top level only (e.g., array{cvt] is illegal). When used ingide the args clause, it means that the view
of the argument object changes from abstract 0 concrete when it is assigned to the formal argument
variable. When cvt is used in the returns, yields, or signais ciause, it means the view of the result object
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changes from concrete to abstract as it is returned (or yieided) to the caller. Thus cvt means abstract
outside, concrete inside: when constructing the type of a routine, cvt is equivalent to the abstract type,
but when type-checking the body of a routine, cvt is equivalent to the representation type. The type of
each routine is derived from its heading in the usual manner, except that each occurrence of cvt is
replaced by the abstract type. The cvt form does not introduce any new ability over what is provided by
up and down. It is merely a shorthand for a common case.

Inside the cluster, it is not necessary to use the compound form (fype__spec$op_name) for naming
locally defined routines. Furthermore, the compound form cannot be used for calling hidden routines.

12.4. Equate Modules

Anequatemoduleprovidesaoorwemeruwaytodefheaasetofeq:atasiorlaterusabyother
modules.

The form of an equate module is:

idn = equates [ parms [ where ] ]
equate { equate }
end idn
The usual scope rules apply. The idn following the end of the equate module must be the same as the
idn naming the equate moduie.

In this section we discuss non-parameterized equate modules. Parameterized modules are discussed
in Section 12.5.

An equate module defines a set of equates, that is, it defines a set of named constants. The set of
equates is also a constant, although i is not an object. Thus the name of an equate module can be used
in an equate, but an equate module cannot be assigned 10 & varisble. The equates defined by an equate
module £ may be referenced using the same syniax as for naming the operations of a cluster. For
example, an object or type named n in equate module £ can be referred to as E$n. I equate modules
contain equates that give names to other equate modules, compound names can be used. For example:

Aint}]$8$CSname
where A, B, and C are equate modules is legal.

As always, equates to type specifications do not define new types but merely abbreviations for types.
For example, in the following:

my_types - equates
ai = arrayfint]
float = real
end my_types

the types my_types$ai and array{int] are equivalent.
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12.5. Parameterized Modules

Procedures, iterators, clusters, guardians (see Section 13), and equate modules may all be
parameterized. Parameterization permits a set of related abstractions to be defined by a single module.
in each module heading there is an optional parms clause and an optional wheve clause (see Appendix |).
The presence of the parms clause indicates that the module is parameterized; the where clause declares
the types of any operation parameters that are expected to accompany the formal type parameters.

The form of the parms clause is:

[parm, «ua ]
where

parm .= idn, ... : type_spec

| idn, v. : type

Each parm declares some number of formal parameters. Only the following types of parameters can be
declared in a parmes clause: Im, real, bool, char, string, null, and type. The declaration of operation
parameters associated with type parameters is done in the where clause, as discussed below. The actual
values for parameters are required to be constants that can be computed at compile-time. This

requirement ensures that all types are known at compile-time, and permits complete compile-time type-
checking.

in a parameterized module, the scope rules permit the parameters to be used throughout the module.

Type parameters can be used freely as type specifications, and all other parameters (including the
operations parameters specified in the where clause) can be used freely as expressions.

A parameterized module implements a set of related absiractions. A program must instantigle a
parameterized module before & can be used; that is, k must provide actual, constant values for the
parameters (see Section 12.6). The result of an instantiation is a procedure, terator, type, guardian, or
equate module that may be used just lke a non-parameterized module of the same kind. Each distinct
list of actual parameters produces a distinct procedure, iterator, type, guardian, or equate module (see
Section 12.6 for details).

The meaning of a parameterized module is given by binding the actual parameters to the formal
parameter names and deleting the parms clause and the where clause. That is, in an an instantiation of a
parameterized moduie, each formal parameter name denotes the corresponding actual parameter. The
resulting module is a regular (non-parameterized) module. In the case of a cluster some of the operations
may have additional parameters; further bindings take place when these operations are instantiated.

In the case of a type parameter, one can also declare what operation parameters must accompany the
type by using a where clause. The where clause also specifies the type of each required operation
parameter. The where clause constrains the parameterized module as well: the only operations of the
type parameter that can be used are those listed in the where clause.
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The form of the where clause is:

where ..= where restriction , ...
restriction .= idn has oper_decl! , ...
| idn in type_set
oper_decl ..= name , ... : type_spec
| transmit
type_set 2:= { iin | idn has oper_dec!, ... { equate }}
| idn
| reference $ name

There are two forms of restrictions. In both forms, the initial idn must be a type parameter. The has
form lists the set of required operation parameters directly, by means of oper_decis. The lype_spec in
each oper_dec/ must be a proctype, itertype, or creatortype (see Appendix i). The in form requires that
the actual type be a member of a type_set, a set of types with the required operations. The two identifiers
in the type_set must match, and the notation is read like set notation; for exampie,

{tithast: ..}
means "the set of all types ¢ such that thas 7...". The scope of the identifier is the type_set.

The In form is useful because an abbreviation can be given for a type_set via an equate. if it is helpful
to introduce some abbreviations in defining the Hpe_set, these are given in the optional equates within
the type_set. The scope of these equates is the entire type_set.

A routine in a parameterized cluster may have a where clause in its heading, and can place further
constraints on the cluster parameters. For example, any type is permissile for the array element type,
but the array similar operation requires that the element type have a simiar operation. This means that
array[ 7] exists for any type 7, but that array{ 7}$similar exists only when an actual operation parameter is
provided for TSsimilar (see Section 12.6). Note that a routine need not include in its where clause any of
the restrictions included in the cluster where clause.

12.6. Instantiations
To instantiate a parameterized module, constants or type specifications are provided as actual
parameters:
actual_parm ..= constant
|  type_actual

type_actual ::= type_spec [ with { opbinding , ... } ]

opbinding ..= name , ... : primary
If the parameter is a type, the module’s where clause may require that some routines be passed as
parameters. These routines can be passed implicitly by omitting the with clause; the routine selecied as a
default will be the operation of the type that has the same name as that used in the where clause.
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Routines may also be passed explicitly by using the with clause, overriding the default. In this case, the
actual routine parameter need not have the same name as is required in the where clause, and need not
even be one of the type's primitive operations.

The syntactic sugar that allows default routines to be selected implicitly works as follows. If a generator
requires an operation named op from a type parameter, and i the comeaponding fype_actual, TS with {
... }, has no expilickt binding for op, then Argus adds an opbinding of ap to TSSop. (it will be an emor if
TS$op is not defined.) Thus one only has 10 provide an explick opbinding if the delfaul is unsatisfactory.

For example, suppose a procedure generator named sort has the following heading:
sort = procit: typej(a: arrayjt]) where t has gt: proctype(i.t) returns(bool)
and consider the three instantiations:

sort{int with {gt: Int$gt} ]
sortint]
sort{int with {it: int$it} ]

The first two instantiations are equivalent; in the first the routine Int$gt is passed expiicitly, while in the
second it is passed implicitly as the default. In the third instantiation, however, Int$/t is passed in place of
the default. All three instantiations result in a routine of type:

proctype (array{int))
and so each could be called by passing i an array{int] as an argument. However a call of the third
ingtantiation will sort its array argument in the opposite order from a call of either the first or second
instantiation.

Within an instantiation of a parameterized module, an operation of a type parameter named $op
denotes the actual routine parameter bound to op in the instantiation of that module. For example,
suppose we make the call:

sort{int with {gt: Int$k} ] (my_ints)
where my _ints is an array of integers. If, in the body of sort, there is a recursive call:

sort{t with {gt: t$gt} ] (a, i, )
then t denotes the type Int, and $gt denotes the routine Int$#, so that the recursive sort happens in the
correct order.

A cluster generator may include routines with where clauses that place additional requirements on the
cluster's type parameters. Aconmnoxamlebtorequhacmyoporﬁononlywkhhttmchsters
copymplemmaﬁon

= clusteiit: type] is ..., copy
where t has equal: proctype(t,t) returns(bool)
rep = array(t]

cOpy = Proc(s: cvt) returns(cvt) where t has copy: proctype(l) returns(t)
il

The intent of these subordinate where clauses is to allow more operations 10 be defined K the actual type
parameter has the additional required operations, but not 1o make the additional operations an absokite
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requirement for obtaining an instance of the type generator. For example, with the above definition of sel,
sefany] would be defined, but sefanyl$copy would not be defined because any does not have a copy
operation. We shall call the routine parameters required by subordinate where clauses optional
parameters.

Like regular required parameters, optional parameters can be provided when the cluster as a whole is
instantiated and can be provided explicitly or by default. For any optional parameter op that is not
provided expiicitly by the type_actual, TS with { ... }, we add an apbinding of opto TSSop i TS$op exists;
otherwise the opbinding is not added. The resulting cluster contains just those operations for which
opbindings exist for all the required routine parameters. For example, as mentioned above, set{any]
would not have a copy operation because any$copy does not exist and therefore the needed opbinding is
not present. On the other hand, setfint] does have a copy operation because Int$copy does exist.
Finally, sefany with {copy: foo}], where /o0 is a procedure that takes an any as an argument and retumns
an any as a result, would have a copy operation.

For an instantiation to be legal it must type check. Type checking is done after the syntactic sugars are
applied. The types of constant parameters must be included in the deciared type, type actuals must be
types, and the types of the actual routine parameters must be included in the proctypes, Rertypes, or
creatortypes declared in the appropriate where clauses. Of course, the number of parameters declared
must match the number of actuals passed and with each type actual parameter there must be an
opbinding for each required routine parameter.  the generator ie a cluster, then opbindings must be
provided for all operations required in the cluster's where clause; opbindings can (but need not) be
provided for optional parameters. Extra actual routine parameters are #legal.

Because the meaning of an instantiation may depend on the actual routine parameters, type equality
makes instances with different actual routine parameters distinct types. For example, consider the sef
type generator again; the instance

seff array{int] with {equal: array{intj$equal} ]
is not equal to

sef{ array{int] with {equal: array{int]$similar} ]
Intuitively these instances should be unequal because the two equal/ procedures define different
equivalence classes and therefore the abstract behaviors of the two instances are different. However,
optional parameters do not effect type equality. For example,

sef{array{int] with {copy: int$copy} ]
and

setfarrayfint] with {copy: my_copy} ]
are equal types. This is intuitively justified because in each case set objects behave the same way even
though different sets are produced when sets are copied in the two cases.

Thus we have the following type equality rule, which defines when two type_specs denote equal types
(after syntactic sugars are applied). A similar notion is also needed for routine equality. A formal type
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identifier is equal only to itself for type checking purposes. Otherwise, two type names denote equal
types if they denote the same Description Unit (DU).!! Similarly, Argus compares the names of routine
formals or the DUs of routines, or checks that they are the same operation in equal types. To decide the
equality of two type generator instantiations:

nr:é with {op,: act,, ... 0P,  acty} , ..., t, with {...} ]

a

TTt," with {op,: act,’, ... opp,-act, ], ..., t, with (...} ]
Argus first checks whether:

1. Tand T denote the same DU, and whether

2. they have the same number of type_actuals, and t, is equal fo t,’, etc.
Second, any optional parameter opbindings in either instantiation are deleted. After this step, Argus
checks that for each corresponding type_actual there is the same number of opbindings and that each
corresponding opbinding is the same. (That is, the comesponding actsal routines are equal.) The order
of the actual routineg parameters does not matter, since Argus matches opbindings by operation names.
(The definition of routine equality for instantiations of routine generators is similar.) This definition, for
exampile, tells us that

seof] arrayint] with {equal: array[int]$equal} ]
is different from

set{ array{int] with {equal: arrayfint}$similar} ] ,
(assuming sef requires an equal operation from its type parameter). It aiso tells us that:

seff int with {equal: foo, copy: bar} ]
and

sef] int with {equal: foo, copy: xerox} ]
are equal (assuming copy Is required only by the se{Int]$copy operation).

This type equality rule allows programmers to comtrol what requirements affect type equality by
choosing whether to put them on a cluster or on each operation. A requirement on the cluster should be
used whenever the actuals make some difference in the abstraction. For example, in the set cluster, the
type parameter’s equal/ operation should be required by the cluster as a whole, since using different
equality tests for a set’s objects causes the set’s behavior to change.

One can require that a type parameter, say 1, be transmissible by stating the requirement:
t has transmit
This requirement is regarded as a formal parameter declaration for a special "transmit actual®, but Argus
does not provide syntax for passing it explickly. The “transmit actual” is passed implicitly just when the
actual type parameter is transmissibie and the generator requires it.

11This is name equality uniess the type environment has synonyms for types.
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12.7. Own Variables

Occasionally it is desirable to have a module that retains information internally between calls. Without
such an ability, the information would either have t0 be reconstructed at every call, which can be
expensive (and may even be impossible if the information depends on previous calig), or the information
would have to be passed in through arguments, which is undesirable because the information is then
subject to uncontrolied modification in other modules (but see aiso the binding mechanism described in
Section 9.8).

Procedures, iterators, handiers, creators, and clusters may all retain information through the use of
own variables. An own variable is similar 10 a normal variable, except that it exists for the We of the
program or guardian, rather than being bound 1o the life of any particular routine activation. Syntactically,
own variable deciarations must appear immediately after the equates in a routine or cluster body; they
cannot appear in bodies nested within statements. Declarations of own variables have the form:

own_var 1.3 own decl
| own idn : type_spec := expression
| own dect , .. := cail [ @ primary ]
Note that initialization is optional.

The own variables of a module are created when a guardian begins execution or recovers from a
crash, and they always start out uninitialized. The own variables of a routine (including cluster
operations) are initialized in textual order as part of the first call of an operation of that routine (or the first
such call after a crash), before any statements in the body of the routine are executed. Cluster own
variables are initialized in textual order as part of the first call of the first cluster operation 10 be called
(even if the operation does not use the own variables). Cluster own variables are initialized before any
operation own variabies are initialized. Argus insures that only one process can execute a cluster's or a
routine’s own variable initializations.

Aside trom the placement of their declarations, the time of their initialization, and their etime, own
variables act just ke normal variables and can be used in all the same places. As with normal variables,
an attempt to use an uninitiaized own variable (f not detected at compile-time) will cause the guardian to
crash.

Declarations of own variables in different modules always refer 10 distinct own variables, and distinct
guardians never share own variables. Furthermore, own variable deciarations within a parameterized
module produce distinct own variables for each distinct instantistion of the module. For a given
instantiation of a parameterized cluster, all instantiations of the type's operations share the same set of
cluster own variables, but distinct instantiations of parameterized operations have distinct routine own
variables.

Declarations of own variables cannot be enclosed by an except statement, so care must be exercised
when writing initialization expressions. If an exception ie raised by an initialization expression, it will be
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treated as an exception raised, but not handled, in the body of the routine whose call caused the
initialization to be attempted. Thus, the guardian will crash due to this error.
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stabie buffer: atomic_array{int] .= atomic_atray{intjS$new ()

cache: array[int] := array{int}$new ()
then the atomic__array object denoted by buffer would survive a guardian crash, but the array object
denoted by cache would not. See Section 13.3 for more details of crash recovery. Volatile variables can
be assigned wherever an assignment statement is legal. However, siable variables may only be
assigned by an initialization when declared or in the body of a creator. The inktializations of both stable
and volatile variables are executed within an action, as described below. However, the stable variables
are not reinitialized upon crash recovery, whereas volatile variables are reinitiaized upon crash recovery.

Stable variables should denote resilient objects (see Section 15.2), because only resilient data objects
(reachable from the stable variables) are written 10 stable storage when a fopaction commits. (This can
be ensured by having stable variables only denote objects of an atomic type or objects protected by
mutex.) Non-resilient objects stored in stable variables are only written to stable storage once, when the
guardian is created. Furthermore, the stabie variables shouid usually denote atomic objects, because the
stable variables are potentially shared by all the actions in a guardian.

13.2. Creators

A guardian definition must provide one or more creators. The names of these creators must be listed
in the guardian header (internal creators are not allowed); each such name must correspond to a single
creator definition appearing in the body of the guardian definition.

A creator definition has the same form as a procedure definition, except that creators cannot be
parameterized, and the reserved word creator is used in piace of proc:

idn = creator ([ args ]) [ retums ] [ signats ]
routine_body

end idn’
The initial idn names the creator and must agree with the final idn. The types of ali arguments and all
results (normal and exceptional) must be transmissible.

A creator is an object of some creator type. This type is derived from the creator heading by removing
the creator name, rewriting the formal argument declarations with one idn per dec!, deleting the idns of all
formal arguments, deleting any failure or unavailable signals, and finally, replacing crestor by
creatortype. The signals failure(string) and unavailabie(string) are implicit in every creator type (since
they can arise from any creator call). However, if these signals are raised explicitly by a creator, they
must be listed in the signals clause with string result types.

The semantics of a creator call are explained in Section 8.4. Typically, the body of a creator will
initialize some stable and volatile variables. it can aiso retum the name of the guardian being created
using the expression self. Since the creator (and the state initialization) runs as an action, the creator
terminates by committing or aborting. If it aborts, the guardian is destroyed. If it commits, the guardian
begins to accept handler calls, and runs the background code, ¥ any (see below). If an ancasior of the
creator aborts, the guardian is destroyed. i the creator and all s ancestors commit, the guardian
becomes permanent, and will survive subsequent crashes.
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13.3. Crash Recovery

Once a guardian becomes permanent, it will be recreated automatically after a crash with its stable
variables initialized to the same state they were in at the last topaction commit before the crash. The
volatile variables are then initialized (in declaration order) by a topaction. To aid in this reinitialization, the
guardian definition can provide a recover section.

recover body end

to be run, as part of this topaction, after the initializations attached to the volatile variable declarations are
performed. The recover section commits when control reaches the end of the body, or when a return
statement is executed. The recover section may abort by executing an sgbort retumn statement or as a
result of an unhandied exception. The guardian crashes if the recover section aborts.

13.4. Background Tasks
Tasks that must be performed periodically, independent of handler calls, can be defined by a
background section:
background body end
The system creates a process 0 run this body as soon as creation or recovery commits successfully.
The body of the background section does not run as an action; typically t will perform a sequence of
topactions.

if the background process finishes executing its body (either by reaching the end of the block or by
returning), the process terminates, but the guardian continues 10 execute incoming handler cails.

13.5. Handlers and Other Routines

Typically, the principal purpose of a guardian is 10 execute incoming handler calls. A guardian accepts
handler calls as soon as creation or recovery cormnmits.

The guardian header lists the names of the externally available handlers. Each handier listed must be
defined by a handier definition. Additional handier definitions may aiso be given, but these handlers can
be named only within the guardian to which they belong.

A handier definition has the same form as a procedure definition, except that handiers cannot be
parameterized, and the reserved word handier is used in place of proc:
idn = handier ([ args ]) [ retumns ] [ signais ]
routine_body
end idn
The initial idn names the handier and must agree with the final idn. The types of all arguments and all
results (normal and exceptional) must be transmissible.

A handler is an object of some handier type. This type is derived from the handler heading by
removing the handler name, rewriting the formal argument declarations with one idn per dec/, deleting the
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consumption. The spooler provides an operation for adding (object, consumer) pairs, and for destroying
the guardian.

Figure 13-1: Spooler Guardian

spooler = guardian [t: type] Is create handies enqg, finish
where t has transmit

utype = handiertype (1)
entry = structiobject: t, consumer: utype]
queue = semiqueusef{entry]

stable state: queue = queue$create()

background
while true do
enter topaction
o: entry = queue$deq(state)
e.consumer(e.object)
except when unavaiiable (*): abort ieave end
ond except when faliure, unavailable (*): end
ond
end

create = creator () returns (spoolert])
retumn(seif)
ond create

enq = handier (item: t, user: utype)
queue$enq(state, entry${object: tem, consumer: user})
end enq

finish = handier ()

terminate
end finish

end spooler

The spooler guardian is parameterized by the type of object to be siored. The eng handler takes an
object of this type, and a handier for sending the object to the consumer, and adds this information to the
stable state of the spooler. This state is an object of the semiqueue abstract data type'2. Each entry in
the semiqueue is a structure containing a stored object and s corresponding consumer handler. The
background code of the guardian runs an infinite loop that starts a topaction, removes an entry from the
queue, and sends the object using the associated handier.

Note that an unavailable exception arising from thig handier call is caught inside the topaction, so that
an explicit abort can be performed. If the exception were caught outside the topaction, it woukd cause the

12806 W. Weihl and B. Liskov, “Implementation of Resiient, Atomic Data Types", in ACM Transactions on Programming
Languages and Systems, volume 7, number 2, (April 1985), pages 244-260.
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topaction to commit, and the entry woulkd be removed without being consumed. Note also that failure is
caught outside the topaction, since i an encode were 1o fall, or # the guardian did not exist, the
background process might aimiessly loop forever, because it would not be able to remove that entry.

A more extended exampie of a distributed system appears in the paper Liskov, B. and Scheifier, R.,
"Guardians and Actions: Linguistic Support for Robust, Distributed Programs,” ACM Transactions on
Programming Languages and Systems, volume 5, number 3, (July 1983), pages 381-404.
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14.3. Transmit for Abstract Types

The type implemented by a cluster is transmissible if the reserved word transmit appears in the Is-list
at the head of the cluster. Uniike the other operations provided by a type, the transmit operation cannot
be called directly by users, and in fact is not implemented directly in the cluster. Instead, transmit is
implemented indirectly in the following way. Each transmisgibie type is given a canonical representation,
called its external representation type. The external representation type of an abstract type T is any
convenient transmissible type X7. This type can be another abstract type if desired; there is no
requirement that XT be a built-in type. Intuitively, the meaning of the external representation is that
values of type XT will be used in messages 1o represent vakies of type 7. The choice of extemal
representation type is made for the abstract type as a whole and must be used in every implementation of
that type. (There are currently no provisions for changing the external representation of a type once it
has been established in the library.)

Each implementation of the abstract type T must provide two opeérations to map between values of the

abstract type and values of the external representation type. There is an operation

encode = proc (a: T) returns (XT) [ signals (failure(string)) ]
to map from T values to XT values (for sending messages) and an operation

decode = proc (x: XT) retums (T) [ signais (fallure(string)) ]
to map from XT values to T values (for receiving messages). The transmit operation for T is defined by
the following identity:

T$transmit (x) = T$decode (XT$transmh (T$encode(x)))
Intuitively, the correctness requireament for encode and decode is that they preserve the abstract 7 valies:
enhcode maps a value of type T into the XT value that represents &, while decode performs the reverse
mapping 4.

Encode and decode are called implicitly by the Argus sysiem during handier and creator calls. f
encode and decode do not appear in the cluster’s is-list, then they will be accessible to the Argus system,
but may nhot be named directly by users of the type. A faikure exception raised by one of these operations
will be caught by the Argus system and resignalied to the calier (see Section 8.3).

An abstract type's encode and decode operations shouid not cause any side effects. This is because
the number of calls to encode or decode is unpredictable, since arguments or results may be encoded
and decoded several times as the system tries to establish communication. In addition, verifying the
correctness of tranemission is easler ¥ encode and decode are simply transformations to and from the
extemnal represemtation.

When defining a parameterized module (see Section 12.5), it may be necessary to require a type
parameter to be transmissible. A special type restriction:

"Herlihy, M. and Liskov, B., "A Value Transmission Method for Abstract Data Types®, ACM Transactions on Programming
Languages and Systems, volume 4, number 4, (Oct. 1982), pages 527-551.
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has transmit
is provided for this purpose. To permit instantiation only with transmissible type parameters, this
restriction should appear in the where clause of the cluster. Altematively, by placing identical where
clauses in the headings of encode and decode procedures, one can ensure that an instantiation of the
cluster is transmissible only i the type parameters are transmissible (see Section 12.5).

As an example, Figure 14-1 shows part of a cluster defining a key-item table that stores pairs of values,
where one value (the key) is used to retrieve the other (the /fem). The key-kem tabie type has operations
for creating empty tables, inserting pairs, retrieving the item paired with a given key, deleting pairs, and
iterating through all key-item pairs. The table is represented by a sorted binary tree, and its external
representation Is an array of key-item pairs. The table type is transmigsible only ¥ both type parameters
are transmissible.

Figure 14-1: Partial implementation of table.

table = cluster [key, item: type] ls create, insert, lookup, alipairs, delete, transmit, ...
where key has R: proctype (key, key) returns (bool),
equal: proctype (key, key) returns (bool)

pair = record[k: key, i: kem]

nod = record{k: key, I: tem, left, right: table[key, tem]]
rep = variantiempty: nuil, some: nod]

xrep = arraylpair] % the external representation type

% The internal representation is a sorted binary tree. All pairs in the table
% to the left (right) of a node have keys less than (greater than) the key in
% that node.

% ... other operations omiited

encode = proc (i: tablefkey, item]) returns (xrep)
where key has tranemit, kem has tranemit
xr: xrep = xrep$new() % create an emply array
% use alipairs to extract the pairs from the tree
for p: pair in alipairs{t) do
% Add the pair to the high end of the array.
xrep$addhyxr, p)
end

return(xr)
end encode

decode = proc (xtbi: xrep) returns (table{key, item])
where key has transmit, tem has transmit
t: table[key, tem] := create() % create empty table
for p: pair in xrep$elements(xr) do
% xrep$elements yields all elements of armay xr
.ir:gn(t, p.key, p.kem) % enter pair in table

return(t)
end decode
end table
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14.4. Sharing

When an object of structured built-in type is encoded and decoded, sharing among the object’s
components is preserved. For example, let a be an array{ 7] object such that &fi] and afj] refer to a single
object of type 7. If a2 is an array[7] object created by transmitting a, then a2[i] and a2fj] also name a
single object of type T.

All sharing is preserved among all components of multiple objects of built-in type when those objects
are encoded together. Thus, sharing is preserved for objects that are arguments of the same rermote call
or are results of the same remote call, unless the arguments are encaded at different times (see the
discussion of the bind expression in Section 9.8). For exampie, let a and b be array{7] objects such that
afi] and bfj] refer to a single object of type 7. f a2 and b2 are amays created by sending a and b as
arguments in a single handier call, then a2fi] and b2fj] also refer to a single object.

Whether an abstract type’s tranamit operation preserves sharing is part of that type’s specification, but
sharing should usually be presetved for abstract types. In the key-item table implementation of Figure
14-1, there are two types of sharing that should be preserved: sharing of keys and kems among multiple
tables sent in a single message, and sharing of tems bound to the same key in a single table. The
key-item table example shows how to implement an abstract type whose tranemission pregerves sharing
by choosing an extemal representation type whose transmit operation preserves sharing.

Care must be taken when the references among objects to be transmitted are cyclic, as in a circular
list. Decoding such objects can result in a fallure exception unless encode and decode are implemented
in one of two ways:

1. the internal and external representation types are identical and encode and decode return
their argument object without modifying it or accessing its components, or

2. the external representation object must be free of cycles.
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15. Atomic Types

In Argus, atomicity is enforced by the objects shared among actions, rather than by the individual
actions themselves. Types whose objects ensure atomicity of the actions sharing them are called atomic
types; objects of atomic types are called atomic objects. In this chapter we define what it means for a
type to be atomic and describe the mechanisme provided by Argus to support the implementation of
atomic types.

Atomicity consists of two properties: serializability and recoverability. An atomic type’s objects must
synchronize actions to ensure that the actions are serializable. An atomic type's objects must also
recover from actions that abort {0 ensure that actions appear 0 execute either completely or not at all.

In addition, an atomic type must be resilient. the type must be implemented so that its objects can be
saved on stable storage. This ensures that the effects of an action that commits to the top (that is, an
action that commits, as do aRl of its ancestors) will survive crashes.

This chapter provides definitions of the mechanisms used for user-defined types in Argus. For
example implementations, see Weihi, W. and Liskov, B., “implementation of Resiient, Atomic Data
Types,” ACM Transactions on Programming Languages and Systems, volume 7, number 2 (April 1985),
pages 244-269.

The remainder of this chapter is organized as follows. In Section 15.1 and Section 15.2, we present
the details of the mechanisms. Section 15.1 focuses on synchwonization and recovery of actions, while
Section 15.2 deals primarily with resilience. In Section 15.3, we discuss some guidelines to keep in mind
when using the mechanisms described in Section 15.1 and Section 15.2. In Sections 15.4 and 15.5, we
define more precisely what it means for a type to be atomic. Finally, in 15.6, we discuss some details that
are important for user-defined atomic types that are implemented using multiple mutexes.

15.1. Action Synchronization and Recovery
In this section we describe the mechanisme provided by Argus 10 support synchronization and recovery

of actions. These mechanisms are designed specifically to support implementations of atomic types that
allow highly concurrent access to objects.

Like a non-atomic type, an atomic type is implemented by a cluster that defines a representation for the
objects of the type, and an impiementation for each operation of the type in terms of that representation.
However, the implementation of an atomic type must solve some probiems that do not occur for ordinary
types, namely: synchronizing concurrent actions, making visible to other actions the effects of committed
actions, hiding the effects of aborted actions, and providing resilience against crashes.

An implementation of a user-defined atomic type must be able to find out about the commits and aborts
of actions. In Argus, implementations use objects of bult-in atomic types for this purpose. The
representation of a user-defined atomic type is typically a combination of atomic and non-atomic objects;
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changed = proc (m: mutex{T})
is provided for notifying the system that an existing mutex object shouid be written to stable storage.
Calling this operation will cause the object to be writien 10 stable storage (assuming it is accessible) by
the time the action that executed the changed operation commits to the top. Sometime after the action
calls changed, and before its top-ievel ancestor commits, the system will copy the mutex object to stable
storage. Changed must be called from a process running an action.

Mutex objects also define how much information must be written o stable storage. Copying a mutex
object involves copying the contained object. By choosing the proper granularity of mutex objects the
user can control how much data must be written 1o stable storage at a time. For example, a large data
base can be broken into partitions that are written to stable storage independently by dividing it among
several mutex objects. Such a division can be used to limit the amount of data written to stable storage
by calling changed only for those partitions actually modified by a committing action.

In copying a mutex object, the system will copy all objects reachable from it, excluding other mutex or
built-in atomic objects. A contained mutex or built-in atomic object will be copied only if necessary; that is,
only if it is: ‘

e a mutex object for which (a descendant of) the completing action called the changed
operation,

« a built-in atomic object that was modified by the action, or

* a newly accessible object for which no stable copy exists.
Furthermore, the component is copied independently of the containing mutex object; they may be copied
in either order (or simuitaneously), subject to the constraint that the system cannot copy a mutex object
without first gaining possession of it.

Finally, mutex objects can be used to ensure that infformation is in a consistent state when & is written
to stable storage. The system will gain possession of a mutex object before writing it 1o stable storage.
By making all modifications to mutex objects insile selze statements, the user's code can prevent the
system from copying a mutex object when it is in an inconsistent state.

Some details of the effect of changed are important for atomic types that are implemented as multiple
mutexes. These details are presented in Section 15.6. )

15.3. Guidelines

This section discusses some guidelines to be followed when implementing atomic types. There are
additional guidelines to follow when multiple mutexes are used to implement an atomic type; those
guidelines are discussed in Section 15.6.

An important concept for describing the resilience of user-defined atomic types is synchrony. An object
is synchronous i it Is not possible to observe that any portion of the object is copied o stable storage at a
different time from any other portion. For example, an object of type srrayfmutex{int]] would not be
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synchronous, because elements of the array can be copied at different times. A type is synchronous if all
of its objects are synchronous. Whether a type is synchronous or not is an important property of its
behavior and should be stated in its specification. The built-in atomic types are synchronous; user-
defined types must aiso be synchronous i they are to be atomic.

To ensure the resilience and serializabiiity of a user-defined atomic type independently of how it is
used, the form of the rep for an atomic type shouid be ohe of the foliowing possibitities.
1. The rep is itself atomic. Note that mulex is not an atomic type.

2. The rep is mutex{f] where t is a synchwonous type. For example, f couid be atomic, or it
could be the representation of an atomic type, i the operations on the this fictitious atomic
type are coded in-line 80 that the entire type behaves atomically.

3. The rep is an atomic coliection of mutex types containing synchronous types.

4. The rep is a mutable collection of synchronous types, and objects of the representation
type are never modified after they are inltialized. That is, mutation may be used to create
the initial state of such an object, but once this has been done the object must never be
modified.

When using mutex objects, there are a few rules to remember. First, changed must be called after the
last modification (on behalf of some action) to the contained object. This is true because the Argus
system s free to copy the mutex to stable storage as soon as changed has been called.

In addition, changed should be called even if the object is not accessible from the stabie variables of a
guardian. In part this rule is just an exampie of separation of concerns: the implementation of the atomic
type shouid be done independently of any assumgtions about how the object will be used. Therefore the
type shouid be implemented as if its objects were accessible from the stable variables of some guardian.
However, in addition, i this rule is not followed, i is possible that stable storage will not be updated
properly. This situation can occur if an object was accessible, then becomes inaccessible, and later
becomes accessible again. The system guarantees that no problems arise ¥ changed is always called
after the last modification to the object.

Mutex objects should not share data with one another, unless the shared data is atomic or mutex.
One reason for this rule is that in copying mutex objects to stable storage Argus does not preserve this
kind of sharing.

A final point about mutex objects is that it is unwise to do any activity that is likely to take a long time
inside a selze statement. For example, a handler call shouki not be done from inside a seize statement ¥
possible. Also, it is unwise to wait for a lock inside a seize uniess the programmer can be certain that the
lock is available or will be soon. Otherwise, a deadiock may occur. An exampie of where walting for a
lock in a nested selze statement is safe is where all processes seize the two muttex objects in the same
order.
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15.4. A Prescription for Atomicity

In this section, we discuss how to decide how much concurrency is possible in implementing an atomic
type. In writing specifications for atomic types, we have found & heipful to pin down the behavior of the
operations, initially assuming no concurrency and no fallures, and 10 deal with concurrency and failures
later. In other words, we imagine that the objects will exist in an environment in which all actions are
executed sequentially, and in which actions never abort.

Although a sequential specification of this sort does not say anything explick about permissible
concurrency, i does impose limits on how much concurrency can be provided. implementations can
differ in how much concurrency is provided, but no implementation can exceed these limits. Therefore, it
is important to understand what the limits are.

This section and the following section together provide a precise definition of permissible concurrency
for an atomic type. This definition is based on two facts about Argus and the way it supporls
implementations of atomic type. First, in implementing an stomic type, it is only necessary to be
concerned about active actions. Once an action has committed to the top, it is not possibie for it to be
aborted later, and its changes to atomic objects become vigbie to other actions. So, for example, an
implementation of an atomic type needs to prevent one action from observing the modifications of other
actions that are still active, but t does not have 10 prevent an action from observing modifications by
actions that have already committed. Second, the only method avalisble to an atomic type for controlling
the activities of actions is to delay actions while they are executing operations of the type. An atomic type
cannot prevent an action from calling an operation, akhough i can prevent that call from proceeding.
Also, an atomic type cannot prevent an action that previously finished a call of an operation from
completing either by committing or by aborting.

Given the sequential specification of the operations of a type, these facts lead t0 two constraints on the
concurrency permitted among actions using the type. While an impiementation can allow no more
concurrency than permitted by these constraints, some implementations, iike that for the buik-in type
generator atomic__ array (see Section 11.10), may allow less concumency than permitted by their
sequential specifications and our concurrency constraints.

The first constraint is that

e an action can observe the effects of other actions only i thoge actions committed relative to
the first action.

This constraint implies that the results retumed by operations executed by one action can reflect changes
made by operations executed by other actions only ¥ those actions commitied relative to the first action.
For example, in an atomic array a, f one action performs a sfors(a, 3, 7), a second (unrelated) action can
receive the answer "7" from a call of feich(a, 3) only ¥ the first action committed 10 the top. If the first
action is still active, the second action must be delayed untii the first action completes. This first
constraint supports recoverability since it ensures that effects of aboned actions cannot be observed by
other actions. It also supports serializability, since it prevents concurrent actions from observing one
another's changes.
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However, more is needed for serializability. Thus, we have our second constraint:

» operations executed by one action cannot invalidate the resulits of operations executed by a
concurrent action.

For example, suppose an action A executes the size operation on an atomic array object, receiving n as
the result. Now suppose another action B is permitted 1o execute addh. The addh operation wili increase
the size of the array to n + 1, invalidating the results of the size operation executed by A. Since A
observed the state of the amray before B executed addh, A must precede B in any sequential execution of
the actions (since sequential executions must be consistent with the sequential specifications of the
objects). Now suppose that B commits. By assumption, A cannot be prevented from seeing the effects of
B. If Aobserves any effect of B, k will have to follow B in any sequential execution. Since A cannot both
precede and folow B in a sequential execution, serializability would be violated. Thus, once A executes
8ize, an action that calls addh must be delayed urntll A completes.

15.5. Commuting Operations

To state our requirements more precisely, consider a simple situation involving two concurrent actions
each executing a single operation on a shared atomic object X. (The actions may be executing
operations on other shared objects also, but in Argus each object must individually ensure the atomicity of
the actions using it, 5o we focus on the operations involving a single object.) A fairly simple condition that
guarantees serializability is the following. Suppose X is an object of type 7. X has a current state
determined by the operations performed by previously committed actions. Suppose O, and O, are two
executions of operations on X in its current state. (O, and O, might be executions of the same operation
or different operations.) if O, has been executed by an action A and A has not yet commitied or aborted,
O, can be performed by a concurrent action B only ¥ O, and O, commute: given the current state of X,
the effect (as described by the sequential specification of T) of performing O, on X followed by O, is the
same as performing O, on X followed by O,. It is important o realize that when we say "effect” we
include both the results returned and any modifications to the state of X.

The intuitive explanation of why the above condition works is as follows. Suppose O, and O, are
performed by concurrent actions A and B at X. If O, and O, commute, then the order in which A and B
are serialized giobally does not matter at X. If A is serialized betore B, then the local effect at Xis as if O,
were performed before O, while if B is serialized before A, the local effect is as i O, were performed
before O,. But these two effects are the same since O, and O, commute.

The common method of dividing operations into readers and writers and using read/write locking works
because it allows operations 10 be executed by concurrent actions only when the operations comimute.
More concurrency is possible with our commutativity condition than with readers/writers because the
meaning of the individual operations and the arguments of the calls can be considered. For example,
calis of the atomic array operation addh always commute with calis of add¥, yet both these operations are
writers. As another example, store(X; /, e,) and store(X, j, e,) commute i i+ j.

We require only that O, and O, commute when they are executed starting in the current state.
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Consider a bank account object, with operations to deposit a sum of money, to withdraw a sum of money
(with the possible result that it signals insufficlent funds ¥ the current balance is less than the sum
requested), and to examine the current balance. Two withdraw operations, say for amounts m and n, do
not commute when the current balance is the maximum of m and n: elther operation when executed in
this state will succeed in withdrawing the requested sum, but the other operation must signal insufficient
funds i executed in the resulting state. They do commute whenever the current balance is at least the
sum of m and n. Thus i one action has executed a withdraw operation, our condition aliows a second
action to execute another withdraw operation while the first action is still active as long as there are
sufficient funds to satisfy both withdrawal requests.

Our condition must be extended to cover two additional cases. First, there may be more than two
concurrent actions at a time. Suppose A,...A, are concurrent actions, each performing a single
operation execution O,,...,0,, respectively, on X. (As before, the concurrent actions may be sharing
other objects as well.) Since A,,...,A, are permitted 10 be concurrent at X, there is no local control over
the order in which they may appear to occur. Therefore, all possible orders must have the same effect at
X. This is true provided that all permutations of O,,...,0, have the same effect when executed in the
current state, where effect includes both results obtained and modifications to X.

The second extension acknowledges that actions can perform sequences of operation executions.
Consider concuirent actions A,,...,A, each performing a sequence S,....5,, respactively, of operation
executions. This is permissible ¥ all sequences S;,,...,S,, oblained by concatenating the sequences
S,...S, in some order, produce the same effect. For example, suppose action A executed addh
followed by remh on an array. This sequence of operations has no net effect on the array. It is then
permissible to allow a concurrent action B to execute size on the same amay, provided the answer
returned is the size of the array before A executed addh or after it executed remh.

Note that in requiring certain sequences of operations 10 have the same effact, we are congidering the
effect of the operations as described by the specification of the type. Thus we are concermed with the
abstract state of X, and not with the concrete state of Its storage representation. Therefore, we may allow
two operations (or sequences of operations) that do commute in terms of their effect on the abstract state
of X to be performed by concurrent actions, even though they do not commute in terms of their effect on
the representation of X. This distinction between an abstraction and s implementation is crucial in
achieving reasonable performance.

It is important to realize that the constraints that are imposed by atomicity based on the sequential
specification of a type are only an upper bound on the concumrency that an implementation may provide.
A specification may contain additional constraints that further constrain implementations; these
constraints may be essential for showing that actions using the type do not deadiock, or for showing other
kinds of termination properties. For example, the specification of the built-in atomic types expiicily
describes the locking rules used by their implementations; users of these types are guaranteed that the
built-in atomic types will not permit more concurrency than aliowed by these rules (for ingtance, actions
writing different components of an array, or different fiekis of a record, cannot do 8o concurrently).
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1. Before that crash, B also committed to the top. In this case the data read back from stable
storage is, in fact, consistent, since it must reflect B's changes to both the first and second
semiqueues.

2. B aborted or had not yet committed before the crash. In elther case, B aborts. Therefore,
the changes made to the first semiqueue by B will be hidden by the semiqueue
implementation: at the abetract level, the two semiqueues do have the same state.

The point of the above exampie is that if the objects being written to stable storage are atomic, then the
fact that they are written incrementally causes no problems.

On the other hand, when an atomic type is implemented with a representation consisting of several
mutex objects, the programmer must be aware that these objecis are written {0 stable storage
incrementally, and care must be taken 1o ensure that the representation invariant is st preserved and
that information is not lost in spite of incremental writing. Iif the implementation of a type requires that one
mutex object (call it M7) be written to stable storage before another (call it M2), then the write of M7 must
be contained in an action that commits to the top before the action that writes M2 is run.
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operation

routine

procedure

iterator

creator

handler

routine_body

parms

parm

args
decl
returns
yiekis
signals

exception

creator
handier
routine

procedure
iterator

idn = proc [ parms ] args [ retums ] [ signais ] [ where ]
routine_body
ond idn

idn = her [ parms ] args [ yieids ] [ signaie ] [ where ]
routine_body
ond idn

idn = creator args [ retums ] [ signais ]
routine_body
end idn

idn = handier args [ retums ] [ signais ]
routine_body
ond iin

{ equate }

{ own_var }
{ statement }
[parm, . ]

idn , ... : type
idn , ... : type_spec

([decl, ... ])

idn , ... : type_spec
retums ( type_spec , ... )
ylelds (type_spec, ... )
gignals ( exception , ... )

name [ ( type_spec, ...) ]

Syntax
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opidn 2= idn
| transmit
where <= where restriction , ...
restriction ::= idn has oper_decl , ...
| ionintype_set
type_set :i= ({idn|idn has oper_dec! , ... { equate }}
| idn
|  reference $ name
oper_decl «:= name, ... :type_spec
|  transmit
constant a=  expression
| type_spec
state_dec ii= [ stable ] deci

| [ stable]idn : type_spec := expression
| [ stable]dect, ... := cal

equate == idn = constant
| idn=type_set
|  idn = reterence

own_var =:3 own decl

|  ownidn : type_spec := expression
| owndec,... :.caﬂ[@primafy]
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statement

enter_stmt

decl

idn : type_spec := expression

decl , ... := call [ @ primary ]

idN , +.n = call [ @ primary ]

idn , ... == expression , ...

primary . name = expression

primary [ expression ] := expression

call [ @ primary ]

fork call

selze expression do body end

pause

terminate

enter_stmt

coenter coarm { coarm } end

[ abort ] ieave

while expression do body end

for_stmt

if_stmt

tagcase_stmt

tagtest_stmt

tagwait_stmt

[ abort ] return [ ( expression, ... )]

yield [ ( expression , ...) ]

[ abort ] signai name [ ( expression , ... )]

[ abort ] extt name [ ( expression, ... ) ]

[ abort ] break

[ abort ] continue

begin body end

statement [ abort ] resignai name , ...

statement except  { when_handier }
[ others_handier ]
end

enter topaction body end
enter action body end

Syntax
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coarm

armtag

for_stmt

if_stmt

tagcase_stmt

tagtest_stmt

tagwait_stmt

tag_arm
atag_arm

tag_kind

when_handier

others_handier

body

armtag [ foreach ded! , ... in call ] body

action

topaction
process

for [ decl, ... ] in call do body end
tor [ idn, ... ] in call do body end

If expression then body
{ elseit expression then body }
[ sloe body ]
end

tagcase expression
tag_arm { tag_arm }
[ others : body ]
end

tagtest expression
atag_arm { atag_arm }
[ others : body ]
ond

tagwalt expression
atag_arm { atag_arm }
ond

tag name , ... [ (idn : type_spec) ] : body

tag__kindname,....[(idn:twe_spec)] : body

tag
wtag

when name , ... [ (decl, ...)] : body
when hame , ... ( *) : body

others [ (idn : type_spec ) ] : body

{ equate }
{ statement }

111
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type_spec

field_spec

reference

actual_parm

type_actual

opbinding

string

sequencs [ type_actual |

array [ type_actual ]

atomic_amay [ type_actual |

struct [ field_spec , ... |

record [ field_spec , ... |
atomic_record | field_spec , ... ]

oneot [ field_spec, ... ]

variant [ field_spec , ... ]

atomic_variant | field_spec , ... ]

proctype ( [ type_spec, ... ] ) [ retums ] [ signais ]
hertype ( [ type_spec, ... ] ) [ yields ] [ signais ]
crestortype ( [ type_spec, ... ] ) [ retums ] [ signais ]
handiertype ( [ type_spec, ... ]) [ retums ] [ signals ]
mutex [ type_actual |

reference

name, ... : type_actual
idn

idn [ actual_parm, ... ]
reference $ name

constant
type_actual

type_spec [ with { where opbinding , ... } ]

<= Name, ... : primary

Syntax
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expression

primary

call

primary

call @ primary

( expression )

~ expression

- expression

expression ** expression
expression // expression
expression / expression
expression * expression
expression || expression
expression + @xpression
expression — expression
expression < expression
expression <= expression
expression = expression
expression >= @xpression
expression > expression
expression ~< expression
exXpression ~<= @xpression
expression ~= expression
@Xpression ~>= expression
expression ~> expression
oxpression & expression
expression cand expression
expression | expression
expression cor expression

entity

call

primary . name
primary [ expression ]

primary ( [ expression , ...])

% 6 (precedence)
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entity

field

bind_arg

hil

true

false
int_literal
real_literal
char_literal
string_literal
self
reference

entity . name

entity [ expression |

bind entity ( [ bind_arg , ... ] )
type_spec $ { field , vuu }

type_spec $ [ [ expression : ] [ expression , ... ]]

type_spec $ name [ [ actual parm, ...]]
up ( expression )

down ( expression )

name , ... : expression

expression

Syntax
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Comment. a sequence of characters that begins with a percent sign (%), ends with a newiline
character, and contains only printing ASCHi characters and horizontal tabs in between.

Separator. a blank character (space, vertical tab, horizontal tab, camiage return, newline, form feed) or
a comment. Zero or more separaiors may appear between any two tokens, except that at least one
separator Is required between any two adjacent non-self-terminating tokens: reserved words, identifiers,
integer literals, and real literals.

Reserved word: onhe of the identifiers appearing in bold face in the syntax. Upper and lower case
letters are not distinguished in reserved words.

Name, idn: a sequence of letters, digits, and underscores that begins with a letter or underscore, and
that is not a reserved word. Upper and lower case letters are not distinguished in names and idns.

int_literal: a sequence of one or more decimal digits (0-9) or a backslash (\) folowed by any number of
octal digits (0-7) or a backslash and a sharp sign (¥) followed by any number of hexadecimal digits (0-9,
A-F in upper or lower case).

Real_literal: a mantissa with an (optional) exponent. A mantissa is either a sequence of one or more
decimal digits, or two sequences (one of which may be empty) joined by a period. The mantissa must
contain at least one digit. An exponent is 'E’ or 'e’, optionally followed by '+’ or "', followed by one or
more decimal digits. An exponernt is required if the mantissa does not contain a period.

Char_literal: a character representation other than single quote, enclosed in singie quotes. A
character representation is either a printing ASCH character (octal value 40 through 176) other than
backslash, or an escape sequence consisting of a backsiash (\) followed one to three printing characters
as shown in Tabie 6-1 or Table I-1 below.

String_literal: a sequence of zero or more character representations other than double quote, enclosed
in double quotes.

Table I-1 shows most of the character literals supported by Argus, except for the higher numbered octal
escape sequences. For each character, the corresponding octal literal, hexadecimal literal, and normal
literal(s) are shown. Upper or lower case lefters may be used in escape sequences of the form \W**, \A*,
\",\b, &t, \n, \v, \p, and \r. Note that an implementation need not support 256 characters, in which case

only a subset of the literals fisted will be legal.
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Tabile -1: Character Escape Sequences

Syntax

000’ 00" W@’
001" WO’ \AA
002" "W02' \B'
003" W03 WC’
004" W04’ \D'
\005' W05’ \AE'
006" "#06' \\F°
007 K0T’ \G'

010" \#08' \AH’ \b’

NO11' \#0Q' W' '\

012’ #OA’ W' An’
013 'WOB’ \AK' W'
014’ HOC’ AL’ \p'
015’ "\#OD' \AM'

016’ "#OE' "N’
017" \KOF \AO’

020" "\#10" \AP'
021" W11 WY
022" #12' "R’
023" 'W#13' \A§’
024’ \#14' T
025’ W15’ WU’
026’ W16’ W'
027" W17 W'

"\030° W18’ \AX’
031" W19 WY
032" WIA' WZ'
033’ "W1B' W[
034’ WG W'
035’ WD W
036’ WHE' WA’
037" WP A

041" 21" T
1042 "W22' ™ A"
\043 23" ¥
044 W24’ 'S
045’ 25" %’
\046' 426’ '8’
047" W27 "

050" w2e' '(
\051" W29’ 'y

w’ w’ "
053" 28" '+’
1054 "w2C' ",
wsl w » '-'
57" W2F '

100" \#40' '@’
N01 W41 A’
02’ \#42' B’
103’ W43’ 'C’
\104' \#44' 'D’
105’ \#46’ 'E’
\106' #4868’ 'F
\107” W47 'G’

A10" W48’ 'H'
111 48" °F

12 WA
113 'W4B' 'K’
14 W4C 'L
115 WD 'M
\116' W4E''N'
A7 4P 'O

\120° 'WS0' P’
21 s QY
\122° W52’ 'R’
123’ W63’ 'S’
\i24' \#54' T
\125' 65’ ‘U’
\126' W56 'V’
\27 ST 'W

"\130' \IS8' X'
131 59" Y
\132' WSA' 7
133 WSB' T
134’ WSC' WV
\135' WSD' T
136’ \ISE' '
37T WP

\140° "\#60' "
\141' W61 'a’
\142' W62’ b’
143’ '\W83’ ¢’
\144’ "\#64’ 'd’
\145' \#65’ '@’
146’ "#66' '
\47 \#67 g’

150’ "\#68' '’
\151° \#69’ i’
\162' "\#8A' '}’
153" "#6B' 'k’
\154' "\#6C’ T
155’ \#6D" 'm’
1156’ "WeE' 'n’
\I57 \#6F "0’

A200° \#80' \i@’
201" W81’ WA
202" \#e2’ \IB’
203’ W83’ \IC’
204’ \#84' \ID'
205" W8S’ \IE’
208" \#86’ \IF'
207" \#87 \\G'

210" W' \IH'
211" \#89' I’

212 \WBA’ W’

213" "W8B’ \IK'
214' \W#8C W'
215’ "\#8D’ "\’
216’ "W8E’ "\IN'
217 #8F I’

220° W90 P’
221" Wo1’ QY
222" W2 IR
\223' \¥83' \IS'
\224' o4’ \IT
1225’ W96 W'
226’ 96" IV
227 9T W'

230° W98’ X'
231" W89’ \IY’
232" WA’ \IZ
123" WoB' '
\234' \#9C’ W
1235’ W9D' !
236" WOE" "\
\237 WOF |’

240" WAO' &’
\241° \#A1’ \&F
N242' \#A2' "&™
N\243° \BAZ' &N
\244° \BAL NS’
245’ HAS' \&%’
246’ "WAG' &8’
247 "#AT "&"

250" WAS' "\&(
251’ \FAD' "\8&)
252" \FAA' \&"
253" \FAB' &+’
254’ WAC' \&,’
"\255' \PAD' "\&-"
256 WAE' 4.’
257" \WAF "8/

300’ "WCO’' 8@’
301" "¥C1' &N
302" 'WC2' "\&B’
303’ "WC3' \&C’
N304’ \IC4' \&D’
305" "WC5' \&E'
306" "WHCE' \&F
307 "WC7 &G’

\310' "WC8' "\&H’
311’ "\#CY "&¥

\312 "WCA’ \&J'
313 'WChB' &K'
\314' "WwCC’ AL’
315" WCD’ M’
316 "$CE' BN’
317 #CF \&O'

320" "wDO' &P
321" WD1' "\&Q’
322 W2 &R’
323 'WD3' &S’
\324' WD4' T
325’ "$DS' WU’
\326' 'WD8' &V
327 D7 AW’

330" "WD8' &X'
\331' W09’ &Y'
337 "WDA' \8Z'
"\333' "#DB' \a['
1334’ "WDC' "8V
\335' "WOD' \&]
"\33¢' "WDE' &~
\337 WDF "8

\340’ "FEO' &
\341' WE1' \Ba'
\34Z WEZ "&b’
343 WE3' \&c'
\344’ E4 &'
345 \#E5' "&e’
\346' "FEE' \&fF
\347 "WET \8g'

\35(° "WES’ "&b’
\351' 'WE9' "\&J'
362 "BEA’ &}
\353' "WED' &k’
\354' "WEC' &I
355 "WED' \&m'
\356' "WEE' \&n’
\357 "WEF" "\&o'
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080’ 30’ ‘0’
061 Wat' 'Y’
e e Y
0 ey Y
04 WS '8
O Y
008 838 ¢
08T W7 T

0T S Y
o771 W v
T2 WA Y
073 '
NTE WIC '
75 W
O WP '
7T W 7

100 W0 '
e 7Y Y
T T Y
e WY 'Y
K WPE T
VP WS
W W Y
T T W

L il
NIy
NI N T
IS T
I WIC T
A\ WD’ 7
NP
\MTT P Y
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Appendix Ii
Built-in Types and Type Generators
The following sections specify the built-in types and the types produced by the buikt-in type generators
of Argus. For each type and for each instance of each type generator, the objects of the type are
characterized, and all of the operations of the type are defined. (An implementation may provide
additional operations on the built in types, as long as these are operations that could be implemented in
terms of those described in this section.)

All the built-in types (except for any) are transmissible. All ingtances of the bullt-in type generators
(except for proctype and Hertype) are transmissible if all their type parameters are transmissible.
Transmission of the built-in types preserves value equality, except for objects of type real. However, in a
homogeneous environment, reals can be transmilted without approximations. In a homogeneous
environment, the only possible encode or decode fallures are exceeding the representation imits of an
image, mutating the size of an array or atomic__array while &t is being encoded or decoded, and
improper decoding of cyclic objects (see Section 14.4).

All operations are indivisible except at calls to subsidiary operations (such as Int$similar within
array[int]$similar), at yields, and while waiting for locks.

The specifications given below are informal and are adapted from the book Abstraction and
Specification in Program Development (Liskov, B. and Guttag, J., MIT Press, 1986). A specification starts
out by giving a list of the operations and declarations of any formal parameters for the type. This is
followed by an overview, which gives an introduction to the type and ¥ necessary defines a way of
describing the type’s objects and their values. Following this the individual operations are described. For
each operation there is a heading and a statement of the operation's effects. In the heading, the return
values may be given names. The effects section describes the normal and exceptional behavior of the
operation. The effects given are abetract, that is they are described using the vocabulary (or model)
defined in the overview section. For exampie, objecis of type int are described using mathematical
integers. Thus arithmetic expressions and comparisons used in defining Int operations are 1o be
computed over the domain of mathematical integers.

An operation that (abstractly) mutates one of its arguments lists the arguments that it mutates in the
clause following the word modifies. An operation is not allowed 10 mutaie any objects, except for those
listed in the modifies clause. (For the built-in mutable atomic type generators, modification only refers to
the sequential state; it does not refer to changes in the locking information kept for each object.) When
an argument, say &, is mutated, it is often necessary to describe its state at the start of the call as well as
its final state at the end of the cail. WQuuttnnotdonnmbra’smaﬂusmtomnmlmme
notation &, for its state at the end of the call.

Some operations of the buit in type generators are only defined i the type generator is passed
appropriate actual routine parameters (see Section 12.6). For example, the copy operation of the array




120 Bulit-in Types and Type Generators

type generator, is only defined i there is an actual parameter passed (expiicitly or implicitly) for the type
parameter's copy operation. Thus array[inmt]$copy is defined but arrayfanyl$copy is not defined. These
requiroments are stated in a requires clause that precedes the description of the operation’s effect. The
type of the expected routine is also described; remember that the actual operation parameter can have
fewer signals (see Section 6.1 and Section 12.6).

By convention, the order in which exceptions are listed in the operation type is the order in which the
various conditions are checked.

Operations with the same semantics (for example, mili$equa/ and nuli$similar) or that can be
described in the same way (for example, int$add and Int$sub) are grouped togsther to save space.

in defining the built-in types, we do not depend on users satistying any constraints beyond those that
can be type-checked. This decision leads to more complicated spacifications. For example, the behavior
of the elements iterator for arrays is defined even when the loop modifies the array.

I1.1. Null

null = data type is copy, equal, similar, transmit
Overview

The type null has exactly one, immutable, atomic object, represented by the literal nil. Nil is
generally used as a place holder in type definitions using oneofs or variants.

Operations

equal = proc (n1, n2: null) returns (bool)
similar = proc (n1, n2: null) returns (bool)
effects Returns true.

copy = proc (n: null) retums (null)
transmit = proc (n: nuil) returns (null)
effects Retums nil.

Ii.2. Nodes
node = data type is here, copy, equal, similar, transmit
Overview

Objects of type node are immutable and atomic, and stand for physical nodes. Implementations
shouid provide some mechanism for translating a node "address” into a hode object and vice
versa. (However, these do not have to be operations of type node.)

Operations

here = proc () retums (node)
effects Retums the node object for the caller's node.

equal = proc (n1, n2: node) retums (bool)
similar = proc (n1, n2: node) retums (bool)
effects Returns trug if and only if n1 and n2 are the same node.
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bool = date type is and, or, not, equal, similar, copy, Sranemit
Overview

The wo immutable, alomic objects of type ook, with Memsls Seus and falss, reprasent logical truth

mmumnmmﬁquMdm
oxpressions, see Sedlion §.15. ‘
m

and = prec (b1, b2: beet) retume (heal)
Mmm!uﬁmmmmnm

“-mmw -2 m
Mmimammmm

&ckd = proc {x, y: Int) stune. (g} of
mEmE prse
otingle
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minus = ohns
R R s
Mm

from 10 «= Rer feamn, m
“m“‘%ﬁﬁam » muﬂ,

max = prog (x, y: it} rehens n)
Muanmm;mmn

min = PrOC (X, y: It} rehwas )
Mﬂxsnh&m:&mm’

m-mammm
offects Returms x.
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transmit = proc (x: int) retumns (y: int) signais(failure(string))
effects Retums y such that x = y or signals fallure K x cannot be represented in the
implemeniation on the receliving end.

IL.5. Reals

real = data type Is add, sub, minus, mul, div, power, abs, max, min, exponent, mantiesa, i2r, rai,
trunc, parse, unparse, R, le, ge, gt, equal, similar, copy, transmit

Overview

The type real models a subset of the mathematical numbers. it is used for approximate or floating
point arithmetic. Reals are immutable and atomic, and are written as a mantissa with an optional
exponent. See Appendix | for the format of real literals.

Each implementation represents a subset of the real numbers in:
D = {~real_max, —real_min} U {0} U {real_min, real_max}
where
0 < real_min < 1 < real_max
Numbers in D are approximated by the implementation with a precision of p decimal digits such

that:
Vre D Approx(r) € Real
Vre Real Approx(r) = r
vre D- {0} | (Approx(r) - ryr < 101
vrse D r < 8 = Approx(r) < Approx(s)
vre D Approx(r) = ~Approx(r)

Wae define Max_width and Exp_width to be the smaliest integers such that every nonzero element
of real can be represented in "standard” form (exactly one digt, not zero, before the decimal
point) with no more than Max_ width digits of mantissa and no more than Exp _width digits of
exponent.

Real operations signal an exception if the resuk of a computation lies outside of D; overfiow
occurs if the magnitude exceeds real_max, and underfiow occurs if the magnitude is less than
real_min.

Operations

add = proc (x, y: real) returmns (real) signais (overfiow, underfiow)
effects Computes the sum z of x and y; signais overflow or underfiow i z is outside of D, as
explained earlier. Otherwise retumns an approximation such that:
(X.yzovxysO)aadd(x.y)-Awmg +Y)
add(x, y) = (1 +€)(x +y) le| < 10'F
add(x, 0) = x
add(x, y) = add(y, x)
x <x' = add(x, y) < add(x’, y)
sub = proc (x, y: reel) retumns (real) signais (overfiow, underfiow)
offects Computes x — y; the resul is identical to addx, —y).

minus = proc (x: real) returms (real)
effects Retumns —x.

mul = proc (x, y: real) returns (real) signais (overfiow, undertiow)
effects Retums approx(x+y); signais overflow or underfiow if x*y is outside of D.

div = proc (x, y: real) returns (real) signais (zero_divide, overfiow, underfiow)
effects If y = 0, signals zero_divide. Otherwise returns approx(xy); signals overflow or
underfiow it Xy is outside of D.
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power = proc (x, y: real) returns (real)
signals (zero_divide, compiex_result, overfiow, underfiow)
offects if x = 0 and y < 0, signals zero__ “divide. ¥ x <« 0 and y is nonintegral, signals
complex_result. Otherwise retums an approximation 1o ¥, good 10 p significant digits;
signals overfiow or underfiow i ¥ is outside of D.

abs = proc (x: real) returmns (reaf)
sffects Retumns the absohie value of x.

max = proc (X, y: real) retums (real)
effects if x 2 y, then retumns x, otherwise retumns y.

min = proc (x, y: real) returns (real)
effects i x < y, then returns x, otherwise retums y.

exponent = proc (x: real) returmns (int) signhais (undefined)
effects if x = 0, signals undefined. Otherwise retums the exponent that would be used in
representing x as a iteral in standard form, that is, returns
max ({i | abs(x) 2 10))

mantissa = proc (x: real) retums (real)
effects Retumns the mantissa of x when represented in standard form, that is, retums
approx(x/10%), where @ = exponent(x). i x= 0.0, retuns 0.0.

i2r = proc (i: int) retums (real) signals (overflow)
mmﬂuwo signais overfiow ¥ /is not In D.

r2i = proc (x: real) retumns (Int) signals (overfiow) ]
effects Rounds x to the nearest integer and toward zero in case of a tie. Signals overflow if

the result lies outside the represented range of integers.

trunc = proc (x: real) returng (int) signais (overfiow)
effects Truncates x toward zero; signals overflow i the result would be outside the
represented range of integers.

parse = proc (s: string) returns (reai) signais (bad_format, overflow, undertiow)
mmw@.m:nummnnms(mwo
S must reprasent a real or integer eral wikh an optional leading pius or minus sign;
otherwise signais bad_format. Signais underfiow or overflow ¥ zis notinD.

unparse = proc (x: real) returns (string)
effects Returns a real eral such that parse(unparse(x)) = x. The general form of the literal
is:

[-]/_feld.t_feia[ o+ x_flekt]
Leading zeros in /_field and tralling zeros in f_field are suppressed. Hxismtograland

:
H
i
H
.s.
§
§
|

it = proc (x, y: real) returns (bool)
le = proc (x, y: real) returns (bool)
ge = proc (x, y: real) rettiims (bool)
gt = proc (x, y: real) retums (bool)
effects These are the standard ordering reiations.

egualupmc(x. y: real) returns (bool)
similar = proc (x, y: real) retums (bool)
effects Returns true i x and y are the same nuimber; retums fales otherwise.




A < s g o it o e
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I1.7. Strings

string = data type is c2s, concat, append, substr, rest, size, empty, fetch, chars, indexs, indexc,
82ac, ac2s, 828c, 8c2s, R, le, ge, gt, equal, similar, copy, transmit

Overview

Type string is used for representing text. A string is an immutable and atomic tuple of zero or
more characters. The characters of a string are indexed sequentially starting from one. Strings
are lexicographically ordered based on the ordering for characters.

A string literai is wrilten as a sequence of zero or more character representations enclosed in
double quotes. lebramdmmWmeu

used within string terals. No string can have a size greater than in{__max;, however, an
implementation may restrict string lengths to a vailue less than in{_max. K the result of a string
operation would be a string containing more than the maximum number of characters, the
operation signals mits.

Operations

c2s = proc (c: char) returns (string)
effects Retums a string containing ¢ as its only character.

concat = proc (st, wm)M(rM)m(ms)
effects Retums the concatenation of 7 and 82. That is, A=s7[] for i anindexofsund
fsize(s1)+A=8A for i an index of s2. Signale Mmits ¥ r would be too large for the
implementation.

append = proc (s: string, c: char) returns (r: string) signais (limits) _
effects Returns a new string having the characters of s in order followed by c. That is,
nsize(s)+1] = c. Signals limits ¥ the new siring would be 100 large for the implementation.

substr = proc (s: string, dkﬂaﬂlﬁ)n«rm(mmg)ﬂcmmm
effects If cnt < 0, signais negative_ size. ¥ at < 1 or at > size(s)+1, a'gmhm
Otherwige returns a string having the characters s{ad, s{at+1], ... in that order; the new
string contains min(cnt, size—-at+1) characters. For example,
substr ("abcdef”, 2, 3) = "bed”
substr ("abcdef”, 2, 7) = "bedef”
substr ("abcdef”, 7, 1) = ™
Note that i min(cnt, size-at+1) = 0, substr retums the empty string.

rest = proc (s: string, i: int) returns (r: string) signails (bounds)
effects Signais bounds if i < 0 or / > size{s) + 1; otherwise relums a string whose first
character is s[/}, whose second is §{i+7], ..., and whose size(rth character is s[size(s)].

Note that if / = size(s)+1, rest retume the empty string.

size = proc (s: string) retums (int)
effects Returns the number of characters in s.

empty = proc (s: string) returmns (bool)
effects Returns true if s is empty (contains no characters); otherwise retumns faise.

fetch = proc (s: string, i: int) returns (char) signais (bounds)
effects Signals bounds if i < 0 or i > size(s); otherwise returns the Ah character of s.

chars = ter (s: string) ylekis (char)
effects Yields, in order, each character of s (i.e., s{1], 8{2], ...).
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indexs = proc (s1, s2: string) returns (int)
effects if s7 occurs as a substring in s2, retums the least index at which s1 occurs. Returns
0 if s1 does not occur in 82, and 1 ¥ 81 is the empty string. For example,
indexs("abc", "abcbe”) = 1
indexs("bc”, "abche™) = 2
indexs(™, "abode”) = 1
indexs("bcb®, "abede”) = 0

indexc = proc (c: char, s: string) retums (int)
effects if ¢ occurs in s, retums the least index at which ¢ occurs; returns 0 ¥ ¢ does not
occurin 8.

s2ac = proc (s: string) retums (arrayichar])
effects Stores the characters of s as slements of a new array of characters, a. The low
bound of the array is 1, the size is size(s), and the h element of the array is the &h
character of s, for 1 < i < size(s).

ac2s = proc (a: array{char]) returns (string)
effects This is the inverse of s2ac. The resull is a string with characters in the same order

:ina. That is, the th character of the string is the (i+array{char}$/ow(a)-1)th element
a.

s2sc = proc (s: string) returmns (sequenceichar])
effects Transtorms a string into a sequence of characters. The size of the sequence is
size(s). The ih element of the sequence is the Ah character of s, for 1 < /< size(s).

sc2s = proc (s: sequence{char]) returns (string)
effects This is the inverse of a2sc. The result is a siring with characters in the same order
as in 8. That is, the Ah character of the string is the ih element of s.

it = proc (s1, s2: string) returns (bool)
le = proc (s1, s2: string) retums (bool)
ge = proc (s1, s2: string) returmns (bool)
gt = proc (s1, s2: string) retums (bool)
effects These are the usual lexicographic ordering relations on strings, based on the
ordering of characters. For exampie,
"abc” < "aca”
"abc” < "abca”
equal = proc (s1, s2: string) returns (bool)

similar = proc (s1, 82: string) retumns (bool)
effects Returns true ¥ s7 and s2 are the same string; otherwise retums false.

copy = proc (s1: string) returns (string)
effects Retums s7.

transmit = proc (s1: string) returns (string) signais (failure(string))
effects Returns s1. Signals faiiure only # 81 is not representable on the receiving end.
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I1.8. Sequences

sequence = data type [t: type] is new, e2s, fill, fill_copy, replace, addh, addl, remh, reml, concat,
subseq, size, empty, feich, bottom, top, elements, indexes, a2s, s2a,
equal, similar, copy, transmit

Overview

Sequences represent immutable tuples of objects of type £. The elements of the sequence can be
indexed sequentially from 1 up to the size of the sequence. ARhough a sequence is immutable,
the elements of the sequence can be mutable objects. The state of such mutable elements may
change; thus, a sequence object is atomic only if s elements are also atomic.

Sequences can be created by calling sequence operations and by means of the sequence
constructor, see Section 6.2.8.

Any operation cail that attempts to access a sequence with an index that is not within the defined
range terminates with the bounds exception. The size of a sequence can be no larger than the
largest positive Int (int_max), but an implementation may restrict sequences {0 a smaller upper
bound. An attempt to construct a sequence which is 100 large results in a imits exception.

Operations

new = proc ( ) returns (sequencelt])
effects Returmns the empty sequence.

62s = proc (elem: t) returns (sequence(t])
sffects Retumns a one-element sequence having elem as its only alement.

fill = proc (cnt: int, elem: t) returns (sequenceit]) signais (negative_size, limits)
effects If cnt < 0, sighals negative_size. If ont is larger than the maximum sequence size
supported by the implementation, signals imits. Otherwise retuins a sequence having
cnt elements each of which is elem.

fill_copy = proc (cnt: int, elem: t) returns (sequence(t])
signals (negative_size, limits, failure(string))

requires t has copy: proctype (1) retumns (1) signels (failure(string)

effects if cnt < 0, signhals negative__size. H ont is bigger than the maximum size of
sequences that the implementation supports, signals #mits. Otherwise retums a new
sequence having ont elements each of which is a copy of efem, as made by f$copy. Note
that $copy is called ont times. Any fallure signal raised by fScopy is immediately
resignalied. This operation does not originate any falure signais by itself.

replace = proc (s: sequencet], i: int, elem: t) returns (sequenceft]) sighals (bounds)
effects Iif i < 1 or i > higi(s), signais bounds. Otherwise retums a sequence with the same
elements as s, except that elem is in the &h position. For example,

replace(sequence{int]${2,5], 1, 6) = sequence{int]${s, 5]

addh = proc (s: sequence(t], elem: t) returns (r: sequenceft]) signals (limits)
effects Relums a sequence with the same elements as s followed by one additional
element, elom. That is, Ail=5[f] for / an index of s, and Asize(s)+1]=elem. ¥ the resulting

sequence would be larger than the impiementation supports, signals ¥mits.

add! = proc (s: sequenceft], elem: t) returne (r: sequenceft]) signals (limits).
effects Retums a sequence having elem as the first element followed by the elements of s
in order. That is, {1]}=6lem and {i=g[i-1] for i = 2, ..., size(r). ¥ the resulting sequence
wouid be larger than the implementation supports, signals Amits.

remh = proc (s: sequencsft]) returns (r: sequenceft]) signale (bounds)
effects If s is empty, signails bounds. Otherwise retums a sequence having all elements of s
in order, except the last one. That is, size(rj=size(s)-1 and fA=gAfori=1, ..., size(s)-1.
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copy = proc (s: sequence{t]) returns (sequenceft]) signais (failure(string))
requires ¢ has copy: proctype (i) returns (t) sighals (falkre(string))
effects Retums a sequence having as elements copies of the elements of s. The effect is
equivalent to that of the following procedure body:
qt = sequencat]
y: gt = gi$new()
for e: t In gi$elements(s) do
zn; qt$addiyy, tScopy(e)) resignal failure

retum (y)

transmit = proc‘(:a sequence(t]) retums (sequence(t]) signals (fallure(string))
effects Retums a sequence having as elements transmitied coples of the elements of s in
the same order. Sharing among elements is preserved. Sighais failure ¥ this cannot be
represented on the receiving end and algo resignais any fallures from fStransmi.

11.9. Arrays

array = data type [t: type] Is create, new, predict, fill, fill_copy, addh, addl, remh, remi,
set_low, trim, store, fetch, bottom, top, empty, size, low, high, elements, indexes,
equal, similar, similar1, copy, copy1, transmit

Overview

Arrays are mutable objects that represent tuples of elements of type ¢ that can grow and shrink
dynamically. Each array's state consists of this tuple of elements and a low bound (or index). The
elements are indexed sequentially, starting from the low bound. Each array aiso has an identity
as an object.

Arrays can be created by calling array operations create, new, fil, fil_copy, and predict. They can
aiso be created by means of the array construcior, which specifies the array low bound, and an
arbitrary number of initial elements, see Section 6.2.9.

Operations low, high, and size return the current low and high bounds and size of the array. For
array a, size(a) is the number of elements in a, which is zero i a is empty. These are related by
the equation: high(a) = low(a) + size{a) — 1.

For any index / between the low and high bound of an array, there is a defined element, af]. The
bounds exception is raised when an attempt is made to access an element outside the defined
range. Any array must have a low bound, a high bound, and a size which are all legal integers.
An implementation may restrict these to some smaller range of imegers. A call that would lead to
anmgnwmm“NwMMmemmmewmaasmam
exception.

Operations
create = proc (ib: int) returns (arrayit]) signals (limits)
effects Retums a new, empty aray with low bound /b. Limits occurs if the resulting array
would not be supported by the implementation.

new = proc ( ) returns (arrayft])
etfects Returns a new, empty array with low bound 1. Equivailent to create(1).
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store = proc (a: arrayft], i: Imt, elem: t) signals (bounds)
modifies a.
effects if / < low(a) or i > high{a), signals bounds; otherwise makes elem the element of a
with index /.

fetch = proc (a: arrayft], i: int) returns (1) signals (bounds)
offects If / < jow(a) or / > high({a), signals bounds, otherwise returns the element of a with

index i.
bottom = proc (a: arrayit]) returms (t) signhais (bounds)
effects it ais empty, signals bounds; otherwige retums aflow(a)).

top = proc (a: arrayft]) returns (t) signals (bounds)
effects If ais empty, signais bounds; otherwise returns glhigh(a)].

empty:proc(a array{t]) returns (beol)
offects Returns true if g contains no elements; otherwise retums false.

size = proc (a: arrayft]) returns (int)
offects Retums a count of the number of elements of a.

low = proc (a: arreyf{t]) retums (int)
effects Returns the low bound of a.

high = proc¢ (a: nrnym)romms(lm
effects Returns the high bound of a.

elements = iRer (a: arrayft]) yleids (t) signals (fallure(string))
effects Yieids the elements of a, exactly once for sach index, from the low bound to the high
bound (.., botlorn(&,,), ... 10p(Ryy)). The elements are feiched one at a time, using
the indexes that were legal at the start of the call. ¥, during the eration, a is modified so
that feiching at a previously legal index signais bounds, then the Rerator signals failure
with the string "bounds™. The iterator is divisible at ylelds.

indexes = iter (a: arrayft]) yiekis (int)
omctsYleldstheNoxesdafromthelowboundofa”tothehighboundof . Note

that indexes is unaffected by any modifications done by the loop body. It is divisible at
yields.

equal = proc (a1, a2: arrayit]) returns (bool)
effects Returns true ¥ a7 and a2 refer to the same array object; otherwise retumns false.

similar = proc (a1, a2: arrayft])) returns (bool) signals (fallure(string))
requires  has similar: proctype (t, t) returns (bool) signals (fallure(string))
effects Returns true if a7 and a2 have the same low and high bounds and ¥ their elements
are pairwise similar as determined by Ssimiiar. This eflect of this operation is equivalent
gﬂmgmmmm(exmmmmmhmmamm
at = array(t]
if at$low(al) ~= at$low(a2) cor at$size(al) ~= at$size(a2)
then retum (faise)
ond
for i: int In at$indexes(al) do
it ~t$similar(a1[i], a2[i]) then return (faise) end
resignal fallure
except when bounds: signal fallure("bounds™) end
end
retum (true)
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similar1 = proc (at, a2: arrayft]) returns (bool) signais (fallure(string))
nqulmt equal: proctype (1, t) retums (bool) signals (failure(string))
offects Retumns true if a7 and a2 have the same low and high bounds and i their elements
are pairwise equal as determined by Sequal. This operation works the same way as
similar, except that $$equal is used instead of Ssimiar.

copy = proc (a: array{t]) returns (b: arrayit]) signais (failure{string))
requires ¢ has copy: proctype (1) retumns (1) signais (falkire(string))
offects Retums a new array b with the same low and high bounds as a and such that each
slement b4 contains Scapy(a{f). The effect of this operation is equivalent to the
following body (except that & is only divisible at calis to $copy):

except when bounds: signal fallure(™bounds”) end
ond
retum (b)

copyl = proc (a: array[t]) returns (b: arrayit])
effects Retums a new array b with the same low and high bounds as a and such that each
element B4 contains the same element as a1.

transmit = proc (a: atrrayit]) returns (b: array{t]) signals (failure({string))
requires { has transmit
effects Returns a new amay b with the same low and high bounds as a and such that each
element b containg a transmitted copy of A{]. Sharing among the elements of a is
preserved in b. Signals falure ¥ b cannot be represented on the receiving end or if
fmmmmmamma%maMQMnmmWSany
failure signals raised by StransmR.

11.10. Atomic Arrays

atomic_array = data type [t type] Is create, new, predict, fill, fill_copy, addh, addi, remh, remi,
set_low, trim, store, fetch, bottom, top, emply, size, low, high, elements, indexes,
aa2a, a2aa, equal, similar, similar1, copy, copy1, tranemit,
test_and_read, test_and_write, can_read, can_write, read_lock, write_lock

Overview

Atomic__arrays are mutable atomic objects that represent tuples of elements of type ¢ that can
grow and shrink dynamically. Each atomic_ array's (sequential) state consists of this tuple of
elements and a low bound (or index). Theebmoﬁsmmmmhny starting from the
low bound. Each atomic_array aiso has an identity as an object.

Atomic_ arrays can be created by calling atomic_array operations create, new, fi, fill_copy, and
predict. They can aiso be created by means of the atomic_array constructor, which specifies the
array low bound, and an arbitrary number of iniial elements, see Section 6.2.9.

Operations fow, high, and size retum the current low and high bounds and size of the
atomic_array. For an atomic_array a, size{a) is the number of elements in a, which is zero if ais
empty. These are related by the equation: high(a) = low(a) + size(a) - 1.
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definedmnga Any atomic_amray must have a low bound, a high bound, and a size which are all
legal integers. Ankwm restrict these 10 some smaller range of integers. A call
that wouid lead to an atomic mmmomw or size is outside the defined range
terminates with a /imits exception. Mmits exception.

Atomic__arrays use read/write locking to achieve atomicity. The locking rules are described in
Section 2.2.2. It is an eror if a process that is not in an action attempts 1o test or obtain a lock;
when this happens the guardian running the process will crash. As defined below, the only
operation that (in the normal case) does not attempt to test or obtain a lock is the equa/ operation.

Operations

create = proc (Ib: int) returns (a:atomic_array{t]) signais (limits)
effects Retums a new, emply atomic a with low bound b. Limits occurs ¥ the

new = proc ( ) returns (stomic_array{t])
effects Equivalent to create(1).

predict = proc (ib, cnt: Int)mumo(a stomic MMM(

)
omeulwnkoumu )_size. Returns a new stomic_array with low bound b and
size cnt, amuhahmunchmn ¥ ihis now stemic mmmum
by the impiementation, signals Amits. The caller obtaing a read lock on the result.

fill_copy = proc (ib, cnt: int, elem: t) returns (stomic_

addh = proc (a: atomic_array{t], elem: t) signais (fimits)
modifies a.
offects Ottains a write lock on a. if extending & on the high end would cause the high
bourid or size of a to be outside the range supporied by the implementation, then signals
limits. Otherwise extends a by 1 in the high direclion, and siores elem as the new
element. Thatis, wmwn- alem.
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addl = proc (a: stomic_arrayjt], elem: t) signais (limits)
modifies a.

offects Obtains a write lock on 2. f extending a on the low end wouid causes the low bound
or size of a to be outside the range supported by the implementation, then signais #mits.
Otherwise extends a by 1 in the low disection, and siores sfem as the new eslement. That

is, a,,Jbu(a',,)-ﬂ = glom,
remh = proc (a: atomic_array(l]) retums (i) signals (bounds)
modifies a.

sttects Oblains a write lock on 2. |f & is empty, signels bounds. Otherwise shrinks a by
removing ks high element, and retums the removed slement. That is, high(a,,,) =

high(Bpeg) - 1.
remi = proc (a: atomic_array{t]) retums (1) signals (bounds)
modifies 2.

offects Obtains a write lock on a. if a is emply, signals bounds. Otherwise siwinks a by
removing s low element, and retums the removed element. Thdb.lw(w.
low(a,,,) + 1.

set_low = proc (a: atomic_array(t], b: int) signals (limits)
modifies a.

offects Obtains a write lock on a. i the new low (or high) bound would not be supported by
the implementation, then signais #mits. Otherwise, modifies the low and high bounds of
& the new low bound of a is & and the new high bound is Mgh(a,,) =
g Bopg)+1-0WA ).
trlm-proe(a:lomle _arrayit], b, cnt: Int) signais (negative_size, bounds)
dhchlfmko signals negative_size and doss not obiain any locks. Otherwise oblains a

write lock on a. i Ib < Jow(a) or I > high(a)+1, sighals bounds. Otherwise, modifies a by
removing all elements with index < & or greater 1han or egual 1o Deon; the new low
bound is . For exampie, ¥ & = atomic_armeyfniift 2,345, then:

tim(a, 2, 2) resulls in 2 having vaius slomic_smepiinti2: 2, 3]

trim({a, 4, 3) resulls In a having value stowils_| - arayintisi4: 4, 5]

store = proc (a: stomic_amayft], i I, elem: t) sighaile (bounds)
modifies a.

effects Obtaine a write lock on a. i / < jom(a) or / > hiphta), signale bounds; otherwise
makes siem the element of & with index /.

fetch = proc (a: stomic_amrayft], i Int) retume (1) signais (bounds)
offects it / < low(a) or /> high{s), signais bounds; ctherwise retums the element of & with
index /. Always obtaing a read lock on a.

bottom = proc (a: atomic mmmmw
unguabmm , otherwise relums aflow(a)]. Aways obtaine a read
ona

top = proc (a: atomic_arrayft]) retumns (t) signhals (bounds)
ﬂh::lahom signals bounds; otherwise returns aihigh(a)]. Aways obtains a read
ona

empty = proc (a: stomic_smrayit]) returns (bool)
offects Relums true ¥ a contains no elements, retums faise otherwise. In either case
obtains a read lock on &

size = proc (a: atomic_arrayft]) retumne (int)
mnm;mammuammua.m"nmbcuona
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low = proc (a: atomic_arrayft]) returns (int)
effects Retumns the low bound of a, obtains a read lock on a

high = proc (a: atomic_arrayft]) returns (int)
effects Returmns the high bound of a, obtains a read lock on a.

elements = Rer (a: atomic, mﬁbybﬂs(t)maﬂum(m»
offects Obtains a read lock on a and yields the elements of a, each exactly once for each

index, from the low bound to the high bound (i.e., boflon(a,,), ... lop(a,,,)). The
Mmmmaam.mmmm were logal at the stant of the
call. i, during the ieration, a is modified so that m a praviously legal index
signals bounds, then the iterator signals /aiure with the m“bounds The Rerator is
divisible at yields.

indexes = iter (a: atomic_srray(t]) yields (int)
effects Obtains a read lock on a, then yields the indaxes of a from the low bound of &, to
thohiu!boundda” Note that indexes is unaffected by any modilications done by the
loop body. 1t is divisible at yields.

aa2a = proc (aa: atomic_arrayft]) returmns (arrayft])
effects Obtains a read lock on aa and retums an array a with the same (sequential) state.

a2aa = proc (arrayft]) returns (aa: atomic_sirayft])
offects Retumns an atomic_array aa with the same state as a. Obtains a read lock on aa.

equal = proc (a1, a2: atomic_arrayft]) returns (bool)
effects Returmns true i a7 and a2 refer to the same atomic_array object; otherwise returns
false. No locks are obtained.

similar = proc (a1, a2: stomic_srray{t]) retums (bool) sighais (fallure(string))
requires { has similar: proctype (8, t) returne (bool) sigheale {tallure(string))
effects Retumns true ¥ a7 and a2 have the same low and high bounds and ¥ their elements
arepa&wiaﬂmlwadetomimdby.m See the description of the similar
operation of array for an equivalent body of code. This operation is divisible at calls to
$similar. Read locks are obtained on af and a2, in that order.

similari = proc (at, a2: stomic_arrayft]) retumns (bool) signeis (fallure{string))
requires t has equal: proctype (1, t) retums (bool) signals (failure(string))
effects Returns trus if a7 and a2 have the same low and high bounds and i their elements
are pairwise equal as determined by Sequal. This operation works the same way as
wywumhmmum Read locks are obtained on a7
and a2, in order

copy = proc (a: atomic_arrayft]) retumns (b: stomic_arrayft]) signals (failure(string))
requires ¢ has copy: proctype (1) returns (1) signais (falkure{string))
offects Retums a new alomic_array b with the same low and high bounds as a and such
that each element &[4 contains Scopy(a{f). See the description of the copy operation of
array for an equivalent body of code. This operstion is divisible at calis 1o $copy, and
oblains read locks on a and b.

copy1 = proc (a: atomic_arrayft]) retumns (b: atomic_;
effects Returns a hew atomic mbmmmmwmmsawm
thagamuombuwmmmesmﬂmm-sﬂ Read locks are obtained on a
and
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transmit = proc (a: atomic_arrayft]) retums (b: stomic_array{t]) sighals (failure(string))
requires { has transmit
effects Returns a new array b with the same low and high bounds as a and such that each
element b4 contains a transmitted copy of a]. Read locks are obtained on a and b.
Sharing among the elements of a is preserved in b. Signals falire ¥ b cannot be
represented on the receiving end or K fetching an element at a legal index of a,,, causes
a bounds exception and resignals any faiure signals raised by SStransmit.

test_and_read = proc (aa: stomic_array{t]) returns (bool)
effects Tries to obtain a read lock on aa. i the lock is obtained, retumns true; otherwise no
lock is obtained and the operation returmns fales. The operation does not "walt" for a lock.
Even i the executing action "knows” that a lock could be obiained, false may be
returned. Even ¥ false is returmed, a subsequent attempt to obtain a read lock might
succeed without waiting.

test_and_write = proc (aa: atomic_arrayit]) retums (bool)
effects Tries o obtain a write lock on aa. If the lock is obtained, retumns true; otherwise no
lock is obtained and the operation returme false. The operation does not "wak” for a lock.
Even ¥ the executing action "knows" that a lock could be obtained, falee may be
returned. Even if falee is retumed, a subsequent attempt to obtain a write lock might
succeed without waiting.

can_read = proc (aa: atomic_armayft]) returns (bool)
effects Retumns true i a read lock could be obtained on aa without waiting, otherwise
returns falee. No lock is aclually obtained. Even ¥ the executing action "knows” that a
lock could be obtained, false may be retumed. Since some concurrent action may obtain
or release a lock on an atomic_array at any iime, the information returned is unreliable:
even i true is retumed, a subsequent attermnpt 10 obtain the lock Mmay require walting; and
mmmhm,ammﬂmmmMaMMWImed

can_write = proc (aa: atomic_array(t]) returns (bool)

effects Returns true if a write lock coukli be obtained on aa without waiting, otherwise
retums faise. No lock is aciually obtained. Even if the executing action "knows" that a
lock could be obtained, false may be retumned. Since some concument action may obtain
or release a lock on an alomic_array at any time, the information retumed is unreliable:
even if true is retumed, a subsequent altempt 10 cbtain the lock may require waiting; and
oven i falee is returmed, a subsequent attempt 10 obtain a write lock might succeed
without walting.

read_lock = proc (aa: atomic_arrayft))
effects Obtains a read Jock on aa.

write_lock = proc (aa: stomic_arrayft])
effects Obtains a write lock on aa.
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similar = proc (s1, s2: st) returns (bool) signals (fallure(string))
requires each {; has similar: proctype (i, t) returns (booi) signais (failure(string))
effects Retumns true f 87 and s2 contain similar objects for each component as determined
by the t$similar operations. Any failure signal is immediately resignalied. This operation
does not itself originate any fajiure signal. The comparigon is done in lexicographic order
of the selectors; if any comparison retume false, falee is retumed immediately.

copy = proc (s: st) retumns (st) signale (fallure(string))
requires each {, has copy: proctype () returns (1) signais (fallure(string))
effects Retums a struct contalning a copy of each component of s; copies are obtained by
calling the tScopy operations. Any fakuwre signal is immediately resignalled. This
operation does not itsel originate any fadwe signal. Copying is done in lexicographic
order of the selectors.

transmit = proc (s: st) retums (st) signals (failure(string))
requires each {; has trahsmit
offects Retums a struct containing a transmitied copy of each component of . Sharing is
preserved among the components of s. Any faiure sighal from (Stransmit is
immediately resignalled. This operation does not itself originate any fafiure signal.

I.12. Records

record = datatype [n,:t,, .., n:t]isr_gets r,r_gets s, set_n,, .., set_n, get n,, .., get n,
equal,similar, similar1, copy, copy1, tranemit

Overview

A record is a mutable collection of one or more named objects. The names are called selectors,
and the objects are called components. Different components may have different types. A record
also has an identity as an object.

An instantiation of record has the form:

record [ field_spec , «.. ]
where

field_spec ..= name, ... : type_actual
(see Appendix I). Sobctonmﬂbou:ﬁ:nw&ﬂnmmmﬁon(mcaphﬁzabn),bmme
ordering and grouping of selectors is unimportamt. For example, the following name the same
type:

recordflast, first, middie: string, age: int]
recordflast: string, age: int, first, middie: string]

A record is created using a record constructor, see Section 8.2.11.

For purposes of the certain operations, the the names of the seleciors are ordered
lexicographically. Lexicographic ordering of the selectors is the alphabetic ordering of the selector
names written in lower case (based on the ASCIl ordering of characters).

In the following definitions of record operations, let 1t = recordn,:t,, ..., n.:t].
Operations

r_gets_r = proc (r1, r2: nt)
modifies r1.
effects Sets each component of r1 to be the corresponding component of r2.




rgets s=prog(r: i, s: st
modifien 7.

mmwnmmmmmummmmun
Sets ench componert of 710 be the CENSIpI ofs

set n=proc(rn, et
modifies 7.
oliscis Modiies r by meking the componsnt whose Seledior i 7, be o. There is a sef__
operation for eaoh selestor.
get_ny = proc (r: ) retme ()
effects Returns the component of 7whose ssiecior s 7, There is & get__ operation for sach
selacior.

equal = proc (rt, r2: rt) relns Hool)
mmm!nm., nm:num‘“mmm

otiocts Retums & new recond containing: the companants of s ks components.

)
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I.13. Atomic Records

atomic_record = data type [n, : t,, ..., n.:t,] s ar_gets_ar, set_n,, ..., set_n,, get_n,, .., get_n,,
ar2r, r2ar, equal,similar, similart, copy, copy1, tranemit,
test_and_read, test_and_write, can_read, can_write, read_lock, write_lock

Overview

An atomic_record is a mutable atomic collection of one or more named objects. The names are

called seleciors, and the objects are calied components. Different components may have different
types. An atomic_record aiso has an identity as an object.

An instantiation of atomic_record has the form:

atomic_record | field_spec , ... ]
where

field_spec .:= name, ... :
(see Appendix i). mmmuﬁummwmm).mm
ordering and grouping of selectors is unimportant. For exampie, the following name the same
type:

atomic_record{last, first, middie: string, age: int]
atomic_recordilast: string, age: int, first, middie: string]

An atomic_record is created using a atomic_record constructor, see Section 6.2.11.

For purposes of the certain operations, the the names of the selectors are ordered
lexicographically. Lexicographic ordering of the seleciors is the alphabetic ordering of the selector
names written in lower case (based on the ASCH ordering of characters).

Atomic_records use read/write locking to achieve atomiclly. The locking rules are described in
Section 2.2.2. It is an ermor i a process that is not in an action attempts to test or oblain a lock;
when this happens the guardian running the process will crash. As defined below, the only
operation that (in the normal case) does not attempt 10 test or oblain a lock is the equal operation.

In the following, let art = atomic_record{n,:t,, ..., n: 4]
Operations

ar_gets_ar = proc (r1, r2: ar)
modifies 1.

offects Obtaing a write lock on r7 and a read lock on r2, then sets each component of r7 to
be the corresponding component of r2.

get_n; = proc (r: art) retums (t)
effects Obtains a read lock on r and retums the component of r whose selector is n. There
Is a get_operation for each selecior.

set_n, = proc (r: art, e: t)
modifies r.

effects Obtains a write lock on r and modifies 7 by making the component whose selector is
n;be 6. There is a set_ operation for each selector.

arer = proc (ar: art) returns (r: art)
effects Obtains a read lock on ar and retums a record rwith the same state.

r2ar = proc (r: art) returng (ar: art)
effects retumns an atomic_record ar with the same state as r. Obtains a read lock on ar.
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equal = proc (r1, r2: arnt) returns (bool)
offects Returns true if r7 and r2 are the very same atomic_record object; otherwise returns
false. No locks are obtained.

similar = proc (r1, r2: art) retums (bool) signals (failure(string))
requires each {; has similar: proctype (1, {) returns (boel) signais (failure(string))
effocts Obtains a read lock on r7, then a read lock on 72 then compares corresponding
components from r1 and r2 using the (Seimilar operations. Any falure signal is
immediately resignalied. This operation does not itseif originate any falure signal. The
is done in lexicographic order of the seleciors; ¥ any comparison retumns
false, faise is returned immediately. If al comparisons retum true, retums true.

similar1 = proc (r1, r2: art) retums (bool) signais (fallure{siring))
requires each 1, has equal: proctype (i, t,) retums (bool) signais (failure(string))
effects This operation is the same as similar, except that t$equa/ is used instead of
1$similar.

copy = proc (r: art) retums (res: art) signsis (fallure(string))
requires each f; has copy: proctype (i) retumns (1) signals (fallure(string))
effects Obtains a read lock on r, then relumns a new atlomic__record res obtained by
pedomingcopﬂ(r)mdthonmplmhguehmmaocpyolm

copy1 = proc (r: art) returns (res: art)
effects Obtains a read lock on r, then retums a new alomic__record res containing the
componens of r as s componems. A read lock is aiso obtained on the new

atomic_record res.
transmit = proc (ar: art) returmns (art) signals (fallure(string))
requires each /; has transmit

effects Returns a new atomic_record containing a transmitted copy of each component of
ar. Sharing Is preserved among the components of ar. A read lock is obtained on ar and
the new atomic__array. Any fallure signal from tStranemit is immediately resignalied.
This operation does not itself originate any faliure signal.

test_and_read = proc (ar: art) returns (bool)
effects Tries to obtain a read lock on ar. Hf the lock is obtained, retums true; otherwise no
lock is obtained and the operation returns false. The operation does not “wait” for a lock.
Even i the executing action “knows” that a lock could be obtained, fales may be
retummed. Even i false is returned, a subsequent attempt to obtain a read lock might
succeed without walting.

test_and_write = proc (ar: art) retumns (bool)
effects Tries to obtain a write lock on ar. If the lock is obtained, retumns true; otherwise no
lock is obtained and the operation retums false. The operation does not “wait™ for a lock.
Even i the executing action "knows" that a lock could be obtained, fales may be
retuned. Even if falee is retumed, a subsequent attempt to obtain a write lock might
succeed without waiting.




read_lock = proo (ar: art)

offonts Obiaing & read lock on ar.
wrke_lock = proe (ar: &t
MMI“MN‘U’
il.14. Oneofs
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Operations

make_n, = proc (e: {) retarms (of)
Mm:mmmmq“*a Thers is & make_ Mtxm

is_ny = Proc (o: of) feturns (Sool)
offects Retuns trus ¥ the tag of 0 is 1, el relens Iise. There is an /s operation for
each selector.
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value_n; = proc (0: ot) retums (t) signais (wrong_tag)
effects if the tag of 0 is n, retums the value of 0; otherwise signals wrong_tag. There is a
value_ operation for each selector.

02v = proc (o: ot) retums (vt)
effects Here vt is a variant type with the same selectors and types as ot Returns a new
variant object with the same tag and value as 0.

v20 = proc (v: vt) returns (ot)
effects Here vt is a variant type with the same selectors and types as of. Returns a oneof
object with the same tag and value as v.

equal = proc (01, 02: of) retums (bool) signais (faillure(string))
requires each {; has equal: proctype (t, {) returns (bool) signais (failure(string))
effects Retums true ¥ o7 and 02 have the same tag and equal values as delermnined by the
equal operation of their data part's type. Any falwe signal is immediately resignalied.
This operation does not kseif originate any faiire signal. This operation is divisible at the
call of t$equal.

similar = proc (01, 02: ot) returns (bool) signals (failure(string))
requires each 1, has similar: proctype (i, ) returns (bool) signais (failure(string))
offects Retumns true it 07 and o2 have the same tag and similar values as determined by
the similar operation of their vaiue's type. Any /alkre signai is immediately resignalied.
This operation does not itself originate any 7aiure signel. This operation is divisible at the
call of t$similar.

copy = proc (0: ot) returns (ot) signals (fallure(string))
requires each {; has copy: proctype () retums (t) signale (failure(string))
effects Retums a oneof object with the same tag as 0 and containing as a value a copy of
o's value; the copy is made using the copy operation of the vakie's type. Any faiure
signal is immediately resignalied. This operation does not Rself originate any fafiur
signal. This operation is divisibie at the call of t$copy.

transmit = proc (o: ot) returns (ot) signais (fallure(string))
requires each {; has transmit
effects Retumns a oneof object with the same tag as o and contalning as a value a
transmitted copy of o's value. Any faiure signal is immediately resignalied. This
operation does not itself originate any faiure signal.

I.15. Variants

variant = data type [n,:t,, ..., i 1,] I8 make_n,, ..., make_n,, change_n,, ..., change_n,,
is_n,, ..., is_ny, value_n,, ..., value_n,, v_gets v,v_gets o,
equal, similar, similart, copy, copy1, transmit

Overview

A variant is a mutable, tagged, discriminated union. His state is a oneof, that is, a labeled object,
to be thought of as "one of" a set of aternatives. The label is called the fag part, and the object is
called the value (or data part). A variant aiso has an identity as an object.

An instantiation of variant has the form:
variant [ field_spec , ... ]
where
field_spec ..= name, ... : type_actual
(see Appendix I). Tags must be unique within an instantiation (ignoring capitalization), but the
ordering and grouping of tags is unimportant.
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Although there are variant operations for decomposing variant objects, they are usually
decomposed via the tagcase statement, which is discussed in Section 10.14.

In the following let vt = variantin,:t,, ..., ;)

Operations

make_n, = proc (e: ) returns (v)
effects Retums a new variant object with tag n; and value 6. There is a make_ operation for
each selector.

change_n, = proc (v: vt, e: t)
modifies v.
effects Modifies v to have tag n; and value e. There is a change__ operation for each
selector.

is_n; = proc (v: vt) returns (bool)
effects Returns true if the tag of v is n; otherwise returns false. There is an is_ operation
for each selector.

value_n; = proc (v: vt) returns (t) signais (wrong_tag) ,
effects If the tag of v is n, retums the value of v; otherwise signais wrong_tag. There is a
value__ operation for each selector.

v_gets_v = proc (vi, v2: vt)
modifies v1.
offects Modifies v1 to contain the same tag and value as v2.

v_gets 0 = proc (v: v, 0: ot)
modifies v.
effects Here ot is the oneof type with the same selectors and types as vt Modifies v to
contain the same tag and value as 0.

equal = proc (vi, v2: vi) retums (bool)
eftfects Returns true ¥ v7 and v2 are the same variant object.

similar = proc (v1, v2: vi) returns (bool) signals (tallure(string))
requires each 1, has similar: proctype (i, {) returas (bool) sighals (failure(string))
offects Retums true ¥ v7 and v2 have the same tag and similar veiues as determined by the
similar operation of their value's type. Any faikre signal is immediately resignalled. This
g'penﬁondonmtuo!wmywmaw This operation is divisible at the call
t$similar,

similart = proc (v1, v2: vt) returns (bool) signais (fallure(string))
requires each 1; has equal: proctype (t, ) retums (bool) signels (failure(string))
effects Same as similar, except that {Sequal is used Instead of i$simiar.

copy = proc (v: vt) retums (vi) signale (failure(string))
requires each {; has copy: proctype () retums (1) signale (failure(string))
effects Retumns a variant object with the same tag as v and containing as a value a copy of
vs value; the copy is made using the copy operation of the value's type. Any fajlure
signal is immediately resignalied. This operation does not itself originate any failure
signal. This operation is divigible at the call of {$copy.

copy1 = proc (v: vt) retums (vt)
effects Retumns a new variant object with the same tag as v and containing v's value as its
value.
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transmit = proc (v: vi) returns (vt) signais (failure(string))
requires each {; has transmit
offects Retums a variant object with the same tag as v and containing as a value a

transmitted copy of vs value. Any fafre signal is immediately resignalied. This
operation does not itself originate any fallure signal.

I.16. Atomic Variants
atomic_variant = data type [n;: t,, ..., n,: ] Is make_n,, ..., make_n,, change_n,, ..., change_n,,

av_gets_av,is_n,, ..., is_n,, value_n,, ..., value_n,, avav, vaav,
equal, similar, similart, copy, copy1, transmi,
test_and_read, test_and_write, can_read, can_write, read_lock, write_lock

Overview

An atomic_variant is a mutable, atomic, tagged, discriminated union. s siate is a oneof, that is, a
labeled object, to be thought of as "one of” a set of alkemnatives. The label is calied the tag part,
and the object is called the value (or data part). An atomic_variant also has an identity as an
object.

An instantiation of atomic_variant has the form:
stomic_variant [ field_spec, ...}
where
field_spec .= name, ... : type_actual
(see Appendix I). Tags must be unique within an instantiation (ignoring capitalization), but the
ordering and grouping of tags is unimportant.
Although there are atomic_ variant operations for decomposing stomic_ variant objects, they are
;ﬁ&anhmmﬂmMmmm,Mmdmmdm
10.15.

In the following, let avt = atomic_varlant[n,:t,, ..., n: 4].

Operations

make_n, = proc (e: t) returns (av: avt)
effects Returns a new atomic_variant object av with tag n; and value 6. Obtains a read lock
on av. There is & make_ operation for each selector.
change_n, = proc (v: avt, e: t)
modifies v.
effects Obtains a write lock on v, then modifies v 10 have tag n; and value e. There is a
change_ operation for each selector.

av_gets_av = proc (v1, v2: avt)
modifies v71.

effects Obtains a read lock on v2 and then a write lock on v?1, then modifies v? o comtain
the same tag and value as v2.

is_n, = proc (v: avt) returns (bool)
effects Obtains a read lock on v, then returns true if the tag of v is n; otherwise returns
false. There is an is_ operation for each selector.

value_n; = proc (v: avt) returns (t,) signais (wrong_tag)
effects Obtains a read lock on v. Then, i the tag of v is n, retums the value of v; otherwise
signals wrong_tag. There is a value_ operation for each selactor.
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av2v = proc (av: avt) retums (v: vi)
effects Here vt is a variant type with the same selectors and types as avt. Obtains a read
lock on av and retums a variant v with the same state.

v2av = proc (v: vt) returns (av: avt)
offects Here vt is a variant type with the same selectors and types as avt. Returns an
atomic_variant av with the same state as v. Obtains a read lock on av.

equal = proc (v1, v2: avt) retumns (bool)
offects Returns true i v7 and v2 are the same atomic__variant object. No locks are
obtained.

similar = proc (v1, v2: avt) returns (bool) signais (failure(string))
requires each 1; has similar: proctype (i, t) returns (bool) signais (failure(string))
moumrudbduon vl and v2, in orcler, and then compares the objects; returns
true if v1 and v2 have the same tag and similar values as determined by the similar
operation of their type. Any failure signal is immaediately resignalled. This operation does
not itself originate any 7ailure signal. This operation is divisibie at the cali of t$similar.

similar1 = proc (v1, v2: avt) returns (bool) signale (fallure(string))
requires each 1, has equal: proctype (i, t) returns (bool) signals (failure(string))
effects Same as similar, except that 1$equal is used instead of 1$similar.

copy = proc (v: avt) returns (avt) signais (fallure{siring))
requires each {; has copy: proctype (i) relurns (1) signais (fallure(string))
moumamademmm-;m _variant object with the same tag as
v and containing as a value a copy of vs vaiue; the copy is made using the copy
operation of the value's type. Any falre signal is immediately resignalled. This
operation does not itsekf originate any faiure signal. This operation is divisble at the call
of t$copy. A read lock is obtained on the resul.

copy1 = proc (v: avt) returns (avt)
effects Obtains a read lock on v, then returns a new atomic_variant object with the same tag
as vand containing v's value as s value. A read lock is obtained on the result.

transmit = proc (v: avl) returns (avt) signals (failure(string))
requires each f, has transmit
effects Returns an atomic_variant object with the same tag as v and containing as a value a
transmitted copy of v's value. Oblains a read lock on v. Any faiure signal is immediately
resignalled. This operation does not itself originate any faliure signal.

test_and_read = proc (av: avt) returns (bool)
eoffects Tries to obtain a read lock on av. If the lock is obtained, retumns true; otherwise no
lock is obtained and the operation retums false. The operation does not "walkt” for a lock.
Even i the executing action "knows” that a lock could be obtained, falee may be

retumed. Even I faise is retumned, a subsequent attempt to obtain a read lock might
succeed without waiting.

test_and_write = proc (av: avt) retums (bool)
etfects Tries to obtain a write lock on av. Iif the lock is obtained, retumns true; otherwise no
lock is obtained and the operation retums faless. The operation does not “walt” for a lock.
Even i the executing action “knows" that a lock could be obtained, falee may be
retumed. Even if faiee is retumed, a subsequent attempt to obtain a write lock might
succeed without waiting.
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can_read = proc (av: avt) retums (bool)

effects Retums true ¥ a read lock could be obtained on av without walting, otherwise
retumns faise. No lock is actually obtained. Even ¥ the executing action “knows” that a
lock could be obtasined, false may be returned. Since some concrrent action may obtain
or reiease a lock on an atomic_variant at any time, the information retumed is unreliable:
even ¥ trus is retumed, a subsequent atiempt 10 ablain the lock may require walting; and
even i false is retumed, a subsequent atlempt ©0 oblsin a read lock might succeed
without walting.

can_write = proc (av: avt) returns (bool)

effects Retums true ¥ a write ook coukl be obtained on av without waiting, otherwise
returns falee. No lock is ackually oblained. Even ¥ the executing action “knows” that a
lock could be obtained, fales may be retumed. Since some concusvent action may oblain
or release a jock on an slomic_variant at any ims, the inlermation retumed is unreliable:
even ¥ true is rehurned, a subsaquent aiempt 1 oblain e lock may require walling: and
even i falee is returmned, a subsequent attermpt o obiain & write lock might sucosed
without walting.

read_lock = proc (av: avt)
effects Obtains a read lock on av.

write_lock = proc (av: avt)
sffects Obtains a write lock on av.

I1.17. Procedures and Rerators

proctype = data type is equal, similar, copy
itertype = data type is equal, similar, copy

Overview

Procedures and kerators are objects creaied by the Argus system. The type specification for a
procedure or lerator contains most of the information steted in a procedurs or Rerator heading; a
procedure type specification has the form:

proctype ( [ type_spec. ... ]) [ retums ] [ signais ]
and an Rerstor type specification has the form:

Rertype ( [ type_spec , ... ] ) [ yieids ] [ signais ]
where

retumns == returns (type_spec, ...)

yields = Yyields (type_spec, ...)

signals 3= signale (exception , ...)

exception  :i= name [ (type_spec, ...) ]

(see Appendix 1). The first st of type specifications describes the number, types, and order of
arguments. The relums or yields clause { he number, types, axi onder of the objects to be
returned or yleided. The signais clauss ligis the sxoeptions saised by the procedure or Reralor; for
each exception name, the rumber, types, and order of the ohjects 10 e retumed are aleo given.
Al names used in a signale clauss must be uniqe. The onisdng of exoaptions is not impertant.
For example, both of the following type specifications aeme the procedure typs for string$subsy

proctype (siring, int, int) retums (siving) signeis (bounds, negetive_size)
proctype (string, int, int) retumns (string) signals (negative_size, bounds)
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Procedure and lterator objects are created by compiiing modules (and by the bind expression,
see Section 9.8). Procedure and Rerator types are not transmissible and are considered to be
immutable and atomic in normal use. However, some uses of own data (see Section 12.7) in
procedures and iterators can violate this assumgption.
In the following operation descriptions, ¢ stands for a proctype or tertype.

Operations

equal = proc (x, y: t) returns (bool)
similar = proc (x, y: t) returns (bool)
effects These operations return true if and only f x and y are the same implementation of
the same abstraction, with the same parameters (see Section 12.6).

copy = proc (x: t) retumns ()
effects Returns x.

I.18. Handlers and Creators

handiertype = data type I8 equal, simiiar, copy, transmit
creatortype = data type is equal, similar, copy, transmit

Overview

Handlers and creators are created by the Argus system. The type specification for a handler or
creator conains most of the information stated in a handler or creator heading; a handler type
specification has the form:

handiertype ( [ type_spec , ... ] ) [ retums ] [ signais ]
and a creator type specification has the form:

creatortype ( [ type_spec, ... ]) [ retums ] [ signais ]

where
retumns == returns (type_spec, «..)
signals ««= signale (exception , ...)

exception  ::= name [ (type_spec, ...) ]

(see Appendix I). The first list of type specifications describes the number, types, and order of
arguments. The returns clause gives the number, types, and order of the objects %0 be returned.
The signais clause lists the exceptions raised by the handler or creator; for each exception name,
the number, types, and order of the objects t0 be retumed are also given. All names used in a
signals clause must be unique; none can be unavalable or failre, which have a pre-defined
meaning for remote calis {(see Section 8.3). The ordering of exceptions is not important.

Creators are created by compiling modules, and handiers are created as a side-effect of guardian
creation. Handlers and creators are transmissible and are considered to be immutable and atomic
in normal use. Certain uses of own data in handiers can violate this assumption.

In the following operation descriptions, ¢ stands for a handiertype or creatortype.

Operations

equal = proc (x, y: t) returns (bool)
similar = proc (x, y: t) returns (bool)
effects These operations retum true i and only if x and y are the same object (see Section
12.6 for an exact definition for the case of creators in guardian generators).
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copy = proc (x: t) returns (t)
transmit = proc (x: t) returns (t)
effects Retums x.

I.19. Anys
any = data type Is create, force, is_type
Overview

An object of type any contains a type T and an object of type 7. Anys are immutable and are not
transmissible. Anys are atomic only ¥ thelr contained object is atomic.

Operations

create = proc[T: type] (contents: T) returns (any)
effects Returns an any object containing contents and the type T.

force = proe[T mnl (thing: any) retumns (T) signais (wrong_type)
if thing containg an object of a type included in type 7, then that object is retumned;

otherwisemmg type is signafied.

is_type = PWW](M any) retums (bool)
effects if thing contains an object of a type included in type T, then true is retumed;
otherwise, falee is retumed.

11.20. Images
image = data type Is create, force, is_type, copy, transmit
Overview

An object of type image is the value of an arbitrary transmissible type. See Section 14 for more
details. Images are immutable, atomic, and transmissible.

Operations

create = proc{T: type] (contents: T) returns (image) signals (failurestring)
requires T has tranamit

offects Returns an image object obtained from contenis via the encode operation of T.
Resignais any fallure signal raised by T's encode operation.

force = proc{T: type] (thing: image) returns (T) signais (wrong_type, fallure(string))
requires T has transmit
effects If thing encodes an object of a type included in type 7, then that object is extracted
using the decode operation of 7 and retumed. Otherwise wrong _fype is signalied.
Resignals any failure signal raised by T's decode operation.

is_type = proci{T: type] (thing: image) returns (bool)
requires T has tranemit
effects If thing encodes an object of a type inciuded in type 7, then true is retumed;
otherwise, false is returned.
copy = proc (thing: image) returns (image)

transmit = proc (thing: image) retums (image)
effects Retumns thing.
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i.21. Mutexes
mutex = data typeit: type] is create, set_value, get_value, changed, equal, similar, copy, transmit
Overview

A mutex is a mutable container for an object of type t. A mutex aiso has an identity as an object.

An object of type mutex(t] provides muiual exciugion for process synchronization, and aliows
explicit control over how information contained in the mutex Iis written to stable storage (see
Section 15.1).

The seize statement is used in order to gain possession of a mutex. See section 6.7.

Although mutex objects are mutable, sharing among rmutex objects is usually wrong, because the
contained object shouid only be accessibie through the mutex. Hence there is no copy?
operation, since this would introduce sharing, and there is no similar! operation to check for
sharing (see Section 6.7).

Operations

create = proc (thing: t) returns (mutex{t))
effects Returns a new mutex object containing thing.

set_value = proc (container: mutexft], contents: t)
modifies container.
effects Modifies container by replacing its contained object with contents.

get_value = proc (container: mutex{t]) retums (t)
effects Returns the object contained in container.

changed = proc (container: mutex|t])

' effects Iinforms the Argus system that the calling action requires the contents of container to
be copied to stable storage by the time the action commils, provided container is
accessible from a stable variable. & is a programaming emor ¥ a process that is not
running an action calis this operations, and if this is done the guardian will crash.

equal = proc (m1, m2: mutex|t]) returns (bool)
effects Returns true if and only ¥ m1 and m2 are the same object.

similar = proc (m1, m2: mutext]) retums (bool) signais (fallure(string))
requires t has similar: proctype(t, t) W (tallure(string))
offects Seizes m1, then seizes m2, and calls 10 determine its result; any failure

signal is immediately resignalled. Possession of both mutexes is retained until $similar
terminates.

copy = proc (m1: mutexit]) returns (m2: mutext]) signais (faikire(string))
requires t has copy: proctype(t) returns(t) signeis (fallure(string))
effects Seizes m7, then calis fScopy to make a copy which & places in the new mutex object
m2. Any failure signal is immediately resignalied. Possession of m1? is retained until
$copy terminates.

transmit = proc (m1: mutex(t]) returms (mutexit]) signeis (failure(string))
requires t has tranamit
effects Seizes m7, and retums a new mutex containing a transmitted copy of the contained
object. Any falure signal is immediately resignalled. Possession of m1 is retained until
Stransmit terminates.
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Appendix Il
Rules and Guidelines for Using Argus
This appendix collects the rules and guidelines that should be followed when programming in Argus.
Following these rules makes selze statements meaningtul, actions atomic, and so on. In some rare
cases there may be valid reasons for violating these guidelines, but doing so greatly increases the
difficulty of building, debugging, and running the resulting system.

All of the rules listed in this appendix are based on information appearing elsewhere in the manual.
Each rule is followed by a brief rationale, including a reference to the section of the manual from which it
is drawn.

lil.1. Serializability and Actions
¢ Actions should share only atomic objects.
Rationale: Actions that share non-atomic data are not necessarily serializable. [Section 2.2.2]

o A subaction that aborts should not retum any information obtained from data shared with other
concurrent actions.

Rationale: Returning such data may violate serializability. [Section 2.2.1]

¢ A nested topaction should be serializable before its parent. This is true i either

1.the nested topaction performs a benevolent side effect (a change to the state of the
representation that does not affect the abstract state), or

2. all communication between the nested topaction and its parent is through atomic objects.
Rationale: Other uses may violate serlalizability. [Section 2.2.3]

» The creation or destruction of a guardian must be synchronized with the use of that guardian via
atomic objects such as the catalog.

Rationale: Otherwise serializability may be violated. [Section 10.18]

ll.2. Actions and Exceptions

o If an exception raised by a call should not commit an action, the exception must be handied within
that action.

Rationale: if an exception raised within an action body is handied outside the action, the implicit flow of
control outside of the action will commit the action. [Section 11.5]
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li1.3. Stable Variables
«» Stable variables should denote resilient data objects.

Rationale: Only data objects that are (reachable from the stable variables and) resifient are written to
stable storage when a topaction commits. (This can be ensured by having stable variables only denote
objects of an atomic type or objects protected by mutex.) Non-resiient objects stored in stable variables
are only written to stable storage when the guardian is created. [Section 13.1]

« If a bound procedure or kerator will be accessible from a stabie variable,
1. the procedure or iterator being bound must be atomic and

2. only atomic objects shouid be bound as arguments.

Rationale: The bound procedure or iterator may be stored in stablé storage, and non-atomic data is
only written to stable storage once. [Section 9.8]

lil.4. Transmission and Transmissibility
¢ An abstract type’s encode and decode operations should not cause side effects.

Rationale: The number of calis to an encode or decode operation is unpredictable, since arguments or
results may be encoded and decoded several times as the sysiem tries to establish communication. In
addition, veritying the correctness of transmission is easier # encode and decode are simply
transformations to and from the external representation. [Section 14.3]

« if the naming relation among objects to be transmitted is cyclic (e.g., a circular list) then encode and
decode must be implementad in one of two ways:

1. The infernal and external representation types must be identical, and encode and decode
return their argument without modifying or accessing &, or

2. The external representation object must be acyclic.
Rationale: A circular external representation may cause decode to fail. [Section 14.4]

« Objects that share other objects should be bound into a handler or creator in the same bind
expression.

Rationale: Sharing is only preserved among objects bound at the same time. [Section 9.8]
IiL.5. Mutex
» Mutual exclusion or atomic data should be used o synchronize access to all shared objects.

Rationale: in the presence of concurrency, any interleaving of indivisible events is possible. Without
synchronization mechanisms, this concurrency will be visible to programs, significantly complicating
coding and testing. [Section 8]
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« All modifications to mutex objects shouid be made inside seize statements.

Rationale: The system will gain possession of a mutex object before writing it to stable storage; thus,
seizing a mutex in order to modify it will prevent the system from copying a mutex object when it is in an
inconsistent state. This also prevents other processes from seeing inconsistent data [Section 15.2 and
Section 15.1]

o Nested seizes should be avoided when pause is used, and psuse must be avoided when nested
seizes are used.

Rationale: A pause in a nested seize does not actually release possession of the mutex object.
[Section 10.17]

o If an object is referred to by a mutex object, it should not be referred to by any other object, nor
should it be denoted by a variable except when in possession of the containing mutex.

Rationale: If an object contained in a mutex can be reached by a method other than seizing the mutex,
the mutual exclusion property of the mutex is undermined. [Section 6.7]

e No activity that is likely to take a long time should be performed while in a selze statement. In
particular, programs should not make handier calls or walt for locks on atomic objects while in possession
of a mutex.

Rationale: Waiting for a lock while in a mutex is likely 10 cause a deadlock with other actions or
between the action hoiding the mutex and the Argus system. [Section 15.3]

o Mutex objects shouid not share data with one another, uniess the shared data is atomic or mutex.

Rationale: Sharing of non-atomic objects between mutex objects is not preserved when the mutexes
are written to stable storage. [Section 15.3]

+ Mutex{fi$changed must be called after the last modification (on behalf of some action) to the
contained object of a mutex.

Rationale: The Argus system is free to copy the mutex to stable storage as soon as mutex|{§$changed
has been called. Changes after the last call to mutexi$changed but before topaction commit may not
be written to stable storage. [Section 15.3]

o Mutex[fi$changed should be called even if the mutex object changed is not accessible from the
stable variables.

Rationale: In a scenario where the object was accessible, becomes inacoessible, then becomes
accessible again, it is possible that stable storage would not be updated properly i this rule were not
followed. The system guarantees that no problems with updating stable storage will arige if
mutex{fi$changed is always called after the last modification to the object. [Section 15.3]
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¢ An atomic type implemented with a representation consisting of several mutex objects should use
separate topactions to ensure that the mutexes are written to stable storage in an order that preserves
the correctness of the representation.

Rationale: Mutexes are wriften to stable storage incrementally. Sometimes, subtie timing problems
can be caused by incremental writing if this rule is not folowed. [Section 15.3]

lil.6. User-Defined Atomic Objects

« If an atomic object X of type T provides operations O, and O,, and action A has executed O, but not
yet committed, then operation O, can be performed by a concurrent action B only if O, and O, commute:
given the current state of X, the effect (as described by the sequential specification of T7) of performing
O,, then O, is the same as performing O,, then O,. "Effect” includes both results retumed and the
(abstract) state modified.

Rationale: There are two concurrency constraints for user-defined atomic objects:

1. An action can observe the effects of other actions only i those actions commiitted relative to
the first action.

2.0peratiomexocmadbyoheactioncmﬁimaﬁdatoherosu&sofopombnsexmwby
a concurrent action.

Two operations (or sequences of operations) that comimute in their effect on the abstract state of X may
be permitted to run concurrently, even if they do not commuste in their effect on the representation of X

This distinction between an abstraction and its implementation is crucial in achieving reasonable
performance. [Section 15.4]

« if a user-defined atomic object is accessible from the stable variables of some guardian, it should be
written to stable storage whenever an action that modifies it commits to the top.

Rationale: A user-defined atomic type that is not written to stable storage on topaction commit will not
be resilient. [Section 15.2]

» The form of the rep for a user-defined atomic type should be one of the following possibilities.
1. The rep is itself atomic. Note that mutex is not an atomic type.
2. The rep is mutex{f] where ¢ is a synchronous type. For example, t could be atomic, or it

could be the representation of an atomic type, if the operations on the this fictitious atomic
type are coded in-line 80 that the entire type behaves atomically.

3. The rep is an atomic collection of mutex types containing synchronous types.

4. The rep is a mutable collection of synchronous types, and objects of the representation
type are never modified after they are inktialized. That is, mutation rmay be used to create
the initial state of such an object, but once this has been done the object must never be
modified.

Rationale: In any other case it will be impossible to guarantee the resilience or serializability of the
type’s objects independently of how they are used. [Section 15.3]




I1.7 Subordinate Where Claugses 157

il.7. Subordinate Where Clauses

o A where clause requirement on a cluster as a whole shouid be used whenever the actual parameters
make some difference in the abstraction. For example, in a set cluster, the type parameter's equal
operation must be required by the cluster as a whole, in order to preserve type safety and the
representation invariant.

Rationale: Argus assumes that requirements that are not piaced on the cluster as a whole do not
affect the semantics of the abstraction or the represerntation. [Section 12.6]
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Appendix IV
Changes from CLU
This appendix lists the changes made to Argus that are not upward compatible with CLU, that is, those
which are not merely additions to CLU and that would cause a CLU program fo be illegal or to run
differently.

IV.1. Exception Handling

Unlike CLU, which propagated unhandled exceptions (by turning them into failure exceptions) and gave
the failure exception special status, unhandied exceptions in Argus are considered errors and always
cause a crash of the guardian, and faiure is not given special status. All exceptions signalled in a
procedure, iterator, handler, or creator must be declared in the routine’s header, and there are no implicit
resignals of failure exceptions. See Section 11.6 for detaiis.

IV.2. Type Any

The type any is now a type like any other type, with parameterized routines force, create, and is_type.
Thus the CLU manual’s notion of "type inclusion” is no longer necessary (but there is a new notion of type
inclusion in Argus, see Section 6.1). The any$force routine only signals "wrong_type” if the any object’s
underlying type is not included in the type parameter given, but the type of the result of any$force is its
type parameter. The any$is_type routine retums false if the any object’s underlying type is not included
in the type parameter given. The CLU reserved word “force" was eliminated from Argus, and the creation
of an any object is never implicit in an assignment in Argus.

IV.3. Built-in Types

Several changes to the interfaces of the built-in types were necessitated by the changes to exception
handling. Specifically, the following changes were made to the built-in types.

1. The string operations concat, append, s2ac, ac2s, s2sc, and sc2s, can now all signal imits.
A string iiteral that would be t00 large to represent wili not be compiled.

2. The sequence operations fll, fil_copy, addh, addl, and concat can now all signal limits. A
sequence constructor that would be too large 1o represent will not be compiled.

3. The array (and atomic_array) operations create, predict, set_low, fill, fill_copy, addh, and
addl can now all signal imits. An array construcior that cannot be legally represented will
either not be compiied (if this can be detected at compiie time) or will signal limits.

4. The copy operations of the structured built-in type generators, and the fil_copy operations
of sequence and array (and atomic__array), aflow the copy operations of their type
parameters to have a falure(string) exception. They will resignal such a faitwre exception.
(Note that the type inclusion rule allows a type parameter to be used even if its copy
operation does not have exceptions.)

5. The similar operations of the built-in structured type generators aliow the similar operations
of their type parameters to have a fa/lure(string) exception. They will resignal such a failure
exception.

6. The equal operations of the type generators sequence, struct, and oneof, and the similar1
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operations of the type generators array, record, and varlamt (and their atomic

counterparts), allow the equa/ operation of their type parameters t0 have a faiure(string)
exception. They will resignal such a failure exception.

7. The elements iterator and the simiar and simviar! procedures of the type generator array

(and atomic_array) will raise a faiure{string) exception i the array argument is mutated in
such a way as 10 cause a bounds exception when an element is fetched.

IV.4. Type Inclusion
Type inclusion (the new notion, see Section 6.1) is used in all contexts, including the decis of except
and tagcase statements, where CLU had previously required type equailty.

IV.5. Where Clauses
CLU had syntax in the where clause (speciically the production for op__name) that allowed one to

require an instantiation of a type parameter's generator. This littie used feature has been superseded by
the mechanism described in Section 12.6.

IV.6. Uninitialized Variables
An uninitialized variable reference error is defined to cause a crash of the guardian, rather than raising
a fallure exception, which could conceivably be caught.

IV.7. Lexical Changes :
Several new reserved words were added. In addition, the semicoion (;) was banished from the syntax.

IV.8. Input/Output Changes

The input/output data types (file_name, stream, andistmm)andthobmypmcedtnsduabodm
appendix |l of the CLU manual are not furnished by the Argus system. Our current implementation of
Argus provides a keyboard cluster for input and a pstream cluster for output. In addition, most of the
built-in types currently have print operations defined, for pretty-printing objects onto pstreams. These I/0
mechanisms, however, are still experimental, and 8o are not documented in this reference manual.




Index

Index

and exception handling 73

See also atomic
Activation action 41,43
Actual argument 40
Actual parameter 80, 81
Ancestor 10
Any 22,24, 32, 150

versus CLU 159

versus image 32
Argument

actual 40

versus parameter 80
Amray 25,52, 130

constructor 26
Assignment 4, 30, 40

and concurrency 39

implicit 39

multiple 39

simple 39

siatement 39

type checking for 39
Avmic 3,8,97

action 8
built-in atomic types 9, 30, 133, 141, 146
object 9
type 9,97
Aomic_array 30,

Call 4,40, 41, 44,50, 51, 57
action 41
by sharing 4, 40
byvalue 4,12, 41,03
creator 44,51
oxpreasion 50

$0

43
procedure 50
remote 11,41, 44, 50, 51,89
semaniics of orestor.call 44
semantics of remole call 43
statement 57

Call action 41, 43, 44

Cand 54

Catmlog 15

Char 23,125
oscapes 115, 23

Closure 48

CLU 3, 11,21,24, 73, 150
bulltin types taken from 22
dilsrences from 150

Chustor 77

Coarm 60

Comment 20, 115

Commit 8, 10, 50, 60, 69, 88, 97
and exception handling 73
commitied descendant 10
of a remote call action 41

161




162

sequence 25, 52
struct 27
structure 52
Continue 63
Controliing coarm 60
Cor 54
Crash 8,85, 80
and own variables 85
recover code 8
recovery 89
Creator 7, 11, 32, 44, 48, 88, 149
bound 49
equality of bound creators 49
typo 149
Creator call 44
as expression 51
as statement 57
semantics of 44
Creatortype 32, 149
Critical section 13, 86
Cvt 78

Data abstraction 7, 77
Data type 77
Deadlock 13
Declaration 38,57, 78

as statement 57

simple 38

with initialization 36
Decode 12, 21, 41, 43, 40,94
Description unit 15, 84
Divisible

fermination 60
Divisible termination 60
Down 585,78
DU

See also  description unit

Effects 119

Else 62

Elseif 62

Encode 12, 21, 41, 43, 44, 49, 61,94
with bind 49

Enter 8¢

Entity 48

Equate 37,79

Equate module 34, 79

forms of 47
Extemal representation type 12, 94

Failure 11,42,43, 44,73

of communications in a romote call 43

versus CLU 73, 150

See also crash
False 22,121
Fetch 51

point

See also real
For 82
Force

Ses also any
Foreach 58
Fork 58
Formal

argument 40, 78

parameter 80

Generator 21, 80
insiantistion 81

Got 8t

Giobal object 3,7

Guardian 8,7, 15, 31, 41, 44, 87
background code 89
crash 73
crealion 135, 44, 88
definition 87
guardian image 15
interface 31

See also exceplion
Handlorype 32, 140
Hidden routine 78, 50

Identifler 10
oquated 47
Ses also idn, name
ldn 38, 115
versus name 35
If 82
image 12, 21, 32, 93, 150

int 22, 121




Index

Itorator 48, 82, 76, 148
bound 48
equality of bound iterators 49
type 148

ltertype 148

Keyboard 160

Leave 61
Lexicographic order 126, 138, 130, 141
Library 15
Literal 20, 47
char 115
int 115
real 115
sting 115
Local 3
call 40,50
object 7
Locking 9, 10, 13, 30
deadiock 13
for bulit-in atomic types 9
table of locking ruies 10
Loop 62

Modifies 119
Module 5, 75,87
instantiation of 80, 81

as value of expression 47
atomic 3, 21,97

global 3,7
immutable 3, 21

indivisibllity 21, 119

Parameterized typo 21, 81
instantistion of 81
Parert 9
Pause 86
Post 119
Pragmatics
Pre 119

Precadonce 54
Principal argument 30
Print 160
Private reutine 78
Procedure 48, 75, 148
bound 48
closure 48
equality of bound procedures 49
ypo 148
Process 8, 50
Ses also action

153

Peforence 34, 47

163




164

Tranamissible 3, 12, 21,903
object 12

Transmit 21, 41,78, 84,03
acksal 84

Two-phase commit 8, 59, 60, 73
Type 3.4, 15, 21,30, 77, 81

index




Index 165

Unavailable 11, 42, 43, 44, 59, 60
Unhandled exception 73
versus CLU 159
Uninitialized variable 36
versus CLU 160
Up 55,78
Update statement 58

Value 47
Variable 3, 36, 47
own variable 85
stable 3, 97
uninitialized 36
versus object 3
Variant 63, 144
Version
of an atomic object 9
Volatile
object 7
state 8,87
variable 87

Where clause 80, 160
subordinate 82

While 62

Write lock 9

Writer 30

Yield 62



Tius blank page was inserted to preserve pagination.



Report # _Lcs5-Tee Y00

Each of the following should be tdentlfied by a checkmark
Originating Department:

[ Artificial Intellegence Laboratory (Al)
X Laboratory for Computer Science (LCS)

Document Type:

‘ﬁJechniml Repot MR) [0 Technical Memo (TM)
O Other:

. Dpate: 1/ l&/ﬂ'(,?

Document Information  Number of pages: |3 5(i€!-jmaces)

Not {o include DOD forms, printer intstructions, etc... original pages only.

Originals are: intended to be printed as :
TX Single-sided or [J Single-sided or
O Double-sided \ﬁ(Double'-sided
Print type:

[0 Typewriter (O oftsetPress [] LaserPrint

(] inkdet Printer ‘ﬁ\ummn [0 other:

jg Check each if included with document:
DOD Form (J_) 0 Funding Agent Form [0 coverPage
O spine O Printers Notes O Photo negatives
U oOther:
Page Data:

Vi oo
Blank Pagesey pegs rumses: A-G}W;\ (,j I, ¥ 6) ng gg’/m No PARgES Pollowing T:Tix face

Photographs/Tonal Material .;...; sumber);

A

Other (o dscriptonsage rumbes _
Description : Page Number:
> \] - N £h 8Lk,
= V7 1 - 14S
(12¢- 1$1) Smnqims.,m&(_ljme)
Scanmng Agent Signoff:

Date Received: %I%I‘Té Date Scanned: _Y199/%¢

Scanning Agent Signature: W‘ l’\/ J CmLJ

Date Retumed: _5 /& /%6

Rev 9/64 DSACS Document Control Form cstrform.ved



P

g

REPORT DOCUMENTATION PAGE

X T SECURITY CLASSIFICATION
Unclassified

15, RESTRICTIVE MARKINGS

23, SECURITY CLASSIFICATION AUTHORITY e

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE

Approved for public release; distribution
~is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
MIT/LCS/TR-400

3. MONITORING ORGANIZATION REPORT NUMBER(S)
NC0014-83-K-0125

6a. NAME OF PERFORMING ORGANIZATION
MIT Laboratory for Computer
Science

6b. OFFICE SYMBOL
(if applicable)

Ta. NAME OF MONITORING ORGANIZATION
Office of Waval Research/Department of Navy

6c. ADDRESS (City, State, and ZIP Code)

545 Technology Square
Cambridge, MA 02139

7b. ADDRESS (City, State, and ZIP Code)
Information Systems Program
Arlington, VA 22217

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

DARPA/DOD

8b. OFFICE SYMBOL
(if applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code)
-+ 1400 Wilson Blvd.

Arlington, VA 22217

10. SOURCE OF FUNDING NUMBERS
PROUECT
NO.

TASK
NO.

WORK UNIT

PROGRAM
ELEMENT NO. ACCESSION NO.

1. TITLE (Include Security Classification)
Argus Reference Manual

12. PERSONAL AUTHOR(S) Liskov, Barbara; Day, Mark; Herllhy, Maurice; Jonnson, Paul; Leavens, T Cary |

(editor); Scheifler,

Robert; and Weihl, William

13b. TIME COVERED

13a. TYPE OF REPORT 14. DATE OF REPORT (Year, Month, Day)
Technical FROM TO 1987 November

15. PAGE COUNT
165

R — s
16. SUPPLEMENTARY NOTATION i

17. COSATI CODES

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

Distributed systems, fault-tolerance, nested transactionmns,

concurrency, concurrency control, locking, persistent

_atomic obbjects, remote (cont})

19. ABSTRACT (Continue on reverse if necessary and identify by block number) 1

Argus is an experimental language/system designed to support the comstruction and
execution of distributed programs. Argus is intended to support only a subset of the
applications that could benefit from being implemented by a distributed program. Two
properties distinguish these applications: they make use of on-line data that must remain
consistent in spite of concurrency and hardware failures, and they provide services under
real-time constraints that are not severe. Examples of such applications are office
automation systems and banking systems.

Argus is based on CLU. It is largely an extension of CLU, but there are number of

differences, Like CLU, Argus provides procedures for procedural abstraction, iterators
|

for control abstraction, and clusters for data abstraction.

guardians that encapsulate and control access to one or more resources.

In addition, Argus provides
Argus also

provides equate modules as a convenient way to refer to constants.

As in CLU, modules

may be parameterized, so that a single module can define a class of related abstractions.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT
Gl uncLasSIFIEDAUNUMITED [ SAME AS RPT.

21, ABSTRACT SECURITY CLASSIFICATION

CJ oTic usens

‘] 22a. NAME OF RESPONSIBLE INDIVIDUAL

236, 1 Area Code) | 22¢. OFFICE SYMBOL

(61 1
83 APR edition may be used untit exhausted.
All other editions are obsolete.

udy Little, Publications Coordinator
DD FORM 1473, 8a MAR

—SECURITY CLASSIFICATION OF THIS PAGE
’ MAS Gevwament Prinsing Offies: 1905-307-087
Unclassified




18. procedure call, orphans, exception handling.



