
11 .. unt11• •• •. 11•1:t1f•• 11·la :J1;1Jl'1al•Jln11h1111•
• 1 • •• ••i111lil(r1unrrCt1 · : < · · . ' ' , ·, .. ~ -..... •:·_. _-... .. _>,. ·-<-· .. ' ·.· :

' ! --~ •• •

This empty page was substih1ted for a
blank page in the original document.

Table of Contents

1. Overview
1.1. Objecta and Vertablee
1.2. Aalgnment and C.118
1.3. Type con.ctn111
1.4. Au1e1 and GUldellnM
1.5. Pft9Ml 8tlUCl\n

Table of Contents

2. Concepts tor Distributed Programs
2.1. Gt.mdlaM
2.2. Actions

2.2.1. tlMted Actions
2.2.2. Atomic ObllCta and Atomic Typea
2.2.3. tl11l1d TopeotloM

2.3. Amlala Clllla
2A. Twllllllte Types
2.5. Orpwla
2.6. D11dlocks

3. Environment
3.1. TheL....,
3.2. lnd1p1ndlnee OI G&mdlan lmagee
3.3. CNllllon
3A. The c.log

4. Notation
5. Lexical Considerations

5.1. Ft1111Wd Won:ta
5.2
5.3
5A. Op1 and PunctuMlon Tokene
5.5. Conllwllaand Olllll'

6. Types, Type Generators, and Type SpecHlcatlona
8.1. Type lnclU8lon
6.2. The Seqmntllll lulll-ln,.,.,.. and~

8.2.1. Nul
6.2.2. Bool
6.2.3. lnl
8.2.4. "-'
8.2.5. Char
8.2.8. String
8.2.7. Any
8.2.8. Sequence Types
8.2.9. An'8y Typn
8.2.10. Structure Typee
6.2.11. Rlcold Typel
8.2.12. Oneof Typee
8.2.13. Y8ftMI lY..-
8.2.14. Proc::edl8Md1te1111or Typea

6.3. AtomlC .,.,, Alolnlc Ricord, and Atomic v....
&A. Gu9nlift y,._ - -
6.5 CNator Types

3
3
4
4
4
5
7
7
8
8
9

11
11
12
12
13

15
15
15
15
15
17
19
19
19
20
20
20

21
22
22
22
22
22
23
23
24
24
25
25
26
'D
28
28
29
30
31
32

II

6.6. lmag•
6.7. Mutex
6.8. Node

;y;p.. ·" ·'

6.9. Other Type Specifications

7. Scopes, Declaratlona, and Equates
7 .1. Scoping Unlt8

7.1.1.Varlllbles
7.1.2. Decl8ratlon8

7.2. Eqt181• and COMtllntll
7.2.1 • .MbNVIMlona tor Typee
7.2.2. C:0...... Expr111IDt"l8

8. Assignment md calla
8.1. -·gNMftl

1.1.1. 8lmple Alelgnment
8.1.2. Mllgnlnlnt

8.2. Locllt Clllls
8.3. Handler Cda

8.3.1. 88lnantlcl ot Handler cans
SA. Creator C.la

8A.1. ""'8llllcs of CNator CaHs

9. Expreaalons
9.1. Uterala
9.2. VartlblM
1.3.,.,....,.
.I~___.
·e.s. Equam......_R......._
9.6.Selt
9.7. Proceckn, lleralor, and CNalor'
9.8. Bind
9.9. Procec1uN caua
9.10. Handler calla
9.11. Cr.tor Cella
9.12. S1l1ctlon Operallonl

9.12.1. Elllllent l•llctlon
9.12.2. ContpoMnt Sellcllon

9.13. COn8lrUCtOl'9
9.13.1. ~ ConllllUCIOrs
9.13.2. Array and Atomic AlrlJf COnd'uctors
9.13.3. 8tluceuN, RIOord, and Atomic Rlcoftl CoMtructors

9.14. Prefix and Infix ()peNlora
9.15. canes and eor
9.16. Precedence
9.17. Up and Down

10.Statements
10.1. Cell8
10.2. Update Statements

10.2.1. Elemenl Update
10.2.2. Componlnt Update

10.3. Block Sta....,.
10.4. Fork Statement

Table of Contents

32
33
34
34

35
35
38
38
37
38
38

39
38
38
38
40
41
43
44
44

47
47
47
47
47
47
IO
50
51
11
51
11
12

• 52
52
51
54
54
51

57
57
58
58
58
18
58

,.IJ!Jll QJk,ktMUL4Ut&J11tU1cu11a;utn!S, ... q, ._ ·r· .·. ··'C~U ,J ~--.,,.,..,,,,i···d""""I'-"'""'·'·'."'· ·"·"'~··"·· .

TlllllotC1M1•

I. ,.

1 a u.;w;a'™w' Jij&

•
• •
• • • • • •
• • • • • • • ,.
•
" .,. .,,
71

" • .,,
11 • .. •
" • • • • • • • • • • .. • •
" • • -

Iv

15.5. Commuting Openitlons
15.6. Multiple MutexM

Appendix I. Syntax
Appendix II. Bullt-tn Types and Type Generators

11.1. Null
11.2. Nodes
11.3. eoo•ns
11.4. Integers
11.5. Reals
11.6. Characters
11.7. Str1ng•
11.a. Sequences
11.9. Arrays
11.10. Atomic Arrays
11.11. Struct8
11.12. Records
11.13. Atomic Records
11.14. Oneots
11.15. Variants
11.11. Atomic Variants
11.17. Procectures and Iterators
11.11. HandleN and Creators
11.19. Anys
11.20. Images
11.21. Mutexes

Appendix Ill. Rules and Guidelines for Using Argus
111.1. Sertllllublllty and Ac:tlone
111.2. Actions and ExCIPllona
IH.3. Stable V....._
111.4. T............,,. and TransmtulbHlty
llL5. llutex
111.6. U•r..Daf Atomic Objects
111.7. Subordinate a. ...

Appendix IV. Changes from CLU
IV .1. Exception H9nc1Hng
IV .2. Type Any
IV .3. Bull-In Types
IV A. Type 1nc1u91on
IV .5. WheN Clal•1
IV.6. Unlnltllllmd VMllbl88
IV.7. Lexlcal Cfw1lee
IV .8. Input/Output Chana•

Index

Table of Contents

102
104

107
119
120
120
121
121
123
125
121
128
130
133
131
139
141
143
144
141
148
149
150
150
151

153
153
153
154
154
154
1M
157

159
158
158
158
160
160
160
160
160

161

List of Figures v

List of Figures
Figure 2-1: Locking and Version Management Rules for a Subaction S, on Object X 10
Figure 13-1: Spooler Guardian 91
Figure 14-1: Partial implementation of table. 95

vi List of Tables

, ,pn•mm 1w4a,"1),t•1m ·~'14' u:1:sau•1•1 •• 1UJ 21; . 11 a11u11 11u11, u.uu.1 .. JUt#t xau ;4u;;u::.Mc 4441eu: .s11.z u44x;;441m3

u.tofT

Llllt .. Tlblll

vii

11

• ..
• 14 • 111

This empty page was substih1ted for a
blank page in the original document.

Gulde to the Manual 1

Gulde to the Manual
This document serves both as a reference mall.l8I and u an introduction to Argus. Sections 1 through

3 present an overview of the language. These sectlonl highlght the 88l8f1tlat features of Argus.

Sections 4 through 15 and the appendices form the reference maRlal proper. These sections deScr1be

each aspect of Argus In detail, and discuss the proper use of various fea1ure8. Appendices I and II

provide summaries of Argus's syntax and data types. Appendix Ill summarizes eome of the pragmatic

rules for using Argus.

Since Argus is based on the programming language CLU, the reader is expected to have some

familiarity wtth CLU. Those readers needing an Introduction to CLU might read Llakov, B. and Guttag, J.,

Abstraction and Spsciflcatlon in Progrwn Dev81opmsnt (MIT Press, cambrldge, 1986). A shorter

overview of CLU appears In the article Llskov, B., et al., •Abllr8ctl0n Mechanilm8 In CLU• (Comm. ACM,

volume 20, number 8 (Aug. 1977), pages 564-576). Appeldx IV summarizes the changes made to

Argus that are not upward compatl:>le with CLU.

An overview and rationale for Argus is presented in Uskov, B. and Schelfler, R., •Guardians and

Actions: Linguistic Support for Robust, Dlstrl>uted Plograml• (ACM Transacllons on Programming

Languages and Systems, volume 5, number 3(July1983), pages 381-.404).

The Prellmlnary Argus Rt1fBf81JC8 Manual appeared as Programming Methodology Group Memo 39 in

October 1983. Since that time several new features have been added to the language; the most

significant of theae are cloaures (see Section 9.8). a fork,. (IH Section 10.4), equate modules

(see Section 12.4), and a more flexble inata'*8tion mechanllm (... Sectton 12.6). An ear1ier version of

this document appeared as Programming Melhodology Group...,_ 54 In MatCh 1987; this version is

essentiaffy identical, except that the locking policy for the bull-In type generator atomlc_array has been

simplified.

We would greatly appreciate receiving comments on both the language and ttHs man..ial. Comments

should be sent to: Professor Barbara Llskov, Laboratory for~ Science, Massachusetts klstttute

of Technology, 545 Technology S<Jaare, C&rmrtdge, MA 02139.

The authors thank all the members of the Prograrnning Methodology group at MIT tor their help and

suggestions regarding the language and this manual, with special thanks going to Ellk>t Kotodner,

Deborah Hwang, Sharon Pert, and the authors of the CLU R•ffnnctl Alllnual.

2

Though her unhappy rival was hers to keep
Queen Juno alllo had a troubled mind:

Gulde to the Manual

What would Jove tum to next? Better, she thought,
To gtYe the creature to ArestDr'8 son,
The frightful Argus whale head
Shone with a tlilndr9d .,.., a peffect)Iller
For man or bealt: the tuldNcl eyes took turns
At staring wide awake In and two
At falling off to steep; no matter how or
Where he Stood he gazed at lo; even when
His back was turned, he held his prisoner
In sight and in his care.

-Ovid,.,,,.~. Book 1
Tranalaeed by H. Gregory

The Viking Preu, Inc., NewYOttt, 1958

1

.;;:tJ.iJJUllS£.tXXJJ!4U'1•lM¥W a.,PttJllM ... lJUJI(i_L_, L .. 41JU!tJ£4lt£@1$bl&iQUi) Q!J,)JQLS@k.Uil¥U4WlfJLSJ!U.QLJfiiJ!lJIKJIA

1 OveAtew 3

1.1. Ollllt•••: ... UJt••··· Tiw•••n •nllf._J•tf11•·:• ••• tlJldr llfl•f'•'•Jtt • 11••••11•
ll'ldn•u'•••lr npffJ11•1ra r.ndU • .. •••• Jl),ltil1Mtlt,.1J!IJ1r• 111111r

Everf e1Rt •• •fl!l ·. Ill ft ... :•a••t•h ·•••: j.;~-~{-~#~t ii:• il;u ••to
--••ufJlOt•1 z•••·•••·
............... ,.1 _.11•• ••1•.-.·•: -••••••

.
"••11• ••rr•••-tlr_,

Vadlblll1n N&Wllt .. llt11t••·-~ •-1Jat11••tt•flr .. \!t111llll
SUNi¥eC1 (Wllellen1t••-cllld'._.tflf·.• I

4 Overview

1.2. Assignment and Calls
The basic events in Argus are assignments and calls. The assignmenl statement x :- E, where x is a

variable and E Is an expression, causes x to denote the object ~ fn:>m the evaluation of E. The
object Is not copied.

A call involves passing argument objects from the caller to the caHed routine and returning result

objects from the routine to the caller. For local calls, ~ passing Is defin8d in tenns of asaigrvnent,

or call by sharing; for remote calls, cal by value is used. In a local cal, tt'9 formal aiguments of a IOUtine

are considered to be local variables of the routine and are inlttaHzed, by llllignment, to the objects

resulting from the evaluation of the argument expressions. In a remote cal (8" Section 2.3), a copy of

the objects resulting from the evaluation of the mgument expnt88ions la made and tranamllted to the

called handler or creator (see Section 2.4). These copies are then Ul8d to iniliallze the tormaJ arguments

as before. Local objecls are shared between the caller and a called procedure or lerator, but local

objects are never shared between the caller and a called handler or creator.

1.3. Type Correctness
The declaration of a variable specifies the type of the objects which the variable may denote. In a legal

assignment statement, x :- E, the type of the expression E fYal8t bt lnt:lutlllt/ in the type of the variable x.

Type inclusion Is essentially equality of types (see Section 12.6),...,. .. tOUtlf18 types. (A routine type

with fewer exceptions Is included In an otherwise identical routine tM>8 with more exceptions. See
Section 6.1 for details.)

Argus Is a type-safe language, In that It ls not poaal>le to treat an objld of type Tu I It were an ob;ect

of some other type S (the one exception II when Tis a routine type and S inclucles 7). The type safety of

Argus, plus the rastrictlon that only the code in a cluster may convert between the aba&nlct type and the

concrete representation (see Section 12.3), ensure that the behavior of an obilCt can be characterized

completely by the operations of its type.

1.4. Rules and Guidelines
Throughout this mat'llal, and especially In the discussions of atomiclly, there are pragmatic rules and

guideHnes for the use of the language. Certain properttes that the language WOUid ll<e to guarantee, for

example that atomic actions are really atonic, are difficult or trr.,oeal:>le for the to guaramee
completely. As in any useful programming language, programmers have enough rope to hang

themselves. The rules and guidelines noted throughout the manual (and colected in Appenclx lH) try to

make the responsl>ilitles of the language and the programmer clear.

1.5 Program Structure 5

1.5. Program Structure
An Argus distributed application consists of one or more guardians, defined by guardian modules.

Guardian modules may in tum use all the other kinds of rnoctlles that Argus provides. Argus

programmers may also write single-machlne programs with no stable ltate, using Argus as essentially a

"concurrent CLU." Such programs may be used to start up Rl.lli-QLllldan applie.alions. Each module is a

separate textual unit, and is compifed Independently of other rnociJles. Con1Jllatlon is disaJssed in

Sectlon3.

6

2 Concepts for Distributed Programs 7

2. Concepts for Distributed Programs
In this chapter we present an overview of the new concep11 in Argus that support distributed programs.

In Section 2.1, we discuss guardians, the module uaed in A911 to dlltt1bute data. Next, in Section 2.2,

we present atomic actions, which are used to cope with concummcy and failure. In Section 2.3 we

describe remote calls, the inter-guardian comrruilcation rnec:hanlam In Section 2.4 we discuss

transmissible types: types whose objects can be sent as arguments or results of remote caffs. Finally, in

Section 2.4 we discuss orphans.

2.1. Guardians
Distributed appllcaUons are implemented In Argua by one or more modules catled guardians. A

guardian abatractlon Is a kind of data abstraction, but I dlffets from Ile dllea abltractiona supported by

clustera (u found In CLU). In general, dala lbetrac:lona Clnlitt of a set of operations and a set of

objects. In a cluster the operations are oonlidared to belong to the abllractlon as a whole. However,

guardian instances are objects and their handlers are their operatfonl. Guadan abstraction Is similar to

the data abstractions In Simula and Smaltalk-80; QUMi1M1 are 111(9 cll8a inltances.

A node is a single physical location, which may have ~ pt9ClllOl'S. A guardian instance resides

at a single node, although a node may support several guatdana. A guan:Jian encapsulates and controls

access to one or more resources, such as data or devices. Acce88 to the protected resource Is provided

by a set of operations called handlBrs. Internally, a guamlan consieta of a collection of data objects and
processes that can be used to manipulate those obiedl· In general, there wil be many processes

executing cona.irrerwty in a guardian: a new proc111 la cntlllld to...,.. NCh handler cal, processes

may be explicitly created, and there may be other proce1111 M '*"f out background adivity of the

guardian.

The data objects encapsulated by a guardian are kal: they cannot be ~ directly by a ptOCess

in another guardian. In contrast, guardians are globlll objects: a *"'8 guardian may be shafttd among

processes at several different guardians. A process wlh a reference to a guaRlan can call the guardian's

handlers, and these handlets can access the data oblecta inllltl .. SJlil8fdlan. Handler calls allow access
to a guardian's local data, but the guardian controls how that data can be manipulated.

When a node falls, it crashfJs. A crash is a "clean" failure, as opposed to a "Byzantine" failure. A

guardian survives crashes of its node (with as high a probabllly u needed). A guardian's state consists

of stab/fl and volall/e objects. When a guardian's node crashes, al procesw running inside the guardian

at the time of the crash are loat, along with the guatdan'a \'elllla objects, but the guan:lian's stable

obiacts survive the crash. Upon '8Cl0very of the QUM1an'1 node, the guMlian runs a special recovery

process to reconstruct itS volatile objects nm Is stable objacla. Since the volatile objacta are lost In a

crash, they typicaly consist only of redundant data that Is used to irnpnwe pefformance (for example, an

Index Into a database). The persistent state of an appllcation should bl kept In stable objects.

Guardians are implemented by guardian definitions. These define:

8 Concepts tor Distributed Programs

1. The creators. These are operations that can be called to create new guardian Instances
that perform In accordance with the guardian definition.

2. The guardian's stable and volatile state.

3. The guardian's handlers.

4. The background cod8. This is code that the guardian executes Independent of any harder
calls, for example, to perform some periodic activity.

5. The recov8f code. This is code that is executed after a crash to restore the volatile objects.
Guardians and guardian definitions are discussed in Section 13.

2.2. Actions
The distributed data in an Argus application can be shared by concurrent proceuea. A process may

attempt to examine and transform some objects from their current states to new states, wfth any number

of intermediate state changes. Interactions among concurrent processes can leave data In an

inconsistent state. Failures (for example, node crashes) can occur during the execution of a process,
raising the additional possl>llly that data will be left In an lncon8iltenl inlermedlale state. To support

applications that need consistent data, Argus permits the programmer to mtM processes atomic.

We can an atomic process an action. Actions are atomic In that they are both l8rializ8lble and

recoverable. By SMlal/zable, we mean that the overall effect of executing IYl.IQ>le concumml actions is

as if they had been executed In some sequential order, even though hty ac&ually eucute conamently.

By reaJveral*, we mean that the overall effect of an action Is •at-«-nottt1ng:• 8llher all changes made to
the data by the action happen, or none of thffe chaftgea happen. An action that completes an its

changes successfully commits; otherwise It aborts, and objects that It modl1ed are restored to their
previous states.

Before an action can commit, new states of ail modified, stable objects rrust be written to stable

storage 1: storage that survives media crashes with high probability. Argus uses a two-phase oommit

protocol2 to ensure that either all of the changes made by an action occur or none of them do. if a crash

occurs after an action modifies a stable ot>;ect, but before the new state has been written to stable

storage, the action wlU be aborted.

2.2.1. Nested Actions
Actions in Argus can be nested: an action may be COf11>0sed of several subactlons. Subactions can be

used to limit the scope of failures and to Introduce concurrency within an action.

An action may contain any oomber of subactlons, some of which may be performed sequentialfy, some

1Lampaon, B. W., "Atomic Transacliona", in Dilllributed Sy8tams--An:Mlca.tl8 and,,,,,.,,,.,,,.,, LecUe No98 in Computer
Science, volume 105, pages 2•265. Springer-Verlag, New York, 1981.

2Gray, J. N., "Notis on data baae operating ayatlma", in ~ Sys..,,., An AIMii..., CcuN, ..,_, A., Graham, R. M.,
and Seegmoller, G. (edias), l.8CIUf8 Noe. in Comp.Jiit' Science, volume 80,,... 31M11. -..-v..._, New YCMlt, 1971.

2.2.1 Nested Actions 9

concurrently. This structure cannot be observed from outside the action; the overall action is still atomic.

Subactions appear as atomic actions with respect to other subaetions of the same parent. Thus,

subactions can be ex&aJted concurrently.

Subactions can convnit and abort independently, and a subadlon can abort without forcing Its parent

action to abort. However, the oorrmtt of a subactlon Is conditional: even If a subaction commls, aborting

its parent action wiU abort It.

The root of a tree of nested actions is caled a topaclion. Topadions have no parent; they cannot be

aborted once they have committed. Since the effects of a subaction can always be undone by aborting

its parent, the two-phase commit protocol ls used only when tapactlonl attempt to commit.

In Argus, an action (e.g., a handler cal) may retum objects through either a normal return or an

exception and then abort. The following rule should be followed to avoid Yiolating serlallzabllily: a
subaction that aborts shouJd not retum any Information obtained from data shared with other concurrent

actions.

2.2.2. Atomic Objects and Atomic Types
Atomicity of actions 18 achieYed Via the data obj8cts shared MK>ng 1hose actions. Shared objects m.rst

be Implemented so that actkn using thern appes to be atomtc. Objects thlll support atomicity are

referred to aa alomlc objecla. Atomic objects piVYid8 the aynahNnialon Md recovery needed to ensure
that actions are atomic. An alOmlc type la a type whole objeds .,. .u atomic. Some objed8 do not need

to be atomic: for example, objects that are local to a ak'Df8 pmce11. Since the synchronization and

recovery needed to ensure atomicity may be expensive, we do not requite that an typea be atomic. (For

example, Argus provides all the built-In mutable types of CLU; theH types are not atomic.) However, it Is

important to remember that atomic actions must share only atomic objects.

Argus provides a number of built-in atomic types and type generators. The built-In scalar types (null,

node, bool, char, Int, real, and atrtng) are atomic. Parametedzed types can also be atomic. TyplcaHy,

an instance of a type generator will be atomic only I any actual type ~ are allo atomic. The

built-In Immutable type generators (....,....., atlUCI, and OMOf) n atomic If their parameter types are

atomic. In addition, Argus provides three rllltable atomic type generators: ldOmlc_array,

11torn1c_recon1, and 810m1c_vartant. The operations on tt18le typea are neany Identical to the nonnal
anay, record, and variant types of CLU. Users may Mio define .. OM\ llOmic types (lff Section 15).

The implementation of the built-In m.rtable atomic type generalOrS fa baled on a siqJte locking model.

There are two kinds of locks: read locks and write locks. When an 8Cllon calls an eperation on an atomic

object, the if11>1ementation acquires a lock on that object In the ~ mode: It acqutrea a wrtte lock

if it mutates the object, or a read lock if it only examines the objlc:t. The bull-In ·types allow multiple

concurrent readers, but only a single writer. If necessary, an aalion la forced to wal undl It can Obtain the

appropriate lock. When a write lock on an object ls first obtained ~ an action, the system makes a copy

10

of the object's state in a new WHll/on, and the operations calted by the action work on this version3. H,
ultimately, the action commits, this version will be retained, and 1he old version dllcarded. A atbaction's
locks are given to b parent action when it oonvnls. When a topactlon commls, its lock8 are diacalded

and Its effects become vlsl>le to other actions. If the action aborts, the action's lod<I and the new version

will be discarded, and the old version retained (see Figure 2-1).

Flgu,. 2·1: Locking and Version Management Rules for a Sub8ction S, on Object X

Acquiring a read lock:
All holders of write locks on X must be ancestors of S.

Acquiring a write Ioele
AH holders of read and write locks on X must be ancealOr8 of S.
H this is the first time S has acquired a write lock on X,

push a copy of X on the top of Its version stack.

Commit:
Ss parent acquJres Sa lock on X
If S hokta a write lock on X, then Ss version becomes Ss parent's version.

Abort:
Ss lock and version (If any) are discarded.

More precisely, an action can obtain a read lock on an object If ev«y action hoking a write lock on that

object is an ancestor of the requesting action. An action can obtain a wrle lock on an object if every
action holding a (read or write) lock on that object Is ., ancestor. When a subactlon commits, Its locks

are inherited by its parent and its new versions replace thoM of la ,.,..,.; when a 8UbaCtlon aborts, Its

locks and versions are discarded (see Figura 2-1). Becal• AIQLll ...,....s that parent actions never

run concurrently with their children, these rules ensure that concurranl actions never hold write locks on

the same object simultaneously.

The ancsstors of a subactlon are Itself, its parent, Its parent's parent, and so on; a subilclion is a

descBndant of Its ancestors. A subactlon commits to the IOp If It and all its 811C81tors, inckdng the

topactlon, oonmlt. A subaction Is a commltt8d dtlSCllndant of an ancestor action If the subadlon Md all

intervening ancestors have committed. When a topactlon an ... to convnlt, the two-phase mmmil

protocol ls used to ensure that the new versions of all objects modlied by lie action and al Is committed

descendants are copied to stable storage. After the new versions have been recorded stably, the old

versions are thrown away.

User-defined atomic types can provide greater conaJrrency than buJlt-ln atomic types4. An

3This operational delsc:riptior'I (Md others in lhls manual) is not meant to conatrain implamenas. Howavar, this pll'ticutar
clesaiption does ratleet ow current Implementation.

4An emnple can be found in Weihl, W. and Uekov, B., "lmplemenlaton of RNilent, MDmic Data Types," ACM T~ on
Programming ~and Sysalms, volume 7, number 2 (April 19815), ,.._ 244-289.

2.2.2 Atomic Objects and Atomic Types 11

implementation of a user-defined atomic type must address several iaues. First, It must provide proper

synchronization so that concurrent cans of Its operations do not inleffere wlh each other, and so that the

actions that call Its operations are seriallzed. Second, It mull provide NCOV8t'Y for actions using its

objects so that aborted actions have no effect. Finally, I must.....,. that changes made to Its objects by

actions that conmlt to the top are recorded property on stable storaae. The bull-in atomic types and the

mutex type generator are useful in coping with these Issues. User-defined atomic tw>eS are discussed

further in Section 15.

2.2.3. Nested Topactlona
In addition to nesting subactions Inside other actions, It is aometlmea UHhd to an a new topaction

inside another action. Such a 1'16Sted IOpacllon, unll<e a subac:llon, hM no special priYlleges relative to its

"parent"; for ex~. it Is not able to read an atomic object ma•1d by Is "parent". Furthermore, the

commit of a nealed topaction Is not relative to Its "parent"; Is venNonl.,. written to stable storage, and

its locks are released, just as for normal topactlons.

Nested topactions are useful for benevolent side effects that c:tlange the repraentation of an object

without affecting Its abstract state. For example, In a naming syltem a name look-up may cause
information to be copied from one location to ano1her, to ape8d up IUbHquenl took-upa of U.. name.
Copying the data wlhln a neeted topaction that commits ensuree that the chMg98 remain in effect even If
the "parent" action aborts.

A nested topaction la used correctly r It is sertallzable before Is "parent". This la true I either the

nested topaction performs a benevolenl llde effect, or I all commur*8tlon between the ,_... topaction

and Its parent la through alomlc objlds.

2.3. Remote Cells
An action ruming In one guardian can cause work to be performed at another guaRlan by calling a

handler provided by the latter guardian. An action can cauee a new ~ to be crMted by calling a
creator. Hancllar Md cnator calls are remote call. Remote Ciiis ... elmlar to local procedlR catts; for

example, the caUlng process waits tor the call to return. Remote call clfter from local prooedunt cals In

several ways, however.

First, the arguments and results of a remote can are passed by value (see below and also Section 14)

rather than by sharing. This ensures that the local objects of OM gwudan remain local to that guardian,

even If their values are used as arguments or ruuls of remote calls to other guu:lanl. The only obl8cts
that are passed by sharing In remote calls are the global obiecls: guardians, handlers, creators, and

nodes.

Second, any remote call can raise the exceptions failure and unavallable. (Unll<e CLU, not all local

calls can raise fallurB, see Appendix IV.) The occurrence of w.n means that the call II uNkely to ever

succeed, so there Is no point In retrying the call in the future. ~.on the oaw hand, mew that

12 Concepts tor Distributed Programs

the call should succeed if retried In the future, but is unlikely to succeed If retried immediately. For

example, failure can arise because it is '"1>0ssl>le to transmit Ile ..,....... or resuns of the cal (see

Section 14); unavailable can arise If the guardian being called hu crashed, or I the network is

partitioned.

Third, a handler or creator can be called only from inside an action, and the cal nms as a subaction of

the caHing action. This en&ur88 that a remote cal succeeds lit mo.I one:.: elher a remote cal completes

successfully and commits, or It aborts and all of Its modifications .,. undone (provided, of course, that the

actions involved are truly atomic). Although the effect of a '9fl10te Clll OCCIM'8 at moll once, the system
may need to attempt it several times; this is why remote calls are made within actions.

2.4. Transmissible Types
Arguments and results of remote calla are puaed by value. This ..,. that the argument and result

objects must be copied to produce dlltinct objects. Not an objedl can be copied .. thil; those thlt cmt

are called ,,.,,.,.,...,,. obJ«*, and their types are called ,,..,,.....,. ,,,_. Only transmlal>le

objects may be Uled u argumetU and results of a remote call. In adcltion. llnllge obied& (see Section

6.6) can contain only tnlnlmlul>la objects. Parameterized types may be tranamlulbll In some Instances
and not in others; for example, inltanllations of the bua..tn type QeMIBN'I .. trarwnilsble onfy I their
parameter types are transmlaslble. Whtie guardians, cnatora, and handlefl are always tranamissl>le,

procedures and iterators are never transmissible.

Users can define new transmissl>le types. For each transrni88tie type T the extsmal repreNl1lalJon

type of T must be defined; this descrl>es the fonnat in which obied& of type T .. ttafllll1iled. Each

cluster that irJ1>1ements a transmisalble type T must contain two procec:lurea, tlnt::Odfl Md dllcode, to
translate oblects of type T to and from their external repreeentatlDn. More Information about defining

transmissible types can be found in Section 14.

2.5. Orphans
An orphan is an action that has had some ancestor "perish• or has had the pertinent resull of some

relative action lost in a crash. Orphans can arise in ~ due to crashes and explicit aborts. For

example, when a parent action is aborted, the active descendents I IHw8 betmd become orphans.

Crashes also cause orphans: when a guardian crashes, all active actic>N wlh an ancestor at the crashed
guardian and aH active actions with committed de8cendanls that ran at the craahld guardian become

orp11ans5. However, having a deacendent that Is an orphan does not neceuarily imply thll tfl8 parent ii

an orphan; as previously desaibed, actions may commit or abort Independently of their IUbactiona.

Argus programmers can largely ignore orphans. Argus guarant898 that orphans are aborted t>etore

'Walcer, E. F., "Orphan Dellcllon in lhe Argus System", Masaachu8ens Institute of TechnolDgy, Laboralory for Compular
Science, Technical Repon MITILCSITR-326, June 1984.

!1.41. 11Mi¥ $!$11DlFHJJ!LBLYY4ll!ILJJJWktUI ll~19i91,l!illllf!lli)liU!$ilJl(5JiU$2Q&i!tPlkl,.UL1¢$J. #MUUtt#ttA!J[lllt,"'11Jtjt

13

tMy can W.. ll•RlllllM dlll llRtuillld ... ,. - 8 P • --.., t•• :.Ct•r .-.,...
.,..._ AenlOll celll ... fllfor _, u1M11tMt-•Wf••1t••••• •1h1JIS __,:_.. 111••·-··'.•fll!lft1•11•1•••J1••·

Oqlltw ,..., , , •• .., --

11•••;N•••'"·----··· .. ••. .. ••• m-.11)
,,.,. , l.'MI•~:. .•·. , .. · ~· .. ·· ·. ·. ' .· .. ···• .. . •
.. ., ••• 1111f 1•uurr11 .• , &JI lfllli;llii'il:!lf~i'.ofii;'lflii!i'ill. --:•:•:•Is• -......................... ,,
2.8. Dl•&I• , ..•. ,. .•.. ,,,,. ... _._.,•r•1• rn 1r , . ., .. -
tan•• m1a11 .• •1•11 ••a••• · .· .. •· .. ·-.,_..._ -

• .. -···· ~· M n " -- •• urt•• t lUIQJP ': "f'l"'lfll.I :,.,..,
.... • ..,..., t•rn11ilf:w:11tmr~11-•1[1• .· •

14

3 Environment 15

3. Environment
The Argus environment ensures complete static type checking of programs. It also supports separate

compilation and the Independence of guardians.

3.1. The Library
Argus modules are compiled in the context of a library that gives meaning to extemal identifiers and

auows inter-module type checking. The Argus library contatns type infOrmation about abstractions; for

each abstractton, the llbrary contains a descrlpl/on unit, or DU, descrl>lng that abstractton and Its
implementattons. Each DU has a unique name and these names form the basis of type checking.

3.2. Independence of Guardian Images
The cede Ml by a guardian comes from some guadan Image. A guardian image contains all the code

needed to carry out any tocat aotMty of the guardlM; any procean, Iterator or ckJster used by that

guardian will be In Its guardian Image. Any handler calla made by the guMlan, however, are carr1ed out
at the called guardian, which contains the code that performs the call. Tt1.11 a guardian IS Independent of

the implementations of the guardians It calll and the Implementation of a guatdan can be changed

without affecting the lmplementattons of Its clients.

3.3. Guardian Creation
When a guardian ii created, II Is necessary to select the guardian image that wil supply the code run

by the new guardian. To this end, each guardian has an asaociated crNtlon envirorlnHMt that specifies

the guardian images for other guardians It may create. The creation envkonment is a mapping from

guardian types to infonn8tion that can be used to seled a gu8ldian Image appropriate for each kind of

node. For greater flexlblllty, this lnformatton can be UIOClated wlh particular creator objects.

3.4. The Catalog
SomehcM, guardians must be able to find other gualdlane to cal for services. A guardtan usually has a

reference to any guardian It aeates. Also, I a guan:tlan can cal soma other server guardian, It can team

about the guardians that the server "knows•, becauae guardians can be passed in remote caas. In

addition, Argus provides a bull-in subsystem known by al guardians. Thia aubayatem Is called the

catalog. The catalog provides an atomic mapping from names to tranemilll>le objects. For example,

when a new guardian is created, I can be catalogued under aome well-known name, so that other

guardians can find It in the future. Since we are currently experimenting wit\ various Interfaces to the

catalog, we do not lndude an interface specification here.

16

, 'V""'!,'

4 Notation 17

4. Notation
We use an extended BNF grammar to define the syntax of Argus. The general form of a production is:

nonterminal ::: alternative
I alternative
I ...
I alternative

The following extensions are used:

a' ••• a list of one or more tis separated by commas: ·a• or •a, a• or •a, a, a" etc.
{a} a sequence of zero or more a's: ••or •a• or •a a• etc.

[a] an optional a: • •or •a•.

Nonterminal synt>ols appear in normal face. Reserved won:ts appear in bold face. All other terminal

synt>ols are non-8':>habetie, and appear in normal face.

FuH productions are not always shown in the body of this manual; often alternatives are presented and
explained individually. Appendix I contains the complete syntax.

18

s Lexlcal Considerations 19

5. Lexical Considerations
A module Is written as a sequence of tokens and separators. A token is a sequence of "printing" ASCII

characters (values 40 octal through 176 octal) representing a reserved word, an Identifier, a literal, an

operator, or a punctuation symbol. A separator Is a "blank" character (space, vertical tab, horizontal tab,

carriage return, newline, form feed) or a oonvnent. Any number of separators may appear between

tokens.

5.1. Reserved Words
The following character sequences are reserved word tokens:

abort
action
any
array
atomic _array
atomic reoord
atomic - variant
backgt=Ound
begin
bind
boo I
break
cand
char
cluster
ooenter
oontinue
oor
creator
creatortype
cvt
do
down

Tlble 5-1: Reserved Words

else
else if
end
enter
equates
except
exl
false
for
foreach
fork
guardian
handler
handlertype
handles
has
If
image
in
int
is
lier
itertype

leave
mutex
nil
node
null
oneof
others
own
pause
proc
process
proctype
real
reoc:>nj

recover
rep
resignal
return
returns
seize
sel
S8CJJ8nc8
signal

signals
stable
string
struct
tag
tagcase
tagtest
tagwait
terminate
then
topaction
transmit
true
type
up
variant
when
where
while
wilh
wtag
yield
yiefds

Upper and lower case letters are not distinguished In reserved words. For exafll)le, 'end', 'ENO', and

'eNd' are all the same reserved word. Reserved words appear In bold face in this document.

5.2. ldentHlers
An idtlfltifier is a sequence of letters, digits, and underscores U that begins with a letter or underscore,

and that is not a reserved word. Upper and lower case letters are not di8tinguilhed In ldenttfiers.

In the syntax there are two different nonterminals for idenllters. The nolllern*lat kin is used when the

Identifier has scope (see Section 7.1); kins are used for varillblea, paramelerl, module names, and as
abbreviations for oonstants. The nonterminal ,,_,,. ii used wllln the idefdlar Is not subieCt to soope

rules; names are used for record and structure selectors, oneof and varianl tags, operation names, and

exceptional condition names.

20 Lexlcal Conalderatlons

5.3. Literals
There are literals for naming objects of the built-in types nun, bool, Int, real, char, and string. Their

forms are described In Appendix I.

5.4. Operators and Punctuation Tokens
The following character sequences are used as operators and punctuation tokens.

Table 5-2: Operator and Punctuation Tokens

* < -c -$ ** II <• .. <_
.. _

:= II + >• .. >_ &
@ I > .. > I

5.5. Comments and Other Separators
A comment is a sequence of characters that begins with a percent sign (%), ends with a newline

character, and contains only printing ASCII characters (including blanks) and horizontaf tabs In between.

For example:

z :- a(i) + % a comment in an expression
b[i)

A separator is a blank character (space, vertical tab, horizontal tab, carriage return, newline, form feed)

or a comment. Zero or more separators may appear betrteen any two tokens, except that at least one

separator is required between any two adjacent non-881-tenMiating tokenl: reserved words, Identifiers,

integer literals, and real literals. Thia rule Is neceasary to avoid lexical ambiguities.

6 Types, Type Generators, and Type Speclflcatlona 21

6. Types, Type Generators, and Type Specifications
A type consists of a set of objects together with a Ht of Of*1lllonl used to manipulate the ot>;ects.

Types can be classified according to whether their ablectl .. n'IJtable or immJtable, and atomic or

non-atomic. An immutable object (e.g., an Integer) has a value M never varies, while the value (state)

of a mutable object can vary over time. Objects of atomic types provide serializabllity and recovery for

accessing actions. Non-atomic types may provide synctwonizatlon by apeclying that partiaJlar operations

are executed lndlvlslblyon objects of the type. An operation Is lndM8lble I no other process may affect or

observe intermediate states of the operation's execution. lndMsl:>lllty properties wiU be described for all

the built-in non-atomic types of Argus.

A type generator is a parameterized type definition, representing a (usuaHy Infinite) set of related types.

A partia.ilar type is obtained from a type generator by writing the generator name along with specific

values for the parameters; for every distinct set of legat va-.S, a dtltinct type is obtained (see Section

12.6). For example, the array type generator has a 8ingte parameter that determines the element type;

array[lnt), array(real], and array{array(lntD are three dlltlnct typea defined by the may type generator.

Types obtained from type generators are called palal1Hlltlltze types or /nslanlatlon5 of the type

generator; others are called simple types.

In Argus code, a type is specilled by a syntactic construct called a type_spec. The type specification

for a s~le type Is just the Identifier (or reserved word) naming the type. For parameterized types, the

type specification consists of the identifier (or reserved word) naming the type generator, together with the

actual parameter values.

To be used as arguments or results of handler and creator calla, or as Image objects (see Section 6.6),

ot>;ects must be transnissible. Most of the bull-In AlglJ8 types are tranlmissllle, that is, they have

transmissible objects. However, procedurea and Iterators are never trmwmissl>le. For type generators,

transmissibiUty of a particuJar instantiation of the generator may depend upon transmi8sl:>ilty of any type

parameters. A transmilst>le type provides the pseudo-operation .,. and two inlemal operations

encode and dscot:JB. Generally, encode and deoods are hidden from clients of the type. They are called

implicltly during message transmission (see Section 14) and In creating and decomposing lmllge objects

(see Section 6.6). Transmissl>lllty Is dlsculsed further In Section 14.

Argus provides all the bult-in types of CLU u well as some new types and type generators. This

section gives an informal inlroductlon to the built-in types and type generators provided by Argus. Many

detaHs are not diBaJIHd here, but a complete deflnllon of each type and type generator is given in

Appendix II.

I

'+:MWJJMtSAtJK1L,.~tusz4otfMPA.J .:a2esas. uttll .. IUJJJ# .. £$1&£8LJ J;&UU.JWJU 1.td•u1 zu; ;2.om . ttru:

22

1.1. Type lall21rl•
Tlll,....tl_.......,a_,.fl m1111-.Ma&tl ._.__, •• ._ .. _,

...,, 111111r.111m1un••~ tU;llilu111a11••1t••-•11111•w••

... ..,. ... , r••u•. 'IWlt• 1nr•,•••••••~•ll,•nlll1Ji:J1 au1111
• .,.......11ur1tt1111.11•·1111• ... · '· · '~ · · ·.· 1tJl1P••••v. , ..• .. ,,
.................. Jlllt.l••:•t ••111••··--.
.................. ¥ ,... · .•.••
............... ,.1111•1111f·1111••• ,. ,............ . . .·

p:
q: .. ~~·' ;• ---····H·U Qj -····------- 111 iJ{. II IJUutLMpz-q•--

U. TMIJ'1llfllllltl1•ta··
1nlllt1111110.••••· ·····-· ···~

• Cl.U IA 11 lt'l llllla••lltlirlll

••11a-.fMM••••lfll•11·•--••&•:1.••~••~,.•M1••••••••
n 1•111._ llll Bl ltJll 'UW•'• .. lll.l!I. ••N
tu1t 1 ''"· •m•s. ... ,,. e11la1n. •••••
1.1.1.Null

1111 bl I •llfl 18'1.llJ.lf;tf: .. ,

-.11rr111•. a.••••&.•• J r a

&.U.lool
1'1.-•kua tl I' * ,.~••i•lll.] 11•MJ1'18fllt1U11••• TM

.._ 11•-w. ••••••1111elti':l1fil,dlin•r,•fi. •i•••

............. llPlllllL :....,:11illt . . . , ...

I.I.I.Int
,... .,.,. • mu111 ca ,... " .. •••u ••• r.•••" 1'1Jt:'•P:.,.. • •,..., • , ••••~ ••••••11 •1nka•rJ t': .,. •••11 • •

11111"1•• .. ••M • ••lllai · .. l l'illl;' ·•AllHlltl.)

6.2.3 Int 23

The binary operations add(+), sub(-), mu/(*), div(/), mod(//), power(**), max, and rrin are provided, as

weU as unary minus(-) and abs. There are binary COf11)8ffson operations It(<), le(<•), equal(•),

gs(>•), and Qt(>). There are two operations, from_to and trom_to_by, for Iterating over a range of

integers. See Section 11.4 for details.

6.2.4. Real
The type real models (a subset of) the mathematical ram,.._ The exact subset Is not part of the

language definition. Reals are invnutable, atomic, and t~. although transmission of real

objects between heterogeneous rnadline architectures may not be exact. Real lleral& are written as a

mantissa with an optional exponent. A mantis8a Is either a MqUlf'IC8 of one or mote decimal digits, or

two sequences (one of which may be 8fY1'lY) joined by a period. The manliasa must contakl at least one

digit. An exponent Is 'E' or ·e·, optionatly followed by'+' or·-·, tolfow9d by one or more decimal clgls. An

exponent is required if the mantissa does not contain a period. As ks usual, mEx • nf 1 ox. Examples of

real literals are:
3.14 3.14EO 314e-2 .0314E+2 3. .14

As with integers, the operations add(+), sub(-), mul (*), div(/), mod (II), power(**), max, min,

minus(-), abs, It(<), /8 (<•), equal(•), ge (>-), and gt(>), ant provided. It ii ~to note that there

Is no form of inplclt conversion between types. The l2r operation convertt an Integer to a real, r21 rounds

a real to an Integer, and trunc truncates a real to an Integer. See Sedton H.5 for detala.

6.2.5. Char
The type Char provides the alphabet for text manipulation. Characters are lnvnutable, atomic,

transmissible, and form an ordered set. Every lrnplemen&atlon must pn>Yida at least 128, but no more

than 512, characters; the first 128 characters are the ASCII characters In their standard order.

Literals for the printing ASCII characters (octal 40 through octal 176), other than single quote ('). or

backslash(\), can be written as that character enclosed in single quotes. Any character can be written by

enclosing one of the escape sequences listed in Table ~1 In single quotes. The escape sequences may

be written using upper case letters, but note that escape sequences of the form\&* are case sensitive. A

table of literals Is given at the end of Appendix I. Ex8fl1>188 of charader literals are:

\7' ·a· "'' '\'" '\" '\B' '\1n·

There are two operations, i2c and c2i, for converting between lntegenJ and dlaracters: the smallest

character corresponds to zero, and the characters are nuntMtred sequentlally. Binary cof11)al'lson

operations exist for characters based on this numerical ordering: It(<), /8 (<•), equal(•), ge (>•), and

gt(>). For ctetalls, see Section 11.6.

'f!Rt•11uusu.w;e:z1.e,J1tM1t a 11;x;asz1 ,.... UL tJ4JilU42LD4i,.# .. Q!.4h#WJ!¥4#J4i t,; J M::::uzq#tM&# 2!2UJ44MQii~A444
I-,-."

!

....... ,. ,.
\\

"' 't
1>
\b

" \v ,.,..
V"*
\I*
\&*

8.U.llrlng

...... 1: 1*111•.11 IUIJ I 11•21 JI,._

,.. .. -.
••11• el --·~•101.d .JI•
cll•?Pfl .. A 1tr•1 ··•:•11isJ1•"
......... .,,..,,. eu111ft,

TM , I.I. •••21m11t •:111 ·lUf: •··· • , • n,.,..._ •u•1• •1tt n•~ g~•uti:•''*&* ._ _,_
... _...,, ..,,.. 111 1111•••·•1•zn111fll••litC(ffifliJ:ir!iJ·111 na

U.7.Ally

........................ ii.Ill;
GPI •••Pllltldlif·----.Rlilb•ll: _ ; .,·,

6.2.7 Any 25

the mutability and atomicity of an any object depend on the rrutablllty and atomicity of the contained

object. Objects of type any are not transmissible.

The aeats operation is parameterized by a type: create takes a single argument of that type and

returns an any object containing the argument. The force operation is allo parameterized by a type; it

takes an any and extracts an object of that type, signalling WIDllL'n» I the contained objlct's type Is

not included In the parameter type. The ls_ type operation le panlfllllerized by a type and chicks whether

Its argument contains an ot>;ect whose type is included in the parameter type. The detailed apecification

is found in Section 11.19.

6.2.8. Sequence Types
Sequences are immJtable and they are atomic or tranamissl>le when instantiated with atomic or

transmissible type paramelers. Although an indivickJal sequence can have any length, the lenglh and

members of a sequence are fixed when the sequence is aeatld. The elements of a sequence are

indexed sequentlaly, starting from one. A sequence type spaclication has the form:

aequence [type_ actual J
where a type_aclUa/is a type_spBC, possibly augmented with operation bindings (see Section 12.6).

The new operation returns an empty sequence. A sequence constructor has the form:

type_ spec $ [[expression I •H] J
and can be used to create a sequence with the given elements.

Although a sequence, once created, cannot be changed, new aequences can be constructed from

existing ones by means of the l/ddh, add/, remh, and rem/ operation&. Other operallona Include fetch,

replace, top, bottom, size, the elflmt111ls and Index• lterak>IS, and subeeq. Invocations of the f8tch

operation can be written using a special form:

q[i] % fetch the element at Index I of q .

Two sequences with equal elements are equal. The equal(•) operation tests If two sequences have

equal elements, using the equal operation of the element type. Slmllar tests If two ~s have

similar elements, using the slmHaroperatlon of the element type.

All operations are indivisible except for fill_copy, equal, simUar, copy, encode, and ci9cods, which are

divisible at calls to the operations of the type parameter.

For the detailed specification, see Section 11.8.

6.2.9. Array Types
Arrays are one-dimensional, and mutable but not atomic. They are transmissl>te only if their type

parameter is transmissible. The number of elements in an array can vary dynamicaRy. There Is no notion

of an •uninitiaHzed'" element.

[tlk Uhl IU. ., SUL ea SJU!!:au• UJ$!Ufll ILL u:;aa:usu . Mttl. lllUJ JQii14Ji!EU$!UZJ4U4lU!iiUS dJllt$21ULJl!ZML4ilLJ. Cfak•JIJ

.,.. ,ltt•••••'-•••••1•••
The.,..., • ..,. lfllef•!r11191r_...••s..,....._n•11u•1•1•..., ..

••• 1'1111111 •••• • •-. •• •r•·r 11l.Qll'S!l\~llJl:11111••'•nat • ., ..
.,._._ ., .. _._. •i••••••.tn.1i11'a11·•1n1na 1,_ ..

tonn: ...,, ... _
,,.. -........ _. ______ .. , .••.... , ---

Ol*lllA tlll1I • .. •• JIJRllll•'Jl'·•LlJ IJf,· ll~lfii'9LJ,iL.i11,J!lfl.~-----
••la-- Al1 ••Mr.r-•-.11tft1•r•m•·r••1•••· .. 11•J••·• u1•1•1ro•
inllltallua• FW.11r •·

.. , t. I. a. 4
-···· 11117
••••-11•••...,_..., 1 ••ut • 1111•• 11111u•

NI.., ,, ... _. ; ... II•• ... --........ __
........................... · ···•···' - > ... UlftAUlll1dt*

..,.,.., • ...,.,..11 ... 1ar rri"11' ... •••• m • .,._.,
•••• .. 11•11•1 II llWlt llr

• •11111 .. • on••••• ••• • IJ •••••

Al , -..~.I llt llllllJf.~ •Ill

•a•n1 1111•••·••• ••• 11 Hur.

Fer• d a1t1d1P1uP111111t-•1•n u.

uaau,. ••
A •r•n ll•·lt I IP llf't lllJ •1 rr

-· 1 lb -··-·····11·1·:· 1•••r• •• •o• ·••t•111.111anh.•r,'. •••••••:.nut.•••-- ··)
lilldJPIC ==--I - :

8.IRIL ltlln II--•
;.;U)ll •• ,

••·Mttu•·--- .A

1111--be· 1$1 110. ldflllll .. [11 ... tflU·l·LiStlWllllJlrWI.

6.2.10 Structure Types 27

A structure is aeated using a structure constructor. For exalf1)le, assuming that "info" has been

equated to a structure type:

info • 8trucl[last, first, middle: atl1ng, age: Int)

the following Is a legal strudufe conatructor:
info $ {last: "Schelle(' I ftrst: "Robert"' age: 32, middle: "W,,

An expressJon roost be given for each •lector, but the order and grouping of selectors need not

resemble the corresponding type specification.

For each selector "&er, there is an operation get_ 881 to extract the named component, and an

operation replace_sel to create a new structure with the named oomponent replaCed with some other

object. Invocations of the get operations can be written using a special form:

st.age % get the 'age' component of st

As with sequences, two structures with equal components are in fact the same obiect· The equal(•)

operation tests if two structures have equal cof11)0nents, u8'ng the equal operations of the component

types. Similar tests if two structures have slmllar components, using the sJmllar operations of the

component types.

All operations are individ>la except for equal, similar, copy, flfJCOde, and dBCOde, which are divisl>le at

calls to the operations of the type parameter.

For the detaHed specification, see Section 11.11 .

6.2.11. Record Types
A record is a 111.Jtable collection of one or more named objects. Records are never atomic, and are

transmissible only if the parameter typeS are all transmisaible. A record type speclftcation has the form:

record [fielc:t_spec , ••• J
where (as for structures)

field _spec : :: name , ... : type_ actual

Selectors must be unique within a speclicatlon, but the ordering and grouping of setectors ii unimportant.

A record is created using a record constructor. For example:

professor$ {last: "Herlihy"; first: "Maurice", age: 32, middle: "P.1

For each selector "sel", there Is an operation get_ssl to extract the named component, and an

operation sst_sel to replace the named component with some other object. Invocations of these

operations can be written using a special form:

r.mlc:tdle % get the 'middfe' component of r
r.age : .. 33 % set the 'age' component of r to 33 (by calling sst_age)

As with arrays, every newly created record has an identity that is distinct from all other records; two

records can have the same components without being the same record object. The Identity of records

28 Types, Type Genenitors, and Type Specification•

can be distinguished with the equal(•) operation. The slmllar1 operation tests If two records have equal

components, using the equal operations of the component types. Slnilartests I two records have similar

components, using the similar operations of the component types.

AH operations are indivisible, except similar, simllar1, copy, 6#'1COd6, and decode, which are divisible at

calls to operations of the type parameters.

For the detailed specification, see Section 11.12.

6.2.12. Oneof Types
A oneof type Is a taolJSd, dlscrimlnattJd union. A oneof is an lmnUIDle llbeled object, to be thought of

as "one of" a set of allematives. The label Is called the tag, and the otJllC:l ls called the value. A oneof

type specification has the form:

oneof (fleld_spec I 000 1
where (as for structures)

field spec : == name I 000 : type actual - -
Tags must be unique within a specification, but the ordering and g«>uping of tags is unin1>0ftant. An

instantiation is atomic or transmis&l>le I and only I all the type parameters are atomic or transmissible.

For each tag i· of a oneof type, there Is a rnalce_t operation which takes an object of the type

associated with the tag, and returns the obied (as a oneoC) labeled with tllg i·.

To determine the tag and value of a oneof object, one nomWly ueea the tagc111 statement (see

Section 10.14).

The equal(•) operation tests I two oneofs have the same tag. and I so, tests if the two value

components are equal, using the equal operation of the value type. SlmllM telts If two oneots have the

same tag, and If so, tests I the two value components at9 limlar, U8lng ht anthlroperatlon of the value

type.

AH operations are lndivisl>le, except equal, similar, slmllar1, copy, enoode, and decode, which are

divisible at calts to operations of the type parameters.

For the detailed specification, see Section 11.14.

6.2. 13. Variant Types
A variant Is a mutable oneof. Variants are never atomk: and are tranamllsible If and only If their type

parameters are aH transrnlssl:>le. A variant type specfflcation has the form:

variant (field_ spec I 0 OO 1
where (as for oneofs)

field_spec ::: name , ... : type_actual

6.2.13 Variant Types 29

The state of a variant is a pair consisting of a label caled the ta{/ and an object called the value. For each

tag "t" of a variant type, there is a tnlllce_t operation which '8kea an obied of the type aslOCiated with the

tag, and returns the oblect (as a variant) lab1l1d with tag T. In idllion, th4n ii a ~-t operation,

which takes an existing variant and an object of the type UIGClatld wlh T, and changes the state of the

variant to be the pair oonsllting of the tag T and the given ab19Ct. To delarmine the tag and value of a

variant object, one normally uses the tagcw statement (see Section 10.14).

Every newly created variant has an Identity that Is diatinct f.rorn al Gller variants; two variants can have

the same state wlhout being the same variant object. The ldeNly of varlm'lta can be dl8tinguished using

the equal(•) operation. The slmllar1 operation tests if two vlrianll have ht same taig, and I so, tests If
the two value COfl1)0l18nts are equal, using the eqlJlll operllUan of l'8 value tp. Slmllllr tests If two
variants have the same tag, and If so, tests if the two value COt'l'lpCJn8nts are stmnar, using the similar

operation of the value type.

All operations are indivisi.>le, except similar, simllar1, copy, encode, and d6code, which are divisible at

calls to operations of the type parameters.

For the detaHed specification, see Section 11.15.

6.2. 14. Procedure and Iterator Types
Procedures and iterators are created by the Argus system or by the bind expression (see Section 9.8).

They are not transmlssl:>le. As the Identity of a procedure or llerator II lmm.ltable, they can be

considered to be atomic. However, their atomicity can be violated If a procedure or iterator has own data

and thus a ITlltable state. The immutabiHly and atomicity of a procedure or aerator wlh own data

depends on that operation's specified semantics.

The type specification for a procedure or Iterator contains most of the infonnation stated in a procedure

or Iterator heading; a procedure type tion has the form:

proctype ([type _spec , •••]) [ret ms] [signals]

and an Iterator type specification has the

ltertype ([type_ spec]) [

where

returns
yields
signals

I •••)

' ...)
exception , •• •)]

The flfSt list of type specifications duir..r1t1As the runber, types, and order of arguments. The returna or

types, and order of the objects to be retu

unique. The ordering of exceptions is not

order of the objects to be returned or yielded. The signals

is also given. Al names used In a Signals clause must be

ant.

30 Types, Type GelWators, and Type Specifications

Procedure and Iterator types have an equal(•) operation. Invocation is not an operation, but a

primitive In Argus. Forthe detailed specification of proctype and ltertype, see Section 11.17.

6.3. Atomic_Array, Atomic_Record, and Atomic_ Variant
Having deacrl)ed the types that Argus Inherited from CLU, we now delcrbt the new types In Argus.

The rootable atomic type generators of Argus ant atomlc_anay, lllOmlc_record, and atomlc_vartant.

Types obtained from these generators provide the same operations as the Mlbgoua typeS obtained from

array, record, and variant, bul they differ In their synchronization MCI recovery propeftin. COnversion

operations are provided between each atomic type generator and Is notHltomic partner (for exampte,

atomlc_array(t~a converts from an atomic array to a (non-atomic) any).

An operation of an atomic type generator can be classified as a readtJr or wrltllr depending on whether

it exanines or modifies Its prlnclpal argument, that is, the argument or resul objeCt of the operation's

type. (For binary operations, such as ar_gets_ar, the operation ii clasllied with respect to each

argument.) Intuitively, a read'1r only examines (reads) the state of b pnnclpal argument, while a writsr

modifies (writes) its pri'q>al aJgUment. Operations that create obtlCta of an atomic type are clasaifled as

readers. Reader/writer exclusion Is achieved by locking: read8rl acquint a read lock while writers

acquire a write lock. The locking rules are discussed In Section 2.2.2.

If one or more of the type parameters Is non-atomic, then the muling type Is not atomic because

modifications to component objects are not controlled. However, lffdlwrle locking still occurs, as

described above. Thus, an atomic type generator in8tantiated wlh a ftOIHllomic parameter Incurs the

expense of atomic types without gatntng any benefit; such an inltanlilitlon Is unlkefy to be a correct

solution to a problem. Atomic type generators yield transrnllslJie t)'P8I only If the type parameters are all

transnissible.

Special operations are provided for each atomic type generator to test and manipulate the lockS

associated with readerJwrlter exclusion. These operations are useful for Implementing user.,lned

atomtc types (see Section 15). The and tagwllll stalemenll (IM Section 10.15) JHOVtdt
additional structured support for atomlc_variants. The operations can_read, QM_wrlfe, Test_and_read,

and test_and_wrlte provide relatively unstrucaured access to lock Information. For~ definitions of

these operations, see Sections 11.10, 11.13, and 11.16.

Assuming normal termination, the following operations acquire read locks on their principal arguments

or the objects that they create.

atomlc_array: aeate, new, predict, ffH, tnl_copy, sizs, bw, high, empty, top, botlom, Mich, llimllar,
s/rdlar1, copy, oopy1, elements, Indexes, test and read, a2a, aa2a, encodtl.
d«:Dde - -

atomlc_racord: aeate, get_, simDar, simllar1, copy, oopy1, tesLand_read, ar__.06ts_ar (second
argument), r2ar, ar2r, encode, decode

atomlc_varlant: males_, is_, value_, av_gets_av(seoond argument), simllllr, sin»lar1, a:>py, copy1,
test_ and_ read, v2av, av2v, encode, dBCOde

6.3 Atomlc_Array, Atomlc_Record, and Atomlc_Vartant 31

The operations slmiJar and sllrllar1 acqun read locks on bQth arguments. The operations aopy and

copy1 acquire a read lock on the value returned as wel 11 tt'8lr prtncipal argument. Test_and_read is a

reader only if ii returns true; otherwise It Is neither a reader nor a writer.

Assuming normal termination, the followtng operations acquire write locks on their principal arguments.

atomlc_array: set_low, trim, store, addh, .:Id/, remh, rem/, t._and_writB
atomlc_record: set_, ar_gets_ar(flrst argument), _,_Md_.,.
atomlc_vartant: change_, av_gets_av(ftf8t argumet'j), _,_..,_wrtte

Test_and_wrlte Is a writer only If It returns true; otherwise It ii nelher a reader nor a writer.

The equal, can _read, and can_ write operations are neither readers nor writers.

When an operation of .aomlc array t9fmin8te8 wilh an exception, Is principal argut'neN is never

modified; however, the .aamlc_anay operations listed above u wrtlets always obtain a wrle lock before
the principal argument ii examined, hence there are Cll88 In wNch they wll obtain a Wiie lee* and only

read, but not modify their principal argument. For exa,..., lltllltlc_ll'nlV(tJSlli'n is a writer when It

signals bounds. On the other hand, when an .ao1111c_.., oper8don raises a lignaf because of an

invalid argument, no locks are obtained. For ex.,., when lllOMlc_M'llfll]Slrtm lignal8 fHIOl'llv•_slze,
it is neither a reader nor a writer since the array's state ii nether examnect nor rnoc:fiMj (only the Integer

argument is examined).

For the detailed specification of atomic arrays, see Section 11.10; for atomic records, see Section 11.13;

and for atomic variants, see Section 11.16.

6.4. Guardian Types
Guardian types are user-defined types that are if11>1emented by guardian definitions (see Section 13).

A guardian definition has a header of the form:

idn - guardian [parrns l .. idn • ... [handlM ldn] [where 1
The creators are the operation& named In the identifier llst folowtng IS; a creator is a special kind of

operation that can be called to create new guardlan8 thal behave In accordance with the guardian

definition. Each guardian opttonaBy provides handlfltS that CM be called to Interact with It; the names of

these handlers are listed In the identifier Hst following MndlM. (See Section 13 for more details.)

A guardian deflnitiOn named g defines a gumdian interface type g. An object of the guardian lnterf ace

type provides an interface to a guardian that behaves in accordance with the guardian definition. An

Interface object is created whenever a new guardian ii crated. and then the Interface object can be used

to access the guardian's handlers. Interface Objed8 are tranemil1llle, and after tranamluion 1hey still

give access to the same guardian. In this manuat a "guardan ltthMf&le object" II often called sin1>fy a
•guan:tian object•.

The guardian type g for the guardian definition named g has the following operations.

32 Types, Type Generaaora, and Type Specifications

1. The creators listed In the 18 list of the guardian definition.

2. For each handler name h listed In the hencllM list, an operation get_ h with type:
proctype (0) retuma (ht,, where ht Is the type of h.

3. Equal and similar, both of type: proctype (g, (/J l9lUmS (bOol), which return 11\18 only If
both arguments are the same guardian object.

4. Copy, of type: proctype ((/J return• (g), which &ifT1>fy returns Its argument.

5. transmit.
A creator may not be named equal, slmHar, copy, print, or get_ h where h Is the name of a handler.

Thus If x is a variable denoting a guardian interface object of type g. and h is a handler of g, then

(/$get_ h(x) wiU return this handler. As usual with get_ operalionl, 1hll cal can be abtnvialed 10 x.h.

Note that the handlers themselves are not operations of the guardian iNertace type; ttu tJ$h would be

illegal.

A guardian lnterf ace type is somewhat like a structure t)<pe. Its objects are construded by the creators,

and deoomposed by the get_ operations. Guardian Interface oblectB are immJtabla mid a&omic.

6.5. Handler and Creator Types
Creators are operations of guardian types. Handler objects are created as a side-effect of guardian

creation. Unlike procedures and Iterators, handlers and creators are transmlsal>le.

The types of handlers and creators resen1>le the types of procedurea:

handleltype ([type_spec, ...]) [retums] [.....]
c...aortype ([type_apec, ...]) [retums) c)

The argument, normal reault, and exception l'8IUlt types Rll8t all be tranamisd>le. The l//gnllla tllt for a

handlertype or CnllllOrtype cannot Include either failure or l.IWV..,,,,,., • thHe signals are ln1*fl in

the interface of all creators and handlers.

Handler and creator types provide equal and llltnflar operations which return llW I and only I both

arguments are the same object, and copyoperationl which~ ratum their argument. For the detaled

specification of handfertype and CIUlOl'type, see Section lt.18.

6.6. Image
The Image type provides an escape from cofY1>11e-tlma type cheddng. The main difference between

Image and any Is that Image objects are transrnlsaible. An Obf8Ct can 131 thought of as a portion

of an undecoded message or as the Information needed to ntaNte an oblect of some type. Image
objects are immutable and atomic.

The create operation Is parameterized by a transmisslJle type; It takes a uve argument of that type

and encodes it (using the encode operation of that type) Into an Image object. The force operation Is atso

6.6 Image 33

parameterized by a transmiasl>le type; It takes an hn8ge object and decodes It (using the decode

operation of that type) to an object of that type, 8lgnallng MOIJO_'P if the encoded object's type is not

Included in the parameter type. The is_ Ip operation ii parameterized bi/ a type and checkl whether its

argument Is an encoded object of a type Included In the parameter type. See Section 11.20 for the

detaHed specification.

6.7. Mutex
Mutex objects are nlJt8ble containers for information. They are not atomic, but they provide

synchronization and control of writing to stllble storage for their contained object. Mutex ltsel does not

provide operations for synctvonlzlng the uae of nuex obieetS· Instead, mutual exclulion is achteved

using the..._ statement (see Section 10.16), which aflows a eequence of statements to be executed

while a process is In exclusive possession of the mutex object. Mutex objects are transmissible If the

contained object Is transmissl>le.

The type generator mutax has a single parameter that is the type of the contained object. A rrutex

type specification has the fonn:

mutex (type _actual]

Mutex types provide operations to create and ~ lftltex obfeets, and to notify the system of

modifications to the rrutex object or Its contained object.

The create operation takes a single argument of the parameter type and creates a new mutex object

containing the argument object. The get_ valull operation oblalnl the ooNalned obJect from Its mutex

argument, while •L valw modifies a nuex object bi/ repfaclng Its contained object. As with records,

these operations can be called uU1g spedal forms, for ex'"'*:
m: IRUIU(lntJ :• muleX(lnt)Screate (0)
x: Int:. m.vakle % extract the contained object
m. value :• 33 % change the contained object

Set_ valw and get_ value are indivisible.

Mutexes can be distinguished with the equal(•) operation. There ant no operations that could cause

or detect sharing of the contained object by two mutexea. SUch sharing is dangerous, Since two

processes would not be synchronized with each other In thak' use of the contained object if each
possessed a different mutex. In general, If an object is conlained In a rft.dex object, It should not be

contained in any other object, nor should it be referred to by a variable except when In a ..._ ssatement

that has possession of the containing mutex.

There are some mutex operations that seize the rootex object automatlcalfy. Copy seizes Its single

argument object. Similar seizes Is two argument obilda; the first m;ument object is seized fitst and then

the second. In both cases possession is retained untl the opetalior18 return. Also, when a mutex object

is encoded (for a message or when making an lrmge), the object is seized automatlcatly. See Section

11.21 for the detailed specification of mutex.

·-· . ~ '

34 Types, Type~ and Type Specifications

Mutexes are used primarily to provide process synctvonlzatlon and mutual exclusion on shared data,

especlaffy to implement user-defined atomic types. In such ~. it is ~ to control

writing to stable storage. The fTIJtex operation chlln(Jed provides the necnaary control. Chang8d

infonns the system that the calling action requires that the argument Obied be copied to stable storage

before the convnlt of the action's top-level parn (topaction). Any ftltex is asynchtonous: its oortained

object is written to stable storage Independently of objecls that contain that mutex. See Sedion 15 for

further discussion of user-defined atomic objects.

6.8. Node
Objects of type node stand for physical nodes. The operation fwlre takes no acgumenls and returns

the node object that denotes Its caller's nOde. Equal, slmllar, and copy opendonl are llllo provided.

The main use of node objects is in guardian creation (888Secllon13), where they are used to cause a

newty created guardian to reside at a particular node. Objects of type node are immutable, atomic, and

transmisslbfe. For the detailed specification, see Section H.2.

6.9. Other Type Specifications
A type specification for a user-deflned type has the fonn of a refrlrenctl:

reference : :: kin

I idn l ac:tuat _parm 1
I reference $ name

where each actual_pann mJat be a COf11>il8-time co~ conatant (see Section 7.2) or a type_llCIUal

(see Section 12.6). A,...,..,_ nl.llt denote a data ablll.- ID be UMCI Ma type aplCllCadon; tis

syntax Is provided for referring to a data abatracdon M fl l1lmld In M equate module (see Section

12.4). For type generators, actual parameters of the appoprl1t1 typea and number nlJSt be suppled.
The order of parameters is always significant for user-defined types (see Section 12.5).

There are two special type specifications that are used when lmplemenllng new abllractions: rep, and

CYt. These fonns may only be used within a ctuater; they are dilcuued tullher In Section 12.3.

Within an implementation of an abstraction, formal paramelerl dlclaNd wlh type can be used as type

specifications. Finally, Identifiers that have been equated to type epeclicatlonl can also be UMd as type

specifications.

7 SCopes, Declaratlona, and Equates 35

7. Scopes, Declarations, and Equates
This section descrt>es how to Introduce and use conatanla and variables, and the scope of constant

and variable names. Scoping units are descrl>ed first, followed by a dl&a1ssion of variables, and finally

constants.

7 .1. Scoping Units
Scoping units follow the nesting structure of statements. Generally, a scoping unit is a body and an

associated •heading·. The scoping unls are as follows (see Appendix I for details of the syntax).
1. From the start of a module to Its end.

2. From a cluster, proc, lier, equates, guarc:ta.n, handler, or cN8tOr to the matching end.

3. From a for, do, begin, background, recover, enter, coentar, or Hlze to the matching
end.

4. From a then or elH in an If statement to the end of the comtspondlng body.

5. From a tag, wtag, or others in a tagcaae, tagWlllt, or.._.. utement to the end of the
corresponding body.

6. From a when or others in an except statement to the end of the corresponding body.

7. From the start of a t)J:Je_setto Its end.

8. From an action or topaetlon to the end of the corresponding body.

The structure of scoping units Is such that I one scoping unit overlaps another scoping unit (textually),

then one Is fully contained In the other. The contained scope is called a nested scope, and the containing

scope Is called a surrounding scope.

New constant and variable names may be introduced In a scoping unit. Names for constants are

introduced by equates, which are syntactically restricted to appear grouped together at or near the

begiMing of scoping units (except In type sets). For ex equates may appe.- at the beginning of a

body, but not after any statements in the body.

In contrast, declarations, which Introduce new variables, are dowed wherever statements are allowed,

and hence may appear throughOut a scoping unit. Equates and declarations are dl&alssed In more detail

in the following two sections.

In the syntax there are two distinct nontenninals for Identifiers: idn and name. Aff'f identlier introduced

by an equate or declaratton Is an /dn, as Is the name of the module being defined, and any operations It

has. An ldn names a specific type or object. The other kind of ldenllfier Is a name. A """"' Is generally

used to refer to a piece of something, and Is always used In context; for example, names are used as

record selectors. The scope rules apply only to kJns.

The scope rules are simple:

1. An kin may not be redefined in its scope.

2. Any idn that is used as an external reference in a module may not be used for any other
purpose In that module.

36

Unlike other "block-structured" languages, Argus prohl>itl the redefinition of an Identifier In a nested

scope. An identifier used as an external reference names a module or 00f18tant; the reference is resolved

using the oofl1)ilatlon environment.

7.1.1. Variables
Objects are the fundamental itttngs• in the Argus universe; variables are a mechanism for denoting

(i.e., naming) objects. A variable hu three propertJea: 11 type, whether I ii stable or not, and the objecl

that it currently denotes (if any). A variable is satd to be unlnltlallatJ I I does not denote any object.

Attempts to use uninitialized variables are programming enora and (If not deleded at compile-time) cause

the guardian to crash.

There are only three things that can be done with variables:
1. New variables can be Introduced. Declaratlons pelform this function, and are described

below.

2. An object may be assigned to a variable. After an ll8llgnment the variable denotes the
ot>;ect assigned.

3. A variable may be used 11 an expreuion. The vmue of a varillble is the object that the
variable denotes at the time the expression is evaluated.

7 .1.2. Declarations
Declarations Introduce new variables. The scope of a variable is horn la declaration to the end of the

smallest scoping unit containing Its declaration; hence, variables nut be declared before they are used.

There are two sorts of declarations: those wlh initialization, and thole without. Sif11>fe deciaratlons
(those without Initialization) take the form

decl ::: ldn, ••• : type_spec

A simple declaration Introduces a list of variables, al havtng the type given by the iyp._spec. Thia type

determines the types of objects that can be assigned to the variable. The vm1lbles lntloduced In a 1in1>fe
declaration initially denote no objeds, I.e., they are uninliallzed.

A declaration with Initialization combines declarationl and uaignm1nts Into a single statement. A

declaration with Initialization is entirely ~ to one or more simple declarations followed by an

asstgmtent statement. The two forms of declaradon wlh lnldallzatlon are:

ldn : type_spec :- expression

and

decl1, ••• , dec\t :• caH (@ primary)

These are equivalent to (respectively):

ldn : type_ spec
ldn :- expression

and

7.1.2 Daclaratlons

decl1 ••• dec'n % declaring ldn1 ••• idr\n
idn1, ... , idf\n :•call[@ primary)

37

In the second fonn, the order of the kins in the aasignment statement is the same as in the original

declaration with Initialization. (The call must return m objects.)

7.2. Equates and Constants
An equate allows an ldentlier to be used as an abbreviation for a conetant, type set, or equate module

name that may have a lengthy textual representation. An equate lllo permits a mnemonic Identifier to be

used in place of a frequently used constant, such• a numerical v.abt. We use the term constant In a
very narrow sense here: conatants, In addlion to being tmrnua.ble, ..,.. be computable at compite·tlme.

Constants are either types (butlt·ln or user-defined), or objects that are the resulls of evaluating constant

expressions. (Constant expressions are defined below.)

The syntax of equates is:

equate : :: idn • constant

I idn • type_ set
I idn - reference

constant::: type_spec

I expression

type_set ::: { ldn I ldn has oper_decl, ••• {equate}}

reference : :: idn
I ldn (actual _pann I •H]

I reference $ name
References can be used to name equate modules.

An equated identffier may not be used on the left-hand stde of an assignment statement.

The scope of an equated identifier Is the smallest scoping unit surrounding the equate defining It; here

we mean the entire scoping unit, not just the portion after the 8C',Jnlle. AH the equates in a scoping unit

must appear grouped near the beginning of the scoping unit. The exact placement of equates depends

on the containing syntactic construct; usl.iaHy equates appear at the beginnings of bodies.

Equates may be In any order within the a scoping unit. Forward references among equates In the

same scoping unit are allowed, but cyclic dependencies are illegal. For ex8f11)18,

X•Y
Y=Z
z-3

Is a legal sequence of equates, but

1 tJ.JJ; tJlt!tlXH zi1anatn .,,,_.,,.,,Ja 11 ;;aesa .Lt 1.au J211 !A¥•Zt tJttJL ;:mg, ltd LtltiU:U ltl :w1me;11J1N11n;:zua J::1 .. 111t-•1'-u•1••

38 ... ,

is not. Since eqlt .. l INIOduee idRI, ... _,.. ,.,, not be

defined men than once).

7.2.1. Abbr9wlal•• ... r,...
Ida, .. ,. _,._,.,•1•••1111an •1• • .._ •• •• ,. ,.., •.

7.2.2. CoMll:nt I U r111llM

-. ,.,, ••• , 1111•'•• •••••J 1a1•1•••,, ,..
C011t111t ••111'••· ffo•n a•• •n •u••..-•'.811m-. *"" • •• •o a 111111 era •. ,, ... , _.,. .. ,·,••••••••• -•·••••tt•J1111 t111.nln•••,•••· ..,..
lneludll:

1

4. Ploolcln, ---- .. .

5.Blnd. , , .. ,_ , ····---.........
8.lnwllll• el flllU .. lfl If ... It .. ,.lt.tllldlll ••Ulllld - ..
............ ,, n1u •·•••••i111l1111tl1Uir

n. ..,. 11112 t11M• -= -. • ~ -:v1at1'v•:•s ••11r11 ..., --.

• ..._....., , fl'M. ...
the , IJl.l'Pll:. •••1•nlf••n•rt•1• IUIDA

wauldllgnlt•-=--· .. • 11111 .•• , •. ., ... ,,., •·1m••11r·

8 Assignment and calla 39

8. Assignment and Calls
The two fundamental activities of Argus programs are calls and assignment of computed obieets to

variables.

Argus programs should use mutual exclusion or atomic data to synchn:>nize aocess to an shared

variables, because Argus supports concurrency and trus processes can Interfere with each other during

assignments. For example,

i := 1
j := 2

is not equivalent to

i, j :- 1, 2

in the presence of concurrent assignments to the same variables, because any interteaving of indivisible

events is possible in the presence of concurrency.

Argus is designed to allow co"1>19te compile-time type-checking. The type of each variable is known
by the compiler. Furthermore, the type of objects that could relUI from the evaluation of any expression

is known at compile time. Hence, every assignment can be checked at oorr1)11e time to ensure that the

variable is only assigned objects of its declared type. An assignment v :- Eis legal only If the type of E is

included the type of v. The definition of type Inclusion is given in Section 6.1.

8.1. Assignment
Assignment causes a variable to denote an object. Some assignments are lrJ1>1icltly performed as part

of the execution of various mechanisms of the language (In exception handling, and the tagcau, tagtest,

and tagwal statements). AH asstgnments, whether lmpliclt or expftclt, are subject to the type inclusion

rule.

8.1.1. Simple Assignment
The sinl>lest fonn of assignment statement is:

ldn =• expression
In this case the sxpression is evaluated, and then the resulting object is assigned to the variable named

by the idn In an indivisible event. Thus no other process may obaerVe a "half-assigned" state of the

variable, but another process may observe various states during the expression evaluation and between

the evaluation of the expreulon and the assignment. The expression must return a single object (whose

type must be Included In that of the variable).

8.1.2. Multiple Assignment
There are two forms of assignment statement that assign to more than one variable at once:

idn , ... :• expression , •••

and

,,·.,_

40 Assignment and ca11s

idn , ••• :- caH [@ primary]

The first fonn of mu~ assignment Is a generalization of Sin1>le Mlignment. The first variable is

assigned the first expression, the second variable the second expt'9llion, and so on. The expressions

are all evaluated (from left to right) before any aasignmenta are petformad. The assignment of multiple

objects to multiple variables is an lndivlslH event, but evaluation of the expreuions ii clvid:Jle ft0m the

actual assignment. The oomber of variables in the list 111.1st equal the l'IJfN>ar of expresak>ns, no variable
may occur more than once, and the type of each variable must inclJde the type of the corresponding

expression.

The second form of multiple assignment allows one to retain the objects resulting from a call returning

two or more objects. The first variable is assigned the first obieet. the second variable the second object,

and so on, but all the assignments are carried out indivisl:>ly. The older of the objects Is the same as in

the return statement executed in the called routine. The runber of variables must equal the number of

objects returned, no variable may occur more than once, and the type of each variable must include the

corresponding return type of the caffed procedure.

8.2. Local Calls
In this section we discuss procedure calls; iterator calla are dllculaed in Section 10.12. However,

argument passing is the same for both procedures and Iterators.

Local calls take the fonn:

primary ([expression , ...])

The sequence of activities in performing a local call are as follows:
1. The primary is evaluated.

2. The expressions are evaluated, from left to right.

3. New variables are Introduced corresponding to the formal arguments of the routine being
called (I.e., a new environment ts created for the caled routine to execute in).

4. The objecls resulttng from evaluating the expressions (the actual atgUm8ntS) .. assigned
to the corresponding new varlable8 (the formal argumenll). The ffrat tonnal is assigned the
first aclUal, the second formal the 18COnd actual, and so on. The type of each expresston
must be Included In the type of the corresponding tonnal argument.

5. Control is transferred to the routine at the start of its body.

A call is considered legal in exactly those situations where al the (in1>Helt) assignments are legal.

A routine may assign an object to a formal argument variable; the effect Is)Jst as If that object were

assigned to any other variable. From the point of view of the caled routine, the only dlferenoe between

its formal argument variables and its other local variables ts that the formals are inltlallzed by its caner.

Procedures can terminate In two ways: they can terminate normally, returning aro or more objeds, or

they can terminate exceptlonally, slgnalHng an exceptional condlion. When a pocedUre terminates

8.2 Local Cells 41

normaHy, any result objects baoome available to the caller, and can be .. igned to variables or passed as

arguments to other routines. When a procedure termiNlles excepllonafly, the flow of control win not go to

the point of return of the caH, but rather wll go to an exception handler (see Section 11).

8.3. Handler Cells
As explained In Section 2 and In Section 13, a handler is an operatiOn that belongs to some guardian.

A handler call causes an activation of the called handler to run at the handler's guardian; the activation is

performed at the called handler's guardian by a new IUbactlon created solely for this purpose. Usually

the handler's guardian is not the same as the one in which the cal occurs, and the caled handler's

guardian is ll<ely to reside at a different node in the network than the oalHng guardian. Hol"le\W, I Is legal

to caH a handler that belongs to a guardian residing at the caler's node, or even to call a handter

belonging to the caHer's guardian.

Although the form of a handler call looks ll<e a procedure caft:

primary ([expression, •••])

its meaning is very different. Among other things, a handler is calad remotely, with the arguments and

results being tranamilted by valle In mes11g11, and the cal Is Nn as a subactlon of Is caling action.

Below we present an overview of what happenS when executing a handler call and then a detailed

description.

A handler call runs as a subactlon of the calling action. We wll refer to tu IA lbactlon u the call action.
The first thing done by the call action Is the trwwml88iDn of the ~ of the call. Tranamlsslon is

accomplished by encoding each argument objeet, u8ing the """"'*operation of la type. The #g1Ml181\ts

are decoded at the called guardian by a subaction of the Clll Dion clllld the _,. m.tJn cllon. Each
argument is decoded by using the d9COds operation of Is type. Thi effect of trantmUion is that the

arguments are passed by value from the caler to the handler .Wllllon: new obtecta come ink> existence

at the handler's guardian that are copies of the arvument obiedl· ObJect YIWes are transmitted in such a

way as to preserve the inlemal sharing structure of each argument otJtect is preaerted', as wet as any

sharing structure between the argument objects In a single cal. See Secdon 14 for further dlacussion of

transmission.

After the arguments have been transmitted, the activation llCtion performs the handler body. When the

handler body terminates, by executing a NIUm, llllOl't or lbort 81gml atatemeR. the

resutt objeda are transmitted to the caller by encoding them at ttte hander's guardian, and committing or

aborting the activation action (as it specified). The cal action then decadll the results at the caller's

guardkm. Once the results have been transmitted to the Qlller, the cal llCtion commits and exeaAion

continues In the caller as indicated by the caller's code. (Note that the cal action will commit even I the

activation action aborts.)

'This is only slriclly true for lhe buitt-in types. A uaer-defined type misJht not pt'8HMt intam8I sharing structure.

!·.:,OU.JI UQ,!!$U.llJ.MJIJJil!flJllJ,,li,Q $.lllH4.l .2§$11$.LlllZIJl•tt LU .sac .MW.Xi. ilJ14!WUU.. JIJ,JIJJ JL.IDJll .···,,.!$# .. £.J$¥4Nl.!$L

, c.11a

..._., DIJFJ.._ •••••• lfo " ,,
"r 1$.ll 1WD II I ljllJL l .••• !•trl~~-: ··~ ,, .

·. -- • ' • • .· • • • ''. ~/ .: -~ ·, ~:.L• "
.... -.u11n •t•--••nn,1 ••UitiW..

Them1a111t1Gta--1 IQll?t .. 11 l'lllfllf JILJ ···;·-·--·-
......... Ullllil IHI I ,II •I IJ,. ti bUl lf4: .. JI QI· •• ; ,· IUV I .., .. .

-- ' 0111 •••11J)lir.fj§lf,1ltflllJ ' . ' . ·:- - J\~ ;-:.· -. ,

.rt .. ln. AHlilM ... WlUJ .11 mllR, ___ _

II I at• 'IQIJit ... tll· ,, ·-~·--,······:' •ss• •n -.,, •• .,, '' •101m~-- · ,, . ,. •-1•1r1H11, ,,,~II IJltka'.· .•.. '·"e:. ··.··.·.· .. · ... ·· ... 1u•1-
011Rp'1t1,,,~ •••• •••• 1 •1lill111!1nt1mr·11lli(l't••*••'•1•111•11
... .,.. .. -• ••••• ·11 a ttnu•r t.

........... ; •. ~----······ •4mt•l$t• 11\L _ .. _,..
--.J'-:&llU•I•

···••111••1••
tt1111•·11

................ fll, _ ,11.11•
...... adln•ll l•I 111 ••:

Rl Hrld,..JU. 1' lll~llll.711.11.lll
tAllUBtallJ-? .. ·,· ..• ,,,···. ·.·· •.. ; ... •• . ,;;a;cnt ,,.~ ...

8.3.1 Semantics of Handler C&lls 43

8.3.1. Semantics of Handler Calls
In this section we describe the semantics of a handler caH In detail. A handler cal cauaes actMty at

both the calling guan:lian and at the called guamlan. N. the calling guardian, the sequence of activities in

performing a handler cal ii as follows:
1. The primary is evaluated.

2. The argument expnlSSlons are evaluated from left to right.

3. A subactlon, which we will refer to as the cal action, 18 aMted for the remote call. Al
subsequent actMty on behalf of the cal will be Plltoflnld t.r bt Clll 8Ctioft or one of its
descendants. For I to be po111J11 to cntate the cal -*"· 11'8 caller RUii .._ be
running as an action. Remole catls by non--actlonl n ~ emn and caul8 the
cafflng guardian to crash.

4. A cal message Is constructed. Aa part of COl1lbUClftl - "*1811· MCOde operations
are pettormed on ht argument olli•• If 111f flf"' .., ... ~ tllmil..._ wilh a
failure exception, thin the remote cal wll termlnlll wlh ttte 11m1 exceplion, and the call
action wiR be aborted.

5. The call message 18 sent to the guan:llan of the caled handler, and the cal action waits for
the completion of the call.

6. If the can message arrives at the node of the target guardian, 8ftd tt. t-vet guardian does
not exist, then the cal action is aborted with bt fallule exception having the atrlnG
"guardian does not exllt" as Its exception reeul. ·

7. If the ayetem cteterrnnea thlll I CMNI comnu1lcate wlltt tM called-.n. II lbGftl the
cal action. The cal 8Ction may be retried - (lleglnnlnQ ... 3) in to
OOftVYllnlcllle. I Np1•1d_ t1lu1"11 - .-iHUNINd, .. 'Ylllm
cal aetlOn and OIWlll lie cal to temt1r1•1 wlltt lt -=eption. The .,..... wil
cauee thll kind of termk1ldlon ~ when I II ~ unllkely that retrying the cal
Immediately wll succeed.

8. On:finarily, a call COJl1)lelea when a reply mea1111 OD1'U1ninQ the NttUla II received. When
the reply message anlvn Ill the caller, I II decoded Ulir'D tl'8 d#IDOtM operation for each
resul objlct. If any decode terminate• wilh a fltllute,.., the cal action is lborted,
and the call terminates with the same exception. Olherwlle, the cal action commits.

9. The call wHI tennklate normally I the l'88UI message lrdcllH thlt the handler activation
returned (Instead of signalled); otherwise It termlnalea wlh whatever exception was
slgnalfed.

At the called guardian, the following activities take place.
1. A subaction of the call action Is created at the target guardian to run the calt. We will refer

to this subactlon as Ile activation at:llon. Al actlYtly at the t8flll guardian occurs on behalf
of the activation action or one of its~.

2. The call message Is ~ ink> Its constllueR obtlc*· N. part of this process
dscodtl operations .. performed on each argument. If My """°"" terrNnatet with a
failurfl exception, then the activation action le aborted, and the call terminates with the same
exception.

3. The called handler Is called witlWt 1he activation action. Thia call ts ll<e a NGI* procedure
call. The obiects olJtaNd fRMn decoding the melSIQI n the actual arguments, and they
are bound to 1h8 formals via iq>llcit WlgrvnerU.

4. H the handler terminates by exeading an llbOlt,.. or 1n *" algftlll statement (see
Section 11.1), then an committed deacendlrda of the IClvllllon action are lbofted. Then
the reply message is constructed by encoding ht ,..,. objlcts, the acllvation action is

44 Aulgnrnent and Calls

aborted, and the reply m&888Qe is sent to the caller. Olhelwile, when the hancler
terminates, the reply message Is constructed by encoding the red ot>tacta. the activation
action commits, and the reply message Is sent to the caller. If one of the calll of BnCOdfl
terminates with a faJlute exception, than the activation action ii aborted, and the can
terminates with the same exception.

When the Argus system terminates a call with the unavallllble exoeption, it is pos&l>le that the

activation action and/or some of its descendants are actually running. Thll Q;MAct happen, for exaqJle, If

the netwol1< parUtlons. These running processes are called ·orphanl·. The Argus system mikes sure

that orphans wiff be aborted before they can view inconsistent data (see Section 2.5).

8.4. Creator Calls
Creators are called to cause new guardians to come Ink> ex..._. Aa part of the caff, the node at

which the newly created guardian wil be located may be specified. If u. nocl8 ii not specified, then the

new guardian is created at the same node as the caller of the creator. The torm of a creator cal ii:

primary ([expression, •••]) [@primary]

The primary following the at-sign(@) m.ilt be of type node.

A creator call C8UMI two aclivlies to take place. First, a new guaRllafl ii crated at the Indicated

node. Second, the creator is called U a harder at the newly CNMld guardian. This handler call has

basically the same semantics as the regular handler call delcll>ed lbove.

The Argus system may also cause a creator can to abort with the fallunl or unava/lable exceptions.

The reasons for such terminations are the same as those for hMdllr calla, and the meanings are the

same: the failure exception .,.... that the call should not be relried. while the unavailable exception

means that the call should not be retried immedfatefy.

8.4.1. Semantics of Creator Calla
The activities carried out In exeaJting a creator call are as follows.

1. The (first) primary Is evaluated.

2. The argument expressions are evaluated from left to right.

3. The optional primary following the at-sign Is evaluated to obtain a node object. If this
primary is missing, the node at which the cal Is taking place is Ul8d.

4. A subactlon, which we will refer to as the caH acflon, ii created. Al 8Ub8equent activity
takes plaCe within this subactlon. As was the cue tor handler call, creators can be called
only from within actions. A aeator cal by a non-action is a ~ error and causes
the calling guardian to crash.

5. A new guardian Is created at the Indicated node. The creator obtained in llep 1 will indicate
the type of thl8 guan:fian. The selection of a particular load Image for this type will occur as
discussed In Section 3.3.

6. As was the case for handler calls, if the system cannot communlca1e with the indicated
node, the creator cal will terminate with the unavallab/B excaplton. If the system is unable

8.4.1 Semantics of Creator C811s

to determine what 1"1)1ementation to load, or if there ii no lq>lementation of the type that
can run on the Indicated node, or If the manager of the node 19fuaes to allow the new
guan:Han to be created, the creator call wll terminate wlh the failure exception. In either
case the call action wiD be aborted.

7. A remote caH is now performed to the aeator. Thia Cllll hU the same semantics as
descrtbed for handler calls above In steps 4 through 9 of tf'8 ICtMliea at the calling node
and also steps 1 through 4 of actlYltes at the called nodl. I either the call action
or the activation action aborts, the newly created guardian wfl be desb'o)'ed.

For exa"1)18, suppose we execute the creator call

x: G :• G$cr8ate(3) @ n

where G is a guardian type, n denotes an object of type node, and ONte has header

aeate • Cl'MIOI' (n: Int) NIUm8 (G) llgnala (not_ponlble(llltng))

45

The system will select an ~ of G that ii suitable for use at node n, and wtl then create a

guardian at node n running that lmplemerUtlon. Next crNIB (3) ii performed as a hander call at that

new guardian. If aeate returns, then the assignment to x wll oocur, causing x to refer to the new
guardian that creats returned; now we can call the twders poYld8d by G. The exceptiona that can be

signalled by this cal are not_possble, failure, and unavllllllb#. An example of a caff that handles all

these exceptions is:

x: G :• G$create (3) @ n
except when not_poasl)le (s: string): ...

when falUre (s: lb'lng): ...
When unavailable (s: string): ...
end

Creators are described In more detaff In Section 13.

46

9 Expre881ons 47

9. Expressions
An expression evaluates to an object in the Argus universe. This object Is said to be the result or value

of the expression. Expressions are used to name the object to whlCh they evaluate. The sl111>lest fonns

of expressions are literals, variables, parameters, equated lderdlers, equate module references,

procedure, Iterator, and creator names, and Mlf. These forms directly name their result object. More

complex expressions are bull up out of nested pmcedure calls. The result of such an expression is the

value returned by the outermost caH.

9.1. Literals
Integer, real, character, string, boolean and null literals are expressions. The type of a literal

expression Is the type of the obied named by the literal. For example, true is of type bOol, ·aoo· is of

type string, etc. (see the end of Appendix I for details).

9.2. Variables
Variables are Identifiers that denote objeds of a given type. The type of a variable Is the type given In

the declaration of that variable. An attempt to use an unlnlttafized variable as an expression Is a

programming error and causes the guardian to crash.

9.3. Parameters
Parameters are Identifiers that denote constants suppUecl when a parameterized module Is Instantiated

(see Section 12.5). The type of a parameter is the type given In the declaration of that parameter. Type

parameters cannot be used as expressions.

9.4. Equated Identifiers
Equated identifiers denote constants. The type of an equated ldentller Is the type of the constant

which It denotes. Identifiers equated to types, type_ sets, and equate modules cannot be used as

expressions.

9.5. Equate Module References
Equate modules provide a named set of equates (see Section 12.4). To use a name defined in an

equate rnoc:tWe as an expression, one writes:

referenCe $ name
where

reference : :: idn

I idn 1 actuat _perm • • •• 1
I reference S name

The type of a rt1ffN'fJltC6 is the type of the constant which It denotea. Identifiers equated to types,

type_ sets, and equate modules cannot be used as expressions.

1 lllllbl!st.,Jtbit\4JJ, tZtUUJJ ... 4,. tJl!JttL442$1Sli,#$J,Ql!LMt1,-$I!ISUJl,,4,SU$¥UUb!EJSAAMQ&U4#4M i ,,- .

I .
'· • ,

l'M- I 11111'1 ••·•• 11 I---~---·--· ·· ,.. ·•r•••llr.,_ .. 111.11111QHfltl .• IP!OfJ~<. .._" •11•n•• · •• •· 1111 · -1tilr1n1111f1hliinal!t&· ·: ; -·

••·0.IJllJI .. -· -•.. , ... "
:J11liillitl117101•1 • ·--···· '~,; ""';' :, . ' . - -. ., ·.

. - .

............. llJ IQI r.tlf;ml9:fll_ '';•1,IJJ!'1"fl~l¥Jif;:fJ•!*"'!lll, l dl •• ,
....... -11Jf"1fli Ulll.~1~111,IJlfJ~lfJflillHIJ'!~!(r;.:>' ::: '· ·· ·_.•·. · .. ·.· ·

..... ---~•1·-··su·111:•1J· · · ~)

.....
••ur•..,•• 111 ••••• ••mmadrt: , 1, _ .. ::..•

I •u 1.11,11a

.......... _._
•tl_1111••· --··

9.8 Bind 49

The evaluation of a bind expression proceeds by first evaluating the entity and then evaluating, from

left to right, any blnd_atgS that are expressions. The tmlty may evaluate to a procedure, Iterator,

handler, or creator object. Suppose thal the entity Is a procedure or lendor object. (Creator and handler

bindings are discussed below.) Then the result Is tormad by binding the argument objects to the

corresponding tonnats of the entity to fonn a closure; note that the plOCldure or iterator is not called when

the bind expression is evaluated. When the closure is caled, the obilct denoted by the entity is passed

au the bound objects and any actual arguments supplied In the cal, all In the corresponding argument

positions.

For exa"1>1e, suppose we have:

P • proc(x: T, y: Int, w: S) returns(R) 81gnal8(too_btg)

Then

q :- bind p(*, 3 + 4, *)

produces a procedure whose type is proctype(T, S) NIUl'M(R) 81gMls(too _ blgj and assigns it to q. A

can of q(a. b) is then equivalent to the can p(_a. 7, b).

Bound routines will be stored In stable storage if they ant accnsl>le from a stable variable (see

Section 13.1). In this case the entity and the blnd_lltfJS should denote lllomic objacta.

There Is only one Instance of a routine's own data for each parametertzation; thus an the bindings of a

routine share its own data, if any (see SecUon 12.7). Each binding is general)' a new object; thus the

relevant equal operation may treat syntacticaHy Identical bindings aa distinct.

The semantics of binding a creator or handler are similar to binding a procedure or iterator; the

differences arise from argument transmls8ion. Encoding of bound argument objects happens when the

bind expression is evaluated and sharing ts only preserved among objecta bound at the same time (see

Section 14). In more detaJI, the evaluation of a bind expresaion procaed8 by first evaluating the sntlty

and then evaluating, from left to right, any blnd_lll'{JS that are expressions. Then the atgUment objects

are encoded, from left to rtght, preserving sharing among these objects. The result is formed by binding

the encoded argument objects to the correspondtng formals of the entity to form a closure. Note that the

entity Is not called when the bind expression is evaluated.

When the closure is called, first any other arguments are evaluated and encoded (not sharing with the

bound objects) and then the cau to the entity is Initiated. Decoding of the arguments at the called

guardian is done In reverse of the order of encoding; that ts, other argumem are decoded before bound

arguments and the most recently bound arguments are decoded first. Sharing is preserved on decoding

only among groups of bound arguments and among the other arguments, not between groups.
Thereafter the call proceeds as normally.

For exa"1>1e. if we execute
h1 : .. bind h(x, y, *)
h1(z)

50 Expresalona

then sharing of objects between x and y wlH be preserved by transmiulon, but sharing will not be

preserved between x and z or y and z.

Closures can be used in equates, provided au the expressions are constants (see Section 7.2.2).

However, a handler cannot appear In an equate, since It Is not a conllalt.

9.9. Procedure cans
Procedure cans have the form:

primary ([expression ' •••])

The primary Is evaluated to obtain a proceciJre object, and then the expeuionl are evaluated left to right

to obtain the argument objecls. The procedure Is called wlh these mgurnenls, and the obiect returned Is
the result of the entire expression. For more diacuasion see Section 8.

Any procedure call p(E1, ••• E,J roost satisfy two constrM1ts to be Ul8d •an expression: the type of p

must be of the form:

proctype (T1, ... , T,J returna (R) algnalS (...)

and the type of each expression q roost be Included in the corresponding type 7j. The type of the entire

call expression Is given by R.

9.1 o. Handler cans
Handler calls have the form:

prlmaty ([expression, •••])

The primary Is evalualed to obtaJn a handler obiect. and then the expreutona are evaluated left to right to

obtain the argument objects. The handler la then called wlh fw argument9 as disa 1188d In Section

8.3. The following expressions are exa"1)188 of handler calla:

h(x)
lnlo _guard.who_ ls_ user(")ohn•, ·doe;
dow jones.lnfo("XYZ Corporattonj

Any handler can h(E 1, ••• E,J roost satisfy the following constraints when used as an expression. The

type of h roost be of the form:

handlertype (T1, .•. Tn) retuma (R) algml8 (...)

and the type of each expression q roost be lnclJc:led in the corresponding type 7j. The type of the entire

cal expression Is given by R.

As explained in Section 8.3, the exeanlon of a handler cal atmts by creating a subactlon. Theretore

an attempt to cal a handter from a process that Is not running an mton la a pogramming error and will

cause the calling guan:fian to crash. This craah OCQJl'S atter al of the ~ expressions have been

evaluated.

9.11 Creator cans 51

9.11. Creator Calls
Creator caHs have the form:

primary ([expression, •••)) [0 primary)

The first primary Is evalualed to obtain a creator oblect. the argument expressions are evaluated left to

right to obtain the argument objeets, and then the pr/mllty folowlng the 81-aign (@), ' pt988nt, Is
evaluated to obtain a node object. If 1he ptlmllty folowtnQ U. ii omilted, then node$here() Is

used. The guardian ii then created at that node, and the ere_,. called, aa dllCUl88d in Section 8.4. The
following are exaf11)1es of crealOr call:

mailer$creale() O n
spooler{devtype)Screate()

A creator call c(E1, ••• ,EJ@n Rl.ISt satisfy the 1oUowing constraints when used as an expression. The

type of c roost be of the tonn:
creatottype (T 1, ... ,T.,) l'lllUmS (R) __... (...)

where each 7j includes the type of the corresponding expreuk>n q. N must be of type node. The type
of the entire cal expression Is given by R.

As with handler calts, an atte111>t to call a creator from a process thllt Is not ruming an action will cause

the calling guardian to crash after al component exprealionl have been evaluated.

9.12. Selection Operations
Selection operations po¥ide __. to the lndlYtdual etementa or ~ of a collection. Simple

notations are provided for callng the fft:h operations of array..flce '"*- mid the get operationl of NCC>fd
ll<e types. In addition, theM "Syntactic sugattngs• for Mlectton operatioM may be used for uaer-deftned

types with the appropriate pR)p8ftles.

9.12.1. Element Selection
An element •laction expression has the form:

primary (expreaalon J
This form Is just syntactic llJQ8f for a cal of a fflleh opetlllton, Md ii oomputatlonaly equiYalent to:

T$fatch(prlmary, expreulon)

where T ii the type of the prlmary. T nut PR>vlde a procedunt operation named flltch, which takes two
arguments whose types include the types of primary and _,,,....,,,, and which returns a slngle result.

9.12.2. Component Selection
The C0"1>0f'l8nt selection expression has the form:

primary • name

This form Is just syntactic sugar for a cau of a get_ name operation, and is computationally equivalent to:
T$get_ name(primary)

where Tis the type of primary. T R1Jst provide a procedunt operation named {ltlt_nams, that takes one

52 Expressions

argument and returns a single result. Of course, the type of the procedure's argument must tnckJde the

type of the primary.

9.13. Constructors
Constructors are expressions that enable users to create and inllllllize sequences, arrays, atomic

arrays, structures, records, and atomic records. There are no constructors tor user-defined types.

9.13.1. Sequence Constructors
A sequence constNc:tor has the fonn:

type_ spec $ [[expression I WH])

The type_spec ITU8t name a sequence type: ...,.,a(7). Thia Is the type of the oonatrucled sequence.
The expressions are evaluated to obtain the 818ments of the sequence. They correspond (left to right) to
the indexes 1, 2, 3, etc. For a sequence of type ...,.,a(7], the type of each element expreulon In the

constructor rrust be Included In T.

A sequence constructor la 00fl1)Utationally equivalent to a ~ flllW operation, followed by a

number of sequence addh operations.

9.13.2. Array and Atomic Array Constructors
An array or atomic array constructor has the form:

type_ spec $ ([expression :) [expression ••••] J
The type_spec must name an array or atomic array type: array(7) or atomlc_array(7}. This is the type of

the constructed array. The optional expression precedlrV the colon(:) nwt evaluate to an Integer, and

becomes the low bound of the c:onatructed array or atomic anay. H thil expression Is omitted, the low

bound Is 1. The optional list of expressions Is evaluated to obtain the elements of the array. These

expressions correspond (left to right) to the indexes low_bound, low_bound+1, low_bound+2, etc. For an

array or atomic array of type array(7) or atomlc_array(7), the type of each element expression In the

constructor rrust be included In T. A constructor of the form ana,[1JIU has a low bound of 1 and no

elements.

An array constructor is computationally equivalent to a C781Jte operation, followed by a nurmer of addh

operations.

9.13.3. Structure, Record, and Atomic Record Constructors
A structure, record, or atomic record constructor has the form:

type_spec $ { fleld }

where

field::: name, ... : expression
Whenever a fleld has more than one name, it is equivalent to a sequence of fields, one for each name.

Thus, if R • ~ a: Int, b: Int, c: Int J, then the following two constructors are equlYalent:

9.13.3 Structure, Record, and Atomic Record Col18lructOra 53

R${a, b: p(), c: 9}
R${a: p(), b: p(), c: 9}

In the following we discual only record conatrudOta; strucUe Md atomic record oonstructors are

similar. In a record construcb', the type apeclflcallon nut name a record type: ~S1:T1, ... , Sn:T,J.

This is the type of the conswcted record. The OOfY1JOl'*ll nanm In ht field lilt nut be exactly the

names S 1, ••• , s,,, although these names may appear In any Older. The expressions are evaklated left to

right, and there is one evaluatior1 per componenl name evan I llV8f8I ~ names are grouped

with the same expression. The type of the expression for ~ S; rrust be lnckJded In r,. The

results of these evaJuatlons form the components of a newly construdad record. This record is the value

of the entire constructor expression.

9.14. Prefix and Infix Operators
Argus allows prefix and Infix notallon to be used as a shorthand for the operationa Ustad In Table 9-1.

The table shows the shorthand fonn and the ~ equivalenl expanded fonn for each

operation. For each operation, the type T Is the type of the first operand.

Table 9-1: Prefix and Infix Operators: shotthand8 and expansion&

Shorthand form

expr 1 .. expr 2
expr 1 11 expr 2
expr 1 I expr 2
expr 1 • expr 2
expr 1 II expr 2
expr 1 + expr 2
expr 1 - expr 2
expr 1 < expr 2
expr 1 <• expr 2
expr1 • axpr2
expr1 >• expr2
expr 1 > expr2
expr1 ""< expr2
expr1 ""<• expr2
expr1 ... expr2
expr 1 "'>- expr 2
expr 1 "'> expr 2
expr 1 & expr 2
expr1 I expr2

-expr
.. expr

Expansion

TSpower(expr 1 • expr 2>

T$mod{expr 1• expr 2>
TSdlY(expr 1• axpr 2)
T$nU(expr1, expr2)
TSooncal(expr ,, expr2)
T$add(expr,. uprz>
T$1ub(expr,, ••a>
T$1(expr ,. expra)
T$1e(expr,. 8XP't>
T$ecpd(expr t • expr t>
TSQe(upr,. uprz)
T'Sgl(expr,, expr2)
... (expr1 < exprz)
... (expr 1 <• expr 2>
... (expr, • •xpr2)
.. (expr 1 >- expr 2>
... (expr, >apl'z)
T$Md(expr 1 • •• a>
'TSor{extW,, uprz>
TSmnul{excw)
TSnot(e.,

Operator notation is uSed most heavily for the bullt-in types, but may be used for user-defined types as

well. When these operations are provided for user-defined types, they Shoutd be free of side-effects, and

. ,_ ~· "' ,. ,

54 Expreulons

they should mean roughly the same thing as they do for the built-in types. For ex8fT1>le, the oo"1>arison

operations should only be used for types that have a natural partial or total order. Usually, the

comparison operations (It, le, equal, ge, gr, wlR be of type

proctype (T, T) returns (bool)

the other binary operations (e.g., add, sub) wlli be of type

proctype (T, T) retuma (T) algnala (...)

and the unary operations will be of type

proctype (T) Ntums (T) 81gnal8 (...)

9.15. Cand and Cor
Two additional binary operators are provided. These are the condltloMI and operator, cand, and the

conditional or operator, cor. The resun of evak.lating:

expression1 cand expresslon2
is the boolean and of expresslon1 and express~. However, If e:icpnt1Sion1 Is fal•. expre~ Is
never evaluated. The NSUI of evaluating:

expression1 core~

is the boolean or of expression1 and ~. but ex~ Is not evatuated unless expression1 is

fal•. For both cand and cor, expntssion1 and ·~ f1'IJ8t have type bool.

Because of the conditional expression evaluation involved, uees of C8lld and cor are not equjvalent to
any procedure call.

9.16. Precedence
When an expression is not fully parenthesized, the proper l188ling of subexpr81Sions might be

ambiguous. The folowtng pracedence rulel are used to l'8IOMt IUCh M'lblgully. The prececlence of

each Infix operator Is given in the table below. Higher pracedence operations are performed first. Prefix

operators always have precedence over Infix operators.

Precedence

5

4

3

2

1

0

Table 9-2: Precedence for Infix Operalors

Operators

••

• I II

+ - II

& cand

cor

9.16 Precedence 55

The order of evaluation for operators of the same precedence is left to right, except for **, which is right

to left.

9.17. Up and Down
There are no implicit type conversions in Argus. Two fonns of expression exist for explicit conversions.

These are:

up (expression)
down (expression)

Up and dOwn may be used only within the body of a cluster operation (see Section 12.3). Up changes

the type of the expression from the representation type of the dutlar to the abstract type. Down converts

the type of the expression from the abstract type to the representation type.

56

RIM ~I• 1UJA$!4!J!!J &ttlf4Zl81'8•11f H U2!1 U k lid.AU .Xt,JJI JiitfJUi~. (JL$1J1ikdit{t JS&! l iJJQ£Ji.QL .SUMX.#L£P,QtMMR£ t; ..

1011111••·-
10.11111

1nW1111llll.•.••• •--t1•·10. rr•-•-..:1.u;l11A tJS .. ••••1not..,.~
u. _.. --• •• ,, .. 1m1111• MIJ'11ID114/l•lU."'9t·~· ·----•••••
.,,,,,.. 1 .. • u•••••r1•1•·t11Jr1Jfo·••:•1111. a.l"'''* '"'
the compllll .,.. .. , •••• :•.

A1Dm1c,,, •••••• • .. M111rt1•• t••••--_., ... ••••"*
ot --• • •--·~•'•.11IJUJ.IMl•r:t1tQ(tJllt._,. .. , ,, .. _, ''·'''"
ir.m1 Piii ,, 11•1•1111• ,,,.-> , ,. -· •n •1111 -·--
, .,. 1111t:n1trnra•••n11t ' ... _.,.,.
ntot1c•t· ... ao•ot fft•1M111111· tllf,. U1'51JJt4·----
SecUonl).

A__, •11•• C. •Mill a •1•••·111.lflll• - 11111•• --a
._., .. __,. ... , •. 11J1t'u11·

...,::a(••}
{••1•1•)

Note-•••••>••• ••••n•••••na .. 1 .. t.a,10.•1•1~ Ar ta. ••••1&1•*1•11 ,,.,_ , " -.~·:,,, dt81••-· , ,,, fl. :, '"
10.1.Clllll

A .. ••1•1•..., e. , .. 111111-. O•n·r r,w 111 llf. l'Orfll9Cti'uNI II ,,. .. ,.n:
.,...._., (I 11• ru tin t -l> "'-,...,,.., •.•••.• ,111l1r -------''uni•-•

... ..,..,..., ... 111:1111,..a ,.,,•lli•fl1l1J11r.•:1hr1tRr1•mn•r.., • .,.
,._ rndll;lt._._,., •••• llLU 11 Ii . ··. .

Forcn.,_. .. .,... .. .-. ,,,,,11 1

.., .. _.. ,. llln•

··-···= ,,,....., <(........... -1>1• , J
__ ,.,..,. 11

Tlw tlf ... •*-.ftll 11~-··liP Ull:alJlll.lllJla•t•&t.U._.U

58 Statements

10.2. Update Statements
Two special statements are provided tor updating components of record and array-ll<e objects. In

addition they may be used with user-defined types with the appropriate properties. These statements

resemble assignments syntactlcaUy, but are actually can statements.

10.2.1. Element Update
The element update statement has the fonn:

primary (expression1] :- expression2

This form is merely syntactic sugar for a can of a store operation; It Is equiYalent to the cal statement:

T$store(prlmary I expression1 I expressio"2)
where Tis the type of the prlnwy. T must provide a procedure named store that takes three arguments

whose types include those of primary, expresslon1, and expresslon2' respectively.

10.2.2. Component Update
The coq>Ofl8nt update statement has the form:

primary • name :• expression

This form Is syntactic sugar for a can of a seL operation whose name Is tormed by attaching set_ to the

name given. For exaq>la, If the name Is f, then the atatement aboYe Is equivalent to the cal statement:

T$set_f(primary, expression)

where T is the type of the prlmllfy. T must provide a procedure operation named S8t_f, where f is the

name given in the component update statement. This procedure must take two argumerU whose types

include the types of primary and expression, respectively.

10.3. Block Statement
The block statement permits a sequence of statements to be grouped together into a single statement.

Its fonn Is:

begin body end

Since the syntax already permits bodies inside control statements, the main use of the block statement is

to group statements together for use with the except statement (see Section 11).

10.4. Fork Statement
A fork statement creates an autonomous process. The fork statement has the fonn:

fork primary ([expression, •••])

where the primary Is a procedure object whoS8 type has no results or signals (see Section 12.1). The

type of each actual exprflSSion must be Included in the type of the corresponding formal.

Execution of the fork statement starts by evaluating the primary and actual argument expressions from

left to right. Any exceptions raised by the evaluation of the primary or the expressions are raised by the

fork statement. H no exceptions are raised, then a new process is created and execution resumes after

~,JI'!~~-'·, ·, - ,. . '

10.4 Fork Statemem 59

the fork statement in the old process. The new process starts by calting the given procedure with the

argument objects. This new process terminates I and when the pt008dure calf does. However, if the

guardian crashes the process goes BNlay (lb any other process).

Note that the new process does not run In an action, alhough the procedunt called can start a
topactlon if desired. There Is no mechanism for waiting for the termination of the new process. The

procedure catled In a fork atatement cannot retum any N8Llh or 8igMI any exceptions.

10.5. Enter Statement
Sequential actions aN creaHd by means of the.,.... Slatemant. which has two fomls:

enter topaCtlon body end

and

enter action body end

The topllCllon qualifier cau1e1 the body to execute as a new top..level action. The acllon quafffter

causes the body to exaa.de a a IUbactlon of the current don; ., -~ to axecule an enter llCtlon
statement in a process that la not executing an action la a pnaorammtng enor and cauaes the guardian to

crash. When the body terminates, It does so either by cornmldlAg or aborting. Normal completion of the

body results in the action committing. Statemenla that tranlfM conll9I out of the enter statment (exit,

leave, break, con1an.., NIUm, 81gftll, and ,.,, normally comnll l'8 action unle• are prefixed

wllh mart (e.g., llbOrt ult). Two-phw conwnlt of a topadlon may faR, in which case the enter
topaCtlon statement raises an unavailable excepUon.

10.6. Coenter Statement
Concurrent actions and procnaes are created by means of the coenter ataternent:

coenter coann { coarm } end

where

ooarm : :: armtag [loreacl'I decl , ... In can)
body

armag ::: action

I topactton
I process

Execution of the coentel' starts by creating al of the coarm proc11w, sequentialy, In teXlual order. A

for8llCh clause indicates that rradtipte ilstancel of the ooarm wil be created. The caH In a IOf'Uch

clause must be an ilerator call. At each yield of the Iterator, a new ooarm process la CANlted and the

objects yielded are assigned to newly declared varillbles In thll Pf00818. (Thia lmpllcl U8lgnment mJst

be legal, see Section 6.1.) Each coarrn process has separate, local ina&ancea of the variables declared In

the fOnNICh clause.

60 Statements

The process executing the coenter is suspended untlf after the c:oenter is finished. Once all coarm

processes are created, they are started sirroltaneously as concurrent ll*ngs. Each coarm instance runs

in a separate process, and each ooarm with an armla(J of top9CllOn or ectlon executes within a new
top-level action or subactlon, respectively. An attempt to execute a ~ wllh a PIOCN8 ooarm when

in an action, or to execute a coena. with an ICtlon ooarm when not in an action Is an error and will

cause the guardian to crash (see Table 10-1).

armtag

ectlon
topactlon
process

Tlble 10.1: Legally of coena. saatements.

process executing the CGelMr ii:
not In an action running an action

not legal
legal
legal

A sifT1>le example making use of forellch Is:

coenter ectlon foreach I: Int In lnt$from_to (1, 5)
p (i)
end

which creates five processes, each with a local variable /, having the value 1 in the first process, 2 in the

second process, and so on. Each process runs in a newly created aubaction. This statement is legal

only if the process exeaJting It Is running an action.

A ooarm may tenninate without tenninatlng the entire coentM' (and ll>ling ooarms) either by normal

completion of Its body, or by executing a leave statement (see Seclion 10.7). The commit of a ooarm

declared as a topaction may terminate in an unavallabM exception If two-phase commit fals. Such an
exception can only be handled outside the coenter st.....,., and thus wll torce termination of the entJre

coenter (as explained below).

A ooarm may also terminate by transferrtng control outside the coenter statement. When such a

transfer of control occurs, the following steps take ptace.
1. Any containing statements are tenninated dlYlsibly, to the outennost level of the ooarm, at

which point the ooarm becomes the oontrolllng coann.
2. Once there Is a controllng coann, every other active ooarm will be 1erminated (and abort if

declared as an action) as soon as It leaves all..._ statements; the controllfng coarm is
suspended unlit al other ooarms terrnklate.

3. The controlling coann then commits or aborts I declared • ., action; if ~ n a
topaction and the two-phase commit falls, an unavallal* exception ii raised by the coenter
statement.

4. AnaHy, the entire coenter terminates, and control flow oontillJea outside the coenter
statement.

Divisible termination implies, for instance, that a nested topaction may commit while its parent action

aborts.

10.6 Coenter Statement 61

A slfT1>18 axa111>le of earty tennination is reading trom a replicated database, where any copy can

supply the necessary Information:

coenter action foreach db: database In an replicas (...)
return(database$read (db)) -
end

When one of these coarms 00111>1etes first, It tries to commit ltlel and abort the others. The aborts take

place Immediately (since there are no..._ statements); I ls not neces1ary for the handler cans to finish.

It Is possible that some descendants of an aborted coarm may be "'"'*ID at remote sites when the coarm

aborts; the Argus system ensures that such orphans will be lborted before they can make their presence

known or detect that they are In fact orphanl (IH Section 2.5).

10.7. Leave Statement
The leave statement has the form:

[abon)mv•
Executing a leave statement tenninates the Innermost __. -.ment or coenter coarm in which it

appears. If the process terminated Is an action, then ii commll8 unle11 the lbort quallffer Is present, in
which case the action aborts. The lbort quallter can only be used textually wtthin an entw statement or

within an action or top8Ctlon coarm of a coenter statement.

Note that unlb the other conlrol flow statements, leeve does not affect concurrent sl>lings In a

coenter (see Section 10.6).

10.8. Retum Statement
The form of the ral\m statement Is:

[abort) return [(expression , ...)]

The 1'81Um atatenwnt ter'mkllltea execution of the contaJnlng routine. If the r8IUm statement occurs In an

iterator no l'8IUb can be returned. If the NllUrn ._.,,.,. ii in a pn:ac:lunt, handler, or cnator the type

of each expression must be lncbjed In the correeponcllng reun type of the routine. The expressions (if

any) are evaluated from left to right, and the objects obtained become "8 resuls of the rouMne.

H no llbol1 qualifier is present, then aJI containing acuoc. (I miy) terminated by thil stalement are

committed. If the abort qualifier Is present, then all tenninated aborted. Note hit unlike the

leave statement, return wil abort concurrent sl>llngs If exea.ited wll'*1 a coarm of a coenter statement

(see Section 10.6). The abort qualifier can onty be used textually wllNn an enter statement, an action or

topactlon ooarm of a coenter statement, or the body of a handler or creator.

Within a handler or creator, the resul objects are encoded just before the activation action terminates,

but after all control flow and nested action termination. If encoding Of any result obied tftlrNnates in a

failure exception, then the activation action aborts and the handler or creator terminates with the same

exception.

62

10.9. Yield Statement
The form of a yield statement is:

yield [(expression , ...)]

Statements

The ylekl statement may occur only In the body of an Iterator. The effect of a ylelel statement is to
suspend execution of the iterator invocation, and return control to the callng tor ~ or toraach

clause. The vakJes oblained by evaluating the MP'lf•CIW (left to rtght) .. pawl blck to the caller.

The type of each eJ(/11WSion nlJlt be included in the comtapondlno ytlld type of the Iterator. Upon

resumption, execution of the iterator continues at the statement fallowing the yleld statement.

A yield statement cannot appear textualy inside an enler, coenter, or..._ statement.

10.1 o. Conditional Statement
The form of the conditional statement Is:

If expression then body

{ el88lf expression then body }

(ellebody)

The expressions must be of type bool. They are evaluated succesaivefy until one is found to be true.
The body corresponding to the firat true expNUion ia executed. and the exea.ttlon of the II atatement
then terminates. ff there is an clause and I none of the MJftll'oM ii tnle, then the bOdy in the

else clause Is executed.

10.11. While Statement
The while statement has the fOrm:

while expression do body and

Its effect is to repeatedly execute the body as long as the expression remains true. The express/On m.ist

be of type bool. If the vatua of the expresalon Is tnJe, the bady ia executed, and then the ercn while

statement is executed again. When the expression evaluates to falee, ex&altlon of the wl'tl1e statement
terminates.

10.12. For Statement
An lerator (see Section 12.2) can be called by a tor statement. The iterator produces a sequence of

itlltnS (where an Item is a group of zero or more obfects) one Item al a time; the body of the for atatement
is executed for each Item In the S8CJ18AC8.

The tor statement has the form:

for (decl , •••) In call do body end

or

for [kin ••••] In can do body and

10.12 For Statement 63

The caH rrust be an iterator can. The second form (with an kJn list) uses distinct, previously declared

variables to serve as the loop variables, while the first fonn (with a decJ Hst) torm lntrock,lces new
variables, local to the tor statement, for this purpose. In either case, the type of each variable m.ist

include the corresponding yield type of the caned lerator (see Section 12.2) and the number of variables

rrust also match the yield type.

Execution of the tor statement begins by calling the Iterator, which either yields an Item or terminates.

If It yields an Item (by exeaJting a yleld statement), Its execuUon ii~ suspended, the objects in

the item are assigned to the loop variables, and the body of the tar 1181ement la executed. The next

cycle of the loop is begun by resuming exeaJtion of the,, after the yield statement which

suspended It. Whenever the iterator terminates, the entn tor statement tetmlnates.

10.13. Break and Continue Statements
The bruk statement has the form:

[abort) brllk
Its effect is to terminate execution of the smallest for or while loop statement in which It appears.

Execution contirues with the statement folowfng that loop.

The continue statement has the form:

[abort) continue

Its effect Is to start the next cycle (If any) of the smallest for or white loop statement in which It appears.

Terminating a cycle of a loop may also terminate one or more containing actions. If no Mort quaJifier

Is present, then alt these terminated actiOns (If any) are commlted. If the llbolt qualifier Is preMnt, then

all of the terminated actions are aborted. Unllte lellVe, bNlk and continue wilt lbort concummt sl>llng

actions when control flow leaves a containing coenter (see Section 10.6).

The abon qualifier can only be used textually within an,. statement or an action or topactlon

ooarm of a coenter statement.

10.14. Tagcase Statement
The tagcaae statement can be used to decompose oneof and wrtant objects; atomic_ var1ant objects

can be decomposed with the taQte8t or tagwd stahunants. The decompodlon is indMsl>le for variant

objects; thus, use of the tagcue statement for vartants is not equivalent to using a conditional statement

in combination with Is_ and valw _operations (see Section 11.15).

The form of the tagC818 statement is:

tagcaae expression
tag_ arm { tag_ arm }
[others : body]

end

where

64 Statements

tag_ arm : :: tag name •••• [(ldn: type_spec)) : body

The sxprBSSlon must evaluate to a OMOI or vartanl object. The tag of this object Is then matched

against the names on the tag_ arms. When a match Is found, if a declaration (kin: iype_spsq exists, the

value component of the object 18 assigned to the new local variable ldn. The matching body is then

executed; kin is defined only in that body. If no match Is found, the body In the others arm is executed.

In a syntactically correct tagcaee statement, the following three conatrai'lts are satisfied.
1. The type of the exprflSSion must be some OMOf or vaMM type, T.

2. The tags named in the tag_anns ITIJst be a subset of the tags of T, and no tag may occur
more than once.

3. If an tags of Tare present, there is no othenl arm; otherwiae an others arm must be
present.

On any tag_arm containing a declaration (lcln: type_~. typs_.,,.c nut include the type(s) of T

corresponding to the tag or tags named in that tag_ ann.

10.15. Tagtest and Tagwait Statements
The tagteat and tagwatl statements are provided for~ lllGIRIC_ -1ent objeda, permitting

the selection of a body baaed on the tag of the object to be made lndMsl>ly with the testing or acqi.Hsltlon

of specified locks.

10.15.1. Tagtest Statement
The form of the tegtMt statement is:

tagtest expression
atag_arm { atag_ arm }
[others : body]

encl

where

atag_arm : :: tag_ kind name , ••• [(idn: type_ spec)] : body

tag_ kind::: tag

I wtaa
The expression m.aat evaluate to an ldOmlc _ vartant object. If a read lock could be obtained on the

atomic_,,.,... obied by the CUIT8l1t action, then the tag of the objac:t is matched against the names on
the atag_anns; othefwtle the others ann, If present, Is executed. If a mlltdllnQ name ii found, then the

tag_ kind Is considered.
•If the tag_ kind is tag, a read lock Is obtained on the object and the match Is complete.

•If the tag_klnd is wtag and the current action can obtain a wrle lock on the object, then a
wrle lock Is obtained and the match is complete.

When a colll>lete match is found, If a declaration (kin: type_ ~ exists, the value CO"l>Onent of the

object is assigned to the new local variable kin. The matching body is then ex&Qlted; lcln is defined only

in that body. The entire matching process, including testing and aoqWsllon of locks, is indivisible.

10.15.1 Tagtest Statement 65

If a complete match is not found, or the object was not readable by the action, then the other8 arm (if

any) is executed; If there is no others arm, the '8gteet statement terminates. If no complete match Is

found, then no locks are acquff'ed.

The tagtest statement wiU only obtain a lock if it Is possible to do so without "waiting•. For example,

suppose that the Internal state of the al0mlc _ Y811ant lndlclllel that some previous action acquired a

conflicting lock. This action may have since aborted, or may have oommilted up to an ancestor of the

action executing the tagte9t, but determining such facts may requn system-level oonvnunication to other

guardians. In this case the tagteM statement may give milleadlng information, because It may not

Indicate a match. Apparent anomalies In testing locks may oc::cur even I the action exaaJtlng the tagtest

"knows. that the lock can be acquired, so that the use of _... to avoid deadlocks or long delays may

result in excessive aborts.

10.15.2. Tagwalt Statement
The form of the tagwal statement is:

tagwall expression
atag_ ann { atag_ arrn }
end

Execution of the mgwen statement proceeds as for the ...- statement, but if no complete match Is

found, or If the object ii not readable by the e11rrent action, then the entire matcHng proce11 is repeated

(after a system-contn:>lled delay), untl a complete match II found. Allhough there ii no...,. arm In a

tagwatt statement, all tag names do not have to be lated.

10.15.3. Common Constraints
Tagteet and tagwail ltalements may be executed only wlhln an action. An atte"1)t to exeade a

tagtest or taQW8ll statement In a process that is not executing an ICtion is an error and will cause the

guardian to crash after evaluating the expression.

In a syntactically correct tagtest or tagwalt statement, the folowing ttvee constraints are satisfied.
1. The type of the expression IY1JSt be some lltOmlc _ vartanl type, T.

2. The tags named In the atag_arms roost be a subset of the tags of T, and no tag may occur
more than once.

3. Finally, on any atag_ann containing a declaration (ldn: tp_spec), type_apec roost include
the type(s) specified as corresponding In Tto the tag or tags named In the atag_arm.

A si~e example of a tagteat statement is garbage collecting the elements of an array that are In the

dequeu8d state:

~X.•t,,P.IL J!$££!J.,.1JlJl!tP!Ul!•ll,JP58tUUJE.ftt#l.JJ.rD:l!'EJ@il.tlki.llllUlld$,.li!JS.X&MQ:S.J$1Ii!JUZ.JJktA-i#MUJ119U
1···

~-==-~•.n=:.••n••*
.... , .. , £ ... 1 ••

1

1- 10.1&. I••,... , .. ,

.,,,

.
,...._.,.,•1nr11.n111•1•11.a tflJ ••••••••··•••••,.,

• - 11111•.1•, • • Uli IU llJJlf W; . . , . <:._. .. l•••H II

... .._ -••••n•--•· ••••••Ni
NII n11t1d__,Gt .. 1•1J •U t· 1ll1Jl•:•t l1llJl,B118JlditliltllU1'1~ AIRll•ll'P•• amu ••••r•rt llfllld·•·•·• •• 1•r.lr:&·1•ul:1umriiJ'tra•...,1• 11.11•• ' ~ - . . -: . . . -. .. - . -~ ' '\" .. ·, ,, •...

1'.17. Pau11 •anm1Al
..... s181J1M1•••111111r.
I.._... n1•1d ..,_en ___ .._11111111 fJlllllJlrl!IHI••• ca 1'I •11111

JlllUUlllln. Fer •r•-·llOlll lllUllJ•ellfltll t•••1t1• .•• -·· - " ... •.....,21t1••t11•11111n
•111••· nrt11ll_.tea1'ltt•...._•11111·•••·--1'1llJUll ...,. .. ••t•d

10.18 TermlnMe Statement 67

10.18. Terminate Statement
The tenntnate statement may occur only within a guanlan dllnlion (see Sect 13). The form of a

terminate statement Is:
tennlnate

When executed within an action, Its effect ii to cauee ht evenlUal dllttucUon of the guanlan after the

enclosing action commlla to the top. If a PftJC8ll ••mpll lo •••aute, ... while not Nming an

action, a topaclton ii created to execute the""""'• and IR•Mlllillr cornml.

Let A be the action that la executing the tlrmln111. The elect of ttlil -...nt II tae following:
1. Adton A lftJll watt UAll tlle..,., ... cnllld HI YI ••• nllltve to A. In
thecaeeofa~1U•rl•:wtwaet111n•·11. 1•1dtt .. t1p..,.._.beno
wal,buttorareG1nlla1CNll1d.,..L'laa._._,.

2. If ~ poc111• • llMlipllng to -• t11W1111•1 t11trmetU, at moat one at at
time may proceed to .. next 118p. 3. If A commll to the lap, ttte 9il8ldaft wil be di..,..·-- ..., ••*"' CllNnl.
If some ...aor of A, howwlr, v11tut1-. n. JU•llltn ii
alao ~ *'ltng lte time,. A m1112•11 lU tdt IW and A---· to the
top.

In on:ter to avoid l8rializalion JRblaml, CIUllion or eta*"*" of a guanlan must be synchronized
with UM of that guanlan WI atolRC objada adl M ttw o•"8 (W 8eallDft 3.4).

68

11 Exception Handling anct Exits 69

11. Exception Handling and Exits
A routine is designed to pertorm a certain task. However, in some cases that task may be impossible

to perform. In such a case, instead of returning normally (which would ln1)ly suoceasful performance of

the intended task), the routine should notify Its caller by signalllng an •JCCflPl/On. consisting of a descriptive

name and zero or more resul objects.

The exception handling mechanism oonsists of two parts: signalling exceptions and handling

exceptions. Signalling is the way a routine notifies its caller of an exceptional condition; handling Is the

way the caller responds to such notllcatlon. A signaled exception alWays goes to the lnvnediate caller,

and the exoeptJon ITIJ8t be handled In that caller. When a IOUtN signals an exception, the current

activation of that routine terminates and the correaponclng cal {In b Gd8r) ii said to ralH the exception.

When a cal railft an exception, control lmmeclately tranlfera to the dosest appllcabfe exception

handler. Exceplion handlers are attached to statements; when execution of the exception handler

completes, controt passes to the etaterntn totlowtng l'le one to which the excepllon hander is auached.

For brevity, exception handlers will be called "handlers• In this chapter; 1tMt8e should not be confused with

the remote cal handlers of gu8Rlans (see Section 13).

11.1. Signal Statement
An exception Is signaled wtth a slgnal statement, which has the tonn:

[abol1) atgnal name [(expressiOn , ...))
A 81gnal statement may appear anywhere In the body of a rouUne. The execution of a 8IQlllll statement

begins with evaluation of the expreuions (If any), fft)m left to right. to pt9dllce a list of Moepl/on fflllUlls.

The activation of the routine ii then termtnated. Ex-..don conlfnuel In the caflar as CilelatMd In SectJon
11.2 below.

The exception name rRJst be one of the exception names lilted In the routine heading. If the

corresponding exception specification In the heading has the tonn:

name(T1, ••• , Tn)

then there rRJst be exactly n expressions in the signal statement, and the type of the Ith expression rRJst

be Included In 7j.

If no abon qualifier Is present, then all containing actions (I any) terminated by this statement are

committed. If the abort quafli8r is present, then au teminated 8CtioM are aborted. Unlike the leave
statement, 8lgnal wil termnate (abort) concurrent d>lings If uec:uted wlhiFt a 111...., statement (see
Section 10.6). The 8bOl'I qualifier can only be Ul8d textullllr wlt*1 •.....,statement, an -=tlon or

topactlon coarm of a coenter statement, or the body of a hancler or creater.

Within a handler or creator, the result objects are encoded jlet before the acti¥ation action terminates,

but after termination of au control flow and neated actions. If enoodng of any reaul object terminates in a

failure exception, then the actJvation action aborts and the handler or cnator terminates with the failure

exception.

70 Exception Handling and Exit•

11.2. Except Statement
When a routine activation terminates by slgnalling an exception, tM cal1ed routine is said to.ralss that

exception. By attaching exception handlers to stat~. the caller can specify the action tO be taken

when an exception is raised by a cal within a statement or by the atatement Itel.

A statBment with handlers attached Is called an except statement, and has the fonn:

statement except { when_ handler }
[others_ handler]
end

where

when_ handler::: when name, ... [(decl, ...)] : body

IWhenname, ••• (*) :body

others_ handler::: athera [(ldn: string)] : body

Let S be the statem6nt to which the handlers are attached, and let X be the entire except statement.

Each when_ handler specifies one or more exception names and a body. The body is executed if an

exception with one of those names Is raised by a catl In S. Each of the names listed in the

when_handlsrs roost be distinct. The opUonal olhBrs_handler is used to handle al exceptions not
explicitly named In the whlln_handklrs. The statement Scan be 8"f torm ot ltallment, and can even be

another except statement. Aa an example, consider the following ..cepl statement:
m.send_ maH(user, my_message)

except when no_such_user: ... % body 1
when unavaitable, failure (s: 8111ng): ... % body 2
When Olhera (ename: etrtng): ... % body 3
•nd

This statement handles exceptions arising from a remote call. H the call raises a no_such_user
exception, then "body 1 • wlU be executed. If the call raises a fallln or unavailable exception, then "body

~ wiH be executed. My other exception will be handled by "body 3. •

If, during the ex8Qltion of S, some call In S raises an exception E. control transfers to the textually

closest handler for E that Is attached to a statement containing the cal. When execution of the handler

completes, control passes to the statement following the one to which the handler is attached. Tiu I the

ciosest handler Is attached to S, the statement following Xis exeaJted next. If execution of S completes

without raising an exception, the attached handlers are not executed.

An exception raised inside a handler Is treated the same as any other exception: contn>J passes to the

closest handler for that exception. Note that an exception railed In some handler attached to S camot be

handled by any handler attached to S; the exception can be handled within tf1I handler, or l can be

handled by some handler attached to a statement containing X For..,,.., In the folowlng except

statement:

11.2 Except Statement

times3 _plus1 (a)
except when limits:

a:-a+a
when overflow: ... % body 2
end

71

any overflow signal raised by the expression a + a will not be handled in "body 2, • because this overflow

handler Is not in an except statement attached to the 8l8ignment 8latement a :- a + a.

We now consider the forms of exception handlers in more detail. The form:

when name •••• [(decl)] : body

Is used to handle exceptions with the given names when the eXC8fJtiOn results are of interest. The

optional declared variable&, which are local to the handler, are ll8ign9d the exception results before the

body Is executed. Every exception potentialy handled by this form nl.l8l haw the same runber of results
as there are declared variables, and the types of the variables must include the types of the results. The

form:

when name , ••• (*) : body

handles all exceptions with the given names, regardless of whether or not there are exception results; any
actual resuls are discarded. Using this form, exceptions wlh differing lltJrft>ers and typeS of results can

be handled together.

The form:

ot [(ldn : string) 1 : body

Is optional, and must appear last in a handler Ust. This form handles any exception not handled by other

handlers in the list. If a variable Is declared, It must be of type atrtng. The vartabte, which Is local to the

handler, Is assigned a lower case string 19Pf8••nUng the aclUal excepllon name; any nt8Uls are

discarded.

Note that number and type of exception results are ignored when matching exceptions to handlers;

only the names of exceptions are used. Tl"IJs the following ii Illegal, in that lnt$dlv signals zero_dlvide

without any resuHs (see Section 11.4), but the closest handler has a declared variable:
begin

y: Int :-0
x: Int :-3/y

except when zero_clivlde (z: Int): return end
end

except when zero_divide: relUl'n end

A call need not be surrounded by except statements that handle an potential exceptions. In many

cases the programmer can prove that a particular exception wtl not arise; tor ·~· the call
lnt$dW(x, 7) wiU never signal zero_diYide. However, If some cal raises an exception for whtch there Is no

handler, then the guardian crashes due to this error&.

~ implementation of the Argus should log unh8ndled •JQ08Piol• in some faahion, to aid lntr debuggWlg. During debugging,
an unhanded •JIC8Plion would be trapped by the debugger befont the aash.

72 Exception Handling and Exits

11.3. Resignal Statement
A reelgnal statement Is a syntactically abbreviated form of exception handling:

statement [abort] l'Mlgnal name , •••

Each name rasted must be distinct, and each roost be one of the conclMion names li8t8d in the routine

heading. The l'Mlgnal statement acts like an ucept statement contM1ing a handler for each condition
named, where each handler sif11>1Y signaj8 that exception wlh, 1be ume NIUla. Thus, I the

resignal clause names an exception wlh a specllcallon In the IOUdrl8 heading of the form:

name(T 1, ... , T n>
then effectively there is a handler of the form:

when name (x1: T1, •••• xn: T ,J: [abOrt) name(x1, ••• , x.J
which has an abort qualifier I and only I the ••~ did. M for an exploit handler of this

form, every exces*Oft ~ handled by this implclt handier nut have the same fl.Imber of results
as declared In the exception specification, and the types of tt'8 re111b muet be included In the types listed

in the exception specification.

H no abOrt qualifier Is present, then all ~ actions (If any) terminated by this statement are

committed. H the lbon qualifier is present, then all teminllted 8Glion8 are aborted. UAllke the IMve

statement, reelgnal will abort conaumn ll>lngt I execuled wlNn a CCI IRlll' at1t1ment (see Section
10.6). The abOrt qu .. ler can only be UMd textually wlHn an_. stalement, .. llCtlon or topectton
coarm of a coenter statement, or the body of a handler or creator.

11.4. Exit Statement
An ult statement has the form:

[abort] •XII name [(expression , ...)]

An Ult statement Is almllar to a llgMI atatemn except that wheM tt'8 lllMI -.meN slOm* an

exception to the calllng routine, the ed tt•tn8N ,..,.. Iha exceplon ~ In the current R>UtJne.

Thus an ult caaw a transfer of contn>f wilt*' a IOUllne but doM not termnate ht routine. An

exception raised by an ult statemelt RIJSt be handled expllclly by a co1Uint11g uaipt wlh a

handler of the form:

when name I OH [(decl ' 000)] : body

As usual, the types of the expressions In the exll statement must be incklded In the types of the variables

declared In the handler. The handler roost be an explicit one, I.e., exls to the ~ handlers of rnlgnal

statements are Hlegal.

H no abort qualifier Is present, then an containing actions (If any) terminated by the ul statement are

committed. H the lbOrt qualtfier is present, then all terminated acuons n aborted. 1..116e the leave

statement, exit will abort concurrent dJHngs when oontft>I now leaYel a oorlalning, s&1lllment

(see Section 10.6). The abort qualifier can only be used textually wlhln an llatement or an 8Cllon

or topaetlon ooarm of a coenter statement.

11.4 Extt Statement 73

The exh statement and the algnal statement mesh nicely to form a uniform mechanism. The signal

statement can be viewed s~y as terminlliag a routine activation; an exit is then performed at the point
of invocation in the caller. (Because this exit is impliclt, It is not 8'lbject to the restrictions on exits listed

above.)

11.5. Exceptions and Actions
A new action Is created by a handler cal, creator call,,. ltatement, or llCtlon or top9Ctlon ann of a

coenter statement. In addition, the recov• code of a guMlan runs as an action. When COIWrOI flows

out of an action, that action ii committed unless action la taken to pnw8N Is committing. To abort an

action, It is necessary to qually control flow staterneN8 such as al, llgnal, Nelgnld, and ._,.with the

keyword abOrt (see Section 10).

However, there Is an additional compllcation. Not only wil explicit termination of actions by extt,

algnal, and 1'891gnal statements commit actlonl, but Mio inplclt termination by flow of contrC>I out of an

action body when an exception raised wit.kt that bod>' la handled out8lde the action's body. Thus, If an

exception which la raised by a cal within an action II not to commit the -=tlon, then It II 1'18Cfflary to

catch the exception wtthtn the action. Thia Is parttcutarty ln"°"8ftl when dealing with topactlons. A

common desire is to catch al "unexpected" exceptions, but stfl have the topaction abort. In this case, the

catch-all exception handler RIJ8t be placed Inside the topaion. However, an unav""'11l* handler m.ist

stil be placed outside the topactlon, since the two-phase oommll may tal.

An action or topllCtlon coarm of a coena... statement wilt not abort Its oonaJrrent sibUngs when ii ends

In either normal C0111>19tlon of Its body or by a ._,. statement. However, I control flows othelwise out of

the coenter statement from within one of the coarma, the enli'e CDelller la termtnatad as delcrtbed In

Section 10.6. Thus, a coenter statement should RIJ8t be used~ to ensure the proper behavior in

case of exceptions. There may be ~ where a aaparate exception handter wtl have to be

used for each coarm to ensure the proper behavior, even when the exception handing Is identical for

eachcoarm.

11.6. Failure Exceptions
Argus responds to unhandled exceptions dlferentty than CLU. In CLU, an unhandled exception In

some routine causes that routine to terminate wlh the failure exception. In Argus, however, an

unhandled exception causes the guardian that Is running the routine 10 crash. Our motiY.uc>n for this

change is that an unhandled exception is typically a symptom of a prognunming enor that cannot be

handted by the caHlng routine. Furthermore, crashirag the gualdan llmits the damage that the

programming error can cause.

Procedures and iterators in Argus no longer have an implicit failure exception usoclated wfth them.

Instead, such a routine may Hst failure explicitly in Its signals clause and failure may have any number

(and type) of exception results. Failure should be used to indicate an unexpected (and possibly

74 Exception Handling and Exit•

catastrophic) failure of a lower-level abetracUon, for example, when u.re ta a fallure in a type parameter's

routines (for instance In sJmllal or copy operalionl). Anathlr ta wtllft lllf'e II an ufMalHd lidl
effect, such as a bounds exception In •fttfNS.,_ •llld by a _,..., ol tl'8 array mgument.
Various operations of the built-In~ signal falln \.R1d8I' IUCI\ ~.

For handlers and creators, fa/lure Is ul8d to indiclle -.. a ,__ Oii Ml tallld; ttu the ucepUon

failcn(tltrtng) la ~ In the type ol fN9f'/......., (.. llGIDn 13.5). When • ,...,.. call

terminates with the #allure exception, this means thal not only has tHI cal failed, but that the call Is
unlMy to succeed I rwpeated.

12 Modules

12. Modules
Besides guaroian modules, Argus has procedure, Iterator, cluster, and equate modules.

module::: {equate} guardian
I { equate } procedure
I { equate } 1tetator
I { equate } c1uater
I { equate } equates

Guardians are discussed in Section 13, the rest are delcrlbed below.

12.1. Procedures

75

A procedure perfonns an action on zero or more arouments, and when It terminates it returns zero or

more results. A procedure implements a procedural abstraclion: a mapping from a set of argument

objects to a set of resul objects, with possl>le modification of aome of the argument objects. A procedure

may terminate In one of a nurmer of condition$; one of theae is the notmlll oondltlon, while others are

exceptional conditions. Differing nunt>ers and types of ntauls may be returned In the different conditions.

The fonn of a procedure Is:

idn • proc [parms] args [ntturns] [signals] [where]
routine_ body

and icln

where

args
returns
signals
exception
routine_ body

::: ([decl I •••])

: :: returna (type_ spec , ...)
: : = slOnals (exceptfon , ...)
::: name [(type_spec)]
::: { 8CJJ8te}

{ own_var}
{ statement }

In this section we discuss non-parameterized procedures, In which the parms and where clauses are

missing. Parameterized modules are dlscu8Sed In Sadlon 12.5. Own variabies are discussed In Section
12.7.

The heading of a procedure describes the way In which the procedure comrrunicates with its caller.

The args clause specifies the nurmer, order, and types of argumeres required to call the procedure, while

the returns clause specifies the rumber, order, and types of results returned when the procedure

terminates normaUy (by executing a NllUm statement or reaching the end of its body). A missing returns

clause Indicates that no resuls are returned.

The signals clause names the exceptional conditions In which the procedure can terminate, and

specifies the number, older, and types of result objects returned In each condition. Alt names of

76 Modules

exceptions in the signals clause must be distinct. The idn folk>wing the end of the procedure rrust be the

same as the kJn naming the procedure.

A procedure is an object of some procedure type. For a non-parameterized procedure, this type is

derived from the procedure heading by removing the procedure name, rewriting the formal argument

declarations with one icJn per dBcl, deleting the klnll of aH fonnat argumenls, and flnaly, replacing proc by

proctype.

The call of a procedure causes the Introduction of the formal vmiables, and the actual arguments are

assigned to these variables. Then the procedure body Is executed. Exea.tdon terminates when a NllUrn

statement or a 8lglNll ~ is executed, or when the textual end of the body is reached. If a

procedure that should return ntlUls reaches the textual end of the body, 1he guan:tlan crashes due to this

error. Al. termination the result objects, if any, are passed back to the caller of the procedure.

12.2. Iterators
An Iterator COJl1)Utes a sequence of Items, one item at a time, where an item is a group of z8R> or more

objects. In the generation of such a sequence, the ~ of each lem of the sequence is usuaHy

controlled by information about what previou& llema have been praducec:I. Such Information and the way
it controls the production of ltema is local to the Iterator. The user of the Iterator is not concerned wlh

how the items are produced, but lift1>IY uses them (through a for .-.mem) as they are produced. Thus

the Iterator abstracta horn the c:letala of how the producdon of the lems ii COl'tlft)lled; for this reatOn, we
consider an Iterator to Implement a conbOI llblhctlon. llerlllorl .. particularty uaetul aa operations of

data abstractions that are collacllonB of objects (e.g., sets), aince they may p«>duce the objects in a

coflec:llon without revealing how the collection Is rapresenled.

An iterator has the form:

idn • lter [panns] args [yields] (signals] [where]
routine_ body

end ldn

where

yields : == yields (type _spec ' ...)
In this section we dilcuss non-parameterized Iterators, in which the ,,.ms and .,,.,.,, clauaes are

missing. Parameterized modules are dlecuued in Section 12.5. Own varilbles are dlacuaed In Section

12.7.

The form of an iterator Is similar to the form of a procedure. There are only two dlferences:
1. An iterator hu a yields Clau8e In Ila heading In pllce of the,..... ... of a procedufe.

The ylfllds claule apeclles the """*"· onler, Md typae of -- ytllded each time the
iterator produces the next Item In the sequence. If Z8R> obj.- .. ~. then the yleldtl
clause is omitted. The kin following the end of the lerator rruat be the same as the lt1n
naming the Iterator.

2. Within the iterator body, the yleld statement Is used to present the caller with the next item

12.2 Iterators

in the sequence. An Iterator terminates in the same manner as a procedure, but it may not
return any resuls.

n

An iterator is an objeGt of some Iterator type. For a non-parameterized aerator, thiS type is derived from

the iterator heading by removing the Iterator name, rewriting the formal argument declarations with one

kin per dee/, deleting the kins of al formal atgUmenls,. and final)', A!placing .., by lterlype.

An iterator can be called only by a for statement or by a lorWll clause in a coenlel' statement.

12.3. Clusters
A cluster is used to implement a new data type, distinct fn>m any other built-in or user-defined data

type. A data type (or data abatraction) consilta of a Mt of obiect8 Md a Mt of prtmllve operations. The

primitive operations provide the nmt buic ways of manlpulaUng the oblKtS; ulUmatety every

computation that can be pefformed on the objects lftJSt be exprftMd In tMN of the primitive operations.

Thus the primitive operations define the lowest level of obaelV8ble object behavlor10•

The form of a cluster is:

kin • cluster [parms] 18 opldn , ... [where]

cluster_ body

end ldn

where

opidn : :: ldn

I transmit

cluster_body ::: {equate} rap• type_spec { 9CJ.1ate}
{ own_var}
routine { routine }

routine : :: procedure

I iterator

In this section we discuss non-parameterized clusters, in which the parms and where clauses are

missing. Parameterized modules are discussed in Section 12.5. Own variables are discussed in Section
12.7.

The primitive operations are named by the list of opldns following the reserved word 18. All of the

opidns in this list must be distinct. The ldn following the end of the cmter rrust be the same as the kin

naming the cluster.

To define a new data type, it is necessary to choose a concrstB repnJSflf1tation for the objects of the

type. The special equate:

1°Rea:tera not familis wll'I the conoept of data abslraclion might 198d l.iskov, B. and Gulag, J., Abslnlelion and Specltation in
Program Development. MIT Praaa, Cambridge, 1986.

78 Modules

rap - type _spec
within the cluster body identifies the type_ spec as the concrete representation. Within the cluster, rep

may be used as an abbreviation for this type_ flPIJC.

The identifier naming the clueter II available for use In the cluster body. Use of this identifier wlhin the

cluster body permits the definition of recursive types.

In addition to giving the representation of obfeds, the cluster must .,..,,_nt the primitive operations

of the type. One exception to this, however, is the trmllltlt operation. The transmit operation Is not
directly implemented by a cluster; Instead, the cluster nll8t ~ two operations: fH'IDOdtl and

decod6 (see Section 14 for details). The primliYe opendions may be elher ~ or conllOI

abstractions; they are lmplemerUd by procedurel and llerators, ntapeetiYely. Any acldltk>nal R>Utlnes

implemented wlt'*1 the cluster are hidden: they are private to the duller lftd may not be named directly

by US8fS of the abstract type. All the routines rrust be named by dl8Unct ldendfiers; the scope of these

identifiers is the entire cluster.

Outside the cluster, the type's objects may onfy be treated abatractly (I.e., manipulated by using the

primitive operations). To implemenl the operations, however, I la UIUllly necessary to ~te the

objects In terms of their concreae rept'8181'1lali. It is also ~ aometines to manipulate the

objects abstractly. Therefore, lrllidl the cluster I Is poaalJle to view the type's obi8Ctl either lbltractly or

in terms of their representation. The syntax la d8ftned to specify wwnblguou8fy, tor each vartable that

refers to one of the type's objects, which view Is being taken. Ttul, lnllde a clusler named T, a

declaration:

v:T

indicates that the object referred to by v Is to be treated abslractty, while a d8claration:
w:rap

indicates that the object referred to by w Is to be treated concretefy. Two prtmltiYes, up and ctewn, are

avalable for converting between ""9 two polrlle of view. The UM of ..., pennla a ty,e NP objed to be

viewed abatractty, while Plft'llls an abltt8Ct obied to be Yllwed COflCNlatr. For ..,.., given

the declarationa above, the lollowtng two legal:

v :•up(W)
w :- clOWn(v)

Only IOUtinea lnaide a duster may use up and dOWn. Note that up Md Clown are used merely to infGlm

the compiler that the object Is going to be vtewect 8b8tractty or concretely, ~·

A common place where the view of an object chanQl8 is at the lf*'1ac8 to one of the type's

operations: the user, of course, views the object abltnlclly, while lnei:le the operation, the object is

viewed concretely. To facilitate thil usage, a epecial· type epeclkalion, evt, Is provided. The UM of cvt

Is restricted to the args, relumS, yields and lllQnals clau181 of routtMs lnli:le a cUtler, and may be used

at the top level only (e.g., arrav(cvt) is Illegal). When used lnaide the..,.._, It means that the view

of the argument object changes from abstract to concrete when I ii 8l8igned to the tormal argument
variable. When cvt Is used in the returns, y/Blds, or .,,,.,. ctause, It mem. the view of the result object

12.3 Clusters 79

changes from concrete to abstrad as it Is returned (or yielded) to the caller. Thus cvt means abstract

outside, concrete inside: when constructing the type of a R>Utine, CYI Is equivalent to the abstract type,

but when type-checking the body of a routine, cvt Is equivalent to the representation type. The type of

each routine Is derived from its heading in the usual manner, except that each occurrence of cvt is

replaced by the abstract type. The cvt tonn does not lntnxwe any new ablllly over what Is provided by

up and clown. It Is merely a shorthand for a common case.

Inside the cluster, it Is not necessary to use the compound form (l)'pe_spe4op_name) for naming

locally defined routines. Furthermore, the compound form cannot be used for calling hidden routines.

12.4. Equate Modules
An equate module provtdes a convenient way to define a a set of equates for later use by other

modules.

The form of an equate module Is:

idn • equat• [panns [where])
equate { equate }
end ktn

The usual scope rules appty. The idn following the end of the equate module lft.ISt be the same as the

idn naming the equate module.

In this sedlon we discuss non-parameterized equate modules. Parameterized modules are dilcussed

in Section 12.5.

An equate module defines a set of equates, that Is, It defines a set of named conatarU. The set of

equates Is also a constant, afthough It Is not an obild- Thul the ntm1 of an e<JJ111e module un be used

In an equate, but an equate module cannot be wtQned to a varllble. The equates ddMd by an equate

module E may be referenced using the ume lyNax a for naming the operatfona of a duller. For

example, an object or type named n In equate module E can be referred to as E:'$n. If equate modules

contain equates that give names to other equate modules, compound names can be used. For exarr.,te:
A(lnt)8C$name

where A, B, and Care equate modules Is legal.

As always, equates to type specifications do not define new types but merely abbreviations for types.

For example, In the follOwing:

my_ types •equal•
ai • array{lnt]
float- real
end my_types

the types my_ typ8$$al and array(lnt] are equivalent.

80 MOdules

12.5. Parameterized Modules
Procedures, iterators, clusters, guardian& (see Section 13), and equate modules may al be

parameterized. Parameterization permits a set of related abltraction8 to be defined by a single rnc>ciM.
In each module heading there Is an optional parma clause and an optionll .,..,. clalse (see Appendix I).

The presence of the psrms clause indicates that the rnoclJle II~; the .,,.,.. clause declares

the types of any operation parameters that are expeded to accompany the tonnal type parameters.

The form of the parms clause is:

[parm, ... J
where

parm ::: idn, ... : type_spec

lidn .••• :type
Each parm deciares some oomber of tormat parameters. Only the folowtng types of parameters can be

decfared In a panns clause: Int, N91, bool, char, 81rtng, null, and type. The declaration of operation

parameters associated with type parameters Is done In the wtrere clam, aa dllalll8CI below. The actual

values for parameters are recpred to be constants that can be computed at compile-time. This

requirement ensures that aH types are known at ~. and permll COfl1>lete ~ type.
checking.

tn a parameterized module, the ICOP8 rules permit the parameters to be UMd throughout the module.

Type parametert can be uted freely aa type speclllcationl, and al other parameters (inctuding the

operations parameters specified In the where clause) can be uted freely as pP19181ons.

A parameterized module implements a set of refated abltractlons. A pR>gf'8m must lnlltanlilltlJ a

parameterized module before I can be used; that Is, It ITIJ8t provide actual, constm values tor the

parameters (see Section 12.6). The result of an instantiation Is a procedure, llerator, type, guan:lian, or

equate module that may be used just Ike a non-parameterized module of the same kind. Each distinct

Ust of actual parameters produces a distinct procedure, iterator, type, gwm:llan, or equate module (see

Section 12.6 for details).

The meaning of a parameterized module is given by binding the actual parameters to the formal

parameter names and deleting the parms clause and the whttnl clauae. That ii, in an an instantialion of a

parameterized module, each formal parameter name denotes the conatpGnding actual parameter. The

resuttlng module is a regular (non-parameterized) module. In the case of a cluater eome of the operations

may have additional parameters; further bindings take place when these operalione are Instantiated.

In the case of a type parameter, one can atso declaf9 what operation parameters must aocompany the

type by using a whfKB clause. The where clause also specifies the type of each recJJirad operation

parameter. The where clause constrains the parameterized module as wel: the only operations of the

type parameter that can be used are those listed in the whtlre clause.

12.s Parameterized Modules

The form of the wh8r8 clause Is:

where : :: where restriction , ...
restriction : :: kin hM oper _decl , ...

I 1ctn 1n type_ set
oper _ decl : :: name , ... : type_ spec

I ,...,...
type_set ::: {kin I ldn hM oper_decl, ••• {equate}}

I ldn

I reference $ name

81

There are two forms of restrictions. In both forms, the initial kin must be a type parameter. The has

form lsts the set of required operation parameters directly, by means of opllf _ d«Jil. The t)JHl _ flP'IC in

each opsr_decl ll'l.lst be a proctype, lteltype, or cre•Drtype (He Appendix I). The In form requires that
the actual type be a manDlr of a type_ set, a set of typea with the f9qUWed operations. The two Identifiers

in the type_sst ITl.l8t match, and the notation ii read like Mt notation; for example,

{t It hMf: ... }

means ihe set of aH types t such that t hM f ... ". The scope of the Identifier Is the type_ set.

The In form Is useful because an abbreviation can be given for a type_ sst via 111 equate. If I Is he_,,ul

to introduce some abbrevtationl in defining the typfl _Nt, theae are given In the optlonaf equates within

the type_set. The scope of these equates Is the entire typs_Nt.

A routine in a parameterized ctuater may have a --. ca.. In Its heading, and can place further

constraints on the cluster parameters. For exaf11)18, any type II permiul:lle for the may element type,

but the array slMJar operation requires that the element type have a #nllar operation. Thie means that
array(7) exists for any type T, but that ll'l1ly(7]$slmllar exists onty when 111 &dual operation parameter is

provided for T$slmllar (see Section 12.6). Note that a routine need not incluc:le In Is where clause any of

the restrictions Included In the cluster where clause.

12.6. Instantiations
To instantiate a parameterized module, constants or type specifications are provided as actual

parameters:

actual_parm : :: constant
I type _actual

type_actual ::: type_spec (With { opbindlng, ... })

opbinding : :: name , ... : primary

If the parameter is a type, the module's where clause may require that some routines be passed as

parameters. These routines can be passed Implicitly by omitting the wlthclause; the routine selected as a

default wHI be the operation of the type that has the same name as that used in the where clause.

82 Modul88

Routines may also be passed expliclly by using the with clauae, overrklng the default. In this case, the

actual routine parameter need not have the same name as is requlnld In h where clause, and need not
even be one of the type's primitive operations.

The syntactic sugar that allows default routines to be aetecled impllclly WOfka as follows. H a generator

requires an operation named op ftOm a type paranwter, and I the .,,.~ type_llDIUlll, TS with {

... }, has no explicit binding tor op, then Argue 8dctl an opblndlng of ep to TSlop. (It wlU be an error I

TS$op Is not deftned.) Thus one only has to provide an expllcll opb/l'ltlln/J I the defaul II unsatisfactory.

For exafT1)1e, suppose a procedure generator named SOit has h follalWtng huding:

sort • proc(t: type](a: anwy(tD whll'e t ._ gt: proctype(t,t) NIUrlll(bool)

and consider the three instantiations:

SOrt[lnt Wldl {gt: lnt$gt})
sort[lnt]
sort[lnt with {It: lnt$lt} J

The first two instantiations are equivalent; in the first the routine lnl$Qt Is passed explicitly, while in the

second it is passed Implicitly as the default. In the third in8tanliat1on, however, Int$# is passed In place of

the default. An three instantlatlOnB result In a routine of type:

proctype (array(lntJ)

and so each could be called by passing It an,pnt) as an .,..nant. However a caR of the third

instantiation wUI sort Its array argument In the oppolile order fftM!n a call of ellher the ftrst or second

instantiation.

Within an Instantiation of a parameterized mocllte, an operation of a type parameter named &Sop
denotes the actual R>Utlne parameter bound to op In the ln8tantlation of that mocllle. For example,

suppose we make the cal:

sort[lnt with {gt: lntSlt} J (my_ints)

where my_ lnts is an array of Integers. If, in the body of SOit, there is a recuraive call:

sort[t with {gt: 1$gl}] {a, i, j)

then t denotes the type Int, and l$gt denotes the routine Int$#, so that the recursive sort happens In the

correct oroer.

A cklster generator may lncklde routines with whMe cl81188S thll place addlional requirements on the

cluster's type parameters. A convnon example Is to require a copy opendlon only within the cklster's

copy in1>1efnentation.
set • clusler(t: type) la ... , copy

....... t ... equal: proctype(t,t) 1'8tUmS(bool)
rap • a1111Y(t)
...
copy • proc(s: cvt) retuma(cvt) wher9 t hM copy: proctype(t) NIW'lle(t)

nllum{NP$ce>py(s))
end copy

The Intent of these subordinate .._. clauses is to allow more operaUonl lo be defined I the actual type

parameter has the addllonal required operationl, but not to tnllke the,.,.. operattons an llblolute

12.& Instantiations 83

requirement for obtaining an instance of the type generak)r. For exafl1>18, with the above definition of set,
se4any) would be defined, but se(any)$QJPY would not be defined because any does not have a copy

operation. We shall call the routine parameters required by subot'dlnate whtlre clauses optional

parameters.

Like regular required parameters, optional parameters can be provtded when the ckJster aa a whole is

instantiated and can be provided explicitly or by default. For any oplonal parameter op that is not

provided explicitly by the type _actual, TS with { ... }, we add an opblndlng of op to TS$op I TS$op exists;

otherwise the opb/ndlng is not added. The resulting cluster coNains just thole operations for which

opblndings exist for an the required routine parameters. For ex.,., as mentioned above, set(anyJ
would not have a CXJpy oper•ton becauM enyScopy does not exilt and therefore the needed opblndlng is

not present. On the other hand, setpnl) does haYe a copy openMon becanae lnt$a>py does exist.
FlnaHy, se(any with {copy. foo}), where too Is a procecUe that takes• any as an argumn and returns

an any as a result, would have a copy operation.

For an instantiation to be legal It nust type check. Type cbecking la dona after the syntactic sugars are

applied. The types of constant parameters must be included in the declared type, type actuals IRISt be

types, and the typea of the actual routine pararnetef8 nlJlt be ln£luded in the proctypes, l811yp81, or

creatortypes declared In the appropriate whtn clauses. Of COUIH, the runber of parameters declared

roost match the number of actuals passed and wlh each type adual parameter thent mJSt be an

opblnding tor each required routine parameter. If the genetlik>r II a Clulter, then opblndlnos 111.1st be

provided for all operations required In the duster's where clauae; opblndlngs can (but need not) be

provided for optional parameters. Extra actual routine parameters ant Illegal.

Because the meaning of an Instantiation may depend on the actual routine parameters, type equality

makes instances with different actual routine parameters diltinct types. For example, consider the set
type generator again; the instance

set[alT&Y{lnt] with {equal: anay[lnt)$equaQ J
is not equal 1o

set[array(lnt) with {equal: array(lnt)$simllar)]

Intuitively these instances should be unequal because the two equal procedures define different

equivalence classes and therefore the ablttact behaviors of the two Instances are different. However,
optional parameters do not affect type equality. For example,

set[anay(lnt] with {copy: lnt$copy} J
and

set[arraY[lnt] wlh {copy: rny_copy}]

are equal types. This Is intuitively justified because in each case set objects behave the same way even

though different sets are prociJced when sets are oopiecl in the two cases.

Thus we have the following type equality rufe, which defines when two type_spscs denote equal types

(after syntactic sugars are applied). A similar notion is also needed for routine equally. A tormal type

84 ModulM

ldentHier is equal only to ltsel for type checking purposes. OthetwiH. two type names denote equal

types If they denote the same ~ion Unit (DU).11 Slmilafiy. Argus~ the names of IOUtine

formals or the DUs of routines, or checks that they are the same operation In equal types. To dedde the

equality of two type generator Instantiations:

T[t1 with {op1: act1, ... opm: actnJ, ... , tn with{ •.. }]
and
T'[t1' With {op1: act,", ... opm: act.,, 1 , tn' with{ ... }]

Argus first checks whether:
1. T and T denote the same DU, and whether

2. they have the same number of type_actua/s, and t1 is equal to t1 ·, etc.
Second, any optional parameter opblndlngs In either Instantiation are deleted. After ttlis step, Argus

checks that for each corresponding type _actual there is the same number of opblnd/nQs and that each

corresponding opblndlng is the same. (That ia, the correapondlng actual nMlne8 are equal.) The order
of the actual routine parameters does not matter, since Argus matches opblndlngs by operation names.

(The definition of routine equality for Instantiations of routine generatOr8 ta similar.) TIU& definlion, for

example, tells us that

set(array(lnt] with {equal: 81TaY(lnt]$ecJJal} J
is different from

set(array(lnt] With {equal: wray(lnt)$slmilarJ J ,
(assuming sst requtres an equal operation from Its type parameter). It allo tells us that:

set(Int With {equal: foo, copy: bar)]

and

set(Int With {equal: foo, copy: xerox}]

are equal (assuming copy Is required only by the ss(lnt]Smpyoperation).

This type equality rule allows programmers to control what requirements affect type equality by

choosing whether to put them on a duster or on each operation. A NqUlrement on the cluater should be

used whenever the actuaJs make soma dlference in the abltractlon. For example, In the set cluster, the

type parameter's equal operation should be requintd by the cluster as a whole, since using different

equality tests for a set's objects causes the sers behavior to change.

One can require that a type parameter, say t, be transrnlsll>le by stating the requirement:

t has traMmlt

This requirement is regarded as a formal parameter declaration for a special iransm1t actuar, but Argus

does not provide syntax for passing It expliciUy. The .,,..... aauar is pueed ift1>11Cftly just when the

actual type parameter Is transmtssible and the generator requires It.

11This is name equality unteu lhe type environment has synonyms for types.

12.7 OWn Varlablea

12. 7. Own Variables
Occaslonaly It is desirable to have a module that retains information Internally between calls. Without

such an ability. the information would either have to be l'9COf1llrUCted at every call, which can be

expensive (and may even be lmpo8sl>le if the information dependl on previous calla), or the information

would have to be passed in through argum&Ns, which is undeairable becauae the information ii then

subject to uncontrolled modification in other modutes (but see alao the binding mechanism dncrl>ad in

Section 9.8).

Procedures, iterators, handlers, creators, and clu8ter8 may al relain Information through the use of

own variables. An own variable Is similar to a normal varilble, exDIPI that It eDlts tor the •• of the

program or guardian, rather than being bound to the .. of ~ ,....., IOUlif1e adivation. Syntactlcalfy,

own variable declarations nut appear lnVnedlately after the equalll In a routine or cluster body; they

cannot appear In bodies nested within statemenm. Dedarationa of own varlables have the form:

own_ var::: own decl

I own idn : type_apec =• expression

I own c1ec1 =· ca11 (o pr1mary J
Note that lnitlaltzatton Is optional.

The own variables of a module are aeatect when a guardian begins execution or reco¥erS fn:>m a
crash, and they always start out unlnilialized. The awn v.-.. of a routine (Including Cluster

operations) are inltiallzed In textual Older as part of the first cal of 1n opefllllon of 1hat routine (or the first

such can after a crash), betof9 any ttatements in the body of lie fOUtir18 .,.. executed. CUiier own
variables are lniUallzecl In textual Older as part of the flnlt cal of the lrlt cluater operation to be called

(even I the oparauon doll not uu the own variablee). Ctumr own varl1lblH are lnlialized before any
operation own variablea .,. lnllaflzect. Argus lnluraa that ofttt/ OM plOClll can execute a c:Uster's or a

routine's own varlabte lnltlalzatlons.

Aside trom the placement of their declarations, the time of their iniUallzatlon, and their lletime, own
variables act jult ll<e normal varllblN and can be Uled in al lie places. Aa with normal variables,

an attempt to uu an unlnitlallzed own variable (I not dlteded at ~·· time) wll cw the guardan to
crash.

Declarations of own variables In different modules always Nfer to dlltlnct own variables, and distinct

guardians never share own variables. Furthennot'e, own vadlbll decl8rllltona wlhin a parameterized

module produce distinct own variables for each dlltlnct inltll1lllllOlt of the rno4Jle. For a given

Instantiation of a parameterized cluster, all lnatanllations of the type's operaUons share the same set of

cluster own variables, but distinct Instantiations of parmneterlzed operatlonl have distinct routine own
variables.

Declarations of own varlabkts cannot be enclosed by an except stahtment, so care must be exercised

when writing Initialization expressions. If an exception is railed by an fnlializatbn expresalon, I will be

86 Modules

treated as an exception raised, but not handled, in the body of the routine whose call caused the

initialization to be attempted. Thus, the guardian will crash due to this error.

1M4.2¥JU¥#.IJ.kJI I .J l4!1.,_J 1$1 $Uf.£11l!ilC. j[§lUIJIAt&SJ£#U@J.tL4# 1#-, .L#X. uw:a;:' J.&~-•tXXSQJJ._l4JJ!2$$$ilMUllt#ft~
,,,

13. Gu•nlllM
Thil•llRfl;Jllft0 .. 111 _._ ... , ,. J1UJ

..-..Cllldap•••1•0t••1•••:•11[· · J11tr1•..--•
w11111 -·•••• •10.1 rnr•o~w ·. •at••to .. •-n.,,. •• 11·• 1 1 • .· ·••IP A• •••n
1n---.a1' I 1111 UISBRlllllf; . '•aflF •1• tU.911,Mt
,__,.., , ... 1r1•b·••r·* ·.--.

The •ll.cllc""" ···---••:
kln••FD II ,_. -ltm•1•.-.Jl J

<••} '

......

(.... .t..dlcl}

Inna••..,,_) ,.
IPJtiJ nJ••rf •1t1111n}

Qf*lli•::. • ..,

I h•lllr
I

.... -···••: •••••••t1•Y1•1•••····-··· " •.... ,,

............... · ·,, ,,;:w

................... ti _,_ ..

........................... lift'' ••--•••••·rm••• ... ta•ttWll· ·1·:1·--·a•
,,.....,.11po111wa1••• atn n•ill•t1•••••~••Hl••1...,.

13.1.TMOar -

11'8.._,.,._, ,fltJ:rr 11.r -•••••••·•·en1Mrm-.-n• ••••• 1r1rt:
... _ ... :.1.-.1-

tl~r, • ... "111:;•-•unr•1 »;11•1•·ut1 m llbt. ••.
'"- -.e., _, In• n• a ··--·•;C 11 !fl' ltlr ... JU•,. t1111t1• ._. "'1lWlllllll
........... 11•a ... •••••••• .. a11ti•1ni-ltiflll':i1111rlll••;•

For _ .. _:

88

stable buffer: atomlc_anar[lnt) :• atomlc_amay{lnl)$new ()
cache: al'l'llY[lntJ :• .,.,pntJ$new ()

Guardians

then the atomic_array object denoted by buffer would .,Mve a guardian crash, but the array Qbiect

denoted by cache would not. See Section 13.3 for more delals of crash recovery. Volatile variables can

be assigned wherever an assignment statement is legal. However, ltable varlablaa may only be

assigned by an Initialization when declared or In the body of a creator. The lnltialzationl of both stable
and volatile variables are exea.rted within an action, as deacrl:>ed below. However, the stable varlabtes

are not reinitialized upon crash recovery, whereas volatile variables are reinllalzed upon crash recovery.

Stable variables should denote resilient objects (see Section 15.2), because only resHient data obiectS
(reachable from the s&able variabtes) are written to stable storage when a topaction oomrnlts. (Thia can

be ensured by having stable variables only denote objects of an atomlC type or objects protected by

mutex.) Non-resllenl objects stored In stable variables are only wfllt8n to stable storaoe once, when the

guardian is created. Ful1harmore, the stable varlables shoutd usually denote 8'ornic obied&, because the

stable variables are potentialy shared by all the actions In a guardan.

13.2. Creators
A guardian definllon must pn>vtde one or more creators. The names of ttMtM creators must be lsted

in the guardian header (Internal cr.ators are not allowed); Heh IUd'I narM must coneapond to a single

creator definition appearing In the body of the guardian definition.

A creator definition has the same form u a procedure definition, except that creators cannot be

parameterized, and the reserved word c...aor Is used In place of pn>c:

idn •creator<[args]> [returns] [signals]
routine_body
end idn

The initial kin names the creator and must agree with the final kin. The types of al arguments and all

results (normal and exceptional) must be transmissible.

A creator is an object of some creator type. Thta type Is derived from the creator heading by removing

the creator name, rewriting the fOnnal argument declarations wtth one kin per decl, deleting the ic1nl of aH
formal atgUments, deleting any failure or unavallabltl stgnals, and finally, replacing crealOI' by

creatonype. The signals failure(atrtng) and unava/lable(1trtng) are lmplicil in every creator type (since

they can arise from any creator cal). However, If these signals are raised explicitly by a creator, they

must be listed in the signals clause with atrlng result types.

The semantics of a creator call are explained in Section 8.4. Typicaly, the body of a creator will

initialize some stable and volatile variables. It can also return the name of the guardian being created

using the expression 1811. Since the creator (and the state Initialization) runs as an acUon, the creator

tenninates by committing or aborting. If It aborts, the guMMan Is destroyed. If It commits, the guardian

begins to accept handler calls, and runs the background code, If 11PJ (see below). If an ancestor of the

creator aborts, the guardian is destroyed. If the creator and all Its ancestors commit, the guardian

becomes pennanent, and will survive subsequent crashes.

13.2 Creators 89

13.3. Crash Recovery
Once a guardian becomes permanent, It will be reaeated automatically after a crash with its stable

variables initialized to the same state they were In • the last topaction commit before the crash. The

volatile variables are than lnlllalized (in declaration order) by a topaction. To aid In thts reinitialization, the

guardian definition can provide a recover section:

recover body end

to be run, as part of this topaction, after the Initializations attached to the volatile variable declarations are

performed. The recover section commits when control reaches the enc:t of the body, or when a return

statement is exeaJted. The recover section may abort by 8K8CUlng an lbort ~ statemert or as a

result of an unhandled exception. The guardian crashes if the recover section aborts.

13.4. Background Tasks
Tasks that must be perfonned periodically, Independent of handler calls, can be deftned by a

background sectlotr.

background body end

The system creates a pn>cess to run this body as soon as creation or recovetY convnls successfully.

The body of the background section does not run as an action; typicaly I wtll perform a sequence of

topactions.

lf the background procen finAahea executing II body(...._ by reaching the end of the block or by

returning), the process terminates, but the guardian continues to execule lncorr*'O handler calls.

13.5. Handlers and Other Routines
Typically, the principal purpose of a guardian is to execute Incoming handler calls. A guardian accepts

handler calls as soon as creation or recovery commits.

The guardian header lists the names of the extemally available handlers. Each handler listed must be

defined by a handler definition. Additional handler def•"1ftlonl may alto be given, but these handlers can

be named only within the guardian to which they belong.

A handler definition has the same form as a procedure definition, except that handlers cannot be

parameterized, and the reserved WOrd handler is used in place of proc:

ldn • handler <[args]> [returns J [signals J
routine_ body
end ldn

The Initial idn names the handler and rrust agree with the final kin. The types of all arguments and all

results (normal and exceptional) must be transmissible.

A handler is an object of some handler type. This type is derived from the handler heading by

removing the handler name, rewriting the fonnal argument declarations wlh one lcln per dllc/, deteting the

l$ki!Llld$1J.ktJ tJ .. £$$241&,(." .. i tu JS!ZtlWkLJJJUQ.14li.LLL!JMU#!U14@Sl&JO&i!JLIU44X%2t4Sl!ii.JlM J L,J,~

IO

.................. 1 : •• 1.J•',,,,

'······-· , .• fl&:,11111•···
•••••· , ... uillr:••· ••••••

A•llll JERI! lilf•.. ..,.. ''

.... ,.
-••• 91111••t•f:lu• ,

'·•;•fl1111it•f•

ltllfllftl--
. .fllll, •• ' ',, ... , ..

••••••mnr ,

• •• ... It >••t 11111111••11111111 .t1· :o•1111/Ul1Jl1J••a:
DI 1.Gll lf.1 !JUlll 1 . .· - .·· , •• .,.11)••••••11.11 ,,.,

'.............. ' ·,·····.' ,.-:•:lltt• .. ··
11111111t 1•••••u11f caa1n°11·111iffl'lllii. .-~<_,,.,•.1ld1ln1mJ;tr

1'etalau*1.._11u11&.r•••••rtw •1•1•n1•.1Lt1Jr l•JJin.· a
..... HJ II ·t4••:r•'-J; •" •• •MJ1i11li1llrn~ ...

Ml I II
~ . .) _._

11.7-- Aa 111111111
Yft 91 I• 41f .. 1lll 1

l!Lilll ·•••t1111i .. , .
..._._ •u •••:• .. • ,.. •••r·lit:

13.7 An Example 91

consumption. The spooler provides an operation for adding (object, consumer) pairs, and tor destroying

the guardian.

FlgUN 13-1 : Spooler Guanlan

spooler • guardian (t: type) la create hand• enq, finish
where t ... twit

utype - handlertype (t)
entry • 81ruct(object: t, consumer: utype)
queue • semiqueue(entry)

stable state: queue :• queue$create()

background
whlletruedO

....... topactlOn
e: entry:. queue$deq(state)
e.coneumer(e.otJiect)

Ucepl when unavailable (•):abort INve end
end ucept failure, unavallble r>: end

end
end

create - cramor () Ntuma (spooler(tD
...,,..(Mii)
end create

enq - handler (Item: t, user: utype)
queue$enq(state, ettry${objact: Item, consumer: uaer))
endenq

finish - handler ()
tennlnat•
end finish

end spooler

The spooler guardian is parameterized by the type Of object to be stored. The enq handler takes an

object of this type, and a handler tor sending the object to the conuner, md a:ta thi8 lnformatiOn to the

stable state of the spooler. Thia state is an object of the Htnlqwue lbltrac:I data type 12. Each entry in

the semiqueue Is a strucklre oontalnlng a stored obfecl and II QOl'NIPOAdlr1Q consumer handler. The

background code Of the guardian runs an lnftnle loop that atlltS a topaction, removes an entry from the

queue, and sends the object using the associated handler.

Note that an unavailablB exception arising from this handler caU la caught inside the topaction, so that

an explicit abort can be perfonned. H the exception were caughl oullide the topac:tlon, It would cause the

12See w. Weihl and B. Liskov, "lmpanenllltion of Aellient, Alomic 0. rw-·. in ACM T~ on Prriflnlmminfl
~and~ volume 7, nwnber 2, (April UNI&),,,..- 244-2t8.

92 Guardian•

topaction to convnit, and the entry would be removed without being consumed. Note also that failure is

caught outside the topacUon, since If an encodfl were to fall, or I the guartlian did not exlSt, the

background process might aimlessly loop forever, because it would not be able to remove that entry.

A more extended example of a distributed system appears In the paper Llskov, B. and Scheifler, R.,

"Guardians and Actions: Linguistic Support for Robust, Diatrtbuled Programs," ACM Transactions on

Programming Languages and Systems, volume 5, number 3, (July 1983), pages 381-404.

u;;uum .. LUA££ m.1r11m111 £1 •.•• MttUstL LUI .b 2 .!112 .. -.. tU•IA .. U:SU::RQJJ#@#iJSll!LtJ#l$#S UUL2UJ£!@tbl .zR 42 JQSJ,LIJI ••••

I:,

1• ,..,.

14.1. n.r ... m10g:11101n
T,..11naasr ••,.•••·•·•..,••1·11••-11,,....., ... 111111•11•m o1 tlllll

........,.. A-11•• • l ll.' '• • •11 :i1•'1f11j·1J1ll.II,llM1 n••• JI •·
··-·····• : ' .. ~,., •'''·-~·-~·-·.''/• .c-,

wNdt 11..., .. ,, •. ., t1 r1t rl:i:a *'' . ·.. :••• a,..,, .. • •••
el'lllCl,wllllrltllllf_.........._fllH,•1U1•--·
.......... au•nt'.itUll:;iMlfllilt ., , 1tM11••--
1PHl!'1lardlJ a ••t1111r11u11fl; ··.;:~···'''il',.

.. ,.., , •• Jc ..
AIM,..,lflt I. 1t •iltir•t1· --

14.2. Tw•l11f11 t1r8La• •.••
The•••t1•••11••:•l1 .• LJt11:,.1•·1t4,•a .• IJIUllUts••.111111111•1••••

•••·•• a.111!1 tl:9;;tMat11t#; ... · .,;.,,.,<_·~'''···~ ;,,,~_,'~·· • ··

•11•m• .. --. ••••• 11ir1uir1111•••• ·,., ...

................
Jtt•·lll I I ...

... --··••.11•··--
.. ·• .,f: t •

lM• tt l1tfl•'G1 .. 'M•11t d 1.llF• ,t •. lrllJ ... l llHIUtel ..
comp1

TM• 1 n 11n1•1n•rst .. f11•1l•••,.._ ... ,.,1 lt1•:l11ll•t111tn111 • [...................

"Lilllov, B. •&. CIJJ ... ••• 1111•• a.....-iltO II •t1 l1 IL·-~ llJ 11• 1 V.11-.-v.., 111-1).

94 Tranem1881blllty

14.3. Transmit for Abstract Types
The type implemented by a cluster is transrnissl>le If the reserved word tranemlt appears in the la-list

at the head of the cluster. Unlile the other operations provided bot a type, the tnNmll operation camot

be called directly by uaers, and In fact la not lmplemeneed dlrectly in the ctuater. Instead, ~ Is
implemented Indirectly in the follDwlng way. Each ~ type la given a canonical representation,

called its external r~ Ip. The external repntl8rllallon type of 1111 abstract type T is any
convenient transmllal>le type XT. Thia type can be another lbllraot type If desired; there is no
requirement that XT be a bu•-ln type. Intuitively, the meaning of the utemal representation la that

values of type XT will be used in messages to represent valuel of type T. The choice of external

representation type is made for the abstract type aa a whole and Q.llt M Ulld in 8YefY ~ of

that type. (There are currently no provisions for changing the external representation of a type once It

has been established in the ll>rary .)

Each i"1)1ementatlon of the abstract type T must provide two operations to map between values of the

abstract type and values of the external representation type. There Is an operation

encode • proc (a: T) retuma (XT) [algnala (fallure(8trtng))]

to map from Tvalues to XTvalues (for sending messages) and an operation

decode • proc (x: XT) Ntuma (T) [slgnala (falture(atrlng))]

to map from XT values to T values (for raceiYing messagea). The tran8mll operation for Tis defined by

the following Identity:

T$tranamlt (x) • T$decode (XT$tranamlt (TSencode(x)))

Intuitively, the correctness requirement for enoocM and decode is thll they preserve the abltract Tvalues:

encode maps a value of type T Into the XT value that represents I, while d800d#J pefforms the reverse
mapp;ng14.

Encode and dec:oc:IB are called impllcltly by the Argus system during handler and creator calls. If

encode and decode do not appear In the cluster's 18-ffat, then they wtl be ICC988ible to the Argus system.

but may not be named directly by users of the type. A fall&n e>Ccaption raMd by one of these operations

will be caught by the A1QUS system and resignalled to the caller (see Section 8.3).

An abstract type's encode and dllcode operations should not cause ant 8kle effects. This is because

the number of calls to encode or decode is unpredictable, since atgUm8f1ta or results may be encoded

and decoded several times as the system tries to establilh cormunlcatton. In addlion. verifying the

correcmess of trwmtaalon is easier I ~ and dfKXKle are lln1>tY tranefoft'natio to and from the

external representation.

When defining a parameterized module (see SectlOn 12.5), it may be necessary to require a type

parameter to be transmissible. A special type restriction:

1"Hertihy, M. and Liskov, 8., "A Value Transmission Melhod for AbahCt Data Types", ACM r,...c;o,,. on ,,,.,,..,,,,,.,
L....- and Syatams, volume 4, number"· (Oct 1982). pagee 527-551.

--~------~-------------------

14.3 Transmit for Abstract Types 95

haa transmit
ts provided for this purpose. To permit instantiation only with transmlssi>le type parameters, this

restriction should appear In the Where clause of the cluster. Allamatlvely, by placing Identical where

clauses In the headings of encod8 and decode procedures, one can enaure that an instantiation of the

cluster is transmissible only If the type parameters are transmtsal>le (see Section 12.5).

As an example, Figure 14-1 shows part of a ckJster c:letlning a ,.,..,,_,, tllblB that stores pairs of values,

where one value (the key) Is used to retrieve the other (the Item). The key-lem table type hal operations

for creating empty tables, lnset1ing pairs, nttrieving the Item pend wllh a given key, deleting pairs, and

Iterating through al key-Item pairs. The table is repreaenlad by a sorl8d tHnary tree, and Its extemal

representation Is an array of key-Item pairs. The table type Is transmlssl>le only If both type parameters

are transmissible.

Figure 14-1: Partial Implementation of table.

table -clu8ler [key, Item: type) ta create, Insert, lookup,.,....., delete, transmit, ...
where key ... I: proctype {key, key) ,...... (boot),

equal: proctype (key, key)...,.,. {boot)

pair • record{k: key, i: lem)
nod• NCOl'd(k: key, I: lem, left, right: table(key, llem)]
rap • vartMl(en1JIY: null, some: nod)
xrep • ~ % the external repntHntatlon type

% The internal representatk>n ii a aorted binary trH. All pairs in the table
% to the left (right) of a node have keys less than (greater than) the key in
%that node.

% ... other operations omitted

encode • proc (t: table(key, Item)) l'8IUm8 (xrep)
....,. key ... tfanMllt, lem i. .,.,....

xr: xrep :- xreplnew{) % create an~ lft'8Y
% UH allpai8 to extrad the paill ffom the trM
tor p: pair In alplirl(t) do

% Add the pair to the hJgh end of the array.
xrep$addh(xr, p)
end

retum(xr)
end encode

decode - proc (xtbl: xrep) returns (table(key, item))
Where key ... traftlllllt, Item

t: table(key. Item) :- create() " cnate empty table
tor p: pair In xrepStfemenll(xr) do

% xrepSelaments yielda all elements of array xr
lnsert(t, p.key, p.item) % enter pair in table
end

ratum(t)
enddeoode

end table

96 Transmlulblllty

14.4. Sharing
When an object of structured built-in type is encoded and decoded, sharing among the object's

components is preserved. For exaf11>1e, let a be an array(7) object such that 11{1} and afJJ refer to a single

object of type T. H a2 Is an array{ 7) object created by transmiling a, then a2[fJ and a2fll also name a

single object of type T.

All sharing is preserved among an oomponentS of rrullple objects of built-In type when those objects

are encoded together. Thus, sharing is preserved tor ot>tacts thllt n,,..,as of the same remote call

or are results of the same remote cal, unlesa the argumena .. encoded at dltef8nt tknn (see the

discussion of the bind expression in Section 9.8). For exaf'1>18, let a Ind b be ..,.rl1J objects such that

a[i] and b{j) refer to a single object of type T. If 112 and /12 are anya created by sending • and b as
arguments in a single handler cal, then a2[1] and b2[JJ also refer to a single object.

Whether an abstract type's trMlmlt operation preserves sharing is part of that type's specification. but

sharing should usually be preHfVad for abstract types. In the key-lem table irq)lernelUtion of Fegure

14-1, there are two types of sharing that should be preserved: slwlng of keys and lktm8 among ~le

tables sent in a single message, and sharing of llem1 bound to the ume key In a single table. The

key-item table ex8"1>1e shows how to ~ an abltraot type whoH tranamlssiOn preserves sharing

by choosing an extemal representation type whose trantml operation preaerves sharing.

Care must be taken when the refenmces among objects to be tratWnlted are cycllc, as in a circular
list. Decoding such objects can result In a failure excepdon unless •icode and decods are if11>1emented

In one of two ways:
1. the internal and external rapreHntation types are identtcal and 9flCOde and d«:Otle retum

their argument object wilhout modJfylng It or ICCell1ng lta corr.,oneru. or
2. the external representation ob;ect frlJSt be free of ayctea.

,•-,, , ·' .. ' ~':- ;.

15 Atomic Types 97

15. Atomic Types
In Argus, atomicity is enk>lced by the objects shared among actions, rather than by the individual

actions themselves. Types whose objects .,...,,.. atomk:lty of the adiolll 8harlng them are caled atomic
t)peS; objects of atomic types are caHecl atomJc Ob}«;ls. In this chlpter we define what It means for a
type to be atomic and descrl>e the mechanism& provtded by Argus to support the implementatiOn of

atomic types.

Atomicity consists of two properties: setializabillty and recoverability. An atomic type's objects rrust

synchronize actions to ensure that the action& are serlallzable. An atomic type's objects must also

recover from actions that abort to ensure that actions appear to exeaJte either completely or not at alt

In addition, an atomic type rrust be resiliflnt the type must be ~mented so that its objects can be

saved on stable storage. This ensures that the effects of an action that commits to the top (that is, an

action that commits, as do al of its ancestors) wll survive crashes.

This chapter provides definitions of the mechanisms used for ueer-daflnld types In Argus. For

example Implementations, see Weihl, W. and Lilkov, B., ~of RestliR, Atomic Data

Types," ACM Transactions on Pro(lrammlng La~ anti~ volume 7, oomber 2 (Aprll 1985),

pages 244-269.

The remainder of this chapter is organized as follows. In Section 15.1 and Section 15.2, we present

the details of the mechanisms. Section 15.1 focuses on synchronization and AKX>YefY of actions, while

Section 15.2 deals primarily wlh l'88ilence. In Sealon 15.3, we dllcl•• some guidelines to keep in mind

when using the mechanisms detcriJed in Section 15.1 and Section 15.2. In Sections 15.4 and 15.5, we
define more precisely what it means for a type to be atomic. Ftnally, in 15.6, we dlacusa some details that

are important for user-defined atomic types that are """9mented using mutt~ rootexes.

15.1. Action Synchronization and Recovery
In this section we de&Cl'l>e the mechanllml provided by Alga.- to eupport synchR>nization and recovery

of actions. These mechanisms are designed specllcally to support i~ of atomic types that

allow highly concurrent acceas to objects.

Like a non-atomic type, an atomic type Is ~by a ckllter that def111e1 a representation for the

ot>;ects of the type, and an ift1)1ementatlon for each opetaUon of the type In terms of that,.atlon.
However, the implementation of an atomic type nut solve some problems that do not occur tor otdinary
types, namely: synchronizing concurrent actions, making .,...,.. to ol'8f actions the effects Of committed

actions, hiding the effects of aborted actions, and providing resllence agail ISt crashH.

An implementation of a user-defined atomic type ITIJ8t be able to find out about the commits and aborts

of actions. In Argus, if11>1ementationa uae objecla Of bull-In atomk: types for this purpese. The

representation of a user-defined atomic type is typlcafly a combination of atomic and non-atomic objects;

'[U!ltlJ!•LJtiAll fall EL ·- LCL$2! '" .. 32!WE JU ti HUi1 .1 .• IUIMSJUI. ,,,.JL@WUMXUI -l£ti#4114JJ!ULQ!U u as L$X t&M

•
•-••'* •••----11111·.1111•1111••••••• ... 1®1•,Hn.J_ll.~!J . .t111 •••1••--•
..... ,, nt a.• 1 n1nr1rs• .•1111 .; > :·· '~: _, •• · •·• · · . · 111tu•••
..... •••_. 1tlMJJl•>lll1fl1in· · .. · ;Jt111r.a•'1ld11r .._...,..,.,,u•••ur: · • •••••••.t • .. 1 IL stt-w a llllDI aal.1- 'illf I ..

• fl!li#
•II I 1. •QJ!llft -111 fl. I lltlllJ-t,

1'M9'•11••••li• :, ': . ' . - _,

,.,_., • .. • • m •• ••111uat1r1111 juu ••~
t ,,......, , .. ····--·-••dtf'Till ,,, ,
.... , Hill llA••· ,
1.1 ••... "' . ,. ' ' . -. '
,..,. I Jlf rls••'•·••lilJllUQ-1'
$1. ··. 1111 1 ll .••• I• t ' i.lll· ·... ,·,··.· .. ··· ... - ... ·
............. .,oo\11r111r~--.. ··
•• 11 •• ••.• ••ll.•111•aunurX · · ·
1•1i11111 n•••: . LT.Ill . :;.'": ..

...... & ••••

...... - ~--· •.i ' · ,

Ttt: J tra1•·•••••tw•nlii1•11 ... 1 ••• .. •••
... 11•12 - f P ••IJtUHlll-t\l:tJ•, -~·
lfH.tl•k 1••11!ufr•• ' ·.,, .·.c;' ::;_,. •. _,_ .

.. -. Fir Ill••· •·t1tt·11ln:ra1rJt''1 ·· ••T ••1•11

·.•· · .. · "'. -:••••, .. , .•
. ~. : ··fl Ill :81:1 (tllr U

•ot•
••..• !/•,;~·

15.2 Reslllence 99

changed • proc (m: mutu(T])

is provided for notifying the system that an existing nWJtex object should be wrlUen to stable storage.
CaUing this operation wilt cause the object to be wrlUen to 8'able ttorlQ8 (aseumk1Q It Is ICCMllble) by

the time the action that exealted the dWtQed operation comnlla to the top. Sometime after the action

calls changed, and before Its top-level ancestor oommls, the system wll copy the rrutex ollject to stable

storage. Changed fTlJ8t be called from a pn:>ceU running an action.

Mutex objects also define how much information rroat be written to stable storage. Copying a mutex

object involves copying the contained object. By chOo8lng the plOp8f' gnRll8lly of mul8X objects the

user can contn>J how much data m.ast be wrtnen to llable storaoe al a time. For exaf11>11, a large data

base can be broken I'*> partitions that are written to stable 8'0nlge lndependenlly by dMdtng I among

several mutex objects. Such a division can be used to limll the amount of data wrlten to stable storage

by caUing changed only for those partitions actually modlied by a oomrnilting action.

In copying a mutex object, the system wHI copy aU objects reachable from it, excluding other mutex or

built-in atomic objects. A contained mutex or built-In atomic object wtll be copied onty If nacesaary; that is,

only if it is:
•a mutex object for which (a descendant of) the completing action called the changBd

operation,

• a built-in atomic object that was modified by the action, or

• a newly acc:esaible object tor which no lblble copy exlata.

Furthermore, the component II copied indlpendenlly of the COIUinlnO mutex object; they may be copied

In either on:fer (or slmultaneoualy), aubtect to the constrabt that the system cannot copy a mutex object

without first gaining possession of It.

Finally, rootex objects can be used to ensure that information la In a consistent state when I is written

to stable storage. The system wtll gain poll8lslon of a l!Uex object before wrling It to ltllble storage.

By making al modifications to mutex obleCtS Inside ..._ statementl, the user's code can prevent the

system from copying a rootex obied when It is In an Inconsistent state.

Some details of the effect of changed are Important for atomic types that are implemented as multiple

mutexes. These detaUs are presented in Section 15.6.

15.3. Guidelines
This section discu88es some guidelines to be followed when implementtng atomic types. There are

additional guidelines to follow when multiple n1Jtexes are used to ift1:>l8ment an atomc type; those

gutdelnes are discussed In Section 15.6.

An Important concept for descrl>ing the resilience of user-defined alOmic types II~· An object

is synchronou$ If It Is not possl>le to oblerve that any portion of the object ii copild to ...,. llDnlQe at a

different time from any other portion. For exa,.., an obllCt of type array(mutell(lnt)J would not be

100 Atomic Types

synchronous, because elements of the array can be copied at different times: A type Is synchronous If all

of its objects are synchronous. Whether a type Is synchronous or not ii an lfT1:>0t18nt property of Its
behavior and should be stated In Its specification. The buHMn atomk: types are synchronous; user

defined types must also be synchronous If they are to be atomic.

To ensure the reslUence and serlallzabillly of a user-defined atomic. type Independently of how it Is

used, the form of the rep tor an atomic type should be one of the folDwinQ poasl>illUes.
1. The rep is Itself atomic. Note that mueu ii not an atomic type.

2. The rep Is rnutex(4 where t Is a aynctwonoua type. For .,..... t could be atomic, or It
could be the repreaerUtion of an atomk: type, I the openiliDM on the this flcllUoul atomic
type are coded In.fine so that the entire type behave8 8kH'nk:llly.

3. The rep is an atomic collection of mutex types containing synchronous types.

4. The rep is a mutable collection of synchronous types, and objllctl of the representation
type are never modified after they are lnlllalized. That Is, mullld8n may be Ul8d to create
the Initial state of such an object, but once this has been done tM abject nlJlt never be
modified.

When using mutex objects, there are a few ruJea to remember. First, dlano«/ must be called after the

last modification (on behalf of some action) to the contained object. This Is true because the Argus

system Is tree to copy the mutex to stable storage as soon u dlllll(J«l ha been calted.

In addition, changsd should be called even I the object Is not accessible from the stable variables of a

guardian. In part this rule Is just an ex.,. of HP8l'lllion of concema: the ~ of the atomic

type should be done Independently of any ~ lboul how the objld wll be used. Therelore the

type should be ll'J1)lemented as If Its objects were accessl:Jle from the stable vMables of some guardian.

However, In addition, I this rule Is not followed, I is poallble that stable atorage wil not be updated

properly. This situation can occur I an object was accessible, then becomes lnaccessl>le, and later

becomes accessible again. The system guarantees that no problems arise I d1ang«/ ls always called

after the last modification to the object.

Mutex objects should not share data with one another, unless the shared data is atomic or mutex.
One reason tor this rule Is that in copying mutex objects to stable atorage Argus does not preserve this

kind of sharing.

A final point about mutex objects is that It is unwise to do any actMly that is likely to take a long time

inside a..._ statement. For example, a hancler call should not be done from Inside a ..._ statement I

possible. Also, It is unwise to wait for a lock Inside a ..._ unle• the pn:ignammer can be certain that the

lock is available or will be soon. Otherwise, a deadlock may occur. An exaqJI& of whent waiting for a

lock In a nested ..._ statement 11 lllfe II where al procetl88 seize the two mutex objecl8 In the same

order.

15.4 A Prescription for Atomicity 101

15.4. A Prescription for Atomicity
In this section, we dlscusl how to decide how tftlCh concurrency ii possible In ~Ing an atomic

type. In writing apeclfications for atomic types, we have found I ""*" to pin down the behavior of the

operations, initially assuming no concurrency and no fallurea, Md to deal wlh concurrency and failures

later. In other words, we Imagine that the objecla wilt exist In an enYkonment in which aH actions are

executed sequentially, and In which actions never abort.

Although a sequential specification of thi8 sort does not say ~ expllcl about pemilslble

concurrency, It does impose llmlt1 on how nlJCh concurrency can bl pRMded. ~ can

differ in how l'TIJCh concurrency Is provided, but no implementdon CM exceed theM limlla. l'henltore, it

Is Important to understand what the limits are.

This section and the following section together provide a precise definition of permlsalble concurrency

for an atomic type. This definition la baled on two factl lbout Algus MCI the way It -..pports

implementations Of atomic type. First, in ~ an *"'6c type, It ls only nacellafY to be

concerned about active actionl. Once an llCdort hM oomrnllted to .. top, I ii not poaslble for it to be

aborted later, and Is changes to atomic objects blcOme Yllllfe to other adlonl. So, for example, an

implementation of an atomic type needs to prevent one action tn:wn oblervlng the modllcalloAI of other

actions that are still active, but I doel not have to prevent an ICtiDn from oblervinQ modllcations by

actions that have already committed. Second, the only method .., ... to an llOmlc type for conkOlling

the activities of actions la to delay actions white they are exflCUlinl operations ol the type. An atomic type

cannot prevent an adJon fn>m calllng an operation, mthouQh I CM prewnl that cal fn>m proceeding.

Also, an atomic type cannot prevent an action that preylou8ly tlnltMd a cal of an operation from

completing either by comrniHing or by aborting.

Given the sequential specification of the operations of a type, thale facta le-' to two constrainta on the

concurrency permitted among actions using the type. While an ~ can allow no more

concurrency than perrnl&ted by th88e ODf......,.., some Ike .,. for the bull-in type

generator atomic_...., (see Section 11.10), may allow leu ooncurrency than permilted by their

sequential specifications and our concurrency CONllalnts.

The first constraint la that
• an action can observe the effects of other actions only I those actions convnilted relatfve to

the first action.

This constraint Implies that the results returned by~ exeaMd by one action can reftect changes

made by operations ex&QJted by other actions only I "'* ICllonl comrraMad relaUve to the first action.
For example, in an atomic array a, I one action performs a stonll(a, 3, 7), a llCOftd (unNlated) action can
receive the answer '7" from a call of fe&11(a, 3) onty I h finlt aaton commllted to 1he lap. If the first

action is stll active, the second action nust be detayed untl 1he ftrlt actton C0111)1etes. This first

constraint supports recoverability since I eneures that "'8cts ol abolted actforll C8Mot be oDlerv8d by

other actions. It also supports serializabllly, since I preyenes COf1CUIM'll actiona fn>m obHrvfng one

another's changes.

102 Atomic Types

However, more is needed for serializablUty. Thus, we have our second constraint:
• operations exea.rted by one action cannot invalidate the results of operations executed by a

concurrent action.

For exafr1>18, suppose an action A executes the size operation on an atomic array obied. receiving n as

the result. Now suppose another action 8 is permitted to eX8Q.lte addJ. The llddh operation wll ilcrease

the size of the array to n + 1, Invalidating the results of the size operation executed by A Since A

observed the state of the array before B executed addh, A ITIJ8t precede 8 In any sequenlial exea.atton of

the actions (since sequential exeaJtlona ITIJ8t be conliltent wlh the ~ial apecllcationl of the
objects). Now suppose that B commits. By .._..Ion, A cannot be f)N¥Wltld fR>m ..atng the .nects of

8. If A observes any effect of 8, • wll have to folow Bin any -..culon. Since A cannot both

precede and follow B In a sequenlial execution, 88f'laltublltr woulcU>e Yiallled. Th.ls, once A •ec:utes
SIZ8, an action that calls addh ITl.l8t be delayed until A oornpletea.

15.5. Commuting Operations
To state our requirements more precisely, consider a simple siluatlon Involving two conaurent actions

each executing a single operation on a shared atomic object X. (The actions may be executing

operations on other shared objects also, but in Argus each object rruat lndlvlctlally eneure the atomicity of

the actions using it, so we focus on the operations involving a single object.) A falrty ._ concaion that

guarantees seriallzabillty Is the following. Suppose X is an object of type T. X has a current state

cletennined by the operations performed by prevfously comrnllted actlonS. Suppose 0 1 and 02 are two
executions of operations on Xln Its current state. (01 and 02 rnlgtlt be aecutions of the same operation

or different operations.) If 0 1 has been executed by an action A and A ha not yet commlUed or aborted,

02 can be performed by a concurrent action 8 only I 0 1 and 0 2 OOfftrllMJ: glYeR the current state of X,

the effect (as descrt>ed by the 18CJJ811tial apeciftcatlon of 7) of pertonMlg 0 1 on Xfollowed by 02 Is the

same as performing 02 on x folowed by 0 1• It Is ...,,.ant to realize that when we say •effect• we
include both the resuls returned and any modllcations to the state of x.

The Intuitive explanation of why the above concllion works Is 18 folows. Suppose 0 1 and 02 are

performed by concurrent actions A and Bat x If o, and o,~. then the order In which A and B

are serialized globally does not matter at X. If A is serialized before B. 1hen the local effect at X Is u If 0 1

were performed before 02' while I B Is serialized before A, the local efted Is 18 if 0 2 were pettormed

before 0 1• But these two effects are the same since 0 1 and 02 comn.u.

The common method of dividing operations Into readers and writers and using read/Wftle locking works

because it allows operations to be executed by concunnt actionl only when the operations cornmlte.

More conoorrency is posal>le wlh our cormuatiYlty cordion than wlf1 readerllwrtters becauH the

meaning of the lndlviduaJ operations and the argumem of the calla can be COt'llidered. For example,

calls of the atomic array operation addh always ammute wlh calls of add, yet bath these operations are

writers. As another exafY1>le, store(X, I, s 1) and store(X, }, •,) comm.de I I"').

We require only that 0 1 and 02 comrrute when they ant executed stating in the current atate.

· r-< ~·:!·;.l\ . • - , ·,·

15.5 Commuting Operations 103

Consider a bank account object, with operations to deposit a aum of money, to wlhdraw a sum of money

(with the possl>le result that it signals IMullldtlnt lin18 I the Qlff'8f\t balance II 1888 than the sum
requested), and to exam&ne the current balance. Two withdraw operations, say tor amounts m and n, do

not conmute when the cumtnt balance is the maxim.Im of m and n: elher operation when executed in

this state wlll succeed In wilhdrawing the requested sum, but h other operation l1IJSt signal lnadfic/ent

funds II executed In the resulting state. They do comnue whaMY8f' the current balance ii at least the

sum of m and n. Thus I one action has executed a withdraW operation, our conclllon allows a second

action to execute another withdraw operation while the titlt ~ is still active 11 long as there are

sufficient funds to satisfy both withdrawal '8qU8Sts.

Our condition must be extended to cover two additionm cases. First, there may be more than two
concurrent actions at a time. Suppose A 1, ... ,An are concurrent actionB, each pertormtng a single

operation execution 0 1,. .. ,o,,. respectMtly, on X. (As before, ttl8 concurrent 8Cdons may be sharing

other objects as well.) Since A 1, ... ,An are permitted to be concumtnt at X. there la no local conllOI over

the order In which they may appear to occur. Therelore, al pc111Mt Oldlr'I nut have the same elect at
X This Is true provided tNd al pemUatlonl of 0 ft···•On have the same elect when executed in the

current state, where effect includes both results obtained and rncxmcaatona to X.

The second extension ac:knowledges that actlonl can peetorm llqUenC8I of operation exeoutions.

Consider concurrent adlona A 1, ... ,A,, each pedormlng a s,. ... ,S,,. reepec:tlYely, of operation

executions. This is permlld>le If all eequences S11, ... ,s.,. obtalnad by concatenating the sequences
S1, ... ,s,,. in some order, produce the same effect. For ..,._, 1UppoM action A exeruted addh

followed by remh on an array. This sequence of operations has no net elect on the array. It Is then

permissible to allow a concurrent action B to execute size on the same array, provided the answer

returned is the size of the array before A executed addh or after it 8X8QJted remh.

Note that in requiring certain sequences of operallonl to have the same effect, we are considering the

effect of the operations as delcribed by the spacificatlon of the type. Thus we are concerned with the

abstract state of X, and not with the concrete atate Of II storage representation. Therefore, we may allow

two operations (or sequences of operations) that do commute in terms of their effect on the abstract state

of X to be performed by concurrent actions, even though they do not comrrute In terms of their effect on

the representation of X. This distinction between an abstraction and Its Implementation Is crucial In
achieving reasonable performance.

It is important to realize that the constraints that are ~ by atomicity based on the sequential

specification of a type are onfy an upper bound on the conamency that an iq>lementation may provide.
A specification may contain additional constrak1ts that further con1train Implementations; these

constraints may be essential for showing that actions using the type do not deadlock, or for showing other

kinds of termination properties. For exaf11>18, the speciflcadon of the bulll-in atomic types explicitly

describes the locking rules used by their lq>lemenlatlons; UMl'I of these types .,. guar8fUed that the

built-in atomic types wil not perml more ooncurrency than alowed by these rules (for lnltance, actions

writing different components of an array, or different fields of a 1'8C01d, cannot do so ooncummtty).

UllJIA. OL XO. It .. JIL 1 ll£ !! JtUJ II !Q&:UJ!ilJlll 1$4lJlHJ& CU&Jl!JJJUCUUJLL JJJ.tJJQ@it. ,,U$Lb C.UUJMll. Jlil#il..Jt. 1£ , R ·4

1CN ,,,..
1U. llullllll lfl•ll••• -A ta••• .. ,..,.. _ Mt ·-·--·llltltl· - •••-. rs••• ;11111••••: 2 r ••111.111t1nr11tllir 11111· - · · h1n1 .. ._ .. ,,.,,

< . -' _ '",',: '".". · ..• > >-·.·,_ ·:'~-, :·-~,-· ,cf;.'J~ ._.,_;;.~:"_;.',:·'3\~ -~' ----------·•1•r•.11•.1r·. -·.. .. _IJISL••
.... , , ... ?.(...... , !¥7J ., ,,;:._ . ..
_ , , ,.,,. -.f

••• •· .. ,11•••1•1ur-._u1n 1111 •Iii· __ -
-11n•h •Malt11a1n1:r1•.111l11•lli>

- •• •• M:1:11 au••---.tt ••< ··
•1IJllIIDJ ·•1q·1fggg ____ r•t•1
... 1111•••11••.... . ·-· . -. ___ .,, ••·lll1•1•••••n.v allllilii

E••• • Ill. r •
·----llllJlf ..

I· •••111u1••··-·
i
(-.',

'r.

llllsw, .. NP ••<rt1n .. ,, , ... lk:f:?. Jl[ltr,ta:··· Jlttltll•• rwt11 , ... •111 s.
--••1J•a.•un1r•--••1•l•..,ltfi•1111111ullj[J,,ifllil1 •·•:M1n:._ ••
.-... , ... ••111111 ••u: -· · - ·.-

.... W,_,• ... , JllJlBIG• £fl n • 1' ___ .,.. JIM-··· J ••
...... ... Jll ,

15.6 Multlple Mutexes

1. Before that crash, B also committed to the top. tn this cue the data read back from stable
storage is, in fact, consistent, since it must reflect Bs changes to both the fltst and S«X1f1d
semlqueues.

2. B aborted or had not yet commilted before the crash. In either cue, B abolts. Theretore,
the changes made to the fll8t semiqueue by B .. be hidden by the semiqueue
Implementation: at the abstrw::t level, the two 88mlqueues do have 118 same state.

105

The point Of the above exaq>le is that If the objeda being wrtlten to stable storage are atomic, then the

fact that they are written Incrementally causes no problems.

On the other hand, when an atomic type is implemented wtlh a representation consisting of several

mutex objects, the programmer must be aware that thete obltCts are wrlbn to stable storage

incrementally, and care r111st be taken to ensure that the ~ Invariant Is atl preserved and

that information is not lost In spite Of incremarul writing. If the ~of a type requires that one

mutex object (cal it M1) be written to stable storage before another (call I 112), then the wrlle of M1 roost

be contained in an action that commits to the top before the action that writes M2 is run.

106 Syntax

idtkkJI. ttJJAUUN:tllilMUU .,.12JJJl!11\IJUU$Jk .. ii.. J JR# U44AMii4AJ!JSJUQ!JtJIJlUULJU Ji Cid CUQl.Ult)ldCJJ!tkk#l #Ji .. t

ISyntax

••••
w • .,.. •,BNF_.••dlllnt••••· 'Rllt1tJ•F-G1a1111lfLfCllcrlrtla

not1ermlRal ::a ••••h•
I
I -I

a'••• - llllllll• ,, ____ ·~ . .._ (a}
(a) M IJlllllC

NonllrmlllllllJlllfaolt PH•• 11\nu RlllFtl lflll'•tllM-.. M...-11,. ___ h••ll•••••••11••·

.......

::.
I
I
I
I

... , •.)
I-···~ 111111,
(Ill Fii·

::. *• ,,., ·1--11 (.
::.

::.

......
fdft•I I I nl,_.J -fl1n•t•.-J(..._J

t .. 111_.)

1
............ 1
tt1 n1 ... Hft1•11111J •.1 1111uln drtlr11 .. u•n)

idn• rru111l..-.)a 1 1

1•1•r1-·····. •·t1!1jJ!1111•(~m11• t
~-·· .· , --

108 Syntax

operation ··- creator ··-
handler
routine

routine ··- procedure ··-
Iterator

procedure ··- idn • proc [parms] args [retums] [signals] [where] ··-
routine_ body

end idn

iterator ··- idn • Itel' [parms] args [yields) [signals) (where] ··-
routine_ body

end ldn

creator ··- idn • Cl'MIOr args (returns) [signals] ··-
routine _body
endldn

handler ··- ldn • handler args (retums] [signals] ··-
routine_ body

end ldn

routine body ··- {equate} ··-
{own_ var}
{ statement }

parms ··- [parm • ... J ··-
pa rm ··- idn •••• : type ··-

idn , ••• : type_ spec

args ··- ([decl, ...]) ··-
dee I ··- idn , ••• : type_ spec ··-
returns ··- returns (type_spec, •••) ··-
yields ··- yl8ldS (type _spec ••••) ··-
signals ··- algnals (exception , ...) ··-
exception ··- name [(type_spec ••••)] ··-

I Syntax 109

opidn ··- ldn ··-
11'8Mmlt

where ··- restriction •••• ··-
restriction ··- ldn has oper _decl •••• ··-

idn In type_ set

type_set ··- { idn I ldn has oper _decl •••• { equate } } ··-
ldn

reference $ name

oper decl ··- name , ... : type _spec ··-
11'8Mmlt

constant ··- expression ··-
type_spec

state decl ··- [.....)decl ··-
[....,..] lcln : type_spec :• expression
[ambll)decl :-cal

equate ··- ldn • constant ··-
idn • type_aet

lcln - reference

own_ var ··- owndecl ··-
own idn : type_ spec :• expression
own decJ , ••• :- caH [@ primary]

,... ,;'\~;~{/ "' ~'-,

110 Syntax

statement ··- decl ··-
idn:type_spec:-expression
decl I 000 :- cal [0 primary 1
idn :- cal [0 primary 1
idn I 000 :- expression I 00 0

primary • name =• expression
primary I expression] :- expression
call [@ primary]

fork call

seize expression do body end
pau.
tennlnate
enter_stmt

coent• coann { coann } end
(mort)IMve
whlle expression do body end
for_stmt
if_stmt

tagcase_stmt
tagtest_stmt
tagwalt_stn

[abort] IWtUrn [(expression , •••))
yield [(expression) 1
[abort] lllQMI name [(expression , •••)]
[abort] ult name [(expression , •••)]
[abort] break

[abort] continua

begin body and

statement (llbort] IMlgMI name , ...

statement except { when_ handler }
[others_handler 1
end

enter_stmt ··- enter topctton body end ··-
enter action body and

... ~cc:}o>!/•\,-,1"':',l~ . ._.,

I Syntax 111

co arm ··- armtag [foreach decl , ... In call] body ··-
armtag ··- llCllon ··-

topectlon
procen

for stmt ··- for (decl , ...) In call do body end ··-
for [ldn I •••] In call do body end

if_stmt ··- u expression then body ··-
{ elellf expression then body }

(.... body)

end

tagcase _stmt ··- tegc.- expression ··-
tag_ann { tag_ann }
(ot'*8 :body)

end

tagtest_stmt ··- tagt88I expression ··-
at11g_arm { atag_arm }
[othel9:body)
end

tagwait_ stmt ··- tagw8lt expresalon ··-
atag_ arm { atag_ arm }
end

tag_ arm ··- tag name , ... [(idn : type_spec)] : body ··-
atag_arm ··- tag_ kind name , ... [(idn : type_ spec) J : body ··-
tag_ kind ··- tag ··-

wtag

when_ handler ··- when name t ••• [(decl I•••>] : body ··-
when name , ••• (*) : body

others_ handler ··- othera [(ldn : type_spec) J : body ··-
body ··- {equate} ··-

{ statement }

112

type_spec

field_spec

reference

actual_parm

type_ actual

opblndlng

::: null

node

bool
Int
raal
char

string
any

Image

rep
cvt

seqwnce [type_actual J
array [type_actual J
atomic _array [type_ actual J
8tl\ICI [field_ spec J
NCOrd [field_spec J
atomic_ record [field_ spec J
oneof [field_ spec J
Variant [field_spec I ... 1
lltomlc_ varlanl [field_spec , •••]

proctype ((type_spec J) (returns J [signals J
ltertype ((type_spec J) [yields J (signals 1
crs•attype ((tw>e_IP8C •• ~.)) (returns) [signals]
handleltrPe ((type_apec. ~ ••]) (nttums] (signals]
--(type _adual J
reference

::: name, ••• : type_actual

::: icln

idn [actual_parm , ••• J
refentnce $ name

: :: constant

type_actual

: :: type_ spec [wtth { where opbinding , ••• }]

::: name, ... : primary

Syntax

,, ··-·~,-,.; ' ;·:-.~;,., '~-:

I Syntax 113

expression ··- primary ··-
call @ primary
(expression)
.. expression %6 (precedence)
- expression %6
expression •• expression % 5
expression II expression % 4
expression I expression % 4
expression • expression % 4
expression II expression % 3
expression + expression % 3
expreulon - expression % 3
expression < expression % 2
expression <• expression % 2
expression • expression % 2
expression >• expression % 2
expression > expression % 2
expression .. < expression % 2
expression .. <• expression % 2
expreulon ... expression % 2
expression "'>• expre8lion % 2
expression .. > expression % 2
expression & elCP191Sion % 1
expreulon ... expression % 1
expression I expression % 0
expression cor expression % 0

primary ··- entity ··-
caU

primary • name
primary [expression J

can ··- primary ([expression , ... J) ··-

114 Syntax

entity ··- nil ··-
true

false

int_literal

real literal

char literal

string_literal

self

reference

entity • name

entity [expression]

bind entity ([bind_arg , •••])

type_spec $ {field , ••• }

type_spec $ [[expression:] [expression , •••]]

type_spec $name [[actual_parm, •••]]

up (expression)

down (expression)

field ··- name , ••• : expression

bind_arg ··- *

expression

I Syntax 115

Comment a sequence of characters that begins with a percent sign (%), ends with a newline

character, and contains only printing ASCII characters and horizorut 1abs In between.

SeparatDr. a blank character (space, vertical tab, horizontal tab, carriage return, newttne, form feed) or

a comment. Zet0 or mont tepll1llors may appe.- between any two tokens, except that at least one

separator Is required between any two adjacent non-eel-terminating tokens: reserved words, identifiers,

integer literals, and real literals.

Reserved word: one of the Identifiers appearing In bold face In the syntax. Upper and lower case

letters are not distinguished in reserved words.

Name, kin: a sequence of letters, digits, and underscores that begins with a letter or underscore, and

that is not a reserved word. Upper and lower case letters are not distinguished In names and ktns.

lnt_literat. a sequence of one or more decimal dglls (0-9) or a backllash (\) folowed by any number of

octal digits (0-7) or a backslash and a sharp sign(\#) folowed by any nunt>er of hexadecimat digits (0-9,

A-F in upper or lower case).

Real_literal: a mantissa with an (optional) exponent. A martl88a Is either a sequence of one or more

decimal digits, or two sequences (one of which may be e111>tY) joined by a period. The mantissa fft.lst

contain at least one digit. An exponent Is 'E' or 'e', opllonaly followed by '+' or ·-·. followed by one or

more decimal digits. An exponent Is required If the manHssa does not contain a period.

Char_llterat. a character representation other than single quote, enclosed in single quotes. A

character representation Is elher a prtn1tng ASCH character (oelal value '40 through 176) other than
backslash, or an escape sequence conailting of a bacUt8lh (\) folowed one to three printing characters
as shown in Table 6-1 or Table 1-1 below.

String_literat. a sequence of zero or more character repre88fUtions other than double <J,JC>te, endosed

in double quotes.

Table 1-1 shows most of the character literals supported by Argus, except for the higher numbered octa!

escape sequences. For each character, the corresponding octaf lleral, hexadecimal Hteral, and normal

literal(s) are shown. Upper or lower case letters may be Ul8d il eecape sequences of the form vr•, \"*.
\r, \b, \t, \n, \v, ',p, and V'. Note that an Implementation need not support 256 characters, in which case
only a subset of the Hterals lated wll be legal.

116 Syntax

Table 1-1: Character Escape Sequences

'\000' '\#00' '\"@' '\100' '\#40' '@' '\200' '\#80' '\IO' '\300' '\#CO' '\&@'
'\001' '\#01' V·A' '\101' '\#41' 'A' '\201' '\181' '\IA' '\301' '\IC1' '\&A'
'\002' '\#02' '\118' '\ 102' '\142' '8' '\202' "82' '\IB' '\302' '\#02' '\&8'
'\003' '\#03' '\"0' '\103' '\#43' ·o· '\203' '\#83' '\IC' '\303' '\IC3' '\&O'
'\004' '\#04' '\"0' '\104' '\M4' 'D' '\204' '\184' '\ID' '\304' '\IC4' '\&O'
'\005' '\#05' '\"E' '\ 105' '\#45' 'E' '\205' '\MS' '\IE' '\306' "'°5' '\&E'
'\006' '\#06' '\"P '\108' '\#46' 'P '\208' '\#116' '\IF' '\308' '\#08' '\&P
'\007' '\#07' '\"G' '\107' '\#47' 'G' '\207' '\l8T '\IG' '\307' 'VIC7' '\&G'

'\01 O' '\#08' '\"H' '\b' '\ 11 O' '\#48' 'H' '\210' '\188' '\IH' '\31 O' '\tC8' '\&H'
'\011' '\#09' '\111' '\t' '\111' '\#49"1' '\211' '\189' '\ff' '\311' "'°" '\&I'
'\O 12' '\#OA' '\"J' '\n' '\ 112' '\#4A' 'J' '\212' "8A' '\U' '\312' 'VICA' '\IJ'
'\013''\#0B''\11K''\v' '\ 113' '\#48' 'K' '\213' '\#88' '\IK' '\313' "'°8' '\&K'
'\014' '\#OC' '\11L' '\p' '\ 114' '\#40' 'L' '\214' '\'80' '\L' '\314' "llOO' '\&L'
'\O 15' '\#OD' '\11M' '\r' '\ 115' '\#40' 'M' '\215' '\18[)' '\IM' '\315' 9'ICO' '\IM'
'\016' '\#OE' '\11N' '\ 116' '\#4E' 'N' '\218' '\ME' '\IN' '\318' '\ICE' '\&N'
'\017' '\#OP '\"()' '\ 11 r '\l4F' ·o· '\217' '\#IP '\IO' '\317' '\tCF' '\lO'

'\020' '\#1 o· '\11P' '\ 120' '\#50' 'P' '\220' '\#90' '\IP' '\320' '\tOO' '\&P'
'\021' '\#11' '\llQ' '\121· '\#51' ·a· '\221' '\#91' '\IQ' '\321' '\#01' '\IQ'
'\022' '\#12' '\"A' '\ 122' '\#52' 'R' '\222' '\#82' '\IR' '\322' '\tD2' '\&R'
'\023' '\#13' '\11S' '\123' '\153' 'S' '\223' ~· '\IS' '\323' '\ID3' '\IS'
'\024' '\#14' '\111' '\124' '\164' 'T' '\224' '\IT' '\324' '\#04' '\IT'
'\025' '\#15' '\11U' '\125' '\#55' ·u· '\225' '\#95' '\IU' '\325' '\tD&' '\&U'
'\026' '\#16' '\11V' '\ 126' '\#58' 'V' '\226' '\#96' '\IV' '\328' "«>6' '\& V'
'\027' '\#17' '\11W '\127' '\157' w '\227' '\#97' '\IW' '\327' '\I07' '\&W

'\030' '\#18' '\11X' '\ 130' '\158' ')(' '\230' '\#98' '\IX' '\330' ...,.. '\&)('
'\031' '\#19' '\11Y' '\131' '\159' 'Y' '\231' '\#91' '\IV' '\331' ~ '\&Y'
'\032' '\#1 A' '\11'1: '\132' '\#SA' ''l: '\232' '\#IA' '\IZ' '\332' '\#DA' '\&'Z:
'\033' '\#1 B' '\"{' '\ 133' '\158' l' '\233' '\#98' '\f '\333' '\#DB' '\&('
'\034' '\#10' '\11\' '\134' '\#50' '\\' '\234' '\t9C' '\I\' '\334' '\#DC''\&\'
'\035' '\#1 O' '\11)' '\135' '\#50' 1' '\235' '\#90' '\Q' '\335' '\#00' '\&)'
'\036' '\#1 E' '\1111 ' '\ 136' '\#SE' '11 ' '\236' '\#9E' '\I"' '\3345' '\#OE''\&"'
'\037' '\#1 p '\II-' '\137' '\#SP._. '\237' '\#9F' '\!_' '\337' '\#OF' '\& I

'\040' '\#20' I t '\140' '\16()' "' '\240' 'VIAD' '\& I '\340' 'VIEO' '\&"
'\041' '\#21' 'I' '\141' '\#61' ••• '\241' 'VIA1' '\&r '\341' 'VIE1' '\&a'
'\042' '\#22' ... '\ .. '\142' '\#82' 'b' '\242' 'VINZ '\&- '\342' 'VIE2' '\&b'
'\043' '\#23' '#' '\143' '\183' 'c' '\243' 'IJIAS' '\&#' '\343' '\#E3' '\&c'
'\044' '\#24' '$' '\144' '\164' 'd' '\244' 'VIM' '\&$' '\344' '\#E4' '\&d'
'\045' '\#25' ''%' '\145' '\165' ••• '\245' '\#AS' '\&%' '\345' 'VIES'
'\046' \#26' '&' '\ 146' '\#68' 'f' '\246' 'VIM''\&&' '\346' '\#E8' '\&f
'\047' '\#2.T '\" '\147 '\#67' 'g' '\247' 'VIA7' '\&" '\347' '\#E7' '\&g'

'\050' '\#28' '(' '\150' '\#68' 'h' '\250' 'VIM' '\&(' '\350' '\#ES' '\&h'
'\051' '\#29' ')' '\ 151' '\#69' 'i' '\251' 'VIA9' '\&)' '\351' '\IE9' '\&I'
'\052' '\#2A' ••• '\152' '\18A' 'j' '\252' 'VIM''\&*' '\352' 'VIEA' '\Ii'
'\053' '\#28' '+' '\ 153' '\168' 'k' '\253' VAS' '\&+' '\363' 'VIEB' '\&k'
'\054' '\#20' ••• '\154' '\#60' 'I' '\254' 'VIAC' '\&, • '\364' 'VIEC' '\&I'
'\055' '\#20' ·-· '\155' '\#60' 'm' '\255' 'VIAD''\&-' '\3li' '\IED' '\Im'
'\056' '\#2E' I' I '\158' '\#6E' 'n' '\256' 'VIAE.' '\&.' '\356' '\IEE' '\&n'
'\057' '\#2.P 'f '\157' '\l6F' 'o' '\257' 'VIAP '\&f '\357' '\#EP '\&o'

FIUULI JltLl . !2. JUI .. t U-Mlt(!Ukltl UL ti .. l . lU . C 22 l L .. QJ Jllll K Qtb(iJLH!¥$1$$$24# iLJ Sit ll i iii .. #ti I l I .i4£&¥%U,MlttUll

. .,...
'\OIO''\t88''0', . .,,.
.__~ ~,
wrW7'7'

VRfl

'\071'~T
vrtriwA··~
"OW '\19' ":

W#/ 4.cr '"' "'°"" ._. ',,/
"077'WF'T

'\.,'Wf8''V
\W'Wt*'ft
'\-'l/t/IWY ,, ,..,..,..,.
, ... v , . ..,..., ,,.,..wrw
'\111'""' y
'\17'r VIII' y
\'fWWlll·~ ,...,..._,
'\tV._.,T
'\119'..,T ,. . ..,.,
'\171'VIPVI'

117

118 Built-in Types and Type Generators

II Bultt-ln Types and Type Generators 119

Appendix II
Built-In Types and Type Generators

The following sections specify the built-in types and the types ~ by the built-in type generators

of Argus. For each type and for each Instance of each type generator, the objects of the type are

characterized, and al of the operations of the type are defined. (An implementation may provide
additional operations on the built In types, as long as these are operations that could be implemented in

terms of those described In this section.)

All the built-in types (except for any) are transmlssl>le. Al inetances of the built-in type generators

(except for proctype and nertype) are transrnissl:lle If all their type parameters are transmisSible.

Transmission of the built-In types preserves value 8(J.lallly, except for objects of type real. However, in a

homogeneous environment, reals can be transmitted without appoxlmatlons. In a homogeneous

environment, the only possible encode or decode fa..,.. .,. exceeding the representation Umlts of an

Image, mutating the size of an 8fRY or atomlc_amay whle I Is betng encoded or decoded, and

improper deeoding of cyclic objects (see Section 14.4).

AU operations are indivisible except at caHs to subsidiary operations (such as lnt$slmllar within

array(lnt)$simllal), at yields, and while waiting for locks.

The specifications given below are informal and are adapted from the book Abstraction and

Spscification in Pro(lram O.Vfl/opmflnt (Uskov, B. and Guttag, J., MIT Press, 1986). A specification starts

out by giving a list of the operatlonl and declarlllion8 of any formal parametn for the type. This is

followed by an overv19w, which gives an introductk>n '° the type and If neceuary defines a way of

describing the type's objects and their values. Following thfa the lncMd.lal operation& are delcribed. For

each operation there Is a heading and a stat4tfn8N of the operation's thda. In the heading, the return

values may be given names. The aftllcta l8Ction delcll>el the "°""81 and exoeptional behavior of the

operation. The effects given are abstract, that Is they are deacrlMtd Uling the W>Cabulary (or model)

defined in the overview section. For example, objedl of type lnl are datcrl>ad Ll8fng mathematical

integers. Tt.Js arithmetic expresaio'1a and ~ UMd in delning lnl operattens are to be

computed over the domain of mathematlcal lrtagers.

An operation that (abstractly) nutates one of its arguments li8ta the argumente that It ,,...... in the

c1ause following the word modlftM. An operation 1s not alowed to nuaae any otitem • .._ tcw those
listed In the mocltlM clauae. (For the built-in mJtlble atomic type generators. mcdi:ation enty refefl to
the sequential &t818; • c:loe8 not refer to changes In .. locking lnformatfoR kept tor ~ object) When

an argument, say a, la Rldated, it la often neceu.y to.....,. la II* •the ...,. of tt'8 cal• well as

its final state at the end of the cal. We lm the notation a,,. for ~• lt8te at the start of the cal mid the

notation 8sx-t for Its state at the end of the cal.

Some operations of the bull in type generators are only defined I the type generater ii passed

appropriate actual routine parameters (see Section 12.6). For example, the copy operatiQn et the array

120 Buut-ln Types and Type Generators

type generator, Is only defined if there Is an actual parameter passed (explicitly or implicitly) for the type

parameter's copy operation. Thus ...,pnt)$oopy Is defined but anay(any)$copy Is not defined. These

requirements are stated in a requne clause that precedes the dwct"6Jn of the operation's effect. The

type of the expected routine Is also described; remember that the actual operation parameter can have

fewer signals (see Section 6.1 and Section 12.6).

By convention, the order In which exceptions are listed In the operation type Is the order in which the

various conditions are checked.

Operations with the same semantics (for example, null$equal and null$slmllBI) or that can be

described in the same way (for exaft1)1e, lm$ac:t1 and lnt$s"'t are grouped together to save space.

In defining the built-in types, we do not depend on users satisfying any constraints beyond thole that

can be type-checked. This decision leads to more cof'tl)llcated speclicallons. For example, the behavior

of the elements Iterator for arrays Is defined even when the loop modlles the array.

11.1. Null
nun • data type Is copy, equal, similar, transmn

Overview

The type null has exactly one, immJtable, atomic object, represented by the literal nu. NH is
generally used as a place holder in type definitions using oneota or variants.

Operations

equal • proc (n1, n2: null) naturns (boOI)
similar • proc (n1, n2: null) natums (bool)

etfecls Returns true.

copy • proc (n: null) l9IUm8 (null)
transmtt • proc (n: null) returns (null)

effacta Returns nll.

11.2. Nodes
node· data type Is here, copy, equal, similar, transmn
Overview

Objects of type node are imrTlJtable and atomic, and stand for physical nodes. lmplemerutions
should provide some mechanism for transfating a node •addrees• into a node obiect and vice
versa. (However, these do not have to be operations of type node.)

Operation•

here • proc () naturns (node)
effects Returns the node object for the caller's node.

equal • proc (n1. n2: node) returns (bool)
similar • proc (n1, n2: node) Nturna (bool)

8ffecta Returns true If and only If n1 and n2 are the same node.

r1e!i1JH 11112uJK;;;zmx11 L. •t"11ff!fll!llll 1'9.U'1UtJ.QMRAll!IS!tkiiLg•Jt 42.ZCl&ULI. ! ... I! 2 l. UJJJ$4:U•U .. 21 ll.¥# t.t. J.JJtQ®ML. .. 1• 1•n•.u•11

H.2NodM

copy·.-. en: 11111•• ... , , •. ..,
tffblll A•• A

B.3.Bool1w
ll8al • ._ ... _,,or.-.,,.1• 11111

121

,_ __ ____ llglc:altruth
YIUa.

l1le - ---····- ••hrrllR "tlUIHn _ .. 1112•••· .
Opel\Mlone

ft• (M.111: -,
or•...-... M:a1111°rll1•1t.. .

J81ill Ritt ,. lRt

.. • :~r-.:,:u:r:T'\. .•.•.

11.4 ,.

............................ Ji.~.~···/ ···.·"

Op121H1•

..................

..... . :·IJJl;IJP1 _,

122

mius·PNO<-=•-•••ru.•••.a• •
1R1• lllt• .. 1 ISJSFI el..; 1-.1111 aaltu I would le a ... 118

........ (1:.1 1 I.
1A1• , aallH •lll'dl

flom_to ~----.-·-·-··· , t ••, .. : •. -.,,
flvm_ , .. ' ' .

••••• p _ .. _.,... .. ,).

max-.... cx.1=••11••• '
1"1.cl1•••1 ... ll 1•~·-··-•.tt

mln·-(tc.r:•n• •• ~,. , , .
.,... ,th •• •ti ······-· .•• · · ..

................. afJ ,,
.

... .1' •aar ... It .11111
:iillllil;• ttll•I ... 1.8'Fll-lll

unpafl8 (x: •11t;1 , •••.•••• .I•ll••-~hl•ll• •.·••· , ; ·'··· t: ·-·J rt'••• -
I• PNC tx. r: ._,Bl-...
QI (x. r: •• 1•1••11• ... _ r.~:::::191ew .. "'::.~-.. =····---···......... (X.,:•1111111••··· ,...~-=•, J1u 11r11• ••1At1U1••••••¥• .. -fll•1r~••Pd

copJ• ta:••--....... " .. "•Jt.

11.4 Integers 123

transmit - proc (x: Int) NllUml (y: Int) ... l'lllll(Taill.we(atrtng))
effects Returns y such that x • y or signal& tll/lurtJ If x cannot be represented In the

implementation on the receiving end.

11.5. Reals
real. data type 18 add, sub, minus, n1.11, div, power, abs, max, min, exponent, mantissa, 12r, r21,

trunc, parse, unparse, It, le, ge, gt, equal, simllar, copy, traMmlt

Overview

The type real models a subset of the mathematical runbera. It is used for approximate or floating
point arithmetic. Reals are lmmJtable and atomic, and ant written as a mantissa wlh an optional
exponent See Appendix I for the format of real llterala.

Each ln1>1ementatlon represents a sublet of the real runbera In:
D. {-real_ max, -reat_min} U {O} U {real_ min, real_max}

where
o < real min < 1 < real max

Numbers In D are approximatid by the implementation with a preclsk>n of p decimal digits such
that:

Vr e D Approx(r) e Real
Vr e Real Approx(r) • r
Vr e D- {O} I (Approx(r)- r)lrl < 101-P
vr,s e D r s s =t Approx(r) s Approx(s)
Vr E D Approx(-r) - -Approx(r)

We define Max_wldlh and Exp_Md#lto be the emalllel lntegerl such that every nonzero element
of real can be represented In "standard" torm (exactly one dlgl, not zero, before the decimal
point) with no more than Max_ Mdth digits of mar-. and no more than Exp_ wldlh digits of
exponent.

Real operations signal an exceptfon If the resul of a COfY1JUtation lies ou&side of D; overflow
occurs if the magnllude exceedS rsal_max, and undMllow occurs If the magnitude Is less than
real_mln.

Operations

add· proc (x, y: ,...) returns (real) algnale (overflow, underftow)
effecta Computes the sum z of x and y; signals oWlfflow or undsrllow if z Is outside of D, as

explained earlier. OlhMNe retume an~ such that:
(x,y 2: O v x,y s 0) =:t add(x, y) • Apploxlx + y)
add(X, y) • (1 + E)(X + y) 1£1 < 10\-t)
add(x, 0) • X
add(x, y) • add(y, x)
x s x' =t add(x, y) s add(x', y)

sub • proc (X, y:) NIU"'9 (..a) (overflow, underflow)
effects Comput91 x-y; the t'88UI 11 ldendcal to ada{x, -)").

minus • proc (x: real) '9tUml (real)
effects Returns -x.

mul • proc (x, y: reel) l'ltUml (real) 81gnela (overflow, undefflow)
effecta Returns appro~~"'; signals overllowor undM/owlf ~yls outside of D.

div• proc (x, y: real) returns (IUI) 91g..,. (zero_ divide, OYefflow, underflow)
effecta " y • 0, signals zero_dlvldfl. Olherwile returns appro~xly); signals overflow or

underttowlf JCfyls outside of 0.

124 Bullt·ln Types anct Type Generators

power - proc (x, y: ,...) ,..,.. (Niii)
8lgnlle (HIO_dlvtdt, ooq>lex_reatlt, OYerftaw, underftow)

effect8 If x - 0 and y < 0, ZlllO_dNldtl. If x < 0 and y Is nonirHgral, sJgnals
complex_IMJlt. aharwiM NIUml M ~ IO 1', good to p llgnlflcant digits;
signals oWllflow or underflow I 1' Is OUl8ide of D.

abs • proc (x: ,...., Nb.lme (Nal)
effeeta Retuml the ablolute Valle of X.

max• proc (x, y:,),.. (Nel)
effects If X :Ii? y, then retuml X, othefwiH returns y.

min - proc (x, y: Niii) NIUrM (,...)
effects If XS y, then returns X, otherwise r8'uml y.

exponent• proc (x: Nel),.... (Int) algMla (undeftt"lld)
effects If x • 0, signafl undtlfln«J. ahlt NII• f8tuml U. aponent that would be uted In

repreaenllng x •a lterlll In ltandMI form, tt'8lt la. Mtuml
max ((11aba(x):Ii?1oi})

mantissa • proc (x: 1'881) NtUmS (Nat)
effects Returns the manllua of x when ~ In standard form, that is, returns

a,:pD~x/10-,, where 8 • aponMI(~. If X • 0.0, ret1JnW 0.0.

i2r • proc (i: Int) retums (....., Ilg_.. (OYeltlow)
effects Returns IPPR>X(~; atgnal8 overflow I I ls not In D.

r2i - proc (x: 1'881) retuma (Int) (overflow)
effect• Rounds x to the .,.... integer and towald DWO In case of a tie. Signals ovMllow if

the result lies a.daidl the represented range of integers.

trunc • proc (x: ,...)_(Int> lignlll (overftow)
ettec1a TNnCllea x towald HtO; lignall ownrow • the result would be outside the

represented range of lnlegers.

parse • proc (s: string) ,_.... (NII) Ill•• (bad_....., Gt,...o, underflow)
eltecta Rftlml ~Z) zil t1'8 vtlUtt N!PflllllJcf llJ .. t&rlng • {M8 AppendiK I).

s rftlll repreeent a real or lnltger ..,.. wllt • 11t1ftll IUlllnl pM or mlrllS sign;
otherwtle slgnala l»tl_ bmat. _..... .,....,_ . ., 0#4*- I z 11 not In D.

unparse - proc (x: Nel) NIUm8 (ltring)
effects Reluma a,.., Hleral such that PMN("'8R(~) • x. The general fonn of the tleraf

is:
[-] LtHMt.t llftt(•± x_lekt]

Leading zeros In /_ 1""1 and tralling zeR>I in t_llflld are suppressed. If x Is integral and
within the range of ~ f_fJl!ldand preMAI. If
x can be NPr••nled . .,, a .. 1111a of no..,.-. MM ..., cllgitl and no apGMtt
(that 18, If -1 s ~.,t) < "'- iie ii not present.
Otherwile the llerlll ii In standard form, wih Exp_ wit/II clglll of exponMt.

It• proc (x, y: 1991),..... (bod)
le • proc (x, y: ,....) (boot)
ge • proc (x, y: 1'1111) --(lloot)
gt• proc (x, y: N9I) lllUma (bool)

elfecla These are the llMdald ordering relations.

equal• proc (x, y: Nal) (bool)
similar• proc {x, y:,) Cbool)

effects Returns tn1e Ix and y are the same namber; reluml flll9e otherwile.

u

caw -.-ex·----~ JIUH Anu

-···~ ~ ,.~ ,. __ ,
tAUJlt Alla• Ill !liW. IPll. ••1••1ttn·•..-• ...

1.1..Cll••••ra
... -.--1a11c.c11.1.1e -...-.1111at ... 1a1••

121

ftln 1111 • • •••-'•

··:r: ::-.:-::

c.21 • ..-.tp:llllll,....,._ . II . - •_......, _ _,.. ..._, t: ii• ASCII •'ll•i •11x 11•Pi111 r ••11111 .. - -.-.... ,... ;',....-.

126 Bullt·ln Types and Type Generators

II. 7. Strings
string •data type la c2s, concat, append, substr, rest, size, empty, fek::h, chars, lndexs, indexc,

s2ac, ac2s, s2se, SC2s, It, le, ge, gt, equal, similar, copy, tranmnll

Overview

Type strtng is used for representing text. A string is an imnlllable and atomic lupfe of zero or
more characters. The characters of a string are Indexed HqUentlally starting from one. Strings
are lexicographically ordered based on the order'a"'lQ for character&.

A string literal Is written aa a HCJ.18nce of zero or more chanlCler representations enclosed in
double quotes. See Appendix I for a deleripllon of 118 chlrader llC:IP8 sequences that can be
used within string •erala. No string CM have a size- than int_max-, however, an
implemenbllion may Nlltlct string lengths to a value lea U. ht_llllK. If the,.... of a ltfiftg
operation would be a strtng conlainfng more ttw1 the mlKfmum fUTlber of characters, the
operation signals llmlls.

OperatlOM

c2s • proc (c: char) ,....... (811'1ng)
ettecta Retums a atrtng coruinlng c aa Its only character.

concat • proc (s1, 12: .,..) NIUM (r: 8lflng) (lmlts)
effecla Retums the concatenation of st and d. Thal II, lft-•114 for I an Index of •1 and

t(sln{s1)+4-&tlJ for I an Index of S2. Signals """8 I r would be too large tor the
Implementation.

append • proc (a: Mr1ng, c: char) NIUm8 (r: Mrtng) 81QM1a {limls)
effecla Returns a new string having the chat'actens of s In order followed by c. That is,

t[s/zs(s)+ 1 J • c. Signals llmlls I the new string would be too lalge for the Implementation.

substr - proc (s: Mr1ng, at: Int, mt: Int) relUm8 (8tflng) 8lgll8la (bounds, negative size)
affecta If cnt < o, lignall ~ _/Jlze. I at < 1 or at > llN(s)+ 1, __.. lltMltftJa.

Otherwise returns a string having the character& s(a4. a(a1+1J, ... In that order; the new
string contains mln(aJt, size-at+ 1) chanlctenl. For ex.,.,

substr {•abcdef", 2, 3) • "bod"
substr (•abcdef", 2, 7) • "bcdef"
substr {•abcdef", 7, 1) - -

Note that If fTlln.cnt, slz&-at+1) - O, MJslrreturns the empty string.

rest • proc {s: atr1ng, I: Int) relUma {r: string) _.... (bounds)
•Hecla Signals bounds If I< o or I> sln(S) + 1; othePMle ratums a ltring whose first

character Is s(IJ, whose second Is s(1+1J, .•. ,and we... Bln(t)th character is s(size(s)J.
Note that If /. slze(s)+ 1, rest returns the empty string.

size • proc (s: Mrlng) relUm8 {Int)
effecla Returns the runber of characters In s.

empty• proc (s: strtng) 1'81Uma {bool)
effecla Returns true If sis empty (contains no characters); othetwlse returns fal•.

fetch - proc (s: Mrlng, I: Int) returna (chm') llgnale (bounds)
effect• Signals bounds if i < O or I> slzB(s); otherwise returns the •h character of s.

chars • lter (s: atltng) ylelda (char)
effecta Yields, In order, each character of s (I.e., s(1), 8(2], ...).

II. 7 Strings 127

lndexs • proc (s1, 12: 8tltng) relUl'na (Int)
effecla If s1 occura •a subetring in s2, retuml the least index at which s1 occurs. Returns

O If s1 does not occur In 112, and 1 I s1 ll the ~ string. For exan'4)1e,
lndexs("abc". "abcbc1 - 1
lndexl("bc", •al>c:bc1 • 2
lndexS(-, •abcde1 -1
indexS("bcb", •abcde1 • O

lndexc- proc (c: ctw, s: 8tt'lng) NIUma (lnl)
eftecta If c occuns In s, relUm8 the least Index at which c occurs; returns O If c does not

occur ins.

s2ac • proc (s: 8trlng) l'9IUm8 (anay{char)) ·
effecta Stores the charac.tlK'a of • • elements CIC a MW array of ctwacters, a. The low

bound of the array ll 1, the 8ize la alze(8), and a.. Ah elemeR of the array is the lh
character of s. for 1 sis slze(8).

ac2s - proc (a: may(charJ) Nturna (8tltng)
effecta This ii the kwerae of 112ac. The f9IUlt Is a llring with characlers in the same order

as In a. That is, the th character of the siring la the (l+array(clw'J$1ow(a)-1)th element
of a.

s2sc • proc (s: 8trlng) 1'8tUma (sequence[charJ)
effecta Transforms a string Ir*> a sequence of c:hanlcters. The size of the sequence Is

slze(S). The th element of the sequence Is the Ah character of s. for 1 sis slze(s).

sc2s - proc (s: sequence[ctm)) returne (lbtng)
effects This is the invW of dac. The ,.... ii a llrfng with chllracters In the same order

as in s. That Is, the th charllder of the ltrtng ti the th element of s.

It • proc (11, 12: Mrlng) (baol)
le - proc (81. 82: 811tng) (bool)
ge - proc (11. 82: lblnf) NIUml (baol)
gt - proc (81, 82: lll'IRO) (bOOI)

eftecla Thau are the uaual lexicographic ordering relations on strings, based on the
ordering of chal'aclM. For example,

"abc" < •aca•
.abc" < "abca•

equal- proc (s1, 12: airing) NIUm8 (bool)
similar • proc (s1, 82: ltltng) NIUml (bool)

effecta Retuma tnle I s1 and 112 are the same string; otherwise returns falae.

copy - proc (81: atrlnfl) relUma (8trtng)
effecla Retuma S1.

transmit • proc (s1: •rtna> NIU.,. (8tt'lng) ...,... (falul9(91rtng))
ertects Returns s1. Signals faJlure only If s1 is not repr888IUble on the receiving end.

128 Bullt-ln Types and Type Generators

11.8. Sequences
sequence -data type [t: type) la new, e2s, fll, fll_oopy, replace, addh, addl, remh, reml, concat,

subseq, size, e~. fak:h, bottom, top, elemel'U, Indexes, a2s, s2a,
equal, similar, copy. tranllllll

Overview

SecpJences represent lmn'lltable tuples of objects of type t. The elements of the sequence can be
indexed sequentially from 1 up to the size of the SfKJJ811C8. Mhough a sequence Is lrMUable,
the elements of the sequence can be nuable Obfee*. The 111118 of alCtl nlltable elements may
change; thus, a sequence obiect Is atomic only if la elemeNI ant alllo alomlc.

Sequences can be created by calling sequence operations and by means of the sequence
constructor, see Section 6.2.8.

Any operation calf that attempts to access a &e<JJ&nce wilh an Index that Is not within the defined
range terminates with the bounds exception. The lfze of a sequence can be no lafg8f' than the
largest poeltYe 1111 (#tt_mal), but an lmplementallon may ..-.tct ...,__ to a smaller upper
bound. An atten1JI to conatlUct a sequence which Is too ..,.. raUll In a lmlts exception.

Operations

new - proc () returne (.......Ct))
effects Retums the empty sequence.

e2s • proc (elem: t) NIUml (........Ct))
effeCta Returns a one element sequence having 11""11 as its only element.

fiH. proc (cnt: Int, elem: t) (.......-lt}) llgn1l1 (MOlilMl_llze, Umlta)
eff8cta If cnt < o, signals negatlve_slze. If art Is lalger ttwt tt'8 maxinlJm sequence size

supported by the iqJlemetUtlon, _.... ""*· Olherwfle reluml a sequence having
cnt etemeru each of which is '*"'·

fill_ copy• proc (cnt: Int, elem: t) Ntuma (......-<ti)
Slgmla (negative_size. llmh, falufe(ltrtng))

requlNa t has copy:,,_,.,. (t) (t) (taiU8(9tl'lng)
effect• H cnt < 0, tigrl8la IW/lllllwl_lla. I ant Is bigger than the maximum size of

sequences that the ~n suppotta, ...,... llmlltl. Otherwise retums a new
sequence having cnt elements uch of which is a copy of e/tHn, ae made by 1$copy. Note
that ~Y is caled cnt times. Any fllllin 8lgnal railed by l$oopy Is lrnmedlately
resignalled. This operation does not originate any fallute signals by lself.

replace • proc (s: -..nce[t), I: Int, elem: t) raturna (......-00 Signals (bounds)
effects If i < 1 or I> h~ll). signal8 boundtl. Otherwise retuml a sequence with the same

elements as •· except that """"ii In the Ah potlion. For edfnple,
replace(eequencl(lnt)$[2,5), 1, 8) -~. 5)

addh • proc (s: eequence[t), elem: t) ,......_ (r: l8CllllllCe(tD 81gr11l1 (lmits)
effects Returns a sequence wllh the same elements u • tolDwed by one ...,.,..

element, elem. That is, 1(1)-s[Q for I an Index of s. and l(slD(.t)+ 1)a*m. If the ruulting
sequence would be larger than the ~ supports, signals llmlfs.

addl • proc (s: 98qUlllCl(t), elem: t),. (r: llClll••ClllD (llmlts) ·
ettecta Returns a aequence having """'1 u 1t1I flnlt element felowed by the elemMI of s

In order. That II, 1(1)-elem and lfM#-1) for I· 2, ... , lllze(r). I the resulting sequence
would be larger than the inplemenbltk>n aupports, signals llmlts.

remh • proc (s:Ct» NllUm8 (r:)) tllgnlll (bounds)
effect• If s is e~, signals bounclS. Othenatlsa ftltuml a sequence having aH elements of s

In order, except the last one. That is, slzll(r)-slze(s)-1 and lf4-al4for1. 1, ... , slze(s)-1.

IL8 Sequence9 129

............. of .,, ,

....... (9:11•:111••• -•••••A 1 ••••une1 ••II•••••

..

entply• t:1:::®1dslt_I_
IR1•1~4J~<a•t1llft1J••1 Uft: .. IH

.... ·.cr.:!l:.1J!l\~:'f1111111,.111r., lll, ..
tlal01ft .,..<c••· 11 .. 1111. •~• -.......... "::r• •• ,._.,

nit Mt••• 111¥· . ·. .. ~- .. •U1tlJtl .
.......... 11111•(•• ...

off tit.._.. .. HIJIJI •••••• , tftt,) 1=·==··,~=··--·
di • ...-:tc :1111:1·--1·1

11:•1&11 .. 1fa .. la£:•t•ZT1U1 ·•·••••-...,•tna
.......... 11110••• 1•••···

181•1 A•u•···--·---1-........... 11 -.......
~ J ,,

••1•1·

-.....

130 Built-In Typee and Type Generatora

copy• proc (s: 88qUeflCl(tD ,..... (......-ltD, •• , (falkn(strlng))
raqulf88 t has copy: pnlClype (t) (t) (fallure(llrlng))
eftecla Returns a sequence hamg • elernerU cop1e1 of the elements of s. The effect Is
equiv~ to that of the following~ body:

qt - 88qUeflCl(t)
y: qt :-qt$new()
tore: t In ql$elementa(s) do

y :- ql$addh(y, tScopy(e))- failure
end

nMum (y)

transmit - proc (s:,.ncl(t]) retume (~]) alg,... {fallure(91rlng))
,......... thas
affects Returns a sequence having as elements tr8ftlll1ltld coplet of the elements of s In

the same older. Sharing among elemerU la ptM8Mld. Slgl\lll failure I tt1i8 QfR>t be
represented on the receMng end and allo f88lgnal8 8lff....,,.. from

11.9. Arrays
array. data type [t: type] la create, new, predict, fll, fiU_oopy, addh, addl, remh, raml,

Overview

set_ low, trtm, store, fetch, bottom, top, 8ft1>tY, size, low, high, elements, indexes,
equal, similar, slmilar1, copy, copy1, tranemlt

Arrays are rTlltable objects that represent tuples of etementa of type t that can grow and shrink
dynamically. Each array's state conll8ta of thla tuple of Ill"** Md a low bound (or Index). The
elements are Indexed sequentially, starting from the low bound. Each array also haS an identity
as an object.

Arrays can be created by calling array operations OtNte, new, 1111, ffl _ oopy, and pt'fKllct. They can
also be created by means of the array constNctDr, which apeciflet the array low bOund, and an
arbitrary nunt>er of lnitlaa elements, see Section 6.2.9.

Operations low, high, and size return the aJrrent low and high bounds and size of the array. For
array a, size(a) Is the oomber of elements In a, which Is Z8f0 If a la empty. These are remted by
the equation: hlgft..a) - k>w(a) + slze(a) - 1.

For any index /between the low and high bound of an array, there Is a defined element, a(4. The
bounds exception is raised when an attempt is made to ICC88S an element outside the defined
range. Any array lftJat have a low bound, a high bound, and a *9 which are al legal integers.
An implementation may reatrtct these to some smaller range of lnelgerl. A can that would lead to
an array whose low or high bound or size is outside the defined range tenNnates with a llrrWt.S
exception.

Operations

create• proc (I>: Int) retuml (array(t]) signals (llmlts)
affects Returns a new, empty array with low bound lb. Limlla occurs If the redlng array

would not be supported by the lmplemenlatton.

new = proc () AllUl'ns (army(tD
affecta Returns a new, empty array with low bound 1. Equivaient to create(1).

ZUXJ J &JUU. WJIHtSJqlllWI& JI.II.I JlUJIUIS!l JUU:i\tl I. I $.3JJJi$JltJUS£22Ui lUJ£Sit#i4X Lt JllSCi#JJIJ! SJU JU ¥ l !$ · Ji IJ
f ~: . •• ' •

l.IM11r9 131

..... ..., ... 1 .. -.e 1•111r··•11r11·<

.-..... ,

132

store - proc (a: array(t), i: Int, elem: t) algnala (bounds)
modifies a.

Built-In Typu and Type Generators

effeCta If I< bw(a) or i > h~a). signals bounds; otherwise makes elem the element of a
with Index I.

fetch • proc (a: array(t), I: Int) MIUl'nS (t) atgMl8 (bounds)
effeCta H I < bw(a) or I > ~a). slgnall bountl8; otherwise returns the element of a with

index i.

bottom • proc (a: array(t)) Ntums (t),. (bounds)
effects If a Is empty, signals bounds; otherwlae returns a(bw(a)).

top ... proc (a: array(tD (t) (bounds)
effeet• If a is lfl1JIY, signals bounds; otherwise returns a(~a)J.

empty - proc (a: array(t)) MlllrnS (beol)
effeCls ReturM true ff a ccnalns no etemenla; otherwlle returns falae.

size - proc (a: M'llYltD (Int)
ettecta Returns a count of the number of elements of a.

low - proc (a: arniy[t]) NIUrM (Int)
effeCta Returns the low bound of a.

high • proc (a: snay[t]) l'4ltW'nS (Int)
ettects Returns the high bound of a.

elements • ... (a: M1tYlt]) yl9lde (t) algnal8 (faluN(811'1ng))
effects Yields the elements of a, exactly once tor Nett Index, tn>m the low bound to the high

bound (I.e., bonom(~ , top(•,,,.». The elemenls .. fetched one at a time, uM1Q
the indexea ttlllt were iegll 81 the start of the Cll. I, ttle iterlltlon, a II macMed IO
that fetching at a previouaty .._ Index __.. bculdl, then the lerator lignall failure
with the string "bounds·. The lerator 11 dMll>le at yields.

indexes - lier (a: llfl'llY(tD ylelds (Int)
effects Yields the Indexes of a from the low bound of a,.. to the high bound of a.,.. Note

that lndexn Is unaffected by any modifications done by the loop body. It is divisl>le at
yields.

equal • proc (a1, 82: array(t)) nttums (bool)
effeclS Returns true I a1 and a2 refer to the same array object; otherwise returns false.

similar • proc (a1, 82: ltn'llY(tD NturM (bool) ...,,.... (faluN(strtng))
requires that similar: proctype (t, t) (1IOol) tlplll (failure(all'lng))
effects Returns true If a1 and 112 have the ..,. low and hlgtl bounda Md If their elements

are pahwtse aitftlar as determined by ..,,,.,,.,.. Thie elect of thll opetlltlon Is equivalent
to the following procedure body (except that this operation Is only diviaible at calls to
t$simllalJ:

at - array(t)
H at$1ow(a1) at$1ow(a2) cor at$size(a1) at$size(a2)

then natum (falae)
end

tor I: Int In at$ildexes(a1) do
If --t$almtlar(a1[1J, a2[1J) then Ntum (falae) encl

reslgftlll fllure
except when bounds: slg,.. falure("bounds•) end

end
natum (true)

~' ... '.: ,,"\-.

11.9 Arrays 133

simUar1 - proc (a1, a2: ernt'r(tD (boot) elQn•I• (falure(ltltng))
......... thU equal: praclype (t, t) (bool) (failJre(atrtng))
efleCla Returns true if a1 and a2 have the ume low and high bounds and if their elements

are paifWIM equal as d8t8rmiMd by •eqwt Thia operalion works the same way as
similar, except that "'1qc181 ii uwJ tnltllL't of """*·

copy· proc (a: M'llfltD,. (b: ~D llQRll1 (tabetllrtna))
requlree ,,_copy: praclype (t) (t) (talUre(atrtng))
effecls Retuml a new array b wllh the_.. low a ttWt bounds aa •and such that each

element 1114 contalnl ~1(4). The elecl of tNI operation ii equlv8'ent to the
folowtng body(...,,..,. ... only at Clllll to~:

b: ..ar(t) :- 811'iifltl$CopJ'1(a)
for i: Int In ...,,)Slndexea(a) do

b(q :- ttcopy(a(i))
........ allure
except when bounds: algNll falure("bounds•) end

end
ratum (b)

copy1 - proc (a: array(tD returns (b: arl'llY(t])
ettecta Returns a new array b wlh the same low and high bounds u a and such that each

element t(4QOntains the same element aa a(4.

transmit - proc (a: array(tJ) ratums (b: array(t)) llgnela (fallure(att1ng))
NqUll'M t has trensml
ettecta Returns a new array b wtth the same low and high bounds as a and such that each

element t(4 COl'Uinl a tranamined copy of 41(4. SMring among the ...,. of a Is
preserved In b. Signals """"- I b cannot be repl'lllnled on tt. receiving end or it
fetching an element at a legal Index of a,.. ca11111 a bounds exception and restgnats any
fallunl signals raised by

11.1 o. Atomic Arrays
atomlc_array • clllta type (t: type) Is create, new, predict, ftll, fll_copJ, addh, addl, ntmh, reml,

set_low, trim, lllON, fetch, bottom, top,~. 1119, low, high, elements, indexes,
aa2a, a2aa, equal, Mnlar,,._..,copy, CQPJ1, -•·
test_and_read, test_and_wrtte, can_,.act, can_wrtte, react_lock, write_lock

Overview

Atomic_ arrays are mutable atomic obiects that represeft 1Uple8 of elements of type t that can
grow and shrink dynamically. Each atomlc_8f1'8Y'I (M .. 1.-a) ltate conailts of this tuple of
elements and a low bound (or index). The elet'118Na .. lndeud sequenltaJfy, stMlng from the
low bound. Each atomic_array also has an ldendty as an object.

Atomic_arrays can be created by calling atomic array operations ante, MW, flll, flll_copy, and
predict. They can also be created by means of iie atomic_ array consttUctor, which specifies the
array low bound, and an arblhary IUnber of lnlial elemtns, see Sedion 6.2.9.

Operations /ow, high, and size nt1Um the a.mtnt low and high bounds and size of the
atomic_array. For an atomic_ array a, size(a) Is the number of elements in a. which Is zero if a is
e~. These are related by the equation: hlgh(a) - Dl(a) + BIZB(a) - 1.

134

For any Index i between the low lftd hlF bolN et M .-_8ft'llY, there ii a ddned element,
a(~. The boundll exeeption ii ralNd when an ...,._ ii IMdl to a•• en lllmltt outside the
defined range. Atrt atone_.,._ muet ._.a 11w taouRd. a NF......_ n a a1ze which .. an
legal integerl. An .IJmenlltion may N111tat to -, of A call
that would lead to an .mc_.-ar whole low or high bound ot *9 II OUlslde the def1ned range
terminates with a llmilll exception. /Im/ls exception.

Atomic_ arrays use read/write loddng to achteYe atomicity. The locking rules are descrl>ed In
Section 2.2.2. It Is an enor If a process that ii not In an aGtion Ill,,_ to teat or obtain a lock;
when this happen8 the guanlan runr*1g the PIQClll wtl c:nltl. Aa dlRnld below, l'8 only
operation that (In the normal cue) does not allempt toteatoroblaln a lock lathe equal operation.

Operations

create • proc (I>: Int) NtUm8 (a=-mlcntJ> llgMIS (Hmll)
en.eta Retums a new, 8f11JlY aietwc_array • wlh low bound b. Limits oocurs if the

resutUng atomc_ M'BY would not be wppoftld by Ile tmplementation. The caller obtains
a read lock on a.

new• proc () l'8tuml (.aomk:_array(t))
eff8Cla Equivalent to aute(1).

predict. proc (lb, cnt: Int)....,. (a: ll&Olnlc_may(t)) 1190111 (llmb)
ettect• Retums a new, ~ atomic _ __, • wtlt bw bound "· The caller obtains a read

lock on a. Thia ii .. ,.,.. • .,,._. •• .. (Ill • ...,. M the tbloMte vatue of cnt
Is a prediction of haw 1ftm1Y U:Jl8 or acitl • -.., to be perfomlld on WI new
atomic_array. I cnt > o, atldlfl-a;,.. -** .. upected. These
operalonl may execute t8lter tflarl I ttae lllOmlc_wy had .._. PfOCkicld br callng
asatfl. LJml8 oc:alfl I the NIUlllng atomic _,., would not be aippoMd by 1he
implemeldation b8caule of Its lnilial low bouiid (not bec:81• of b predicted size or
because of the predcted high or low bound).

fiU • proc (I>, cnt Int, elem: t) nllulM (llDMlc_.,.,..D 111•111 (M1lllr•_size, llmill)
eftecta If cnt < o ,,.,,..,,_... Altu• -...c_.,. brMld,, and

size cnt, and MCh llemenl; ... - ... _._ be tuppOfted
by the lmplementatlon, _.... ,,_, The 08llr ctJllN a,_, IDck on the result.

fHl_copy • proc (I>, cnt: elem: t) (lllamlc_Sl'llft1J)
....... (Alg8tMl_lize, llmlla, flliUe(lbtng))

requlNa I hu copy:,._,... (t) (t) llln• (llltluNCtlt1ng))
ettecta The e1eet 11 .. 8 .__ tM1 .,.,,, 11 ODpied fJft tlmM. If att < 0, sQt"8l8

n.gatlve_slze. Normally rtUnl • ""' -- law, .. mt ... wllh
each elemlnt a CCJVf of elem, •~by ..,. TM,.... 111111111 a fHd **on
the result. Art/ failure ltgl'8I railld bf ..,, ii """*8111\r Nlllflllltd Thi8 GPIAlllDn
does not orlgin8'1 ll'tf fallut9 ... by llel. If lhe W fmtf aMClt be repNl8At8d by
the~ slgrUlll Hm#s.

addh • proc (a: atomlc_-..,(tl. elem: t) algnalll (lmlta)
modltleaa.
ettecta Obtains a wrte lock on a. If extending a on the high end would cause the high

bound or liz• of a to be outside tt'8 rang1 tuppllllld.e, .. ~.then stgnaa
l/mlls. Othetwtae extends a by 1 In l'9 high clFtctlow. n ltorea .,_, u the new
element. That ii, a,_(hiJll(a,,.)+11 •elem.

11.10 Atomic Arrays

addl - proc (a: ltDllllC_enavttJ. elem: t) llgftlll (lmlls)
modllllea.

135

.,... Oblainl a Wiii iock on a. If exteldng aon ._low end would cane• tt'tl low bound
or size of a to be outlide the ,... .,.,... Aid tir "9 lll$111tnerr11l;a, 1hln I/mils.
Olherwile abJ 1 In the low drl atton. ---.,.,,, • lw MW That
la, a,adloM(a,,.>-1J- *"'·

remh • PnN: (a: atollllc_M1lWltD (t) ••• (boundl)
etl8ala °"*ii• a wrl8 lock on a. If a II empty, •• bol.llds. Olherwlle shRnkl a by

removing .. high element, and retuml ht trl&N • ..,.... ii, hl;h(a,..) -high(...., -1.

remt • ptOC (a: Mamlc_81T8Y(Q),_ (t) 8lgnllll (boUnde)
eftecta aJtalrll a wrle lock on a. If a ii emplf •,. ,.,,,,._ OthlNrtM a.A.nka a by

removing h low element, and AUnl ttll ,...,,. lftlnllnl Thll ii, law(-,_.) •
low(a..,.> + 1.

set_low • proc (a: llOmlc_Sl'llY(tJ, I>: Int) llgn111 (lmlta)
madl .. a.
en-. Oblalr1I a wrll lock on a. If Ill,_._ (or lllQha _.would not be ..,orted by
the~. then OlteM11• of
a; the new low bound of a ii IJ • tt. new high bound ii 1*t<a,-l •
h/oM.y+l>-lcM(a,,.).

trim. proc (a: alOlnlc_an'8)tt). I>, en: Int) .aan• (.....,.._-.. boundl)
moclltlee a.
enecta Jf cnt< o, lignefl ,,.,.._.,,..,doll ftlll obllifl Mf locka. Other'••.,..... a

wtle lock on a. If IJ < Ql(a) or II> ,._.,1, •• bGtnllfl. Oltltwtee. •••• a by
removing Index< , to ftlW low
boundillJ. Fortu11••·· ,, •• _ z. 2) ,,,,_ Qll(I: 2, 3)

trim(a, "· 3) ,... ••11•-•flflll•Jtl•: 4, 6)

store • P1UC (a: llOlnlc_snlftl). I: Int, elem: t) lllAllJ .tmundl)
modllll&
ell1• ~ a writ lock on a. I I < Iott(., 01 I > llll'fl(.,, SigNll bounds; othelWise

makes '*"'the element of a wlh Index/.

fetch• proc (a: •mlc_Mllf{tl. I: Int) (t) 1111'4111 ...,._)
elllcta If I<, or I> #IWl(I), , ,__ returns the ~ of a with

Index/. All1'8VI .._a raid k>dlon a.
bottom• proc (a: mtOlnlc_~ ...,.. (I) 111111111 (beundl)

..,._ If a ii boundll; ..,... Mtuml ll(low(a)J. N#ays obtains a read
lock on a.

top• PfOC (a: ldOllllc_.,.,..D NJIUml (t) 11P1l1 (boulldl)
..._ If a la..,., lignala boulldl; ..,.... ..._ t(lli't(a)I. Always otan a read

lock on a.
empty • proc (a: MD•IC_M'llf(t)) •1m1 (tllool)

.,.... Reluml tna9 I a contalnl no elemants, NlUml ..._ othetwile. In either case
obl8inl • ,.. lad(on a.

size • proc (a: MOllllC_en••N> --(Int)
..,._ Returns a count of 118 number of elamenll of a. obl8inl a read lc>d< on •·

136 Bullt·ln Types and Type Generators

low= proc (a: ldomlc_.,_.tD (Int)
ettcta Returns the low bound of a, obtains a read lock on a

high. proc (a: atomlc_may(tD relUm8 (Int)
eneaa Returns the high bound of a, obtains a read lock on a.

elements• ... (a: ldOlnlc _ __,..D yleld8 (t) ..-(tallure(_....)
etlect8 Obtains a read lock on a and yieldl ._ 111..,.. of a, each exactty once for each

Index, ftom the low bound to the high (le .• ,...,,.~, ... , lap(a,._)). The
elemant8 are fetched one at a tima, Uling ._ ii..._ M ..,.11ga1 at the atart of the
call. If, during 1he lleralion, a II mocMecl 10 thlt ftlld"'4 II a prevtouely legal index
signals bounds, then the lerator slgnal8 fllllurfl will lie ltftng "bounds·. The lerator ts
divisible at yields.

Indexes• It• (a: lltOmlc_....ay[tJ) ylelde (Int)
effecla Ol:UN a read lock on a, then yieldl 118 Indexes of a fftMlt tha tow bound of a,.. to

the high bound d ~- Note thllt unlllctad .. ""1nDdltcmionl -- by the
loop body. It la dlviil>le at yields.

aa2a • proc: (aa: lllOmlc_MllV(t}) NIUIM (M'aY(tD
ettecta Obtains a read lock on •and returns an array a wflh the same (sequential) state.

a2aa • proc (array(t}) retume (aa: Malftlc_....,PD
•fleets Returns an atomic_..., aa with the same Slate as a. OtUins a read lock on aa.

equal· proc (a1, a2: llOmlc_M1lf(t)) NIUrM (bool)
effecte Returns we I a1 and a2 niter to tt. ume lllOmlc_anay object; otherwlH retums

...... No lodes obtained.

similar• proc (a1, 82: lllOlnlc_~) ...,_ (baOI) llgn111 (faltn(8b'lng))
raqulnll I has slmllar: proctype (t, t) NlUrM (ltOOI) (taiUN(atrlng))
effecta Returns true I a1 n .a have l'8 ..,. low_, tlW'I baundl Ind I their 8'ements

are pailwiae llmlar u deteln*'8d by • .,.,. lee the ~ of the lllmllar
operation of ..., for an equivalent body of ODCll. Thia operation ii divlalbte at calls to
l$simllar. Read lockl are obtained on a1 and 112, in tt'8I Older.

slmilar1 • proc (a1, a2: atomlc_SlllYftD l'llul'na (b80I) 11111911 (tallunt(llrlng))
......... thu aq.ial: proctype (t, t) , •• (fllbe(911tng})
aflecta Returns true I a1 Md a2 hare .. ,_,_ ... higlt bGundl Md I their tiementS

are pallwtle 81 by 1* OIHtlftOlt works the Ulftl way as
slmllllr, except that •equ11111 Ul8d if llllld of • ...,. React loc:ka are oblainad on a1
and a2, in that otder.

copy- proc (a: lllOllllc_81'1'a,(t)) NllUme {b: atomlc_sravftD llflllll• (falure(atrlng))
......... this copy:,,..,... (1) (t) (falluM(....))
etreclll RelumB a w alOtNc ~ b wllh the ... lawn high bounds • a and such

that each elemenl t44 coruiila ~.... See .. de•t'1Jlon of the =Pt' op81mf0n of
array for an ecpvalelt body of code. This °'**" ii dlti'ial)le at calll to ~. and
obtainl read locks on a and b.

copy1 • proc (a: atomlc_...,.t)) (b: lllOmlc_....,g
effecta Retuma • new atomic_ array b wilt tt18 tow Md high bounds as a and IUCh

that each elemenl t44 conlalns the same element as a(4. Read locks are obtained on a
andb.

11.1 o Atomic Arrays

transmit • proc (a: atomlc_amay(t)) IWIUmS (b: atomlc_snry(tJ) slgnal8 (failure(atrlng))
raqu1,.. t has tramml

137

affects Returns a new anay b with the same low and high bound& as a and such that each
element 1(4 COftalnl a transmitted copy of alt Read locks are obtained on a and b.
Sharing among the ,......,.. of a Is prel8Nld in b. Slgnall fa/lul'e I b cannot be
represented on the receiving end or I fetching an elemert at a legal index of a,.. causes
a bounds exception and reaignals any failure slgr8 rai8ecf by •wtt.

test_and_read-proc (aa: llOtlllc_array(tD (bool)
affects Tries to obtain a ntad lock on aa. If the lock ii otuined, retumt trw; othefwiae no

lock Is obtained and the operation retuma tlllle. TM ..,.uon dDel not "War for a lock.
Even I the executing action "knows• that a llM:k CDUld be ollllllned, ..._ may be
returned. Even I ,.... ii returned, a ~ art..,a to C>Uain a read lock might
succeed without waiting.

test_and_write • proc (aa: ldOmk:_may(t)) Ntuma (boot)
eftecta Tries to otJtain a write lock on aa. It the lock ii obUdnecl, retums true; otherwise no

lock Is obtained and the operation retuma Tiie.......,,. dDeS not "W8I" tor a lock.
Even I the execuUng aclon "knows• 1hll a IDdt could be obealnld, tlllle may be
returned. Even I 18111 ii 19Uned, a 1ub1equen1 attempt to obtain a wrle lock might
succeed without waiting.

can_ read• proc (aa: atomtc_array(t)) Nlurne (bool)
effects Returns true If a read lock could be obtained on aa wlhout weillng, etherWise

retums flllel. No lock Is actualy obtained. Even I the execudng action "lftWJs" that a
lock could be obtained, lll8e may be returned. Since .,,.,. conc:ummt action may obtain
or releale a lock on an atomlc_array at any Ima, .. lnlomltfan retumld ii wnralll*:
even I true ii 1'91Umed, a 1ub1equ8N to.., "9 lod< mar....,.,. WlliUng; and
even I falle Is returned, a IUb8equen attempt to obtain a read lock mlghl succeed
without waling.

can_ write• proc (aa: MOmlc_array[t)) retume (bool)
effects Returns true I a write lock could be obtained on aa without waiting, otherwise

returns No lock ii -*'8ly obtained. Even I the executing action "knows• that a
lock could be oblatned, fllllll may be returned. Since 1on11 concunnc action rnar obtain
or release a lock on an lllOnic_array at 81f1J lime, 111 inron"8Uon rwtumed ii unntfiable:
even I true ii rwturned, a subleqlm •••to.-.. 1'9 lod< ._ ,..._ waiUng; and
even I ,.._ ii returned, a aablecpanl llltenipt to oblaln a Wfh lock might succeed
without waling.

read_lock • proc (aa: 8'Dmlc_array(tD
eftecta Obtains a rem lock on aa.

write_ tock• proc (aa: atomlc_array[t))
effects Obtains a wrle lock on as.

i(IJ j JlL ,• &2Ll' Xi' a ltb&JZJJaP4LKM j tll .Ji Ji.! LL{ L!Lbtd#JQIZU§JJ.44AAJ1ftl IJJU:kUtiiiiit4.4#421Ji!ll. #$ kCl!UOI•

···~---1111111•

1.11.••-

=::.a·····
-~

••rn ••
· 1111.1u•11nr~

"'-":::;:dif;,~;~f';J:c:iir:.--....,,; ~, •
•• ,.,. ' •.. : ' :' : ·• : <•ff'.'!'.::\'~;·· ' ' '

11.11 Structs 139

similar• proc (s1, s2: st) (ttool) (fabe(llttnG))
requtree each ~has slmltar: practype (~. tt>_ (llool) llgMla (failure(8lrlna))
effect• Returns true tf s 1 and S2 co ... --~ tor each OOf1'10t18At • determined

by the ~operatic>,.. Arf'/ fallure algnal II mMdiately resignalled. This operation
does not itHI originate any lallure signll. The ~ ii done In lexicographic order
of the selectors; I any comparison retume flllle ii returned Immediately.

copy• proc (s: st) '9IUln8 (st) llgnlll (falkn(atrlng))
requires each t, has copy: practype <tt> <tt> (failure(ltrlng))
effecta Returns a stft.ld containing a copy of each COfq)Orllnt of s; copies are obtained by

calling the t~ operations. Arf'/ Wen signll ii lltlll'Md1tety resignalled. This
operation does not lt8el originate any falure signa!. Copying is done In lexicographic
order of the selectors.

tranamn - proc (s: st) l'ltUma (at) Sig..,. (1ailure(ltrlng))
......,_each t1has trmlnllt
effecta Returns a stNC:t containing a trwmlHed COPr of each component of •· Sharing is

preserved among the componenll of s. Mt taAn lignll from ~It is
immediately resignalled. Thia operation does not originate "" fllllutw slgnaf.

11.12. Records
record• data type (n1: t1, ... ,I'\:\) la r_gats_r, r_gats_s, sat_n1, ... ,set_'\. get_n1, •.• ,get_'\.

equal,slrnllar, limHar1' copy, copy1'

Overview

A NCOl'd ii a mutable collection of one or mont nmned objec:ta. The .,..... ... calld Hl«:tors,
and the objects are called oomponems. Dlffetenl componanl8 may have dlferent types. A record
also has an Identity as an object.

An Instantiation of record has the form:
record [fleld_spec ' •••]

where
field spec : :: name, ... : type actual

(see Appencifx I). Selectors fftJ8t be u'*"8 wlhin an instantiation (Ignoring capltaization). but the
ordering and grouping of selectors Is unln1)0rtant. For exaft1lle, the following name the same
type:

record(last, first, middle: string, age: Int]
record[last: atrlng, age: Int, first, middle: string)

A record is created using a record constructor, see Section e.2.11.

For purposes of the certain operations, the h Nll'R98 of the 1111*'8 .. O«terec:t
lexlcographically. Lexicographic ordert.-,g of the 8818*'8 ii l'8 alphabaUc ordarlr-,g of the selector
names wrtlten In lower case (based on the ASCII ordering of charlctera).

In the following definitions of record operations, let rt• ~n1 : t1, ... , '\: ~).

Operation•

r__gets_r • proc (r1, r2: rt)
modltlear1.
effeCla Sets each oo~nt of r1 to be the corresponding oo"1>(>nent of r2.

I J IU!illllll !i!J l a l!Qfli HllU. UJI lktl 1!1!9'14JI& ZA JJ"JilflZQUll\!M !!J.!JfaXl42$b22.!JtLl££ELSJJUWZJ!b $.a Uk·' id#(U!l UILSU , Pfl!flJI

140

r..JIMS_a •,... (r: d, a: II) ..•. ,.
...... .,... ... ,.. •. ,

••1111H1M•••.._.._..._ ... 11.1.n11-•-ut1-•_.•tt. .__. •• ,.-.,,••••••••n1t1t1••••an••• •-"t. ,._(r. It, e: \) ..•.. ,,
.......... , .. -·· .. -···--- n, be .. n.r. ii. -•• 11uaw.-1•u11:.

--" fr.111 •-tV
...... ~·-• •11pc-ol ,._ ,... _ A for

8CJMll • (11, r2: .., (llOOlt
...................... _ __., 71

limllr (d. fl:. .· · , , , .. ~·-·111111~ ••••Rut•--··-.., 'IJllltl , •• -----·••111.· at

similar1 (rt.JI: ,

111111 •••I. JI.I.if ... ·
.. ••:• 1111nrnm •.,

at .. 11·1 •111;

copy•,_ tr.4111 lUt ,,
Biii ••u •.-. .. ·.······· .· , .• , : ; ,. / ••.•... ··

GJJ• l1n ... t11..-12•n•'•'
~

capy1 • ..-r.• ••••• ••••R•u ••---•••w• 11 rea•-•,.•11...,.....
••e• ·•:0•~Jt ".•• .. :.·1;;.c: .. · .. ·. • 111 r ••IT• n11...._.4••lt1.-..

llfn11 811 n.•·-~•••· . . , ,. ···~· .. · ,. '

i.mll 21t JstJJ1Bt riff r : · ··· ·

11.12 Records

11.13. Atomic Records
atomlc_record ·datatype[n1 : t1, ... , '\:\) 18 .,....,,.._.,., let_n1, .•• , Mt_f\. get_n1, •.. , oet_f\.

ar2r, r2ar, equal,limilar, limllar1, copy, cop/1,
test_and_read, test_and_wrtte, can_,..., can_wrh, rud_lock, write_ lock

overvtew

141

An atomic recont Is a rrutable 8'omic collecUon of one or more named obieet&· The names are
called selliiilots, and the objects 819 called ~ DlfereN components may have different
types. An atomic_ record alao has an ldenllly • an object.

An Instantiation of alomlc _ reconl has the form:
atomlc_record [field_ spec, ••• J

where
tield_apec : :: name, ••• : type ~

(see Appendix I). Selectors mJat be....._ ... M lnltll Illian (JeNNIRg .,..azlltien), but the
ordering and grouping of selectors le unlmpoftant. For ,...,,.., the following name the same
type:

atomlc_record(tast, Rnlt, middle: llftnl. age: lntJ
atomic_ record(last: atrlng, age: Int. tirlt, middle: atrlng]

An atomic_record Is created using a atomic_racord oonatructor, see Section 6.2.11.

For purposes of the certain operationl, the the names of the selector& are ordered
lexicographically. Lexlcogriphk: ordering of the Mlactors ii U. alphabetic ordering of the selector
names written In tower case (baaed on the ASCH o«tertng of characters).

Atomic_ recoois use readlwrlte locking to ac:hi8ve atomiOly. The IOcklng rules are described in
Section 2.2.2. It Is an em>r I a l)R)C98S that Is not In an action attef11* to test or ~ a lock;
when this happens the guan:lan IUllnklg the proc111 wil Gfllh. All deA"led below, the only
operation that (In the nonnat case) does not al9ft1JI to l8lt •obtain a lock is the equal operation.

In the follOwing, let art• atomlc_NCOrd(n1: t1, ..• , '\= ftJ.
Operation•

ar_gets_ar • proc (r1, r2: art)
modlfleert.
effect8 Cbains a wrtte lock on rt and a read lock on r2, then sets each OOf11)0n8nt of rt to

be the oorreaponding COf11)0ll8f1t of r2.

oet_ni • proc (r: art) l9IUml (It}
effect8 Obtains a read lock on rand returns the coq>onent of r whose setector is n; There

Is a get_ operation for each selecmr.
set_ "i • proc (r: art, e: \)

modlfteer.
eftecla ~ a write lock on rand modllie& r by making the component whose selector is

n1 be •· There Is a a_ operation for each selac*>r.

ar2r • proc (ar: art) NIUrna (r: art)
effeCta Obtains a read lock on ar and returns a record rwith the same state.

r2ar • proc (r: art) ,...... (ar: art)
effecls retums an atomic_record arwtth the same state aa r. Obtains a read lock on ar.

142

equal • proc (r1, r2: art) naturm (bool)
8ff8cta Returns true if r1 and r2 are the very same atomic_ record object; otherwise returns

fal8e. No locks are obtained.

similar - proc (r1. r2: art) natuml (bool) (faHure(atrtng))
requlrea each t; has aimilm': practype <tr t,> (....,) llQIWS (failure(8trlng))
effect8 Obtains a read lock on r1, then a rea:I lock on 12'. '*' ~ correaponding

componentS fR>m r1 and r2 ulktg the t~ ..,....,.. Arrt la/lure ligt'l8I is
immediately realgnalled. Thia opetalion does not ilNlf odgilm any fallute lignal. The
cornpari&on is done In lexicographic ORlar of the .. IHlcn; I any COf'l1pllftlon returns
fal8e, fal8e Is returned lmmadlately. If al con.,arl8onl IW.lm tnle, returns true.

simllar1 • proc (r1, r2: art) ~(boot) elglllla (fallwe(....,..))
requlf8I each ~has equat: pnactype (ft, ft) ,.... (bool) ...,.... (faflure(81rtng))
ettecta Thts operation is the same as aimltar, except 1111 ~ is ..-cl inllMd of
t~r.

copy• proc (r: art) returns (res: art) 91gMle (failure(8tltng))
requa,.. each t1 has copy: pmctype (ti) --(t,> ..,,..... (fallure(lbtng))
effect8 Obtains a read lock on r, then "*""8 a new llOmic_recon.t ,. obtained ~

pelformlng copy1(,, and then replacing each~ wit\.~ of the connponding
component of r. Copies are obtained by callng the._,_...... lint ,.,,_ lignal
is immediately resignallld. Thia operation ctoes not """""
Copying la done In textcographic order of Ile 1ela'*>fa. A raad lock 18 a18D obCalnld on
the new atomic_reoord ru.

copy1 • proc (r: art) NIUl'M (res: art)
effect8 Obtains a read lock on r, then retume a new alomic reootd ,.. OOdatning the

componentS of r as h components. A read lock ii allo obtained on the new
atomlc_recora fflS.

transmit - proc (ar: art) NIUma (art) elgMla (falltra(atrtnsl))
NqUINa each t,has ,,.......
effects Returns a new lllOmic_record containing a trlAsmltted copy of each component of

ar. Sharing Is pres8Md among the component8 of ar. A read lock Is otJ&ained on •and
the new atomic_array. Ant failure signal~,.._ Is lnl'nediately ...aignaled.
This operation does not Itself originate any failure signal.

test_and_read • proc (ar: art) natume (bool)
effects Tries to obtain a read lock on ar. If the lock is obtained, returns true; otherMle no

lock is obtained and the operation returns n. operation does not 'War for a lock.
Even If the ex8alting action "knows• that a lock _... be ob&alned, flllle may be
returned. Even If talM Is re1Umed, a subsequent atten1't to obtain a read lock ~
succeed without waiting.

test_ and_ write• proc (ar: art) retuma (boot)
8ffect• Tries to obtain a write lock on ar. If the lock ii obtainld, returns tNe; otherwtle no

lock Is obtained and the operation returns flllle. The operation does not "'War for a lock.
Even If the eX8Qltlng action "knows• that a lock could be Gbtalnld may be
returned. Even If falle Is relumed, a subMcJJent -.. to obtain a write lock might
succeed without waiting.

11.13 Atomic Reool'Cle

.... _
•••Ol1l1h••--fllkon•.

IL 14. Oneof8
ORIOi. --~; f\= :,· •· ·-· -.,.l\pll_a,. _ _.,, ... , _l\t

-. • ... • 1111

OvelN•

A°'*"ll•-fd, •>118 llld_.. -, 11•--· '. ·.
Antn•1 UllJfUlf

where c:.-:::111 I -1

143

--=--.-=~ (IM :•npii I). .,... __ LI IJJI -. IJllP ClllllBDFI llfl, - ttll oJdURg•••• ••~•••r •••-·
Alhougtt ... _...,,,. ••••:-:·:0:'11' .. I}.• !!••.-·11•••·•--.,..DMd ,.12 n11••..,.•11t..__._,.,._._
A--ll••ttrMI ._,111t•u1ntM11 t'I tz•• s.a 11---lalOI
In '*',: I\:

Opel

ma1ce_,., (9:,, --....................... ., _ ... ,
11_,,. . ..,.co:ott _,

.... R• I• Ill of 0.,... "'1UI•-. .,... ill Me_ llltl .. IR IDr
....... b1111.

144 Built-In TYPM and Type Generators

value_'1j'"' proc (o: ot) nllUme (tt> (wrong_tag)
effecta If the tag of o is n,. returns the value of o: otherwise signals wrong_tag. There Is a

value_ operation for each selector.

o2v - proc (o: ot) returns (vt)
effecta Here vt Is a variant type with the same seleGtors MCI types as ot. Returns a new

variant object with the same tag and value as o.
v2o • proc (v: vt) retum8 (ot)

effecta Here vt Is a variant type wlh the ..,. setectora MCI types as ot. Returns a oneof
object with the same tag and value as v.

equal - proc (o1, o2: ot) (bOol) {fabe(llltng))
requires each t, has equal: proctype (\, \) (baol) (fd.n(ltrlng))
effecta Returns ttue • 01 anct oa ._. tt. '81 •.,.a W11uM • ... ,..,,._. tlr the

equal operation of their dlla petfl type. Mt -·•••Ii' ,. ct.
This operation does not ortglnate 9l1f ,..... TNe opelllioft ii dlvlllM at the
call of t~equal.

simHar • proc (o1, o2: ot) ...,. (bool) lllgllllla (falute(8trtng))
requires each t, has llmils: proctype (\. tt> (laool) (failure(l&rlng))
•ffecla Retuma ttue 11 01 anct oa have the '81 a -... vatuea • determined by

the sinilllr operation of thetr value's type. Any lllltn II Immediately reslgnaled.
This operation does not itself originate any fallute slgnel. This operation Is dMllble at the
can of t~lar.

copy - proc (o: ot) l'8tUml (ot) algnata (falure(Slrlng))
requl each t, has copy: proctype (\) retwna (ft> (failure(atrlnl))
effects Returns a oneof object wlh ._ same tag as o and coNainlng • a vaJue a copy of

<is value; the copy la made Uling the copy operation of the value's type. Any flliJunl
signal Is lrnmedlately reaign8lled. Thill ..,.._ dDN not lt8elf ortglnate any fa/lure
signal. This operation la dlvlsl>le at the call of ~·

transmit - proc (o: ot) retume (ot) •IQMla (fallure(strtng))
requires each t; has,,.......
lffecla Returns a oneof objed with the same tag as o and containing as a value a

transmitted copy of <is vabe. Arr/ fllllurfl signal la Immediately reslgnaled. This
operation does not itself originate any fa/lure signal

11.15. Variants
variant• data type [n1: t1, 1\: \) 18 make_n1, make_'\. change_n1, ... , change_nk,

is_n1, ... , is_I\. value_n1, ... , value_'\. v_Jlllta_v, v_gets_o,
equal, simHar, slmilar1, copy, copy1 , tranemlt

Overview

A variant Is a mutable, tagged, discriminated union. Its state is a oneof, that Is, a labeled object,
to be thought of as •one at- a set of altematMt8. The label Is called 1t'8 111Q patt, and the object ii
called the va/LNI (or data part). A variant alao ha an iclenlly as an obfect.

An instantiation of V8l"l8nt has the form:
variant [field_ spec ' ... 1

where
field_spec ::: name, ... : type_ actual

(see Appendix I). Tags l1IJ8t be unique within an instantiation (Ignoring capitalzation), but the
ordering and grouping of tags Is unimportant.

11.15 Variants 145

Although there are variant operations for ~ variant objects, they are usually
cleoomposed via the l8QCM9 statement, which la dllculsed In Section 10.14.

In the following let vt • vartant(n1: t1, ... , '\= t,J.

Operations

make_"• proc (e: ti) retume (vt)
effects Re1uml a new val'l&R object with tag n1 and value s. There Is a make_ operation for

each selector.

change_" • proc (v: vt, e: \)
rnodlfleav.
effecta Modifies v to have tag n1 and value e. There is a change_ operation for each

selector.

is_ n1 • proc (v: vt) 1'81Ume (bool)
etreets Retums um If the tag of v Is n~ otherwise returns fal•. There Is an is_ operation

for each selector.

value_"• proc (v: vt) Ntums (ti) slgl'Ulla (wrong_tag)
eftects If the tag of vis n; retulM the value of v, otherwise signals wrong_tag. There is a

value_ operation for each selector.

v_gets_v. proc (v1, v2: vt)
moclHles vf.
effects Modllaa v1 to contain the same tag and vakJe • v2.

v_gets_o • proc (v: vt, o: ot)
modlfteev.
effects Here ot Is the oneof type with 1he same sel8ctorB and types as vt. Modifies v to

contain the same tag and value as o.

equal • proc (v1, v2: vt) Nlln8 (boot)
effecls Retuml true I vf and v2 are the same variart object.

slmllar • proc (v1, v2: vt) (bOol) (fab'e(911tng))
........ each ~has~ flt. tt>, (fallufe(alt'tnl)) .,.... Relurnl.,.., v1 m .ie._. .. ___,..,.. u d"•rtnined by the

slmllaroperalion of their V8Ue'a type. Alfi ,.,... II .._. .. ,., ,,...cl. This
operation doff not llel ortglnate any atn llgnll. Thie operation JI diYill>le at the call
oft~.

similar1 • proc (v1, v2: vt) r9IUml (bool) .ag,... (falkn(atttng))
requtr. each t, has equal: practype <ft,\) --(bool) (faiture(atrtng))
•ffecta Same .. Bimilar, except that ~· Ul8d lnltlad Of t~mllar.

copy • proc (v: vt) twtuma (vt) (falure(atrlng))
requlrea each ~has copy:,,..,,. (\) <tt> (falure(ltrtng))
effects Retums a vMalC object with the same Ilg• v a~ as a Yllu• a copy of

V'I value; the copy ii made ualng the CfJll'/ .,,.,.._of 1t11 value'• type. Any fa/lure
signal Is Immediately reeignaled. This operation does not Itself originate any failure
signal. Thia operation is dM8ble at the call of ~-

copy1 • proc (v: vt} Ntuma (vt)
effects Returns a new variant object wllh the same tag as v and containing V's value as Its

value.

146

transmit • proc (v: vt) retwne (vt) •lg,.,. (failure(81rtng))
raqutree each t1 has traMmlt
8lfect8 Returns a variant object with the same tag • v and containing as a value a

transmitted copy of ~s vakle. Any fllllut'e signal ii Immediately resignalled. This
operation does not illel originate any failure signal.

11.16. Atomic Variants
atomic_ variant• data type (n1: t1, ····I\=~] 18 make_n1, ... ,make_'\• change_n1, ••• ,change_ I\.

av_gets_av, ls_n1, ... ,is_'\. vakle_n1, ... , v8'Je_l\. IN2v, v2av,
equal, similar, slmHar1, copy, copy1, ,,....,
test_and_read, test_and_write, can_ read, can_wrtte, read_ lock, write_ lock

Overview

An atomic_varlant is a mutable, atomic, tagged, dieCriminaled Ufllian. Ila ltllte II a oneof, that II, a
labeled object, to be thougH of u -one or a l8t of a11mllll\t.w1. nee label 1s called the tao part,
and the oblect Is called the vlllw (or data part). An lllOMc_variant alao has an iderdy as an
object.

An instantiation of atomlc_vartant has the form:
atomle_vlll'lanl (field_spec, ••• J

where
field spec : :: name, ••• : type actual

(see Appenc)x I). Tags fTl.l8t be unlqUe wthin an Instantiation (Ignoring capitalization), but the
ordering and grouping of tags Is unimportant.

Although there are atomlc_variart operal1ona for dlcx>mpollng lllomic_variant objects, they are
usually decomposed via the tagtMt statement or 1118'• atalement, which are dl&aJssed In
Section 10.15.

In the following, let avt • atomle_varlllnt(n1: t1, ... , '\= ~·

Operation•

make_ni • proc (e: ti) Nturna (av: avt)
effecla Returns a new atomic_ variant object av with tag n1 and value e. Obtains a read lock

on av. There is a malcS_ operation for each •lector.

change_f1i • pl'OC (v: avt, e: ~)
modltle9 v.
effecla aulns a write lock on v, then modlles v 1o have tag n1 and valle e. There Is a

change_ operation for each selector.

av _gets_ av • prac (v1, v2: avt)
mocHfte8 V1.
8lfect8 Obtains a read lock on v2 and then a write lock on v1, then modifies v1 1o conlaln

the same tag and value as v2.

is_rlj • proc (v: avt) Ntuma (bool)
effects Obtains a read lock on v, then retums true I the tag of v Is n~ othefwise returns

fal•. There Is an is_ operation for each selector.

value_ni • prac (v: avt) l'8lume (ft} algNlle (wrong_tag)
8lfect8 Obtains a read lock on v. Then, I the tag of v Is n" returns the value of v; otherwise

signals wrong_tag. There is a value_ operation for each selector.

11.1 & Atomic Variants 147

av2v • proc (av: avt) retuma (v: vt)
ettect• Here vt Is a variant type wilh the same seledora and types as avt. Obtains a read

lock on av and returns a variant vwlth the same stale.

v2av • proc (v: vt) l'9IUm9 (av: avt)
ettects Here vt Is a variant type wlh the ..,.. •lectors and types as avt. Returns an

atomic_ variant avwlh the same s&ate as v. Obtains a read lock on av.

equal • proc (v1, v2: avt),. (bool)
ettects Returns tnle I v1 and v2 are the same atomie_varianl object. No locks are

obtained.

similar• proc (v1, v2: avt) ..,.,,. (boOI) (faluN(*"'I))
requlNe each t; has similar: PNCtJP8 (~. ~,. (Md).....,. (faibre(1trtn9))
ertecta Obtainl read lodca on v1 Md v2, In Oftllr, w '*' oomplNI the objects; returns

true If v1 and v2 have the same tag Md,. • dllerminld br the lllmllar
operation of their type. Ant flilufe llgMl II lmm1dlnt nty,. Thil opetllton does
not Itself originate any fa/lul'e signal. Thia operation la dlYl8IJle at the call of t~.

simllar1 • proc (v1, v2: avt) Ntums (boOI) ...,,... (fallUre(.....,))
....,.... each t; has equal: proctypl u.. \) ('*"> (fallure(ltrtng))
ertecta Same as similar, except that ~la UMd lnltead of t~mllar.

copy • proc (v: avt) NIUrna (avt) , (falkn(alflng))
requires each t1haa CCIPf: PftlCt'P et.) ('t) (falkn(llrlng))
ettects Obtains a read lock on v, then Nlurnl ., -*-vartanl objed with the ume tag as

v and CXH*lning aa a value a cow of lla value; the copy ii mede Uling the copy
operation of the value's type. Jtny ,.,,,. ligMt II lmmedlately resiQnaled. This
operation does not bel originate any fallurfl eignal. Thia operation is dMalM at the call
of t~aJpy. A read lock 18 obtakled on the reaJlt.

copy1 • proc (v: avt) returns (avt)
effects Obtains a read lock on v, then returns a new atomie_variant object wilh the same tag

as v and containing v's value as Its value. A read lock Is obtained on the resua.
transmit• proc (v: avt) NIUmll (avt) elg,.... (failure(ltflna))

raquhs each t, has,..,.....
effecls Returns an atomic_ VINn object wllh the same tag as v and containing as a value a

transmllted copy of "' YM.te. CJ>taltw a read lock on v. Artf fal/uTe signal I& lmmedtately
resignalled. Thia operation does not llMI oltginlte any fa/lure Signal.

test_and_read • proc (av: avt) retuma (bool)
ettects Tries to otJlaln a read lock on av. If the lock Is obtained, nttuml true; otherwise no

lock is ot"8ined and the operation reluma tlllle. The operation doel not wr tor a lock.
Even If the executing action "knows• that a lock could &Mt • .,.., .,.. may be
returned. Even I flllle Is 19tUmed, a 11lbaequenl atlll1'JI to obtain a read lock might
succeed without waling.

test_and_wrlte -proc (av: avt) NIUma (bool)
effects Tries to obtain a wrtle loc:k on av. ff the loc:k la obtained, retuma true; othefwile no

lock Is obtained and the operation retuml The operation does not tor. lock.
Even I the exeaJtlng aclton '1cnowa• that a lock could be oblained, flllle may be
returned. Even If ,.... i8 returned, a l&lblequent to obtain a WJle lock might
succeed without waling.

can_ read• proc (av: avt) (bOol)
effecla Aehlml tlUe I a n*1 tock could be atll.llMd on llV without waiting, olMlrwiM

retuml No lock, Even ... IHHUtlng acltol'I "knows ... a
lock GOUid be ... -. may bl rtllUmld. a..-aoncurrent 8Cllon mav obtain
or re11111 a tea on an ... _ _...•..,--.• -...an •ft!lld II uman•:
even I tn1e II.....,.., a,, .. •11111Pl ID....,. ... toak..., 1111"*9 wllfng; and
even I II retumect, a •,.. 111 ltfl!I •_ a Nld lock might IUCCHd
without walq.

can_ write • PNC (av: avt)_ (bod)
.,.... Reluml ._ I a Wile loclk CDUld be oblliNd on IN wllhout walling, OlheMlle

retume fllle. No lodl la MkrllJ ol:lllNd. Evml •.....,.. .._ ,_,_.. IW a
lookcauldbeol*llnld. .,.._.,.__,.mar....,.
orrel1•1aloClk011an....-_.- • ..,-. .. .,, t JI n...,...,,,.,.: even ltrue 11......S, •••n••• ••,...-a..,..•
even If .,.. II relumld, a •,,,. •11'11l to "**' a Wiie lode ~ IUOOMd
wlhoul wlUng.

read_lock •PIS (av: avt)
..,_.. CIJlalr'8 a read lock on av.

write_ lock • PNC (av: avt)
..-.. Obtains a wrle lock on av.

11.17. Procedul'M and llendors
proctype-dllla.,.. copy
lteltype -,.. llmllr, copy

Overview

Procedures and ..,.,.. ... obildl created by tt'9 Alp av••m. TM tp tor a
proceduftt or l8l1ltor CDrUint ,.. of the infom'ldain....., In a....,,. or llrlllOf hMdng; a

proceduftt tp ~···· tonn:
proctype ((type_IPIC , ...)) (....,,,..) (8lgnlls)

and an Iterator type ll)ICllCatlon tm 119 term:

lterlype ([type_apec ' ... J) [yleldl J [--J
where

returns ::: NIUIM (type_apec, •••)

yields ::= ,.... (type_apec I ...)

signals ::= ...,... (exception)

exceplon ::: name [(type_epec, ...)]

(see Appendic I). The ftllt lat of type epeamctllloM d11alll11 .. number,--. _,...,of
~· Tht,...,..,..... ~ ---............ ..
returnedoryt1tdld. """•••--.... n r11r1na~••,..aadl••..,..;tor
each 8Xcepti0n IWll9, II, 13iJt•
Al , ,. --··-·-
For baltof ltt ,.., .. "6ttr.

proctype (.,....., lnl, lnQ I.AIU (elUndl. AIQllJ!l_atl8)
proctype , · 1111 Ell CR•-·--· '1Cu'tdl)

11.17 Procedur• anc:t lteraton 149

Procedure and herator objects are created by ~ mocMea (and by the bind expression,
see Section 9.8). PR>cectn and lerator type& are not tr8nlmil11J1e and are COfllidered to be
immutable and atomic In normat use. However. tome UMI of own data (see Section 12.7) In
procedures and lerators can violate this usumption.

In the following operation ~Ions. tstands for a proctype or lertype.

Operations

equal - proc (x, y: t) returns (bool)
similar • proc (x, y: t) relUmS (bool)

ellacts These operations return true if and only I x and y are the same implementation of
the same abstraction, with the same parameters (see Section 12.6).

copy• proc (x: t) returns (t)
effects Returns x.

11.18. Handlers and Creators
handlertype - datll type .. equal, limllar, copy,
creatortype •data type le equal, similar, copy,.,.....

Overview

Handlers and aeators are created by the A9J8 system. The type speclftcatlon for a h8ndter or
creator contains moat of the Information stated In a handler or creator heading; a handler type
specification has the 1orm:

handlertype ([type_ spec , •••]) [returns] [signals]

and a creator type specification has the form:

c.-ortype ([type_ spec , •••)) [returns] [signals]

where

returns ::: returns (type_spec, ...)

signals ::: slgnale (exception, ...)

exception ::: name [(type_spec, ...)]

(see Appendix I). The first list of type speclicaliona c:JelCfbls the number, types, and order of
arguments. The,... claule types, aM Older' of be relumed.
The 81gnall clw lllt8 the~ rlllMd by the....., or~ tor each DC8Pallft name,
the number, typea, Md Oldef' of the objlcta to be NtUIMd, pen. Al .,... UMd in a
slgnala clauM r11.11t be unkpt; none can be unat•llW or ldft, which have a pre-defined
meanlng1or remote calls (see Section 8.3). The on:tattng of excepltons Is not lf11>0rtant.

Creators are created by ~ modules, and handlers R created as a side-effect of guardian
creation. Handlers and creators are transmllstie and are COl'llidered to be lnvnutable and atomic
in normal use. Certain uses of own data In handlers can violate this 8SSUfY1>tlon.

In the following operation descriptions, t stands for a handlertype or aeatonype.

Operation•

equal • proc (x, y: t) ntturns (bool)
similar • proc (x, y: t) relUmS (bool)

effects These operations return true if and only I x and y are the same object (see Section
12.6 for an exact definition for the case of creators In guardian generators).

150 Bullt·ln Type8 and Type Generlltol"ll

copy • proc (x: t) Ntums (t)
tranaml • proc (x: t) l'8IUm8 (t)

effects Returns x.

11.19. Anya
any• data type Is create, force, is_type

Overview

An object of type any contains a type T and an object of type T. Anya are lnmJtable and are not
transmissible. Anys are atomic only I their contained object Is atomic.

Operation•

create - proc[T: type) (contents: T) returns (any)
ettect• Returns an any object containing contBnts and the type T.

force - proc(T: type) (tting: my) returns (T) slgnlda (wn>ng_type)
effects ff thing corutns an object of a type Included In type T, then that object Is returned;

otherwtse Mt111g_tp Is elgnallad.

is_type. proc(T: type) (tNng: any).....,.,. (bool)
effects If thing contains an object of a type Included In type T, then tl\l8 is returned;

otherwise, is returned.

11.20. Images
Image - data type Is create, force, ts_type, copy, t,.,....I

Overview

An object of type Image ls the value of an arbitrary tranamls8tie type. See Section 14 for more
detaHs. Images ant imnlJtable, atomic, andtransmillll>le.

OperatlOn•

create• proc(T: type) (contents: T) returns (llnage) (f~)
requlNeT ... tnlnMll
etlect8 Returns an Image object obtained from conlet* Yia the 8nCDds operation of T.

Reatgnal8 any fllllure 8ignal raised by rs """"'* opeqtion.

force • proc(T: type) (tting: Image) (T) 81g1'1818 (wrOng_type, fallure(atrtng))
NqullWT ... tnHmllt
effects If thing encodes an object of a type Included In type T, then that object is extracted

using the dfJoodll openilion of T and relumed. Oltwr.W.. wrong_l)'pe Is signaled.
Re&lgnals any fallute signal ral8ed by ra dllCDdll aperation.

is_type - proc[T: type] (thing: lmllge) returns (bool)
requlNaT
effects If thing encodes an object of a type Included In type T, then true la returned;

othelWlse, ii returned.

copy - proc (thing: llMge) (lnlllge)
tranamll - proc (thing:) (lll'Nlge)

effects Returns thing.

-- '-I -~:'.'-·.·~

11.21 Mutexes

11.21. Mutexea
mutex- d818 type(t: type) la create, set_ value, get_ value, changed, equal, similar, copy, transmit

Overview

151

A mutex is a mutable conlalner for an object of type t. A n'lltex also has an Identity as an object.

An object of type mutex(t) provldea mu&.lal uclu8ion for plOC8l8 synchronization, and allows
explicit control over how lntormatlon contained In the rlUex Is written to stable storage (see
Section 15.1).

The Mize statement is used In order to gain posseaalon of a mutex. See section 6.7.

Although rrutex objects are mulat*I, sharing among nuex CJbiecta is usualy wrong, because the
contained object should only be 1CC111lble hough ttl9 nuex. Hence there II no copy1
operation, 8ince this would lrCRKilce shattnQ. and '*8 II no almllar1 operation to check for
shartng (see Section 6.7).

OpendlOM

create - proc (thing: t) retuma (mutex[t))
effecla Returns a new rnutex oblect COIUining thing.

set_ value• proc (corulner: lllUlex[tJ, contents: t)
moclltlee cont
elfect8 Modifies OOl1llllner by replacing Its contained object with aontents.

get_ value -proc (container: mutex[t}) NIUma (t)
elfect8 Returns the object conlalned In oonllllnflr.

changed • proc (coruiner: mutex[t))
effeCta lnfonnl the AIQ&'8 tylt8m that the eating Miion f8CJJlrel the contents of containsr to

be copied to stable storage by the time .. --. corrwulls, Pft)¥lded oonllliner is
accessllle from a stable variable. I II a ...,.:ming emw I a proceas that Is not
running an aclion calls this opendionl, and ff.,.. II dine the guardian wll crash.

equal • proc (m1, m2: mutex(t]) 1'81Ume (boot)
effeCta Returns true if and only if m1 and m2 are the same object.

similar • proc (m1, m2: mutex(tD (bool) (falUe(llt'lnQ))
19qulres t has similar: proclype(t, t)........,..., (fabe(9btng))
effeCta Seizes m1, then selzea m2, and calll • ..,.to dlt..-mN II result; any fallurB

signal is immediately resignalled. Pols8811on of bolh mutexes is retained until 1$skTilar
terminates.

copy • proc (m1: mutex[t)) 1'81Ume (m2: mutex[tJ)_ {fallunl(llrlng))
requlree t has copy: proctype(t) NllUIM(t) (failuN(ltdng))
effeCta Seizea m1, then calls .scopy to mike a ODJ¥ wHctt I places in the new nuex object

m2. Any failure signal II invneclately reslgnalled. Possession of m1 is nttained until
i$copy termlnales.

tl'&Mmlt • proc (m1 : mulex[tD ratuma (mulex[t)) 8lgnala (failure(atrtng))
requ1,. t has twll
eff8cts Seizes m1, and returns a new nutex c:onlUW1g a transmitted copy of the contained

object. Any fllllunl signal is lmmediat~ l'88ignalled. Possession of m 1 is retained until
.......... terrnh'latea.

152 Rules and Guidelines for Using Argus

Ill Rules and Guldellnes for Using Argus 153

Ap~dlx Ill
Rules and Guldelln" for Using Argus

This appendix collects the rules and guidellnH that lhould be followed when programming in Argus.

Following these rules makes ..._ statements meaningful, actions atomic, and so on. In some rare

cases there may be valid reasons for violating these guidelnes, but doing so greatly Increases the

difficulty of building, debugging, and running the resullng system.

All of the rules listed in this appendix are based on Information appearing elsewhere in the manual.

Each rule is followed by a brief rationale, lneludlng a reference to the section of the manual from which it

is drawn.

111.1. Serlallzability and Actions
• Actions should share only atomic objects.

Rationa/8: Actions that share non-atomic data are not necessarily serlallzable. [Section 2.2.2)

• A subaction that aborts should not return any tntormation otllained from data shared with other

concurrent actions.

Rationale: Returning such data may violate serializabllty. [Section 2.2.1)

• A nested topactlon should be serlalizable before Its parent. This ii true If either
1. the nested topactlon performs a benevolent side effect (a change to the state of the

representation that does not affect the atiaact state), or

2. all communication between the nested topactlon and h parent ts through atomic objects.

Rationale: Other uses may violate serlallzablly. [Sedton 2.2.3)

• The creation or destruction of a guardian rrust be synchronized with the use of that guardian via

atomic objects such as the catalog.

RationalB:Otherwise seriaHzabUity may be violated. [Section 10.18)

111.2. Actions and Exceptions
• H an exception raised ~ a call should not commit an action, the exception rruat be handled within

that action.

Rational6: If an exception raised within an action body is handled outside the action, the tmplicit flow of

control outside of the action will commit the action. (Section 11.5)

,.,,_,_. "" .

154 Ru ... and GutdeHnn tor U.lng Argua

111.3. Stable Variables
• Stable variables should denote resment data obieetS-

Rationals: Only data objects that are (reachable from the stable variables and) resilient are written to

stable storage when a topaction commb. (Thia can be enatred ~ haWlg lt8ble variables only denote

objects of an atomic type or obied& protected by mutex.) ~ obilda stored In stable variables

are only written to stable storage when the guardian Is created. (Secdon 13.1)

• If a bound procedure or lerator will be acceaal:lle from a stable variable,
1. the procedure or iterator being bound lft.tlt be atomic and

2. only atomic objects should be bound as arguments.

Rationa/8: The bound procedure or Iterator may be stored Jn stable storage, and non-atomic data Is

only written to stable storage once. [Section 9.8)

111.4. Transmission and Transmisslblllty
• An abstract type's encodtJ and dtlcode operations shoukl not cause side effects.

Rationa/8: The number of calls to an «"""*'or dllcOdll operaUon Is~. sinc:e arguments or

results may be encoded and decoded several ttmes • the aystem trtee to 91tabllsh commuf1icatfon. In

addition, verifying the oorrectne88 of tranemluion II,. If MDt:NM a d«:ode are simply

transformations to and from the e>Ctemal reptWaentatlon. (Seclon 14.3)

• If the naming retatlon among obleCtl to be transmitted Is cycle (e.g., a circular list) then 6l'ICOde and

decode must be Implemented in one of two ways:
1. The 1ntem111 and external repreaenlatlon 1y1>e1 nw be ldenttcal, and encodfl and decodtl

return their argument without modlying or acceaing I, or

2. The external representation object must be acycUc.

Rationals: A circular external represenlatlon may cause decode to fal. (Section 14.41

• Objects that share other obieds should be bound Into a handler or creator in the same bind

expression.

Rationals: Sharing Is only preserved among objects bound at the same time. (Section 9.8)

111.5. Mutex
• Mutual excklslon or atomic data should be used to synchronize acceas to an shared objects.

Ralionale: Jn the presence of concurrency, any Interleaving of lndMltie events ia posslbfe. Without

synchronization mechanisms, this concurrency will be visl>le to PR9'M'S· signiflcantty ~

coding and testing. (Section 8)

111.5 Mutex 155

• AH modifications to mutex objects shoukt be made inside ...,. statements.

RatlonalB: The system will gain possession of a rruex object before writing It to stable slOrage; thus,

seizing a mutex In Older to modly It wll prevent the syatem nm copytng a nuex object when It is in an

Inconsistent state. This allo prevents other proceaw from IHlng lnconllltent data [Section 15.2 and

Section 15.1)

• Nested seizes should be avoided when pauae Is used, and ...,.. must be avoided when nested

seizes are used.

Rationale: A paUM in a nested seize does not actually release possession of the mutex object.

[Section 10.17]

• If an object is referred to by a mutex object, It should not be referred to by any other object, nor

should It be denoted by a variable except when In poueuion of the containing mutex.

RatlonalB: If an object contained In a m.atex can be reached by a method other than seizing the mutex,

the mutual exclusion property of the rrutex is undermined. [Section 6. 7)

• No activity that is ll<ely to take a long time should be petformed while in a statement. In

particular, programs should not make handler call or wait for lodes on atomic objlCtS while In possession

of a mutex.

Rationaltl: Waiting tor a lock while In a mrtex is ~to cause a deadlock with other actions or
between the action holding the nutex and the Argus system. [Section 15.3)

• Mutex objects should not share data with one another, untesa the shared data Is atomic or rnuleX.

Rationale: Sharing of non-atomic objects between mutex objects Is not preserved when the nuexes

are written to stable storage. (Section 15.3)

• Mutex[t)$changed rrust be called after the last modification (on behalf of some action) to the

contained object of a mutex.

Rationale: The Argus system Is free to copy the mutex to stable saorage as soon as muaex(4$CIMln08d

has been called. Changes after the last cal to mutex(~ but before topactlon connlit may not

be written to stable storage. (Section 15.3)

• Mutex[t)$changed should be called even If the ITIJtex object changed Is not accessl)le from the

stable variables.

Ratlona/8: In a scenario where the object was accessible, become8 lnacaeufble, then becomes

accessible again, It Is posslJle that stable storage would not be updated property If this rule were not

followed. The system ~ that no problems wfth upc:tati1g stable atoraga wll arise If

mutex[tJ$dlangsdls ahvays called after the last rnodllcation to the objlct. (Section 15.3)

156 Rules and GuldaHnes for Using Argus

• An atomic type Implemented with a representation oonsittlng of aaveral rrutex obieets should use

separate topactions to ensure that the rootexes are written to stable seorage In an Older that preserves

the correctness of the representation.

Rationale: Mutexes are written to stable storage Incrementally. Sonwtlmes, subtle timing problems

can be caused by Incremental writing If this rule is not folowed. (Section 15.3]

111.6. User-Defined Atomic Objects
• If an atomic object X of type T pmvides operations 01 and ~. and action A has executed 01 but not

yet committed, then operation ~ can be performed by a concurrent action 8 only if 0 1 and ~ COl'lll1Xlte:

given the current state of X, the effect (as clescrl>ed by the sequenUal ...,.cation Gf 7) of performing

0 1, then ~ is the same as performing 0 2, then 0 1. ·enecl" lndudes both resula returned and the

(abstract) state modified.

Rationale: There are two concurrency constrainls for uaer-deftnecl momic objects:
1 . An action can observe the effects of other action8 only I thoM actloN conmltted relative to

the first action.

2. Operations executed by one action cannot invalidate the results of operations executed by
a concurrent action.

Two operations {or sequences of operation&) that comm.M In their ettect on the abstract state of X may

be permitted to run concurrentty, even I they do not comnw In their effed on the representation of X

This dtstinction between an abstraction and Its implemenlatton la CfUCilll In achieving reasonable

performance. (Section 15.4)

• H a user-defined atomic object is accesal:>le from the stable variables of some guafdtan, it should be

written to stable storage whenever an action that modlies it commtts to the top.

Rationale: A user-defined atomiC type that is not written to stable storage on topaction commit wll not

be resilient. [Section 15.2)

• The form of the NP for a user-defined atomic type should be one of the following posd>illties.
1. The rap is Itself atomic. Note that rnutex is not an atomic type.

2. The rep Is mutex(4 where t is a synchronouS type. For exaf\1)1e, t could be atomic, or It
could be the ~ion of an atomic type, I the opendiona on the this fictftious atomic
type are coded In-line ao that the entire type behavel lllOmlcally.

3. The rep is an atomic collection of mutex types containing synchronouS types.

4. The rap is a rrutable colectlon of synchronouS types, and obtt* of the representation
type are never modifled after they are lnlialized. That ii, nHltlon may be Ulect to cr8ll8
the initial state of such an object, but once this haS been done the object fftJst never be
modified.

Rationale: In any other case it wHI be lrnpossibte to guarantee the ntllllence or serlalizabillty of the

type's objects Independently of how they are used. [Section 15.3)

111.7 SUbordlnat• Where Clau111 157

111.7. Subordinate Where Clau-
• A where clause requirement on a cluster as a whole should be used whenever the actual parameters

make some difference in the abstraction. For exaft1Jle, In a Mt cluater, the type ~er's equal
operation mJ&t be required by the cluster as a whole, In order to preserve type safety and the

representation Invariant.

Rationale: Argus auumes that requirements that are not pllced on the cluster as a whole do not
affect the semantics of the abstraction or the representation. (Section 12.6)

158 Changes from CLU

IV Changes from CLU 159

Appendix IV
Changes from CLU

This appendix lists the changes made to Argus that .,. not upw8fd compatible with CLU, that Is, those

which are not merely additions to CLU and that would cause a CLU program to be lltegal or to run

differently.

IV .1. Exception Handling
Unlike CLU, which propagated unhandlecl exceptions (by turning them into failure exceptions) and gave

the failure exception special status, unhandlecl exceptions in Argus are considered errors and always

cause a crash of the gu&ldlan, and fa/lure Is not given speciaj llatus. All exceptions signaled in a

procedure, Iterator, handler, or creator rrust be declared in the routine's helder. and there are no impUcit

resignals of failure exceptions. See Section 11.6 for details.

IV .2. Type Any
The type any II now a type lite any other type, with parameterized routfnes fores, create, and is_type.

Thus the CLU manual's notion of "type Inclusion" is no longer t'l8Cauary (but there Is a new notion of type

inclusion in Argus, aee Section 6.1). The any$tOrce routine only signall "Wft>ng__type" if the any ot>;ect's

underlying type is not Included in the type parameter given, but the type of the resul of any$force is its

type parameter. The any$is_type routine returns,.._ I the any object's underlying type Is not Included

in the type parameter given. The CLU reserved word iorce• was eliminated from Argus, and the creation

of an any obied is never implicit in an assignment in Argus.

IV .3. Built-In Types
Several changes to the interfaces of the built-in types went necessitated by the changes to exception

handling. Specifically, the following changes were made to the bult~ types.
1. The ming operations ooncat, append, s2ac, acas, s2sc. and ds, can now al signal llmlts.

A string •eral that would be too large to r&pnNIM wll not be compiled.

2. The aequence operations •. flll _copy, addh, add/, and concat can now all slgnat /knits. A
sequence constructor that would be too large to repr918nl wll not be compled.

3. The array (and atomlc_array) operations aeate, pr«llct. •t_low, fil, flll_oopy, """"·and
add/ can now all signal limllll. An array oonetn.teeor tNI ClmOt be legally ,..,,...med wil
either not be compiled (If this can be detected at ~ time) or wll lignat llmlts.

4. The copy operations of the structured bull-In type generators, and the fll_()O/J)' operatk>nl
of aequence and array (and ac_...,.,,, a1ow the oopy operations of their type
parameters to have a fallure(811tng) exception. They wll ,...... IUCh a fllilln exception.
(Note that the type Inclusion rule allows a type parameter to be used even If its copy
operation does not have exceptions.)

5. The similar operations of the built-in structured type generators allow the similar operations
of their type parameters to have a fallure(Mrtng) exception. They wil resignal such a failure
exception.

6. The equal operations of the type generators ~. stnlet, and oneof, and the slmllart

160 Changes from CLU

operations of the type generators array, NCOld, and variant (and their atomtc
counterparts), allow the equal operation of their type parameters to have a fallunl(Mltng)
exception. They wil resignal such a falhn exception.

7. The eltlmfmfS Iterator and the slmllar and aimllllr1 PfOC8C*na of the type generator mrray
(and atomlc_Sl'llY) w4ll ratee a fallcn(llltng) exception If ttle May argument is RIJtated In
such a way as to cause a bounds excepUon when an element II telched.

IV .4. Type Inclusion
Type inclusion (the new notion, see Section 6.1) Is used In al contexts, lncludlng the dtlCls of except

and tagcaae statements, where CLU had previously recJJlred type ~·

IV .5. Where Clauses
CLU had syntax in the where clause (specificalty the producUDn for op_ name) that allowed one to

require an instantiation of a type parameter's generator. This Hltle uaed feature has been superseded by

the mechanism descrl>ed in Section 12.6.

IV.6. Uninitialized Variables
An uninitialaed variable refeNnce error Is defined to cauae a crash of the guardian, rather than raising

a fallunl exception, which could conceivably be caugte.

IV. 7. Lexical Changes
Several new reserved words were added. In addition, the semicolon (;) was banished from the syntax.

IV .8. Input/Output Changes
The Input/output data types (fie_ name, stream, and istream) and the ll>rary procedures detcrt>ed in

appendix Ill of the CLU manual are not furnished by the Atgus system. OUr currert implemenlation of

Argus provides a ksyboan:I cluster for Input and a pstream clu8ler for output. In addition, most of the

built-in types currently have print operations delined, for pratly-prlrjlng objact8 onto pstreams. These VO

mechanisms, however, are stlU experimental, and ao are not documenled In this reference manual.

Index

Index
• 24
$ 47,"8, 79
% 20,115
& 53
• 23
(*) 71
- 53,55
+,-,etc. 53
. 27,58
••• 17
II 53

~-==-~·J }. [] 17

<,>,etc. 53
= 53
@ 44,51,57
a 21. 58
\ 23
I 53
11 53
- 53

Abort 8, 10, 60, 11, 18, 72, 88, 97
Md axoeplion handing 73
of a ramota cal 8Gllon 41
of a aubacllon 9
qudier 51, 81, 18, 72

Action •• 58, 88, 97
abortort w •latlmellls 60
..,..._ acllon 41, 43
anceatora 10
Md •IC08ptlon handing 73
CllllMl!on 41

C08t*' ·-mant • delldlock 13
....... 10
dlvilllle llnRlndon of 60
....... .-nient 59
nea1Bd 8
nealld lapactorl 11, 80
orphwt 12, 81
parantof 9
aubacllon 8
'9rminllllon 80, 89
tDpacllort 9
s.e ao atomic

~lldion 41,43
Actual argument 40
Acll.llll f*lll1'l8la' 60, 81
Anol8tor 10
Arrt 22, 24, 32, 150

\WIUI CLU 159
vem.. image 32

Argument
actual 40
\WIUI psameter 80

Amt'f 25, 52, 130
canstruclor 26

A88lgnment 4, 39, 40
Md conamency 39
implicit 3lil
mt.Hple 39
simple 39
..... lent 39
type checking for 39

Alomlc 3, 8, 97

acllon 8
built-in atomic lyJ>N 9, 30, 133, 141, 146
ollject 9
type •• 97

Atamlc m-r 30, 52, 133
Atamic:NOOld 30, 52, 141
ADnlc _ varlllnt 30, 64, 146

~8.89
Bind • •...-so

Md 8qlMllty 49
Blod< 51
8loc:ik UVclU'8 36
BNF 17, 107
Bodr 57
8ool 22. 54, 121
Br1Nlk 83
Buill-tn

MDmlc types 9, 30
type 22, 119

Bu11Mn•
_..CLU 159

c.ii 4, «>. 41, 44, 50, 51, 57
Miion 41
by llwlng 4, «>
by Wille 4, 12, 41, 93
~ 44,51
.. lll'lMl 50,
..... «>
......... 43 ,..........,
....... 11,41,44,50,51,89
....... of~- 44
........ .,_ .. 43
...... It 57

c.ii llllllion 41, 43, 44
Cad M
C8'lllDg 15
CMI' 23, 125

...... 115,23
Clo9ut9 48
CLU 3. 11, 21, 24, 73, 151 bulHn.,,.. trllcen from 22

rlla.awfrom 159
ciu.... 77
Comm.

COA.-ollng IO
CoeMrr 58

.......... 59
ComrMnt 20, 115
Commll •• 10, •• 60, 89, ... 97

Md ... plloft...... 73
ODIM 'II d dlHIAdMt 10
.......... Miion 41
of•~9 '° 10
... ,... commit protlMx>I 8, 60

~8,38,38,58
Co.1111111 •.47,11
~52

.... 28,52
MM for ..-.-ddnecl ~ 52
l9CGftf 27, 52

161

162

sequence 25, 52
stnJCt 27
SlrUc:tura 52

Continue 63
Conlroling coarm 60
Cor 54
Crash 8, 85, 89

and own vslables 85
recover code 8
l'8ClOY9l'Y 89

Creator 7, 11, 32, 44, 48, 88, 149
bound 49
equality of bound crealOr5 49
type 149

Creator cal 44
as expnllaion 51
aa atatament 57
sernanlic:8 of 44

Creatortype 32, 149
Critical l8dlon 13, 66
Cv1 78

Data abalrllction 7, n
Datatype n
Deadlock 13
Declaration 36, 57, 78

.. statement 57
simple 36
with inlllallzation 36

Decode 12, 21, 41, 43, 49, 94
DesaipCion unit 15, 84
Divillble

'8nninallon 60
Divialble termina1ion 60
Down 55, 78
DU

See also c:leec::riptlon unit

Effects 119
Else 62
Elaeif 62
Encode 12. 21, 41, 43, 44, 49, 61, 94

wilhbbf 49
Enlar 58
Entity 48
E4"* 37, 79
Equme mocllle 34, 79

..... ice 47
Equaled idenfter 47
Example

key-iaem table 95
replicaled data base 60
spooler guardian 90

Except 70
Exception 41, 69

action lermination 73
hMCler 70
handing 70
name 69
rai8e 70
reault 69
unhanded 73
versus CLU 73, 159

Exit 72
ExpnlSSion 47

condtional 54
forms of 47

External reprasentation type 12, 94

Failunt 11,42,43,44,73
of~ in a l8mOllt call 43
venM CLU 73, 159
Seeallo crmh

F .. 22, 121
Feklh 51
Floalfnt paint

See 18111
For 62
Force

Seeallo My
ForellCh 59
Fork 58
FonMI

......... 40,71
,...,.... 80

Gel'lllllllm 21,80
inallntllll lft 11

Gee It
Glablit otij8ct 3, 7
Gu..tln 5, 7, 15, 31, 41, 44, 87

......... code 89
crmh 73
..... 11,44,81
.... 17
gtalla1Wtage15
....... 31,..,
~90
l'9CXMfJ •
........... 90
......... 17
.... 17
~IO
tllrmilllan 87,90
typeof 31
w,, interface 31
~ta

HMCler 7, 32. 89, 141
bound 49
call 41
......., of bound Mnclera 49 -"',.,1on

H ... "'8 •. 141
Hidden..... 71, IO

ldenlller 19
...... 47
See Mio ictn, name

ldn 35, 115
.,.,.. .,.,. 35

If 82
Image 12, 21, 32, 93, 150

.,.,.. .,,, 32
See.,-. image

lmmullbllt 3, 21
lnclhrlal:llllr •
lndlwilllt921
1~1to

versus CLU 160
ll'IStllrm 11
I,......_ 80
lnsllnll•;n 11, 160

type dlec:liltt of 13
Int 22, 121

Index

Index

ltlndor 48, 62, 76, 148
bound 48
equality of bound i'8ndor8 49
type 148

ltertype 148

Keybosd 160

Leave 61
Lexicographic order 126, 138, 139, 141
Library 15
Literal 20, 47

char 115
int 115
real 115
string 115

local 3
cm! 40, 50
object 7

Looking 9, 10, 13, 30
deaclock 13
for bulll-ln lllomic types 9
table of locking rules 10

Loop 62

Mocitles 119
Module 5, 75, 87

...... lillllon of 80, 81
psamHtrized 80

Mutable 3, 21
.,... alDmic 22

Mutltx 11, 33, 91, 151
changed operation 99
~99
multiple 104
sharing 100

Name 35, 115
veraua idn 36

Neatlld action 8
Nestlld tapac;tiol'I 11, 60
Nil 22, 120
Node 34, 44, 120

of gUMlan creation 44
Null 22, 120

Object 3, 21, n, 78
abmlct 78
a v.iue of expreuion 47
atomic 3, 21, 97
ooncretl 78
global 3, 7
immutable 3, 21
implamei ltatial I of n
loClil 3, 7
mutable 3, 21
non-alOmic 21
retarences 3
repiaeen111tion n
sharing 3, 96, 100
s&able 3, 7
1rWllmluible 3, 12, 21, 93
lranamiuion of cydlc objects 96
veraua variable 3
valalile 7

Oneof 63, 143
Opbinding 81
Operation n

1

imMllbllty 21, 119
Operamr 20

binary 53
inlx 53
~54
,..... 53

"'*' 53
~ '9r 82,84
OrpMn 12, 44, 11
Owilr"'9w 119
Owndlla 41,15
OwnVlfilllllt 15

and...., MCOVery 85

p..,. .. r 47,80
.... 81
........ 12
W~IO

Pllau11• r n 80
p 21,81

i of 81 ,,... . p._.
Poat 119
"""'1111 153
Pnt n•
Pn111ll11 ll8 54
Pflndpal argument 30
Print 1IO
p 71
PJQCldunt 48, 75, 148

bound 48
..... 48
equally of bound prociedunia 49
trPe 148

PJOCeea 8,!8
See allo action

PJ9GfWpa 148
,,....... 180
~loken 20

ClullleJ'
...... !8,11,88
acllon, tapaclia1 SQ

Raile 70
Aa.:lloak.
RNdlJ' 30
RMI 23, 123
A9oDJd 52, 139
~27

Aloowt'aode •••
Al-. 8,97,98
Aloewry 8, ... 17
IWlrS
........ 14,47
Flllmaelcal 11,41,44,50,51,89

Wlticlof 43
~ example 60
~..,., n

ODI 71
........ 12,94

Aecped ..-ion 81
Als.wdWORt 19, 115
R11i1Rlll 72
R11lsnoe 97, 98 a.... NICOV8l1lble
RsUiclan 80, 81

163

164

Result 47
RelUm 61
Routine 75, 76, 90

equafity 83
See allo Iterator, procedure

RPC
See allo ntmotlt call

Rules 153

Scope 36, 78
rules 35
unit 36

Seize 66,98
Selection

of component 51
of element 51

Self 48, 88
Sepa'ator 19, 20, 115
Seq.»noe 25, 52, 128

conellUCtOr 25
Seri8lluble 8, 9, 67, 97
Set operation 58
Sh8ilng 3

and mutex 103
and lransmilaion 96

Signal 89
See allo exception

Spooler guardian 90
Stable

object 3, 7
818l8 8, 87
8IDnlge 8, 97
81D1'11ge Md oloeW8ll 49
storage l'WCCMll'y 89
v8ri8ble 3, 87
See allo ICll

Stllleni61'1t 57
abort braak 83
abort continue 63
abort i.ve 81
abort PNfix 59
abort,.... 72
abort return 81
abort signal 69
aaaigrvnent 39
bled 58
braak 83
coenter 59
component update 58
cancltionlll 82
continue 63
control 57
element update 58 .,,.., .
•>apt 70
extt 72
for 82
k>rk 58
if 62
ieenation 62
leave 81
pause 86
resignal 72
reun 11
seize 86
signal 89
tagcue83
tagtest 64

'8g#llil 65
tlm'linlla 87
upc:lm58
whle 82
yield 12

Stare~ 51
SWlng M, 121

....... chs-=-t*
Swct •• 12, 138

COAllMfllr 27
S""*"'8

..... -.ct Sa...,.,,, •. 10, 41, 50
~39.97
Synclwonoua ..
Syntax 107

Table exmnple, nn.nliesion of 95
T..-e63
T..,..._ 84
Tagwalt 65
Terminate 87
TarmlnatiDn

......... 89
of• 87,90
of• 40

Theft 12
Tohen 11,115
Topeolaft 9, 50

neetad 11
Twl11lllr 3, 12, 21, 93

olljlct 12
T 21,41, 78,14,93

-- 14 - ,... ... rind mocUell 94
True 22, 111
Two-phw eDMm1t I, 59, 80, 73
Type 3, 4, 16, 21, 39, n, 81

.... 81
MDlnic 9, 97
bt&ln 22, 119
built-4n alDnlic \'PM 9
CGfN=tiW 4,.
edlmll llalion 12, 94
g9118f111Dt" 21. 80, 81
~ 31
implm• ••••of n
lndullarl "· 22 ofaa.tDr 32, 149
of• 31 of•,.., 32.149
of• 148
of. Pfl"ilduN 148
,,.,.. ... 34,11
plNIMICrillld 9, 21, 80
aaMty 4
.......... 12, 21, 93
........... M,12.n
........ 12 ~

Type dwcNt'I 11, 38, 13
of an inlllll lid mn 13

Type Nlulion 4, 22
Y919U1 CLU 1eo

Type_epec 21

Index

Index

Unavailable 11, 42, 43, 44, 59, 60
Unhandled exception 73

versus CLU 159
Uninitialized variable 36

versus CLU 160
Up 55, 78
Update statement 58

Value 47
Variable 3, 36, 47

own variable 85
stable 3, 97
uninitialized 36
versus object 3

Variant 63, 144
Version

of an atomic object 9
Volatile

object 7
state 8, 87
variable 87

Where clause 80, 160
subordinate 82

While 62
Write lock 9
Writer 30

Yield 62

165

This blank page was inserted to presenie pagination.

Report # Le. 5-1@..-.. L(oo

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory (Al)
~ Laboratory for Computer Science (LCS)

Document Type:

~Technical Report (TR)

D Other:

0 Technical Memo (TM)

~-----------

0 o cum en t Information Number of pages: r1s{1~1~1m"<if"SJ

··-

- Nat to Include 000 flnM. prlnW int:ltr'UCtiona, etc ••• Oft8lr'1ll paoes crif.

Originals are: Intended to be printed as :

~ Single-sided or D Single-sided or

D Double-sided ~Double-sided
Print type:
D Typewriter D l.MerPriN

D Ink.let Printer 0 other:.~~~--~-
Check each if included with document:

~D Form (~) D Funding Agent Form

D Spine 0 Printers Notes

D CoverPage

D Photo negatives

D Other: -----------
Page Data:

v ~ ; ~ . '"T"'"'T') ,... f AC!
BlankPageS(llr,.........,:.G \Lj \~ IZ i6 rG (;<6 AMJf'A~f:'S l-'oLl..ow1iJG'" '"l.J' t"

I\))) J) :> I ~fti\!2\>

Photographs/Tonal Material,.,,..........,: _______ _

Other (nall9,.,... •,:

Description : Page Number:

=r',D>f\CT(ll)f'ij? ! (1 - fJsJ Y.N \t#LF ff\'if", \A.tv*'1;e-!'l 0 LN-J~
; - v ,~;, u.Ni! GLAN">, I ' lk5

Scanning Agent Signoff:

Date Received: _fr 3' 11 (, Date Scanned: _j_/ ~ I J..G..

Scanning Agent Signature: __ ~ ',"-'Yv"""""-" . .._1 ...:::i~""""'"'~~-
1

Date Returned:) I "- , ,, ---

~~:·!?· :,:;:~~.' .~·- """:' ' •t;) J• •• ,'7 ,,

Mfft6&\thnuN of 'THIS PAGE

REPORT DOCUMENTATION PAGE
1•. REPORT SECURITY CLASSIFICATION 1b. nsa•R"-t"'s s

Ut;iclassified
2•. SECURITY CLASSIFICATION AUTHORITY • . ~·~ ·n~ 'J. -~~ • ..,..,/flit. ~ °' ..-.cl'Vnl ,,

...

2b. DECLASSIFICATION I DOWNGRADING SCHEDULE Approved for public release; distribution
is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. -.-n-ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TR-400 N00014-83-K-0125

6-. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYM80l 7•. NAM£ OF MONITORING ORGANIZATION
MIT Laboratory for Computer (If .,,,..,.,

Office of Naval Research/Department of Navy
Science

6c. ADDRESS (City, State, •nd ZIP Code, 7b. ADDRESS (Clty, State, Mid ZIP Codt>

545 Technology Square Information Systems Program
Cambridge, MA 02139 Arlington, VA 22217

la. NAME OF FUNDING I SPONSORING 8b. OFFICE SYM80l 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If .,,,..,.,

DARPA/DOD
8c. ADDRESS (City, St•te, •nd ZIP Code) 10. SOURCE OF FUNOING NUMBERS

1400 Wilson Blvd. PROGAAM PIQJECT TASK WORK UNIT
Arlington, VA 22217 ELEMENT NO. NO. NO. ACCESSION NO.

l 1. TITLE (Incle.Id. Security Cl•uific•tion)

Arsus Reference Manual

12. PERSONAL AUTHOR(S) Liskov, Barbara; Day, MarY; llerTflly, MaurTce; "Jonnson, -Yau-i; Leavetrg, \;B:ry

~~ditor): Scheifler..L Robert_i_ and Weihl..L William
11•. TYP£ OF REPORT l'3b. TIME COVERED 14. DATE OF REPORT (YNl',Montll,O.y) 115. PAGE COUNT

Technical FROM TO 1987 November 165
16. SUPPLEMENTARY NOTATION

r
~' '•

17. COSA Tl CODES 18. SUBJECT TERMS (Continw on,..,.,. if nece.,.,, •nd identify by block tNlmber)
FIELD GROUP SUB-GROUP Distribnted systems, fault-tolerance, nested transactions,

concurrency, concurrency control, locking, persistent
st.oraize..._ .Ahs_tract. data :_t_vnea •. atPmicc bbjecth. r8lll0te _{_cont)

19. ABSTRACT (Continw on reverse if necessary •nd if#ntify by blodc '"""'-'>
Argus is an experimBntal language/system designed to support the construction and

execution of distributed programs. Argus is intended to support only a subset of the
applications that could benefit from being implemented by a distributed program. Two
properties distinguish these applications: they make use of on-line data that must remain
consistent in spite of concurrency and hardware failures, and they provide services under
real-time constraints that are not severe. Examples of such applications are off ice
automation systems and banking systems.

Argus is based on CLU. It is largely an extension of CLY, but there are number of
differences. Like CLU, Argus provides procedures for procedural abstraction, iterators
for control abstraction, and clusters for data abstraction. In addition, Argus provides
guardians that encapsulate and control access to one or more resources. Argus also
provides equate modules as a convenient way to refer to constants. As in CLU, modules
may be parameterized, so that a single module can define a class of related abstractions.

'' '.I

20. DISTRIBUTION I AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
Q UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. D DTIC USfRS s.ifie-4_

/

f
1 •

22•. NAM£ OF RESPONSIBLE INDIVIDUAL z.a.:' AfNC°*' 22c. OFFICE SYMBOL
..J.wlY.. Litt.lei Publications Coordinator (617) 253-5894

c . DD FORM 1473, 84 MAR 83 APR 9drtion may be UMd untitetlhHlted.
All other editions are ot.ot.te.

SECURITY CWStF!CA T!QN OF THIS PAGE

..,.., ···--· Mltlfle ~ - ~
Unclassified

18. procedure call, orphans, exception handling.

