
~-----......... - ~":•c •. ,.~~;1.tOIJ.~J.MMOMi!IJol••t~:·;...,.,,,.,,,,"'>""''' •··» ,,,,,,M.,,.,., .. ·~~·"•w·"""•'
:;,;;.{~\-·:··~

KOLA:
Knowledge Organization LAnguage

by

Yeona Jang

@Massachusetts Institute of Technology 1988

This research was supported in part by the ITT international Students fel
lowship program, in part by National Institutes of Health Grant No. ROI LM
04493 from the National Library of Medicine, a.nd in pa.rt National Institutes of
Health Grant No. R24 RR 01320 from the Division of Research Resources.

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

KOLA:
Knowledge Organization LAnguage

by

Yeona Jang

Abstract

The focus of this research is on a representation of knowledge tha.t captures
the structure of a domain into the computational model for efficient retrieval
and reasoning. With this desideratum in mind, a concept-based knowledge
representation system called KOLA (Knowledge Organization LAngua.ge) is de
scribed.

KOLA extends the expressive capability of concept-based representation
systems by allowing the distinction between definitional a.nd nondefinitiona.l nec
essary conditions. KOLA allows explicit decla.rations of properties of relations
between concepts (roles or attributes) such as transitivity, symmetry, and so on.
The explicit representation of knowledge about knowledge helps knowledge to
be represented vividly, and reuoning to be performed efficiently. Furthermore,
detailed filler references allow instance-specific information to be represented
and manipulated effectively.

In KOLA, the terminological reasoning is carried out in a way similar to
other concept-based representation systems. The assertional reasoning is per
formed using an instance network which gets refined, as instances a.re created
or modified. This allows some of aBSertionaJ. reasoning operations to be reduced
to the simple graph searching operations.

Keywords: Knowledge Representation System, Fra.me-based knoweledge rep
resentation, concept-based knowledge representation.

KOLA 1

Acknowledgment

I would like to express my sincerest thanks to the following:

Professor Ramesh S. Patil, my thesis supervisor, for his kindness, patience, and

keen advice throughout this project;

Professor Peter Szolovits, for his insightful advice for this project;

Professor Robert Halstead, for helping me to feel that Tech. Square is a cozy

place not a scary as it appeared when I came to U.S.A. and met PPGers;

ITT, for providing the support for me to study in the right place through the

international student scholarship program;

Alexander T. Ishii, for his unforgettable, unfeigned help in editing this thesis;

Michael Wellman and Ira Haimowitz, for their helpful discussion about knowl

edge representation systems;

Dennis Fogg, for his good humor and for helping me to remember that I am a

human being who is a social animal;

All members in the Medical Decision Ma.king Group, for providing a pleasant

working environment;

My two brothers, for incessantly presenting me the sweet feeling that somebody

is caring about me; and

My parents, who believe that I can do whatever I want, without whose support

and love I would be lost.

Contents

1 Introduction

1.1 Focus ...

1.1.1 Definitional and nondefinitiona.l information

1.1.2 Need for a mechanism to reference role fillers .

1.1.3 Types of relations between concepts .

1.2 Outline .

2 Knowledge Representation Systems

2.1 What Knowledge Representation Systems should have.

2.1.1 First order Predicate Calculus

2

3

3

5

6

7

9

11

12

2.2 Semantic-Network-based knowledge representation system 14

2.2.1 Its Merits and Demerits 14

3 KL-ONE and its Offspring

3.1 KL-ONE

3.1.1

3.1.2

3.1.3

3.1.4

3.1.5

Concepts and Roles .

Specialization of concepts and Classifier

Instances in KL-ONE .

Reasoning in KL-ONE

Summary

2

18

19

19

21

22

23

24

KOLA

3.2 KANDOR.

3.3 KRYPTON

4 Example and Observations

4.1 Example for explanation

4.2 Difficulties encountered .

4.2.1 In Terminological Knowledge

4.2.2 In Assertional Knowledge ..

5 KOLA

5.1 C-World

5.1.1 Primitives

5.1.2 Subsumption Relationship and the Classifier

5.1.3 Role/ Attribute Properties

5.1.4 Knowledge about Terminological Knowledge

5.1.5 C-World Utility .

5.2 I-World

5.2.1 Instances

5.2.2 Instantiator

5.2.3 Detailed Filler References

5.2.4 Synonyms for instances .

5.2.5 I-World Utility

3

24

27

30

30

33

33

36

41

42

42

47

55

63

68

72

73

77

81

87

88

5.3 Semantics for Transitivity and Detailed filler References . 88

5.3.1 Transitivity 90

5.3.2 Detailed Filler References 93

5.4 Question-Answerer 94

KOLA

6 Conclusion

6.1 Future Work .

A Appendix

A.l Syntax for Concepts and Instances

A.2 Semantics of KOLA primitives ...

A.3 Algorithm for instantiator and classifier .

A.3.1 Classifier ..

A.3.2 instantiator

A.4 Running Example .

A.4.1 Terminological Knowledge

A.4.2 Assertional Knowledge

A.5 KOLA operators

A.6 KOLA's ask operators

A. 7 KOLA functions

4

101

102

105

105

107

108

108

llO

l12

l12

122

123

127

128

List of Figures

4.1 Pictorial Description of Example

4.2 Relationship between Company and Working-Person

32

39

5.1 Graphical Notations of primitives and its relations in KOLA 46

5.2 Subsumption relations possible between concepts 48

5.3 Subsumption Relationship among Patient and its subconcepts 53

5.4 Example of a role constraint 54

5.5 The effect of the declaration of synonyms .

5.6 Description of the concept Serum-HC03-Concentration

5. 7 Description of the concept Person

5.8 Concept Taxonomy with the root Serum-Para.meter

66

69

70

71

5.9 Example of the Instance Network 76

5.10 Example of the instantiation links between instances and their
concepts . 80

5.11 Pictorial Representation of Detailed Filler References 85

5.12 Example of the instance network with detailed filler references 86

5.13 Descriptions of the instances Jason and Mary 89

5.14 Example of ASK operations 96

5.15 Subsystems of KOLA and Relationship among them . 99

1

Chapter 1

Introduction

The objective of this research is to enhance the expres~iveness of a concept-based

knowledge representation system, while keeping its main desideratum: compu

tational tractability. This means that in KOLA, an expressive limitation still

exists as an inevitable result of compromising with computational tractability.

KOLA 1 is derived from KL-ONE which represented knowledge struc

turally and attempted to distinguish terminological knowledge from assertional.

KOLA has the several features that distinguish it from other concept-based

knowledge representation systems. In KOLA, an attempt is made to distinguish

between definitional necessary conditions of a concept from nondefinitional ones.

The distinction between a necessary condition with the transitive property and

one without it allows a certain kinds of knowledge to be represented succinctly

and manipulated efficiently in KOLA. In addition, using detailed filler refer

ences, KOLA's expressiveness and ability to reason with instances is improved.

1 KOLA is the acronym of Knowledge Organization LAnguage

2

KOLA 3

KOLA consists of three subsystems, C-World, I-World, and Question

Answerer. In KOLA, while reasoning about terminological knowledge is based

on the concept taxonomy, reasoning about assertional knowledge is based on an

instance network. C-World and I-World are used to build a knowledge base, and

have an intelligent user-friendly interface. For example, if they fail to carry out

their operations, they show the reason for failures such as the use of undefined

concepts, roles, or instances. Such messages are valuable in building a large

knowledge base. Question-Answerer is used to obtain information. Question

Answerer performs its operations by retrieving facts or by deducing a limited set

of inferences based on them. Information is presented in a stylized way which

helps a user to easily get a perspective on what he wants to know.

1.1 Focus

This section describes the limitations of existing concept-based knowledge rep

resentation systems which inspired the development of KOLA.

1.1.1 Definitional and nondeftnitional information

So far, emphasis in concept-based knowledge representation systems has been

placed largely on terminological reasoning. Terminological, categorical knowl

edge is an important component of a knowledge based system. For example, we

need to know whether or not the disease A with some symptoms can also be

the disease B whose ca.uses or plausible treatments are known.

In solving real world problems, pure terminological knowledge is not enough.

KOLA 4

For example, when teaching a medical student about a disease and its symptoms,

a computer tutor may give him/her a description of a patient with this disease.

Then, a patient's age may not be included in the given description, because it is

not a definitional necessary condition. However, when this disease is suspected

in a particular patient, we may need to know how old this patient is to, for ex

ample, get a piece of advice about testing or treatment. A patient's age is not a

definitional necessary condition, but is likely to be useful in reasoning about an

instantiated patient and disease. Currently, concept-based knowledge represen

tation systems has no appropriate method to represent nondefinitional necessary

conditions of a concept and, thus, every necessary condition of the concept is

represented uniquely without any distinction between them. The usefulness of

distinctions between nondefinitional and definitional necessary conditions of a

concept and its effect on KOLA's classifier are covered in detail in Chapter 5.

If we want to model not only a conceptual part of a domain but also,

for instance, a particular person and the particular situation under which he

lives, a concept-based knowledge representation system should provide us the

facilities to deal with the following: 1) how to tell a system nondefinitional

knowledge of a concept and let the system know that such knowledge needs to

be manipulated differently from definitional knowledge of the concept; 2) how

to tell the system about specific instances of a concept; 3) how to make the

system reason about the relationship between an instance and a concept; and

4) how to let the system reason about instances and the relationship between

themselves. All of these features are closely related to the assertional power of a

concept-based knowledge representation system, and have not been effectively

manipulated in the past.

KOLA 5

In spite of placing a major emphasis on computational efficiency in reason

ing, some of existing concept-based knowledge representation systems adopted

the first order predicate calculus to represent assertions and reason about them

(see, for example, [Brachman 83] and (Pigman 84]). Therefore, the problems of

inefficiency and undecidability in the first order predicate calculus still exists.

1.1.2 Need for a mechanism to reference role fillers

A concept is connected with other concepts by roles. The number restriction of

a role is used to specify how many fillers of a role can possibly be filled when a

concept is instantiated. Often, some of fillers in the set can be differentiated from

others or ordered on the basis of some common property. For example, suppose

that the role Children of the instance Jason a.re filled with the instances Kib and

Brian. Such references as the oldest-son or first-child can be known explicitly

in a domain. The property of such references is that they are instance-specific

and, thus, are not generic enough to be defined as a role. Most of existing

systems do not have a facility to deal with such information efficiently although

it is available in the domain. Telling the system that some of a role's fillers in

a particular instance can be reached via a particular reference and making the

system use it in a subsequent reasoning process is achieved with the detailed

filler references in KOLA.

KOLA 6

1.1.3 Types of relations between concepts

The possible types of relations 2 between concepts are transitive, symmetric,

and inverse .

. The existing concept-based knowledge representation systems make no

distinction between roles with the transitive property and ones without it. This

distinction, however, would facilitate the representation of knowledge, and in

creases efficiency in reasoning about what is implicit in a knowledge base. The

usefulness of such distinction will be described, including

• how it influences the expressiveness,

• how it affects the action of the classifier, and

• how it can improve the reasoning efficiency of a concept-based knowledge

representation system.

Symmetry and inverse relation between necessary conditions are also use

ful as mentioned or implemented in an existing concept-based knowledge repre

sentation system. I will focus on describing how they are implemented in KOLA

efficiently and how they affect KOLA's capability.

I will also discuss how other features such as synonyms among concepts

and a disjointness class of concepts· are represented and manipulated in KOLA.

21n a concept-baaed knowledge representation system, relations between concepts are rep

resented as necessary conditions which repreeent the relationship between concepts.

KOLA 7

1.2 Outline

In Chapter 2, the criteria that knowledge representation systems should be able

to handle and the properties which they should have are described briefly.

The family of concept-based knowledge representation systems based on

KL-ONE are briefly surveyed in Chapter 3, because the history of knowledge

representation systems based on the semantic networks until KL-ONE was dis

cussed well in [Brachman 79], and because KOLA 's direct inspiration came from

KL-ONE. The primitives of existing concept-based knowledge representations,

concepts and roles, are covered in Chapter 3.

Chapter 4 introduces an example knowledge base which is to be used

throughout this paper. Through this example, difficulties in existing concept

based knowledge representation systems are analyzed.

The details of KOLA are described in Chapter 5. In Section 5.1, C-World

which consists of terminological knowledge, including its primitives, distinction

between nondefinitional and definitional necessary conditions, distinction be

tween transitive and nontransitive necessary conditions, and the classifier which

reflects such distinctions, is described.

In Section 5.2, the instantiator which connects an instance with its most

specific concepts and builds the insta.nce network is covered. Such connection by

an instantiation link is important to perform reasoning about instances: decide

which concepts an instance under consideration should belong to. The instance

KOLA 8

network in which the structure of an instantiated domain is captured is also

accounted for.

Section 5.4 describes how Question-Answerer deals with question-answering

problems and how other two systems support for Question-Answerer to reach

the answer.

Finally, Chapter 6 covers conclusions of this project and future works to

be done.

Chapter 2

Knowledge Representation

Systems

Consider what we usually do, when confronted with a problem. First, we try to

make a reasonable decision in order to obtain as correct a solution as possible.

Second, as an intelligent agent we justify and use such a decision intelligently.

Third, we try to behave thoughtfully and deliberately. It is said that a de

scription of a domain of concern is embedded in our brain, and our behavior is

based on our beliefs, desires, morality, and so on. D. Dennett called the system

which behaves on the basis of beliefs and desires the intentional system, which

he described as follows:

I WISH TO EXAMINE the concept of a system whose behavior
can be - at least sometimes - explained and predicted by relying
on ascriptions to the system of beliefs and desires (and hopes, fears,
intentions, hunches, ...). I will call such systems intentional systems,
and such explanations and predictions intentional explanations and
predictions, in virtue of the intentionality of the idioms of beliefs
and desires (and hope, fear, intention, hunch, ...).

9

KOLA

One predicts behavior in such a case by ascribing to the system
the possession of certain information and supposing it to be directed
by certain goals, and then by working out the most reasonable or
appropriate action on the basis of these ascriptions and suppositions.

- Intentional Systems [Dennet 81]

10

He defined an intentional system as an a.gent that can predict and explain

other intentional systems' behavior, on the basis of the assumption that an in

tentional system behaves reasonably, not randomly. / AI is aimed at modeling

a domain of interest computationally and solving a problem about the domain

intelligently, just as a human being does. To make an intelligent, intentional

computer system achieve what we anticipate, internalization of knowledge some

where in the computer system is inevitable. If, however, a knowledge represen

tation system provides for us only the way of describing a domain, it should be

less useful than we expect, because there is no guarantee that all of what we are

interested in is explicitly represented in a description of the domain. Therefore,

a knowledge representation system should itself have an intelligent subsystem,

which can perform reasoning services that can draw new conclusions about the

world by manipulating knowledge internalized explicitly.

H.J. Levesque accounted for the relationship between KR (Knowledge

Representation) and the reasoning system as follows:

KR is intimately connected with reasoning, because an AI system
will almost always need to generate explicitly at least some of what
has been implicitly represented.

The basic assumption underlying KR (and much of AI) is that
thinking can be usefully understood as mechanical operations over
symbolic representation.

- Knowledge Representation and Reasoning [Levesque 86b]

KOLA 11

2.1 What Knowledge Representation Systems

should have

AI researchers have paid incessant attention to representing knowledge in an

intelligent agent. In this section, we will briefly describe the requirements of

a knowledge representation system. A knowledge representation system should

have the following qualities:

• Descriptive adequacy: ability to describe knowledge.

• Compactness: the smaller the size of a description is, the better.

• Accessibility: the ability to retrieve information easily and efficiently.

• Epistemological Adequacy: the ability to infer information we want to

obtain.

• Inferential Adequacy: the ability to perform such inferential operations

quickly and efficiently.

• Acquisitional Adequacy: the ability to be extended.

• Primitive set: the ability to compose whatever we might represent from a

small set of basic terms.

Although we want to implement a knowledge representation system with all

of these qualities simultaneously, there is the tradeo:ff between expressiveness

and computational tractability. By expressiveness, we mean 1) the ability of a

knowledge representation system to express the distinctions necessary for de

scribing domain knowledge, in other words, the ability to describe subtleties, 2)

KOLA 12

the ability to avoid undesired distinctions, and 3) the ability to leave some dis

tinctions unspecified in order to allow partial knowledge to be expressed. H.J.

Levesque described the necessity of the computational tractability as follows:

Moreover, for sufficiently expressive representation languages,
calculating these implications may be too demanding computation
ally, and so compromises are necessary. Knowledge representation,
then can be thought of as the study of what options are available
in the use of a representation scheme to ensure the computational
tractability of reasoning.

Secondly, because of the causal role of a KB, it rules out oper
ations that are not computationally manageable. In other words,
the operations on a KB need to be semantically coherent without
demanding more than what any computer can be expected to do.
To better understand these constraints, we need to examine what it
means to operate on structures in a way that respects their semantic
interpretation.

- Knowledge Representation and Reasoning [Levesque 86bJ

2.1.1 First order Predicate Calculus

.
From the early stages of Al, first order predicate calculus has been used to repre-

sent knowledge in a computer system. The expressiveness of first order predicate

calculus is so powerful that even incomplete knowledge can be represented.

In addition to being used as a knowledge representation system itself, the

first order predicate calculus can also be used as an abstract formalization to

specify semantics, to analyze and to compare different knowledge representation

systems because of its clear semantics [Newell 81].

However, there still is knowledge which may not be captured easily even

KOLA 13

in such an expressively powerful representation system: although first order

predicate calculus has situational variables, continuous processes such as filling

a tea pot with water could not be represented [Hayes85].

Although first order predicate calculus can prove whether an individual

with some properties exists in its domain, there is no operator for naming and

referring to this individual in order to re-use it in subsequent courses of reason

ing. Moreover, some inferential operations on knowledge in first order predicate

calculus are undecidable. Much effort has been made to control the efficiency of

inferential operations. The reasonable and safe control of reasoning operations

in first order predicate calculus is difficult, however, because forcing the con

trol to be redirected or halted endangers its completeness and soundness, and

eventually can destroy its clear semantics. A. Newell indicated the limitation

of logic as a knowledge representation system in [Newell 81].

Another observation made in first order predicate calculus, which is closely

related to the computational efficiency, is that the direct use of first order pred

icate calculus fails to capture the structure of a domain in representing knowl

edge. It can be said that first order predicate calculus does not represent the

real world appropriately, in the sense that pieces of knowledge represented in

the first order predicate calculus are isolated from ea.ch other without taking

the structure of the domain into account.

KOLA 14

2.2 Semantic-Network-based knowledge rep

resentation system

It has been recognized that capturing the structure of a domain, the episte

mology, is as important as the logical adequacy. With the introduction of the

semantic networks, it has become known how the structural organization of

knowledge can influence the use of knowledge in reasoning about its domain.

The significance of epistemology in a knowledge representation system may be

found in [Brachman 79].

Quillian's semantic networks initiated the attempt to organize knowledge

in order to allow an intelligent system to manipulate knowledge and to reason

about its world more efficiently. The semantic networks should be considered a

valuable advance in representing and manipulating knowledge since they allow

knowledge to be represented associatively and structurally. M. Minsky pointed

out that structural representation of knowledge allows us to understand what

is going on fast and to predict what may happen (Minsky 75]. Human-like

memory organization provides simple domain inferences cheaply by prepacking

knowledge structurally in it.

2.2.1 Its Merits and Demerits

The advantages of organizing knowledge structurally can be examined both

psychologically and pragmatically. Such advantages strongly motivate the de

velopment of a knowledge representation system in which the structure of a

KOLA 15

domain can be embedded.

First, let us focus on the psychological view point. A human being thinks

in chunks, and uses knowledge intelligently in order to solve a problem [Sowa 84].

In attacking a problem, we establish plans based on appropriate strategies in a

given environment. All of our actions require our intelligence. Our intelligence

is reflected in choosing and using knowledge to solve a problem efficiently. While

performing each step of a plan, our intelligence should lead us to make proper

use of our experiences or the solutions which were already confirmed, instead

of repeating previous steps. The structural organization of knowledge with, for

example, indexing allows knowledge to be used in this fashion.

Practically, computational efficiency deserves attention, especially in a

computer system with limited resources. It may be useless and even danger

ous to a patient in the emergency room to require extended period of time to

propose a plan for tests or treatment. Maintaining knowledge structurally can

make the reasonable control of flow possible, and greatly influence the efficient

use of knowledge within a reasonable amount of time. The advocates of se

mantic networks argue that finding a solution within a reasonable amount of

time is as important as the expressiveness of a knowledge representation system.

A number of knowledge representation systems based on semantic net

works have been developed and used in AI. Such systems share the following

common properties. The knowledge representation system provides the stora.ge1

1 Hardware and the software technologies for memory management allow a large amount

of knowledge be stored with reasonable cost and access time.

KOLA 16

for knowledge about a domain and efficiently performs a set of inferences over

the knowledge encoded. The problem in such semantic-network-based knowl

edge representation systems is that the cost of computing inferences may be

remarkably sensitive to small changes in the expressiveness of the system. Even

a modest representation language can prove intractable 2 • Such tradeoff between

computational tractability and expressiveness of a knowledge representation sys

tem is discussed in [Brachman 85, Moser 83], [Levesque 84], and [Nebel 88].

Frame-based knowledge representation systems are less expressive than

first order predicate calculus. Ensuring to solve a problem within a reasonable

amount of time requires that only the restricted class of sentences be allowed in

a frame-based knowledge representation system.

Another common disadvantage of concept-based knowledge representation

systems is insufficient assertional ability. In KL-ONE, assertional capability is

limited to asserting statements of existence, establishing statements of corefer

ence of descriptions, and making statements of identity of individual constructs

in a particular situation.

KRYPTON, to be described later, provided two types of representation

languages, TBox and Abox, in order to exploit advantages of both first order

, predicate calculus and a frame-based knowledge representation system.

In summary, representation languages based on semantic networks or

frames have an intuitive appeal for forming definitional descriptions but are

2Complexity of the determination of subaumption relations in a family of frame-based

languages is analyzed in [Brachman 84}.

KOLA 17

severely limited on assertional power, while those based on first order predicate

calculus are less limited assertionally but are restricted to primitive, unrelated

descriptions.

The two competing factors in knowledge representation systems are ex

pressiveness and tractability. When we attempt to design, implement, and com

pare existing knowledge representation systems with each other, the analysis

of the computational cost and expressiveness should play an important role.

Yet, when we try to build a knowledge representation system, we want it to be

expressive and capable of completing its operations in a reasonable amount of

time. More details about expressiveness, tractability, and the tradeoff between

them may be found in [Woods 86], [Brachman 84], [Levesque 84], and [Nebel 88]

Chapter 3

KL-ONE and its Offspring

This section covers the brief history of AI knowledge representation systems

which motivated me to implement KOLA. Specially, I will analyze the advan

tages and disadvantages of KL-ONE and its offspring, KRYPTON and KAN

DOR.

In 1975, Minsky introduced the concept of frame which partitions a se

mantic network into easily identifiable concepts. His idea, which was adopted

from Fillmore's Linguistic case frames as well as from Quillian's semantic net

works, was based on the fact that human memory is associated in chunks, and

ideas are interlinked. Minsky's frames enable hypothetical situations and rela

tionships between them to be pre-described.

Semantic net-based knowledge representation systems can be divided roughly

into two groups: frame-based knowledge representation systems based Qn Min

sky's frame, and concept-based knowledge representation systems which stem

from Brachman's KL-ONE. The subsumption relationship defined in KL-ONE-

18

KOLA 19

like knowledge representation systems is different from tha.t in frame based

knowledge representations. Throughout this pa.per, I classify KL-ONE and

its offspring as concept-based knowledge representation systems based on such

differences. Details of the differences between a concept in KL-ONE and a

Minsky's frame can be found in [Woods 86].

FRL [Goldstein 76], Concepts [Lenet 76], KRL [Bobrow 77], UNITS [Stefik 79],

and SRL [Fox 79, Wright 84] should be considered as frame-based languages.

CAKE which has the layered architecture also employs frames [Rich 85].

In the rest of this section, a brief analysis of concept-based knowledge

representation systems is given, in order to provide a perspective on KOLA.

3.1 KL-ONE

KL-ONE, a harbinger of concept-based knowledge representation systems, was

developed by Brachman (Brachman 79].

3 .1.1 Concepts and Roles

KL-ONE consists of a fixed set of epistemologically1 primitive structure types:

concepts and roles.

A concept defines a class of things in a domain (Moser 83]. A concept

does not assert any particular individual in the domain, and thus it does not

bear any mention of existence at all. For example, although the Unicorn does

1The definition of epistemology is given in [Fox 84].

KOLA 20

not exist in our world, we can define and use it as a concept in a subsequent

problem-solving process. Each concept consists of necessary conditions for an

object to be its member. It can be viewed as a template with a well-defined

structure used for modeling a class of things in the domain. Assertions about

the domain are made using concepts.

Concepts are divided into two classes - primitive and defined - based

on whether or not all necessary conditions for an object to be a member of a

concept are specifiable. Considering a concept as primitive means that it is im

possible and undesirable to specify a.II necessary conditions of the concept. Most

natural things such as person, apple, tree, etc, should be classified as primitive

concepts. A concept whose necessary and sufficient conditions can be specified

is considered defined.

Another way in which a concept is viewed is based on how many instances

for a concept can exist in a domain - individual and generic. A concept which

can have only one instance in the domain is defined as an individual concept.

A concept for describing, for example, the sun in a solar system is classified as

an individual concept. On the other hand, concepts which can have more than

one instance in the domain are considered generic.

Roles specifies the logical association between concepts and represent the

necessary conditions of a concept. Roles in a concept do not specify default

assertions. Therefore, inherited roles in a subconcept cannot be canceled. Roles

determine the structure of a concept. In other words, these associations can be

used to give a concept its own structure which essentially differentiates it from

KOLA 21

its superconcepts. A role can itself be differentiated, forming a role taxonomy

similar to a. concept taxonomy.

3.1.2 Specialization of concepts and Classifier

Recall that a concept ha.s its own internal structure which differentiates it from

its superconcepts. A concept can be defined from more general concepts us

ing the structure-forming operators, inheriting all components of its supercon

cepts. This means that there is a subsumption relationship between them. The

subsumption relationship between concepts is determined computationally by

manipulating the essential differences between concepts.

The essential differences between concepts are defined by specializations.

A specialized concept can be created either by conjoining two or more concepts,

by role restrictions, by role differentiations, or by role constraints. There are

two kinds of role restrictions - value restriction and number restriction. Details

of concept specialization are discussed in Section 5.1.2. Using structural dif

ferences between concepts, the claasifier can decide mechanically the proximate

genus of a newly defined concept and its subsumees. KL-ONE should be con

sidered a.s an implementation of a structural inheritance taxonomy.

The subsumption relationship is defined u follows. A subsumes B if and

only if all instances of B are instances of A. Formally, let A and B be two

concepts, and E and '1i be sets of all instances of A and B, respectively. Let b

be any element of '1i. Then,

A subsumes B if and only if Vb E '1i, b E E

KOLA 22

We can see that subsumption specifies a necessary set inclusion. The subsump

tion relationship is transitive and nonreflexive, which imposes a partial ordering

on concepts. If C1 is the subconcept of C2 and C2 is the subconcept of Ca, then

C1 is the subconcept of Ca. The classifier uses the transitive property of the

subsumption relationship in terminological reasoning.

When a concept is defined, it is placed between its most specific super

concepts and most general subsumees. This process, called classification, is

performed automatically by a concept-based knowledge representation system,

using a classifier. The result of the classification is the taxonomy of concepts.

The determination of subsumption relations is NP-hard, if it is allowed to

express quantification or disjunction in the concept-based knowledge represen

tation system, or if the representation of incomplete knowledge is permitted.

To ensure that the solution to a problem in a domain is reached in a reasonable

amount of time, restrictions are imposed on expressiveness in a current concept

based knowledge representation system, as mentioned in Section 2.2.1.

3.1.3 Instances in KL-ONE

An instance is the incarnation of a concept. An instance is a member of a con

cept, and is ·assertional in nature. Definitions and assertions in KL-ONE roughly

correspond to terms and sentences, or attributive and referential distinction

[Martin 81], respectively. While KL-ONE has the power to form descriptions,

it has weak assertional ability and, thus, it is not easy to make assertions about

a domain. For example, there is no appropriate way to tell the system about

KOLA 23

instances in KL-ONE. An instance is treated as an individual concept in KL

ONE, which blurs the distinction between concepts and instances. Representing

an instance as a concept is inconsistent because a concept is only a definition

of a term. Treating an instance as a concept ma.kes an instance to be included

inappropriately in the terminological box. However, we want to keep the ter

minological box as generic and succinct as possible.

3.1.4 Reasoning in KL-ONE

In order for a knowledge representation system to be useful, it must have the

ability to reason about its domain as well as represent knowledge. KL-ONE, as a

knowledge representation system, includes an inference mechanism for drawing

the consequences of the use of descriptions. Inferential capabilities of KL-ONE

are provided by the classifier. The primary function of the classifier is to find

relationships among concepts and to construct a concept taxonomy by compar

ing their structures. The classifier, then, carries out terminological reasoning

about concepts based on the concept taxonomy built: for example, reasoning

about concept subsumption.

On the other hand, as discussed in Section 2.2.1, KL-ONE has limited

assertional ability: its assertional capability is limited to asserting statements of

existence, establishing statements of description coreference, and ma.king state

ments about the identity of individual constructs in a particular situation.

KOLA 24

3.1.5 Summary

Although the assertional power of KL-ONE is weak, it attempts to distinguish

definitional terminological knowledge from assertional knowledge. Such a dis

tinction of terminological· knowledge from assertional knowledge can improve

the aesthetics of knowledge representation. First order predicate calculus does

not make this distinction, and even definitions a.re expressed as predicates, just

like assertions. KRYPTON and KANDOR, both of which a.re descended from

KL-ONE, have the definitional component for analytical knowledge and the

assertional component for synthetic knowledge.

The details of topics discussed in this section may be found in [Brachman 85},

[Patel-Schneider 84], [Moser 83], and [Pigman 84]

3.2 KANDOR

KANDOR is a small concept-based knowledge representation system designed

to provide important services to the rest of the knowledge-based system2• Based

on the idea that small ca.n be beautiful [Patel-Schneider 84], the expressiveness

of KANDOR is limited to ensure tha.t inferences, which a.re specially helpful

in constructing appropriate queries and in efficiently retrieving individuals that

match a query, are performed in a reasonable a.mount of time. KANDOR has

limited expressive power, but its inferential procedures a.re sound a.nd complete

2KANDOR wu uaed u the knowledge representation part of ARGON [Patel-Schneider 84]

that is the system for retrieving information efficiently and effectively in reasonable time and

for guiding a U8er to get the information he/she needs without getting lost his/her way in

this heterogeneous knowledge-hued system.

KOLA 25

as well as fast.

The basic units of KANDOR are individuals and frames. A frame (a con

cept in KL-ONE) is, in essence, a specification of conditions that an individual

must meet if it is to be considered as the frame's instance. A frame is defined by

giving a list of more general frames and a list of restrictions. In KANDOR, both

value restrictions and number restrictions are provided in order to define a new

frame, and a classifier is used to construct the frame taxonomy. The subsump

tion relationship between frames in KANDOR is similar to the subsumption

relationship between concepts in KL-ONE. The frame taxonomy of KANDOR

is strict, and thus it is possible to give a semantic account of frame subsump

tion. The details of KANDOR can be found in [Patel-Schneider 84, Pigman 84].

An individual (an instance in KL-ONE) is used to assert objects in the

real world. Individuals are associated with other information by means of slots,

which map every individual into slot fillers. In addition to the classifier, KAN

DOR has a realizer which, when an individual is created, connects it with the

most specific frame that it is an instantiation of.

There are two main differences between KL-ONE and KANDOR in rep

resenting and manipulating knowledge. One difference is found in the value

restriction. In defining a new frame, the value restriction of a slot in KANDOR

not only can be a frame but also an individual which asserts an existing entity in

a domain. In KL-ONE, the value restriction of a role is only a concept in which

there is no mention of existence at all. It is not consistent to use an assertional

value in a conceptual description, although using it in defining a class of objects

KOLA 26

seems technically easy and plausible. Another difference is that while. there is

no proper way to define instances in KL-ONE, KANDOR can define, and even

manipulate them using its realizer.

In KANDOR, however, there is some difficulty arisen in dealing with num

ber restriction and an individual's slot fillers. Suppose we have the frame Person

with the slot Name which has a minimum number restriction to some value, say

x. To be an individual of the frame Person, the individual has to have at least x

fillers in the slot Name. Although knowledge about an individual bears enough

information to say that it is a member of the frame Person, the realizer cannot

deduce that the individual is a member of the frame Person, if less than x fillers

of the slot Name are specified and we do not tell the system that it is a member

of the frame Person explicitly. It, however, may be possible that we are sure

that this individual has some name which is unknown at the time when a frame

is instantiated. The realizer should recognize that this individual is a member

of the frame Person and to use it as an instantiation of the frame Person in a

subsequent reasoning process.

In summary, although KANDOR is small, it is fast. KANDOR has both

a classi.fier to manipulate the subsumption relationships between frames and a

realizer to deal with the relationship between individuals and frames.

KOLA 27

3.3 KRYPTON

KRYPTON was implemented to combine the advantages of predicate calculus

and concept-based languages.

KRYPTON is composed of two types of knowledge representation lan

guages: a concept-based one for forming the descriptive and structured defini

tions for terminological information (TBoz), and a logic-based one for making

assertions of contingent facts about a world of interest ~ facts in a given do

main that happen to be true, but are not necessarily true (ABo:e) [Pigman 84].

In KRYPTON, a taxonomy containing frame-like definitions is integrated with a

non-causal connection graph theorem prover [Brachman 83, Stickel 83, Stickel 82].

TBox language is used to represent terms and captures the essence of

frames within a compositional and strictly definitional framework, without the

ambiguities and possible misinterpretations common in existing frame languages.

There are two types of expressions in TBox: concept and role expressions.

Their definitions are similar to those for concepts and roles in KL-ONE, except

that KRYPTON has no structural descriptions and number restrictions.

In TBox, a terminological hierarchy is constructed on the basis of a par

tial ordering on the subsumption relations. The subsumption and disjointness

relationships among terms in TBox are determined by their structures, not by

any domain-dependent facts. So, we can ask TBox analytic questions about the

hierarchy such as:

KOLA 28

Is X an instance of C'f or

Is C1 subsumed by C2'f

ABox language is used for representing sentences and enables a. user to

state facts a.bout a. domain. Using ABox, a user can build descriptive theories.

ABox uses Stickel's non-clausal connection graph resolution theorem prover by

employing information from TBox (Stickel 82]. ABox is able to reason with

incomplete information, deal with quantification, and make use of terminolog

ical information in TBox. While TBox knows only definitions, ABox knows

everything else.

KRYPTON, however, is very large and has all the demerits of first-order

predicate calculus because the theorem prover component which uses resolution

is based on logic. Even though it improves on other theorem provers by in

corporating TBox in its reasoning, the theorem prover is, nevertheless, limited

typically to dealing with domains which a.re both highly structured and highly

constrained, and requires an enormous a.mount of control for inferential opera

tion to solve a. problem (Nilsson 80].

In summary, KRYPTON is a functionally hybrid knowledge representation

system, so that assertional reasoning as well as terminological reasoning can be

performed. In TBox which consists of concepts and roles, terminological knowl

edge about its domain is embedded and reasoned with. In ABox which consists

of assertions, first order predicate calculus and the nonclausal connection-graph

resolution theorem prover a.re adopted to manipulate these assertions. Thus,

KRYPTON is also subject to the disadvantages of first order predicate calculus,

KOLA 29

while it has better assertional ability than KL-ONE or KANDOR. The details

of KRYPTON can be found in [Pigman 84].

Chapter 4

Example and Observations

This chapter includes the running example used for explaining what I attempt

to achieve through this research. The example shows us the difficulties which

arise in representing knowledge in the existing concept·based knowledge rep.

resentation systems: it will he discussed the deta.ils of how KOLA deals with

these difficulties in Chapter 5.

4.1 Example for explanation

Suppose we are going to build a knowledge base in a concept·hased language.

The complete knowledge base which describes the example doma.in is found in

Appendix A.4. For explanation's sake, a part of this knowledge base, shown

below, is to be analyzed.

1) Kidney is a part of Urinary system

2) Nephron is a part of Kidney.

30

KOLA 31

3) Nephron-Disease is the specialization of Kidney-Disease.

4) Jason's wife is Mary.

5) Jason has two Children: Kib and Brian.

6) Jason is the surgeon.

7) Kib is the first son of Mary.

8) Brian is the second son of Mary.

9) Brian has the nephrotic disease.

The first three facts are terminological, while the rest of given facts are

assertions.

Figure 4.1 is the graphical representation of the example in a concept

based knowledge representation system. The conventional pictorial notations

are used: an oval for a concept, a double arrow for subsumption relation, and a

single arrow with the encircled square for a role. Only terminological knowledge

is shown in the figure. Assertional knowledge is not shown in this figure, because

no appropriate graphical notation for representing knowledge about instances

is provided in existing concept-based knowledge representation systems. This

motivates me to develop new pictorial notations for assertional knowledge in

KOLA.

A user can ask questions such as "ls a kidney anatomical part of urinary

system'?" or "Who are {is) Jason's children'?" of the knowledge base. This

type of questions can be answered efficiently by searching through the structure

embedded in the knowledge base. The details of how it is performed may

be found in [Brachman 85), [Patel-Schneider 84), [Moser 83), and [Pigman 84).

Then, what are the difficulties?

KOLA

An&l•lil•olvemenl

Urinary.Syatem

Disease

Meclical-Job

Kidney

Kidney-D

Claildr•
Vrc (O,ail

Claildna
Yrc (0,ail)

Figure 4.1: Pictorial Description of Example

32

Nephron

Peraoa

KOLA 33

4.2 Difficulties encountered

Consider again the nine example facts given in Section 4.1. While facts 4), 5),

and 6) can be represented and manipulated efficiently in previous concept-based

knowledge representation systems, several difficulties a.rise in representing the

rest.

4.2.1 In Terminological Knowledge

The problem in representing the facts 1), 2), and 3) (for simplicity, referred to

as FACTS in this section) is how to deal with the Part-of relation efficiently.

The following examples, presented a.t NIKL Workshop (1986) , demonstrate

the difficulties involved in this problem. Method [1] is suggested by Patil, and

method [2] by Schmolze.

[1] (defrole PART-OF primitive

(doaain AIAT-PART) (range AHAT-PART))

(defrole AIAT-IIVOLVEMEIT priaitive

(doaain DISEASE) (range .AMAT-PART))

(defconcept KIDIEY primitive (specialize• ANAT-PART))

(defconcept HEPHROI priaitive (specializes ANAT-PART)

(res PART-OF (vrc KIDNEY)))

(defconcept KIDNEY-DISEASE primitive (specializes DISEASE)

(res AJIAT-IIVOLVEMEIT (vrc KIDNEY)))

(defconcept NEPHROTIC-DISEASE priaitive

KOLA

(specializes KIDNEY-DISEASE)

(res ANAT-INVOLVEMENT (vrc NEPHRON)))

[2] (defrole PART-OF primitive

(domain ANAT-PART) (range ANAT-PART))

(defrole ANAT-INVOLVEMENT primitive

(domain DISEASE) (range ANAT-PART))

34

(defconcept KIDNEY-PART primitive (specializes ANAT-PART))

(defconcept KIDNEY primitive (specializes KIDNEY-PART))

(defconcept NEPHRON-PART primitive (specializes KIDNEY-PART))

(defconcept NEPHRON primitive (specializes NEPHRON-PART))

(defconcept KIDNEY-DISEASE primitive (specializes DISEASE)

(res ANT-INVOLVEMEHT (vrc KIDNEY-PART) (min 1)))

(defconcept NEPHROTIC-DISEASE primitive

(specializes KIDNEY-DISEASE)

(res AMAT-INVOLVEMENT (vrc NEPHROTIC-PART) (min 1)))

- 1986 NIKL Workshop [Personal Communication}

We want to define that a disease of an object is also a disease of any

other object of which this is a part. In method [1], however, after classify

ing the role ANAT-INVOLVEMENT and the concept NEPHROTIC-DISEASE,

the classifier constructs the new concept, made by conjoining KIDNEY and

NEPHRON, and assigns it as the range of ANAT-INVOLVEMENTin the con

cept NEPHROTIC-DISEASE. This is not what we desire. Even though a person

has a disease in his nephron, his disease cannot be an instance of the concept

NEPHROTIC-DISEASE, since if a disease is to be a member of NEPHROTIC-

KOLA 35

DISEASE, the filler of ANAT-INVOLVEMENT has to be an instance of the

conjoined concept KIDNEY A NEPHRON.

Consider method [2]. Patil's response was that modeling the domain in

this fashion was undesirable, because the representation begins to resemble a

programming language. In general, it was argued that a knowledge engineer has

an idea of how he/she represents the domain, and a knowledge representation

system should provide him/her the way to represent it naturally. In addition,

because the concept KIDNEY-PART represents the set of all parts which con

sist of the kidney, relating the concept KIDNEY to KIDNEY-PART with some

role which specifically represents this fact would be more accurate than relating

them with subsumption.

In modeling the domain with FACTS, method [lJ is preferable to method

[2] if some mechanism is provided to overcome the difficulties we have de

scribed. The mechanisms in KOLA to deal with these difficulties are described

in Chapter 5.

Consider the following questions which requires the manipulation of FACTS:

1. "Is the nephron a part of the urinary system'?"

2. "Is kidney the anatomical involvement of Brian's nephrotic disease'?"

When manipulating FACTS, we can use the extra implicit knowledge that Part

of is transitive. Thus, we draw logically the conclusion that the nephron is a

part of the urinary system now that the nephron is a part of the kidney and the

KOLA 36

kidney is a part of the urinary system, and thus the nephron is a part of the

urinary system. 1 We can also respond that Brian has a disease in the kidney

that the nephron is a part of, because he has a nephrotic disease. We know that

part-of is transitive, and use it in answering the given questions.

The existing concept-based systems cannot answer queries 1 and 2 cor

rectly using the knowledge represented in [1] or [2], because they do not have the

facility to draw the new conclusion (for example, the kidney is the anatomical

involvement of Brian's disease).

The problem observed in answering these queries is applicable to any

role which has transitive property. KOLA has the facility to be told explicitly

the fact that a role is transitive, and manipulate it efficiently in a subsequent

reasoning process.

4.2.2 In Assertional Knowledge

The system should know about instances which exist in a domain to reason

about the domain. In KL-ONE, an instance is treated as a kind of concept, as

discussed in Section 3.1.3. On the other hand, KANDOR has a realizer for

defining and manipulating an instance, albeit it has the problem in handling an

instance which has a role with the minimum number restriction (see Section

3.2). KOLA has an insta.ntiator, similar to a realizer in KANDOR, which can

11n question 1, we UBume that it is asking for the anatomy of a human being not that of

a particular peraon. Surely, a question such as "'la Jaaon'a kidne11 a part of Mary's urinary

systemf" can be asked: the answer for it depends on whether or not Jason's kidney has been

transplanted to Mary's urinary system. Although a knowledge representation system needs to

deal with this kind of problem, it is another issue and our 888umption is sufficient to account

for the observation which is to be given: in deed, KOLA can handle this type of questions.

KOLA 37

deal with this problem (details in Chapter 5).

In dealing with an instance, we also need a mechanism to efficiently repre

sent references which are not generic enough to be defined as a role of a concept,

but are useful in reasoning about an instance, as mentioned in Section 1.1.2.

For detailed explanation, consider knowledge such as Kib is the first son

of Mary or Brian is the second son of Jason. Such knowledge should be

useful to reason about Mary's children. Without representing such knowledge

efficiently, we may get information about her children at the expense of the

following inefficiencies.

In the example, Jason's Children role has two fillers: Kib and Brian. In

the existing knowledge representation system, we can represent only that Jason

has two children, and the only information we can obtain is his two children

from Jason's Children role. Even though information about Jason's first son

is available, it is not easy to tell efficiently to the system about it in previous

concept-based knowledge representation systems.

Knowledge such as Jason's first son is Kib can be represented in the

following way: instead of defining a role corresponding to children in the con

cept Person itself, we postpone defining it until its instance is created. In other

words, the concept Person does not have the role Children, and its instantiated

person has roles for representing knowledge about children. It is conceivable to

do so in KL-ONE, because an instance is treated as a concept. We, however,

may sometimes need to manipulate the generic information about a person's

children regardless to the number, the order, or the gender of children. There

KOLA 38

may be the operations which are commonly applicable to children of any in

stance for the concept Person. Then, it is reasonable and more efficient to

define the role Children in the concept Person and to attach such operations to

it.

Another method plausible is to differentiate the role Children in the con

cept Person into first-son, first-daughter, · · ·. But how can we possibly decide

how many sons and how many daughters the concept Person has without men

tioning a particular existing person? The concept Person will be used as a

concept not for a single instance but for a number of instances. The number

of male-, and female- children cannot be decided until the concept Person is

instantiated because it depends largely on a particular instance.

A third method is that the concept Person has the role Children and

when its instance is created, the inherited role Children can be differentiated to

appropriate roles to embed knowledge about the instance's children. Unless an

instance is treated as a concept like in KL-ONE, this method is not applicable.

Suppose that an instance could be treated as a concept. A role in a

concept-based knowledge representation system has its own internal structure

which is formed by mea.ns of differentiation. We can represent it as follows: for

the concept Person which has the role Children, the role Children is differenti

ated into subroles such as First-son or Third-daughter in a subconcept of the

concept Person, not in the concept Person itself. However, the problem is that

the differentiation of a role in this way causes the undesirable computational

problem in determining the subsumption relationship between roles, i. e. build

ing the role taxonomy. Whenever an instance for the concept Person is created

KOLA 39

and its role Children is differentiated, the role Children has different internal

structure. The disjunction of a. role's structures should not be allowed because

it causes the NP-hard problem in the determination of subsumption relation

ship among concepts. The reason why the disjunction of roles is not allowed

in terms of computational tr&cta.bility ca.n be found in in [Brachman 84] and

[Levesque 84].

Figure 4.2: Relatiomhip between Compao1 aacl Wor.king-Penon

Definjq a particul&r zolelUCh 11 P..ui• to repn1m Firn.aon or Second

"°" ii moiher metllocl coac:ei'Y&ble. HcnN.•, tJlia ia i..ac:ient u shown in the

following. Suppo1e that we have the c:oacept c .. ,_, which hu the role Em

ployeu whole value rwiriction ii the concept W......,.P.,.... The concept

Working-Pcraon hu the role PoMtiora in order to repNHDt the information

about president, vice preeident, etc. Fipr• •.2 ~ the rela.tiomhipa be

tween conceptt of concern. Suppose that for u iutaAce of the concept Com

pany which consists of hundreds of w"orken, our ~ ia Who ia the firat

KOLA 40

president of the company?. For solution, the problem solver has to go through

(in the worst case) all workers in the company, checking to see if the value of

the role-filler of the role Position in every employee is firs't-president. If knowl

edge were represented directly, such operations would not have to be performed.

Such knowledge needs to be represented more succinctly.

In summary, from the system's perspective, the methods prolong unneces

sarily determination of the place of a role in the role taxonomy or require extra

inferential operations. From a knowledge engineer's perspective, he is forced

to write a long segment of statements to represent even simple knowledge. We

need a knowledge representation system which has the ability to both express

knowledge succinctly and solve the problem efficiently: KOLA achieves it with

detailed filler references.

Chapter 5

KOLA

In the first four chapters, the difficulties encountered in the current concept

based knowledge representation systems were discussed: 1) the distinction be

tween definitional necessary conditions and nondefinitional necessary conditions,

2) the transitive property of a (at least) necessa.ry condition, and 3) instantia

tion of a concept and detailed filler references. In this chapter, it is discussed

how KOLA handles such difficulties. The contribution of overcoming such dif

ficulties to AI knowledge representation systems is also described.

KOLA consists of three subsystems: C-World, I-World, and Question

Answerer. C-World 1 , which roughly corresponds to TBox in any other concept

based knowledge representation system, contains not only terminological knowl

edge but also knowledge about terminological knowledge itself. C-World mem

orizes knowledge about terminological knowledge, so that Question-Answerer

1 C-World is coined from the fact that concepts and the clueifier are the main props of

this subsystem.

41

KOLA 42

may use them for reasoning about its domain. I-World 2 contains the assertions

made by using terminological knowledge in C-World about the domain, and

knowledge about such assertions. Question-Answerer has the ability to answer

questions by manipulating knowledge in C-World and I-World appropriately.

5.1 <J-"\\'orld

H.J. Levesque pointed out why terminological knowledge needs to be manipu

lated separately from assertional knowledge as follows:

In order to behave knowledgeably in a real domain, a system will
have to interact with experts using specialized terms There
fore, the application of knowledge representation to expert problems
demands of a representation system the ability to develop, augment,
and maintain this kind of technical vocabulary.

H. J. Levesque in Competence in Knowledge Representation

5.1.1 Primitives

KOLA uses extended versions of primitives and components of KL-ONE -

including concepts, rol~, subsumption relationships, inheritance, as covered

Section 3.1. In this section, I focus on how KOLA's features are different from

KL-ONE's.

In a concept-based knowledge representation system, one major difficulty

lies in representing terminological knowledge. Living in a flood of information,

we may need to know thousands or millions of concepts, not just a single one.
21-World is coined from the fact that instances and the instantiator a.re the main props of

this subsystem.

KOLA 43

To use such an enormous a.mount of information, essential descriptions about

objects should be stored as succinctly as possible. We should avoid including

incidental information in defining a concept.

Yet, there is a need to include incidental knowledge in a knowledge base.

To do this, a system should be able to distinguish definitional knowledge on

a concept from nondefinitional one, and manipulate such distinction appro

priately. Necessary conditions of a concept have been abused, when used to

represent nondefinitional as well as definitional necessary properties. The dis

tinction between definitional necessary conditions and nondefinitional necessary

ones has not received enough attention in the literature. I would like to discuss

the problems that arise due to the lack of distinction between them.

Ronald Brachman defined a role in KLONE as follows:

The roles represent the various kinds of attributes, parts, etc,
that things in the world are considered to "have". These include,
for example, such things as parts (e. g. , fingers of a hand), in
herent attributes of objects and substances (e. g. color), arguments
of functions (e. g. multiplier and multiplicand of a multiplication),
and "cases" of verbs in sentences (e. g. "a.gent"). Any generalized
attribute of this sort has two important pieces: (1) the particular
entity that becomes the value for the attribute in an instance of the
Concept, and (2) the functional role which that entity fills in the
conceptual complex. A Role is a formal entity that captures both
of these aspects in a structured way, by packaging up information
about both the role filler and the functional role itself.

- On the Epistemological Status of Semantic Networks
[Brachman 79]

Roles were used to define whatever properties things in the real world

can have, and there was no distinction between definitional and nondefinitional

KOLA 44

conditions in KLONE.

No appropriate method to represent and manipulate a nondefinitional nec

essary condition of a concept has been provided with any existing concept-based

knowledge representation system. In such a system, nondefinitional necessary

conditions of a concept as well as definitional necessary ones are included in the

concept's structure. They are manipulated identically to represent knowledge

about concepts and to reason about the domain. Such a definition of a concept

may prevent the concept from being classified correctly, and slow down the ter

minological reasoning. We may also receive an unnecessarily long description

when we ask the system information about a concept.

When we create an instance for a concept, we may get information on

nondefinitional necessary conditions. Instead of ignoring such information, we

should want to let the system know about it, even though it is not definitional:

now that it can be used efficiently for solving a problem about assertional things.

For example, a patient's age may not be the definitional necessary condition to

define a patient. But in the reasoning session, a patient's age may be critical

to diagnose his disease. We need the efficient way to tell the system about such

information.

On the other hand, if we impose a restriction so that a concept may consist

of only definitional necessary conditions, it is impossible to represent nondefi

nitional information about an instance unless it is defined in the instance level

as in KL-ONE. In KOLA, the distinction between a concept and an instance

is strict. An instance is strictly an instantiation of a concept (the definition of

KOLA 45

instantiation is found in Section 5.2.1). An instance in KOLA is not treated

as an individual concept. Thus, a role cannot be defined when an instance is

created. This implies that a concept needs to have roles for representing non

definitional information as well as definitional one.

To simultaneously obtain essential information about a concept and tell

a system nondefinitional information, the distinction between definitional roles

and nondefinitional roles is necessary. In KOLA, necessary conditions of a con

cept are divided into two types - definitional and nondefinitional. Definitional

conditions are called roles, while nondefinitional conditions are called attributes.

Though both definitional and nondefinitional necessary conditions are included

in a concept's structure, they are manipulated differently in KOLA. For ex

ample, during a request for the description of a concept, KOLA will suppress

nondefinitional information, unless a user asks for it explicitly.

It is hard to decide whether or not a necessary condition is definitional.

KR researchers as well as philosophers have argued it. When we are building a

knowledge base, one heuristic to decide its definitionality is to view a necessary

condition which, by the consensus of experts with thorough understanding of a

domain, needs to be included in a description of a term.

Pictorial Conventions

For easier comprehension, knowledge in a concept-based knowledge represen

tation system can be represented in pictorial form, aa mentioned in Chapter

4. KOLA uses conventional pictorial notations that are rich enough to deal

with the distinction of roles and attributes: a. role, or definitional (at least)

KOLA
46

(a) (Concept-1))....;R;,;.o;.;l•.;._ __ G)1o------.11(Concept-2)

(b) C) Attribute {)
Concept-3 _ . @-----41111 ~oacepW

(c) ..__Inn_ua_c•___,~-__,;CD-.· ------..i{ Coacep&)

(d)

(•) l Propeny J
l:utaace _ ------------1111, Filler

Filler-1

(f)

Figure 5.1: Graphical Notations of primitives and its relations in KOLA

KOLA 47

necessary condition, is represented by a single arrow with encircled r, while an

attribute, nondefinitional condition is represented by a single arrow with encir

cled a. Figures 5.1 (a) and 5.1 (b) show concepts and the relationship among

them via roles or attributes. A link between two concepts is labeled with the

name of a role or attribute.

5.1.2 Subsumption Relationship and the Classifier

As already mentioned in Section 3.1.2, a concept can be defined by more general

concepts. In KOLA, when a concept is defined from more general concepts,

it inherits every necessary condition regardless of its definitionality, just a.s a

concept in KL-ONE inherits every role in its superconcepts. Thus, an inherited

necessary condition of a concept cannot be canceled.

That a concept can be defined by more general concepts means that there

exists the subsumption relationship among concepts. The definition of the sub

sumption relation wa.s covered in Section 3.1.2. This definition shows that the

subsumption relation is determined by extensions of concepts, i. e., the subset

relationships between sets of instances. We need, however, to compute the sub

sumption relationship without waiting for all instances possible to be created,

because there can be in a domain a concept with an infinite set of instances or

a concept without any instance in a domain.

We can compute the subsumption relation by manipulating the structural

differences between concepts. In KOLA, a concept is defined in a way similar

to that in KL-ONE, but more refined.

Figure 5.2 shows some of the subsumption relationships in KOLA: single

arrows labeled with vrc, num, and AtoR indicate value, number, and attribute

KOLA 48

to rol~· restrictions, respectively. vVe ca.n define a new concept with appropriate

combinations of the methods explained below.

Domain-I
role(attribute)

Domaia-2
role{ attribute} ..__.._ __ ___..._-r.:-.r~•--------..

(a} Value Reeaiclioa

Domaia-1
role{ atriute) ________ __, r·,.•------..i

(11,ul)

Domaia-2
(12,u2)

(b) NlllllW ll...ncUoa

,,_ _____ __. ----~

DomaiJl.2
role

(c) A&aik*e '° l.oi. a.riaioa

While QM9 (a) ud (b) v. &Jae u lkoM ia KL-OMS, cue (c) c:reaiel a uw

co~ bJ C011•.nia1 a .-Mlaitioaal w••UJ propcc•J w a debiiioaal.

Figure 5.2: Subsumption relations possible between concepts

KOLA 49

1. Declaration a.s a primitive concept:

We define primitive concepts by declaration. Such primitive concepts are

used a.s the foundation of a knowledge base.

2. Conjunction of concepts:

A concept can be defined a.s the conjunction of other concepts. Such a

concept becomes a subconcept of each of the concepts in the conjunction.

The conjoined concept inherits every role and attribute from each of its

superconcepts, and none of the roles and attributes inherited are canceled.

3. Defining new necessary conditions:

A concept can be defined with new necessary conditions which any of its

superconcepts does not have, as well as with inherited necessary ones. It

needs to be strongly emphasized that when a concept is defined by this

method, it implies that none of its superconcepts has the newly defined

necessary condition as its necessary condition. Therefore, when we de

fine a new necessary condition, we should be careful to place a necessary

condition in the most general concepts which can have it as a role or an

attribute.

4. Value Restriction:

When a concept is defined with more general concepts, the range of an

inherited role (attribute) can be value-restricted to a subconcept of the

range inherited from its superconcept. In KOLA, the range of a necessary

condition can be an interval, a set of numbers, or a single number as

well as a concept: for example, the interval [29 50] or the set {2 4

7} 3
• The classifier determines subsumption relationships using the subset

3Their syntax is accounted for in Appendix A. l.

KOLA 50

relationship between ranges.

As an example, consider Figure 5.2 (a). The concept Domain-'2 is

defined as a subconcept of the concept Domain-1. In addition to just

inheriting roles or attributes in the concept Domain-1, the role role (the

attribute attribute) in the concept Domain-2 can be value-restricted from

the concept range-1 to the concept range-2, where the concept range-2 is

a subconcept of the concept range-1.

Unlike in KANDOR, the range of a role in a concept in KOLA must

be a concept and cannot be an assertional value.

5. Number Restriction:

Just as in KL-ONE, we specify the cardinality information about role

fillers plausible in a concept and define a new concept by restricting the

number of role fillers. Conventially, the cardinality of the set of role fillers

is specified in the form (I, u), as shown in Figure 5.2 (b): when a concept

is instantiated, the number of fillers of this role is at least l and at most

u. Similarly, we can impose the number restriction on the fillers of an

attribute in a concept.

The subsumption relation by the number restriction is determined by the

subset relation of intervals. To define the concept Domain-2 as a sub

concept of the concept Domain-1 by the number restriction, the following

condition has to be satisfied:

6. Differentiation of a necessary condition:

A new concept can be defined by differentiating a necessary condition.

Differentiation allows the specification of a subrole by restricting its range

KOLA 51

to a subconcept of the range of its superrole. A subrole is to be filled with

subsets of the fillers of the role it differentiates.

7. Attribute to role restriction:

We can define a concept as a subconcept of other concepts by changing the

status of a necessary condition from an attribute to a role. For example,

suppose gender is not a definitional necessary condition for an object to

be a person and, thus, gender is defined as the attribute for the concept

Person. When we define the concept Male-Person as a subconcept of the

concept Person, we have to mention gender to describe a male person.

Thus, gender becomes the role in the concept Male-Person. This is called

"attribute to role" restriction in KOLA. See (c) in Figure 5.2

8. Restriction of ranges related by a Part-of like necessary condition:

A concept can defined from more general concepts by restricting the range

of an inherited role (attribute) to a concept related to the range inherited

from the superconcept by a Part-oflike necessa.ry condition. This re

striction effectively imposes a range restriction on the inherited necessary

condition.

Formally, let .Ac.i, Bd, Ar, and Br be concepts. Suppose the structures

of Ac.i and B" are the same except for the range of role (attribute) RA: the

range of RA in Ac.i is Ar, while that of RA in B" is Br. We need to prove

that if Ar and Br a.re related by a Part-Of-like necessary condition, say

PA, then B" is a subconcept of Ac.i. Consider the following:

Suppose Bd were not a subconcept of Ac.l. In other words, there exists

an instance of B" which is not an instance of Ac.l. For any instance lsd of

Bd, there exists a filler lsr of RA, where lsr is an instance of Br· Since

KOLA 52

Ar and Br are related by the Part-Of like role PA, in lsr, there exists PA's

filler lAr which corresponds to lBd· Thus, lsd muse also be an instance

of~' which contradicts the assumption that Bd was not a subconcept of

~.

As an example, we can define Nephrotic-Disease as a subconcept of

Kidney-Disease by restricting the range Kidney of the role Anat-Involvement

to Nephron which is related to Kidney by the. role Part-of. Thus, any

nephrotic disease is also a kidney disease.

9. Role/ Assertional Constraints.

KOLA uses role constraints to define new concepts. A role constraint

represents a relationship between the sets of fillers of roles in that con

cept [Moser 83]. In KOLA, the constraints definitional on necessary condi

tions a.re considered as role constraints, while the constraints on necessary

conditions which can be suppressed a.re called assertional constraints.

Role or assertional constraints a.re represented by a chain of neces

sary conditions. In order to represent the constraints on necessary con

ditions, the graphical notation of KL-ONE is adopted with the addition

of a label (r/a) inside the diamond which indicates whether it is a role

constraint or an assertional constraint.

As an example, consider how a person with the same disease as his

mother can be defined. Suppose, from the concept Patient which is de

fined as an example in Appendix A.4, we define the concept Patient-with

Patient-Mom in which the role Mother is value restricted to the concept

Patient. Now, we can define the concept Patient-with-Mom's-Disease as

the subconcept of the concept Patient-with-Patient-Mom by using the fol

lowing role constraint: disease of the patient is the same as that of his

KOLA

Patient

Patient-with
Patient-Mom

Patient-with
Mom ' .. Diaeue

,53

Figure 5.3: Subsumption Relationship among Patient and its subconcepts

KOLA 54

·mother. Figure 5.3 shows the subsumption relationship between the con

cepts of concern. Figure 5.4 shows the constraints on necessary conditions

that an instance must satisfy to be a member of the concept Patient-with-

1\fom 's-Disease.

Puiat-wi*h·
Mom' .. ow ...

/

Moth.er

-
Puim.

/ \

'

o-... m

(Puiem-Di.teue (P..-.wiill-Mom' .. Di.teue))
• (PaQeU.0-.U. (M°*1ltr (Pmtai-wklt.-Moai' .. Di.teue}))

Figure 5.4: Example of a role constraint

In KOLA, five operators are provided to represent the constraints on

necessary conditions: equal, greater than or equal to, less than or equal to,

greater than, and less than. Actually, only three operators - less (greater),

less than (greater than), and equal - are needed, and the rest of them can

be achieved with transposing two chains in a constraint.

The core of C-World is the classifier. Major functions of the classifier are

building the concept taxonomy (and role taxonomy) based on the subsumption

KOLA 55

relationship and performing the categorical, terminological reasoning about con

cepts or instances.

When a concept is defined, the classifier places it between its most spe

cific superconcepts and most general subconcepts. In KOLA, ea.ch concept keeps

information only on its most specific superconcepts and its most general sub

concepts. Using this information and the transitive property of subsumption

relationship, the classifier is able to perform inference about the subsumption

relations between concepts efficiently.

5.1.3 Role/ Attribute Properties

Transitivity

From the discussion in Section 4.2.1, we recognize that every (at least) nec

essary condition used to define a concept might not have unique characteristics 4 •

In previous concept-based knowledge representation systems, there is no

distinction between a role with the transitivity property and a. role without it,

let alone a facility to dea.l appropriately with such a distinction. Thus, the

queries 1), Is the nephron a part of the urinary systemf and 2}, Is the kidney

anatomically involved in Brian's nephrotic diseasef cannot be answered cor

rectly. These kinds of questions, which are related to a role with transitivity,

4Such a characteriatic ia one that ia applicable to any neceaury condition of a concept

regardless of its definitionality. Thus, though only roles are mentioned, the diacu..ion can

also be applied to attributes.

KOLA 56

require more than a single step of search to reach a correct answer, and must

be handled by a problem-solving system external to a knowledge base 5
•

Consider the role Anatomical-Part-of involved in query 1. The nephron

is an anatomical part of the kidney, and the kidney is an anatomical part of

the urinary system. From this knowledge, we can infer new knowledge that the

nephron is an anatomical part of the urinary system. The role Anatomical-Part

of is transitive. Suppose, on the other hand, that the concept Male-Person has

the role gender whose role filler's concept is the concept Genders for representing

the class of possible genders. The role gender is not transitive.

We need a facility to help the system to distinguish Anatomical-Part-of

like roles from gender-like roles and deal with them appropriately. The system

needs to be told that roles can be divided into two classes: ones with transitivity

and ones without it. The knowledge that a role is transitive need be given to a

system explicitly, so that it can be used in subsequent reasoning processes.

The following is the definition of transitivity of a necessary condition.

Definition :

Let ci, c2, and c3 be concepts each of which has a (at least) necessary

condition A'R.. Let CiA'R.c;, mean that the range of A'R. in the concept

Ci is the concept c;. A'R. is transitive if and only if c1.A'R.c2 and c2A'R.c3

5 As an aside, recall a concept-based knowledge repreeentation system's major property.

certain kinds of inferences can be directly bued on the structure of a concept-based knowledge

base, and the inferential operations can be reduced to a simple graph search of some sort.

This allows a concept-based knowledge representation system to have high performance.

KOLA 57

implies c1.AR.c3 , where Ci-:/: C;, if i-:/: j, for i,j = 1, 2, 3.

The language construct Transitive in KOLA tells a system about a neces

sary condition's transitivity.

Observe that there are queries which require the further transitive search

through another necessary condition, after a search through the one directly

related to them being performed. Consider query £in Section 4. To find

the anatomical involvement of Brian's nephrotic disease, the role Anatomical

involvement in the concept Nephrotic-D will be searched, and its range reached.

Our interest, however, is not whether Nephron is the anatomical involvement of

Bria.n's disease, but whether Kidney is. To arrive at a correct answer, we must

traverse the network through the role Anatomical-Part-of. In other words, an

swering this question requires further search through the role Anatomical-Part

of of the concept Nephron. The language construct Indirect Transitive in KOLA

is the construct to tell a system about such knowledge. This construct is de

scribed in detail in Section 5.3.

Let us consider how transitivity of a Part-of like necessary condition, say

PA, affects classification. Suppose that for a concept Aa, which has a role Role,

whose range is An we define a new concept BtJ as a subconcept of Aa by value

restricting Role to a concept B,., where Role is indirectly transitive through PA.

If the subsumption relationship between A,. and B,. is not specified explicitly,

the classifier in KL-ONE establishes the subsumption relationship between A,.

and B,. /\ A,., as described in Section 4.2.1. The classifier in KOLA, however,

tries to figure out how A,. and B,. are related to each other. If it finds that they

are related by PA, the classifier does not establish the subsumption relationship

KOLA 58

between them.

For example, reconsider the example from Section 4.2. While KL-ONE's

classifier constructs a new concept KIDNEY /\ NE PH RON and classifies it

as a subconcept of the concept KIDNEY, KOLA 's classifier does not make such

a new conjoined concept, since KIDNEY and NEPHRON are related by the

transitive role Part-of (see Section 5.1.2).

In addition, if both A<t and Ba are defined as subconcepts of SUP, the

classifier in KOLA establishes the subsumption relationship between A<t and Ba,

if it finds that A,. and Br are related by PA. For example, suppose the domain

is modeled as follows:

(dafrole PART-OF primitive

(domain ANAT-PART) (range ANAT-PART))

(defrole ANAT-INVOLVEMENT primitive

(domain DISEASE) (range AHAT-PAl\T))

(defconcept KIDNEY primitive (specializes AHAT-PART))

(defconcept NEPHRON primitive (specializes AHAT-PART)

(res PART-OF (vrc KIDNEY)))

(defconcept KIDNEY-DISEASE primitive (specializes DISEASE)

(res AMAT-INVOLVEMENT (vrc KIDNEY)))

(defconcept NEPHROTIC-DISEASE primitive (specializes DISEASE)

(res AMAT-INVOLVEMENT (vrc NEPHRON)))

Given the fact that PART-OF is transitive and ANAT-INVOLVEMENT is in

directly transitive via PART-OF, the classifier finds that both NEPHROTIC

DISEASE and KIDNEY-DISEASE have the indirectly transitive role ANAT-

KOLA 59

INVOLVEMENT and their ranges, KIDNEY and NEPHRON are related by

the transitive role PART-OF. Using this information, the classifier classifies

the concept NEPHROTIC-DISEASE as a subconcept of the concept KIDNEY

DISEASE.

Let us consider another example.

(defrole PART-OF primitive

(domain ANAT-PART) (range ANAT-PART))

(defrole ANAT-INVOLVEMEHT primitive

(domain DISEASE) (range ANAT-PART))

(defconcept KIDNEY primitive (specializes ANAT-PART))

(defconcept NEPHRON primitive (specialize• AlfAT-PART)

(res PART-OF (vrc KIDNEY)))

(defconcept PROXIMAL-NEPHROH (specializes NEPHRON))

(defconcept KIDNEY-DISEASE primitive (specializes DISEASE)

(res !NAT-INVOLVEMENT (vrc KIDNEY)))

(defconcept NEPHROTIC-DISEASE primitive (specializes DISEASE)

(res ANAT-INVOLVEMENT (vrc NEPHRON)))

(defconcept PROXIMAL-NEPHROTIC-DISEASE primitive

(specialize• NEPHROTIC-DISEASE)

(res AMAT-INVOLVEMENT (vrc PROXIMAL-NEPHRON)))

NEPHRONhas the role PART-OF whose range is KIDNEY, and PROXIMAL

NEPHRON is a subconcept of NEPHRON. Thus, PROXIMAL-NEPHRON in-

KOLA 60

herits all necessary conditions of NEPHRON, including PART-OF. PART-OF

of PROXIMAL-NEPHRON is also value-restricted to KIDNEY. Consequently,

along with information about indirect transitivity of ANAT-INVOLVEMENT,

the system can determine whether or not KIDNEY is ANAT-INVOLVEMENT

of PROXIMAL-NEPHROTIC-DISEASE. More generally, let A and B be con

cepts where A is PART-OF B. If we define Asus as a subconcept of A, then

Asus is PART-OF B because of inheritance.

Symmetry and Inverse Relation

Symmetry is another property which necessary conditions of a concept can have.

In KOLA, when it is specified that a concept A has a necessary condition,

say NEC, whose range is a. concept B, declaring the symmetry of NEC allows

the classifier to add NEC whose range is A into the set of necessary conditions

of B. This may cause the problem with the circularity which is described in

Chapter 6.

Declaring the symmetry of a necessary condition, NC, tells the system the

following. Let INS be an instance of a concept which has the necessary condition

NC. If the range concept also has NC as one of its necessary conditions and NC's

filler in INS, say FILLER, is specified, then NC in FILLER has INS as its filler.

Consider the example in Appendix A.4. The Spouse is declared as a sym

metric role. In the example, the instance Jason has spouse whose filler is Mary,

but the instance Mary does not have any information about her spouse. How

ever, from knowledge that the role Spouse is symmetric, the system can infer

KOLA 61

that the instance Mary has the property 6 Spouse whose filler is Jason. KOLA

uses the symmetry of a necessary condition to represent knowledge directly.

In previous concept-based knowledge representation systems, some inferential

operations are required to get information about Mary's spouse because the

description about Mary does not have any information about her spouse. In

KOLA, however, by telling the system about the symmetric property of the nec

essary condition Spouse, knowledge about Mary's spouse is represented vividly.

Thus, inferential operations to draw information about Mary's spouse are re

duced to a simple retrieval operation.

Some necessary conditions have the inverse relation: for example, the nec

essary conditions Contains and Contained-In. Information a.bout the inverse re

lation between necessary conditions is manipulated by KOLA in a way similar

to symmetry. In other words, such information is used to represent knowledge

vividly.

Vivid representation of such knowledge about instances influences the in

stantiator to establish instantiation links between instances and concepts, and

ultimately terminological reasoning about membership of an instance. Details

are given in Section 5.2.2.

In summary, the classifier memorizes information about the symmetry of

a necessary condition and inverse relation between necessary conditions. Such

information allows the instantia.tor in I-World and Question-Answerer to work

6 A property in an instance will be accounted for in Section 5.2.1.

KOLA 62

correctly and efficiently. Details are covered in Sect ion 5.4.

The way to get to answers

There is often more than one way to reach the same place in a domain. For

example, to get to the Symphony Hall in Boston, there are several choices for

transportation - foot, bus, subway, or taxi. In KOLA, this idea is adopted in

solving a problem. Consider the example in Appendix A.4. Even though the

instance Mary does not have any information about her children, we can infer

that both Kib and Brian are her children, because she is Jason's wife and Jason

has Kib and Brian as his children. The system needs to know that children

can be computed indirectly by using Spouse and Children. KOLA uses the

language construct prop-assert to tell the system knowledge about how to get

to an answer. The following examples show how we can tell the system such

knowledge:

(prop-assert children::= spouse children)

(prop-assert mother::= father spouse) .
(prop-assert father ::=mother spouse)

One's children can be reached by searching one's spouse's children, one's mother

by searching one's father's spouse, and so on.

The classifier memorizes information on the way to get to an answer so

that Question-Answerer can perform correctly and efficiently.

KOLA 63

5.1.4 Knowledge about Terminological Knowledge

In addition to terminological knowledge for modeling objects in a domain,

knowledge about terminological knowledge(KTK) ma.y be available. Some KTKs

are used to perform reasoning about the domain efficiently. Some KTKs affect

the structures of concepts.

KTK in KOLA includes disjointness, cover, and synonyms of a concept.

The classifier memorizes disjointness, cover, and synonyms of concepts and uses

them in building the concept taxonomy. Question-Answerer uses KTK in C

World to solve a problem efficiently. I will focus on how they are dealt with in

KOLA, because they were already described in KL-ONE,

Disjointness and Cover

A disjointness class is a set of concepts which cannot have any common in

stances. Thus, given a disjointness class of concepts, if an instance is a member

of one concept, then it cannot be an instance of any other concept. For example,

suppose we define three concepts, short-person, average-person, and tall-person

by value-restricting the role corresponding to a person's height appropriately.

We can define them as a. disjointness class: a short person cannot be a tall one

at the same time. Knowledge of disjointness can be valuable in reasoning. For

example, the disjointness class was used as a potential tool in ABEL's diagnostic

reasoning [Patil].

We may accidentally define a concept which is a subconcept of both the

concept Short-person and the concept Tall-Person, although we have defined

KOLA 64

them as the disjointness class. Incoherencies caused by the violation of disjoint

ness classes should be checked for. There are at lea.st three ways possible to

handle incoherencies of disjointness classes.

1. Careful Checking Strategy:

The classifier considers information on disjointness classes, while perform

ing classification. If the classifier detects incoherency in a disjointness

class while classifying concepts, it stops classifying concepts. U nfortu

nately, this strategy can be computationally expensive. Checking each

newly defined concept would require O(n2) disjointness checks, where n is

the number of superooncepts a.hove the new concept. Moreover, disjoint

ness may be defined after the disjoint concepts and combinations of them

have already been defined, once again requiring O(n2) disjointness checks,

where n is the number of concepts in the hierarchy below the disjointed

concept.

2. Postponed Checking Strategy:

The classifier does not use information on disjointness classes: instead,

the instantiator uses it Checking the violation of disjointness classes is

postponed until an instance is created. Because a disjointness class is a

set of concepts for which there are no common instances, this method is

reasonable if no instance in the domain exists. However, this strategy is

also costly because whenever an instance is created, it must check for a

disjointness .class violations.

3. Never-Mind Strategy: Incoherency due to violated disjointness class is

totally ignored. Checking to see the violation of a disjointness class is

not performed when the concept taxonomy is built or when an instance

KOLA 65

is created based on the assumption that such violation cannot happen. If

we choose this strategy, we have to accept any problem which may result

from such an assumption.

In KOLA, the Careful Checking Strategy and the Never-Mind Strategy are

employed. A knowledge engineer can choose either of them based on the char

acteristics of a domain of concern. If the violation of a disjointness class can

cause unacceptable problems in subsequent reasoning processes, take the Care

ful Checking Strategy. If such a violation is acceptable, the Never-Mind Strategy

can be chosen.

A concept is said to be covered by a set of concepts, called a covering

set, when it is exhausted by the concepts in the covering set. Every instance

in a covered concept will also be an instance of at least one of concepts in the

covering set.

Synonyms

There are many notions which can be referred to by more than one term in a

domain of concern. For example, in the medical domain, a disease or a symptom

can be denoted by several terms: Jaundice 1 and icterus refer to the same

symptom, and Granulomatous lymphoma and Hudgkin' s disease denote the

same disease. Deoxyribonucleic Acid can be denoted by its abbreviation

DNA.
7Jaundice is a yellowing of the skin and whites of the eyes, indicating excess bilirubin (a

bile pigment) in the blood [Med-Dictionary].

KOLA 66

Concept-1 Concept-2 Concept-n

R-11 R-21 R-nl
• •

•
A-11 A-21 • • • A-nl

• • •

(Before)

{Jt
(Synonym·C Coacept-1 .. , Coacept-n)

Concept-1

/ ~2~ R-11

• Coacept-a

/ •

~ A-al
•

(After)

Coacept-1

(b) IA the coacep& tuoAolllJ

Figure 5.5: The effect of the declaration of synonyms

KOLA 67

Information on synonyms of terms is valuable to the classifier in KOLA.

When information about synonyms of concepts is given, the classifier merges

all the information, such as necessary conditions, which are spreaded over sev

eral concepts into one structure. The classifier makes one representative for

the concepts each of which defines the same entity. Only the representative is

placed into the concept taxonomy. All concepts except the representative in

the declaration of a synonym are called dummy concepts in KOLA. Later, if

information on a concept is given via a dummy, the classifier puts it into the

corresponding representative. Figure 5.5 shows how KOLA deals with the dec

laration of synonyms. To represent the structure of a concept, a rectangle is

used. After a declaration of synonyms, the structures of all concepts included

in this declaration are merged into one structure, and dummy con~epts point to

the concept Concept-1 which is designated as the representative. The represen

tative concept Concept-1 is placed in the concept taxonomy, while the others

are not.

In KOLA, it is recommended that the declaration of synonyms be done

before the classification of concepts starts. H information on synonyms is given

after the concept taxonomy is built, the classifier has to merge the structures of

the concepts included in the synonym declaration into one structure, and prop

agate the merged structure to their subconcepts along the concept taxonomy.

Thus, a late declaration of synonyms disturbs the concept taxonomy. More

over, the propagation of the effects of synonym declaration is computationally

expensive: it would require O(n 2), where n is the number of subconcepts of all

the concepts included in the declaration of synonyms.

KOLA 68

5.1.5 C-World Utility

In KOLA, the classification of concepts 8 is performed by the function

(classification [option]). The result of the function classification is the

concept taxonomy based on the subsumption relationship and concepts' struc

tures which are interrelated to each other appropriately. When classification

fails, the reasons for the failure are related to a user. (Details are found in

Appendix A.7.

After classification, a user can ask about a concept. KOLA's response is

a properly indented description in which important information is written in

bold face. A description of a concept consists of three parts. The first part

of the description gives the user the perspective on the concept, by presenting

brief information about it. In the second pa.rt, more detailed information about

the concept is shown. In this part, KOLA gives definitional information of the

concept, and queries if a user wants to see nondefinitional information about the

concept. The third part contains information which differentiate the concept

from its superconcepts. This part is also included in the description only on

demand.

As an example, consider Figure 5.6 which is the output of the command

Show Concept on Symbolics 9650 lisp machine 9 • It is the description of the

term Serum-HC09-Concentration which is generated by KOLA. A concept is

represented by its name with the prefix ICI, a role by its names with the prefix

8It is covered in Appendix A.3 how the classifier performs the claaaification of concepts.
9 Details are found in Appendix.

KOLA

Command: Show Concept (a concept name) Serum-HC03-Concentration

Let us see the concept ICl8Zlt.'Oll-8COJ-OCllC .. t'a&T%Cll

* kht J>eaor.t.ptJ.on:
Its superconcepts: ICl8ZJUJll-•~'IS&

Its definitional necessary conditions:

69

1a1 :v.ar.m:, 1a1 ma.naD-l'lllCll, 1 a1.uua&D-ax, 1a1 •u.um'IQ.-or,
I llllmUDll-011

* J>etaila:
- •riai.t.t..,. and ca.a.rJ.o

- r-sd.\aq luper Cowpta:
f Cl,.

- I dlaq lab CollD .. ~a:
1c1aanu.u.-m-9C03-00P lwtDTXOll
IClftnCIUS•...,._mcC>J•c:mcana.ne9

- bl.ea alMl ~ reauJ.ot.t.oas:
,., :va.:LUa :

- Value-restricted to (21 29)
- No number restriction. ,.,......., :

- value-restricted to f CfAll&!'•ml'J.'%'!'!'
- No number restriction.

I •llllUOlml>-ax :
- value-restricted to fCIGllllD ...
- No number restriction. ,., ,.-or :
- value-restricted to ICf a&lmll
- No number restriction.

1a1wa ... -ar :
- value-restricted to f Cf llCOJ
- No number restriction.

* Do you want to see its difference from its superconcepts? (Yes or No) Yes
DJ.ffazeDOea

lllf :VALU'&: Val-Restriction
lllf.....,..-OI': Val-Restriction

Figure 5.6: Description of the concept Serum-HC03-Concentration

KOLA

Command: Show Concept (a concept name) person

Let us see the concept ICl•JDUIOll

* 8rie:t De•ari.~i.oa:
Its definitional necessary conditions:

I I\ I IC>'l'm I &I l'U8D I &I Cll%J.DUS

* Detail•:
- •riai.U.e and Geaeri.c
- D•f ined as th• concapt in th• top l•v•l of th• concapt taxonomy
- T-•ti•t• ... C-••1b:

ICl-.r.&-...,_ f Cfl'lllU&-• ICll8DDP-nuc:m ICfDOC!'OU
1c1•unm

- l\o1•• utd t:la&t.r seetri.cti.088: ,.,..,.,... :

value raatrictad to
th• aiz• of the ••t

1a1rum:
value reatricted to f Cf JID·llat.8-•llalGll

1

the •iz• of th• set of it• tiller• i• exactly 1
lllla1%u.D :

value r••trict•d to ICl:rsaacll
the size of th• ••t of its tillers i• at least 1

70

* Do you want to see its nondefinitional n•c•••ary conditions? (Yes or No) Yes

Attr.ilna~ utd tMk J:"e8tri.GU.Ola8 :
1.a.1 ~uxcm :

** MORE **

v~lue re•tricted to ICl.X.
- t~• •iz• of the set of it• tiller• is at leaat 1
IA.I~:

v•lue reatricted to ICIAlll.T•llll'IZ'I!'
t~• size of the ••t ot it• till•r• i• exactly 1

IA.I~ :
v~lue r••tricted to ICl,.....1

- t~e aiz• of th• ••t ot it• tiller• i• exactly 1
1.a.1~-:

v~lu• r••tricted to f Cl.......,1
t~• aiz• of th• ••t ot it• filler• i• exactly 1

1.a.1- :
v~lue reatricted to fCI~
tb• size of th• ••t of its filler• i• at least O

Figure 5.7: Description of the concept Person

71

Cvmu.t: SlaowTn••••1 (aUlllJlBl!ld) ••t
... .. c. •

11••••

1'11 15.1: C1u1f11\111rrr•1 ••••lttU J t•1~21a

KOLA 72

IRI, and an attribute by its name with the prefix IAI. From the brief description,

we know that it is the subconcept of the concept Serum-Parameter and has

several roles, including : Value.

More detailed information about the concept is given in the second part.

The second part contains information about value- and number-restriction of

each role, and information about role constraints.

Figure 5. 7 is the description of the concept Person, and shows how non

definitional information about a concept is included in KOLA's description.

KOLA also has the ability to graphically display information on the sub

sumption relationship between concepts. Figure 5.8 is the output of the com

mand Shov Taxonomy whose root is the concept Serum-Parameter, and shows

the subsumption relationship between the concept Serum-Parameter and its

subconcepts. (Only three levels of the taxonomy are explored because of the

limited size of the window.)

5.2 I-World

I-World consists of assertions. In KOLA, such assertions are made by the in

stantiation of concepts in C-World. In addition, I-World contains knowledge

about assertions, such as Detailed filler references and synonyms of instances,

that helps Question-Answerer reason about assertions.

KOLA 73

5.2.1 Instances

KOLA is told contingent facts about its domain as instances. An instance is an

existing object in the domain, and is made by the instantiation of a concept.

Such an instance is said to belong to the instantiated concept. An instance is

assertional in nature. KOLA deals with an instance in a way similar to how

KANDOR deals with an individual. Unlike KL-ONE, KOLA does not treat an

instance as a kind of concepts. An instance is given to a system by means of a

description which consists of at least one of the following:

• A set of concepts each of which the instance must belong to.

• A set of properties which the instance has in a domain.

The structure of an instance is determined by the concepts whose instantiation

it is. An instance inherits all necessary conditions from all concepts instantiated

to it. Unlike the creation of a concept, no operations, except simply inheriting

necessary conditions from its instantiated concepts, are allowed when an in

stance is created. In other words, none of the operations discussed in Section

5.1.2 are allowed when an instance is created.

In KOLA, when an instance is created, a necessary condition inherited

from its concept becomes a property of the instance. A property in an instance

is represented by its name and its fillers. Ha property is explicitly mentioned in

the description of an instance, each of its fillers must be an instance and cannot

be a concept, because value restrictions are not allowed when an instance is

created. No instance can have as its property a property which is not defined

as a necessary condition in C-World

KOLA 74

When an instance, INS 1, is created, it can contain a. property, PROP, which

is not specified explicitly in the description of INS1 but is included in the set of

properties inherited from its concepts. Suppose that no filler of PROP in INS1 is

given. KOLA deals with such an instance as follows. First, KOLA tries to find

out if PROP's fillers can be found indirectly using information such as symmetry

or inverse relation.

• When no filler still is found:

even when there is the minimum number restriction to PROP, INS 1 can

be created in KOLA. In KANDOR, the creation of such an instance is

treated as an inconsistency. KOLA accepts the la.ck of information about

its property when an instance is created. Thus, when the description of an

instance is asked for later, the property without fillers can be included in

the returned description: instead, the concept which each of its potential

fillers belongs to is mentioned.

• When fillers a.re found, use them as the fillers of PROP in INS 1.

When an instance is created, instance-specific information on the cardi

nality of fillers may be known, regardless of their exact identity in a domain.

There a.re three ways to tell the system about the number of fillers, when an

instance is created in KOLA:

• a property's fillers specified in the description a.re all the fillers the property

can have in the domain. Such information is given to the system by means

of the keyword : a.11. For example, if (Prop : a.11) is included in the

description of an instance where Prop is this instance's property, then the

KOLA 75

fillers which have been specified so far for the property Prop are all the

fillers that its property Prop can have in the domain.

• though all elements in a set of fillers are not known, the total number of

fillers can be known when an instance is created. The expression (: all

x) in KOLA is the facility to tell the system that the total number of

fillers for a property is exactly x where xis a non-negative integer.

• although the total number of fillers is not known, it can be known that

there will be more fillers than specified explicitly in the domain. The

keyword : canbeaore is used to tell the system about such fact.

In order to, deal with a property which does not have any information on the

cardinality of its fillers, the closed world assumption is adopted as default in

reasoning about an instance: in other words, for such a property, it is assumed

that its fillers specified in the description of an instance are all the fillers it has.

In the question-answering process, a user is informed if an answer is obtained

based on the closed world assumption.

Pictorial notations of instances and the relationships between them are

provided with KOLA. An instance in KOLA is denoted by a rectangle which

contains the name of the instance. A property is denoted by a single arrow

which relates an instance to either other instances or a concept which, when no

filler is specified yet, a potential filler must belong to. Figure 5.1 (d) shows

both that an instance Instance has the property Property and that its property

Property's fillers are not specified yet in a domain, but, if they are given later,

all of them must be instances for the concept Range-Concept. Figure 5.1 (e)

shows that the instance Instance is related to the instance Filler by the property

KOLA 76

Property. A property in an instance can have more than one filler. Figure 5.1

(f) shows that the property Property in the instance Instance has n(~ 2) fillers

each of which is known to the system.

Instance Network

Juoa

Childro Svpo•Job

Figure 5.9: Example of the Instance Network

As instances are created, an instance network is created in I-World. The instance

network is the network which is built based on instances and relationships among

them. A node in the instance network is an instance. A branch is a property

KOLA 77

which relates one instance to other instances in a domain. The instance network

shows how instances are related to each other, and thus reflects the structure

of the domain. Figure 5.9 shows part of the instance network built by the

example in Appendix A.4: it shows how the instances Jason, Mary, Kib, Brian,

and Surgeon-Job are related to each other.

5.2.2 Instantiator

The instantiator is the major component of I-World. The instantiator not only

builds the instance network which captures the structure of its domain but also

establishes the instantiation link which connects an instance to the concepts it

belongs to.

Whenever an instance is created, the instantiator determines the instance's

structure. The instantiator figures out the structure of an instance based on

description. As mentioned in Section 5.2.1, the description of an instance con

sists of a set of concepts each of which the instance must belong to and/or a

set of pairs each of which consists of a property and its filler(s). Based on its

structure, the instantiator links the instance to the most appropriate concepts

to which it belongs. Even if no concept which~ instance must belong to is

given in its description, the instantiator has the ability to find the concepts to

which the instance belongs by manipulating given properties and fillers. Ter

minological reasoning about an instance can be done by searching through an

instantiation link.

Given an instance INS, the instantiator finds the most appropriate con-

KOLA 78

cepts which INS belongs to. Let CON be one of such concepts. Then, CON satisfies

all of the following:

1. If concepts are specified in the description of INS as instantiated concepts,

CON is a subconcept of at least one of these concepts. Otherwise, CON has

as its necessary conditions at least one property which is found in the

description of INS.

2. For all properties found in both the set of CON's necessary conditions and in

the set of properties in INS's description, no fillers of any of such properties

violate any restrictions, such as value- and number-, or constraints.

3. If CON is not a subconcept of any concept specified in the description of INS,

it must be non-primitive. (In order for a.n instance to be the instantiation

of a primitive concept, the fact that it is an instance of the primitive

concept has to be explicitly specified in the instance's description.)

An instantiation link which connects an instance with its most specific

concept(s) is pictorially represented by a single arrow with an encircled i as

shown in Figure 5.1 (c). The classifier provides for the instantiator all of

information necessary to determine the concepts of an instance.

For example, consider the following which is the description of the instance

Jason from Section 4:

(definstance Jason (:Instanceof person)

(name "Jason Lee")

(children (:all 2) Kib Brian)

(gender Male)

KOLA

(spouse Mary)

(occupation :canbemore surgeon-job)

(age 40))

79

The syntax of def instance is covered in Appendix A.1. Jason who is an in

stance of the concept Person has six properties explicitly specified such as name,

children, etc. The expression (:all 2) informs the system that for the instance

Jason, the total number of fillers of the property Children is exactly 2. The

keyword : canbemore denotes that, even though we don't know exactly what

they are, we know that a property can have more fillers than specified explicitly

in the description. Jason not only practices medicine hut may also have other

jobs.

Based on the properties gender and spouse and their fillers' adherence to

given restrictions or constraints, the instantiator can conclude that the instance

Jason can also be the instance of the concept Married-Male-Person as well as

the concept Person (See Appendix A.4 for the complete knowledge base under

consideration). Thus, the instantiator connects the instance Jason with the

most appropriate concept Married-Male-Person, because it is the most general

concept which include gender and spouse in necessa.ry conditions. Even though

the instantiation link between the instance Jason and the concept Person is

not established explicitly, the system can make an inference that Jason is the

instance for the concept Person using the transitive property of the subsump

tion relationship. Jason is the instance for the concept Married-Male-Person,

and the concept Married-Male-Person is the subconcept of the concept Person.

Therefore, Jason is the instance for the concept Person.

KOLA 80

J ...

Figure 5.10: Example of the instantiation links between instances and their

concepts

KOLA 81

In addition, the instantiator connects the instance Jason with the concept

Doctor based on the property occupation and its filler. The instantiator always

tries to connect an instance with the most appropriate concepts whose instanti

ation it is, and thus with the concepts Married-Male-Person and Doctor instead

of the concept Person as shown in Figura 5.10.

Although Mary is said to be the instance of the concept Person, the

instantiator can connect the instance Mary with Married-Female-Person by

manipulating the given description about her. This example shows how vivid

representation of knowledge affects instantiation. If, during instantiation, the

fact about Mary's spouse is not inferred from the given facts and represented

vividly, the instance Mary is connected at most to the concept Female-Person.

The connection of an instance with its most appropriate concepts is not

static in KOLA. Though an instance was already connected to some concepts,

the instantiator detaches it from the currently connected concepts, and connects

it with more specific concepts to which it belongs, as more information about

this instance is gathered. An instance does not stay at the initially connected

concept, but is dynamically linked with more specific concepts. This is valuable

in reasoning about whether or not an instance is the instantiation of a concept.

5.2.3 Detailed Filler References

Consider an existing concept-based knowledge representation system. After an

instance is created, we can ask about the fillers of a role that we a.re interested

in, and the answer is obtained by searching through the role in the instance.

When a concept is instantiated, we can pre-specify the number of fillers of a

KOLA 82

role which can possibly be filled by means of number restrictions. However, it is

the whole set of fillers that can be named and referred to. Each (or part) of the

fillers of a role cannot be easily named or used in subsequent courses of solving

a problem, even though we know that there is a convenient, economical way

to reach them. In previous concept-based knowledge representation systems,

there has not been an efficient way to let the system know that there is such a

convenient way to get to the particular filler, although we know that.

One possible solution for this problem is to differentiate the role. However,

this solution may not be desirable because such information needed to reach a

particular filler from a particular instance is instance-specific. Therefore, differ

entiating a role makes the structure of a concept unnecessarily fat as discussed

in Section 4.2.2.

In Section 4.2.2, we discussed the inefficiency caused by using role dif

ferentiation or simple role inheritance to solve queries such as query 3, "'Who is

Jason's first son~". All of the methods suggested turned out to be inefficient.

They make the role taxonomy messier, and require more memory.

In the example in Section 4.2.2, Jason has two children: Kib and Brain.

We can easily tell the system these facts by simply filling the property Children

in the instance Jason.

Now, suppose that it is known that Kib is the first son of Jason in our

domain. Should there be a way to tell the system this fact efficiently? Even

though the first son may not be generic enough to be defined as a necessary

condition of a person, it would be better if the system could be told that Kib

KOLA 83

can be reached from Jason by using the first son as a kind of reference.

The assertional ability of KOLA can be improved, by telling the system

that some of the fillers of a property in a particular instance can be reached

through a particular reference and by letting it use such knowledge in subse

quent problem-solving sessions. This facility is provided by the detailed filler

references in KOLA.

The following is another use of the detailed filler references. A domain

may require that fillers of a property should be represented with some particular

structure when an instance for a concept is created. The system should be told

the structure for such potential fillers. For example, it may sometimes be useful

to store given fillers in order of age when an instance for the concept Person is

created.

The common property of specific reference to a particular filler and struc

ture within multiple fillers is that such information is likely to be clarified after

an instance is created, and is not enough to be defined as a necessary condition

of a concept.

In KOLA, information about the possible structure within potential fillers

of a necessary condition, NEC, can be specified in a concept. This information is

simply handled just as inherited data of NEC, not as a necessary condition. Even

though such information is inherited by subconcepts of the concept, it does not

affect the classification of concepts because it is not a necessary condition.

When such information is specified in a concept, we need to decide when

to use such information. Do we use this information and store the filler within

KOLA 84

the prespecified structure, whenever a necessary condition's filler is given? This

is not efficient because, supposing the concept has hundreds of subconcepts,

whenever any of them is instantiated, fillers of a property with this information

would have to be stored within the prespecified structure even when it is unnec

essary. In KOLA, when NEC's filler is given, it is manipulated in the same way

as a filler without such information is manipulated. KOLA uses information

about the possible structure within potential fillers to answer them, only when

questions which require the use of such information are asked.

The detailed filler references enable us to express what might be repre

sented in a knowledge base more succinctly and easily, and allow the system

to answer queries more efficiently. The construct for detailed filler references is

described in Section 5.3 along with its semantics.

In KOLA, detailed filler references of a property do not play any role in

determining the role taxonomy. Only the role or attribute related to detailed

filler references participates in constructing the role taxonomy as a representa

tive. The goal of detailing a property is to facilitate to access some fillers in a

property in a particular instance.

Detailed filler references can also be represented in the instance net

work. Consider Figure 5.11. Figure 5.11 (a) shows the pictorial represen

tation of a detailed filler reference in the instance network. Figure 5.11 (b)

shows the graphical representation of such a situation in the instance network.

Set-Reference with the double line in Figure 5.11 (b) shows that Filler-1,

Filler-2, and Filler-i form a set and can be reached by Set-Reference.

KOLA 85

Det&iled-Filler-Ref· 1
FW...1

Detailed-FW...Ref-2

•
Property

Instance

r~i

l'in..1

•
•

(b) D•&ilecl Filler a-.... for a srnp
Figure 5.11: Pictorial Representation of Detailed Filler References

KOLA 86

Mary

Jaaon

Children Surgeon-Job

Second-eon

Jaaon'1 son.s

Figure 5.12: Example of the instance network with detailed filler references

KOLA 87

Figure 5.12 is the augmented instance network of Figure 5.9 with detailed

filler references: Kib can be reached by First-son, and Brian by Second-son.

If it is known in the domain that Kib and Brian are Jason's sons, the system

can be told this fact with the detailed filler reference Jason's sons. Jason's

sons with the double line in Figure 5.12 shows that Kib and Brian are Jason's

sons, and Jason's sons can be reached by the detailed filler reference Jason's

sons.

5.2.4 Synonyms for instances

Like a term, an instance can be referred to by several names. For example,

suppose Kib and Jason's first son are defined as instances in our domain:

(def instance Kib)

(definstance Jasons-First-son)

Suppose Kib and Jason's first son denote the same person in the domain. The

system needs to be told that these two instances represent the same entity.

Like concept synonyms, only one structure is created as the representative for

instances specified in the synonym declaration. Other dummy instances point

to this representative. (The transparency is another issue, and can be handled

at the reasoning level, not at the representation level. The facility to handle

this problem is not implemented in the current version of KOLA.)

KOLA 88

5.2.5 I-World Utility

In KOLA, instantiation of an instance is performed by the function (instantiation).

(Details are found in Appendix A. 7.) Before performing the main stage of the in

stantiation, the instantiator vividly represents knowledge which otherwise would

be implicit, based on the symmetry and inverse relation of necessary conditions.

The result of the function instantiation is the instantiation links between in

stances and concepts, and the instance network which captures the structure of

the instantiated domain. When the instantiation fails, the classifier gives the

user the reasons for the failure.

After instantiation, a user can ask questions about the description of an

instance. KOLA answers by giving an appropriately indented description in

which important information is written in bold face. Figure 5.13 shows the

output of the command Show Instance for the instances Jason and Mary.

5.3 Semantics for Transitivity and Detailed

filler References

There are two important operators incorporated with a knowledge base - the

ASK operator for asking questions of the knowledge base and the TELL opera

tor for telling the knowledge base new knowledge [Newell 81]. Telling a system

about the transitive property of a role or attribute, or detailed filler references

helps the system infer implicit knowledge efficiently.

KOLA 89

Conunand: (instantiation)
Dona

Conunand: Show Instance (a instance name) Jason

Let us see the instance IIIJA.IC:m
- &zp1J.cJ.t1y apeaJ.tMMI OOAOept• wbo .. !.awtaAOea J.t J.•:

ICll'JIUOM'
- Ita con.a.pt• ~ai.aecl br J.afez"9D.ti.al. opez-atJ.oaa :

ICIDOC'l'OU IClllUUllD-laLll-~

* Do you want to sea fillers of rolaa or attributes IIl.J&SC:. has? (Yea or No) Yes

11' I CBILl>RD': I I I Jell I I I JlllIU
ll'IOC:CU.HIO.: IIl.uaa&Oll
11'1~: IIllaLll
ll'l8l'OU8&: IIllaaT

ll'IDKlll: Ja•on. Lee
1•1.aa: 40

Conunand: Show Instance (a instance name) Mary

Let us sea the instance IIllaaT
- &zp1J.c.i.t1y ep90.i.tMMI coaoept• wlao.. !.awtaAOea J.t J.• :

ICll'JIUOM'
- It• co~• obtaiaecl br J.at~tJ.a1 opez-atJ.oa•:

ICIKUaDD-l'llllU.S-l'SUC:.

* Do you want to see fillers of roles or attributes f IlllallY has? (Yes or No) Yes

I l' I CiZllDD.: I I I rJDAl.11
IP I 8l'OU8&: II IJA.ltCm

ll'IDD: Kary Lee
1•1.aa: 35

Figure 5.13: Descriptions of the instances Jason and Mary

KOLA 90

The following describes the semantics of the transitivity and detailed filler

references constructs in KOLA. To define the semantics of ea.ch of them, the

formalism used in [Schomolze 83] is adopted. That is, M denotes the following:

A semantics for a KL-ONE network will be given in a standard
first order language with lambda abstraction (called FOL+). With
some network N, we associate a set of predicates, one predicate
corresponding to each element of N,0 and a set of sentences in FOL+,
one sentence corresponding to ea.ch element of N11 • • • •

· · · M takes each element of N1c into a (possibly complex) predi
cate, which is denoted in FOL+.

- Classi.fication in the KL-ONE knowledge representation system
[Schomolze 83]

The semantics of the constructs is presented in terms of question-answering

problems (subsequently referred to as QA problem). There are two types of QA

problems - ls-questions which ask about existence and wh-questions which ask

about what it is as well as existence. In subsequent formulas, we use the bound

variable f to indicate whether a question under consideration is a ls-question or

a Wh-question.

5.3.1 Transitivity

In this section, the construct for representing the transitivity of a role or an

attribute in KOLA is explained in detail.

.(M {Trans AR))= AJz·[3Z = {z1,z:;i, ... ,Zn-1,zn}]

A [(AR tj ARs(zn)) V (z1 = Zn+i 1Where (M,AR)znZn+i)]

A [zi -:F z;,if i -:F j, 1 < i,j $ nJ

A [(M, AR)xz1 A (M, AR)z1z:;i A ···A (M, AR)zn-2Zn-1

KOLA 91

/\(M, AR)zn-1zn]

f = is-+ (..\11 • y E Z -+ T, error), Z

Information about role/attribute transitivity allows Question-Answerer to

efficiently infer knowledge tha.t is implicit in a. knowledge base. Let AR denote a.

role or an attribute, and x, k,y, zi, ... , Zn, and Zn+i denote concepts. A&(zn)

denotes the set of all necessary conditions that a. concept Zn has. Given the

concept x, if 1) x has the necessary condition AR whose range is the concept

z1; 2) ea.ch concept Zi has the necessary condition AR whose range is the concept

Zi+i for i = 1, · · · ,n - 1; 3) Zn does not have AR as its necessary condition, or

z1 = Zn+l where Zn has AR as its necessary condition whose range is Zn+i; 4)

Zi ::/= z;, if i ::/= j for i,j = 1, · · ·, n; and 5) y is one of Zi's, then the answer is Yes

in ls-query, while the answer should be the set of Zi 's in Wh-query.

Among the five conditions, the condition 3) specifies how the classifier

deals with a. transitive necessary condition with circularity. The classifier keeps

track of concepts searched through AR. If it detects that a. concept under con

sideration was already visited, the classifier stops searching and gives the answer.

With this construct, we can represent the knowledge given in Section 4

as follows:

(Transitive anatomical-part-of)

(defconcept urinary-system p (s anatomical-entity))

(defconcept kidney p (s anatomical-entity)

(role anatomical-part-of (vrc urinary-system)))

(defconcept nephron p (s anatomical-entity-by-function)

KOLA 92

(role anatomical-part-of (vrc kidney)))

For simplicity, the details of other concepts such as anatomical-entity, or

anatomical-entity-by-function and their relationships a.re not included 10 • To

understand how transitive property of the role anatomical-part-of is used, con

sider the query 1 again. The query 1, "ls the nephron a part of the urinary

system'(" is a is-query which has Anatomical-Part-of as a role . The values

of bound variables in the lambda. expression for this query a.re as follows: f s

value is is, z's value is nephron, y's value is urinary-system. Because the set Z

is {kidney, urinary-system} and y whose current value is urinary-system is in

Z, the system will reach the answer Yes.

Consider the following lambda expression for the construct to tell a. sys

tem that further search through a.nother role or attribute is required to answer

queries such as question £.

(M (Indir'Jrans AR :via A.Rsm,,))

= AJz-(3k, (M, AR)zk]

f = is-+ (Av· k-:/: y --+{3Z = {z1, ... , Zn}]

A [(AR.mp~ A&(zn)) V (z1 = Zn+t,where (M,A.Rsmp)ZnZn+i)]

A [zi-:/: z;,if i-:/: j, 1 :$': i,j :$': n]

A ((M, A.Rsm,,)zz1 A (M, ARsm,,)z1z2 A··· A (M, ARsm,,)Zn-tZn]

y E Z -+ T, error), k

This expression is similar to the one for 'Jransitivity. The system needs

to know that, because Brian has a nephrotic disease, he has a disease in the
10The anatomical knowledge bue for urinary system bu been built u a running example

for demonstrating KOLA's capability.

KOLA 93

kidney that the nephron is a part of. The system is told this fact through

IndirTrans. In this case, given (indirTrans anatomical-involvement :via

anatomical-part-of), f's value is is, x's is nephrotic-disease, y 's is kidney,

AR is anatomical-involvement, ARim11 is anatomical-part-of, and k's is nephron.

The system will find that kidney :f: nephron and, thus, continue its search via

Anatomical-part-of It will conclude that Z's value is {kidney} and reach the

answer Yes.

5.3.2 Detailed Filler References

The construct for detailed filler references provides a. way of telling the system

a.bout information which is not essential, but helps the system reason a.bo:t1t

implicit information more efficiently. Consider the following:

(M (DetailFR Ins Prop:FR F)

= .\1s·[Prop E INSProp(Ins)/\F c Fillers/\FR E DetailedFRs(Prop)]

-+ f =is-+ (.\11 • x =Ins/\ y = F -+ T, error),

(x =Ins-+ F, error)

error

Ins is an instance , Prop a property in Ins, FR a detailed filler reference

available in a doina.in, and Fis a set of instances. INSProp(Ins) is a function

to compute all properties the instance Ins ha.s. Fillers is the set of all known

fillers of the property Prop in the instance Ins. DetailedF Rs(Prop) is the

function to find the set of all detailed filler references which were already known

to reach Prop's fillers individually or by group. By means of the construct for

the detailed filler references, the system can be told that the instance Ins has

the property Prop, and F among its fillers can be reached through the detailed

KOLA 94

reference FR. Question-Answerer can use this information, when solving a prob

lem.

Using the example from Appendix A.4, KOLA can be told that Kib is the

first son of J a.son as follows:

(DetailFR (In Jason) Children:First (Fillers Kib))

in and Fillers are the keywords in KOLA to represent that the property

Children in the instance Jason is involved and that Kih can be referred to

through the detailed filler First-son, respectively.

5.4 Question-Answerer

There is no guarantee that a.11 knowledge in a domain is explicitly represented

in a description about the world . Thus, a knowledge representation system

should have inferential capability to draw new conclusions about its world by

manipulating knowledge represented explicitly.

The assertional capability of the existing concept-based knowledge repre

sentation systems is limited to a.llowing a user to assert statements of existence,

establishing statements of coreference of descriptions, and ma.king statements

of identity of individual constructs in a particular situation. Consequently, im

provements in the ability to draw what is implicit from aaertional knowledge

represented explicitly is very desirable.

In KOLA, Question-Answerer is responsible for performing ASK opera-

KOLA 95

tions. With the support of Question-Answerer, KOLA has the ability to identify

a concept or an instance in its domain. We can ask Question-Answerer questions

such as

• given properties each of which is given with or without its fillers, find an

instance or instances satisfying them,

• given necessary conditions each of which is given with or without restric

tions or constraints, find a concept or concepts satisfying them, or

• given properties each of which may or may not accompany fillers, find a

concept or concepts which an instance (or instances), which satisfies given

conditions, belongs to.

In addition to facilities provided by previous concept-based knowledge

representation systems, KOLA can also answer questions requesting informa

tion on a property in a pa.rticula.r instance or on a pa.rticula.r necessary con

dition in a concept. For the question, Who are Mary's children'(, Kib and

Brian should be returned as the answer because Mary is Jason's wife. For the

question, Who is Mary's first son 'f, Kib should be returned. Such questions

a.re asking for implicit knowledge and, thus, requires inferential operations. In

KOLA, Question-Answerer has the ability to deal with such questions efficiently.

Question-Answerer has two operators for this type of ASK operations: one for

ls-questions and one for Wh-questions.

• Is-operator:

We may be interested in knowing if a property in an instance has an

other instance as its filler, or if a concept has a necessary condition whose

KOLA 96

command: (Is Kib (children first-son) :of Mary)
Y••·

command: (Is Mary children :of Jason)
Def1At.t:e1y •o, because all fillers of l•IClllJ.D ... in IIl.JASOlr are

known, and IIIJaaY ia none of them.

Command: (Is Jason spouse :of Mary)
Ye•.

Command: (Is "James" name :of Jaaon)
Ho (by closed world assumption).

Command: (Is profeaaor occupation :of Jaaon)
Mayl:ae. Altough it ia not explicitly known that • .,....8C>ll is
a filler of l•IOCCV..1%%Cll, it is known that 1%1.JA8Cm can have
more fillers in l•IOCCU..1%%Cll.

Command: (lfhatia :in• occupation :of :ina Mary)
8orzy. I cannot find the anawer you want. I, however, know that
fillers of l•IOCCU..1%%Cll have to be the in•tance of ICl.JOa.

Command: (lfhatis :c :value :of :c rectal-temperature)
37.,

Command: (Whatis :c :value :of :c Female-serwn-Paco2)
[32 '5)

Command: (lfhatia :ins occupation :of :ins Jason)
l?lmCll

Command: (Whatia :ins (children second-son) :of :ins Mary)
IIIDDll

Figure 5.14: Example of ASK operations

KOLA 97

value is another concept. KOLA can be asked such questions with the

following:

(Is Range Nee :of Domain) 11

For example, we can ask if Jason's occupation is Surgeon:

(Is Jason Spouse : of Mary).

For this type of question, Question-Answerer tries to find as correct an an

swer as possible. First, Question-Answerer attempts to determine whether

Domain is a concept or an instance. If Domain is a concept, and it has

Nee as one of its (at least) necessary conditions, Question-Answerer finds

the range of Nee. If the range found is equivalent to Range, Question

Answerer will return Yes. Otherwise, it will returns No. In the process

of finding the corresponding range, Queation-Answerer can use knowledge

about terminological knowledge in C-World such as knowledge about a

role's transitivity or concept synonyms.

If Question-Answerer finds out that Domain is an instance, it will try

to find fillers of the property Nee in the instance Domain. If the instance

Range is in the set of the fillers found, then Yes will be returned. No or

Maybe will be returned, otherwise. In the cue in which the answer is No

or Maybe, Question-Answerer tries to give a uaer the reason for the nega

tive answer, baaed on information such as cardinality or the closed world

assumption. Figure 5.14 shows answers of KOLA for several queries.

When the system fails to determine if Domain is a concept or an in

stance, it asks a user to give more information about Domain's identity.

11 Its syntax ia described in App•Ddiz A.6.

KOLA 98

In order to reach an answer, Question-Answerer uses assertional knowl

edge such as detailed filler references, synonyms, or cardinality of fillers.

• Wh operator:

We may want to know

- what is the range of a necessary condition of a concept,

- what are the fillers of a property of an instance in a domain , or

- what is the value restriction on a property in an instance.

The following is the operator in KOLA to ask such questions:

(What is flag1 Nee of flage Domain) 12

flag1 and flage are the fiags to tell what our interest is, an instance

or a concept. They are either : C or : Ina. If both flag1 and flage are

: Ins, Question-Answerer will return the fillers of the property Nee in the

instance Domain. If both flag1 and flagl are :C, then the range of the

necessary condition Nee in the concept Domain will be returned. If flag1

is : C but flage is :Ins, Question-Answerer will find the range which each

of fillers of the property Nee in the instance Domain belongs to. Any

other combinations of flag1 and flag! is illegal in KOLA. In the process

of finding an answer, if Question-Answerer needs to use knowledge about

terminological knowledge or about assertional knowledge, it comes into

contact with C-World or I-World to get necessary information.

Figure 5.15 shows how three subsystems in KOLA interact with each

other. I-World uses C-World to determine the instance's structure and to refine

12Its syntax is covered in Appendix A.6.

----- --- -~-

KOLA 99

C-World I-World

Question-Answerer

Figure 5.15: Subsystems of KOLA and Relationship among them

KOLA 100

the instance network whenever an instance is created. C-World uses information

in I-World to know which instances are connected to which concepts. Whenever

an instance is created, it is connected with the most appropriate concepts which

it belongs to. Question-Answerer tries to use not only terminological knowledge

in C-World and assertional knowledge in I-World, but also knowledge about such

knowledge to answer questions as correctly and efficiently as possible.

Chapter 6

Conclusion

Ma.king an intelligent system depends largely on the method used for storing, re

trieving, and manipulating knowledge. To do this, embedding knowledge within

a computer system is indispen.sa.ble. The selection of a knowledge representa

tion formalism to model a domain is critical yet risky, because we cannot, at

the time of selection, know exactly the quality or variety of knowledge. It may

turn out that important knowledge cannot be represented easily after most part

of the knowledge base has already been completed. Throughout this paper, we

have shown how a knowledge representation system such as KOLA, which is

able to capture the structure of a domain, can be used to model a wider variety

of knowledge than previous systems.

A good solution of a problem can be achieved with a good choice of

knowledge representation systems. A good solution is an acceptable one that is

reached efficiently within a reasonable amount of time. A concept-based knowl

edge representation system attempts to embed the structure of a domain in its

101

KOLA 102

computational model, under the assumption that the structural representation

of knowledge will facilitate reasoning capabilities of the system. KOLA is im

plemented as a concept-based knowledge representation system.

KOLA achieves a new state of the art in knowledge representation with fa

cilities which improve expressiveness and reasoning ability. KOLA attempts to

represent knowledge as succinctly and vividly as possible, using distinction be

tween definitional and nondefinitional necessary conditions of a concept, explicit

declaration of types of relations among concepts, and detailed fillers references.

As a result, some inferential operations are reduced to simple retrieval, which

allows KOLA to accomplish improved reasoning performance.

6.1 Future Work

KOLA still has the difficulties with multiple definitions of a concept, OR con

cepts, and structural descriptions.

KOLA cannot deal with a concept with multiple definitions. Multiple def

initions of a concept ca.use undecidability in the proceaa of building the concept

taxonomy, and thus are not allowed in a concept-based knowledge representa

tion system. However, if multiple definitions of a concept were available, they

would be of great value because a single term can sometimes be defined in more

than one way 1 •

1 A single notion can be defined in more than one way even in the same domain. For

example, in the medical domain, the term acidemic may be defined either as a decreased PH

or as an increase in hydrogen ion concentration.

KOLA 103

Similarly, KOLA cannot handle a concept defined by disjointing existing

concepts. Even though OR concepts without structures are nicely manipulated

in (Haase 87], further work needs to be done to handle OR concepts with their

own structures.

The problem with structural descriptions 2 is determining if one struc

tural description is subsumed by another structural description, when trying to

classify a concept. We want to be able to say things like:

• the concept Urgent-Message is defined from the concept Message [Brachman 85]

as a message with a reply time of less than one hour.

Role value maps allow set/subset relations &m.ong fillers, but they are not

general enough. For example, we ~annot say that "the volume of a solution =
the volume of the solvents in the solution" without using structural descriptions.

Finally, KOLA does not handle the circular definitions of concepts appro

priately. For ex&m.ple,

(def concept A (Role R1 (Vrc B)))

(def concept B (Role R2 (Vrc A)))

Classification of A is not independent of that of B, because classification of A

requires classification of B, and vice versa. In KOLA, suppose A is classified

before B is classified. When A is classified, B is treated as a concept with only

those superconcepts which are explicitly presented in its description. Classifi

cation based on this assumption is flawed. For ex&m.ple, suppose that C is a

2Structural descriptions epecify how the components in concepts are related to each other.

KOLA 104

concept with R1 whose range is D, and that B is a subconcept of D, but D

is not one of superconcepts declared explicitly in B's description. We want A

to be classified as a subconcept of C. However, when A is classified, B is not

classified, and it is assumed that Bis not a subconcept of D. Thus, the classifier

cannot establish the subsumption link from A to C. We need a facility to deal

appropriately with the dependencies caused by such circularity.

Appendix A

Appendix

A.1 Syntax for Concepts and Instances

KOLA ::= KOLADefinition +
KOLADefinition ::= ConceptDefinitionlRoleDefinitionlAttributeDefinitionlinstaneeDefinition
ConeeptDefinition ::= (DefconceptlDefc Coneeptname {Coneeptdescription})
ConeeptDeseription ::= Specia.lizationconceptslPrimitiveSpecllnvidua.lSpecl

RestrictionFormjConstraintFormlAttachedIData!AttachedData
Specia.lizationeoneepts ::= (SISpecializes Conceptname +)
PrimitiveSpec ::= PIPrimitive
Individua.lSpec ::= IIIndividual
RestrictionForm ::= (RolelAttribute Rolename!Attributename RestrietionSpec) +
RestrictionSpec ::= Va.lResrticlNumRestric +
ValRestric ::= (VrclVrconcept conceptnamelinterva.llnumberset)
NumRestric ::= (NWlllNumber integer)l(Mu integer)j(Min Integer)!

(Mu integer) (Min integer)j(Min integer) (Mu integer)
ConstraintForm ::= (RolelAssertional nee-Chain operator nee-Chain) +
nee-Chain ::= (nee +)
nee::= Rolename!Attributename
operator ::= != I !>= I k= I k I !>
AttachedIData ::= (Idata values)
Attached.Data::= (Data values)
values ::=number I string I symbol I list
Conceptname ::=symbol
Interval ::= [lower-bound upper-bound]

105

KOLA

numberset ::= { num1 · · · numn }
lower-bound ::= number
upper-bound ::= number
numi ::= number, i = 1, ... , n
Rolename ::= :valuejsymbol
Attributename ::=symbol

106

RoleDefinition ::= (defrolejdefr Rolename {Role-specs])
AttributeDefinition ::= (defattributejdefa Attribute [Attribute-specs])
Role-specs ::= Spec +
Attribute-specs ::= Spec +
Spec::= (domain Conceptname)l(range Conceptname)I

(number number)l(max number)l(11in number)!
(differentiateldiff RA1 · · · RAn)I
(idata lisp-object)l(data lisp-object)

Insta.nceDefinition ::= (Defin11tancelDefins insta.ncename InstanceSpec)
InstantiationSpec ::= Instantia.tionSpecjPropertySpec
Instantia.tionSpec ::= (: instanceOf conceptnames)
conceptnames ::= conceptname +
PropertySpec ::= (Propertyname {NumSpec] FillersSpec) +
NumSpec ::=:all I {:all number) I :canbeaore
FillersSpec ::= instancename +
Propertyname ::= symbol
insta.ncena.me ::=symbol

<NB>:

• number, string, symbol, and list are lisp objects.

• [and] in [lower-bound upper-bound] are the reserved keywords to tell the
system about an interval. The blank between [and lower-bound (between
upper-bound a.nd]) is imperative. Also, The blank between { and num1
(between } and numn) in { num1 • · • numn } is imperative.

• among necessary conditions, :value is the reserved necessary condition
which represents a. value of a concept when this concept has a value. Then,
the filler of :value is either an interval, a number, or a. set of numbers.

• Infinity in the intervals of the form [x oo] or [oo x] is represented by
INF: that is, [x *INF*] or [*INF* x]

KOLA

A.2 Semantics of KOLA primitives

M is found in Section 5.3.

(M (Specializes Ci,···, Cn)) = A:i:.(M C1)z A··· A (M Cn)x
(M (Vrconcept ARC))= A:i:.[Vy,(M AR)xy-+ (M C)y]
(M (Min AR n)) = A:i:.[3ny.(M AR)xy]
(M (Ma.x AR n)) = A:i:.,..., [3(n + l)y.(M AR)xy]

107

(M (Differentiate ARC1 ARC2)) = A:i:.[Vy, (M ARC1)xy -+ (M ARC2)xy]

Consider the following a.bout a primitive and a defined concept:

(1) For all x, Concept(x) => (Con1 A··· A Con1 A Ri A R2 A··· A Rm
AA1 A A2 A · · · A An ARC1 A · · · A RCp
AAC1 A··· A AC9)(x), where l,m,n,p,q ~ 0

· · · (Primitive)
(2) For a.11 x, (Con1 A··· A Con. A Ri A··· A Rt A RC1 A··· A RCu)(x)

<=> Concept(x), where a~ 0 A t,u > 0
···(Defined)

Coni denotes a.11 the inherited necessary conditions of superconcepts of
Concept in which the restrictions(value, number, a.nd/or attribute to role re
striction) are applied appropriately. R; a.nd A, a.re a. role and an attribute
ea.ch of which is newly defined in Concept. RCa. and ACb denote a role con
straint and an assertional constraint which the concept Concept has but none
of its superconcepts ha.s. Even though we can specify nondefinitional necessary
conditions in defining a defined concept, they a.re not sufficient. Thus, nondef
initional necessary conditions are not specified in the necessary and sufficient
conditions of a defined concept. Based on the restrictions or constraints used to
define a concept, the classifier computes the subsumption relationship between
concepts a.nd build the concept taxonomy without waiting for all instances of a
concept to be created. For a primitive concept, the expression (1) means that
for all x, if x satisfies all of the conditions in the righthand side, it is a member
of Concept. For a. defined concept, the expression (2) means that for all x, x
satisfies all of the conditions in the righthand side if and only if x is a member
of Concept.

KOLA 108

A.3 Algorithm for instantiator and classifier

A.3.1 Classifier

The classifier in KOLA classifies concepts by comparing the structural differ
ences between concepts based on the subsumption relationship.

A concept is placed its most specific superconcepts and most general sub
concepts. Finding such places is done by the function FindProperSuperC.

For a given concept, say Con, it is classified by such;

Let 8UP8 be the euperconcepl9 epeclled expllcltly In the~ of CON.
Let IRolea Md IAttrl be the elt of "*9 Md...._ wlllclt'l .. 11 • ..._..... from

-.y OOlapt In IUP Md , blcM ... ---· .. ,......._
Let ToT ... R Md TeT ... A be of "*9 Md wN111 CON tm:
ToTal-R la .. unlOft of_ "*9 In .. dei lltllft of CON which glver'I
~

ToTaf.A la .. union of IMtrt _, In _.. of CON which
ghl9n , totlcMI-..... .

Let R-CO- (A.CO.) of of (P rllon11) OOI
lnherltld from_ ol CON of NII (llllnson.t) OOI ...
In the delQ fptlcNt of CON.

Then SUPI la r'lflned by IUCh:

SUPI (. ('lndl'r SUPS ToTal-R ToT•A R-cone A-cont)

< Find,,,,,,,.,.,,. >
Find .. "'°"' -.-c11--ic --- which ~ Md CONlllll"8 glver'I
• roao.:
TEMP·IUP < • NIL
For-" IUP In IUPI,

LAI IUP-SUU be .. Ill of 1UbCOn01P11 of IUP.
For -* aua 1n auP-auaa.
~<•.,,. unlan of Md

(ICW#' ,,.,.,, then,,.,,. (l'lnllfl; •P•,.,,. , .. SUI) ToTal-R ToTal·A ft-cont A·Con•))
elle(lltlUP))

(return (LN~ IUPI TlllP·SUP))

KOLA

< S.t/afy-SUbSumption-R'I >
Let ITS·A (ITl·A) be the Mt el all rolla (~which SUI ha
Let ITS·lltC errs-AC) be tt'9 Ill ol t1111'111_, OONftlnt8 SUI ha
If sue,.. .. fGIOwlnl:
1. ITl·A II d ToT•tt Md

109

2. &eta " 1n .,.... •• oa,,,_... .. , ... """"' Oh*t 1n Section s., .2
1n, for "'8 ID .. a mtu•na•• II caM. and

3. ITl·A II 1W ol .. unlOn II .,... .. R ... ,._..A, Ind
4. &ah A In l1'8-A n &1'ia .. •••I.I a nllll In 5.1.2

tn, for aua tD llll a •lflnn••., 09L •
5. ITl·lltC II IW ol R-co. - .., c11••111 In A-CoM II l8tllfled

In sua In ~ tor IUa ID .. a ... HA 1 •1 tJI CON. INll
8. ITS-AC II "'9 el A.c.e Mil MJ OOtotl In A-cone la l&tllfted

1n aua 1n, for sue to be a e1 CON
then (IWtum T)
erae (IWtum NIL)

< l.N.,._,NI SllPI >
WOAICINQ.llT < • NIL
For..,.. SUP 1n ,...,up

If IUP la am UIRllJlf/I a OOl._I In IUP. t/I 8UP 11 ~
than WORK• llT <• •1 wNdl IUP la ldlllld Into

For lft...___,
lAt ~ .. a Ill ol AllllFIPY ODlll .. ,. wllt IMll9CI tlWWltlvlty .,
FINAl..auPI <• NIL

For - "' tNDHn'RANa
Let RANm-1 el W of -·IUI'
LttTllRCMMU•ennr 1.w •n• re,....-
SUPf <• , 1llP 1.IR•••--•ut.-W•IUP

- 'IURIU•t •t• 1)
l'INAL·IUN < • If 1UPt

.... f'IMAL·IUN
(retum f'INAL•SUP8)

< SuMy.Patt.ot >
For -" ANOTHa In WOIUUNG-llT· -IUP

lAt INOtflT be a Ill fll 11 •EH ' -.-. .. w111 11•-.1t lrWllillvlty
ol ANOW

If INDIA lltft '"°""'
than Ult MJl••I be the ol 1NOta f1f AHOW

I fll 'ftN ... af IWI• 1 la AMI• I
than •trU1t - •• R¥11n lllll ,._ --- to AN0'1"a.R,,.,

KOLA 110

Given the Instance, INS, the inatantlator WOl'kl by IUCh:
Let T9mplatH be the ... of concepta ..cit of which ii given In the delcriptlon of INS.
INS mual be the memb9r of conCIPtl In T
Each concept In Templet• ii the ,..,, .. , dlllMI. not dummy. (cf. Synonyms of concepts)

Let Prop.Val be the let of patra 8ICh of whlCt\ con1• of property rwne and Its flllers.
Each """ ii the ntatlve, not dummy.
Each - In Prop-Val CM be found
either dlrectly In the delcrtptlon of INS
or lndnctty tlYOuQh 8YftWl'trlctty of a property or tnw property

the - which CM be found Indirectly ii lncludld In Prop-Yet vividly.

Templat• ii refined by -..ch and the 11-.namor conNCta INS wtth llllCh of concepts
In the refined Templet•.

Templet•<. (FlndAIMSpeoll/cCon Templet• Prop-Val)

< FlndAlolllSpeolllcC >
Let Prope be the Mt of 1WOP1ttY .,.... In Pros»-Yet.
Cu rrent·Mom < • If T-.latee ii noMlftPtY,

tlW\ Tlm(:ll 111,
elle(f~Prooe)

Retlned·Mome < • NIL
For elCh Mom In Curreftt·Mom

Let Mom·RAa be the Ill of .. rOlle Md Mom ._.
Reflned·Moma (• The union of_.._. 11'111

(Cla111ftf111t P,...V81 Pftllll9 Mom Mom·RAa)
(retum (C.nbeAlont? ,..,.,...Monie))

< Flndflotentla/Alom)
F1nd and ...eum the oonOll* Wh of whlatt nt'.,_ tN fo1Dwl11g:

L8t Con be ... oon...a of COM9I\.
L8t RAa be._ ... of II ro111 Md Con ._.
Then, RAa la the .,._ of Prepe.

< CloNatAlom >
Let CommonProp be the llltlralOdon of Mom·RAa Md Propa.
If (Setllf_,.,.NICollf Mom P,..Vtll)
then, Let Suite be the 111 of 11 albaollOIPtl of Mom

Mor•Speclflo < • NII.
For Eaclt•IUll In Sun,

Let Sult·RAa be the Ill of .. "*9 Md attrllutla laclt·lub ha
More-Specific < • the union of More-lpaolflo Ind

(C-..Alom Prop-Y81 ,,.... leolt-lull IUll·RAa)
If Mor•Speclflo la empty,

KOLA

then (return (list M~m))
elM (retum More·S,.clflc)

else, Let Supa be the let of aff superconcecpta of Mom.
(,..,urn (FlndlnSu,,. lupe Prop· Val Prope))

< FlndlnSu,,_ >
Mor...O.neral < • NIL
Few laoh·lup In Supe

Let lup.RAI be the let of all rolll Md ..,..,_ Each·lup ha
More-General<• the union ot MoreGe••ral Md

(CloeMdlont Prop-Val Propeleotl·lut1l11P"RAe)
If More-Oefteral II nonempty,
u.n (,..,,.,, Mor..o..erel)
..... Let AH·llltl9 be the let ot tupll'COftCIPll ot conC1P11 In lupe.

(1'9tum (FlndlttSupa All·lupe Prop-Val Prot19))

(SatlaflabWl•••Con? >
If Mom•RAI II the atblet ot Prope and

few .. ~which ... found ~both In Mom·"MMd Prope,
no ftllll"l In Prop.Val vtolllteent "'*lcliDMOI M,_
In Section 4.

then (l'9turn T)
.... (IWfum NIL)

< c.trl»ltlom? >
Flnal·Moma (. NIL
Few Eactt-con In Reflned·Mom•

If (SubOMMPIWlaDllCon T.,......),
then Anal•.._<•._ union ot fllMl•...._ Md

(llt boh-Coft)
(return Flnal•Molnl)

< SubORNonPrlm? >
If Each·Coll .. the 1Ubconc1Pt of at 1111t one of conc11* In Tempaat•

or a norrp; •nllM! conclPt.
then (1'9tum T)
elte (1'9tum NIL)

111

KOLA 112

A.4 Running Example

A.4.1 Terminological Knowledge

(def concept strings p)
(defconcept thing p)
(defconcept numbers p)
(def concept genders p)
(defconcept female (s genders))
(defconcept male (s genders))
(defrole :value (domain thing) (range numbers))

(defconcept person p
(attribute name (vrc strings) (min 0))

(attribute gender (vrc genders) (num 1))
(attribute age (vrc numbers) (num 1))

(attribute anatomy (vrc anat-entity) (number 1))
(attribute occupation (vrc job) (min 0))
(role children (vrc person) (min 0))
(role father (vrc married-male-person) (num 1))
(role mother (vrc married-female-person) (num 1))
(assert (!• (father spouse name) (mother name))))

(def concept male-person (s person)
(role gender (vrc male)))

(defconcept female-person (s person)
(role gender (vrc female)))

(def concept married-person (s person)
(role spouse (vrc married-person) (num 1)))

(defconcept married-male-person (s married-person male-person)
(role spouse (vrc married-female-person)))

(def concept married-female-person (s married-person female-person)
(role spouse (vrc married-male-person)))

(def concept doctors (s person)
(role occupation (vrc medical-job) (min 1)))

(defconcept job p)
(defconcept medical-job p (s job))

KOLA 113

(defconcept leukemia. p (s disease))
(defconcept patient p (s person)

(role patient-disease (vrc disease) (min 0))
(role state-description (vrc patient-state-description) (min 0))

(defconcept patient-state-description p)
it needs to be refined by, for example, including its necessary

; conditions.

(defconcept entity p)
(defconcept ana.t-entity p (s entity)

(role anatomical-connected-to (vrc anat-entity) (min 0))
(role input (vrc ana.t-entity) (min 0))
(role output (vrc ana.t-entity) (max 0)))

(defconcept anatomical-entity p (s entity)
(role anatomical-part-of (vrc anat-entity) (min 0)))

(defconcept anat-entity-by-region p (s anat-entity))
(defconcept anat-entity-by-function p (• anat-entity))
(defconcept anatomical-entity-by-region p (s anat-entity)

(role classified-by (vrc region) (nwaber 1)))
(defconcept anatomical-entity-by-function p (s anat-entity)

(role classified-by (vrc function) (number 1)))

(defconcept anatomical-conduct p (s anat-entity)
(role input (vrc anat-entity) (min 0))
(role output (vrc anat-entity) (min 0)))

(defconcept region p)
(defconcept outer-kidney (s region))
(defconcept inner-kidney (s region))
(defconcept function p)
(def concept ana.t-system p)

(defconcept urinary-system p (s anat-system))
(defconcept kidney p (s ana.t-entity)

(role anatomical-pa.rt-of (vrc urinary-system))
(role anatomical-connected-to (vrc ureter)))

(defconcept left-kidney (s kidney))
(defconcept right-kidney (s kidney))

KOLA 114

(defconcept ureter p (s anat-entity)
(role anatomical-part-of (vrc urinary-system))
(role anatomical-connected-to (vrc urinary-bladder)))

(defconcept left-ureter (s ureter)
(role input (vrc left-kidney)))

(defconcept right-ureter (s ureter)
(role input (vrc right-kidney)))

(defconcept urinary-bladder p (s anat-entity)
(role anatomical-part-of (vrc urinary-system))
(role anatomical-connected-to (vrc urethra))
(role input (vrc ureter)))

(defconcept urethra p (s anat-entity)
(role input (vrc urinary-bladder))
(role anatomical-part-of (vrc urinary-system)))

(defconcept cortex p (s anat-entity-by-region)
(role classified-by (vrc outer-kidney))
(role anatomical-part-of (vrc kidney))
(role anatomical-connected-to (vrc medula)))

(defconcept medula p (s anat-entity)
(role cla••ified-by (vrc inner-kidney) (num 1))
(role anatomical-part-of (vrc kidney)))

(defconcept nephron p (s anat-entity-by-function)
(Role anatomical-part-of (vrc kidney)))

(defconcept collecting-tubule p (s anat-entity-by-function)
(role anatomical-part-of (vrc kidney))
(role anatomical-connected-to (vrc distal-tubule))
(role input (vrc tubule)))

(defconcept glomerule p (s anat-entity-by-function)
(role anatomical-part-of (vrc nephron))
(role output (vrc tubule)))

(defconcept tubule p (s anat-entity-by-function anatomical-conduct)
(role anatomical-part-of (vrc nephron))
(role input (vrc glomerule))

KOLA

(role output (vrc collecting-tubule)))

(defconcept bowman-capsule p (s anat-entity)
(role classified-by (vrc region) (number 1))
(role anatomical-part-of (vrc tubule)))

(defconcept proximal-convoluted-tubule p
(s anatomical-conduct anat-entity)
(role claasified-by (vrc region) (number 1))
(role anatoaical-connected-to (vrc bowman-capsule))
(role anatomical-part-of (vrc tubule))
(role input (vrc glomerula))
(role output (vrc loop-of-henle))

(defconcept loop-of-henle p (s anatomical-conduct anat-entity)
(role classified-by (vrc region) (number 1))
(role anatomical-connected-to
(vrc proximal-convoluted-tubule))
(role anatomical-part-of (vrc tubule))
(role input (vrc proximal-convoluted-tubule))
(role output (vrc distal-tubule)))

(defconcept distal-tubule p (s anat-entity)
(role classified-by (vrc region) (number 1))

(role anatomical-part-of (vrc tubule))
(role anatomical-connected-to (vrc loop-of-henle))
(role input (vrc loop-of-henle))
(role output (vrc collecting-tubule)))

(defconcept disease p)
(defconcept kidney-disease (s disease)

(role anatomical-site (vrc kidney)))
(defconcept nephrotic-disease (s disease)

(role anatomical-site (vrc nephron)))

(defconcept blood-vessel p (s anatomical-conduct)
(role input (vrc blood-vessel) (min 0))
(role output (vrc blood-vassal) (min 0)))

(defconcept artery p (s blood-vessel))
(defconcept vein p (s blood-vessel))

115

KOLA

(defconcept systemic-artery p (s artery))
(defconcept systemic-vein p (s vein))

(defconcept renal-blood-vessel (s blood-vessel))
(defconcept renal-arterie (s artery renal-blood-vessel)

(role input (vrc syatemic-artery))
(role output (vrc renal-vein)))

(defconcept renal-vein (s vein renal-blood-vessel)
(role input (vrc renal-arterie))
(role output (vrc systemic-vein)))

(defconcept body-function p)
(def concept homeostatic-mechanism p)
(defconcept regulation-of-body-function p)
(defconcept regulation-of-blood-gases p)
(defconcept regulation-of-blood-pressure p)
(defconcept regulation-of-fluid-volume p)
(defconcept regulation-of-body-teaperature p)
(defconcept regulation-of-fluid-osmolarity p)

(defconcept measurable-thing (s thing))
(defrole measure-of (domain physiologiCal-parameter)

(range measurable-thing))
(def concept measurable-thing p)
(defconcept Na (s measurable-thing))
(defconcept K (s measurable-thing))
(defconcept HC03 (s measurable-thing))
(defconcept Cl (s measurable-thing))
(defconcept Ca (s measurable-thing))
(defconcept creatinine (s measurable-thing))
(defconcept PaC02 (s measurable-thing))
(defconcept P02 (s measurable-thing))
(defconcept Ph (s measurable-thing))
(defconcept anion-gaps (s measurable-thing))
(defconcept glucose (s measurable-thing))
(defconcept osmolarity (s measurable-thing))
(defconcept NH3 (s measurable-thing))

(defconcept patient-property p)
(defconcept heart-contraction p (s thing))

116

KOLA

(defconcept heart-expansion p (s thing))
(defconcept oral-pa.rt (s aNat-entity))
(defconcept rectal-part (s aNat-entity))
(defconcept Physiological-parameter (s thing)

(role :value (vrc nuabers))
(role mea•ured-froa (vrc aNat-entity))
(role aeasured-sex (vrc genders)))

(defconcept blood-pressure (s PhysiologiCal-paraaeter)
(attribute functionally-aaaociated (vrc thing)))

(defconcept Systolic (s blood-pressure)

117

(role functionally-associated (vrc heart-contraction))
(role :value (vrc [90 140]))) ; .. Hg (Hg • mercury)

(defconcept Diastolic (s blood-pressure)
(role functionally-associated (vrc heart-expansion))
(role :value (vrc [60 89])))

(defconcept body-teaperature (s Physiological-paraaeter))
(defconcept oral-teaperature (s body-teaperature)

(role aeaaured-froa (vrc oral-part))
(role :value (vrc 37))) ; C 98.6F

(def concept rectal-temperature Cs body-temperature)
(role aeasured-froa (vrc rectal-part))
(role :value (vrc 37.4))) ; C, 99.3F

(defconcept total-body-la-store (s Physiological-parameter)
(role aeaaure-of (vrc Na))
(role :value (vrc numbers)))

(defconcept total-body-Ha (s Physiological-parameter)
(role aeasure-of (vrc Na))
(role :value (vrc nuabers)))

(defconcept total-body-K (s Physiological-parameter)
(role aeasure-of (vrc K))
(role :value (vrc nuabers)))

(defconcept total-body-HC03 (s Physiological-parameter)
(Role measure-of (vrc HC03))
(role :value (vrc numbers)))

(defconcept icf p)
(defconcept intracellular-fluid p)

(defconcept icf-paraaeter p (s Physiological-parameter)
(role parameter-of (vrc icf)))

KOLA

(defconcept icf-Ph p (s icf-parameter)
(role measure-of (vrc Ph))
(role :value (vrc numbers)))

(defconcept total-icf-Na p (s icf-parameter)
(role measure-of (vrc Na))
(role :value (vrc numbers)))

(defconcept total-icf-K p (s icf-parameter)
(role measure-of (vrc K))
(role :value (vrc numbers)))

(defconcept total-icf•HC03 p (s icf-paraaeter)
(role measure-of (vrc HC03))
(role :value (vrc n\Ulbers)))

(defconcept total-icf-Cl p (s icf-parameter)
(role measure-of (vrc Cl))
(role :value (vrc numbers)))

(defconcept total-icf-Ca p (s icf-paraaeter)
(role measure-of (vrc Ca))
(role :value (vrc numbers)))

(defconcept renal-parameter p (s Physiological-parameter))
(defconcept gfr p (a renal-parameter))
(defconcept renal-function p (s renal-parameter))

(defconcept ecf p)
(defconcept ecf-parameters p (s Physiological-parameter)

(role parameter-of (vrc ecf)))
(defconcept total-ecf-vol\Ule p (s ecf-paraaeters)

(role :value (vrc numbers)))
(defconcept total-ecf-Na p (s •cf-parameters)

(role measure-of (vrc Na))
(role :value (vrc numbers)))

(defconcept total-ecf-K p (s ecf-parameters)
(role measure-of (vrc K))
(role :value (vrc numbers)))

(defconcept total-ecf-HC03 p (s ecf-parameters)
(role measure-of (vrc HC03))
(role :value (vrc numbers)))

(defconcept total-ecf-Cl p (s ecf-parameters)
(role measure-of (vrc Cl))
(role :value (vrc numbers)))

118

KOLA

(defconcept total-ecf-Ca p (s ecf-parameters)
(role measure-of (vrc Ca))
(role :value (vrc numbers)))

(defconcept serum p)
(defconcept blood p)
(defconcept blood-parameters p (s Physiological-parameter)

(role parameter-of (vrc blood)))

119

(defconcept serum-parameter p (s renal-parameter blood-parameters)
(role parameter-of (vrc serum)))

(defconcept wbc p (s blood-parameters))
(defconcept rbc p (s blood-parameters))

(defconcept serum-Na-concentration p (s serum-parameter)
(role measure-of (vrc Na))
(role :value (vrc [136 146]) (data (unit meq/l))))

(defconcept serum-K-concentration p (s serum-parameter)
(role measure-of (vrc K))
(role :value (vrc [3.5 5.1]) (data (unit meq/l))))

(defconcept serum-HC03-concentration p (s serum-parameter)
(role measure-of (vrc HC03))
(role :value (vrc [21 29]) (data (unit meq/l))))

(defconcept arterial-serum-HC03-concentration p
(s serwa-HC03-concentration)
(role measure-of (vrc HC03))
(role :value (vrc [21 28]) (data (unit meq/l)))
(role measured-from (vrc artery)))

(defconcept venious-serua-HC03-concentration p
(s serum-HC03-concentration)
(role measure-of (vrc HC03))
(role :value (vrc [22 29]) (data (unit meq/l)))
(role measured-from (vrc vein)))

(defconcept serum-Cl-concentration p (s serum-parameter)
(role measure-of (vrc Cl))
(role :value (vrc [98 106]) (data (unit meq/l))))

(defconcept serum-Ca-concentration p (s serum-parameter)
(role measure-of (vrc Ca))
(role :value (vrc [2.1 2.55]) (data (unit mmol/l))))

(defconcept serum-creatinine-concentration p (s serum-parameter)
(role measure-of (vrc creatinine))

KOLA 120

(role :value (vrc [0.17 0.93]) (data (unit meq/l))))
(defconcept male-serum.-creatinine-concentration p

(s serUll-creatinine-concentration)
(role measure-of (vrc creatinine))
(role :value (vrc [0.17 0.70]) (data (unit meq/l)))
(role measured-sex (vrc male)))

(def concept female-serum.-creatinine-concentration p
(s serum-creatinine-concentration)

(role measure-of (vrc creatinine))
(role :value (vrc [0.35 0.93]) (data (unit meq/l)))
(role measured-sex (vrc female)))

(defconcept serum.-PaC02 p (s serum-parameter)
(role measure-of (vrc PaC02))
(role :value (vrc [32 48]) (data (unit meq/l))))

(defconcept male-serum-PaC02 p (s serum-PaC02)
(role measure-of (vrc PaC02))
(role :value (vrc [35 48]) (data (unit meq/l)))
(role measured-sex (vrc male)))

(def concept f emale-serum-PaC02 p (s serwa-PaC02)
(role measure-of (vrc PaC02))
(role :value (vrc [32 45]) (data (unit meq/l)))
(role measured-sex (vrc female)))

(defconcept serum-P02 p (s serum-parameter)
(role measure-of (vrc P02))
(role measured-from (vrc artery))
(role :value (vrc [83 108] (data (unit mm Hg)))))

(defconcept serum-Ph p (s serum-parameter)
(role measure-of (vrc Ph))
(role :value (vrc [7.35 7.45]) (data (unit meq/l))))

(defconcept anion-gap p (s serum-parameter)
(role measure-of (vrc anion-gaps))
(role :value (vrc [7 16]) (data (unit 111101/L))))

(defconcept serum-glucose-concentration p (s serum-parameter)
(role measure-of (vrc glucose))
(role :value (vrc [70 105]) (data (unit mg/dl))))

(defconcept serum-osmolarity p (s serum-parameter)
(role measure-of (vrc osmolarity))
(role :value (vrc [275 295]) (data (unit mOsmol/Kg))))

(defconcept urinary-parameter p (s Physiological-parameter))

KOLA

(defconcept urine-output p (s urinary-parameter))
(defconcept urina-osaolarity p (s urinary-parameter))
(defconcept urinary-Ph p (s urinary-parameter))
(defconcept urinary-HH3-concentration p (s urinary-parameter))
(defconcept urinary-electrolyte p (s urinary-parameter))
(defconcept urinary-Na p (s urinary-electrolyte)

(role aeasure-of (vrc Na))
(role :value (vrc [40 220]) (data (unit mmol/L))))

(defconcept urinary-K p (s urinary-electrolyte)
(role measure-of (vrc K))
(role :value (vrc [25 125]) (data (unit mmol/L))))

(def concept urinary-Cl p (s urinary-electrolyte)
(role measure-of (vrc Cl))

121

(role :value (vrc [110 250]) (data (unit mmol/L))))
(def concept urinary-HC03 p (s urinary-electrolyte)

(role measure-of (vrc HC03))
(role :value (vrc O) (data (unit mmol/L))))

(disjoint genders :name genders (female male))
(disjoint region :name region (outer-Kidney inner-Kidney))
(Transitive anatomical-part-of)
(Transitive anatomical-connected-to :direction bidirectioNal)
(indirTrans anatomical-site :via anatomical-part-of)
(symmetric spouse)
(synonyms-c icf intracellular-fluid)
(synonyms-c anatomical-entity anat-entity)
(synonyms-c anatomical-entity-by-function anat-entity-by-function)
(synonyms-c anatomical-entity-by-region anat-entity-by-region)
(prop-assert children::• spouse children)
(prop-assert sibling::• father children)
(prop-assert sibling::• mother children)
(prop-assert mother::• father spouse)
(prop-assert father::• mother spouse)

KOLA

A.4.2 Assertional Knowledge

(defins male (:Instanceof male))
(defins female (:Instanceof female))
(defins surgeon (:Instanceof Medical-job))
(definstance Jason (:Instanceof person)

(name "Jason Lee")
(children (:all 2) Kib Brian)
(gender male)
(spouse Mary)
(occupation :canbemore surgeon)
(age 40))

(defins Mary (:Instanceof person)
(name "Mary Lee")
(gender female)
(age 35))

(defins Kib (:Instanceof person)
(gender male)
(name "Kib Lee")
(father Jason))

(defins Brian-leuKemia (:Instanceof leuKemia))
(defins Brian (:Instanceof person)

(gender male)
(name "Brian Lee")
(mother Mary)
(patient-disease Brian-leuKemia))

(DetailFR Children (In Jason) First-son (Fillers Kib))
(DetailFR Children (In Jason) Second-son (Fillers Brian))

122

KOLA 123

A.5 KOLA operators

1. Symmetry
(Symmetry ra-name) Macro

It lets the system know that a necessary condition ra-name is symmetric.
It tells I-World that if a concept with ra-name is instantiated, say i 1 , and i iRAi 2,

then i 2RAi1 is also true for an instance i 2 •

Thus, although it is known only the fact that the instance i 1 has i 2 as
ra-name's filler, I-World can infer and represent vividly the fact that i 2 has i 1

as ra-name's filler. Such vivid representation of knowledge affects the connec
tion of an instance to its most specific concepts each of which it should belong to.

2. Transitive
(Transitive ra-name [:direction bi(direction))) Macro

It lets the system know that a necessary condition ra-name has the transitive
property. : direction bi is to tell the system that ra-name is both transitive
and symmetric. This information is to be used to lea.d Question-Answerer to
the right direction to get to the answer efficiently. (cf, see Section 5.1.3)

3. indirect transitive
(Ind[irect]Trans[itive] ra-name :via via) Macro

The system can be told that ra-name has the indirect transitive property. When
Question-Answerer is solving a problem related to ra-name, this information lets
Question-Answerer know that it may be necessary to search thorough via as well
as ra-name. (cf, see Section 5.1.3)

4. Inverse of a necessary condition
(InverseAR RA1 RA2) Macro

The system can be told that there is the inverse relation between RA1 and

KOLA 124

RA2. When an instance with RA1 or RA2 is created, the instantiator rep
resents vividly knowledge which is implicit but can be inferred by using this
information. LiKe Symmetry, it also has the influence on determining the con
nection of an instance to its most specific concepts. Suppose a concept with a
necessary condition ra-name is instantiated, say i 1 and i 1RA1i 2. Then, i2RA2i1
is true.

5. The way to get there
(prop-assert interested := chain of necessary conditions) Macro

It helps Question-Answerer to know that what we are interested can be reached
through other ways indirectly: the fillers of interested in an instance can be
reached though a given cha.in. interested may or may not be a property defined
in an instance explicitly. Reconsider the example in Section 5.1.4. Consider

Children :• spouse Children.
For an instance Ins, the fillers of Children in Ins can be reached by such:

1. Find the fillers of spouse of Ins.

2. for ea.ch filler found in (1), find the fillers of Children.

On the other hand, consider

(Sibling : • father children) or (Sibling : • mother children).
Although Sibling is not defined as a necessary condition for any concept in C
World, it can be reached through the chain of necessary conditions. (See
Section 5.1.4.)

(undo-prop-assert interested::= chain to be deleted) Macro

Undo the defined way to get a solution. For example, we can make the effect of
(prop-assert Children :• spouse Children) undone, using (undo-prop-assert
Children::• spouse Children).

6. Detailed Filler References

(1) (DetailFR Prop (In Ins) Ref (Fillers the list of Fillers)) Macro

KOLA

(2) (DetailFR Propl (In Ins) :i-Sort-by Prop2)
(3) (DetailFR Propl (In Ins) :d-Sort-by Prop2)

125

Macro
Macro

(1) lets KOLA know that the list of Fillers among fillers of the property Prop
in the instance Ins can be reached through the detailed references Ref (2) and
(3) are the constructs to tell KOLA that when fillers of the property Propl in
the instance Ins are specified, they need to be Sorted according to the value of
Prop2 each of which has in increasing (2) or decreasing (3) order. For example,
consider the following:

(DetailFR Children (In Jason) :d-Sort-by age)

It informs that when Jason's children are specified, they are sorted according
to their age in decreasing order.

7. disjointness Class
(disjoint [disjointed] :name name (Con1 ···Conn)), where n ;::: 2 Macro

It tells the system about a set of concepts for which there are no common
instances. If disjointed is specified, it is the disjointed concept. The set of
C on1 · · · Conn is the corresponding disjointness class. Ea.ch disjointness classe
has to be associated with a unique name, to facilitate several useful operations
on disjointness classes, including redefining a disjointness class. Such a name
follows the Keyword :name. See Section 5.1.4 for details.

(redefine-disjoint (c-name) :name name (Con1 ···Conn)), wheren;::: 0 Macro

This function is for redefining or deleting a disjointness class which was already
defined. If n = O, the disjointness class with the name name is deleted. If n ;::: 1,
the disjointness class with the name name is replaced by given Con1 ···Conn.

(FindnamesOfdisjointnessClass [disjointed CJ) Macro

This function shows names for all disjointness classes defined. If disjointedC
is specified, names of disjointness classes defined for this concept are returned.
Otherwise, names of disjointness classes defined without being associated with
any disjointed concept a.re returned.

KOLA 126

(ShowdisjointnessClass [:disjointed c-name] [:name name]) Macro

This function returns the corresponding disjointness class(es). When both c
name which follows the keyword :disjointed and name which follows :name
are specified, the disjointness class with the name name of the disjointed concept
c-name are returned. When only c-name which follows :disjointed is given,
all disjointness classes for this concept a.re returned. When only name which
follows :name is specified, a disjointness class with the name name is returned:
in this case, it does not have any corresponding disjointed concept. When no
options are specified, all disjointness classes each of which does not have any
corresponding disjointed concepts are returned.

8. cover class
(cover c-name :name name (Con 1 ···Conn)), where n ~ 2 Macro

It tells the system about a set of concepts which exhaust its covered set. A
set of coverings also has to be associated with a name: its name is specified by
following : name.

(redefine-cover c-name :name name (Con 1 • • • Conm)), where m ~ 0 Macro

This function is for redefining or deleting a set of coverings which was already
defined. If m = 0, the set of coverings with the name name is deleted. If m ~ 1,
the set of coverings with the name name is replaced by given Con. 1 • • • Conm.

(FindnamesOfcoverings coveredC) Macro

This function returns names for sets of coverings of the cov~red concept cov
eredC.

(Showcoverings :covered c-name [:name name]) Macro

This function returns the corresponding set of coverings of the covered concept
c-name. When name which follows : name is specified, the set of coverings with
the name name of the covered concept c-name is returned. When name is not
given, all sets of coverings of the covered concept c-name a.re returned.

KOLA 127

9. Synonyms

(1) (Synonyms-C Con1 ···Conn) where n ~ 2 Macro
(2) (Synonyms-Ins Ins1 • · • Insn) n ~ 2 Macro

(1) lets the system know about synonyms of concepts, while (2) about synonyms
of instances. Details can be found in Section 5.1.4.

A.6 KOLA's ask operators

(Is Con-Ins-2 RA-name of Con-Ins-1) Macro

This is for asking a query such as "Is the filler of RA-name in Con-Ins-1 Con
Ins-2?"

Con-Ins-1 or Con-Ins-2 can be either a. concept or an instance. If the sys
tem decides that Con-Ins-1 is a. concept, this query is asking for a range of its
necessary condition, RA-name. If the system determines that Con-Ins-1 is an
instance, then this query is asking for a filler of its property, RA-name. In the
case where Con-Ins-1 is an instance, RA-name can be of the form (RA-name
Detailed-Filler-Reference} to ask a.bout the filler which can be reached through
this detailed filler reference. To rea.ch as correct an answer as possible, KOLA
has the ability to use information about symmetry, inverse relation, transitivity,
and so on. For details, see Section 5.4.

(Whatls :C(:Ins] RA-name of :C(:Ins] Domain) Macro

This is for asking a. range (fillers) of a. necessary condition (property) in a. con
cept (an instance) based on the flag whose value is either :C or :Ins. If it
is asking for fillers of an instance's property, RA-name can be of the form ei
ther (RA-name detaileJ..filler-reference} or (RA-name :sort-by indiCator :n-st
num). In the second case, ea.ch of fillers of an instance's RA-name are sorted by
the value of its property indicator. Among them, the num-st filler of RA-name
will be retrieved.

KOLA 128

(WhereIBelongTo (prop1 · · · propn) (con1 ... conm)) Macro

Return the most appropriate concepts ea.ch of which a given instance should
belong to.

(proPt · · · propn) is the list of propi's ea.ch of which is of the form either
Pname or (P""me fillers). It consists of information on properties that an in
stance of concern has. (con1 .• • conm) is the list of concepts which we are sure
an instance of concern belongs to. For an instance to be a. member of a primitive
concept, such a fa.ct has to be specified explicitly. For example, if an instance
belongs to the primitive concept Person, Person has to appea.r in the list of
(con1 ... conm)·

(FindlnstanceWith (Prop1val11 · · · val1m [:all])··· (propnvaln1 · · · valnm [:all]))
Macro

Return the instance which satisfies the given specification. Find the instance
with the properties Propi, i = 1 · · · n which has fillers valit · · · vali;, j = 1 · · · m.
:all is the keyword to tell the system that fillers given in the specification a.re
all fillers which an instance can have as fillers of a property of concern.

A.7 KOLA functions

(ClassifiCation [option]) Function

Return the concept taxonomy after Classifying concepts which were defined but
unclassified. If option is not specified, Never-mind strategy for checKing the vi
olation of disjointness Classes is selected. option can be either t or x where t
is the boolean constant to represent true and xis a. Natural number to control
the frequency of checKing the violation of disjointness Classes. If option is t,
coherence of disjointness Classes is checKed whenever 50 concepts - by default
- a.re Classified.

(instantiation) Function

Establish instantiation linKs between an instance and its most appropriate con-

KOLA 129

cept(s) and builds the instance networK.

(reinit) Punction

Reinitialize the system.

(:c C-name) Macro

Return the structure of the concept whose name is C-name.

(:ins I-name) Macro

Return the structure of the instance whose name is I-name.

(PP Concept Con) Punction

Return information about the concept Con. After definitioNal information
about Con is returned, the rest of information about it ca.n be returned on
demand.

In the dynamic lisp listener in Symbolics, Show Concept shows the same
information as PPConcept does.

(PPinstance Ins) Punction

Return information about the instance Ins, including its most appropriate con
cepts.

In the dynamic lisp listener in Symbolics, Show Instance shows the same
information as PPinstance does.

(PPRole role) Punction

KOLA 130

Return informa.tion a.bout the role role.

In the dynamic lisp listener in Symbolics, Show Role shows the same
information as PPRole does.

(PPRoleDomain role domain) FUnction

Return informa.tion about the role role in the concept domain.

In the dynamic lisp listener in Symbolics, Show Role shows the same
information as PPRoleDomain does.

(PPAttribute attribute) FUnction

Return information a.bout the a.ttribute attribute.

In the dynamic lisp listener in Symbolics, Show Attribute shows the
same information as PPAttribute does.

(PPAttributeDomain attribute domain) FUnction

Return information about the attribute attribute in the concept domain.

In the dynamic lisp listener in Symbolics, Show Attribute shows the
same informa.tion as PPAttributeDomain does.

(PPIData-C Con) FUnction

Returns a concept Con's inherited data with pretty printing format.

(IData-C Con) FUnction

Returns a concept Con's inherited data without pretty printing format.

KOLA 131

(PPData-C Con) Punction

Returns a concept Con's noninherited data with pretty printing format.

(data-C Con) F'unction

Returns a concept Con's noninherited data without pretty printing format.

(PPIData-R Role) Punction

Returns a role Role's inherited data with pretty printing format.

(IData-R Role) Punction

Returns a role Role's inherited data without pretty printing format.

(PPData-R Role) Punction

Returns a role Role's noninherited data with pretty printing format.

(data-R Role) Punction

Returns a role Role's noninherited data without pretty printing format.

(PPIData-A Attri) Punction

Returns an attribute Attri's inherited data with pretty printing format.

KOLA 132

(!Data-A Attri) Function

Returns an Attri's inherited data without pretty printing format.

(PPData-A Attri) Function

Returns an Attri's noninherited data. with pretty printing format.

(data-A Attri) Function

Returns an attribute Attri's noninherited data without pretty printing format.

(KOLA-Taxonomy Con) Function

Draws the concept taxonomy whose root is the concept Con. The level of the
concept taxonomy is 3 by default.

In the dynamic lisp listener in Symbolics, Show Taxonomy shows the
same taxonomy as KOLA-Tuonoay does.

(Suhconcept-p Con1 Con2) Macro

check to see if Con1 is a. subconcept of Con2.

(Superconcept-p Con1 Con2) Macro

check to see if Con1 is a superconcept of Con 2.

(TellMeSuperconceptsof Con) Macro

Return all immediate superconcepts of Con.

KOLA 133

(TellMeSubconceptsof Con) Macro

Return all immediate subconcepts of Con.

(TellMeAllSubconceptsof Con) Macro

Return all subconcepts of Con. To find it, the subtree of Con in the concept
taxonomy has to be searched. It implies its cost is exponential.

(U nDoDefconcept Con) Macro

Delete the concept Con which was already defined. For simple implementation's
sake, consistency after this function is performed is not checked. Thus, it is rec
ommended to undo the definition of a concept before classification.

(storelnstanceFiller ins prop Fillers) Macro

This function is useful when fillers of ins's prop is obta.ined by computing other
functions. For example, suppose fillers of this property is the result of a formula,
say (+ (* r 10) a), where rand a are another values. Suppose we are using
common-Lisp, then we can write the function, Ins-fill, to compute and put
fillers into prop's as follows:

(defun Ins-fill (ins prop r a)
(let ((fillers (Current-Formula r a)))

(storeinstanceFiller ins prop fillers)))

Where Current-Formula is the function to compute (+(*rlO)a).
< NB >, it is recommended that this function should be carried out before
the instantiation. Although it is allowed after instantiation, the checking of the
consistency disturbance due to adding new fillers is not performed.

Bibliography

[Bobrow 77] Bobrow, D & T. Winograd, "KRL: Knowledge Represent a.ti on
Language", cognitive science Vol 1, 1977.

(Brachman 77] Brachman, R.J., " A Structural Pa.ra.digm for Representing
Knowledge", PhD Dissertation Ha.rva.rd University, 1977.

(Brachman 79] Brachman, R.J., "A Structural Paradigm for Representing
Knowledge", Norwood NJ, 1979.

[Brachman 80] Brachman, R.J., "On the epistemological status of Semantic
Networks", Rea.dings in knowledge representation, 1980.

(Brachman 83) Brachman, R.J., "KRYPTON: Integrating Terminology and
Assertion", AAAI 83, 1983.

(Brachman 84) Brachman, R.J., "The Tractability of Subsumption in Frame
Based Description Language", AAAI-84, 1984.

[Brachman 85) Brachman, R.J., "An Overview of The KL-ONE: Knowledge
Representa.ion System", cognitive science 9, 1985.

(Dennet 81) D. Dennet, "Intentional System", Mind Design, MIT Press,
1891.

(Fahlma.n 77] Fahlma.n, SE, "A System for Representing Real World Knowl
edge", PhD Dissertation MIT, 1977.

(Fox 79) Fox, M.S., "On Inheritance in Knowledge Representation",
Proceedings of IJCAI pp 282 -284, 1979.

(Fox 84] Fox, M.S., "Issues in Knowledge Representation for Project
Management", Workshop on Principles of Knowledge-Based
Systems, 1984.

134

KOLA 135

[Goldstein 76] Goldstein, I & B. Roberts, "NUDGE, A Knowledge-Based
Scheduling System", Fifth IJCAI, 1976.

[Haase 87] Haase Jr., K.W., "TYPICAL An implemented Approach to
Type Specification and Inference with Applications to Artifi
cial Intelligence", MIT, 1987.

[Hayes85] Hayes, P.J., "The Second Naive Physics Manifesto", Formal
Theories of the Commonsense World, Hillsdale, N.J., 1985.

[Hendrix 75] Hendrix, G.G., "Expanding the Utility of Semantic Networks
through Partitioning", Fourth IJCAI, 1975.

(Med-Dictionary] Laurence Urdang Associates, "The Bantam Medical Dictio
nary", BANTAM Books, 1982.

(Lenet 76] Lenet, D, "An Artificial Intelligence Approach to Discovery in
Mathematics as Heuristic Search", PhD Dissertation Stand
ford University, 1976.

(Levesque 84] Levesque, H.J., "A Fundamental Tradeo:ff in Knowledge Rep
resentation and Reasoning", Proc. CSCSI-84, 1984.

(Levesque 86a] H.J. Levesque, "Making Believers out of Computers", Artifi
cial Intelligence, 1986.

[Levesque 86b] Levesque, H.J., "Knowledge Representation and Reasoning",
Annual Reviews Computer Science, Annual Reviews Inc.,
1986.

[Martin 81] Martin, W.A., and Szolovits, P., "Semantic Networks in LISP:
Fundamental Concetps and a Specific Implementation", MIT,
1981.

[Minsky 75] Minsky, M., "A Framework for Representing Knowledge" The
Psychology of Computer Vision - McGraw-Hill, 1975.

[Moser 83) Moser, M.G., "An Overview of NIKL ", BBN Tech. Report
5421, 1983.

[Nebel 88] Nebel, B., "Computational Complexity of Terminological Rea
soning in BACK", Artificial Intelligence 9.4, 1988.

[Newell 81] Newell, A., "The knowledge level", Artificial Intelligence,
1981.

--------~--------------------------------

KOLA

(Nilsson 80]

136

Nilsson, N.J., "Principles of Artificial Intelligence", Tioga
Publishing Company, 1980.

(Patel-Schneider 84] Patel-Schneider, P.F., Brachman, R.J., and Levesque,
H.J., "ARGON: Knowledge Representa.ion meetes Information
Retrieval", Proceedings of the First CAIA, 1984.

(Patel-Schneider 84] Patel-Schneider, P.F., "Small can be Beautiful in Knowl
edge Representation", IEEE Workshop on Principles of
Knowledge-Based Systems, 1984.

[Patil] R.S. Patil, "Causal representation of patient illness for elec
trolyte and acidbase diagnosis", TR-267, MIT, 1981.

[Pigman 84] Pigman, V, "The Interaction Between Assertional and Termi
nological Knowledge in Krypton", IEEE Workshop on Princi
ples of Knowledge-Based Systems, 1984.

[Quillian 66] Quillian, M.R., "Semantic Theory", Tech. Report AFCRL-66-
189 of BBN, 1966.

[Rich 85] Rich, C., "The layered architecture of a system for reasoning
about problems", IJCAl-85, 1985.

[Schbert 76] Schubert, L.K., "Extending the Expressive Power of Semantic
Networks", AI Vol 7 pp 163 - 198, 1976.

[Schomolze 83] Schmolze, J.G., & Lipkis, T.A., "Classification in the KL

ONE knowledge representation system", In Proceedings of the
Eighth International Joint Conference on Artificial Intelli
gence, 1983.

[Sowa 84] Sowa, J.F., "Conceptual Structures", Addison-Wesley, 1984.

[Stefik 79] Ste:fik, M, "An Examination of a Frame-Structured Represen
tation System", Sixth IJCAI, 1979.

[Stickel 82] Stickel, M.E., "A Noncla.usal Connection-Graph Resolution
Theorem-Proving Program", AAAl-82, 1982.

[Stickel 83] Stickel, M.E., "Theory Resolution: Building in Nonequational
Theories", AAAl-83, 1983.

KOLA

[Vilain 85]

[Woods 75]

[Woods 86]

[Wright 84]

137

Vilain, M.,B., "The restricted language architecture of a hy
brid representation system", Proceedings of the Ninth Inter
national Joint Conference on Artificial Intelligenc, 1985.

Woods, W.A., "What's in a Link : Foundations for Semantic
Networks", Academic Press, 1975.

Woods, W.A, "Important Issues in Knowledge Representa
tion", Proc. of the IEEE Vol-74, 1986.

Wright, J.M., Fox M.S., & Adam,D., "SRL/2 Users Manual",
Tech. Report of CMU, 1984.

