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Bounded Treewidth 

Hans L. Bodlaender, M.I.T. 

May, 1987 

Abstract 

In this paper we study the complexity of graph decision problems, 
restricted to the class of graphs with treewidth ::; k, (or equivalently, 
the class of partial k-trees), for fixed k. We introduce two classes of 
graph decision problems, LCC and ECC, and subclasses C-LCC, and 
C-ECC. We show that each problem in LCC (or C-LCC) is solvable 
in polynomial (O(nc)) time, when restricted to graphs with fixed up
perbounds on the treewidth and degree; and that each problem in 
ECC (or C-ECC) is solvable in polynomial (O(nc)) time, when re
stricted to graphs with a fixed upperbound on the treewidth (with 
given corresponding tree-decomposition). Also, problems in C-LCC 
and C-ECC are solvable in polynomial time for graphs with a loga
rithmic treewidth, and given corresponding tree-decomposition, and 
in the case of C-LCC-problems, a fixed upperbound on the degree of 
the graph. 

Also, we show for a large number of graph decision problems, their 
membership in LCC, ECC, C-LCC and/or C-ECC, thus showing the 
existence of O(nc) or polynomial algorithms for these problems, re
stricted to the graphs with bounded treewidth (and bounded degree). 
In several cases, C = 1, hence our method gives in these cases linear 
algorithms. 

For several NP-complete problems, and subclasses of the graphs 
with bounded treewidth, polynomial algorithms have been obtained. 
In a certain sense, the results in this paper unify these results. 

Keywords: Treewidth, partial k-trees, graph decision problems, re
strictions of NP-complete problems, polynomial time algorithms, dy
namic programming, local condition compositions. 
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1 Introduction 

In general it is believed that NP-complete problems cannot be solved in 
polynomial time. Therefore much research has been done on the complexity 
of subproblems of NP-complete problems. 

In this paper we consider (NP-complete) graphs problems, and we pose as 
restriction on the graphs in the instance of the problems, that the tree-width 
of the graphs is bounded by a constant k, (or equivalently, that the graphs 
are partial k-trees.) For some problems, we pose as an extra restriction 
that the degree of the graphs is bounded by some constant d. We prove 
that for large classes of (NP-complete) problems, these become solvable in 
polynomial time with the extra restrictions. The algorithms are polynomial 
in the problem-size, but will be exponential ink (and d). 

Arnborg and Proskurowski [3] also studied the problem of the complexity 
of (NP-hard) graph problems on graphs with bounded treewidth, and ob
tained linear time algorithms for the following problems: VERTEX COVER, 
INDEPENDENT SET, DOMINATING SET, GRAPH K-COLORABILITY, HAMIL
TONIAN CIRCUIT, NETWORK RELIABILITY. The algorithms are linear in the 
size of the problem instance, but are exponential in the tree-width of the 
involved graphs. The algorithms in this paper have some similarity to the 
algorithms in [3], but we think the approach in our paper is more general 
and easier to use. For an overview, see also [1]. 

Independently, Scheffler and Seese [24] introduced the notion of P
existential locally verifiable (P-ELV) properties of graphs. This notion is 
very similar to our notion of local condition composition problems. In [24] 
it is shown that for every P-ELV property P, and constants k, and d, the 
problem to decide whether for a given graph G with degree at most d, and 
treewidth at most k, P(G) holds, is solvable in polynomial time; (and, in 
many cases, in linear time.) We generalize from their results in two ways: 
our class LCC contains problems that are not expressible with P-ELV prop
erties; and for the class of ECC-problems we do not need an upper bound on 
the degree of the graphs. 

The class of graphs with treewidth bounded by some constant k is 
also important for the following reason. To many well-known classes of 
graphs one can associate a constant k, such that each graph in the class has 
treewidth k or less. For example, the treewidth of a series-parallel graph 
or an outerplanar graph is at most 2, the treewidth of a Halin graph is at 
most 5. For an overview of results of this type, see [6]. The following classes 
of graphs have a constant number as bound for the treewidth of the graphs 
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in the class: trees, forests, almost trees with parameter k (k a constant), 
graphs with bandwidth at most k (k a constant), graphs with cutwidth 
at most k (k a constant), series-parallel graphs, outerplanar graphs, Halin 
graphs, k-outerplanar graphs ( k a constant), chordal graphs with maximum 
clique size k (k a constant), circular arc graphs with maximum clique size k 
(k a constant), and k-bounded treepartite graphs (k a constant). 

Many polynomial time algorithms have been devised for NP-complete 
graph problems, restricted to graphs in one of the above mentioned classes. 
See e.g. [4,8,9,10,11,13,14,15,17,18,19,21,26,29,30]. In [28] a general ap
proach is taken for a certain class of problems, on series-parallel graphs (i.e. 
graphs with treewidth s; 2). In [5] also a general approach is taken, for 
several of the mentioned classes of graphs. One can observe that for many 
of these algorithms, the underlying technique is dynamic programming. 

In some sense, this paper explains the observed similarity of the complex
ity results for many of the mentioned classes of graphs, and unifies several 
of the mentioned papers. Of course, in many cases, a better algorithm is 
obtained, by looking at a single problem on a more restricted class of graphs. 
In this paper we take a general approach, and will prove membership in P 
for many problems for the (rather general) class of graphs with bounded 
treewidth. 

2 Definitions and preliminary results 

2.1 Graph definitions 

First we introduce some notations and definitions dealing with graphs. 

DEFINITION 2.1 For every undirected graph G = (V, E), degree( G) denotes 
the maximum degree over all vertices in V. 

The distance between two vertices v, w E V in the graph G = (V, E) is 
denoted by de( v, w ). When there cannot be confusion over which graph G 
is used, the subscript G is dropped. 

DEFINITION 2.2 Let G = (V, E) be an undirected graph and let c ~ 0 be an 
integer. 

1. Let v E V. The set of vertices with distance at most c to vis denoted 
by Nc(v,G) = {w EV I da(v,w) s; c}. 
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2. Let W ~ V. The set of vertices with distance at most c to Wis denoted 
by Nc(W,G) = {w EV I 3v E W: da(v,w) ~ c} = LJ Nc(v,G). 

vEW 

3. Let v EV. The set of edges with distance at most c ~ 1 to vis denoted 
by Mc(v,G) = {(w,x) EE I da(v,w) ~ c - 1 V da(v,x) ~ c - 1} = 
{(w,x) EE I da(v,w) ~ c/\da(v,x) ~ c}. 

4. Let W ~ V. The set of edges with distance at most c ~ 1 to v is 
denoted by Mc(W,G) = {(v,w) EE I 3v E W: da(v,w) ~ c - 1 V 

da(v,x)~c-1}= LJ Mc(v,G). 
vEW 

5. Let W ~ V. We denote M0 (W,G) = {(v,w) EE Iv E W /\ w E W}. 

When there cannot be confusion over which graph G is used, we drop 
the index G and denote: Nc(v),Nc(W),Mc(v),Mc(W), etc. 

Next we introduce the definition of the treewidth of a graph, introduced 
by Robertson and Seymour [22]. 

DEFINITION 2.3 Let G = (V, E) be a graph. A tree-decomposition of G is 
a pair ({Xi I i EI}, T =(I, F)), where {Xi I i EI} is a family of subsets of 
V, T = (I, F) is a tree, with the following properties: 

iE[ 

2. For every edge e = ( v, w) E E, there is a subset Xi, i E I with v E Xi 
and w E Xi. 

3. For all i,j, k E J, if j lies on the path in T from i to k, then Xi U Xk ~ 
Xj. 

The treewidth of a tree-decomposition ({Xi I i E I}, T) is rr;Eal I Xii - 1. The 

treewidth of G, denoted by treewidth( G), is the minimum treewidth of a 
tree-decomposition of G, taken over all possible tree-decompositions of G. 

We denote the class of graphs with treewidth at most k, by TW(k). The 
class of graphs with treewidth at most k, and degree at most d is denoted 
by TWD(k, d). 

The class of the graphs with treewidth at most k equals the class of the 
partial k-trees (see e.g. [2]). To define the class of partial k-trees, we first 
give a recursive definition of the class of k-trees. 

• J( k, the complete graph on k vertices, is a k-tree. 
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• If G = (V, E) is a k-tree, and v1 , v2 .•• Vk form a complete subgraph 
of G, then the graph G' =(VU {w},EU {(vi,w) I 1 ~ i ~ k}), with 
w </. V, is also a k- tree. 

A graph is a partial k-tree, if it is the subgraph of a k-tree. It is easy to 
show with induction, that each k-tree G has a tree-decomposition ({Xi I i E 
I}, T = (I, F)), such that for each complete subgraph of G with k + 1 
vertices, there is exactly one i E J, such that X; contains all k + 1 vertices 
in this complete subgraph. Now it follows that each partial k-tree has tree
width ~ k. The reverse relation (each graph with tree-width k is a partial 
k-tree ), is left as an easy exercise to the reader. As a corollary the following 
lemma follows. 

Lemma 2.1 Let ( {X; I i E I}, T = (I, F)) be a tree-decomposition of G = 
(V, E) with treewidth k. Then there exists a tree-decomposition ({Yi I i E 

J}, T' = (J, F')) of G with treewidth ~ k and IJI ~ IVI - k + 1. 

Independently, Arnborg, Corneil and Proskurowski [2] and Robertson 
and Seymour [22] have shown that there exist polynomial algorithms to test 
whether a graph has treewidth ~ k for any given fixed k (or, equivalently, 
whether the graph is a partial k-tree). The general problem of deciding the 
treewidth of a graph is NP-complete [2]. The algorithms in [2], [22] can also 
be used to actually yield tree-decompositions with the desired treewidth, if 
such exist. We will use the following variant of these results (use also lemma 
2.1). 

Theorem 2.2 For all k, there exists an algorithm, that finds for each graph 
G = (V, E) with treewidth(G )~ k, in polynomial time a tree-decomposition 
( {X; Ii EI}, T =(I, F)) of G with treewidth at most k, and III~ IVl-k+l. 

2.2 Algebraic definitions 

Next we recall and introduce some algebraic notions and definitions. First 
we recall the definition of monoids (see e.g. [16]). 

DEFINITION 2.4 A monoid is a 3-tupple (M, EB, 0), where Mis a non-empty 
set, EB is an associative binary composition on this set, i.e. for all a, b, c E 
M : (a EB b) EB c = a EB (b EB c), and 0 is an element of M such that for all 
a E M : a EB 0 = 0 EB a = a. A monoid (M, EB, 0) is commutative, if for all 
a, b E M : a EB b = b EB a. 
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For a1, ... , an EM, with (M, EB, 0) a commutative monoid, we denote 

EB lli = a1 EB a2 EB · · · EB an. 
l<i<n 

We also need the following algebraic structure. 

DEFINITION 2.5 A totally ordered commuatative monoid (tocm) is a 4-
tupple (M, EB, 0, S:), where (M, EB, 0) is a commutative monoid and < is a 
binary relation on M, which induces a total ordering on M: 

1. for all a, b E M : a S: b V b S: a 

2. for all a, b EM: (a S: b !\ b S: a)=> a= b 

3. for all a, b, c E M : (a S: b !\ b S: c) => a S: c 

We say that a tocm is a consistent totally ordered commutative monoid 
( ctocm), if for all a, b, c E M : a S: b => a EB c S: b EB c 

Important examples of commutative monoids are: 

• (N, +, 0), where N is the set of natural numbers,+ the usual addition, 
and 0 also as usual. 

• (N, ·, 1), with · the usual multiplication on N. 

• (Z, +, 0), with Z the set of whole numbers and + the usual addition 
on Z. 

• (( {true,false},V,false), where Vis the usual or-operation. 

• (( {true,false},A,false), where!\ is the usual and-operation. 

Important examples of ctocm's are: 

• (N, +, 0, S:), with S: the normal "lesser than or equal to" relation on 
N. 

• (N, +, 0, ~),with~ the normal "greater than or equal to" relation on 
N. 

• (Z, +, 0, S:) 

• (Z,+,O,~) 

• (({true,false},V,false, ~),where Vis the usual or-operation, and~ is 
one of the 2 possible total orderings on {true,false}. 

• (( {true,false},A,false, ~), where !\ is the usual and-operation, and ~ 
is one of the 2 possible total orderings on { true,false}. 

6 



2.3 Other notations 

For functions f : X ____, Y and subsets Z ~ X, we denote the restriction off 
to Z by flz, i.e. flz : Z ____, Y and Vz E Z: flz(z) = f(z). 

2.4 Graph decision problems 

In this section we give a number of definitions, dealing with decision prob
lems on graphs. 

First we view a decision problem II as a 3-tupple (Drr, Yrr, srr), with Drr 
the set of instances of II, Yrr ~ Drr the set of instances of II that yield 
the answer 'yes' to problem II, and srr is a function Drr ____, N, giving each 
instance DE Drr of II a size srr(D). In general, the srr's will be very natural 
measures of the size of the instances. 

DEFINITION 2.6 A decision problem II = (Drr, Yrr, srr) is a graph deci
sion problem, if each instance D E Drr can be written as a 2-tupple 
D = (Gv,lv), where Gv = (Vv,Ev) is an undirected graph and srr(D) ~ 
max(!Vvl, IEvl). (Iv must contain all other information of the instance D.) 

Note that Iv may be empty, for instance if II = HAMILTONIAN CIRCUIT 

(for undirected graphs). Directed graphs G' can be handled by using the 
undirected graph Gv, obtained by ignoring the direction of the edges in 
G', and letting Iv contain all necessary information on the directions of the 
edges, in some coded form. 

DEFINITION 2.7 For a class of graphs 0, and a graph decision problem 
II = (Drr, Yrr, srr), II, restricted to 0, is the graph decision problem 
Ille = (Drr1 0 ,Yrr1 0 ,Xrr10 ), where Drrle = {(G,I) E Drr I G E 0}, 
Yrr1e = {(G,I) E Drr I GE 0} = Yrr nDrr1e and srr1 0 = srrlvrrie· 

The above definition gives the natural way of restricting a graph problem 
to a class of graphs. Next we give a variant of the notion of polynomial 
transformation of decision problems (see e.g. [12], p.34), for graph decision 
problems. Note that the graphs Gv in instances D = (Gv,lv), do not 
change under a gp-transformation. 

DEFINITION 2.8 A graph-invariant polynomial transformation (or, in short: 
a gp-transformation) of a graph decision problem II1 = (Di, Yi, s1) to a 
graph decision problem II2 = (D2, Y2, s2) is a function f : Di ____, D2, satis
fying: 
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1. if (G, I) E D1 and f((G, I))= (H, J) E D 2, then G = H. 

2. f can be computed in time, polynomial in s(D) (by a deterministic 
Turing machine, or some equivalent machine model) 

3. for all D E D1 : D E Y1 ¢:> f(D) E Y2 

4. there is a polynomial p, such that for all DE D 1, s(J(D)) :S p(s(D)) 

The following result can be obtained in the same way as the similar 
results for (normal) polynomial transformations of decision problems. 

Theorem 2 .3 Let lli, II2 be graph decision problems and let there exist a 
gp-transformation of IIi to II2. Let 0 be a class of graphs. 

1. Jf II2le E P, then IIile E P. 

2. If IIile is NP-complete, then II2le is NP-complete. 

2.5 Local condition composition problems and edge condi-
tion composition problems 

In this section we define LCC, the class of local condition composition prob
lems, and ECC, the class of the edge condition composition problems. Both 
are subclasses of the class of graph decision problems (and of NP). First we 
give the definition of basic local condition composition problems. 

DEFINITION 2.9 Let II= (Drr,Yrr,s) be a graph decision problem. We say 
that II is a basic local condition problem, if and only if there exist 

• non-negative integers m, c E N 

• m commutative monoids ( M 1 , EB 1 ), ... , (Mm, EBm) 

• a ctocm (Mm+l, EBm+l, ~) 

such that 

•each DE Drr is of the form (G,(X,Y,Ri, ... ,Rm,K,I)), where 

G is an undirected graph 

Xis a finite set with s(D) 2: IXI 

Y is a finite set with s(D) 2: IYI 

- for all i, 1 :S i :S m, Ri denotes a subset of Mi 

- KE Mm+l 
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• for all i, 1 ::; i ::; m + 1, there exists a function val;, that maps all 4-
tupples, consisting of an instance D = (G = (V, E), (X, Y, Ri, ... , Rm, 
K, I)) E Dn, a vertex v E V, and functions f : Nc(v) -+ X, g : 
Mc( v) -+ Y, to elements of M;, such that for all (constants) d E N+: 

l. there exists an algorithm that calculates val;(D, v, f,g), for all 
D = (G = (V,E),(X,Ri, ... ,Rm,KJ)) E Dn, v E V, f : 
Ne( v) -+ X, g : Mc( v) -+ Y with degree( G)::; d, in time, polyno
mial in s(D). 

2. if 1 ::; i ::; m, there is a polynomial Pi, such that for all D = ( G = 
(V,E),(X,Y,Ri, ... ,Rm,K,I)) E Dn, with degree(G)::; d and 
subsets W ~ V: I{ ffiival;(D,w,flNc(w),glMc(w)) If: Nc(W)-+ 

wEW 
(X), g: Mc(W)-+ Y}I ::; p;(s(D)). 

3. there exists an algorithm that calculates a EBi b for given a, 
b, such that there are D = (G = (V,E), (X, Y, R1 , ••• , 

Rm, K, I)) E Dn, with degree(G)::; d, W1 ~ V, W2 ~ 
V, W1 n W2 = 0, f : Nc(W1 U W2) -+ X, g : Mc(W1 U 
W2) -+ Y, a = ffii val;(D,w,flNc(w),glMc(w)) and b = 

wEW1 
ffii val;(D, w, flNc(w),glMc(w)), in time, polynomial in s(D). 

wEW2 
4. if i = m + 1, then there exists an algorithm, that calculates 

whether a ~ b for given a, b, such that there are D = ( G = 
(V,E),(X,Y,R1, ... ,Rm,K,l)) E Dn, with degree(G)::; d, W ~ 
v, Ji : Nc(W) -+ x, h : Nc(W) -+ x, gi : Mc(W) -+ Y, 
g2: Mc(W)-+ Y, a= EBm+l valm+1(D,w,f1INc(w),g1IMc(w)) 

wEW 
and b = ffim+l valm+1(D,w,hlNc(w),g2IMc(w)) orb = K, in 

wEW 
time polynomial in s(D). 

5. if 1 ::; i ::; m, there exists an algorithm that calculates for 
all D = (G = (V,E),(X,Y,R1, ... ,Rm,K,I)) E Dn with 
degree(D)::; d, f : V -+ X, g : E -+ Y and given a = 
ffii val;(D, w, flNc(w),glMc(w)) whether a E R;, in time poly
wEV 
nomial in s(D). 

•For all D = (G = (V,E),(X,Y,R1 ... ,Rm,l(,J)) E Dn: DE Yn, if 
and only if there exist functions f : V -+ X, g : E -+ Y, with 
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1. Vi, i ~ i ~ m: EBi val;(D, v, flNc(v)• glMc(v)) E R; 
vEV 

2. EBm+l valm+1(D, v, flNc(v)• glMc(v)) j K. 
vEV 

The given definition of basic local condition composition problems may 
look at first sight very complicated, but in general it will be not very difficult 
to use. For a more intuitive introduction in the notion, see section 5.1. 

Next we define the class of local condition composition problems, LCC. 

DEFINITION 2.10 Let II be a graph decision problem. We say that II is a 
local condition composition problem, if and only if there exists a basic local 
condition composition problem II' and a gp-transformation from II to II'. 
The class of local condition composition problems is denoted by LCC. 

A subclass of LCC is the class of the edge condition composition prob
lems, or ECC. Instead of letting val-functions work on the values off and 
g in "local" parts of G, like Ne( v) and Mc( v ), now the val-functions work 
on the values of J(v), J(w) and g((v,w)) for single edges (v,w) EE. This 
difference makes that ECC is more restricted than LCC (unless P=NP). 
On the other hand, no restrictions on the degree of the graphs are longer 
necessary for ECC-problems, in order to obtain polynomial algorithms for 
the problems, restricted to graphs with constant bounded treewidth. 

DEFINITION 2.11 Let II= (Drr, Yrr, s) be a graph decision problem. We say 
that II is a basic edge condition problem, if and only if there exist 

• a non-negative integer m E N 

• m commutative monoids ( M 1, EB1 ), ... , (Mm, EBm) 

• a ctocm (Mm+I, EBm+I, j) 

such that 

•each DE Drr is of the form (G,(X,Y,R1, ... ,Rm,l(,J)), where 

G is an undirected graph 

Xis a finite set with s(D) ~ IXI 

Y is a finite set with s(D) ~ IYI 
- for all i, 1 ~ i ~ m, R; denotes a subset of Mi 

- J( E Mm+1 
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• for all i, 1 $ i $ m + 1, there exists a function vali, that maps all 
4-tupples, consisting of an instance D = (G = (V,E), (X, Y, R 1 , .. . , 

Rm, K, I)) E Drr, a vertex v E V, and functions f: Nc(v)-+ X, 
9: Mc(v)-+ Y, to elements of Mi, such that: 

1. there exists an algorithm that calculates vali(D,e,f,9), for all 
D = (G = (V,E), (X, Y, Ri, ... ,Rm, K, I)) E Drr, e EE, 
f: Nc(e)-+ X, 9: Mc(e)-+ Yin time, polynomial in s(D). 

2. if 1 $ i $ m, there is a polynomial Pi, such that for all D = ( G = 
(V,E), (X, Y, R1, .. . , Rm, K, I)) E Drr, and subsets E' ~ E: 
{ ffii val;(D, w, flNa(e' 9l{e})IJ : Nc(W) -+ (X), 9 : Mc(W) -+ 

wEW 

Y}I $ Pi(s(D)) 

3. there exists an algorithm that calculates a Ef)i b for given a, b, 
such that there are D = (G = (V,E), (X, Y, R 1, ... ,Rm, K, 
I)) E Drr, E1 ~ E, E2 ~ E, E1 n E2 = 0, f : N c( E1 U E2) -+ X, 
9 : Mc(E1 U E2) -+ Y, a = ffii vali(D,e,f1No(e)•9l{e}) and 

eEE1 
b = ffii vali(D, e, f1Na(e)•9l{e}), in time, polynomial in s(D). 

eEE2 
4. if i = m + 1, then there exists an algorithm, that calcu

lates whether a ~ b for given a,b, such that there are D = 
(G = (V, E), (X, Y, Ri, ... , Rm, K, I)) E Drr, E' ~ E, 
Ji : Nc(E') -+ x, h : Nc(E') -+ x, 91 : Mc(E') -+ Y, 
92: Mc(E')-+ Y, a= E3jm+i valm+1(D,e,fi1Na(e)•91i{e}) and 

eEE' 
b = ffim+l valm+I(D,e,h1Na(e)•92l{e}) orb= K, in time poly

eEE' 
nomial in s(D). 

5. if 1 $ i $ m, there exists an algorithm that calculates for all 
D = (G = (V,E),(X,Y,Ri, ... ,Rm,l(,J)) E Drr, f: V-+ X, 
9 : E -+ Y and given a = E}j vali(D, e, flNa(e)' 9l{e}) whether 

eEE 
a E Ri, in time polynomial in s( D). 

•For all D = (G = (V,E), (X, Y, Ri, ... ,Rm, K, I)) E Drr: DE Yrr, 
if and only if there exist functions f : V -+ X, 9 : E -+ Y, with 

1. Vi, 1 $ i $ m: E3ji vali(D, v, flNa(e)• 9l{e}) E Ri 
eEE 

2. E9711+1 valm+1(D, v, f1Na(e)•9l{e}) ~ K. 
eEE 
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DEFINITION 2.12 Let II be a graph decision problem. We say that II is a 
edge condition composition problem, if and only if there exists a basic edge 
condition composition problem II' and a gp-transformation from II to II'. 
The class of edge condition composition problems is denoted by ECC. 

Lemma 2 .4 Let II be a basic edge condition composition problem. Then 
II E LCC. 

Proof. Let m, (M1,EB1), ..• ,(Mm,EBm), (Mm+l,EBm+\:5), va/i, ... , 
valm+l be as indicated by the definition of basic ECC problem, applied to II. 
To each graph G = (V, E), appearing in one or more instances D E Drr, one 
can add an (arbitrary) assignation cha of each of the edges e E E to one of its 
adjacent vertices, i.e. V(v,w) EE: cha((v,w)) = v V cha((v,w)) = w. We 
denote ch(./(v) = {e E Ejcha(e) = v}. Note that Jch01 (v)I:::; degree(G). 

Now we use a transformation from II to a (very similar) other graph 
decision problem II', by mapping each D = (G = (V, E), (X, Y, Ri, ... , 
Rm, K, I)) E Drr to 'lj;(D) = (G = (V,E), (X, Y, Ri, ... , Rm, K, (I, 
cha))), i.e. cha is included in the problem instances. Now II' is a basic 
LCC-problem: take c=l, and let for all i, 1:::; i:::; m, v E V: 

val~( 1/J(D), v, flN1(v)•gJM1(v)) = EB i vali(D, e, flNo(e)• gJ{e})· 
eEch-l(v) 

It is easy to see that the vali-functions can be calculated in polynomial time. 
Further we have that: 

vEV 

EBi EB i vali(D, e, flNa(e)• gJ{e}) = 
vEV eEch-1 (v) 

Efji vali(D, e, flNa(e)• gJ{e})· 
eEE 

The remaining details are left to the reader. Q.E.D. 

As an easy, but important corollary we have: 

Theorem 2.5 ECG~ LCC. 
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3 Polynomial time algorithms for LCC-problems 
and ECC-problems on graphs with bounded 
treewidth 

In this section we will give a general method to obtain polynomial time 
algorithms for (basic) LCC-problems, restricted to a class of graphs with 
bounded treewidth, and bounded degree, and for (basic) ECC-problems, 
restricted to a class of graphs with bounded treewidth. First we give some 
necessary lemma's. 

Lemma 3.1 Let ({Xi I i EI}, T = (I, F)) be a tree-decomposition of G = 
(V, E). Let v E Xi and v E Nc(Xj)· Let k be on the path form i to j in T. 
Then: v E Nc(Xk)· 

Proof. We use induction to c. For c = 0 we have v E No(Xj) = Xj, 
hence, by definition, v E Xk = No(Xk)· 

Suppose the lemma holds for all integers up to c - 1. There must be a 
vertex w E Xj with da( v, w) :::; c. If da( v, w) :::; c - 1, then v E Nc-1(Xj ), 
and hence by induction, v E Nc-1(Xk) ~ Nc(Xk)· So now suppose 
da( v, w) = c. Let x be the one-but-last vertex on the path in G from v 
tow, i.e. da(v,x) = c - 1 and (x,w) EE. There must be an i' EI with 
x E Xi'' w E Xi'' by definition. Note that k is on the path from i to i' in T 
or k is on the path from i' to j. We consider both cases. 

Case 1: k is on the path from i to i'. Note that w E Xi'=> v E Nc-1(Xi1). 
By induction it follows that v E Nc-1(Xk) ~ Nc(Xk)· 

Case 2: k is on the path from i' to j. From w E Xi' and w E Xj it follows 
that w E Xk. Hence v E Nc(Xk)· 

Q.E.D. 

Lemma 3.2 Let ({Xi I i EI}, T = (I, F)) be a tree-decomposition of G = 
(V,E). Let k EI be on the path from i EI to j EI in T. Then: 

1. Nc(Xi) n Nc(Xi) ~ Nc(Xk) 

2. Mc(Xi) n Mc(Xi) ~ Mc(Xk) 

Proof. 
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1. Suppose v E Nc(Xi)nNc(Xj)· There must be some i' EI with v E Xi'· 
Now k is on the path from i to i' or k is on the path from i' to j. In 
both cases it follows from lemma 3.1 that v E Nc(Xk)· Hence we have 
Nc(Xi) n Nc(Xj) ~ Nc(Xk)· 

2. ( v, w) E Mc( Xi) n Mc(Xj) => v E Ne( Xi) n Nc(Xj) 
Nc(Xi) n Nc(Xj) => v E Nc(Xk) /\ w E Nc(Xk) => 
Mc(Xk)· 

Q.E.D. 

/\ w E 
(v, w) E 

Theorem 3.3 Let k, d E N. Let E> be a class of graphs, with E> ~ 

TWD(k, d}, (i.e. every graph G in E> has treewidth k or less and degree 
d or less). Let II be a basic LCC problem. Then Ille E P, i.e. there exists 
a polynomial algorithm for IT, when restricted to the graphs with treewidth 
~ k and degree~ d. 

Proof. Suppose m, c, (M1,EB1 ), ... , (Mm,EBm), (Mm+1,EBM+1,~), 
vali, ... , valm+l are as indicated by the definition of basic local condition 
composition problem, applied to II = (Dn, Yn, s ). 

Let the algorithm work on an instance D = (G = (V, E), (X, Y, R 1, 

R2, ... , Rm, K, I)) E Dn with GE TWD(k, d), i.e. the treewidth of G is at 
most k and the degree of G is at most d. Our algorithm starts with finding 
a tree-decomposition ({Xi Ii EI}, T =(I, F)) of G, with treewidth at most 
k, and III ~ IVI - k + 1. We can do this in polynomial time, as indicated 
by theorem 2.2. 

We now designate an (arbitrary) processor as "root", so we see T as a 
rooted tree. The set of the sons of a node i E I, (i.e. the direct descendants 
of i in the rooted tree T, is denoted by sons( i); the father of i in the tree 
(if i f root), is denoted by father( i), and the set of all descendants of i, 
including i self, is denoted by dee( i). Further for each i E I, we pose a 
(total) ordering upon the sons of i. 

Also we define for all i E I: 

{
xi 
{v E Xi Iv</. xfather(i)}, 

u Y;. 
jEdec(i) 

wi U xi. 
jEdec(i) 
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Lemma 3.3.1 For all v E V there is a unique i EI, with v E Y;. 

Proof. Let v E V. By definition, there is an i E I, with v E Xi. Now 
either v E Xroot, or there is a node j E J, on the path from i to root with 
v E Xj and v r/. Xrather(j)· Hence 3i EI with v E Y;. 

Next suppose we have v E Y; n Yj, i =/:- j. Note that we have v E Xi n Xj. 
Now note that either father(i) or father(j) exists and is on the path from i 
to j, and hence v E Xrather(i) or v E Xrather(j)· This contradicts v E Y; n Yj. 
Q.E.D. 

The following two lemmas are easily verified. 

Lemma 3.3.2 For all i EI: Zi = ( LJ Zj UY;) . 
jEsons(i) 

Lemma 3.3.3 For all i EI: Wi = ( LJ Wj U Xi). 
jEsons(i) 

Lemma 3.3.4 Let i EI, sons(i)= {j1 , ... ,jr }. Let 1 ~a~ r. Then: 

1. Nc(Wi1 U ... U Wj
0

_ 1 U Xi) n Nc(Wj
0

) ~ Nc(Xi) n Nc(Xj 0 ). 

2. Mc(Wj1 U ... U Wj
0

_ 1 U Xi) n Mc(Wj
0

) ~ Mc(Xi) n Mc(Xj0 ). 

Proof. 1. Suppose v E Nc(Wj1 U ... U Wj
0

_ 1 U Xi) n Nc(Wj
0 

). There 
must be some j E dec(ja), with v E Nc(Xj). We consider two cases. 

Case 1: v E Nc(Xi)· It follows that j°' is on the path from i to j in T, 
hence, by lemma 3.2, v E Nc(Xj

0
). 

Case 2: 3/3, 1 ~ j3 ~ a - 1 : v E Nc(Wj,13)· There must be some j' E 
dec(jp), with v E Nc(Xj' ). Now i and j°' are on the path from j to j' 
in T, hence, by lemma 3.2, v E Nc(Xi) and v E Nc(Xj 0 ). 

2. Similar. Q.E.D. 

In the remainder, we will use the expression ap( v, f, g) as a shorthand no
tation for valp(D, v, flNc(v)' YIMc(v)), and ap(S, J, g) as a shorthand notation 

for E!JP valp(D, v, flNc(v),YIMc(v)), with Sa subset of V and the domains of 
vES 

J and g contain respectively Nc(v),Nc(S),Mc(v),Mc(S). 

15 



The algorithm will now calculate for each node i E I a table, called 
TABLE(i), which contains (m + 3)-tupples of the form (f: Nc(X;)---+ X, 
g: Mc(X;)-+ Y, ri, ... ,Tm+i), such that 

3f: Nc(W;)---+ X, g: Mc(W;)---+ Y, with 

J INc(X;) = J, 
glMc(X;) = g, 
Vp, 1:::; p:::; m + 1, ap(Z;, J,g) = rp 

and VJ: Nc(W;)---+ X, g: Mc(W;) ---+ Y, with 

J INc(X;) = J, 
glMc(X;) = g, 
Vp, l:::;p:::;m, ap(Zi,f,g)=rp 

one has: Tm+i -< <7m+i(Zi, J, g). 

- - 1 Note that for each J: Ne( Xi)---+ X, g: Mc(X;)---+ Y, r1 E M , ... , Tm E 
Mm, there will be at most one Tm+l E Mm+1, with (f,?J,r1, ... ,rm+1) E 
TABLE(i). Tm+l is the smallest value of <7m+i(Z;,f,g), where f and g are 
extensions of J and g, such that ap(Z;, f, g) = rp for all p, 1:::; p:::; m. 

The algorithm starts by first recursively calculating the TABLE's for all 
sons of i, and then calculating temporary tables TEMP(i, a), with 0:::; a:::; 
r, where r is the number of sons of i. For the these temporary tables the 
following condition will hold, after calculation of TEMP( i, a): 

3f : Nc(Wj1 U ... U Wj"' U Xi) ---+ X, 

g: Mc(Wj1 U ... U Wj"' U X;)---+ Y, with 

flNc(X;) = j, 
glMc(X;) = g, 
Vp, l:::;p:::;m+l: ap(Zj1 U ... UZj"'UY;,f,g)=rp 

and VJ : Nc(Wj1 U ... Wj"' U X;) ---+ X, 

g: Mc(Wj1 U ... Wj"' U X;)---+ Y, with 
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flNc(X;) = f, 
glMc(X;) = g, 
\:/p, 1 ~ p ~ m: O'p(Zj-1 u ... u Zja u Y;,f,g) = Tp 

one has: rm+l-< O'm+i(Zj-1 U ... U Zja U Y;,f,g). 

Note that it follows from lemma's 3.3.2 and 3.3.3, that equation (1) 
follows from equation (2), with a = r ( = the number of sons of i). 

We now claim that the following pair of subroutines will calculate the 
TABLEs and TEMPs correctly. Basically, the algorithm works as follows: 
first we calculate (recursively) TABLE(j°'), for all sons j°' of i. Then we 
calculate TEMP(i,O), by calculating O'p(Y;,f,g) for every f: Nc(Xi)---+ X, 
and g: Mc( Xi)---+ Y. Then we successively calculate the tables TEMP(i, a:), 
by composing the tables TEMP(i,o: -1) and TABLE(j°'). From the above 
observation it follows that TABLE( i) can be chosen to be TEMP( i, r ). 

CALCULATE_ TAB LE( i): 
begin 

end. 

Let ji, ... , jr be the sons of i. 
for a = 1 to r 

do CALCULATE_TABLE(j°') 
end do; 

for a = 0 to r 
do CAL CU LATE_TEM P( i,o:) 
end do 
TABLE(i) := TEMP(i,r) 

CALCULATLTEMP(i, a:): 
begin 

if Cl: = 0 
then for all functions f: Nc(Xi)---+ X 

do 
for all functions g: Mc(Xi)---+ Y 
do 

for p := 1 to m+l 
do let rp = <1p(Y;,f,g) 
end do; 
put (f,g,r1, ... ,rm+i) in TEMP(i,o:) 

end do 
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end 

else 
end do 

for every(!, g, ri, ... , rm+1) E TEMP(i, a:) 
do 

for every (!', g', ri, ... , r'.,,.+1) E TEMP( i, a) 
do 

ifVv E Nc(Xi) n Nc(XicJ: f(v) = f'(v) and 
Ve E Mc(X;) n Mc(Xj,J: g(e) = g'(e) 

then 
for p = 1 to m + 1 
do Sp = r P ffiP r~ 
end do; 
if there is not E Mm+l, with (f,g,s1, ... ,sm,t) E 

TEMP(i,o:) 
then put (f,g,si, ... ,sm,sm+l) in TEMP(i,o:) 
else suppose (f,g,s1, ... ,sm,t) E TEMP(i,o:); 

if Sm+l ~ t 

endif 

then remove (f,g,si, ... ,sm,t) from TEMP(i,o:); 
put ((f,g,s1, ... ,sm,sm+l) in TEMP(i,o:) 

endif 

endif 
enddo 

end do 
endif 

Claim 3.3.5 After execution of CALCULATE_TABLE(i) equation {1} 
holds and after execution of CALCULATE_TEMP(i, a) equation {2} holds. 

Proof. Consider i E J, let isons(i)I = r, and let 0 :S a :S r. For 
a = 0, it can be verified directly, that equation (2) holds after execution 
of CALCULATE_ TEMP( i, 0). So let a ~ 1. By using induction, one may 
assume that the equations hold for TABLE(j°') and for TEMP( i, a - 1 ). 

Now we first suppose that after execution of TEMP(i, a:),(!, g, ri, ... , 
rm+1) E TEMP(i, a:). It follows from the algorithm that there must be(!, 
g, s1, ... , sm+1) E TEMP(i,o:-1), and (f',g',ti, ... ,tm+i) E TABLE(ja), 
with: J': Nc(Xj,,)-;. X, g': Mc(Xjalpha)-+ Y, and Vv E Nc(X;)nNc(Xj,,): 
f(v) = f'(v), and Ve E Mc(X;)nMc(Xj,,): g(e) = g'(e), and Vp, 1 :Sp :Sm+ 
1: rp = spEBtp. By induction, there are J: Nc(Wj1 U ... UWj,,_ 1 UX;)-+ X, 
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g : Mc(Wjl u ... u wicr-1 u Xi) ---+ Y, with llNc(X;) = f; YIMc(X;) = g; 
Vp, 1SpSm+1: ap(Zj1 U ... U Zj

0
_ 1 U Yi,],g) = rp; and there are 

]
1

: Nc(Wj 0 )---+ X, g': Mc(Wj 0 )---+ Y, with ]'INc(Xj") = f'; g'IMc(X;
0

) = g'; 
Vp, 1::;; p::;; m + 1: ap(Zj

0
, ]',g') = sp; 

Now we define functions F: Nc(Wj1 U .. . UWj" UXi)---+ X, G: Mc(Wj1 U 
... U Wj" U X;)---+ Y, as follows. 

F(v) = { ~(v), if v E Nc(Wj1 U ... U Wj 0 -1 U Xi) 
f'(v), ifvENc(Wj

0
) 

G(e) = { ~(e), if e E Mc(Wj1 U ... U Wj 0 -1 U X;) 
g'(e), if e E Mc(Wj

0
) 

It follows from lemma 3.3.4, that the definition of F and G is correct. Now, 
for all p, 1 Sp::;; m + 1, one has ap(Zj1 U ... U Zj" U Yi, F, G) = ap(Zji U 
... U Zj

0
_ 1 U Yi, F, G) EB ap(Zj

0
, F, G) =Sp EB rp. So now we have proven 

that the following holds. 

cJ: Nc(X;)-+ X, g: Mc(Xi)-+ Y, ri, ... ,rm+1) E TEMP(i,a):::;. (3) 

3f: Nc(Wj1 U ... Wj" U X;)---+ X, 

g: Mc(Wj1 U ... Wj" u X;)---+ Y, with 

J INc(X;) = J, 
YIMc(X;) = g, 
Vp, lspsm+l: ap(Zj1 U ... UZj 0 U"Yi,f,g)=rp. 

Next suppose we have J : Ne( Xi) ---+ X, g : Mc(X;) ---+, r1 E M 1, ... , 
rm+l E Mm+l, such that 

3f: Nc(Wj1 U ... Wj
0 

U X;)---+ X, 

g: Mc(Wj1 U ... Wj" U X;)---+ Y, with 

flNc(X;) = J, 
YIMc(X;) = g, 
Vp, lspsm+l: ap(Zj1 U ... UZj

0
U"Yi,f,g)=rp. 

We claim that now 3t ~ rm+l, with cJ, g, r 1, ... , rm, t) E TEMP(i, a). 

Write f' = flNc(WJi u ... Wj
0

_
1 

UX;)• 91 = YIMc(Wn U ... Wj
0

_ 1 UX;)• f" 
flNc(Wj")' g" = YIMc(Wj")' Vp, 1::;; p::;; m+ 1: r~ = ap(Zjl u ... u zio-l UY-i, 
f', g'), and r~ = ap(Zj

0
, f, g). 
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By induction, there are t' ~ T~+l and t" ~ T11m + 1, such that (J'INc(X;)' 

g'IMc(X;)' Ti, ... ' T~, t') E TEMP(i, a - 1), and U"INc(Xj,,)• g"IMc(Xj,,)• Tr, 
••• , T~, t") E TABLE( i). From the algorithm it now follows that table 
TEMP( i, a) will contain the element: (], g, Ti EB1 Tr, ... , T~ EBm T~, t' EBm+l 
t"). By noting that T~ Ef)P T~ = Tp and t' Ef)m+l t" ~ T~+l Ef)m+l T~+l = Tm+l • 
the claim follows. 

Finally we note that for each f : Nc(Xi) ---"* X, g : Mc(Xi) ---"* Y, 
Ti E M 1, ... , Tm E Mm, there is at most one Tm+l E Mm+i, with 
(J,g,T1, ... ,rm+1) E TEMP (i,a). 

Claim 3.3.5 now follows from the above 3 observations. Q.E.D. 

Next we show that is is easy to find the answer to the question, whether 
D E Yn, or not, i.e. the answer to the problem that we are trying to solve, 
by 'looking it up' in TABLE(root). 

Claim 3.3.6 D E Yn, if and only if there are r1 E Ri, r2 E R2, ... , 
Tm E Rm, Tm+l E Mm+l, with Tm+l-< K, and f: Nc(Xroot)---"* x, g: 
Mc(Xroot) ---"* X, such that (!, g, T1, ... , Tm, rm+1) E TABLE{root). 

Proof. First we note that Wroot = Zroot = V. 
Now suppose DE Yn. By definition, there are f: V---"* X, g: E---"* Y, 

with \ip,l ~ p ~ m: ap(V,f,g) E Rp and am+1(V,f,g)-< K. Denote 
Sp= ap(V, f,g) (1 ~ p ~ m) and j = flNc(Xroot)• g = YIMc(Xroot)• It follows 
from claim 3.3.5 that either (f,g,si, ... ,sm+i) E TABLE(root), or there is 
a Tm+l-< Sm+l-< K, and (f,fJ,s1,···•rm+1) E TABLE(root). 

Next suppose there are TJ E Ri, r2 E R2, ... Tm E Rm, rm+l E Mm+i, 
with Tm+i -< K, and f : Nc(Xroot) ---"* x' g : Mc(Xroot) ---"* x' such that 
(J,g,T1, ... ,Tm,Tm+1) E TABLE(root). Hence there are J: V---"* X, and 
g : E ---"* Y), with \Ip, 1 ~ p ~ m + 1): ap(V, f,g) = rp. It follows that 
D E Yn. Q.E.D. 

From claim 3.3.6 it follows that after calculating TABLE(root), we can 
determine whether D E Yn or not, by successively inspecting all entries in 
TABLE( root). 

It remains us to show that the algorithm uses polynomial time. First 
note that the finding of the tree-decomposition can be done in polynomial 
time, by theorem 2.2. Next we claim that for each i and a, the size of 
the table TEMP( i, a) (and consequently, of TABLE( i) ), is polynomially 
bounded in s(D). First note that JNc(Xi)J and JMc(Xi)I are bounded by 
constants, say c1 and c2 , (that are only depending on d, k and c). Further, 
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for all (f,g,r1, ... ,rm+1) E TEMP(i,a),one has Tp E {ap(Zj1 U ... U Zj,, U 

Y;' J, g) I j : Ne( Zjl u ... u Zj,, u Y;) --+ x, g : Mc( Zjl u ... u Zj,, u Y;) --+ Y}. 
By definition (of the class of basic LCC-problems ), the number of different 
values that Tp can assume here, is bounded by Pp(s(D)). Hence, the size of 
TEMP( i, a) is bounded by 

m 

IXlci · 1Ylc2 
• IT Pp(s(D)), 
p=l 

which is a polynomial in s(D). 
It follows that each execution of the procedure CALCULATE_TEMP 

uses polynomial time. As this procedure is called 2111 - 1 = O(IVI) 
times, and the total remaining work in the procedure-calls of CALCU
LATE_TABLE is linear in III, it follows that one can calculate TABLE(root) 
in polynomial time. Finally we note that the last step of the algorithm also 
can be done in polynomial time: one can test in polynomial time for each 
(f,g, Ti, ... , Tm, Tm+i) E TABLE(root), whether r1 E R1, ... , Tm E Rm and 
Tm+i -< K. As TABLE(root) is of polynomial size, this last step of the 
algorithm also uses polynomial time. Q.E.D. 

For the class of the edge condition composition problems, we can prove 
a similar result. We can use an algorithm, very similar to the algorithm, 
described in the preceding proof. Here we do not need the requirement 
that the degree of G is bounded by some constant d. This requirement 
was necessary to ensure that the size of the sets Nc(X;) and Mc(X;) was 
bounded by some constant (only depending on k, and d, and not on IVI). 
Now however we use instead sets N0(Xi) =Xi and M0 (X;). Note that the 
size of these sets is bounded by k and ~k( k + 1) respectively, i.e. these sizes 
are bounded by a constant, even if there is no bound on the degree of the 
graphs. In this way we obtain the following result: 

Theorem 3.4 Let k E N. Let 0 be a class of graphs, with 0 ~ TW(k), 
(i.e. every graph G in e has treewidth k OT less). Let II be a basic ECG 
problem. Then Ille E P, i.e. there exists a polynomial algorithm for II, 
when restricted to the graphs with tree width :::; k. 

Now we state the main result of this paper. 

Theorem 3.5 (i) Let II E LCC, and let k, d E N+. Let 0 be a class of 
graphs with GE 0 => degree(G)s d /\ treewidth(G):::; k. Then Ille E P. 

(ii) Let II E ECG, and let k E N+. Let 0 be a class of graphs with 
GE 0 => treewidth(G):::; k. Then Ille E P. 
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Proof. The result follows directly from theorem 2.3, theorem 3.3 and 
theorem 3.4. Q.E.D. 

4 Small-degree polynomial time algorithms for 
subclasses of LCC and ECC 

There are interesting subclasses of LCC and ECC, that yield linear, 
quadratic, cubic or some other small-degree polynomial time algorithms 
(when we do not count the time, needed for finding the tree-decompositions 
with the required treewidth). One can modify the definition of basic LCC 
problem to that of basic C local condition composition problems, and the 
definition of basic ECC problem to that of basic C edge condition composi
tion problem by adding the following conditions: 

1. There are constants c1, c2, such that for all D = (G, (X, Y, R1, ... , 

Rm, K, I) E Dn, one has IXI :S c1; IYI :S c2. 

2. Conditions 1, 3, 4 and 5 of the definition still hold when we replace 
the sentence "time, polynomial in s(D)" by "constant time". 

k 

3. The degree of the polynomial IJ Pp is at most C - 1. 
p=l 

We let the class of C-LCC problems of the graph-decision problems that 
have a gp-transformation f to a basic C LCC problem, such that f can be 
computed in CJ(s(D)°) time and s(f(D)) = CJ(s(D)). Similarly we define 
the class of C-ECC problems. 

It is not difficult to verify, that the algorithms of section 3 can be used 
for C-LCC and C-ECC problems, and will use only CJ(s(D)0 ) time. For 
instance, note that the size of TABLEs and TEMPs are now bounded by 
CJ(s(D)°-1 ). (The constant factor can depend on k, and for the case of 
C-LCC-problems also on d, but not on IVI or s(D)). 

Hence, we can proof the following result, similar as in section 3. 

Theorem 4.1 (i) Let II E C-LCC, and let k, d E N+. Let 0 be a class of 
graphs, with G E 0 => degree (G ):S d A tree width( G) :S k. Then there exists 
a linear algorithm that solves II, restricted to 0, assuming that each graph 
G E 0 in the instances is given together with a tree-decomposition of G with 
treewidth :S k. 
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{ii) Let II E C-ECC, and let k E N+. Let 0 be a class of graphs, with 
GE 0 :::} treewidth{G) :S k. Then there exists a linear algorithm that solves 
II, restricted to 0, assuming that each graph GE 0 in the instances is given 
together with a tree-decomposition of G with tree width :S k. 

The following relations between the classes C-LCC, C-ECC, LCC and 
ECC can be obtained without much difficulty. 

Theorem 4.2 {i) C-ECC ~ C-LCC. 
(ii) C-LCC ~ LCC. 
(iii) C-ECC ~ ECG. 

For the case that the treewidth of G = (V, E) is bounded by a loga
rithmic factor in IVI, one obtains polynomial algorithms for C-LCC and 
C-ECC problems, assuming that the tree-decompositions with the required 
tree-width are given. It is presently unknown whether one can find tree
decompositions with logarithmic treewidth in polynomial time. 

Theorem 4.3 (i) Let II E C-LCC for some C ~ 1, and let k, d E N+. 
Let 0 be a class of graphs, with 3c > 0: VG E 0 :::} degree(G ):S di\ 
treewidth( G) :S k. Then there exists a polynomial algorithm that solves 
II, restricted to 0, assuming that each graph GE 0 in the instances is given 
together with a tree-decomposition of G with tree width :S c · log( IVI). 

{ii) Let II E C-ECC, and let k E N+. Let 0 be a class of graphs, with 
3c > 0: VG E 0 :::} treewidth{G) :S k. Then there exists a polynomial 
algorithm that solves IT, restricted to 0, assuming that each graph G E 0 in 
the instances is given together with a tree-decomposition of G with treewidth 
::s; c · log(IVI). 

Proof. (i) Use the same algorithm as in the case of the constant bounded 
treewidth. We now will estimate the size of the tables TEMP and TABLE. 
Note that the size of Nc(v), or Mc(v), v E V, is bounded by a constant, 
that only depends on k, d and c. Hence there are constants c1, c2, such that 
INc(Xi)I :S C1 • log(IVI) and IMc(X;)I :S c2 · log(IVI), for all G = (V, E) E 0, 
and graph-decompositions ( {X; Ii E J}, T) of G with treewidth :S c·log(IVI). 
It follows that the size of a table TEMP( i, a) (or TABLE( i) ), is bounded by 

m 

IXlc1·log(IVI) · 1Ylc2·log(IVI). TI Pp(s(D)). 
p=l 
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Using that s(D) ~ JVJ, and that JXJ and JYJ are bounded by a constant, 
it follows that the sizes of the TEMPs and TABLEs are bounded by a 
polynomial in s(D). The remainer of the proof is similar to the proof of 
theorem 3.3. 

(ii) Similar. Q.E.D. 

5 Problems in LCC and ECC 

In this section we will show for a large number of NP-complete graph decision 
problems, that they are in LCC or in ECC. First in section 5.1 we will give 
some of the basic techniques we use to prove problems to be in ( C- )LCC and 
( C- )ECC, and give some intuitive ideas behind these notions. In section 5.2 
we give a give for many NP-complete graph decision problems (an indication 
of the) proof that they are in LCC, ECC, C-LCC or C-ECC. For many 
problems, the same techniques will be used to transform them to a basic 
LCC or ECC problem. We have restricted ourselves to a number of graph 
decision problems, appearing in [12]. For full descriptions of the problems, 
the reader is also referred to this reference. We omitted most details of 
proofs, in this section. Most omitted details are easy to obtain. 

5.1 Some basic techniques 

First we give a more intuitive idea of what a (basic) LCC or ECC problem 
is. A basic LCC-problem is a problem of the following type (with some extra 
restrictions): 

INSTANCE: Graph G = (V, E), finite sets X, Y, subsets R1 ~ 
M 1 , ... , Rm ~ Mm, element K E Mm+l, other information 
I. 

QUESTION: Are there functions f : V --+ X, g : E --+ Y, such 
that 

• Vp, 1 ~ p ~ m: Etf valv(D, v, f1Nc(v)•91Mc(v)) E Rv 
vEV 

• Efr+i valm+i(D,v,f1Nc(v)•91Mc(v)) ~ K 
vEV 

The extra restrictions basically say, that where necessary, operations EB, 
E Rp, and -< can be done in polynomial time; the functions valv can be 
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calculated in polynomial time, and, for p f= m + 1, the number of different 
values that 61' valp( D, v, flNc(v), YIMc(v)) can assume, with some fixed S ~ 

vES 
V, over all possible f and g, is polynomially bounded. A basic ECC-problem 
has the following type (with similar restrictions): 

INSTANCE: Graph G = (V, E), finite sets X, Y, subsets Ri ~ 
M 1 , ... , Rm ~ Mm, element K E Mm+l, other information 
I. 

QUESTION: Are there functions f: V----* X, g: E----* Y, such 
that 

• Vp, 1 ~ p ~ m: E£f valp(D, e, flNo(e)• Yl{e}) E Rp 
eEE 

• Efjn+i valm+i(D, e, flNc(e)• Yl{e}) ::5 K 
eEE 

We give some examples of the type of conditions that can be expressed as 

~ valp(D, v, flNc(v)• YIMc(v)) E Rp or E£f valp(D, e, flNc(e)• Yl{e}) E Rp. 
vEV eEE 

A condition like: "Vv E V, some property of (D, v, flNc(v)• YIMc(v)) 

holds", can be expressed with use of the commutative monoid ( ( {true, false}, 
/\,true), where I\ is the usual and-operation. One can express the required 
property as a val-function to {true,false}. Finally, one must choose the 
respective set Rp ={true}. 

Similarly, a condition like: "3v E V, some property of (D, v, flNc(v)• 

YIMc(v)) holds", can be expressed with use of the commutative monoid 
( {true, false}, V, false), where V is the usual or-operation. 

By choosing the commutative monoid (N, +, 0) or (Z, +, 0), conditions 
like 

E valp(D,v,flNc(v)•YIMc(v)) E Rp 
vEV 

, (with Rp a subset of N or Z) can be expressed. Note that, except for the 
case that p = m + 1, one must have that 

VJ~~ I E valp(D, v, flNc(v)•YIMc(v)) 
- vEV' 

must be bounded polynomially in s(D). 
By using one of the ctocm's (N, +, 0, ~), (Z, +, 0, ~), (N, +, 0, ~), or 

(Z, +, 0, ~),one can express conditions like 

E valm+1(D, v, flNc(v)• YIMc(v)) ~ Kor ~ K. 
vEV 
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Here only the number of bits needed to express the values of valm+i, must 
be bounded by a polynomial in s(D). 

If we know some fixed upper bound, say L on the maximal value of these 
sums (for instances with a 'yes'-answer), we can use the commutative monoid 
with elements {O, 1, ... , L, L + 1}, and addition EB on this set, with i EB j = 
i + j, if i + j ~ L + 1, and i EB j = L + 1, if i + j > L + 1. In this way the 
number of different values the sums can attain is bounded by a constant, 
which is useful, when we want to prove membership in C-LCC or C-ECC, 
with C as small as possible. 

Conditions like EEJPvalp(D, e, flNo(e)' 9l{e}) can be expressed, while writ
eEE 

ing the problem as a basic LCC-problem, similar as in the proof of lemma 
2.4. 

With a similar technique, one can express a condition of the type 
EEJPvalp(D, v, J( v)), while writing the problem as a basic ECC-problem. 
vEV 
(Use a mapping V ---+ E, where each vertex v is mapped upon a neighboring 
edge e. (We have to assume that G does not have isolated vertices.)) 

5.2 A list of problems in LCC and ECC 

5.2.1 Vertex cover [GT 1] 

In [3] it was shown that the problem can be solved in linear times, for 
graphs with treewidth, bounded by some constant number k. This can also 
be shown with the following result. 

Theorem 5.1 VERTEX COVER E 1-ECC. 

Proof. There is a linear time transformation of VERTEX COVER to the 
following problem: 

INSTANCE: Graph G = (V, E), sets X = {O, 1}, Y = {O}, 
positive integer K ~ IVI· 

QUESTION: Are there functions f: V---+ X, g: E---+ Y, such 
that 

1. V(v,w) EE: J(v) = 1 or f(w) = 1. 

2. Lf(v)~K. 
vEV 

It is straightforward to see that this problem is in 1-ECC. Q.E.D. 
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5.2.2 Dominating set [GT 2] 

Similar to VERTEX COVER, a linear time algorithm for this problem for 
graphs with constant treewidth, was given by Arnborg and Proskurowski in 
[3]. One also has: 

Theorem 5.2 DOMINATING SET E ECG. 

Proof. There is a linear time transformation from DOMINATING SET 
to the following problem: 

INSTANCE: Graph G = (V,E), sets X = {1} UV, Y = {O}, 
positive integer K s; IVI. 

QUESTION: Are there functions f : V -+ X, g : E -+ Y, such 
that 

1. 'v'(v,w) EE: f(v) = w:::} f(w) = 1. 

2. 'v'(v,w) EE: f(w) = v:::} f(v) = 1. 

3. 'v'v EV: f(v) = 1 or f(v) is a neighbor of v. 

4. The number of v EV, with f(v) = 1, is at most K. 

(The vertices v, with f( v) = 1 represent the set V'. For all other vertices 
v, f(v) represents the neighbor of v, that is in V'.) The latter problem can 
easily be transformed to a basic ECC-problem, with standard techniques 
(see section 5.1.) Q.E.D. 

5.2.3 Domatic Number [GT 3] 

Scheffler and Seese [24] showed that DoMATIC NUMBER can be solved in 
linear time for graphs with given treedecomposition with constant bounded 
treewidth, and constant bounded degree. (To be precise, they prove that for 
constant k, d, K, the problem whether a given graph with treewidth at most 
k, degree at most d, has a domatic number that is at least K, is solvable in 
linear time (not calculating the time needed to find the tree-decomposition 
with the required treewidth). However, as the domatic number of a graph is 
at most its degree +1, it follows directly, that the general DoMATIC NUMBER 
problem (i.e. K is a part of the problem instance), also is solvable in linear 
time, for this class of graphs.) A similar result can also be obtained with 
the following theorem. 

Theorem 5.3 DOMATIC NUMBER E 1-LCC. 
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Proof. We use that the domatic number of a graph is at most its degree 
+L So we may assume that K ~ d + 1, i.e. K is bounded by a constant. 
Further note that DOMATIC NUMBER has a linear transformation to the 
following problem: 

INSTANCE: Graph G = (V, E), sets X = {1, ... , K}, Y = {O}. 
QUESTION: Are there functions f: V __, X, g: E __, Y, such 

that Vv EV: (Vi, 1 ~ i ~ K: 3w E N 1(v): f(w) = i)? 

The latter problem can easily be transformed to a basic 1-LCC-problem. 
Q.E.D. 

A result for graphs with no bound on the degree of the vertices, can be 
obtained by observing that the domatic number of a graph is at most the 
smallest degree of a vertex +1. As each graph with treewidth ~ k has a 
vertex with degree ~ k (use e.g. the characterization as partial k-tree), it 
follows that we may assume that we can bound K by a constant. Together 
with the following result, one obtains polynomial time algorithms for graphs 
with given tree-decomposition with constant bounded tree-width. 

Theorem 5.4 DOMATIC NUMBER for constant K E ECG. 

Proof. Note the equivalence to the following problem: 

INSTANCE: Graph G = (V, E), sets X = {1, ... , K} * VK, 
y = {O}. 

QUESTION: Are there functions f: V __, X, g: E __, Y, such 
that 

1. Vv EV: Vi,2~i~K+1: fi(v) E Ni(v). 

2. Vv E V : Vi, 2 ~ i ~ K + 1 : if fi( v) = v, then Ji ( v) = 
i - 1. 

3. V(v,w) EE: Vi,2 ~ ~ K + 1 : if fi(v) = w, then 
fi(w)=i-1. 

4. V(v,w) EE: Vi,2 ~ ~ K + 1: if f;(w) = v, then 
fi(v)=i-1. 

Here h(v), ... , fK+i(v), denote the vertices in N1 (v), that are in the domi
nating sets Vi, ... , VK; V; = {v EV I fi(v) = i}. Now the problem is easily 
seen to be in ECC. Q.E.D. 
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This proof shows a technique, which often will be used to transform an 
( C- )LCC problem to an ECC-problem. Suppose we have a condition of 
the form Vv EV: 3w E Ni(v): Q(f(v),f(w),g((v,w))), where Q is some 
relation. Now replace the set X (of the old problem), by X' = X * V; 
add a condition that h(v) E N1(v) for all v E V; and require now, that 
for each edge e = (v,w) EE: if h(v) = w, then Q(f1(v),Ji(w),g((v,w)) 
and if h(w) = v, then Q(fi(w),fi(v),g((v,w)). Also require that for all 
v E V: if h(v) = v, then Q(f1(v),Ji(v),g((v,w)). If we require w to 
be a neighbor of v, instead of an element of N 1 ( v ), then we drop the last 
condition. For each v E V, h( v) is the edge leading to the neighbor w, such 
that Q(f(v),f(w),g((v,w)). 

5.2.4 Chromatic Number [GT 4] 

Arnborg and Proskurowski [3] showed that CHROMATIC NUMBER can be 
solved in linear time for graphs with constant bounded treewidth (and with 
given corresponding characterization as subgraph of a k-tree). By using that 
a graph with treewidth k always is (k + 1)-colorable (this fact can easily be 
derived with help of the recursive definition of k-trees), one obtains the 
following result without difficulty: 

Theorem 5.5 CHROMATIC NUMBER E 1-ECC. 

5.2.5 Monochromatic triangle [GT 6] 

Scheffler and Seese [24] proved this problem to be linear time solvable for 
graphs with constant bounded treewidth and degree. This result can also 
be obtained with the following theorem. 

Theorem 5.6 MONOCHROMATIC TRIANGLE E 1-LCC. 

Proof. Note that MONOCHROMATIC TRIANGLE has a graph-invariant 
linear transformation to the following problem: 

INSTANCE: Graph G = (V, E), sets X = {O}, Y = {1, 2}. 
QUESTION: Are there functions f: V---+ X, g: E---+ Y, such 

that Vu E V: •(3v,w E N 1 (v): (v,w) E E /\ J((v,w)) = 
J((u,v)) = J((u,w)). 

The latter is easily transformed to a basic 1-LCC problem. Q.E.D. 
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If we replace "triangle" by any larger fixed complete subgraph, then one 
shows with a similar proof, that the resulting variant again is in 1-LCC. 

We remark that there exist also linear time algorithms for the case that 
one has no bound on the degree of the graphs. By using lemma 5.23, it 
follows that for each triangle ( u, v), ( v, w), ( w, u) in G, there must be some 
i EI, with u, v, w E Xi. (Similar for larger complete subgraphs of G.) This 
fact enables us to modify the basic algorithms of section 3, in order to obtain 
a linear time algorithm for MONOCHROMATIC TRIANGLE, or one of its vari
ants with larger complete subgraphs, on graphs with given treedecompostion 
with constant bounded treewidth. 

5.2.6 Feedback vertex set [GT 7] 

Feedback vertex set is the first example in this list, of a problem, dealing 
with directed graphs. A directed graph can be seen as an undirected graph, 
with each edge labeled by it direction(s). (So there are 3 different label
ings possible for each edge.) Hence, there is no real difference in the way 
undirected and directed graphs can be handled in this theory. 

Theorem 5. 7 FEEDBACK VERTEX SET E ECG. 

Proof. First we may assume without loss of generality, that we have no 
isolated vertices in G = (V, A). Note that the condition that V' contains at 
least one vertex from every directed cycle in G is equivalent to the condition 
that the subgraph of G, induced by V - V' is cyclefree. Hence we can 
transform FEEDBACK VERTEX SET to the following problem: 

INSTANCE: Directed graph G = (V, A), sets X = {O, 1, ... , 
IVI - 1, oo}, Y = {O}, positive integer J( ~ IVI· 

QUESTION: Are there functions f: V----"* X, g : A----"* Y, such 
that 

1. 'v'(u,v) EA: J(u) = oo or J(v) = oo or J(u) < J(v). 

2. the number of v EV with f(v) = oo is at most K. 

(The vertices v with f(v) = oo represent the set V'.) Q.E.D. 

5.2.7 Feedback arc set [GT 8] 

This problem can be handled, similar to FEEDBACK VERTEX SET. 
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Theorem 5.8 FEEDBACK ARC SET E ECG. 

Proof. Transform to the following problem. 

INSTANCE: Directed graph G = (V, A), sets X = {O, 1, .. ., 
!VI - 1}, Y = {O, 1}, positive integer J( ~ !VI· 

QUESTION: Are there functions f: V---+ X, g: A---+ Y, such 
that 

1. Ve= (u,v) EA: g(e) = 1 or f(u) < f(v). 

2. L g(e) ~ K. 
eEE 

(The edges e with g( e) = 1 represent the set A'.) Note that we can express 
the function g : A ---+ Y as a function g' from the set of undirected edges E, 
obtained by ignoring the direction of the edges in A, to (Y * Y). Q.E.D. 

5.2.8 Partial feedback edge set [GT 9] 

Scheffler and Seese [24] have shown that the problem with fixed maximum
circuit length L is solvable in linear time for graphs with given tree
decomposition with treewidth ~ k and degree at most d, k and d fixed. 
One can show that the problem with fixed L, is in 1-LCC, thus obtaining 
the same result. The problem is open for graphs with arbitrary degree, and 
for the variant where Lis variable. 

Theorem 5.9 For all L E N+' L ~ 3, PARTIAL FEEDBACK EDGE SET 

with maximum circuit length L E 1-LCC. 

Proof. Transform to the following problem. 

INSTANCE: Graph G = (V, E), sets X = {O}, Y = {O, 1}, 
positive integer J( ~ !VI. 

QUESTION: Are there functions f : V ---+ X, g : E ---+ Y, such 
that 

Q.E.D. 

1. Vv E V: There is no circuit in NL( v ), with for every 
edge e in the circuit /( e) = 0. 

2. L f(e) ~ K. 
eEE 
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5.2.9 Minimum maximal matching [GT 10] 

Scheffler and Seese proved that the problem, whether the minimum maximal 
matching of a given graph G has at most K edges, (for fixed K), is solvable 
in linear time, for graphs with constant bounded treewidth and degree, given 
with the corresponding tree-decomposition. The following result shows that 
a similar result still holds, if we do not fix K, but let it be a part of the 
problem-instance. 

Theorem 5.10 MINIMUM MAXIMAL MATCHING E 1-LCC. 

Proof. The problem has a graph-invariant linear transformation to the 
following problem: 

INSTANCE: Graph G = (V, E), sets X = {O}, Y = {O, 1}, 
positive integer K :S IVI· 

QUESTION: Are there functions f: V---+ X, g: E---+ Y, such 
that 

1. Vv E V : there is at most one adjacent edge e, with 
g(e) = 1. 

2. Ve= (v,w) EV: g(e) = 1 or v or w is adjacent to an 
edge e', with g( e') = 1. 

3. L g(e):::; K. 
eEE 

(The edges with g(e) = 1 represent the edges in E'.) Q.E.D. 

Also we have the following result. 

Theorem 5.11 MINIMUM MAXIMAL MATCHING E ECG. 

Proof. Transform to the following problem: 

INSTANCE: Graph G = (V, E), sets X =Eu {O}, Y = {O, 1}, 
positive integer K :S jVJ. 

QUESTION: Are there functions f: V---+ X, g: E---+ Y, such 
that 

1. Vv EV: f(v) is an edge, adjacent to v or f(v) = 0. 

2. Ve= (v,w) EE: if g(e) = 1, then f(v) = e and f(w) = 
e. 
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3. Ve= (v, w) EE: if f(v) = e or f(w) = e, then g(e) = 1. 

4. Ve = ( v, w) E E : f( v) "I 0 or f( w) "I 0 or g( e) = 1. 

5. L g(e)::; K. 
eEE 

Q.E.D. 

5.2.10 Partition into triangles [GT 11] 

Theorem 5.12 PARTITION INTO TRIANGLES E 1-LCC. 

Proof. The problem has a graph-invariant linear transformation to the 
following problem: 

INSTANCE: Graph G = (V, E), sets X = {O}, Y = {O, l}. 
QUESTION: Are there functions f : V -+ X, g : E -+ Y, such 

that Vu EV: 3e = (u,v) E M1(v), e' = (u,w) E M1(v), 
with f(e) = f(e') = 1, and (v,w) EE, and J((v,w)) = 1, 
and for all other edges ( v, x) EE: f(( v, x )) = 0. 

The latter problem is easily transformed to a basic 1-LCC problem. Q.E.D. 

Theorem 5.13 PARTITION INTO TRIANGLES E ECG. 

Proof. Use the technique, outlined in section 5.2.3. Q.E.D. 

5.2.11 Partition into Isomorphic subgraphs [GT 12] 

We will consider the subproblem of this problem, where we require H to be 
connected. 

Theorem 5.14 PARTITION INTO ISOMORPHIC CONNECTED SUBGRAPHS 

E LCC. 

Proof. We choose some arbitrary vertex w E VH. Each set Vi will 
be characterized by the vertex v E Vi, that is mapped to w. We use a 
transformation to the following problem. 

INSTANCE: Graph G =(Va, Ea), sets X =Va* VH, Y = {O}, 
graph H = (VH,EH), vertex w E VH. 

QUESTION: Are there functions f : V -+ X, g : E -+ Y, such 
that 
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1. Vv EV: h(v) = w {:} fi(v) = v. 

2. Vv EV for every w' E VH that is adjacent in H to h(v), 
there is a unique v' E V, that is adjacent to v (in G), 
with f( v') = (!1 ( v ), w'). 

3. V(v,w) EE: iffi(v) = fi(w),then (h(v),h(w)) E EH. 

We leave the remainder of the proof to the reader. Q.E.D. 

In a similar manner, one can handle the case that H has a fixed number 
of connected components. (One can choose a vertex Wi from every connected 
component Hi; by counting the number of times that h(v) = Wi, for each i, 
one can verify that each component of H appears often as a subgraph.) We 
also remark that if we fix H, then the problem is in 1-LCC. This follows by 
the observation, that for each vertex v, one can require that de( v, ft ( v)) :S 
IVHI· As IVHI is fixed, it follows that, for graphs with bounded degree, one 
can obtain a set X with fixed size. 

5.2.12 Partition into Hamiltonian Subgraphs [GT 13] 

Theorem 5.15 PARTITION INTO HAMILTONIAN SUBGRAPHS E 1-LCC. 

Proof. Use the equivalence of the problem with the following problem: 

INSTANCE: Directed graph G = (V, A), sets X = {O}, Y = 
{O, l}. 

QUESTION: Are there functions f : V --+ X, g : A --+ Y, 
such that Vv EV: there is one unique edge (u,v) EA with 
f((u,v)) = 1 and there is one unique edge (v,w) EA with 
f((v,w)) = 1. 

Q.E.D. 

Theorem 5.16 PARTITION INTO HAMILTONIAN SUBGRAPHS E ECG. 

Proof. Use the technique, outlined in section 5.2.3. Q.E.D. 

5.2.13 Partition into forests [GT 14] 

Theorem 5.17 PARTITION INTO FORESTS E ECG. 

Proof. Use that the problem is equivalent to the following problem: 
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INSTANCE: Graph G = (V, E), sets X = {1, ... , K} * 
{O, ... , IVI - 1} * v, y = {O}. 

QUESTION: Are there functions f: V---.. X, g: E---.. Y, such 
that 

1. V(v,w) E E : if fi(v) = fi(w), then (h(v) w or 
h(w) = v). 

2. V(v,w) EE: if fi(v) f1(w) and h(v) = w, then 
h(v) = h(w) + 1. 

3. V(v,w) E E : if fi(v) fi(w) and h(w) = v, then 
h(w) = h(v) + 1. 

(Ji ( v) denotes the number of the component in which v is placed; h( v) 
denotes in a certain sense the father of v in its subtree. The values of h(v) 
decrease, by going up in the subtrees, and hence assure that there are no 
induced cycles.) Now the problem is easily seen to be in ECC. Q.E.D. 

5.2.14 Partition into cliques [GT 15] 

In [24] it is shown, that this problem is solvable in linear time for graphs 
with bounded treewidth, and bounded degree. This can also be shown with 
the following result. 

Theorem 5.18 PARTITION INTO CLIQUES E 1-LCC. 

Proof. We transform the problem to the following problem: 

INSTANCE: Graph G = (V, E), sets X = {O}, Y = {O, 1}, 
positive integer ]( ~ V, and a total ordering -< on V. 

QUESTION: Are there functions f: V---.. X, g: E---.. Y, such 
that 

1. Vu E V : for all pairs of neighbors v, w of u: if g(( u, v )) = 
g((u,w)) = 1, then (v,w) EE. 

2. the number of v E V with: for all adjacent w: 
(g((v,w) = 0 or v-< w) is at most K. 

(A vertex v, with for all adjacent w: (g(( v, w) = 0 or v -< w ), is the first (with 
respect to the ordering-<) vertex of a clique in G' = (V, { e E E I f( e) = 1} ). 
Hence, the number of cliques is at most ](. The remainder of the proof is 
left to the reader.) Q.E.D. 
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We remark that one can find a linear algorithm for this problem on 
graphs with given tree-decomposition with bounded tree-width, without a 
restriction on the degree of the nodes. (Hint: use lemma 5.23, and make 
for each node i E I a table, with for each subset S ~ Xi we store a number 
c(S), which denotes the minimum number of cliques, in which the subgraph 
of G, induced by the set { v E Xj I j is a descendant of i, v r/. Xi} US} ~ V} 
can be partioned.) 

5.2.15 Partition into perfect matchings [GT 16] 

In [24] it is shown that the problem is solvable in linear time for graphs with 
a given treedecomposition with bounded treewidth, and a bounded degree, 
when we fix J(, the maximum number of perfect matchings. For variable J(, 

and no degree bound on the graphs, one obtains polynomial time algorithms 
with the following theorem. 

Theorem 5.19 PARTITION INTO PERFECT MATCHINGS E ECG. 

Proof. Transform the problem to the following problem: 

INSTANCE: Graph G = (V, E), sets X = {1, ... , K} * V, Y = 
{O}. 

QUESTION: Are there functions f: V-+ X, g: E-+ Y, such 
that 

1. Vv EV: h(v) is a neighbor of v. 

2. Ve = (v,w) E E: (if h(v) = w then h(w) = v and 
fi(v) = fi(w)) and (if h(w) = v then h(v) = wand 
fi(v) = fi(w)). 

3. Ve= (v,w) EE: if fi(v) = fi(w), then h(v) =wand 
h(w) = v. 

(It follows that for all v E V the vertex w = h( v) is the unique neighbor 
with Ji ( v) = f 1 ( w). Hence, for all i :s; J(, the subgraph induced by Vi = 
{v EV I fi(v) = i}, is a perfect matching.) Q.E.D. 

5.2.16 Covering by cliques [GT 17] 

Theorem 5.20 COVERING BY CLIQUES E LCC. 
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Proof. We use a technique, somewhat similar to that in section 5.2.14. 
Note that each vertex needs to be involved in at most d = degree(G) cliques. 
We denote the set of subsets of a set S, with cardinality at most d by pd(S). 
Transform to the following problem: 

INSTANCE: Graph G = (V, E), sets X =pd( {1, ... , K} ), Y = 
{O}, with]( ~ IV\, and a total ordering -< on V. 

QUESTION: Are there functions f: V---+ X, g: E---+ Y, such 
that 

1. Vu E V: for all pairs of neighbors v, w of u and for all 
i,1 ~ i ~ K: if i E f(u) and i E f(v) and i E f(w), 
then (v, w) EE. 

2. Ve= (v,w) EE: f(v) n f(w) f 0. 
3. We require that: l:val(v) ~ K, where each vertex 

vEV 
v E V, val( v) denotes the number of i, 1 ~ i ~ K, 
such that there is no neighbor w of v, with w -< v and 
iEf(w). 

The details are left to the reader. Q.E.D. 

5.2.17 Covering by complete bipartite subgraphs [GT 18] 

Similar (but slightly more complicated) to the proof of theorem 5.20 one 
shows the following result. (The main difference is that one has to look to 
vertices with distance at most 2, instead of only neighbors.) 

Theorem 5.21 COVERING BY COMPLETE BIPARTITE SUBGRAPHS E 

LCC. 

5.2.18 Clique [GT 19] 

In [24] it was shown that CLIQUE is solvable in linear time, for graphs with 
bounded degree and given tree-decomposition with bounded treewidth. The 
following result shows that the bound on the degree can be avoided. 

Theorem 5.22 CLIQUE E 2-ECC. 

Proof. Transform the problem to the following problem: 
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INSTANCE: Graph G = (V, E), sets X = {O, 1}, Y = {O}. 
QUESTION: Are there functions f : V ---+ X, g : E ---+ Y, such 

that 

Q.E.D. 

1. L f(x) = K. 
vEV 

2. the number of edges e = (v,w) EE with f(v) = f(w) = 
1 is exactly ~](·(I(+ 1). 

However, we note that there is a very simple, and (for small values of k) 
efficient linear algorithm, to determine whether a graph with a given tree
decomposition with tree-width at most k contains a clique with l vertices. 
The algorithm is suggested by the following lemma. (Basically, one can look 
at each i EI, and see whether the subgraph of G, induced by Xi contains a 
clique with l vertices.) 

Lemma 5.23 Let ({Xi I i E I}, T = (I, F)), be a tree-decomposition of 
G = (V, E). Suppose W ~ V forms a clique in G. Then :Ji EI: W ~Xi. 

Proof. Use induction to the cliquesize IWI. For IWI ::; 2, the result 
follows directly. Suppose the lemma holds up to cliquesize l - 1. Consider 
a clique W ~ V, with IWI = l, and suppose the lemma does not hold for 
W. Choose a vertex w E W, and let W' = W - { w }. Let I' ~I be the set 
{i E I I W' ~ I}. By induction I' -=f 0. Note that w E xi =} i ti. I'. Now 
choose a node i' E I', and a node i E I, with w E Xi. Consider the path 
in T from i' to i. Let i" be the last node on this path with i" E I, and let 
i"' be the next node on this path. Now, for every w' E W', there must be 
a vertex iw•, with { w, w'} ~ Xjw'. Consider the path from i" to iw'· We 
consider two cases. 

Case 1: This path does not use i"'. In this case, the path in T from i to 
iw• uses i". Now w E Xi, w E Xjw,, hence w E Xi"• contradiction. 

Case 2: This path uses i"'. Now we have w' E Xi"' w' E Xjw" hence 
w' E Xi"'· 

It follows that for all w' E W': w' E Xi"'• hence i"' E I', which contradicts 
the assumption that i" was the last node on the path from i to i', that was 
in I'. Q.E.D. 
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5.2.19 Independent set [GT 20] 

In [3] it is shown that this problem can be solved in linear time, for graphs 
with a given tree-decomposition with bounded treewidth. This result can 
also obtained with the following theorem. 

Theorem 5.24 INDEPENDENT SET E 1-ECC. 

Proof. Similar to the proof of theorem 5.2.1. Q.E.D. 

5.2.20 Induced path [GT 23] 

For the variant of this problem, where the minimum pathlength is fixed, 
Scheffler and Seese [24] proved solvability in linear time for graphs with 
bounded degree and given treedecomposition with bounded treewidth. One 
can also proof the following result. 

Theorem 5.25 INDUCED PATH E ECG. 

Proof. Transform to the following problem. 

INSTANCE: Graph G = (V, E), sets X = {O, 1, ... , !VI}* V * V, 
y = {O}. 

QUESTION: Are there functions f: V-+ X, g: E-+ Y, such 
that 

1. Vv E V : /2( v) is a neighbor of v, and h( v) is a neighbor 
of v. 

2. Ve= (v,w) EV: if fi(v) f:- 0 and fi(w) f:- 0, then 
(lfi(v) - f1(w)I = 1, and if fi(v) = fi(w) + 1, then 
h(v) =wand h(w) = v and if / 1 (w) = fi(v) + 1, then 
h(w) = v and h(v) = w). 

3. V(v,w) E E: if 1 < f1(v) < ]( and h(v) w then 
f1(w) = f1(v) + 1. 

4. V(v,w) E E: if 1 < fi(v) :S ]( and h(v) = w then 
fi(w) + 1 = fi(v). 

5. there is at least 1 vertex v EV with fi(v) f:- 0. 
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(Here Ji ( v) = 0, if v is not in V'; otherwise Ji ( v) denotes the number of v on 
the induced path: start with numbering one end of the path by 1, number 
the next vertex 2, etc. h( v) denotes the vertex before v on the path; h( v) 
the vertex after v.) The remaining details are left to the reader. Q.E.D. 

One can modify this proof in order to obtain the following result: 

Theorem 5.26 INDUCED PATH with fixed pathlength ]( E 1-LCC. 

5.2.21 Balanced complete bipartite subgraph (GT 24] 

With a technique, similar to that used for the CLIQUE problem, we show: 

Theorem 5.27 BALANCED COMPLETE BIPARTITE SUBGRAPH E 3-ECC. 

Proof. Transform to the following problem. 

INSTANCE: Graph G = (V, E), sets X = {O, 1, 2} * V * V, 
Y = {O}, positive integer ]( :::; !VI. 

QUESTION: Are there functions f : V ~ X, g : E ~ Y, such 
that 

Q.E.D. 

1. the number of vertices v E V with f( v) = 1 is exactly 
K. 

2. the number of vertices v E V with f( v) = 2 is exactly 
K. 

3. the number of edges ( u, v) E E with f ( u) = 1 and 
f( v) = 2 is exactly ](2 • 

A polynomial algorithm for this problem for graphs with a constant 
bound on the treewidth is easily obtained, by noting that a graph with 
treewidth :::; k cannot have a balanced complete bipartite subgraph with 
2: 2k + 2 vertices. Without much extra effort, one can obtain a linear 
algorithm for this problem, using that for graphs with treewidth :::; k, we 
may assume that ]( is bounded by a constant. 
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5.2.22 Bipartite subgraph [GT 25] 

Theorem 5.28 BIPARTITE SUBGRAPH E 1-ECC. 

Proof. Use the equivalence of the problem to the following problem: 

INSTANCE: Graph G = (V, E), sets X = {O, 1}, Y = {O}, 
positive integer ]( ~ IV/. 

QUESTION: Are there functions f: V--+ X, g: E--+ Y, such 
that the number of edges e = ( v, w) E E with J( v) f:. J( w) is 
at least K. 

The latter problem is easily seen to be a basic 1-ECC problem. Q.E.D. 

5.2.23 Degree-bounded connected subgraph [GT 26] 

Theorem 5.29 DEGREE-BOUNDED CONNECTED SUBGRAPH E LCC. 

Proof. Use the equivalence of the problem to the following problem: 

INSTANCE: Graph G = (V, E), sets X = {O, 1, ... , /V/ - 1}, 
Y = {O, 1}, positive integer](~ /E/. 

QUESTION: Are there functions f: V--+ X, g: E--+ Y, such 
that 

1. there is exactly one v E V with J( v) = 0. 

2. for each v E V, the number of adjacent edges e with 
g(e) = 1 is at most d. 

3. for each vertex v EV, with J(v) f:. 0, there is an ad
jacent vertex w E N 1(v), with J(w) = J(v) - 1, and 
g((v,w))=l. 

4. L f(e) 2: K. 
eEE 

(The graph G' = (V, { e E E / f ( e) = 1}) is connected, because each vertex 
w E V has a path (with length f ( w)) in this graph to the unique vertex v 
with f(v) = 0.) Q.E.D. 
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5.2.24 Transitive subgraph [GT 29] 

Theorem 5.30 TRANSITIVE SUBGRAPH E 1-LCC. 

Proof. Transform to the following problem: 

INSTANCE: Directed graph G = (V, A), sets X = {O}, Y = 
{O, 1}, positive integer J( ~ IAI. 

QUESTION: Are there functions f : V--+ X, g : E--+ Y, such 
that 

Q.E.D. 

1. for all v E V: for all u, with ( u, v) E A, and all w, with 
(v,w) EA: if g((u,v)) = g((v,w)) = 1, then (u,w) EA, 
and g(( u, w)) = 1. 

2. L g(e) 2 K. 
eEE 

5.2.25 Cubic subgraph [GT 32] 

In [24] this problem is shown to be solvable in linear time, for graphs with 
given tree-decomposition with bounded treewidth, and bounded degree. One 
can also show this result with the following theorem. 

Theorem 5.31 CUBIC SUBGRAPH E 1-LCC. 

Proof. Transform to the following problem: 

INSTANCE: Graph G = (V, E), sets X = {O}, Y = {O, 1}. 
QUESTION: Are there functions f : V --+ X, g : E --+ Y, such 

that 

Q.E.D. 

1. for each vertex v E V, there are either exactly 3, or 
exactly 0 adjacent edges e with g( e) = 1. 

2. I: g(e) 2 i. 
eEE 

Theorem 5.32 CUBIC SUBGRAPH E ECG. 
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Proof. Let P3(V) denote the set of all subsets of V, that contain exactly 
3 elements. Transform to the following problem: 

INSTANCE: Graph G = (V, E), sets X = P3 (V) U {0}, Y = 
{O, 1}. 

QUESTION: Are there functions f: V - X, g: E - Y, such 
that 

Q.E.D. 

1. Vv EV: w E J(v) => w is a neighbor of v. 

2. for all e = (v,w) E E: if w E f(v) or v E f(w) then 
g(e) = 1. 

3. for all e = (v,w) EE: if g(e) = 1, then w E f(v) and 
v E f(w). 

4. L: g(e) ~ i. 
eEE 

5.2.26 Hamiltonian completion [GT 34] 

Theorem 5.33 HAMILTONIAN COMPLETION E ECG. 

Proof. We assume that J( ~ 1. If J( = 0, then see the HAMILTONIAN 
CIRCUIT problem. 

Note that a graph G = (V, E) has a Hamiltonian completion with k ~ J( 

extra edges, if and only if one can partition the vertices in V into k ~ J( 

disjoint subsets Vi, ... , Vi, with for all i, 1 ~ i ~ k, Vi induces a subgraph 
of G which contains a Hamiltonian path. We now use a technique, similar 
to the technique used with e.g. INDUCED PATH. 

Transform to the following problem: 

INSTANCE: Graph G = (V, E), sets X = {1, ... , IVI} * V * V, 
y = {O}. 

QUESTION: Are there functions f: V - X, g: E - Y, such 
that 

1. Ve= (v,w) EE: h(v) = w, if and only if h(w) = v. 

2. Ve= (v, w) EE: h(w) = v, if and only if h(v) = w. 

3. Ve= (v,w) EE: if h(v) = w, then f1(v) = fi(w) + 1. 

4. Ve= (v,w) EE: if h(w) = v, then f1(v) = fi(w)-1. 
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5. \Iv EV, fi(v) = 1 or h(v) is a neighbor of v. 

6. the number of vertices v, with Ji ( v) = 1 is at most ]{. 

The remaining details of the proof are left to the reader. Q.E.D. 

5.2.27 Hamiltonian circuit [GT 37] and variants 

Hamiltonian circuit is solvable in linear time, for graphs with a given tree
decomposition with bounded treewidth (see [3]). Probably, this is an exam
ple, where the method of Arnborg and Proskurowski gives better results than 
the method of this paper, as we only were able to proof that HAMILTONIAN 
CIRCUIT E ECC (hence giving polynomial, instead of linear algorithms). 
The proof is very simple. 

Theorem 5.34 HAMILTONIAN CIRCUIT E ECG. 

Proof. Transform to the following problem: 

INSTANCE: Graph G = (V, E), sets X = {O, 1, ... , IVI - 1} * V, 
y = {O}. 

QUESTION: Are there functions f: V-+ X, g: E-+ Y, such 
that 

Q.E.D. 

1. \Iv E V: h( v) is a neighbor of v. 

2. \/(v,w) EV: if h(v) = w, then fi(v) = (f1(w)+l) mod 

IVl-
3. \/(v,w) EV: if h(w) = v, then fi(w) = (J1(v)+l) mod 

IVI· 

Of course, the related problems HAMILTONIAN PATH, DIRECTED HAM
ILTONIAN CIRCUIT and DIRECTED HAMILTONIAN PATH can be handled in 
the same way, with only minor variations. (For (DIRECTED) HAMILTONIAN 
PATH see e.g. HAMILTONIAN COMPLETION.) The proofs are left to the 
reader. 

Theorem 5.35 1. HAMILTONIAN PATH E ECG. 

2. DIRECTED HAMILTONIAN CIRCUIT E ECG. 

3. DIRECTED HAMILTONIAN PATH E ECG. 
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5.2.28 Subgraph Isomorphism [GT 48] 

We will consider some different subproblems of this problem. First note 
that the following problem is NP-complete (by transformation from 3-
PARTITION). 

INSTANCE: Tree G = (V, E) with degree( G)::; 3, forest H 
(W, F), with degree(H)::; 2. 

QUESTION: Does G contain a subgraph isomorphic to H? 

Thus, we cannot expect to obtain polynomial algorithms for SUBGRAPH 
ISOMORPHISM for graphs with bounded tree-width, unless we assume that H 
is connected (or unless P=NP). One also must require that G has a bounded 
tree-width. (If we only have that H has a bounded tree-width, then again 
we have an NP-complete variant of the problem; e.g. use a transformation 
from HAMILTONIAN PATH.) 

So, let us now consider the case, where H is connected, and G has 
a bounded tree-width, i.e. G is the graph, appearing in the instance of 
the graph decision problem, and H is "hidden" somewhere in the other 
information I. This version of the problem is in LCC. This can be seen by 
transformation to the following problem: 

INSTANCE: Graph G = (Va, Ea), connected graph H = 
(VH,EH), sets X = VH U {O}, Y = {O}, vertex w E VH. 

QUESTION: Are there functions f : V --+ X, g : E --+ Y, such 
that 

1. Vv E Va: if f(v) f; 0, then for every w' E VH, that is 
adjacent to f ( v), there is a v' E Va, adjacent to v, with 
f(v') = w. 

2. there is exactly one vertex v E Va, with f(v) = w. 

It follows that the problem to determine whether a given connected graph 
H is isomorphic to a given graph G can be solved in polynomial time, for 
graphs G with constant bounded treewidth and constant bounded degree. 
For graphs with no bounds on the degree, such a result would imply that 
P=NP, because SUBGRAPH ISOMORPHISM is NP-complete, for G and H 
connected, outerplanar graphs [27]. (Recall that each outerplanar graph 
has treewidth at most 2.) (For a discussion of similar results, see section 
6.2.) 
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As a curiosity we mention, that the fact, that the problem to decide 
whether a graph G has bandwidth at most k, for some constant k, is solvable 
in polynomial time, follows as a corollary. (This result was first obtained by 
Saxe [23].) Let Gk,n be the maximal graph on n vertices with bandwidth 
k, i.e. Gk,n = (Vn,Ek,n), with Vn = {1,2, ... ,n} and Ek,n = {(i,j) I i,j E 
Vn /\ Ii - j I :::; k}. The following observations was already made by Saxe [23]. 

Lemma 5.36 (Saxe [23]) Let G = (V, E), with IVI = n. Then 
bandwidth(G) :::; k, if and only if G is isomorphic to a subgraph of G k,n. 

The treewidth of Gk,n also is at most k. The degree of Gk,n is at most 2k. 
Hence, it follows, that one can decide in polynomial time, for each connected 
graph G (and hence, also for each G, that is not connected, by applying the 
algorithm to each connected component of G), whether G is isomorphic to 
a subgraph of Gk,n, and thus, by lemma 5.36, whether bandwidth(G) :S k. 

5.2.29 Graph contractability [GT 51] 

We only consider this problem for fixed graphs H. With induction to the 
number of edge-contractions one can proof the following lemma. 

Lemma 5.37 Let G =(Va, Ea), H = (VH,EH) be graphs. We can obtain 
a graph isomorphic to H from G by a sequence of edge contractions, if and 
only if we can associate with each vertex v E V H a set of vertices F( v) ~ Va, 
such that 

1. For all v E V : the subgraph of G, induced by F( v) is connected. 

2. v -:f w {:} F(v) n F(w) = 0. 
3. LJ F(v) =Va. 

vEVH 

4. For all v,w E VH: (v,w) E EH{:} (3v' E F(v),w' E F(w): (v',w') E 

Ea). 

We leave the proof to the reader. 

Theorem 5.38 For all graphs H, GRAPH CoNTRACTABILITY to HE LCC. 

Proof. Transform to the following problem: 
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INSTANCE: Graph G = (V, E), sets X = VH*{O, 1, ... , IVl-1}, 
y = {O}. 

QUESTION: Are there functions f : V--+ X, g : E--+ Y, such 
that 

1. For each v E VH, we have a condition: There is exactly 
one w E Ve: f(w) = (v,0). 

2. For each (vi, v2) E EH, we have a condition: :3( w1, w2) E 
Ee : Ji ( w1) = vi A Ji ( w2) = v2. 

3. \f(v,w) E Ee: fi(v) = fi(w) or (f1(v),fi(w)) E EH. 

4. \fv E Ve: h(v) = 0 or v has a neighbor w with fi(v) = 
fi(w) and h(w) < h(v). 

(f represents p-1
.) Note that we have IVHI + IEHI + 2 conditions! (This is 

constant, because His fixed.) Q.E.D. 

With the technique, outlined in section 5.2.3, one obtains also the fol
lowing result: 

Theorem 5.39 For all graphs H, GRAPH CONTRACTABILITY to HE ECG. 

5.2.30 Graph homomorphism [GT 52] 

This problem, for fixed graphs H, can be dealt with, similar to GRAPH 
CONTRACTABILITY. 

Lemma 5.40 Let G =(Ve, Ee), H = (VH,EH) be graphs. We can obtain 
a graph isomorphic to H from G by a sequence of identifications of non
adjacent vertices, if and only if we can associate with each vertex v E VH a 
set of vertices F( v) ~ Ve, such that 

1. For all v E V : F( v) is an independent set in G. 

2. v -I w ~ F( v) n F( w) = 0. 

3. LJ F(v) =Ve. 
vEVH 

4. For all v,w E VH: (v,w) E EH~ (:lv' E F(v),w' E F(w): (v',w') E 
Ee). 

Again, we leave the proof to the reader. 
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Theorem 5.41 For all graphs H, GRAPH HOMOMORPHISM to H E LCC. 

Proof. Transform to the following problem: 

INSTANCE: Graph G = (V,E), sets X = VH, Y = {O}. 
QUESTION: Are there functions f : V --t X, g : E --t Y, such 

that 

Q.E.D. 

1. For each v E VH, we have a condition: There is exactly 
one w E Va: J(w) = v. 

2. For each ( v1, v2) E EH, we have a condition: 3( wi, w2) E 
Ea: f(w1) = V1 A f(w2) = v2. 

3. 'v'(v,w) E Ea: (f(v),f(w)) E EH. 

Theorem 5.42 For all graphs H, GRAPH CoNTRACTABILITY to HE ECG. 

Proof. Again, use the technique outlined in section 5.2.3. Q.E.D. 

5.2.31 Graph grundy numbering [GT 56] 

Theorem 5.43 GRAPH GRUNDY NUMBERING E 1-LCC. 

Proof. Note that the function f never has to take values beyond the 
range { 1, ... , d + 1}, where d = degree( G). Now one can proof membership 
in 1-LCC by standard methods. Q.E.D. 

5.2.32 Kernel [GT 57] 

Theorem 5.44 KERNEL E 1-LCC. 

Proof. Transform to the following problem: 

INSTANCE: Directed graph G = (V, A), sets X = {O, 1}, Y = 
{0}. 

QUESTION: Are there functions f : V --t X, g : A --t Y, such 
that 

1. 'v'e = (v,w) EA: J(v) = 0 or f(w) = 0. 
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Q.E.D. 

2. Vv EV: if J(v) = 0, then there is an edge (u,v) EA, 
with f(u) = 1. 

Theorem 5.45 KERNEL E ECG. 

Proof. Transform to the following problem: 

INSTANCE: Directed graph G = (V, A), sets X = {O, 1} * V, 
y = {O}. 

QUESTION: Are there functions f: V--+ X, g: A--+ Y, such 
that 

1. Ve= (v,w) EA: fi(v) = 0 or f1(w) = 0. 

2. Vv EV: fi(v) = 1 or (h(v),v) EA. 

3. Ve= (v,w) EA: fi(w) = 1 or fi(w) 1' v or fi(v) = 1. 

Q.E.D. 

5.2.33 K-closure [GT 58] 

Theorem 5.46 K-CLOSURE E 1-ECC. 

Proof. Immediate. Q.E.D. 

5.2.34 Intersection graph basis [GT 59] 

This problem is equivalent to COVERING BY CLIQUES, and hence in LCC. 

5.2.35 Degree constrained spanning tree [ND 1] 

Scheffler and Seese [24] prove that this problem is solvable in linear time for 
graphs with bounded degree and given tree-decomposition with bounded 
treewidth. A similar, but weaker result can be obtained with the following 
result. 

Theorem 5.47 DEGREE CONSTRAINED SPANNING TREE E LCC. 
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We omit the proof of this theorem. If we fix the maximum degree of the 
spanning tree K, then the problem is in ECG, (and hence can be solved 
in polynomial time for arbitrary graphs with constant bounded tree-width, 
without a restriction on the degree of G.) We will call the subproblem of 
DEGREE CONSTRAINED SPANNING TREE where the maximum degree of the 
spanning tree must be Kor less, "DEGREE K SPANNING TREE". 

Theorem 5.48 DEGREE K SPANNING TREE E ECG. 

Proof. If we have a spanning tree T = (V, F) of G = (V, E), with 
degree(T)~ K, then we can chose some arbitrary vertex v* E Vas root of 
the tree, and then we can associate with each vertex, a number, denoting 
its distance to the root, a vertex denoting its father in the tree, (except for 
the root), and a subset of V with at most K - 1 vertices in it (except for 
the root, where it may contain K vertices), denoting the sons of the vertex 
in the tree. (By chasing v* some vertex with degree less than K, we may 
assume each vertex has at most K - 1 sons.) 

Thus, we can transform the problem to the following problem: 

INSTANCE: Graph G = (V,E), sets X = {0,1, ... ,jVI - 1} * 
V * {W ~ V I IWI ~ K - 1}, Y = {O}. 

QUESTION: Are there functions f: V-+ X, g: E-+ Y, such 
that 

1. There is exactly one vertex with Ji ( v) = 0. 

2. Vv EV: h(v) E Ni(v)- {v} or fi(v) = 0. 

3. Vv EV: h(v) ~ Ni(v)- {v}. 

4. V(v,w) EE: if h(w) = v, then fi(w) = fi(v) + 1 and 
wEh(v). 

5. V(v,w) EE: if h(v) = w, then f1(v) = f1(w) + 1 and 
vEh(w). 

We leave the details for the reader. Q.E.D. 

5.2.36 Maximum leaf spanning tree [ND 2] 

Scheffler and Seese [24] showed linear time solvability for the subproblem 
where the minimum number of leaves is some given constant, for graphs with 
given constant-width tree-decompositions, and constant bounded degree. 
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We do not obtain linear time algorithm, but polynomial time algorithms. 
However, we do not need a bound on the degree of the graph, and the 
minimum number of leaves may be variable. 

Theorem 5.49 MAXIMUM LEAF SPANNING TREE E ECG. 

Proof. Again, we associate with each vertex a number, that denotes its 
distance to the root, and another vertex, that denotes its father in the tree. 
h( v) = 1, if and only if vis a leaf in the tree, i.e. if and only if there is no 
other node w, with v the father of Win the tree. We transform the problem 
to the following problem: 

INSTANCE: Graph G = (V, E), sets X = {O, 1, ... , IV\ - 1} * 
V * {O, 1}, Y = {O}, positive integer J( :::; IV\. 

QUESTION: Are there functions f: V---+ X, g: E---+ Y, such 
that 

1. There is exactly one vertex with Ji ( v) = 0. 

2. Vv EV: h(v) E N1(v)- {v} or fi(v) = 0. 

3. V(v,w) EE: if h(w) = v, then fi(w) = fi(v) + 1 and 
f3(v)=O. 

4. V(v,w) EE: if h(v) = w, then fi(v) = fi(w) + 1 and 
h(w) = 0. 

5. E h(v) ~ K. 
vEV 

Again, we leave the details for the reader. Q.E.D. 

5.2.37 Shortest total path length spanning tree [ND 3] 

Theorem 5.50 SHORTEST TOTAL PATH LENGTH SPANNING TREE E 
LCC. 

Proof. Nate that the sum over all pairs of vertices u, v E V, of the length 
of the path from u to v in a spanning tree T = (V, F) equals the sum over 
all edges ( u, v) in T of the number of paths from vertices w E V to x E V, 
that use this edge. The latter number equals the product of the number of 
vertices in the two subtrees of T, obtained by removing the edge ( u, v) from 
T. So we map each edge e = (u,v) on a pair of two numbers 9e(u),ge(v), 
denoting the number of vertices in the subtree with u, and v respectively as 
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root. We count the sum of Ye(u) · Ye(v) over all edges e = (u,v), that are 
chosen to be in the spanning tree T. The other techniques are similar as in 
section 5.2.36. Q.E.D. 

5.2.38 Bounded diameter spanning tree [ND 4] 

Theorem 5.51 BOUNDED DIAMETER SPANNING TREE E ECG. 

Proof. We associate each vertex v with a number (h(v)), that denotes 
the maximum distance of the vertex to a leaf, in its subtree. The next 
vertex on the path to this leaf is denoted with / 4 ( v ). The requirement that 
the diameter of the graph is bounded by D now can be expressed with the 
conditions 9 and 10 below. Transform to the following problem: 

INSTANCE: Graph G = (V, E), sets X = {O, 1, ... , IVl-1} * V * 
{O, 1, ... , !VI - 1} * V, Y = {O, 1}, positive integer D ~ !VI, 
weight w(e) EN+ for each e EE, positive integer B. 

QUESTION: Are there functions f: V--+ X, g: E--+ Y, such 
that 

Q.E.D. 

1. There is exactly one vertex with Ji ( v) = 0. 

2. Vv EV: h(v) E Ni(v) - {v} or fi(v) = 0. 

3. Vv EV: f4(v) E Ni(v) - {v} or h(v) = 0. 

4. Ve= (v,w) EE: if h(w) = v, then f1(w) = fi(v) + 1 
and g(e) = 1 and h(v) ~ h(w) + 1. 

5. Ve= (v,w) EE: if h(v) = w, then fi(v) = fi(w) + 1 
and g(e) = 1 and h(w) ~ h(v) + 1. 

6. Ve= (v,w) EE: if f4(w) = v, then h(w) = h(v) + 1 
and g(e) = 1. 

7. Ve= (v,w) EE: if f4(v) = w, then h(v) = h(w) + 1 
and g(e) = 1. 

8. Ve= (v,w) EE: if g(e) = 1, then lf(v)- f(w)I ~ 1. 

9. Ve= (v,w) EE: if g(e) = 1 and not (f4(v) = w or 
f4(w) = v), then h(v) + h(w) + 1 ~ D. 

10. Vv EV: h(v) ~ D. 

11. E g(e) · w(e) ~ B. 
eEE 
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5.2.39 Isomorphic spanning tree [ND 8] 

This problem is a special case of subgraph isomorphism. From the discussing 
in section 5.2.28 the following result follows. 

Theorem 5.52 ISOMORPHIC SPANNING TREE E LCC. 

5.2.40 Bounded component spanning forest [ND 10] 

We consider the version of the problem where the weight w( v) E N+ of the 
vertices are given in unary notation, i.e. w( v) ~ s(D). (This problem is also 
NP-complete.) We have the following result. 

Theorem 5.53 BOUNDED COMPONENT SPANNING FOREST with weights 
in unary notation E LCC. 

Proof. In each component one can choose a spanning tree, and a root 
in this tree. We associate with every vertex v its father in the tree ft ( v) 
(except for the root), and the sum of the weights of all vertices in its subtree 
h( v ). Here, we now do not need to use the distance of a vertex to the root. 
A vertex v, with ft ( v) rf. N c( v) - { v}, is assumed to be a root of a spanning 
tree. (We use that h(v) > h(w), for all sons v of w.) 

Transform the problem to the following problem: 

INSTANCE: Graph G = (V,E), weight w(v) for every v EV, 
sets X = V * {O, 1, ... , L:vEV w( v )}, Y = {O}, positive integer 
K ~ IVI, positive integer B. 

QUESTION: Are there functions f : V -+ X, g : E -+ Y, such 
that 

Q.E.D. 

1. \Iv EV: h(v) = L:wEN1 (v)-{v};fi(w)=v(h(w) + w(w)). 

2. Vv EV: h(v) + w(v) ~ B. 

3. The number of v E V, with ft(v) r/. Ni(v) - {v} is at 
most K. 

With a more precise argument, one can show that the version of the 
problem, where B is any fixed positive integer, is in 1-ECC. (For instance, 
one can use that each vertex has at most B - 1 sons in a spanning tree.) 
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5.2.41 Steiner tree in graphs [ND 12] 

Scheffler and Seese [24] proved that the problem of determining whether a 
given graph G has a Steiner tree of weight B or less for fixed B and a fixed 
number k of given vertices, is solvable in linear time for graphs with bounded 
degree and given tree-decomposition with bounded treewidth. With our 
techniques, we have polynomial time algorithms (instead of linear), but do 
not restrict the degree of the graphs, and have variable B and k. 

Theorem 5.54 STEINER TREE IN GRAPHS E ECG. 

Proof. This can be shown with techniques, quite similar to those used 
in previous sections on spanning-tree problems. Q.E.D. 

5.2.42 Graph partitioning [ND 14] 

Theorem 5.55 GRAPH PARTITIONING with weights given in unary nota
tion E LCC. 

Proof. First we note, that without altering the problem, we can require 
that each set Vi induces a connected subgraph of G = (V, E). We handle this 
problem more or less similar to BOUNDED COMPONENT SPANNING FOREST. 
Components are 'named' by the vertex that is the root. Each vertex has 
this 'name' associated with it in h( v ). 

Transform the problem to the following problem: 

INSTANCE: Graph G = (V, E), weights w( v) for every v E V, 
l(e)for every e EE, sets X = V*{O,l, .. .,L:vEVw(v)}*V, 
Y = {O}, positive integer K $ IVI, positive integer B. 

QUESTION: Are there functions f: V---+ X, g: E---+ Y, such 
that 

Q.E.D. 

1. Vv EV: h(v) = LwEN1 (v)-{v};fi(w)=v(f2(w) + w(w)). 
2. Vv EV: h(v) + w(v) $ B. 

3. Vv EV: h(v) = v, or (fi(v) E Ni(v)- {v} and h(v) = 
h(f1(v))). 

4. L l((v,w))s;J. 
(v,w)EE;h(v)#h(w) 
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5.2.43 Acyclic partitioning [ND 15] 

This problem can be handled more or less similar as GRAPH PARTITIONING. 

Theorem 5.56 ACYCLIC PARTITIONING with weights given in unary nota
tion E LCC. 

Proof. In order to represent the acyclic property of the graph G', we 
can associate with each component a number (with f 4 ); and require for each 
edge (v,w) EE, that f4(v) ~ f4(w). (Note that N1(v) denotes the vertices 
adjacent ot equal to v, without regard to the direction of the edges.) 

Transform the problem to the following problem: 

INSTANCE: Directed graph G = (V, A), weights w( v) for 
every v E V, l(e) for every e E A, sets X = V * 
{O, 1, ... , LvEV w( v)} * V, Y = {O}, positive integer J( ~ IVI, 
positive integer B. 

QUESTION: Are there functions f: V ~ X, g: A~ Y, such 
that 

1. Vv EV: h(v) = LwEN1(v)-{v};fi(w)=v(h(w) + w(w)). 

2. Vv EV: h(v) + w(v) ~ B. 

3. Vv EV: h(v) = v, or (J1(v) E Ni(v)- {v} and h(v) = 
hU1(v))). 

4. V(v,w) EE: h(v) = h(w) ~ f4(v) = f4(w). 

5. V(v,w) EE: f4(v) ~ f4(w). 

6. L l((v,w))~J. 
(v,w)EA;h( v)i=h( w) 

Q.E.D. 

5.2.44 Max cut [ND 16] 

Theorem 5.57 MAX CUT E 1-ECC. 

Proof. Transform to the following problem: 

INSTANCE: Graph G = (V, E), sets X = {O, 1}, Y {O}, 
positive integer K, a weight w(e) for each e EE. 
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QUESTION: Are there functions f: V--+ X, g: E--+ Y, such 
that 

L IJ(v)- f(w)I · w(e);::: ]( 
e=(v,w)EE 

Q.E.D. 

5.2.45 Minimum cut into bounded sets [ND 17] 

Theorem 5.58 MINIMUM CUT INTO BOUNDED SETS E 2-ECC. 

Proof. Transform to the following problem: 

INSTANCE: Graph G = (V, E), sets X = {O, 1}, Y = {O}, 
positive integer K, a weight w(e) for each e E E, positive 
integer B ~ IV I , specified vertices s, t E V. 

QUESTION: Are there functions f : V --+ X, g : E --+ Y, such 
that 

1. f(s) = 0. 

2. J(t) = 1. 

3. IVI - B ~ L f ( v) ~ B. 
vEV 

4. L IJ(v)-f(w)l·w(e);:::K. 
e=(v,w)EE 

Q.E.D. 

5.2.46 Longest Circuit [ND 28] 

Theorem 5.59 LONGEST CIRCUIT E ECG. 

Proof. Transform to the following problem: 

INSTANCE: Graph G = (V, E), sets X = ( {O, 1, ... , IVI - 1} * 
V * V) U { E }, Y = {O}, positive integer ](, a length l( e) for 
each e EE. 

QUESTION: Are there functions f: V--+ X, g: E--+ Y, such 
that 

1. Vv E V : if J( v) -:J E, then h( v) and h( v) are neighbors 
of v. 
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Q.E.D. 

2. 'v'(v,w),(w,v) EV: if f(v) =/=€and h(v) = w, then 
J(w) =/= €and h(w) = v and (f1(v) = 0 or fi(w) = 
fi(v)-1). 

3. 'v'(v,w),(w,v) EV: if J(v) =/=€and h(v) = w, then 
J(w) =/= €and h(w) = v and (f1(w) = 0 or fi(w) 
fi(v)+l). 

4. There is exactly one vertex v E V, with f 1 ( v) = 0. 

5. I: l(e) 2: K, where the sum is taken over all edges (v,w), 
with h(v) =wand h(w) = v. 

5.2.47 Longest Path [ND 29] 

Theorem 5.60 LONGEST PATH E ECG. 

Proof. Similar to the proof of theorem 5.59 Q.E.D. 

5.2.48 Chromatic Index 

Scheffler and Seese (24] show that this problem is solvable in linear time for 
graphs with given tree-decomposition with treewidth, bounded by a con
stant, and degree bounded by a constant. This result can also be obtained 
with the following theorem. 

Theorem 5.61 CHROMATIC INDEX E 1-LCC. 

Proof. By using that the chromatic index of a graph is either its maxi
mum degree, or its maximum degree +1, hence is bounded by a constant, for 
constant degree graphs, it follows easily that CHROMATIC INDEX E 1-LCC. 

Q.E.D. 

The CHROMATIC INDEX problem is solvable in polynomial time, (with 
a similar, but slightly more involved technique) for graphs with bounded 
tree-width, but without a bound on the degree [7]. 
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VERTEX COVER 1 [3] 1 [3] 
DOMINATING SET 1 [3] 1 [3] 
DOMATIC NUMBER 1 [24] 'P' 
CHROMATIC NUMBER 1 [3] 1 [3] 
MONOCHROMATIC TRIANGLE 1 [24] '1' 
FEEDBACK VERTEX SET p p 
FEEDBACK ARC SET p p 

PARTIAL FEEDBACK ARC SET 1 (fixd L) ? 
MINIMUM MAXIMAL MATCHING 1 p 

PARTITION INTO TRIANGLES 1 p 

PARTITION INTO ISOMORPHIC CONNECTED 

SUBGRAPHS p ? 
PARTITION INTO HAMILTONIAN SUBGRAPHS 1 p 

PARTITION INTO FORESTS p p 
PARTITION INTO CLIQUES 1 '1' 
PARTITION INTO PERFECT MATCHINGS 1 p 

COVERING BY CLIQUES p ? 
COVERING BY COMPLETE BIPARTITE 

SUBGRAPHS p ? 
CLIQUE 'l' [24]; 2 2; '1' 
INDEPENDENT SET 1 [3] 1 [3] 
INDUCED PATH 1 [24](fixd K); P p 

BALANCED COMPLETE BIPARTITE SUBGRAPH 3; '1' 3; '1' 
BIPARTITE SUBGRAPH 1 1 
DEGREE-BOUNDED CONNECTED SUBGRAPH p ? 
TRANSITIVE SUBGRAPH 1 ? 

CUBIC SUBGRAPH 1 [24] p 

HAMILTONIAN COMPLETION p p 

HAMILTONIAN CIRCUIT '1' [3] 'l' [3] 
SUBGRAPH ISOMORPHISM for connected graphs P ( ast) N [27] 
GRAPH CONTRACTABILITY to a fixed graph H p p 

GRAPH HOMOMORPHISM to a fixed graph H p p 
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GRAPH GRUNDY NUMBERING 1 ? 
KERNEL 1 p 

K-CLOSURE 1 1 
INTERSECTION GRAPH BASIS p ? 

DEGREE K SPANNING TREE '1' [24] (fixd k); P p 

MAXIMUM LEAF SPANNING TREE 'l' [24] p 

SHORTEST TOTAL PATH LENGTH 
SPANNING TREE p ? 

BOUNDED DIAMETER SPANNING TREE p p 

ISOMORPHIC SPANNING TREE p N 
BOUNDED COMPONENT SPANNING 

FOREST (weak version) p ? (P, fixd B) 
STEINER TREE IN GRAPHS '1' [24] (fixd B,k); 

p p 

GRAPH PARTITIONING (weak version) p ? 
ACYCLIC PARTITIONING (weak version) p ? 
MAX CUT 1 1 
MINIMUM CUT INTO BOUNDED SETS 2 2 
LONGEST CIRCUIT p p 

LONGEST PATH p p 

CHROMATIC INDEX 1 [24] 'P' [7) 

Table 1: 
Overview of complexity results of several problems, restricted to graphs with 
given tree-decomposition with bounded treewidth. In the first column, the 
complexity of the problem, restricted to TWD(k, d) (k, d fixed) is given; in 
the second column, the complexity when restricted to TW(k). Keys: 1, 2, 
3: problem in 1-LCC, 2-LCC, 3-LCC (first column), or 1-ECC, 2-ECC or 
3-ECC (2nd column), hence solvable in linear, quadratic or cubic time, for 
the specific classes of graphs. Also solvable in polynomial time, for graphs 
with given tree-decomposition with logarithmic tree-width (and, in the case 
of column 1, degree bounded by a constant). '1': problem solvable in linear 
time. P: problem in LCC or ECC, hence solvable in polynomial time. 'P': 
Problem solvable in polynomial time. N: Problem NP-complete. ?: Open, 
whether problem solvable in polynomial time or not. ( *): For Subgraph 
Isomorphism, the larger graph G must have the bounded tree-width. Other 
restrictions are given in the table. 
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6 Overview of results and final remarks 

6.1 Overview of results 

In table 1 we give an overview of the known results for the considered prob
lems. For many other (NP-complete) graph decision problems, similar re
sults can be obtained. 

6.2 Problems, that are not in LCC, (unless P = NP) 

In this section we give a number of problems, that are not in LCC (or any 
of its subclasses), unless P = NP. Results of this type follow directly if the 
problem is NP-complete, when restricted to a class of graphs with bounded 
tree-width (and bounded degree). 

Theorem 6.1 If P 'f:. NP, then 

1. BANDWIDTH <t. LCC. 

2. DIRECTED BANDWIDTH </. LCC. 

3. MINIMUM CUT LINEAR ARRANGEMENT </. LCC. 

4. WEIGHTED DIAMETER </.ECG. 

5. BICONNECTIVITY AUGMENTATION </. LCC. 

6. STRONG CONNECTIVITY AUGMENTATION </. LCC. 

7. ISOMORPHIC SPANNING TREE </. ECG. 

Proof. BANDWIDTH and DIRECTED BANDWIDTH are NP-complete for 
trees with degree 3. BICONNECTIVITY AUGMENTATION and STRONG CON
NECTIVITY AUGMENTATION are NP-complete for graphs, without edges. 
WEIGHTED DIAMETER is NP-complete for trees. MINIMUM CuT LINEAR 
ARRANGEMENT is NP-complete for series-parallel graphs ( = graphs with 
treewidth '.S 2) [20]. One can show that ISOMORPHIC SPANNING TREE is 
NP-complete, when restricted to graphs with tree-width ::; 3, by transforma
tion from 3-PARTITION. From theorem 3.5 now the result follows. Q.E.D. 

For SUBGRAPH ISOMORPHISM for connected graphs, a similar result 
holds. This problem is not in ECC (unless P = NP), because it is NP
complete in the case that G and H both are outerplanar graphs [27]. (Re
call that each outerplanar graph has treewidth at most 2.) Note that this 
problem is in LCC, hence it separates the classes TW( k) and TWD( d, k) 
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m complexity. (This result follows also from the result for ISOMORPHIC 
SPANNING TREE.) 

For the OPTIMAL LINEAR ARRANGEMENT problem, Sudborough [25] an
nounces work with Sun, which suggests that this problem is NP-complete, 
even when restricted to series-parallel graphs (hence OPTIMAL LINEAR AR
RANGEMENT r/. ECC). 

Also, all problems, that are not in NP, will be not in LCC or any of its 
subclasses. 

Theorem 6.2 LCC ~ NP. 

Proof. One can guess f and g non-deterministically in polynomial time, 
and then check in polynomial time whether EIJPvalp(D, v, flNc(v)' YIMc(v)) 

vEV 
E Rp or::$ K, for 1::; p::; m + 1. Q.E.D. 

6.3 Final remarks 

Although the formalisms may look complicated, we feel that the methods 
exposed in this paper will not be very difficult to use in practice; in particu
lar, for problems in C-LCC and C-ECC and some others, it will be possible 
to obtain algorithms for these problems on graphs with treewidth ::; k, that 
are reasonably easy to implement, and are reasonably efficient, for small 
values of k. 

Often, easy improvements on the time needed by applying the general 
method on specific problems can be made by using the specific characteristics 
of the problem. It was not the purpose of this paper to obtain the "best" 
algorithm for each specific problem. 

The algorithms in this paper can be modified to run on a parallel ma
chine, e.g. a EREW PRAM. One can find a tree-decomposition with tree
width at most a constant k in poly-logarithmic parallel time, with a polyno
mial number of processors. The dynamic programming algorithms of section 
3 can be transformed to parallel algorithms, that use a polynomial number 
of processors (linear, for problems in 1-LCC, 1-ECC), and O(log n) time or 
O(log2 n) time on a EREW PRAM. These results will be reported elsewhere. 
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