
LABO RA TORY FOR 't··. ' MASSACHUSETTS
INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

MIT/LCS{fR-394

DYNAMIC PROGRAMMING
ON GRAPHS WITH

BOUNDED TREEWIDTH

Hans L. Bodlaender

June 1987

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

...........
...,, ..

·1,

.....

Dynamic Programming on Graphs with
Bounded Treewidth

Hans L. Bodlaender
Laboratory for Computer Science

Massachusetts Institute of Technology

May, 1987

'This work was carried out partially at the Dept. of Computer Science of the
University of Utrecht, with financial support from the Foundation of Computer
Science (S.1.0.N.) of the Netherlands Organization for the Advancement of Pure
Research (Z.W.O.), and partially at the Lab. of Computer Science of the Mas
sachusetts Institute of Technology, with financial support of the Nether lands Orga
nization for the Advancement of Pure Research(Z.W.O.).

Dynamic Programming on Graphs with
Bounded Treewidth

Hans L. Bodlaender, M.I.T.

May, 1987

Abstract

In this paper we study the complexity of graph decision problems,
restricted to the class of graphs with treewidth ::; k, (or equivalently,
the class of partial k-trees), for fixed k. We introduce two classes of
graph decision problems, LCC and ECC, and subclasses C-LCC, and
C-ECC. We show that each problem in LCC (or C-LCC) is solvable
in polynomial (O(nc)) time, when restricted to graphs with fixed up
perbounds on the treewidth and degree; and that each problem in
ECC (or C-ECC) is solvable in polynomial (O(nc)) time, when re
stricted to graphs with a fixed upperbound on the treewidth (with
given corresponding tree-decomposition). Also, problems in C-LCC
and C-ECC are solvable in polynomial time for graphs with a loga
rithmic treewidth, and given corresponding tree-decomposition, and
in the case of C-LCC-problems, a fixed upperbound on the degree of
the graph.

Also, we show for a large number of graph decision problems, their
membership in LCC, ECC, C-LCC and/or C-ECC, thus showing the
existence of O(nc) or polynomial algorithms for these problems, re
stricted to the graphs with bounded treewidth (and bounded degree).
In several cases, C = 1, hence our method gives in these cases linear
algorithms.

For several NP-complete problems, and subclasses of the graphs
with bounded treewidth, polynomial algorithms have been obtained.
In a certain sense, the results in this paper unify these results.

Keywords: Treewidth, partial k-trees, graph decision problems, re
strictions of NP-complete problems, polynomial time algorithms, dy
namic programming, local condition compositions.

1

1 Introduction

In general it is believed that NP-complete problems cannot be solved in
polynomial time. Therefore much research has been done on the complexity
of subproblems of NP-complete problems.

In this paper we consider (NP-complete) graphs problems, and we pose as
restriction on the graphs in the instance of the problems, that the tree-width
of the graphs is bounded by a constant k, (or equivalently, that the graphs
are partial k-trees.) For some problems, we pose as an extra restriction
that the degree of the graphs is bounded by some constant d. We prove
that for large classes of (NP-complete) problems, these become solvable in
polynomial time with the extra restrictions. The algorithms are polynomial
in the problem-size, but will be exponential ink (and d).

Arnborg and Proskurowski [3] also studied the problem of the complexity
of (NP-hard) graph problems on graphs with bounded treewidth, and ob
tained linear time algorithms for the following problems: VERTEX COVER,
INDEPENDENT SET, DOMINATING SET, GRAPH K-COLORABILITY, HAMIL
TONIAN CIRCUIT, NETWORK RELIABILITY. The algorithms are linear in the
size of the problem instance, but are exponential in the tree-width of the
involved graphs. The algorithms in this paper have some similarity to the
algorithms in [3], but we think the approach in our paper is more general
and easier to use. For an overview, see also [1].

Independently, Scheffler and Seese [24] introduced the notion of P
existential locally verifiable (P-ELV) properties of graphs. This notion is
very similar to our notion of local condition composition problems. In [24]
it is shown that for every P-ELV property P, and constants k, and d, the
problem to decide whether for a given graph G with degree at most d, and
treewidth at most k, P(G) holds, is solvable in polynomial time; (and, in
many cases, in linear time.) We generalize from their results in two ways:
our class LCC contains problems that are not expressible with P-ELV prop
erties; and for the class of ECC-problems we do not need an upper bound on
the degree of the graphs.

The class of graphs with treewidth bounded by some constant k is
also important for the following reason. To many well-known classes of
graphs one can associate a constant k, such that each graph in the class has
treewidth k or less. For example, the treewidth of a series-parallel graph
or an outerplanar graph is at most 2, the treewidth of a Halin graph is at
most 5. For an overview of results of this type, see [6]. The following classes
of graphs have a constant number as bound for the treewidth of the graphs

2

in the class: trees, forests, almost trees with parameter k (k a constant),
graphs with bandwidth at most k (k a constant), graphs with cutwidth
at most k (k a constant), series-parallel graphs, outerplanar graphs, Halin
graphs, k-outerplanar graphs (k a constant), chordal graphs with maximum
clique size k (k a constant), circular arc graphs with maximum clique size k
(k a constant), and k-bounded treepartite graphs (k a constant).

Many polynomial time algorithms have been devised for NP-complete
graph problems, restricted to graphs in one of the above mentioned classes.
See e.g. [4,8,9,10,11,13,14,15,17,18,19,21,26,29,30]. In [28] a general ap
proach is taken for a certain class of problems, on series-parallel graphs (i.e.
graphs with treewidth s; 2). In [5] also a general approach is taken, for
several of the mentioned classes of graphs. One can observe that for many
of these algorithms, the underlying technique is dynamic programming.

In some sense, this paper explains the observed similarity of the complex
ity results for many of the mentioned classes of graphs, and unifies several
of the mentioned papers. Of course, in many cases, a better algorithm is
obtained, by looking at a single problem on a more restricted class of graphs.
In this paper we take a general approach, and will prove membership in P
for many problems for the (rather general) class of graphs with bounded
treewidth.

2 Definitions and preliminary results

2.1 Graph definitions

First we introduce some notations and definitions dealing with graphs.

DEFINITION 2.1 For every undirected graph G = (V, E), degree(G) denotes
the maximum degree over all vertices in V.

The distance between two vertices v, w E V in the graph G = (V, E) is
denoted by de(v, w). When there cannot be confusion over which graph G
is used, the subscript G is dropped.

DEFINITION 2.2 Let G = (V, E) be an undirected graph and let c ~ 0 be an
integer.

1. Let v E V. The set of vertices with distance at most c to vis denoted
by Nc(v,G) = {w EV I da(v,w) s; c}.

3

2. Let W ~ V. The set of vertices with distance at most c to Wis denoted
by Nc(W,G) = {w EV I 3v E W: da(v,w) ~ c} = LJ Nc(v,G).

vEW

3. Let v EV. The set of edges with distance at most c ~ 1 to vis denoted
by Mc(v,G) = {(w,x) EE I da(v,w) ~ c - 1 V da(v,x) ~ c - 1} =
{(w,x) EE I da(v,w) ~ c/\da(v,x) ~ c}.

4. Let W ~ V. The set of edges with distance at most c ~ 1 to v is
denoted by Mc(W,G) = {(v,w) EE I 3v E W: da(v,w) ~ c - 1 V

da(v,x)~c-1}= LJ Mc(v,G).
vEW

5. Let W ~ V. We denote M0 (W,G) = {(v,w) EE Iv E W /\ w E W}.

When there cannot be confusion over which graph G is used, we drop
the index G and denote: Nc(v),Nc(W),Mc(v),Mc(W), etc.

Next we introduce the definition of the treewidth of a graph, introduced
by Robertson and Seymour [22].

DEFINITION 2.3 Let G = (V, E) be a graph. A tree-decomposition of G is
a pair ({Xi I i EI}, T =(I, F)), where {Xi I i EI} is a family of subsets of
V, T = (I, F) is a tree, with the following properties:

iE[

2. For every edge e = (v, w) E E, there is a subset Xi, i E I with v E Xi
and w E Xi.

3. For all i,j, k E J, if j lies on the path in T from i to k, then Xi U Xk ~
Xj.

The treewidth of a tree-decomposition ({Xi I i E I}, T) is rr;Eal I Xii - 1. The

treewidth of G, denoted by treewidth(G), is the minimum treewidth of a
tree-decomposition of G, taken over all possible tree-decompositions of G.

We denote the class of graphs with treewidth at most k, by TW(k). The
class of graphs with treewidth at most k, and degree at most d is denoted
by TWD(k, d).

The class of the graphs with treewidth at most k equals the class of the
partial k-trees (see e.g. [2]). To define the class of partial k-trees, we first
give a recursive definition of the class of k-trees.

• J(k, the complete graph on k vertices, is a k-tree.

4

• If G = (V, E) is a k-tree, and v1 , v2 .•• Vk form a complete subgraph
of G, then the graph G' =(VU {w},EU {(vi,w) I 1 ~ i ~ k}), with
w </. V, is also a k- tree.

A graph is a partial k-tree, if it is the subgraph of a k-tree. It is easy to
show with induction, that each k-tree G has a tree-decomposition ({Xi I i E
I}, T = (I, F)), such that for each complete subgraph of G with k + 1
vertices, there is exactly one i E J, such that X; contains all k + 1 vertices
in this complete subgraph. Now it follows that each partial k-tree has tree
width ~ k. The reverse relation (each graph with tree-width k is a partial
k-tree), is left as an easy exercise to the reader. As a corollary the following
lemma follows.

Lemma 2.1 Let ({X; I i E I}, T = (I, F)) be a tree-decomposition of G =
(V, E) with treewidth k. Then there exists a tree-decomposition ({Yi I i E

J}, T' = (J, F')) of G with treewidth ~ k and IJI ~ IVI - k + 1.

Independently, Arnborg, Corneil and Proskurowski [2] and Robertson
and Seymour [22] have shown that there exist polynomial algorithms to test
whether a graph has treewidth ~ k for any given fixed k (or, equivalently,
whether the graph is a partial k-tree). The general problem of deciding the
treewidth of a graph is NP-complete [2]. The algorithms in [2], [22] can also
be used to actually yield tree-decompositions with the desired treewidth, if
such exist. We will use the following variant of these results (use also lemma
2.1).

Theorem 2.2 For all k, there exists an algorithm, that finds for each graph
G = (V, E) with treewidth(G)~ k, in polynomial time a tree-decomposition
({X; Ii EI}, T =(I, F)) of G with treewidth at most k, and III~ IVl-k+l.

2.2 Algebraic definitions

Next we recall and introduce some algebraic notions and definitions. First
we recall the definition of monoids (see e.g. [16]).

DEFINITION 2.4 A monoid is a 3-tupple (M, EB, 0), where Mis a non-empty
set, EB is an associative binary composition on this set, i.e. for all a, b, c E
M : (a EB b) EB c = a EB (b EB c), and 0 is an element of M such that for all
a E M : a EB 0 = 0 EB a = a. A monoid (M, EB, 0) is commutative, if for all
a, b E M : a EB b = b EB a.

5

For a1, ... , an EM, with (M, EB, 0) a commutative monoid, we denote

EB lli = a1 EB a2 EB · · · EB an.
l<i<n

We also need the following algebraic structure.

DEFINITION 2.5 A totally ordered commuatative monoid (tocm) is a 4-
tupple (M, EB, 0, S:), where (M, EB, 0) is a commutative monoid and < is a
binary relation on M, which induces a total ordering on M:

1. for all a, b E M : a S: b V b S: a

2. for all a, b EM: (a S: b !\ b S: a)=> a= b

3. for all a, b, c E M : (a S: b !\ b S: c) => a S: c

We say that a tocm is a consistent totally ordered commutative monoid
(ctocm), if for all a, b, c E M : a S: b => a EB c S: b EB c

Important examples of commutative monoids are:

• (N, +, 0), where N is the set of natural numbers,+ the usual addition,
and 0 also as usual.

• (N, ·, 1), with · the usual multiplication on N.

• (Z, +, 0), with Z the set of whole numbers and + the usual addition
on Z.

• (({true,false},V,false), where Vis the usual or-operation.

• (({true,false},A,false), where!\ is the usual and-operation.

Important examples of ctocm's are:

• (N, +, 0, S:), with S: the normal "lesser than or equal to" relation on
N.

• (N, +, 0, ~),with~ the normal "greater than or equal to" relation on
N.

• (Z, +, 0, S:)

• (Z,+,O,~)

• (({true,false},V,false, ~),where Vis the usual or-operation, and~ is
one of the 2 possible total orderings on {true,false}.

• (({true,false},A,false, ~), where !\ is the usual and-operation, and ~
is one of the 2 possible total orderings on { true,false}.

6

2.3 Other notations

For functions f : X ____, Y and subsets Z ~ X, we denote the restriction off
to Z by flz, i.e. flz : Z ____, Y and Vz E Z: flz(z) = f(z).

2.4 Graph decision problems

In this section we give a number of definitions, dealing with decision prob
lems on graphs.

First we view a decision problem II as a 3-tupple (Drr, Yrr, srr), with Drr
the set of instances of II, Yrr ~ Drr the set of instances of II that yield
the answer 'yes' to problem II, and srr is a function Drr ____, N, giving each
instance DE Drr of II a size srr(D). In general, the srr's will be very natural
measures of the size of the instances.

DEFINITION 2.6 A decision problem II = (Drr, Yrr, srr) is a graph deci
sion problem, if each instance D E Drr can be written as a 2-tupple
D = (Gv,lv), where Gv = (Vv,Ev) is an undirected graph and srr(D) ~
max(!Vvl, IEvl). (Iv must contain all other information of the instance D.)

Note that Iv may be empty, for instance if II = HAMILTONIAN CIRCUIT

(for undirected graphs). Directed graphs G' can be handled by using the
undirected graph Gv, obtained by ignoring the direction of the edges in
G', and letting Iv contain all necessary information on the directions of the
edges, in some coded form.

DEFINITION 2.7 For a class of graphs 0, and a graph decision problem
II = (Drr, Yrr, srr), II, restricted to 0, is the graph decision problem
Ille = (Drr1 0 ,Yrr1 0 ,Xrr10), where Drrle = {(G,I) E Drr I G E 0},
Yrr1e = {(G,I) E Drr I GE 0} = Yrr nDrr1e and srr1 0 = srrlvrrie·

The above definition gives the natural way of restricting a graph problem
to a class of graphs. Next we give a variant of the notion of polynomial
transformation of decision problems (see e.g. [12], p.34), for graph decision
problems. Note that the graphs Gv in instances D = (Gv,lv), do not
change under a gp-transformation.

DEFINITION 2.8 A graph-invariant polynomial transformation (or, in short:
a gp-transformation) of a graph decision problem II1 = (Di, Yi, s1) to a
graph decision problem II2 = (D2, Y2, s2) is a function f : Di ____, D2, satis
fying:

7

1. if (G, I) E D1 and f((G, I))= (H, J) E D 2, then G = H.

2. f can be computed in time, polynomial in s(D) (by a deterministic
Turing machine, or some equivalent machine model)

3. for all D E D1 : D E Y1 ¢:> f(D) E Y2

4. there is a polynomial p, such that for all DE D 1, s(J(D)) :S p(s(D))

The following result can be obtained in the same way as the similar
results for (normal) polynomial transformations of decision problems.

Theorem 2 .3 Let lli, II2 be graph decision problems and let there exist a
gp-transformation of IIi to II2. Let 0 be a class of graphs.

1. Jf II2le E P, then IIile E P.

2. If IIile is NP-complete, then II2le is NP-complete.

2.5 Local condition composition problems and edge condi-
tion composition problems

In this section we define LCC, the class of local condition composition prob
lems, and ECC, the class of the edge condition composition problems. Both
are subclasses of the class of graph decision problems (and of NP). First we
give the definition of basic local condition composition problems.

DEFINITION 2.9 Let II= (Drr,Yrr,s) be a graph decision problem. We say
that II is a basic local condition problem, if and only if there exist

• non-negative integers m, c E N

• m commutative monoids (M 1 , EB 1), ... , (Mm, EBm)

• a ctocm (Mm+l, EBm+l, ~)

such that

•each DE Drr is of the form (G,(X,Y,Ri, ... ,Rm,K,I)), where

G is an undirected graph

Xis a finite set with s(D) 2: IXI

Y is a finite set with s(D) 2: IYI

- for all i, 1 :S i :S m, Ri denotes a subset of Mi

- KE Mm+l

8

• for all i, 1 ::; i ::; m + 1, there exists a function val;, that maps all 4-
tupples, consisting of an instance D = (G = (V, E), (X, Y, Ri, ... , Rm,
K, I)) E Dn, a vertex v E V, and functions f : Nc(v) -+ X, g :
Mc(v) -+ Y, to elements of M;, such that for all (constants) d E N+:

l. there exists an algorithm that calculates val;(D, v, f,g), for all
D = (G = (V,E),(X,Ri, ... ,Rm,KJ)) E Dn, v E V, f :
Ne(v) -+ X, g : Mc(v) -+ Y with degree(G)::; d, in time, polyno
mial in s(D).

2. if 1 ::; i ::; m, there is a polynomial Pi, such that for all D = (G =
(V,E),(X,Y,Ri, ... ,Rm,K,I)) E Dn, with degree(G)::; d and
subsets W ~ V: I{ ffiival;(D,w,flNc(w),glMc(w)) If: Nc(W)-+

wEW
(X), g: Mc(W)-+ Y}I ::; p;(s(D)).

3. there exists an algorithm that calculates a EBi b for given a,
b, such that there are D = (G = (V,E), (X, Y, R1 , ••• ,

Rm, K, I)) E Dn, with degree(G)::; d, W1 ~ V, W2 ~
V, W1 n W2 = 0, f : Nc(W1 U W2) -+ X, g : Mc(W1 U
W2) -+ Y, a = ffii val;(D,w,flNc(w),glMc(w)) and b =

wEW1
ffii val;(D, w, flNc(w),glMc(w)), in time, polynomial in s(D).

wEW2
4. if i = m + 1, then there exists an algorithm, that calculates

whether a ~ b for given a, b, such that there are D = (G =
(V,E),(X,Y,R1, ... ,Rm,K,l)) E Dn, with degree(G)::; d, W ~
v, Ji : Nc(W) -+ x, h : Nc(W) -+ x, gi : Mc(W) -+ Y,
g2: Mc(W)-+ Y, a= EBm+l valm+1(D,w,f1INc(w),g1IMc(w))

wEW
and b = ffim+l valm+1(D,w,hlNc(w),g2IMc(w)) orb = K, in

wEW
time polynomial in s(D).

5. if 1 ::; i ::; m, there exists an algorithm that calculates for
all D = (G = (V,E),(X,Y,R1, ... ,Rm,K,I)) E Dn with
degree(D)::; d, f : V -+ X, g : E -+ Y and given a =
ffii val;(D, w, flNc(w),glMc(w)) whether a E R;, in time poly
wEV
nomial in s(D).

•For all D = (G = (V,E),(X,Y,R1 ... ,Rm,l(,J)) E Dn: DE Yn, if
and only if there exist functions f : V -+ X, g : E -+ Y, with

9

1. Vi, i ~ i ~ m: EBi val;(D, v, flNc(v)• glMc(v)) E R;
vEV

2. EBm+l valm+1(D, v, flNc(v)• glMc(v)) j K.
vEV

The given definition of basic local condition composition problems may
look at first sight very complicated, but in general it will be not very difficult
to use. For a more intuitive introduction in the notion, see section 5.1.

Next we define the class of local condition composition problems, LCC.

DEFINITION 2.10 Let II be a graph decision problem. We say that II is a
local condition composition problem, if and only if there exists a basic local
condition composition problem II' and a gp-transformation from II to II'.
The class of local condition composition problems is denoted by LCC.

A subclass of LCC is the class of the edge condition composition prob
lems, or ECC. Instead of letting val-functions work on the values off and
g in "local" parts of G, like Ne(v) and Mc(v), now the val-functions work
on the values of J(v), J(w) and g((v,w)) for single edges (v,w) EE. This
difference makes that ECC is more restricted than LCC (unless P=NP).
On the other hand, no restrictions on the degree of the graphs are longer
necessary for ECC-problems, in order to obtain polynomial algorithms for
the problems, restricted to graphs with constant bounded treewidth.

DEFINITION 2.11 Let II= (Drr, Yrr, s) be a graph decision problem. We say
that II is a basic edge condition problem, if and only if there exist

• a non-negative integer m E N

• m commutative monoids (M 1, EB1), ... , (Mm, EBm)

• a ctocm (Mm+I, EBm+I, j)

such that

•each DE Drr is of the form (G,(X,Y,R1, ... ,Rm,l(,J)), where

G is an undirected graph

Xis a finite set with s(D) ~ IXI

Y is a finite set with s(D) ~ IYI
- for all i, 1 ~ i ~ m, R; denotes a subset of Mi

- J(E Mm+1

10

• for all i, 1 $ i $ m + 1, there exists a function vali, that maps all
4-tupples, consisting of an instance D = (G = (V,E), (X, Y, R 1 , .. . ,

Rm, K, I)) E Drr, a vertex v E V, and functions f: Nc(v)-+ X,
9: Mc(v)-+ Y, to elements of Mi, such that:

1. there exists an algorithm that calculates vali(D,e,f,9), for all
D = (G = (V,E), (X, Y, Ri, ... ,Rm, K, I)) E Drr, e EE,
f: Nc(e)-+ X, 9: Mc(e)-+ Yin time, polynomial in s(D).

2. if 1 $ i $ m, there is a polynomial Pi, such that for all D = (G =
(V,E), (X, Y, R1, .. . , Rm, K, I)) E Drr, and subsets E' ~ E:
{ ffii val;(D, w, flNa(e' 9l{e})IJ : Nc(W) -+ (X), 9 : Mc(W) -+

wEW

Y}I $ Pi(s(D))

3. there exists an algorithm that calculates a Ef)i b for given a, b,
such that there are D = (G = (V,E), (X, Y, R 1, ... ,Rm, K,
I)) E Drr, E1 ~ E, E2 ~ E, E1 n E2 = 0, f : N c(E1 U E2) -+ X,
9 : Mc(E1 U E2) -+ Y, a = ffii vali(D,e,f1No(e)•9l{e}) and

eEE1
b = ffii vali(D, e, f1Na(e)•9l{e}), in time, polynomial in s(D).

eEE2
4. if i = m + 1, then there exists an algorithm, that calcu

lates whether a ~ b for given a,b, such that there are D =
(G = (V, E), (X, Y, Ri, ... , Rm, K, I)) E Drr, E' ~ E,
Ji : Nc(E') -+ x, h : Nc(E') -+ x, 91 : Mc(E') -+ Y,
92: Mc(E')-+ Y, a= E3jm+i valm+1(D,e,fi1Na(e)•91i{e}) and

eEE'
b = ffim+l valm+I(D,e,h1Na(e)•92l{e}) orb= K, in time poly

eEE'
nomial in s(D).

5. if 1 $ i $ m, there exists an algorithm that calculates for all
D = (G = (V,E),(X,Y,Ri, ... ,Rm,l(,J)) E Drr, f: V-+ X,
9 : E -+ Y and given a = E}j vali(D, e, flNa(e)' 9l{e}) whether

eEE
a E Ri, in time polynomial in s(D).

•For all D = (G = (V,E), (X, Y, Ri, ... ,Rm, K, I)) E Drr: DE Yrr,
if and only if there exist functions f : V -+ X, 9 : E -+ Y, with

1. Vi, 1 $ i $ m: E3ji vali(D, v, flNa(e)• 9l{e}) E Ri
eEE

2. E9711+1 valm+1(D, v, f1Na(e)•9l{e}) ~ K.
eEE

11

DEFINITION 2.12 Let II be a graph decision problem. We say that II is a
edge condition composition problem, if and only if there exists a basic edge
condition composition problem II' and a gp-transformation from II to II'.
The class of edge condition composition problems is denoted by ECC.

Lemma 2 .4 Let II be a basic edge condition composition problem. Then
II E LCC.

Proof. Let m, (M1,EB1), ..• ,(Mm,EBm), (Mm+l,EBm+\:5), va/i, ... ,
valm+l be as indicated by the definition of basic ECC problem, applied to II.
To each graph G = (V, E), appearing in one or more instances D E Drr, one
can add an (arbitrary) assignation cha of each of the edges e E E to one of its
adjacent vertices, i.e. V(v,w) EE: cha((v,w)) = v V cha((v,w)) = w. We
denote ch(./(v) = {e E Ejcha(e) = v}. Note that Jch01 (v)I:::; degree(G).

Now we use a transformation from II to a (very similar) other graph
decision problem II', by mapping each D = (G = (V, E), (X, Y, Ri, ... ,
Rm, K, I)) E Drr to 'lj;(D) = (G = (V,E), (X, Y, Ri, ... , Rm, K, (I,
cha))), i.e. cha is included in the problem instances. Now II' is a basic
LCC-problem: take c=l, and let for all i, 1:::; i:::; m, v E V:

val~(1/J(D), v, flN1(v)•gJM1(v)) = EB i vali(D, e, flNo(e)• gJ{e})·
eEch-l(v)

It is easy to see that the vali-functions can be calculated in polynomial time.
Further we have that:

vEV

EBi EB i vali(D, e, flNa(e)• gJ{e}) =
vEV eEch-1 (v)

Efji vali(D, e, flNa(e)• gJ{e})·
eEE

The remaining details are left to the reader. Q.E.D.

As an easy, but important corollary we have:

Theorem 2.5 ECG~ LCC.

12

3 Polynomial time algorithms for LCC-problems
and ECC-problems on graphs with bounded
treewidth

In this section we will give a general method to obtain polynomial time
algorithms for (basic) LCC-problems, restricted to a class of graphs with
bounded treewidth, and bounded degree, and for (basic) ECC-problems,
restricted to a class of graphs with bounded treewidth. First we give some
necessary lemma's.

Lemma 3.1 Let ({Xi I i EI}, T = (I, F)) be a tree-decomposition of G =
(V, E). Let v E Xi and v E Nc(Xj)· Let k be on the path form i to j in T.
Then: v E Nc(Xk)·

Proof. We use induction to c. For c = 0 we have v E No(Xj) = Xj,
hence, by definition, v E Xk = No(Xk)·

Suppose the lemma holds for all integers up to c - 1. There must be a
vertex w E Xj with da(v, w) :::; c. If da(v, w) :::; c - 1, then v E Nc-1(Xj),
and hence by induction, v E Nc-1(Xk) ~ Nc(Xk)· So now suppose
da(v, w) = c. Let x be the one-but-last vertex on the path in G from v
tow, i.e. da(v,x) = c - 1 and (x,w) EE. There must be an i' EI with
x E Xi'' w E Xi'' by definition. Note that k is on the path from i to i' in T
or k is on the path from i' to j. We consider both cases.

Case 1: k is on the path from i to i'. Note that w E Xi'=> v E Nc-1(Xi1).
By induction it follows that v E Nc-1(Xk) ~ Nc(Xk)·

Case 2: k is on the path from i' to j. From w E Xi' and w E Xj it follows
that w E Xk. Hence v E Nc(Xk)·

Q.E.D.

Lemma 3.2 Let ({Xi I i EI}, T = (I, F)) be a tree-decomposition of G =
(V,E). Let k EI be on the path from i EI to j EI in T. Then:

1. Nc(Xi) n Nc(Xi) ~ Nc(Xk)

2. Mc(Xi) n Mc(Xi) ~ Mc(Xk)

Proof.

13

1. Suppose v E Nc(Xi)nNc(Xj)· There must be some i' EI with v E Xi'·
Now k is on the path from i to i' or k is on the path from i' to j. In
both cases it follows from lemma 3.1 that v E Nc(Xk)· Hence we have
Nc(Xi) n Nc(Xj) ~ Nc(Xk)·

2. (v, w) E Mc(Xi) n Mc(Xj) => v E Ne(Xi) n Nc(Xj)
Nc(Xi) n Nc(Xj) => v E Nc(Xk) /\ w E Nc(Xk) =>
Mc(Xk)·

Q.E.D.

/\ w E
(v, w) E

Theorem 3.3 Let k, d E N. Let E> be a class of graphs, with E> ~

TWD(k, d}, (i.e. every graph G in E> has treewidth k or less and degree
d or less). Let II be a basic LCC problem. Then Ille E P, i.e. there exists
a polynomial algorithm for IT, when restricted to the graphs with treewidth
~ k and degree~ d.

Proof. Suppose m, c, (M1,EB1), ... , (Mm,EBm), (Mm+1,EBM+1,~),
vali, ... , valm+l are as indicated by the definition of basic local condition
composition problem, applied to II = (Dn, Yn, s).

Let the algorithm work on an instance D = (G = (V, E), (X, Y, R 1,

R2, ... , Rm, K, I)) E Dn with GE TWD(k, d), i.e. the treewidth of G is at
most k and the degree of G is at most d. Our algorithm starts with finding
a tree-decomposition ({Xi Ii EI}, T =(I, F)) of G, with treewidth at most
k, and III ~ IVI - k + 1. We can do this in polynomial time, as indicated
by theorem 2.2.

We now designate an (arbitrary) processor as "root", so we see T as a
rooted tree. The set of the sons of a node i E I, (i.e. the direct descendants
of i in the rooted tree T, is denoted by sons(i); the father of i in the tree
(if i f root), is denoted by father(i), and the set of all descendants of i,
including i self, is denoted by dee(i). Further for each i E I, we pose a
(total) ordering upon the sons of i.

Also we define for all i E I:

{
xi
{v E Xi Iv</. xfather(i)},

u Y;.
jEdec(i)

wi U xi.
jEdec(i)

14

if i = root.
if if root.

Lemma 3.3.1 For all v E V there is a unique i EI, with v E Y;.

Proof. Let v E V. By definition, there is an i E I, with v E Xi. Now
either v E Xroot, or there is a node j E J, on the path from i to root with
v E Xj and v r/. Xrather(j)· Hence 3i EI with v E Y;.

Next suppose we have v E Y; n Yj, i =/:- j. Note that we have v E Xi n Xj.
Now note that either father(i) or father(j) exists and is on the path from i
to j, and hence v E Xrather(i) or v E Xrather(j)· This contradicts v E Y; n Yj.
Q.E.D.

The following two lemmas are easily verified.

Lemma 3.3.2 For all i EI: Zi = (LJ Zj UY;) .
jEsons(i)

Lemma 3.3.3 For all i EI: Wi = (LJ Wj U Xi).
jEsons(i)

Lemma 3.3.4 Let i EI, sons(i)= {j1 , ... ,jr }. Let 1 ~a~ r. Then:

1. Nc(Wi1 U ... U Wj
0

_ 1 U Xi) n Nc(Wj
0

) ~ Nc(Xi) n Nc(Xj 0).

2. Mc(Wj1 U ... U Wj
0

_ 1 U Xi) n Mc(Wj
0

) ~ Mc(Xi) n Mc(Xj0).

Proof. 1. Suppose v E Nc(Wj1 U ... U Wj
0

_ 1 U Xi) n Nc(Wj
0

). There
must be some j E dec(ja), with v E Nc(Xj). We consider two cases.

Case 1: v E Nc(Xi)· It follows that j°' is on the path from i to j in T,
hence, by lemma 3.2, v E Nc(Xj

0
).

Case 2: 3/3, 1 ~ j3 ~ a - 1 : v E Nc(Wj,13)· There must be some j' E
dec(jp), with v E Nc(Xj'). Now i and j°' are on the path from j to j'
in T, hence, by lemma 3.2, v E Nc(Xi) and v E Nc(Xj 0).

2. Similar. Q.E.D.

In the remainder, we will use the expression ap(v, f, g) as a shorthand no
tation for valp(D, v, flNc(v)' YIMc(v)), and ap(S, J, g) as a shorthand notation

for E!JP valp(D, v, flNc(v),YIMc(v)), with Sa subset of V and the domains of
vES

J and g contain respectively Nc(v),Nc(S),Mc(v),Mc(S).

15

The algorithm will now calculate for each node i E I a table, called
TABLE(i), which contains (m + 3)-tupples of the form (f: Nc(X;)---+ X,
g: Mc(X;)-+ Y, ri, ... ,Tm+i), such that

3f: Nc(W;)---+ X, g: Mc(W;)---+ Y, with

J INc(X;) = J,
glMc(X;) = g,
Vp, 1:::; p:::; m + 1, ap(Z;, J,g) = rp

and VJ: Nc(W;)---+ X, g: Mc(W;) ---+ Y, with

J INc(X;) = J,
glMc(X;) = g,
Vp, l:::;p:::;m, ap(Zi,f,g)=rp

one has: Tm+i -< <7m+i(Zi, J, g).

- - 1 Note that for each J: Ne(Xi)---+ X, g: Mc(X;)---+ Y, r1 E M , ... , Tm E
Mm, there will be at most one Tm+l E Mm+1, with (f,?J,r1, ... ,rm+1) E
TABLE(i). Tm+l is the smallest value of <7m+i(Z;,f,g), where f and g are
extensions of J and g, such that ap(Z;, f, g) = rp for all p, 1:::; p:::; m.

The algorithm starts by first recursively calculating the TABLE's for all
sons of i, and then calculating temporary tables TEMP(i, a), with 0:::; a:::;
r, where r is the number of sons of i. For the these temporary tables the
following condition will hold, after calculation of TEMP(i, a):

3f : Nc(Wj1 U ... U Wj"' U Xi) ---+ X,

g: Mc(Wj1 U ... U Wj"' U X;)---+ Y, with

flNc(X;) = j,
glMc(X;) = g,
Vp, l:::;p:::;m+l: ap(Zj1 U ... UZj"'UY;,f,g)=rp

and VJ : Nc(Wj1 U ... Wj"' U X;) ---+ X,

g: Mc(Wj1 U ... Wj"' U X;)---+ Y, with

16

flNc(X;) = f,
glMc(X;) = g,
\:/p, 1 ~ p ~ m: O'p(Zj-1 u ... u Zja u Y;,f,g) = Tp

one has: rm+l-< O'm+i(Zj-1 U ... U Zja U Y;,f,g).

Note that it follows from lemma's 3.3.2 and 3.3.3, that equation (1)
follows from equation (2), with a = r (= the number of sons of i).

We now claim that the following pair of subroutines will calculate the
TABLEs and TEMPs correctly. Basically, the algorithm works as follows:
first we calculate (recursively) TABLE(j°'), for all sons j°' of i. Then we
calculate TEMP(i,O), by calculating O'p(Y;,f,g) for every f: Nc(Xi)---+ X,
and g: Mc(Xi)---+ Y. Then we successively calculate the tables TEMP(i, a:),
by composing the tables TEMP(i,o: -1) and TABLE(j°'). From the above
observation it follows that TABLE(i) can be chosen to be TEMP(i, r).

CALCULATE_ TAB LE(i):
begin

end.

Let ji, ... , jr be the sons of i.
for a = 1 to r

do CALCULATE_TABLE(j°')
end do;

for a = 0 to r
do CAL CU LATE_TEM P(i,o:)
end do
TABLE(i) := TEMP(i,r)

CALCULATLTEMP(i, a:):
begin

if Cl: = 0
then for all functions f: Nc(Xi)---+ X

do
for all functions g: Mc(Xi)---+ Y
do

for p := 1 to m+l
do let rp = <1p(Y;,f,g)
end do;
put (f,g,r1, ... ,rm+i) in TEMP(i,o:)

end do

17

end

else
end do

for every(!, g, ri, ... , rm+1) E TEMP(i, a:)
do

for every (!', g', ri, ... , r'.,,.+1) E TEMP(i, a)
do

ifVv E Nc(Xi) n Nc(XicJ: f(v) = f'(v) and
Ve E Mc(X;) n Mc(Xj,J: g(e) = g'(e)

then
for p = 1 to m + 1
do Sp = r P ffiP r~
end do;
if there is not E Mm+l, with (f,g,s1, ... ,sm,t) E

TEMP(i,o:)
then put (f,g,si, ... ,sm,sm+l) in TEMP(i,o:)
else suppose (f,g,s1, ... ,sm,t) E TEMP(i,o:);

if Sm+l ~ t

endif

then remove (f,g,si, ... ,sm,t) from TEMP(i,o:);
put ((f,g,s1, ... ,sm,sm+l) in TEMP(i,o:)

endif

endif
enddo

end do
endif

Claim 3.3.5 After execution of CALCULATE_TABLE(i) equation {1}
holds and after execution of CALCULATE_TEMP(i, a) equation {2} holds.

Proof. Consider i E J, let isons(i)I = r, and let 0 :S a :S r. For
a = 0, it can be verified directly, that equation (2) holds after execution
of CALCULATE_ TEMP(i, 0). So let a ~ 1. By using induction, one may
assume that the equations hold for TABLE(j°') and for TEMP(i, a - 1).

Now we first suppose that after execution of TEMP(i, a:),(!, g, ri, ... ,
rm+1) E TEMP(i, a:). It follows from the algorithm that there must be(!,
g, s1, ... , sm+1) E TEMP(i,o:-1), and (f',g',ti, ... ,tm+i) E TABLE(ja),
with: J': Nc(Xj,,)-;. X, g': Mc(Xjalpha)-+ Y, and Vv E Nc(X;)nNc(Xj,,):
f(v) = f'(v), and Ve E Mc(X;)nMc(Xj,,): g(e) = g'(e), and Vp, 1 :Sp :Sm+
1: rp = spEBtp. By induction, there are J: Nc(Wj1 U ... UWj,,_ 1 UX;)-+ X,

18

g : Mc(Wjl u ... u wicr-1 u Xi) ---+ Y, with llNc(X;) = f; YIMc(X;) = g;
Vp, 1SpSm+1: ap(Zj1 U ... U Zj

0
_ 1 U Yi,],g) = rp; and there are

]
1

: Nc(Wj 0)---+ X, g': Mc(Wj 0)---+ Y, with]'INc(Xj") = f'; g'IMc(X;
0

) = g';
Vp, 1::;; p::;; m + 1: ap(Zj

0
,]',g') = sp;

Now we define functions F: Nc(Wj1 U .. . UWj" UXi)---+ X, G: Mc(Wj1 U
... U Wj" U X;)---+ Y, as follows.

F(v) = { ~(v), if v E Nc(Wj1 U ... U Wj 0 -1 U Xi)
f'(v), ifvENc(Wj

0
)

G(e) = { ~(e), if e E Mc(Wj1 U ... U Wj 0 -1 U X;)
g'(e), if e E Mc(Wj

0
)

It follows from lemma 3.3.4, that the definition of F and G is correct. Now,
for all p, 1 Sp::;; m + 1, one has ap(Zj1 U ... U Zj" U Yi, F, G) = ap(Zji U
... U Zj

0
_ 1 U Yi, F, G) EB ap(Zj

0
, F, G) =Sp EB rp. So now we have proven

that the following holds.

cJ: Nc(X;)-+ X, g: Mc(Xi)-+ Y, ri, ... ,rm+1) E TEMP(i,a):::;. (3)

3f: Nc(Wj1 U ... Wj" U X;)---+ X,

g: Mc(Wj1 U ... Wj" u X;)---+ Y, with

J INc(X;) = J,
YIMc(X;) = g,
Vp, lspsm+l: ap(Zj1 U ... UZj 0 U"Yi,f,g)=rp.

Next suppose we have J : Ne(Xi) ---+ X, g : Mc(X;) ---+, r1 E M 1, ... ,
rm+l E Mm+l, such that

3f: Nc(Wj1 U ... Wj
0

U X;)---+ X,

g: Mc(Wj1 U ... Wj" U X;)---+ Y, with

flNc(X;) = J,
YIMc(X;) = g,
Vp, lspsm+l: ap(Zj1 U ... UZj

0
U"Yi,f,g)=rp.

We claim that now 3t ~ rm+l, with cJ, g, r 1, ... , rm, t) E TEMP(i, a).

Write f' = flNc(WJi u ... Wj
0

_
1

UX;)• 91 = YIMc(Wn U ... Wj
0

_ 1 UX;)• f"
flNc(Wj")' g" = YIMc(Wj")' Vp, 1::;; p::;; m+ 1: r~ = ap(Zjl u ... u zio-l UY-i,
f', g'), and r~ = ap(Zj

0
, f, g).

19

By induction, there are t' ~ T~+l and t" ~ T11m + 1, such that (J'INc(X;)'

g'IMc(X;)' Ti, ... ' T~, t') E TEMP(i, a - 1), and U"INc(Xj,,)• g"IMc(Xj,,)• Tr,
••• , T~, t") E TABLE(i). From the algorithm it now follows that table
TEMP(i, a) will contain the element: (], g, Ti EB1 Tr, ... , T~ EBm T~, t' EBm+l
t"). By noting that T~ Ef)P T~ = Tp and t' Ef)m+l t" ~ T~+l Ef)m+l T~+l = Tm+l •
the claim follows.

Finally we note that for each f : Nc(Xi) ---"* X, g : Mc(Xi) ---"* Y,
Ti E M 1, ... , Tm E Mm, there is at most one Tm+l E Mm+i, with
(J,g,T1, ... ,rm+1) E TEMP (i,a).

Claim 3.3.5 now follows from the above 3 observations. Q.E.D.

Next we show that is is easy to find the answer to the question, whether
D E Yn, or not, i.e. the answer to the problem that we are trying to solve,
by 'looking it up' in TABLE(root).

Claim 3.3.6 D E Yn, if and only if there are r1 E Ri, r2 E R2, ... ,
Tm E Rm, Tm+l E Mm+l, with Tm+l-< K, and f: Nc(Xroot)---"* x, g:
Mc(Xroot) ---"* X, such that (!, g, T1, ... , Tm, rm+1) E TABLE{root).

Proof. First we note that Wroot = Zroot = V.
Now suppose DE Yn. By definition, there are f: V---"* X, g: E---"* Y,

with \ip,l ~ p ~ m: ap(V,f,g) E Rp and am+1(V,f,g)-< K. Denote
Sp= ap(V, f,g) (1 ~ p ~ m) and j = flNc(Xroot)• g = YIMc(Xroot)• It follows
from claim 3.3.5 that either (f,g,si, ... ,sm+i) E TABLE(root), or there is
a Tm+l-< Sm+l-< K, and (f,fJ,s1,···•rm+1) E TABLE(root).

Next suppose there are TJ E Ri, r2 E R2, ... Tm E Rm, rm+l E Mm+i,
with Tm+i -< K, and f : Nc(Xroot) ---"* x' g : Mc(Xroot) ---"* x' such that
(J,g,T1, ... ,Tm,Tm+1) E TABLE(root). Hence there are J: V---"* X, and
g : E ---"* Y), with \Ip, 1 ~ p ~ m + 1): ap(V, f,g) = rp. It follows that
D E Yn. Q.E.D.

From claim 3.3.6 it follows that after calculating TABLE(root), we can
determine whether D E Yn or not, by successively inspecting all entries in
TABLE(root).

It remains us to show that the algorithm uses polynomial time. First
note that the finding of the tree-decomposition can be done in polynomial
time, by theorem 2.2. Next we claim that for each i and a, the size of
the table TEMP(i, a) (and consequently, of TABLE(i)), is polynomially
bounded in s(D). First note that JNc(Xi)J and JMc(Xi)I are bounded by
constants, say c1 and c2 , (that are only depending on d, k and c). Further,

20

for all (f,g,r1, ... ,rm+1) E TEMP(i,a),one has Tp E {ap(Zj1 U ... U Zj,, U

Y;' J, g) I j : Ne(Zjl u ... u Zj,, u Y;) --+ x, g : Mc(Zjl u ... u Zj,, u Y;) --+ Y}.
By definition (of the class of basic LCC-problems), the number of different
values that Tp can assume here, is bounded by Pp(s(D)). Hence, the size of
TEMP(i, a) is bounded by

m

IXlci · 1Ylc2
• IT Pp(s(D)),
p=l

which is a polynomial in s(D).
It follows that each execution of the procedure CALCULATE_TEMP

uses polynomial time. As this procedure is called 2111 - 1 = O(IVI)
times, and the total remaining work in the procedure-calls of CALCU
LATE_TABLE is linear in III, it follows that one can calculate TABLE(root)
in polynomial time. Finally we note that the last step of the algorithm also
can be done in polynomial time: one can test in polynomial time for each
(f,g, Ti, ... , Tm, Tm+i) E TABLE(root), whether r1 E R1, ... , Tm E Rm and
Tm+i -< K. As TABLE(root) is of polynomial size, this last step of the
algorithm also uses polynomial time. Q.E.D.

For the class of the edge condition composition problems, we can prove
a similar result. We can use an algorithm, very similar to the algorithm,
described in the preceding proof. Here we do not need the requirement
that the degree of G is bounded by some constant d. This requirement
was necessary to ensure that the size of the sets Nc(X;) and Mc(X;) was
bounded by some constant (only depending on k, and d, and not on IVI).
Now however we use instead sets N0(Xi) =Xi and M0 (X;). Note that the
size of these sets is bounded by k and ~k(k + 1) respectively, i.e. these sizes
are bounded by a constant, even if there is no bound on the degree of the
graphs. In this way we obtain the following result:

Theorem 3.4 Let k E N. Let 0 be a class of graphs, with 0 ~ TW(k),
(i.e. every graph G in e has treewidth k OT less). Let II be a basic ECG
problem. Then Ille E P, i.e. there exists a polynomial algorithm for II,
when restricted to the graphs with tree width :::; k.

Now we state the main result of this paper.

Theorem 3.5 (i) Let II E LCC, and let k, d E N+. Let 0 be a class of
graphs with GE 0 => degree(G)s d /\ treewidth(G):::; k. Then Ille E P.

(ii) Let II E ECG, and let k E N+. Let 0 be a class of graphs with
GE 0 => treewidth(G):::; k. Then Ille E P.

21

Proof. The result follows directly from theorem 2.3, theorem 3.3 and
theorem 3.4. Q.E.D.

4 Small-degree polynomial time algorithms for
subclasses of LCC and ECC

There are interesting subclasses of LCC and ECC, that yield linear,
quadratic, cubic or some other small-degree polynomial time algorithms
(when we do not count the time, needed for finding the tree-decompositions
with the required treewidth). One can modify the definition of basic LCC
problem to that of basic C local condition composition problems, and the
definition of basic ECC problem to that of basic C edge condition composi
tion problem by adding the following conditions:

1. There are constants c1, c2, such that for all D = (G, (X, Y, R1, ... ,

Rm, K, I) E Dn, one has IXI :S c1; IYI :S c2.

2. Conditions 1, 3, 4 and 5 of the definition still hold when we replace
the sentence "time, polynomial in s(D)" by "constant time".

k

3. The degree of the polynomial IJ Pp is at most C - 1.
p=l

We let the class of C-LCC problems of the graph-decision problems that
have a gp-transformation f to a basic C LCC problem, such that f can be
computed in CJ(s(D)°) time and s(f(D)) = CJ(s(D)). Similarly we define
the class of C-ECC problems.

It is not difficult to verify, that the algorithms of section 3 can be used
for C-LCC and C-ECC problems, and will use only CJ(s(D)0) time. For
instance, note that the size of TABLEs and TEMPs are now bounded by
CJ(s(D)°-1). (The constant factor can depend on k, and for the case of
C-LCC-problems also on d, but not on IVI or s(D)).

Hence, we can proof the following result, similar as in section 3.

Theorem 4.1 (i) Let II E C-LCC, and let k, d E N+. Let 0 be a class of
graphs, with G E 0 => degree (G):S d A tree width(G) :S k. Then there exists
a linear algorithm that solves II, restricted to 0, assuming that each graph
G E 0 in the instances is given together with a tree-decomposition of G with
treewidth :S k.

22

{ii) Let II E C-ECC, and let k E N+. Let 0 be a class of graphs, with
GE 0 :::} treewidth{G) :S k. Then there exists a linear algorithm that solves
II, restricted to 0, assuming that each graph GE 0 in the instances is given
together with a tree-decomposition of G with tree width :S k.

The following relations between the classes C-LCC, C-ECC, LCC and
ECC can be obtained without much difficulty.

Theorem 4.2 {i) C-ECC ~ C-LCC.
(ii) C-LCC ~ LCC.
(iii) C-ECC ~ ECG.

For the case that the treewidth of G = (V, E) is bounded by a loga
rithmic factor in IVI, one obtains polynomial algorithms for C-LCC and
C-ECC problems, assuming that the tree-decompositions with the required
tree-width are given. It is presently unknown whether one can find tree
decompositions with logarithmic treewidth in polynomial time.

Theorem 4.3 (i) Let II E C-LCC for some C ~ 1, and let k, d E N+.
Let 0 be a class of graphs, with 3c > 0: VG E 0 :::} degree(G):S di\
treewidth(G) :S k. Then there exists a polynomial algorithm that solves
II, restricted to 0, assuming that each graph GE 0 in the instances is given
together with a tree-decomposition of G with tree width :S c · log(IVI).

{ii) Let II E C-ECC, and let k E N+. Let 0 be a class of graphs, with
3c > 0: VG E 0 :::} treewidth{G) :S k. Then there exists a polynomial
algorithm that solves IT, restricted to 0, assuming that each graph G E 0 in
the instances is given together with a tree-decomposition of G with treewidth
::s; c · log(IVI).

Proof. (i) Use the same algorithm as in the case of the constant bounded
treewidth. We now will estimate the size of the tables TEMP and TABLE.
Note that the size of Nc(v), or Mc(v), v E V, is bounded by a constant,
that only depends on k, d and c. Hence there are constants c1, c2, such that
INc(Xi)I :S C1 • log(IVI) and IMc(X;)I :S c2 · log(IVI), for all G = (V, E) E 0,
and graph-decompositions ({X; Ii E J}, T) of G with treewidth :S c·log(IVI).
It follows that the size of a table TEMP(i, a) (or TABLE(i)), is bounded by

m

IXlc1·log(IVI) · 1Ylc2·log(IVI). TI Pp(s(D)).
p=l

23

Using that s(D) ~ JVJ, and that JXJ and JYJ are bounded by a constant,
it follows that the sizes of the TEMPs and TABLEs are bounded by a
polynomial in s(D). The remainer of the proof is similar to the proof of
theorem 3.3.

(ii) Similar. Q.E.D.

5 Problems in LCC and ECC

In this section we will show for a large number of NP-complete graph decision
problems, that they are in LCC or in ECC. First in section 5.1 we will give
some of the basic techniques we use to prove problems to be in (C-)LCC and
(C-)ECC, and give some intuitive ideas behind these notions. In section 5.2
we give a give for many NP-complete graph decision problems (an indication
of the) proof that they are in LCC, ECC, C-LCC or C-ECC. For many
problems, the same techniques will be used to transform them to a basic
LCC or ECC problem. We have restricted ourselves to a number of graph
decision problems, appearing in [12]. For full descriptions of the problems,
the reader is also referred to this reference. We omitted most details of
proofs, in this section. Most omitted details are easy to obtain.

5.1 Some basic techniques

First we give a more intuitive idea of what a (basic) LCC or ECC problem
is. A basic LCC-problem is a problem of the following type (with some extra
restrictions):

INSTANCE: Graph G = (V, E), finite sets X, Y, subsets R1 ~
M 1 , ... , Rm ~ Mm, element K E Mm+l, other information
I.

QUESTION: Are there functions f : V --+ X, g : E --+ Y, such
that

• Vp, 1 ~ p ~ m: Etf valv(D, v, f1Nc(v)•91Mc(v)) E Rv
vEV

• Efr+i valm+i(D,v,f1Nc(v)•91Mc(v)) ~ K
vEV

The extra restrictions basically say, that where necessary, operations EB,
E Rp, and -< can be done in polynomial time; the functions valv can be

24

calculated in polynomial time, and, for p f= m + 1, the number of different
values that 61' valp(D, v, flNc(v), YIMc(v)) can assume, with some fixed S ~

vES
V, over all possible f and g, is polynomially bounded. A basic ECC-problem
has the following type (with similar restrictions):

INSTANCE: Graph G = (V, E), finite sets X, Y, subsets Ri ~
M 1 , ... , Rm ~ Mm, element K E Mm+l, other information
I.

QUESTION: Are there functions f: V----* X, g: E----* Y, such
that

• Vp, 1 ~ p ~ m: E£f valp(D, e, flNo(e)• Yl{e}) E Rp
eEE

• Efjn+i valm+i(D, e, flNc(e)• Yl{e}) ::5 K
eEE

We give some examples of the type of conditions that can be expressed as

~ valp(D, v, flNc(v)• YIMc(v)) E Rp or E£f valp(D, e, flNc(e)• Yl{e}) E Rp.
vEV eEE

A condition like: "Vv E V, some property of (D, v, flNc(v)• YIMc(v))

holds", can be expressed with use of the commutative monoid (({true, false},
/\,true), where I\ is the usual and-operation. One can express the required
property as a val-function to {true,false}. Finally, one must choose the
respective set Rp ={true}.

Similarly, a condition like: "3v E V, some property of (D, v, flNc(v)•

YIMc(v)) holds", can be expressed with use of the commutative monoid
({true, false}, V, false), where V is the usual or-operation.

By choosing the commutative monoid (N, +, 0) or (Z, +, 0), conditions
like

E valp(D,v,flNc(v)•YIMc(v)) E Rp
vEV

, (with Rp a subset of N or Z) can be expressed. Note that, except for the
case that p = m + 1, one must have that

VJ~~ I E valp(D, v, flNc(v)•YIMc(v))
- vEV'

must be bounded polynomially in s(D).
By using one of the ctocm's (N, +, 0, ~), (Z, +, 0, ~), (N, +, 0, ~), or

(Z, +, 0, ~),one can express conditions like

E valm+1(D, v, flNc(v)• YIMc(v)) ~ Kor ~ K.
vEV

25

Here only the number of bits needed to express the values of valm+i, must
be bounded by a polynomial in s(D).

If we know some fixed upper bound, say L on the maximal value of these
sums (for instances with a 'yes'-answer), we can use the commutative monoid
with elements {O, 1, ... , L, L + 1}, and addition EB on this set, with i EB j =
i + j, if i + j ~ L + 1, and i EB j = L + 1, if i + j > L + 1. In this way the
number of different values the sums can attain is bounded by a constant,
which is useful, when we want to prove membership in C-LCC or C-ECC,
with C as small as possible.

Conditions like EEJPvalp(D, e, flNo(e)' 9l{e}) can be expressed, while writ
eEE

ing the problem as a basic LCC-problem, similar as in the proof of lemma
2.4.

With a similar technique, one can express a condition of the type
EEJPvalp(D, v, J(v)), while writing the problem as a basic ECC-problem.
vEV
(Use a mapping V ---+ E, where each vertex v is mapped upon a neighboring
edge e. (We have to assume that G does not have isolated vertices.))

5.2 A list of problems in LCC and ECC

5.2.1 Vertex cover [GT 1]

In [3] it was shown that the problem can be solved in linear times, for
graphs with treewidth, bounded by some constant number k. This can also
be shown with the following result.

Theorem 5.1 VERTEX COVER E 1-ECC.

Proof. There is a linear time transformation of VERTEX COVER to the
following problem:

INSTANCE: Graph G = (V, E), sets X = {O, 1}, Y = {O},
positive integer K ~ IVI·

QUESTION: Are there functions f: V---+ X, g: E---+ Y, such
that

1. V(v,w) EE: J(v) = 1 or f(w) = 1.

2. Lf(v)~K.
vEV

It is straightforward to see that this problem is in 1-ECC. Q.E.D.

26

5.2.2 Dominating set [GT 2]

Similar to VERTEX COVER, a linear time algorithm for this problem for
graphs with constant treewidth, was given by Arnborg and Proskurowski in
[3]. One also has:

Theorem 5.2 DOMINATING SET E ECG.

Proof. There is a linear time transformation from DOMINATING SET
to the following problem:

INSTANCE: Graph G = (V,E), sets X = {1} UV, Y = {O},
positive integer K s; IVI.

QUESTION: Are there functions f : V -+ X, g : E -+ Y, such
that

1. 'v'(v,w) EE: f(v) = w:::} f(w) = 1.

2. 'v'(v,w) EE: f(w) = v:::} f(v) = 1.

3. 'v'v EV: f(v) = 1 or f(v) is a neighbor of v.

4. The number of v EV, with f(v) = 1, is at most K.

(The vertices v, with f(v) = 1 represent the set V'. For all other vertices
v, f(v) represents the neighbor of v, that is in V'.) The latter problem can
easily be transformed to a basic ECC-problem, with standard techniques
(see section 5.1.) Q.E.D.

5.2.3 Domatic Number [GT 3]

Scheffler and Seese [24] showed that DoMATIC NUMBER can be solved in
linear time for graphs with given treedecomposition with constant bounded
treewidth, and constant bounded degree. (To be precise, they prove that for
constant k, d, K, the problem whether a given graph with treewidth at most
k, degree at most d, has a domatic number that is at least K, is solvable in
linear time (not calculating the time needed to find the tree-decomposition
with the required treewidth). However, as the domatic number of a graph is
at most its degree +1, it follows directly, that the general DoMATIC NUMBER
problem (i.e. K is a part of the problem instance), also is solvable in linear
time, for this class of graphs.) A similar result can also be obtained with
the following theorem.

Theorem 5.3 DOMATIC NUMBER E 1-LCC.

27

Proof. We use that the domatic number of a graph is at most its degree
+L So we may assume that K ~ d + 1, i.e. K is bounded by a constant.
Further note that DOMATIC NUMBER has a linear transformation to the
following problem:

INSTANCE: Graph G = (V, E), sets X = {1, ... , K}, Y = {O}.
QUESTION: Are there functions f: V __, X, g: E __, Y, such

that Vv EV: (Vi, 1 ~ i ~ K: 3w E N 1(v): f(w) = i)?

The latter problem can easily be transformed to a basic 1-LCC-problem.
Q.E.D.

A result for graphs with no bound on the degree of the vertices, can be
obtained by observing that the domatic number of a graph is at most the
smallest degree of a vertex +1. As each graph with treewidth ~ k has a
vertex with degree ~ k (use e.g. the characterization as partial k-tree), it
follows that we may assume that we can bound K by a constant. Together
with the following result, one obtains polynomial time algorithms for graphs
with given tree-decomposition with constant bounded tree-width.

Theorem 5.4 DOMATIC NUMBER for constant K E ECG.

Proof. Note the equivalence to the following problem:

INSTANCE: Graph G = (V, E), sets X = {1, ... , K} * VK,
y = {O}.

QUESTION: Are there functions f: V __, X, g: E __, Y, such
that

1. Vv EV: Vi,2~i~K+1: fi(v) E Ni(v).

2. Vv E V : Vi, 2 ~ i ~ K + 1 : if fi(v) = v, then Ji (v) =
i - 1.

3. V(v,w) EE: Vi,2 ~ ~ K + 1 : if fi(v) = w, then
fi(w)=i-1.

4. V(v,w) EE: Vi,2 ~ ~ K + 1: if f;(w) = v, then
fi(v)=i-1.

Here h(v), ... , fK+i(v), denote the vertices in N1 (v), that are in the domi
nating sets Vi, ... , VK; V; = {v EV I fi(v) = i}. Now the problem is easily
seen to be in ECC. Q.E.D.

28

This proof shows a technique, which often will be used to transform an
(C-)LCC problem to an ECC-problem. Suppose we have a condition of
the form Vv EV: 3w E Ni(v): Q(f(v),f(w),g((v,w))), where Q is some
relation. Now replace the set X (of the old problem), by X' = X * V;
add a condition that h(v) E N1(v) for all v E V; and require now, that
for each edge e = (v,w) EE: if h(v) = w, then Q(f1(v),Ji(w),g((v,w))
and if h(w) = v, then Q(fi(w),fi(v),g((v,w)). Also require that for all
v E V: if h(v) = v, then Q(f1(v),Ji(v),g((v,w)). If we require w to
be a neighbor of v, instead of an element of N 1 (v), then we drop the last
condition. For each v E V, h(v) is the edge leading to the neighbor w, such
that Q(f(v),f(w),g((v,w)).

5.2.4 Chromatic Number [GT 4]

Arnborg and Proskurowski [3] showed that CHROMATIC NUMBER can be
solved in linear time for graphs with constant bounded treewidth (and with
given corresponding characterization as subgraph of a k-tree). By using that
a graph with treewidth k always is (k + 1)-colorable (this fact can easily be
derived with help of the recursive definition of k-trees), one obtains the
following result without difficulty:

Theorem 5.5 CHROMATIC NUMBER E 1-ECC.

5.2.5 Monochromatic triangle [GT 6]

Scheffler and Seese [24] proved this problem to be linear time solvable for
graphs with constant bounded treewidth and degree. This result can also
be obtained with the following theorem.

Theorem 5.6 MONOCHROMATIC TRIANGLE E 1-LCC.

Proof. Note that MONOCHROMATIC TRIANGLE has a graph-invariant
linear transformation to the following problem:

INSTANCE: Graph G = (V, E), sets X = {O}, Y = {1, 2}.
QUESTION: Are there functions f: V---+ X, g: E---+ Y, such

that Vu E V: •(3v,w E N 1 (v): (v,w) E E /\ J((v,w)) =
J((u,v)) = J((u,w)).

The latter is easily transformed to a basic 1-LCC problem. Q.E.D.

29

If we replace "triangle" by any larger fixed complete subgraph, then one
shows with a similar proof, that the resulting variant again is in 1-LCC.

We remark that there exist also linear time algorithms for the case that
one has no bound on the degree of the graphs. By using lemma 5.23, it
follows that for each triangle (u, v), (v, w), (w, u) in G, there must be some
i EI, with u, v, w E Xi. (Similar for larger complete subgraphs of G.) This
fact enables us to modify the basic algorithms of section 3, in order to obtain
a linear time algorithm for MONOCHROMATIC TRIANGLE, or one of its vari
ants with larger complete subgraphs, on graphs with given treedecompostion
with constant bounded treewidth.

5.2.6 Feedback vertex set [GT 7]

Feedback vertex set is the first example in this list, of a problem, dealing
with directed graphs. A directed graph can be seen as an undirected graph,
with each edge labeled by it direction(s). (So there are 3 different label
ings possible for each edge.) Hence, there is no real difference in the way
undirected and directed graphs can be handled in this theory.

Theorem 5. 7 FEEDBACK VERTEX SET E ECG.

Proof. First we may assume without loss of generality, that we have no
isolated vertices in G = (V, A). Note that the condition that V' contains at
least one vertex from every directed cycle in G is equivalent to the condition
that the subgraph of G, induced by V - V' is cyclefree. Hence we can
transform FEEDBACK VERTEX SET to the following problem:

INSTANCE: Directed graph G = (V, A), sets X = {O, 1, ... ,
IVI - 1, oo}, Y = {O}, positive integer J(~ IVI·

QUESTION: Are there functions f: V----"* X, g : A----"* Y, such
that

1. 'v'(u,v) EA: J(u) = oo or J(v) = oo or J(u) < J(v).

2. the number of v EV with f(v) = oo is at most K.

(The vertices v with f(v) = oo represent the set V'.) Q.E.D.

5.2.7 Feedback arc set [GT 8]

This problem can be handled, similar to FEEDBACK VERTEX SET.

30

Theorem 5.8 FEEDBACK ARC SET E ECG.

Proof. Transform to the following problem.

INSTANCE: Directed graph G = (V, A), sets X = {O, 1, .. .,
!VI - 1}, Y = {O, 1}, positive integer J(~ !VI·

QUESTION: Are there functions f: V---+ X, g: A---+ Y, such
that

1. Ve= (u,v) EA: g(e) = 1 or f(u) < f(v).

2. L g(e) ~ K.
eEE

(The edges e with g(e) = 1 represent the set A'.) Note that we can express
the function g : A ---+ Y as a function g' from the set of undirected edges E,
obtained by ignoring the direction of the edges in A, to (Y * Y). Q.E.D.

5.2.8 Partial feedback edge set [GT 9]

Scheffler and Seese [24] have shown that the problem with fixed maximum
circuit length L is solvable in linear time for graphs with given tree
decomposition with treewidth ~ k and degree at most d, k and d fixed.
One can show that the problem with fixed L, is in 1-LCC, thus obtaining
the same result. The problem is open for graphs with arbitrary degree, and
for the variant where Lis variable.

Theorem 5.9 For all L E N+' L ~ 3, PARTIAL FEEDBACK EDGE SET

with maximum circuit length L E 1-LCC.

Proof. Transform to the following problem.

INSTANCE: Graph G = (V, E), sets X = {O}, Y = {O, 1},
positive integer J(~ !VI.

QUESTION: Are there functions f : V ---+ X, g : E ---+ Y, such
that

Q.E.D.

1. Vv E V: There is no circuit in NL(v), with for every
edge e in the circuit /(e) = 0.

2. L f(e) ~ K.
eEE

31

5.2.9 Minimum maximal matching [GT 10]

Scheffler and Seese proved that the problem, whether the minimum maximal
matching of a given graph G has at most K edges, (for fixed K), is solvable
in linear time, for graphs with constant bounded treewidth and degree, given
with the corresponding tree-decomposition. The following result shows that
a similar result still holds, if we do not fix K, but let it be a part of the
problem-instance.

Theorem 5.10 MINIMUM MAXIMAL MATCHING E 1-LCC.

Proof. The problem has a graph-invariant linear transformation to the
following problem:

INSTANCE: Graph G = (V, E), sets X = {O}, Y = {O, 1},
positive integer K :S IVI·

QUESTION: Are there functions f: V---+ X, g: E---+ Y, such
that

1. Vv E V : there is at most one adjacent edge e, with
g(e) = 1.

2. Ve= (v,w) EV: g(e) = 1 or v or w is adjacent to an
edge e', with g(e') = 1.

3. L g(e):::; K.
eEE

(The edges with g(e) = 1 represent the edges in E'.) Q.E.D.

Also we have the following result.

Theorem 5.11 MINIMUM MAXIMAL MATCHING E ECG.

Proof. Transform to the following problem:

INSTANCE: Graph G = (V, E), sets X =Eu {O}, Y = {O, 1},
positive integer K :S jVJ.

QUESTION: Are there functions f: V---+ X, g: E---+ Y, such
that

1. Vv EV: f(v) is an edge, adjacent to v or f(v) = 0.

2. Ve= (v,w) EE: if g(e) = 1, then f(v) = e and f(w) =
e.

32

3. Ve= (v, w) EE: if f(v) = e or f(w) = e, then g(e) = 1.

4. Ve = (v, w) E E : f(v) "I 0 or f(w) "I 0 or g(e) = 1.

5. L g(e)::; K.
eEE

Q.E.D.

5.2.10 Partition into triangles [GT 11]

Theorem 5.12 PARTITION INTO TRIANGLES E 1-LCC.

Proof. The problem has a graph-invariant linear transformation to the
following problem:

INSTANCE: Graph G = (V, E), sets X = {O}, Y = {O, l}.
QUESTION: Are there functions f : V -+ X, g : E -+ Y, such

that Vu EV: 3e = (u,v) E M1(v), e' = (u,w) E M1(v),
with f(e) = f(e') = 1, and (v,w) EE, and J((v,w)) = 1,
and for all other edges (v, x) EE: f((v, x)) = 0.

The latter problem is easily transformed to a basic 1-LCC problem. Q.E.D.

Theorem 5.13 PARTITION INTO TRIANGLES E ECG.

Proof. Use the technique, outlined in section 5.2.3. Q.E.D.

5.2.11 Partition into Isomorphic subgraphs [GT 12]

We will consider the subproblem of this problem, where we require H to be
connected.

Theorem 5.14 PARTITION INTO ISOMORPHIC CONNECTED SUBGRAPHS

E LCC.

Proof. We choose some arbitrary vertex w E VH. Each set Vi will
be characterized by the vertex v E Vi, that is mapped to w. We use a
transformation to the following problem.

INSTANCE: Graph G =(Va, Ea), sets X =Va* VH, Y = {O},
graph H = (VH,EH), vertex w E VH.

QUESTION: Are there functions f : V -+ X, g : E -+ Y, such
that

33

1. Vv EV: h(v) = w {:} fi(v) = v.

2. Vv EV for every w' E VH that is adjacent in H to h(v),
there is a unique v' E V, that is adjacent to v (in G),
with f(v') = (!1 (v), w').

3. V(v,w) EE: iffi(v) = fi(w),then (h(v),h(w)) E EH.

We leave the remainder of the proof to the reader. Q.E.D.

In a similar manner, one can handle the case that H has a fixed number
of connected components. (One can choose a vertex Wi from every connected
component Hi; by counting the number of times that h(v) = Wi, for each i,
one can verify that each component of H appears often as a subgraph.) We
also remark that if we fix H, then the problem is in 1-LCC. This follows by
the observation, that for each vertex v, one can require that de(v, ft (v)) :S
IVHI· As IVHI is fixed, it follows that, for graphs with bounded degree, one
can obtain a set X with fixed size.

5.2.12 Partition into Hamiltonian Subgraphs [GT 13]

Theorem 5.15 PARTITION INTO HAMILTONIAN SUBGRAPHS E 1-LCC.

Proof. Use the equivalence of the problem with the following problem:

INSTANCE: Directed graph G = (V, A), sets X = {O}, Y =
{O, l}.

QUESTION: Are there functions f : V --+ X, g : A --+ Y,
such that Vv EV: there is one unique edge (u,v) EA with
f((u,v)) = 1 and there is one unique edge (v,w) EA with
f((v,w)) = 1.

Q.E.D.

Theorem 5.16 PARTITION INTO HAMILTONIAN SUBGRAPHS E ECG.

Proof. Use the technique, outlined in section 5.2.3. Q.E.D.

5.2.13 Partition into forests [GT 14]

Theorem 5.17 PARTITION INTO FORESTS E ECG.

Proof. Use that the problem is equivalent to the following problem:

34

INSTANCE: Graph G = (V, E), sets X = {1, ... , K} *
{O, ... , IVI - 1} * v, y = {O}.

QUESTION: Are there functions f: V---.. X, g: E---.. Y, such
that

1. V(v,w) E E : if fi(v) = fi(w), then (h(v) w or
h(w) = v).

2. V(v,w) EE: if fi(v) f1(w) and h(v) = w, then
h(v) = h(w) + 1.

3. V(v,w) E E : if fi(v) fi(w) and h(w) = v, then
h(w) = h(v) + 1.

(Ji (v) denotes the number of the component in which v is placed; h(v)
denotes in a certain sense the father of v in its subtree. The values of h(v)
decrease, by going up in the subtrees, and hence assure that there are no
induced cycles.) Now the problem is easily seen to be in ECC. Q.E.D.

5.2.14 Partition into cliques [GT 15]

In [24] it is shown, that this problem is solvable in linear time for graphs
with bounded treewidth, and bounded degree. This can also be shown with
the following result.

Theorem 5.18 PARTITION INTO CLIQUES E 1-LCC.

Proof. We transform the problem to the following problem:

INSTANCE: Graph G = (V, E), sets X = {O}, Y = {O, 1},
positive integer](~ V, and a total ordering -< on V.

QUESTION: Are there functions f: V---.. X, g: E---.. Y, such
that

1. Vu E V : for all pairs of neighbors v, w of u: if g((u, v)) =
g((u,w)) = 1, then (v,w) EE.

2. the number of v E V with: for all adjacent w:
(g((v,w) = 0 or v-< w) is at most K.

(A vertex v, with for all adjacent w: (g((v, w) = 0 or v -< w), is the first (with
respect to the ordering-<) vertex of a clique in G' = (V, { e E E I f(e) = 1}).
Hence, the number of cliques is at most](. The remainder of the proof is
left to the reader.) Q.E.D.

35

We remark that one can find a linear algorithm for this problem on
graphs with given tree-decomposition with bounded tree-width, without a
restriction on the degree of the nodes. (Hint: use lemma 5.23, and make
for each node i E I a table, with for each subset S ~ Xi we store a number
c(S), which denotes the minimum number of cliques, in which the subgraph
of G, induced by the set { v E Xj I j is a descendant of i, v r/. Xi} US} ~ V}
can be partioned.)

5.2.15 Partition into perfect matchings [GT 16]

In [24] it is shown that the problem is solvable in linear time for graphs with
a given treedecomposition with bounded treewidth, and a bounded degree,
when we fix J(, the maximum number of perfect matchings. For variable J(,

and no degree bound on the graphs, one obtains polynomial time algorithms
with the following theorem.

Theorem 5.19 PARTITION INTO PERFECT MATCHINGS E ECG.

Proof. Transform the problem to the following problem:

INSTANCE: Graph G = (V, E), sets X = {1, ... , K} * V, Y =
{O}.

QUESTION: Are there functions f: V-+ X, g: E-+ Y, such
that

1. Vv EV: h(v) is a neighbor of v.

2. Ve = (v,w) E E: (if h(v) = w then h(w) = v and
fi(v) = fi(w)) and (if h(w) = v then h(v) = wand
fi(v) = fi(w)).

3. Ve= (v,w) EE: if fi(v) = fi(w), then h(v) =wand
h(w) = v.

(It follows that for all v E V the vertex w = h(v) is the unique neighbor
with Ji (v) = f 1 (w). Hence, for all i :s; J(, the subgraph induced by Vi =
{v EV I fi(v) = i}, is a perfect matching.) Q.E.D.

5.2.16 Covering by cliques [GT 17]

Theorem 5.20 COVERING BY CLIQUES E LCC.

36

Proof. We use a technique, somewhat similar to that in section 5.2.14.
Note that each vertex needs to be involved in at most d = degree(G) cliques.
We denote the set of subsets of a set S, with cardinality at most d by pd(S).
Transform to the following problem:

INSTANCE: Graph G = (V, E), sets X =pd({1, ... , K}), Y =
{O}, with](~ IV\, and a total ordering -< on V.

QUESTION: Are there functions f: V---+ X, g: E---+ Y, such
that

1. Vu E V: for all pairs of neighbors v, w of u and for all
i,1 ~ i ~ K: if i E f(u) and i E f(v) and i E f(w),
then (v, w) EE.

2. Ve= (v,w) EE: f(v) n f(w) f 0.
3. We require that: l:val(v) ~ K, where each vertex

vEV
v E V, val(v) denotes the number of i, 1 ~ i ~ K,
such that there is no neighbor w of v, with w -< v and
iEf(w).

The details are left to the reader. Q.E.D.

5.2.17 Covering by complete bipartite subgraphs [GT 18]

Similar (but slightly more complicated) to the proof of theorem 5.20 one
shows the following result. (The main difference is that one has to look to
vertices with distance at most 2, instead of only neighbors.)

Theorem 5.21 COVERING BY COMPLETE BIPARTITE SUBGRAPHS E

LCC.

5.2.18 Clique [GT 19]

In [24] it was shown that CLIQUE is solvable in linear time, for graphs with
bounded degree and given tree-decomposition with bounded treewidth. The
following result shows that the bound on the degree can be avoided.

Theorem 5.22 CLIQUE E 2-ECC.

Proof. Transform the problem to the following problem:

37

INSTANCE: Graph G = (V, E), sets X = {O, 1}, Y = {O}.
QUESTION: Are there functions f : V ---+ X, g : E ---+ Y, such

that

Q.E.D.

1. L f(x) = K.
vEV

2. the number of edges e = (v,w) EE with f(v) = f(w) =
1 is exactly ~](·(I(+ 1).

However, we note that there is a very simple, and (for small values of k)
efficient linear algorithm, to determine whether a graph with a given tree
decomposition with tree-width at most k contains a clique with l vertices.
The algorithm is suggested by the following lemma. (Basically, one can look
at each i EI, and see whether the subgraph of G, induced by Xi contains a
clique with l vertices.)

Lemma 5.23 Let ({Xi I i E I}, T = (I, F)), be a tree-decomposition of
G = (V, E). Suppose W ~ V forms a clique in G. Then :Ji EI: W ~Xi.

Proof. Use induction to the cliquesize IWI. For IWI ::; 2, the result
follows directly. Suppose the lemma holds up to cliquesize l - 1. Consider
a clique W ~ V, with IWI = l, and suppose the lemma does not hold for
W. Choose a vertex w E W, and let W' = W - { w }. Let I' ~I be the set
{i E I I W' ~ I}. By induction I' -=f 0. Note that w E xi =} i ti. I'. Now
choose a node i' E I', and a node i E I, with w E Xi. Consider the path
in T from i' to i. Let i" be the last node on this path with i" E I, and let
i"' be the next node on this path. Now, for every w' E W', there must be
a vertex iw•, with { w, w'} ~ Xjw'. Consider the path from i" to iw'· We
consider two cases.

Case 1: This path does not use i"'. In this case, the path in T from i to
iw• uses i". Now w E Xi, w E Xjw,, hence w E Xi"• contradiction.

Case 2: This path uses i"'. Now we have w' E Xi"' w' E Xjw" hence
w' E Xi"'·

It follows that for all w' E W': w' E Xi"'• hence i"' E I', which contradicts
the assumption that i" was the last node on the path from i to i', that was
in I'. Q.E.D.

38

5.2.19 Independent set [GT 20]

In [3] it is shown that this problem can be solved in linear time, for graphs
with a given tree-decomposition with bounded treewidth. This result can
also obtained with the following theorem.

Theorem 5.24 INDEPENDENT SET E 1-ECC.

Proof. Similar to the proof of theorem 5.2.1. Q.E.D.

5.2.20 Induced path [GT 23]

For the variant of this problem, where the minimum pathlength is fixed,
Scheffler and Seese [24] proved solvability in linear time for graphs with
bounded degree and given treedecomposition with bounded treewidth. One
can also proof the following result.

Theorem 5.25 INDUCED PATH E ECG.

Proof. Transform to the following problem.

INSTANCE: Graph G = (V, E), sets X = {O, 1, ... , !VI}* V * V,
y = {O}.

QUESTION: Are there functions f: V-+ X, g: E-+ Y, such
that

1. Vv E V : /2(v) is a neighbor of v, and h(v) is a neighbor
of v.

2. Ve= (v,w) EV: if fi(v) f:- 0 and fi(w) f:- 0, then
(lfi(v) - f1(w)I = 1, and if fi(v) = fi(w) + 1, then
h(v) =wand h(w) = v and if / 1 (w) = fi(v) + 1, then
h(w) = v and h(v) = w).

3. V(v,w) E E: if 1 < f1(v) <](and h(v) w then
f1(w) = f1(v) + 1.

4. V(v,w) E E: if 1 < fi(v) :S](and h(v) = w then
fi(w) + 1 = fi(v).

5. there is at least 1 vertex v EV with fi(v) f:- 0.

39

(Here Ji (v) = 0, if v is not in V'; otherwise Ji (v) denotes the number of v on
the induced path: start with numbering one end of the path by 1, number
the next vertex 2, etc. h(v) denotes the vertex before v on the path; h(v)
the vertex after v.) The remaining details are left to the reader. Q.E.D.

One can modify this proof in order to obtain the following result:

Theorem 5.26 INDUCED PATH with fixed pathlength](E 1-LCC.

5.2.21 Balanced complete bipartite subgraph (GT 24]

With a technique, similar to that used for the CLIQUE problem, we show:

Theorem 5.27 BALANCED COMPLETE BIPARTITE SUBGRAPH E 3-ECC.

Proof. Transform to the following problem.

INSTANCE: Graph G = (V, E), sets X = {O, 1, 2} * V * V,
Y = {O}, positive integer](:::; !VI.

QUESTION: Are there functions f : V ~ X, g : E ~ Y, such
that

Q.E.D.

1. the number of vertices v E V with f(v) = 1 is exactly
K.

2. the number of vertices v E V with f(v) = 2 is exactly
K.

3. the number of edges (u, v) E E with f (u) = 1 and
f(v) = 2 is exactly](2 •

A polynomial algorithm for this problem for graphs with a constant
bound on the treewidth is easily obtained, by noting that a graph with
treewidth :::; k cannot have a balanced complete bipartite subgraph with
2: 2k + 2 vertices. Without much extra effort, one can obtain a linear
algorithm for this problem, using that for graphs with treewidth :::; k, we
may assume that](is bounded by a constant.

40

5.2.22 Bipartite subgraph [GT 25]

Theorem 5.28 BIPARTITE SUBGRAPH E 1-ECC.

Proof. Use the equivalence of the problem to the following problem:

INSTANCE: Graph G = (V, E), sets X = {O, 1}, Y = {O},
positive integer](~ IV/.

QUESTION: Are there functions f: V--+ X, g: E--+ Y, such
that the number of edges e = (v, w) E E with J(v) f:. J(w) is
at least K.

The latter problem is easily seen to be a basic 1-ECC problem. Q.E.D.

5.2.23 Degree-bounded connected subgraph [GT 26]

Theorem 5.29 DEGREE-BOUNDED CONNECTED SUBGRAPH E LCC.

Proof. Use the equivalence of the problem to the following problem:

INSTANCE: Graph G = (V, E), sets X = {O, 1, ... , /V/ - 1},
Y = {O, 1}, positive integer](~ /E/.

QUESTION: Are there functions f: V--+ X, g: E--+ Y, such
that

1. there is exactly one v E V with J(v) = 0.

2. for each v E V, the number of adjacent edges e with
g(e) = 1 is at most d.

3. for each vertex v EV, with J(v) f:. 0, there is an ad
jacent vertex w E N 1(v), with J(w) = J(v) - 1, and
g((v,w))=l.

4. L f(e) 2: K.
eEE

(The graph G' = (V, { e E E / f (e) = 1}) is connected, because each vertex
w E V has a path (with length f (w)) in this graph to the unique vertex v
with f(v) = 0.) Q.E.D.

41

5.2.24 Transitive subgraph [GT 29]

Theorem 5.30 TRANSITIVE SUBGRAPH E 1-LCC.

Proof. Transform to the following problem:

INSTANCE: Directed graph G = (V, A), sets X = {O}, Y =
{O, 1}, positive integer J(~ IAI.

QUESTION: Are there functions f : V--+ X, g : E--+ Y, such
that

Q.E.D.

1. for all v E V: for all u, with (u, v) E A, and all w, with
(v,w) EA: if g((u,v)) = g((v,w)) = 1, then (u,w) EA,
and g((u, w)) = 1.

2. L g(e) 2 K.
eEE

5.2.25 Cubic subgraph [GT 32]

In [24] this problem is shown to be solvable in linear time, for graphs with
given tree-decomposition with bounded treewidth, and bounded degree. One
can also show this result with the following theorem.

Theorem 5.31 CUBIC SUBGRAPH E 1-LCC.

Proof. Transform to the following problem:

INSTANCE: Graph G = (V, E), sets X = {O}, Y = {O, 1}.
QUESTION: Are there functions f : V --+ X, g : E --+ Y, such

that

Q.E.D.

1. for each vertex v E V, there are either exactly 3, or
exactly 0 adjacent edges e with g(e) = 1.

2. I: g(e) 2 i.
eEE

Theorem 5.32 CUBIC SUBGRAPH E ECG.

42

Proof. Let P3(V) denote the set of all subsets of V, that contain exactly
3 elements. Transform to the following problem:

INSTANCE: Graph G = (V, E), sets X = P3 (V) U {0}, Y =
{O, 1}.

QUESTION: Are there functions f: V - X, g: E - Y, such
that

Q.E.D.

1. Vv EV: w E J(v) => w is a neighbor of v.

2. for all e = (v,w) E E: if w E f(v) or v E f(w) then
g(e) = 1.

3. for all e = (v,w) EE: if g(e) = 1, then w E f(v) and
v E f(w).

4. L: g(e) ~ i.
eEE

5.2.26 Hamiltonian completion [GT 34]

Theorem 5.33 HAMILTONIAN COMPLETION E ECG.

Proof. We assume that J(~ 1. If J(= 0, then see the HAMILTONIAN
CIRCUIT problem.

Note that a graph G = (V, E) has a Hamiltonian completion with k ~ J(

extra edges, if and only if one can partition the vertices in V into k ~ J(

disjoint subsets Vi, ... , Vi, with for all i, 1 ~ i ~ k, Vi induces a subgraph
of G which contains a Hamiltonian path. We now use a technique, similar
to the technique used with e.g. INDUCED PATH.

Transform to the following problem:

INSTANCE: Graph G = (V, E), sets X = {1, ... , IVI} * V * V,
y = {O}.

QUESTION: Are there functions f: V - X, g: E - Y, such
that

1. Ve= (v,w) EE: h(v) = w, if and only if h(w) = v.

2. Ve= (v, w) EE: h(w) = v, if and only if h(v) = w.

3. Ve= (v,w) EE: if h(v) = w, then f1(v) = fi(w) + 1.

4. Ve= (v,w) EE: if h(w) = v, then f1(v) = fi(w)-1.

43

5. \Iv EV, fi(v) = 1 or h(v) is a neighbor of v.

6. the number of vertices v, with Ji (v) = 1 is at most]{.

The remaining details of the proof are left to the reader. Q.E.D.

5.2.27 Hamiltonian circuit [GT 37] and variants

Hamiltonian circuit is solvable in linear time, for graphs with a given tree
decomposition with bounded treewidth (see [3]). Probably, this is an exam
ple, where the method of Arnborg and Proskurowski gives better results than
the method of this paper, as we only were able to proof that HAMILTONIAN
CIRCUIT E ECC (hence giving polynomial, instead of linear algorithms).
The proof is very simple.

Theorem 5.34 HAMILTONIAN CIRCUIT E ECG.

Proof. Transform to the following problem:

INSTANCE: Graph G = (V, E), sets X = {O, 1, ... , IVI - 1} * V,
y = {O}.

QUESTION: Are there functions f: V-+ X, g: E-+ Y, such
that

Q.E.D.

1. \Iv E V: h(v) is a neighbor of v.

2. \/(v,w) EV: if h(v) = w, then fi(v) = (f1(w)+l) mod

IVl-
3. \/(v,w) EV: if h(w) = v, then fi(w) = (J1(v)+l) mod

IVI·

Of course, the related problems HAMILTONIAN PATH, DIRECTED HAM
ILTONIAN CIRCUIT and DIRECTED HAMILTONIAN PATH can be handled in
the same way, with only minor variations. (For (DIRECTED) HAMILTONIAN
PATH see e.g. HAMILTONIAN COMPLETION.) The proofs are left to the
reader.

Theorem 5.35 1. HAMILTONIAN PATH E ECG.

2. DIRECTED HAMILTONIAN CIRCUIT E ECG.

3. DIRECTED HAMILTONIAN PATH E ECG.

44

5.2.28 Subgraph Isomorphism [GT 48]

We will consider some different subproblems of this problem. First note
that the following problem is NP-complete (by transformation from 3-
PARTITION).

INSTANCE: Tree G = (V, E) with degree(G)::; 3, forest H
(W, F), with degree(H)::; 2.

QUESTION: Does G contain a subgraph isomorphic to H?

Thus, we cannot expect to obtain polynomial algorithms for SUBGRAPH
ISOMORPHISM for graphs with bounded tree-width, unless we assume that H
is connected (or unless P=NP). One also must require that G has a bounded
tree-width. (If we only have that H has a bounded tree-width, then again
we have an NP-complete variant of the problem; e.g. use a transformation
from HAMILTONIAN PATH.)

So, let us now consider the case, where H is connected, and G has
a bounded tree-width, i.e. G is the graph, appearing in the instance of
the graph decision problem, and H is "hidden" somewhere in the other
information I. This version of the problem is in LCC. This can be seen by
transformation to the following problem:

INSTANCE: Graph G = (Va, Ea), connected graph H =
(VH,EH), sets X = VH U {O}, Y = {O}, vertex w E VH.

QUESTION: Are there functions f : V --+ X, g : E --+ Y, such
that

1. Vv E Va: if f(v) f; 0, then for every w' E VH, that is
adjacent to f (v), there is a v' E Va, adjacent to v, with
f(v') = w.

2. there is exactly one vertex v E Va, with f(v) = w.

It follows that the problem to determine whether a given connected graph
H is isomorphic to a given graph G can be solved in polynomial time, for
graphs G with constant bounded treewidth and constant bounded degree.
For graphs with no bounds on the degree, such a result would imply that
P=NP, because SUBGRAPH ISOMORPHISM is NP-complete, for G and H
connected, outerplanar graphs [27]. (Recall that each outerplanar graph
has treewidth at most 2.) (For a discussion of similar results, see section
6.2.)

45

As a curiosity we mention, that the fact, that the problem to decide
whether a graph G has bandwidth at most k, for some constant k, is solvable
in polynomial time, follows as a corollary. (This result was first obtained by
Saxe [23].) Let Gk,n be the maximal graph on n vertices with bandwidth
k, i.e. Gk,n = (Vn,Ek,n), with Vn = {1,2, ... ,n} and Ek,n = {(i,j) I i,j E
Vn /\ Ii - j I :::; k}. The following observations was already made by Saxe [23].

Lemma 5.36 (Saxe [23]) Let G = (V, E), with IVI = n. Then
bandwidth(G) :::; k, if and only if G is isomorphic to a subgraph of G k,n.

The treewidth of Gk,n also is at most k. The degree of Gk,n is at most 2k.
Hence, it follows, that one can decide in polynomial time, for each connected
graph G (and hence, also for each G, that is not connected, by applying the
algorithm to each connected component of G), whether G is isomorphic to
a subgraph of Gk,n, and thus, by lemma 5.36, whether bandwidth(G) :S k.

5.2.29 Graph contractability [GT 51]

We only consider this problem for fixed graphs H. With induction to the
number of edge-contractions one can proof the following lemma.

Lemma 5.37 Let G =(Va, Ea), H = (VH,EH) be graphs. We can obtain
a graph isomorphic to H from G by a sequence of edge contractions, if and
only if we can associate with each vertex v E V H a set of vertices F(v) ~ Va,
such that

1. For all v E V : the subgraph of G, induced by F(v) is connected.

2. v -:f w {:} F(v) n F(w) = 0.
3. LJ F(v) =Va.

vEVH

4. For all v,w E VH: (v,w) E EH{:} (3v' E F(v),w' E F(w): (v',w') E

Ea).

We leave the proof to the reader.

Theorem 5.38 For all graphs H, GRAPH CoNTRACTABILITY to HE LCC.

Proof. Transform to the following problem:

46

INSTANCE: Graph G = (V, E), sets X = VH*{O, 1, ... , IVl-1},
y = {O}.

QUESTION: Are there functions f : V--+ X, g : E--+ Y, such
that

1. For each v E VH, we have a condition: There is exactly
one w E Ve: f(w) = (v,0).

2. For each (vi, v2) E EH, we have a condition: :3(w1, w2) E
Ee : Ji (w1) = vi A Ji (w2) = v2.

3. \f(v,w) E Ee: fi(v) = fi(w) or (f1(v),fi(w)) E EH.

4. \fv E Ve: h(v) = 0 or v has a neighbor w with fi(v) =
fi(w) and h(w) < h(v).

(f represents p-1
.) Note that we have IVHI + IEHI + 2 conditions! (This is

constant, because His fixed.) Q.E.D.

With the technique, outlined in section 5.2.3, one obtains also the fol
lowing result:

Theorem 5.39 For all graphs H, GRAPH CONTRACTABILITY to HE ECG.

5.2.30 Graph homomorphism [GT 52]

This problem, for fixed graphs H, can be dealt with, similar to GRAPH
CONTRACTABILITY.

Lemma 5.40 Let G =(Ve, Ee), H = (VH,EH) be graphs. We can obtain
a graph isomorphic to H from G by a sequence of identifications of non
adjacent vertices, if and only if we can associate with each vertex v E VH a
set of vertices F(v) ~ Ve, such that

1. For all v E V : F(v) is an independent set in G.

2. v -I w ~ F(v) n F(w) = 0.

3. LJ F(v) =Ve.
vEVH

4. For all v,w E VH: (v,w) E EH~ (:lv' E F(v),w' E F(w): (v',w') E
Ee).

Again, we leave the proof to the reader.

47

Theorem 5.41 For all graphs H, GRAPH HOMOMORPHISM to H E LCC.

Proof. Transform to the following problem:

INSTANCE: Graph G = (V,E), sets X = VH, Y = {O}.
QUESTION: Are there functions f : V --t X, g : E --t Y, such

that

Q.E.D.

1. For each v E VH, we have a condition: There is exactly
one w E Va: J(w) = v.

2. For each (v1, v2) E EH, we have a condition: 3(wi, w2) E
Ea: f(w1) = V1 A f(w2) = v2.

3. 'v'(v,w) E Ea: (f(v),f(w)) E EH.

Theorem 5.42 For all graphs H, GRAPH CoNTRACTABILITY to HE ECG.

Proof. Again, use the technique outlined in section 5.2.3. Q.E.D.

5.2.31 Graph grundy numbering [GT 56]

Theorem 5.43 GRAPH GRUNDY NUMBERING E 1-LCC.

Proof. Note that the function f never has to take values beyond the
range { 1, ... , d + 1}, where d = degree(G). Now one can proof membership
in 1-LCC by standard methods. Q.E.D.

5.2.32 Kernel [GT 57]

Theorem 5.44 KERNEL E 1-LCC.

Proof. Transform to the following problem:

INSTANCE: Directed graph G = (V, A), sets X = {O, 1}, Y =
{0}.

QUESTION: Are there functions f : V --t X, g : A --t Y, such
that

1. 'v'e = (v,w) EA: J(v) = 0 or f(w) = 0.

48

Q.E.D.

2. Vv EV: if J(v) = 0, then there is an edge (u,v) EA,
with f(u) = 1.

Theorem 5.45 KERNEL E ECG.

Proof. Transform to the following problem:

INSTANCE: Directed graph G = (V, A), sets X = {O, 1} * V,
y = {O}.

QUESTION: Are there functions f: V--+ X, g: A--+ Y, such
that

1. Ve= (v,w) EA: fi(v) = 0 or f1(w) = 0.

2. Vv EV: fi(v) = 1 or (h(v),v) EA.

3. Ve= (v,w) EA: fi(w) = 1 or fi(w) 1' v or fi(v) = 1.

Q.E.D.

5.2.33 K-closure [GT 58]

Theorem 5.46 K-CLOSURE E 1-ECC.

Proof. Immediate. Q.E.D.

5.2.34 Intersection graph basis [GT 59]

This problem is equivalent to COVERING BY CLIQUES, and hence in LCC.

5.2.35 Degree constrained spanning tree [ND 1]

Scheffler and Seese [24] prove that this problem is solvable in linear time for
graphs with bounded degree and given tree-decomposition with bounded
treewidth. A similar, but weaker result can be obtained with the following
result.

Theorem 5.47 DEGREE CONSTRAINED SPANNING TREE E LCC.

49

We omit the proof of this theorem. If we fix the maximum degree of the
spanning tree K, then the problem is in ECG, (and hence can be solved
in polynomial time for arbitrary graphs with constant bounded tree-width,
without a restriction on the degree of G.) We will call the subproblem of
DEGREE CONSTRAINED SPANNING TREE where the maximum degree of the
spanning tree must be Kor less, "DEGREE K SPANNING TREE".

Theorem 5.48 DEGREE K SPANNING TREE E ECG.

Proof. If we have a spanning tree T = (V, F) of G = (V, E), with
degree(T)~ K, then we can chose some arbitrary vertex v* E Vas root of
the tree, and then we can associate with each vertex, a number, denoting
its distance to the root, a vertex denoting its father in the tree, (except for
the root), and a subset of V with at most K - 1 vertices in it (except for
the root, where it may contain K vertices), denoting the sons of the vertex
in the tree. (By chasing v* some vertex with degree less than K, we may
assume each vertex has at most K - 1 sons.)

Thus, we can transform the problem to the following problem:

INSTANCE: Graph G = (V,E), sets X = {0,1, ... ,jVI - 1} *
V * {W ~ V I IWI ~ K - 1}, Y = {O}.

QUESTION: Are there functions f: V-+ X, g: E-+ Y, such
that

1. There is exactly one vertex with Ji (v) = 0.

2. Vv EV: h(v) E Ni(v)- {v} or fi(v) = 0.

3. Vv EV: h(v) ~ Ni(v)- {v}.

4. V(v,w) EE: if h(w) = v, then fi(w) = fi(v) + 1 and
wEh(v).

5. V(v,w) EE: if h(v) = w, then f1(v) = f1(w) + 1 and
vEh(w).

We leave the details for the reader. Q.E.D.

5.2.36 Maximum leaf spanning tree [ND 2]

Scheffler and Seese [24] showed linear time solvability for the subproblem
where the minimum number of leaves is some given constant, for graphs with
given constant-width tree-decompositions, and constant bounded degree.

50

We do not obtain linear time algorithm, but polynomial time algorithms.
However, we do not need a bound on the degree of the graph, and the
minimum number of leaves may be variable.

Theorem 5.49 MAXIMUM LEAF SPANNING TREE E ECG.

Proof. Again, we associate with each vertex a number, that denotes its
distance to the root, and another vertex, that denotes its father in the tree.
h(v) = 1, if and only if vis a leaf in the tree, i.e. if and only if there is no
other node w, with v the father of Win the tree. We transform the problem
to the following problem:

INSTANCE: Graph G = (V, E), sets X = {O, 1, ... , IV\ - 1} *
V * {O, 1}, Y = {O}, positive integer J(:::; IV\.

QUESTION: Are there functions f: V---+ X, g: E---+ Y, such
that

1. There is exactly one vertex with Ji (v) = 0.

2. Vv EV: h(v) E N1(v)- {v} or fi(v) = 0.

3. V(v,w) EE: if h(w) = v, then fi(w) = fi(v) + 1 and
f3(v)=O.

4. V(v,w) EE: if h(v) = w, then fi(v) = fi(w) + 1 and
h(w) = 0.

5. E h(v) ~ K.
vEV

Again, we leave the details for the reader. Q.E.D.

5.2.37 Shortest total path length spanning tree [ND 3]

Theorem 5.50 SHORTEST TOTAL PATH LENGTH SPANNING TREE E
LCC.

Proof. Nate that the sum over all pairs of vertices u, v E V, of the length
of the path from u to v in a spanning tree T = (V, F) equals the sum over
all edges (u, v) in T of the number of paths from vertices w E V to x E V,
that use this edge. The latter number equals the product of the number of
vertices in the two subtrees of T, obtained by removing the edge (u, v) from
T. So we map each edge e = (u,v) on a pair of two numbers 9e(u),ge(v),
denoting the number of vertices in the subtree with u, and v respectively as

51

root. We count the sum of Ye(u) · Ye(v) over all edges e = (u,v), that are
chosen to be in the spanning tree T. The other techniques are similar as in
section 5.2.36. Q.E.D.

5.2.38 Bounded diameter spanning tree [ND 4]

Theorem 5.51 BOUNDED DIAMETER SPANNING TREE E ECG.

Proof. We associate each vertex v with a number (h(v)), that denotes
the maximum distance of the vertex to a leaf, in its subtree. The next
vertex on the path to this leaf is denoted with / 4 (v). The requirement that
the diameter of the graph is bounded by D now can be expressed with the
conditions 9 and 10 below. Transform to the following problem:

INSTANCE: Graph G = (V, E), sets X = {O, 1, ... , IVl-1} * V *
{O, 1, ... , !VI - 1} * V, Y = {O, 1}, positive integer D ~ !VI,
weight w(e) EN+ for each e EE, positive integer B.

QUESTION: Are there functions f: V--+ X, g: E--+ Y, such
that

Q.E.D.

1. There is exactly one vertex with Ji (v) = 0.

2. Vv EV: h(v) E Ni(v) - {v} or fi(v) = 0.

3. Vv EV: f4(v) E Ni(v) - {v} or h(v) = 0.

4. Ve= (v,w) EE: if h(w) = v, then f1(w) = fi(v) + 1
and g(e) = 1 and h(v) ~ h(w) + 1.

5. Ve= (v,w) EE: if h(v) = w, then fi(v) = fi(w) + 1
and g(e) = 1 and h(w) ~ h(v) + 1.

6. Ve= (v,w) EE: if f4(w) = v, then h(w) = h(v) + 1
and g(e) = 1.

7. Ve= (v,w) EE: if f4(v) = w, then h(v) = h(w) + 1
and g(e) = 1.

8. Ve= (v,w) EE: if g(e) = 1, then lf(v)- f(w)I ~ 1.

9. Ve= (v,w) EE: if g(e) = 1 and not (f4(v) = w or
f4(w) = v), then h(v) + h(w) + 1 ~ D.

10. Vv EV: h(v) ~ D.

11. E g(e) · w(e) ~ B.
eEE

52

5.2.39 Isomorphic spanning tree [ND 8]

This problem is a special case of subgraph isomorphism. From the discussing
in section 5.2.28 the following result follows.

Theorem 5.52 ISOMORPHIC SPANNING TREE E LCC.

5.2.40 Bounded component spanning forest [ND 10]

We consider the version of the problem where the weight w(v) E N+ of the
vertices are given in unary notation, i.e. w(v) ~ s(D). (This problem is also
NP-complete.) We have the following result.

Theorem 5.53 BOUNDED COMPONENT SPANNING FOREST with weights
in unary notation E LCC.

Proof. In each component one can choose a spanning tree, and a root
in this tree. We associate with every vertex v its father in the tree ft (v)
(except for the root), and the sum of the weights of all vertices in its subtree
h(v). Here, we now do not need to use the distance of a vertex to the root.
A vertex v, with ft (v) rf. N c(v) - { v}, is assumed to be a root of a spanning
tree. (We use that h(v) > h(w), for all sons v of w.)

Transform the problem to the following problem:

INSTANCE: Graph G = (V,E), weight w(v) for every v EV,
sets X = V * {O, 1, ... , L:vEV w(v)}, Y = {O}, positive integer
K ~ IVI, positive integer B.

QUESTION: Are there functions f : V -+ X, g : E -+ Y, such
that

Q.E.D.

1. \Iv EV: h(v) = L:wEN1 (v)-{v};fi(w)=v(h(w) + w(w)).

2. Vv EV: h(v) + w(v) ~ B.

3. The number of v E V, with ft(v) r/. Ni(v) - {v} is at
most K.

With a more precise argument, one can show that the version of the
problem, where B is any fixed positive integer, is in 1-ECC. (For instance,
one can use that each vertex has at most B - 1 sons in a spanning tree.)

53

5.2.41 Steiner tree in graphs [ND 12]

Scheffler and Seese [24] proved that the problem of determining whether a
given graph G has a Steiner tree of weight B or less for fixed B and a fixed
number k of given vertices, is solvable in linear time for graphs with bounded
degree and given tree-decomposition with bounded treewidth. With our
techniques, we have polynomial time algorithms (instead of linear), but do
not restrict the degree of the graphs, and have variable B and k.

Theorem 5.54 STEINER TREE IN GRAPHS E ECG.

Proof. This can be shown with techniques, quite similar to those used
in previous sections on spanning-tree problems. Q.E.D.

5.2.42 Graph partitioning [ND 14]

Theorem 5.55 GRAPH PARTITIONING with weights given in unary nota
tion E LCC.

Proof. First we note, that without altering the problem, we can require
that each set Vi induces a connected subgraph of G = (V, E). We handle this
problem more or less similar to BOUNDED COMPONENT SPANNING FOREST.
Components are 'named' by the vertex that is the root. Each vertex has
this 'name' associated with it in h(v).

Transform the problem to the following problem:

INSTANCE: Graph G = (V, E), weights w(v) for every v E V,
l(e)for every e EE, sets X = V*{O,l, .. .,L:vEVw(v)}*V,
Y = {O}, positive integer K $ IVI, positive integer B.

QUESTION: Are there functions f: V---+ X, g: E---+ Y, such
that

Q.E.D.

1. Vv EV: h(v) = LwEN1 (v)-{v};fi(w)=v(f2(w) + w(w)).
2. Vv EV: h(v) + w(v) $ B.

3. Vv EV: h(v) = v, or (fi(v) E Ni(v)- {v} and h(v) =
h(f1(v))).

4. L l((v,w))s;J.
(v,w)EE;h(v)#h(w)

54

5.2.43 Acyclic partitioning [ND 15]

This problem can be handled more or less similar as GRAPH PARTITIONING.

Theorem 5.56 ACYCLIC PARTITIONING with weights given in unary nota
tion E LCC.

Proof. In order to represent the acyclic property of the graph G', we
can associate with each component a number (with f 4); and require for each
edge (v,w) EE, that f4(v) ~ f4(w). (Note that N1(v) denotes the vertices
adjacent ot equal to v, without regard to the direction of the edges.)

Transform the problem to the following problem:

INSTANCE: Directed graph G = (V, A), weights w(v) for
every v E V, l(e) for every e E A, sets X = V *
{O, 1, ... , LvEV w(v)} * V, Y = {O}, positive integer J(~ IVI,
positive integer B.

QUESTION: Are there functions f: V ~ X, g: A~ Y, such
that

1. Vv EV: h(v) = LwEN1(v)-{v};fi(w)=v(h(w) + w(w)).

2. Vv EV: h(v) + w(v) ~ B.

3. Vv EV: h(v) = v, or (J1(v) E Ni(v)- {v} and h(v) =
hU1(v))).

4. V(v,w) EE: h(v) = h(w) ~ f4(v) = f4(w).

5. V(v,w) EE: f4(v) ~ f4(w).

6. L l((v,w))~J.
(v,w)EA;h(v)i=h(w)

Q.E.D.

5.2.44 Max cut [ND 16]

Theorem 5.57 MAX CUT E 1-ECC.

Proof. Transform to the following problem:

INSTANCE: Graph G = (V, E), sets X = {O, 1}, Y {O},
positive integer K, a weight w(e) for each e EE.

55

QUESTION: Are there functions f: V--+ X, g: E--+ Y, such
that

L IJ(v)- f(w)I · w(e);:::](
e=(v,w)EE

Q.E.D.

5.2.45 Minimum cut into bounded sets [ND 17]

Theorem 5.58 MINIMUM CUT INTO BOUNDED SETS E 2-ECC.

Proof. Transform to the following problem:

INSTANCE: Graph G = (V, E), sets X = {O, 1}, Y = {O},
positive integer K, a weight w(e) for each e E E, positive
integer B ~ IV I , specified vertices s, t E V.

QUESTION: Are there functions f : V --+ X, g : E --+ Y, such
that

1. f(s) = 0.

2. J(t) = 1.

3. IVI - B ~ L f (v) ~ B.
vEV

4. L IJ(v)-f(w)l·w(e);:::K.
e=(v,w)EE

Q.E.D.

5.2.46 Longest Circuit [ND 28]

Theorem 5.59 LONGEST CIRCUIT E ECG.

Proof. Transform to the following problem:

INSTANCE: Graph G = (V, E), sets X = ({O, 1, ... , IVI - 1} *
V * V) U { E }, Y = {O}, positive integer](, a length l(e) for
each e EE.

QUESTION: Are there functions f: V--+ X, g: E--+ Y, such
that

1. Vv E V : if J(v) -:J E, then h(v) and h(v) are neighbors
of v.

56

Q.E.D.

2. 'v'(v,w),(w,v) EV: if f(v) =/=€and h(v) = w, then
J(w) =/= €and h(w) = v and (f1(v) = 0 or fi(w) =
fi(v)-1).

3. 'v'(v,w),(w,v) EV: if J(v) =/=€and h(v) = w, then
J(w) =/= €and h(w) = v and (f1(w) = 0 or fi(w)
fi(v)+l).

4. There is exactly one vertex v E V, with f 1 (v) = 0.

5. I: l(e) 2: K, where the sum is taken over all edges (v,w),
with h(v) =wand h(w) = v.

5.2.47 Longest Path [ND 29]

Theorem 5.60 LONGEST PATH E ECG.

Proof. Similar to the proof of theorem 5.59 Q.E.D.

5.2.48 Chromatic Index

Scheffler and Seese (24] show that this problem is solvable in linear time for
graphs with given tree-decomposition with treewidth, bounded by a con
stant, and degree bounded by a constant. This result can also be obtained
with the following theorem.

Theorem 5.61 CHROMATIC INDEX E 1-LCC.

Proof. By using that the chromatic index of a graph is either its maxi
mum degree, or its maximum degree +1, hence is bounded by a constant, for
constant degree graphs, it follows easily that CHROMATIC INDEX E 1-LCC.

Q.E.D.

The CHROMATIC INDEX problem is solvable in polynomial time, (with
a similar, but slightly more involved technique) for graphs with bounded
tree-width, but without a bound on the degree [7].

57

VERTEX COVER 1 [3] 1 [3]
DOMINATING SET 1 [3] 1 [3]
DOMATIC NUMBER 1 [24] 'P'
CHROMATIC NUMBER 1 [3] 1 [3]
MONOCHROMATIC TRIANGLE 1 [24] '1'
FEEDBACK VERTEX SET p p
FEEDBACK ARC SET p p

PARTIAL FEEDBACK ARC SET 1 (fixd L) ?
MINIMUM MAXIMAL MATCHING 1 p

PARTITION INTO TRIANGLES 1 p

PARTITION INTO ISOMORPHIC CONNECTED

SUBGRAPHS p ?
PARTITION INTO HAMILTONIAN SUBGRAPHS 1 p

PARTITION INTO FORESTS p p
PARTITION INTO CLIQUES 1 '1'
PARTITION INTO PERFECT MATCHINGS 1 p

COVERING BY CLIQUES p ?
COVERING BY COMPLETE BIPARTITE

SUBGRAPHS p ?
CLIQUE 'l' [24]; 2 2; '1'
INDEPENDENT SET 1 [3] 1 [3]
INDUCED PATH 1 [24](fixd K); P p

BALANCED COMPLETE BIPARTITE SUBGRAPH 3; '1' 3; '1'
BIPARTITE SUBGRAPH 1 1
DEGREE-BOUNDED CONNECTED SUBGRAPH p ?
TRANSITIVE SUBGRAPH 1 ?

CUBIC SUBGRAPH 1 [24] p

HAMILTONIAN COMPLETION p p

HAMILTONIAN CIRCUIT '1' [3] 'l' [3]
SUBGRAPH ISOMORPHISM for connected graphs P (ast) N [27]
GRAPH CONTRACTABILITY to a fixed graph H p p

GRAPH HOMOMORPHISM to a fixed graph H p p

58

GRAPH GRUNDY NUMBERING 1 ?
KERNEL 1 p

K-CLOSURE 1 1
INTERSECTION GRAPH BASIS p ?

DEGREE K SPANNING TREE '1' [24] (fixd k); P p

MAXIMUM LEAF SPANNING TREE 'l' [24] p

SHORTEST TOTAL PATH LENGTH
SPANNING TREE p ?

BOUNDED DIAMETER SPANNING TREE p p

ISOMORPHIC SPANNING TREE p N
BOUNDED COMPONENT SPANNING

FOREST (weak version) p ? (P, fixd B)
STEINER TREE IN GRAPHS '1' [24] (fixd B,k);

p p

GRAPH PARTITIONING (weak version) p ?
ACYCLIC PARTITIONING (weak version) p ?
MAX CUT 1 1
MINIMUM CUT INTO BOUNDED SETS 2 2
LONGEST CIRCUIT p p

LONGEST PATH p p

CHROMATIC INDEX 1 [24] 'P' [7)

Table 1:
Overview of complexity results of several problems, restricted to graphs with
given tree-decomposition with bounded treewidth. In the first column, the
complexity of the problem, restricted to TWD(k, d) (k, d fixed) is given; in
the second column, the complexity when restricted to TW(k). Keys: 1, 2,
3: problem in 1-LCC, 2-LCC, 3-LCC (first column), or 1-ECC, 2-ECC or
3-ECC (2nd column), hence solvable in linear, quadratic or cubic time, for
the specific classes of graphs. Also solvable in polynomial time, for graphs
with given tree-decomposition with logarithmic tree-width (and, in the case
of column 1, degree bounded by a constant). '1': problem solvable in linear
time. P: problem in LCC or ECC, hence solvable in polynomial time. 'P':
Problem solvable in polynomial time. N: Problem NP-complete. ?: Open,
whether problem solvable in polynomial time or not. (*): For Subgraph
Isomorphism, the larger graph G must have the bounded tree-width. Other
restrictions are given in the table.

59

6 Overview of results and final remarks

6.1 Overview of results

In table 1 we give an overview of the known results for the considered prob
lems. For many other (NP-complete) graph decision problems, similar re
sults can be obtained.

6.2 Problems, that are not in LCC, (unless P = NP)

In this section we give a number of problems, that are not in LCC (or any
of its subclasses), unless P = NP. Results of this type follow directly if the
problem is NP-complete, when restricted to a class of graphs with bounded
tree-width (and bounded degree).

Theorem 6.1 If P 'f:. NP, then

1. BANDWIDTH <t. LCC.

2. DIRECTED BANDWIDTH </. LCC.

3. MINIMUM CUT LINEAR ARRANGEMENT </. LCC.

4. WEIGHTED DIAMETER </.ECG.

5. BICONNECTIVITY AUGMENTATION </. LCC.

6. STRONG CONNECTIVITY AUGMENTATION </. LCC.

7. ISOMORPHIC SPANNING TREE </. ECG.

Proof. BANDWIDTH and DIRECTED BANDWIDTH are NP-complete for
trees with degree 3. BICONNECTIVITY AUGMENTATION and STRONG CON
NECTIVITY AUGMENTATION are NP-complete for graphs, without edges.
WEIGHTED DIAMETER is NP-complete for trees. MINIMUM CuT LINEAR
ARRANGEMENT is NP-complete for series-parallel graphs (= graphs with
treewidth '.S 2) [20]. One can show that ISOMORPHIC SPANNING TREE is
NP-complete, when restricted to graphs with tree-width ::; 3, by transforma
tion from 3-PARTITION. From theorem 3.5 now the result follows. Q.E.D.

For SUBGRAPH ISOMORPHISM for connected graphs, a similar result
holds. This problem is not in ECC (unless P = NP), because it is NP
complete in the case that G and H both are outerplanar graphs [27]. (Re
call that each outerplanar graph has treewidth at most 2.) Note that this
problem is in LCC, hence it separates the classes TW(k) and TWD(d, k)

60

m complexity. (This result follows also from the result for ISOMORPHIC
SPANNING TREE.)

For the OPTIMAL LINEAR ARRANGEMENT problem, Sudborough [25] an
nounces work with Sun, which suggests that this problem is NP-complete,
even when restricted to series-parallel graphs (hence OPTIMAL LINEAR AR
RANGEMENT r/. ECC).

Also, all problems, that are not in NP, will be not in LCC or any of its
subclasses.

Theorem 6.2 LCC ~ NP.

Proof. One can guess f and g non-deterministically in polynomial time,
and then check in polynomial time whether EIJPvalp(D, v, flNc(v)' YIMc(v))

vEV
E Rp or::$ K, for 1::; p::; m + 1. Q.E.D.

6.3 Final remarks

Although the formalisms may look complicated, we feel that the methods
exposed in this paper will not be very difficult to use in practice; in particu
lar, for problems in C-LCC and C-ECC and some others, it will be possible
to obtain algorithms for these problems on graphs with treewidth ::; k, that
are reasonably easy to implement, and are reasonably efficient, for small
values of k.

Often, easy improvements on the time needed by applying the general
method on specific problems can be made by using the specific characteristics
of the problem. It was not the purpose of this paper to obtain the "best"
algorithm for each specific problem.

The algorithms in this paper can be modified to run on a parallel ma
chine, e.g. a EREW PRAM. One can find a tree-decomposition with tree
width at most a constant k in poly-logarithmic parallel time, with a polyno
mial number of processors. The dynamic programming algorithms of section
3 can be transformed to parallel algorithms, that use a polynomial number
of processors (linear, for problems in 1-LCC, 1-ECC), and O(log n) time or
O(log2 n) time on a EREW PRAM. These results will be reported elsewhere.

References

[1] S. Arnborg. Efficient algorithms for combinatorial problems on graphs
with bounded decomposability - A survey. BIT, 25:2-23, 1985.

61

[2] S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of finding
embeddings in a k-tree. SIAM J. Alg. Disc. Meth., 8:277-284, 1987.

[3] S. Arnborg and A. Proskurowski. Linear Time Algorithms for NP-Hard
Problems on Graphs Embedded in k-Trees. TRITA-NA-8404, Depart
ment Of Numerical Analysis And Computing Science, Royal Institute
of Technology, Stockholm, Sweden, 1984.

[4] B. S. Baker. Approximation algorithms for NP-complete problems on
planar graphs. In Proceedings 24th Ann. Symp. on Foundations of Com
puter Science, pages 265-273, IEEE Computer Society, Los Angeles,
1983. Preliminary version.

[5] M. W. Bern, E. L. Lawler, and A. L. Wong. Why certain subgraph com
putations require only linear time. In Proc. 26th Symp. on Foundations
of Computer Science, pages 117-125, 1985.

[6] H. L. Bodlaender. Classes of Graphs with Bounded Treewidth. Techn.
Rep. RUU-CS-86-22, Dept. Of Comp. Science, University of Utrecht,
Utrecht, 1986.

[7] H. L. Bodlaender. A polynomial algorithm for Chromatic Index on
graphs with bounded treewidth. Unpublished result.

[8] E. J. Cockayne, S. E. Goodman, and S. T. Hedetniemi. A linear al
gorithm for the domination number of a tree. Inform. Proc. Letters,
4:41-44, 1975.

[9] C. J. Colbourn and L. K. Stewart. Dominating cycles in series-parallel
graphs. Ars Combinatorica, 19A:107-112, 1985.

[10] D. Coppersmith and U. Vishkin. Solving NP-hard problems in 'almost
trees': vertex cover. Disc. Applied Match, 10:27-45, 1985.

[11] G. Cornuejols, D. Naddef, and W. R. Pulleyblank. Halin graphs and
the traveling salesman problem. Math. Programming, 26:287-294, 1983.

[12] M. R. Garey and D.S. Johnson. Computers and Intractability, A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, New
York, 1979.

[13] Y. Gurevich, L. Stockmeyer, and U. Vishkin. Solving NP-hard prob
lems on graphs that are almost trees and an application to facility
location problems. J. Assoc. Comp. Mach., 31:459-473, 1984.

62

[14) R. Hassin and A. Tamir. Efficient algorithms for optimization and
selection on series-parallel graphs. SIAM J. Alg. Disc. Meth., 7:379-
389, 1986.

[15) S. T. Hedetniemi, R. Laskar, and J. Pfaff. A linear algorithm for the
domination number of a cactus. Report 433, Dept. of Math. Sc., Clem
son Univ., Clemson, S.C., 1983.

[16) T. W. Hungerford. Algebra. Graduate Texts zn Mathematics 73,
Springer-Verlag, New York, 1974.

[17] T. Kikuno, N. Yoshida, and Y. Kakuda. A linear algorithm for the
domination number of a series-parallel graph. Discrete Appl. Math.,
5:299-311, 1983.

[18] R. Laskar, J. Pfaff, S. M. Hedetniemi, and S. T. Hedetniemi. On the
algorithmic complexity of total domination. SIAM J. Alg. Disc. Meth.,
5:420-425, 1984.

[19] B. Monien and I. Sudborough. Bandwidth-constrained NP-complete
problems. In Proc. 13th Ann. ACM Symp. on Theory of Computing,
pages 207-217, Assoc. For Computing Machinery, New York, 1981.

[20] B. Monien and I. Sudborough. Min cut is NP-complete for edge
weighted trees. In Proc. of Int. Conj. Automata, Languages, and Pro
gramming !GALP '86, Springer Verlag Lecture Notes in Comp. Science,
Vol 226, 1986.

[21] A. Proskurowski and M. M. Syslo. Efficient vertex- and edge-coloring
of outerplanar graphs. Report UO-CIS-TR-82-5, Dept. of Computer
and Information Sc., Univ. of Oregon, Eugene, Ore., 1982.

[22] N. Robertson and P. Seymour. Graph minors. II. Algorithmic aspects
of tree-width. J. of Algorithms, 7:309-322, 1986.

[23] J. B. Saxe. Dynamic programming algorithms for recognizing small
bandwidth graphs in polynomial time. SIAM J. Alg. Disc. Meth.,
1:363-369, 1980.

[24] P. Scheffler and D. Seese. A combinatorial and logical approach to
linear-time computability. 1986. Extended abstract.

63

[25] I. H. Sudborough. "Cutwidth" and related graph problems. Bulletin
of the EATCS, 79-110, Feb. 1987.

[26] M. Syslo. NP-complete problems on some tree-structured graphs: a re
view. In M. Nagl and J. Perl, editors, Proc. WG'83 International Work
shop on Graph Theoretic Concepts in Computer Science, pages 342-353,
Univ. Verlag Rudolf Trauner, Linz, West Germany, 1983.

[27] M. Syslo. The subgraph isomorphism problem for outerplanar graphs.
Theor. Comput. Science, 17:91-97, 1982.

[28] K. Takamizawa, T. Nishizeki, and N. Saito. Linear-time computability
of combinatorial problems on series-parallel graphs. J. ACM, 29:623-
641, 1982.

[29] J. Wald and C. Colbourn. Steiner trees, partial 2-trees, and minimum
IFI networks. Networks, 13:159-167, 1983.

[30] J. Wald and C. J. Colbourn. Steiner trees in outerplanar graphs. In
Proc. 13th Southeastern Conj. on Combinatorics, Graph Theory, and
Computing, Utilitas Mathematica Publishing, Winnipeg, Ont., 1982.

64

Contents

1 Introduction 2

2 Definitions and preliminary results 3
2.1 Graph definitions . . 3
2.2 Algebraic definitions . . . 5
2.3 Other notations 7
2.4 Graph decision problems . 7
2.5 Local condition composition problems and edge condition

composition problems . 8

3 Polynomial time algorithms for LCC-problems and ECC-
problems on graphs with bounded treewidth 13

4 Small-degree polynomial time algorithms for subclasses of
LCC and ECC 22

5 Problems in LCC and ECC
5.1 Some basic techniques
5.2 A list of problems in LCC and ECC

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9
5.2.10
5.2.11
5.2.12
5.2.13
5.2.14
5.2.15
5.2.16
5.2.17
5.2.18
5.2.19

Vertex cover [GT 1] .. .
Dominating set [GT 2] .. .
Domatic Number [GT 3] ..
Chromatic Number [GT 4]
Monochromatic triangle [GT 6]
Feedback vertex set [GT 7] ..
Feedback arc set [GT 8]
Partial feedback edge set [GT 9]
Minimum maximal matching [GT 10]
Partition into triangles [GT 11]
Partition into Isomorphic subgraphs [GT 12]
Partition into Hamiltonian Subgraphs [GT 13]
Partition into forests [GT 14]
Partition into cliques [GT 15]
Partition into perfect matchings [GT 16] .
Covering by cliques [GT 17]
Covering by complete bipartite subgraphs [GT 18]
Clique [GT 19]
Independent set [GT 20]

65

24
24
26
26
27
27
29
29
30
30
31
32
33
33
34
34
35
36
36
37
37
39

5.2.20 Induced path [GT 23] 39
5.2.21 Balanced complete bipartite subgraph [GT 24] 40
5.2.22 Bipartite subgraph [GT 25] 41
5.2.23 Degree-bounded connected subgraph [GT 26] 41
5.2.24 Transitive subgraph [GT 29] . . . 42
5.2.25 Cubic subgraph [GT 32] 42
5.2.26 Hamiltonian completion [GT 34] 43
5.2.27 Hamiltonian circuit [GT 37] and variants 44
5.2.28 Subgraph Isomorphism [GT 48] . 45
5.2.29 Graph contractability [GT 51] . . . 46
5.2.30 Graph homomorphism [GT 52] . . 47
5.2.31 Graph grundy numbering [GT 56] 48
5.2.32 Kernel [GT 57] 48
5.2.33 K-closure [GT 58] 49
5.2.34 Intersection graph basis [GT 59] 49
5.2.35 Degree constrained spanning tree [ND 1] . 49
5.2.36 Maximum leaf spanning tree [ND 2] . . . 50
5.2.37 Shortest total path length spanning tree [ND 3] . 51
5.2.38 Bounded diameter spanning tree [ND 4] . . . 52
5.2.39 Isomorphic spanning tree [ND 8] 53
5.2.40 Bounded component spanning forest [ND 10] 53
5.2.41 Steiner tree in graphs [ND 12] . 54
5.2.42 Graph partitioning [ND 14] 54
5.2.43 Acyclic partitioning [ND 15] . . 55
5.2.44 Max cut [ND 16] 55
5.2.45 Minimum cut into bounded sets [ND 17] . 56
5.2.46 Longest Circuit [ND 28] 56
5.2.47 Longest Path [ND 29] 57
5.2.48 Chromatic Index 57

6 Overview of results and final remarks
6.1 Overview of results
6.2 Problems, that are not in LCC, (unless P = NP)
6.3 Final remarks

66

60
60
60
61

