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Errata 
Hierarchical Correctness Proofs for Distributed Algorithms 

Nancy A. Lynch and Mark R. Tuttle 

(MIT Technical Report MIT/ LCS /TR-387 dated April 1987) 

At the top of page 21, we make the following definitions: 

The action signatures {Si : i E I} are compatible if for all i,J E I we have 
out(S;) n out(S1) = 0 and int(Si) n acts(S1) = 0. The objects {Oi: i EI} are 
compatible if their action signatures are compatible. 

Add to these the following definitions: 

The action signatures {Si : i E I} are strongly compatible if they are compatible 
and no action is contained in an infinite number of the action signatures S;. 
The objects { O; : i E I} are strongly compatible if their action signatures are 
strongly compatible. 

Notice that a finite collection of compatible objects are strongly compatible, and that 
any result holding for compatible objects must also hold for strongly compatible objects. 
Lemma 7 holds only for strongly compatible schedule modules, and hence Corollary 8 and 
Lemmas 9 and 20 hold only for strongly compatible objects. 

Finally, the conclusion is missing from the statement of Lemma 30 on page 45. The 
final sentence of the statement of Lemma 30 should be "Then A satisfies B." 
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Chapter 1 

Introduction 

A major obetacle to progreu in the field of distributed computation ia that many of the 
important algorithms, eapecially communicatiom alaorithma, aeem to be too complex· 
for rigorous undentandin1. Althoup the deasipen of th .. alaorithml are often able 
to convey an intuitive undentandina of how their alaorithma work, it ia often difBcult to 
make this intuition formal and precise. When theae alaorithma are riaoroualy analysed, 
the work ia 1enerally carried out at a very low level of ab.traction, involvina meuag• 
and local proceu variabl•. Reuonin1 precisely about the interaction between theae 
meuaaea and variabl• can be extremely difBcult, and the rmultinc proofs of correctneu 
are 1enerally quite difBcult to undentand. 

An indication that the 1ituation ia not completely hopel .. ia the fact that the 
dealignen are able to 1ive high-level, althoup informal, deacriptiom of the key ideu 
behind their al1orithms. For imtance, the distributed minimum 1panniq tree al10-
rithm of (GHS83] can be interpreted u eeveral familiar manipulatiom of a araph. What 
ia needed ia a way of formalizinc these hi&h-level ideu, and incorporatin1 them into a 
proof of the detailed algorithm'• correctneu. 

One promiain1 approach ia to beain by comtrudiq a hiah-level dacription of 
the algorithm. Thia dacription could it.cl/ be an alsorithm in which hiah-level data 
structures (1uch u grapha) serve u 1tate1, and proceu actiom manipulate these data 
structures. Thia alsorithm could then be proven correct Ulinl rigoroUI veniom of the 
high-level, intuitive arpmenta given by the aleorithm'1 d•ignen. Succeuive refine
ment. of thia alaorithm could then be deftned at 1ucceuively lower levela of detail, and 
each shown (risoroU1ly) to simulate the prececiinc alsorithm. Ideally, thia approach 
would allow U1 to UH in the proof of simulation any property that hu already been 
proven for preceding levels. In thia way, the high-level intuition used to explain the 
algorithm would become part of a risoroua proof of the full algorithm'• correctneu. 

Two years ago, we began to comider thia approach for a fairly simple but interesting 
algorithm for resource allocation in an uynchronoua network, an algorithm originally 
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suggested by Schonhage in [Sch80]. Correctness conditions for this resource arbitration 
problem include both safety and liveness conditions:1 the mutual ezclUBion condition 
that at most one user is using the resource at any given time; and the no lockout 
condition that if every user holding the resource eventually returns the resource to the 
arbiter, then the arbiter will eventually grant the resource to every requesting user. The 
algorithm can be described at three levels of abstraction. At the top level is a simple, 
set-theoretic statement of the problem, itself described as an algorithm. At the second 
level is a graph-theoretic description of the arbiter, and how it moves the resource 
around the network. At the third and lowest level is a distributed implementation of 
the arbiter, describing in terms of messages and local process variables the protocol 
individual processors must follow. 

It soon became apparent, however, that traditional models and proof techniques (see 
[OG76], [LS84b], and [Hoa85], for example) are not adequate to describe interesting 
aspects of the problem statement, algorithm, and correctness proofs. In particular, 
while the problem seems most naturally formulated in terms of the game-theoretic 
interaction between the users of the arbiter and the arbiter itself, these models require 
that the problem be formulated in terms of system states, and do not capture this 
game-theoretic aspect of the problem in a natural way. Furthermore, the interaction 
between the users and the arbiter clearly distinguishes the arbiter's input actions from 
its output actions. Input to the arbiter (a request for the resource) can occur at any 
time, regardless of whether the arbiter is in a position to grant the resource. Output 
(the granting of requests) occurs only under the control of the arbiter. This notion 
of control, the notion that one system component may completely determine when a 
particular action is performed, is not easily expressed in these models. We note that 
satisfaction of the no lockout condition requires that the arbiter be given "fair turns" 
to produce output, rather than simply being overwhelmed by a flood of input. The 
ability to express this notion of "fair turns" depends heavily on the ability to express 
the notion of one process controlling the performance of an action. 

We were therefore led to the development of a new model of distributed compu
tation in asynchronous systems, the input-output automaton. This model is based on 
(possibly infinite-state) nondeterministic automata. Automaton transitions are labeled 
with the names of process actions they represent. These actions are partitioned into 
sets of input and output actions, as well as internal actions representing internal pro
cess actions. Input actions have the unique property of being enabled from every state; 
that is, for every input action there is a transition labeled with this action from every 
state. In other words, the system must be able to accept any input at any time. Thus, 

1 Informally, propertiea required of a program can be partitioned into aa/etr propcrliu and liveneaa 
propcrtiea. A safety property (such u mutual exclusion [Dij65]) says that nothing •bad• will ever hap
pen, and a liveneu property (such u termination} says that something •good• will eventually happen. 
Alternatively, safety properties describe allowed behavior, and liveneu properties describe required be
havior. Alpern and Schneider give formal definitions of safety and liveneu in [AS86J in terma of Biichi 
automata. 
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a very strong distinction is made between actions locally-controlled by the system (out
put and internal actions) and actions controlled by the system's external environment 
(input actions). This distinction captures the game-theoretic interaction between the 
system and its environment alluded to above, and gives our model an event-driven 
flavor characteristic of many asynchronous distributed algorithms. 

In order to construct models of complex systems from models of simpler system 
components, we define a simple notion of automaton composition. Loosely speaking, 
the composition of a collection of automata is their Cartesian product, with a state of 
the composition being a tuple of states from the component automata, one from each 
component. In order to model communication, we require that automata synchronize 
the performance of common (shared) actions. H "' is an output action of .A and an 
input action of B, then performance of "' by both automata models communication 
from .A to B. With simple syntactic restrictions on the composition of automata, we 
ensure that composition preserves the notion of control mentioned above: No system 
component may block the performance of an output action by any other component. 

Since automata are able to receive every input in every state, it is possible for an 
automaton to be flooded with input without having the opportunity to perform actions 
required in response to the input received. The satisfaction of most interesting liveneu 
conditions, however, requires that this does not happen. The notion of fair computation 
therefore plays a fundamental role in our model. Informally, a computation of a system 
is said to be fair if every system component is always eventually given the chance to 
take a step. Since an automaton may model an entire system as well as a single 
system component, it is necessary to retain certain information about the structure of 
the system being modeled. In particular, it is necessary to retain information about 
which actions are controlled by the same system component. With this information it is 
possible to determine from a given system behavior whether each system component has 
been given the chance to make computational progress infinitely often. We therefore 
associate with every automaton a partition of its locally-controlled actions (i.e., its 
internal and output actions). The interpretation of this partition is that each class 
consists of the locally-controlled actions of one system component. With this partition, 
we are able to define a simple notion of fair computation in our model. 

Since our model concentrates on the input-output interaction between a system 
and its environment (rather than system states), our notion of a problem to be solved 
is a collection of system behaviors (sequences of input and output actions) considered 
acceptable (rather than conditions on system states). An automaton may be considered 
a solution to such a problem if every behavior exhibited by the automaton is contained 
in this set of acceptable behaviors. The automaton solves the problem in the sense 
that any correctneu condition satisfied by each behavior in this set is satisfied by each 
behavior of the automaton. As previously mentioned, however, fair computation is 
crucial to the satisfaction of most interesting liveness conditions. We therefore require 
only that the fair behaviors of an automaton solving the problem be contained in the 
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set of acceptable behaviors. We note that it is easy to fall into trivial correctness 
definitions, allowing trivial or uninteresting solutions to a problem. Our condition 
that an automaton be required to accept any input in any state, together with our 
notion of fairness, avoids this problem. The requirement that input be constantly 
enabled ensures that our solutions are able to respond to all patterns of input. The 
use of fairness ensures that the correctness of an solution will be judged only by those 
behaviors in which the system is actually given the chance to make progress. 

Our simple correctness condition, the requirement that the fair behaviors of an 
automaton be contained in some set of acceptable behaviors, is not a new style of cor
rectness conditions. It can be found, for instance, in the work of Lynch and Fischer 
in [LF81], and is similar to Hoare's notion of specification satisfaction in [Hoa85]. The 
simplicity of such correctness conditions do, however, lend a uniform structure to cor
rectness proofs in our model. Recall that our notion of a well-structured correctness 
proof involves a sequence of models Mi, ... ,Mn, each modeling an algorithm at succes
sively lower levels of detail. The proof of the algorithm's correctness involves showing 
that each model "simulates" the previous model in the sequence. That is, that the set 
of (fair) behaviors exhibited by Mi are contained in the set of (fair) behaviors exhibited· 
by Mi-1· In this sense, each model Mi-l determines a problem that the model Mi is 
required to satisfy. The problem of showing that Mi "simulates" Mi~l is therefore the 
problem of showing that Mi solves the problem determined by Mi-l· As an aid in doing 
so, we develop the notion of possibilitiea mappings that enable us to relate behaviors of 
one automaton to another. 

We note that our model may be considered a special case of other models such as 
Milner's CCS and Hoare's CSP (see [Mil80] and [Hoa85]). Neither of these models, 
however, is entirely suitable for our purposes. In the first place, although Milner has 
found them to be mathematically superfluous in CCS, we find the notion of a process 
state a convenient descriptive tool when describing algorithms. More important, how
ever, is the fact that fairness is difficult to express in CCS. Notions of fairness that 
have been studied in connection with CCS can be classified as either weak fairness or 
strong /airnesa (see [CS84], [Par85], and [Fra86]). Weak fairness requires that if an 
action 1r' is continuously enabled, then it must be performed infinitely often. Strong 
fairness, on the other hand, requires that 1r' be performed infinitely often even if it is 
enabled only infinitely often. These notions of fairness, however, are not satisfactory in 
event-driven systems. In such a system, for example, a process is always able to accept 
interrupts, but should not be required to interrupt itself unless some external source 
requests the interrupt. The problem is again the notion of control discussed above. 
There is no notion in CCS of an interface between processes from which we can deduce 
which which process controls the performance of a given action. By making a clear 
distinction between input and output actions, and by restricting ourselves to a simple 
notion of composition, we find that fairness is very simple to describe in our model. 

Similar comments can also be made for CSP with respect to fairness (see [KdR83], 
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[Rei84), and [Fra86]). In fact, CSP further complicates the problem by identifying 
a process with (among other things) all finite behaviors of the process. Since it is 
impoesible to deduce the infinite behavior of a process from its finite behaviors, CSP 
precludes the study of infinitary properties such as fairness without extending the 
semantics of a CSP process. 

We note further that the complexity of the operations defined in CSP dooms the 
language to a complex semantics, making reasoning about systems of processes unin
tuitive and cumbersome. Reading between the lines of Hoare's book [Hoa85], it seems 
that Hoare himself would prefer to retain for nondeterministic processes the automata
theoretic (trace-theoretic2) semantics he develops for deterministic processes. However, 
the first nondeterministic operation introduced by Hoare is the nondeterministic OR, n, 
an operation combining two processes P and Q to form a process P n Q that nonde
terministically chooses (itself) to behave either like P or Q. A second operation, D, 
combines P and Q to form a process PDQ allowing the environment to determine 
whether PDQ behaves like P or Q. Both P n Q and PDQ have the same traces (since 
each behaves either like P or Q), but differ subtly in the fact that the environment 
has no control or knowledge of the choice P n Q makes between P and Q. Thus, it is 
possible for P n Q and PDQ to be placed in an environment offering an action "" as 
input, causing P n Q to deadlock while PDQ does not. This forces Hoare to make his 
first break from the trace-theoretic semantics of deterministic processes and define the 
notion of a refuaal, a set of actions a process might refuse to perform. In our model, 
however, due to the unique property of input actions, a process will not block if its 
environment offers "" as input. Thus, by suitably restricting our model, we are able to 
retain the intuitive, mathematically-tractable semantics of automata. 

We note that there a.re systems of processes that can not be expressed in our model. 
Clearly, one such example is a system in which one process can block the progress of 
another as in CSP. These omissions, however, are the result of deliberate decisions, 
since, for example, it would be easy to define a notion of composition that allows us 
to express the process blocking of CSP. The simplicity of our model and its ease of use 
a.re the result of a careful limitation of its scope. Our experience has been that our 
model is sufficiently general to allow description of a significant number of interesting 
systems. We note that our model has already been found expressive enough to de
scribe work in network algorithms (see [LLW87) and the third chapter of this thesis), 
concurrency control algorithms (see [LM86J, [HLMW87], [FLMW87], and [GL87]), mu
tual exclusion algorithms (see [Wel87]), hardware register algorithms (see [Blo87]), and 
data.flow computation (see [Lyn86]}. Furthermore, in many of these papers our model 
has been found to be extremely useful when identifying the interface between system 
components, and discovering a system's natural decomposition. 

Just as popular models of computation do not seem appropriate for our work, 
popular proof techniques also seem inappropriate. For example, "Hoare logics" a.re 

~A trace i.e a sequence of actions performed by a system or proceaa. 
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a well-known method for proving that programs satisfy partial correctness &BSertions. 
Loosely speaking, a partial eorrutneas aasertion is a statement about the behavior of a 
terminating program. A program is said to satisfy such an assertion if it is satisfied by 
every terminating execution of the program. Therefore, a partial correctness assertion 
says nothing about program termination, but describes what will be true if and when 
the program halts. Hoare describes in [Hoa69) a method for proving that sequential 
programs satisfy partial correctness assertions. His method makes uae of the observa
tion, first noted by Floyd in [Flo67), that partial correctness assertions satisfied by a 
program S can be expressed in terms of predicates P and Q describing the program 
state before and after the execution of S. More form.ally, if P and Q are assertio111 
about program variables and S is a program statement, P{S}Q denotes the assertion 
that if P is true before the execution of S begins, then Q will be true if and when S 
terminates. Given a few simple axioms, Hoare shows how to derive partial correctness 
assertions P{S}Q for arbitrary programs S. In the first step of the derivation, each 
statement Si of S is annotated with assertions Pi and Qi. In the second step, each 
assertion Pi{Si}Qi is proven uaing axioms describing the various programming lan
guage constructs. Finally, general rules of inference (independent of any programming 
language) are used to combine these assertions into a proof of P{S}Q. 

Hoare's method has proven to be a very effective method of verifying sequential 
programs. Most interestingly, it is possible to write hierarchical correctness proofs. 
Each program module S can be specified by a partial correctness assertion P{S}Q. 
Having proven each assertion P{S}Q, these assertions can be uaed in the proof of 
the larger program without reference to the implementation of S. Furthermore, since 
reasoning begins with a collection of partial correctness assertions characterizing pro
gram behavior and proceeds via rules of inference, this process can be automated if 
programmers are willing to supply certain intermediate assertions. Compilers for the 
language Euclid, for example, attempt to construct as much of the proof as possible 
(see [LGH*78]). Apt has written a comprehensive survey of Hoare logics in {Apt81] 
and [Apt84). 

In [OG76], Owicki and Gries extend Hoare's method to distributed and parallel pro
grams. Here, too, each statement Si of each process S is annotated with aaeertions Pi 
and Qi, and partial correctness assertions P{S}Q3 are proven for each process S in 
isolation using a sequential programming logic similar to Hoare's. Unlike sequential al
gorithms, however, it is pouible for one process action to affect the state of another. In 
order to prove partial correctness of an entire system of process, it is necessary to prove 
that no process can invalidate assertio111 appearing in the sequential proof of another 
process's partial correctness. Owicki and Gries refer to this condition as noninterfer
ence. For example, if P{S}Q appears in the proof of one process and the assertion R 
labels one statement appearing in another process, noninterference requires that the 
assertion (P /\ R){S}(Q /\ R) hold; that is, the execution of S does not invalidate R. 

3 0wicki and Gries actually uae the notation {P}S{Q}. 
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This method of Owicki and Gries has been found to be quite successful, just as Hoare's 
method has been found to be successful for sequential programs. Gries has constructed 
a nice proof of Dijkstra's on-the-fly garbage collector in [Gri77], an algorithm with such 
fine interleaving that the only atomic action required is memory reference. Levin and 
Gries show in [LG81] how the method of Owicki and Gries can be used to verify CSP 
processes. Furthermore, Schlichting and Schneider show in [SS84] how message passing 
primitives can be incorporated into this framework. 

As with sequential programs, the partial correctness of systems may be specified 
with partial correctness assertions of the form P{S}Q. Due to the possibility of process 
interference, however, it is not possible to specify the partial correctness of individual 
processes in terms of such assertions. The specification of a process must also describe 
its environment if such assertions are to be used. Without a description of its en
vironment, it is impossible to prove that a process satisfies most partial correctness 
assertions. Furthermore, modification of a single process requires redoing a major por
tion of a system's proof of correctness since it must be shown that this modification 
does not violate partial correctness assertions appearing in the correctness proofs of 
other processes. Thus, both specifications and correctness proofs using partial correct-· 
ness assertions of the form P{S}Q lack an important modularity. We consider this 
lack of modularity to be a major problem in protocol verification. 

Lamport attempts to resolve this lack of modularity in [Lam80]. Here Lamport 
redefines the assertion P{S}Q to mean that if execution is begun anywhere inside S 
with P true, then executing S will leave P true while control is inside S, and will 
make Q true if and when S terminates. Such a definition is possible for Lamport since 
he allows the predicates P and Q to refer to program locations, whereas Owicki and 
Gries restricted P and Q to program variables. The advantage of Lamport's scheme 
is that partial correctness assertions for an entire system can be verified given partial 
correctness assertions specifying each system component. After system correctness has 
been proven from component specifications, any implementation of the components 
satisfying their specifications can be used in the system's implementation. Lamport's 
method, however, is not without its difficulties. For example, suppose that S is a 
system component making heavy use of shared variables. It seems difficult to construct 
assertions P that are invariant throughout the execution of S without knowing how S 
uses these shared variables. 

In our method, the problem of modular specification disappears since an environ
ment is implicitly specified by the fact that input actions are continuously enabled. (In 
other words, anything can happen in the environment of a process.) As a result, if 
a partial correctness assertion can be proven about process behavior, the partial cor
rectness assertion holds regardless of the process's actual environment. Thus in our 
method it is no longer necessary to prove noninterference after proving the correctness 
of individual processes. Furthermore, it is no longer necessary to redo any part of a 
correctness proof when a process is modified, other than the correctness of the mod-
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ified process itself. (A similar consequence of such input requirements can be found 
in [MCS82], [St&84], and [LM86].) Also, notice that Hoare-style specifications do not 
make clear the interface between a system component and its environment. As pre
viously mentioned, this interface is crucial to the definition of fair computation. In 
contrast, our model clearly defines this interface as the set of actions the process can 
perform, together with information about which actions denote input and output of 
the process. 

We note that due to the generality of automaton transitions, partial correctness 
assertions describing automaton transitions similar to those of Hoa.re describing com
mon programming language constructs may not always be easy to find. However, if 
transitions are described in terms of preconditions that must be satisfied before an ac
tion can be performed, and the effect of an action on an automaton state, then partial 
correctness assertions can be constructed for each action. Furthermore, the general, 
language-independent rules of inference used in Hoare-like systems are clearly valid in 
our model of computation. Thus, while we do not make use of such arguments in our 
work, it is possible to construct Hoare-like proofs of partial correctness assertions in 
our model. 

Notice that partial correctness assertions describe safety properties, and not liveness 
properties. Since there is no notion of system computation in these Hoare logics, 
there is no notion of eventuality. We note that safety properties can often be used to 
prove liveness properties. For example, Owicki and Gries show in [OG76] how well
foundedness arguments can be incorporated into Hoare logics to prove termination of 
programs. Alpern and Schneider go farther in [AS85] and show that the verification 
of both liveness and safety properties can be reduced to proving what are essentially 
partial correctness assertions. However, the specification of a liveness condition in 
terms of partial correctness assertions is often an unintuitive formulation. 

A more natural expression of such properties is possible with temporal logic. Tem
poral logic was introduced by Pnueli in [Pnu77] as an adaptation of classical modal 
logic suitable for reasoning about concurrent programs. The two paper series [MP81b] 
and [MP8la] by Manna and Pnueli is a thorough introduction to the expression of prop
erties of concurrent programs, and the verification of these properties, using temporal 
logic. Here the meaning of a system computation is a sequence of system states. The 
fundamental temporal operators are the unary operator a and its dual 0. Loosely 
speaking, a computation satisfies the expression OP, pronounced "henceforth P ," if P 
is true throughout the computation; and a computation satisfies the expression 0 P, 
pronounced "eventually P ," if there is a point during the computation at which P is 
true. Many interesting properties of computation may be specified with these simple 
operators. For instance, the expression D(P :::> OQ) states that the property P causes 
the property Q to hold; the expression DO P states that the property P holds infinitely 
often. 

Temporal logic is a useful abstraction with which to specify and reason about pro-
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gram behavior. Since the meaning of a computation is a sequence of states, temporal 
logic is able to express liveness properties as well as safety properties, and these ex
pressions are typically quite concise. Since reasoning in temporal logic begins with a 
collection of axioms characterizing program behavior, and proceeds via general rules of 
inference, reasoning in temporal logic has potential for automation. Furthermore, while 
Hoare logics make use of inference rules that are independent of any programming lan
guage, most of the work in a Hoare-style proof deals with language-specific semantics. 
In contrast, reasoning in temporal logic is valid for all programs. The difficulty, of 
course, is in abstracting from an implementation to a temporal logic characterization 
of its behavior, and this problem is often swept under the rug. 

A great deal of work in temporal logic concerns reasoning about system correctness 
after system components have been specified in terms of temporal logic (see, for ex
ample, [H080], [SM81J, [OL82], [Lam83J, (Sta84] and (NG085]). The most dramatic 
distinction between these works is the way in which temporal logic is used to describe 
system behavior. Schwartz and Melliar-Smith give purely temporal specifications of 
programs in [SM81]. In these specifications, even the notion of a process state has been 
replaced by temporal specifications. Consequently, the resulting specifications are quite 
complex, involving nested "until" operators in addition to the temporal operators de
scribed above. These specifications are often difficult to understand, and difficult to 
reason about. On the other hand, Hailpern and Owicki make great u&e of the notion of 
program state in [H080J. They add histor11 variables to the program state that describe 
the history of events over communication links, and reason about the values assumed 
by these variables. History variables are a convenient descriptive tool found in many 
proof styles, and the specifications produced by Hailpem and Owicki are generally easy 
to understand. The history variables, however, do not affect program behavior, and in 
proofs reasoning about history variables the history variables themselves seem extrane
ous. Between the extremes of (SM81] and [H080J is the work of Lamport in [Lam83]. 
Here the process state modeled consists only of program variables, and temporal logic 
assertions describe the sequence of values these variable assume. Although an automa
ton state can be seen as a natural extension of history variables, our proofs tend to 
have a B.avor similar to those of Lamport's in [Lam83]. 

While a great deal of work has studied the problem of reasoning about systems after 
system components have been specified in terms of temporal logic, less has been devoted 
to proving that an implementation actually meets its temporal logic specification. One 
attempt is that of Owicki and Lamport in [OL82], improving on the work of Lamport 
in [Lam77]. Since safety properties can be proven using methods of Owicki and Gries, 
of particular interest is the style of proving liveness properties Owicki and Lamport 
describe. Owicki and Lamport construct diagrams called proof lattices that outline the 
structure of a proof of a liveness property. Informally, a proof lattice is an acyclic 
directed graph with a single entr11 node having no incoming edges, and a single exit 
node having no outgoing edges. Nodes of the graph are labeled with assertions. A 
node labeled A with outgoing edges to nodes labeled A1, ••• , An denotes the assertion 
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that if A holda, then one of the assertions Ai, ... , An must eventually hold; that is 
A:::> <>(A1 V ..• V An)· Suppose each such assertion can be proven for a program. H the 
entry node is labeled with A and the exit with B, then the proof lattice a.mounts to a 
proof of the liveness property A:::> <>B for the program. Manna and Pnueli extend the 
use of proof lattices in [MP84). In this work, however, an automata-theoretic model 
of computation is explicitly defined, and proof rules are given for proving that each 
assertion denoted by edges of the proof lattice is satisfied by the system modeled by 
an automaton. We find this work a very satisfying example of how an automata
theoretic model of computation and temporal logic can be used together. Given an 
automata-theoretic description of system implementation, temporal logic provides a 
useful abstraction for reasoning about system behavior. While we have not fixed on 
one particular specification language, we feel that temporal logic and our automata.
theoretic model of computation can work well together. In particular, through the 
use of automata we are able to incorporate temporal logic into hierarchical correctness 
proofs. 

The use of abstraction is an important aspect of our style of algorithm verification~ 
Most work in the literature claiming to produce proofs with a hierarchical structure 
actually allow system components to be verified independently, and then combined 
to verify the correctness of the system. This notion of hierarchical verification is a 
restricted version of the notion we use in this work. Here we actually construct models 
of the entire system at conceptually different levels of abstraction, rather than merely 
combining local process states into global system states. 

Our work most closely resembles that of Lamport in [Lam83]. Here Lamport spec
ifies a program with a collection of state /unctions mapping program states into sets of 
values, a collection of initial conditions essentially defining the set of states in which 
the system may begin computation, and a collection of properties describing safety and 
liveness conditions. We note that the values to which states are mapped by state func
tions can be thought of as state variables describing relevant aspects of the system to be 
implemented. Furthermore, the properties included in the system specification define 
allowed and required changes in the values these variables assume. H these variables 
are collected into states, then the variables together with the properties essentially de
fine an automaton together with a collection of eventuality conditions restricting the 
computations of the automaton. H the program implementing the specified system is 
considered to be an automaton, as is implicitly the case in Lamport's work, then the 
state functions can be thought of as mappings from an automaton describing the sys
tem at one level of abstraction to an automaton describing the system at a higher level 
of abstraction. This is the technique used in our work. Our work is an improvement 
on that of Lamport's in the sense that we carry his style of specifications to its natural 
conclusion, making the automata-theoretic flavor of his work explicit. Furthermore, 
we make explicit his underlying assumption that what is important about a process 
is the externally observable behavior of the process. His work seems to imply that 
the variables and state functions must be describing some aspect of the system that 
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must appear in the implementation. We feel, however, that they a.re to be considered 
merely descriptive tools, and that the notion of subset containment used as the notion 
of correctness in this work is the notion of correctness actually underlying Lamport's 
work. 

Other work similar to ours is that of Stark in [Sta84J. Many of the aims and ideas 
underlying his work a.re the same as ours, but his model is much more general than 
ours. We find our model to be simpler and easier to use than Stark's, and expressive 
enough to describe most systems of interest. Work on hierarchical verification also 
includes that of Lam and Shanka.r in [LS84a]; Harel in [Har87); and Lamport, Lynch, 
and Welch in {LLW87]. Each of these techniques analyzes an algorithm by abstracting 
away certain portions of the algorithm {rather than mapping to an entirely different 
level of conceptual abstraction as we do here) and studying the remaining "image" of 
the original algorithm. To Lam and Shanka.r, the advantage of this method seems to 
be that it allows highly interdependent modules of a system to be studied in isolation. 
Lamport, Lynch, and Welch seem to be taking this notion of "projection" one step 
further. They show how projections onto different modules can be combined into a 
proof of the entire system, giving the proof a lattice-like structure. While still work 
in progress, their work seems to be shedding new light on the intellectual organization 
of protocol verification. The progress being made in their research can certainly be 
incorporated into ours. 

The remainder of this thesis consists of two parts. First, in Chapter 2, we formally 
define our model of computation and develop the machinery needed to use our model 
in the construction of hierarchical correctness proofs. Then, in Chapter 3, we illustrate 
the use of our model by proving the correctness of Schonhage's distributed resource 
arbiter. Finally, in Chapter 4, we end with some concluding remarks, including some 
ideas for future work. 
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Chapter 2 

The Input-Output Automaton 
Model 

In this chapter we define the input-output automaton model. We begin with a formal 
definition of an input-output automaton, and define operations that may be performed 
on automata, including the composition of automata. We then show how fairness 
can be modeled with automata. Finally, we develop the machinery necessary to use 
automata in the construction of modular, hierarchical correctness proofs for distributed 
algorithms. 

2.1 Input-Output Automata 

Having informally described our model in the introduction, we now formally define 
an input-output automaton. Since the actions of an automaton define the interface 
between an automaton and its environment, it is convenient to be able to refer to 
this interface explicitly. Given three disjoint sets in, out, and int of input, output, and 
internal actions, respectively, we refer to the triple (in, out, int) as an action signature S. 
We denote the sets in, out, and int by in(S), out(S), and int(S), respectively; and we 
denote the entire set of actions in U out U int by acts(S). Since int is the set of 
internal actions, it is natural to refer to in U out as the set of ezternal actions, denoted 
by ezt ( S). Finally, we denote the set int U out of locally-controlled actions by local ( S). 

An input-output automaton (or automaton) A consists of five components: 

1. a set states(A) of states, 

2. a set start(A) ~ states(A) of start states, 

3. an action signature sig(A), 
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4. a transition relation steps(A) ~ states(A) x acts(sig(A)) x states(A), with the 
property that for every state a and input action "" there is a transition (a,"", a') 
in steps(A), and 

5. an equivalence relation part(A) on local(sig(A)). 

Notice that the transition relation steps(A) has the property that input actions are 
continuously enabled, as mentioned in the introduction. Notice, also, that the equiva
lence relation part (A) is the partition of the locally-controlled actions alluded to in the 
introduction. This partition will be used when we define the notion of fair computation 
in Section 2.2. 

We refer to an element (a,?r",a1
) of steps(A) as a ?r"-stepfrom a to a'. It will occasion

ally be convenient to denote the step (a,"", a') by a ..!. a', and to denote the sequence of 
steps ao .!.\. a1 • • • ~ a,. by ao r,.::::,. a,.. The step (a,"", a') is called an input step if "" is 
an input action, and output steps, internal steps, external steps, and locall11-controllu:l 
steps are similarly defined. H (a,"", a') is a step of A, then "' is said to be enabled 
from a. Since every input action is enabled from every state, automata are said to be 
input-enablu:l. 

An execution fragment of A is a finite sequence Qo'Jr1a1 ••• 'KAiaAI or infinite sequence 
Qo'K1a1'K2a2 ••• of alternating states and actions such that (Gt,'Ki+iitlt+i) is a step of A 
for every i. An execution fragment beginning with a start state is called an execution. 
We denote the set of executions of A by ezecs(A). A state is said to be reachable if it is 
the final state of a finite execution. The schu:lule of an execution z is the subsequence 
of actions appearing in z, denoted by schu:l(z). We denote the set of schedules of A by 
scheds(A). 

We will soon consider certain subsets of an automaton's executions or schedules 
(such as the set of fair computations) to be of particular interest. Since we will com
pose automata, it will be necessary to have ways of composing sets of executions or 
schedules as well. H these compositions are to be meaningfully related, however, cer
tain information about the structure of the original automata must be retained. In 
particular, it is important to retain information about the action signatures of these 
automata. We are therefore led to define the notions of execution modules and sched
ule modules, essentially sets of executions or schedules, respectively, together with an 
action signature. 

An ezecution module E consists of a set states(E) of states, an action signature 
sig(E), and a set ezecs(E) of executions. Each execution of Eis an alternating sequence 
of states and actions of E beginning with a state, and ending with a state if the 
sequence is finite. Each execution z has an associated schedule schu:l(z) that consists 
of the subsequence of actions appearing in z. We denote the set of schedules of Eby 
scheds(E). An execution module Eis said to be an execution module of an automaton A 
if E and A have the same states, the same action signature, and the executions of E 
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are contained in the executions of A. Notice that an execution module E is always 
an execution module of some automaton. In particular, E is an execution module 
of the automaton having the states and action signature of E, and the transition 
relation statea(E) x acts(sig(E}} x states(E). We denote the execution module of 
the automaton A having ezecs(A) as its set of executions by Ezecs(A). (We follow 
the convention of denoting sets with lower case names and modules with capitalized 
names.) 

A schedule module S consists of an action signature sig(S) together with a set 
scheds(S) of schedules. Each schedule of S is a finite or infinite sequence of the actions 
of S. Given an execution module E, there is a natural schedule module associated 
with E consisting of the action signature and schedules of E. We denote this schedule 
module by Scheds(E), and write Schtds(A) as shorthand for Scheds(Ezecs(A)). 

We refer collectively to automata, execution modules, and schedule modules as 
objects, the t11pe of an object determining whether it is an automaton, execution module, 
or schedule module. For notational convenience, given an object 0 we often omit 
reference to its action signature and write, for example, in(O) for in(sig(O)). 

Since it is typically the case that more than one automaton can model the same 
process, some notion of equivalence is needed. Intuitively, the external observer of a 
process (a user of the process, for instance) can detect only the sequence of actions 
performed by the process. In fact, the only actions detectable by such an observer 
are the external actions of the process. We are therefore led to define a notion of 
equivalence determined by the externally visible sequences of actions produced by an 
object. Since we will consider in Section 2.2.2 a second notion of equivalence based on 
the fair behavior of an object, we refer the the current notion of equivalence as unfair 
equivalence. 

We begin by defining an operation that essentially extracts the externally visible 
behavior of an object. An external action signature is an action signature consisting 
entirely of external actions; that is, having no internal actions. The external action sig
nature of an object 0 is the action signature obtained by removing the internal actions 
from the action signature of 0. An external schedule module is a schedule module with 
an external action signature. Given a sequence y of actions and a set Il of actions, we 
denote by y!Il the subsequence of y consisting of actions from Il. The external schedule 
module of an object 0, denoted by External(O), is the external schedule module with 
the external action signature of 0 and the schedules {ylext(O) : y E scheds(O)} ob
tained by removing the internal actions from the schedules of 0. We define the unfair 
behavior of 0, denoted by Ubeh(O), to be the external schedule module External(O). 

Two objects 0 and P of the same type are said to be unfairl11 equivalent, denoted by 
O un/a.ir P, if Ubeh(O) = Ubeh(P). This equivalence is clearly an equivalence relation, 
and we will see that it is also a congruence with respect to the operations we now define 
on objects. 
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2.1.1 Composition 

To build models of complex systems, we compose models of simpler system components. 
In this section we show how to compose objects to construct such models. 

Composition of Automata 

Informally, the composition of a collection of automata is their Cartesian product, with 
the added requirement that automata synchronize the performance of shared actions. 
That is, each automaton is allowed to take steps independently, with the restriction 
that if one automaton takes a 11"-step, then all automata sharing "" as an action must 
also take a 11"-step. This synchronization models communication between system com
ponents: If "" is an output action of A and an input action of B, then the simultaneous 
performance of 1r models communication from A to B. Since synchronization is meant 
only to model communication, however, two automata sharing "" as an output action 
should not be required to perform 1r simultaneously. We note that two processors. 
cannot be expected to perform an output action simultaneously in an asynchronous 
system. Rather than complicate the notion of composition, we require instead that the 
output actions of composed automata be disjoint. Since internal actions are meant to 
model externally undetectable actions, we are faced with the need for a similar restric
tion for internal actions. We require that the internal actions of each automaton in a 
composition be disjoint from the actions of the remaining automata. 

Having restricted the composition of automata to those with suitably compatible 
action signatures, determining the type of an action in a composition is fairly simple: 
Output actions of the component automata become output actions of the composition, 
internal actions of component automata become internal actions of the composition, 
and all remaining (input) actions of the component automata become input actions of 
the composition. Notice that the composition of automata does not hide communication 
between component automata. To hide such communication will require the use of a 
hiding operation defined later in Section 2.1.2. 

Finally, recall that associated with every automaton (in particular, with a compo
sition of automata) is a partition of its locally-controlled actions. Our intuitive under
standing of this partition is that each class represents the locally-controlled actions of 
one system component. A natural partition of a composition's locally-controlled actions 
is to place the locally-controlled actions of each component automaton in a separate 
class. Since the restrictions we impose on the composition of automata ensure that 
the locally-controlled actions of the component automata are disjoint, this is indeed 
a partition. However, each component automaton may model many system compo
nents. We therefore partition a composition's locally-controlled actions by taking each 
class of each component automaton as a separate class of the composition's partition. 
That is, the partition of a composition's locally-controlled actions is the union of its 
components' partitions. 
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We are now in a position to formally define the composition of automata. We begin 
by defining a composition of action signatures. Previous discussion suggests that the 
action signatures {Si : i E /} be called compatible if for all i,i EI we have 

1. out(Si) n out(S;) = 0, and 

2. int(Si) n acta(S;) = 0. 

In general, we say that the objects { Oi : i E /} are compatible if their action signa
tures are compatible. The composition S = Ilier Si of compatible action signatures 
{Si : i E /} is defined to be the action signature with 

1. in(S) = U in(S,) - U out(Si}, 
iE/ iE/ 

2. out(S) = U out(Si), and 
iE/ 

3. int(S} = U int(Si)· 
iE/ 

Notice that this composition is commutative and associative. 

The composition A = Ilier At of compatible automata {At : i E /} is defined to be 
the automaton with 

1. atatea(A) = Il atatea(At), 
iE/ 

2. start(A) = Il atart(At), 
iE/ 

3. aig(A) = Il aig(At), 
iE/ 

4. part(A) = U part(At), and 
iE/ 

5. atepa(A) equal to the set of triples ({a.;},7r,{aH) such that for all i EI 

(a) if 7" E acta(At) then (a.;, 7", aD E atepa(At), and 

(b) if "' ft acta(At) then a.; = a~. 

Notice that since the automata At are input-enabled, so is their compoeition, and hence 
their composition is an automaton. When I is a finite set { 1, ... , n}, we will frequently 
denote the composition Il1 At by A1 · ... · An. 

AI!. a simple example of automaton composition, consider the two automata A and B 
shown at the top of Figure 2.1, and their composition A· B shown at the bottom of the 
same figure. (A caret points to the single initial state of each automaton.) The action a 
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Figure 2.1: An example of automaton composition. 

is an output action of A and an input action of B, and the action /J is an output action 
of B and and input action of A. Notice that since each waits for the other to take an 
output step before taking an output step itself, the automata A and B alternate output 
steps in executions of the composition A· B. Notice, furthermore, that since a and /J 
are output actions of A and B, respectively, all actions of the composition A· B are 
output actions. Finally, notice that the partition of the composition's locally-controlled 
actions {in this case, the output actions) places a and/Jin separate equivalence classes. 

The composition of automata has two simple properties. First, an execution of a 
composition A = Ili ~ always induces executions in the component automata ~. H 
a= {a.} is a state of A, let al~= a.. Hz= (lo7r1a1 ••• is an execution of A, let zl~ be 
the sequence obtained by deleting 7r;a; when 7r; is not an action of~' and replacing 
the remaining a; with a;I~· We now have the following: 

Lemma 1: Hz E ezua(Il ~),then zl~ E ezua(~) for all i EI. 
iEI 

Proof: Let A = Ili ~' and suppose that z = (lo7r1a1.. •• By the definition of an 
execution, ao is a start state of A, and every triple (a11-i, ""•' a11) is a step of A. Two 
facts follow from the definition of the composition A. First, aol~ must be a start state 
of~- Second, if 7r11 is an action of~ then (a•- 1 1~, ""•' a•I~) is a step of~- H ?r• is 
not an action of~ then a•-il~ = a•I~· Thus, if zl~ = aou1s1 ••• , then Bo is a start 
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state of At, and every triple (s;-1 , u;, s;) is a step of At. Therefore, xi.At is an execution 
of At. 0 

Conversely, under certain conditions an execution of a composition is induced by 
executions of its components. Here and elsewhere, we denote 11lacta(O) by 1110 for 
arbitrary objects 0. 

Lemma ~: Let {At : i E J} be a collection of compatible automata. Let Xi be an 
execution of At for every i E J, and let 11 be a sequence of actions from the At. If 
111.At = ached(zi) for every i E J, then there is an execution x of Ilie/ At such that 
11 = ached(z), and Xi =xi.At for every i E I. 

Proof: Let A = Ili At. Suppose that 11 = "'1"'2 .... Since 111.At = ached(zi), we can 
write Zi = a~7ri 1 a~?ri:i"~···· Let i0 = 0. Let x = ao?r1a1 ... where a; is defined as 
follows: ff i1c ::; j < i1c+1t then a;l.At = ai. That is, the automaton At remains in 
state ai between the performance of actions ?ri., and "'i•+i, and changes state to ai+l . 
upon the performance of "'i•+i • First, we claim that ao is a sta.rt state of A. Since for 
all i we have that i0 = 0 implies aol.At = at,, a sta.rt state of At, we a.re done. Second, 
we claim that (a;-i, 7r;, a;) is a step of A for all j. Suppose "'; E acta(At). Then 
"'; = ?ri., for some k. It follows that a;-11.At = a~_ 1 and a;l.At = ai since i1c-1 < j = i,.. 
Thus, (a;-11.At, ?r;, a;IAt) is a step of At. Conversely, suppose "'; ~ acta(At). Then 
i1; < j < i1c+i, and it follows that a;-11.At = ai = a;IAt· In either case, (a;-i, ?r;, a;) 
is a step of A for all j. It follows that x is an execution of A, and furthermore that 
11 = ached(z) and zl.At = Zi for all i. 0 

The following corollary, essentially Lemma 4 from [LM86], ensures that composition 
preserves the notion that a system component controls the performance of its own 
locally-controlled actions. As a result, when reasoning about the enabling of an action in 
a composition, it is enough to reason about the enabling of the action at one component. 

Corollary 3: Let 11 be a finite schedule of a composition A = Il1e1 At. Let ,.. be a 
locally-controlled action of At, and let " = 11"'· If vi.At is a schedule of At, then y' is a 
schedule of A. 

Proof: Since 11 is a finite schedule of A, there is a finite execution x of A such that 
11 = sched(z). By Lemma I, zlA; is an execution of A; for every j E I. Since ,.. is a 
locally-controlled action of At, if,.. is an action of A; (for any j ':/: i), then ,.. is an input 
action of A;. Since the A; are input-enabled, and since 11'1.At is a schedule of At, for 
every j E I there is an execution zj of A; such that t/IA; = ached(zj). By Lemma 2, 
there is an execution z' of A such that 11 = ached(r), and hence 11 is an execution of A. 

0 
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Composition of Execution Modules 

We now define the composition of execution modules. The composition E = Ilier Ei 
of compatible execution modules { Ei : i E I} is defined 88 follows. The states of E 
are IlieI atatea(Ei), and the action signature is IlieI aig(E;). Given a state a = {ai} of 
the composition, we define alEi = Bi· Given a sequence x = Bo?r"1a1 ... of states and 
actions of E, we define xlEi to be the sequence obtained by removing ?r";a; if"'; is not 
an action of E;, and replacing the remaining a; by a;IEi. The executions of E are those 
sequences '0"'1'1 ... such that for every i E I we have that xlEi is an execution of Ei, 
and that s;-1IEi = a;IEi whenever"'; is not an action of Ei. The next lemma gives an 
alternative characterization of the composition of execution modules. 

Lemma 4: Let {Ei : i EI} be a collection of compatible execution modules. Sup
pose E; is an execution module of an automaton~ for every i E I. Then IlieI Ei is 
the execution module of Ilier ~ with executions x such that xi~ is an execution of Ei 
for every i EI. 

Proof: Let E = Ili Ei and A = Ili ~. Since Ei is an execution module of~' it 
follows that Ei and ~ have the same states and action signature, and hence so do E 
and A. We need only check that the executions of E are the executions x of A such 
that xi~ is an execution of Ei. Suppose xis an execution of E. The execution x is 
a sequence so?r"1s1 ... of states and actions of E such that xlEi is an execution of Ei, 
and s;-1IEi = s;IEi whenever "'; is not an action of Ei. Since Ei is an execution 
module of~, (s;-1l~ 1 ?r";,s;I~) is a step of~ whenever"'; is an action of~' and 
s;-11~ = a;I~ whenever"'; is not an action of~. It follows that xis an execution of A, 
and furthermore that xi~ is an execution of Ei for every i EI. Conversely, suppose x 
is an execution of A such that xi~ is an execution of Ei for every i E I. Clearly, x 
is a sequence so?r"1B1 ... of states and actions of E such that xlEi is an execution of Ei 
for every i E /. Furthermore, from the definition of the composition of automata we 
see that s;-1 IEi = s; IE; whenever "'; is not an action of Ei. It follows that x is an 
execution of E, 88 desired. 0 

This composition is defined so that the following result holds. 

Lemma 5: For all compatible automata{~ : i EI}, 

Exua(IT ~)=II Exua(~). 
iEI iEI 

Proof: Let A= Ili ~. Furthermore, let EC= Exua(Ili ~) and CE= Ili Exua(~). 
Notice that EC is an execution module of A. Furthermore, since Exua(~) is an 
execution module of~ for every i E /,Lemma 4 implies that CE is also an execution 
module of A. It follows that EC and CE have the same states and action signature. 
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We need only show that they have the same executions. By Lemmas 1 and 4, xis an 
execution of EC iff z is a.n execution of A such that xi.At is an execution of At for every 
i E I iff z is an execution of CE. Thus, EC and CE have the same executions, and 
hence are equal. D 

Composition of Schedule Modules 

We now define the composition of schedule modules. The composition IlieI Si of com
patible schedule modules {S; : i E /} is defined to be the schedule module with action 
signature Ilier sig{Si), and schedules '1J such that yjS; is a schedule of Si for every i E /. 
This composition is defined so that the following result holds. 

Lemma 6: For all compatible execution modules {Ei : i E /}, 

Scheds(II E;) =II Scheds(Ei)· 
iEI iEI 

Proof: Let SC = Scheds(Il; Ei) and CS= Il; Scheds(E;). Since SC and CS clearly 
have the same action signatures, we need only show that they have the same schedules. 
Suppose Ei is an execution module of an automaton At for every i E /. Notice that '1J 

is a schedule of SC iff '1J is the schedule of an execution z of Il; Ei. Lemma 4 implies 
this is the case iffy is the schedule of an execution z of Il; At such that zjE; = z; is an 
execution of Ei for every i E /. Lemma 2 implies this is the case iff y!Ei is the schedule 
of an execution Zi of Ei. From the definition of schedule module composition we see 
this is the case iff y is a schedule of CS. Thus, SC and CS have the same schedules, 
and hence are equal. D 

In addition, we have the following. 

Lemma 7: For all compatible schedule modules {S; : i E /}, 

Ezternal(IT S;) =II Ezternal{Si)· 
iEI iEI 

Proof: Let S = Ili S;, and let EC= Ezternal(Ili Si) and CE= Ili Ezternal(Si)· Since 
the schedule modules Si are compatible, int(Si) n acta(S;) = 0 for all i ":/: j. That is, 
the internal actions of each schedule module are disjoint from the actions of the others. 
With this observation, it follows from the definition of action signature composition 
that EC and CE have the same action signature. We need only show they have the 
same ached ules. H y is a schedule of EC, then '1J = y' I ezt { S) for some ached ule y' 
of S. Since y'!Si is a schedule of Si, 111Ezternal(Si) = vlEzternal(Si) is a schedule of 
Ezternal(Si), and hence y is a schedule of CE. Conversely, suppose y is a schedule of 
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CE. Then yjE.zternal(S,) = y,je.zt(S,) for some schedule Yi of S,. Suppose y = 11"111"2 •••• 

Let us write Yi = ~,Bia~ ... where a~ is a (possibly empty) sequence of internal actions 
of S;, and Pj is ,... ; if ,... ; is an external action of s, and the empty string otherwise. Let 
y' = "Yo11'"1'"fi ••• where "Y; is an arbitrary interleaving of the actions appearing in the a~. 
Then J/ is a sequence of actions of S such that J/jS, =Yi is a schedule of S,, so J/ is a 
schedule of S. Since y = y'je.zt(S), y is a schedule of EC. D 

Lemmas 5, 6, and 7 can be summarized as follows. 

Corollary 8: Let .A denote the class of automata, t denote the class of execution 
modules, and S denote the class of schedule modules. The following diagram commutes: 

Ezua .A------- Scheda E.zternal 

n n n n 

Ezua .A------- Scheda E.zternal 

One important consequence of Corollary 8 is the following result, which says that 
the (unfair) behavior of a composition is the composition of its components' (unfair) 
behaviors. 

Lemma 0: Ubeh( Il O,) = Il Ubeh(O;) for all compatible objects {O; : i E /}. 
iEI iEI 

It is now possible to see that composition satisfies a number of natural axioms. We 
note that the following result is an immediate consequence of the definition of schedule 
module composition. 

Lemma 10: Suppose S = Il1 S;, T = I11 Ts, U = n, U;, and V = Ili Vi where the S,, 
n, ui, and Vi are schedule modules. 

1. S · T = T · S. 

2. (S · T) · U = S · (T · U). 

3. H S = T and U = V, then S · U = T · V whenever the compositions S · U and 
T · V are defined. 

As a consequence of Lemmas 9 and 10, we have the following. 
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Lemma 11: Suppose 0 = Tii Oi, P = Tii .?;, Q - Tii Qi, and R - Tii ~ where 
the oi' pi' Qi' and ~ are objects. 

1. O . p un~ir p . O • 

3. H 0 un/air P and Q unLair R, then 0 · Q unLair P · R whenever the compositions 
0 · Q and P · R are defined. 

Proof: Recall that 0 · P un~ir P · 0 iff the external schedule modules Ukh(O · P) and 
Ubeh(P · 0) are equal. By Lemma 9 we see that Ubeh(O · P) = Ubeh(O) · U~h(P) and 
U~h(P · 0) = Ubeh(P) · Ubeh(O). However, Lemma 10 implies that these schedule 
modules are equal. Therefore, 0 · P unLair P · 0. The remaining parts are similar. D 

Conditions 1 and 2 say that composition is commutative and associative up to 
equivalence. Condition 3 says that composition is a almost congruence with respect to· 
composition. However, since the external behavior of 0 and Q contains no information 
about the internal actions of 0 and Q, their external behaviors do not determine 
whether they are compatible, and hence whether their composition is defined. Thus, 
equivalence is not quite a congruence. We call an equivalence satisfying condition 3 a 
weak congruence. Notice that this weakness is due only to conflicting internal actions 
names, actions not affecting the external behavior of an object. In Section 2.1.3 we will 
see how to perform a syntactic renaming of internal action names to avoid this conflict 
without affecting the external behavior of the object. This is reminiscent of variable 
renaming to avoid conflict during substitution in predicate calculus. 

2.1.2 Action Hiding 

Recall that composition does not hide actions modeling interprocess communication: 
In particular, if 7r' is an output action of A and an input action of B modeling com
munication from A to B, then 7r' becomes an (external) output action of A· B. Since 
this communication is really internal to the system A · B, we would like to be able to 
hide 7r' from external view, to transform 7r' into an internal action of A · B. 

Given an object 0 and a set of actions E, we define the object Hidei::(O) to be the 
object differing from 0 only in that 

1. in(Hidei::(O)) = in(O) - E, 

2. out(Hidei::(O)) = out(O) - E, and 

3. int(Hidei::{O)) = int(O) u (acts(O) n E). 
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Since the hiding operation modifies only the action signature of an object (without 
modifying its executions or schedules), we have the following: 

Lemma 12: For all automata A, execution modules E, schedule modules S, and sets 
of a.ct ions E, 

1. Ezus(HideE(A)) = Hide>:(Ezus(A)) 

2. Scheds(HideE(E)) = HideE(Scheds(E)) 

3. E:z:ternal(HideE(S)) = E:z:ternal(HideE(Ezternal(S))) 

Proof: Parts 1 and 2 are immediate from the definition of the hiding operation. Part 3 
follows from the fa.ct that yj( ezt(S) - E) = {YI e:z:t(S)) I ( e:z:t(S) - E) for every schedule y. 

D 

As a corollary of Lemma 12, we have the following: 

Corollary 13: Let A denote the class of automata, t denote the class of execution 
modules, and S denote the class of schedule modules. The following diagram commutes: 

Ezua A------- Scheda 

Scheda 

Hiden 

E:z:ternal -------s 
~den 

s 

&:ternaJ ~zternaJ -------s Ezus 

Hiden Hiden 

Suppose {Oi : i E J} are compatible objects, and consider their composition 0. 
Suppose that 1r is an action of Oi not shared by O; for every i -::/: j. Intuitively, if 11' 

models some communication internal to the system component modeled by Oi, then 
whether 1r is hidden before or after forming the composition 0 should not affect the 
resulting object. This intuition is formalized in the following result. 
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Lemma 14: Let {Oi : i E J} be a collection of compatible objects, and let {Ei : i E J} 
be a collection of sets of actions. If acts ( Oi) and E; are disjoint for all i -::/:. j, then 
Hideu;E;(Il Oi) = Il HideE;(Oi)· 

ier ier 

Proof: Let HC = Hideu;E;(Ili Oi) and CH = Ili HideE;(Oi)· First, we claim that 
the composition H C is defined iff CH is defined. Since for all i -:f:. j the intersection 
acts(Oi) n E; is empty, for all i #- i we have 

and 

out(Oi) n out(O;) - (out(Oi) - Ei) n (out(O;) - E;) 

= out(HideE;(Oi)) n out(HideE;(O;)) 

int(Oi) n acts(O;) = [int(Oi) u (Ei n acts(Oi})] n [acts(O;) - E;] 

= int(HideE;(Oi)) n acts(HideE;(O;)). 

It follows that the objects Oi are compatible iff the objects HideE; ( Oi) are compatible, 
and hence that H C is defined iff CH is defined. 

Next, we claim that BC and CH have the same action signatures, and it will follow 
that HC and CH are equal. Notice that 

in(HC) - inffl Oi) - LJ E; 
ier ;er 

- (LJ in(Oi) - U out(O;)) - U E• 
ier ;er •_er 

- (LJ in(Oi) - LJ E;) - (LJ out(Oi) - LJ E;) 
ier ;er ier ;er 

- LJ(in(Oi) - Ei) - LJ(out(O;) - E;) 
ier ;er 

- LJ in(HideE;(Oi)) - LJ out(HideE;(O;)) 
ier ;er 

- in(Il HideE;(Oi)) =in( CH). 
ier 

The fourth equality holds since acts(Oi) n E; is empty for all i-::/:. j. Similar arguments 
show that out(HC) = out(CH) and int(HC) = int(CH). Therefore, HC and CH 
have the same action signature, and hence are equal. D 

2.1.3 Action Renaming 

Our definition of composition makes the names of actions quite important. In particu
lar, the notion of object compatibility depends entirely on the names of actions shared 
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by the objects. In this section, we define an operation that renames actions. With this 
operation, objects ca.n be made compatible by renaming conflicting actions. 

An action mapping f is an injective mapping between sets of actions. Such a 
mapping is said to be applicable to a.n object 0 if the domain of f contains the ac
tions of 0. Action mappings are extended to objects in the obvio\18 way. H the 
action mapping / is applicable to a.n automaton .A, then the automaton /(.A) is 
the automaton with the states and start states of .A; with the input, output, and 
internal actions /(in(.A)), /(out(.A)), and /(int(.A)), respectively; with the transi
tion relation {(a,/(?r),a') : (a,?r,a') E steps(.A)}; and with the equivalence relation 
{(/(?r),/(?r')) : (?r,?r') E part(.A)}. Since f is injective, the partition of the locally
controlled actions of /(.A) is guaranteed to be an equivalence relation. Objects f(O) 
are defined similarly for other types of objects. Such an object /(0) is said to be a 
renaming of 0. Since renaming affects only action names, the following result is easy 
to see. 

Lemma 15: Let f be an action mapping applicable to the automaton .A, the execution. 
module E, and the schedule module S. 

1. Ezus(l(.A)) = f(E:i:us(.A)) 

2. Scheda(f(E)) = /(Scheda (E)) 

3. Ezterna.l(f(S)) = f(Ezterna.l(S)) 

In addition, since action mappings are injective, it is easy to see that actions may 
be hidden before or after renaming: 

Lemma 16: Hide/(E)(/(O)) = /(HideE(O)) for any object 0 and applicable action 
mapping/. 

Let us consider how renaming interacts with composition. Suppose a.n action map
ping/, is applicable to the object Oi for every i E /. First, notice that if each /i maps 
some output action ?ri of Oi to the action ?r, then the /i(Oi) are incompatible; and 
IIi /i(Oi) is not be defined even though rr. oi may be. Furthermore, if each /i maps an 
action ?r to a different action"'" then executions of IIi /i(Oi) may have no relationship 
to the executions of II, Oi since the objects /i(O,) may no longer be required to syn
chronize on the actions "'i· We are therefore led to define a collection {/; : i E /} of 
action mappings to be compatible if for all actions ?ri and ?r; we have /i(?ri) = /;(7r;) iff 
'lf'i = 7r;. We define their composition / = Ili /i to be the action mapping having as its 
domain the union of the domains of the /i, and mapping the action 7r to /i ( ?r) if 7r is 
in the domain of/;. The fact that the /i are compatible ensures that /is well-defined. 
It is obvious that if each /, is applicable to a.n object oi, then I is applicable to their 
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composition. In addition, the following result verifies that the renaming of such objects 
may occur either before or after the formation of their composition without affecting 
the resulting object. 

Lemma 11: Let { Oi : i E /} be compatible objects, and let {/i : i E /} be compatible 
action mappings. ff /i is applicable to Oi for every i E /,then (fl /i)( fl Oi) = fl /i( Oi)· 

iEI iEI iEI 

Proof: We prove the result for automata At; the proofs for other types of objects are 
similar. Let I= Ili /h A= Ili At, and A'= Ili /i(At). We show that /(A) is defined 
iff A' is defined, and that in this case /(A) =A'. To do so, we must verify the following: 
(i) that the At are compatible iff the /i(At) are compatible, (ii) that /(A) and A' have 
the same states and start states, (iii) that /(A) and A' have the same action signature, 
(iv) that /(A) and A' have the same transition relation, and (v) that /(A) and A' have 
the same partition of locally-controlled actions. Since the fi are injective mappings 
such that /i(7ri) = /;(7r;) iff 7ri = 7r;, the only nontrivial part of this proof to check is. 
part (iv). Suppose that (a, 7r, a') is a step of /(A). For some action q we muat have 
that (a, a, a') is a step of A, and that f (a) = 7r. Furthermore, for each i, the action a 
is an action of At iff 7r is an action of /i (At). ff 7r is an action of /i (At), then a is 
an action of At, so (ajAt,u,a'jAt) is a step of At and (aj/i(At),?r,aj/i(At)) is a step of 
/i(At). ff 7r is not an action of /i(At), then a is not an action of At, so al.At = a'IAt 
and ajfi(At) = a'j/i(At). In either case, (a, 7r, a') is a step of A' = Ili /i(At). A similar 
argument shows that if (a,7r,a1

) is a step of A', then it is a step of f(A). It follows that 
f(A) and A' have the same transition relation, and hence are equal. D 

2.1.4 Remarks 

Since the definitions given so far have been independent of such considerations, we 
have chosen to ignore until this point issues of cardinality that appear in most mod
els of computation. For example, we have not restricted our model to automata with 
countable sets of states and actions, and hence to countable nondeterminism. Fur
thermore, we have not restricted our theory to the composition of a finite (or even 
countable) number of automata. While these are natural restrictions (and all of the 
results presented thus far still hold when these restrictions are impoeed), we note that 
Lynch and Merritt have made effective use of the composition of a countable number 
of automata in [LM86). In the remainder of this thesis, we restrict our attention to 
automata modeling systems with a countable number of components. In particular, we 
restrict our attention to countable compositions, and to automata A for which part (A) 
partitions A's locally-controlled actions into a countable number of equivalence classes. 
This restriction becomes relevant in the following section where we define the notion 
of fair computation. 
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2. 2 Fairness 

Fair computation is of central importance to distributed computation. The mutual 
exclusion problem, for example, has been formulated in [EM72J with the "no lockout" 
condition that if every process is allowed to take steps infinitely often, then every 
process trying to enter its critical region will eventually do so. That is, during fair 
computation, every process wishing to enter its critical region will eventually do so. 
More generally, the specification of a distributed system typically includes conditions 
of the form "if condition P holds, then eventually condition Q will hold." The ability 
of a process to satisfy such conditions clearly depends on fair computation. In this 
section we show how fair computation can be described in our model, and we show 
how fair computation induces an interesting equivalence of automata. 

2.2.1 Fair Executions 

As previously mentioned, computation in a system of processes is said to be fair if 
every process is given the chance to make computational progress infinitely often. The 
phrase "given the chance" is important, since a process may not be in a position 
to make progress every time it is given the chance. Recall that associated with an 
automaton A is a partition part (A) of its locally-controlled actions. Intuitively, each 
class of this partition consists of the locally-controlled action of a process in the system 
being modeled by A. A fair ezuution of an automaton A is defined to be an execution x 
such that the following conditions hold for each class C of part(A): 

1. If xis a finite execution, then no action of C is enabled from the final state of x. 

2. If x is an infinite execution, then either actions from C appear infinitely often 
in z, or states from which no action of C is enabled appear infinitely often in z. 

These conditions may be interpreted as follows. If x is finite, then computation in the 
system has halted since no process is able to take another step. If x is infinite, then 
every process has been given the chance to take a step infinitely often, although it may 
be that some process was unable to make computational progress every time it was 
given the chance to do so. Notice that this definition of fairness is essentially what is 
called weak /airneaa in the literature (see [Fra86], for example). As mentioned in the 
introduction, however, our definition is different in an important way in that it takes 
into consideration the notion of one process controlling the performance of an action. 
In particular, it is p088ible for an (input) action to be continuously enabled, and yet 
never be performed. We note in passing that our notion of fairness defines the notion 
of a finite fair computation without the usual requirement that finite computations be 
extended in some trivial way to infinite computations. 
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The set /air(A) is the set of fair executions of the automaton A, and Fair(A) is the 
execution module of A having fair(A) as its set of executions. 

One simple consequence of this definition of fair executions is the following. 

Lemma 18: H x is a finite execution of an automaton A, then x can be extended to 
a fair execution x?r1a 1 ••• of A (in which every 7r'i is a locally-controlled action of A). 

Proof: Let f be a function mapping the natural numbers to the classes of part(A), 
with the property that every class of part(A) appears in the range off infinitely often. 
There is an execution x' = x?r1a1 ••• of A with the property that 7r'i is an action from the 
class f(i) if such and action is enabled from ot-i, and an arbitrary locally-controlled 
action of A otherwise. (H from some state ot-i no locally-controlled action of A is 
enabled, then x' is a finite execution ending in state ot-i·) The execution x' is a fair 
execution of A. D 

More important, however, is the next lemma which says that the fair executions of' 
a composition are a composition of the fair executions of its components. It is for the 
sake of this result that we associate a partition of an automaton's locally-controlled 
actions with an automaton. 

Lemma 10: Fair(Il At)= Il Fair(At) for all compatible automata {At : i E /}. 
iE/ iE/ 

Proof: Let FC = Fair(Il1 At) and CF = Ili Fair(At). Since both are execution 
modules of A= Tii At, both have the same states and action signature. We need only 
show that they have the same executions. First, however, notice that since the At 
are compatible, their locally-controlled actions are disjoint. Furthermore, notice that 
each At is input-enabled. It follows that each At determines when its locally-controlled 
actions are enabled in the composition A: H 7r is a locally-controlled action of At and a 
is a state of A, then 7r is enabled from a in A iff 7r is enabled from alAt in At. 

Suppose xis a fair execution of A, and let us show that xis an execution of CF. 
We must show that xi.At is a fair execution of At for all i. Let C be a class of locally
controlled actions of At, and hence a class of A. Suppose z is finite. Since z is a fair 
execution of A, no action of C is enabled in A from the final state a of x, and hence 
no action of C is enabled in At from the final state al.At of xj.At. Suppose xis infinite. 
H actions from C appear infinitely often in x, they do so in zj.At. On the other hand, 
suppose states appear infinitely often in x from which no action of C is enabled in A. 
It follows that either xi.At is finite and no action of C is enabled from the final state of 
xi.At in At, or else infinitely many states of At appear in zlAt from which no action of C 
is enabled. In any case, xi.At is a fair execution of At. It follows that z is an execution 
of CF. 
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Conversely, suppose x is an execution of CF, and let us show that x is a fair 
execution of A. Let C be a class of locally-controlled actions of A, and therefore a class 
of At for some i. Since xis an execution of CF, the execution xi.At is a fair execution 
of A;. Suppose xis finite, and therefore that xi.At is finite. Since xi.At is fair, no action 
of C is enabled from the final state of xi.At, and hence no action of C is enabled from 
the final state of x. Suppose x is infinite. H actions from C appear infinitely often 
in xi.At, the same is true of x. H states appear infinitely often in xi.At from which no 
action of C is enabled, the same is true in x. However, xi.At may be finite. In this 
case, no action of C is enabled from the final state of xi.At· Since xis infinite, there is 
a state appearing in x after which no action of C is ever enabled. In any case, x must 
be a fair execution of A. It follows that FC =CF. 0 

2.2.2 Fair Equivalence 

In Section 2.1 we defined a notion of equivalence based on the external behavior of 
an object. We now define a similar notion of equivalence based on /air external be- · 
havior. The /air behavior of an automaton A, denoted by Fbeh(A), is defined to be 
the schedule module Ezternal(Fair(A)). We extend this definition to objects of other 
types (execution modules and schedule modules) by setting Fbeh(O)"= Ubeh(O). It is 
convenient to denote the set of schedules of Fbeh(O) by fbeh(O), for any object 0. In 
light of Corollary 8 and Lemma 19, we see that the fair behavior of a composition is 
the composition of the fair behavior of its components. 

Lemma 20: Fbeh(Il 01) = Il Fbeh(01) for compatible objects {01 : i E /}. 
iEI iEI 

We say that two objects 0 and O' are /airl11 equivalent, denoted 0 /air O', if they 
have the same fair behavior; that is, if Fbeh(O) = Fbeh(O'). In light of Lemmas 10 
and 20, fair equivalence satisfies the axioms stated for unfair equivalence in Lemma 11. 

Lemma 21: Suppose 0 = Il1 0 1, P = Il1 P,, Q = Il1 Q,, and R = Il1 Rt where 
the o,, Pi, Q1, and Rt are objects. 

1. 0. p /tlir p. 0. 

3. H 0 /air P and Q /air R, then 0 · Q /air P · R whenever the compositions 0 · Q 
and P · R are defined. 
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Figure 2.2: The importance of the partition of locally-controlled actions. 

Thus, composition is commutative and associative up to fair equivalence, and fair 
equivalence is a weak congruence with respect to composition. With this we conclude 
that discussion of fairness directly related to program verification. In the remainder of 
this section we consider several interesting questions about how fairness is modeled in 
our model. 

2.2.3 Fairness and System Decomposition 

Having seen the definition of a fair execution, the role of the equivalence relation 
part(A) associated with an automaton A is clear: The automaton models a system, 
and the locally-controlled actions of each system component form a separate class of 
the partition. It is worth considering, however, whether this partition is really of any 
importance. We claim that if relationships such as those stated in Lemma 20 are of 
importance (and we think they are), then the information about the system structure 
encoded in the partition of an automaton's locally-controlled actions must be retained. 
Suppose for a moment that we do away with the partition, so that all we know about 
an automaton's locally-controlled action is whether it is an internal or output action. 
Consider the automata A and B given in Figure 2.2, and consider their composition 
A · B. Here Q is an input action, and /J and 1 are output actions. In both automata A 
and B, the execution with the infinite sequence of a's as its schedule may be considered 
a fair execution since infinitely often each automaton passes through a state from which 
no locally-controlled action (either /J or 1) is enabled. In the composition, however, a 
locally-controlled action is enabled from every state through which such an execution 
must pass, and yet none of these actions appear in the execution. This execution cannot 
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be considered a fair execution of the system since the system is never allowed to make 
progress, even though it is able to do so at each stage of the execution. ff, on the other 
hand, we recognize that fJ and "fare output actions of separate system components, we 
see that infinitely often each component passes through a state from which none of its 
locally-controlled actions is enabled. We therefore conclude that this i1 an execution of 
the system that is fair to all components, and hence can be considered a fair execution 
of the system. The partition of locally-controlled actions therefore seems to be an 
important component of an input-output automaton. 

It is conceivable, however, that an automaton's actions can be partitioned in such a 
way that it is impossible for the automaton to model a system whose components have 
as their locally-controlled actions one class of the partition. It therefore seems possible 
for our intuitive understanding of an automaton's partition of its locally-controlled 
actions to be violated. Let us say that an automaton A is primitive if part(A) consists 
of a single class. Intuitively, such an automaton can model only an "atomic" system 
component. It would be nice to know that every automaton A is (fairly) equivalent 
to a composition of primitive automata, where the locally-controlled actions of each 
primitive automaton form a class of A's partition. This would in effect be saying that· 
every automaton does model a system in a way satisfying our intuition. What we can 
prove is the following. An automaton is said to be determiniatic if it has one start 
state, and for every action "' there is at most one ?l'-step from every state. 

Lemma 22: Let A be an automaton whose equivalence relation part(A) partitions its 
locally-controlled actions into the classes {Ci : i E J}. HA is deterministic, then there 
are primitive automata ~ such that Ci is the set of locally-controlled actions of ~, 

/air . ( ) and A = Hsdeint(A) n ~ . 
iE/ 

Proof: Since A /air Hideim(..t) {A') where A' is the automaton differing from A only in 
that the internal actions of A are output actions of A', we may assume without loss of 
generality that A has no internal actions, and show that A /air Ili ~. Let ~ be the 
primitive automaton obtained from A as follows. First, set in(~)= act1{A) - Ci and 
out(~) = Ci. Second, add to ~ a dead state d. Finally, to ensure that ~ is input
enabled, if "' is an input action that is not enabled from a state a, add the transition 

r • h /air B a -+ d from a to the dead state d. Let B = Ili ~. We claim t at A = . 
Suppose z is a fair execution of A. Since z is also an execution of each ~, there is 

an execution 11 of B such that 111~ = z for every i. We claim that 11 is a fair execution 
of B. H actions from Ci appear infinitely often in z, then the same is true of 11· On 
the other hand, suppose that "' is an action of Ci that is not enabled from a state a 
of A. Then "' is an (output) action of ~ that is not enabled from the state a in ~, and 
hence not from the state {a} in B. It follows that if z is finite and no action from Ci is 
enabled from the final state of z, then the same is true of y; and that if z is infinite and 
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there a.re infinitely many states appearing in :z: from which no action of Ci is enabled, 
then the same is true of y. Therefore, y is a fair execution of B. 

Conversely, suppose y is a fair execution of B. We claim that :z: = ulAt is a fair 
execution of A for every i. We will soon show that if bis a reachable state of B, then 
all components blAt of b are equal, and equal to a state other than d. From this it 
will follow that all ulAt are equal. Furthermore, since :z: = yjAt, the state d must not 
appear in :z:. Since transitions to d were the only transitions added in the construction 
of At, :z: is an execution of A. Furthermore, since :z: is fair in At, either :z: is finite and no 
action of Ci is enabled from the final state of :z:; or :z: is infinite and either actions of Ci 
appear infinitely often in :z:, or states appear infinitely often in :z: from which no action 
of Ci is enabled. Since this is true for every class Ci, :z: is must be a fair execution of A. 

We now proceed by induction on the length l of an execution required to reach b to 
show that blAt = bl A; '::/: d for all i and j. Since A has a single start state, each At has 
the same (unique) start state, and the case of l = 0 is trivial. Suppose l > 0 and the 
inductive hypothesis holds for l - 1. Suppose b is reachable by an execution of length l 
whose last transition is b' .!. b. Since b' is reachable by an execution of length l - 1, 
the inductive hypothesis implies that b'IAt = b'IA; '::/: d for all i and j. Since 7r is either 
an input action of A or an output action of A (and hence of some At), there must be 
an automaton At for which no transition b'IAt .!. d was added during its construction. 
It follows that b'IAt .!. blAt must be a transition of A, and hence that no dead state 
transition was added from b'IA; during the construction of any A;. Therefore, every 
step b'IAt .!. blAt is a step of A. Since A is deterministic, there is only one such step, 
so blAt =bl.A.; '::/: d for all i and j. D 

This result says that our intuition (our understanding of an automaton's partition 
of its locally-controlled actions) is satisfied by a very restricted class of automata. It 
does not seem to be true, however, for arbitrary automata (although Lemma 22 does 
hold for arbitrary automata if fair equivalence is replaced by unfair equivalence, the 
proof of this using the same construction as in the proof of Lemma 22). The reason the 
construction given above will not work for nondeterministic automata is clear: The ex
istence of nondeterminism allows the components to diverge during computation. Each 
component may then pass through states from which none of its locally-controlled ac
tions a.re enabled, from which it follows that no locally-controlled actions appear in the 
executions generated by any of the components. Since, however, each component may 
pass through states from which all locally-controlled actions of all remaining compo
nents are always enabled, none of the executions generated by any of the components 
a.re fair executions of the original automaton A, whose classes a.re the output actions of 
the component automata. What is obviously required is a coordinator or scheduler S to 
ensure that all automata choose the same transition at every step. With this intuition 
in mind, we now prepare to show the following. 

Theorem 23: Let A be an automaton whose equivalence relation part (A) partitions its 
locally-controlled actions into the classes {Ci : i E /}. There a.re primitive automata At 
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and S such that Ci is the set of locally-controlled actions of At, E is the set of locally
controlled actions of s' and A fair' Hideint(A)Ul: ( n At . S). 

iE/ 

The primitive automata At used in this construction are essentially the primitive 
automata used in the proof of Lemma 22. However, when the At perform an action, the 
scheduler S must be able to direct all of them to take the same step. These directions 
take the form of certain input actions of the At, where the performance of such an action 
by the scheduler tells the component automata which transition they are supposed to 
make. We add these actions to the At (although initially as internal actions) with the 
following result. 

Lemma 24: For every automaton A, there is a deterministic automaton B such that 
A fair B. The locally-controlled actions of B are partitioned into the classes of A, 
together with an additional class E of internal actions. 

Proof: For ease of exposition, we construct a nondeterministic automaton B, and then 
show how it can be transformed into an equivalent deterministic automaton. The states 
of Bare of the form (a, a) where a is a state and a is a (possibly empty) sequence of 
actions. The start state of Bis (a, E}, where a is a distinguished state (not a state of A) 
and Eis the empty sequence of actions. The states of Bare (a, a) and (a, a), where a is 
a state of A and a is a (possibly empty) sequence of actions of A. The action signature 
and partition of B are precisely those of A, except that an additional acheduling action "' 
(an internal action) forms its own class of B's partition. The transitions of B from a 
state (a, a), where a is a state of A, are as follows: 

(a, a) ..!+ (a', E) in B iff a ~ a' in A 
(a, a) ~ (a, au) in B iff a~ a' in A for some a' 

That is, "' determines what transitions A actually makes from the state a when the 
sequence of actions a is actually performed. All other actions are simply recorded as 
actions to be performed by A at a later time. The transitions of B from a state (a, a) 
a.re as follows: 

(a, a) ..!+ (a, E) in B iff ao ~a in A for some start state ao 
(a, a) .!. (a, au) in B iff u is an input action of A 

In this case, only input actions and "' a.re enabled from a state of the form (a, a). In 
this way, fair computation will guarantee that "' is eventually performed, and hence 
that an initial state is chosen for A. Thus, the scheduling action 7r chooses the initial 
state of A, as well as the steps taken by A during computation. We claim that A fair B. 
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Suppose that A's locally-controlled actions are partitioned into the classes {Ci : i EI}. 
These classes together with the class {'11'"} are the classes of B. 

Let z be a fair execution of A. Let y be the execution of B obtained by replacing 
each transition 4 ...!. 4 1 of z by the transitions ( 4, f) ...!. { 4, u) ..!. { 41

, f), followed by 
the infinite sequence of transitions (4, f) ..!. (4, £) ..!. .. · in the case that z is a finite 
execution ending in the state 4. Suppose z is finite. Since z is fair, no locally-controlled 
action is enabled in A from the final state 4 of z. It follows that no locally-controlled 
action of B is enabled from any of the infinite occurrences of (4, f) in y, except for '11'" 

which occurs infinitely often. Hence, 11 is a fair execution of B. Conversely, suppose 
that z is infinite. Since z is fair, for each class Ci either actions from Ci appear infinitely 
often in z, or from infinitely many states appearing in z no action from Ci is enabled. 
In the first case, actions from Ci appear infinitely often in JI· In the second case, since 
an action u is enabled from a state 4 of A iff it is enabled from (4, f) in B, infinitely 
many states appear in 11 from which no action of Ci is enabled. Since, in addition, '11'" 

appears infinitely often in the execution, 11 must be a fair execution of B. 

Conversely, let 11 be a fair execution of B. From the definition of B we see that 
if (4,f) ~ (4,ui) ... ~ {4,u1 · .. un) ..!. (41,f) is a sequence of transitions in B, then 
4 ~ 4 1 • • · ~ 4 1 is a sequence of transitions of A. In addition, if (s, £) ~ (s,u1 ) • • • ~ 
(s,u1 .. ·un) ..!. (4,f) is a sequence of transitions in B, then ao !4 41" · ~ 4 is a 
sequence of transitions of A for some start state ao of A. Let z be the execution 
of A obtained by replacing every such sequence in 11 by the corresponding sequence of 
transitions of A. Since 11 is fair, the action '11'" must appear infinitely often in 11 1 and 
hence y must be infinite. H actions from Ci appear infinitely often in 71, then the same 
is true in z. Hnot, then there are infinitely many states appearing in 11 from which no 
action of Ci is enabled. Notice that if an action u other than 7r' is not enabled from 
from the state (4, Q) in B, then for all states 4 1 of A such that 4 ~ 4 1 it must be that u 
is not enabled from 4 1

• It follows that either z is finite and no action of Ci is enabled 
from the final state of z, or there are infinitely many states appearing in z from which 
no action of Ci is enabled. In either case, z must be a fair execution of A. 

We have just shown that A /a.ir B. However, we are not yet done since B is not 
yet deterministic: There are potentially many '11'"-steps from every state of B. However, 
we can assign to each '11'"-step a unique identifier, and tag the '11'" labeling the step with 
this identifier. Replacing the action ,..- with the set E of newly-tagged ,..-'s, it is easy 
to see that this automaton is fairly equivalent to B, and hence also to A. Since this 
automaton ia a deterministic automaton (with an extra class E of internal actions), we 
are done. D 

We are now able to prove Theorem 23. 

Proof of Theorem 23: Given the automaton A, construct the automaton B of 
Lemma 24. The automaton B is fairly equivalent to A, and its locally-controlled 
actions are partitioned into the same classes as those into which A's actions are par-
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A: B: >· u 
a,/J a a,/J 

0: D: /J 

a a 

a 

Figure 2.3: Fair equivalence and unfair equivalence are incomparable. 

titioned, together with an additional class E of internal actions. Furthermore, B is a 
deterministic automaton. Lemma 22 says there are primitive automata At and S with 
local(At) = Ci and local(S) = E such that B (and hence A) is fairly equivalent to 
Hideim(B) (Ili At · S), which is just Hideim(A)uE (Ili At · S). D 

2.2.4 Comparing Fair and Unfair Equivalence 

Having defined two types of equivalence, fair equivalence and unfair equivalence, it is 
natural to ask how they are related. Since Fbeh(O) = Ubeh(O) when 0 is an execution 
module or schedule module, fair and unfair equivalence are identical for execution 
modules and schedule modules. For automata, however, they are incomparable. 

Consider, for example, the automata of Figure 2.3. The (primitive) automata A 
and B each have an input action a and an output action fj. The unfair behavior of 
both A and B consists of all sequences of a and {J, so A and Bare unfairly equivalent. 
The fair behavior of A, however, includes the infinite sequence of a's. Since the fair 
behavior of B does not, A and B are fairly inequivalent. On the other hand, C and D are 
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two (nonprimitive) automata with output actions a and /3, each forming a separate class 
in the partition of the locally-controlled actions. The fair behavior of C and D consist 
of finite sequences of et's followed by a /3 and an infinite sequence of a's, so C and D 
are fairly equivalent. The unfair behavior of C, however, includes the infinite sequence 
of a's. Since the unfair behavior of D does not, C and D are unfairly inequivalent. 

Thus, in general, fair equivalence and unfair equivalence are incomparable. The 
following lemma, however, indicates that fair equivalence implies unfair equivalence in 
the case of primitive automata. Since the primitive automata A and B of Figure 2.3 are 
unfairly equivalent but not fairly equivalent, we see that fair equivalence is a stronger 
equivalence that unfair equivalence in the case of primitive automata. 

Lemma 25: Let A and B be two primitive automata. HA and B are fairly equivalent, 
then A and B are unfairly equivalent. 

Proof: It is enough to check that scheda(A)lezt(A) = scheda(B)lezt(B). Suppose z. 
is an execution of A. Han infinite number of locally-controlled actions appear in z, 
then since A is a primitive automaton (with a single class of locally-controlled ac
tions), z is a fair execution of A. Since A and B are fairly equivalent, there is a fair 
execution y of B such that sched(z)lezt(A) = sched(y)lezt(B). On the other hand, 
if only a finite number of locally-controlled actions appear in z, then we may write 
x = x' x" where x' is a finite execution of A, and every locally-controlled action ap
pearing in x appears in x'. By Lemma 18, the finite execution x' can be extended 
to a fair execution z of A. Since A and B are fairly equivalent there is a fair exe
cution y of B such that sched(z)jezt(A) = sched(y)!ezt(B). Thus, there is a finite 
execution y' of B, a prefix of y, such that sched(x')!ezt(A) = sched(v)lezt(B). Since B 
is input enabled and no locally-controlled action appears in z after x', y' may be ex
tended to an execution y" of B such that sched(x)jezt(A) = sched(V')lezt(B). Thus, 
sch eds (A) I ezt (A) ~ scheda ( B) I ezt ( B). Since the opposite containment follows by a 
symmetric argument, we are done. 0 

2.3 Hierarchical Correctness Proofs 

The problem motivating this thesis is the construction of hierarchical correctness proofs 
for distributed algorithms. We have already mentioned in the introduction how such a 
proof might be constructed. First, a sequence of models 0 1 , ••• , On are defined, objects 
of some type modeling the algorithm at decreasing levels of abstraction. Each model O, 
is then shown to "simulate" Oi-l in some appropriate sense of the word "simulate." In 
such a proof, each Oi-l can be viewed as the statement of a problem Oi is required to 
solve. 0 1 may be said to solve the problem specified by Oi-l if every behavior of Oi 
is a behavior of Oi-l· Oi solves the problem specified by Oi-1 in the sense that every 
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correctness condition satisfied by each behavior of o,_1 is also satisfied by each behavior 
of O;. However, as previously mentioned, the satisfaction of certain liveness conditions 
depends on fa.ir computation. We therefore require only that every fair behavior of O; 
be a fair behavior of 0;_1 • That is, O; is said to satisfy 0;_1 if /beh(O;) ~ fbeh(O;-i). 
We also require that O, and 0;_1 have the same external action signature. 

Notice, however, that this notion of correctness is not completely satisfactory. In 
particular, a schedule module O; with no schedules trivially satisfies every problem 0;_1 

(with the same external action signature). Furthermore, since the schedules of O; are 
allowed to be arbitrary sequences of actions, it is conceivable that they may encode 
information allowing the solution of undecidable problems, and hence not be behaviors 
of an implementable system. In an attempt to avoid such anomalies, we say that the 
object 0;_1 is implementable if there is an automaton satisfying Oi-l· The object 0;-1 is 
implementable in the sense that there is a system satisfying every correctness condition 
satisfied by 0;-1 • Furthermore, since o,_1 is satisfied by an automaton, and since 
every automaton is input-enabled, the object o,_1 must describe a response to every 
possible pattern of input. That is, the behavior of o,_1 is nontrivial. We say that 0;_1 

solvea O; if o,_1 is an implementable object satisfying O;. In the context of constructing 
hierarchical correctness proofs, such a proof consists of a sequence Oi, ... , On of objects, 
and the verification that each O; solves Oi-l· 

Clearly, the notion of satisfaction is the basis of each of these definitions. The 
remainder of this section concerns techniques for verifying that one object satisfies 
another. Two properties of satisfaction are very easy to see. The first is that satisfaction 
is transitive, and a weak congruence with respect to composition. 

Lemma 26: Consider the objects O;, P;, and Qi, for i E J. 

1. ff Oi satisfies P; and P; satisfies Q;, then Oi satisfies Qi. 

2. ff O, satisfies P, for every i E J, then TI, Oi satisfies Ili P, whenever the composi
tions TI, O; and Il; P, are defined. 

Proof: The proof of the first part is immediate from the definition of satisfaction. 
The second part requires some proof. As a result of Corollary 8, the external action 
signature of Ili 0 1 is the compoeition of the external action signatures of the Oi, and 
similarly for Ili Pi. Since Oi and l's have the same external action signature for all 
i E I, so do Ili Oi and Ili Pi. Since fbeh(O,) ~ fbeh(Pi) for all i E I, it follows by 
Lemma 20 that fbeh(Il; O;) ~ fbeh(Il, J's). Therefore, TI, o, satisfies TI, P,. D 

A second property of satisfaction is its invariance under action renaming. 

Lemma 27: Let f be an action mapping applicable to the objects 0 and P. ff 0 
satisfies P, then /(0) satisfies f(P). 
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Proof: Since 0 and P have the same external action signature and since f is injective, 
/(0) and /(P) have the same external action signature. Using Lemma 15 we see that 
/beh(f(O)) s; fbeh(f(P)). Thus, /(0) satisfies /(P). 0 

While we have repeatedly indicated that our hierarchical correctness proofs consist 
of a sequence of objects 0 1 , .•• , On modeling an algorithm at different levels of abstrac
tion, our proofs typically have more structure than this. In the proof of Schonhage's 
resource arbiter (in the next chapter), for example, we actually construct for each level 
of abstraction an automaton A; describing the algorithm at the appropriate level of 
abstraction. This automaton describes as much of the algorithm as can be described 
by its static nature. In particular, the automaton A; encodes all safety conditions re
quired. H liveness conditions are required, we construct an execution module Ei of A; 
with those executions of A; satisfying the desired liveness conditions. The objects O, 
referred to above are actually the execution modules E,. We note, however, that the 
execution module En at the lowest level of abstraction typically consists of the fair 
executions of An. Thus, at the lowest level of abstraction the protocol is completely 
described by an automaton, and we could use the object An in place of the execution. 
module En in the correctness proof. Since automata and execution modules are the 
types of objects most frequently used in correctness proofs, in the remainder of this 
section we give techniques for proving the satisfaction of one automaton or execution 
module by another. 

2.3.1 Automaton Satisfaction 

We now describe one method for proving that an automaton A satisfies an automa
ton B. This method makes use of the notion of a pOBSibilities mapping, a corre
spondence between the states of the two automata that can be used to prove that A 
satisfies B. 

Suppose A and B are automata with the same external action signature, and sup
pose h is a mapping from atatea(A) to the power set of atatea(B). The mapping h is 
said to be a poBBibilitiea mapping from A to B if the following conditions hold: 

1. For every start state a of A, there is a start state b of B such that b E h(a). 

2. For every reachable state a of A, every step (a,"', a') of A, and every reachable 
state b E h(a) of B: 

(a) ff"' E ac:ta(B), then there is a step (b, "'' b') of B such that b' E h(a'). 

(b) H"' fl. ac:ta(B), then b E h(a'). 

H a is a state of A, then a state b E h(a) of B is referred to as a poaaibilit11 for a. 
Informally, b is an abstract state corresponding to the less abstract state a. The fact 
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that h maps a to a set of possibilities allows for the chance that many abstract states 
may correspond to the single concrete state a. The first condition of a possibilities 
mapping says that every start state of A has as one of its possibilities a start state 
of B. The second condition says that steps A and B preserve possibilities: H b is a 
possibility for a, then for every step (a, 1r, a') of A either b is also a p088ibility for a', 
or there is a step (b, 1r, b') of B with the property that b' is a possibility for a. This 
definition generalizes the definition of a possibilities mapping used in the context of 
Event-State Algebras in [Lyn83]. It is also reminiscent of the notion of bisimulation 
from CCS presented in [Mil80]. Roughly speaking, a possibilities mapping from A 
to B is a mapping from the states of A to the states of B with the property that if a 
corresponds to b, and if A can make a transition via the action 1r from a to a', then B 
can make a transition via the action 1r from b to a state b' corresponding to a'. Milner's 
notion of bisimulation is essentially a pair of possibilities mappings, one from A to B 
and another from B to A. 

We now show how to use a possibilities mapping to prove that A satisfies B. Our 
first step is to show how such a mapping relates the executions of A to the executions. 
of B. Given two finite executions z and y of A and B, respectively, we say that y 

finitely corresponds to z under h if ached(y) = ached(z)IB and the final state of 11 is a 
possibility for the final state of z. In general, if z and 11 are two executions of A and B, 
we say that JI corresponds to z under h if for every finite prefix Zi · 4()7r'1a1 ••• a; of z 
there is a finite prefix Jli of 11 finitely corresponding to Zi under h such that 11 is the limit 
of the Yi. Informally, the executions z and 11 model the same computation at different 
levels of abstraction. Our next result shows that by inductively constructing the J/i it 
is always possible to construct such an execution y. 

Lemma 28: Let h be a possibilities mapping from A to B. H z is an execution of A, 
then there is an execution y of B corresponding to z under h. 

Proof: Let z = <&o11'1a 1 • • •• For each i ~ 0, let Zi = 4()7r'1a1 ••• a;. We construct the 
finitely corresponding J1i inductively, and take 11 to be the limit of the Yi· Since ao is 
a start state of A, the set h(ao) must contain a start state of B, and hence it is easy 
to choose an execution Slo finitely corresponding to Zo under h. Suppose Jli-1 finitely 
corresponds to Zi-l under h, and let us construct Jli· First, ot-1 is a reachable state 
of A, and (a;-i, "'•'a;) is a step of A. Second, the final state b of Jli-l is a reachable state 
of B in h(a;-1). H 7r'i E acts(B), then by the definition of h there is a state b' in h(a.) 
such that (b,7r';,b') is a step of B. H Yi= Yi-17r';b', then the final state of J/i is in h(a.) 
and sched(zi)IB = sched(Jli)· H 7r'i ft acts(B), then from the definition of h we see that 
b E h(a;). H J1i = Yi-h then the final state of JI; is in h(a;) and sched(z;)IB = sched(yi)· 
In either case, JI• finitely corresponds to Zi under h. D 

Since each pair of prefixes z; and JI; satisfies the condition sched(z•)IB = sched(yi), 
it is easy to see that the executions z and y do so as well. 
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Lemma 20: Let h be a possibilities mapping from A to B. If the execution y of B 
corresponds to the execution x of A under h, then sched(x)IB = sched(y). 

Proof: Suppose that sched(x)IB "! sched(y). Since x and y are the limits of finitely cor
responding prefixes Xi and Jli, respectively, there must be an i such that sched(xi)IB "! 
ached(y,). However, since Jli finitely corresponds to Xi under h, this is impossible. Thus, 
sched(x)IB = sched(JI). 0 

Having established a correspondence between the executions of A and B, we show 
with the following result how this correspondence can be used to show that A satisfies B. 
We say that one equivalence relation is a contained in a second if every class of the first 
is contained in a class of the second. 

Lemma 30: Let A and B be automata such that part(B) is contained in part(A). 
Let h be a possibilities mapping from A to B. Suppose the following condition holds 
for all reachable states a of A and for all classes C and D of part (A) and part ( B), 
respectively, such that C 2 D: If an action of D is enabled from a reachable state. 
of h(a), then an action of D is enabled from a and no action of C - D is enabled 
from a. 

Proof: Since h is a possibilities mapping from A to B, both automata have the same 
external action signature. We need only show that fbeh(A) ~ fbeh(B). Let x be a fair 
execution of A, and let JI be an execution of B corresponding to x under h. We claim 
that y is a fair execution of B. Since ached(x)IB = ached(JI) and ezt(A) = ezt(B), we 
will have that aclaed(z)lezt(A) = ached(Jl)lezt(B), and hence that fbeh(A) ~ fbeh(B). 
For each i ~ 0, let Zi be the prefix a.o"'1a 1 ••• a; of z, and let Jli be the prefix of JI finitely 
corresponding to Zi under h. 

Suppose y is finite. Suppose there is a class D of B such that an action of D is 
enabled from the final state of JI· Since JI is finite, JI = Y• for some i. Since an action 
of Dis enabled in B from a reachable state in h(a;) for all j ~ i (namely, the final state 
of y), for all j ~ i an action from D is enabled in A from a;, and no action from C - D 
is enabled in A from a;. If z is finite, then an action of C ia enabled from the final state 
of z. If z is infinite, then from every state a; (j ~ i) an action of C is enabled and yet 
no action of C is performed (or it would appear in JI). In either case, this contradicts 
our initial assumption that z is a fair execution, so JI must be a fair execution of B. 

Conversely, suppose JI is infinite. Suppose there is a class D such that an action 
from D is enabled from all but finitely many states appearing in JI· It follows that for 
all but finitely many i, an action of D is enabled from a reachable state of h(a;) in B. 
Therefore, for all but finitely many i, there is an action of D enabled from a; in A, and 
no action from C - D enabled from a;. Since z is a fair execution of A, there must be 
infinitely many actions from D appearing in z, and hence in y. Therefore, y must be 
a fair execution of B. 0 
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We remark that the requirement that part(B) be contained in part(A) is not un
reasonable when B models an algorithm at a higher level of abstraction than A. The 
restriction implies that the actions of Ba.re a subset of the actions of A. Since A and B 
have the same external action signature (h is a possibilities mapping from A to B), 
this implies that some low-level internal actions of A may not be internal actions of B. 
Even when this requirement is not met, however, the correspondence between states 
established by a pOBBibilities mapping is still a useful correspondence when reasoning 
about the behavior of the automaton. For example, in Section 2.3.2 we will see how 
this correspondence can be used to verify that one execution module (of an automaton) 
satisfies a second. 

Our final result concerning pOBBibilities mappings shows that pOBBibilities mappings 
have a very nice local behavior: Given two automata A= Ili At and B = Ili Bi together 
with a pOBBibilities mapping from At to Bi for every i, these p088ibilities mappings 
induce a possibilities mapping from A to B. 

Lemma 31: Suppose for all i E I that ~ is a possibilities mapping from At to Bh and: 
that acts(At) 2 acts(Bi)· Let A = Ili At and B = Ili Bi. H h is the mapping from 
states(A) to the power set of states(B) defined by h(a) = {b : bjBi E ~(al.At)}, then h 
is a possibilities mapping from A to B. 

Proof: As a result of Corollary 8, the external action signature of a composition is the 
composition of the external action signatures of its components. Since the At and Bi 
have the same external action signatures, A and B must also have the same external 
action signature. Thus, we need only check that conditions 1 and 2 of a possibilities 
mapping hold. For the first condition, for every 4i E start(At) there is a"' E states(Bi) 
such that "' E ~(tJi). Thus, for every a E atart(A) there is ab E atart(B) such that 
b E h(a). For the second condition, suppose that a is a reachable state of A, (a,7r,a') 
is a step of A, and b E h(a) is a reachable state of B. Let 4i = aj.At, a~ = a'j.At, and 
"' = blBi for every i E I. Notice that, since a and b a.re reachable states of A and B, 
4i and ~ must be reachable states of At and B,. 

Suppose that 11' E acts(B). We must construct a step (b,11',b') of B with ll E h(a'). 
Suppose,.. E acts(Bi)· Then,.. E acta(At), so (tJi,71",aD must be a step of At. Since ht 
is a p088ibilities mapping from At to Bi, there is a step (~, 11', II.) of Bi with 11. E h.;(aD. 
Suppose 11' ¢ acts(B,). H 11' E acts(At), then (tJi,11',aD is a step of At, and b, E ht(aD 
by definition of h;. H :ir ¢ acta(At), then 4i = a~, and so "' E ht(4i) = h;(aD. In either 
case, let 11. = ht. It follows that ("', :ir, ~) is a step of B, if 11' E acts (Bi), and that "' = ~ 
if :ir ¢ acts(B,). H b is the state of B such that ~ = lllBi for all i, then (b, "'' ll) is a 
step of B. Furthermore, ll E h(a') as desired. 

Suppose that "" ¢ acta(B). Then ,.. ¢ acts(B,) for all i. As above, b, E ht(aD for 
all i, and sob E h(a') as desired. Thus, h is a possibilities mapping from A to B. 0 
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2.3.2 Execution Module Satisfaction 

As previously mentioned, when constructing the correctness proof of an algorithm, we 
first construct automata A1, ••• , An describing the algorithm at several levels of ab
straction. H the algorithm is required to satisfy certain liveness conditions, we also 
construct execution modules Ei of~ describing these liveness conditions. The remain
der of the correctness proof consists of proving that each Ei satisfies Ei-l· We now 
show how possibilities mappings can be used to prove that certain execution modules 
satisfy other execution modules. 

We remark that one correctness condition common to many system specifications 
is a condition of the form "if condition P holds, then eventually condition Q holds." 
Lamport denotes this temporal logic statement D(P :::> OQ) by P .._ Q in [Lam77], 
read "Pleads to Q." Given an automaton A, a set of states S, and a set of actions T, a 
simple correctness condition common to specifications in our model (see Chapter 3, for 
instance) is the condition "if the current state of A is contained in S, then eventually 
an action of Twill be performed." With Lamport's notation in mind, we denote this 
condition by S <-+ T.1 Given two execution modules E and F satisfying a collection of 
such conditions, we now show how a possibilities mapping can be used to show that E 
satisfies F. We begin with a result relating individual executions. 

Lemma 32: Let h be a possibilities mapping from A to B. Let z be an execution 
of A, and let 11 be an execution of B corresponding to z under h. 

1. H 11 satisfies U <-+ V, and if h( S) s; U and T 2 V, then z satisfies S <-+ T. 

2. Hz satisfies S <-+ T, and if S 2 h-1(U) and T ~ V, then 11 satisfies U <-+ V. 

Proof: Let z = tJo11'"1a1 ••• , and let 11 = bocp1b1 •••• For each i E J, let Zi = tJo11'"1a1 ••• ~' 
and let Yi be the prefix of y finitely corresponding to Zi under h. 

Suppose 11 satisfies U <-+ V, and let us show that z satisfies S <-+ T. It is enough 
to show that if a,. E S, then 1rt E T for some l > k. Since 11• finitely corresponds to z,. 
under h, we have 1111 = b1cp1b1 ••• b"' with b"' E h(a,.) for some m. Since a,, E S and 
h(S) ~ U, we have b"' EU. Since y satisfies U <-+ V, we have cp,. EV for some n > m. 
Since V ~ T, for some l > k we have achecl(xi)IB = achecl(y,.) where achecl(xi)IB and 
achecl(11,.) both end with cp,.. Therefore, for some l > k we have 1rt = 'Pm E T, as 
desired. 

Conversely, suppose z satisfies S <-+ T, and let us show that U <-+Vis satisfied by y. 

It is enough to show that if b,, E U, then 'Pt EV for some l > k. Since Ym = bocp1 ••• b,. 

1 The 1tatement S '-+Tia euentially a 1tatement in temporal logic, u ia D(P :> <>Q). The fact that 
executiou are aequences of 1tates and actiou, inltead of 1imply infinite aequences of 1tates, me&n1 the 
1tandard model for temporal logic mUlt be 1lightly modified if the condition S '-+ T ia to be expreued 
in temporal logic. 
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finitely corresponds to x"' = Qo7r1 ••• a"' for some m, we have b11 E h( a"'). Since b11 E U 
and h-1(U) ~ S, we have am E S. Since x satisfies S '-+ T, for some n > m we have 
1"n E T. Since ached(xn)IB = ached(Jln) and T s; V s; acta(B), we see that the final 
action of Jin is 1"n. H Jin = bo ... 'Ptbt, then 'Pt = 7rn E V for some t > le as desired. 0 

With this result, we are now able to give the following sufficient condition for the 
satisfaction of one execution module by another. 

Lemma 33: Let h be a p088ibilities mapping from A to B. Let E be the execution 
module of A with the executions of A satisfying the conditiom Si '-+ 7i for every 
i E J, and let F be the execution module of B with the executions of B satisfying the 
conditions U; '-+ Vi for every i E I. H for every i EI we have that Si 2 h-1 (Ui) and 
7i ~ Vi, then E satisfies F. 

Proof: Since h is a possibilities mapping from A to B, these automata (and hence 
the execution modules E and F) have the same external action signature. Let x be an 
execution of E, and let y be an execution of B corresponding to x under h. Since x 
satisfies Si '-+ T; for every i, Lemma 32 implies that y satisfies Ui '-+Vi for every i. It 
follows that y is an execution of F. Therefore, fbeh(E) ~ fbeh(F), and E satisfies F. 

0 

We conclude with a simple result relating conditions of the form S '-+ T satisfied 
by executions of a composition ;:>f automata to conditions of the form S' '-+ T' satisfied 
by executions of an individual component. 

Lemma 34: Let A= Hidei:(Il; ~). Let S s; atatea(A), and let S; = {slA; : s E S}. 
H xis an execution of A, then x satisfies the S '-+ T iff xlA; satisfies S; '-+ T. 
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Chapter 3 

An Example 

As an example of the hierarchical organization of correctness proofs proposed in the 
preceding chapter, in this chapter we prove the correctness of Schonhage's distributed. 
resource allocation algorithm described in the introduction. The problem is to design 
an arbiter allocating a resource among a collection of users that guarantees the mutual 
exclusion condition that at most one user is using the resource at any given time; 
and the no lockout condition that if users holding the resource eventually return the 
resource, then the arbiter will eventually satisfy every requesting user. The distributed 
system in which this arbiter is to be used is completely asynchronous: processor speeds 
may be independent; messages may take an arbitrary, finite amount of time to be 
delivered; and messages may be delivered in any order. 

The arbiter itself is described in parallel with the proof of its correctness. We begin 
with a high-level model serving as a simple specification of the problem the arbiter is 
to solve. We then give a graph-theoretic description of the algorithm's global behavior. 
Finally, the arbiter is distributed and described in terms of a low-level protocol to be 
followed by the processors comprising the arbiter. We show that this low-level model 
solves the high-level problem specification, and hence that the given protocol is a correct 
solution to the arbiter's problem specification. 

3.1 The Automaton A1 

Our high-level model of the arbiter, the automaton Ai, is a very simple specification 
of the arbiter's correctness conditions. We refer to the arbiter itself as a, and to the 
users of the arbiter as u1, ••• , Un.1 

1 In general, we will denote entities uaociated with the arbiter by the letter a, and entities auoc:iated 
with the uen by letter u. Letten near the end of the alphabet such u v and w will be ued to denote 
entities auoc:iated with either the arbiter or the uaer1. 
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Input Actions: 
re9ueat(u) 

effecta: 
re9ueater• - re9ue•ter• U { u} 

rdurn(u) 
effects: 

Output Actions: 

if laolder = u then 
laolder - a 

gr11nt(u) 
preconditions: 

u E re9ueater• 
laolder =a 

effects: 
re9ue•ter• - re9ueater• - {u} 
laolder - u 

Figure 3.1: The actions of Ai. 

3.1.1 The States of Ai 

A state of Ai consists of a set request era ~ { ui, ... , un} of requesting processes, together 
with a value holder E { ui, ... , Un, a} indicating the entity currently holding the resource 
(either a user or the arbiter itself). The start state of Ai is the state in which the set 
requesters of requesting users is empty, and the initial holder is the arbiter a itself. We 
note that all states of Ai are reachable, as will become clear when the actions of A1 

have been introduced. 

3.1.2 The Actions of Ai 

The actions of Ai are given in Figure 3.1. We specify the transition relation of an 
automaton by giving for each action a list of preconditions and effects. An action is 
enabled from any state s satisfying the action's preconditions, and the action takes s 
to the state t if t can be obtained by modifying s aa indicated by the action's effects. 
Since input actions are enabled from every state, we omit the preconditions of input 
actions. 

The input actions of Ai are of the form requeat(u) and rdurn(u), where u is a user. 
The action request ( u) simply places the user u in the set requesters of requesting users. 
Since automata are input-enabled, a user is able to request the resource at any time, 
even when it is currently holding the resource. The effect of a user's requesting the 
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resource while holding the resource is that the request is recorded for later use (later 
servicing of the user). The action return(u) returns the resource to the arbiter by 
making the arbiter the new holder of the resource. Notice that if a (faulty) user tries 
to return the resource when it does not actually hold it, the arbiter simply ignores the 
"return." The automaton A1 has no internal actions. The output actions of A1 are of 
the form grant(u), where u is again a user. The arbiter grants the resource to u with 
the action grant ( u), which removes u from the set of requesting users and makes u 
the new holder of the resource. Notice that the arbiter grants the resource onl11 when 
the arbiter actually holds the resource. Consequently, at most one user is using the 
resource at any time. 

3.1.3 The Execution Module E 1 

While the executions of A1 satisfy the mutual exclusion condition that at most one user 
is using the resource at any given time, we must still ensure the no lockout condition 
is satisfied by the arbiter: H users using the resource eventually return the resource to. 
the arbiter, then the arbiter eventually satisfies every request for the resource. Let u 
be a user node, and let us define the following sets of states and actions.2 

RtnRes~(u) - {s E states(A1 ) : holder= u ins} 

RtnRes~(u) - {return ( u)} 

GrResHu) - {s E states(A1) : u E requesters ins} 

GrRes~(u) - {grant(u)} 

The condition 
RtnRes1 = !\ RtnResHu) '--+ RtnRes~(u) 

" 
says that any user holding the resource will eventually return the resource to the arbiter. 
The condition 

GrRes1 = !\ GrReaHu) '--+ GrRea~(u) 

" 
says that any user requesting the resource will eventually be granted the resource. The 
correctness condition 

'lWe will be defining several correctneu conditiona for each of the modela we study. We will subscript 
these conditiona to indicate the level of abstraction with which they are uaociated. Furthermore, the 
sets of states and actiona used to conatruct these conditiona will be supencripted with the letters .s or a, 
respectively. 
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U4 

41 !/,. ..... 
Figure 3.2: One state of the arbiter modeled by .A.1 • 

says that if users holding the resource always return the resource, then users requesting 
the resource will always be granted the resource. This is precisely the no lockout 
condition we require the arbiter to satisfy. We denote by E 1 the execution module 
of .A.1 with the executions of .A.1 satisfying the condition 0 1• The execution module E 1 

serves as the specification of the arbiter. 

3.2 The Automaton A 2 

Our next model reveals the distributed structure of the arbiter, but still at a high level 
of abstraction, a level at which one might describe the algorithm at the blackboard. In 
this model, illustrated in Figure 3.2, the arbiter and its environment are modeled by 
a connected, acyclic graph G. The leaves of G are uaer nodu representing the users, 
labeled u1 , ••• , Un· The arbiter itself consists of the remaining arbiter nodea, labeled 
ai, ... , ""'' The (directed) edge of G from the node v to w is denoted by (v, w). An 
edge (v, w) is said to point toward a node z if (v, w) is an edge in the path from v to z. 
Arrows are placed on edges of the graph to indicate either a request for the resource 
or the granting of the resource. In general, the resource is considered to be held by a 
node at the head of a grant arrow. Such a node is called a root of the graph. A user u 
requests the resource by placing a requeat arrow on the edge (u, a) from itself to the 
adjacent arbiter node a. The arbiter grants the resource to u by removing this arrow 
and placing a grant arrow on (a, u}. The user then returns the resource by moving the 
grant arrow from the edge (a, u} to the edge (u, a}. The arbiter itself, however, is an 
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acyclic graph of arbiter nodes. When the head of a requeat arrow is placed at an arbiter 
node a, the arbiter node's response depends on whether it is holding the resource. H 
the arbiter node a holds the resource, then it must be at the head of a grant arrow, 
and so there must be a gn1nt arrow on some edge (v, a). The arbiter selects the first 
node win some fixed ordering of its adjacent nodes having a requeat arrow on (w,a). 
The arbiter then grants the resource to this node by removing the requeat arrow and 
moving the gn1nt arrow to the edge (a, w). In this case we say that the resource has 
been forwarded by a to w. H the arbiter node a does not hold the resource, then the 
arbiter f orwarda the request in the direction of a node holding the resource by placing a 
requeat on the edge pointing toward a root. The work in this section holds for arbitrary 
connected, acyclic graphs. When we consider the model As in the following section, 
however, we will restrict our attention to graphs with a particular structure. 

3.2.1 The States of A2 

In order to refer conveniently to the arrows on an edge of the graph, we usociate with 
each edge { v, w) an arrow 1et, arrowa ( v, w), containing all of the arrows on the edge 
( v, w}. A state of A2 therefore consists of one arrow set, arrow1 ( v, w), for every edge 
(v, w) of the graph G. The start states of Az are ta.ken from the set of states in which a 
single arrow set arrowa ( v; a) contains only a grant arrow, and all other arrow sets are 
empty, where a is an arbiter node of the graph G. In such a state, the arbiter holds 
the resource and no requests for the resource are pending. We will soon restrict our 
attention to a particular set of such start states in the next section, but the work of 
this section is independent of the particular set chosen. We note that some states of Az 
are unreachable. For technical convenience, we remove these states from Az so that all 
states of Az are reachable. 

3.2.2 The Actions of A2 

Fix for each node of Gan (arbitrary) ordering of its adjacent nodes. Let (v, w) denote 
the set of nodes properly between the nodes v and w in this ordering, and let ( v, w] 
denote the set nodes properly between v and w together with the node w. The actions 
of A2 are given in Figure 3.3. The input actions are of the form requut(u,a) and 
gn1nt ( u, a), and the output actions are of the form grant (a, u), where u is a user node 
and a is an adjacent arbiter node. The internal actions are of the form requeat (a, u) 
where u is a user node and a is an adjacent arbiter node; and of the form requeat(a, a') 
and gn1nt(a,a') where a and a' are adjacent arbiter nodes. As in the previous model, 
users may request or grant the ticket at any time, but grants by users not actually 
holding the ticket are effectively ignored. Note we have added internal actions with 
which the arbiter may request that the user return the resource. The arbiter had no 
such ability in the previous model. These actions have been added for the sa.ke of 
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Input Actiom: 
req•eat(u, a) 

effects: 
arrowa(u,a) - arrowa(u,a) U {requeat} 

grant(u,a) 
effects: 

if grant E arrowa(a, u) then 
arrowa(a,u)- arrow(a,u)- {requeat} 
arrowa(a, u) - arrowa(a, u) - {grant} 
arrow1( u, a) - arrotu1( u, a) U {grant} 

Internal and Output Actiom: 
requeat( a, t1) 

preconditions: 
requeat E arrow•( w, a) for some w 
{a, t1) points toward a root 
requeat ft arrowa(a, t1) 

effects: 
arrowa(a, t1) - arrowa(a, t1) U {requeat} 

grant( a, t1) 
preconditions: 

req•eat E arrow•( t1, a) 
grant E arrotu1( w, a) for some w 
req•eat ft arrow(r,a) for r E (w,t1) 

effects: 
arrow( t1, a) - arrotu1( t1, a) - { req•eat} 
arrotua(w, a) - arrotw(w, a) - {grant} 
arrot111( a, t1) - arrotw( a, t1) U {grant} 

Figure 3.3: The actions of A2• 
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symmetry. Having been added as internal actions, they have no effect on the arbiter's 
interface with its users. 

The next few results state certain inva.riants that hold during executions of A2• The 
first guarantees that every state contains at most one root, and hence that at most one 
user is using the resource at any time. 

Lemma 35: Ha is a state of A 2 , there is exactly one root in a. 

Proof: In every start states of A2, precisely one arrow set contains a grant arrow. 
Furthermore, every action that adds a grant arrow to an arrow set also removes a 
grant arrow from an arrow set. The result follows by a simple inductive argument, 
since all states of A2 are reachable. D 

The second inva.riant states that every request arrow placed on the graph by the 
arbiter points toward the root of the graph. In other words, the arbiter correctly 
forwards requests in the direction of the resource. 

Lemma 36: Let a be a state of A2, and let a be an arbiter node of G. H arrowa(a,v) 
contains a request arrow, then (a, v) points toward the root of G. 

Proof: No arrow set of any start state contains a requeat arrow, so the start states of A2 

certainly satisfy the hypothesis. Suppose a is a state of A2 satisfying the hypothesis, 
and suppose that a..!. tis a step of A 2• We claim that t satisfies the hypothesis as well. 
Suppose,.. is of the form requeat(z,JI). Notice that ,.. does not modify the poeition of 
the grant arrow, and that,.. adds a request arrow to arrowa(a,v) only if (a,v) points 
toward the root in a, and hence in t. It follows that t must satisfy the hypothesis. 
Suppose,..= grant(v, a). In this case, ,.. removes any request arrow from arrowa (a, v), 
and sot must satisfy the hypothesis. Finally, suppose,..= grant(z,11) -::/; grant(v,a). 
Since ,.. does not add or remove a request arrow from arrowa (a, v), if the set arrowa (a, v) 
contains a requeat arrow int, the same is true in a. The fact that ,.. is enabled from a 
implies that z is the root in a. The hypothesis implies that the edge (a, v) must point 
toward the root z in a. Since,.. forwards the resource from z to JI (and since JI-::/; a) the 
edge (a, v) must point toward the root JI int. Therefore, t must satisfy the hypothesis. 
The lemma now follows by a simple inductive argument, since all states of A1 are 
reachable. D 

3.2.3 The Execution Module E2 

To ensure that the arbiter satisfies all user requests, it is obviously important that the 
internal arbiter nodes forward all requests in the direction of the root, and that arbiter 
nodes holding the resource eventually grant the resource to adjacent requesting nodes. 
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Let a be an arbiter node adjacent to nodes v and w, and let us define the following sets 
of states and actions. 

FwdReq;(a,v) = {s E states(A2): request E arrows(w,a) for some w, 

(a, v) points toward the root, and 

request ¢ arrows (a, v) in a} 
FwdReq;(a, v) - {grant(v, a), request (a, v)} 

FwdGr;(a,v,w) - {s E statea(A2): request E arrows(v,a) and 

grant E arrows(w,a) ins} 

FwdGr;(a, v, w) = {grant(a, y) : y E (w, v]} 

The first arbiter correctness condition 

FwdReq2 = /\ FwdReq; (a, v) ~ FwdReq; (a, v), 
a,u 

illustrated at the top of Figure 3.4, states that if an arbiter node a is at the head of 
a request arrow and has not forwarded the request in the direction of the root, then 
either a becomes the root (possibly because v is a user node, and v has placed a grant 
arrow on (v, a)), or a eventually forwards the request in the direction of the root. The 
second arbiter correctness condition 

FwdGr2 = /\ FwdGr;(a,v,w) ~ FwdGr;(a,v,w), 
ca,u,tu 

illustrated at the bottom of Figure 3.4, states that if an arbiter node a is a root at 
the head of a request arrow 1 then it eventually forwards the resource to an adjacent 
requesting node. The correctness condition 

C2 = FwdReq2 A FwdGr2 

ensures that arbiter nodes always forward requests in the direction of the root; and 
that arbiter nodes holding the resource always grant it to adjacent requesting nodes. 
We let Ez be the execution module of A2 with the executions of A2 satisfying the 
condition C2• 

While Lemma 35 states that at most one user is using the resource at any given 
time, and while condition C2 ensures that arbiter nodes holding the resource always 
grant the resource to requesting nodes, we have not yet shown that the arbiter always 
satisfies user requests. As before, this requires cooperation on the part of the users. 
Let u be a user node adjacent to the arbiter node a, and let us define the following sets 
of states and actions. 

RtnRes;(u) - {s E states(A2): grant E arrows(a,u) ins} 
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w 

The correctness condition FwdReq2. 

w 

The correctness condition FwdGr2. 

Figure 3.4: Arbiter correctness conditions. 
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RtnRes;(u) - {grant(u, a)} 

GrRea;(u) - {a E atatea(A2): request E arrows(u,a) in a} 
GrRea;(u) - {grant(a, u)} 

The condition 
RtnRes2 = /\. RtnRea;(u) ~ RtnRes;(u) 

u 

says user nodes holding the resource always return the resource, and the condition 

GrRes2 = /\. GrRea;(u) ~ GrRea;(u) 
u 

says the arbiter eventually satisfies requesting users. The condition RtnRe"2 :::> GrRes2 
says that if users return the resource, then the arbiter satisfies all requests. We now 
show that every execution of E 2 satisfies the condition RtnRes2 :::> GrRe"2. First, 
however, we prove the following result, the inductive statement in the argument that 
E2 satisfies the condition RtnRes2 :::> GrRea2. 

Lemma 3 'T: Let a be a state of A 2 having a requeat a.rrow in arrow• (", w). Let z be 
an execution fragment of A2 from a satisfying the condition C2 /\ RtnRea2. Then the 
action grant ( w, ") must appear in z. 

Proof: H the graph G is viewed as a tree rooted at ", then w can be viewed as the 
root of a subtree of v. We proceed by induction on the height h of the subtree of" 
rooted at w. 

Suppose h = 0. In this case, w must be a leaf of G, and therefore w must be a 
user node and " an arbiter node. Since " is an arbiter node and arrowa (", w) contains 
a request arrow, Lemma 36 implies the edge (v, w) points toward the root. Therefore, 
arrows (", w) must contain a grant a.rrow. Since z satisfies RtnRea2, the user w must 
eventually return the resource to the arbiter, and hence grant(w, v) must appear in x. 

Suppose h > 0 and the inductive hypothesis holds for h - 1. We first show that z 
can be written as ar where r is an execution fragment satisfying C2/\RtnRe"2 in whose 
initial state requut E arrow.t (", w) and w is the root (that is, grant E arrowa ( w', w) for 
some node w'). We consider two cases. First, suppose (v, w) does not point toward the 
root in a. Since arrowa (", w) contains a requeat arrow, Lemma 36 implies that " must 
be a user node. Since user nodes are leaves, and since (v, w) does not point toward 
the root, the root must be at v; that is, arrowa(w,v) must contain a grant arrow. 
Since z satisfies RtnRea2, the user " must eventually return the resource to the arbiter, 
so grant(v,w) must appear in z. Therefore, z = {Jgrant(v,w)r as desired. Now, 
suppose (", w) does point toward the root. H w itself is the root, then setting r = x 
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we are done, so suppose w is not the root. If for some node w' the set arrows (w, w') 
contains a request arrow, then since the height of the subtree of w rooted at w' must be 
less than h, the inductive hypothesis for h - 1 implies that grant(w', w) appears in z. 
Therefore, z = {Jgrant(w',w)z' as desired. On the other hand, suppose no arrow set 
arrows(w,w') contains a request arrow. Note that the fact that h > 0 implies that w 
is not a leaf, and hence that w is an arbiter node. Since z satisfies C2, we see that for 
some node w' either grant(w', w) or requeat(w, w') appears in z. If grant(w', w) appears 
in z, then z = {Jgrant(w',w)z' as desired. If request(w,w') appears in z, then a request 
arrow is placed in arrows(w,w'), and again the inductive hypothesis for h -1 implies 
that z = /J grant ( w', w )z' as above. 

We now show that if z' is an execution fragment satisfying C2 A RtnRes2 in whose 
initial state request E arrowa ( v, w) and grant E arrowa ( w', w) for some node w', then 
grant ( w, v) appears in z'. From this it will follow that grant ( w, v) appears in z as 
well. We proceed by induction on d, the distance from w' to v in the ordering of 
the nodes adjacent to w in G. Suppose d = 1. Since requeat E arrowa ( v, w) and 
grant E arrows(w',w), condition C2 implies that grant(w,y) must appear in z' for some. 
y E ( w', v J = { v}. Thus, grant ( w, v) must appear in z'. Suppose d > 1 and the inductive 
hypothesis holds for d - 1. Suppose the inductive hypothesis does not hold for z': 
Suppose that grant(w,v) does not appear in z', and hence that request E arrowa(v,w) 
in every state appearing in z'. As in the case of d = 1, the action grant ( w, y) must 
appear in z' for some y E ( w', v J. If y = v then we are done, so suppose y #= v. If 
arrows ( w, y) contains a request, then the inductive hypothesis for h - 1 implies that 
grant ( w, y) appears in z', and the inductive hypothesis for d - 1 implies that grant ( w, v) 
must also appear in z'. On the other hand, suppose arrowa(w,y) does not contain a 
request arrow. Condition C2 implies that either grant(y,w) or request(w,y) appears 
in z'. If grant (y, w) appears in z', then a grant arrow is placed in arrows (y, w), and the 
inductive hypothesis ford - 1 implies that grant(w,v) appears in z'. If requeat(w,y) 
appears in z', then a request arrow is placed in arrows ( w, JI), and grant ( w, v) must 
appear in z' as we have seen above. D 

An immediate corollary of Lemma 37 is the following. 

Corollary 38: Every execution of E2 satisfies the condition RtnRes2::) GrRts2. 

3.2.4 The Execution Module E~ 

For the sake of exposition, we have given the actions of A 2 names suitable to its level 
of abstraction, rather than using names from A1• It is therefore necessary to rename 
these actions before showing that E2 solves E 1 • The action mapping Ii from A2 to A1 

is defined to map 
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request(u, a) 
grant(u,a) 
grant(a, u) 

to request ( u), 
to return(u), 
to grant(u), 

and all remaining (internal) actioll8 to themselves. We will denote by A~ the automaton 
/i(A2), and in general we will denote by affixing a prime to its name the entity obtained 
by renaming its actioll8 according to Ji. 

3.2.5 The Satisfaction of E 1 by E~ 

We begin the proof that E; satisfies Ei by exhibiting a possibilities mapping from A; 
to Ai. The mapping hi maps the states of A~ to the state t of Ai such that 

u E requesters int iff request E arrows(u,a) ins 
holder = u in t iff grant E arrows (a, u) in s 
holder = a in t iff grant ¢ arrows (a, u) for every user u in s 

These conditioll8 ell8ure that a user is a requesting user in t iff it is in s, and that a 
user is holding the resource in t iff it is in s. Since all states of A~ are reachable, and 
since in all reachable states of A~ there is exactly one root, this mapping takes each 
state of A~ to a singleton set of states of Ai. 

Lemma 30: The mapping lri is a possibilities mapping from A~ to Ai. 

Proof: The automata A~ and Ai clearly have the same external action signature. H s 
is a start state of A2, then a single arrow set arrows ( v, a) contaill8 a grant arrow and all 
other arrow sets are empty. In particular, no arrow set arrows ( u, a) contaill8 a request 
arrow, and no arrow set arrows (a, u) contaill8 a grant arrow. Therefore, in every state 
of hi ( s) the set requesters of requesting users is empty, and holder = a. Since this is 
the start state of Ai, we see that ifs is a start state of A~, then a start state of Ai is 
contained in hi(s). 

Coll8ider the action,..= request(u) of A~, originally the action request(u,a) of A2. 
Suppose s and t are reachable states of A~ and Ai, respectively, such that t E hi(s). 
The action ,.. is an input action of both automata, and hence is enabled from both s 
and t. Supposes~ s' and t ~ t'. Since,.. adds a request arrow to arrows(u,a) ins', 
and adds u to requesters of requesting users in t', we see that t' E hi ( s'). 

Coll8ider the action ,... = return(u) of A~, originally the action return(u,a) of A2. 
Suppose s and t are reachable states of A~ and Ai, respectively, such that t E h1(s). 
Again,,... is an input action of both automata, and hence is enabled from both sand t. 
Suppose s ~ s' and t ~ t'. The definition of hi implies that grant E arrows (a, u) in s 
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iff holder = u in t. H both conditions are false, then "' has no effect on either s or t, 
sot E hi{s) implies t' E hi{s'). Suppose both conditions are true. Notice that u is the 
unique root ins. The action"' moves the grant arrow from arrows (a, u) to arrowa(u, a) 
ins', and"' sets holder to a int'. Thus, t' E hi(s'). 

Consider the action"'= grant(u) of A~, originally the action grant(a,u) of A 2• Sup
poses and tare reachable states of A~ and Ai, respectively, such that t E hi(s). H"' is 
enabled from s, then request E arrowa(u,a) and grant E arrowa(w,a) for some node w. 
Since request E arrows(u,a) ins, the set requestera of requesting users contains u int. 
Since a is the unique root in s, holder = a in t. Thus, "' is enabled from t. Suppose 
s ..!.. s' and t ..!.. t'. The action "' removes the request arrow from arrows ( u, a) and 
moves the grant arrow to arrows (a, u) in s', and "' removes u from the set requesters 
of requesting users and sets holder to u int'. Therefore, t' E hi(s'). 

Finally, the remaining actions request (a, u), request (a, a'), and grant (a, a') of A~ 
are not actions of Ai. These actions do not affect request arrows in the arrow sets 
arrows(u,a) or grant arrows in the arrow sets arrows(a,u). Therefore, supposes and t 
are reachable states of A~ and Ai such that t E h 1(s). H s ..!.. s' is a step of A~, then· 
t E hi(s'). It follows that hi is indeed a possibilities mapping from A~ to Ai. 0 

We can now show that E~ satisfies Ei. 

Lemma 40: E~ satisfies Ei. 

Proof: Let x be an execution of E~, and let 11 be an execution of Ai corresponding 
to y under hi. First, we claim that {i) if y satisfies RtnResau) c....+ RtnRes~(u), then x 
satisfies RtnRes; ( u) ~ RtnRea; ( u )'. Suppose s is a state of RtnRes; ( u). Since grant E 
arrows (a, u) in s, we see that holder = u in every state of hi ( s), and hence that 
hi(RtnRes;(u)) ~ RtnRes;(u). Since, in addition, RtnRes~(u) ~ RtnRes;(u)', the claim 
follows by Lemma 32. Second, we claim that (ii) if x satisfies GrRes;(u) '-+ GrRes;(u)', 
then y satisfies GrResHu) '-+ GrRes~(u). Suppose t E hi(s) is a state of GrRes~(u). 
Since u E requesters in t, we see that request E arrows(u,a) in s, and hence that 
h!i(GrResHu)) ~ GrRes;(u). Since, in addition, GrRes;(u)' ~ GrRes~(u), the claim 
follows by Lemm.a 32. From observations (i) and (ii) it follows that if y satisfies RtnRes11 

then x satisfies RtnRea2 ; and that if x satisfies GrRes2 , then y satisfies GrReai. Since x 
satisfies RtnRe11z ::> GrRea2 , it follows that y satisfies RtnResi ::> GrRes11 and hence 
that y is an execution of Ei. Since sched(z)IAi = sched(y), and since E~ and Ei have 
the same external action signature, it follows that fbeh(E~) ~ fbeh(Ei), and hence that 
E~ will satisfy Ei. 0 

3.3 The Automaton A 3 

In the description of the arbiter given by the previous model, the arbiter nodes are 
intended to represent processes in a distributed network implementing the arbiter. 
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Previous models have given global descriptions of the arbiter's behavior. In this model 
we a.ctually distribute the arbiter by modeling each process as a separate automaton. 
These automata describe the low-level protocol followed by each process in the arbiter's 
implementation. Notice that while previous models have acknowledged the asynchrony 
of processor step times, they have essentially ignored the asynchrony of the network's 
message system by assuming instantaneous message delivery. We now introduce this 
asynchrony into the model, modeling the message delivery system as an independent 
automaton. By composing the automata modeling a.rbiter proceuee with the automa.
ton modeling the message delivery system, we obtain a global model of the arbiter. 

In order to model asynchronous message delivery, it is convenient to add to the 
graph G an extra arbiter node 611,111 (or 6111,11) between every pair of adjacent arbiter 
nodes a and a'. The node 611,111 acts as a message buffer between a and a': The node a 
sends a message to a' by placing an arrow on the edge {a, 611,111), and the message system 
delivers the message to a' by placing an arrow on the edge (611,11,,a'). Since they function 
as message buffers, we will hereafter refer to the nodes 611,111 as buffer nodes. We denote 
by 9 the graph obtained from G by the addition of such buffer nodes. Two nodes. 
(processes) are said to be adjacent in 9 if they are separated by at most a buffer node; 
that is, if they are user or arbiter nodes adjacent in the graph G. Since the results of 
the previous section hold for arbitrary connected, acyclic graphs, and since 9 is such a 
graph, these results hold for the graph g. We therefore fix 9 as the ·graph underlying 
the model A:a. Furthermore, we fix as the set of start states of A2 those start states 
in which no buffer node is a root. In such states, the arbiter holds the resource, and 
no undelivered messages are pending. We note that with the added structure of 9, we 
can prove the following result about buffer nodes during executions of A2• 

Lemma 41: Let a and a' be adjacent arbiter nodes, and let a be a state of A2. If 
request E arrows ( 611,111, a') or grant E arrows (a', b11,111), then request E arrows (a, 611,11'). 

Proof: The sets arrows ( 611,111, a') and arrows (a', b11 ,111) do not contain request or grant 
arrows, respectively, in any start state of A 2, and hence every start state satisfies 
the hypothesis. Suppose a is a reachable state of A2 satisfying the hypothesis, and 
suppose a ..!. t is a step of A2• We claim that t satisfies the hypothesis was well. If 
7r = request ( z, y), then 7r places a request arrow in arrow ( z, y). The only case we need 
consider is the case of (z,11) = (611,111,a'). In this case, 7r is enabled only if (611,11•,a'} 
points toward the root, and there is a request in arrows (", b11,111) for some ". If " = a', 
then Lemma 36 implies that the edge (a', 611,111) also points toward the root. Since 
Lemma 35 states that there is only one root, this is clearly impossible. Therefore, 
we must have " = a, and hence that t satisfies the hypothesis. If"' = grant(z,y), 
then 7r places a grant arrow in arrows(z,y). The only case we need consider is the 
case of (z,y) = (a',611,111). In this case, 7r is enabled only if there is a request arrow in 
arrows ( 611,111, a') in s. By hypothesis, there must be a request arrow in arrows (a, 611,11') 
ins, and hence int. Therefore, t must satisfy the hypothesis. The lemma follows by a 
simple inductive argument. D 
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Note that we do not model any message asynchrony between users and the arbiter: User 
nodes are to be interpreted as ports to the arbiter through which the users communicate 
with the arbiter, and not the user processes themselves. H the arbiter is to be used in 
a larger system, then the responsibility of modeling the message delivery between the 
arbiter and the rest of the system falls on the model of the larger system's message 
delivery. 

The previous models have given some indication of the behavior required of arbiter 
processes. In the first place, arbiter processes must always forward a request for the 
resource in the direction of the resource. Since the network is acyclic, the process is 
able to determine the direction of the resource by remembering the direction in which it 
last forwarded the resource. Furthermore, arbiter processes holding the resource must 
forward the resource to a requesting process. In particular, if arbiter process a receives 
the resource from process v, then a must grant the resource to the first requesting 
process after " in a fixed ordering of its neighbors. Therefore, the state of an arbiter 
process is determined by a set of processes from which it has received a request, the 
link over which the resource was last sent, whether or not the process is holding the 
resource, and whether or not a request has been forwarded in the direction of the 
resource. For each arbiter process a (each arbiter node of the graph G), we construct 
an automaton A0 modeling the process a. 

The behavior required of the message system is very simple. The system must be 
able to accept messages for delivery, and ensure that every message sent is eventually 
delivered. The state of the message system is simply a collection of undelivered mes
sages, together with their destinations. We construct an automaton M to model the 
asynchronous message communication system. 

3.3.1 The States of Aa and M 

AB mentioned above, a state of A 0 is determined by a set requeating of requesting 
processes adjacent to a, a variable laat/orward indicating the adjacent process to which a 
last forwarded the resource, a binary flag holding indicating whether or not a is holding 
the resource, and a binary flag requested indicated whether or not a has requested the 
resource since last holding the resource. To define the start state of Aca, we designate 
one of the arbiter processes and the initial holder of the resource. The start state of Aca 
is a state in which the set requesting of requesting processes is empty; the variable 
laat/orward is set to the process adjacent to a on the path from a to the process 
currently holding the resource, or to any adjacent process if a is the initial holder; the 
flag holding is set depending on whether a is the initial holder; and the flag requested 
is set to false. Notice that there are several possible initial states for the initial holder 
since laat/orward may be set to any of its adjacent processes, but that the initial state 
of the remaining processes is unique. 
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As indicated above, the state of M is determined by a set messages of messages 
to deliver (either request or grant messages) together with the identity of the sender 
and receiver of the message. More formally, messages is a set of triples of the form 
( v, w, request) or ( v, w, grant) denoting messages to be delivered from v to w. The initial 
state of Mis the state in which messages is empty, the state in which no messages are 
undelivered. 

3.3.2 The Actions of Aa and M 

The actions of A11 are given in Figure 3.5. The input actions are those actions of the 
form receiverequest(v, a) and receivegrant (v, a), and the output actions are of the form 
sendrequest (a, v) and sendgrant (a, v), where v is a node (process) adjacent to a in the 
graph g. These actions behave just as described above. There are no internal actions 
of A11 • 

The actions of M are given in Figure 3.6. The input actions are those actions of 
the form sendrequest (a, a') and aendgrant (a, a'), and the output actions are of the form 
receive request( a, a') and receivegrant (a, a'), where a and a' are adjacent arbiter nodes 
of 9. These actions accept messages to be delivered by placing them in the message 
buffer messages, and deliver them by removing them from the buffer. There are no 
internal actions of M. 

3.3.3 The Automaton As 

The composition of the automata A. modeling the arbiter processes together with 
the automaton M modeling the message system yields a global model of the arbiter. 
However, we must hide actions that are inherently internal to the arbiter. Therefore, 
we define the automaton As to be the composition of the automata A. together with 
the automaton M, after hiding all output actions of the composition except those of the 
form sendgrant(a,u) (where a and u are adjacent arbiter and user nodes, respectively). 

3.3.4 The Execution Module Es 

As mentioned in the introduction to this model, an arbiter process a is required to 
forward all requests, and to grant the resource to a requesting process if the arbiter 
process holds the resource. Let v and w be two nodes adjacent to the arbiter node a, 
and let us define the following sets of states and actions. 
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Input Actions: 
receive request( t1, a) 

effects: 
requesting - requesting U { v} 

receivegrant( v, a) 
effects: 

if holding = false and lutf orward = v then 
holding - true 
requested - false 

Output Actions: 
•endrequeat(a, v) 

preconditions: 
requesting "!- 0 
requested = f alae 
holding = false 
lutforward = t1 

effects: 
requested - true 

sendgrant( a, u) 
preconditions: 

u E requesting 
holding = true 
lutf orward = w 
JI ¢ requesting for all JI E ( w, u) 

effects: 
requesting - requesting - { u} 
lutf orward. = t1 

holding - /me 

Figure 3.5: The Actions of A 0 • 
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Input Actions: 
sendrequest (a, a') 

effects: 
messages +- messages U { (a, a', request)} 

aendgrant (a, a') 
effects: 

messages +- messages U { (a, a', grant)} 

Output Actions: 
rueiverequest( a, a') 

preconditions: 
(a, a', request) E messages 

effects: 
messages+- meBBages - {(a,a',request)} 

rueivegrant (a, a') 
preconditions: 

(a, a', grant) E messages 

effects: 
messages+- messages - {(a,a',grant)} 

Figure 3.6: The actions of M. 
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FwdReq:(v) - {s E states(Aa) : requesting :f:. 0, 
requested = false, 
holding =false, a.nd 
lastf orward = v in a} 

FwdReq: ( v) - { receivegrant ( v, a), sendrequest (a, v)} 

FwdGr:(v, w) - {a E states(Aa) : v E requesting 
holding = true, a.nd 
lastforward = w in a} 

FwdGr:(v, w) - {sendgrant (a, 11) : 11 E (w, v]} 

The condition 
FwdReqa = /\ FwdReq:(v) '"-+ FwdReq:(v) 

" 
says that the arbiter process a having received a request a.nd not holding the resource 
will either forward a request for the resource or receive the resource (without having 
requested it, perhaps from a user). The condition 

FwdGra = /\ FwdGr:(v) '"-+ FwdGr:(v) 

" 
says that the arbiter process a holding the resource and having received a request will 
eventually forward the resource to a requesting process. The condition 

is the desired correctness condition for the arbiter process a. We note the following. 

Lemma 42: Every fair execution of Aa satisfies Ca. 

Proof: Let a be a state of FwdReq:(v) and let z be an execution fragment of Aa from s. 
ff neither receivegrant(v,a) nor sendrequest(a,v) appear in z, then sendrequest(a,v) is 
enabled from every state appearing in z. Therefore, every fair execution of Aa satisfies 
FwdReqa. Similarly, let a be a state of FwdGr:(v, w) and let z be an execution fragment 
of Aa from a. ff no action of FwdGr: ( v, w) appears in z, then again a.n action from this 
set is enabled from every state appearing in z. Therefore, every fair execution of Aa 
satisfies FwdGra. It follows that every fair execution of A 11 satisfies Ca. D 

We let the execution module E 11 = Fair(Aa). Recall that an object 0 solves (the 
problem specified by) an object O' only if it is implementable. Since Ea is part of our 
solution to the arbiter's problem specification, it is necessary to show that E. (u well as 
every other execution module defined at this low level of abstraction) is implementable. 

Lemma 43: E. is implementable. 
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We must also require that the message system deliver all messages sent. Let a 
and a' be two a.djacent arbiter processes, and let us define the following sets of states 
and actions. 

H we let 

and 

DelRelfu(a, a') 
DelRufu(a, a') 

DelG~( a, a') 
DelG~(a,a') 

- {a E states ( M) : (a, a', request) E messages in a} 
- {rueiverequeat(a, a')} 

- {a E states ( M) : (a, a', grant) E messages in a} 
- { rueivegrant (a, a')} 

DelRequ = /\ DelRetfu (a, a') c......+ DelRelfu( a, a') 
11,11' 

DelGru = /\ DelG~(a, a') c......+ DelG~(a, a'), 
ca,ca' 

then the condition 
Cu = DelRequ /\ DelGru 

says that messages sent are always delivered. We denote by Eu the execution module 
of M with the executions satisfying Cu. 

Lemma 44: Eu is implementable. 

Proof: It is easy to construct an automaton M' with the action signature of Eu whose 
fair executions are executions of Eu: The automaton M' keeps messages to be delivered 
in a FIFO buffer, and delivers them in the order in which they are received for delivery. 

0 

Finally, we define Ea to be the composition of the execution modules E 11 and Eu 
after hiding the internal actions of Aa. As a result of Lemma 26, we have the following. 

Lemma 45: Es is implementable. 

3.3.5 The Execution Module E~ 

As with the execution module E 2, it is necessary to rename the actions of Es to be 
consistent with the names of E 2 • As mentioned when we defined the buffer nodes ba,a', 
the arbiter node a sends a message to the arbiter node a' by placing an arrow on the 
edge (a, b11 ,111} between a and the buffer node b11,111, and the message system delivers the 
message by placing an arrow on the edge ( 611 ,11,, a') between the buffer node and a'. An 
arbiter node and user node communicate by placing an arrow on the edge between 
them. Therefore, if a is an arbiter node and a' and u are arbiter and user nodes, 
respectively, adjacent to a in 9, we define the action mapping '2 to map 
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receive request( u, a) to request ( u, a) 
rueivegrant ( u, a) to grant(u, a) 
sendrequest (a, u) to request (a, u) 

sendgrant (a, u) to grant(a, u) 

reeeiverequest(a', a) to request ( b11• ,11, a) 
rueivegrant (a', a) to grant ( b111 ,11, a) 
sendrequest(a, a') to request (a, b11,111) 

sendgrant (a, a') to grant (a, b11,11•) 

We will denote by A~ the automaton / 2 (A3), and in general we will denote by affixing 
a prime to its name the entity obtained by renaming its actions according to /2. 

3.3.6 The Solution of E 2 by E~ 

We begin the proof that E~ satisfies E 2 by exhibiting a possibilities mapping from A~ 
to Az. In order to define this mapping, it will be necessary to refer to state variables 
from each of the components of A~. While the name of the state variable messages 
of M' is unique to M', the remaining components share variable names. In order to 
avoid ambiguity, we will indicate the component to which a state variable belongs by 
subscripting the variable with an appropriate identifier. For example, the set requesting 
of requesting processes in A~ will be denoted by requesting 11 • The mapping h2 maps 
the state a of A~ to the set of states t of A2 satisfying the following conditions: 

Ul request E arrows ( u, a) iff u E requesting11 
U2 grant E arrows(u,a) iff holding 11 = true and lastfor"'4rd 11 = u 
ua request E arrows (a, u) iff requested 11 = true and lastfor""1.rd 11 = u 
U4 grant E arrows (a, u) iff holding 11 = false and lastf orward 11 = u 

Al request E arrows (b111,11 , a) iff a' E requesting11 
A2 grant E arrows ( b111 ,11 , a) iff holding 11 = true and lastfor""1.rd 0 = a' 
A3 request E arrows (a, bo,11') iff requested11 = true and lastforward 0 =a' 
A4 grant E arrows (a, 611,11•) iff (a, a', grant) E messages 

/1 request E arrows (a, b11,o'), 
request ¢ arrows ( b11,11•, a'), 

and grant ¢ arrows (a', 60,0•) iff (a, a', request) E messages 
12 (a, 611,11•} points toward the root iff holding 0 = false and lastf orward 11 = a' 

The conditions Ul - U2 and Al - A4 are straightforward. They say that the arbiter 
process a has received a request from a process v in t iff v is in a's set requesting of 
requesting processes in a, and that a has received the resource from v in t iff a holds the 
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resource in 8 and last sent (and hence received) the resource from v. Similarly, a has 
forwarded a request for the resource in t iff a has sent a request in the direction it last 
forwarded the resource in 8. A4 says that the resource is in transit between a and a' 
in t iff there is a grant message from a to a' in the message buffer meaaages in 8. U 4 
says that the user u has the resource in t if in 8 the node a last forwarded the resource 
to u and has not received the resource since. Conditions 11 and 12 are invariants that 
must be preserved by the mapping. 11 says that a state with a request in transit must 
map only to states satisfying Lemma 41. 12 says that the value of laat/orward correctly 
records the direction of the resource in the network. We now have the following. 

Lemma 46: The mapping h2 is a possibilities mapping from A~ to A2 • 

Proof: The action mapping '2 has renamed the actions of Aa so that A~ and A2 have 
the same external action signature. Let 8 be a start state of A~. For every arbiter 
process a in a, the set requesting 4 of requesting processes is empty, and requested 4 is 
set to false. It follows by Ul, U3, Al, and A3 that no arrow set of any state in h 2 (a) 
contains a request arrow. Furthermore, the initial holder a in a has set its flag holding 4 · 

to true; all other processes a' have set holding4 , to false, and laat/orward 4 , to the node 
in the direction of the resource; and no grant message is pending in the message buffer 
messages. It follows by U2, U 4, A2, and A4 that there is precisely one root in every 
state of h2(a). Therefore, h2 (a) contains a start state of A 2 as desired. 

Consider the action "' = request ( u, a) of A~, originally the action receive request ( u, a) 
of Aa. Suppose a and t are reachable states of A~ and A2, respectively, such that 
t E h2(a). The action"' is an input action of both automata, and hence is enabled from 
both s and t. Suppose a ~ a' and t ~ t'. To show that t' E h2 (a'), we must show 
that Ul holds. However,"' adds u to the set requesting4 of requesting processes is 8

1
, 

and adds a request arrow to the set arrows(u,a) int', and hence Ul holds. Therefore, 
t' E h2(s'). 

Consider the action "' = grant ( u, a) of A~, originally the action reeeivegrant ( u, a) 
of Aa. Suppose s and t are reachable states of A~ and A2, respectively, such that 
t E h2 (a). Since "' is an input action in both automata, "" is enabled from both s 
and t. Suppose a ~ s' and t ~ t'. We see by U 4 that there is a grant arrow in the set 
arrows (a, u) of t iff' holding 11 = /alae and laat/orward 11 = u in 8. H both conditions are 
false, then "" has no effect on either state, and hence t E h2(a) implies t' E h2(a'). On 
the other hand, suppose both conditions are true. To show t' E h2 ( s'), we must show 
that U2, U3, and U 4 hold. Notice that laat/orward ca = u in a'. First, "" sets holding a 

to true ins', and adds a grant arrow to arrowa(u,a) int', so U2 holds. Second,"' sets 
requested 4 to /alae in a', and removes any request arrow from the set arrows (a, u) in t', 
so U3 holds. Finally, since"" sets holding11 to true ins', the fact that"" moves the grant 
arrow from arrowa(a,u) to arrowa(u,a) implies that U4 holds. Therefore, t' E h2(s'). 

Consider the action "" = request (a, u) of A~, originally the action sendrequest (a, u) 
of A3 • Suppose a and t are reachable states of A~ and A2, respectively, such that 
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t E h2(s). If 1f" is enabled from s, then the set requesting
11 

of requesting processes is 
nonempty in s, so Ul and Al implies that some set arrows (w, a) contains a request 
arrow in t. Furthermore, since holding11 =false and lastforward

11 
= u in s, we have 

by U4 that arrows(a, u) contains a grant arrow in t, and hence that the edge (a, u) 
points toward the root in t. Finally, since requested11 = false in s, by U3 we have that 
arrows (a, u) does not contain a request arrow. Therefore, 1f" is enabled from t. Suppose 
s ..!. s' and t ..!. t'. To see that t' E h.(s'), we must show that U3 holds. Notice that 1f" 

sets requesteda to true in s', and that lastforward 1.1 = u in s'. Since 1f" adds a request 
arrow to arrows (a, u) in t', we see that U3 holds. Therefore, t' E h2 ( s'). 

Consider the action "" = grant (a, u) of A~, originally the action sendgrant (a, u) 
of As. Suppose s and t are reachable states of A~ and A2, respectively, such that 
t E h2(s). If 1f" is enabled from s, then u is contained in the set requesting a of requesting 
processes ins, and Ul implies that arrows(u, a) contains a request arrow. Furthermore, 
holding 1.1 = true and lastforward 1.1 = w in s, so U2 and A2 imply that arrows ( b.,,11 , a) 
(or arrows ( w, a) if w is a user node) contains a grant arrow in t. In addition, since 
1J '$ requesting11 for ally E (w, u) ins, Ul and Al imply that int no set arrows(b11 ,a, a) (or 
arrows (y, a) if 11 is a user node) contains a request arrow for any 11 E ( w, u). Therefore, 1f" 

is enabled from t. Supposes..!. s' and t ..!. t'. To show that t' E h2(s'), we must show 
that Ul, U2 and A2, U3 and A3, and U4 hold. First, the action "" removes u from 
requestinga in s', and removes a request arrow from arrows(v,a) in t', so Ul holds. 
Second, since holding 1.1 is set to false in s', and since a is not a root in t', U2 and A2 
hold. Third, since holdinga = true in s, we see that requested

11 
=false in s and hence 

in s', so U3 and A3 hold. Finally, since 1f" sets holding a to false and lastforwarda to 
u in s', and since 1f" adds a grant arrow to arrows (a, u) in t', we see that U 4 holds. 
Therefore, t' E h2 ( s'). 

Consider the action 1f" = request(bat,a,a) of A~, originally rueiverequest(a',a) of As. 
Suppose s and t are reachable states of A~ and A2, respectively, such that t E h2(s). 
If 1f" is enabled from s, the set messages of undelivered messages in s must contain a 
request message from a' to a. It follows by /1 that in t the set arrows (a', b11t ,11 ) contains 
a request arrow, the set arrows (bat ,1.1, a) does not contain a request arrow, and the set 
arrows (a, b11 ,1.1t) does not contain a grant arrow. Since arrows (a', b11t ,1.1) contains a request 
arrow, Lemma 36 implies that (a', bat ,1.1) points toward a root. This together with the 
fact that arrows(a, b11t,1.1) does not contain a grant arrow implies that (bat,1.1, a) points 
toward the root as well. Therefore, the action 1f" is enabled from t. Supposes ..!. s' and 
t ..!. t'. In order to see that t' E h2(s'), we must show that Al and /1 hold. First, "" 
adds a' to the set requesting 

11 
of requesting processes in s', and 1f" adds a request arrow 

to arrows ( b11t ,u a) in t', so A 1 holds. Second, 1f" removes a request message from a' to a 
from the set messages of undelivered messages in s', and 1f" adds a request arrow to 
arrows ( b11t ·"' a), so /1 holds. Therefore, t' E h2 ( s'). 

Consider the action 7r = grant (b11t,11 , a) of A~, originally the action rueivegrant (a', a) 
of A 3 • Suppose s and t are reachable states of A~ and A2, respectively, such that 
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t E h 2(s). H 1r is enabled from s, the set messages of undelivered messages in s must 
contain a grant message from a' to a. By A4 we see that the set arrows (a', b111 ,11 ) contains 
a grant arrow in t. Lemma 41 implies that the set arrows (a, 611 ,111) must contain a request 
arrow. Since the degree of the buffer node b11 ,111 is 2, we see that "' is enabled from t. 
Supposes..!. s' and t ..!. t'. Since the set arrows(a,b11 ,111) contains a request arrow int, 
Lemma 36 implies that the edge (a, 611 ,111) points toward the root. By 12 we see that 
holding,. = false and laatforward 11 = a' in s. Therefore, to see that t' E h2(s'), we 
must show that A2, A3, A4, and 12 hold. First, 1r sets holding,. to true in a'. Notice 
that laatforward 11 = a' in s, and therefore in s' as well. Since 1r adds a grant arrow to 
arrows (b,.1, 11 , a) in t', we see that A2 holds. Second, 1r sets requested11 to false ins', and 'Ir 
removes a request arrow from arrows (a, 611 ,111} in t', so A3 holds. Third, 1r removes a 
grant message from a' to a from the set messages of undelivered messages in s', and 'Ir 

removes a grant arrow from arrows(a',b111,11 ) int', so A4 holds. Finally, since holding,. 
is set to true in s', it is easy to see that 12 holds. Therefore, t' E h2(s'). 

Consider the action 1r = request(a, 611,111) of A~, originally the action aendrequest (a, a') 
of As. Suppose a and t are reachable states of A~ and A 27 respectively, such that· 
t E h2(s). H 1r is enabled from a, then the set requesting,. of requesting processes is 
nonempty ins, and hence by Ul and Al some set arrows(w,a} oft contains a request 
arrow. Furthermore, since holding11 =false and laatforward 11 = a' in a, by 12 we see 
that the edge (a,611,111) points toward the root int. Finally, since rqueating

11 
=false 

in a, by A3 we see that there is no request arrow in arrows (a, 611,111) in t. Therefore, 'Ir 

is enabled from t. Suppose a ..!. a' and t ..!. t'. To see that t' E h2(s'), we must show 
that A3 and 11 hold. Notice that 1r sets requested,. to true in a', and places a request 
arrow in arrows (a, b11,111) in t'. Since laat/orward 11 = a' in s and hence in s', we see that 
A3 holds. Notice that requested11 =false ins. Since laat/orward 11 =a' ins, A3 implies 
that arrows (a, b,.,111) does not contain a request arrow in t. Lemma 41 implies that there 
is no request arrow in arrows ( 611 ,111, a') and no grant arrow in arrows (a', 611,111) in t, and 
hence the same is true in t'. Since "' adds a request arrow to arrows (a, 611,111) in t', and 
adds a request message from a to a' to the set messages. of undelivered messages in s', 
we see that 11 holds. Therefore, t' E h2(s'). 

Finally, consider the action 1r = grant (a, b11,111) of A~, originally sendgrant (a, a') of As. 
Suppose a and t are reachable states of A~ and A2 , respectively, such that t E h2(s). 
H 7r is enabled from a, then since a' E requesting 11 in s, we see by Al that arrows ( b111 ,11 , a) 
contains a request arrow in t. Since holding 11 = true and laat/orward 11 = w in s, we see 
by U2 and A2 that a grant arrow must be contained in arrow1(b.,11 ,a) (or arrows(w,a) 
if w is a user node) int. Furthermore, since y fl. reque1ting 11 for ally E (w, a') in a, we 
see by U3 and A3 that no request arrow is contained in arrow1(b,,11 ,a) (or arrows(y,a) 
if 11 is a user node) in t. Therefore, "' is enabled from t. Suppose a ..!. s' and t ..!. t'. 
To see that t' E h2(s'), we must show that Al, A2 and 12, A4, 11, and 12 hold. All 
except 11 are straightforward, so we show 11. Notice that arrows(b111,11 , a) contains a 
request arrow in t. By 11, there is no undelivered request message from a' to a in the 
set messages of s, and hence in s'. However, 'Ir puts a grant arrow in arrows (a, b,.,,.,), 
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-so 11 holds. Therefore, t' E h2(s'). 0 

Having exhibited a possibilities mapping h2 from A~ to A2 , we now uae this map
ping together with Lemma 33 to show that E~ satisfies E 2 • Before using Lemma 33, 
however, we must translate the local correctness conditions C~ and C1ii1 for E~ and E,k, 
respectively, into a global correctness condition for E~. We uae Lemma 34 to recharac
terize E~ in this way. Let a and a' be adjacent arbiter nodes, and let v be an arbitrary 
( uaer or arbiter) node adjacent to a in 9. Let 

FwdReq!(v)' ={a E atatea(A~) : alA~ E FwdReq!(v)} 

FwdGr!(v)' ={a E atatea(A~) : alA~ E FwdGr!(v)} 

DelRelfM(a, a')'= {a E atatea(A~) : alM' E DelRelf1ii1(a, a')} 

DelG~(a,a')' ={a E atatea(A~) : alM' E DelG~(a,a')}. 

Furthermore, let 

Finally, let 

H 

FwdRet/0 = /\ FwdReq:(v)' <-+ FwdReq:(v)' 
v 

FwdG,J,. = /\ FwdGr!(v)' <-+ FwdGP!(v)'. 
v 

DelRet/M = /\ DelRelfM(a, a')'<-+ DelReq"M(a, a')' 
"·"' 

DelGr'M = /\ DelG,..M( a, a')' <-+ DelGrM( a, a')'. 
"•"' 

C~ = FwdRet/0 /\ FwdGr'0 

Ck = DelRe</M /\ DelGr'M. 

c~ = /\ c~ " Ck 
" 

then the following is an immediate result of Lemma 34. 

Lemma 4'1: E~ is the execution module of A~ with the executions of A~ satisfying C~. 

Having made this transformation from local to global correctness conditions, we 
now uae Lemma 33 to show that E~ satisfies E2• 

Lemma 48: E~ satisfies E2. 
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Proof: Let a and a' be adjacent arbiter nodes, and let t1 and w be arbitrary nodes 
adjacent to a. H t1 is an arbiter node, then let t11 be the buffer node hca,v between a 
and t1; and let t11 be the node t1 itself if v is a user node. The node v' is simply the node 
of 9 adjacent to a such that the edge (a, t1') points toward t1. Let w' be the analogous 
node with respect tow. We will show that 

1. h21(FwdReq;(a, t11
}) ~ FwdReq!(t1)' 

2. h21(FwdReq;(b0 ,0 1, a')) ~ DelReq'M(a, a')' 

3. h2 1(FwdGr;(a, t11
, w')) ~ FwdGr!(t1, w)', and 

4. h21(FwdGr;(bca,ca•, a, a')) ~ DelGr'M(a', a)' 

Since it is easy to see from the definition of '2 and the following sets that 

1. FwdGr:(v)' ~ FwdReqi(a, t11
), 

2. DelRufM(a'a)' ~ FwdReq2(b0 1,0 , a), 

3. FwdGr:(t1,w)' C FwdGri(a,t1',w'), and 

4. DelGrA,(a',a)' £;; FwdGr2(b0 1,0 ,a), 

it will follow by Lemma 33 that E~ satisfies E 2• 

First, suppose t E h2(s) is a state of FwdReq;(a,t1'), and let us show thats is a state 
of FwdReq!(t1)'. Since some set arrows(w,a) oft contains a request, we see by Ul and 
Al that the set requeating0 of requesting processes is nonempty. Smee (a, t1') points 
toward the root int, we see by U4 and 12 that holding0 =false and last/orward 0 = t1 
in s. Since the set arrows (a, t1') does not contain a request arrow in t, the fact that 
laat/orward 0 = ti together with U3 and A3 imply that requested 0 =false. Therefore, 
s E FwdReq! ( t1 )'. 

Second, suppose t E h2(.s) is a state of FwdReq;(b0 ,0 1, a'), and let us show that a is a 
state of DelReq'u (a, a')'. Since in t there is a request arrow in arrows ( w, bca,o') for some w, 
the edge (w,60101) must point toward the root. Since (bca,ca•,a') also points toward the 
root in t, and since this root is unique, this request arrow must be in arrows (a, bca,ca'}. 
Furthermore, since (b0 ,0 ., a') points toward the root, we see that there can be no grant 

arrow in arrow (a', ho,•') and no request arrow in arrows ( b0 ,0 1, a'). It follows by Jl that 
there is a requeat message from a to a' in the set messages of undelivered messages 
in s. Therefore, a E DelRUJ'u( a, a')'. 

Third, suppose t E h2 ( s) is a state of Fwd Gr; (a, v', w'), and let us show that s is 
a state of FwdGr!(v,w)'. Since there is a request arrow in arrows(v',a) int, Ul and 
Al imply that v is contained in the set requeating0 of requesting processes. Since there 
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is a grant arrow in arrows(w',a) in t, U2 and A2 imply that holding
0 

= true and 
last/orward 0 = w ins. Therefore, s E FwdGr!(v, w)'. 

Finally, suppose t E h2(s) is a state of FwdGr;(b0 ,0 1, a, a'), and let us show that s is 
a state of DelGr'M(a',a). Since there is a grant arrow in arrows(a',b0,01) int, A4 implies 
that there is a grant message from a' to a in the set messages of undelivered messages 
in s. Therefore, s E DelGr'M(a', a)'. D 

Finally, combining the work of the last few section, we have the following result. 
Let E; be the execution module obtained by renaming the actions of Es according to 
the action mapping / 1'2. 

Theorem 4:9: E; solves E 1• 

Proof: Since E~ satisfies E 2 , it follows by Lemma 27 that E; satisfies E~. Since E~ 
satisfies Ei, it follows by Lemma 26 that E; satisfies E 1 . Since E~ is implementable, 
Lemma 27 implies that E; is implementable. Therefore, E; solves E 1 • D 

With this we have proven the correctness of a fully-detailed protocol for resource 
allocation in an asynchronous network. 

3.4 Time Complexity 

The primary concern motivating Schonhage's arbiter is its time performance. For 
example, Lynch and Fischer consider two simple resource arbiters in [LF81], allocating 
a resource among n users. One arbiter is a process that simple polls ea.ch user in round
robin order, granting the resource to ea.ch requesting user in turn. Given that ea.ch user 
uses the resource for a bounded amount of time, the response time for this arbiter (the 
maximum time a user must wait for the resource) is 0 (n) regardless of the number of 
users requesting the resource. A second arbiter is a binary tree (a tournament tree) 
with the users at the leaves of the tree. Ea.ch internal node of the tree repeatedly 
polls its children until one of its children requests the resource, at which point it stops 
and passes the name of the child up to the internal node's parent. The root of the 
tree actually determines which user is granted the resource. When only one user is 
requesting the resource at a time, this arbiter's response time is only 0 (logn). In the 
worst case, however, (when every user is requesting the resource) this arbiter's response 
time is 0 ( n log n). Schonhage's algorithm, in contrast, combines favorable aspects of 
both these arbiters. In particular, (in the case that the graph G is a binary tree) the 
arbiter's response time is 0 (log n) if only one user requests the resource at a time, and 
0 ( n) in the worst case. In this section we perform the complexity analysis needed to 
make these claims precise. 
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For convenience, we perform our complexity analysis at the middle level of abstrac
tion, with the automaton A2 • We have not yet introduced the notion of time into our 
model. While we have not yet decided on how time should be incorporated into our 
model, one alternative is to assign times to states (or equivalently to actions) denoting 
the time at which an automaton transition causes the automaton to enter this state. 
Let us refer to such an execution as a timed execution. In order to perform any time 
analysis, it is necessary to place bounds on the time between automaton transitions. 
Recall that all liveness conditions required of the automaton A2 in the construction 
of E2 are of the form S <-+ T, meaning that if A2 enters a state of S, then eventually 

an action of T is performed. Let us denote by S ..!.. T the condition that if A2 enters a 
state s of S, the within time b a.n action "' of T will be performed. That is, following 
state s in a timed execution satisfying S ..!.. T there is aw-step to a state s' such that 
the difference in times assigned to s and s' is at most b. Let 

BndedFwdReq2 = /\ FwdReq; (a, v) ..!.. FwdReq; (a, v) 
G 1V 

BndedFwdGr2 = /\ FwdGr;(a, v, w) ..!.. FwdGr;(a, v, w) 

• • 

BndedRtnRea2 = /\ RtnRea; ( u) '-+ RtnRes; ( u) 
u 

Let us say that a timed execution of A 2 is b-hounded if it satisfies the conditions 
BndedFwdReq2 , BndedFwdGr2 , and BndedRtnReaz. We define the response time in 
ab-bounded execution x of A 2 to be a timer such that for all 1tates s with request E 
arrows ( u, a) (where u is a user node) appearing in z, the differeace in times assigned 
to s and the first state with grant E arrows (a, u) appearing after s in x is less than r. 

Suppose the graph G has diameter d. It is easy to see that the response time for 
b-bounded executions of A 2 is 2bd when only one user request the resource at a time: 
The request must travel the diameter of the graph to the root, and the root must be 
moved the diameter of the graph to the user. Thus, we have the following. 

Theorem 50: H the diameter of the graph G is d, then the response time in b-bounded 
executions of Az in which at most one user requests the resource at a time is 2bd. 

Conversely, suppose the graph G has e edges. We now show that the worst-case 
response time (when the arbiter is heavily loaded) is 3be - b. We begin with the 
following preliminary lemma, the inductive statement in the proof that the arbiter's 
response time is 3be - b. Given an edge ( v, w), we define e ( v, w) to be the number of 
edges in the subtree of v rooted at w. 

Lemma 51: Let s be a state of A 2 in which request E arrows(v,w) and the edge 
(v, w) points toward the root. In any b-bounded execution fragment of Az from s, 
grant E arrows ( w, v) within time 3be ( v, w) + b. 
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Proof: We proceed by induction on e = e(v,w). Suppose e = 0. In this case, w 
must be a leaf, and hence a user node. Since the edge (v, w) points toward the root, 
grant E arrowa ( v, w). Since w is a user node, condition BndedRtnRe11i implies that 
grant E arrowa ( w, v) within time b = 3be + b. 

Suppose e > 0 and the inductive hypothesis holds for numbers of edges less that e. 
By assumption, the edge (v, w) points toward the root. H w itself is the root, since 
request E arrowa ( v, w), condition BndedFwdGr2 implies that within time b we have 
grant E arrowa(w,z) for some node z. Notice that if z = v, then we are done, 
so let us assume that z =F v. Then in either case, regardless of whether w itself 
is the root, the edge (w, z) points toward the root within time b for some node z 
other than v. Let z = z,, ... , zi, v be the nodes between z and v in the ordering 
of nodes a.dj&eent to w. Let e; = e(w,z;), and notice that e ~ E}=1(e; + 1). We 
proceed by induction on i to show that if requeat E arrows(v,w) and (w,z,) points 
toward the root, the grant E arrowa(w,v) within time E}=1 3b(e; + 1). It will fol
low that grant E arrowa(w, v) within time b + E}=i 3b(e; + 1) ~ 3be + b of the time 
request E arrowa(v, w). The case of i = 0 is vacuously true. Suppose i > 0 and the· 
inductive hypothesis holds for i - 1. Since request E arrowa ( v, w), the edge ( w, Zi) 
points toward the root, and request ¢ arrows ( w, z,), condition BndedFwdReq2 implies 
that either requeat E arrows(w,zi) or grant E arrowa(z,,w) within time b. In the case 
that request E arrowa(v, w), since the edge (w, z,) points toward the root, the induc
tive hypothesis for e - 1 implies that grant E arrows(z,, w) within time 3bet + b. In 
either case, grant E arrows ( z,, w) within time 3bei + 2b. Since request E arrows ( v, w) 
and grant E arrows(zi,w), condition BndedFwdGr2 implies that grant E arrowa(w,z;) 
within time b for some z; E {zi-1' ... , z 1 , v }. The inductive hypothesis for i -1 implies 
that grant E arrows ( w, v) within time E}:O\ 3b( e; + 1), for a total of time E}=1 3b( e; + 1) 
as~~. 0 

Finally, we have the following. 

Theorem 52: H the graph G has e edges, then the response time in any b-bounded 
execution of A1 is 3be - b. 

Proof: Let a be a state of A 2 in which request E arrowa(u,a) for some user node u. 
Either grant E arroWB(a,u) or the edge (u,a) points toward the root. In the case that 
grant E am>W8(a, u), the condition BndedRtnRe11i implies that grant E arrows( u, a) 
within time b. In either cue, request E arrowa(u,a) and the edge {u,a) points toward 
the root within time b. Lemma 51 implies that grant E arroWB(a,u) within time 
3be(u, a)+ b = 3be - 2b for a total of time 3be - b. D 

Thus, as claimed, the response time in b-bounded executions is linear in the diameter 
of the network when the loa.d on the arbiter is light, and linear in the size of the network 
when the load is heavy. We note that when an arbiter node grants the resource to an 
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adjacent node, if it has received a request for the resource, it later forwards a request 
in the direction of the resource. As a result, three messages are sent over the edge 
to the adjacent node: the grant and request messages sent by the arbiter node, and a 
grant message sent to the arbiter node when the node receives the resource. Hence, the 
worst case response time of about 3~. H, however, the arbiter node were to combine 
the grant and requeat messages 1ent to the adjacent node, then only two messages would 
traverse the edge between them. We note that in this case the worst case response time 
il!l 2~. We have chosen to separate the messages in order to make the algorithm easier 
to describe. 
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Chapter 4 

Conclusions 

In this thesis we have introduced a new model of distributed computation in asyn
chronous systems. We find this model to be quite expressive, and find that the tran.s-
parent, automata-theoretic semantics make reasoning about system behavior relatively 
simple. We have shown how the strong distinction between input and output actions 
captures the game-theoretic interplay between a system and its environment. This 
distinction has been found to be useful when describing the interface between system 
components, and when decomposing a system into modular components (see [Blo87]). 
We have found that the clarity of the interface between system components described 
by automata allows us to express the notion of fair computation quite simply and 
naturally. Finally, we have seen that automata may be used to construct hierarchical 
correctness proofs for distributed algorithms, allowing intuitive reasoning about key 
high-level ideas behind an algorithm's behavior to be incorporated into a formal proof 
of its correctness. While the framework developed in this thesis has proven to be quite 
useful, there are a number of ways in which it could be enhanced. We now consider a 
few of these enhancements. 

First of all, it would be nice to find a more compact notation, a programming 
language, for defining automata than the precondition/effects style of presentation 
used in this thesis. In particular, since our work is in several ways similar to CCS, 
it would be nice to develop a CCS-like calculus having input-output automata as its 
underlying operational semantics. We note that one aspect of CCS that has not been 
developed for input-output automata is a powerful theory of equational reasoning. We 
do not know if such a theory can be associated with our model. Any results in this 
direction will certainly be valuable, for they will allow us to combine the transparent 
operational semantics of input-output automata with powerful semantic techniques for 
reasoning about system behavior. 

AB of yet, we have not attempted to characterize the expressive power of input
output automata. Our feeling that our model is generally quite powerful is the result 
of experience, and our feeling that certain aspects of the model (such as the require-
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ment that an automaton be input-enabled) capture important aspects of asynchronous 
distributed computation. Bloom has made some initial attempts at characterizing the 
expressive power of our model in [Blo86]. In particular, he has characterized the lan
guages that can be expressed as the set of schedules of an automaton (resulting from 
arbitrary executions). Left uncharacterized are the languages that can be expressed as 
the set of schedules resulting from /air executions. Another pouible characterization 
of interest is the relationship between the expressive power of temporal logic and our 
model. Wolper, Vardi, and Sistla show in [WVS83] that given a formula in a particular 
extension of temporal logic, it is pouible to construct a Biichi automaton accepting 
precisely those sequences satisfying the given formula. It might be p088ible that these 
techniques can be adapted to prove a similar result for input-output automata. 

We note that our model includes a single, simple notion of automaton composition. 
In particular, our composition requires that automata sharing an action 11" perform ,.. 
simultaneously whenever"' is performed by their composition. The intention is that if"' 
is an output action of A and an input action of B, then the simultaneous performance 
of "' models communication from A to B. We think of the performance of ,.. as a 
computational step of A causing B to be notified of the arrival of input. However, 
since two processes in an asynchronous system cannot be expected to perform an action 
simultaneously, rather than complicating our notion of composition, we have chosen 
to require that the output actions of automata in a composition be disjoint. This 
has a number of effects on how system.a are modeled with automata. For instance, to 
use Hoare's example of a vending machine (see [Hoa85]), suppose that we construct 
automata modeling humans, and an automaton modeling a vending machine. Humans 
can insert coins into the vending machine (output from humans and input to the vending 
machine). Since we require that the output actions of automata in a composition be 
disjoint, if we compose a collection of humans with the vending machine, each human's 
output action of inserting a coin must be tagged with an identifier. Thus, the vending 
machine is effectively able to determine which human is inserting a coin, which is not 
necessarily a realistic model of this simple interaction. It might be interesting to study 
other notions of composition that would avoid this problem. One such composition 
might require all automata having 11" as an input action to synchronize with precisely 
one automaton (the same for all) having w- as an output action. While this is a natural 
notion of composition, the semantics of this composition complicate our model quite a 
bit. We feel that one virtue of our composition is that, as a consequence of Corollary 3, 
reasoning about the enabling of an action in a composition can be carried out by 
reasoning about the state of a single component. This has been found to be very 
convenient in [LM86j. 

While fair computation important to us, we have not made an explicit study of the 
nature of fairness in our model. In fact, we have defined only one of several possible 
notions of fairness (see [Fra86]). We feel that it should be pouible to express many 
other notions of fairness in our model, and the study of these definitions in our model 
are of interest to us. 
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However, since the primary emphasis of this thesis has been the decomposition of 
correctness proofs, both hierarchically and modularly, we are naturally interested in 
continuing the study of how automata can be used in new techniques of decomposition. 
We have already mentioned the work of (LS84aj and [LLW87]. The authors of these 
papers seem to be uaing a horizontal decomposition different from any considered in 
our work. In our work we have attempted to decompose systems into modular units 
that ca.n be composed to yield the desired system. Once this decomposition has been 
made, each component can be examined in isolation, simplifying the verification pro
cess. In some systems, however, the system components are so heavily interdependent 
that no clean decomposition appears poesible. [LS84a] and [LLW87) uae the technique 
of "projecting" onto one system component (or algorithm component), abstracting the 
remaining system components to a high-level black box, and reasoning about the re
maining "images." Notice that these images cannot be composed to yield a model of 
the system since each ia a model of the complete system. The work of [LLW87] concerns 
how correctness proofs for each image can be combined into a correctness proof for the 
entire system. This work appears to be quite promising. 

Finally, while this thesis has essentially ignored the notion of time, time is a very 
important part of modem distributed systems. Timeouts, for instance, are a crucial 
part of the fault-tolerance of many communication algorithms. Furthermore, complex
ity analysis of algorithms requires some notion of bounds on processor step times and 
message delivery times. We have shown, uaing rather ad hoc techniques, how rigoroua 
reasoning about time complexity can be performed n our model. A very important 
problem is that of incorporating time into our model more naturally, and investigating 
uaeful properties about time that can be uaed to reason about time complexity of algo
rithms in our model. For instance, what does it mean to compoee the timed equivalent 
of execution modules? Another important problem is that of relating complexity results 
obtained at different levels of abstraction. In our example, we analyzed the complexity 
of Schonhage's arbiter at a level of abstraction higher than the fully-detailed protocol, 
but it is not hard to see how this complexity result translates down to the lower level 
of abstraction. In general, however, relating time complexities at different levels of 
abstraction is a difficult problem. Such problems certainly deserve further study. 
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