
Atwltieaftl· ntl f 5

MIT ~-;-~i~f
,[,):\ ...

:uJ;~?· .

. ~;'.;'::.·
. ; ,~~ - .

:-.~:~
'\'.~ .. :
r~<

tt MASSACHUSETTS
LABORATORY FOR INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

A Compiler for the
MIT Tagged-token Dataflow Architecture

August 1986

Kenneth R. Traub

Submitted to the Department of Electrical Engineering and Computer Science in partial
fulfilment of the requirements for the Degree of Master of Science in Electrical
Engineering and Computer Science.

The author hereby grants to MIT permission to reproduce and distribute copies of this
thesis document in whole or in part.

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Ahslrnct

;\ (:on~pilcr for the
IVHT ·raggcd;l'oken l)atallow An:hilechffc

by

Kc1111ct h It Traub

Sul1111illcd Lo the De11:1rt111cnt or l'li:ctrical Lngini:ering <111d Computi:r
Scirncc Oil Augusl 8. 1986. in partial fullill111c11L or the d:quircmcnts
f(ll" Lhc Di:grce of' M;1sler of Science in Eledrical Lnginccring and
Computer Science.

Cumpilalion of the programming language Id Nouveau into machine code for the MIT
t~1ggecHoken datanow architecture is thoroughly described. Id Nouveau is a higher-order
fu nctinnal langu~1gc aug111c11 tcd with a novel data slructu re faci Ii ty known as 1-Su·uctu res. The
tagged-token datallow architecture is a datallow computer or the dynamic variely.

Compilation takes place in two steps. In the lirst step, the ILi Nouveau program is
converted into an :1hstracl datallnw graph called a program graph. Program grnphs cmbudy no
det,1ilcd k11mvkdge or L11e target architecture, yet have a very precise opcr:1tion~tl se111a11tics. At
the same time. they represent d~1ta and control llow in a way very convenient for progr;1111
transf"urnwtion. Sevcrnl common optimi1i11g transf'ormations are discussed.

The s•xund step of compilalion converts the program graph into machine code for the
lagged-Loken architecture, taking into account the machine's finite resources. Peephole
optimizations for nnchine code arc discussed, and a general-purpose optimitalion algorilhm is
given.

Thesis Supervisor: Arvind
Title: Associale Professor or Electrical Engineering and Computer Science

Keywords: Compilers, Data Flow, Id, I-Structures, Optimizing Compilers, Tagged
Token Dalallow Architecture

.. ~t1• 1u1 ,~,,,..,,,;, .
:n1d·:>1.did:n/'. w.rist•J ttr~ilfil(...

·~

dit1;l'f .H lit~•
., :·r

bWiWA

.~.· TlM ·~ m1 'JhO'.) ~nitbr;m oJni 1m~vooH bt ~.-....... :'*jq:rm;J
.; --~1$1I~irl 1; i:i m~~Vt)(J~ bf . J.rJdh~b itJdl'JG~ ilt{~~~JW tt?fk*l~

:H'fT. ~ut1rnJ2·1.;m owonl it~iti:ufl ~uJ:)tftU isUI.; •~vmt.s ~,. · · ·· · · · 1.ttul tniv,iit~l
• l{Jt;h1Jv JitWJ!'tl{b ;'#fj. ·k; ~~~ W-Oll- ~ W.~·jj,d) fif,.nfo!~~;-!t~U .·

. . .. ·. ·. .)

' ~· 'JH'lc{ il·~·t:>Vfff.JQ
~ WHH ~ bmlJ~,..) ·
;~nu ti"'1t2 ~
;~~;t~.tl~

~r.m··.,.,n'.··

~ $$.'))f(:U..if~

•.. 'WI t~tflfb<w
.1•vi•

(\

:f{}~~-

5

Ark non kllgmenl s

The tilllcly 01111pktio11 ol' this tlie.'-'is would IH>l have been Ill 1ssihlc witliuut lhc gc11erot1s

couper:1tion or my advisor, Professor Arvind. I :1111 grateful ll_>r his enll111sia~~111. co11lide11ce in

111y ;1hility, and guid;mce.

I have been privileged to be a part uf the Computation Structures Group, whose

talented members have provided a sti11111lating and exciting environment in which lo work. In

particular, l wish lo thank Steve Heller, Andrew Chien, and David Culler for their moral

support, <ts well as Greg Papadopoulos, Richard Soley, Mike Beckerle, and Bob Iannucci for

their enthusi;1srn for the compiler project.

Other~; have 111:1de valuable contributions to the compiler. Many of the concepts were

derived from Yinod Kathail's original Id Compiler. The early organi1ational decisions were

made in conjunctiun with Steve Heller. Much help!'ul feedback was gained from the first users

uf the old compiler, r;<;pecially Cino Maa, Steve Brobst, and Kaltamuri Ekanadham. David

Culler provided the impetus llH· considering peephole opti111i1.;1tions. Serge Plotkin validated

tile common subexpression elimination algorithm. Mike Beckerle tirst brought attribute

gram ma rs to my attcn tion.

The quality ur the thesis was greatly improved thanks to two soub kind and brave

enough lo plow through early drafts, Steve Heller and Professor Nikhil.

Finally, none of it would have been possible without the unwavering love and support

of my parents. To them I give my greatest thanks.

The author is supported in part by a grant from the National Science Foundation.

··~'"'~""'~" :HU Juot·hiw '..iidiM 1<t,~~i ~~ ~#1. l~ 'i~·•Jl•'+t•~rJ ~r,:.tt1IU ~n·
. ··~ ;;r,m\JhHno; ~•fl.;·:uiai.JdHw ~d lei! htbJf;(l$ tu~ t ,b~.c~·-rbt; '(ft} lo rtoi.Jr:l~OQ'J

·. , · ;:#.>fltibiti::t bru1 , '(titi(ff> ttn ·

~~.i.'. .·•·
· ~ltfl!l/ftthu t1:,.,1,,;,;nJ~ rruilWuqmt/) !>fiiJ 'l9:Jitixi,f$ fJ:•t»,,~~~·.,t~i ';,)"'fiifi

ttl ,;how o: rl·;ifilf n1 Jn~mmniyrc1 jnHb.1.~tm~ ~Hi~·i,,~;~~lf@ad1u~1 .f;~~J

l~)fif)i~fb 'Hit ~'.tiiu'J birnH tum .n~i'..) 'ff'~~~;· ''' ··~ Jtafw t ;:'\i;bqtni~
ijJt-'i~""11t.11~' dofi btu; ,:)hs:4:-.1t4l ~JfiM /(~~ i;U}dofjf:~~ JG lbw t.t> Jl{lqq~

< ~. ' - ·' ~\~ ,

·~·-~:-·iii! !f1.tf-tH~"'t~d!

. .
~l::lw ~nofaj:x:tb f mtoii~\uma'lo '(h1;;;.i ;;,tJl .1;diri$0~l Jlt ·.~· lit:~ :
~~·fl(tfl !htl wo1l t~>11ttii.1 r,Mlf ;i:-.11ldh'..~l ~u'J,i;fbri d:;wM,: '>:1'1it:· "' ·:

. •"' ;.. . , .

~ -

;,_'·~;;:t;_::· ..

WY.!:!(~ .nH::rHliJm;;fl i'J'1mmJJr;>l bm; .Mtima. tW;~· ~~-~~·~~fflfJ.~ bk,, ~. l~>

.. ~tr;hHt>v ntiflol<i ~)di~l .iao.ii•>\l.fniJtfO ~Ml®'l ~t~lfM~:W):, .···~ t>:;,WYQ't.q ~u:J
~· . - - . " . ->··:·.-'··:,· _·_' ~-. :~- :·1-'

{Uudhs)r; tr!.f}tlm~ win fJhok~i ;.}.~UM .m1Jn1:;. ~~

• ~vjfi<! !mt> brfr~ 1::h.u:e owt 0.1 drum; b~mf.fnd '.(~~.-;.fl'rl.t.
Jtri.iiJVI ·~1uribna 1~fi.,.~- •

. h9'l'(ltt~ brn; ~vot anfl!)'IGWOU :t!H lUt~.tiw :>ld~ ~••J•t*-!{ .. ~ft .'{Unni"i

·~~,.~--:ol··~£t~I t'11f>

,i:.

'l'ablc of (~ontcnts

1. Introduction
2. Id Nouveau

2.1 Expressions, if and let
2.2 Definition and Application
l.3 1-Struclures
2.4 Loops

3. The Program Graph

3.1 Basic Schemata
3.2 Let Expressions
3.3 If Expressions
3.4 Procedures and Applications
3.5 Loops

4. Program Graph Optimizations

4. l Basic Blocks
4.2 Optimizations Within Rasic Ulocks

4.2.1 Constant Folding
4.2.2 Common Subexpression Elimination
4.2.3 I-Fetch Eliminalion
4.2.4 Dead Code Elimination

4.3 Optimizations Across Encapsulators
4.3. l Code Motion Across ifs
4.3.2 Code Motion Across loops

4.4 lnlcrproccdural Side-Effects Analysis
5. The Tagged-Token Dataflow Architecture

5.1 Machine Organization
5.2 Implications for Machine Code

6. Triggers and Signals

6.1 Triggers
6.2 Signals

7. The Machine Graph

7.1 Instruction Set
7.2 Basic Progrnm Graph Translations
7.3 Translation of if
7.4 Translation of loop
7.5 Switching Contexts
7.6 Procedure Calls

8. Machine Graph Optimizations

8.1 More Instruction Set Details
8.2 Peephole Optimizations
8.3 A General Peephole Optimization Algorithm

9. Conclusions

9
13

13
15
16
19
23
24
28
31
33
35
41

41
44
45
46
48
49
50
51
53
54
55

55
60
61

61
66
73
73
74
78
80
86
91
97

97
99

102
105

Q

tt
H
u

. ~I
(>{

u

,, "

~! · ·.

• lt
tt
~t , ..
~fA.

• t~

*
'" ·, ·il.

·~ ''ti!
tlC,

••
·. ~'(. -· ta

, lo
~ .

. 'fl'.

tf •r
fi: .

• . \
" ~ .~-.
'J:Y•'

ff

" mt
Ill

~JKnanl.f
··~~?,:';•:., ..,...,...., . .,~!:

·*'\itfl·~-c:~L~t! ··
··-''''·.·---~:f~faQU · · · ·· · · · · /' · arJtwaim<M f..£

... - ;, ,; .. · ,,·"·· · _ ~j is
":.'·~~ toaff' .. f!··· ,,,,. ... ,..,,,,,.,·.,' ~,i~·~··l-i· ·,,

· ;·c1~11:p3 ·~ £.(. ·
. '"'.-~1qx3\\ t.t

-~~~~111bf)xYfq t..t
·. ' ' ' .. ~¢~ ..

dq1n;J .,~ .,.
..:-··. '·' ·; ., ' .

. h..W oil'.dl 'l. t
'*sitntlq{) ~J·

.: ,LL~
s~~•
t.$. .J.
.~;·

. • itflitq() tJ~
~ti.~
\:)~.£.~
OWi ... ' •.+::

!#ft.C.

9

I. ~ntroduction

Tile st::1rch !(Jr a sc:1bhlc p:11:dlel computer :11"Lhitl'ct11rc has led the Cu111p11l:1tiu11

St111clmes Ciroup 01· iVHI \ L1horalory !ill Coinpuler Scil:ncc into dcvclop111c11ts in two :ll"clls.

011 011c lhrnt, a gcncr:tl p111posc prngra111111i11g l:mg11agc suitable ror cxccuti()Jl 011 p::rnllcl

architectures has been dcvclupcd; its present name is Id Nouveau. On the ulhcr !'runt a

datallow arcliitccturc called the Tagged-Token Datallow Architecture, or TTDA I'm short, has

been designed and extensively simulated. Id Nouveau can be described as a language

combining the fe;1turcs of functional, or applicative, languages with a novel data structure

facility callccl I-Structures. The TTDA r:Jlls into the general category of dynamic datallow

architectures, other examples of which include the Mm1Chcster Machine [Gu rd 85] and I :TL's

Sigrna-1 [I liraki 84].

As always, the missing link between language and machine is the compiler. In this

lhesis we examine how i'unclional cum I-structure langu:iges can be tr:mslated into object code

for dynamic datallow archilectures. While our dis,:ussion is based on Id Nouvca11 and the

TTDA. most or whaL is s:iid is applicable to olhcr datallow langu~1ges and :trchitcctures. Two

requirements must be met: the datallow graphs must correclly implement the semantics of the

language, and the graphs must conform to any constraints and peculiarities ol' the targr,t

archiLccturc. Tied intimately with the latter is a third requirement Lhat the rc~.;ourccs required

for execution of the pro3ram, of which only a !inilc quantity arc available, be controlled in

certain ways.

The outline of the thesis is as follows. In Chapter 2, we brieOy describe a minimal

subset of Id Nouveau called Id Kernel. Id Kernel is in not a "toy" language, however; every

construct in Id Nouveau has a counterp;1rl in Id Kernel, lhough perhaps with small syntactic

modifications. A rull description of Id Nouveau can be found in [Nikhil 86], where an

algorithm for conversion ol' Id Nouveau programs into Id Kernel may also be found.

Chapter 3 begins the compilation process, by describing how an Id Kernel program is

converted into an abstract sort of datallow graph which we term the program graph. There is an

approximately one-to-one corrcsponcknce between conslrucLc;; in the source program and

instructions in the program graph, even though it may take many machine code instructions to

]()

illlplc111rnt ;1 p:1rtirnl:ir con:;tn1l'!. The prnL",r;i111 gr;1pl1 is tlll'rcl\>rL' ll\lt '>t1it;il1lc li>r dirrct

C.\cc11li\l11 <>11 ;111y (Lit:lllow :ircliitcd111\~, ;illl1()[1l_d1 it hc;i1:-; ;1 sll(lll)', ll:sL:111hL111n: [(>till: <L1t:1ilmv

gr;1phs w;cd l>y ;1 wide v;1ridy ur d;1l:illow nwchi11cs, In 1:1ct, llll: prngr:1111 er:1pli is lllllCll cl(>SCI"

in spirit [O [!JC '\bld !luw graphs" llSCd by uptimi1i11g COlllpilcrs rm COllVl'lllin11;il l:mgt1:1gcs.

One i111portanl difference is that ;1 conventional compiler uses cbta lluw gr:iphs as an auxili;iry

data structure lo aid analysis, hul f<x us Lhe program graph is the only intermediate dala

structure ol' :my importance, and it captures everything we might w:111t to know about the ~ourcc

program. Consequently, it is possible to give a rather precise operational interpretation of the

program graph.

The similarity between pror,ram graphs and the d:1taflow graphs used by conventional

compilers leads naturally into Chapter 4, where we ex:1111ine optimi;ing Lr:111sl'urrnalions lh<lt c:rn

be perl'or111cd Oil lhe program gr:iph. As il turns out, lllOSl if not all or the COl1llll01l

oplimi1ations employed by conventional compilers have counterparts in the clatallow dmnain.

In facL the elegance or a datallow language combined wilh Lhc program graph reprcsenlation

~dlows many of these optimizations to be perfonned with greater case. effectiveness. and

confidence.

The program graph is but an intermediate step on the way to code generation for a

datallow machine. In Chapter 5 we examine the architecture of one such machine, the MIT

Tagged-Token Datanow Architecture. While we do not attempt to give a description complete

to the last NANO gate, we present enough detail to gain an underslanding of the constraints on

the instruction set, and how the finite nature of the machine will influence the translation of a

programming language in which resource management is totally the responsibility of the

compiler and machine.

One requirement that falls out of consideration of the machine is the need for additional

arcs in the dataflow graph called triggers and signals. In Chapter 6 an algorithm for their

introduction is presented; the resulling graph is called a Well-Connected program graph.

With the Tagged-Token Architecture in hand, Chapter 7 presents the translation from

Well-Connected program graph into machine graph, or object code for the Tl'DA. Because the

program graph already embraces the notion of data flow, translation from program graph to

11

1md1i11c ;1 r;1pl1 i'> C\L'll lll•>IL' slre1iglltl\>rwdrd tlwn l'r()lll Id Kernel t() pmgralll ;cr;1pl1. 111 1:1cl,

tr;u1sl;iti11g lo rn;wl1i11c gr;1pll .<>illlply i11rnlvc:.; the n>llll'\l rice st1hstilt1tio11 or llldl'liinc cudc rur

program gr<iph rnnslrncts. Tile Sllhtlcly ;1ri~il'.S in the deli11itiu11s or tile st1b~;titt1litlllS. ll>r they

11H1st heed the reslrictio11.-; i111po.-;cd by the arcllitecture w!tik still implc111cnti11g the l'ull

gc11crality or the program gr;1ph.

Peephole opli111i1;1tion is commonly employed by comcnlion;tl compilers to improve

code generated from strnightt'orward Lr;111slation of programs. Datallow co111pilcrs arc no

exception. and in Chapter 8 we sec how peephole optimization applies to d:1udlnw code. A

general purpo!->e, pattern driven optirni1ation algorithm is presented. To the author's

knowledge, this is the first discussion of peephole opti111i1ation as it relates to dat;1llow graphs.

~inally. we conclude in Chapter 9 with a s11111111ary. a look ;1t the present slate of·

i111plcmcnt::tio11, and sonic directions fix l'uture research.

·;·;

;r~~ 1d .rtqi;-,t~l:,~Jlr!. ~JI k;i4r,,,r~·~.t~iJ-i'~:ftit~~" t-i''-~"'HtJnrt,1

. ~1ltJQfr.,:; :.;nhbmu ·io U{!hul'i~i~ll>UthirJ,Jt8;ir~ l':~.~;···--tJ.t;BJft•J':trif

. ~~~,a .~nni}tH~~~~ 'k1 ~ .. t01H~1 • ~· ~l».,~.rt ~~iv~ ~~l uun~iltf:
ibil :l.dt :,tni1'Jt~;m~1tni UiiR .~i:w: ~Uf>J!.#~IY.nt~ .-· d:~:: tn. ~t 11"¥~tl .. :J:.ftl

\
"

2. hi Nouveau

Id Nrn1vc;111 [Nikllil g(il is a prugr:11111111ng l:1ng11:1gc devvlllped hy t!1e Co111p11t:1ti()n

Sum·turcs ()rnup at M !T's I ,;1hor;1tmy rm Colllplltcr Science. An nol11tillna1 y SllCCeSS()l" tu the

Lt11gu:1gc Id [;\rvind 7~]. Id t'hrnvcau can he lkscrihed as ;1 1·u11ction:tl b11gu:1gc enhanced with a

data slrt1cl11ring l~tcilily known as I Structure~; [Arvind 86a, Nikhil 86]. With its functional rnre.

Id Nu11vc<1u is pri111:1rily concerned with expressions and abstractions of expressions (functions).

Functions arc first-class objects in Id Nouveau, and may be passed to and returned f'rom other

functi8ns. stored in data structures, etc .. I-Structures arc a novel sort of data structure which lay

midway in power between purely functional data slructun~s and storage as it is !'ound in

imperati\C l;mguages. More\., ill be said about them momcnt:1rily.

We du not attempt to give a complete description or !d Nouveau here. as this has

;1dn1irably been do11c in [f'likhil H6]. In facl. throughout the thesis we will restrict our attention

to ;1 subset or Id Nouveau. rc!'e1Tcd tl) as Id Kernel. lu Kernel has the full e:q)1cssivc.: power of

Id No11vcat1; it lacks only those constructs which can be synt~1ctically converted to other

co1i.st ructs that arc retained in Id Kernel.

2.1 Expressions, if, and let

The si111plcsl Id programs 1 arc just expressions:

6.847 1 + 1

lei possesses the usual complement of arithmetic, rcbtional, and logicil operators over

the usual integers, floats, and booleans. A conditional, or if, expression is also allowed:

if 1 + 1 = 2 then 123 else 321 (if 1+1=2 then 123 else 321) * 34

Since the conditional is an expression, raU1cr than a statement, it must always have both

a then part and an else part. If one of these were missing, the expression would not always

have a value.

1Throughoul this thesis we will use Lhc names "Id Nouveau" and "Id" interchangeably. Unless specifically slated,
we arc never referring to the origi1rnl language Id as described in [Arv ind 78).

14

Names may be aSSlll·i;itcd wit Ii e.xpressions tl!rougli LISC or tile I et COllStrucl:

let

in

a = 5 * 3;
c = 2 + 1

(a + c) I (a - c)

The value of a let expression is the value or the expression f'ollowing the in keyword,

1. 5 in the example above. The variables defined in a let have a scope which extends over the

entire let expression, not just over the in expression2. A consequence or this rule is that the

bindings may appear in any order, and therefore the semicolon serves no sequencing role as it

does in imperative languages. The rollowing expression evaluates to 12.

let
a= if c 2 then 10 else 3521;
c = (let a= 5 * 3 in a* a) - 223

i fl
a + c

This example also illustrates the lexical scoping or identifiers: the a defined in the inner

let is a completely different variable from the a defined in the ouler let. We can always

systematically rename identifiers so that no identifier appears on the left hand side of a binding

more than once. If we had done so for the previous example, we would have:

let
a = if c 2 then 10 else 3521;
c = (let b 5 * 3 in b * b) - 223

in
a + c

We say an occurrence of an identifier is free within an expression if the expression docs

not also contain the binding assigning that identifier it<; value. Hence, the right hand side of the

first binding above has one free variable, c, the right hand side of the second has no free

variables, and the expression following the keyword in has two free variables, a and c. The

entire expression has no free variables.

Let us emphasize thal bindings in Id are not at all like assignment statements in

2This scoping ruk is sometimes referred to as "lctrec" scoping.

15

i1111wr;1!i\c l;111fu:1g~·~;. ,11-~:pite tile sy11t;1Ctic si111iL1rity. /\11 Id i(kntilicr is simply a 11;1111c given L()

tile value or ;111 e.\p11·.-;-;i1lii so th:1L it 111;1y he used in several pbccs. (\i11scq11rnlly. the s;1111c

idcnti lier 111<1y not ;1ppcar u11 tile lcl'L h:111d side or 111orc than 011c binding in a it) t.. since each

idcntilicr must nwp to C\;1ctly rn1c v;ilue. This is olkn c:1llcd the "single ;1ssig11me11t rule".

although somewhat or a misnomer since a binding docs not necessarily entail ;1s~:ig11mcnl in the

sense of. lilling in a storage lorntion set aside for a variable. In many d;1ta1low i111plcment1tio11s,

in !~tel, there arc no lixcd locations corresponding to ic\entiliers.

2.2 Definition anti Application

Id Nouveau ;11lows us Lo abstract over expressions, yielding functions. Functions arc

defined with the keyword def

rlof mean2 x y = (x + y) I 2;

and invoked hy juxtaposing the function name with its arguments:

mean2 30 40

The expression above returns 35. Id functions arc "curried", which means that they can

take their argu1nents one at a time. Therefore, meanZ o is a perfectly valid Id expression, one

that returns a function which halves its argument. The number of arguments to which a

function must be applied before its dclinition is evaluated is called the function's ariry; rneanZ

has an arity of2. The arity of a !'unction is determined syntactically as the number of identifiers

(forrnal parameters) that rollow the function name on the left h,mc\ side of the def that defines

it.

All definitions in Id Kernel arc closed, meaning that the free variables of the right hand

side of a dclinition must be a subset of the formals. The full Id Nouveau language permits

definitions, not necessarily closed, within let expressions. These can be converted to closed Id

Kernel definitions through Lambda Lifting [Johnsson 85].

2 . .1 I-Structures

Ilic k;1lt1rcs ul· Id Nuuvc;111 desc1 ihul St> 1;1r arc till'. s;1tlll'. ;i.s lllllSl' l(H11HI i11 ji111e t1n111tl

langu;1ges. Tile term "fu11ctio11al" arises hee<lllSl' tile v;tlue rl~lurncd by a prun:dmc ;1pplic1tio11

depends only on ils ;1rg11111e11ls; lwo calls to the sa111e proccd11re wilh lhe s;1111c argu111e11ls arc

guaranteed to return indislinguishahlc results. This fact accounts !'or sever;il desirable

properties of l'unctional languages. Functional languages possess referenlial transparency, or the

ability to have the expression defining a variable be substituted l()r occurrences of that variable

without changing the meaning of the program. They also possess the Chmch-Rosser property,

also called the connuence property, which guarantees that the answer computed is unaffected

by tile choice of which subexpressions to evaluate first (althDugli some orders of evaluation may

foil to produce an answer at all). This property is what interests arcliilccts ol' parallel machines,

for it insures overall progr;un determinacy even if the machine e;d1ihits non-cletcrn1inacy in

instruction scheduling. 01' course, we cannot llUpe to ev<ilu:1te a + 3 if we du not have a value

f(Jr a - Lhc order ol' evaluation is sLill constrained by data dependencies.

Data structures in functirnwl languages arc created by invoking a co11struclor function,

which Lakes as argurnents the values with which Lo fill the components of the structure. A

familiar example of a funclinnal constructor is Lisp's cons. Referential transparency dc111ands

that the values returned by two calls to the same constructor function with the same arguments

must never be distinguishable. Thus, in a funclional language, we can never alter a data

structure once it has been created, and consequently we must specify the contents or all

clements of Lhc structure at creation time. Some latitude exists as to how we specify the

arguments; in particular. it is suflicient to supply an expression computing each component

without actually waiting for their values to have been compulccL In that case, an attempt to

extract the value or a component will be suspended until the component's expression has

completed evaluation. This sort of functional data structure is called non-strict, or lenient. A

variation on this is to prevent any evaluation of Lhe expression computing a component's value

until it is certain that value is needed, i.e., until the first fetch or that component is attempted.

This kind of structure is called lazy, or demand-driven. Because these various kinds of

functional data structures differ only in the ordering of subexpression evaluation, the Church

Rosser property implies that they arc semantically equivalent (modulo termination properties).

17

I-Structures. 011 Ilic uthcr ll;111d. arc 1101 sc11w11tically cq11ivalc11l lo h111cli1l1WI data

Sll"llclurcs: in 1;1ct. a l;ing11;1ge that includes lhClll is l1ll longer ru11ctio11~11. ;\11 1-Stnil'lurc is a

onc-dimrnsio11al array. or vcclm. which is co111plctcly empty when constructed. In Id Nouveau,

the expression

a1'1·ay(l .. 10)

returns an empty I-structure whose clements arc numbered cn11sccutively l through 10. An

I-structure clement may be llllcd in using an I-Structure Store construct within a I et

expression:

let

in

a= array(l. .3);
a[l] 25;
a[2] 6;
a[3] 4

a

This program crc;1tcs and returns an I-structure whose three clcmcnL'> receive the values

25. 6. and 4. There is no restriction on where an I-structure Store may appear in relation to the

af'ray c,\pression that construcL<; it. Thus, we can write the following proccuurc, which

initializes the first and last clement or the I-structure it receives as argument.

def fill_ends a=
let

in

lower = lower bound a;
upper· = upper_bound a;
a[lower] = O;
a[upper] = 0

() ;

Notice that this procedure docs not return any values, it simply has the side-effect of

filling in some slots ol'iLc:; argument. We might use this procedure in the following way:

def make_thing n =
let

in

s = array(l .. n);
fill ends s;

s . .

18

Notice tlwl f i I I prl(ls is invoked hy pl;1ci11g it 011 the righl li:md side ol' ;m L·qu;il sig11.

This sy1lla.x is L1sed to cause the evalu:1tio11 ol' any e.\pressio11 solely l(>r its side effects. and is

called a "co111111aml" rather th:rn a binding.

I-structures ccrLainly sacrilicc the language's ref'crcntial tra11sp;1rcncy property, since Lwo

calls to ar-r-ay(1 .. 10) return two different I-structures that may be tilled in differently. That

is. the following two programs arc not equivalent:

def progl n =
let

b
c =

in

ar·ray(l..n);
array(l .. n)

def progZ n =
let

in

a =
b

array{l .. n);
a;

c = a

In pr og 1, Iii ling in an clement of b cannot affect any computation L1sing c, while in

progZ, filling in an clement of b docs affect computations using c, since b and c refer to the

same structure.

We can accept a lack of referential transparency, but because we arc interested in

parallel implementations we still want to retain the Church-Rosser property, or the ability to

retain program determinacy without unnecessarily constraining order of evaluation. For this

reason, I-Structures have two restrictions. First, an attempt to fetch an empty [-Structure

element becomes suspended until that clement is filled in by an I-structure Store, at which time

the fetch returns the newly stored value. It is therefore impossible tell whether an I-structure

element is empty or not. Second, an attempt to write an individual I-structure clement more

than once signals an error condition which voids the result of the entire program. No matter

how we interleave execution of reads and writes, therefore, every fetch to a given I-structure

clement always returns the same value, namely, the value written into that clement by the single

I-structure Store for that element. Determinacy has been preserved.

In Id Nrn1vc~n1. llil' 11sL1~d ;1rr;1y sy 11l;1' dc11otcs 1-slrnL·tmc lctdics:

dnf s11111_ ends il ~

l u t
lower " lowe1· IHHJlld a;
11ppe1·-' uppe1· __ lrnund a

i 11

a[lower] + a[upper];

19

Id Nouveau with its I-structures represents a new class or languages having many of the

desirable features or purely functional languages while offering potentially greater efficiency in

data structure manipulation. This is especially true in scientific computation, where functional

data structures often imply a great deal of copying, with a concomitant loss in availahlc

parallelism. A typical cx<1111plc is a program in which the boundaries of a large 111atrix are

initiali1cd, ;rnd then the inner clements progressively computed Imm the outer ones. Using

1-structu res, only one matrix need ever be allocated.

I-structure languages arc in their in fancy, and their formal properties arc still under

investigation. The most recent addition to our understanding of them is in the operational

semantics based on rewriting given for Id Nouveau in [Nikhil 86]. Their translation into

dataflow graphs as given in this thesis is another form of operational semantics. albeit or a for

less abstract sort. A denotational semantics of Id Nouveau is under development [Pingali 86].

One difficulty in formulatin[; the mathematical semantics is that I-structure languages are

non-sequential, in the sense that it is not possible to give at compile time a total ordering on lhe

evaluation of subexpressions. A discussion of this point is outside the scope of th is thesis.

2.4 Loops

The construcl'i described in the previous sections comprise the complete Id Kernel

subset of Id Nouveau, possessing the full expressive power of the latter language. In this thesis,

however, we shall retain one additional Id Nouveau feature in Id Kernel: the loop construct.

The while form of an Id Nouveau loop is illustrated below:

20

cld r i l I_ it a -
I et

in

i -' lowel' llo1111d a;
sum 0

w h i l e <" up p e I' _Ji o u n cl a cl o
val (uppe1·_bound a - lower bound a) A 2 - i * i;
a[i] " val;
new sum = sum + val;
new i = i + 1

return sum

This program fills each clement of its argument array with a value computed from the

element's subscript, and returns the sum of the all clements. The body of the loop resembles

the body of a let: it contains ordinary bindings (like that for val) which name

subcomputations, I-structure stores which fill in I-structure clements, and although not shown.

it can also contain commands which specif'y computations to be pcrfix111ed f()r side effect Loop

bodies can also contain new bindings, like that f'or sum and i above; identifiers appearing on Lhe

left hand sides of new bindings arc called newijled variab/es(for lack of a better name). The first

time the body is evaluated, the ncwificd variables assume the values they had outside Lhe loop,

e.g., o ror sum in the example. The new bindings describe how to compute the values the

newiflcd variables take on for the next iteration for the loop; in the example, therefore, i is

incremented each time through the loop. Finally, the expression rollowing the keyword return

is evaluated in a context wherein the newified variables have the values computed during the

last iteration of the loop.

Two points worthy of mention: the new bindings only aflect the values of the newifted

variables for appearances within the loop expression. For example, if there was a reference to

the variable sum appearing outside the loop., it would have the value zero. Second, while fln

ordinary binding within a loop introduces a new variable name, a new binding must refer to a

variable already introduced outside the loop, otherwise it would have no value for the first

iteration of the loop. One way to undersland a loop as is an alternative syntactic formulation of

a tail-recursive procedure having one formal for each newified variable:

d (? r f i 1 l _ i L a '""
l <: L

in

fill iL iter surn =

if i ..._-' llJlJH?l'_bounrl a Lhen
l et

val= (upper_bound a - lowe1' bound a)~ 2 - * i;
a[i] = val

i 11

fill __ it __ iter (i + 1) (sum+ val)
else

SUlll;

fill_it_iter (lower_bound a) O;

21

(In Id Kernel, the internal definition offill_it_iter would have to be lifted out via

lambda-lifting to top level, resulting in the addition of a formal parameter for a.) Thus. loops

arc not an essential feature of Id Nouveau, since they can be mechanically translated into tail

rccursion (an algorithm for this is given in [Nikhil 86]). Nevertheless, we will retain loops in this

thesis. and compile them di!Terently from their tail-recursive equivalents. Our motivations arc

twofold. First, explicit representation ol' loops in the abstract program graph will reveal

opportunities for a wealth of optimizing transformations, such as hoisting loop invariants.

Second, the dataOow architecture provides mechanisms for executing loops more efficiently

than recursive procedures.

One caveat is in order: the datanow translation of loops we give will have slightly

different termination properties than for the translation of their tail-recursive equivalents. That

is, it is possible to write a loop program such that its translation as a loop will deadlock while the

corresponding tail-recursive trnnslation will run to completion. This is a direct consequence of

resource constraints imposed on loops to maintain their efficiency. We note here that because it

is possible for a compiler to translate between tail-recursive and loop formulations, the choice of

execution mechanism is decoupled from the programmer's choice of syntactic representation.

The compiler is free to translate potentially deadlocking loops into tail recursion, although we

will not discuss methods of determining when this is necessary or desirable.

fl" .
,~.

~·· * Jt ... U fl hh

·· .. ··. .j: .. · Juf
.. .;/ ' ~;; .. ·~.;-j,..lt_fftl
aitJ. • tl.4;.}l., "'"' t li

.·. Lt,· :: !li>>\i: :t .·· : ;tit .f

~ ·~ (~1 t.~tl'J.1IUC.'J.Wi.lf - $ -~~j;~):if'i: fliV
. .· . hl• :~''{i]'&

· nt
(hv i' tm,;a) O + il -.ttli,,.,.i.f<;...11 fl

. . · •.:' · ti& r 0

• • hl • ni
;O {1°;~:1ff1t .. '~t,.,.,tt_fft't

'.~ :· .. '.
·...,.

~v iao b~fHl :.xtw !}vm1h!uow1e1r __ ji_Ht\¥11Gii1(1'1,~:• J~m~>I bl ni}

•aqoof ,ttuin (.£ 1011'.Jje:rrum~ iwmol 3'\Q '~··~l~-tta snbllhsbdrns:i

.f.w oJni b:asl~rnnJ '(H~ot>tt~ ~ • ~ _.,,., •• .,.. 1119-~.~ $ 10~ ~.fl
lidl.lli· iqoui niu'.;ft mw 3w .~~ . .,(tMllW······-·{MShcJ8'f> 11i;) no~u:xn
~lalirruth~-tiJom 'tu0 J.•Jn~fov iuix> l!tviai,~-~~ li,n! .~. ~-~k'Jffft}:') bna ~rl:J
.·.~~· Jliw iiqtng tru.1arnq 1~~ ~dJ: ni.~.: m J:ztN .bk$f(JWJ ·

~iw.,ni qooi 3ni1aimt ir;; ti;.Jua. ~oltmnJ ~lo • B l<il ~flUJlOq~J
.·.--to tnam itft:;Ot g11H11~1:~ 'd· ~~ ~~~'.~a

·-~lq !)V~JJ:>~ t~tl1

~ SVJMT Uiw ~Yf8 9W 3q<JO! .i(J ffOi--"V --; ..

· l.Gar .a'fooic·1h.1µ:> !!lv~u,3f;1"l~ li•lo ~ ~,· · ..
tJiU o#idw ;bof~b Hiw qool a$ ~ar ld._:dl,al' . - "•' . . : .. ·.' ·.-;-: .. ~ . . "
)Q ~ll~ll~afJOO ~·Jib n al &idl' . .oof.mt'j~ ·O* nvt· ffM· --

•O·J· ,,-

~fitr1&.leM.t0·.~
._._. c~m»J !JVJ1:'JlUta

~~~WM~~ a .ti.~ 
-~~tmi 3µ.iblfOfJ~lltx.l 

·. . . ~'- '' . . . . 

Ji~ jt;fb ~n$ti ~Jon ::.1W .i:;;.n~~1\:) -.-...--•·•bt8.~atttml8~ «n~ 
·to~b :ttb .l~toiJsfocrn()i qrd bm~i~'luooi~f~ tt~---~lf lOt f>kli~ ai 

~Iqa1 ::»1~n 1!e1o ~ a'~pqfldj _. .. ~jiJ'~ AOi.l~m 
. ?•·;~af·~·~ff 

f\'··~~f~ •• 

{\ .. 



3. The Progran1 (~raph 

The prngram graph is corn posed of a collection 01· ins/ructions, e:1d1 with an opcode that 

idcntilics iLs runction, and some 11u111bcr or inputs and outputs. A directed arc connecting an 

output Lo an input allows a piece or data called a token to llow along that arc. h)r convenience, 

we will assume that any particular output may be connected to an arbitrary number or inputs 

(but not the reverse): the token emitted by an output is cupied and sent to all inputs to which 

the output is connected. 

A firing rule describes the behavior of instructions with a given opcode. The firing rule 

explains, !Or each output, when a token may be emitted from that output, and how the value on 

that Loken is to be computed. For some instructions, firing rules will also indicate side-effects to 

be brought about. The rules will generally be in terms of the tokens arriving on the instruction's 

inputs. For example, the familiar·~ instruction is defined by the following firing rule: 

--- Output Output of+ ---

Pre-Condition: !nput 1 present mid Input 2 
present 

Value Produced: Input 1 + Input 2 

Program graph instructions differ from machine graph instructions in their complexity. 

A single program graph instruction may have many inputs and outputs, and the firing rule may 

stipulate that some outputs produce tokens even though no tokens arrive on some inputs. 

These powerful instructions provide a concise framework for expressing the dataOow 

translation of Id Nouveau programs without considering details of the tagged-token dataflow 

architecture. 

The firing rules will clearly define the behavior of instructions when presented with no 

more than one token on each of their inputs. On the other hand, we will be using instructions in 

situations where they can conceivably receive several tokens on the same input, such as within 

the body of a loop. For now, we shall not concern ourselves with rules for distinguishing among 

multiple sets of tokens, relying instead on the reader's intuition. Explicit attention to proper 

matching will be given when we translate from program graph to machine graph. 



24 

3.1 Basil' Srhcmata 

We will rcprcsctll inslntclioi1s as hu.x.cs. and arcs as lines: 

constant 
( G84 7 ) 

0111pu1 

Inpur 1 Input 2 
+ 

OU/f'lil 

When we need to indicate an entire subgraph. we use a "blob": 

Free Variables 

The double line indicates a collection of arcs - a bus, if you will. We are always careful 

to account for all arcs entering and leaving a subgraph. so that all interconnections arc explicit. 

Expressions involving the arithmetic, relational, and logical operators(+, <=, and, etc.) 

are compiled in the straightforward way: 



Input 1 Input 2 
+ 

(}ll{pllt 

25 

The arcs entering the subexpressions arc precisely their free variables, as illuslratecl in 

the following example. 

x 

Input 1 Input 2 

"' Output 

Input 1 input 2 
+ 

011tp11t 

y 

Constants in expressions are indicated by a special inputlcss constant instruction: 



26 

x -------- - --- -- ( ) 

consti1nt(5) 

Uu111ut 

Inf'"' 1 Input 2 
+ 

Outplil 

There arc really an infinite number of constant opcodes, one for every possible 

constant. The firing rule for the constant( 5) instruction is: 

---Output Ou/putofConstant(5) ---

l'rc-Co11<lilio11: Output needed. Value Produced: 5 

The precondition here is a bit strange - the cons tan L instruction magic:dly emiL-; a 

token whenever one is needed by the instructions connected toil. As you might expect, we will 

need to be a little less vague about this when we convert to the machine graph. 

We translate other constructs of Id Nouveau with the aid of a whole repertoire of 

program graph instructions. First, array expressions: 



I 011 t'r l!ppl'r 

arr' ay 
Output 

-----Side-Effect of a1·ray ---

Pre-Condit ion: /,owcr and V11pcr prescnL 

---Out1mt Output of array ---

Pre-Condition: /,uwl!r :ind Upper prc~cnl and 
new l-slruclurc allocalcd. 

htruclurc fetch expressions: 

n 

~------------

------- --- --~ 

/,// .. Un_}_) 

Effect: New empty 1-structme is ;illoc1Lcd 
!i-0111 ;1v;1i\;11Jk \-sLruclurc memory. 

Value l'roducecl: (A descriptor f(Jr) the newly 
a\\oc;1lcd I-st rnt'lurc. 

Free Variables 

~J 
Structure Index L ll ~ 

i-fetch 

Output 

The i -fetch instruction has an unusual firing rule, owing to the special nature of 1-

struclures: 



28 

-·- - -- Output 011!/iltl of I I u Leh - ··-- -

l'1l'·( 'onililion: .'i'1111c111n· a11d 11/1/1'1 pn::-.cnt. 
<ind clement f 11d1'>.. of Su11c111re wri lien. 

Value l'rndurnl: I k1nt·11t ///{In of .)'truclllff. 

The construct for storing into I-structures is f(.)lmd in the next sectiun. 

3.2 Let Expressions 

The simplest let expression introduces no new instructions of its own, but allows 

outputs of expressions to be named and used in more than one place. Each "ordinary" binding 

of a let is compiled as follows: 

v 

Notice that the output arc has been labeled with the variable name appearing on the left 

hand side. Labels on outputs are paired up with matching labels on inputs in the following 

schema for l et: 

Free Va1iablcs 

let 

VI~ HI 

in 

V 1 Uuough V n 



29 

The lahclnl ;ires supply stll1ll' 01· the free v~1riahlcs ul· the bindings· right ll;ind ~ides as 

well as thuse ul' the i 11 e.,pre~).'iitlll. This is consistent with lite "lctrec" scuping rule l(lr I et 

c,\pressions. Any 1·rec variables not corresponding ln the arcs labeled V
1 

through V ;1rc exactly 
ll 

the !"rec variables ul' the let expression as a whole. 

Besides ordi11<1ry bindings. two other kin els of statements can appear in let expressions. 

These do not bind variables, but indicate side-clTcets to be brought about. The first of these 

causes an I-structure clement Lo be wrillen. 

Srructurr Index Value 

i-store 

Yet another program graph instruction makes its debut; this one acts entirely by side 

effect: 

---Side-Effect of i-store ---

Pre-Condition: Structure, Index, and Value 
present. 

Effect: If ckmenl Index C>f Struclllre was nol 
yet written. Value is wrillen there. otherwise 
an error nag is raised. 

The I-store statement is unusual in that variables on the left hand side contribute to the 

free variables of the statement. This is because the left hand side serves not to name the 

computations of the right hand side, as in the ordinary binding, but to indicate how to obtain a 

I-structure and its indices for writing. Since the I-store statement just indicates a side-effect, it 

has no outputs of its own. 

The final kind of statement that can appear in a let is the "side-effect", or "command" 

statement. Here, we just compile the right hand side, which ought not to produce a value. 



30 

Ji
------------------------ ---

1·1,-e Vari:1hil's 
-----~---- --------·----~-----

""' 
' ·~ ~ (' ~ 
·~' 

Pulling it all together gives the final schema for 1 et expressions/commands: 

-- ~~ I 1 cc \1.111.ibks 

---;1£-~ ~--rL --;e; ---------
1
--

~ ~--·~ _,__ _I z Fl S' --z F -<; V =F . 1f· t'11 s~ I: ·t· 
c_ >---- I/ v -< v - I' . 

' I " . \____ _ /1 - ' n • 
_ V 

1 
through V 

11 
;I I [ ii 2 J = ;I ; 

=CI ; 

~~:.~~±~~~ in 

=rr 
/ ' 

i-store 

As a final note, we point out that the blob for the in expression will be absent if the 

symbol 11 

() 

11 follows the keyword in. In that case, the let is a command, and may appear on 

the tight hand side of a command statement. 



Jl 

Now we L;1cklc a 111mc rn111plic:1lcd progr;1111 con~;trud: the i r cxpn.:.'l.'lton. The sclic111a 

for if is: 

if 

----------------------------
l'rcL(Thcn)U 1:rcc(l:lsc) hcc Variables 

~r r~--------

,~-L,. 
~ h pred ~ 

I . 

ljl11p111 1 · · · ljlnpur 11 l'rcdimtc 

'/'/1<·11!1111111 1 · · • lhrnln11111 n Flsc/11p111 I · · · f'.'lsclnp111 n 

J'he110111p11t 1 FfscOutput J 

/)Output 1 

if /:'pm/ then 

F then 
else 

/•,'else 

All the work is done by a complicated program graph instruction called if. Basically, 

the idea is that the if instruction diverls tokens to either the "then" side or the "else" side 

depending on the token it receives on ils Predicate input. It also merges the results from the two 

sides so that the value computed by the if expression flows along the single output arc. All of 

this is summarized by the firing rules for if below: 

---Output Thenlnput.of if ---
1 

Pre-Condition: Iflnput. present and true 
I 

present on Predicate. 
Value Produced: lflnpuli 



12 

-- Output 1-JselntJlll. of if ------
1 

l're·Condition: 1/11111111. lllcsc11l :111d false . • I 

prC:,l'ill 011 l'rnlica/t'. 

----- Output l/Ou1p11t
1 
of if----

Pre·Condition: T!te11011i/JU/. present when 
I 

true present on l'rcdirnle or f•J1·cOu1p111. 
I 

prc~enl when false present on l'redicate. 

V :ilue l'rndulTd: I /11111111. , I 

Value l'rodurcd: 'fhe110uip111. (l'rcdicate 
I 

t.1' u e) or UscOutpu/. (f'redicatc fa I s e) 
I 

The inputs to the if arc all variables that might be needed by either the "then" side or 

the "else" side - in other words, the union or the free variables of the two sides. Of course, not 

all of these variables need be connected to both sides within the if. Here is an example of an 

if expression: 

Jjlnput 1 ljlnput 2 ljlnpul 3 l'rcdicalc 

Thrnlnput I 'Jhcnlnput 2 '/'l1cnlnp11t J Flsrlnpul I /:'lsclnput 2 Flsr!11p111 3 

if x 0 

y thenj 
x + z 

else 
x + y if 

'l11enOutpu1 I E/scOutput I 

IJDutput1 

One thing the filing rule for if docs not require is that all inputs arrive at the if before 

being routed to the appropriate side. For example, if x were 3 and y were 4 in the example 

above, a token carrying 7 can appear at the output even if the token for z had not yet arrived. 



JA Procedun·s and A1111licalions 

/\pplic;1tiu11s arc simple in :1ppcara11cc, rcmc111hcri11g that due tu rnrry ing a11 c.\prcssion 

like ( f a b c) appc;1rs as three lclh1ssuci:1lcd ;1pplicatio11s. 

I :rec Yari;1\Jlcs 

J( 
:i "'2 

I 

l'roffdur<' Arg11ml't1/ 

apply 

Uu111111 

The firing rule for apply: 

---Output Output of apply ---

Pre· Condition: Proadure present Value Produced: Result of :1pplying Procedure 
to Argument 

The firing rule for app 1 y is deceptively simple. If Procedure is a procedure of one 

argument, then app 1 y is fairly straightforward: it simply passes the argument to the procedure, 

and sends the result along its Output arc. If Procedure is a procedure of two arguments, say, 

then we arc only applying the first argument here. ln keeping with the curried definition of 

procedures, then, we must return an object which when applied to another argument invokes 

Procedure with both arguments. In short, we return a closure of Procedure over its first 

argument. The Procedure input of app 1 y, therefore, expects a closure. 

Without giving away too many details of the implementation, we can say that a closure 

has at least three components. First. it carries the name of the procedure ultimately to be 

invoked. Second, it indicates how many arguments remain before the procedure's arity is 

satisfied. Third. it holds all arguments accumulated thus far; their number plus the number 



re111;1i11i11g ;ilw:1y.'> :1dds up lo tile ;1rity or the procedme. The ;1clio11 taken hy <1pp 1 y depends ()Jl 

the nu111her or arg11111enls nol yet rnllccted. Ir one. then it invokes the pmn:dme. sending 

Argumrnt and any ;1rg11111enls recorded in the closure to the procedure. II' two or 111rn-c, il 

creates a new closure containing the new argument as well as any in the old clusure. whose 

"number 01· ;1rgu111enls remaining" field is one less. Whenever a program refers to the n;1111e or 
a procedure, it is really rclcrring to a closure for that procedure with no arguments collected. 

We want procedures to be non-strict in that they can begin to execute even though some 

of their arguments have yet to be computed. This is expressed in the firing rule by the absence 

of a precondition requiring Argument to be present before producing an output. This means 

that as soon as we have Lile Procedure argument and see that its arity is not yet salisfied, we 

create a new closure which will eventually contain the new argument whenever il arrives. Or, if 

iLc; arily is satisfied, we invoke the !'unction, and whenever lhc argument ;1rrivcs it will 

automatically be diverted lo the procedure. Exactly how we accomplish this !cat will be 

explained when we turn to the machine graph (hint: it involves the use of I-structures). 

All that remains is Lo describe how we represent procedure definitions themselves in the 

program graph. Not surprisingly, we use a def instruction: 

Argument 1 · · · Argument n 

vn 

def(f) .___~_e f_f_v_,--.--.---v· ,, _" {,j] 
Result 

Def is a bit tricky to explain by firing rule. Let it suffice to say that sometime after the 

procedure is invoked an argument pops out of each of the Argument. outputs, and when the 
I 

body sends a result to the Resulti input it is routed back to the ap p 1 y instruction that triggered 

the invocation. 



]5 

J.5 I ,oops 

The sche111ata g1vc11 111 tile preccdi11g sections arc sunicirnt to implement <Ill or Id 

Kernel, and thcrcfurc all or Id No11vc;1u. assu111i11g we translixm fo1· :111d while luops into 

recursive procedures. 111 pr:1cticc. however. there arc two rc:1so11s 1(11· giving !\)ops special 

treatment. First. the tagged-token datallow architecture. like most dataflow architectures. 

provides a particularly cnicient mechanism f'lH executing loops. Second. the prngrarn graph 

representation of' loops <Hlmits the possibility of several optimizing transformations. such as 

invariant code motion. 

In this section. thcrcl'lxc. we give a program graph schema for wh i 1 e loops (we assume 

that For loops arc converted to their wh i 1 e loop equivalents). This docs not imply, however, 

that programmers who prclcr expressing their programs as recursion will obtain lower 

pcr!(mnancc than those who prcl'cr the while and for construcL<;. In many cases it will be 

possible !'or a good compiler to convert recursive programs into loops [Arsac 82]. Conversely, 

we n1:1y choose to retain loops in the program graph for purposes of optimization, and then 

cunvcrl them to recursion before translating into machine code. Unlorlunately, we will limit 

our llcxibility somewhat by assigning slightly different semantics lo the program graph's loop 

construct as compared to the corresponding recursion; this is discussed in detail below. 

The program graph reprcscntalion of loops is in the same spirit as that for conditionals: 

we introduce a new instruction called loop which isolates the different components of the loop. 

Recall that awhile loop has three parts: a predicate that determines when the loop terminates, 

a body that is evaluated each time the predicate is true, and a return expression that is 

evaluated after the predicate turns false. The body of a loop is a statement list that is similar to 

the statement list in a 1 et expression. ln addition to all the st1tement types di3cussed for 1 et, 

however. a loop statement list can also contain bindings of the form new Variable= Expression; 

we call these bindings "new bindings". 

The variables used in the predicate and body of a loop can be classified into three 

categories: 

Newified \lariables Variables occurring on the left hand sides of new bindings in the body. 
These variables pass information from one iteration of the loop to the next, 
and from the final iteration to the return expression. 



/Jt 1u mi inrlttl#es Vati,ttm.<s t'Jt'C'tffttffg 't'fft mt t~ft ·filtitM !ith!!i! t>f~try bi~1MlfttMt. 
The~ iv.·•...-• ..w..~. f.ltJil leA . . . .-........ 3 Di¥Uft. ilUnKWM.. ~ 
( '11c:rf~~r~~titi~{c.1 t\~w· . '.! , ' tifiifithliK!wft Mb1 JHt'<fit,1lft '\* 
;•wftuMJl~tJ.flUllM.Wf,:JP!rnun·r: 111,:JvnoVi ht 'lo lk J'J()IJ!::.:r'J • n1 .. bn· 

:: 1 ''"!'' ki r::;. ·:., •(ilirli;,,;?t,,q :;ill (.;ji·.ii ~qc: i ·:. . •.JJ 

The schema fbrwtt·il• .._.. .............. ~--~~~·.~. 
,r _Pt-..;.J~fl ,,..J,,' ... ~ ; (1. o ;, 

r: 

• -1 •• J -; ' ,. ' : ~' : 

h •/· 

.. , -·. ,,, 

:, ..:"'.i 

i·; hi:J;.l(j ~d~>ht:\' t.~•h'ihrn \.i\,•' 

~j_{~ . ~ t. / ~)~!Jfi f 



loop 

l.011111111111/ I · · . I 001>ln11111" I (}(1/>( ·on.1111111 I · · · /.01111( '011s111111 k 

/ 1rl'r!ln11111 I · · · l'ffdlri1111t 11 l'r«d('on11w111 • • • /'red! 'ot11t11n1 k 

Ncwificd 
Variables 

l'ru!Uurp111 1 · · · /'1c,/011111u1 n 

l.oop 
Constants 

/'n Jicutc 

/lodyln1>111 I · · · /!o,/i!np111 I/ /lo,/y( 'unstanl 1 • · • /lndr( '011s/11111 k 

!Jody011tp11t 1 · • · BodyOutput n 

f.oop0111p111 1 · · · f,oopOutput n 

Ncwificd Variables 

new V I F1 

ncwV
11

=1'.'
11 

re Lu rn 

f',f 

.17 



18 

or Cllllrse pl'llllillcd in Ilic lrnlp's body.) hlr c;1cl1 llcwificd \;1ri;ihlc. there ;1re UllTl'SJHll1di11g 

/.0011/npul. /'rcdimlclnpur. l'rcdirnteOutpul. l1olfl1fnput, liolfJ'Out11u1, <llld /.oopOulfJlll ports, 

through which the variable is sh11t1led through the various co111pone111s or the loop. Bound 

variables arc treated just as they arc in let cxprcssiuns: they arc led hack to all state111cnts in 

the body. Loop constants arc wired Lo special /,oopConsranl inputs; more on that later. 

Tokens entering the Looplnput inputs of a loop arc first routed to the predicate, which 

decides if the loop body is to be executed. If not, the tokens <~re diverted to the LoopOutput 

outputs of the loop where they arc consumed by the return expression. If. on the other hand, 

the predicate is t rne, tl1c tokens arc sent into the loop body, where they arc used as the values 

or the ncwified variables. During execution or the body, values for bound variables are 

computed :ind used in other body computations. The body may perform some side effects, but 

ultimately it computes new v:ducs f()r the ncwified variables; these arc sent to the !JodyOurput 

inputs of the loop. From there. they arc once again red to lhc predicate, and the process repeats 

until the predicate evaluates false. When tokens finally leave the LvopOutput outputs, the 

predicate will have been executed at least once, and the body exactly one fower time than the 

predicate. 

Loop constants arrive on the LoopConstanl inputs of the loop. They are emitted at the 

PredicateCvnstant and BodyConstant outputs each time the predicate (body) executes. While 

we could have circulated the loop constants the same way we die! the newified variables, giving 

them special status allows us to exploit their constantncss when translating to machine code and 

during program optimization. 

With this informal description of loop in mind, here are the firing rules for 1 oop: 

--- Output Predicate!nput. of loop ---
1 

Pre-Co11dition: All LoopConstant present and 
either all l.ooplnput present (first iteration) or 
all BodyOutput present (succeeding iterations). 

--- Output PredicateConstant. or loop ---
' 

Pre-Condition: All LoopConstanl present and 
cit.her all Looplnput present (first iteration) or 
all BodyOutput present (succeeding iterations). 

Value Prn~uccd: Looplnputi or BodyOutputt 
as appropnatc. 

Value Produced: LoopConstanti 



----- Out1mt Nodyl1111ut; of I oop ---

l'rc-Conditio11: /\II /'rnlice11t'01111111t present 
and t I'll c present 011 /'redicate. 

--- Output /Joc~yConslant1 of loop ---

Pre-Condition: All l'rcdirntc0111p11t present 

and tr u c present 011 l'redica!e. 

---Output LoupOutpul. of I oop ---
1 

Pre-Condition: All Prcdica1eOutput present 
~md fa 1 s e present on Predicate. 

Valuc l'roduccd: l'ret!icatdJ111pu1. 
/ 

Valuc Produced: /.oopC011s1ant. 
l 

Value Produced: Predicate0utput1 

The astute reader will notice that according to the firing rules above, an iteration cannot 

begin until the previous iteration is completed, nor can any iteration proceed until all loop 

constants have arrived. This is the semantic difference between loops and recursion that was 

alluded to earlier. While this dislinclion is unsatisfactory from a purist standpoint. it is crucial 

to the tagged-token dala!low architecture's ability to execute loops efficiently. Current 

experience shows that the restriction is fairly inconsequential. as it only tends to rule out 

programs that most people would consider bizarre anyway, such as the following: 

clef b a ck war d s __ f ·j l l ( n ) 
let 

in 

a= array(l .. n); 
a[n] = n; 
sum O; 
i = 1 

while i < n do 
val = a[i+1]; 
a[i] =val; 
new sum= sum+ val; 
new i = i + 1 

return a, sum 

In any iteration, the value to be computed for val is data dependent on the value 

computed in the succeeding iteration (except in the last iteration, where it depends only on the 

value of n), and so this program will not execute if we require one iteration to be processed at a 

time. 

From the foregoing, it might appear that the dataflow implementation of loops will 

execute loops in a sequential fashion. On the contrary, in Section 7.4 we will show how several 



40 

ilcr:1lio11s c;111 he cxcculcd in p:1r:dkl. The key p()inl is that we will t111ly <iilow a//o;1'd 11t1111hcr or 

i1cr;ilirn1s ID he oulsl;1nding :11 <111y given time, wlinc:1s progr;1111s like li;i1,kw.11 ds Ii I I req1:irc 

an arhitrwv 1111111bcr ul· rn11c11rrc11l ilcralions. h1rtlicr111mc, tile dccisiun as to huw 111a11y 

concurrrnt iterations we allow will be dcl'crrcd u11Lil run time. and their number rnighl he as 

small as one. I I' program graphs arc to he usd'ul in proving correctness ol' con1piler 

optimizations, we must adopt the most stringent firing rules for loop. Any program that 

terminates with no concurrent iterations is guaranteed to terminate and produce the same 

answer ff more than one concurrent iteration is allowed. 



"'''i~1;111c111 I Ar!:11111< 111.J 

lj7nput 1 lj711p11t 2 l'rcdicatc 

n1n2 m, n2 
def(f) 

if 

'j'() FO I 

/j0111pur I 

lfrsul! 

if x = ;-tt:eJn 
x * y 

else 
x I y 
--r-r---
~--===-__ ..:-,,.=:-,. 

4:1 

This program has three basic blocks: the then side of the if, the else side of lhe if, 

and the entire procedure body itself. Consider now the behavior of the pror:cclure body basic 

block. If we drop a token into each of its two inputs we always get a token at the output. On 

the other hancl, it is not strictly true that all instructions execute, since either the * or the I will 

not fire, depending on whether x equals y. Hence, the procedure body doesn't quite meet our 

definition of a basic block. A correct definition of basic blocks must treat encapsulators in a 

special way. 

The simplest basic block is an individual non-encapsulator instruction such as + or 

i -store, since these possess the one-in-one-out property and (trivially) the complete unique 

execution property. Furthermore, it is easy to sec that any composition of basic blocks is also a 

basic block, as long as no cyclic dependencies are introduced. Finally, we observe that 

encapsulators have the one-in-one-out property; in the previous example the if will always 

produce an output when it receives a token on each of its tluee inputs. We can also attribute the 

complete unique execution property to an encapsulator as long as we ignore its interior. rn other 

words. when viewing encapsulators from the outside we will treat them as if they were single 

instructions. 



42 

def ( f) 

!/1);111111·111 I A1p11111'11t) 

Rcs11!1 

1 ·+--- i\ Basic Block 
I 

I 

IL is easy to see that the entire body i'> indeed a basic block. In foct. basic blocks arise in 

five places within program graphs: the bodies or procedures, the thLn and else subgr~1phs of 

ifs, and the predicate and body subgraphs or loops. Given that, it is clear that the clef, i F, and 

loop program graph instructions encapsulate basic blocks, and so we will collectively call them 

encapsulators. 

Here is a more complicated program: 



"'''i~1;111c111 I Ar!:11111< 111.J 

lj7nput 1 lj711p11t 2 l'rcdicatc 

n1n2 m, n2 
def(f) 

if 

'j'() FO I 

/j0111pur I 

lfrsul! 

if x = ;-tt:eJn 
x * y 

else 
x I y 
--r-r---
~--===-__ ..:-,,.=:-,. 

4:1 

This program has three basic blocks: the then side of the if, the else side of lhe if, 

and the entire procedure body itself. Consider now the behavior of the pror:cclure body basic 

block. If we drop a token into each of its two inputs we always get a token at the output. On 

the other hancl, it is not strictly true that all instructions execute, since either the * or the I will 

not fire, depending on whether x equals y. Hence, the procedure body doesn't quite meet our 

definition of a basic block. A correct definition of basic blocks must treat encapsulators in a 

special way. 

The simplest basic block is an individual non-encapsulator instruction such as + or 

i -store, since these possess the one-in-one-out property and (trivially) the complete unique 

execution property. Furthermore, it is easy to sec that any composition of basic blocks is also a 

basic block, as long as no cyclic dependencies are introduced. Finally, we observe that 

encapsulators have the one-in-one-out property; in the previous example the if will always 

produce an output when it receives a token on each of its tluee inputs. We can also attribute the 

complete unique execution property to an encapsulator as long as we ignore its interior. rn other 

words. when viewing encapsulators from the outside we will treat them as if they were single 

instructions. 



44 

Given tile lt>rcguing, WC amend om dcli11itiu11 or hasic blucks ;1s l'ullows: a h;1sic block is 

a Sllbgraph sllch tl1al ii' one token is !Cd to each inpllt of the block. every instruction in the block 

will eventually excclllC C.\;1ctly unce. and one token will appear at each output of the block. 

where encapsulators within tile block arc viewed as "black box" instructions. from their exterior 

only. 

Fncapsulators in program graphs play the same role as do control flow arcs in a 

conventional compiler's flow graphs: they regulate the iniliation of basic blocks. Their power 

lies in their ability to be treated in the same manner as individual instructions when only the 

surrounding region of code is of interest; this makes it possible, for exJmple, to move entire 

conditionals or loops in the same way that code motion is accomplished for ordinary 

instructions. This capability was recognized in the work of Ottenstein [Fcrrnnte 83], whose 

"extended datallow graphs" reflect the encapsulator idea. In Oltenstein's scheme. however, 

encapsulators arc not manifest but only implied by control flow arcs which augment Lhe data 

flow arcs. Here, encapsulators encode control flow as data flow, leading to ~1 more consislent 

treatment of blocks. 

4.2 Optimizations Within Basic Blocks 

Basic blocks in program graphs are nearly identical to the directed acyclic graph (dag) 

representation of basic blocks used by conventional compilers [Aho 86]. Consequently, the 

same optimization techniques a convenlional compiler applies to dags can be applied to basic 

blocks within a program graph. We are at an advantage, however, since any transformation of 

the program graph is a transformation of the program itself. In a conventional compiler the dag 

is usually an auxiliary data structure, which after optimization must be converted back to the 

compiler's intermediate program form (e.g., quadruples). We also benefit from the use of 

encapsulalors, since they allow us to treat whole regions of code as single instructions. Often we 

never need to distinguish between instructions and encapsulators, save that broad characteristics 

of an cncapsulator will sometimes be determined by the characteristics of its interior. The lack 

of assignment and unrestricted control flow (indeed, of any control llow) in Id Nouveau 

contributes to the simplicity of the optimizations presented here compared to their counterparts 

in conventional compilers. I-structures make the problems somewhat more interesting than for 

a purely functional language. 



45 

Ilic applicahilily or 1mny upti111i1;1[i()llS depends Oil whether the i11str11dio11s i11vulved 

cause side effects. l he meaning or "side effects" is very clc;1r in the conte.\t ul· a program 

graph: an instruction c:1uses a side-effect if and only if its execution can be detected by ;1nothcr 

instrnction even though no explicit data llow arc exists between them. There ;ire only three 

program gr;1ph instructions which can cause side-effects: i--storl", ill'1·ay, and apply. The 

side effect of i-store is quite clear: it writes an I-structure location, which can affect the 

operation or other i-·fetch instructions in the graph. The side effect or ar·ray is;: bit subtler; 

when an ar1·ay instruction executes, returning an empty I-structure, it also affecLs other array 

instructions by preventing them from receiving the same I-structure. l r th is seems a bit slippery, 

consider that two array instructions, both receiving the identical arguments 1 and 10, say, will 

return dijferent I-structures. Clearly this could not be possible if array were purely l'unctional 

(side effect free). Finally, apply causes side-effecl'> when it invokes a procedure whose body 

has side effects. From the caller's point or view, any side erlccts brought about by the invoked 

procedure arc due to the apply which caused the invocation. lnlcrproceclural analysis is very 

useful in dctermini11g which applys cause side effects and which don't; such analysis is 

explored i11 Section 4.4. 

ln addition to i-store, array, and apply, when we view an encapsulator as a single 

instruction we must consider it to have side effecli;; if it encapsulates any instructions which 

cause side effects, at least in the worst case. 

4.2.1 Constant Folding 

A very simple optimization is constant folding [Aho 86, Allen 72], in which expressions 

involving only constants arc evaluated at compile time. This is trivial in a dataOow compiler: 

the basic block is simply searched for instructions all of whose inputs come from constant 

instructions. An example: 



46 

con st const 
(? ) ( 3 ) 

con st 
( G) 

or course, only side-effect free instructio11s are candidates for folding. An instruction 

with side effects such as array cannot be folded, since it may execute several times (if it were in 

a loop, say), returning a different value each time even though its arguments remain unchanged. 

Constant folding 1s typically augmented with an assortment of algebraic 

transformations, such as replacing x * 1 with x or taking advantage or associativity and 

commutivity. All of these arc equally applicable to program graphs. 

4.2.2 Common Subexpression 1£1imination 

A second intra-block optimization is common subexpression elimination, which tries to 

avoid repeated computation of the same value. Again, this is quite simple in the program graph 

representation: we search for groups of instructions bearing the same opcode and whose inputs 

come from the same pbce, and for equivalent constant instructions. The search may be 

performed efficiently by hashing on a key derived from the opcode and inputs of each 

instruction. Common subexpressions can propagate downward, as illustrated below. 



47 

Again, our optimization is limited to those instructions that do not cause side-effects; we 

cannot collapse two array instructions, for example, as they must return different I-structures 

even though their bounds arc the same. 

Lacking any evidence to the contrary, we must assume that apply instructions cause 

side effects, and arc therefore not candidates for common subexpression elimination. As 

mentioned earlier, interprocedural analysis can sometimes supply the necessary information. It 

should be noted. however, that even if a procedure f has side effects, only the last apply in the 

chain that collects its arguments need be treated as an instruction with side-effects. This is 

because all app l ys save the last simply create a new closure given an old closure and a new 

argument, which is a completely functional operation. The final apply actually invokes the 

procedure, and so it alone appears to cause the side effects. An example: 



48 

f 

When f 

has 
arity 3 

f 

This optimization, of course, can only be attempted if it can be ascertained which apply 

actually causes invocation; i.e., if the arity off is known. 3 

Considering encapsu!ators as single instructions, it is possible to combine two if or 

loop instructions as common subexpressions if all of their exterior inputs come from the same 

sources. Of course, there is the additional proviso that the interiors be identical. and free of 

side-effects. To be truly effective, we must also be prepared to consider encapsulators that arc 

the same but for permutations of their inputs and outputs. 

The common subexpression elimination algorithm was also reported in [Skedziclewski 

85a], although in that work side effects were not considered. 

4.2.3 I-Fetch Elimination 

I-fetch elimination attempts to bypass fetching from an I-structure when it can be 

determined that the data is already present on another arc within the block. If there is an 

i-fetch instruction and ::m i-store instruction whose Structure and Index inputs are fed 

from the same place and/or equivalent constant instructions, then the i-fetch is eliminated 

3
on the olhcr hand. if the arity is known it is not clear that we would even want to compile the call as a chain of 

app l ys in the first place; sec Seclion 7.6. 



49 

and wh;1tcvcr w;1s connected to its output is connected instead to wl1;1tever reeds the Value input 

ufthc i -s to1'P,. This is illustrated below. 

a1·ray con st 
( 4) 

con st 
( 4) 

Normally, we must retain the i -store instructions since the structure may be used 

elsewhere, e.g. passed ouL'iide the basic block. On the other hand, the i-stores may turn out 

to be dead code, as explained in the next section. The combination of I-fetch Elimination and 

Dead Code Elimination can yield efficient code for program rragments involving tuples, as in 

the following (somewhat trivial) expression, where all I-structures could be removed. 

let 
a, b let 

x = Q * 5 
in 

x. x * x; 

Further opportunities for such optimizations can be exposed by code motion across ifs, 

as described in Section 4.3.1. 

4.2.4 Dead Code Elimination 

Any program graph instruction all of whose outputs arc unconnected can be considered 

dead code, since no part of the program depends on its results. As always, the exceptions are 

instructions which cause side-effects; though its output be unconnected, an instruction causing a 

side-effect contributes to the program's computation. An unconnected array instruction, 

however, can be eliminated as dead code, since its effects are not felt unless its output is used. 

That is, an array instruction causes the side effect of allocating a region of [-structure memory, 



50 

which is lelt by other ;11·1·ay instructions in that they can 110 longer obtain that particular rcgitlll. 

On the other hand, a progrnn\ cannot distinguish between regions of I-structure memory save 

that it is possible to tell whether two I-structures arc the same region or not. Since execution or 
an array instruction afTecL'l only which regions other array instructions will receive, an 

unconnected array can be eliminated. This special treatment of allocation with respect to dead 

code elimination is also discussed in Steele [Steele 78]. 

An encapsulator with all exterior outputs unconnected can also be eliminated, provided 

that the only side-effect causing instructions in its interior are array instructions. 

Besides unconnected instructions and encapsulators, there is another situation which 

can be considered dead code. If an array instruction is connected only to i-store 

instructions, then the array and all the i-stores can be eliminated, since the structure is 

useless if not reacJ. This situation arises frequently if the I-fetch Elimination optimization 

described above is applied. 

4.J Optimizations Across Encapsulators 

The optimizations discussed in the preceding section were all applied within a basic 

block. We can also perform transformations which move code between basic blocks, across the 

encap~;ulators which separate them. These kinds of transformations fall under the general 

category of code motion. Code motion is used to remove invariants from loops, and to bring 

pieces of code into the same block so that they may be subject to intra-block optimizations. We 

will concentrate on what kinds of code motion are possible and under what conditions it is safe; 

strategies for determining when code motion is desirable are beyond the scope of this thesis. 

We note in passing that the code motion algorithms of Ferrante and Ottenstein [Ferrante 

83] should be directly applicable, since their representation is so similar to program graphs. Of 

course, the single-assignment nature of Jd Nouveau eliminates the need for live/dead variable 

analysis and the other complications faced by their method and by compilers for imperative 

languages in general. 



51 

4.J. I Code Mot ion Across if; 

If a subexpression appears in buth arms of a conditional. and it depends only on 

variables computed outside the condiLilmal. then the subexpression can be lil'tcd out. In the 

liJllowi.11g example, the expression x + y is lirtcd rrom both sides or an if: 

x y x y 

lj7nput I Ij7npl// 2 Predicate 

1/1cnlnp 1 171cn/np 2 h'lsclnp 1 F/srlnp 2 

ljlnput 1 lj7nput 2 ljlnput J l'redicate 

'f11enlnp 1 '/11<'11/np 2 'flll'nlnp 3 F/sclnp 1 Fls<'lnp 2 /Jycfnp 3 

if 

x+y y x x+y x+y y x x+y 

The benefits of this transformation include the usual ones: the size of the code is 

reduced, and bringing the subexpression into the enclosing block may trigger further 

optimizations within that block. An additional benefit may accrue if we reduce the number of 

arcs which cross the if, for as we will see in a later chapter there is a certain amount of 

overhead for each of these arcs. In the example above, we eliminate one such arc if the only use 

of x and y within the if were in the lifted expressions. On the other hand, the inverse of this 

transformation - pushing instructions inside both arms of an ; f - can also reduce the number 

of arcs crossing the if. Evaluating the trade-offs can be quite difficulL 

Code motion is also possible at the opposite boundary of if. lnstructions can be 

pushed out the bottom of an if, for example, by adding additional outputs to the if 

encapsu lator: 



52 

l l 
'/Jw110u1 I 'f'/1cnOu1 2 !'.'/sc01111 FlscOut; 

l}Uutput 1 IjUurput 2 

if 

'/'h('//Ourpur I F/sd)u/put I 

l}Ourpur 1 

(We have introduced a new bit of notation here: an encircled value is shorthand for a 

constant instruction bearing that value.) The figure shows how motion across the bottom of 

an if can lead to I-fetch Elimination, as for the following Id fragment: 

let 
p, q if x < y then x, y else y, x; 

While it is always safe to move code containing side-effects out of a conditional, 

provided identical code is moved out of both branches, it is not always safe to move such code 

into conditionals. Why? Because computation of the predicate may be contingent on the 

execution of those side effects, but neither side of the conditional can execute if the predicate 

has not been computed. 



4 .. 12 Code Motion Anoss loops 

Code motion ~icross I oop encapsulators is mainly done Lo remove invariant 

subexpressions. The program graph form or loops makes it very easy lo dctecl such 

expressions: a subgr:1ph is a loop invariant expression ir iL'i inputs only come from 

PredicateCvnstanl or BvdyConstant ports of the 1 oop. These subexpressions can be lifted 

outside the loop by adding additional LovpConstant, PredicateConstanl, and BvdyConstanl 

ports, as illustrated below. 

x y 

l.ooplnp l-n /.oopConst 1 l.oopC011s12 

l'rcdlnp l-n l'rcdConst 1 l'rc·dC011s12 

loop 

l'rcdOur l-n /'red 

Bodylnp l-n BodyConsl 1 llodyCons12 

x x+y 

x y 

l.uu{'lnp l-n I.oopC011.1·11 I.oopConst2 f.oopConst3 

!'rcdlnp /-n l'rn/Consl 1 l'rcdConst 2 l'rcdConst 3 

loop 

l'rcdOut 1-n /'red 

JJodylnp l-n Bo1~vC011s1 1 BodyConst 2 JlodyConsr 3 

x x+y 

Care must be taken when an expression is lifted from the loop body, since after lifting it 

will always be executed, but before lifting it would not have executed if the initial evaluation of 

the predicate returned false. This might result in an arithmetic overflow or division by zero that 

otherwise would have been prevented. Happily, dataflow systems generally handle such errors 

by means of error tokens [Wetherell 82], so this would not crash the user's program. On the 

other hand, we might wish to avoid the computation if it is not necessary. In any case, we can 

choose to fix this bug by enclosing the lifted code in a conditional. 

We also point out that if there is a direct connection between a Bodylnput and a 

BodyOutput, and another direct connection between the corresponding Predicatelnput and 



54 

l'rcdicaf<'Ollf/1111, then tile cirrnl:1ti11g v;1ri:1hlc represc11lcd hy lh;1l sci of porls is in 1:1c1 i11v;1ria111. 

111 thal c1sc, it Glll be rn11vcrtcd to a loop rn11sta11l, and will then be subject lo 111oliu11 as 

described above. 

The lil'ting of loop invariants was also reported in [Skedzielcwski 85a]. 

4.4 Interprocedural Side-Effects Analysis 

Many of the program graph optimizations described earlier depend on knowing which 

instructions can cause side-effects. ln the case of the a pp 1 y instruction, th al knowledge in turn 

depends on the properties of the procedure being applied, which depends on the properties of 

any procedures it applies, and so on. Herc we examine some ways of determining which 

procedures can result in side-effects. 

The analysis is fairly simple if we restrict ourselves to the first order case, i11 which every 

identifier which denotes a procedure is a constant, and is always applied to the correct number 

of arguments (i.e., the same number of arguments as its arity) at once. ln Lhat case, we can 

define a function fg~f':J from procedure identifiers to booleans such thal if b~f'J(F) is false then 

application off can never cause side effects, but if &;':J':J( f) is true then such an application might 

cause a side effect 

g;<:J<:J is computed in the following manner. We examine each procedure and note which 

procedure identifiers appear within its body and whether or not the body contains a side effect 

causing instruction (array or i-store). We then write a set of n equations, one for each 

procedure: 

g;'1<:J( f
1
) = Loca!SideEJfects?( f.) V gg<:J( f. 

1
) V (g<:J<:J( f. 

2
) V ... 

l I, I, 

where LocalSideEffects.'?(fi) is true if and only if fi contains an array or i-store instruction, 

f. 1, f. 2, ... arc those procedure identifiers which appear in f .'s body, and V denotes the 
/, I, / 

boolean inclusive or operator. We now have a set of mutually recursive equations over the two 

clement domain false ~ true. Since V is monotonic and continuous over Lhis domain, the 

equations have a solution (least fixpoint), which may be computed by a variety of methods such 

as Kleene recursion. 

Extending the analysis to handle procedures passed as arguments and higher order 

procedures is a subject for future research. 



55 

5. The Tagged~Tokcn llatanow Architecture 

The pmgr:1m graph concisely expresses the computation implied hy an Id Nouvc;1u 

program, hut docs little goml unless run on a real machine. Translating from program graph Lo 

machine graph lakes Lile program rrom the realm of the abstract to the realm of the wncrcte, ~1s 

the machine graph is literally object code ror a dataflow computer. In the program graph we 

appealed to intuition as we glossed over details of matching tokens with one another, of 

implementing unusual firing rules (e.g., that for constant), and of managing the finite 

resources of a real machine. Our translation to machine graph must take all these into account. 

To understand the machine graph, however, we must first become fomiliar with 

datallow architectures and sec just what constraints must be met. Our discussion will be based 

un the MIT Tagged-Token Datallow Architecture [Arvind 83, Arvind 86b], but the features 

important to us arc typical of most other dynamic dataflow architcctur(;'S, such as the 

Manchester Machine [Gurd 85] or Sigma-1 [Hiraki 84]. Compilation for static c!ataflow 

architectures presents a somewhat different set of problems, which we shall not address. They 

arc adequalcly described elsewhere [Ackerman 84]. Since our primary concern is compilation 

and not architecture, we will allow ourselves a little license in describing the tagged-token 

architecture: the interested reader is invited to read [Arvind 85] and [Arvind 86b] for more 

accurate information. 

5.1 Machine Organization 

A stylized block diagram of the tagged-token architecture is shown in Figure 5-1. 

Instructions in the tagged-token dataflow architecture are restricted to having just one or 

two inputs, and, with one exception, only one output. A single firing rule suffices for all 

instructions: an instruction executes when all of its input tokens are available, removing the 

input tokens and sending a result token to each of the instructions to which its output is 

connected. In other words, all machine graph instructions behave pretty much like the program 

graph's + instruction. f nstructions are grouped into code blocks, and are addressed by offset 

from the beginning of a block. 

The waiting-matching unit in the machine is responsible for routing tokens to the ALU 



56 

From 
( 'onf!111111ic111io11s 

lVctwork 

/.'rom 
( 'or111111111u·111io11s 

N1'fll'OJ'k 

--~-- Tokens---

1-Strurturc ) 
Memory 

~ ALU 

'f'v 
('0111111u11icutiv11s 

Nc/lvork 

'f'o 
('11mmrmication.1· 

Nl'lwork 

..----. - I r-- ti-
((OTl/CX /, Ujji·l'f) .... (' -~ I 

- -II"" .ontcxt 
(( 'o/lfn r. I mlc x·> M Adt!rl'.l'.1' 

Program 
!Vkmory 

lnsrmction 
- ap 

~--t> Constant 
1>11111 ~-~-===~-~_=:!]_._. l\kmory 

Figure 5-1: The Tagged-Token DalaOow Architecture (Simplified) 

for execution. The waiting-matching unit must determine to which instrnction a token is 

headed. If that instruction is a two-input instruction, then the waiting-matching unit must find 

that token's partner so that both can be presented to the ALU simultaneously. This is the origin 

of the unit's name: the first token to arrive for a two-input instruction waits for its partner to 

arrive and match with it. There may be many independent sets of tokens headed tor the same 

instruction, either because a procedure is invoked more than once or because wr:, allow several 

iterations of a loop to proceed in parallel. 

Correct pairing of tokens is accomplished with a simple tagging scheme thal puts some 

extra bits on each token. Tokens take the following form: 



57 

Culor 

/ / era I ion l'osi I /011 Value 

Tag 

Each of the fields of a token is of fixed size, and their meanings are as follows: 

Context 

Iteration 

Offset 

Position 

Value 

Serves to distinguish between sets of tokens that arc sharing the same code 
block; for example, two different invocations of a procedure. Two tokens arc 
parl ot. Lhc same invocation if and only if their context fields arc the same. A 
tahlc indexed by context number associates a code block and a conslant area 
with each context. 

A rctincment of the context field that serves to distinguish between seL'> of 
tokens representing different iterations of a loop. 

Indicates to which instruction within the code block indicated by the context 
the token is heading. 

Indicates to which input of the instruction the token is heading if the 
instruction has two inputs. 

The actual data carried by the token. 

(This is somewhat simplified; in the real machine there are a few more bits to simplify 

routing and matching.) The context and iteration fields together are also called the color4, and 

the context, iteration, and offset fields together are called the tag. The idea is that there are 

effectively many copies of each code block, with the color field indicating to which copy a token 

belongs. The tag field is important because two tokens are to be consumed together by a 

two-input instruction - they match - if and only if their tag fields are identical. 

The ALU is responsible for execution of instructions. lt has access to two kinds of 

4
Also called hue. or by some olhcr chromalic name. 



58 

111cllH>I}. l)rur,rwn 1\!c11101y umLiins Lile dalallll\'. grilpll itsL·l1·. g1ll11pnl 111111 l°' 11k I'll,, b .1-, 

111er1lioned earlier. Co/1.\/1111! Memory serves as a scr;tlchp;td li>r lluldi11g things lil-.c ltlup 

constants: it is divided i11Lo regions called Constant Areas. The ('on/ext ti.lap ass<wiales a code 

hlock and constant area with each context numher: instructions and constant ;1rea ck111c11ts arc 

addressed hy rnnte:\t number and offset. There arc no restrictions on this mapping, and a 

common occurrence is Lo have several contexts map to separate constant areas but share the 

same code block. 

Each instruction in a code blcck carries its opcode and a list ol' destinations, one 

destination for each input lo which the instruction's output is connected. A destination contains 

the appropriate offset and position field for sending a token to a particular input of a particular 

instruction. Most instructions form output tokens by combining the offsd and position from 

each destination with the context and iteration from the input tokens: thus, most instructions 

keep tokens within a given color. There arc a small number of instructions which use different 

rules for constructing their outputs' u1gs, and these instructions arc used for transpo;ting tokens 

between contexts or iterations. 

Most tokens in the machine follow the waiting-matching-ALU paLh, but there is another 

path through I-structure memory. As the name suggests, I-structure memory is responsible for 

maintaining and manipulating any I-structures used by a program. An I-structure location may 

be read by sending a special 1-STR-rETCI I token to I-structure memory. This token contains the 

address of the location to be fetched, and a context, iteration, offset, and position. If the clesi red 

location has already been written, the I-structure memory responds to the fetch request by 

sending back an ordinary token whose context, iteration, offset, and position fields are taken 

from the 1-STR-FETCH token, and whose value field contains the value retched from the !

structure. If the location had not yet been written when the fetch request was received, the 

request is recorded in a deferred-read list for that location. When the location is finally written, 

by sending I-structure memory a 1-STR-STORE token containing the address and value to be 

stored, tokens are sent back for every deferred read in the deferred-read list, and subsequent 

reads proceed normally. To lhe program, there is no difference between a deferred read and a 

normal read, other than the time it takes for the result to arrive. On the other hand, the A LU is 

free to execute other instructions once it has sent the I-STR-FETCII token; it need not wait for the 

result to arrive. This accounts for the datatlow machine's ability to tolerate memory latency. 



I luw docs I slructlliT 111c111my diiTl'I' rro111 CllllSl;llll al'l':.1 111C11ll>ry? h11· llllC thi11g. :111 

individu;tl constant :t1\.::1 is accc;siblc only to instructions c\cu1ti11g in a particular rn11lc\l. I his 

is clearly not suitable l(Jr I-structures as they c.xist in Id Nouveau. for 1-slrncturcs may be p:1ssed 

far and wide :1111ong procedures. yet correct matching requires different crnlle\t numbers be 

assigned to di!Tcre11t invocations. Another difference: unlike I-structure memory. con'.;tant arc:1 

has 110 built-in synchroni1alion mechanism. and so we must arrange for our code never to read 

fro111 constant area location until il is known Lhat that location has been written. On the other 

hand. the proximity to the ;\LU and the absence of possibility of deferred reads allows constant 

area to be accessed as rapidly as program memory. This makes it suitable for holding loop 

constants, as long as we withhold loop execution until the constants arc stored, :rnd arc able ~o 

detect termination of the loop so that the constant area can be reclaimed. We arc relying here 

on the known lifetime of loop constants. 

Figure 5-1 shows only one I-structure memory an cl only one processing clement (i.e., 

waiting-matching-A LU path). Of course. a complete data flow machine is composed o(' many 

such I-structure memories and processing clements, in equal or unequal numbers as desired. 

This assumes some mapping scheme for distributing I-structure addresses among the various 

I-structure memories and context numbers among the various processing elements. Developing 

effecti vc mapping schemes is a topic of current research and will not be considered here. 

Even though there are many I-structure memories and many processing clements, there 

is logically a single agent for allocating I-structures and contexts. We say "logically" because 

each request to allocate an I-structure or context must receive a globally unique answer. On the 

other hand, we are not ruling out a distributed implementation of this agent, able to service 

many requcst5 simultaneously. In fact, we will treat this agent as a black box, called the 

"Manager", without saying whether its implementation is localized or distributed, in hardware 

or in software. Parenthetically we note that even a dataflow implementation of the manager is 

not impossible; sec [Arvind 84] for details. 



5.2 Implications for Machine Code 

A rcalHic datallow arcl1itcclurc such as the lagged-token architcclure just described is 

powerrul, but incapable ol' directly executing the program graphs we have presented. Its 

restrictions give rise to the H>llowing considerations in translatiun to nwchine code. 

1) Machine instructions arc limited to two inputs and one output, and have a fixed 
tiring rule. Complex program graph instructions like if and 1 oop will have to be 
implemented by collections of machine graph instructions. 

2) Instructions must execute in a constant (and hope!'ully small) amount of time, 
precluding the use of instructions that do unbounded computation or waiting. 

3) Certain program graph instructions have "intelligent" tiring rules, an example being 
the constant instruction which emits a token whenever needed. A more causal 
implementation must be found for the machine graph. 

4) The tagging mecl1<111isni must be brl)ught to hear on the problem of keeping 
independent sets or tokens from being confused. 

5) The finite number of context numbers requires the rcclamalion of contexts when no 
tonger in use. This in turn requires the ability to detect termination of regions of 
code. 

6) The finite number of iteration numbers requires clever control of loops to prevent 
exhausting this resource while still allowine a sufficient arnounl of parallelism. 

7) The operational semantics implied by the program graph's firing rules must be 
preserved. 

Careful attention to these points, especially numbers 3, 5, and 6, arc what separate a 

hypothetical implementation from a practical one. 



In the l<1sl chapter we nutcd th<1l in the rnachinc graph :di instructions l1H1st lire lwcausc 

they receive some input, hut that this is not quite true or the program graph because or 
instructions like constant .. Furthermore, it W<lS noted that we must be able Lo detect when :di 

instructions in a given region of code have fired. We meet these two requirements through 

triggers and signals. 

Triggers are extra arcs added to a datallow graph to make sure that all instructions that 

arc supposed to lire do in fact fire. Signals arc extra arcs added lo l~1cilitatc the detection of 

termination. Both arc necessary features of the machine grnph. As it turns out, however, 

triggers and signals make as much sense in the program graph as they do in the ninchine graph. 

Moreover. it is f'ar easier to introduce them into the program graph. where more or the structure 

of lhc original Id Nouveau program is preserved. In this chapter we describe how a program 

graph without triggers anc! signals is transfcxmed into an equivalent program with triggers and 

signals. The resulting graph is called a well-connected program graph, and its construction is the 

first step in the conversion to machine graph. 

6.1 Triggers 

Our program graphs contain a few instructions, such as constant. whose firing rules 

require them to produce an output "whenever needed". In the machine graph, of course, these 

instructions will have to be fired by the arrival of a "trigger" Loken, which indicates that the 

output is in fact needed. The constant ( 5) machine graph instruction, therefore, emits a token 

carrying 5 whenever it receives an input token. The value on the input token is ignored. 

In a basic block, it is known that each instruction must execute exactly once whenever a 

set of tokens appears at the block's inputs. Therefore, we conclude that any instructions in the 

block which require triggers should each receive one trigger token when inputs arrive for the 

block. The algorithm for adding triggers to basic blocks is simply to add a new input to the 

block and wire it to all instructions in the block that require triggers; that is, to any unconnected 

input of an instruction. It is up to the cncapsulator that encloses the block to provide a token 



62 

Ii.ff the new trigger input. 5 

c_ ::>--- Trigger 

We now know how to add triggers to basic block, and so we now must show how 

triggers arc propagated across encapsulators. The simplest cncapsulator is the def instruction. 

The def instruction must provide a trigger to its enclosed block as soon as the procedure which 

it represents is invoked. Because our procedures arc non-strict, however, we arc not guaranteed 

that any of the argument tokens arc available at in vokc time. This precludes deriving the trigger 

as a function of any of the arguments, as for example by always using the first argument as the 

trigger. Instead, we change the definition of def so that in addition to its Argument outputs, it 

also has a special Trigger output which emits a token whenever the procedure is invoked. The 

value of this token is unimportant since it will only be used as a trigger. 

---Output Trigger of def ---

Pre-Condition: Procedure invoked. Value Produced: Anything 

Our scheme for translating def into machine code must now be sure to provide this 

trigger token. The rule for triggering the enclosed block of a def is expressed in the following 

figure: 

5
Tuis is a simplification; as we will see in Chapter 8, we will sometimes obtain the trigger for constant 

instructions from a different source. 



63 

---·---A-,~-,11-111-er-11-,-.-.. -A,--~~11nrnr .. .
1 
.. J 

· • n ngger 
---------·-

def(F) 

Result 

The if instruction contains two basic blocks, the then block and the else block. A 

trigger must be provided to the appropriate side as soon as it is known which block will execute. 

Again, it is not safe to use an existing Thenlnput or Elsefnput as the trigger, since the arrival of 

any or all of these may depend on instructions within the if being triggered. Instead, we add 

an additional lflnput, Then Input, and Else/nput port to the i F specifically for the trigger, as 

shown below. 



________ jl 
!Jlrif'lil I •.. l/l11p11I 

11 

n,···n,, Tin+/ 

Trigger 

if 

J 'fhc110urp1111 1:'/scUurput / 

!JV11tp11t I 

Since the trigger is derived from the predicate, it is delivered to the then or else side as 

soon as U1at side is selected, regardless of which other inputs to the i f have arrived. Notice that 

in the figure we have not shown a trigger for the predicate expression; if it requires one, it will 

be added when the block in which it is enclosed is processed. 

The la'it case to consider is the loop instruction. Herc we need to provide a trigger to 

the predicate block every time the predicate is to execute, and to the body block every time the 

body is to execute. One easy way to accomplish this is to circulate a trigger around the loop: 



J 
L __ _ 

~---------1~~~~----==~ >--- Trigger ___ ____,.'--------------. 

loop 

l.ooplnp111 1 • · · l.ooplnp111
11 

Looplnp11t n + 1 l.oopC011s1 I · · • l.oop( 'onst k 

l'rt'dlnput 1 · · · /'red Input n Predlnp11t n +I l'rcdC011st I · · • /'r('dConst k 

- Trigger 

l'rn/Ourput 1 · · · l'rcdOutput 11 l'red011tp11t n + 1 l'rcdirntc 

l/odylnput I · · · l/odrlnput 11 llodylnp11t n +I l/oJyConst 1 · · · /lo(~rConst k 

'-'-.r--- Trigger 

BodyOutput 1 · · · BodyOutput n l/ody011tp11t11 + J 

1.oopOutput 1 · · · J,oopOurput n Loop011tp11t 
11

+ 1 

65 

The initial token for this circulating trigger is the trigger for the block of which the 1 oop 

is a parl; that way, we are assured of receiving a trigger for the first execution of the predicate. 

We can eliminate the overhead of an additional circulating variable, however, by 

exploiting the properties of the 1 oop instruction. Specifically, we recall that the definition of 

loops is such that no predicate or body instruction need execute until all predicate or body 

inputs arc present. This is in contrast to if. where we must be prepared to execute instructions 

in lhc th en ore 1 se blocks even if some of lheir inputs arc not yet available. Since in the loop 



we k11uw that all inputs t() :i block will he present hcl(>re we have to st;1rt L'\l'~·11ti11g tile hlrnk. we 

c111 clHHlSL'. ;111y ur the existing cirrnlating variables to serve ;1s tile trigger witliu11t clla11gi11g the 

111e;111i11g or the program. In pr;1cticc we want to uvcrl:ip some number ul' iterations. and so it is 

adv;1ntagcous Lo choose a circulating variable that we believe will be comp11ted 1;1sler than ;111y 

or the others. such as the index of a for loop. Then again. to increase exposed parallelism even 

further we may wish to retain the separate circulating trigger. thus triggering things as fast as 

possible. 

To summarize, the algorithm for trigger addition is to begin with the innermost basic 

blocks. adding trigger arcs if needed. These triggers arc then connected to the cncarsulators 

enclosing their blocks, and the algorithm is repeated on the next innermost set of bt!sic blocks. 

The process is complete when the outermost encapsulator (the do f) is processed. 

6.2 Signals 

Whereas triggers arc concerned with making sure all i11structions arc capable or !Iring, 

signals are concerned with ascertaining when all instructions have indeed fired. The definition 

of basic blocks guarantees that if a token arrives at every input of a block, then cvcnt11ally every 

instruction in the block will execute and a token will be produced <lt every output of the block. 

Unfortunately, just because a token has appeared at every output does not 111ean that all 

instructions in the block have executed. In the following b<L'>ic block, for example, a token may 

appear at the output even though the i - stare instruction has not yet fired. 

z 

let 
q = x + y; 
a[x] = q 

in 
q ... z 

We would like to add additional outputs to basic blocks such that if a token arrives at all 



llltlputs of the block. itH:luding the ;1dditio11al 011tp11ls. thl!ll C\'l'l'Y i11stntclio11 in the hlock h;is 

lircd. These addilirnwl 1>11tputs arc c;ilkd signuls. Keep in mind that the sig11;ils du not i111ply 

tcr111in;1tio11 by themselves. hut only when ~1cco111panied hy the other, non-sign;tl, outputs. 

Nu sign~ils arc needed lo detect the execution of side-effect free instructions such as +, 

for they alrclldy produce a token as evidence of their execution. On the other hand, when an 

instruction acts only through side-effect, as docs i-stor·e, there is no token produced to 

indicate that the side-effect has taken place. So we must modify these instructions to produce a 

signal token when they have completed their side-effect. Our example then becomes: 

a_, 

Srr ldx Val 

i-store 
Si~na/ 

z 

The data carried on the signal token is unimportant. The new firing rules for app 1 y are: 

--- Sidc-1\ffcct of i -store ---

Pre-Condition: Structure, Index, and Value 
present 

---Output Signal of i-store ---

Pre-Condition: Structure[ Index] written. 

Effect: If element Index of Struct11re was not 
ycl wrillen, Value is written there, otherwise 
an error flag is raised. 

Value Produced: [Anything] 

The only other program graph instruction that needs a signal output is app 1 y. We need 

a signal out of apply in addition to its regular output for two reasons. First, the regular output 

can be produced even if no token has yet been received on input Argument, and so without the 

signal we do not know whether the instructions that compute Argument have fired. Second, if 

the app 1 y actually caused the invocation of a procedure (as opposed to the creation of a 



68 

clus11rc). then we ;11-c i11tcrcstcd in detecting when the invuked pmccd11re terminates. Ille 

appe;ira11ce of a token al the regular output Joes not imply that all instructions in the invoked 

procedure have executed, fix the same reason that a data value appearing at the output of a 

basic block docs not imply that :111 its instructions have executed. apply. thcrel(ffe, produces a 

signal when the argument is received and stored in the closure or sent to the invoked procedure 

and the invoked procedure terminates. The updated firing rule for apply is: 

---Output Output of apply---

Pre-Condition: Procedure present. 

---Output Signal of apply ---

l're·Conclition: Procedure and Argument 
present. and Argument wrillen lo closure or 
sent to invoked procedure. which musl have 
terminated. 

Value Produced: Result of applying Procedure 
lo Argument 

Value Produced: [Anything] 

Given these modifications to program graph instructions, we define the signals for a 

basic block as all of the unmnnccted outputs of instructions within the block. This includes the 

signal outputs of i -s tor· es and app l ys, as well as unused outputs of i Fs and loops. The latter 

might arise, for example, if a newified variable of a loop is not used in the return expression. 

Given the rules for constructing the signals of basic blocks, we now examine how they 

propagate across encapsulators. An if instruction encloses two basic blocks, exactly one of 

which is executed once each time the block enclosing the if instruction executes. So if the 

predicate is true, for example, the then block executes, possibly producing a set of signals. But 

there is an additional source of signals for the then side besides those of the then basic block. 

Any Thenlnput outputs of the if that are not connected to the then block (because the 

variables they represent are needed only by the else block, for ~xample) arc also signals for the 

then side, since there is no other way to detect that the instructions feeding the corresponding 

!f!nput have executed. The analogous situation holds for thee l se side. 

With the signals for each side of the if at hand, it is necessary to propagate them across 

the bottom of the if. First, we collect the signals from each side into a single signal per side by 

wiring each set to as i gnal -tree instruction. A signal -tree instruction simply produces a 

token when it receives a token on each of its inputs: 



----Out1mt Output of signal -t1·ee ---

l'rl·-Conllition: i\11 !1111111. presrnl 
I 

69 

Valul' Prrnluccd: [,\tl) lliingJ 

Nc:-.l, we add another UOutput lo lhc if, along with a corresponding 'ffU'nOu111ut :111d 

UseOutput. 1-'inally. we wire the output of the then's signal -treu instruction to the new 

ThrnOutput, and the else's signal -tree to the new '"'fseOutput. The new ljOurput becomes 

a signal for the block enclosing the if. since it is now an unconnected 011tput (recall that signal 

and trigger generation proceeds from the innermost blocks outward). All of this is summarized 

in the figure below. 

if 

~k 1 
______ .. ____ l_'jl-11-p1-11-,-.~.-. -U-lr-111_u_1 ,

1

- -----l-'n-'<l~it-·01-c- J 
f'l1c11l1111111 I · · · J/J('l1/npu1 n Flsel11p11! I · · · Fl.1e/1111111 11 

------=-J ----------

The11011tput I 

Unused 
The11!11put s 

J 11p11t I · · ' lrrplll p 

signal-tree 
011tput 

71ren011tput2 

lfOutput 1 

ll1111scd (_ >-
1',' / .1· cl 111 Jll ( s 

Input 1 · · · Input q 

signal-tree 
011tp11 t 

F!scOutpur 1 Else011tp11t2 ---] 
IJ011tp11t2 

In loop instructions, either the predicate block or the bo<ly block can produce signals. 

If either produces signals, we must collect those signals for all iterations, so that the final set of 

tokens emitted from the loop implies that all executions of the encapsulated blocks have 

finished. We do this by creating a circulating signal, which essentially acts as a signal for all 



70 

previous iterations. By co111hini11g it with tile signals fnllll tile rnrrl"llt ill'l;lli1111, \\l' uh1:1i11 i1s 

value !'or the next iteration. This is depicted in the ligurc below. 

loop 

L_ _____ ------------~ 

>---- Trigger 

f,oop!np111 1 · · · f,oopl nput n Looplnput 
11 

+ 1 f,oopConst I • · · J,oopConst k 

l'rl'illnput 1 · • · l'redlnpur n l'redlnp11t 11 + 1 !'red( ·ans/ I · · · I'm/Const k 

l'r£'dOtilf>11/ 1 · • • f'ru/011/put 
11 

Prcd011tp11t 
11 

+ I l'rcdicatc 

Bodylnput I · • · !Jody Input 11 lludylnp11t 11 +I HodyConst 1 · • · JlodyC'onst k 

Body0111put I · · • llodyOutput n 

J,oopOutput 1 · · · f,oopOutput 
11 

Body011tp11t 11 + I 

J,oop011tp11t 
11 

+ I 

The initial token for the circulating signal is the trigger for the enclosing block, and the 

final value of the circulating signal becomes a signal for the enclosing block by virtue of the 

corresponding LoopOutput being unconnected. As with ifs, there are two sources of signals for 



71 

the predic1te and body: the signals lhJlll the basii.: block itself as well as any unconnected 

l'mlicatelnput or /Jody Input lllllput~/1 . /\n important property or this signalling scheme is that 

when all l'rt'dimteOutput or /JodyOutput inputs have received a token for a given iteration, all 

instrnctions in the predicate or body li.>r that iteration have executed. Our signal, therefore, 

serves as the signal l\Jr individual iterations as well as the signal for the entire loop instruction. 

This is critical to the recycling of iteration identifiers. 

Finally, we take care of signals for the body of def instructions. The def instruction is 

responsible for sending a signal back to the apply that invoked it to indicate that all 

instructions within the def have executed. We therefore collect all signals from the de f's body 

into a single signal, which we wire to a special Signal input of the def. 

Argunrc11t 1 • • • Argumrnt 
11 

def( F 

Result Signal 

Signal addition, like trigger addition, proceeds from the innermost basic blocks outward, 

since the addition of signals to an inner block can create a signal in the enclosing block. Trigger 

addition must precede signal addition, since the former can introduce unconnected outputs 

which become signals (for example, if only one side of an if needed a trigger, an unconnected 

output is created on the other side). Rather than compute all triggers and then all signals, it is 

6our schema for wh i le expressions. however. will never leave unconnected Predicatelnput ports since each one is 
wired lo lhe corresponding PredicaleOulput porl regardless ofwhelher it is used by lhe predicate. 



.,.,. . .,_..,.:osatM11n1l1tl'JiJ11•1Jl .. .., •• ltll'·J·W~~--
_,.;.,1..,.;;ttf'Jl'! .<,1nmI.at!jit i1itlJ 'k.1 ·{tt:;r1utq 1Q:JiJl:oqmi u/<.'. ;•~1 i~I(.\~*\ i<'> \\l\\,\b\u:)\\~1\ 
fi:n .rKiiJ1r>~Jl n:..viM 1: 11.il n~~toi fl> tJ!JVJ:JYJ'! zwi.tt a!uqtf'i ~\A:~li •••\i.1\h\\n\\rf\•\ lh. u~dw 

,::;n1SJ::n:.•1fJ Jnngi~ ·l!tO b::ittn:>ic'J :;'rt! ™'ib;·toJI !Gift 'Kif ~hpd lo ~ :MIJ Jtt i!tmh:nnkni 

"noi t:.»H~oi \}Qt> r :.m1·w..i ;>nt 16' h~n~~ :'>MM tmw ~ i~~ ~utuvmnr idt b:;#~ ~ <'• ~.,..Wl::k 

.-.nilriobi ~'1~ile.· .·· ~fJ!oJ ft0Urt.:1 :d aieff . . -. ~-.- '' - . •., ~ 

$i nau:nn12w i .,:. ;AtT f;;JiJ;.HnJ.ani l&b 1o '(hod ilrh 'd: .. "IG ~$:jm fJW ,'(ffsof-l 
' . . ' ... it·:. . . . 

H.t~ ;;,•roif.rii ·Jt 1 ' b~~ovni tr...rll rt r qqa ,_clJ nt ~ ~*~ •:•tbf•~ 161 ,ldi~tt(~1 

th<..d F~1 !110 orh r®ft :-:l!rng!~ !!!': n.·Akn :nol:71~ti 'JW b3W~a.tJv11-d" 1'~ ~ nidtrw uroiJou1Jeni 

. 1 ;'! t; ;:.r'J 1o t1Jqm ·u.,~~i. ?. Jtii~~ t qs l''fiw ~~w Junsit ~lar1fa J~ oJni 

~ . 

~--·~~·--~ ... --.~· '-~ 

.. - .-_, .· .··· .. ·.:-~-.-. ·'.: i1~~;1'.·~r··~·~i· .- · ':.·· 
,tmrttioo ~ ~t-e!~d •~r>m1~rw,i ;'jt!f~ m{tft ab~~'~~~~ ... ~ faflll2 
~f·tl' ,.ioofd gnti(JbflO !JdJ fli lntt,!lli Ii ~J WO i'90ftf1t&tmf80)~·-Jo l'l.Oi.ttbbz; :Jff.t 1.>':>ttif! 

t!Uq!t;O fj{~/'.:,l'.)ff;i(f.JWJ \YJUbCt!Jfl·i ll<;:; 1Mm~ 3ilt ~Ymii .llOJ~~- ;;,;1J~ ... lf,! ;~~ 
,. ,~ . ; .. 

•••~ .. tt,..w ' ' _,, ' 

· . .(.,. }.~m b~ ai JuqJoo 
·.: _; ·.·~'·· i. :,·;~.\;;~~~-:':::::·~r,.-; ; ' 

ei $trot'6:.. '.t)nig iu-w~:i t>14\l\\'l>~'.1'i'b~'\ b!'}J~f'wmi.11 W'4:;~l "f,WWt~ .~.~-eel htw lOt 11t~ id 
.1',)~-,;.i~;;r'.'Q. ;;,;{! '{d- b .. ~, i' ii .. ,:J;\.l.;1;1:; ~o ,f>i~•1 ~~~1\ ~n!'f,:ml.)ffif~noo ~ oJ bmw 



7J 

Now we show how to systcm;1licilly translate a program graph into a machine graph 

which cont;1ins only instructions suitable for execution un the tagged-Loken dalallow 

arcl1itecturc ;111J which t;1kes into account the linitc resources of this machine. Once we have 

added signals and triggers to the program graph to obtain a well-connected program graph, 

translation lo machine code is accomplished by substituting groups of machine instructions fur 

each of the program graph instructions. This phase is therefore a kind or graphical macro 

expansion. 

7.1 Instruction Set 

We can describe the instruction set of the dataflow machine by expressing the output 

token of each instruction in terms of its input tokens. Remember that all instructions have the 

same firing rule, namely, an instruction !ires when all of its inputs have received tokens bearing 

the same tag. 

We will use the following notation for tokens: 

<DATA, context, iteration. ojj.~et, position, value> 
An "ordinary" token, as what normally flows along arcs of the datallow 
graph. The meanings of the fields were described earlier. 

(1-STR-FETCI I, address, context, iteration, offset, position> 
A request to fetch the contents of I-structure location address. 

<r-STR-STORE, address, value> 
A request to store value into I-structure location address. 

A typical two-input instruction is+, which we describe as follows: 

--- Machine Instruction + ---

Inputs: 
(DATA, C, i, q, 1, v1> 
(DATA, c, i, q, 2, Vi> 

Output: 
(DATA, c, i, Dest(q), Pos(q), v1 + v;> 

Dcst(q) and Pos(q) refer to the instruction offset and input position in the destination list 

of instruction q; output tokens are sent for each offset/position pair in the destination list. 



74 

Nutice t'1:1l lmlh inpul tokens have tile same v:iluc li.ir c, i. a11d 1f. as this is a nlllSl'lllll'lh'l' \ll-tllc 

!iring rule. 

An example of a one-input instruction is i dent i Ly: 

--- Machine Instruction identity ---

Input: Output: 
(DATA, c, i, q, L v> (DATA, c, i, Dest(q), Pos{q), v> 

As we describe the translation to machine code, we will introduce additional machine 

instructions as needed. 

7.2 Ilasic Program Graph Translations 

The arithmetic, relational. and logical program graph instructions(+,<=, or, etc.) have 

exact equivalents in the machine instruclion set, since they each have two inputs and one 

output. Their definitions arc analogous to that of+ given in the previous section. 

Similarly, the constant instructions as found in the well-connected program graph arc 

machine instructions, cL'i they have one input (the trigger) and one output. The definition of a 

typical constant instruction is: 

---Machine Instruction constant( 5) ---

Input: Output: 
(DATA, c, i, q, 1, v> (DATA, c, i, Dcst{q), Pos(q), 5> 

In the MIT tagged-token architecture, the instruction set actually allows constants to be 

made part of other instructions, e.g., a + instruction whose second input is always the constant l 

is represented as a single instruction. We will defer discussion of Lhis feature until the next 

chapter. 

The i-fetch program graph instruction is also a primitive machine instruction, as it fits 

the two-input paradigm. It operates in two steps, however, owing to the nature of I-structure 

memory. The actual i-fetch ALU instruction operates as follows: 



-------Mad1ine lnstrurtion i -fet.ch -·-

hi puts: 
(DATA, e, i, q, 1. S> 
(DAT/\, c, i, q, 2, idx> 

Output: 
<1-s·1 R+LICI I. Org( ... \) + idx. c. i, Dcsl(1/), l1os(r1)> 

75 

Herc ._)' is an I-structure descriptor, and Org(S) refers to the address in I-structure 

memory of the first clement of S. All the ALU docs is compute the address of the desired 

location by adding the given index to the origin of the given I-structure. and send a request 

token to the I-structure memory. When the I-structure memory is able to fetch the location, it 

responds with an ordinary token: 

--- I-Structure Operation 1-STR-FETCH---

!nput: Output: 
(1-STR-FETCI I, addr, c. i, q, p> <DATA, c. i, q, p, ContenL.-.;(addr)> 

The net effect of an i -fetch is like that of an ordinary two-input instruction: two 

DATA tokens arc consumed. and a DATA token carrying the result is produced. nut while the 

entire operation may take an arbitrary amount of time depending on when the corresponding 

store happens, the ALU's role of sending the 1-STR-FETCI 1 instruction takes constant time. 

The i--store instruction is similar to i-fetch: it sends a special r-STR-STORE token to 

the I-structure memory. It also needs to send a signal token for termination detection. One 

might expect that the signal is generated by I-structure memory upon completion of the store. 

In fact, we arc generally not interested in making sure the store has taken place, but only that 

the i-stor'e instruction itself has fired, and that the J-STR-STORE token is on its way. Hence, 

the signal is generated immediately by the ALU. 

The i - store program graph instruction has three inputs: an 1-structure, a subscript, 

and a value. Because machine instructions are limited to two inputs, we must use two machine 

instructions to implement i-store, one called form-address which computes the address of 

the I-structure location from the I-structure descriptor and the index, and one called i-store 

which forwards the address and the value to the I-structure memory and generates the signal. 



76 

~ _I _ _ _ L __ L _
1 I S1mc11m· llliln Va/11c 

L I 

form
address 

i-store 
I 
I 

I 
Signal I 

L-----f--~ 

--Machine Instruction form-address ---

Inputs: 
(DATA, c, i. q, 1, .._)) 
(DATA, c, i. q, 2, idx> 

Output: 
<DATA, c, i, Dcst(q), Pos(q), Org(S) + idx> 

--- Machine Instruction i-store ---

Inputs: 
(DAT A. c, i, q, l, addr> 
(DATA, c, i, q, 2, y) 

Outputs: 
<r-STR-STORE, addr, v> 
(DATA, c, i, Dcst{q), Pos(q), [Anything]> 

The implementation of the array instruction must invoke the resource manager. We 

can imagine a a 11 oca te-ar ray machine instruction for that purpose; its two-step operation is 

not unlike that of i -fetch. 

---Machine Instruction al locate-array---

Inputs: 
(DA TA, C, i, q, l, lb) 
(DATA, C, i, q, 2, ub) 

Output: 
(MGR-ALLOC, lb, ub, c, i, Dcst(q), Pos(q)> 

The token emitted by this instruction goes not to the processing element but to the 

manager, which allocates the token and sends the descriptor back: 

---Manager Operation MGR-ALLOC ---

Input: Output: 
(MGR-ALLOC, lb, ub, c, i, q, p) (DATA, c, i, q, p, S> 



77 

I kl\~. Sis the lksniptor for the newly ;illocated I-structure which has lower bound lb 

and upper bound ub. As with i··ret.cll. the /\l.U's role ul' l'orwardi11g the rcq11csl t;1kes 

const;lllt time even though the manager may lake a long ti111e to respond with the result. While 

this scheme l(H i111plc111c111i11g ar1·ay is completely general. we arc not ruling out more 

sopliisticaled methods that avoid having to contact the global m;inager on every :illocation. 

Such other methods 111ay ent;til expanding the program gr:1ph apply instruction into a group of 

several machine inslruclions. 

We implements i gnnl -tree instructions by a tree of machine instructions called gate. 

I 

I 

I I 
I I 

Output / 
L--------.------------

I 
I 
I 

I 
I 
I 

I 
I 
I 
I 

I 
I 

j lnf'UI 1 Input,' 

gate 
Ou1p111 

The gate instruction is sort of a two-input version of identity: it passes its first input 

unchanged, but only after both its first and its second inputs have arrived. The value of the 

second input is ignored. 

---Machine Instruction gate --

lnputs: 
(DATA, C, i, q, l, v1> 
(DATA, c, i, q, 2, v; 

Output: 
<DATA, c, i, Dest(q), Pos(q), v1> 

Our translation for signal trees implies that the signal produced at the output will carry 



78 

the same value as the lert111ust input. This is or little et>1hcqt1e11cc. since sign;ils :ire always 

"don't care" values. 

7.3 Translation of if 

The translation of i f is as follows: 

r _____ L ____________ L _____ l_ 
1 

I/Input 1 · · · Ijlnput n l'rcdimtc I 
I 

/11p111 I Input 2 

switch 
Outp11tr Output F 

. . . Input 1 Input 2 
switch 

0111putr 011111u1 F 

----s . ..__._-~ 
~-+----S<-) -~ 

I 
'/hen Input 1 • · · l/1m/11pu1 n I !1dnp11t I · • • /~l.1clnp111 n J 

~---f----l-----~----~---
1 

L _ l _ - ___ _I _ - - __ - '- - ___ 1 -- -
'fhc11011tput I · • · l/1cnOutpu1 m Flsd)utput I • · • F/sc0111put m 

,_--+----.....<< I ) 

~----->._s---

I I 
I 
I IjOutput 1 lfOutput m I 

----~-f--------------f----~ 

We have used two unusual machine instructions, switch, and the non-deterministic 

merge, which is indicated by a circle and cross. The switch instruction is unusual because it 

has not one but two outputs; this instruction is the sole exception to the rule that all machine 

instructions have one output. switch instructions must therefore have two destination lists 

instead of just one. The definition of switch is as expected: 

---Machine Instruction switch ---

Inputs: 
(DATA, c, i, q, I, v> 
(DATA, C, i, q, 2, true) 

Output: 
(DATA, c, i, Dcsttrue(1), Postnie(q), v> 



--- - --- Marhjm· I u~I rurt ion s w i l ch -----

l1111uts: 
<DA IA, c, i, £/. L v> 
<DATA. C, i, lf, 2, fill se> 

Output: 
<DA IA, c, i, Dcslfa1s/1), Pnsrais/q), v> 

79 

We have shown two rules for switch, one for when the control input is tnie, and one 

f()r when it is false. The only difference is in which destination list is used for generating lhc 

ou:pul tokens. 

The non-deterministic merge takes a token from either input and passes it to its output. 

This is different than a typical two-input instruction, which waits for both inputs and computes 

its output as a function of the two. In fact, the merge is not really an instruction at all, but is 

implemented by pbying with the destination lists of the instructions that feed it. For example, 

if we had the following machine graph fragment: 

2 

There would be no merge instruction in the code block at all; rather, the destination lists 

of both instructions 1 and 2 would have a destination indicating lnput1 of instruction 3. Hence, 

when either instruction 1 or instruction 2 fired, instruction 3 would receive a token on Inputl' 

We must insure, of course, that we never send a tokens with the same tag to both sides of the 

merge, and our translation for if satisfies this requirement. 



80 

7.4 Trans lat ion of loop 

The loop inslruclill!l is co111plicalcd, and has a rn111plicated lr;111sl;1Lio11. i:irst, kt us 

assume Lh<tl the loop has no loop constants, and that the iteration field or tags is inlinitc. In lhal 

case, a loop would be translated as: 

l'rt'dlnprll I l'rcdlnpul,, :- --- + ------ -.- ------
I - - L - - - - - - _I - - - - -- __ ,_ - I 

l'rcdOutpur 1 l'rcd01111>ut n l'rn/i,·111c 

... 

Bodyf11p111 1 Hodylnput n ;- -.- ------ l- -· ------
~--L ______ J _______ , 

BodyOutput I llodyOutput n 

=<P·.·-~ 
... -, 
... lo-{•vl 

LoopOwput 1 LoopOu1p111 n 
I 

----------.-------.-------

The initial tokens fall in through the merges to the row of switches and to the predicate. 



81 

The predicate decides whether the luop lmdy is to execute. II' so. then the prcdic:1tc produces 

the value true. and the switches allow the loop variables to proceed to the lo()p brnly. As they 

leave the loop body. they pass through o instructions. ;\ D instruction is a one-input instruction 

that increments the iteration lick! ol'thc input tag7: 

--- Machine Instruction o ---

Input: Out1mt: 
(OAT/\, c. i, q, l, v) <DATA, c, i + 1, Ocst(q), Pos(q), v> 

Jn this way. the tokens for the next iteration will have different tags than for previous 

iterations, and will therefore not be confused even if we allow several iterations to proceed 

concurrently. After passing through the o instructions they pass through the merges, and the 

entire process repeals. When the predicate finally returns false, the latest values for the loop 

·1ariablcs will exit the loop after passing through D-inverse instructions. AD inverse 

instruction, as the name suggests, undoes the effects of o instructions: 

----Machine Instruction D-inverse ---

Input: Output: 
(DATA, c, i, q, 1, v) <DATA, c, 0, Ocst(q), Pos(q), v> 

Why must we reset the iteration field of tokens leaving the loop? Because they will be 

used in computations involving tokens that were produced outside the loop. Only if the tokens 

leaving the loop have zero in their iteration field will they correctly match with the tokens 

outside the loop. 

In the previous scheme, the iteration field on tokens could grow arbitrarily large: if the 

loop body ext:cuted n times, then the final set of tokens had n in their iteration field. ln a 

practical machine, unfortunately, the iteration field must be of fixed size, requiring us to recycle 

iteration numbers. We can easily keep the iteration numbers within bounds by making the D 

instructions increment the iteration number modulo K, where K is the number of possible 

iteration numbers we wish to accommodate. We will call such a o instruction a D-K instruction. 

7Thc name Dis used for historical reasons. 



82 

-----Machine lnslrudion n K ---

ln1wf: Output: 
(Di\ I/\, c. i. q, l, v> <DAIA c. (i + 1) mod A:. Dcst(l/), Pos(q). v> 

But replacing Os by o Ks causes other problems. as illustrated by the !'ollowing progr;lm: 

w~iJ;; j(~ do J 
new x = j - f x; 
new j = j + 1 

return · ·· 
-----

I I 
~ --=-., 

(The triggers for the constant instructions and the signal output from the application of 

f hr.ve been on1itted for clarity.) Suppose that the + executes quickly, but that procedure f 

takes a long time. The initial tokens for j and x would enter the loop body with iteration field 

zero. While f is computing the first value of ( f x) the - instruction cannot execute, since it 

depends on the value of ( f x). On the other hand, nothing prevents new values of j from 

being computed. and so newer and newer values for j will rapidly be injected into the loop 

body. where they accumulate at the input of the -. Each of these values of j will carry a 

different iteration field - that is, until K iterations have unfolded and the D-K instructions start 

recycling the iteration numbers. At that time, more than one token with the same tag appears at 

the input of the-. and the data for separate iterations is confused. 



83 

II' we w;1111 tu 11 ave ()11 ly K possi hie values !'or the itc rat ion 11u111 be r. then we m usl res! ricl 

the luup so lh;1t al 11Hisl K iterations arc in progress al a time. The idea is th;1t we prcvrnt an 

iteration rrnm proceeding until we arc sure that there exist no tokens lh)(ll another iteration 

with the same iteration number. We can do this without peril to the our translation·s 

correctness. for we reserved the right to execute the loop one iteration at a time, if necessary. 

Bounded loops were first discussed in [Culler 85]; the following schema is due to Arvind and 

Culler [Arvind 86b]: 

___________ J _______ L ________ _ 
I 

I 

~ 

l'rl'd I np111 I !'red Input n : - - - • - - - - - - -• - - -- - - - - - -

I_ - _I - - - - - - - l - - - - - - - J - -
l'rcc!Ou1p111 1 l'rcd0111p111 n /'rcdirnlc 

~----+---- I 
I 

:-/i~iizf:!!l l ___ !!o~~:!fl'!_n _ _______ J 

I_ - _I_ - -- - - - - l - - - - - - -- - - 1 
JJ0Jy0111p11t I · · · llotlyOutput n 

0-k • • • D-k 

- _1----1 

- ~--------!---



84 

The gover'llOI' hox Gill prevent itcratio11s rrom pmcccding by preventing the predicate 

value l'ro111 reaching L11e switches - ir there is no predicate value, no iokcns e<lll c11tcr the !Jody 

block. The governor is also infrmned when an iteration number becomes rree by means ol' the 

signal tree derived l'rom the outputs or the D-Ks. Our algorithm li.lr providing signals 

guarantees that when a token is received by each ol'thc D-Ks f()l' a given iteration. then all body 

instructions, and therc!ore all predicate instructions and switches, for that iteration have 

executed. When a token has exiled from each D-K, therefore, we conclude that no tokens exist 

with the previous iteration number, and it can therefore be recycled. 

The simplest implementation of the governor box is simply as an arc, initialized with K 

tokens having different iteration numbers. This allows K iterations to proceed i1nrnediatcly, 

and additional iterations to begin as tokens arrive from the signal tree8. Realistically, we must 

provide a way to initialize these tokens, and a way to clean them up when the loop finishes. 

These refinement:), however, arc complex, not very enlightening, and beyond the scope ol' this 

thesis. 

We now finish the implementation of loop by including loop constants. As we stated 

before, we wish to use constant area for holding loop constants. Two instructions manipulate 

the constant area: constant-store (j) writes location j, and constant-fetch (j) reads it. 

--- Machine Instruction constant-store()) ---

Input: Outputs: 
(DATA, C, i, q, l, v) (DATA, c, i, Dcst(q), Pos(q), [Anything]>, 

and vis written into location j of e's constant area 

---Machine Instruction constant-fetch(}) ---

Input: Output: 
(DATA, c, i, q, l, v> <DATA, c, i, Dest(q), Pos(q), Constant;) 

The constant-store instruction produces a signal when it has written the indicated 

location. Because of the proximity of constant area to the ALU, this operation takes no more 

time than any other instruction. The constant-fetch instruction behaves much like the 

constant instruction, ignoring its input (trigger) value, except that its output value is taken 

8Because the predicate for an iLcration j has already executed before the governor allows iteration j to proceed, the 
actual number of Lokens preset on the governor arc is K -- 1. 



~5 

rrnm constant area rather lh<lll the rnstrnction itscll'. In tile tagged-token :11\·ltitcrturc. 

1\:l'tT1~11ces tu constant are:1 can he pushed into other instructions in the same way that urdi11:1ry 

constants c111: <1gain. we will ignore this focl here. 

The full translation l(H I ooµ with constants is shown below. 

I 

~ 

I 

~ 

_____ L _____ I ______ L ________ l ___ ~ 
l.ooplllput 1 · · · /.oopl nput n J.oopConst 1 

Trigger --r---- · · · 

constant
fe tc h 1 ... 

l.oopConst k 

constant
fctch k 

!'red Input 1 · · · !'red lnpllf 11 l'rcdCon.1·1 1 l'rcdCon\'/ k 

~--l-----~-----l--------1----
1 

I_ - l - - - - - - - I_ - - - - - - - l - - -
PrcdOutput 1 Predicate 

I •.. '"'dTP"', 

I 
Trigger 

~ 

constant
..__f_e_t,_c_h_.__1...__. ••• 

constant
fetch k 

I 
JJodylnput I · · · JJodylnput n BodyConst1 · · · BodyCon.1·1k I 

~ -1- - - - - - -t - -- - -.- - - ~ -- - - -~- - - -
~ 

Notice that we prevent the loop from executing until the loop constants have all been 

stored; this is necessary to prevent premature fetches from constant area. In practice we can 

usually eliminate a few of these gates by analysis of the predicate. In practice we also push 

cons tan t-fe tch instructions through any ifs contained in the body in order to save switches. 



86 

7.5 Switching Contexts 

The alcrl reader will notice lhal nested loops cannot be accommodated by Lile 

translation given in the previous section. The problem is Lhis: suppose we have an ouler loop 

which executes i iterations, and its body contains an inner loop which executes} iterations each 

time it is invoked. Fach inslruclion in the body of the inner loop thcrcl()re excculcs a lotal or ij 
limes. How arc we to assign unique tags to the iterations or the inner loop? A more serious 

problem is constant area: the outer loop requires just one constant area, but the inner loop 

requires i constant areas, one for each time it is invoked by the outer loop. The values of the 

inner loop's constants arc likely to vary from one iteration or the outer loop to the next, as they 

arc generally functions of the outer loop's ncwified variables. 

We apparently need to obtain a new constant area each time we begin cxec11ti11g the 

mncr loop, but the outer loop's context maps to only one constant area. Therefore, each 

execution of the inner loop must take place in a new context. This solves not only the constant 

area problem, but also the tagging problem, for in each new context we are free to use the 

iteration field Lo distinguish the inner loop's iterations. If we had tried to keep the inner loop in 

the old context we probably would have tried to use the same scl of iteration numbers for 

different instances of the inner loop, leading to clashes since the context fields would also have 

been the same. 

Every context has associated with it a constant area and a code block. As we stated 

before, each inner loop context requires its own constant area, mutually distinct as well as 

distinct from the outer loop's const<mt area. On the other hand, all inner loop contexts execute 

the same dataflow code, and so they will all share the same code block. The inner loop 

instructions are disjoint from the surrounding outer loop instructions, however, so we have two 

code blocks: one for the inner loop and one for what remains of the outer loop along with its 

surrounding code9
. This division into two code blocks is illustrated below: 

9
In principle, there is no reason why we could not have them share the same code block, by assigning disjoint sets 

of offsets. There seems to be no advant;igc in doing this, though. 



87 

fastcall-def(l 1) 
/ ....... 

/ ( \ 

( \ I 
I 

I I 

-~ ---1-\ 

I 

' 
I - -- - - - / 

" 
I 

/ 

In the figure only the 1 oop instruction and its interior has been split into the new code 

block. but we can also choose to include a small amount of the surrounding code, especially if 

this recluccs the number of arcs crossing the dotted line. Each arc crossing the dotted line 

represents a token trnvcling between contexts, this transport being supervised by two new 

program graph instructions, fas teal 1-apply and fastcal 1-def. Fas teal 1-apply obtains 

a new context, and sends tokens flowing on arcs entering the split region. It also receives tokens 

that exit the split region, and deallocates the new context when all of these have been received. 

Fastcall-def performs the complementary function of fastcall-apply; it receives the 

tokens sent by fast ca 11 - apply and sends back results. 

The names fas tea 11 -apply and fas tea 11-def were chosen for these instructions 

because the process of switching contexts resembles a procedure call. The "at·guments" passed 

arc the inputs to the loop, some of which will be stored in constant area as loop constants, and 

some of which become the initial values for newified variables. The "results" returned are the 

outputs or the loop; i.e., the final values for the newified variables. (This description might be 

less accurate if we include some surrounding code in the split region.) Fastcall can be 

considered as a bare-bones method of obtaining a new context for executing a code block and 

transporting tokens to and from the new context. The full procedure call mechanism, as 

described in the next section, uses fastcall as its core. 



88 

Possible mecha11is111s l(H" obtaining ;111d inili:di1.i11g a new co11Lcxl arc ;1 lopic 1>1' c111rcnt 

research. ht1L all share a few rnn1mo11 charal'lerislics. Tile ohjed code produL'.l:d hy llle ui111pilcr 

has already been partitioned into code blocks. each wilh a unique 11an1e. Fach code block 

carries an indication or how much program memory and constant memory it requires. h)r 

example, if a code block contains a loop with live loop constants, then it needs a constant area of 

si1c 5. When a code block is to be invoked. the caller supplies the name of the code block. as 

determined at compile time. The context allocator then finds a free context nt1mber, and 

initializes the context map so that it points to the correct code block and to a fresh constant area 

of the appropriate size. The allocator returns to the caller a tag containing the new context 

number, iteration number zero. and the offset of the code block's entry point (usually 

instruction zero). One possible strategy for allocating contexts is to query a central manager 

each time a code block is invoked. Another strategy is to have the central manager supply a 

group of contexts to a procedure invocation, and let the procedure manage these contexts as it 

chooses for its interior loops. As Arvind and Culler point out lArvind 86b]. we can compute the 

minimum number of contexts required for deadlock-free execution of a procedure and its loops 

as a function of the K parameters - the number of concurrent iteration~ - v,;e choose for each 

loop. 

ln the schema below we will assume a machine instruction get-context, which takes 

as input a code block name and returns a tag bearing the new context for execution of that code 

block. Like allocate-array, get-context sends a token to the manager. The manager 

obtains a new context and empty constm1t area, makes the appropriate entries in the context 

map, and finally sends the tag to the destination of the get-context instruction. We will also 

assume a return-context instruction, which informs the manager that it can recycle a 

context, and returns a signal token indicating that the instruction has executed. Again, it should 

be remembered that get-context and return-context might actually be a collection of 

instructions that manipulates a previously obtained set of contexts, rather than instructions 

which query the manager. 

The implementation off as tea 11 -apply is shown below: 



get
context 

identity 

x 
identity 

X+l 

I r 

••• identity 

X+m 

Result 1 Result m Signal 

L-------------.-------.-----.---~ 

89 

A trigger from the current block causes a constant identifying the called region to be 

sent to a context allocator. By convention, we send the return address to the called code block's 

entry point, and the arguments to consecutive locations following the entry point. Sending the 

arguments is facilitated through the adjust-offset instruction whkh adds a given number to 

the offset field of a given tag, and the change-tag instruction which takes a value and a tag and 

combines the two into a token, effectively sending the value to the context and instruction 

denoted by the tag. 

---Machine Instruction adjust-offset ---

Inputs: 
(DATA, c, i, q, l, <C. I, Q» 
(DATA, C, i, q, 2, v) 

Output: 
(DATA, c, i, Dcsl(q), Pos(q), <C, I, Q + v» 



90 

----~ Marhinr l11strurtio11 cl1a11ue--tc1u ---

In pul s: 

<I);\!;\, c, i. lj. L < c '· (}» 
<DA IA c. i. lf, 2, v> 

Out1111t: 
(DAI A. C', I. (}. L v> 

The relurn address is a lag containing the current contexl and iteration numbers. and 

the offset of the first of a set of consecutive identity instructions that will receive the results. 

We create the return address with the aid of the form-tag instruction. which combines the 

offset (computed at compile time) with the current color. 

--- Machine Instruction form-tag ---

Input: Output: 
(DATA, c, i, q, 1, Q> (DATA, c. i, Dest(q), Pos{q), <c, i. Q» 

By convention. Lhe first or the identities will receive a signal token. and any results 

returned by the called region will arrive on consecutive instructions liJllowing this identity. 

When v.1e receive a token on each of the result identities as well <L"> the signal identity. therefore, 

we can conclude that all instructions in the called code block have completed execution. By 

induction. this also implies that any calls the callee may have made have also terminated. A 

signal tree detects the reception of all returned tokens, triggering the release of the context 

previously obtained. The output of the return-context instruction becomes a signal for the 

current block, not only because the return-context would be otherwise unconnected, but 

also because its execution implies that the change-tag instructions have all executed10. 

The implementation off as tea 11-def is complementary to that off as tea 11-app l y: 

10
111is implies that splitting regions must precede generation of signals and triggers. 



l;'''i"ll;lyl «:le<>Uly 
_____________ ' - - ---- --- - ---- ----- ---·------i 

i l11!ll I. i Ly 

() 

l 

I 

tl1'!~lllll<'llf t · · · :fr1:111111·111
11 

l/-;g!c:ff _J 
~ -- - - - - - - - .- - - - ))- - - - - • - - - - -.- -

I 

~ _______ I_ ___ ~<,-- ____ l _____ I_ 
1 /frs11t1 1 . . • Rl'sufl m Signal 
I 

• • • 

I 
I I 

L - - - - - - - - - - - - - - - 5;';- - - - - - - - - - - - _J 

!)[ 

One important feature of the fastcall mechanism is that it is non-strict, in the sense that 

tokens are transported as soon as they arrive, no matter what their order. 

7.6 Procedure Calls 

The fastcall mechanism we used to invoke loop "procedures" forms the basis of how we 

invoke procedures as visible to the lei Nouveau programmer. Id procedures have the additional 

wrinkle that arguments are accumulated one at a time, because of the curried interpretation of 

multiple arguments. Before discussing procedure linkage, therefore, we will explain the 

implementation of closures. 

Suppose we have a procedure of five arguments, f, m1d the compiler has named the 

code block containing f's def instruction f-cb. Then a closure representing f applied to two 

arguments is represented as: 



c/!11111111' 

f-- cb 
t-- ---------- -------

(/ rily 

~~,-",~'-'"Iii _,-_,_i_" __ };-1---------'' ~r-~1~r-~t---.. L1~-J~i~~ 1 
chain _ 

A rg11111r11t 2 A rg11mc11t I 

The closure has !'our fields: a code block name, the arity (5, in the example). the number 

or argu111ents not yet specified (5 - 2, or 3, in the example). and a pointer lo a linked list of 

accumulated arguments. We must represent the arguments in a chain because the lower 

numbered arguments may be shared between different closures. For ex~1mple, the closure 

depicted in the figure could be passed to two different apply instructions. and L11c ri.::sulting 

closures would share the first and second arguments but not the third. A procedure with no 

accumulated arguments, which in the Id program appears as simply tlw name or the procedure, 

is represented by a closure whose chain field contains the encl-of-chain indicator nil. 

The imp lcmcntation of apply must first examine the number of remaining argun1cnts 

required by the incoming closure. If the closure needs only one more Jrgument, then the arity 

is satisfied, the final argument being the one received by the apply. In that case, the apply 

must obtain a context for the execution of the procedure, send the arguments. and receive the 

results. If, on the other hand, the arity is not yet satisfied, apply must allocate a new 2-tuple, 

add it to Lhe front of the closure's argument chain, and return a new closure with the 

appropriate components. 

When app 1 y actually invokes a procedure, all arg11ments save the last have been 

collected in a chain, the final argument being directly available to the app 1 y. The simplest 

approach, therefore, it to have apply send the chain along with the final argument directly into 

the called procedure, which unpacks the chain into individual arguments. The called procedure 

receives only two tokens (the chain and the final argument). and returns only one token (since 

Id procedures return only one result). 



Ilic mcch;111is111 l\lr obt;1i11i11g the new conte\l and transporting the tokens w:1s ;1lready 

tkll11ed in the bsl sL·ctio11: thi.'> is tile 1:1stc;tll mechanism. The inipkme11latio11s 01· ;1ppl y ;111d 

rtP.f. the i11structirn1s representing Id procedure linkage. arc de lined in terms or 
f~1s t.c<i l l ;1pp ly :md fas tci111-dl!f. the instructions handling context m<trWgl'111ent and 

tokrn tr;111spmt. The tr;u1slatio11 ul' def is shown below. 

1----------- ------------, 

fastcall-def 

• • . 

Ar,;umcnt 1 Argurncnt2 Trigger 

I 
Argumcnr 1 · • Argument _, Argument "·L Argument Trigger _J 

~ ---• ----+ ~ ~ --+ ~· --• ~ --+ -
~ _ ' ____ f _______ - - -•- - - - - - - - I 

Result Signal 
I 
I 

'------~~--~--R-cs_u_11_, ______________ ~s1-g1_w_1~~~-----J : 

L---------------------- - - - - - --' 

As the figure shows, def is no more than a fas teal 1-dof, augmented with some code 

for unpacking the incoming chain into individual arguments. 

The schema for ap p 1 y is a bit more complicated, since it must check the number of 

arguments remaining for the incoming closure. If more than one, apply builds a new closure 

whose chain contains the new argument. Otherwise, fastcall-apply is used to obtain a 

context and send the chain and final argument to the called procedure. 



----~ 

lj1nput 1 Jj1np11t 2 /'n 'din1tc 

'f'lll'nlripw 1 Thcnl11p11t 7 Flsl'lnp111 J 

if 

closure-
chain 

( ·bmmu· Ari;1m1cnt I Argumrnt 2 

fastcall
apply 

Rnult 1 Signal 

111enOutpul 
1 

'fhmOutput 
2 

I/Output I 

/:"lseOutput 1 /:"lscOl//p111 2 

J)V111p11t l 

I 
Result L ____________ l ___ _ Signal 

- -- - -.- -
________ _j 

We've introduced a few instructions for manipulating closures: 

--- Machine Instruction cl osure-cbname ---

Input: Output: 
<DATA, C, i, q. 1, <n, a, r, S>> <DATA, c, i, Desl(q). Pos(q), n> 

--- Machine Instruction closure-chain ---

Input: Output: 
<DATA, C, i, q, 1, <n. a, r, S>> <DATA, c, i, Dcst(q), Pos(q), S> 



----- Marhinc l11strndio11 c I os111·e re,Hly'? ---

Input: 
<DA I/\, c. i. l/, l, <11. ll, r. ,)')) 

Output: 
<t);\ I A, c, i, Dcst(11). Pos(q), trne 

i r r • L else r a l s e > 

-~- Mad1i11c Inst' :1d!o11 th'c r · new- c ----

l111mt: Out1mt: 
(DATA, c, i, lf. l, (n, a, r. S

1
» (DATA, c, i, Dcsl(l/). Pos(q), <n, a, r- 1. S/> 

9.5 

Careful consideration wilt confirm the use of I-structures allows apply to create a new 

closure or invoke a code block even if not all arguments are present: applicaLion is therefore 

non-strict, as desired. When the argument list is unpacked, some fetches may he deferred until 

argurncnls arrive. 

In closing, we note that sometimes a procedure of known arity is applied to all or its 

arguments at once. In that case, we want to avoid the overhead of collecting the arguments in a 

chain, only to have the chain unpacked immediately thereafter. To take advantage of such 

situations, we need only modify the apply, not the def. The modified apply takes all n 

arguments at once - n being the arity of the called procedure -- ancl sends them dircclly into 

the body of the called procedure, bypassing the unpacking code imbcddcd in the called 

procedure's def. This modified apply, therefore, is exactly like fastcal 1-apply, except that 

it sends tokens to different of1Sets within the called procedure. Not having to modify def 

means that the same procedure can be called via both ordinary apply and modified apply 

n·om within the same program. 

We now summarize the various linkage mechanisms: 



apply 

.¥ ... tef. 
fast-ca11-at>fil1¥ 

~:-, ' . I , ~ i , 

\! 
! -~ 

:., 

· .. '' 

.. 

. ' 
d'. ~: ,'}-



97 

Just as a u111vc11tio11al compiler pcrlt>rllls opti111i1;1tiu11s both 011 till~ i11tcn11cdi:1tc 

program form and (li1 the object code, so docs our dauflow compiler pcrfor111 optirni1;1tilll1S 

both on the p1ogr;1111 gr;1ph ;111d 011 Ilic m<1cl1i11e graph. 111 hulll c;1sL:s, lite l;ittcr opti111i1;1liu11 

ph;1sc lakes the form oi' "pccplmlc" opti111i1ations, in which small rqjions of code arc rcpbced 

by more efficient C<p1ivalc11ls which lake.:: advantage of instruction set peculiarities. 111 a 

conventional compiler, Lhis entails recognizing sequences of consecutive instructions which fit 

certain patterns, while ['or us it means recognizing certain combinations of adjacent nodes in the 

machine graph. Bcl'ore looking at what kinds of peephole optimizations arc prol1Lahle, wc 

describe some aspects of the t1ggccl-lokcn data flow architecture's instruction set in more detail. 

8.1 More Instruction Set Details 

In Section 5.1. we were a little vague about how constants arc indicaLed in machine 

instructions and how the gate instruction is implemented. As it turns out, just about all of the 

peephole optimitations we will discuss take advantage of thcs\.: two mechanisms. They arc 

described in rull demi! here. 

In Section 5.1, it was noted that tokens have a field callee\ Position, indicating which 

operand of .1 binary instruction a token represents. On the other hand, it was never stated how 

tokens destined for unary instrnctions arc distinguished from those heading for binary 

instructions - a necessary distinction, because the former bypass the Waiting-Matching unit. 

In fact, tokens carry an additional bit called Partner-P11 , which indicates whether the token 

must pass through the waiting-matching unit. A token for a unary instruction, therefore, has 

this bit set to zero, while both tokens for a binary instruction have this bit set to one. 

Having separate Position and Partner-? fields decouples whether matching takes place 

from the number of operands an instruction requires. Consider the unary identity 

instruction. This instruction normally receives a token with Position set to one (since the 

identity operation needs only one operand) and the Partner-P bit set to zero. Now suppose we 

send two tokens to this instruction, both with Partner·? set to one, and one with Position set to 

11Th "I>" I d 1· L. . h . d" r . 11· d "th "P" c at t 1c en stems rom a 1sp convent1on w ere111 pre 1cate unctions arc su 1xe w1 a . 



98 

()JlC ;ind tile other witll !'mi/ion sci [ll /CW. By COllVClllion. a Position field or /Cm indic.1tl's th:1t 

tile d:11:1 c:11ricd by a (()ken is to he ignured. These tokens will 111:1tcll in tile waiting· 11t1td1i11g 

t111il. ;111d tile lirsl will be t1scd as i11pt1l lo llw i clen Li Ly. Thus. we h;i\c aclu;tlly implc111e11lcd 

the ga Le i11.structiu11! 

We can use lhis trick ror any unary inslruction, allowing us lo obtain synchroni1alion 

without the need ror an cxplicil ya te inslruction. We will use the graphical convention thal an 

arc drawn to the side or an instruction is being used as a trigger only, its value being ignored. 

For example: 

Opcr;md t ---< .. _::> c 

The other aspect of machine instructions glossed over earlier is Lhe inclusion uf 

constants. We slated that there is a special constant( v) instruction, but this is net quite the 

case. In actualily, any instruction may have a constant as one of its inputs; an instruction 

contains two extra fields, one for a constant, and one to indicate for which operand the constant 

is intended. If the constant position field is zero, then the instruction has no constant. For 

example, a I instruction whose constant field is 10 and whose constant posilion field is 2 is 

effectively a unary instruction which divides its input by 10. The constant field can contain two 

types of values: a literal constant, which gives the actual value to be used, and a consbant area 

pointer, which gives the offSet into constant area from which the constant is to be fetched. 

Given the foregoing, it is apparent that the constant ( v) instruction as it was presented 

in Section 5.1 is really just an identity instruction, with constant v. constant position 1, <~nd 

whose trigger token has position o and partner-·p o. The constant-fetch instruction is 

implemented in the same way, except that the constant field of the instruction carries a con~tant 

area pointer rather than a literal constant. Finally, the constant-store is really a two operand 



instnictiu11 whose sernnd ()pcrand indicates which consl;1nt is \() he stured. this l)pcr:1rnl ~i1w:1ys 

bcrng a cu11:;la11l in tile tr;1nslali\ll1 schc111;1la described here. 

Sun11nari1ing, we can s:1y that an instruction can lake its inputs rro111 two suu1n's, 

incoming tokens and consl:mts contained within the instruction, as long as ii receives exactly 

one m two tokens and exactly 1ern or om; constants. This implies that three-input i11struclions 

arc possible. as long as two inputs come from tokens and one input co111cs from a co11stant. We 

cannot accept three tokens, because the w<iiting-matching unit only handles pairs. 1.ikcwisc, we 

cannot have two constants. because the instruction format accommodates only one. Despite the 

restrictions, we can ol1cn combine a For-in-address and an i-store instruction into a single, 

three-input form-address-i-store. Likewise, adjust-offset and change-tag can 

almost always be com bincd into a adjust - offset- ch a 11 o e -- tag instruction. 

8.2 Peephole Optimizations 

The features of the architecture discussed in the last section provide the opportunity l()r 

a variety or uscl'1d peephole optimizations. One of the simplest. I-Store l:lision. has already 

been alluded to: 

for-m
address 

i-store forrn-address
i-store 

To conform to the machine's constraints, this optimization can only be performed if two 

of the inputs arc tokens and Lhe third is a constant (this is not to say that the constant must be in 

position three, of course). Experience shows that the optimization is successful in a high 

percentage of the cases, due to the frequency of stores where the index is a constant, as when a 

tuple construct is translated, and stores whrre the structure is a loop constant. 



100 

In the rern:iining descriptions llf' ()ptimi.1ations, we ;1ssurnc that tile npti111i1atio11 is ()Illy 

pcrfimncd when tile li11;d n·s1tlt 111ccts the 111achi11c co11str:1i11ts vis 11 vis 1111111bcr ()!' tol-.cn i11p11ls 

and number ol'crn1sL1nt i11pt1ls. since these constraints arc <ilways present 

Often we can eli111i1wte identity instructions serving the role or gates by taking 

advantage of the foct that any synchronization can be performed for any instruction. The 

following transformation is called Trigger Propagation: 

In addition to the case shown in the figure, there arc analogous symmetrical and unary 

cases as well. A less obvious variation of this is called Trigger Back-Propagation 12: 

This, too, has an analogous unary case. Jn addition to the usual machine constraints, 

Trigger Back-Propagation has the additional constraint that the upper instruction must be side

effect free, since the arrival of the trigger could be contingent on that side-effect's execution. In 

12The Trigger Propagalion and Trigger Back-Propagation optimizations were suggested by David Culler. 



1()1 

that case. the tr;msfmmation rnuld result in deadlock. It should also he noted that if the tup 

i11slructio11 !Cd other inslructiuns besides the identity s!Hmn. these destinations 111ust still rccci\c 

their inp11t l'rnm the 11ntriggcred version of the top instruction. More on this later. 

One or the most import:111t peephole optirni1ations are the Trigger Elimination 

lransl(mnations. OllC of which is shown bcJOW. 

This most commonly arises due to expressions in the Id program like x + 1, which 

would be compiled ;111d optimized as follows: 

x-

constant 

Program 

Graph 

x-

~ 

-., 
Trigger 

constant 

Well-Connected 
Program Graph 

x 

~ 

Machine 
Graph 

x-

~ 
Optimized 

Machine 
Graph 

(Again we've introduced some new notation: a value enclosed in a diamond indicates a 

constant imbedded in a machine instruction.) The triggering shown in the figure is not quite 

what was described in Section 6.1. The discussion in that section was in fact simplified; 



102 

co11st.<111t. inslrucliuns which teed arithmetic. i ·st.ore, or i- fetcll i11slrnclirn1s a11d wl1icll 

have al least one 11011-co11st;111l input ;ire in 1:1ct triggered l'nilll one 01· the 11011 co11sl;111l i11p11ls to 

the latter instruction. This triggering strategy is used spl'cilically lo l'XPOSl'. Ilic tippurt1111ily 1(11 

!rigger l·:lillli11atio11. 

The last example or a peephole oplimi1.ation we cunsider illuslrales that compilation 

issues for dataflow machines arc ollcn quite different than !'or convenliunal arcl1itec1LJrcs: 

This is exactly the opposite of "reduction in strength" perll>rmed by conventional 

compilers. For them, the left-hand form is more desirable because+ is presumably f;1stcr than 

*. In a dalaflow machine, the right-hand f(m11 is probably more desirable because it ;·educes the 

llllmber of tokens passing through the wailing-matching unit by two and the total number of 

tokens by one. 

8.3 A General Peephole Optimization Algorithm 

Several attempts to produce specification driven peephole optimizers for conventional 

compilers have been made. Some rely on attribute grammars [Ganapathi 82], some on other 

specification techniques [Giegerich 82]. A very simple pattern-directed technique can be used 

for optimizing machine graphs in a dataflow compiler, one which can handle all of the peephole 

optimization mentioned in the previous section. As with most datallow optimizations, the 

effectiveness as compared to conventional compilers is greatly enhanced by the simplicity of the 

safety criteria. 

Our approach is to specify a peephole optimization by a pattern, which specifics a 

configuration of machine instructions suitable for optimization, and a replacement, which gives 



lOJ 

the more enicicn t l'lll 1 i valc11 t. I\ simple ru nclional notalion su fliccs !'or spcci l~·ing l he p<tl tern 

;md replacc111c11L. h>r C\<llllplc, Lile ·1 rigger Lliminalion opti111i1.atio11 described i11 the last 

section can be specified as 

/'{identiLylA.triggt.'H'tlhyU],/Jj -• 1-[A,IJ] 

Herc the rnpilal letters, which we will call "pattern variables", represent arbitrary 

opcodes or arcs, as appmpri~1tc. Uivcn a one or more such descriptions. the lt)llowing algorithm 

can be used to apply an opti111i1ation. 

A 

1) Find a collection of instructions that matches the pattern. 

2) Verify that the replacement would meet the machine Cl)nstraints regarding number 
of token/constant inputs. Ir not, give up, otherwise proceed to the next step. 

3) Instantiate the replacement, making use or the correspondences between paltern 
variables and their values as determined in Step 1. 

4) Move arcs emanating l'rom the output of the pattern to the output of the 
replacement. 

5) Eliminate dead code. If this step fails, restore the graph to its original stale, 
otherwise the optimirntion is complete. 

These steps arc illustrated for Trigger Elimination below. 

.After 
Step 1 

/) 

F 

.After 
Step J 

.After 
Step 4 

'\7 
x 
L~ 

r 
I 
L 

-, 
- _J 

After 
Step 5 

Step 5, dead code elimination, involves removing instructions that no longer have any 



104 

arcs en1;m;1ting from their outputs. the act or which can turn other instructions into dead mde. 

i\n instrnctiun wllich c;111scs sidc-clTccts is not dead code. however. even ii' iL-; outp11ts ;ire 

unconnected. We cannot eliminate such an instruction. but we cannot leave il unconnected 

either. for that would destroy our ability to detect the termination of the instruction's code 

block. Dead code elimination fails ir we reach such a situation. and we must surrender our 

intention to carry out the optirnitation. 

The following algorithm is used to systematically attempt all optimizations on an entire 

code block. 

1) Initialize a list of candidates to a list or all instructions in the code block. 

2) If the candidate list is empty, we arc finished. Otherwise, remove an instruction 
from the candidate list, call it x. 

3) Select an optimization frum the list of all optimi1ations. and try to apply it to x, 
where x is to be matched with the output of the optimization's pattern. The 
optimization may fail because x docs not match the pattern, because the 
replacement would violate machine constraints. or because dead code elimination 
failed. If the optimization succeeded, proceed to Step 4. otherwise try another 
optimization, going back to Step 2 when all optimizations have been tried. 

4) Add to the candidate list all instructions created when the replacement was 
instantiated, as well as all instruction's connected to the replacement's output. Go 
back to Step 2. 

Step 4 is needed because the application of an optimization can create new 

opportunities for optimization. We have not specified the order in which optimizations should 

be considered in Step 3, nor have we given a rule for selecting an instruction in Step 2. 

Unfortunately, varying these can affect the numbers of optimizations successfully performed. 

Currently under investigation arc ways of determining and/or specifying the most advantageous 

orderings. 



105 

9. (:onclusions 

A general pt1rposc prog1:u11111i11g bngu:1gc. Id Nut1ve:1u. was presented. in tile 1·urm o!' a 

syntactic sug:1r !'rec s1iliscl Id Kernel. We then gave scllctn:ila liir the lransblion ul' Id Kernel 

into program gr;qihs. an ahslracl sort o!' dalallow gr:1ph i11 which all conlrul :111d data !low arc 

encoded :is data dependencies. The program gr:1pll form is reminiscent 01· LivernH>rc's I Fl 

format [Sked1ielcwski 85bj. Tile prngra111 graph was also considered as an abstract intermediate 

program f(m11 that serves as a framework l()r program optimization. After examining the MIT 

Tagged-Token Dataflow Architecture. we then completed the compilation process by 

describing the tra11sh1tion rrom program graph to well-connected program graph, and !'mm 

there to machine graph. or object code. Finally, machine-dcpcmlcnt peephole opti111i1.ations on 

the machine graph were disrnsscd. 

The author has recently completed a compiler based on the coni:epts presented here. 

The compiler implements all of the program graph and machine graph schemata presented 

here, <rncl includes a pattern-directed peephole optimizer as described in Chapter 8. Results 

from the peephole optimizer arc quite encouraging: it reduced the static code size of' a 1000 line 

program by about 20%. Few or the program graph optimizatil)tlS have been put in place, the 

exception being constant folding. Implementation of other program graph optimi1.ations is 

expected within a year. 

There arc many directions tlJr future work in this area. Certainly the topic of compiler 

optimi1ations can be explored in greater depth, and algorithms and heuristics can be developed 

for the detection of opportunities for code motion. All optimization algorithms will benefit 

from a more thorough inquiry into intra- and inter-procedural analysis, particularly side-effect, 

strictness, and data type analysis. 

One very exciting avenue leads from the firing rule description of program graphs. In 

[Nikhil 86], an operational semantics is given for Id Nouveau in terms of rewrite rules. This 

semantics can be taken as a definition of the language. On the other hand, the firing rules given 

for program graph instructions together with the translation schemata form the beginnings of 

another kind of operational semantics. The machine code produced by the compiler can be 

readily verilicd against the latler semantics, since all that needs to be done is verify that the 



106 

collection or machine gr;1pli opnalurs implc111cnti11g a p;1rticular progralll graph in:;truclion 

satisry its !iring rule. (liven lhat, it is reaso11;1hle to pursue a prnor that the rewrite sei11:111tics 

and the tiring rule semantics arc co11sis1c11t. Ir s11ch a prour is llH11HL then we have tile lirsl 

known provably corrccl tbt;11low i111plc111cnt;1lion or an I-structure la11gu;1ge, and probably lhc 

first provably correct datalluw i111ple111cntaliD11 or any progr;1111111ing language. 

Finally, the non-sequential aspect or I-structure languages leads one to crn1sidcr huw 

one can compile efficient code ror conventional, sequential architectures lhm1 these languages. 

This not a contradiction: the non-sequential nature or I-structure languages docs not preclude 

sequential implementation. hut only demands that a sequential implementation simulate 

parallelism to some degree. To what degree a simulation is necessary, or in other words what is 

the maximum sequential thread size allowable, is a topic or research. This work would have 

significance not merely for sequential architectures, but also for any architecture that attempts 

to combine the parallelism or datallow machines while avoiding the extremely fine gr;1i11 or 
parallelism those machines support. 



107 

l{dcrcnccs 

[/\ckcnrnn X·I] \V. B. /\ckcrm;111. 

[Aho 8C>] 

[Allen 72] 

[Arsac 82] 

[An.ind 78] 

[Arvind 83] 

[Arvind 84] 

[Arvind 85] 

[Arvind 86a] 

!J/1c irn I I tnf J/m /I'll tu I ion cf A11p/ica five / ,anguages. 
Tccl111icil Rcpmt IR-:123. Massachusetts Institute ofTcclrnology I .aboratory 

f(n ( \rn1putcr Scil'ncc. Cambridge MA, April, 1984. 

A. Y. Aho, R. Sethi. and J. D. Ullman. 
Compilers: l'rincip/es. Techniques, and Tools. 
Addison-Wesley, Reading MA, 1986. 

F. E. Allen :incl J. Cocke. 
A Catalogue or Optimizing Transformations. 
In R. Rustin (editor). Design and Optimization ofCompilers. pages 1-30. 

Prentice-Hall, Englewood Cliffs NJ, 1972. 

J. Arsac and Y. Kodratoff. 
Some Techniques l()r Recursion Removal from Recursive Functions. 
ACJ\.I Transactions on l'rogramming Languages and Systems 4(2):295-322, 

April, 1982. 

Arvind, K. P. Gostelow, and W. Plouffe. 
An A.synchronous Programming f,anguage and Computing Machine. 
Technical Report 114, University of California, Irvine, Department of 

Information and Computer Science, Irvine CA, December. 1978. 

Arvind and R. A. Iannucci. 
Instruction Set Definitionfora Tagged-Token Data Flow Machine. 
Computation SLn1ctures Group Memo 212-3, Massachusetts Institute of 

Technology Laboratory for Computer Science, Cambridge MA, February, 
1983. 

Arvind and J. D. Brock. 
Resource Managers in Functional Programming. 
Journal of Parallel and Distributed Computing 1:5-21, 1984. 

Arvind and R. A. Iannucci. 
Two Fundamental Issues in Multiprocessing: The Dataflow Solution. 
Computation Structures Group Memo 226-3. Massachusetts Institute of 

Technology Laboratory for Computer Science, Cambridge MA, August, 
1985. 

Arvind, K. Pingali, and R. S. Nikhil. 
!-Structures: Data Structuresfor Parallel Machines. 
Computation Structures Group Memo, Massachusetts Institute of Technology 

Lahoralory for Computer Science, Cambridge MA, 1986. 
(In Preparation). 



108 

(Arvind 8(Jb] 

[Culler 85] 

[Ferranle 83] 

Arv ind and I). F. Ct1llcr. 
M:1nagi11g RcstHll\"L'S in a Pa1;1llcl tvLIL·l1i11c. 

In hjih (;rncnilio11 Cum1111/cr Archi1ccl11ll's /<!St>. p;1gl'S 10.l l.1 l. f 'lsnil:r 
Science f>11hlishc1s H.V .. 1986. 

D. 1~:. Culler. 
Rl!source 1HwwJ:;cmi'nlfor the '/l1ggcd Folirn /Ja1i1/lmv Archileclure. 
Technical Report TR-JJ2. Massachusetts l11stil11tc ol'Tcchnolugy I .abor;1tory 

for Computer Science, Camhridge MA. fonuary. 1985. 

J. Ferrante and K. J. Ottenstein. 
A Progrnm Form Based on Data Dependency in Predicate Regions. 
In Conference Record oftlze 9Lh ACM Svmposi111n on the l'rincip!es of 

Programming /,anguages, pages 217-236. Association nx Computing 
Machinery, January, 1983. 

[Ganapalhi 82] M. Ganapathi and C. N. Fischer. 
Description-Driven Code Generation Using Allrihule Grammars. 
In Conference Record of the 9th ACM ._\'ymposium on the l'rinctjJ/es of 

Programming f,anguages, pages 108-119. As~ociation frlr Computing 
Machinery, January, 1982. 

[Giegerich 82] R. Giegerich. 
Automatic Generation of Machine Specific Code Optimi1.ers. 
In Conference Record of the 9th ACM Syrnposium on the l'rincip!es of 

Programming Languages, pages 75-81. Association lor Computing 
Machinery, January, 1982. 

[Gurd 85] J. R. Gurd, C. C. Kirkham, and I. Watson. 

[Hiraki 84] 

[Johnsson 85] 

The Manchester Prototype Datallow Computer. 
Communications of the ACM 28(1):34-52, January, 1985. 

K. Hiraki, T. Shimada. and K. Nishida. 
A Hardware Design of the Sigma-1, A Data Flow Computer for Scientific 

Computations. 
In Proceedings of the 1984 International Conference on Parallel Processing, 

pages 524-531. IEEE Computer Society, August, 1984. 

T. Johnsson. 
Lao1bda Lifting. 
In Functional Programming languages and Computer Architecture (Lecture 

Notes in Computer Science; 201), pages 190-203. Springer-Verlag, Berlin, 
September, 1985. 



[Nikhil 86J 

[Pingali 86] 

R. S. Nikliil, K. Pingali. and Arvind. 
Id Nouvmu. 
Co111putatiu11 Structures Group Memo 265, Massachusetts Institute of 

Tccl111ulugy I ,ahoralmy l(Jr Computer Science. Cambridge MA. July, 
1986. 

K. Pingali. 
Private Communication. 
1986. 

109 

[Skcc.11.iclcwski 85a] 
S. K. Skcdziclcwski and M. L. Welcome. 
Data Flow Graph Optimization in IFl. 
In Functional Programming Languages and Computer Architectures (Lecture 

Notes in Computer Science: 201), pages 17-34. Springer-Verlag. Berlin, 
Sep Lem ber, 1985. 

[Skcd1.ielcwski 85b] 
S. K. Skech.ielcwski anJ J. R. W. Glaucrt. 
I Fl. wz lnlermediale Form for Applicative [,anguages. 
Re!Crence Manual M-170. Lawrence Livermore National Laboratory, 

Livermurc CA, .July, 1985. 

[Steele 78] G. I,. Steele. 
RA H!JIT: A Compiler for SCHEME. 
Technical Report Al-TR-474, Massachusetts Institute of Technology Artificial 

Intelligence Laboratory, Cambridge MA, May, 1978. 

[Wetherell 82] C. S. Wetherell. 
Error Data Values in the Data-Flow Language VAL. 
AClvl Transactions on Programming Languages and Systems 4(2):226-238, 

April, 1982. 



. . ' ,. . . 
· . ·10 :>luJiliml. ~~Jrl'.J!Z1lt>M .((){or~ 'VJ<rt\liif'~
.;dut ,/:\M-~abhdm~'.) .. ~~¥~ ~~-1~.ld ~~': .. 

;]\:\ill\\\.'):~ 
f&.i~1lhA 't$~f.lnd:.>3T1o ~J<i1Ilefti ~~w~. • 

. .8f~i .l(~M .i\M ~'~ · .• '£. IU!MM 

' ' 

~: 

-.,,?( ;: ;::_ .. 

• 


