
I
I

I

ll,
.. · .

....... ~.,...

·-·~,

. •, "~
" ~ '

Programming Simultaneous Actions Using
Common Knowledge*

Yoram Moses

Department of Applied Mathematics
Weizmann Institute

Rehovot, 76100
Israel

Mark R. Tuttle

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

USA

Abstract: This work applies the theory of knowledge in distributed systems to the
design of efficient fault-tolerant protocols. We define a large class of problems requiring
coordinated, simultaneous action in synchronous systems, and give a method of trans
forming specifications of such problems into protocols that are optimal in all runs: for
every possible input to the system and faulty processor behavior, these protocols are
guaranteed to perform the simultaneous actions as soon as any other protocol could
possibly perform them. This transformation is performed in two steps. In the first step,
we extract directly from the problem specification a high-level protocol programmed us
ing explicit tests for common knowledge. In the second step, we carefully analyze when
facts become common knowledge, thereby providing a method of efficiently implement
ing these protocols in many variants of the omissions failure model. In the generalized
omissions model, however, our analysis shows that testing for common knowledge is
NP-hard. Given the close correspondence between common knowledge and simultane
ous actions, we are able to show that no optimal protocol for any such problem can
be computationally efficient in this model. The analysis in this paper exposes many
subtle differences between the failure models, including the precise point at which this
gap in complexity occurs.

February 12, 1987

Keywords: common knowledge, simultaneous action, Byzantine agreement, distributed
firing squad, omissions failure model.

*A preliminary version of this work appeared in the Proceedings of the :nth Annual IEEE Symposium
on Foundations of Computer Science, Toronto, October, 1986.

1 Introduction

The problem of ensuring proper coordination between processors in distributed systems
whose components are unreliable is both important and difficult. There are generally
two aspects to such coordination: the actions the different processors perform, and the
relative timing of these actions. Both aspects are crucial, for instance, in maintaining
consistent views of a distributed database. In particular, it is often most desirable to
perform coordinated actions simultaneously at different sites of a system. It is therefore
of great interest to study the design of protocols involving simultaneous actions, actions
performed simultaneously by all processors whenever they are performed at all.

This paper presents a novel approach to the design of fault-tolerant protocols. We
begin by defining a general class of simultaneous choice problems, a class intended
to capture the essence of simultaneous coordination in synchronous systems. Many
well-known problems, such as simultaneous Byzantine agreement, distributed firing
squad, etc., can be formulated as such problems. We then study the design of efficient
protocols for such problems in a number of variants of the omissions failure model
(cf. [MSF]). Given any satisfiable specification of a simultaneous choice problem, we
derive a protocol for the problem with the unique property of being optimal in all runs:
For every possible input to the system and faulty processor behavior, this protocol is
guaranteed to perform the simultaneous actions as soon as they would be performed by
any other protocol for the problem. (We will use optimal as shorthand for optimal in all
runs.) In contrast, previous protocols for such problems do not adapt their behavior on
the basis of faulty processor behavior, and hence always perform as poorly as they do in
their worst case run. A general method of obtaining optimal protocols for simultaneous
problems in the simpler crash failure model is implicit in the work of Dwork and Moses
(cf. [DM]), which provided the original motivation for this work.

Our approach is based on the close relationship between knowledge, communica
tion, and action in distributed systems: A number of recent works (cf. [HM], [DM],
[Mo]) show that simultaneous actions are closely related to common knowledge. Infor
mally, a fact is common knowledge if it is true, everyone knows it, everyone knows that
everyone knows it, and so on ad infinitum. Notice that every processor performing
a simultaneous action knows the action is being performed. In addition, since such
actions are performed simultaneously by all processors, every processor knows that
all processors know the action is being performed. This argument can be formalized
and extended to show that when a simultaneous action is performed, it is common
knowledge that the action is being performed. Consequently, a necessary condition for
performing simultaneous actions is attaining common knowledge of particular facts.
Interestingly, our work shows that in a precise sense this is also a sufficient condition:
The problem of performing simultaneous actions reduces to the problem of attaining
common knowledge of particular facts.

1

In deriving optimal protocols for simultaneous choice problems, we make explicit
and direct use of the relationship between common knowledge and simultaneous actions.
The derivation proceeds in two stages. In the first stage, we program the optimal
protocols in a high-level language where processors' actions depend on explicit tests for
common knowledge of certain facts. These high-level protocols are extracted directly
from the problem specifications via a few simple manipulations. The second stage
deals with effectively implementing these tests for common knowledge. We give a
direct implementation of such tests in all variants of the omissions failure model we
consider. As a result, our high-level protocols have effective implementations in these
failure models as low-level, standard protocols that are optimal in all runs.

Consider, for example, the following version of the distributed firing squad problem
(cf. [BL], [CDDS], [R]): An external source may send "start" signals to some of the
processors in the system at unpredictable, possibly different, times. It is required that
(i) if any nonfaulty processor receives a "start" signal, then all nonfaulty processors
perform an irreversible "firing" action at some later point, (ii) whenever any nonfaulty
processor "fires," all nonfaulty processors do so simultaneously, and (iii) if no processor
receives a "start" signal, then no nonfaulty processor "fires." The high-level protocol
we derive for this problem in the omissions model requires all processors to act as
follows:

repeat every round
send current view to every processor

until it is common knowledge that
some processor received a "start" signal;

"fire" and halt.

Since we exhibit an effective implementation of the test for common knowledge em
bedded in this protocol, this high-level protocol can be transformed into a standard
protocol that is optimal in all runs. No previous protocol for this problem suggested in
the literature is optimal in all runs. Furthermore, in many cases this protocol "fires"
much earlier than any other known protocol for this problem: In some cases, this
protocol "fires" as soon as one round after the first "start" signal is received.

We show that optimal protocols for simultaneous choice problems can always be
implemented in a communication efficient way, in all variants of the omissions model
we consider. However, our direct implementation of tests for common knowledge is
not computationally efficient: It requires processors to perform exponential time com
putations between consecutive rounds of communication. One of the major technical
contributions of this paper is a method of efficiently implementing tests for common
knowledge in several variants of the omissions failure model. In the standard omissions
model, we provide a clean and concise method of efficiently implementing tests for com
mon knowledge. The analysis underlying this method reveals the basic combinatorial

2

structure underlying the omissions model, as well as crisply characterizing the set of
facts that can be common knowledge at any point in the execution of a protocol. In
the receiving omissions model, in which faulty processors may fail to receive messages
rather than to send messages, testing for common knowledge is shown to be trivial.
This exposes a significant difference between two seemingly symmetric failure models.

We are not able to efficiently implement tests for common knowledge in the gen
eralized omissions model, in which faulty processors may fail both to send and to
receive messages. In fact, we show that testing for common knowledge in this model
in NP-hard. As a result, using the close relationship between common knowledge and
simultaneous actions, we are able to show that no optimal protocol for any reasonable
simultaneous choice problem can be computationally efficient unless P=NP. In partic
ular, in this model there can be no computationally-efficient optimal protocol for the
distributed firing squad problem stated above, for simultaneously performing Byzan
tine agreement (cf. [PSL], [DM]), and for most any other simultaneous problem. We
consider another variant of the omissions model, called generalized omissions with in
formation, in which it is assumed that the intended receiver of an undelivered message
can test (and therefore knows) whether it or the sender is at fault. We show that the
techniques used in the standard omissions model extend to this model as well, yielding
computationally-efficient optimal protocols. As a result, we see that optimal protocols
for simultaneous choice problems are computationally intractable in the generalized
omissions model precisely because of the fact that in this model undelivered messages
do not uniquely determine the set of faulty processors.

Thus, we show how to derive efficient optimal protocols in the omissions model,
and we show that optimal protocols are intractable in the generalized omissions model.
Since it is unrealistic to expect conventional processors (limited to polynomial-time
computation) to follow such intractable protocols, it becomes becomes interesting to
ask how well resource-bounded processors can perform simultaneous actions in the
generalized omissions model. Analyzing this problem will require extending the theory
of knowledge in distributed systems to account for the restricted computational power
of such processors. Such an extension should give rise to notions of resource-bounded
knowledge and common knowledge that closely correspond to the ability of resource
bounded processors to perform simultaneous actions. The need for a theory of resource
bounded knowledge has already been demonstrated, primarily by problems in which
computational complexity is introduced by restricting the computational power of the
adversary, thus allowing solutions involving encryption. This work, however, provides
a more compelling indication of the need for such a theory, even for the analysis of
simple problems in distributed computation that do not make such assumptions about
the adversary.

Since the role of knowledge in the design and analysis of protocols can be understood
without delving into the details of this work, we suggest that a first reading of this

3

paper be based solely on the text and statements of results. The paper is organized
as follows: Section 2 defines the model of distributed systems used in the paper, and
Section 3 contains precise definitions of notions of knowledge in such a system. In
Section 4 we define the notion of a simultaneous choice problem, a large class of problems
involving coordinated simultaneous actions. Section 5 presents a uniform method of
deriving an optimal high-level protocol from the specification of a simultaneous choice
problem, using explicit tests for common knowledge. Section 6 deals with the problem
of efficiently implementing tests for common knowledge of facts relevant to simultaneous
choice problems. The analysis in Section 6 reveals interesting properties of the different
failure models, and exposes fine distinctions between them. Finally, Section 7 contains
some concluding remarks.

2 Model of a System

This section introduces a model of the distributed systems with which this paper is
concerned. Our treatment extends and is closely related to that of [DM].

We consider synchronous systems of unreliable processors. Such a system consists
of a finite collection P = {pi, ... ,pn} of n processors (n ~ 2), each pair of which is
connected by a two-way communication link. Processors share a discrete global clock1

that starts at time 0 and advances in increments of one. Communication in the system
proceeds in a sequence of rounds, with round k taking place between time k - 1 and
time k. Between rounds of communication a processor may perform local computation
and other internal actions. A processor starts in some initial state at time 0. Then, in
every following round, the processor first sends a set of messages to other processors,
and then receives messages sent to it by other processors during the same round. In
addition, a processor may also receive requests for service from clients external to
the system (think, for example, of a distributed airline reservation system). Actions
resulting from the servicing of such requests may take a variety of forms, including the
initiation of various activities within the system by sending certain messages to other
processors in later rounds. Each message is assumed to be tagged with the identities of
the sender and intended receiver of the message, as well as the round in which it is sent;
similarly for each request. At any given time, a processor's message history consists of
the list of messages it has received from the other processors, and a processor's input
history consists of its initial state together with the requests it has received from the
system's external clients. A processor's view at any given time consists of its message
history, its input history, the time on the global clock, and the processor's identity. For

1 We assume the existence of a shared global clock for ease of exposition. The analysis performed in
this paper applies even in synchronous systems in which processors have local clocks and start operating
in an arbitrarily staggered order.

4

technical reasons, it will be convenient to talk about processors' views at negative times
(before time 0). A processor's view at a negative time is defined to be a distinguished
empty view.

We think of the processors as following a protocol, which specifies exactly what
messages each processor is required to send during a round (and what other actions
the processor is required to take) as a deterministic function of the processor's view.
Notice that processors must compute this function by following some algorithm. Thus,
while we formally define a protocol to be a function, it is convenient to maintain both
views of a protocol as a function and an algorithm. While a protocol determines the
behavior of each processor (as a function of its view), processors are unreliable and
some of them may be faulty, the rest being non/ aulty. Both faulty and nonfaulty
processors faithfully follow the protocol, their behaviors differing only in the messages
they successfully send and receive. 2 A nonfaulty processor sends every message it
is required by the protocol to send, and receives every message sent to it by other
processors, in all rounds of communication. A faulty processor, however, may fail to
send or receive certain messages; a processor is said to fail during a given round if
it fails to send or receive a message during that round. We will consider a number of
different processor failure models: (i) the omissions model (cf. [MSF]), in which a faulty
processor receives every message sent to it, but sends only an arbitrary (not necessarily
strict) subset of the messages it is required to send; (ii) the receiving omissions model,
in which a faulty processor sends every message it is required to send, but receives only
an arbitrary subset of the messages sent to it; (iii) the generalized omissions model,
in which a faulty processor may both send only an arbitrary subset of the messages
it is required to send and receive only an arbitrary subset of the messages sent to
it; and (iv) generalized omissions with information, which differs from the generalized
omissions model in that a processor not receiving a message from another processor
can determine whether it or the sender is at fault.

An infinite execution of a protocol in a system is called a run of the protocol. We
identify a run with the complete history of events that take place during the run, from
time 0 until the end of time. This includes each processor's complete input history,
complete message history, and, if the processor is faulty in the run, a description of
its behavior during each round (formalized in the following paragraph). A pair (p, l),
where p is a run and l is a natural number, is called a point, and represents the state
of the system after the first l rounds of p. We denote processor q's view at the point
(p,l) by v(q,p,l).

We now define the notion of a failure pattern, a formal description of faulty pro
cessor behavior during a run. The notion of a failure pattern in each variant of the

2 Intuitively, processors attempt to send and receive all required messages. Failures are caused by
faulty input/output ports. However, we will often speak of processors failing to send or receive a given
message when we mean that the message was not successfully sent or received, respectively.

5

omissions model is a suitable restriction of this general definition. Remember that a
faulty processor may fail to send or receive certain messages. It is therefore natural to
define the faulty behavior of a processor p to be a pair of functions S and R mapping
round numbers to sets of processors. Intuitively, these are the processors to which p

fails to send and receive messages, respectively, during each round. The processor p is
said to display this faulty behavior during a given run if in every round k processor p
sends no messages to processors in S(k) but sends all required messages to processors
not in S(k), and receives no messages from processors in R(k) but receives all messages
sent to it by processors not in R(k). The failure pattern of a run is a set of pairs
(pi, (Si,~)) consisting of a processor and a faulty behavior, such that the processors
appearing in the failure pattern are exactly those that are faulty in the run, and each
displays the corresponding faulty behavior. Given a run p, if "Yi is the complete input
history of processor Pi in p, then we say that "Y = ("Y1 , ••• , "Yn) is the (external) input
top. A pair (7r,"f), where 7r is a failure pattern and "Y is an input, is called an operating
environment. Notice that a run is uniquely determined by a protocol and an operating
environment. Two runs of two different protocols are said to be corresponding runs if
they have the same operating environment. The fact that an operating environment is
independent of the protocol will allow us to compare different protocols according to
their behavior in corresponding runs.

In this work, we study the behavior of protocols in the presence of a bounded
number of failures (of a particular type) and a given setting of possible inputs. It
is therefore natural to identify a system with the set of all possible runs of a given
protocol under such circumstances. Formally, a system is identified with the set of
runs of a protocol P by n 2'.: 2 processors, at most t ~ n - 2 of which may be faulty
(in the sense of a particular failure model .M), where the complete input history of
each processor Pi is an element of a set ri. We denote this set of runs by the tuple
E = (n,t,P,.M,r 17 ••• ,fn)· Our definition of a system ensures that the input to the
system is orthogonal to, and hence carries no information about, the failure pattern. In
addition, since the set of possible inputs in the system has the form r 1 x ... x r n, one
processor's input contains no information about any other processor's input, and hence
the only way in which processors obtain information about other processor's input is
via messages communicated between the processors in the system.

While a protocol may be thought of as a function of processors' views, protocols
for distributed systems (as well as protocols for sequential and parallel computation)
are typically written for systems of arbitrarily large size. In this sense, the actions
and messages required of a processor by a protocol actually depend on the number
of processors in the system (and perhaps the bound on the number of failures) as
well as the view of the processor. Therefore, we formally define a protocol to be a
function from n, t, and a processor's view to a list of actions the processor is required
to perform, followed by a list of messages the processor is required to send in the

6

following round. Since each protocol is defined for systems of arbitrary size, it is natural
to define a class of systems to be a collection of systems {E(n, t) : n ;::: t + 2 ;::: O}, where
E(n, t) = (n, t, P, .M, r 1 , ... , r n) for some fixed protocol P, failure model .M, and input
sets ri.

3 Definition of Knowledge

Our analysis makes essential use of reasoning about processors' knowledge at various
points in the execution of a protocol. This section contains precise definitions of the
notions of knowledge we use. For the purpose of these definitions, we assume that a
particular system, a set of runs as defined in the previous section, is fixed ahead of
time. All runs mentioned will be runs of this system, and all points will be points in
such runs. Our treatment is a modification of that of [DM] and [HM].

We assume the existence of an underlying logical language for representing all rel
evant ground facts - facts about the system that do not explicitly mention proces
sors' knowledge (for example, "the value of register x is O", or "processor Pi failed in
round 3"). Formally, a ground fact cp will be identified with a set of points r (cp). A
ground fact cp is said to hold at a point (p,l), denoted (p,l) f= cp, iff (p,l) E r(cp).
We will define various ground facts as we go along. The set of points corresponding to
these facts will be clear from context. A fact is said to be valid if it is true of all points
in all systems. A fact is said to be valid in the system for a given system if it is true of
all points in the system.

We now define what facts a processor is said to "know" at any given point (p, l) in
the system. Roughly speaking, a processor Pi is said to know a fact cp if cp is guaranteed
to hold, given Pi 's view of the run. More formally, we say Pi knows cp at (p, k), denoted
(p, k) f= Kicp, if (p', k) f= cp for all points (p', k) satisfying v (Pi, p, k) = v (Pi, p', k).
This definition of knowledge is essentially the total view interpretation of [HM]. It is
"external," in the sense that a processor is ascribed knowledge based solely on the
processor's information, and not, say, on the local computation it performs or on its
computational power. Notice that a processor's knowledge at a given point depends on
the system as well as on the specific run. Thus, implicit in the definition of (p, l) f= cp
is the system relative to which knowledge is determined. Throughout the paper it will
be clear from context what the relevant system should be whenever "f=" is used.

We will find it useful to extend this definition of knowledge to sets of processors as
well. The view of a set of processors G ~Pat (p, k), denoted v(G, p, k), is defined by:

v(G,p,k) def {v(p,p,k) : p E G}.

Thus, roughly speaking, G's view is simply the joint view of its members. We say
that the group G implicitly knows cp at (p, k), denoted (p, k) f= Iacp, if for all points

7

(p',k) satisfying v(G,p,k) = v(G,p',k) it is the case that (p',k) != <p. In the particular
case that G is the singleton set {Pi}, the notions of Ia and Ki coincide. Intuitively, G
implicitly knows <p if the joint view of G's members guarantees that <p holds. Notice
that if processor p knows <p and processor q knows <p ~ t/J, then together they implicitly
know t/J, even if neither of them knows t/J individually. The notion of implicit knowledge
was first defined in [HM].

The notions of knowledge and implicit knowledge defined above are closely related
to modal logics that have been extensively studied by philosophers (cf. [Hi]). We say
that an operator M has the properties of the modal system 85 if it satisfies a) if <p is
valid in the system then M <p is valid in the system; and the following formulas are valid:
b) M<p ~ <p; c) (M<p /\ M(<p ~ t/J)) ~Mt/;; d) M<p ~ MM<p; and e) -.M<p ~ M·M<p.
The definitions of knowledge and implicit knowledge given above immediately imply
the following (cf. [HM2], [DM]):

Proposition 1: The operators Ki and Ia each has the properties of S5.

Finally, the state of common knowledge among a group of processors will be central
to our analysis. It's central role will result from the close correspondence between
common knowledge among the members of a group and simultaneous actions performed
by the group. Roughly speaking, as we mentioned in the introduction, a fact <p is
common knowledge to a given group if <p holds, everyone in the group knows <p, everyone
knows that everyone knows <p, and so on ad infinitum. Formally defining common
knowledge, however, must be done with great care. The problem is that the groups
of interest are not always explicitly given as fixed subsets of P. For example, we will
be most interested in facts that are common knowledge to the group)./ of nonfaulty
processors. In any given context (in this case, any given run), this group is a fixed
set of processors. But the precise identity of)./ varies from one context to another.
This motivates us to define common knowledge to a slightly more general notion of
groups of processors: An indexical set S of processors is a function mapping points
to sets of processors. That is, S : (p, l) 1-+ S (p, l), where S (p, l) ~ P. The notion of
an indexical set is a direct generalization of the notion of a fixed set of processors.
In particular, we can identify a fixed set of processors with a constant indexical set.
The group)./ of nonfaulty processors, the group P of all processors, the group of all
processors that haven't displayed faulty behavior by the current time, and many other
groups of interest are all indexical sets of processors.

The first step in defining common knowledge to a given group of processors is to
determine what it means for everyone in the group to know a fact. For a fixed set G,
"everyone in G knows <p," denoted E 0 <p, is customarily defined by Ea<p = /\ Ki<p

p;EG

(cf. [HM]). In extending this notion to indexical sets, however, a subtle decision must

8

be made. The immediate generalization of this definition is to define Escp - /\ Kicp.
p;ES

This generalization, however, does not yield a notion of common knowledge that closely
corresponds to S's ability to perform simultaneous actions (see Lemma 4 below). Given
that G is a fixed set, and that the knowledge operator Ki satisfies property (a) of SS
given above, it follows that Pi E G - Ki (Pi E G) is valid. Therefore, an equivalent
definition of Eacp is Eacp - /\ Ki (Pi E G :J cp). We choose this form of "everyone

p;EG

knows" as the appropriate generalization to indexical sets. Formally, given an indexical
set S, we define Escp, essentially corresponding to everyone in S knows cp, by:

Es cp def f\ Ki (Pi E S :J cp).
p;ES

Roughly speaking, E 5 cp holds exactly if every member of S knows that, if it is a member
of S, then cp holds.

We now define cp is common knowledge to S, denoted C 5 cp, by:

C 5 cp def cp /\ E 5 cp /\ EsEscp /\ · · · /\ E;"cp /\ · · · ·

In other words, (p, l) f= C s'P iff both (p, l) f= cp and for all m ~ 1 it is the case
that (p, l) f= E;"cp. Thus, roughly speaking, a fact is common knowledge if it is true,
everyone knows it, everyone knows that everyone knows it, etc. The definitions of Es
and Cs directly generalize the standard notions from [HM] and [DM].

A useful tool for thinking about E;"cp and Cscp is an undirected graph whose nodes
are the points of the system, in which two points (p, k) and (p', k) are connected by an
edge iff some processor p that is a member of both S (p, k) and S (p', k) has the same
view at both (p, k) and (p', k). This graph is called the similarity graph relative to S.
For example, if S is the set)./ of nonfaulty processors, two points are connected by an
edge in the similarity graph iff there is a processor that is nonfaulty at both points,
and has the same view at both points. An easy argument by induction on m shows
that (p, k) f= E;"cp iff (p', k) f= cp for all points (p', k) of distance at most m from
(p, k) in this graph. It follows that (p, k) f= C .w'P iff (p', k) f= cp for all points (p', k) in
the connected component of (p, k). Two points (p, l) and (p', l) are said to be similar
relative to S, denoted (p, l) ,!,, (p', l), if they are in the same connected component of
the similarity graph. Since the indexical set S is generally clear from context (most
often being the set)./ of nonfaulty processors), we denote similarity by "' without the
superscript S. We thus have:

Theorem 2: (p, k) f= Cs cp iff (p', k) f= cp for all points (p', k) satisfying (p, k) "' (p', k).

Our analysis will exploit this relationship between common knowledge and the similar
ity graph. The similarity graph will provide us with a useful combinatorial tool with
which to study when facts become common knowledge.

9

One of the useful properties of common knowledge is the so-called "fixpoint axiom"
(cf. [HM])

Cs<p - EsCs<p,

which states that common knowledge is a fixpoint of the Es operator (provided S is
nonempty, as will invariably be the case in this work). It implies that a fact's being
common knowledge is in a sense "public:" a fact can be common knowledge to a group
of processors only if all members of the group know that it is common knowledge. This
axiom also implies that when a fact becomes common knowledge, it becomes common
knowledge to all relevant processors simultaneously. Another useful fact about common
knowledge is captured by the following induction rule:

If cp ::J Esrp

then <p ::J C 5 rp
is valid in the system,
is valid in the system.

Roughly speaking, the induction rule implies that if a fact is "public" to a group
of processors, in the sense that whenever it holds it is known to all members of the
group, then whenever it holds it is in fact common knowledge. These are two essential
properties of common knowledge that will prove useful to our analysis. In addition, we
can also show the following:

Proposition 3: The operator C 5 has the properties of S5.

According to our definitions, facts about the system are properties of points: they
are either true or false at any given point. It is often useful to be able to refer to facts
as being about things other than points (e.g., properties of runs). In general, a fact <p

is said to be a fact about X if fixing X determines the truth (or falsity) of <p. For
example, a fact <p is said to be a fact about the input if fixing the input determines
whether or not rp holds. That is, for any given input -y, either rp holds at all points
(p, k) where pis a run with input -y, or <p holds at no such point. The meaning of a fact
being about the operating environment, about the existence of failures, about the first k
rounds, etc., are similarly defined.

4 Simultaneous Choice Problems

In order to study in a uniform and general way the design of protocols for problems
involving coordinated simultaneous action, a definition of this class of problems is
required. Lacking a most general definition, we focus on the class of simultaneous
choice problems, a large class of problems that capture the essence of such coordinated
action in a distributed environment. Roughly speaking, these problems require that

10

one of a number of alternative actions be performed (or "chosen") simultaneously by
the nonfaulty processors, where for each action we are given conditions under which
the action must be performed and conditions under which its performance is forbidden.
In addition, the specification of such a problem also determines the possible operating
environments, by specifying what inputs each processor may possibly receive and what
types of processor failures are possible.

Formally, a simultaneous action a is an action having two associated conditions
pro(a) and con(a), both facts about the operating environment. A simultaneous choice
problem C is a problem determined by a set { a 1 , ••• , am} of simultaneous actions and
their associated conditions, together with a failure model .M, and a set r; of complete
input histories for each processor P;· Intuitively, we will require that every run p of a
protocol implementing C satisfies the following conditions:

(i) each nonfaulty processor performs at most one of the a/s,

(ii) any a, performed by some nonfaulty3 processor is performed simultaneously by
all of them,

(iii) a, is performed by all nonfaulty processors if p satisfies pro(a,), and

(iv) at is not performed by any nonfaulty processor if p satisfies con(a,).

More formally, a protocol P and the simultaneous choice C determine a class of systems
{E(n, t) : n ~ t + 2}, where E(n, t) = (n, t, P, .M, ri, ... , r n)· We say that P imple
ments C if every run of every system in the class determined by P and C satisfies the
conditions (i)-(iv) above. A simultaneous choice problem is said to be implementable
(or satisfiable) if there is a protocol that implements it.

In addition to simultaneous choice problems, we also consider the closely related
class of strict simultaneous choice problems. Both classes are specified in essentially
the same way, except that runs of a protocol implementing a strict simultaneous choice
are required to satisfy the modified condition

(i') each nonfaulty processor performs exactly one of the a, 's,

together with conditions (ii)-(iv) above. All of the results in this paper hold for strict
simultaneous choice problems as well as simultaneous choice problems, and henceforth
we will typically mention only simultaneous choice problems explicitly.

3 We have chosen the set JI of nonfaulty processors as the set of processors required to perform actions
simultaneously, but the notion of a simultaneous choice problem may be stated in terms of many other
similar (indexical) sets of processors, including the set P of all processors, with the analysis in this
section and the next one carrying through without change.

11

Having formally defined simultaneous choice problems (and strict simultaneous
choice problems), let us consider when the specification of such a problem disallows
performing a simultaneous action ai. Clearly, if con(ai) holds then performing ai is dis
allowed. In addition, since by condition (i) no more than one action may be performed
by the nonfaulty processors in any given run, the condition pro(a;), for some j #- i,
requires a; to be performed, and hence also disallows ai. It is easy to see that these
are the only conditions under which performing ai is disallowed. This motivates the
following definition:

enabled(ai) def •con(ai) /\ /\ •pro(a;).
jf.i

Our discussion above implies that the performance of an action ai is allowed by the
problem specification iff the condition enabled(ai) is satisfied. Notice that it is possible
for several of the conditions enabled(ai) to hold at once, in which case performance
of any of the enabled actions is allowed by the problem specification. In addition, it
is easy to see that the formulas con(ai) ~ •enabled(ai) and pro(ai) ~ •enabled(a;)
(j #- i) are valid in any system in which processors follow a protocol implementing a
simultaneous choice. Finally, notice that because the conditions pro(a;) and con(a;)
are facts about the operating environment, so is each condition enabled(ai).

The definition of a simultaneous choice problem is fairly abstract. Many familiar
problems requiring simultaneous action by a group of processors are instances of a
simultaneous choice or strict simultaneous choice. In all known cases, the conditions
pro(ai) and con(ai) are facts about the input and the existence of failures. (By the exis
tence of failures we mean whether any failure whatsoever occurs during the run. Some
problems allow the nonfaulty processors to display default behavior in the presence of
failures; cf. [LF].) For example, the distributed firing squad problem is a simultane
ous choice consisting of a single "firing" action a, with the condition pro(a) being the
receipt of a "start" signal by a nonfaulty processor, and the condition con(a) being
that no processor receives a "start" signal. The condition enabled(a) is simply that
some processor receives a "start" signal. Each set r i of possible inputs simply allows
for a "start" message to be delivered to any processor at any time. The simultaneous
Byzantine agreement problem (cf. [DM], [PSL]) is an example of a strict simultaneous
choice. This problem consists of an action a0 of "deciding O" and an action ai of "de
ciding 1." Each set f; of possible inputs consists of two possible inputs: one starting
with initial value 0 and receiving no further external input during the run, and the
other starting with initial value 1. The condition pro(a0) is that all initial values are 0,
and the condition pro(ai) is that all initial values are 1. The conditions con(ao) and
con(a 1) are both taken to be false. Here the condition enabled(ao) is that some initial
value is 0, and the condition enabled(ai) is that some initial value is 1. Since for most
assignments of initial values both enabled(a0) and enabled(ai) hold, it is typically the
case that deciding either 0 or 1 is acceptable. Simultaneous Byzantine agreement is

12

a strict simultaneous choice, since the processors are required to decide either 0 or 1
in every run. Other related problems that may also be formulated as (strict) simulta
neous choice problems include weak Byzantine agreement and the Byzantine Generals
problem (cf. [F]).

Having formally defined the notion of a simultaneous action, we are now in a position
to carefully state the relationship between simultaneous actions and common knowledge
mentioned in the introduction: When a simultaneous action is performed, it is common
knowledge that the action is being performed. The statement we actually prove is that
when such an action is performed, it is common knowledge that the action is enabled.

Lemma 4: Let p be a run of a protocol implementing a simultaneous choice C. If
the action a; of C is performed by a nonfaulty processor at time l in p, then (p, l) f=
C JI enabled(ai).

Proof: Let cp be the fact "ai is being performed by a nonfaulty processor." A
processor P; performing the action a; clearly knows that it is performing ai. This
processor therefore also knows that if it is nonfaulty then a; is being performed by a
nonfaulty processor. Since p is a run of a protocol implementing C, the action ai is
performed simultaneously by all nonfaulty processors whenever it is performed by a
single nonfaulty processor. It follows that whenever cp holds, so does EJlcp, and hence
cp ~ EJlcp is valid in the system. The induction rule implies that cp ~ C Jlcp is valid in
the system as well. Notice that cp ~ enabled(a;) is valid in the system. It thus follows
that CJlcp ~ CJlenabled(ai) is valid in the system, and hence so is cp :J CJlenabled(a;).
Thus, (p, l) f= cp implies (p, l) f= C JI enabled(ai), and we are done. D

In the above proof, the essential fact that cp ~ EJlcp is valid in the system depends
crucially on our definition of EJlcp. A processor p performing ai knows that a; is being
performed, but since a nonfaulty processor might not know that it is nonfaulty, p

might not know that ai is being performed by a nonfaulty processor. The processor p

does know, however, that if it (p itself) is nonfaulty, then a nonfaulty processor is
performing a;. It is for this reason that we have been led to choose our definition
of EJlcp as we have, as discussed in the previous section.

5 Optimal Protocols

In this section, we show how to extract a high-level optimal protocol for a simultaneous
choice problem directly from its specification. We begin by considering a simple class
of protocols that will serve as a building block in the design of such optimal protocols.
Recall that a protocol is a function specifying the actions a processor should perform

13

and the messages it should send as a function of n, t, and the processor's view. Thus,
we can think of a protocol as having two components: an action component and a
message component. A protocol is said to be a full-information protocol (cf. [Ha], [FL],
[PSL]) if its message component is:

repeat every round
send current view to all processors

forever.

Intuitively, since such a protocol requires that all processors send all of the information
available to them in every round, one would expect this protocol to give each processor
as much information about the operating environment as any protocol could. In par
ticular, the following result shows that if a processor cannot distinguish two operating
environments during runs of a full-information protocol, then the processor can not
distinguish these operating environments during runs of any other protocol.

Lemma 5: Let p and p' be runs of a full-information protocol J', and let ~ and ~,

be runs of an arbitrary protocol P corresponding to p and p', respectively. For all
processors q and times l, if v(q,p,l) = v(q,p',l) then v(q,~,l) = v(q,~',l).

Proof: We proceed by induction on the time l. The case of l = 0 is immediate
since q must have the same initial state in both p and p1

, and hence also in ~ and ~'.
Suppose l > 0 and the inductive hypothesis holds for all processors p at time l - 1.
The view of q at time l is determined by its view at time l - 1, the (external) input it
receives during round l, and the messages it receives during round l. Since q has the
same view at time l - 1 in p and p1

, by the inductive hypothesis, the same is true in ~
and ~'. Since q receives the same input during round l in p and p', the same is true
in !: and !:' · If q does not receive a message from p during round l in p and p', then
both operating environments determine that no message from p to q during round l is
delivered. Thus, q does not receive a message from p during round l in either !: or !:' ·
If q does receive a message from p during round l in p and p', then both operating
environments determine that any message from p to q during round l is delivered. If
q receives a message from p during round l of p and p', then since q must receive the
same message from p in both p and p', the view of p must be the same at time l - 1
in p and p'. By the inductive hypothesis, p's view at time l - 1 must also be the same
in !: and !:'. Since P is a deterministic function of a processor's view, q receives the
same messages from p during round l in !: and !:' · Thus, q has the same view at time l
in!: and!:'· D

Thus, roughly speaking, processors learn the most about the operating environment
during runs of full-information protocols. The following corollary of Lemma 5 shows

14

that facts about the operating environment become common knowledge during runs of
such protocols at least as soon as they do during runs of any other protocol. This result
captures in a precise sense a property of full-information protocols that is essential to
our analysis.

Corollary 6: Let cp be a fact about the operating environment. Let p and ~ be
corresponding runs of a full-information protocol]' and an arbitrary protocol P, re
spectively. If(~,£) f= CJlcp then (p,l) f= CJlcp.

Proof: Suppose that (~. l) f= C Jlcp, and suppose that (p, l), (p', l) for some run p'
of J'. Let ~' be the run of P corresponding to p'. Lemma 5 and a simple inductive
argument on the distance between (p, l) and (p', l) in the similarity graph show that
(p,l), (p',l) implies(~,£), (~',£). Since(~,£) f= CJlcp, we have(~',£) f= cp. Since
corresponding runs satisfy the same facts about the operating environment, (~', i) f= cp
implies (p', i) f= cp. It follows that (p, i) f= C J1'P· D

We are now in a position to describe how to construct optimal protocols for si
multaneous choice problems. Recall that when a simultaneous action ai is performed,
Lemma 4 implies that enabled(ai) must be common knowledge. Since enabled(ai) is
a fact about the operating environment, Corollary 6 implies that enabled(ai) becomes
common knowledge in runs of a full-information protocol as soon at it does in corre
sponding runs of any other protocol. Thus, given an effective test that the nonfaulty
processors can use to determine whether enabled(ai) is common knowledge, a test we
denote by test-for-CJlenabled(ai), the following protocol J'c is an optimal protocol for C:

no_action_performed +-- true;
repeat every round

if no_action_performed and test-for-C JI enabled(ai) returns true for some ai
then

j +-- min{i : test-for-CJlenabled(ai) returns true},
perform a;,
no_action_perf or med +-- false;

send current view to every processor;
forever.

Before formally proving that J'c is an optimal protocol, we must define the tests for
common knowledge that appear in J'c more formally. Recall that the fixpoint axiom
implies C J1'P ~ E JI C J1'P is valid. This guarantees that C J1'P follows from the view of
each nonfaulty processor whenever CJlcp holds. Notice, that CJlcp is not guaranteed to
follow from the view of a faulty processor. It is therefore natural to define a test for
common knowledge of cp, denoted as above by test-for-C J1'P, to be a test that, given

15

the view of a nonfaulty processor at (p,l) (together with n and t), returns true iff
C >1'P holds at (p, l). Such a test may return either true or false when given the view
of a faulty processor. Let us denote by .A;(p,l) the set of actions D.i such that test
for-C>lenabled(a;) returns true when given the view of p; at (p,l). Notice that if P; is
nonfaulty, then .A;(p,l) is precisely the set of action D.i such that C>lenabled(ai) holds
at (p, l). It follows that for all nonfaulty processors p; the sets .A; are equal at all
times. In particular, all become nonempty at the same time (as soon as enabled(ai)
becomes common knowledge for some ai)· Thus, if all processors P; choose the action
of least index from .A; as soon as this set becomes nonempty, as required by 1,, then all
nonfaulty processors choose the same action simultaneously. We can now prove that 1,
is an optimal protocol for C.

Theorem 7: If C is an implementable simultaneous choice problem, then 1, is an
optimal protocol for C.

Proof: We first prove that nonfaulty processors perform actions in runs of 1, as soon
as they do in corresponding runs of any protocol implementing C. Let p be a run of le,
and let ~ be the corresponding run of a protocol implementing C. Lemma 4 implies that
if D.i is performed by a nonfaulty processor at time l in ~, then (~, l) f= C >1 enabled(D.i).
Since enabled(D.i) is a fact about the operating environment, Corollary 6 implies that
(p,l) f= C>1enabled(ai)· As a result, .A;(p,l) must be nonempty for all nonfaulty proces
sors p;, and hence each must perform an action in p no later that time l. It follows that
nonfaulty processors perform actions in runs of 1, as soon as they do in corresponding
runs of any protocol implementing C. We now show that 1, actually implements C.
Let p be a run of 1,. First, it is obvious from the definition of le that each non
faulty processor performs at most one action in p. (If C is an implementable strict
simultaneous choice, then the preceding discussion shows that the nonfaulty processors
perform exactly one action in p.) Second, if a nonfaulty processor p; performs an ac
tion ai at time l during p, then time l is the first time at which .A;(p, k) is nonempty,
and ai is the action of least index in this set. Since .A;(p, k) = Am(P, k) for all non
faulty processors Pm, the same is true for all nonfaulty processors. As a result, all
nonfaulty processors must choose to perform D.i simultaneously at time l. Third, if
p satisfies pro(ai), then the run ~ of any protocol implementing C corresponding to p
must satisfy pro(D.i), and hence D.i must be performed in~· As we have already seen, an
action must also be performed in p. Since pro(D.i) ~ •enabled(a;) for all j f- i, the set
.A;(p, k) of a nonfaulty processor P; must contain no action other than D.i (if it contains
any action at all). Thus, a; must be the action performed in p. Finally, if p satisfies
con(ai), then p does not satisfy enabled(D.i), and no set .A;(P, l) of a nonfaulty proces
sor P; contains ai. Thus, ai is not performed in p. It follows that 1, implements C.

D

16

•

P2 P2

P1 • Pl • •

0 1 2 3 0 1 2 3

a. g(p, 3) b. 91 (p, 3)

Figure 1: Communication graphs.

As a result of Theorem 7, we see that full-information protocols can be used as the
basis of optimal protocols for simultaneous choice problems. Thus, we will restrict our
attention to full-information protocols in the remainder of this paper: unless otherwise
specified, all protocols mentioned will be full-information protocols, and all runs will
be runs of such protocols. More importantly, however, a consequence of Theorem 7
is that designing an optimal protocol for a simultaneous choice problem C essentially
reduces to testing for common knowledge of certain facts: In order to design an optimal
protocol for C, it is enough to construct the tests for common knowledge of the facts
enabled(ai). We note that the fundamental property of common knowledge underlying
the existence of such tests is the fact that C>1cp :J E>1cp is valid; that is, when cp becomes
common knowledge, the fact that cp is common knowledge will follow from the view of
every nonfaulty processor. The problem of implementing such tests is the subject of
the following section.

Before ending this section, however, we consider the size of messages required by
a full-information protocol :f. Such a protocol requires processors to send their entire
view during every round. Since, strictly speaking, a processor's view may be exponen
tial in size, this protocol seems to require processors to send messages of exponential
length. We now show, however, that there is a simple, compact representation of a
processor's view that may be sent instead. Consequently, it will be possible to im
plement all full-information protocols (and in particular the optimal protocol :f,) in a
communication-efficient way in all variants of the omissions model.

Given a run p of :f, the communication graph of p (see Figure 1; cf. [Me]) represents
the messages delivered in p. It is a layered graph (with one layer corresponding to
every natural number, representing time on the global clock) in which each processor
is represented by one node in every layer. We denote the node representing processor p

17

at time l by (p, l). Edges connect nodes in adjacent layers, with an edge between
(p, k - 1) and (q, k) iff a message from p is delivered to q during round k. The labeled
communication graph is obtained by labeling the layer 0 nodes of the communication
graph with processors' names and initial states, and by labeling the layer k nodes (for
k > 0) with requests the processors receive from external clients during round k. For
every point (p, l), we denote by 9 (p, l) the first l+ 1 layers of the labeled communication
graph of p, representing the first l rounds of p. For example, illustrated in Figure l(a)
is a graph 9 (p, 3) depicting the first 3 rounds of a run p. We say that 9 (p, l) has
length l. We note in passing that in runs of the full-information protocol :1, the labeled
communication graph uniquely determines the operating environment.

Informally, at every point (p, l) of a run of :1, a processor Pi 's view corresponds to
a certain subgraph 9i(p,l) of 9(p,l). For example, the subgraph 91 (p,3) of 9(p,3)
is illustrated in Figure 1 (b). We define the subgraph gi (p, l) of 9 (p, l) inductively
as follows. For l = 0 the subgraph gi (p, 0) consists of the labeled node (Pi, 0). For
l > 0 the subgraph 9i(P, l) consists of the labeled node (Pi, l), the edges from (Pi, l) to
layer l - 1 nodes, and the subgraphs 9;(p, l - 1) for every layer l - 1 node (p;, l - 1)
adjacent to (pi,l). Given a set S of processors, it is convenient to denote by 9s(p,l)
the subgraph of 9 (p, l) consisting of the union of the graphs gi (p, l) for every Pi E S.
We remark that 9s(p,l) uniquely determines 9i(p,l) for every Pi ES. The next lemma
states that a processor's view of the labeled communication graph uniquely determines
its view of the run.

Lemma 8: Let p and p' be runs of a full-information protocol :1. For every processor Pi
and time l, v(pi,p,l) = v(pi,p',l) iff 9i(p,l) = 9i(p',l).

Proof: We proceed by induction on l. The case of l = 0 is immediate. Suppose
l > 0 and the inductive hypothesis holds for l - 1.

Suppose Pi has the same view at time l in both p and p'. This implies, in particular,
that Pi has the same view at time l- 1 in p and p', and from the inductive hypothesis it
follows that gi (p, l-1) = gi (p', l-1). In addition, this implies that Pi must receive the
same input during round l in p and p', and hence (Pi, l) is labeled with the same input
in 9i(P, l) and 9i(P', l). If Pi does not receive a message from a processor P; during
round l in p and p', then there is no edge from (p;, l - 1) to (pi, l) in either 9i(P, l) or
gi (p', l). If Pi does receive a message from a processor p; during round l in p and p', then
it receives the same message in both runs and P; must have the same view at time l - 1
in both runs. Hence, there is an edge from (p;, l - 1) to (Pi, l) in both 9i(P, l) and
9i(P',l), and by the inductive hypothesis we have that 9;(p,l - 1) = 9;(p',l - 1).
Thus, 9i(P, l) = 9i(P', l).

Conversely, suppose gi (p, l) = gi (p', l). It follows that gi (p, l - 1) = gi (p', l - 1),
and by the inductive hypothesis Pi has the same view at time l - 1 in p and p'. The

18

node (pi,l) must be labeled with the same input in gi(p,l) and gi(P',l), so Pi receives
the same input during round l in p and p'. The edges from layer l-1 nodes to (Pi,l)
are the same in 9i(p,l) and gi(P',l), so Pi receives messages from the same processors
during round l in p and p'. Again, 9;(p,l-1) = 9;(p',l-1) for every node (p;,l- 1)
adjacent to (Pi, l), and by the inductive hypothesis P; has the same view at time l - 1
in p and p'. Hence, Pi receives the same messages during round l in p and p'. It follows
that Pi has the same view at time l in both p and p'. D

Consequently, a processor's view of the run and a processor's view of the correspond
ing labeled communication graph convey the same information: Given either the graph
gi (p, l) or the view v (Pi, p, l), reconstructing the other is straightforward. Therefore,
an equivalent implementation of a full-information protocol requires the processors to
send the labeled communication graphs corresponding to their views instead of sending
their complete views. From now on, we will use the term full-information protocol to
refer to this equivalent form. It is easy to see that the size of gi (p, l) is polynomial in
the number of processors n, the global time l, and the size of the requests received from
external clients. It follows that messages required by a full-information protocol are of
polynomial size.' Furthermore, given the labeled communication graphs corresponding
to the views at time l - 1 of the processors that send messages to a given processor Pi
during round l, it is easy to construct the labeled communication graph corresponding
to the processor's view at time l. Thus, the use of such compact representations of a
processor's view is computationally efficient as well as communication efficient. Finally,
recall that we have formally defined a test for common knowledge to be a function of
processor views (as well at n and t). In light of the preceding discussion, there is no
loss of generality in assuming that such a test is a function of communication graphs
corresponding to processor views. We now turn to the problem of implementing such
tests.

6 Testing Common Knowledge

The previous section established the claim that tests for common knowledge provide
a very powerful programming technique: The design of optimal protocols for simulta
neous choice problems reduces to implementing tests for common knowledge of certain
facts. In this section we investigate the problem of implementing tests for common
knowledge in the different variants of the omissions model. With such tests, we will be
able to construct optimal protocols for simultaneous choice problems in these models.
As we will see, properties of the different variants of the omissions model cause dra
matic differences in the complexity of testing for common knowledge. In addition, the

4 In the Byzantine failure models in which processors are allowed to lie (or maliciously deviate from
the protocol), however, such compact representations are not guaranteed to exist; cf. [CJ.

19

optimal protocols we construct will have interesting properties that vary according to
the failure model.

Recall that a protocol is a function that, given the number of processors n, the
bound t on the number of faulty processors, and a processor's view, yields a list of the
actions the processor should perform, as well as the messages it should send in the next
round. (Thus, the protocols we are interested in are uniform in n and t.) Since the
protocols we will be concerned with are full-information protocols, processors' views
will be efficiently representable by labeled communication graphs. We will soon restrict
our attention to simultaneous choice problems in which the external requests are of
constant size. This restriction implies that processors' views at time l will be of size
polynomial in n and f... A protocol will therefore determine the messages and actions
required at time l based on input of size polynomial in n and f... Consequently, we will
measure the complexity of computations performed by protocols at time l in systems
of n processors as a function of n and f..: By polynomial time, polynomial space, etc.,
we will mean polynomial in n and f...

The definition of simultaneous choice problems presented in Section 4 is very general.
So general, in fact, that it is possible to define simultaneous choice problems with a
variety of anomalous properties. For example, it is possible to define a simultaneous
choice problem in which pro(a) is the fact cp = "the first round in which p receives an
external request is a round whose number is the index of a halting Turing machine" (in
some a priori well-defined enumeration of Turing machines), and con(a) is •<.p. Clearly,
since it is undecidable whether cp holds even given the view of p after it receives its first
request, it will also be undecidable which of C >1<.p or C >1'<.p holds when processor p's view
becomes common knowledge. It follows that this simultaneous choice problem cannot
be effectively implemented by a computable protocol. Similarly, one can construct
simultaneous choice problems in which evaluating the conditions is intractable, rather
than undecidable as in the above example. It is also possible to introduce anomalies by
defining the sets ri of external inputs in strange ways. Since we are not interested in
problems involving such inherent anomalies, we will avoid them by making restrictions
on the relevant facts and the inputs arising in the simultaneous choice problems we will
consider in the sequel.

We first define the class of practical facts, which will be used to restrict the conditions
that specify a simultaneous choice problem. Roughly speaking, one essential property
of a practical fact cp is that it is easy to determine from a processor's view whether a
run satisfies cp. More formally, we denote by "9s(p,l)" the property of being a run p'
such that 9s(p,l) = 9s(p',l). Consequently, if 9s(p,l) ::J cp is valid in a system,
then every run p' of the system satisfying 9s(p,l) = 9s(P',l) must also satisfy cp. In
this case, we say that 9s(p,l) determines cp. Notice, for example, that no finite labeled
communication graph gs (p, l) can determine that a run is failure-free. With this notion
in mind, a fact cp is said to be practical within a class of systems {E(n, t) : n ~ t + 2}

20

if the following conditions hold: (i) <p is a fact about the input and the existence of
failures, and (ii) there is a polynomial-time algorithm to determine, given n, t, and
a graph Gs (p, l) at a point of E(n, t), whether Gs (p, l) ~ <p is valid in E(n, t). The
first condition is justified by the fact that we will be testing for common knowledge
of the conditions enabled(ai) arising from natural simultaneous choice problems, since
such conditions are typically conditions on the input and existence of failures. The
second condition ensures that it is easy to test whether a labeled communication graph
determines that the fact holds.

We now consider a natural restriction on the sets ri of possible inputs. A class
of systems is said to be practical if there are two fixed finite sets S and M of initial
states and external requests, respectively, such that each ri in all systems of the class
is the set of complete input histories whose initial state is in S, and in which the input
received in every round is a subset of M. This condition ensures that the input sets
are of a simple form. In particular, it implies that all fi's are identical, and that the
input received by a processor during any given round is of constant size.

Having defined the notions of practical facts and practical classes of systems, we say
that a simultaneous choice C is practical if (i) the class of systems determined by a full
information protocol and C is practical, and (ii) each condition enabled(ai) is practical
within this class of systems. Essentially all natural simultaneous choice problems are
practical. In particular, all simultaneous choice problems in the literature are practical.
Our analysis will hence be restricted to testing for common knowledge of practical facts
and to designing and implementing optimal protocols for practical simultaneous choice
problems. We remark, however, that our analysis will apply to a more general class of
simultaneous choice problems, whose precise characterization is somewhat complicated.

In Section 5 we programmed protocols for simultaneous choice problems in a high
level language in which processors' actions depend on explicit tests for common knowl
edge. Recall that test-for-C >1 enabled(ai) is a test nonfaulty processors can use to de
termine whether enabled(ai) is common knowledge: Given the graph corresponding
to the view of a nonfaulty processor at (p,l), test-for-C>1enabled(a;) return true iff
(p, l) f= C >1 enabled(ai). Theorem 7 implies that given such a test for each condition
enabled(ai), the protocol le is an optimal protocol for C. Until this point, however, we
have sidestepped the issue of whether such tests actually exist. With the next lemma
we see that, for practical simultaneous choice problems, such tests can be implemented
in polynomial space.

Lemma 9: If C is a practical simultaneous choice problem, then for each action a;

the test test-/ or-0 >1 enabled(ai) can be implemented in polynomial space.

Proof: We must exhibit an algorithm test-for-C >1 enabled(ai) determining in poly
nomial space whether enabled(ai) is common knowledge at (p,l), given n, t, and the

21

graph 9;(p, l) corresponding to the view of a nonfaulty processor P; at (p, l). We will
actually exhibit a nondeterministic algorithm Ai determining whether enabled(ai) is
not common knowledge at (p,l). Since NPSPACE=PSPACE and PSPACE is closed
under complementation (cf. [HU]), the existence of the algorithm Ai implies the ex
istence of an algorithm test-for-G"enabled(ai)· Let {E(n,t) : n 2'.: t + 2} be a class of
systems determined by a full-information protocol and the problem C. We claim that
such an algorithm Ai need only guess a point (T/, l), and show both that (p, l) ,...., (T/, l)
and that 9(TJ,l) ::J enabled(at) is not valid in E(n,t). Since 9(11,l) ::J enabled(ai) is
not valid in the system, there must be a point (TJ 1

, l) such that g (T/, l) = g (TJ 1
, l) and

(TJ',l) ~ enabled(ai)· Let~ be a run with the input of either T/ or 17 1 in which the only
processors failing are those recorded as failing in g (T/, l) = g (TJ', l). Any nonfaulty
processor in TJ or 17 1 must also be nonfaulty in ~, and also have the same view at time l
in both runs. Consequently, (TJ,l),...., (~,l) and (~,l),...., (TJ',l). Therefore, (p,l),...., (TJ',l)
and (TJ',l) ~ enabled(ai), so (p,l) ~ G"enabled(ai)·

We now describe the algorithm Ai in greater detail. Notice that since C is practical,
the input received by a processor at each round during a run of E(n, t) is of constant size,
and hence it is possible to construct the labeled communication graph of any point of
E(n, t) in polynomial space. The algorithm Ai begins by constructing the graph g(p', l)
of a run p' by adding to the graph 9;(p,l) received as input all edges not recorded as
missing in 9;(p, l). Notice that since P; is nonfaulty in p, it is nonfaulty in p' as well, and
hence that (p,l),...., (p',l). The algorithm Ai then shows that (p',l),...., (TJ,l) (and hence
that (p, l) ,...., (TJ, l)) in polynomial space by constructing one by one the graph g (~i, l)
of each point (~i, l) in a path from (p', l) to (T/, l) in the similarity graph. For each pair
of points (~i-b l) and (~i, l), the algorithm shows that some nonfaulty processor P1e has
the same view at both points by choosing p1e, exhibiting for each point an assignment of
faulty processors (consistent with their respective graphs) in which Pie is nonfaulty, and
showing that P1e has the same view at both points by verifying 91e(~i-i,l) = 91e(~i,l).
Finally, since enabled(ai) is a practical fact, Ai can show in polynomial time (and hence
in polynomial space) that 9(TJ,l) ::J enabled(ai) is not valid in the system E(n,t). D

We note that the proof of Lemma 9 actually shows that testing for common knowl
edge of any practical fact can be done in polynomial space. In fact, the proof shows
that such tests have effective implementations even when the algorithm determining
whether 9(p,l) ::J enabled(at) is valid does not run in polynomial time (although the
problem must still be decidable). In this case, however, the test is guaranteed to run in
polynomial space only if this computation can be performed using polynomial space.
The most important consequence of Lemma 9, however, is that practical simultaneous
choice problems have polynomial-space optimal protocols.

Theorem 10: If C is an implementable practical simultaneous choice problem, then
there is a polynomial-space, optimal protocol for C.

22

With Theorem 10 we see that practical simultaneous choice problems do have ef
fective optimal protocols. In general, however, connected components in the similarity
graph may be of exponential size, and paths in such components may be of exponential
length. It therefore follows that the polynomial-space protocol given by Theorem 10
requires the processors to perform exponential-time computations between consecutive
rounds of communication. The resulting protocol is therefore clearly not a reasonable
protocol to use in practice. A crucial question at this point is whether there are efficient
optimal protocols for simultaneous choice problems. Recall that we have already seen
that optimal protocols can be implemented in a way that makes efficient use of commu
nication. The rest of the paper is devoted to investigating ways of implementing tests for
common knowledge in variants of the omissions model in a computationally-efficient
manner, and therefore of implementing efficient, optimal protocols for simultaneous
choice problems in these models.

6.1 The Omissions Model

In this section we consider the problem of efficiently implementing tests for common
knowledge in the omissions failure model. Recall from Theorem 2 that the connected
component of a point in the similarity graph completely determines what facts are
common knowledge at that point. We develop an efficient construction that crisply
characterizes the connected component of a point in the similarity graph. With this
construction we devise efficient tests for common knowledge, and hence efficient proto
cols for simultaneous choice problems that are optimal in all runs.

The construction itself is motivated by a careful analysis of what facts do not be
come common knowledge during runs of a full-information protocol. {Unless otherwise
mentioned, all protocols referred to in this section will be full-information protocols.)
We begin with a technical result, similar to Lemma 15 of [DM]. In this and following
results, it will be necessary to refer to runs whose operating environments differ slightly
from each other. Therefore, given two runs of a protocol 1, we will say that a run p

differs from a run p' only in a certain aspect of the operating environment, if p is the
result of executing 1 in an operating environment that differs from that of p' only in
the said aspect. Notice that the messages sent in p may actually be quite different
from those sent in p'. We say that a processor is silent from time k if it fails to send
all messages in rounds following time k.

Lemma 11: Let p and p' be runs differing only in the {faulty) behavior displayed by
processor p after time k, and suppose no more than f processors fail in either p or p'.
If l- k ~ t + 1 - f, then (p,l) - (p',l).

Proof: If k ~ l then g (p, l) = g (p', l), and Lemma 8 implies that (p, l) - (p', l).
Therefore, assume k < l. We proceed by induction on j = l - k.

23

Suppose J = 1 (that is, k = l - 1). Without loss of generality, we may assume
that p and p' actually differ in the faulty behavior of p, and hence that p fails in one of
these runs. Notice that since p already fails in one of these runs and yet no more that t
processors fail in either run, it is clear that at most t processors fail in a run differing
from either run only in the faulty behavior of p. Now, since t :::; n - 2 and since p

and p' differ only in the behavior of p, there are two processors q and r (other than p)
that do not fail in either run. Let Pr be the run differing from p only in that p sends
to r during round l of Pr iff it does so in p'. Since q's view at time l is independent
of whether p sends to r during round l, we have (p,l) ,.._, (Pr,l). Let p~ be the run
differing from Pr in that p sends to precisely the same processors during round l in p~
and p'. Since r's view at time l is independent of whether p sends to the remaining
processors during round l, we have (Pr, l) ,.._, (p~, l). Since g (p~, l) = g (p', l), it follows
that (p~,l) ,.._, (p',£). Thus, by the transitivity of",...,," we have (p,l) ,.._, (p',£).

Suppose J > 1 (that is, k < l-1) and the inductive hypothesis holds for J-1. Let Pi
be the run differing from p only in that for each processor q in {p1 , ••• , Pi} processor p

sends to q during round k + 1 in Pi iff it does so in p'. Notice that p =Po and p' = Pn·
We will show that (p, l) ,.._, (Pi, l) for all i ~ 0. Since Pn differs from p' only in the
faulty behavior of p after time k + 1, and since l - (k + 1) = J - 1, it will follow by the
inductive hypothesis for J -1 that (Pn,l) ,.._, (p',l). Finally, by the transitivity of",...,,"
we will have (p, l) ,.._, (p', l) as desired.

We now proceed by induction on i to show that (p, £) ,.._, (Pi, l) for all i ~ 0. The
case of i = 0 is trivial. Suppose i > 0 and the inductive hypothesis holds for i - 1; that
is, (p,l) ,.._, (Pi-1,l). Notice Pi-l and Pi differ at most in whether p sends a message
to Pi during round k + 1. Let TJ be the run differing from Pi-l in that Pi is silent from
time k + 1 in TJ. Suppose no more than g processors fail in either Pi-l or TJ. Notice that
g:::; f + 1. Therefore, since 1 < l- k:::; t + 1 - f we have f < t and g:::; t, so at most t
processors fail in T/· Furthermore, l - (k + 1) :::; t + 1 - (! + 1) :::; t + 1 - g. Since,
in addition, Pi-1 and TJ differ only in the faulty behavior of Pi after time k + 1, the
inductive hypothesis for J-1 implies (Pi- 1 ,l) ,.._, (TJ,l). Now, since Pi is silent from time
k + 1 in T/, the view of a nonfaulty processor at (TJ, l) is independent of whether p sends
to Pi during round k + 1, so (TJ,l)......, (TJ',l) where TJ 1 differs from T/ in that p sends to Pi
during round k + 1 in TJ 1 iff it does so in Pi· Again, the inductive hypothesis for J - 1
implies that (TJ',l)......, (Pi,l). By the transitivity of"......,," it follows that (p,l)......, (Pi,l).

D

While Lemma 11 is a technical lemma in the context of this work, it has a number of
interesting consequences in its own right. In particular, the (t+l)-round lower bound on
the number of rounds required for simultaneous Byzantine agreement is an immediate
corollary of this lemma. The resulting proof of this lower bound is perhaps the simplest
to appear in the literature (see [DM] for details). More importantly, however, with
Lemma 11 we can prove two corollaries that will enable us to characterize the connected

24

}!

k l

t + 1.- f

The run Pl· The run P2·

Figure 2: Runs illustrating Lemma 12.

components of the similarity graph. Consider the runs p1 and p2 of Figure 2, where
we indicate only faulty behavior: solid lines indicate silence, and dashed lines indicate
sporadic faulty behavior. Notice that f processors fail in p1 • In the following lemma
we show that (P1, l) ,...., (P2, l) where p2 differs from p1 only in that processors failing
in P1 are silent in p2 from time k, where k = l - (t + 1 - !) . This implies, for instance,
that the views at time k of processors failing in p1 are not common knowledge at time l
since these processors are silent from time k in p2 •

Lemma 12: Let p1 be a run in which f processors fail. Let p2 be the run differ
ing from p1 only in that processors failing in p1 are silent from time k in p2 , where
k = l - (t + 1 - !) . Then (P1, l) ,...., (P2, l).

Proof: Let q1 , ••• , q8 be the faulty processors in p1 . Let T/i be the run differing
from P1 in that processors q1 , ••• , qi are silent from time k in T/i· Notice that P1 = T/o
and p2 = T/s· We proceed by induction on i to show that (p1 ,l) ,...., (T/;,l) for all i. The
case of i = 0 is trivial. Suppose i ~ 0 and the inductive hypothesis holds for i - 1; that
is, (Pi, l) ,...., (T/i-b l). Since T/i-l and T/i differ at most in the faulty behavior of q; after
time k, it follows by Lemma 11 that (T/;- 1 ,l),...., (T/;,l). By the transitivity of",....,," we
have (pi, l) ,...., (T/i, l). D

Before discussing the second lemma, we make an important definition. Given a
point (p, k) and a set of processors G, let

B(G,p,k) def {p: (p,k) ~ Ia("p is faulty")}.

By this definition, B(G,p,k) is the set of processors implicitly known by G at (p,k)
to be faulty. An important property of the omissions failure model is that processors

25

B

t- = = 01----- } f
t- - -r'i -----

G

k k l

t+l-f

The run P2· The run p3.

Figure 3: Runs illustrating Lemma 13.

fail only by failing to send messages. It follows that G implicitly knows at (p, k) that a
processor p is faulty iff G implicitly knows at (p, k) of some processor q not receiving a
message from p before time k; that is, .9G(P, k) contains no edge from (p,l- 1) to (q,l)
for some node (q, l) of .9G(P, k). It is therefore simple and straightforward to compute
B(G,p,k) given .9G(p,k).

The essence of the second lemma is captured by the runs p2 and p8 of Figure 3. In
the run p2 , the f faulty processors are silent from time k = l - (t + 1 - !) . The set
G is the set of nonfaulty processors and B = B(G,p2,k). The run Ps differs from P2
only in that processors in P - B do not fail in p8 • The following lemma states that
(p2,l),..., (p8 ,l). This implies, for instance, that the failure of processors in P - B can
not be common knowledge at (p2 ,l) since they do not fail in p8 • Formally, we have (see
Figure 3):

Lemma 13: Let p2 be a run in which the f faulty processors are silent from time
k = l-(t+l- f). Let G be the set of nonfaulty processors in p2, and let B = B(G, P2, k).
Let p8 be the run differing from p2 only in that processors in P - B do not fail. Then
(P2, l) ,..., (Ps, l).

Proof: If a processor p in P - B fails to a processor q during some round j ::; k
of p2 , then the node (q,j) must not be a node of .9G(p2, k) or the failure of p would be
implicitly known by G at time k and p would be in B, a contradiction. Thus, .9G(P2, k)
is independent of whether ,9(p2 , k) contains an edge from p to q during round j. Let p~
be a run differing from p2 only in that no processor in P - B fails before time k in p~.
By the previous discussion, .9G(p2,k) = .9G(p~,k). In both P2 and p~ every processor
in G successfully sends every message after time k and every processor in B = P - G

26

I • 1,g=B3 8B2 DB,
r--

•
• • •
• • • Bo
• • • .---
• • • •
• • • •

G=G3 .---- '----J

• • • •
• • G2 • •
• • • G1 ~Go
• • • •
• • • •

k=k3 k2 ki ko = l

Figure 4: An example of the construction when t = 9.

is silent from time k. Since, in addition, every processor in G receives the same input
after time k in p2 and p~, we have 9c (p2 , l) = 9c (p~, l). Given that G is the set of
nonfaulty processors in p2 , each of which is also nonfaulty in p~, it follows by Lemma 8
that (P2, l) ,..., (p~, l). Since the runs p~ and p3 differ only in the faulty behavior of
processors in P - B after time k, by repeated application of Lemma 11 it follows that
(p~,l),..., (ps,l). Hence, (p2,l),..., (Ps,l). D

Having seen Lemmas 12 and 13, let us consider how these results suggest a charac
terization of the similarity graph, and hence of what facts are common knowledge at
a given point. Going back to Figures 2 and 3, notice that if /' < f (where /' is the
number of processors in B), then by setting p~ = p3 we can apply Lemmas 12 and 13
again. Iterating this process, we reach a run p satisfying (pi, l) ,..., (p, l) where the f
processors failing in p are silent from time k = l - (t + 1 - /), and where all faulty
processors are implicitly known to be faulty by the nonfaulty processors at (p,k). No
tice that the run p is a fixpoint of this iterative process (that is, applying Lemmas 12
and 13 to p yields p itself). We claim, in addition, that the joint view of the nonfaulty
processors at (;;, k) characterizes the connected component of (pi, l) in the similarity
graph, and hence what facts are common knowledge at (pi, l). In order to make this
claim precise, we now formalize a local version of this iterative process, illustrated in
Figure 4, that processors can use to construct locally this joint view.

Let p be an arbitrary processor. We define G0 = {p} and k0 = l, and we define
Gi+1 and ki+1 inductively. Denoting B(Gi,P,ki) by Bi, let

Gi+l = P- Bi

ki+l = l - (t + 1 - I Bi I).

27

Notice that when ki+1 < 0, the view at time ki+1 of every processor in Gi+1 is the
distinguished empty view, and hence Bi+1 must be empty. As a consequence, for all
i' > i + 1, we have that G; = P, k; = l - (t + 1), and B; is empty. This construction
determines three (infinite) sequences { Gi}, {ki}, and {Bi}· In the next few pages we will
see that these sequences have limits G, k, and B, and that these limits are independent
of the processor with which the construct is begun. As a result, individual processors
will be able to construct these values based solely on their local view. We will see
that the joint view of G at time k completely characterizes the connected component
of (p,l) in the similarity graph, and hence what facts are common knowledge at (p,l).
This construction will therefore provide an efficient way of determining what facts are
common knowledge at a given point.

Among other things, this construction captures a number of essential aspects of the
information flow during the run up to time l. In particular, one important property of
this construction is the following:

Lemma 14: Every processor in Gi+1 successfully sends to every processor in G; in
every round before time k;.

Proof: Suppose some processor q of Gi+1 fails to send to a processor q' of G; during
a round before time k;. Then q's failure to q' is implicitly known by G; at time k;, so
q EB; and q <:!. G;+1 , a contradiction. D

One consequence of Lemma 14 is that the view of the processor pat time l must
contain the view of every processor in G; at time k; for every i 2:'.: 0. Thus, an essential
property of the construction is that it depends only on the view of processor pat (p, l),
and hence that p is able to compute these sets locally. A second essential property of
the construction is that it converges within t + 1 iterations, as we see with the following
result.

Lemma 15: Jim G; = Gt+l and Jim k; = kt+l·
1-+oo 1-+oo

Proof: We will show that B;+l ~ B; for all i 2:'.: 0. Since Bo contains at most t
processors, it will then follow that there must be an i :::; t for which B; = Bi+l· From
the definition of the construction, it is easy to see that we will have B; = Bi+; for all
i' 2:'.: 0. In addition, we will have Gi+1 = Gi+l+; and k;+l = ki+l+i for all i' 2:'.: O, and
we will be done. We proceed by induction on i. If ki+ 1 < O, then B;+1 is empty and
B;+l ~ B;, so let us assume ki+1 2:'.: 0. Suppose i = 0. By Lemma 14, every processor
in G 1 must send to every processor in Go during round k1 + 1. It follows that any
failure implicitly known by G1 at time k1 must be implicitly known by G0 at time ko.
Thus, B 1 ~ B 0 • Suppose i > 0 and the inductive hypothesis holds for i - 1; that is,

28

Bi ~ Bi-1· If Bi= Bi-i, then Bi+i =Bi. If Bi c Bi-1' then ki+1 < ki. By Lemma 14,
Gi+1 sends to Gi during round ki+1 + 1, so Bi+1 c Bi. D

We denote the results of the construction (the limits of the sequences {Gi}, {ki},
and {Bi}) by G, k, and B. We denote these values by G(p, p, l), k(p, p, l), and B(p, p, l)
when the processor p and the point (p, l) are not clear from context. We now show,
however, that these values are independent of processor p.

Lemma 16: For all processors p and q, G(p, p, l) = G(q, p, l) and k(p, p, l) = k(q, p, l).

Proof: We prove the claim by showing that B(p,p,l) = B(q,p,l). Given that
Bi uniquely determines Gi+l and ki+i, this will imply the desired result. It suffices
to show that B(p,p,l) ~ B(q,p,l), since the other direction will follow by symmetry.
Denote the intermediate results of the construction from the point (p, l) starting with
the processor p by Gi, ki, and Bi, and the final results by G, k, and B. Similarly,
denote the intermediate results of the construction starting with q by G~, k!, and B!,
and the final results by G', k', and B'. We now show that iJ ~ B'. If k < 0, then
fJ is empty and fJ ~ B', so assume k 2 0. We consider two cases. First, suppose
k = l-1. In this case, iJ must contain t faulty processors since k = l-(t+ 1- IBI). It
follows that every processor in G must be nonfaulty and hence must send to G~ during
round k + 1, so iJ ~ Bb. Since, in addition, IBbl ~ t and IBI = t, we have fJ = Bb.
It follows from the construction that iJ = B! for every i 2 0, and hence that iJ = B'.
Now, suppose k < l - 1. Let r be an (arbitrary) nonfaulty processor in p. We claim
that every processor gin G must send its view tor during round k + 1. Suppose some
processor g in G does not. Let j be the least integer such that G = G;. If j = 1,
then r must send to G0 during round k + 2. If j > 1, then r must actually be a member
of G;-1 since G;_ 1 must contain all of the nonfaulty processors. In either case, the
failure of g to r during round k + 1 must be implicitly known by G;_ 1 at time k;-i,
so g E B;-1 . Since G = G; = P - B;-i, we have g ~ G, a contradiction. Thus, every
processor in G must send to r during round k + 1. We now proceed by induction on i
to show that fJ ~ B! for all i 2 0. Suppose i = 0. Every processor in G must send
to the nonfaulty processor r during round k + 1, and r must send to G~ during round
k + 2, so fJ ~ Bb. Suppose i > 0 and the inductive hypothesis holds for i - 1; that is,
fJ ~ B!_1 • If iJ = B!_1, then fJ = B!. If iJ c B!_1 , then k < k!. Every processor in G
must send to the nonfaulty processor r during round k + 1, and r must be contained
in G~, so iJ ~ B!. It follows that iJ ~ B! for all i 2 0, and hence iJ ~ B'. D

As a result of Lemma 16, we see that G, k, and iJ depend only on the point (p, l),
and not the processor with which the construction begins. Thus, a third essential
property of this construction is that every processor (and not just, say, the nonfaulty
processors) is able to compute locally the values of G, k, and fJ. We will denote these
values by G(p,l), k(p,l), and B(p,l) when (p,l) is not clear from context. From the

29

definition of the construction it is clear that the driving force behind the construction
is the identity of the sets Bi. Notice that these sets are uniquely determined by the
failure pattern, and do not depend on the run's (external) input. Taking into account
the external input of a run, we are now in a position to show how the construction
characterizes the connected components in the similarity graph. Denoting G(p, l) by G
and k(p, l) by k, we define

A def A A

V(p,l) = v(G,p,k).

This definition says that V (p, l) is the joint view of the processors in G (p, l) at time
k(p, l). Our next lemma implies that V is the same at similar points, which implies
that the joint view V (p, l) is common knowledge at (p, l).

Lemma 17: If (p,l) - (p',l) then V(p,l) = V(p',l).

Proof: We proceed by induction on the distance d between the points (p, l) and
(p', l). The case of d = 0 is trivial. Suppose that d > 0 and the inductive hypothesis
holds for d - 1. Since the distance between (p', l) and (p, l) is d, there must be a
point (77,l) whose distance from (p,l) is d - 1, and whose distance from (p',l) is 1.
The inductive hypothesis implies that V(p,l) = V(71,l), and we must have v(p,71,l) =
v(p,p',l) for some processor p. As a consequence of Lemmas 14 and 16, the values
of V (77, l) and V (p', l) depend only on the view of p at (77, l) and (p', l), respectively.
Since p has the same view at (77, l) and at (p', l), we have V (77, l) = V (p', l). Since
V(p,l) = V(71,l), it follows that V(p,l) = V(p',l). D

Conversely, we wish to show that all points with the same V are similar, and hence
that V completely characterizes the connected components of the similarity graph.
Before we do so, however, we formalize the reasoning with which Lemmas 12 and 13
motivated consideration of the construction in the first place.

Lemma 18: Let p be a run, and let G, k, and iJ be the results of the construction
from (p, l). Let p' be the run differing from p only in that processors in G do not fail
in p' and processors in iJ are silent from time k in p'. Then (p, l) ,...,, (p', l).

Proof: Let Gi, ki, and Bi be the intermediate results of the construction from (p, l)
starting with the nonfaulty processor Pi· For i 2: O, define Pi to be the run differing
from the run p only in that processors in Bi are silent from time ki in Pi and the
remaining processors do not fail in Pi· Notice that p = p0 and p' = Pi for sufficiently
large i. We proceed by induction on i to show that (p, l) ,...,, (Pi, l) for all i 2: 0. Suppose
i = 0. Since the subgraph 9;(p,l) must be independent of whether the graph 9(p,l)
is missing an edge from a processor in P - Bo to a processor other than P;, we have
9;(p,l) = 9;(Po,ko). Since processor P; is nonfaulty, it follows that (p,l) ,...,, (p0 ,l).

30

Suppose i > 0 and the inductive hypothesis holds for i - 1; that is, (p,l) - (Pi- 1 ,l).
Lemma 12 implies (Pi-l, l) - (p~_ 1 , l) where P~-l differs from Pi-l in that processors in
Bi-1 (the processors failing in Pi-i} are silent from time ki in p~_ 1 • Lemma 13 implies
(p~_ 1 ,l) - (Pi,l). Thus, (p,l),..., (Pi,l). 0

Finally, we have the following:

Lemma 19: If V (p, l) = V (p', l) then (p, l) - (p', l).

Proof: The fact V(p,l) = V(p',l) implies G(p,l) = G(p',l), k(p,l) = k(p',l), and
B (p, l) = B (p', l). We therefore denote these values by G, k, and B. Let ~ be a run
that differs from p in that processors in G do not fail in ~, and processors in iJ are silent
from time k in ~- Let ~' be an analogous run with respect to p'. Lemma 18 implies
that (p, l) - (~, l) and (p', l) - (~', l). In order to show that (p, l) - (p', l), it is enough
to show that (~,l) - (~',l). Suppose G = {qu ... ,q8 }, and let ~i be the run differing
from~ in that q1 , ••• , qi receive the same input after time k in ~i as they do in~'· We
proceed by induction on i to show that (~, l) - (~i, l) for all i ~ 0. Since p = Po, the
case of i = 0 is trivial. Suppose i > 0 and the inductive hypothesis holds for i -1; that
is, k, l) "" (~i-1, l). Let T/i-1 and T/i be runs differing from ~i-l and ~i, respectively, only
in that qi is silent from time kin T/i-l and T/i· Lemma 11 implies (~i- 1 ,l) - (T/i-1,l)
and (~i,l) - (rJi,l). In addition, since T/i-l and T/i differ only in the input received by qi
after time k, and since qi is silent from time k in both runs, we have (T/i-l, l) - (T/i, i).
Thus, (~, l) - (~i, l) for all i ~ 0. In particular, (~, l) - (~8 , l). In order to complete
the proof, it now suffices to show that (~a, l) - (~', l). Since 9G(p, k) = 9G(p', k),
(p,l) - (~,l) and (p',l) - (~',l), Lemma 17 implies that 9G(~,k) = 9G(~',k). Notice
that 9c1ka,k) = 9G(~,k) = 9G(~',k). Notice, in addition, that processors in G do not
fail in either ~a or ~', and that the remaining processors (in B) are silent from time k
in both runs. Finally, notice that processors in G receive the same input after time k
in both runs. It follows that 9 G (~a, l) = 9 c(~', l), and hence that (~a, l) - (~', l). Thus,
(~, l) - (~', l), as desired. 0

Combining Lemmas 17 and 19 we see that (p, l) - (p', l) iff V (p, l) = V (p', l). We
therefore have:

Theorem 20: (p, l) f= C "cp iff (p', l) f= cp for all p' satisfying V (p, l) = V (p', l).

It follows that the identity of V in a precise sense summarizes and uniquely deter
mines the set of facts that are common knowledge at any given point. The identity of
V can be thought of as being composed of two components: The identity of G and k,
and the information about the input that is contained in the joint view V. The def
inition of the construction implies that the identities of G and k depend only on the

31

failure pattern, and hence carry only information about the failure pattern. The fact
that V becomes common knowledge implies that certain information about the failure
pattern must become common knowledge. It is difficult, however, to characterize the
facts about the failure pattern that follow from the identity of G and k in terms of
the communication graph 9 (p, l). On the other hand, information about the input
that follows from the views in V does characterize in a crisp way what facts about
the input are common knowledge. Furthermore, it is easy to deduce from V whether
the existence of a failure is common knowledge. As the following corollary will show,
Theorem 20 implies that facts about the input and existence of failures that are com
mon knowledge at the point (p,l) must follow directly from the set V(p,f.). We now
make this statement precise. A run p, a set of processors G, and a time k determine
a joint view V = v(G,p,k). We denote by "V" the property of being a run in which
the processors in G have the joint view V at time k (notice that G and k are uniquely
determined by V). Thus, if V ~ rp is valid in the system, then every run p' satisfying
v(G,p',k) = V must also satisfy rp. We now have:

Corollary 21: Let rp be a fact about the input and the existence of failures, and let
V = V (p, l). Then (p, f.) f= C >1rp iff V ~ rp is valid in the system.

Proof: Let V = V (p, f.). Suppose V ~ rp is valid in the system. By Lemma 17,
we have V (p, l) = V (p', l) for all runs p' such that (p, l) - (p', f.), and hence that
(p', l) f= V for all such p'. Given that V ~ rp is valid in the system, we have (p', l) f= rp
for all such p'. It follows that (p,f.) f= C>1rp.

Conversely, suppose that V ~ rp is not valid in the system. Since V ~ rp is not valid
in the system, let T/ be a run such that (T/, f.) f= V and yet (T/, f.) ~ rp. We will construct
a run ~ such that (p, l) - (~, l), ~ and T/ have the same input, and ~ and T/ are the same
with respect to the existence of failures. Since rp is a fact about the input and the
existence of failures, (77, l) ~ rp will imply (~, l) ~ rp. Since, in addition, (p, f.) - (~, l),
we will have that (p, l) ~ C >1<{)·

We construct~ in two steps. We first construct a run€ with the input of 77 satisfying
(p, l) - (€, l). Let € be the run with the failure pattern of p and the input of 77. Given
that p and € have the same failure pattern, and that G and k depend only on the
failure pattern, we have that G(p,l) = G(€,l) and k(p,l) = k(€,l). Let us denote
these values by G and k. Since (TJ,l) f= V, we have v(G,p,k) = v(G,,,,k), and hence
90 (p,k) = 90 (11,k). Since€ and p have the same failure pattern, the unlabeled graphs
underlying 90 (€,k) and 90 (p,k) (and hence also 9a(11,k)) are the same. Furthermore,
since€ and 77 have the same input, it follows that 90 (€,k) and 9a(TJ,k) (and hence
also 90 (p,k)) are equal. Since 90 (p,k) = 9a(€,k) implies V(p,f.) = V(€,l), we have
(p, l) - (€, l) by Lemma 19.

32

We now consider the existence of failures, and construct the desired run ~- If there
lS a failure in fJ, then let ~ be a run differing from e only in that a processor fails
after time l in ~. Clearly (€, l) ,..., (~, l), and hence (p, l) ,..., (~, l). Conversely, if fJ is
failure-free, then let ~ = fJ. Since T/ is failure-free, no processor in G knows of a failure
at time k in fJ. Since processors in G have the same view at time k in both fJ and p,
the same is true of p. It follows that B = B (G, p, k) is empty, and since G = P - B,
we have that G = p. Notice that ~ differs from e only in that processors in G = p do
not fail in ~, and hence that (€, l) ,..., (~, l) by Lemma 18. Therefore, (p, l) ,..., (~, l). In
either case, (p, l) ,..., (~, l), ~ and fJ have the same input, and are the same with respect
to the existence of failures. It follows by the above discussion that (p, l) ~ C J1'P· D

Corollary 21 summarizes the sense in which the construction allows us to test
whether relevant facts are common knowledge at a given point. Let us consider the
computational complexity of performing such tests. The first step in applying Corol
lary 21 to determine whether a fact is common knowledge at (p, l) is to construct
V (p, l). Recall that a group of processors implicitly knows that a processor is faulty
iff it knows of a message the processor failed to send. This is an easy fact to check
given the communication graph corresponding to the group's view. It follows that
computing every iteration of the construction can easily be done in polynomial time.
Furthermore, since the construction is guaranteed to converge within t + 1 iterations, it
follows that G and k, and hence also V can be computed locally in polynomial time (as
long as Vis of polynomial size). Recall that if cp is a practical fact, then it is possible to
determine in polynomial time whether or not V ::J cp is valid in the system. Thus, given
a practical simultaneous choice problem C, one polynomial-time implementation of a
test for common knowledge of enabled(ai) is to construct the set V = V and determine
whether V ::J enabled(ai) is valid in the system. As a result, Theorem 7 implies the
following:

Theorem 22: If C is an implementable, practical simultaneous choice, then there is
a polynomial-time optimal protocol for C.

We reiterate the fact that the resulting protocol for C is optimal in all runs: for
any given operating environment, actions are performed in runs of 'Ic as soon as they
could possibly be performed by any other protocol. Thus, for example, simultaneous
Byzantine agreement is performed in anywhere between 2 and t + 1 rounds, depending
on the pattern of failures (as is shown in [DM] to be the case in the crash failure
model). Similarly, the firing squad problem can be performed in anywhere between 1
and t + 1 rounds after a "start" signal is received. Paradoxically, in all these cases, the
simultaneous actions can be performed quickly only when many failures become known
to the nonfaulty processors. In particular, if there are no failures, no fact about the
input is common knowledge less than t + 1 rounds after it is first determined to hold.

33

Notice that every processor, faulty or nonfaulty, is able to compute the set V(p,l)
locally. As a result, the following proposition shows that a fact is common knowledge
to the nonfaulty processors iff it is common knowledge to all processors.

Proposition 23: Let 1.p be an arbitrary fact. In the omissions model, C >t'P - C pl.p is
valid in all systems running a full-information protocol.

Proof: By Theorem 2, it is enough to show that (p, l) ::., (p', l) iff (p, l) ~ (p', l) for
all runs p and p' and times l. The 'if' direction is trivial, since)./ ~ P. The proof of
the other direction is identical to the proof of Lemma 17, interpreting ,...., as ::.,_ D

Proposition 23 implies that all processors (even the faulty processors) know exactly
what actions are commonly known to be enabled in runs of le. Thus, in this model the
protocol le is guaranteed to satisfy a stronger version of simultaneous choice problems,
in which condition (ii) is replaced by

(ii') if ai is performed by any processor (faulty or nonfaulty), then it is performed by
all processors simultaneously.

Furthermore, since when an action is performed it is performed simultaneously by all
processors, and since no other action is ever performed, there is no need for processors
to continue sending messages after performing actions in runs of le in this model. We
can therefore further optimize the communication of le by having processors halt after
performing a simultaneous action. As a result, the following is an optimal protocol for
any implementable simultaneous choice problem C, an optimal protocol simpler than
the protocol le:

repeat every round
send current view to every processor

until C>tenabled(ai) holds for some ai;
J. ~ min{i : C>tenabled(ai) holds};
perform a;;
halt.

The fact that in the omissions model the information in V (p, l) is essentially all that
is common knowledge at a given point has interesting implications about the type of
simultaneous actions that can be performed in this model. For example, recall that in
the traditional simultaneous Byzantine agreement or consensus problems (cf. [PSL], [F],
[DM]), the processors are only required to decide, say, v in case they all start with an
initial value of v. It would be more pleasing, however, if they could decide v whenever
the majority of initial values are v. This is clearly impossible, since some processors may

34

be silent throughout the run. However, consider a protocol for simultaneous Byzantine
agreement which is similar to '7c, except that when some enabled(ai) becomes common
knowledge (which happens exactly when V becomes non-empty), the processors choose
the value that appears in the majority of the initial values recorded in V (p, l) as their
decision value. In this case, the processors actually approximate majority fairly well:
If more than (n + t)/2 of the initial values are v, then v will be chosen. In fact, we can
show that the approximation is bad only in runs in which agreement is obtained early.
In particular, if agreement cannot be obtained before time t + 1 (this would happen
in runs p for which V (p, l) contains only empty views for every l :::; t), then the value
agreed upon would be the majority value in case more than n/2 + 1 of the processors
have the same initial value. Furthermore, a weak protocol for (exact) majority does
exist: A protocol that either decides that there was a failure or decides on the true
majority value.

Since messages from faulty processors can convey new information about the failure
pattern, such messages do affect the construction. Therefore, the behavior of faulty
processors, even after they have been discovered to be faulty, plays an important role
in determining what facts become common knowledge and when. In the crash failure
model, however, a failed processor does not communicate with other processors after
its failing round and has little impact on what facts become common knowledge. This
is an essential property of the omissions model operationally distinguishing it from the
crash failure model.

We note, however, that all of the analysis in this subsection applies to the crash
failure model, with all of the proofs applying verbatim when restricted to the crash
failure model. We thus have:

Proposition 24: In the crash failure model, (p, l) f= C NIP iff it is the case that
(p', l) f= rp for all p' satisfying V (p, l) = V (p', l).

Thus, the set V (p, l) completely characterizes what facts are common knowledge at
the point (p, l) in the crash failure model as well. Since the same proofs show that the
construction characterizes the connected components of the similarity graph in both
the omissions and the crash failure model, the similarity graph in the omissions model is
simply an extension of the similarity graph in the crash failure model, maintaining the
same connected components. This implies that in a run of the omission model having
a failure pattern consistent with the crash failure model, exactly the same facts about
the input and the existence of failures are common knowledge at any given time in
both the crash failure and the omissions model. (However, as a result of the difference
in the types of failures possible in the two failure models, different facts about the
failure pattern are common knowledge at the corresponding points.) Ruben Michel has
independently characterized the similarity graph in variants of the crash failure model

35

(cf. [Mi]). For the crash failure model itself, he has an alternative construction that
also characterizes the connected components of the similarity graph.

As in the omissions model, it follows from Proposition 24 that our construction can
be used to derive efficient optimal protocols for simultaneous choice problems in the
crash failure model, thus slightly extending [DM]. We therefore have the following:

Corollary 25: Let C be an implementable, practical simultaneous choice. In the
crash failure model, there is a polynomial-time optimal protocol for C.

As a final remark, let k; and G; be the intermediate results of beginning the con
struction at the point (p,l), and denote v(G;,p,k;) by Vi. Consider the operator c
defined by c (Vi) = Vi+i for all i. We find it interesting that V, which is the greatest
fixpoint of the operator c, characterizes the facts <.p for which C >1'P holds, where we
know from [HM] that C >1'P is the greatest fixpoint of X - <.p /\ E.NX.

6.2 Receiving Omissions

In the omissions model, faulty processors fail only to send messages. In this subsection,
we consider the symmetric receiving omissions model, in which faulty processors fail
only to receive messages. While at first glance these models seem very similar, they
are actually extremely different. In particular, we will see that testing for common
knowledge in this model becomes trivial. As a result, there are simple, efficient optimal
protocols for practical simultaneous choice problems in this model.

One intriguing difference between the omissions model and the receiving omissions
model is the following. We have seen in the omissions model that in some cases a fact
(for example, the arrival of a "start" signal) does not become common knowledge until
as many as t + 1 rounds after it is first determined to hold. Intuitively, the attainment
of common knowledge is delayed by the possibility that a processor might fail to send a
message determining that the fact holds. However, in the receiving omission model even
faulty processors send all message required by the protocol. Since nonfaulty processors
receive all messages sent to them, in runs of a full-information protocol all nonfaulty
processors have a complete view of the first k rounds at time k + 1. We can thus show
the following:

Theorem 26: Let <.p be a fact about the first k rounds. In the receiving omissions
model, (p, k) I= <.p iff (p, k + 1) I= C >1'P·

The proof of this result depends on the notion of a fact being valid at time k: a fact <.p

is said to be valid (in the system) at time k if for all runs p we have (p, k) I= <.p. We
remark that the following variant of the induction rule holds:

36

If rp ::J Esrp
then rp ::J Cs rp

is valid at time k,
is valid at time k.

Proof: Since rp is a fact about the first k rounds, (p,k) f= rp iff (p,k+l) f= rp. Thus,
it is enough to show that (p, k + 1) f= rp iff (p, k + 1) f= C >1rp. Clearly, (p, k + 1) f= C >1rp
implies (p, k + 1) f= rp. Conversely, suppose (p, k + 1) f= rp. During round k + 1 in p
every processor sends its entire view to all processors, so at time k + 1 all nonfaulty
processors have a complete view of the first k rounds of p. Since cp is a fact about
the first k rounds, (p, k + 1) f= E)lrp. We have just shown that rp ::J E)lcp is valid at
time k + 1, so cp ::J C >1rp is valid at time k + 1 as well. Thus, (p, k + 1) f= rp implies
(p,k + 1) F C)lrp. D

As a consequence of Theorem 26, efficient optimal protocols for practical simulta
neous choice problems are very simple in this model.

Corollary 27: Let C be an implementable, practical simultaneous choice. In the
receiving omissions model, there is a polynomial-time optimal protocol for C.

Proof: We claim that (p,l) f= C)lenabled(ai) iff 9(p,l- 1) ::J enabled(ai) is valid in
the system. Since C is a practical simultaneous choice problem, determining whether
9 (p, l - 1) ::J enabled(ai) is valid in the system can be done in polynomial time. Since
all nonfaulty processors know 9(p, l - 1) at (p, l), this will yield a polynomial-time
implementation of a test for common knowledge of enabled(ai)· Thus, Theorem 7 will
imply that fc is a polynomial-time optimal protocol for C. Now, suppose 9(p,l-1) ::J

enabled(ai) is valid in the system. Theorem 26 implies that 9(p,l - 1) is common
knowledge at (p,l), and it follows that (p,l) f= C>lenabled(ai)· Conversely, suppose
(p,l) f= C>lenabled(ai). Let ~be a run satisfying 9(p,l - 1). A proof similar to the
base case of Lemma 11 shows that (p,l) ,...., (~,l). Since (p,l) f= C)lenabled(ai), it
follows that (~,l) f= enabled(ai)· Thus, 9(p,l-1) ::J enabled(ai) is valid in the system,
as desired. D

The results of this section point out a number of interesting differences between
the omissions model and the receiving omissions model. For example, consider the dis
tributed firing squad problem. First, Theorem 26 implies that all nonfaulty processors
are able to fire in the receiving omission model exactly one round after the first "start"
signal is received. Recall that in the omissions model, firing may delayed as many as
t + 1 rounds. Second, since a faulty processor p might fail to receive all messages, it
is not possible to guarantee that p will ever fire when a "start" signal is received by
a nonfaulty processor. In the omissions model we have shown that it is possible to
guarantee that all processors perform any action performed by the nonfaulty proces
sors. Finally, notice that faulty processors may sometimes be unable to halt, even after
the nonfaulty processors have fired: A processor p receiving no messages or "start"

37

signals can never halt since at every point it is possible it will be the only processor
in the system to receive a "start" signal. In this case, optimal protocols must require
the nonfaulty processors to fire one round later, and hence p must be able to send
this information to the nonfaulty processors. In contrast, in the omissions model it is
possible to guarantee that all processors halt as soon as an action is performed in the
system. These remarks show that while at first glance the assignment of responsibil
ity for undelivered messages to sending or to receiving processors may seem arbitrary,
the assignment has a dramatic effect on when facts become common knowledge, and
hence on the behavior of optimal protocols. Since such a simple modification of the
omissions model results in the collapse of the combinatorial structure underlying the
model (witness Theorem 26), we consider this to be an indication that the omissions
model is not a robust model of failure.

6.3 Generalized Omissions

We have just seen that whether sending or rece1vmg processors are responsible for
undelivered messages has a dramatic effect on the structure of the omissions model.
Perhaps a more natural model of failure is the generalized omissions model, in which
a faulty processor may fail both to send and to receive messages. This section is con
cerned with the design of optimal protocols for simultaneous choice problems in this
model. We have seen that Theorem 7 implies the protocol 7, is an optimal proto
col in this model, and that Theorem 10 implies this protocol can be implemented in
polynomial-space. As in previous sections, the remaining question is whether there
are efficient optimal protocols in this model. The fundamental result of this section
is that testing for common knowledge in the generalized omissions model in NP-hard.
Using the close relationship between common knowledge and simultaneous actions, we
obtain as a corollary that optimal protocols for most any simultaneous choice problem
in this model require processors to perform NP-hard computations. Consequently, for
example, in this model there can be no efficient optimal protocol for simultaneous Byz
antine agreement or the distributed firing squad problem. This is a dramatic difference
between the generalized omissions model and the more benign failure models, where,
as we have seen, efficient optimal protocols do exist.

One important difference between the generalized omissions model and simpler vari
ants of the omissions model is that in the generalized omissions model undelivered
messages do not necessarily identify the set of faulty processors, but merely place con
straints on their possible identities: Either the sender or the intended receiver of every
undelivered message must be faulty. The faulty processors must therefore induce a
"vertex cover" of the undelivered messages. Recall that in our analysis of the omis
sions failure model, determining the number and the identity of the faulty processors
given the labeled communication graph of a point played a crucial role in characterizing

38

the facts that are common knowledge at a point. In that model, a processor is known
to be faulty iff it is known that a message it was supposed to send was not delivered,
a fact easily determined from the labeled communication graph. In the generalized
omissions model, however, even determining the number (and not necessarily the iden
tities) of processors implicitly known to be faulty essentially involves computing the
size of the minimal vertex cover of a graph, a problem known to be NP-complete (cf.
[GJ]). It is with this intuition that we now proceed to show that determining whether
certain facts are common knowledge is computationally prohibitive in the generalized
omissions model, assuming P:f'.:NP.

However, in order to study the complexity of testing for common knowledge in the
generalized omissions model in a meaningful way, we are once again faced with the need
to restrict our attention to a class of facts that includes all of the facts that may arise
in natural simultaneous choice problems, and excludes anomalous cases. For example,
if r.p is valid in the system, then so is C "r.p, and testing whether r.p is common knowledge
is a trivial task. On the other hand, one can imagine facts involving excessive com
putational complexity of a type irrelevant to simultaneous choice problems. Consider,
for instance, a fact r.p with the property that the communication graph of any point
satisfying r.p encodes information allowing the solution of all problems in NP of size
smaller than the number of processors in the system. Whereas it seems unlikely that
such a fact exists, this fact is probably very hard to prove, and it is definitely not the
business of this paper to do. We are therefore led to make the following restriction.
A fact r.p is said to be admissible within a class of systems running a full-information
protocol if (i) for all systems within this class neither r.p nor •r.p is valid in the system,
and (ii) there is a polynomial-time algorithm explicitly constructing for each system
a labeled communication graph g (p, l) of minimal length having the property that
9 (p, l) ::J r.p is valid in the system. We say that a simultaneous choice problem C is
admissible if each condition enabled(ai) is admissible within the class of systems deter
mined by a full-information protocol and C. We claim that any natural simultaneous
choice is admissible. We can now state the fundamental result of this section which
says, loosely speaking, that testing for common knowledge of admissible facts 'P1, ... , 'Ps

is NP-hard.

Lemma 28: Let 'Pu ... , r.p 8 be admissible practical facts within a class of systems
running a full-information protocol in the generalized omissions model. Given the graph
9(p,l) of a point in such a system with n > 2t, the problem of determining whether
(p, l) I= vi c N'Pi is NP-hard.

The proof of Lemma 28 will follow shortly. Notice, however, that tis variable in the
statement of this lemma, and in general may be O(n). The proof of this result will not
apply for a fixed t, nor to cases in which tis restricted, say, to be O(lg n). In any case, it

39

will follow that any standard implementation of our optimal knowledge-based protocols
must be computationally intractable, unless P=NP. It is natural to ask whether this
inefficiency is merely the result of having programmed our protocols using tests for
common knowledge. It is conceivable, for instance, that there are optimal protocols
for admissible simultaneous choice problems in the generalized omissions model that
are computationally efficient. Intuitively, however, in order to perform a simultaneous
action, an optimal protocol P must essentially determine whether any of the conditions
enabled(a;) is common knowledge. Corollary 6 implies that such a condition becomes
common knowledge during the corresponding run of a full-information protocol as soon
as it does during a run of P. Thus, P must essentially determine whether such a fact
is common knowledge during the corresponding run of a full-information protocol 1.
Since Lemma 28 implies that this problem is NP-hard, computing the function P must
be NP-hard as well. We now make this argument precise.

Recall that a protocol is formally a function mapping n, t, and a processor's view
to a list of the actions the processor should perform, followed by a list of the messages
it is required to send in the following round. We say that a protocol is communication
efficient if in a system of n processors the size of the messages each processor is required
to send during round l is polynomial in n and l. In the following result we show that the
problem of computing the function corresponding to a communication-efficient optimal
protocol is NP-hard. Hence, no such protocol can be computationally efficient.

Theorem 29: Let P be a communication-efficient, optimal protocol for an admissible,
practical simultaneous choice C. The problem of computing (the function) P is NP
hard.

Proof: Let E = {E(n, t) : n;::: t + 2} be the class of systems determined by C and
a full-information protocol. We will exhibit a Turing reduction from the problem of
Lemma 28 to the problem of computing P; that is, given the graph 9 (p, l) of a point
(p, l) of a system E(n, t) where n > 2t, we will show how to use P to determine in
polynomial time whether (p,l) f= V;C.Nenabled(a;). Since C is an admissible, practical
simultaneous choice, each condition enabled(a;) must be an admissible, practical fact
within E. It follows by Lemma 28 that determining whether (p, l) f= V; C N enabled(a;)
is NP-hard. Thus, having exhibited the proposed Turing reduction, we will have shown
that the problem of computing P is NP-hard.

Notice that C must be implementable since P is a protocol for C. Thus, Theorem 7
implies that le is an optimal protocol for C. Let p and ~ be corresponding runs of fc

and P, respectively. It follows from the definition of le that (p, l) f= V; C N enabled(a;)
iff the nonfaulty processors perform a simultaneous action no later than time l in p.

Since le and P are both optimal protocols for C, the nonfaulty processors perform
simultaneous actions at the same times during p and~· Since n > 2t, there must be at

40

least t + 1 nonfaulty processors in both runs, so the nonfaulty processors simultaneously
perform an action no later than time t in either run iff t + 1 processors do so. Therefore,
(p, t) f= V1 C >1 enabled(at) iff t + 1 processors perform a simultaneous action no later
than time t in ~.

One algorithm for determining whether t + 1 processors do perform a simultaneous
action no later than time t in ~ is to construct the view of each processor in ~ at each
time k before time t, and use P to determine when processors are required to perform
actions. Suppose we have constructed the view of each processor at time k-1 in~; let us
consider the problem of constructing the view of a processor pat time k. Processor p's

view at (~, k) consists of p's name, the time k, a list of the messages received by p during
the first k rounds of~' and a list of the input received by p during the first k rounds of~
Recall that since p is a run of full-information protocol, the graph g (p, l) is actually an
encoding of the operating environment during the first l rounds of p, and hence also
of~· Given the views of all processors at time k - 1, the protocol P determines what
messages each processor is required to send to p, and g (p, l) determines which of these
messages are actually delivered to p. Since P is communication-efficient, each of these
messages is of size polynomial inn and k. Furthermore, the input received by p during
round k labels the node (p, k) of g(p, l). Since C is practical, this input is of constant
size. Thus, given each processor's view at time k-1, we can use the graph g(p,l) and
an oracle for P to construct the view of each processor at time k in polynomial time.
(An oracle for P is an oracle that, given the view of a processor p at a point (p, l), in
one step determines what actions P requires p to perform at time l, and constructs the
messages P requires p to send during round l + 1.)

Consider the following algorithm:

action_performed +- false;
k +- O;
repeat

for all processors p do
determine whether P requires p to perform any action at time k, and
construct the messages P requires p to send during round k + 1;

endfor
if t + 1 processors perform actions at time k

then action_perf or med +- true;
k +- k + 1;

until k > l or action_performed;

if action_performed

then halt with "yes"
else halt with "no".

From the previous discussion it is clear that given any oracle for P, this algorithm

41

determines in polynomial time whether t + 1 processors perform actions simultaneously
no later than time l in~' and hence whether (p,l) F vi C.Nenabled(ai)· 0

As an immediate corollary of Theorem 29, we have the following:

Corollary 30: Let C be an admissible practical simultaneous choice problem. If there
is a polynomial-time optimal protocol for C, then P=NP.

Corollary 30 implies that optimal protocols for simultaneous choice problems as
simple as the distributed firing squad problem or simultaneous Byzantine agreement
are computationally infeasible in the generalized omissions model, assuming Pf:. NP. In
fact, we do not know whether these problems can be implemented in polynomial time
even using an NP oracle. The best we can do in the generalized omissions model is im
plement them using polynomial-space computations, as in the proof of Theorem 10. We
consider the question of determining the exact complexity of implementing admissible
practical simultaneous choice problems in this model an interesting open problem.

We now proceed to prove Lemma 28. First, however, we state a result that will
be very useful in the proof of Lemma 28. Roughly speaking, it says that if a group of
processors can (jointly) prove that they are nonfaulty, then their views become common
knowledge at the end of the following round.

Lemma 31: Let S be a set of processors and let S = P - S. Let p be a run of a
full-information protocol. If the processors in S implicitly know at (p, l - 1) that S
contains t faulty processors, then the joint view of S at (p, l - 1) is common knowledge
at (p, l).

Proof: Let rp = "Vis the joint view of Sat time l - 1", where V = v(S,p,l - 1).
Suppose (p', l) f= rp. Given that S has the same (joint) view at (p, l - 1) and at
(p', l-1), and since S implicitly knows at (p, l- 1) that S contains t faulty processors,
S implicitly knows the same at (p', l - 1). In particular, the processors in S must
be nonfaulty in p' and each must successfully send its view to all processors during
round l of p', and since all nonfaulty processors will receive these messages, we have
(p',l) f= E.N'P· It follows that rp :::) E.Nrp is valid at time l, and the induction rule
implies rp :::) C .N'P is valid at time l as well. Thus, (p, l) f= rp implies (p, l) f= C .N'P· 0

(We note in passing that a converse to Lemma 31 is also true: If the joint view at
time l - 1 of a set S of processors is common knowledge at time l, then the processors
in some set S' ~ S must implicitly know at time l - 1 that there are t faulty processors

-=I
among the members of S .)

In addition to Lemma 31, the following result, analogous to Lemma 11 in the
omissions model, will be of use in the proof of Lemma 28.

42

Lemma 32: Let p and p' be runs differing only in the (faulty) behavior displayed by
processor p after time k, and suppose no more that f processors fail in either p or p'.
If l- k ~ t + 1 - f, then (p,l),..., (p',l).

Proof: The proof is analogous to the proof of Lemma 11, with the added observation
that if p sends no messages after (an arbitrary) time k in !:", then (!:", l) ,..., (!:"', l) where !:"1

differs from !:" in that p receives messages from an arbitrary set of processors during
round k. D

As we have already mentioned, the proof of Lemma 28 involves a reduction from
the Vertex Cover problem (cf. [GJ]). This is the problem of determining, given a graph
G = (V, E) and a positive integer k, whether G has a vertex cover of size k or less; that
is, a subset V ~ V such that !VI~ k and, for each edge {v,w} EE, at least one of v
and w belongs to V.

Theorem [Karp]: Vertex Cover is NP-complete.

We now prove Lemma 28.

Proof of Lemma 28: We will exhibit a Turing reduction from Vertex Cover to
the problem of testing for common knowledge of cp 1 , ••• , 'Pa, and it will follow that this
problem is NP-hard. Since every graph G = (V, E) is IV !-coverable, the following is an
algorithm for Vertex Cover:

m ~!VI;
w bile G has no vertex cover of size m - 1 do

m ~ m-1;
if m ~ k

then return "G has a vertex cover of size k"
else return "G has no vertex cover of size k".

To implement this test, it is enough to implement a test that, given an m-coverable
graph G, determines whether G is not (m - !)-coverable. Every graph G = (V, E)
clearly has a vertex cover of size IV I - 1. In addition, it is possible to determine
whether G has a vertex cover of size IV I - 2 in polynomial time. Similarly, it is easy
to determine whether G has a vertex cover of size 0 in polynomial time. We show that
if 1 ~ m ~ IV I - 2 and G is m-coverable, then it is possible to construct in polynomial
time a graph 9 (p, l) such that (p, l) f= Vi C >1'Pi iff G is not (m -1)-coverable. The point
(p, l) will be a point of a system E(n, t) with n > 2t from the class under consideration.
Thus, given an oracle for testing for common knowledge of cp 1 , ••• , 'Pa, we will have a

43

--~~:: :;-1c1
minimal U

9 I e--~~~~

determining :
/Pi I }

~-----.----+------s-- t + 1

k k+l l=k+3

Figure 5: Embedding a graph G in a run p.

polynomial-time test for the (m - 1)-coverability of G. It will follow that testing for
common knowledge of 'PH ... , 'Pa is NP-hard.

Fix a graph G = (V, E) and an integer m satisfying 1 ~ m ~ IV I - 2. Let n =
IVl+m+3 and t = m+2, and let E(n, t) be a system from the class under consideration.
Notice that since IVI ~ m + 2, we have n > 2t. Since each fact 'Pi is admissible, we
can explicitly construct in polynomial-time a labeled communication graph (of a point
in E(n, t)) of minimal length determining 'Pi· Of these graphs, let g be one of minimal
length, say of length k. Let p be a run of E (n, t), illustrated in Figure 5, satisfying
the following conditions: (i) the input received in the first k rounds of p is the same
as in g, and no input is received after time k; (ii) all messages in the first k rounds
are delivered; (iii) in round k + 1, the only undelivered messages are as follows: no
message is delivered from processor Pv to Pw in round k + 1 of p iff there is an edge
from v to w in G (that is, the graph G is represented by the undelivered messages
during round k + 1); (iv) two additional processors Ji and / 2 are silent from time k + 1
in p, and all other messages after time k + 1 are delivered; and (v) a set S oft+ 1
additional processors do not fail in p. Since G has a vertex cover V of size m, one failure
pattern consistent with the undelivered messages in p is that p 11 is faulty for every v E V
(accounting for the undelivered messages during round k + 1 of p) and that both Ji
and 12 are faulty. Given that t = m + 2 processors fail in this failure pattern, there
is a run p of E(n, t) satisfying the required conditions. Since the graph g determining
the input of g (p, k) can be constructed in polynomial time, setting l = k + 3, the
graph g (p, l) can be constructed in polynomial time as well. It remains to show that
(p,l) f= Va C){<pi iff G is not (m -1)-coverable.

Suppose G has no vertex cover of size m - 1, and let F be the set of processors
failing in p. Since Ji and / 2 must be faulty (each fails to the t + 1 processors in S),
F' def F - {fi, 12} must account for every undelivered message during round k + 1.
If there is an edge from v to w in G, then no message from Pv to Pw is delivered in
round k + 1, and one of Pv or Pw must be in F'. It follows that F' must induce a vertex

44

cover of G. Since G has no vertex cover of size m - 1, F' must contain at least m

processors, and F at least t = m + 2. Thus, the processors in S implicitly know at time
k + 2 that their complement S = P - S contains t faulty processors. By Lemma 31,
their views at time k + 2 must be common knowledge at time k + 3. These views
contain a complete description of g (p, k), and hence the identity of g (p, k) is common
knowledge at (p, l). Recall that g was chosen to be a graph determining 'Pi for some i.
If g does not specify a failure, then g(p,k) = g, and it follows that (p,l) f= C>t'Pi· On
the other hand, if g does specify a failure, then 'Pi is determined by the input to the
first k rounds of g and the existence of a failure. Notice that the failure of / 1 and / 2 is
also recorded in the view of S at time k + 2, and hence is also common knowledge at
(p, l). Thus, the existence of a failure is common knowledge at time £, and it follows
that (p,l) F C>lcpi. In either case, we have (p,l) F vi C>lcpi.

Conversely, suppose G does have a vertex cover of size m - 1. Without loss of
generality, at most t - 1 processors fail in p. First, we claim that (p, l) ,.., (~, l) where ~
is a failure-free run with the input of p. Since Ji and f2 fail only after time k + 1 = £-2,
two applications of Lemma 32 imply that (p, £) ,.... (p', £) where p' differs from p in that f 1

and /2 do not fail in p'. Since at most t - 3 processors fail in p' and k = l - 3, by
Lemma 32 we have (p', l) ,...., (~, £). Second, we claim that for each 'Pi there is a run T/i

not satisfying 'Pi that differs from g only after time k - 1. If k = 0, then since 'Pi
is admissible and hence not valid in the system, such a run must certainly exist. On
the other hand, if k > 0, then since g was chosen to be a labeled communication
graph of minimal length determining <p; for some cp;, such a run must exist in this
case as well. Now, let TJ; be a run having the input of T/i, in which no processor
fails before time £, and in which processors become silent after time £ iff there is a
failure in T/i· Since 'Pi is a fact about the input and existence of failures, and since T/i

does not satisfy 'Pi, neither does TJ~. Let f and f]~ be runs of 7 in the omissions model
having the operating environment of~ and T/;, respectively. (Notice that these operating
environments are actually operating environments of the omissions model.) Notice that
no processor fails before time l in either for fJ;. It follows that G(f, l) = G(?];, £), and
that k(f, l) = k(?]!, l). We denote them by G and k, respectively. Since t = m + 2
and m ~ 1, we have that t ~ 3. Thus, k = l - (t + 1) :::; l - 4 = k - 1. Recall
that ~ and fJ; have the same input (and no failures) through time k - 1. It follows
that V(f,l) = V(?];,t). It follows by Lemma 19 that (f,l) ,...., ('7:,t) in the omissions
model, and hence that (~, l) ,....., (11:, l) in the generalized omissions model as well. Since
(p, l) ,.., (s", l), it follows that for each 'Pi we have (p, l) ,.... (TJL l) and (TJL l) ~ 'Pi.
Therefore, for each 'Pi we have (p,l) ~ C>tcpi, and hence (p,l) ~ ViC>t'Pi· D

We have seen that, as a result of the uncertainty about the failure pattern, the com
plexity of determining whether admissible facts are common knowledge is dramatically
greater in this model than in more benign models. It is conceivable, however, that this
gap in complexity is due to the fact that faulty processors may fail both to send and

45

to receive messages, and not merely due to the uncertainty about the failure pattern.
We can show, however, that it is precisely due to this uncertainty that we observe this
complexity gap. Consider the closely related failure model we have termed generalized
omissions with information, a model differing from the generalized omissions model in
that a processor not receiving a message can determine whether it or the sender is at
fault. We can show that the construction used in the omissions model may also be
used in this model to yield a set of views V (p, l) completely characterizing what facts
are common knowledge at the point (p, l).

Proposition 33: In generalized omissions with information, we have (p, l) f= C){<p

iff (p', l) f= <p for all p' satisfying V (p', l) = V (p, l).

All of the proofs in the omissions model hold when generalized to this model, with
the exception that the construction must be started with a nonfaulty processor. (In
particular, Lemma 16 holds only when the processors p and q are processors that do not
fail to receive messages.) This exception says that faulty processors may not be able to
perform all actions performed by the nonfaulty processors, but this is no surprise since
the same is true in the receiving omissions model. Furthermore, the computation of the
sets B, in the construction now depends not only on the undelivered messages, but also
on the additional information that receiving processors obtain regarding blame for the
undelivered messages. As in the omissions model, this construction yields a method of
deriving efficient tests for common knowledge of certain facts. Thus, it is again possible
to design efficient optimal protocols:

Theorem 34: Let C be an implementable practical simultaneous choice. In general
ized omissions with information, there is a polynomial-time optimal protocol for C.

This shows that it is precisely the uncertainty about the failure pattern that is respon
sible for the observed gap in complexity, and not merely the fact that faulty processors
may fail both by failing to send and to receive messages.

The uncertainty about the failure pattern in the generalized omissions model adds a
new combinatorial structure to the similarity graph in this model that does not exist in
other variants of the omissions model. Since it is possible to assign failure to processors
in a number of different ways consistent with a pattern of undelivered messages, it is
possible to play "pebbling games" with the failure pattern when constructing paths in
the similarity graph, showing that one point is similar to another point by alternatively
assigning responsibility for undelivered messages to the sender and to the receiver. In
fact, in addition to increasing the difficulty of determining whether a fact is common
knowledge at a point, the following theorem shows that the this new combinatorial
structure has interesting effects on when facts become common knowledge.

46

Theorem 35: In the generalized omissions model:

a. If n ::::; 2t then the only facts that are common knowledge at time 2 are facts valid
at time 2.

b. If n > 2t then some facts not valid at time 2 do become common knowledge at
time 2.

Proof: For part (a), it is enough to show that (p,2),...., (p',2) for all runs p and p'.

First we show that (p, 2) ,...., (77, 2) where 77 is the failure-free run with the input
of p, and that (p', 2) - (77 1

, 2) for the analogous failure-free run 77 1 with the input of p'.
Suppose that B and Gare the sets of faulty and nonfaulty processors, respectively, in p.

Without loss of generality, we may assume that IBI ::::; t and IGI ::::; t. Using Lemma 32,
we see that (p, 2) - (~, 2) where ~ differs from p in that processors in B are silent
during round 2 of~· The view of G at (~,2) is independent of the view of Bat (~, 1),
so (~, 2) - (~', 2) where ~' differs from ~ in that processors in B receive messages from
all processors during round 1 of~'. Again, using Lemma 32, we see that (~',2) - (~",2)

where ~" differs from ~' in that processors in B do not fail in round 2 of ~11 • The only
failures remaining in ~11 are failures of processors in B to send to processors in G during
round 1. It is therefore possible to reverse the roles of B and G in this argument to
show that (~", 2) - (77, 2) where 77 is the failure-free run with the input of ~11 (and of
hence p). By the transitivity of ",....,," (p, 2) - (77, 2). An analogous argument shows
that (p',2) - (77 1,2).

Now we show that (77,2) - (77 1,2) for all failure-free runs 77 and 77 1
• Silence the

processors in a set B of t processors during the run 77 to yield a run ~, and silence
the processors in the set B' = P - B of the remaining processors during the run 77 1 to
yield a run~'· By the previous paragraph, (77,2) - (~,2) and (77 1,2) - (~',2). Change
the input received by processors in B during the run ~ to that received in ~' to yield
a run €, and change the input received by processors in B' during the run ~, to that
received in~ to yield a run€'. Clearly, (~,2) - (€,2) and (~',2) - (€',2). In addition,
by the previous paragraph, (€,2),...., (€',2). Thus, (77,2) - (77 1,2), as desired.

For part (b), let B = {pi, ... ,pt} and G = {Pt+i, ... ,pn}· Let cp be the fact "each
processor in B fails to send to every processor in G during round 1." We show that
cp ~ C>lcp is valid at time 2. Notice that •cp ~ •C>lcp and °C>1cp ~ C>1('C>1cp) are
valid. Since, as we shall soon show, cp ~ C >1'P is valid at time 2, so are •C >1'P ~ •cp
and C>1('C>1cp) ~ C>1(•cp). It follows that •cp ~ C>1(•cp) is also valid at time 2. Thus,
either cp or •cp is common knowledge at time 2, yet neither is valid at time 2. Now,
let p be a run satisfying cp. Since n ~ 2t, there are at least t + 1 processors in G, and
none of them receives a message from any of the t processors in B during round 1, so G
implicitly knows at time 1 that B contains t faulty processors. By Lemma 31, the joint

47

view of the processors in G at time 1 is common knowledge at time 2. Since t.p follows
from the joint view of G at time 1, t.p is common knowledge at time 2. Thus, t.p => C Jtf.P

is valid at time 2. D

As a result of Theorem 35, when n :::;: 2t no nontrivial simultaneous choice can
be performed at time 2 in this model. We remark that this is the first evidence of
behavior in such a benevolent failure model depending on the ratio of n and t. In
addition, Theorem 35 tells us that nonvalid facts do not become common knowledge
at time 2 if n :S: 2t, yet we know that such facts do become common knowledge in
more benign models. As a consequence, protocols that are optimal in the generalized
omissions model will not be optimal in the omissions model, or even in the generalized
omissions model with information.

The generalized omissions model therefore seems to be a natural failure model that
already displays some of the complex behavior of the more malicious models, while still
involving only benevolent processors that faithfully follow their protocols. We believe
that this model is therefore a natural candidate for further study as an intermediate
model on the way to understanding the mysteries of fault tolerance in truly malicious
failure models.

7 Conclusions

This paper applies the theory of knowledge in distributed systems to the design and
analysis of fault-tolerant protocols for a large and interesting class of problems. This is
a good example of the power of applying reasoning about knowledge to obtain general,
unifying results and a high-level perspective on issues in the study of unreliable systems.
We believe that reasoning about knowledge will continue to be an effective tool in
studying the basic structure and the fundamental phenomena in a large variety of
problems in distributed computing.

Given the effectiveness of a knowledge-based analysis in the case of simultaneous
actions (see also [DM]), it would be interesting to know whether such an analysis can
shed similar light on the case of eventually coordinated actions. Dolev, Reischuk, and
Strong show that the problem of performing eventually coordinated actions in such
synchronous systems is quite different from that of performing simultaneous actions
(cf. [DRS]). In addition to common knowledge, an analysis of eventually coordinated
actions may be able to make good use of the notion of eventual common knowledge
(cf. [HM], [Mo]). We note that it is possible to show that for eventual choice problems
there do not, in general, exist protocols that are optimal in all runs. For example,
one can give two protocols for (eventual) Byzantine agreement with the property that
for every operating environment one of these protocols will reach Byzantine agreement
(i.e., all processors will decide on a value) by time 2 at the latest. However, if t > 1,

48

it is well known that no single protocol can guarantee that agreement will be reached
by time 2 in all runs. What is the best notion of optimality that can be achieved in
eventual coordination?

We provide a method of deriving an optimal protocol for any given implementable
specification of a simultaneous choice problem. However, in this work, we have com
pletely sidestepped the interesting question of characterizing the problems that are and
are not implementable in different failure models. We believe that a general analysis
of the implementability of problems involving coordinated actions in different failure
models will expose many of the important operational differences between the mod
els. As an example, our specification of the distributed firing squad problem in the
introduction is implementable in the variants of the omissions model, but is not imple
mentable in more malevolent models, in which a faulty processor can falsely claim to
have received a "start" message and otherwise seem to behave correctly (see [BL] and
[CDDS] for definitions of versions of the firing squad problem that are implementable
in the more malicious models).

In the generalized omissions model, we have shown how to derive optimal pro
tocols for nontrivial simultaneous choice problems, requiring processors to perform
polynomial-space computations between consecutive rounds. We have also shown an
NP-hard lower bound for any communication-efficient protocol for such a problem that
is optimal in all runs. Determining the precise complexity of this task is a nontrivial
open problem, due to the interesting combinatorial structure underlying the generalized
omissions model. It would also be interesting to extend our study to more malicious
failure models, such as the Byzantine and the authenticated Byzantine models (cf. [F]).
It is not immediately clear whether the notion of a failure pattern can be defined in
these models in a protocol-independent fashion. Thus, it is not clear that the notion
of optimality in all runs is well defined in such models. If such definitions are possible,
we believe that the NP-hardness result from the generalized omissions model should
extend to these models. (Our proof does show that testing for common knowledge in
runs of the full-information protocol 'f in both models is NP-hard.) Capturing the pre
cise combinatorial structure of the similarity graph in these models is bound to expose
many of the mysterious properties of the models. We believe that this is an important
first step in understanding these models.

As we have seen, there are no computationally-efficient optimal protocols for simul
taneous choice problems in the generalized omissions model. Since it is unreasonable
to expect processors to perform NP-hard computations between consecutive rounds of
communication, it is natural to ask what is the earliest time at which such actions can
be performed by resource bounded processors (e.g., processors that can perform only
polynomial-time computations). Are there always guaranteed to be optimal protocols
for such processors? How can they be derived? The analysis of this question is no
longer as closely related to the question of when facts about the run become common

49

knowledge. It seems that the information-based definition of knowledge that we pre
sented in Section 3, used in many other papers as the definition of knowledge in a
distributed system (cf. [CM], [DM], [FI], [HM], and [PR]), is not appropriate for rea
soning about such questions. A major challenge motivated by this is the elaboration
of the definition of knowledge presented in Section 3 to include notions of resource
bounded knowledge that would provide us with appropriate tools for analyzing such
questions. Such a theory would provide notions such as polynomial-time knowledge and
polynomial-time common knowledge, which would correspond to the actions and the
simultaneous actions that polynomial-time processors can perform. Note that the fact
that (suboptimal) polynomial-time protocols for the simultaneous Byzantine agreement
problem exist even in the more malicious failure models imply that, given the right no
tions, many relevant facts should become polynomial-time common knowledge. Much
work is left to be done.

Acknowledgments

We are greatly indebted to Oded Goldreich for his generous collaboration on a lemma
used in a previous version of the proof of Lemma 28. We are also indebted to Joe
Halpern for a thorough reading of a previous version of this paper. We thank Brian
Coan, Oded Goldreich, Amos Israeli, Nancy Lynch, Moshe Vardi, and Jennifer Welch
for comments that improved the presentation of this work. We also thank Paul Beame,
Cynthia Dwork, Alan Fekete, Vassos Hadzilacos, Michael Merritt, Albert Meyer, David
Peleg, and Larry Stockmeyer for stimulating discussions on the topic of this paper.
This research was performed while both authors were at MIT. The work of the first
author was primarily supported by an IBM Post-doctoral fellowship. The work of
both authors was supported by the Office of Naval Research under contract N00014-
85-K-0168, by the Office of Army Research under contract DAAG29-84-K-0058, by the
National Science Foundation under grant DCR-8302391, and by the Defense Advanced
Research Projects agency (DARPA) under contract N00014-83-K-0125.

References

[BL] J. Burns and N. A. Lynch, The Byzantine Firing Squad Problem, MIT Technical Report,
MIT/LCS/TM-275, April 1985.

[CM] K. M. Chandy and J. Misra, How processes learn, Distributed Computing, 1:1, 1986,
pp. 40-52.

[CJ B. Coan, A Communication-Efficient Canonical Form for Fault-Tolerant Distributed Pro
tocols, Proceedings of the Fifth PODC, 1986, pp. 63-72.

50

[CDDS] B. Coan, D. Dolev, C. Dwork, and L. Stockmeyer, The distributed firing squad problem,
Proceedings of the Seventeenth STOC, 1985, pp. 335-345.

[DRS] D. Dolev, R. Reischuk, and H. R. Strong, Eventual is earlier than immediate, Proceedings
of the 29th FOGS, 1982, pp. 196-203.

[DM] C. Dwork and Y. Moses, Knowledge and common knowledge in a Byzantine environ
ment: The case of crash failures. Proceedings of the Conference on Theoretical Aspects
of Reasoning About Knowledge, Monterey, 1986, J.Y. Halpern ed., Morgan Kaufmann,
pp. 149-170. Slightly revised as MIT Technical Report, MIT/LCS/TM-900, July 1986.

[F] M. J. Fischer, The consensus problem in unreliable distributed systems (a brief survey),
Yale University Technical Report YALEU/DCS/RR-279, 1983.

[FI] M. J. Fischer and N. Immerman, Foundations of knowledge for distributed systems,
Proceedings of the Conference on Theoretical Aspects of Reasoning About Knowledge,
Monterey, 1986, J.Y. Halpern ed., Morgan Kaufmann, pp. 171-185.

[FL] M. J. Fischer and N. A. Lynch, A lower bound for the time to assure interactive consis
tency, Information Processing Letters, 14:4, 1982, pp. 183-186.

[GJ] M. R. Garey and D. S. Johnson, Computers and intractability: A guide to the theory of
NP-completeness, W. H. Freeman and Company, San Francisco, 1979.

[Ha] V. Hadzilacos, A lower bound for Byzantine agreement with fail-stop processors, Harvard
University Technical Report TR-21-89.

[HF] J. Y. Halpern and R. Fagin, A formal model of knowledge, action, and communication
in distributed systems, Proceedings of the Fourth PODC, 1985, pp. 224-236.

[HM] J. Y. Halpern and Y. Moses, Knowledge and common knowledge in a distributed envi
ronment, Version of January 1986 is available as IBM research report RJ 4421. Early
versions appeared in Proceedings of the Third PODC, 1984, pp. 50-61; and as IBM re
search report RJ 4421, 1984.

[HM2] J. Y. Halpern and Y. Moses, A guide to the modal logic of knowledge and belief, Pro
ceedings of the Ninth IJCAI, 1985, pp. 480-490.

[Hi] J. Hintikka, Knowledge and Belief, Cornell University Press, 1962.

[HU] J. E. Hopcroft and J. D. Ullman, Introduction to automata theory, languages, and com
putation, Addison-Wesley, Reading, Massachusetts, 1979.

[LF] L. Lamport and M. J. Fischer, Byzantine grenerals and transaction commit protocols,
SRI Technical Report Op.62, 1982.

[Me] M. Merritt, Notes on the Dolev-Strong lower bound for Byzantine agreement, unpublished
manuscript, 1985.

51

[Mi] R. Michel, Attaining common knowledge in synchronous distributed networks, unpub
lished manuscript, 1986.

[Mo] Y. Moses, Knowledge in a distributed environment, Ph.D. Thesis, Stanford University
Technical report STAN-CS-1120, 1986.

[MSF] C. Mohan, H. R. Strong, and S. Finkelstein, Methods for distributed transaction commit
and recovery using Byzantine agreement within clusters of processors, Proceedings of the
Second PODC, 1983, pp. 89-103.

[PR] R. Parikh and R. Ramanujam, Distributed processes and the logic of knowledge (prelim
inary report), Proceedings of the Workshop on Logics of Programs, 1985, pp. 256-268.

[PSL] M. Pease, R. Shostak, and L. Lamport, Reaching agreement in the presence of faults,
JACM, 27:2, 1980, pp. 228-234.

[R] M. 0. Rabin, Efficient solutions to the distributed firing squad problem, private commu
nication.

52

