Introduction to the Theory of Nested Transactions

Nancy Lynch
Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, MA. 02139

Michael Merritt
A. T. and T. Bell Laboratories
Murray Hill, NJ 07974-2070

July 7, 1986

ABSTRACT

A new formal model is presented, for studying concurrency and resiliency properties for nested

transactions. The modecl is used to state and prove correctness of a well-known locking algorithm.

Keywords: nested transactions, transactions, concurrency control, resiliency, databases, scrializability,
orphans

© 1986 Massachusctts Institute of Technology, Cambridge, MA. 02139

This work was supported in part by the Office of Naval Research under Contract N00014-85-K-0168, by the
Officc of Army Rescarch under Contract DAAG29-84-K-0058, by the National Scicnce Foundation under
Grant 1DCR-83-02391, and by the Dcfense Advanced Rescarch Projects Agency (DARPA) under Grant
N00014-83-K-0125. '

Introduction to the Theory of Nested Transactions

, Nancy Lynch
Massachuselts Institute of Technology
Cambridge, Mass.

Michael Merritt
A.T.and T. Bell Laboratories
Murray Hill, New Jersey

Abstract: A new formal model is presented, for studying concurrency and resiliency propertics for nested

transactions. 'The model is used to state and prove correctness of a well-known locking algorithm,

1. Introduction

This paper develops the foundation for a general theory of nested transactions. We present a simple formal
model for studying concurrency and resiliency in a nested environment. ‘This model has distinct advantages
over the many alternatives, the greatest of which is the unification of a subject replete with formalisms,
corrcctness conditions and proof techniques. ‘The authors are presently engaged in an ambitious project to
recast the substantial amount of work in nested transactions within this single intuitive framework. These
pages contain the preliminary results of that project - a description of the model, and its usc in stating and

proving correctness conditions for two variations of a well-known algorithm.

The model is based on /0 automata, a simple formalization of communicating automata. It is not complex
- it is casily presented in a few pages, and casy to understand, given a minimal background in automata
theory. Fach nested transaction and data object is modcelled by a scparate 1/0 automaton, T'hese automata,
the system primitives, issuc requests to and reccive replies from some scheduler, which is simply anothér 170
automaton. Simple syntactic constraints on the interactions of these automata ensure, for example, that no
transaction rcquests the creation of the same child more than once. One scheduler, in this casc the "scrial
scheduler”, interacts with the transactions and objects in a particularly constrained way. ‘The “scrial
schedules” of the primitives and the scrial scheduler are the basis of our correctness conditions. Specifically,
alternative schedulers are required to ensure that nested transaction automata individually have local
schedules which they could have in a scrial schedule. In essence, cach scheduler must “fool” the transactions

into belicving that the system is exccuting in conjunction with the secrial scheduler.

In the past ten years, an important and substantial body of work has appcarcd on the design and analysis of

algorithms for implementing concurrency control and resiliency in database transaction systems

[EGLTRES.BG,KS.Gr.,l.aS, ctc.]. Among this has been a number of results dealing with nested transactions
[R.Mo. LIS LHJESW. AM BBGLS,BBG. ctc.]. 'The present work does not replace these other contributions,
but augments them by providing a unifying and mathematically tractable framework for posing and cxploring
a variety of questions. “This previous work uses behavioral specifications of nested transactions, focusing on
what nested transactions do, rather than what they arc. By answering the question "What is a nested

transaction?”, 170 automata provide a powerful tool for understanding and rcasoning about them,

Some unification is vitally important to further development in this ficld. The plethora and complexity of
cxisting formalizations is a challenge to the most scasoned researcher. More critically, it belies the argument
that nested transactions provide a clecan and intuitive tool for organizing distributed databases and more
general distributed applications. [t is particularly important to provide an intuitive and precise description of
nested transactions themselves, as in typical systems, these arce the components which the application

programmer must implement!

'The remainder of this paper is organized as follows. "The 170 automaton model is described in Scction 2.
The rest of the paper contains an extended example, which cstablishes correctness propertics for two related

lock-basced concurrent schedulers.

Section 3 contains simple definitions for naming nested transactions and objects, and for specifying the
operations (intcractions) of these componcents. Simple syntactic restrictions on the orders of these operations
arc presented, and then a particular system of 170 automata is presented, describing the interactions of nested
transactions and objects with a secrial scheduler. The interface between the scrial scheduler and the
transactions provides a basis for the specification of correctness conditions for alternative schedulers, These
schedulers would presumably be more cfficient than the scrial scheduler. The strongest correctness condition,
"scrial correctness,” requires that all non-access transactions sce scrial behavior at their interface with the
system. The sccond condition, "correctness for 'l‘O." only requires that this scrial interface be maintained at
the interface of the system and the external world. These interfaces also provide simple descriptions of the
cnvironment in which nested transactions can be assumed to cxccute. A particular contribution is the clear
and concise scmantics of ABOR'I' operations which ariscs naturally from this formalization. The scction

closes with a collection of lemmas describing uscful propertics of scrial systems.

Next, a lock-based concurrent system is presented. Scction 4 contains a description of a special type of
object, called a "resilient object™, which is used in the concurrent system. Scction S describes the remainder
of the concurrent system, the "concurrent scheduler.” This concurrent scheduler includes "lock manager”

modules for all the objects; lock managers coordinate concurrent accesscs.

Section 6 defines a system which is closely related to the concurrent system, the "weak concurrent system.”
This system preserves serial correctness for those transactions whose ancestors do not abort (i.c.. those that are
not "orphans”). Since the root of the transaction tree, 'I‘O. has no ancestor, weak concurrent systems arc
correct for T, Section 7 contains complete proofs of correctness of the concurrent and weak concurrent
sytems: concurrent systems are serially correct, and weak concurrent systems are correct for 'I'O. The stronger

condition is obtained for concurrent systems as a corollary to a result about weak concurrent systems.

It is intcresting that the concurrent system algorithms arc described in complete detail (essentially, in
"pscudocode”), yet significant formal claims about their behavior can be stated clearly and casily. Although
the full presentation involves a large number of lemmas, the ideas described by the lemmas are quite simple
and intuitive. We think it is remarkable that these intercesting propertics of concurrent systems can be proved
with complete rigor, in full detail, in so short a development. Despite the detailed level of presentation, the

underiying model is gencral enough that the results apply to a wide rangce of implementations.

The style of the correctness proof is also noteworthy. [t is a constructive proof, in that for cach step of the
weak concurrent system and cach non-orphan transaction, an cxccution of the serial system is cxplicitly
constructed. The transaction’s local “view" in the constructed cxccution is identical to that in the original
weak concurrent exccution, establishing the correctness of the weak concurrent system. Onc may think of the
weak concurrent system as maintaining consistent, parallel "world views” within which concurrent siblings
execute. As siblings return to their parent, these paraliel worlds are "merged” to form a single consistent
view. The locking policy prevents collisions between different views at the shared data. This intuition is
strongly supported and clarificd by the correctness proof, which constructs the parallel views as different
scrial schedules consistent with cach sibling's local history. 1.emmas illustratc how these serial schedules can

be merged as siblings return or abort to their parent.

Scction 8 contains a discussion of the relationship of this work to previous results, and Scction 9 contains an

indication of the work that lics ahcad.

2. Basic Model

In this scction, we present the basic [/0 automaton model, which is used to describe all components of our
systems. ‘This model consists of rather standard, possibly infinitc-state, nondcterministic automata that have
operation names associated with their state transitions. Communication among automata is described by
identifying their operations. This model is very similar to modcls used by Milncr, Hoare [Mi,Ho] and others.
There arc a few differences: first, we find it important to classify opcrations of any automaton or system of
automata as cither "input” or "output” opcrations, of that automaton or system, and we treat these two cases

diffcrently. Also, we allow identification of arbitrary numbers of operations from different automata, rather

than just pairwisc identification as considered in [Mi].

This paper is not intended to develop the basic model. For the general theory of 170 automata, including a
unified treatment of finite and infinitc behavior, we refer the reader to [1]. In the present treatment of
concurrent transaction systems, we only prove propertics of finite behavior, so we only require a simple

special case of the general model.

2.1. 170 Automata
All components in our systems, transactions, objects and schedulers, will be modcelled by /0 automata. An

170 automaton A has componcents states(A), stari{ A), out(A). in(A), and steps{A). Here, states(A) is a sct of
states, of which a subsct stari(A) is designated as the set of start states. "The next two components arc disjoint
sets: oul(A) is the sct of oulput operations, and inf A) is the sct of input operations. 'T'he union of these two
scts is the set of operations of the automaton. Finatly, steps(A) is the transition relation of A, which is a sct of
triples of the form (s'.#.s), where s' and s arc states, and # is an operation. 'This triple mcans that in state s’
the automaton can atomically do operation o and change to statc s. An clement of the transition relation is

called a step of A.

The output opcrations arc intended to model the actions that arce triggered by the automaton itself, while
the input operations model the actions that are triggered by the cnvironment of the automaton. Our
partitioning of operations into input and output indicatcs that cach opcration is only triggered in onc place.

We require the following condition.

Input Condition: For cach input opcration # and cach state §', there cxist a state s and a step (s, #0.,8).

"This condition says that an 1/0 automaton must be prepared to receive any input operation at any time.
"This condition makes intuitive sense if we think of the input operations as being triggered externally. (In this

papcr, this condition serves mainly as a technical convenience, but in [I.T], where infinite behavior is

considered, it is critical.)

An execution of A is an alternating sequence s, |, s, 77,.... of states and operations of A; the sequence may
be infinite, but if it is finite, it cnds with a state. Furthermore, So is in start(.A), and cach triple (s,#.s) which
occurs as a consccutive subscquence is a step of A. From any cxecution, we can cxtract the schedule, which is
the subscquence of the cxccution consisting of opcrations only. Becausc transitions to different states may

have the samc operation, different exccutions may have the same schedule.
Lemma 1: If a is a schedule of 170 automaton A, then cvery prefix of a is a schedule of A.

If S is any sct of schedules (or property of schedules), then A is said to preserve S provided that the
following holds. If @ = a’# is any schedule of A, where # is an output operation, and a” is in S, then a is in

S. That is, the automaton is not the first-to violate the property described by S.

2.2. Composition of Automata
We describe systems as consisting of interacting components, cach of which is an 170 automaton. 1t is
convenient and natural to view systems as 1/0 aulomata, also. Thus, we define a composition operation for

[/0 automata, to yicld a new 170 automaton.

A sct of 1/0 automata may be composed to create a system . if all of the output operations arc disjoint.
('I'hus, cvery output operation in J will be triggered by exactly onc component.) The system Jis itself an 170
automaton. A state of the composed automaton is a tuple of states, one for cach component, and the start
statcs arc tuples consisting of start states of the components. ‘T'he sct of operations of £, ops(¥), is cxactly the
union of the scts of operations of the component automata. "l'he set of output operations of S, out(¥), is
likewise the union of the scts of output operations of the component automata. Finally, the sct of input
operations of &, in(¥), is op(®) - vui(S), the sct of operations of F that arc not output operations of £, 'The
output operations of a system arc intended to be exactly those that arc triggered by components of the system,

whilc the input operations of a system arc thosc that are triggered by the system'’s cnvironment.

The triple (s',m,s) is in the transition relation of £ if and only if for cach component automaton A, one of the
following two conditions holds. Either # is an opcration of A, and the projection of the step onto A is a stcp
of A, or clse o is not an operation of A, and the states corresponding to A in the two tuples s and s are
identical. 'Thus, cach opcration of the composed automaton is an operation of a subsct of the component
automata. During an opcration & of ¥, cach of the components which has operation # carrics out the
opcration, while the remainder stay in the samc state. Again, the operation « is an output operation of the
composition if it is thc output opcration of a component - otherwise, o is an input operation of the

composil:ion.l

I.emma 2: The composition of 1/0 automata is an 1/0 automaton.

The next lemma allows us to compose automata in any order.
L.emma 3: Up to isomorphism, composition of 170 automata is associative and commutative.

1Nolc that our model has choscn a particular convention for identifying operations of different componcnts in a system: we simply
identily those with the same name. ‘This convention is simple, and sufTicient for what we do in this paper. However, when this work is
extended lo more complicated systems, it may be expedient to generalize the convention for identifying operations, to permit reuse of the
same operation name internally to different components. ‘this will require introducing a renaming operator for operations, or clse
defining composition with respect to a designated cquivalence relation on operations. We leave this for later work.

An execution of a system is defined to be an execution of the automaton composed of the individual
automata of the system. If a is a schedule of a system with component A, then we denote by alA the

subsequence of a containing all the operations of .A. Clearly, ajA is a schedule of A.

Lemma 42 1ct & be a schedule of a system ¥, and let @ = oo, where o is an output opceration
of component A. If a A is a schedule of A, then a is a schedule of S,

Proof: Since alA is a schedule of A, there is an execution 8 of A with schedule af A, 1.ct 8° be
the exccution of A consisting of all but the last step of 8. Similarly, since a” is a schedule of J,
there is an exceution y of f with schedule a”. It is possible that A has an execution in y which is
differcnt from B, since different exccutions may have the same schedule. But it is casy to show,
by induction on the length of y, that there is another exccution y' of £ in which component A has
cxecution 87, and which is otherwisc identical to y. The schedule of y' is a’. Since # is not an
output operation of any other component, # is defined from the state reached at the end of y', so.
that @ = a’# is aschedulc of £. 1

3. Scrial Systems

In this paper, we define three kinds of systems: “serial systems” and two types of "concurrent systems™,
Scrial systems describe scrial execution of transactions. Scrial systems arc defined for the purpose of
providing a corrcctness condition for other systems: that the schedules of the other systems should "look
like” schedules of the serial system to the transactions. As with scrial schedules of single-level transaction
systems, our scrial schedules are too inefficient to use in practice. Thus, we define systems which allow
concurrency, and which permit the abort of transactions after they have performed some work. We then

provce that the schedules permitted by concurrent systems are correct.

In this scction, we define "scrial systems”. Scrial systems consist of "transactions” and "basic objects”
communicating with a "secrial scheduler”. ‘Transactions and basic objects describe user programs and data,
respectively. The serial scheduler controls communication between the other components, and thercby
defines the allowable orders in which the transactions may take steps. All three types of system components

arc modclled as 170 automata.

We begin by defining a structure which describes the nesting of transactions. Namcly, a system type is a
four-tuple (J.parent,0,V), where 7, the set of transaction namcs, is organized into a tree by the mapping
parent:9 — 9, with T, as the root. In referring to this tree, we usc traditional terminology, such as child, leaf,
lcast common ancestor (Ica), ancestor and descendant. (A transaction is its own ancestor and descendant.)
'The Icaves of this tree are called accesses. The set O denotes the sct of objects; formally, O is a partition of the
sct of accesses, where cach clement of the partition contains the accesses to a particular object. Theset Vis a

sct of values, to be uscd as return valucs of transactions.

'The tree structure can be thought of as a predefined naming scheme for all possible transactions that might

cver be invoked. In any particular exccution, however, only some of these transactions will actually take
steps. We imagine that the tree structure is known in advance by all components of a system. ‘The tree will, in

general, be an infinite structure.

The classical transactions of concurrency control theory (without nesting) appear in our model as the
children of a "mythical™ transaction, 'I'O, the root of the transaction tree. (In work on nested transactions, such
as ARGUS [LiS.1 . HIL.SW], the children of T are often called "top-level” transactions.) 1t is very convenicent
to introduce the new root transaction to modcl the environment in which the rest of the transaction system
runs. ‘Transaction ‘I has operations that describe the invocation and return of the classical transactions. It is
natural to rcason about 'I'O in much the same way as about all of the other transactions, although it is
distinguished from the other transactions by having no parent transaction. Since committing and aborting arc
operations which take place at the parent of cach transaction (sce below), ’l'o can ncither commit nor abort.

'Thus, a commit or abort of a top-level transaction to T, is an irreversible step.

The internal nodes of the tree model transactions whose function is to creatc and manage subtransactions,
but not to access data directly. The only transactions which actually access data arc the leaves of the
transaction tree, and thus they are distinguished as "accesses™. "T'he partition O simply identifies those

transactions which access the same object.

A scrial system of a given system type is the composition of a sct of 170 automata. this sct contains a
transaction for cach internal (i.c. non-icaf, non-access) nodc of the transaction tree, a basic object for cach
clement of O and a scrial scheduler. These automata are described below. (If X is a basic object associated
with an clement &6 of the partition O, and 'I' is an access in %, we write T € accesses(X) and say that "I is an

access to X))

3.1. Transactions
'This paper differs from carlier work such as [Ly,Go,Wecl] in that we modcl the transactions explicitly, as

170 automata. In modeclling transactions, we consider it very important not to constrain them unnecessarily;
thus, we do not want to require that they be expressible as programs in any particular high-level programming
language. Modelling the transactions as [/0 automata allows us to state cxactly the properties that are

nceded, without introducing unnecessary restrictions or complicated semantics.

A non-access transaction'T is modelled as an 1/0 automaton, with the following operations.

Input opcrations:
CREATE(T)
COMMIT(CIv), for'I” € children(T)and v E V
ABORT(T), for 1" € children(T)

Output operations:
REQUEST—CREATE(T), for 1" € children(T)
REQUEST—-COMMII(Tw), forve V

The CREATE input operation "wakes up” the transaction. The REQUEST — CREATE output operation is
a request by ‘I’ to create a particular child transaction.ZIhe COMMIT input opcration reports to T’ the
successful compliction of onc ofits children, and returns a valuc recording the results of that child’s execution.
The ABORT input operation reports to I the unsuccessful completion of one of its children, without
returning any other information, We call COMMIT(T,v), for any v, and ABOR'T(I") return opcrations for
transaction 1", The REQUEST —COMMTI'T operation is an announcement by ‘I’ that it has finished its work,

and includes a valuce recording the results of that work.

It is convenient to use two scparate operations, REQUEST—CREATE and CREATE, to describe what
takes place when a subtransaction is activated. The REQUEST—CREATE is an operation of the
transaction’s parent, while the actual CREATE takes place at the subtransaction itself. In actual systems such
as ARGUS, this scparation does occur, and the distinction will be important in our results and proofs. Similar
remarks hold for the REQUEST—COMMIT and COMMIT opcratiuns.3 We leave the cxecutions of
particular transaction automata largely unspecified; the choice of which children to create, and what value to
return, will depend on the particular implementation. For the purposes of the schedulers studicd here, the
transactions (and in large part, the objects) arc "black boxes.” Nevertheless, it is convenicnt to assumc that
schedules of transaction automata obey certain syntactic constraints. Thus, transaction automata arc required

to preserve well-formedness, as defined below.

We recursively define well-formedness for scquences of operations of transaction T. Namely, the empty
schedule is well-formed. Also, if @ = a’w is a scquence of operations of T, where o is a single operation,
then a is well-formed provided that a' is well-formed, and the following hold.

o If r is CREATE(T), then
(i) there is no CREATE(T) in a”.

o If # is COMMIT(T",v) or ABORT(T") for a child T" of T, then

2Notc that there is no provision for T to pass information to its child in this request. In a programming language, T might be
permitted to pass parameter values o a subtransaction. Although this may be a convenient descriptive aid. it is not necessary to include
in it the undcrlying formal model. Instead, we consider transactions that have different input parameters to be different transactions.

3Notc that we do not include a REQUEST — ABOR'T operation for a transaction: we do not model the situation in which a transaction
decides that ils own cxistence is a mistake. Rather, we assign decisions to abort transactions to another component of the system, the
scheduler. In practice, the scheduler must have some power to decide Lo abort transactions, as when it detects deadtocks or failures. In
ARGUS, transactions arc permitted to request to abort; we regard this request simply as a “hint” to the scheduler, to restrict its allowable
cxecutions in a particular way. ‘this operation could be made explicit, constraining the scheduler to abort the requesting transaction,
without substantively changing the modcl or resulls.

(i) REQUEST —CREATE(T™) appears in a” and
(ii) there is no return operation for 17 in a”

o If 7 is REQUEST—=CREATE(T) for a child 1" of T, then
(i) there is no REQUEST—CREATE(TY in o’
(it) there is no REQUEST—COMMIT(T) in a” and
(iii) CREATE(CE) appears in a”.

o If 7 is a REQULEST—COMMIT for T, then
(i) there is no REQUEST—-COMMIT for 't in o and
(ii) CREATE(T) appcars in a’.

These restrictions arc very basic; they simply say that a transaction does not get created more than once,
docs not receive repeated notification of the fates of its children, does not receive conflicting information
about the fates of its children, and docs not receive information about the fate of any child whosc creation it
has not requested; also, a transaction does not perform any output operations before it has been created or
after it has requested to commit, and docs not request the creation of the same child more than once. Except
for these minimal conditions, there are no restrictions on allowable transaction bchavior. For example, the
model allows a transaction to request to commit without discovering the fate of all subtransactions whose
creation it has requested. Also, a transaction can request creation of new subtransactions at any time, without
regard to its state of knowledge about subtransactions whose creation it has previously requested. Particular
programming languages may choosc to imposc additional restrictions on transaction behavior. (An cxample is
ARGUS, which suspends activity in transactions until subtransactions complete.) However, our results do not

require such restrictions.

The following casy lemma summarizes the propertics of well-formed sequences of transaction operations.

Lemma §:].et a be a well-formed sequence of operations of transaction 'I'. 'Then the following
conditions hold.

1. The first opcration of a is a CREATE(T) operation, and there are no other CREATE
operations.

2. If a REQUEST—-COMMIT operation occurs in a, then there are no later output
operations in a.

3. Therc is at most onc REQUEST — CREATE(T’) operation for cach child T" of T, in a.

4. Every return operation in a has a preceding REQUEST — CREATE operation in a for the
same child transaction.

3.2. Basic Objects

Recall that 170 automata arc associated with non-access transactions only. Since access transactions model
abstract operations on shared data objects, we associate a single 170 automaton with cach object, rather than
one for cach access. The operations for cach object arc just the CREATE and REQUEST-COMMIT
opcrations for all the corresponding access transactions. Although we give these operations the same names as
the opcrations of non-access transactions, it is helpful to think of the operations of access transactions in other
terms also: a CREATE corresponds Lo an invocation of an operation on the object, while a
REQUEST—COMMIT-corresponds to a responsc by the object to an invocation. Actually, these CREATE
and REQUEST—COMMIT operations gencralize the usual invocations and responses in that our operations
carry with them a designation of the position of the access in the transaction tree. We depart from the
traditional notational distinction between creation of subtransactions and invocations on objects, since the
common terminology for access and non-access transactions is of great bencefit in unifying the statements and

proofs of our results. ‘Thus, a basic object X is modclled as an automaton, with the following operations.

Input opcrations:
CREATE(CT), for T in accesses(X)

Output opcrations:
REQUEST—COMMIT(T.v), for T in accesses(X)

'The CREATE operation is an invocation of an access to the object, while the REQUEST-COMMIT is a

rcturn of a value in response to such an invocation.

As with transactions, while specific objccts arc Ieft largely unspecified, it is convenient to require that
schedules of basic objects satisfy certain syntactic conditions. Thus, cach basic object is required to preserve

well-formedness, defined below.

Let a be a sequence of operations of basic object X. Then an access T to X is said to be pending in a
provided that there is a CREATE(T), but no REQUEST—COMMIT for T, in a. Wc define well-formedness
for scquences of operations of basic objects recursively. Namely, the cmpty schedule is well-formed. Also, if
a = a'w is a sequence of operations of basic object X, where o is a single operation, then a is well-formed

provided that a’ is well-formed, and the following hold.

o If w is CREATE(T), then
(i) there is no CREATE(T) in «’, and
(ii) there are no pending accesses in a'.

o If 7 is REQUEST - COMMIT for T, then
(i) there is no REQUEST—COMMIT for T in a’, and
(ii) CREATE(T) appears in a’.

10

These restrictions simply say that the same access does not get created more than once, nor does a creation
of a new access occur at a basic object before the previous access has completed (i.c. requested to commit);
also, a basic object doces not respond more than once to any access, and only responds (o accesses that have

previously been created.

‘The following casy lemma summarizes the propertics of well-formed sequences of basic object operations.

Lemma 6: [.ct a be a well-formed sequence of operations of basic object X, 'Then a consists of
alternating CREATE and REQUEST —COMMIT operations, starting with a CREA'TE, and with
cach consccutive (CREATE.REQUEST —COMMIT) pair having a common (ransaction. _

3.3. Serial Scheduler

'T'he third kind of component in a serial system is the serial scheduter. "The scrial scheduler is also modclled
as an automaton. The transactions and basic objects have been specified to be any 1/0 automata whose
operations and bchavior satisfy simple syntactic restrictions. ‘I'he serial scheduler, however, is a fully specified
automaton, particular to cach system type. 1t runs transactions according to a depth-first traversal of the
transaction tree. ‘The scrial scheduler can choose nondeterministically to abort any transaction after its parent
has requested its crcation, as Jong as the transaction has not actually been created. In the context of this
scheduler, the "semantics” of an ABOR'I(T) operation arc that transaction 1" was never crcated. 'The

operations of the serial scheduler are as follows.

Input Opcrations:
REQUEST ~CREATE(T)
REQUEST—-COMMII(I,vY)
Output Opcrations:
CREATE(T)
COMMIT(T.v)
ABORI(T)

The REQUEST—CREATE and REQUEST~COMMIT inputs arc intended to be identified with the
corresponding outputs of transaction and object automata, and correspondingly for the CREATE, COMMIT
and ABORT output operations. Fach statc s of the scrial scheduler consists of four sets:
create — requested(s), created(s), commit— requested(s), and rcturned(s). The sct cominit—requested(s) is a

sct of (transaction,value) pairs. The others arc scts of transactions. There is exactly one initial state, in which

the sct create — requested is {'I‘O}, and the other sets are empty.

The transition relation consists of exactly those triples (s'.7,s) satisfying the pre- and postconditions below,
where # is the indicated operation. For brevity, we include in the postconditions only those conditions on the

statc s which may change with the opcration. 1f a component of s is not mentioned in the postcondition, (such

as returned(s) in the postcondition for REQUEST —CREATE(TY)), it is implicit that the sct is the same in s
and s (that returncd(s’) = returncd(s). in this examplc). Note that here, as clsewhere, we have tricd to specify
the component as nondeterministically as possible, in order to achicve the greatest possible gencrality for our

results.

o REQUEST—-CREATE(
Postcondition:
create — requested(s) = create — requested(s’) U {1}

o REQUEST—COMMIT(T v)
Postcondition:
commit— requested(s) = commit—requested(s’) U {('I,v)}

o CREATE(T)
Precondition:
I € create — requested(s’) - creatcdés’)
siblings(’l) M created(s’) C rcturned(s’)
Postcondition:
crcated(s) = created(s’) U {T'}

o COMMIT(T,v)
Precondition:
(I'.v) € commit— requested(s’)
T ¢ rcturned(s’)
children(T) M create — requested(s’) C returned(s’)
Postcondition:
returncd(s) = returned(s'y U {T}

o ABORT(T)
Prccondition:
1" € create — requested(s’) - created(s’)
siblings('1) N created(s’) C returned(s’)
Postcondition:
crcated(s) = created(s’) U {1}
rcturncd(s) = rcturned(s’) U {T}

The input operations, REQUEST—CREATE and REQUEST—-COMMIT, simply result in the request
being recorded. A CREATE operation can only occur if a corresponding REQUEST—CREATE has
occurred and the CREATE has not alrecady occurred. The second precondiition on the CREATE operation
says that the scrial scheduler does not create a transaction until all its previously created sibling transactions
have returned. ‘That is, siblings are run scquentially. ‘The precondition on the COMMIT operation says that
the scheduler docs not allow a transaction to commit to its parent until its children have returned. The
precondition on the ABORT opcration says that the scheduler does not abort a transaction while there is
activity going on on behalf of any of its siblings. That is, aborted transactions are run scquentially with

respect to their siblings. ‘T'he next lemma relates a schedule of the serial scheduler to the state which results

12

from applying that schedule.
Lemma 7: et a be a schedule of the serial scheduler, and et s be a state which can result from
applying a to the initial state. "T'hen the following conditions are true.

1.'Fis in create —requested(s) exactly if 1" = T, or a contains a REQUEST - CREATE(T)
opceration,

2. T is in created(s) exactly if a contains cither a CREATE(T) or ABORT(T) opceration.

3.(Iv) is in commit—rcquested(s) exactly if a contains a REQUEST—-COMMII(T,v)
opcration. .

4.’Iis in returned(s) cxactly if a contains a return operation for T,

3.4. Serial Systems and Serial Schedules

In this subsection, we define serial systems preciscly and provide some uscful terminology for talking about

them.

The composition of transactions with basic objects and the scrial scheduler for a given system type is called
a serial system. 1)efine the serial vperations to be those operations which occur in the scrial system:
REQUEST—CREATES, REQUEST—-COMMITS, CREATES, COMMITS and ABORTS. ‘The schedules
of a scrial system are called serial schedules. 'The non-access transactions and basic objects are called the
system primitives. (Rccall that cach basic object is an automaton corresponding to a sct of access transactions.

‘T'hus, individual access transactions arc not considercd to be primitives.)

Recall that the operations of the basic objects have the same syntax as transaction opcrations. It is
convenient to refer to CREATE(T) and REQUEST—COMMIT(T), when T is an access to basic object X,
both as opcrations of transaction 'I' and of object X. To avoid confusion, it is important to remember that

there is no transaction automaton associated with any access operation.

For any scrial opcration o, we define transaction(n) to be the transaction at which the opcration occurs.
(For CREATE(T) operations and REQUEST —COMMIT opcrations for T, the transaction is T, while for
REQUEST - CREATE(T) opcrations, and COMMIT and ABORT operations for T, the transaction is
parent(T).) For a scquence a of scrial opcrations, transaction(a) is the sct of transactions of the opcrations in

a.

Two scquences of serial operations, a and a', are said to be equivalent provided that they consist of the
samc opcrations, and afP = a'|P for cach primitive P. Obviously, this yiclds an cquivalence rclation on

sequences of serial operations.

13

We et afl’ denote the subsequence of a consisting of operations whose transaction is ‘I, even if T is an
access. (T'his is an extension of the previous definition of afl, as accesses arc not component automata of the

serial system.)

let a be a sequence of serial operations. We say that a transaction 1" is live in a provided that a
CREATECE), but no COMMIT(T,v) or ABOR'T(T), occurs in a. We say that transaction ‘1" is visible to 'l in a
provided that for cach ancestor 17 of 'I” which is a proper descendant of lca(,17), some COMMIT(I™ v)
occurs in a. (In particular, any ancestor of ‘T" is visible to I in a.) For scquence a and transaction T, let
visible(a. T) be the subsequence of a consisting of operations whose transactions are visible to T in a. (These

includc access transactions '1°.) We say that transaction ‘I sees everything in a provided that visible(a, 1) = a.

‘This is the same definition of visibility as appears, in a different model, in {l.y]. Visibility captures an
intuitive notion suggested by the name: the transactions visible to a transaction 'l in a arc those whose cffects
1" is permitted to “sec” in a. If transaction 1" is visible to transaction I’ in a, it mcans that descendants of T
may have passed to ‘I information about 'I”, obtaincd by accessing objects that were previously accessed by

descendants of '17.

If a is a scquence of operations, not necessarily all serial, then define scrial(a) to be the subscquence of a
consisting of the scrial operations. We say that 'I' is live in a provided that it is live in scrial(a). We say that T”
is visible to T in a if 17 is visible to ‘T in scrial(a). and define visible(a,T') to be visible(scrial{a), 1). Also, T
sees everything in a provided that T secs cverything in scrial(a). Similarly, define transaction(a) =

transaction(scrial(a)).

A scquence a of scrial operations is said to be well-formed if its projection at cvery primitive is well-formed.

3.5. Correctness Condition

We usc scrial schedules as the basis of our correctness definitions. Namely, we say that a scquence of
operations is serially correct for a primitive P provided that its projection on P is identical to the projection on
P of some scrial schedule. We say that any scquence of operations is serially correct if it is scrially correct for

cvery non-access transaction. That is, a "looks like” a serial schedule to every non-access transaction.

In the remainder of this papcr, we define two systems: concurrent systems and weak concurrent systems.
We show that schedules of concurrent systems are scrially correct, and that schedules of weak concurrent

systems are serially correct for To.

'Thus, we usc the serial scheduler as a way of describing desirable behavior, just as scrial schedules describe

14

desirable behavior in more classical concurrency control settings (those without nesting). Then scrial

correctness plays the role in our theory that serializability plays in classical scttings.

Motivation for our usc of scrial schedules to define correctness derives from the simple behavior of the
scrial scheduler, which determines the sequence of interactions between the primitives. Fach transaction ' is
created only after parent¢1') requests it, no siblings of 'l are created until ‘1" has returned, ‘T is not committed
until cach of its requested children has itself returned. and 1" is not aborted until cach of its created siblings
has returned. ‘The result is a depth-first traversal of the transaction tree, with requests flowing down and
responses flowing up. We believe this depth-first traversal to be a natural notion of correctness which
corresponds preciscly to the intuition of how nested transaction systems ought to behave. Furthermore, it is a
natural generalization of scrializability, the correctness condition gencrally chosen for classical transaction

systems,

Serial correctness is a condition which guarantces to implementors of transactions that their code will
cncounter only situations which can arisce in scrial cxecutions. Correctness for 'I‘O is a natural altcrnative,
which guarantces only that the cxternal world will encounter only situations which can arisc in scrial
cxccutions. ‘This condition permits less constrained implementations, in that schedulers in such systems need
not insurc that orphans scc consistent data. On the other hand, in such systems the authors of transactions
must insure that their programs bchave well even if they see inconsistencies. (For example, orphans that sce
inconsistent data should not consume too many system resources, garble data beyond repair, dispense drugs
or initiatc military hostilitics.) Wec hope this work will provide a tool for exploring the inherent costs of

different correctness conditions such as these.

Notc that our correctness conditions are defined at the transaction interface only, and do not constrain the
object interface. We belicve that this makes the conditions more mcaningful to users, and more likely to
suffice for a large varicty of algorithms, which may usc a varicty of back-out, locking or version schemes to
implement objects. Previous work has focussed on correctness conditions at the object interface [EGLT, ctc.).
While we belicve that object interface conditions arc important. their proper role in the theory is not to serve
as the basic correctness condition. Rather, they arc uscful as intermediate conditions for proving correctness
of particular implementations: such conditions can be shown to be sufficient, in combination with an
appropriate scheduler, to ensure our correctness condition at the transaction intcrface. This obscrvation is an
important unifying contribution of our work. Our current rcscarch is focussing on demonstrating the

uscfulness of this approach, for a varicty of object interface correctness conditions.

The scrial correctness condition says that a schedule a must look like a scrial schedule to cach non-access

transaction; this allows for the possibility that a might look like different scrial schedules to different non-

15

access transactions. 'This condition may at first scem to be too weak. It may scem that we should require that
all transactions scc a projection of the sunre serial schedule. Bul this stronger condition is not satisfied by most
of the known concurrency control algorithms. 1t is true that stronger conditions than ours can sometimes be
proved. but such conditions arc more complicated to state, and it is not yet clear which such conditions are

maost interesting.

The serial correctness condition is really not as weak as it may seem at first because 'I', the root transaction,
is included among the transactions 10 which a must appcar scrial. As discussed above, transaction 'l’o can be
thought of as modclling the cnvironment in which the rest of the transaction system runs. Its
REQUEST—CREATE operations correspond to the invocation of top-level transactions, while its COMMIT
and ABOR'T" operations correspond to return valucs and cxternal cffects of those transactions. Since a's
projection on 'I'O must be serial, the cnvironment of the transaction system will see only results that could arise
in a scrial cxccution. Indced, this is the justification of the correctness condition for the weak concurrent

system, whose schedules arc shown to be correct for T» but not necessarily for any other transaction.

It is possible to usc a diffcrent scrial scheduler as a basis for correctness conditions. For example, the
scheduler might delay creating one sibling until another requests to return, rather than until it actually returns
to the parent [We2]. Such a scheduler would provide less information to the parent about the actual order in
which its children arc executed, and conscquently provide more frcedom for concurrent schedulers to
schedule various cvents. Timestamp-based systems such as [R} may support this wecaker correctness

condition, rather than the onc described above, but this remains to be studied.

Our approach is really a general technique for studying operating systcm algorithms. A simple, intuitive
and incfficient algorithm (automaton) is used to specify a "contract” between the uscrs and implementor of
an operating system. The uscr is guaranteed that applications (transactions, in our work) which arc correct
when run with the simple algorithm will also be correct when run with the actual operating system, which
presumably will be more efficient. On the other hand, the implementor also has a formal and intuitive

specification of the user intcrface.

3.6. Properties of Serial Systems

In this subscction, we prove a number of lemmas about the behavior of serial systems. They arc collected
here for reference later in this paper and in future work. Most of the lemmas describe properties that are
quite casy to understand and bclicve, and the corresponding proofs arc very straightforward. In the last
paragraph of this subscction, there arc some specialized lemmas that are somewhat morc difficult. These are

uscd in the proof of the main thcorem in Section 7.

16

3.6.1. Fundamental Propertics of Visibility
The first few lemmas give fundamental propertics of visibility in sequences of serial operations. In this
paragraph, we do not even require that the scquences be schedules of scrial systems, but only that they be

scquences of scrial operations. The proots of these lemmas are straightforward from the definitions.

Lemma 8: |.ct a be a sequence of serial operations, and 'F, '™ and 1™ transactions.

L 1™ is a descendant of T, then ‘I is visible to 17 in a.

2.'1" is visible to T in a if and only if "I is visiblec to lca(’T,1") in a.

J A1 is visible to I in @ and 1" is visible to 'I' in a, then '™ is visible to T in a.
4. 1f'1" is a descendant of T and '™ is visible to T in a, then 'I™ is visible to 1" in a.
5. If’I" is a descendant of 1" and 1" is visible to "1™ in a, then T is visible to T™ in a.

6. If 1" is a proper descendant of ', '17 is visible to 17 in a, but 'I™ is not visible to T' in a, then
I is a descendant of the child of 'I” which is an ancestor of ‘1™,

Lemma 9: 1.ct a and B be sequences of scrial operations, with 8 a subscquence of a.

1. If transaction "' is visible to transaction ‘1" in 8, then it is visible to transaction 'T” in a.

2. If operation o is in visible(8.1), then it is in visible(a, T).

Lemma 10: let a, a’, B and B’ be scquences of scrial operations, and let T and T° be
transactions.

1. If & is cquivalent to &', and 'I” is visible to T in a, then T is visibleto T in a’.

2. If a is cquivalent to a’, then visible{(a, 1) is equivalent to visible(a’, T).

3. If Biscquivalentto B’ thena-8 = a-8".

4. If a is equivalent to a’, and B is equivalent to 8, then a - B is equivalent to a’ - B°.
5. If B = visible(a,T), then T secs everything in 8.

6. If B is cquivalent to visible(a,T'), then T sces everything in 8.

1. If B = visible(a,T) and T" is visible to T in a, then visible(8,T7) = visible(a,T").

8. If B is cquivalent to visible(a, 1), 8 is cquivalent to visible(a,17), and T is visible to T in a,
then B is equivalent to visible(8,17).

Lemma 11: Let a be a scquence of scrial operations, and lct T and T" be transactions. Then
Lemma 12: l.ct a7 be a sequence of serial operations, where 7 is a single operation. Let T be a

transaction and assumc that transaction(a) is visible to '’ in aw. Assumc that # is not a COMMIT
operation. ‘Then visible(aw ') = visible(a,).

3.6.2. Operations in Serial Schedules
'The lemmas in this paragraph describe the kinds and orders of operations that can occur in well-formed
serial schedules. In the next paragraph, we show that all serial schedules are well-formed, so that all these

propertics actually follow just from the fact that the schedales are serial.
L.emma 13: |.ct a be a well-formed serial schedule, and let 1 # ’I‘O be a transaction.

I.If a contains any opcration with transaction I, then a contains a
REQUEST—CREATE(T).

2. If a contains 4 COMMIT for I, then a contains a REQUEST—~COMMIT for T, a
CREATE(T) and a REQUEST—CREATE(T).

3. If a contains an ABOR'I(T), then & contains a REQUEST - CREATE(T).

Proof: Straightforward from well-fonnedness and the scheduler preconditions. 1

lLemma 14: Lct a be a well-formed serial schedule, and '’ a transaction. Assumec that some
descendant of I is in transaction(a). ‘Then the following hold.

1. CREATE(T) occurs in a.
2.1f°1# T, then REQUEST - CREATE(T) occurs in a.

Proof: 1. By induction on the Iength of a. "T'he basis is casy. l.ct @ = a’wr, where # is a single
operation, and assume that the result holds for a’. l.et 'I" = transaction(w), and Ict ‘I be any
ancestor of '1°. We must show that CREATE(T) occurs in a.

Because a is well-formed, CREATE(T) occurs in a. If T = 1", we arc donc. Otherwise,
[.emma 13 implics that REQUEST—CREATE(I™) occurs in a. This occurs at parent('I™), which is

....

2. By part 1. and L.emma 13. §

L.emma 15: |.ct a be a scrial schedule, and let T be a transaction. Then a cannot contain both a
CREATE(T) and an ABOR'I(T') operation.

Proof: By the scheduler preconditions. 1

Lemma 16: [.ct a be a well-formed serial schedule, and Iet T be a transaction. If ABORT(T)
occurs in a, then a contains no operations whose transactions are descendants of 'T.

rrrr

But L.emma 15 yiclds a contradiction. i
L.emma 17: Let a be a well-formed serial schedule, and let T # T0 be a transaction.

1. If a contains a REQUEST—CREATE(T), but docs not contain a return operation for T,
then parent(T) is live in a.

2. If Tis live in a, then parent(T) is live in a.

3.If a contains a REQUEST - CREATE(T) but docs not contain a CREATE(T) or an
ABOR(T), then parent(T) is live in a.

18

Proof:

1. Well-formedness implics that the REQUEST—CREATE(CT)Y is preceded in a by a
CREATE(parent('l)). Supposc that parent('l) is not live in a. 'Then i return operation for
parent('l’) occurs in a. By 1.emma 15, ABOR T(parent(')) cannot appear in a. 'T'hus, a
COMMIT opcration for parent{'ly must appear in a. This COMMIT operation for
parent('l) must be preceded by a REQUEST—COMMIT for parent(l), by the scheduler
preconditions. By well-formedness. the REQUEST - COMMIT for parcnt('’) must follow
the REQUEST —CREATE(T) operation, so that the COMMIT for parent('T’) follows the
REQUEST—CREATI(T) operation. ‘Then by the scheduler preconditions for the
COMMI'T operation, there must be a return operation for 'I' in a, a contradiction.

REQUEST—=CREATE(T) occurs in a. 'The result then follows from part 1.

3. Since there is no CREATE(T) in a, there can be no REQUEST—COMMIT for T, by
well-formedness. Then there can be no COMMIT for ‘T, by the scheduler preconditions.
The result follows from part 1.

|
l.emma 18: I.ct a be a well-formed scrial schedule, and let T be a transaction.

1. If & contains a REQUEST—-CREATE(T) but does not contain a return operation for T,
then any proper ancestor of T is live in a.

2. If T is live in a, then any ancestor of ' is live in a.

3. If & contains a REQUEST—-CREATE(T) but docs not contain a CREATE(T) or an
ABOR'I(T), then any proper ancestor of T is live in a.

Proof: By repcated use of L.emma 17. 1

L.emma 19: Lct a be a well-formed serial schedule, and let T and 1™ be transactions with T a
descendant of T, Assume that there is a COMMIT operation for T in a.

1. Ifa REQUEST—CREATE(T") occurs in a, then there is a return operation for 17 in a.

2. If T" is in transaction(a), then there is a COMMIT operation for T” in a.
Proof:

1. By .Lemma 18.

2. Lemma 13 implics that REQUEST—CREATE(T") occurs in a. Part 1 then implies that
there is a return operation for 1™ in a. Since 'I” is in transaction{a), I.emma 16 implies that
there cannot be an ABORI(T7) in a. 'Thus, there is a COMMIT for T in a.

I.emma 20: Lct a be a well-formed serial schedule.,
[fa return opcration for T is in a, then it follows all operations in « whosc transaction is T.

Proof: L.cmma 16 implics the result if an ABORT(T) occurs in a. So assume that a COMMIT
for 'I' occurs in a. This must be preceded by a REQUEST—COMMIT for I, by scheduler
prcconditions. Wecll-formedness implics that the REQUEST—-COMMIT is preceded by a

19

CREATE(T). and is not followed by any output operations of "I Thus, the only opcrations of T
that could follow the REQUEST —COMMIT are return operations for children of 1. Let 1" be a
child of I for which a return operation occurs in . By scheduler preconditions, there is only onc
return operation for 1" in a. By Lemma 13, a also containg a REQUEST—CREATI(T). Since
this is an output opcration of I, it precedes the REQUIEST—-COMMIT for T, and hence precedes
the COMMIT for 'I. ‘then the scheduler preconditions imply that the return operation for 'I”
precedes the COMMIT for 1.0

L.emma 21: | et a be a well-formed scrial schedule.
H @ return operation for T is in a, then it follows all operations in a whosc transactions arc
descendants of T

Proofl: Since a return operation for ' occurs in a, we have I # Ty Tet'I” be a descendant of T,
and assume for the sakce of obtaining a contradiction that an operation # with transaction{w) = 1"
occurs after the return for 'I'in a. l.ct a” be the prefix of a preceding or.

[.emma 16 implics the result if an ABORT(E) occurs in a. So assumce that a COMMIT for T
occurs in a. By L.emma 13, a' contains a REQUEST - CREATE(T") operation. Then [.emma 19
implics that a’ contains a return operation for 'I”. But then the well-formed schedule a’# contains
arcturn for 1" followed by an operation of 17, which contradicts [.emma 20. 1

Lemma 22: 1.et a be a well-formed serial schedule. T is a pending access in a)X, then T s live
in a.

Proof: If 'I' is a pending access in a|X. then a CREATE(T) occurs in a, but no
REQUEST-COMMIT for T occurs in a. ‘Thus, by the scheduler preconditions, no COMMIT
for'I'can occurin a.

lemma 23: [.ct a be a well-formed serial schedule, and let I and 'I” be distinct transactions live
in a. Then the following are true.

1. T and 'I" are not siblings.

2. Either T is an-ancestor of 'I” or vice versa.
Proof:

1. Assume the contrary. Assumc without loss of gencrality that CREATE(T) precedes
CREATE(T") in a. ‘Then the scheduler preconditions for the CREATE(T) operation
imply that a return opcration for 'I' occurs in a. This contradicts the assumption that T is
live in a.

2. By part 1 and L.emma 18.

3.6.3. Well-Formedness

Now wc show that all serial schedules are well-formed. It follows that all the propertics proved in the
previous paragraph for well-formed serial schedules are actually truc for all serial schedules. Subsequently,
we will usc these propertics without explicitly mentioning well-formedness.

Lemima 24: |.ct a be a scrial schedule. Then a is well-formed.

Proof: By induction on the length of schedules. The base, length = 0, is trivial. Suppose that
am is a scrial schedule, and assume that « is well-formed. If # is an output of a primitive P, then

20

an|P is well-formed because P preserves well-formedness, and so aw is well-formed. So assume
that « is an input to a primitive P. It sutfices to show that a#w|P is well-formed. There arc four
CASCs.

(1) o is CREATE(T) and "1 is a non-aceess transaction,
The scheduler preconditions insure that CREATE(T) docs not appear in a.

(2) = is COMMI(T v) for some transaction 'I" and value v.
Then o is an input to transaction parent(l) = 17, The scheduler preconditions imply that a
contains a REQUEST—COMMII(lv). and so Lemma 13 implics that a contains a
REQUEST—CREATE(T). Also, the scheduler preconditions imply that no return operation for
T occurs in a.

(3) 7 is ABOR'T(T) for some transaction .
Then o is an input to transaction parent('l) = 'I". ‘The scheduler preconditions imply that «
contains a REQUEST— CREATE(T), but no return operation for 'l

(4) = is CREATE(T) and T is an access to basic object X.
By the scheduler preconditions, no CREATE(CT) or ABORI(F) appears in a, but a

a pending access in a|X. ‘Then Femma 22 implies that ‘17 is live in a. Also, I.emma 17 implics that
parent('l'} is live in a. Then Lemma 23 implics that one of "1™ or pareni(’l’) is an ancestor of the
other; since I and 'I” arc both Icaves of the transaction tree, the only possibility is that parent(l) is
a proper ancestor of T°. Let'I™ be the sibling of 'I' which is an ancestor of '1°. Then 1™ is live in a,
by l.emma 18. 'That is, there is a CREATE(T™), but no COMMIT for I in a. But this
contradicts the scheduler preconditions for . ‘Therefore, there is no pending access in afX.

3.6.4. Visibility and Serial Schedules

In this paragraph. we prove interesting lemmas about visibility in scrial schedules.

L.emma 25: I.ct a be a scrial schedule, and o an operation in . 'Then transaction(wr) is visible in
a to some transaction which is live in a.

Proof: Let T = transaction(w). Sincc a is not cmpty, '1‘0 is live in a. Let'I” be the least ancestor
of 'I' which is live in a. 'The proof is by induction on the distance from T" to I, If T = 'I", the
result is trivial. So assume that T' # '1”. 'Then COMMIT(T') is in a, and so T is visiblc to parent(T)
in a. l.emma 13 implics that a contains a REQUEST —CREATE(T) opcration, which occurs at
parent('l). Then the inductive hypothesis implics that parcnt(T) is visible to '1”. Then T is visible
toT by Lemma§. §

L.emma 26:

1. Let a be a serial schedule, T a transaction and X an object. Then visible(a,T)|X is a prefix
of alX.

" 2. Let a be a scrial schedule, T a transaction and P a primitive. Then visible(a, T)|P is a prefix
of a|P.

Proof: 1. l.ct # and ¢ be opcrations in a|X. with = preceding ¢, and @ an operation in
visible(a,T). Lt a’ be the prefix of a preceding . lLet 1° = transaction(p) and T =
transaction(w). Sincc @ is cither a CREATE or a REQUEST—~COMMIT for T°, well-formedness

21

of a tmplies that 1" is live in a’@. Thus, by L.emma 23, the only live transactions in a’¢ arc
ancestors of ‘I, By emma 25, 1™ is visible to an ancestor of 1" in a’@. and hence in a. By
l.cmma 8. 1™ is visible to T in a. But 1" is visible to I’ in a, by assumption. l.cmma 8 then
implics that 1™ is visible to I in ‘a, which gives the result.

2. Immediate from |.cmma 11 and part 1. B

Lemma 27: [et a be a nonempty serial schedule. et o be the last operation in a which is an
output of the serial scheduler. 'Then transaction(w) sces everything in a.

Proof: l.ct'I' = transaction(w). We first show that ‘1" is live in a. Either 7 is a CREATE(]) or
else it is a return operation for a child 17 of I In the latter case, L.emma 14 implics that
CREATE(TD) also occurs in a. ‘Thus, in cither case, CREATE(T) occurs in a. Now, if a return
operation for T occurs in a, I.cmma 21 implics that it follows a, which is impossible. Thus, no
return operation for 1" occurs in a. It follows that 1 is live in a.

Then Lemma 23 implics that the only other transactions that arc live in a must be ancestors or
descendants of ', We claim that no proper descendants of I are live in a. So assume for the sake
of obtaining a contradiction that U is a proper descendant of ‘1" which is live in a. ‘Then U is a
descendant of a child V of T, and V is live in a, by [.emma 18. l.et a” be the prefix of a preceding
7. 'There arc three casces.

(1) 7 is CREATE(T).
Then L.emma 14 yiclds a contradiction.

(2) 7 is a COMMIT operation for 1", a child of T.
Then'I™ # V, since 'I” is not live in a. But 'I” and V arc both live in a’, which contradicts l.emma

23.

(3) 7 is an ABOR'T(T), for child T" of T.
Then 1" # V, since T is not live in a. But Vis live in a’. But then the scheduler preconditions for
ar arc not satisficd, a contradiction.

Thus, no descendants arc live in a, so the only transactions that arc live in a are anccstors of
T. Now let @ be any operation in a. L.emma 25 implics that transaction(ep) is visible in a to some
ancestor of 1, and hencc to T, §

lemma 28: l.ct a be a scrial schedule, and T a transaction. Then visible(a,T) is a scrial
schedule.

Proof: We proceed by induction on the Iength of «. The basis, length 0, is trivial. l.eta = a’n,
where o is a single operation. Fix transaction T, and let T° = transaction(#r). If 1" is not visiblc to
T in a, then visible(a, ') = visible(a’, '), and the result is true by inductive hypothesis. So assume
that T is visible to T in a.

If o is an output opcration of a primitive P, then visible(a, T)|P is a prefix of a|P, by L.emma 26,
and thus is a schedule of P. By the inductive hypothesis, visible(a',T) is a scrial schedule. Also,
visible{(a, 1) = visible{a’, 1) by Lemma 12. Then L.emma 4 shows that visible(a,T) is a serial
schedule.

On the other hand, if # is an output opcration of the scheduler, then [.emma 27 implies that T
sces cverything in a. But since ' is visible to T in a, it follows that 'I' sces cverything in a. Thus,

22

visible(a, 1) = a, a scrial schedule. B

3.6.5. Reordering and Combining Scrial Schedules
[n this paragraph, we describe ways in which serial schedules can be modified and combined to yield other

serial schedules. These lemmas arc used in the proof of the main theorem, in Scction 7.

Lemma 29: let a and a” be two cquivalent scrial schedules. 1f 8 is a sequence of scrial
opcrations such that af is a serial schedule, then a8 is a serial schedule, and is equivalent to af.

Prool: Equivalence is trivial. ‘The fact that «'B is a scrial schedule follows because the
preconditions of the serial scheduler depend only upon the presence of previous operations, not
their order. 1

‘The next lemma says that any scrial schedule can be transformed by moving all the operations visible to any
particular transaction to the beginning of the schedule, and the result is another serial schedule. ‘This lemma
can be thought of as describing a kind of "canonical form" for a scrial schedule, with respect to a particular

transaction.
Lemma 30: [.ct a be a serial schedule, and " any transaction. l.ct 8 = visible(a,T). Then B(a -
B) is cquivalent to a and is scrial.
Proof: l.ct @’ = B(a - B). If P is any primitive, then [.cmma 26 implies that B|P is a prefix of
alP. Thus, a’ is cquivalent to a.

To show that a’ is scrial. we proceced by induction on its prefixes. By l.emma 28, 8 is scrial, so
we can usc B as the basis. 1.t yw be a prefix of a’, where o is a serial operationina - B and yis a
scrial schedule. If o is an output operation of a primitive P, then y#|P is a prefix of a'|P, = a|P
by equivalence, which is a schedule of P. 'Then Lemma 4 shows that y# is a scrial schedule. So
assumc that # is an output operation of the serial scheduler.

L.ct s be the state of the scrial scheduler after y. 1.ct y'# be the prefix of a ending in o, and let s’
be the state of the serial scheduler after y'. Then # is cnabled in . We must show that =« is
cnabled in s. This suffices, by L.emma 4.

Since cvery operation in y' is also in v, it follows that each component sct of s’ is a subsct of the
corresponding sct of s. There arc three cascs.

(1) 7 is CREATE(T") for some transaction 1".
Then transaction(w) = T, and 1" is not visible to I in a. Then T" € create— requested(s’) C
create —requested(s). Also, it is casy to show that 'I” € created(s). Now lct U be in siblings(T") N
created(s). If U € created(s’), then U € returned(s') since o is cnabled in s', C returncd(s), as
nceded. So suppose that U € created(s’). Then CREATE(U) occurs in 8, so U is visible to T'in a.

Since a contains both CREATE(T’) and CREATE(U), I.emma 23 implics that @ must contain a
COMMI'T for at least one of 1™ or U. If a contains a COMMIT for U, then it occurs in B, so U €
returned(s). On the other hand, if a contains a COMMIT for T7, then 17 is visible to U in a, so
Lemma 8 implics that 1™ is visible to T in a, a contradiction.

(2) w is COMMIT(I" v) for some transaction T" and value v.

23

Then transaction{w) is parent(’1”), which is not visible to T in a. Then (I"v) is in
commit—requested(s’) € commit—requested(s). Also, it is casy to show that 1" is not in
returned(s). Now let U be in children(1") M create—requested(s). ‘Then there is a
REQUEST—CREATEW) in vy, This REQUEST—CREATE(U) occurs at 1", which cannot be
visible to 1" in a since parent(’17) is not visibie to I in a. Thus, the REQUEST—-CREATE(U)
docs not occur in B, so it occurs in y'. Since o is cnabled in §', we have U € returned(s’) C
returncd(s).

(3) 7 is ABOR'T(CI™) for some transaction ™.
Then transaction(wr) = pareny(1”), and parent(17) is not visible to T in «. Then T° €
create — requested(s’) € create — requested(s). Also, it is casy to show that 'I" € created(s). Now
let U € siblings('1") M created(s). Then CREATE(U) occurs in y. But CREATE(U) occurs at U,
and U cannot be visible to 1" in a since parent(U) = parent('1") is not visible to " in a. "Therefore,
CREATE(U) does not occur in B8, so it occurs in y*. Then U is in siblings(17) N created(s’) €
returncd(s’) C returned(s). 1

'The following lemma is an casy consequence of the preceding one.

Lemma 31: Let a be a schedule of scrial operations, and let'I" and ‘17 be two transactions with T
visible to 'T'in a. l.ct B and B be scrial schedules, such that B is cquivalent to visible(a) and g7
is cquivalent to visible(a, 17). Then 87 = B°(B - B°) is cquivalent to B and serial.

Proof: 1.ct y = visible(8.17). I'hen v is scriat by [.emma 28. |.emma 30 implics that y(8 - y) is
cquivalent to B and scrial. |.emma 10 implics that 8 is cquivalent to y, and thus that 8-y = B -
B’. Then Lemma 29 implics that 87 is cquivalent to y(B - y) and scrial. 'Thus, 8" is cquivalent to
B and scrial. 1

The next two lemmas arc used in the proof of Thcorem 68. Each describes a way of "cutting and pasting”

two scrial schedules to yicld a new serial schedule.

Lemma 32: l.ct aBICOMMl'l‘(’l'.u) and aBz be two scrial schedules and T, 1™ and T three
transactions such that the following conditions hold:
(1)'I" is achild of ™ and 'T' is a descendant of ‘1™ but not of 'I”,
(2) 1" sces everything in aBl,
(3) I sces everything in af,,
(4) a = visible(aB /1) = visible(aB, 1) and
(5) no basic objcct has operations in both Bl and Bz.
Then af [COMMIT(T,u)B, is a serial schedule.

Proof: Note first that if T = 1™, then Bz is empty and the result is trivial. So assume that T #
T™. Then T is a descendant of achild Uof T, and U # T .

Any operation in aff| whose transaction is not a descendant of T, must be in visiblc(aﬂl,’l"‘) by
l.emma 8. Similarly, any opcration in olB2 whosc transaction is not a descendant of U, must be in
visibic(aB,.T7). 'Thus, 8, and B, contain only opcerations at descendants of 1" and U, respectively.
Since 1" and U are distinct siblings, and by assumption no objccts have operations in both 8, and
B,. it follows that no primitive has an operation occurring in both 8, and Bz'

We proceed by induction on prefixes of aBlCOMMlT('[",u)BZ. Let a’p be a prefix of
a8 COMMIT(1"u)B,, with a’ a scrial schedule and @ a scrial operation. We use a'gp =
aBlCOMMl'l'('l“,u) as the basis, since a,BlCOMMI'l'('l",u) is a serial schedule by assumption. So

24

assume that a” = aff, COMMIT(I"W)A" for some sequence B, "There arc two cases, depending
on whether @ is an output of a primitive or of the scrial scheduler.

Suppose that @ is an output operation of a primitive P. Then 8, COMMIT(I".v) contains no
operations at P. 'thus, a’'@|P = af’¢lP’. which is a pretix of afs,|P. which is 4 schedule of P since
af, is ascrial schedule. Thus, a’@|P is a schedule of P."The result follows by |.emma 4.

So supposce @ is an output of the scrial scheduler. 'Then transaction(e) = V for some
descendant V of UL Let s be the state of the serial scheduler after a”, and let §° be the state of the
scrial scheduler after af8”. 'I'hen the following relationships hold between s and s°.

1. V € create — requested(s’) - created(s’) iff V € create — requested(s) - created(s)

2. children(V) N create — requested(s’) C returncd(s’) iff children(V) N create — requested(s)
C rcturned(s)

3. (V.v) € commit—requested(s’) iff (V.v) € commit— requested(s)
4.V ¢ returncd(s) iff V € returned(s)
5. siblings(V) M created(s’) C returned(s’) iff siblings(V) N created(s) C returned(s)

Since the operations in 8, arc all at descendants of 17, and those of B, are all at descendants of
U, the first four biconditionals arc immediate from l.emma 7. If V is a proper descendant of U,
the last biconditional also follows. 1t remains to show that siblings(U) N created(s') C returned(s’)
iff siblings(U) M created(s) C returned(s). But any sibling of U crecated in a8’ is created in o,
and the only sibling of U created in a” and not @B’ is 1", and I € rcturned(s). Thus, the claims

arc true.

Since ¢ is cnabled in §', the claims above imply that ¢ is also cnabled in s. ‘The result follows. §

Lemma 33: let aABORT(1") and af be two scrial schedules, and et T, T° and T be
transactions, such that the following conditions hold:
(1) 1" isachild of 1™ and 'I"is a descendant of T™ but not of T,
(2) T sces everything in af8, and
(3) a = visible(a.1™") = visible(a8.T).
Then a ABORT(I™)B is a serial schedule.
Proof: Similar to, but somewhat simpler than, the proof of Lemma 32. I

4. Resilient Objects

Having stated our correctness conditions, we arc now rcady to begin describing implementations and
proving that they mect the requirements. This section and the next are devoted to the description of a
concurrent system which permits the abort of transactions that have performed steps. An important
component of a concurrent system is a new kind of object called a "resilicnt object,” which we introduce in

this scction. A resilient object is similar to a basic object, but it has the additional capability to undo

opcrations of transactions that it discovers have aborted.

25

Resilient objects have no capabilitics for managing concurrency: rather, they assume that concurrency
control is handled externally (by lock manager components of the scheduler). 'I'his scetion defines resilient
objects and presents some of their propertics. L also digresses slightly from the main development by
describing and proving correct a particular implementation ol resilient objects, which are constructed by
keeping multiple copies of corresponding basic objects. 'The resilient object manages these copies as versions
of the data object. Upon learning of an abort, the appropriate stored version is used in place of the current

version.

4.1, Definitions

Resilient object R(X) mimics the behavior of basic object X, but has two additional input operations,
INFORM —COMMIT-AT(XYOH(T) and INFORM-—-ABORT—-AT(XYOF(T), for cvery transaction
T. Upon receiving an INFORM—ABOR'T— AT(X)OEF(T), R(X) crascs any cffects of accesses which are

descendants of T 'This property is made formal as the "Resiliency Condition™ below.

R(X) has the following opcrations, which we call R(X)-operations.

Input Operations:
CREATE(CH), T an access to X
INIFORM —COMMIT - AT(X)OFK(T)
INFORM = ABORT - AT(X)YOK(T)

Output Operations:
REQUEST —-COMMIT(T,v), T an access to X

In order to describe well-formedness for resilicnt objects, we require a technical definition for the sct of
transactions which arc active after a sequence of R(X)-opcrations. Roughly speaking, the transactions which
are active arc those on whose behalf the object has carricd out some activity, but whose fate the object does

not know.

The definition is recursive on the length of the scquence of R(X) operations. Namely, only To is active after
the cmpty sequence. lLet @ = Bo, where # is a single operation, and let A and B denote the sets of active
transactions after a and B, respectively. If # is CREATE(T), then A = B U {T}. If v is a
REQUEST—COMMIT for T, then A = B. If 7 is INFORM-COMMIT—AT(X)OF(T), and if T is in B,
then A = (B- {I'}) U {parent(D}; if T is not in B, then A = B. If 7 is INFORM — ABORT — AT(X)OK(T),
then A = B - descendants(T).

Now we dcfine well-formedness for sequences of R(X) operations. Again, the definition is recursive.

Namcly, the empty schedule is well-formed. Also, if @ = a'n is a sequence of R(X)-operations, then a is

26

well-formed provided that a” is well-formed, and the following hold.

o Ifm is CREATE(T), then
(i) there is nO CREATE(T) in a';
(it) all the transactions which are active after a' are ancestors of I

o Ifaris a REQUEST—COMMIT for ', then
(i) there is no REQUEST—COMMIT for T in &', and
(ii) 1" is active alter a”

o If 7 is INFORM —COMMI'T— AT(X)YOK(T), then
(i) there 1s no INFORM — ABOR'T—AT(X)OF() in ', and
(ii) if 'l is an access to X, then a REQUEST—COMMIT for ‘I occurs in o,

o If o is INFORM — ABOR'T = AT(X)OK(T) . then
(i) there is no INFORM —COMMIT - AT(X)YOK(T) in a’.

An immediate consequence of these definitions is that the transactions active after any weli-formed
sequence of R(X)-operations a arc a subsct of the ancestors of a single active transaction, which we denote

lcast(a).

For a a sequence of R(X)-operations, define undofa) recursively as follows. Define undo(A) = A, where A
is the empty sequence. Let a = B, where 7 is a single operation. [f o is a scrial operation (a CREATE or a
REQUEST—COMMIT), then undo(a) = undo(B)w. If o is INFORM —COMMIT-AT(X)OF(T), then
undo(a) = undo(B). If w is INFORM —ABOR'T—A'T(XYOF(T), then undo{a) is the result of climinating,
from undo(8), all operations whose transactions arc descendants of ‘1. Note that undo{a) contains only serial

opcerations.

let @ be any scquence of R(X)-operations, and let # be an operation in a of the form
INFORM — ABORT—AT(X)YOF(T). Then the scope of # in a is the subscquence y of a consisting of

operations climinated by #.

Resiliency Condition
Resilient object R(X) satisfies the resiliency condition if for cvery well-formed schedule a of R(X), undo(a) is

a schedule of basic object X.
We require that resilient object R(X) preserve well-formedness and satisfy the resiliency condition.

The resiliency condition is the correctness condition required by the concurrent schedulers at the object
interface. The well-formedness requirement is a syntactic restriction, and the condition that undo(a) be a

schedule of basic object X expresses the required semantic relationship between the resilient object and the

27

basic object it incorporates. 'The important property which must be preserved is that the correctness condition
at the resilient objects, together with the behavior of the concurrent scheduler, assures correctness at the

transaction boundarics.

4.2. Properties of Resilicnt Objects
This subscction contains a collection of simple lemmas about the properties of well-formed sequences of

R(X) opcrations.

Lemma 34: 1.ct aw be a well-formed scquence of R(X) operations, with « a single operation.
The following are truc.

1. If # is a scrial operation, then transaction(ar) is active after ar.
2. If T is an access active after a prefix of a but not after a, then I’ is not active after aw.

3. Ifwisa REQUEST—~COMMIT for T, then CREATE(T) is the last scrial operation in a.
Proof:
1. Immediate from the definition of active and well-formedncss.

‘‘‘‘‘

occurs, which can only happen once in a well-formed schedule.

3. Supposc the last scrial operation in a is ¢, with @ # CREATE(T). L.ct transaction(p) =
T°. By well-formedness, 'T' # T°. Also by well-formedness, T is active in a, so that
CREATE(T) must occur in a. and so precedes @. By part (1), T is active following
CREATE(T) and after o, and 'I" is active following @. But T cannot be active when @
occurs, by well-formedncss, contradicting part (2) of this lemma.

Lemma 35: Lct a be a well-formed sequence of R(X) operations. ©et T and T" be accesscs to X,
with T # ", and let # and ¢ be scrial operations with transactions ‘I and T°, respectively. If o
precedes @ in a, then between o and . there is cither an INFORM —ABORT - AT(X) for some
ancestor of T, or clse there are INFORM — COMMIT — AT(X)OF(U) operations for all ancestors
U of T which are not ancestors of 'I”, occurring in order from lowest to highest in the transaction
trec ordering.

Proof: By part 3 of L.emma 34 and wcll-formedncss, we may assumce that ¢ = CREATE(T).
l.emma 34 implics that T is active immcdiatcly after #. By well-formedncss, before CREATE(TT)
can occur, it must be that all transactions which are active are ancestors of 'I”. There are only two
ways in which this can happen. Onc possibility is that R(X) first reccives INFORM —~COMMITS
for all ancestors of ‘T up to Ica('l',’T"), in order from lowest to highest in the transaction tree
ordering. ‘The other possibility is that R(X) first reccives an INFORM — ABORT for an ancestor
of T. 8

Lemma 36: lct aw be a well-formed sequence of R(X) opcrations, with » =
INFORM — ABORT—=AT(X)OK(T). Then undo(aw) is a prefix of undo(a).

Proof: Suppose not. Then there is a subsequence gy of two operations in undo{a), such that
is in undo(ar) and @ is not. Clearly, ¢ and y are scrial operations, transaction(e) is a descendant

28

of ‘1" and transaction(y) is not. Since @ is not in the scope of an INFORM —=ABOR'T in a, by
l.emma 35, there is an INFORM -~ COMMI'T between @ and ¢ for every proper descendant of
Ica(transaction(g).transaction(y)) that is an ancestor of transaction(e), including I, 'This
contradicts the well-formedness of anr. 1

Lemma 37: Let a be a well-formed sequence of R(X) operations, and let 'I' be any transaction
active in @, other than '), "Then undofa) contains an operation @ at a descendant 17 of T, which is
followed in a by an INFORM —COMMI'T for every ancestor of 1™ which is a proper descendant
of T.

Proof: ‘I'he proof is by induction on a, with a trivial basis. l.cl @ = a’#, such that the lemma is
truc for a” and that 7 is a singlc operation. L.et I’ be a transaction active after a. 'There arc four
Cascs.

Suppose 7 is CREATE(CI™). Then undo{a) = undo{a’)wr. 171 # 1™, the result is immediate by
the induction hypothesis, since ‘1" is active after a’. 1f'I' = "I, then the lemma follows, with # =

Q.

If o is a REQUEST-COMMIT for a transaction 1™, then undo{a) = undo{a’)7 and the same
transactions arc active in a and a’. 'T'he result is immediate.

Suppose o is an INFORM —-COMMIT for a transaction 'I"". "T'hen undo{a) = undo(a’)w. If T
is active after a', the result is immediate. If T is not active after o', it follows that 'T' = parent(l™).
T'he result is immediate from the induction hypothesis,

Supposc = is an INFORM —ABORT for a transaction U. Since 'I' is active after a, it was active
after o’ and U is not an ancestor of T. l.ct ¢ be the transaction of transaction ‘I which follows
from the inductive hypothesis applicd to T and a’. Since a is wel-formed and a’ contains
INFORM — COMMI'T's for every ancestor of T up to 'T', U is not an anccestor of 'I”. It follows that
@ is in undo(a) and the result holds. B

lemma 38: lct a be a well-formed scquence of R(X) operations, and let lcast{(a) = T. If
undo(a) is nonempty, then it ends in an operation of a descendant of T.

Proof: If T = T the result is trivial, so assume otherwisc. By the previous lemma, undo{a)
contains an operation ¢ at a descendant of 'I'. Without loss of generality, assume that ¢ is the last
operation in undo{a) at a descendant of 1. If any other operation o followed ¢ in undo{a), by
f.emma 35 a would contain INFORM —COMMITs for cvery ancestor of transaction(g) up to
Ica(transaction(e).transaction(sr)), which includes T. Then 'T'is not active in a, a contradiction. @

lemma 39: lect awm be a wcll-formed sequence of R(X) operations, with # =
INFORM—ABORT—-AT(XYOF(T). If T is not an ancestor of lcast{(a), then undo(aw) =
undo{a).

Proof: Supposc that T is not an ancestor of least{a) and that undo(aw) # undo(a). Then
undo(a) contains a secrial operation ¢ at a descendant T° of ‘1. By L.emma 38, ¢ is followed in
undo(a) by an opcration at a descendant of lcast(a). By [cmma 35, a contains an
INFORM —COMMIT for every ancestor least{(a) up to Ica(lcast(a),I”), which includes T,
contradicting the well-formedness of aw.

We are now able to show that the undo operator prescrves well-formedness.

L.emma 40: If a is a well-formed scquence of R(X)-opcrations, then undo{a) is a well-formed
scquence of X-operations.

29

Proof: ‘I'hc proof is by induction on the length of a. 'The basis is trivial. Assumc a = a'nw,
where o is a single operation, and undo{a’) is a well-formed sequence of X-operations. If # is an
INFORM-ABORT or INFORM —COMMIT, undo(a) is a prefix of undo(a’), by 1.emma 36, and
the result is immediate.

If 7 is CREATE(T), then undo(a) = undofa’)wr. By the well-formedness of a, CREATE(T)
does not appear in a', and so not in undo(a’). Henee, (i) is satisficd. 'T'o sce (i), assumc that
CREATE(T™) occurs in undoa’), for access 1. Then lemma 35 implics that
INFORM ~COMMIT = AT(X)YOF(T") occurs after CREATE(T™) in a. Then well-formedness
(the precondition for INFORM —COMMIT = A'T(X)OL(T7)) implics that a
REQUEST—COMMIT for 'I" occurs in o', and well-formedness also implies that the
REQUEST—~COMMTIT for 1" follows the CREATE(T"). Thercfore, the REQUEST—-COMMIT
occurs in undof{a’), and so ‘1" is not pending in undo{a’). ‘thus, (ii) is satisficed.

If w is a REQUEST—COMMIT for T, then again undo(a) = undo{a’)w, and by the well-
formedness of a, (i) no REQUEST—COMMIT for T appears in «', and so not in undo{a’), and
(i) 'V is active after a’, and it follows that CREATE(T”) occurs in undo(a’). §

4.3. Construction of a Resilient Object

In this subscction, we describe a construction of a resilient object R(X) from a basic object X.

Recall that a resilient object X is distinguished from a basic object in that it has INFORM —ABORT and
INFORM —COMMIT operations, a different definition of well-formedness, and satisfies the resiliency
condition. 'The resilient object R(X) is constructed from the states, transition function and operation labels of
the basic object X. The resilient object R(X) maintains a collection of "copices of X" (i.c. remembers states of
X). onc for cach active transaction, with a particular current copy (corresponding to the least active
transaction) to which CREA'TE opecrations arc sent. When R(X) receives an INFORM —ABORT, the
appropriate stored copy becomes the current copy, thereby crasing the cffects of the opcrations in the scope of
the INFORM —ABORT.

The state of R(X) consists of a pair (act,map), where act is a sct of "active” transactions, and map is a
function from act to states of basic object X. In the well-formed exccutions of R(X) (defined below), act will
always be a subsct of the sct of ancestors of onc particular transaction in act, called Icast(act). (In case act has
no least member (which, again, will not arise in exccutions with well-formed schedules), define least(act)
arbitrarily.) The copy for least(act) is considered to be current. The initial states of R(X) arc thosc in which
act = {TO} and map(T,) is an initial statc of the basic object X. In the following specification of the
operations of R(X), let (act’,map’) be the state of R(X) prior to the operation, and (act,map) be the statc of
R(X) after the operation.

e CREATE(T), T an access to X:
Postcondition: '

30

act = act’ U {'I'}
map(U) = map'(U) forall U € act - {1}
map(1) = s, where (map‘(lcusl(upt')),CRHA'I'I*‘('I‘).S) is in the transition relation of X

o INIFORM - ABORT—=AT(X)OI(I):
Postcondition:
act = act’ - {descendants(T)}
map(U) = map’(U)for all U € act

o INFORM —COMMIT = AT(X)OF(I):
Postcondition:
if'I' € act’ then
begin
act = (act’ - {'I'}) U {parcnt(1)}
map(U) = map'(U) for U € act - {parcnt(1)}
map(parent(l)) = map’(l’)
end
if I' € act’ then act = act’ and map = map’

o REQUEST—COMMII(T,v):
Precondition:
lcast(act’) = T
(map’(1.REQUEST—COMMIT(T,v).s) is in the transition rclation of X
Postcondition;

act = act’
map(U) = map’(U) forall U € act- {T}
map(l) = s

Now we prove that this impiemenlation is a correct resilient object.

[emma 41: Lct a be a well-formed schedule of R(X) which can leave R(X) in state (act,map).
Then act coincides with the set of transactions which arc active after a.

Proof: ‘Ihic proof is by induction on the Iength of a. ‘The basis is trivial. Lcta = a'w, where o
is a singlc operation. ‘There are four cascs, depending on the type of operation #. Each is
immediate from the definition of active and the implementation of R(X). I

l.emma 42: Lct a be a well-formed schedule of R(X) which can leave R(X) in state (act,map).
Then the following conditions hold.

e undo{a) is a schedule of basic object X which can leave X in statc map(lcast(act)), and

e if T is any transaction other than T, and alNFORM —~ABORT—-AT(X)YOF(T)) is well-
formed, then undo{alNFORM — ABOR'T—AT(X)OF(1)) is a schedule of basic object X
which can lcave X in statc map(U), where U is the least clement of act which is not a
descendant of T,

Proof: First, obscrve that if T is not an ancestor of Icast{act), and
alNFORM —ABORT-AT(X)YOF(I") is well-formed, then lemmas 41 and 39 imply that
undo{aINFORM — ABORT - AT(X)YOF(1")) = undo(a), so the second condition follows from
the first. :

31

The proof is by induction on the fength of a. In cuch case, we prove the first condition, then the
second condition assuming that 'I” is an ancestor of least(act). By the observation above, this is
sufficicnt.

The basis is trivial. l.ct @ = a’w, where o is a single operation. [.ct (act’.map’) be a state of
R(X) afler a', such that ((act’.map’).or.(act,map)) is a transition for R(X). 'There are four cascs.

@ = CREATE(T)
Then undo(a) = undo{a’)r. By the inductive assumption, undo(a') is a schedule of X which can
leave X in state map'(least(act’)). By the implementation of R(X), (map’(Icast(act’)).w.map(1)) is a
transition of X, and 1" = lcast{act). Thus the first condition of the lemma is satisfied.

T'o sec that the sccond condition holds, note that all active transactions after a arc ancestors of T,
and by well-formedness, arc exactly the transactions active after a’, together with T, Let ¢ be
INFORM = ABOR'T—= AT(X)OF(T"), where 17 is an ancestor of 'I" other than 'I'O, and agp is well-
formed. If'I” is a proper descendant of least(act’), by | .emma 39, undo(agp) = undo(a’), which is
a schedule of basic object X which can leave X in statc map(lcast(act’))), by the inductive
hypothesis. If 17 is an ancestor of least(act’), undo{ag) = undo{a’g), the least clement of act
which is not a descendant of '1™ is also the least clement of act’ which is not a descendant of '1”, and
the result follows by the inductive hypothesis.

2)m = REQUEST—-COMMIT(I,v)
Then undo{a) = undo(a’)wr. By the inductive assumption, undo{a’) is a schedule of X which can
Icave X in state map’(lcast(act’)). By the implementation of R(X), (map’(lcast(act’)),w,map(1)) is a
transition of X, and I’ = Icast(act). 'T'hus the first condition of the lemma is satisfied.

T'o sce that the sccond condition holds, notc that the active transactions after a arc all ancestors
of 1. and by wcll-formedness, arc cxactly the transactions active after a«’. l.ct @ be
INFORM = ABORT=AT(X)OF(I™), where ‘I is an ancestor of 'I" other than 'l'O. and ag is wcll-
formed. Then undo(ag) = undo{a’g). which is a schedule of basic object X which can leave X in
statc map(lcast(act'))), by the inductive hypothesis. Furthermore, the Icast clement of act which is
not a descendant of ‘17 is also the least clement of act” which is not a descendant of T, and the
result follows by the inductive hypothesis.

3) 7 = INFORM —COMMIT - AT(X)OF(T)
Then undo(a) = undo(a’). Also, map(lcast(act)) = map(least(act’)), by definition of R(X). 'The
first condition follows.

By the dcfinition of R(X)., lcast{act) is an anccstor of lecast{act’). let ¢ be
INFORM —ABORT—=AT(X)YOF(T"), where 1™ is an ancestor of lcast(act) other than TO. and ag is
well-formed. Then a'g is well-formed, and undo(ag) = undo{a’). Also, sincc ag is well-
formed, T" # T. L.et U and U’ be the least clements of act and act’, respectively, which are not
descendants of T,

If T € act’, or if U # pareny(T), then U = U’ and map(U) = map’(U’), and the sccond
condition follows from the inductive hypothesis. So assume that 1" € act’ and U = parent(T).
Then since ‘17 # 1, it follows that U = ‘I, Then map’(U’) = map(U), and the sccond condition
again follows from the inductive hypothesis.

32

4y m = INFORM=ABORT—=AT(X)OK(H)
T s not an ancestor of least(act’), then undo{a) = undofe’), by I.emma 39. Furthermore, the
state of R(X) is not changed. alNFORM—ABOR'T=AT(X)=OFK(1") is well-formed only if
o INFORM = ABORT=AT(X)—O0F(1") is, and the active transactions after a arc cxactly those
active after a’. 'T'he result follows.

Suppose that ‘T is an ancestor of least(act’). The first condition is immediate from the inductive
hypothesis. Let @ be INFORM —ABOR'T=AT(X)OI(I™), where 17 is an ancestor of least(act)
other than 'I‘O, and ag is well-formed. Since act = act’ - descendants('), Ieast(act), and hence T,
is an ancestor of 1, undo(ap) = und{a’ng) = undo(a’e), and the second condition follows as
well. B

Theorem 43: R(X) is a resilient object.

Proof: We must show that R(X) preserves well-formedness and satisfies the resiliency condition.
That R(X) satisfics the resilicncy condition follows immediately from L.emma 42,

Assumec that a is a well-formed schedule of R(X) and # is an output operation of R(X) cnabled
after an cxccution with schedule a. We must show that aw is a well-formed sequence of R(X)-
opcrations.

Since 7 is an output, it has the form REQUEST—-COMMIT(T.v) for some access T and value v.
et (act,map) be a state of R(X) after a. such that # is cnabled in (act,map). Clcarly, # is an
output of basic object X enabled from statec map(lcast(act)). By I.emma 42, undo(ea) is a schedule
of basic object X which can lcave X in statc map(lcast(act))), so undo(a)r = undo(aw) is a
schedule of basic object X,

Since X preserves well-formedness for basic objects, and by L.emma 40 undo{a) is a well-formed
scquence of X-operations, undo(a) ends with the operation ¢ = CREATE(T) and contains no
other opcerations with transaction ‘1. Let B¢ be the prefix of a ending in @. Supposc first that a
REQUEST~COMMIT for 'I' occurs in a. Since a is well-formed, ¢ is the only CREATE(T)
opcration in a, and by L.emma 34, the second REQUEST—CREATE for T follows ¢, and by the
definition of undo, is in undo{a) if ¢ is, a contradiction.

It recmains to show that T is active after a. By lLemma 34, T is active after Bg. No
INFORM —COMMIT for T can occur after ¢ in a. sincc by well-formedness, there is no
REQUEST—-COMMIT for T in a. Also, since ¢ is in undo(a), no INFORM —ABORT for an
anccestor of 'I' can occur after @ in a. Thus T is still active after a. 8

5. Concurrent Systems
As with scrial schedules in classical scttings, our scrial schedules contain no concurrency or resiliency and

thus are too inefficient to use in practice. Their importance is solely for defining correctness for transaction
systems. In this section, we definc a new kind of system called a concurrent system. The new system consists
of the same transactions as in a scrial system, a resilient object R(X) for every basic object X of the serial

system, and a concurrent scheduler.

Concurrent systems describe computations in which transactions run concurrently and can be aborted after

33

they have performed some work. ‘The concurrent scheduler has the joint responsibility of controlling
concurrency and of sccing that the cffects of aborted transactions (and their descendants) become undone,
Concurrent systems make use of the roll-back capabilitics of resilient objects to make surc that ABORT
operations in concurrent systems have the same semantics (So far as the transactions can tell) as they do in

scrial systcms.

Concurrent systems arc defined in this section. In the next section, the more permissive “weak concurrent
systems” arc defined. In Section 7, we prove that the schedules of concurrent systems arc scrially correct, as a

corollary of a weaker correctness property for the weak concurrent system.

5.1. Lock Managers

The scheduler we define is called the concurrent scheduler. 1t is composed of scveral automata: a lock
manager for cvery object X, and a single concurrent controller. 'The job of the lock managers is to insure that
the associated object receives no CREA'TES until the tock manager has reccived abort or commit information
for all necessary preceding transactions. ‘This lock manager modcls an exclusive locking protocol derived
from Moss' algorithm [Mo]. The lock manager has the following operations,
Input Opcrations;

INTERNAL —CREATE(T), where T is an access to X

INFORM — COMMIT— AT(X)YOK(T). for I any transaction
INFORM — ABOR'T' = AT(X)OK(T), for T any transaction

Output Operations:
CREATE(T), where T is an access to X

The input opcrations INTERNAL ~CREATE, INFORM—-COMMIT and INFORM-—-ABORT will
composc with corresponding output operations of the concurrent scheduler which we will construct in this
subsection. The output CREATE operation composes with the CREATE input opcration of the resilient
object R(X). 'The lock manager receives and manages requests to access object X, using a hicrarchical locking

scheme. It uses information about the commit and abort of transactions to decide when to release locks.

Each statc s of the lock manager consists of the following three sets of transactions: lock —holders(s),
crcate — requested(s), and created(s). Initially, lock —holders = {'I‘O}, and the other sets arc empty. The

opcrations work as follows.

o INTERNAL —CREATE(T)
Postcondition:
create — requested(s) = create — requested(s’) U {T}

o INFORM — COMMIT - AT(X)OF(T)

4

Postcondition:
if 't € fock — holders(s’) then lock — holders(s) = (lock —holders(s’) - {1} U {parcat(1)}

o INFORM = ABORT = AT(X)OK(CT)
Posticondition:
lock — holders(s) = lock —holders(s’) - descendants(’1)

o CREATE(T)
Precondition:
1" € create — requested(s’) - created(s’)
lock —holders(s') € ancestors(T)
Postcondition:
lock —holders(s) = lock —holders(s) U {T'}
created(s) = created(s’) U {1}

Note that resilient object R(X) and the lock manager for X sharc the INFORM-—ABORT and
INFORM —COMMIYT input operations. Thesc compose with the output from the concurrent controller
defined below.

vvvvv

lock —holders are ancestors of ‘'I. When the lock manager learns about the commit of a transaction 'T' for
which it holds a lock, it relcasces the lock to 'I"s parent. When the lock manager learns about the abort of a
transaction T for which it holds a lock, it simply rcleascs all locks held by that transaction and its descendants.

Our model provides an exceptionally simplc and clear way of describing this important algorithm.,

A key property of lock managers is described by the following lemma.

lLemma 44: l.ct X be an object and let T and ‘1" be accesses to X. Let U be an ancestor of T
which is not an ancestor of '1”. lLet a be a schedule of the lock manager for X. If CREATE(T)
precedes CREATE(T™) in a, then between the two CREATE opcerations, there is cither an
INFORM —COMMIT— AT(X)Ol(U) operation, or clse an INFORM—ABORT—AT(X) for
some ancestor of T.

lock —holders. Before the lock manager can send in CREATE(T"), it must be that all the
transactions in lock —holders arc ancestors of 1", There arc only two ways in which this can
happen. Onc possibility is that the lock manager first reccives INFORM —COMMITS for all
ancestors of T up to lea(T,1"), including INFORM —COMMIT—-AT(X)OF(U). 'The other
possibility is that the lock manager first receives an INFORM — ABOR'T for an ancestor of T.

5.2. The Concurrent Controller
The concurrent controller is similar to the scrial scheduler, but it allows siblings to proceed concurrently. In

order to manage this properly, it interacts with “concurrent objects” (lock managers and resilicnt objects)

instcad of just basic objccts. 'The operations arc as follows.

35

[nput Opcrations:
REQUIST—CREATE(T)
REQUEST—-COMMIT(T,v)

Qutput Operations:
CREATE(T), T a non-access transaction
INTERNAL —CREATE(T), T an access transaction
COMMII(T,v)
ABORT(CT)
INFORM — COMMIT - AT(X)YOF(T)
INFORM — ABORT - AT(X)YOF(T)

Each statc s of the concurrent controller consists of five scts: create— requested(s), created(s),
commit—requested(s). committed(s), and aborted(s). The sct commit—requested(s) is a set of
(transaction,valuc) pairs, and the others arc scts of transactions. (As before, we will occasionally write T €
commit — requested(s) for (T.v) € commit— requested(s) for some v.) All scts arc initially empty cxcept for
create — requested, which is {'I‘O}. Define returned(s) = committed(s) U aborted(s). 'The opcrations arc as

follows.

o REQUEST—-CREATE(T)
Postcondition:
create — requested(s) = create — requested(s’) U {1}

o REQUEST - COMMIT(T,v)
Postcondition:
commit — requested(s) = commit— requested(s’) U {(T,v)}

e CREATE(T), T a non-access transaction
Precondition:
T € create — requested(s’) - created(s’)
Postcondition:
created(s) = created(s) U {T}

o INTERNAL — CREATE(T), T an access transaction
Precondition:
'I' € create — requested(s’) - created(s’)
Postcondition:
created(s) = created(s’) U {T}

e COMMIT(T,v)
Precondition:
(T,v) € commit — requested(s’)
T ¢ returned(s’)
children(T) M create —requested(s’) C returncd(s’)
Postcondition:
committed(s) = committed(s’) U {T}

36

o ABORT(T)
Precondition:
‘I € (create-requested(s’) - created(s')) U (commit— requested(s’) - returned(s’))
children('t) M create —requested{s’) C returned(s’)
Postcondition:
created(s) = created(s’) U {1}
aborted(s) = aborted(s) U {1}

o INFORM — COMMIT = AT(X)OF(T):
Precondition:
T € committed(s’)

o INFORM — ABORT—-AT(X)OK(T):
Precondition:
T € aborted(s’)

‘The concurrent controller is closcly related to the scrial scheduler. In place of the scrial scheduler’s
CREATE operations, the concurrent controller has two kinds of operations, CREATE operations and
INTERNAL —CREATE opcrations. ‘T'he former is used for interaction with non-access transactions, while
the latter is uscd for interaction with access transactions. From the concurrent controller's viewpoint, the two
opcrations are the same; however, our naming convention for operations requires us to assign them different
names, since thc INTERNAL—-CREATE opcrations arc intended to be identified with
INTERNAL —CREATE opcrations of the lock managers (which also have CREATE operations, for
interaction with the resilient objects). ‘T'he precondition on the scrial scheduler’s CREATE opcration which
insures scrial processing of sibling transactions, docs not appear in the concurrent controller. Thus, the
concurrent controller may run any number of sibling transactions concurrently, provided their parent has

rcquested their creation.

The concurrent controller’s COMMIT operation is the same as the scrial scheduler's COMMIT operation
(cxcept for a minor difference in bookkecping). The concurrent controller's ABOR'T operation is different,
however; in addition to aborting a transaction in the way that the scrial scheduler does, the concurrent
controller has the additional capability to abort a transaction that has actually been created and has carried out
some steps. In this particular formulation, aborts occur if the transaction was not crcated (as with the serial
scheduler), or if the transaction has previously requested to commit, and its children have returned. Togcether
with the requircments on the COMMIT operation, this condition insures that all transaction completion
occurs bottom-up. In the weak concurrent system to be considered in Section 6, a different, "weak”,
concurrent controller will be used; it differs from the concurrent controller of this section precisely in not

requiring ABOR'T operations to wait for their transactions (and subtransactions) to complete.

The concurrent controller also has two additional operations not present in the serial scheduler. These

37

operations allow the concurrent controller to forward necessary abort and commit information to the lock

managers and resilient objects.

Lemma 45: 1.ct a be a schedule of the concurrent scheduler, and Iet s be a state which can result
from applying a o the initial state. "Then the following conditions are true.

1.'I"is in create — requested(s) exactly if T = '1'0 or a contains a REQUEST—CREATE(T)
opcration.

2,11 is a non-access transaction, then I is in created(s) cxactly if a contains cither a
CREATE(T) or ABORT(T) operation.

J.I€ T is an access transaction, then ‘I is in crecated(s) cxactly if a contains cither an
INTERNAL =CREATE(T) or ABOR'T(T) operation.

4. (Tyv) is in commit—rcquested(s) exactly if a contains a COMMIT—-REQUEST(T,v)
operation.

5. (I,v) is in committed(s) exactly if a contains a COMMIT(T,v) operation.

6.l is in aborted(s) exactly if a contains an ABOR'T(T) operation.

5.3. Concurrent Systems
The composition of transactions, resilient objects and the concurrent scheduler (lock managers and
concurrent controller) is the concurrent system. A schedule of the concurrent system is a concurrent schedule,

and the opcrations of a concurrent system arc concurrent operations.

A scquence a of concurrent operations is well-formed if for cvery primitive P, a|P is well-formed (using the

appropriate definition of well-formedness).

‘The main result of this paper is that every concurrent schedule is scrially correct. ‘This will be proved as a

corollary of a stronger result, in Section 7.

5.4. Properties of Concurrent Systems

As we did for serial schedules, we now prove some useful basic properties for concurrent schedules. These
lemmas describe the possible kinds and orders of operations that can occur in well-formed concurrent
schedules. Later, we will sec that all concurrent schedules are well-formed, so these properties actually follow
just from the fact that these schedules arc concurrent. All results and proofs in this subscction are
straightforward.

I.emma 46: I.ct a be a well-formed concurrent schedule, and let T # 'I‘O be a transaction.

1. If a contains any operation with transaction T, then a contains a CREATE(T) and a
REQUEST—CREATE(T).

18

2.If a contains a COMMIT for 'I', then a contiins a REQUEST-COMMIT for T, a
CREATE(T) and a REQUEST—=CREATE(T).
3. If a contains an ABORT(T), then a contains a REQUEST - CREATE(T).
Lemma 47: 1.ct a be a well-formed concurrent schedule, and ‘I a transaction. Assumge that some
descendant of 'T'is in transaction(a). 'T'hen the following hold.
1. CREATE(E) occurs in a.
2.IfT = 'I‘O. then REQUEST—-CREATE(T) occurs in a.
Lemma 48: 1.ct a be a well-formed concurrent schedule, and let'I' # 'I'O be a transaction.

1. If a contains a REQUEST—CREATE(T), but does not contain a rcturn opcration for T, -
then parent('l) is live in a.

2. 1f T is live in a, then pasent(’]) is live in a.

3 If a contains a REQUEST—CREATE(T) but docs not contain a CREATE(T) or
ABOR'T(T), then parent(T) is live in a.

Proof: 1. Well-formedness implics that the REQUEST—-CREATE(T) is preceded by a
CREATE(parent('1)). Suppuse that parent('l) is not live in a. Then a return operation for
parent('l} occurs in a. In casc the rcturn operation for parent(l) is an ABOR'T(parent(T)),
scheduler preconditions imply that the CREATE(parent(l)) must precede the
ABORT(parcnt(l)). ‘Then the scheduler preconditions for the return operation imply that the
return for parent('l) must be preceded by a REQUEST—COMMIT for parcat(T). By well-
formedness, the REQUEST —COMMIT for parent(' I’y must follow the REQUEST — CREATE(T),
so that the return for parent(’l') must follow the REQUEST—CREATE(T) Then the scheduler
preconditions for the return operation imply that there must be a return operation for T in a, a
contradiction.

2.and 3. arcasin L.emma l7. §
Lemma 49: et a be a well-formed concurrent schedule, and let T be a transaction.

1. If & contains a REQUHST—CREA’[‘F(’I‘). but does not contain a return operation for T,
then all proper ancestors of T are live in a.

2. If T is live in a, then any ancestor of T is live in a.

3.If a contains a REQUEST—CREATE(T) but does not contain a CREATE(T) or
ABORT(T), then all proper ancestors of T are live in a.

Lemma 50: Let a be a well-formed concurrent schedule, and let T and 17 be transactions with T°
a descendant of T. Assume that there is a return operation for T in a.

1. If there is a REQUEST — CREATE(T') in a, then there is a return opcration for T in a.

2. If 1" is in transaction(a), then there is a return operation for T in a.

Proof:

39

1. By l.emma 49.

2. By L.emma 46 and part 1.

Lemma 51: 1 .ct a be a well-formed concurrent schedule. Ifa return operation for 'I'is in a, then
it follows all operations in a whose transaction is I, ~

Proof: First consider the case where 1" is not an access. [f no CREATE(T) occurs in a, the result
is immediate, so assume that CREATE(T) occurs in a. In case an ABORT(T) occurs in a,
scheduler preconditions imply that the CREATE(T) must precede the ABOR'I(E). Then the
return operation for ' must be preceded by a REQUEST—COMMIT for ‘I, by scheduler
preconditions. Well-formedness implics that the REQUEST—COMMIT is preceded by
CREATE(T), and is not followed by any output operations of 'I'. ‘Thus, the only serial operations
of I that could follow the REQUEST— COMMI'T arc return operations of children of T.

Let 'I” be a child of 'I' for which a return operation occurs in a. By scheduler preconditions,
there is only onc rcturn operation for 17 in a. By lemma 46, a also contains
REQUEST—-CREATE(T"). Since this is an output operation of 1, it precedes the
REQUEST—COMMIT for ‘I, and hence precedes the return operation for ‘T, ‘Then the scheduler
preconditions imply that the return operation for 17 precedces the return for T,

Next, consider the case where ‘I is an access. 1f no INTERNAL — CREATE(T) occurs in a, the
result is immediate, so assume that INTERNAL —CREATE(T) occurs in a. In case an
ABORT(T) occurs in a, scheduler preconditions imply that the INTERNAL —CREATE(T) must
precede the ABORT(l). ‘Then the return operation for T must be preceded by a
REQUEST-COMMIT for 1. and well-formedness implies that this is in turn preceded by
CREATE(T). 'Thus, no scrial operations of ‘I can follow the return operation for T. 1

Lemma 52: 1.ct a be a well-formed concurrent schedule. If a return operation for T is in a, then
it follows all operations in a whosc transactions arc descendants of T.

Proof: Sincc a rcturn operation for I occurs in a, we have T # To. Let T" be a descendant of T,
and assume for the sake of obtaining a contradiction that a scrial operation # with transaction(sr)
= T" occurs after the return for T in a. l.ct a’ be the prefix of a preceding #.

By L.emma 46, a’ contains a REQUEST—CREATE(T"). Then Lemma 50 implics that o’ must
contain a return operation for ‘I, But then the well-formed schedule a’# contains a return
operation for T” followed by an operation of 'T”, which contradicts Lemma 51. 1

Weak concurrent systems are defined in the following section, and many of their propertics are stated and
proved. Weak concurrent systems arc obtained by replacing the concurrent scheduler with a more permissive
scheduler, the weak concurrent scheduler. Results in Scction 7 prove that cvery execution of the concurrent
system is also an cxccution of the weak concurrent system. Thus, additional interesting propertics of
concurrent system behavior follow immediately from the corresponding propertics of weak concurrent system

behavior, proven in that section.

40

6. Weak Concurrent Systems

In this scction, we define "weak concurrent systems™, which are cxactly the same as concurrent systems,
cxcept that they have a more permissive controller, the "weak concurrent controller”. The weak concurrent
controller reports aborts to a transaction’s parent while there is still activity going on in the aborted
transaction’s subtree. In this paper. weak concurrent systems arc used primarily to provide an intermediate
step in proving the correctness of concurrent systems: proving a weaker condition for weak concurrent
systems allows us to infer the stronger correctness condition for concurrent systems. However, weak
concurrent systems arc also of interest in themsclves. In a distributed implementation of a nested transaction
system, performance considerations may make it important for the system to allow a transaction to abort
without waiting for activity in the transaction’s subtrce to subside. In this case, a weak concurrent system
might be an appropriate choice, even though the correctness conditions which they satisfy arc weaker. Weak
concurrent systems also appears to have further technical usc, for cxample in providing simple explanations of

the idcas used in "orphan dcetection™ algorithms [HIL.MW].

6.1. The Weak Concurrent Controller
In this subscction, we define the weak concurrent controller. As we have alrcady said, it is identical to the
concurrent controller except that it has a more permissive ABOR'T operation. For convenicence, we describe

the controller here in its entircty. It has the same opcrations as the concurrent controller:

Input Operations:
REQUEST—-CREATE(T)
REQUEST—-COMMIT(T,v)

Output Opcrations:
CREATE(T), T a non-access transaction
INTERNAL ~CREATE(T), T an access transaction
COMMIT(T.v)
ABORT(T)
INFORM — COMMIT - AT(X)OF(T)
INFORM — ABOR'T = AT(X)YOF(T)

Each state s of the concurrent controller consists of five sets: crcate—requested(s), crcated(s),
commit—requested(s), committed(s), and aborted(s). The set commit—requested(s) is a set of
(transaction,value) pairs, and the others are sets of transactions. (As before, we will occasionally write T €
commit—requested(s) for (T.v) € commit—requested(s) for some v.) All arc empty initially except for
create—requested, which is {'I‘O}. Define returned(s) = committed(s) U aborted(s). The operations arc as
follows.

¢ REQUEST-CR F.A'I‘F(l’)
Postcondition:

41

create — requested(s) = create—requested(s’y U {1}

e RIEQUISST—COMMIT(T.v)
Postcondition:
commit - requested(s) = commit—requested(s’) U {(I',v)}

o CREATE(T), I a non-access transaction
Precondition:
I € create —requested(s’) - created(s’)
Postcondition:
created(s) = created(s’) U {T}

o INTERNAIL —CREATE(T), I an access transaction
Prccondition:
T € create — requested(s’) - created(s’)
Postcondition:
created(s) = created(s’) U {1}

o COMMIT(T,v)
Precondition:
(l',v) € commit—requested(s’)
T ¢ returncd(s’)
children(T') M create — requested(s’) € returned(s’)
Postcondition:
committed(s) = committed(s’) U {T}

¢ ABORT(T)
Precondition:
T € create-requested(s’) - returned(s’)
Postcondition:
crcated(s) = created(s’) U {T}
abortcd(s) = aborted(s) U {T}

e INFORM — COMMI'T—AT(X)YOF(T):
Precondition:
T € committed(s’)

e INFORM — ABORT - AT(X)OF(T):
Precondition:
T € aborted(s’)

Thus, the weak concurrent controller is permitted to abort any transaction that has had its creation

rcquested, and which has not yet returned.

Lemma 53: L.et a be a schedule of the concurrent scheduler, and let s be a state which can result
from applying a to the initial state. Then the following conditions are true.

1. T is in create— requested(s) cxactly if T = TO or a contains a REQUEST—CREATE(T)
operation.

42

2.1 °T is a non-access transaction, then ‘I is in created(s) cxactly if a contains cither a
CREATE(T) or ABORT(T) operation.

3. If T is an access transaction, then ‘I' is in crecated(s) cxactly if a contains cither an
INTERNAL = CREATE(T) or ABOR'I(I') operation.

4. (T.v) is in commit—requested(s) cxactly if a contains a COMMIT—REQUEST(T,v)
opcration.

5. (I'.v) is in committed(s) cxactly if a contains a COMMI'T(1',v) operation.

6. 'l is in aborted(s) cxactly if a contains an ABOR'I(T) operation.

6.2. Weak Concurrent Systems
The composition of transactions, resilicnt objects and the weak concurrent scheduler (lock managers and

wcak concurrent controller) is the weak concurrent system. A schedule of the weak concurrent system is a

weak concurrent schedule.

Wecak concurrent systems cxhibit nice behavior to transactions cxcept possibly to those which are
descendants of aborted transactions. Thus, we say that a transaction T is an orphan in any sequence a of
operations provided that an ancestor of T is aborted in a. In many of the propertics we prove for weak

concurrent systems, we will have to specify that the transactions involved are not orphans.

6.3. Properties of Weak Concurrent Systems
As we did for serial and concurrent schedules, we here prove a number of uscful basic properties for weak

concurrent schedules. As before, most of these propertices are simple to state and prove.

6.3.1. Operations in Weak Concurrent Schedules

As before, we include a collection of lemmas describing the possible kinds and orders of operations that can
occur in well-formed weak concurrent schedules. These lemmas are analogous to some in Scction 5, and have
similar proofs; the main difference is that we must take proper care with orphans. As before, we go on to
show that all weak concurrent schedules are well-formed, so these propertics actually follow just from the fact
that these schedules are weak concurrent,

Lemma 54: Let a be a well-formed weak concurrent schedule, and let T # 'l‘0 be a transaction.

1. If a contains any opecration with transaction T, then a contains a CREATE(T), and a
REQUEST —CREATE(T).

2.If a contains a COMMIT for T, then a contains a REQUEST—-COMMIT for T, a
CREATE(T) and a REQUEST — CREATE(T).

3. If a contains an ABOR'T(T), then a contains a REQUEST— CREATE(T).

43

Lemma 55: et a be a well-formed weak concurrent schedule, and I a transaction. Assume that
some descendant of ' is in transaction(a). 'T'hen the following hold.

1. CREATE(T)Y occurs in a. -

261 # ‘I'O, then REQUEST ~ CREATE(T) occurs in a.
Lemma 56: 1.ct a be a well-formed weak concurrent schedule, and let T # TO.

1. If @ contains a REQUEST—CREATE(T), but does not contain a return operation for T,
then parent('T) is not committed in a.

2. If s live in a, then parent('T) is not committed in a.

3.If a contains a REQUEST—CREATE(T) but does not contain a CREATE(T) or
ABORI(I), then parent('l') is not committed in a.

Proof: 1. Supposc a COMMIT operation for parent('l) occurs in a. ‘Then the weak concurrent
controller preconditions for the COMMIT operation imply that the COMMI'T for parent('1’) must
bc preceded by a REQUEST—COMMIT for parent(T). By wcll-formedness, the
REQUEST—-COMMIT for parent(1) must follow the REQUEST—CREATE(T), so that the
COMMIT for parent(1') must follow the REQUEST—CREATE(T). Then the weak concurrent
controller preconditions for the COMMIT operation imply that there must be a COMMIT
operation for 'l in a, a contradiction.

2.and 3. arcasin 3.6.2. |

Lemma 57: Let a be a well-formed weak concurrent schedule, and let T be a transaction which
is not an orphan in a.

1. If a contains a REQUEST — CREATE(T), but docs not contain a COMMI'T opcration for
T, then all proper ancestors of T are live in a.

2. If T'is live in a, then all proper ancestors of T are live in a.

3. If a contains a REQUEST —CREATE(T) but does not contain a CREATE(T), then all
proper ancestors of T arc live in a.

Proof: By repcated usc of the previous lemma, well-formedness and the weak concurrent
controller preconditions.

Lemma 58: Let a be a well-formed weak concurrent schedule, and let T and T be transactions
with 1" a descendant of T. Assume that 17 is not an orphan in a and that there is a COMMIT
operation for T in a.

1. If there is a REQUEST — CREATE(T") in a, then there is a COMMIT operation for T" in
a.

2. If T" is in transaction(a), then there is a COMMIT operation for T in a.
Proof:

1. By l.cmma 57.

2. By l.cimma 54 and part 1.

6.3.2. Objccts and Locking
In this paragraph, we give two simple lemmas about the behavior of the locking strategy.
l.emma 59: lct a be a weak concurrent schedule. Let X be an object, and let 'I' and ‘1" be
accesses to X. et U be an ancestor of ‘I which is not an ancestor of 17, Assume that CREA'TE(T)
precedes CREATE(T) in a.

L.'There is cither an INFORM —COMMIT-ATX)YOFU), or clse an
INFORM — ABOR'T'— A'T(X) for some ancestor of 'l', occurring between CREATE(T) and
CREATE(T) in a.

2. Either CREATE(1") is precceded by a COMMIT operation for U, and by a
REQUEST—COMMIT operation for U, or else CREATE(1") is preceded by an ABORT
operation for some ancestor of T,

Proof:

1. By L.emma 44,

2. By part 1 and the preconditions of the weak concurrent controtler.

Lemma 60: 1.ct a be a well-formed weak concurrent schedule, and X a basic object. Then the
sct of active transactions after a|R(X) is cxactly the sct of lockholders in the lock manager for X
after a.

Proof: By induction on the length of a. |

6.3.3. Well-Formedness
Here, we show that cvery weak concurrent schedule is well-formed. It follows that all the propertics proved
carlicr in this scction arc actually truc for all weak concurrent schedules. From now on, we will usc these

propertices without cxplicitly mentioning well-formedness.

Lemma 61: I.ct a be a weak concurrent schedule. Then a is well-formed.

Proof: By induction on the length of schedules. The base, length = 0, is trivial. Suppose that
aw is a weak concurrent schedule, where o is a single operation, and assumc that a is well-
formed. If # is an output of a primitive P, then the result is immediate, since each primitive
prescrves well-formedness. No INTERNAL —-CREATE operation can cause a violation. So
assume that # is an input to a primitive P. It suffices to show that aw|P is well-formed. 'There are
six cases.

(1) 7 is CREATE(T) and T is a non-access transaction.
The controller preconditions insurc that CREATE(T) does not appear in a.

(2) 7 is CREATE(T) and T is an access to resilient object R(X).
By the lock manager preconditions, no CREATE(T) appears in a. The lock manager
preconditions and f.emma 60 imply that all the transactions which are active after a are ancestors

45

of T.

(3) 7 is COMMITI(T.v).
‘Then ar is an input to transaction parent(1). Weak concurrent controller preconditions imply that
a contains REQUEST—COMMII(ly), and so lcmma 54 implics that a contains
REQUEST—-CREATE(T). Also, weak concurrent controller preconditions insure that a does not
contain a return operation for'l.

(4) 7 is ABOR'I(T).
Then o is an input to transaction parent('l). Weak concurrent controlier preconditions imply that
a contains a REQUEST—CREATE(T). Weak concurrent controller preconditions insure that a
docs not contain a return opceration for T,

(5) w is INFORM — COMMIT — AT(X)OE(T) at resilient object R(X).
By the preconditions of the weak controller, a contains a COMMIT for ‘L. If
INFORM —ABORT—AT(XYOR(T) occurs in a, then a also contains an ABOR'T for 'T', which
contradicts weak concurrent controller preconditions. Thus, no
INFORM = ABORT—AT(X)YOK(I) occurs in a. Sincc a COMMIT for T occurs in a, wecak
concurrent controller preconditions imply that a REQUEST —COMMIT for I also occurs in a.

(6) w is INFORM — ABOR'T = AT(X)OF(T) at resilicnt object R(X).
By the preconditions of the weak concurreat controller, a contains ABORT(T). If
INFORM — COMMIT - A'T(X)OF(T) occurs in a, then a contains a COMMIT for I, which
contradicts weak concurrent controller preconditions. Thus, no
INFORM —COMMIT-=AT(X)YOK(T) occurs in a. I

6.3.4. Visibility and Weak Concurrent Schedules

"T'his paragraph states and proves important propertics involving visibility in weak concurrent schedules. In
particular, the most important result of this paragraph is Lemma 66, which relates the portion of a weak
concurrent schedule which is visible to a particular transaction, to schedules of transactions and basic objects.

‘T'he first lemma shows how visibility propagates among the transactions during a weak concurrent execution,
Lemma 62; I.ct aw be a weak concurrent schedule, where o is a single operation.

1. If w is CREATE(T), then visible(an., T) = visible{a,parcnt(T))sr.
2. If @ is COMMIT(I',v), then visible(aw,parent(T)) = visible(a, T) .
3. If o is ABORT(T), then visible(awr,parent(T)) = visible(a,parent(T))sr.

4. If 7 is COMMIT(T,v), and 1" is a descendant of parent(T) but not T, then visible(an,T) -
visible(aw ,parent(1)) = visible(a, 1) - visible(a, T).

Proof: 1. By L.emma S5, 7 is the first scrial operation in a@ whose transaction is a descendant of
T, and T is not visible to parent(T). ‘Thus any transaction othcr than T visible to T in a# is visible
to parent(l) in aw. ‘Then parent(l) is visible to T in aw, and by lLemma 8,
visible(aw .parent(1))r = visible(an,T).

!

46

By the definition of visibility, any transaction visible to parent(1) in am is visible to parent('T’) in
a, and visible(a.parent(1)) = visiblc(aa,parent(1')). Substituting in the equality above, we have
the result.

2. By the definition of visibility, any transaction visible to parent('l) in asr is cither visible to
parenl(T) in a, or is visibic 1o T in a. But any transaction visible to parent('l) in a is visible to T in
a, so wc have that any transaction visible to parent(l) in a#n is visible to T in a, and
visible(ar parent(1)) is a subscquence of visible(a,). It follows immediately from the
definition of visibility that any transaction visible to 'I' in a is visible to parent('l') in ar, so that
visible(a 1) is a subsequence of visible(aw parent(l). "The result is immediate.

3. Immediate from the definition of visibility.

4. Clearly, visible(a,17) is a subscqucnce of visible(aw,'17). Any opcration in visible{(aw T") -
visible(ae, 17) has a transaction which is a descendant of 'I, and so is cither # or is visible to T in a,
and thus is in visible(a,). 'Thus we have visible(aw, 1) - visible(a,) = visible(a, 1) -
visible(a 1)w. As m is not in visible(a,l7), this cquals visible(a.17) - visibic(a,). By part 2,
visible(aw parcnt('1)) = visible(a,). and the result follows by substitution in the first identity.
]

Now we prove two lemmas involving visibility and the behavior of resilient objects in weak concurrent

systems.
[.emma 63: | .ct a bc a weak concurrent schedule. Let R(X) be a resilient object, and let 1'and T
be accesses to R(X). If'17 is live and not an orphan in @ and CREATE(T) occurs in a, then cither
T is wvisible to T° in a or clsc CREATE(l) is in the scope of an
INFORM — ABORT - AT(X)OF(U) in a}R(X).

Proof: Therc are two cascs.

(1) CREATE(T) precedes CREATE(T) in a.
Assume T is not visible to T in a. Then lLemma 59 implics that there is an
INFORM — ABOR'I' = AT(X) operation for some ancestor of 'I', occurring after CREATE(T) in a.

(2) CREATHE(T") precedes CREATE(T) in a
Then Lemma 59 implics that there is cither a COMMIT or an ABOR'T for some ancestor of T, in
a. Since 17 is not an orphan in a, there is a COMMIT for an ancestor of 1" in a. Then 1.cmma 58
implies that 1" is returncd in a, a contradiction. §

Lemma 64: Let a be a weak concurrent schedule. Let R(X) be a resilient object, let T and T be
accesses to R(X), and let 1™ be any transaction. Assumec that 1" is not an orphan in a. If an
operation 7 of T precedes an operation #° of T" in a, # is not in the scope of an
INFORM — ABORT and 'T" is visiblc to T™ in a, then T is visible to T in a.

Proof: By wcll-formedness, CREATE(T) and CREATE(T") are operations in a, in that order.
L.et a’ be the prefix of a ending with CREATE(1”). Then T is live and not an orphan in a'. By
L.emma 63, T is visible to " in a’, and so in a. L.emma 8 imptlics that ' is visible to T” in a. I

The following lemma is straightforward.
Lemma 65: l.ct a be a weak concurrent schedule, and let 'I' be a transaction which is not an

47

orphan in a. Any transaction '|” visible to 'I'in a is not an orphan in a.

Proof: If 1" is an ancestor of 'I', the result is immediate. Otherwise, COMMI'T operations appear
in a for cvery proper descendant of lea('l''17) that is an ancestor of '1". By well-formedness, none
of these transactions has aborted. Since the remaining ancestors of 1" arc also ancestors of T, and
the result follows. 1

We are now ready to prove the key lemma of this paragraph.

Lemma 66: | .ct a be a weak concurrent schedule, let 'I be live and not an orphan in a, and lct P
be a resilient primitive,

....

1. If P is a transaction 'T”, then visiblc(a,"l W17 is a prefix of afI” and a schedule of T".

2. If P is a rcesilient object R(X), then visible(a, T)R(X) is a prefix of undo(a|R(X)) and a
schedule of basic object X,

Proof: 1. Immediatc from l.cmmas 11 and 1.

2. First, we show that any operation in visible(a,)[R(X) also occurs in undo{a|R(X)). If # is in
visible(a, T)R(X). it means that all ancestors of transaction(w) up to lea(transaction(s),T’) have
committed. By assumption, 1" is not an orphan in a, so L.emma 65 implics that transaction(s) is
not an orphan in a. ‘Thus, by the preconditions of the weak concurrent controller there is no
INFORM —ABOR'I for any ancestor of transaction(#r) in a. Therefore, o is in undo(a|R(X)).

Now wc consider any two operations 7 and #° of undo(a|R(X)), where o precedes #'. Assume
that @’ is in visible(a, 1)|R(X). Let T = transaction(w) and 1" = transaction(#’). Then T is
visible to 'I' in a. and 1" is not an orphan in a by Lemma 65. Since # is in undo(aR(X)), no
INFORM — ABOR'T accurs at R(X) for any ancestor of 1™ in a, with # in its scope. Then [.emma
64 implics that 'I™" is visiblc to 'I' in a. Thus, # is in visible(a,){R(X). It follows that
visible(a, T)IR(X) is a prefix of undo(a]R(X)).

By L.emma 61, a|R(X) is a well-formed schedule of resilient object R(X). Then the resiliency
condition implics that undo(a|R(X)) is a schedule of basic object X. So by Lemma 1,
visible(a, I)JR(X) is a schedule of basic object X. I

Finally, we prove that, in a weak concurrent schedule, concurrently exccuting transactions access disjoint

sets of resilient objects.

Lemma 67: Let a be a weak concurrent schedule, with transactions T and T live and not
orphans in a. Let T = lca(T,1"). Let B = visible(a, 1) - visible(a, T™) and 8’ = visible(a,T") -
visible(a,T™). ‘Then no resilient object has operations in both 8 and 8°.

Proof: The result is trivial if T is an ancestor of 1™ or vice versa. So assume that Ica(T, 1) is
ncither T nor 17 Let R(X) be a resilient object such that both 8 and 8’ contain operations of
R(X). By well-formedncss, we can assume without loss of gencrality that there are two accesses to
X (not nccessarily distinct) such that # = CREATE(U) and ¢ = CREATE(V) arc in 8 and 8°,
respectively, and neither U nor V is visible to Ica(T,T") in a. Also, we can assume that w appcars
in a no later than ¢.

We have that U is visible to some ancestor of T in a, and V is visible to some ancestor of T in a,

48

and sincc I and "I arc not orphans in a, |.emma 65 implics that no ancestor of U or V has aborted
in a. Also. ncither U nor V is visible to lca(l 1"} in a, so it must be that U # V. But then #
precedes @ in a. and L.emma 59 implics that some ancestor of 'l is committed in a. Then Lemma
57 implics that 'l is returned in a. a contradiction. B

7. Simulation of Serial Systems by Concurrent Systems

In this section, we prove the main results of this paper, that concurrent schedules are serially correct, and
that weak concurrent schedules arc correct at T, Both these results follow from an interesting theorem about
weak concurrent schedules, which says that the portion of any weak concurrent schedule which is visible to a

live non-orphan transaction is cquivalent to (i.c. looks the same at all primitives as) a scrial schedule.

The proof of this thcorem is quite interesting, as it provides considerable insight into the scheduling
algorithm. The proof shows not only that a transaction’s view of a weak concurrent schedule is equivalent to
some scrial schedule, but by a recursive construction, it actually produccs such a schedule. It is interesting and
instructive to obscrve how the vicws that different transactions have of the system cxccution get passed up

and down the transaction tree, as CREATES, COMMITS and ABOR'TS occur.
Theorem 68: |.ct a be a weak concurrent schedule, and ‘1" any transaction which is live and not
an orphan in a. 'Then there is a serial schedule 8 which is equivalent to visible(a,T).
Proof: We proceed by induction on the length of a. 'The basis, length 0, is trivial. Fix a of
length at Icast 1, and assume that the claim is true for all shorter weak concurrent schedules. [et o
be the last operation of a, and let @ = a'w. Fix I which is live and not an orphan in a. We must
show that there is a scrial schedule 8 which is cquivalent to visible(a, T).

If & is not a serial operation, then visible(a', 1) = visible(serial(a’),T) = visible(serial{a),T) =
visible(a, '), and the result is immediate by induction. So we can assumc that « is a scrial
operation. Also, if transaction(#) is not visible to 1" in a, then visible(a, 1) = visible(a', T), and
the result is again immediate by induction. Thus, we can assume that transaction(s) is visible to T
in a. Also, T is not an orphan in a’.

There arce four cases.

(1) = is an output operation of a transaction or resilient object.
Then the inductive hypothesis implics the cxistence of a scrial schedule 8’ which is equivalent to
visible(a’,T). Let 8 = B'w. We must show that 8 is cquivalent to visible(a, T) and scrial.

Let P be any primitive. Then BIP = B'w|P = visible(a', T)w|P by inductive hypothesis, =
visible(a, T)|P, by L.emma 12. Thercfore, 8 is cquivalent to visible(a, T).

Let # be an output of primitive P. Then B|P = visible(a, T)|P by cquivalence, which is a
schcdule of P by LLemma 66. 1.cmma 4 implics that 8 is scrial.

(2) = is a CREATE(T") opcration.
Then transaction(zr) = 'I", and so T is visible to 'I'in a. Then 1.ctmma 55 implics that # is the first
opcration whose transaction is a descendant of 'I°. ‘Then by the definition of visibility, it must be

49

that'I" = 1. By Lemma 57, parent(T) is live in a”. Since parent('l’) is not an orphan, the inductive
hypothesis implics the cxistence of a serial schedule 87 which is equivalent to visible(a’,parent('1)).
let 8 = B'm. We must show that 8 is equivalent to visible(a, ') and serial.

I.et P be any primitive. ‘Then BIP = B'w|P, = visible(a',parent(1))ar|P by inductive hypothesis,
= visible(a. 1)|P. by L.emma 62, 'T'hus, 8 is cquivalent to visible(a.).

Consider any cxecution of the serial system having B8 as its operation sequence, and Iet s’ be the
state of the serial scheduler after 8°. We show that o is enabled in s, ‘That is, we show that T €
create —requcested(s’), that T € created(s’), and that siblings(T) N created(s’) C returned(s').

Consider any cxecution of the weak concurrent system having a as its operation sequence, and
Ict s be the state of the weak concurrent scheduler after a'. State s contains a component S for the
weak concurrent controller and a component Sy for the lock manager for cach object X.

IfT = "I, then T € create—requested(s’) by the initial conditions. If T # 'l‘o. then T €
crcalc—rcqucstcd(sc) by the preconditions of the concurrent scheduler, so a
REQUEST—CREATE(T) opcration occurs in a’. ‘The REQUEST —CREATE(I) operation has
transaction parcnt('l), and so is in visible(a’,parent(1)), and thus is in 8. 'Thercfore, T €
create — requested(s’).

If T € created(s’), then there is cither a CREATE(T) or an ABOR'I(F) operation in 8, and
hence in a’. In the former case, a would have two such operations, while in the latter case, a
would have an ABOR'I(I) followed by a CREATE(T). Both arc impossible, so ‘I € crcated(s').

Assumce U € siblings('l') N created(s’). ‘Then there is cither a CREATE(U) or an ABORT(U)
opcration in 8°. In the latter casc, U is obviously in returned(s’). So supposec CREATE(U) occurs
in #°, and so in visible(a’,parent(’l)). Since CREATE(U) occurs at U, U is visiblc to parent(T) =
parent(U) in a’; thus, COMMIT(U.,u) occurs in a’, for some u. Since COMMIT(U,u) occurs at
parent('T), COMMI'T(U,u) is in visible{a’,parent(1)), and so in B8°. Thus, U € rcturned(s’).

(3) 7 is a COMMIT(T",v) operation.

Then 1™ = parent(I”) = transaction{sr) is visible to T and not an orphan in a. Also, T is not an
orphan in a’, by l.cmma 65. 'Then since a is well-formed, 17 is live in a’, and so by Lemma 57, T7
is live in a” and so in a. Since 1™ is live and visiblc to ‘T, 'I™ is an ancestor of T. Since T is live in
a, l.cmma 58 implics that T is not a descendant of '1”. ‘The inductive hypothesis yiclds two serial
schedules, B8 and 87, which arc cquivalent to visible(a®,17) and visible(a’,T). respectively. Let y
= visible(8"T7). Let B, = B - yand BZ = B” - y. Wcshow that 8 = yB, 7B, is cquivalent to
visible(a,T) and serial.

Lemma 28 implies that vy is a serial schedule.

Since T is visible to T" in a’, I.emma 10 implies that visibie(a’,1”") = visible(visible(a’, 1), T7),
which is cquivalent to visible(8'1™") = y; thus y is cquivalent to visible(a'’, 1) Also, since T is
visible to 1" in a’, L.Lemma 10 implics that visible(a’177) = visible(visible{a’, 1), 17"}, which is

cquivalent to visible(87,17). Thus, y is also cquivalent to visible(87,17).

Then by .emma 31 (applicd with scrial(a’) as the schedule a hypothcsized in the lemma), v8,

50

and yB, arc scrial schedules which are equivalent to 87 and 87, respectively.

We have that visible(a,17") = visible(a'/[")7 by | .cmima 62, which is cquivalent to 8o, which is
in turn cquivalent o yf,w. Thatis, visible(aI™') is equivalent to B8, 7.

Since 87 is cquivalent to visible(a'. 1) and y is cquivalent to visible(a'.1™"). by |.emma 10, B, =
B - v is equivalent o visible(a’, 1) - visible(a™177), = visible(a, T') - visible(a.17") by L.emma 62.

Thus. B is cquivalent to visible(a, T} visible(a T)-(visible(a, 1)), Since 1™ is visible to T in a,
by Lemma 8§, it is casy to sce that the samc operations appear in this schedule as in visible(a,).
l.et P be any primitive. ‘Then visible(a, I™)]P is a prefix of visible(a 1)P, by L.emma 66. It
follows that B8P = visible(a. 1)|P, so that 8 is cquivalent to visible(a, T).

It remains to show that 8 is scrial. ‘This follows from .emma 32, provided we can show that:
(3.a) yB = is a serial schedule,
(3.b) 1" sces everything in y8,
(3.c) T sces everything in v8,,
(3.d) y = visible(yB.17) = visible(y8,.17) and
(3.¢) no basic object has operations in both 8, and B,

(3.a) Consider any cxccution of the serial system having yBI as its operation scquence, and let s
be a state of the scrial scheduler after yB,. We show that o is cnabled in state 5. Than is, we show
that (I".v) € commit—requested(s’), that 'I" € returncd(s’), and that children(1?) N
create — requested(s’) C returned(s’).

Consider any exccution of the weak concurrent system having a as its operation sequence, and
let s be the state of the weak concurrent scheduler after a, with components s, (the weak
controller statc), and Sy for cvery object X (the lock managers).

Since the weak concurrent scheduler is able to perform COMMIT(T",v) in state s, it must be that
(I".v) is in commit— requested(s), and so it must be that 1" issues a R FQUEST—COMMIT(T",v)
in a’. Since T is visible to itsclf, and B8’ is cquivalent to visible(a’,17), it follows that this
REQUEST—-COMMIT(I",v) opecration also occurs in yﬂl. Therefore, (T1°,v) is in
commit — requcsted(s’).

Since a is well-formed, at most onc return operation for T° appcars in a; thus, T is not in
returncd(s’).

Fix U € children(T") N create — requested(s’). Then REQUEST — CREATE(U) is performed at
T in yBl, and hence in a’, so U € create— rcqucstcd(sc). Since the weak concurrent scheduler is
able to perform COMMIT(I™,v) in state s, it must be that U € rcturncd(sc). Thercfore, a return
operation for U is performed at T7, in a’. Since 'I” is visible to itsclf, and yﬂl is equivalent to
visible(a’, 17), this implies that the return for U also occurs at T" in 7,81. Therefore, U is in
returncd(s’).

(3.b) Immediate from Lemma 10,

(3.c) Immediate from l.emma 10.

51

(3.d) Wc have that y is cquivalent to both visible(8°.17') and visible(87,1™). and that ng and
YB, arc cquivalent to B° and B7, respectively. By Lemma 10, y is cquivalent to both
visible(yB.17) and visible(y8,.17). Equality follows.

(3.c) Immediate from l.emma 67.

(4) o is an ABORT(I™) opcration.
Then 1™ = parent(1™) = transaction(ar) is visible to I in a, and so is not an orphan in a, by
l.emma 65. Then ' is live in &', and by L.emma 57, 1™ is live in a’ and so in a. Since'1™ is live
and visible to " in a, 'I' is a descendant of 1™, Since ‘1 is not an orphan in a. I is not a descendant
of '1I". 'the inductive hypothesis yiclds two serial schedules, 8' and 87, which arc cquivalent to
visible(a'1™) and visible(a', 1), respectively. Let 8, = 7 - 7. We show that 8 = B'wf, is
cquivalent to visible(a, I') and serial.

By l.emma 31, B°B, is a serial schedule which is cquivalent to 8™

Let P be a primitive other than ™. “Then BIP = B'8\|P = B"|P = visible(a')P,
visible(a,)IP by lemma 62. Also, since 1™ is visible to T in a, visible{a,)T
visible(a, 1™)[1™", = visible(a’, 1)#|1™" by Lemma 62, = 8’#[1™ = B[1I™. Thus B8 is cquivalent to
visible(a,1).

It remains to show that 8 is scrial. ‘This follows from l.emma 33, provided we can show that:
(4.a) B’= is a scrial schedule,
(4.b) I’ sces everything in ﬁ'ﬂl. and
(4.c) g7 = visible(B"17) = visible(8°8,,17).

(4.a) Consider any cxccution of the scrial system having B8 as its operation scquence, and let s’
be a state of the scrial scheduler after 8°. We show that # is cnabled in state s*. That is, we show
that ‘I € crcatc—requested(s’), that T° € created(s’), and that siblings(T") M created(s’) C
returnced(s’).

Consider any exccution of the weak concurrent system having a as its operation sequence, and
lct s be the statc of the weak concurrent scheduler after a', with components S¢ (the weak
controlicr statc), and sy for every object X (the lock managers).

Since the weak concurrent scheduler is able to perform ABORT(17) in state s, it must be that T
is in create—requested(s). and so it must be that I issucs a REQUEST—-CREATE(T) in a’.
Since ‘I is visible to itsclf, and B’ is cquivalent to visible(a'1°), it follows that this
REQUEST — CREATE(T") operation also occurs in 8°. Thercfore, T is in create — requested(s’).

Since a cannot contain two ABORT('1") operations, therc cannot be an ABORT(T™) operation in
a’, and so there cannot be one in 8°. Assumc that there is a CREATE(T") in 8°. Then T is visible
to 1™ in a', so COMMIT(I") occurs in a’. But then a COMMIT(T") and and ABORT(T") both
occur in a, which cannot occur. Therefore, there is neither an ABOR'T(T") nor a CREATE(T) in
B’. and so 1" is not in created(s’).

Fix U € siblings(1") N created(s’). Then there is a CREATE(U) in 8°. But then U is visible to
T in a’, so that a COMMIT for U occurs in &', and hence (becausc parent(U) is visible to 1™ in

52

a’)a COMMIT for U occurs in 8°. "Therefore, U € returned(s’).
(4.b) Immediate from | .cmma 10.

(4.c) ‘The first equality follows from Lemma 10. Clearly, 8° = visible(8',17) is a prefix of
visible(8°8,.17). Equality follows because any operation in B visible to "1™ in BB, would also be
visible to 17 in ', and so would be in 87 and not 8. 1

Corollary 69: Fvery weak concurrent schedule is scrially correct for every non-orphan non-
access transaction.

Proof: |.ct a be a weak concurrent schedule. et 'l be a non-access transaction that is not an
orphan in a. We must show that afl" is a scrial schedule. Note that ‘T is not an orphan in any
prefix of a.

There arc three cases:

(1) afl'is cmpty.
Then the result is trivial.

(2) T is live in a.
‘Then Theorem 68 yiclds a serial schedule B that is cquivalent to visible(a,T). Thus, afT =
visible(a,)1 = B{1", which sufficcs.

(3)'T" is a transaction which is live in some proper prefix of a.
Since a is well-formed, a has a prefix a’w, where o is a COMMIT operation for T, a'[T = a|T
and T is live in a’. Then ‘Theorem 68 yields a scrial schedule 8 that is cquivalent to
visible(a”, D)[T. Thus, a|l’ = «'[T' = visible(a’, T)1I' = B[I', which suffices. I

Now, since T, cannot become an orphan (having no ancestors to abort), our first major correctness result is

immecdiate.
Corollary 70: Every weak concurrent schedule is serially correct for Ty,

Having proved correctness propertics for weak concurrent schedules, we are now ready to prove the

correctness of concurrent schedules.
Lemma 71: Every concurrent execution is a weak concurrent execution,

Proof: 'I'he proof is by induction on exccution length, with a trivial basis. Icta = a’,s, 7 sbca
concurrcnt cxecution with (s',#,s) a single step of the concurrent system, and assume the lemma
holds for a’. Let s’c and S, denote the states of the concurrent controller in system states s” and s.
If @« is any opcration othcer than an ABORT, the result is immcdiate, since the pre- and
postconditions for all other opcrations arc identical in the concurrent and weak concurrent
systems. Assumc that # is an ABORT(T). We must show that ' € crcatc-rcqucstcd(s’c) -
returncd(s’ c).

Since # is cnabled in state s’c in the concurrent controller, T € (crcatc-rcqucstcd(s’c) -
crcatcd(s'c)) U (commit-rcqucstcd(s‘c) - rcturncd(s‘c)). If T is in crcatc-rcqucstcd(s‘c) -
crcatcd(s’c), l.emma 45 implics that «’ contains no CREATE(T) or ABORT(T) operation. By

53

well-formedness, a” also contains no COMMIT operation for I, and the result follows from
l.emma 45. On th other hand, if T is in commil-rcqucs(cd(s'c) - rcturncd(s’c). l.emma 45 implies
that a REQUEST—COMMIT operation for ‘[occurs in a’. By well-formedness, this is preceded
by a CREATE(T) operation, and by the concurrent controller precondition, this is preceded by a
REQUEST —CREATTE for 'I'. Finally, again by .ecmma 45, the result follows,

Now we can prove the second major result of the paper.
Corollary 72: Every concurrent schedule is serially correct.

Proof: I.ct a bc a concurrent schedule. 'Then a is also a weak concurrent schedule, by I.emma
71, and is well-formed, by L.emma 61, We must show that a is scrially correct for cvery
transaction 'I'. There arc three cascs:

(1) a|T is cmpty.
Then the result is trivial.

(2)'Vis live in a.
By Lemma 50, alt of 'I”s ancestors arc live in a, so that T' is not an orphan in a. Then Corollary 69
yiclds the result.

(3) T is a transaction which is live in some proper prefix of a.
By L.emma 51, a has a prefix a'ar, where o is a return operation for T, o'|T = all'and T is live in
a’. By L.emma 50, all of '1”s ancestors arc live in a’, so T is is not an orphan in a’. 'Then Corollary
69 implics that a’ is scrially correct for 1', so that a is serially correct for'I. §

For complcteness, we include an analog of Thcorem 68 for concurrent schedules.

Theorem 73: Lct a be a concurrent schedule, and ‘T any transaction which is live in @. Then
there is a scrial schedule 8 which is cquivalent to visible(a,T).

Proof: [.emma 71 implics that a is a weak concurrent schedule. Since T is live in a, .emma 50
implics that T is not an orphan in a. 'Then Theorem 68 yiclds the result. B

8. Discussion
In this paper, we have presented a formal model for describing nested transaction systems and their
propertics. The model has many features that we belicve make it a major contribution to the understanding

of transaction systems, and we highlight some of these below.,

First, the entirc modcl is based on a very gencral and very simple underlying mode! for concurrent
computation, the 170 automaton model. The general definitions and properties of this underlying model
provide the necessary underpinnings for our cntire transaction modelling cffort. This modclling is very casy
to learn and usc, and its uscfulness cxtends much beyond transaction systems. Thus, it secms to us to be a

very satisfactory foundation for our work.

Our transaction system modcl permits simple, yet completely rigorous description of concurrency control

54

algorithms in ways which correspond very closely to the usual informal ways of understanding the algorithms,
the important components of transaction systems, the transactions, data and schedulers, are described

explicitly, which greatly facilitates reasoning about them.

There is a substantial amount of work in this arca which does not represent all of these components
explicitly, but only implicitly, by propertics of their behavior [Ly,BBG.Go, for cxample]. There are problems
with this approach. A key ingredient that is usually absent from such implicit models is a clear notion of
"causality”, describing how particular actions (opcrations) arc triggercd by other actions or states. In contrast,
our cxplicit representation of all system components as 170 automata makes it casy to understand cxactly
what causces all operations to occur. When causality is important in rcasoning about algorithms, as in [Go],
implicit modcls can be cxtraordinarily difficult to usc. Even in cases where implicit models can be usced, we

sce the present work as providing a formal and intuitive basis for that work.

Our modcl represents transactions as cssentially arbitrary automata, subject only to simple syntactic
constraints. ‘This approach is much more gencral than representing them as programs in some particular,

ovcerly-constrained language.

The 170 automata model permits description of algorithms in an abstract form which is not tied to a
particular programming language or systcm, and which allows maximum nondecterminism. An
implementation of an algorithm for a particular system will generally restrict the nondcterminism allowed in
our presentation, because of the nced to tailor the implementation to the requirements of a particular
cnvironment. However, since the implementation is just a restriction of the abstract algorithm, correctness

properties of the algorithm within our model will hold a fortiori for the implementation.

Formulating nested transaction systems as [/0O automata permits precise formulation of the correctness
conditions to be satisficd by concurrency control algorithms; those correctness conditions can be stated at the
transaction interface, an interface which does not contain explicit information about object representation.
Because of this choice of interface, the correctness conditions can be stated in a robust way: the same
conditions can be uscful for describing the propertics of many different kinds of algorithms, some of which
manipulate the data in very different ways. Also, the correctness conditions can be described in a way that is

mecaningful to a uscr of the system.

The particular correctness conditions that we describe in this paper involve scrial correctness at transaction
interfaces. We belicve that these particular correctness definitions are very interesting, and will be uscful for
describing the correctness of most of the usual algorithms studicd in the concurrency control arca. That is, the

same conditions appcar to be the right oncs to usc to describe correctness of many different kinds of

55

algorithms, including thosc that usc locking, timestamps, multiple versions, and replicated data.

The model permits rigorous correctngss proofs to be carried out for concurrency control algorithms in ways
that follow intuitive understanding of the algorithms. For cxample, in this paper, we have uscd the model to
describe and show the correctness of a very important nested transaction concurrency control algorithm. Qur
correctness proofs arc constructive and provide considerable intuition about the workings of the algorithm,
In contrast 10 mast correctness proofs for concurrent algorithms, our proofs arc not voluminous low-level
casc-analyses; rather, they consist of a large number of clear and natural lemmas about the behavior of the
algorithm. These lemmas can be understood individually, and build upon cach other in the manner of good

mathcmatics. Many of the lemmas should be reusable in extensions of this work as well.

A successful model of nested transactions should contain the classical theory as a special case, in a way
which is natural and sheds some light on that case. We belicve that our model has contributed much to the
classical thcory. For cxample, the 1/0 automaton model provides a general underlying modcl, a missing
component of the classical theory. Also, our explicit and general modeclling of the transactions unifics the
carlicr collection of somewhat arbitrary approaches. Our use of the transaction interface for stating

correctness conditions is also an improvement.

Another contribution to the classical theory is in motivating scrializability as a corrcctness condition.
Scrializability consists of two critcria: individually, cach transaction must sce a consistent state, and together,
they must appear to run in a scrial order. (A schedule in which cach transaction rcads and writes the initial
state of the databasc provides a consistent state to ¢ach transaction, but is not serializable.) Why is this second
ordering property a part of the gencrally accepted correctness condition of the classical theory? Clearly,
because of implicit nesting in the context of the transaction system. In practice, transactions perform tasks on
behalf of some external entity or catities, which may expect onc transaction to see the results of the next. In
the natural formulation of classical systems within the present modcl, the classical transactions arc children of
Ty
environment in which the system runs. Thus, the ordering property of serializability is a natural consequence

with data accesscs as their only children. 'The root is an explicit represcntation of the cxternal

of the requirement that all transactions sce scrial schedules, including T, 1t docs not have to be introduced as

an independent requirement in need of separate justification.,

By now, there has been a large amount of systems design and algorithms work that uses or impiements
nested transactions. It scems likely that these ideas will form the basis of future programming languages for
distributed computing. However, there is currently a problem with the presentation of this work. Some of
these algorithms arc presented in the context of specific systems and programming languages. Very uscful

and general ideas are too intimatcly connected with details of the systems to be fully appreciated, particularly

56

for readers with only a passing understanding of thosc systems. ‘This level of detail also makes carefil

reasoning about the algorithms very difficult.

We believe that our maodel has provided the necessary framework and some of the necessary vocabulary, for
describing this work in a clcar and unambiguous way. We are currently studying much of this work on

systems design and algorithms using our model, and our preliminary results indicate that it works very well,

‘Throughout the paper, we have described conncections with other people’s work as appropriate. Here, we
mention some of the particular modclling work that relates most closely to ours, and describe the connections

in more detail.

First, the pioncering work of Bernstein and Goodman [BG, ctc.] has had a strong influence on this work.
Quite carly, they recognized the need for a model for single-level transaction systems, that would have many
of the characteristics which we have sought for nested transaction systems. ‘They have carried out extensive
rescarch on precise understanding of single-level transaction concurrency control algorithms. They have
presented formal statements of correctness conditions, in terms of scrializability of the accesses to data objects
by diffcrent transactions. They have described some concurrency control algorithms with precision, and have
proved correctness of some algorithms, using a lemma which characterizes serializability by absence of cycles
in a certain dependency relation. Their work has gone a long way toward providing precise understanding of

the work in this area.

However, the particular modcls used by Bernstein and Goodman have some problems which limit their
applicability. For instance, the basic correctness condition is stated in terms of the interface between the data
objects and the algorithm. ‘There are many algorithms which handle objects in very different ways, e.g. using
muitiplc versions, or making multiple copics in order to permit “backing out” of opcrations. Since these
algorithms do not preserve the specificd object interface, they would not be considered correct under the
samc correctness condition. Thus, the correctness condition must be modified. Another limitation is that the
proof technique, which involves proving absence of cycles, is a proof by contradiction; it does not give much
insight into thc operation of the algorithms. For many reasons, it is not at all clear how to extend these

frameworks to handle nesting of transactions.

Earlicr attempts in [Ly,Go,BBGLS] to model nested transactions have made significant contributions. For
cxample, [Ly] contains a language-independent model, which is uscd to give precise correctness conditions
and a proof for a locking algorithm. Many of the ideas in that work have been uscful in providing a
vocabulary for talking about nested transactions. However, attempts to extend the model of [Ly}] to handle

correctness of orphans [Go] demonstrate that it is not sufficiently cxpressive. Certain aspects of the model

57

lcad to technical difficulties; for cxample, it fails to model the transactions cxplicitly, using instcad a
specification of their behavior, Our new model builds on the strengths of the carlier work, while managing

(we belicve) to avoid its weaknesses.

Finally, the very recent work in [BBG] proposes another general model for nested transactions. While on
the surface the modcls appcar quite different, they are actually "compatible™, in that the concepts described in
[BBG] scem to be casily definable within our model. ‘The style of the model in [BBG] is different from ours:
their work models transactions and the scheduler implicitly, for instance. Howcver, we belicve that their
important axiomatic statements of propertics can be described as assumptions and lemmas about behaviors of
components in our model. Also, the partial orders which they use to model exccutions can actually be
dcfincd simply and dircctly in terms of our lincarly-ordered cxccutions. There are many points of agreement:
the usc of the transaction interface for stating corrcctness conditions, and the use of the virtual root

transaction '1‘0, to mention two.

On the other hand, the cmphasis in [BBG] is on a different example than the one studied in this paper.
They consider multiple levels of abstraction for the data, and regard transactions at any level of the
transaction trce as accesses to data at a corresponding level of abstraction. ‘This view meshes quite well with
our model, where, for cxample, we use the same CREATE notation for creation of a transaction and
invocation of an opcration on data. Their paper clarifies the concurrency control requirements for data at
different Ievels, when the correctness condition is serial correctness at 'I‘O. We hope and expect that it will be

easy to restate their results as claims about our model.

We note that the work in [BBG] only treats concurrency control, but does not address the very critical and

difficult issucs of resilicncy.

9. Further Work

This paper is an embarkation on a major project to formulate a unified presentation of the most important
algorithms for concurrency control and resilicncy, especially those for nested transactions. So far, we have
defined a general framework mecting the requirements outlined above. We have demonstrated the power of
this framework by using it to specify two correctness conditions for nested transactions, to present twe locking
algorithms for implementing nested transactions, and to prove that the algorithms satisfy their respective

rcquirements.

Futurc cxtensions to this work will include treatment of many other algorithms in the same framework.
Among the algorithms we will consider are timestamp and multiversion algorithms, algorithms which take

advantage of special properties of the transactions and objects (scmantic information), algorithms for orphan

58

management, and algorithms which usc replicated data objects. Although our focus so far has been on nested
transactions, wc belicve that our viewpoint contributes new insight to the special case of single-level
transactions as well; thus, we will cxamince algorithms for non-nested transactions as well as nested

transactions.

Woe arc particularly interested in studying algorithms which give rise to live orphans, i.c. live transactions
whose ancestors have aborted [Go,Li, Wa,HM]. Our scrial correctness condition provides a formal definition
of orphan correctness - that all transactions (including orphans) "sce consistent data” [Go]. In fact, in work
currently in progress fHI.MW], we arc describing and proving correctness of several of the recently-developed
algorithms for orphan management. 'This work now scems to be quite casy, given the foundation provided by

the present paper. In fact, some of the key results of this paper arc used as lemmas in that work.

Another direction of interest is the cxplicit representation of distribution within the model. It is fairly
natural to model cach transaction and object as located at different sites, cach with a local automaton
representing the resident portion of the (distributed) scheduler. "These automata would communicate with
cach other in order to implement the (centralized) scheduler studied here. ‘The natural next step would be to

madel failure resilience, as various components losc information or fail altogether.

The reader might have noted that our correctness conditions do not guarantee anything about the system
making progress, but only about “safety” propertics. Further work is needed to incorporate guarantecs of
progress. ‘This work is likely to be difficult, however. Only recently, in [I.T], have we achieved what we
consider to be a satisfactory understanding of the eventuality and fairness issucs for the basic [/0 automaton
modecl, so that we can ecven formulate the conditions we want to satisfy. But even with the ability to state such

conditions, the algorithmic issucs still scem difficult.

10. Acknowledgments

We thank Bill Weihl for many, many comments and questions, and much cncouragement, during the
course of this project. We also thank all the other members of the ARGUS design and implementation group
at MIT, for providing a concrete model for us to try to abstract and gencralize. Also, we thank Ychuda Afek

for his comments on an carly draft, and Sharon Perl for her comments on later drafis.

11. References

[AM] Alichin, J. E., and McKendry, M. S., "Synchronization and Recovery of Actions,” Proc.
1983 Second Annual ACM Symposium on Principles of Distributed Computing, Montreal,
Qucbec, Canada, August 17-19, 1982, pp. 31-44.

[BBG] Beeri, C., Bernstein, P. A., and Goodman, N., "A Modcl for Concurrency in Nested

[BBGLS]

[BG]

[EGLT]

[Go]

[G1]

[HLMW]

[HM]

[Ho]

[KS]

[LaS]

[LHILSW]

[Li]

[LiS]

59

‘I'ransaction Systems,” Manuscript.

Beeri, C., Bernstein, P. A., Goodman, N., Lai, M. Y., and Shasha, . E., "A Concurrency
Control Theory for Nested 'T'ransactions,” Proc. 1983 Second Annual ACM Symposium on
Principles of Distributed Computing, Montreal, Qucbee, Canada, August 17-19, 1983, pp.
45-62.

Bernstein, P. A., and Goodman, N., "Concurrency Control in Distributed Database
Systems,” ACM Computing Surveys 13,2 (June 1981), pp. 185-221.

Eswaren, K. P., Gray, J. N,, Loric, R. A., and Traiger, 1. 1., "I'hc Notions of Consistency
and Predicate Locks in a Database Systems,” Communications of the ACM, Vol. 19, No. 11,
November 1976, pp. 624-633. '

Goree, Jr., John A., “internal Consistency of a Distributed ‘I'ransaction Systcm With
Orphan Detection,” MS Thesis, 'T'echnical Report MI'T/1.CS/TR-286, MIT 1.aboratory for
Computer Scicnce, Cambridge, MA., January 1983.

Gray, J., "Notes on Database Opcrating Systems,” in Bayer, R., Graham, R. and
Scegmuller, G. (eds), Opcrating Systems: an Advanced Course, 1.ccture Notes in
Computer Science, Vol. 60, Springer-Verlag, 1978.

Herlihy, M., Lynch, N., Mcrritt, M., and Wcihl, W., "On the Correctness of Orphan
Elimination Algorithms,” In progress.

Herlihy, M., and McKendry, M., "Time-Driven Orphan Elimination", in Proc. of the 5th
Symposium on Reliability in Distributed Software and Database Systems, 1.os Angeles, CA.,
January 1986, pp. 42-48.

Hoare, C.A.R., "Communicating Scquential Processes”, Prentice Hall International
Englewood Cliffs, NJ, 1985.

Kedem, Z., and Silberschatz, A., "A Charactcrization of Database Graphs Admitting a
Simple Locking Protocol”, Acta Informatica 16 (1981) pp. 1-13.

Lampson, B. W., and Sturgis, H. E., "Crash Rccovery in a Distributed Data Storage
System,” Tech. Rep., Computer Science Lab., Xerox Palo Alto Rescarch Center, Palo Alto,

Calif,, 1979.

Liskov, B., Herlihy, M., Johnson, P., Leavens, G., Scheifler, R., and Weihl, W,
"Preliminary Argus Reference Manual,” Programming Mcthodology Group Memo 39,
October 1983.

Liskov, B., and l.adin, R., "Highly-Available Distributed Services and Fault-Tolerant
Distributed Garbage Collection,” to appear in the Proc. of the 5Sth ACM Symposium on
Principles of Distributed Computing, Calgary, Alberta, Canada, August 1986.

Liskov, B., and Scheifler, R., "Guardians and Actions: Linguistic Support for Robust,

[L.T]

(Ly]

[Mi]

[Mo]

[R]

[RLS]

[Wa]

[Wel]

[We2]

60

Distributed Programs”, ACM Transactions on Programming languages and Systems 5, 3,
(July 1983), pp. 381-404.

Lynch, N., and Tuttle, M., "Correctness Proofs for Distributed Algorithms”, in progress.

Lynch, N. A., "Concurrency Control For Resilient Nested ‘I'ransactions,” Advances in
Computing Research 3, 1986, pp. 335-373.

Milner, R., "A Calculus of Communicating Systems”, Lecture Notes in Computer Science,
#92, Springer-Verlag, Berlin, 1980.

Moss, J. E. B, "Nested Transactions: An Approach To Reliable Distributed Computing,”
Ph.D. ‘Thesis, ‘T'cchnical Report MIT/1.CS/TR-260, MI'T lLaboratory for Computer
Science, Cambridge, MA., April 1981. Also, published by MI'T" Press, March 1985.

Reed, D. P, "Naming and Synchronization in a Dccentralized Computer System,” Ph.D
Thesis, ‘Technical Report MIT/LCS/TR-205, MIT laboratory for Computer Science,
Cambridge, MA 1978.

Roscnkrantz, 1. 1., Lewis, P. M., and Stcarns, R. E., "System l.cvel Concurrency Control
for Distributed Databasc Systems,” ACM Transactions on Database Systems, Vol. 3, No. 2,
Junc 1978, pp. 178-198.

Walker, E. F., "Orphan Detection in the Argus System,” M.S. Thesis, Technical
Report/MIT/LCS/TR-326, MIT Laboratory for Computer Science, Cambridge, MA,,
June 1984.

Weihl, W. E., "Spccification and Implementation of Atomic Data Types,” Ph.D Thesis,
Technical Report/MIT/LCS/TR-314, MIT Laboratory for Computer Scicnce, Cambridge,
MA., March 1984.

Wecihl, W. E., Personal communication.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Dsta Entered)

READ INSTRUCTIONS

I. REPORT NUMBER 2. GOVY ACCESSION NO.f 3 RECIPIENT'S CATALOG NUMBER
MIT/LCS/TR-367
4. TITLE (and Subtitie) 5. TYPE OF REPORT & PERIOD COVERED

Introduction to the theory of nested

transaCtlons & PERFORMING ORG. REPORT NUMBER
MIT/LCS/TR-367
7. AUTHOR(s) &, CONTRACY OR GRANT NUMBER(s)

DARPA/DOD

Nancy Lynch and Michael Merritt
N00014-85~K-0168

9. PERFORMING ORGAN!ZATION NAME AND ADDRESS 1L PROGRAM ELEMENT PROJECT, TASK
AREA & WORK UNIT NUMBERS

MIT Laboratory for Computer Science
545 Technology Square i
Cambridge, MA (02139

i'. CONTROLLING OFFICE NAME AND ADDRESS

12, REPORT DATE

DARPA/DOD July 1986
. ''12. NUMBER OF PAGES
1400 Wilson Boulevard | -
Arlingtron, VA 222Q9 ; 62
T4 MON/TCKRING AGENCY NAME & ADDRESS/({ difterent from Controlling Otfice; 15, SECURITY CLASS. (ot this repor!)

ONR/Depa?tment of the Navy Unclassified
Information Systems Program :

. 1%a. DECL ASSIFICATION DOWNGRADING
Arlington, VA 22217 SCHEDULE

€. DISTRIBUTION STATEMENT (of thia Keport)

Approved for Public Release, distribution is unlimited

7. DISTRIBUTION STATEMENT (of the sbetract entered 1n Biock 2C, if difterent from Keport;

unlimited

8 SUPP_EMENTARY NOTE:

18. KEY WORDS /Continus on reverae sioe it necessary and fdentitv by biock number.

nested transactions, transacations, concurrency control, resiliency,
databases, serializabilitv, orphans

20, ABSTRACTY (Continue on reverass sids {f neceasary and faentity ov block number)

A new formal model is presented, for studying concurrency and resiliency
properties for nested transactions. The model is used to state and
prove correctness of a well-known locking algorithm.

DD ,:2:t3]473 EDITION OF 1} NOV 8515 OBSOLETE _Unclassified
S/N 0102-014-6601 :

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Bntered)

