
Introduction to the ·rheory of Nested ·rransactions

Nancy Lynch
M;tssachusctls Institute of Technology

Laboratory for Computer Science
Cambridge, MA. 02139

Michael Merritt
A. T. and T. Bell Laboratories
Murray Ilill, NJ 07974-2070

July 7, 1986

ABSTRACT

A new formal model is presented. for studying concurrency and resiliency properties for nested

transactions. The model is used to state and prove correctness of a well-known locking algorithm.

Keywords: nested transactions, transactions, concurrency control, resiliency, databases. serializability,
orphans

©1986 Massachusetts Institute ofTechnology, Cambridge, MA. 02139

This work was supported in part by the Office of Naval Research under Contract N00014-85-K-0168, by the

Office of Anny Research under Contract DAAG29-84-K-0058, by the National Science Foundation under

Grant DCR-83-02391, and by the Defense Advanced Research Projects Agency (DARPA) under Grant

N00014-83-K-0125.

Introduction lo the Theory of Nested Transactions

Nancy Lynch
Massachusetts Institute of Technology

Cambridge, Mass.

Michael Merritt
A. T. and T. Bell Laboratories

Murray Hill, New Jersey

Abstract: A new fonnal model is presented, for studying concurrency and resiliency properties for nested

transactions. The model is used to state and prove correctness of a well-known locking algorithm.

1. Introduction

'll1is paper develops the foundation for a general theory of nested transactions. We present a simple fonnal

model for studying concurrency and resiliency in a nested environment. This model has distinct advantages

over the many alternatives, the greatest of which is the unification of a subject replete with formalisms,

correctness conditions and proof techniques. The authors arc presently engaged in an ambitious project to

recast the substantial amount of work in nested transactions within this single intuitive framework. ·111csc

pages contain the preliminary results of that project - a description of the model, and its use in stating and

proving correctness conditions for two variations of a well-known algorithm.

The model is based on //0 automata, a simple fonnalization of communicating automata. It is not complex

- it is easily presented in a few pages. and easy to understand, given a minimal background in automata

theory. F.ach nested transaction and data object is modelled by a separate 1/0 automaton. These automata,

the system primitives. issue requests to and receive replies from some scheduler, which is simply another 1/0

automaton. Simple syntactic constraints on the interactions of these automata ensure, for example, that no

transaction requests the creation of the same child more than once. One scheduler, in this case the "serial

scheduler", interacts with the transactions and objects in a particularly constrained way. 'Ille "serial

schedules" of the primitives and the serial scheduler arc the basis of our correctness conditions. Specifically,

alternative schedulers arc required to ensure that nested transaction automata individually have local

schedules which they could have in a serial schedule. In essence, each scheduler must "fool" the transactions

into believing that the system is executing in conjunction with the serial scheduler.

In the past ten years, an important and subst.rntial body of work has appeared on the design and analysis of

algorithms for implementing concurrency control and resiliency in database transaction systems

jFGl.T,Rl.S.BG.KS,Gr,l.aS. etc.]. t\mong this has hcen a number of rcsulL'i dealing with nested transactions

IR.Mo.LiS.l.l IJl.SW,t\M,BBGLS.BBG. etc.J. The present work docs not replace these other contributions.

but augments them by providing a unifying and mathematically trac1..<1blc framework for posing and exploring

a variety of questions. This previous work uses behavioral specifications of nested transactions. focusing on

what nested trans.1ctions do. rather than what they arc. By answering the question "What is a nested

trans<1ction?", 1/0 automata provide a powerful tool for understanding and reasoning about them.

Some unification is vi1..<11ly important to further development in this field. The plethora and complexity of

existing formali1.ations is a challenge to the most seasoned researcher. More critically, it belies the argument

that nested transactions provide a clean and intuitive tool for organizing distributed da1..<1bascs and more

general distributed applications. It is particularly important to provide an intuitive and precise description of

nested transactions themselves. as in typical systems. these arc the componenL'i which the application

programmer must implement!

The remainder of this paper is organized as follows. The 1/0 automaton model is described in Section 2.

The rest of the paper contains an extended example, which establishes correctness properties for two related

lock-based concurrent schedulers.

Section 3 contains simple definitions for naming nested transactions and objects, and for specifying the

operations (interactions) of these components. Simple syntactic restrictions on the orders of these operations

arc presented, and then a particular system of 110 automata is presented. describing the interactions of nested

transactions and objects with a serial scheduler. The interface between the serial scheduler and the

transactions provides a basis for the specification of correctness conditions for alternative schedulers. These

schedulers would presumably be more efficient than the serial scheduler. The strongest correctness condition,

"serial correctness." requires that all non-access transactions sec serial behavior at their interface with the

system. The second condition. "correctness for T
0
," only requires that this serial interface be maintained at

the interface of the system and the external world. These interfaces also provide simple descriptions of the

environment in which nested transactions can be assumed to execute. t\ particular contribution is the clear

and concise semantics of ABORT operations which arises naturally from this formalization. The section

closes with a collection oflcmmas describing useful properties of serial systems.

Next. a lock-based concurrent system is presented. Section 4 contains a description of a special type of

object, called a "resilient object", which is used in the concurrent system. Section 5 describes the remainder

of the concurrent system, the "concurrent scheduler." 'Ibis concurrent scheduler includes "lock manager"

modules for all the objects; lock managers coordinate concurrent accesses.

2

Section 6 defines a system which is closely related to the concurrent system. the "weak concurrent system."

This system preserves serial correctness for those trans<1ctions whose ;im:estors do not abort (i.e .. those that arc

not "orphans"). Since the root of the transaction tree. T0, has no ancestor. weak concurrent systems arc

correct for TO" Section 7 contains complete proofs of correctness of the concurrent and weak concurrent

sytcms: concurrent systems arc serially correct, and weak concurrent systems arc correct for T
0

. The stronger

condition is obtained for concurrent systems as a corollary to a result about weak concurrent systems.

It is interesting that the concurrent system algorithms arc described in complete detail (essentially, in

"pscudocodc"), yet significant formal claims ahout their behavior can be Slitted clearly and easily. Although

the full presentation involves a large number of lemmas. the ideas described by the lemmas arc quite simple

and intuitive. We think it is remarkable that these interesting properties of concurrent systems can be proved

with complete rigor, in full dct;1il, in so short a development. Despite the detailed level of presentation, the

underlying model is general enough that the rcsulL'i apply to a wide range of implementations.

The style of the correctness proof is also noteworthy. It is a constructive proof. in that for each step of the

weak concurrent system and each non-orphan transaction, an execution of the serial system is explicitly

constructed. The transaction's local "view" in the constructed execution is identical to that in the original

weak concurrent execution, cst1blishing the correctness of the weak concurrent system. One may think of the

weak concurrent system as maintaining consistent. parallel "world views" within which concurrent siblings

execute. As siblings return to their parent. these parallel worlds arc "merged" to form a single consistent

view. The locking policy prevents collisions between different views at the shared data. This intuition is

strongly supported and clarified by the correctness proof, which constructs the parallel views as different

serial schedules consistent with each sibling's local history. I .cmmas illustrate how these serial schedules can

be merged a<; siblings return or abort to their parent

Section 8 contains a discussion of the relationship of this work to previous results, and Section 9 contains an

indication of the work that lies ahead.

2. Basic Model
In this section. we present the basic 110 automaton model, which is used to describe all components of our

systems. This model consists of rather standard, possibly infinite-state, nondeterministic automata that have

operation names associated with their state transitions. Communication among automata is described by

identifying their operations. This model is very similar to models used by Milner. Hoare [Mi, Ho] and others.

There arc a few differences: first. we find it important to classify operations of any automaton or system of

automata as either "input" or "output" operations, of that automaton or system, and we treat these two cases

differently. Also. we allow identification of arbitrary numbers of operations from different automata, rather

3

lhan just pairwise idenLification as considered in [Mi].

This paper is not intended to develoJl the basic model. For the general theory of 1/0 automata, including a

unified treatment of finite and infinite behavior. we refer the reader to [LT]. In the present treatment of

concurrent transaclion systems, we only prove properties of finite behavior. so we only require a simple

special case of the general model.

2.1. 1/0 Automata

All components in our systems. transactions. objects and schedulers. will be modelled by //()automata. An

1/0 automaton .A. has components state.'(.A.), start(.A.). out(.A.). in(.A.). and steps(.A.). Herc. state.'(.A.) is a set of

states. of which a subsel start(.A.) is designated as the set of start slates. The next two components arc disjoint

scti;: out(.A.) is the set of output operatio11s. and in(.A.) is the set of input operations. The union of these two

sctc; is the set of opcratio11s of the automaton. Finally. steps(.A.) is the transition relation of .A., which is a set of

triples of the form (s','IT .s). wheres' and s arc states. and 'IT is an operation. This triple means that in state s',

the automaton can atomically do operation 'IT and change to state s. An clement of the transition relation is

called a step of .A..

The output operations arc intended to model the actions that arc triggered by the automaton itself, while

the input operations model the actions that arc triggered by the environment of the automaton. Our

partitioning of operations into input and output indicates that each operation is only triggered in one place.

We require the following condition.

Input Condition: For each input operation 'IT and each states', there exist a states and a step (s',w ,s).

This condition says that an 110 automaton must be prepared to receive any input operation at any time.

This condition makes intuitive sense if we think of the input operations as being triggered externally. (In this

paper. this condition serves mainly as a technical convenience, but in [L'fl, where infinite behavior is

considered, it is critical.)

An execution of .A. is an alternating sequence s0.'IT 1• s1,'IT 2 of states and operations of .A.; the sequence may

be infinite, but if it is finite, it ends with a state. Furthennore. s
0

is in start(.A.), and each triple (s',w .s) which

occurs as a consecutive subsequence is a step of .A.. From any execution. we can extract the schedule, which is

the subsequence of the execution consisting of operations only. Because transitions to different states may

have the same operation. different executions may have the same schedule.

Lemma 1: If a is a schedule of 1/0 automaton .A., then every prefix of a is a schedule of .A..

4

If S is any scl of schedules (or properly of schedules). Lhcn .A is said to prc.,·cri·c S provided that the

following holds. If a = a·.,, is any schedule of .A., where.,, is an outpul operation. and a' is in S. then a is in

S. That is. the automaton is not the first· to violate the property described by S.

2.2. Composition of Automata

We describe systems as consisting of interacting components. each of which is an 1/0 automaton. It is

convenient and natural lo view systems as 1/0 aulomala. also. Thus. we define a composition operation for

1/0 automata, to yield a new 110 automaton.

A set of 1/0 automata may be composed to create a system 'J, if all of the output operations arc disjoint.

(Thus. every output operation in 'J will be triggered by exactly one component.) The system 'J is itself an 1/0

automaton. A state of the composed automaton is a tuple of states. one for each component, and the start

st.ates arc tuples consisting of start states of the componcnLo;. The set of operations of 'J. op!('!), is exactly the

union of the sets of operations of the component automata. The set of output operations of 'J. out('!). is

likewise the union of the set-; of output operations of the component automata. Finally, the set of input

operations of 'J, in('!). is op('!) - uut('J). the set of operations of 'J that arc not output operations of 'J. The

output operations of a system arc intended to be exactly those that arc triggered by components of the system,

while the input operations of a system arc those that arc triggered by the system's environment.

The triple (s', w .s) is in the transition relation of 'J if and only if for each component automaton .A.. one of the

following two conditions holds. Either w is an operation of .A.. and the projection of the step onto .A. is a step

of .A.. or else .,, is not an operation of .A., and the states corresponding to .A. in the two tuples s' and s arc

identical. Thus. each operation of the composed automaton is an operation of a subset of the component

automata. During an operation " of 'J, each of the components which has operation w carries out the

operation, while the remainder stay in the same state. Again. the operation .,, is an output operation of the

composition if it is the output operation of a component - otherwise . .,, is an input operation of the

composition.1

Lemma 2: The composition of l/O automata is an 110 automaton.

The next lemma allows us to compose automata in any order.

Lemma 3: Up to isomorphism. composition of l/O automata is associative and commutative.

1Nolc Lhal our model has chosen a panicular convention for identifying operations of different component~ in a system: we simply
identify Lhosc with the same name. "lhis convention is simple. and sufficient for what we do in Lhi.~ paper. I lowcvcr. when Lhis work is
extended lo more complicated ~)'Sle~s. it may be expedient to generalize the convention for identifying operations. lo pcm1il reuse oflhc
same operation name internally 10 difTerenl componenl.S. '[his will require introducing a renaming operator for operations. or else
defining composition wiLh respect lo a dcsignaLed equivalence relation on operations. We leave this for later work.

5

t\n l'Xfcution of a system is defined to be an execution of the automaton composed of lhc individual

automata of the system. If a is a schedule of a system with component .A, then we denote by al.A the

subsequcn<."c of a containing all the operations of .A.. Clearly, al.A is a schedule of .A.

I ,cmma 4: I .ct a' he a schedule of a system 1. and let a = a ·w, where w is an output operation
of rnmponcnt .A. Ir al.A is a schedule or .A. then a is a schedule of:!.

Proof: Since al.A. is a schedule of .A. there is an execution fJ of .A. with schedule al.A.. I .ct /J' be
the execution of .A rnnsisting of all but the last step of {J. Similarly. since a· is a schedule of'!,
there is an execution y or 1 with schedule a'. It is possible that .A. has an execution in y which is
dincrent from {J'. since diflcrent executions may have the same schedule. But it is easy to show.
by induction on the length of y, that there is another execution y' of 1 in which component .A has
execution /f. and which is otherwise identical toy. The schedule of y' is a'. Since w is not an
output operation of any other component, w is defined from the state reached at the end of y', so.
that a = a·.,, is a schcdu le of'!. I

3. Serial Systems
In this paper. we define three kinds of systems: "serial systems" and two types of "concurrent systems".

Serial systems describe serial execution of transactions. Serial systems arc defined for the purpose of

providing a correctness condition for other systems: that the schedules of the other systems should "look

like" schedules of the serial system to the transactions. t\s with serial schedules of single-level transaction

systems, our serial schedules arc too inefficient to use in practice. Thus, we define systems which allow

concurrency, and which permit the abort of transactions after they have performed some work. We then

prove that the schedules permitted by concurrent systems arc correct

In this section, we define "serial systems". Serial systems consist of "transactions" and "basic objects"

communicating with a "serial scheduler". Transactions and basic objects describe user programs and data,

respectively. The serial scheduler controls communication between the other components. and thereby

defines the allowable orders in which the transactions may take steps. All three types of system components

arc modelled as 110 automata.

We begin by defining a structure which describes the nesting of transactions. Namely, a system type is a

four-tuple (<r,parcnt,0, V). where er, the set of transaction names. is organized into a tree by the mapping

parent:~-+ er, with T0 as the root. In referring to this tree, we use traditional terminology, such as child, leaf,

least common ancestor (lea). ancestor and descendant. (A transaction is its own ancestor and descendant.)

The leaves of this tree are called accesses. The set 0 denotes the set of objects: formally, 0 is a partition of the

set of accesses. where each clement of the partition contains the accesses to a particular object Tnc set V is a

set of values. to be used as return values of transactions.

The tree structure can be thought of as a predefined naming scheme for all possible transactions that might

6

ever be invoked. In any parlicular cxcculion. however. only some of these transactions will actually take

steps. We imagine that the tree structure is known in advance by all components of a syslcm. The tree will, in

general. be an infinite structure.

The classical lransactions of concurrency control U1cory (wilhout nesting) appear in our model as the

children of a "mythical" lransaclion, T
0

• the root of lhc transaclion tree. (In work on nested transactions, such

as ARGUS ILiS.l .IULSW]. the children ofT
0

arc oflen called "lop-level" transaclions.) It is very convenient

lo introduce lhe new root transaclion to model the environment in which the rest of the transaction system

runs. Transaction T0 has operalions thal describe the invocalion and return of the classical transactions. It is

natural to reason about T0 in much the same way as about all of the other transactions. although it is

distinguished from the other transactions hy having no parcnl transaction. Since committing and aborting arc

operations which take place at the parent of each transaction (sec below). T
0

can neither commit nor abort.

Thus. a commit or abort of a top-level transaction to T0 is an irreversible step.

The internal nodes of the tree model transactions whose function is to create and manage subtransactions.

but not lo access data directly. The only transactions which actually access data arc the leaves of the

transaction tree. and thus they arc distinguished as "accesses". The partition 0 simply identifies those

transactions which access the same object.

i\ serial system of a given system type is the composition of a set of 110 automata. This set contains a

transaction for each internal (i.e. non-leaf, non-acci:ss) node of the transaction tree, a basic object for each

clement of 0 and a serial scheduler. These automata arc described below. (If X is a basic object associated

with an clement$ of the partition 0, and Tis an access in $,we write TE accesse!(X) and say that "Tis an

access to X ".)

3.1. Transactions

This paper differs from earlier work such as [Ly,Go,Wcl] in that we model the transactions explicitly, as

110 automata. In modelling transactions, we consider it very important not to constrain them unnecessarily;

thus. we do not want to require that they be expressible as programs in any particular high-level programming

language. Modelling the transactions as 1/0 automata allows us to state exactly the properties that are

needed. without introducing unnecessary restrictions or complicated semantics.

i\ non-access transaction Tis modelled as an 110 automaton, with the following operations.

Input operations:
CR Ei\TF.(T)
COMMIT(T.v). forT' E childrcn(T)and v EV
i\BORT(T). for TE childrcn(T)

Output operations:
RFQUl·:ST-CRFATHT"). for T' E c:hildrcn(T)
Rl·:QUEST-COMMIT(T.v). forv E Y

7

The CRl'.ATF input operation "wakes up" the transaction. The RFQUEST-CRFATE output operation is

a request by T to create a particular child transaction.2'1·hc COMMIT input operation reports to T the

successful completion of one of its children, and returns a value recording the results of that child's execution.

The ABORT input operation reports to T the unsuccessful completion of one of its children. without

returning any other information. We call COMMIT(T,v). for any v, and ABORT(T') return operations for

trans.1ction T. The REQUEST-COMMIT operation is an announcement by T that it has finished its work,

and includes a value recording the result<> of that work.

It is convenient to use two separate operations. REQUEST-CREATE and CREATE. to describe what

takes place when a subtransaction is activated. The REQUEST-CREATE is an operation of the

transaction's parent. while the actual CREATE takes place at the subtransaction itself. In actual systems such

as ARGUS. this separation docs occur, and the distinction will be important in our result'i and proofs. Similar

remarks hold for the REQUEST-COMMIT and COMMIT operations.3 We leave the executions of

particular transaction automata largely unspecified: the choice of which children to create. and what value to

return. will depend on the particular implementation. For the purposes of the schedulers studied here, the

transactions (and in large part. the objects) arc "black boxes." Nevertheless, it is convenient to assume that

schedules of transaction automata obey certain syntactic constraints. Thus. transaction automata arc required

to preserve well-formedness. as defined below.

We recursively define wcll-formedncss for sequences of operations of transaction T. Namely. the empty

schedule is well-formed. Also, if a = a'fl is a sequence of operations of T. where fl is a single operation,

then a is well-formed provided that a' is well-formed. and the following hold.

• If fl is CREATE(T). then
(i) there is no CREATE(T) in a'.

• If fl is COMMIT(T',v) or ABORT(T) for a child T ofT. then

2
Nolc lhal there L~ no provision for T to pas.~ infonnation to iL~ child in lhL~ rcquc~t In a programming language, T might be

pcnniucd to pass parameter values lo a sublransaclion. Although lhis may be a convenient descriptive aid. it is not necessary to include
in it lhc underlying fonnal model. Instead. we consider transacLions lhal have different input parameters lo be di!Tcrcnl transactions.

3
Nolc lhal we do not include a REQUEST-ABORT operation for a transaction: we do not. model lhc situation in which a transaction

decides lhal ils own existence is a mistake. Rather. we assign decisions lo abort transactions to another component of lhc system. lhc
scheduler. In practice. the scheduler mu~1 have some power to decide to abort transactions. a~ when it detects deadlocks or failures. In
ARGUS. transactions arc pcrn1itlcd lo request Lo abort: we regard lhis request simply as a "hint" to lhc scheduler. to restrict its allowable
executions in a particular way. This' operation could be made explicit. constraining the scheduler to abort lhc requesting transaction,
without ~11bstantivcly changing lhc model or rcsulL~.

(i) RFQUFST-CIU·:ATl·{T) appears in a· and
(ii) there is no rclurn operalion for Tin a·.

8

•If 11 is RFQUl·'.ST-CRHATl{I'') for a child 'I" of'!'. then
(i) lhere is no Rl·'.QUl·'.S'l'-CRl:ATl·fl") in a'
(ii) lhere is tlll RFQUEST-COMMIT(T) in a· and
(iii) CRl:ATF(T) appears in a'.

• lf11 isa RFQUFST-COMMIT forT. then
(i) there is no Rl~QUl:ST-COMMIT forT in a' and
(ii) CREATE(T) appears in a'.

These restrictions arc very basic: they simply say that a transaction docs not get created more than once.

docs not receive repeated notification of the fates of its children. docs not receive conflicting infonnation

about the fates of iLo; children, and docs not receive information about the fate of any child whose creation it

has not requested: also, a transaction docs not perfonn any output operations before it has been created or

after it has requested to commit, and docs not request the creation of the same child more than once. Except

for these minimal conditions. there arc no restrictions on allowable transaction behavior. For example, the

model allows a transaction to request lo commit without discovering the fate of all subtransactions whose

creation it has requested. Also, a transaction can request creation of new subtransactions at any time. without

regard to its state of knowledge about subtransactions whose creation it has previously requested. Particular

programming languages may choose to impose additional restrictions on transaction behavior. (An example is

ARGUS. which suspends activity in transactions until subtransactions complete.) However, our results do not

require such restrictions.

The following easy lemma summarizes the properties of wcll-fonncd sequences of transaction operations.

Lemma 5: Let a be a wcll-fonncd sequence of operations of transaction T. Then the following
conditions hold.

1. The first operation of a is a CREATF-rf) operation, and there arc no other CREATE
operations.

2. If a REQUEST-COMMIT operation occurs in a, then there arc no later output
operations in a.

3. There is at most one REQUEST-CREATE('r) operation for each child T ofT, in a.

4. Every return operation in a has a preceding REQUEST-CREATE operation in a for the
same child transaction.

9

3.2. Hasic Objects

Recall that 1/0 automata arc associated with non-access transactions only. Since access transc1ctions model

abstract operations on shared data objects, we associate a single 1/0 automaton with each object, rather than

one for each access. The operations for each object arc just the CR FATE and R FQU EST-COMM IT

operations for all the corresponding access transactions. Although we give these operations the same names as

the operations of non-access transactions, it is helpful lo think of the operations of access transactions in other

terms also: a CREATE corresponds lo an invocation of an operation on the object, while a

REQUEST-COMMITcorrcsponds to a response by the object lo an invocation. Actually, these CREATE

and REQUEST-COMM IT operations generalize the usual invocations and responses in that our operations

carry with them a designation of the position of the access in the lfansaction tree. We depart from the

traditional notational distinction between creation of subtransactions and invocations on object<;, since the

common terminology for access and non-access transactions is of great benefit in unifying the statements and

pnx>fs of our resulto;. Thus, a basic object X is modelled as an automaton, with the following operations.

Input operations:
CREATE(T). for Tin accesscs(X)

Output operations:
REQUEST-COMMIT(T,v). forT in accesscs(X}

The CREATE operation is an invocation of an access to the object, while the REQUEST-COMMIT is a

return of a value in response to such an invocation.

As with transactions. while specific objects arc left largely unspecified, it is convenient to require that

schedules of basic objects satisfy certain syntactic conditions. Thus, each basic object is required to preserve

wcll-formedncss. defined below.

Let a be a sequence of operations of basic object X. Then an access T to X is said to be pending in a

provided that there is a CREATE('!'). but no REQUEST-COMMIT for T, in a. We define well-fom1edness

for sequences of operations of basic objects recursively. Namely, the empty schedule is well-formed. Also, if

a = a'w is a sequence of operations of basic object X. where w is a single operation. then a is well-formed

provided that a' is well-formed. and the following hold.

• If w is CREATE(T). then
(i) there is no CREATE(T) in a', and
(ii) there arc no pending accesses in a'.

•If w is REQUEST-COMMIT for T. then
(i) there is no REQUEST-COMMIT forT in a'. and
(ii) CREATE('!') appears in a'.

IO

These restrictions simply say that the same access docs not get created more than once, nor docs a creation

of a new access occur at a basic object before the previous access has completed (i.e. requested to commit):

also. a basic ohjcct docs not respond more than once to any access. and only responds to accesses that have

previously hecn created.

The following easy lemma summarizes the properties of well-formed sequences of basic object operations.

Lemma 6: I.ct a he a well-formed sequence of operations of basic object X. Then a consists of
alternating CREATE and R l·'.QU EST-COMM IT operations. st.;11ting with a CREATE. and with
each consecutive (CREATE.REQUEST-COMMIT) pair having a common transaction.

3.3. Serial Scheduler

The third kind of component in a serial system is the serial scheduler. The serial scheduler is also modelled

as an automaton. The transactions and basic objects have been specified to be any 1/0 automata whose

operations and behavior satisfy simple syntactic restrictions. The serial scheduler, however. is a fully specified

automaton. particular to each system type. It runs transactions according to a depth-first traversal of the

transaction tree. The serial scheduler can choose nondeterministically to abort any transaction after its parent

has requested it-; creation. as long as the transaction has not actually been created. In the context of this

scheduler. the "semantics" of an ABORT(T) operation arc that transaction T was never created. The

operations of the serial scheduler arc as follows.

Input Operations:
REQUEST-CREATrfl')
REQUEST- COMM IT(T, v)

Output Operations:
CREATE(T)
COMMIT(T.v)
ABORT(T)

The REQUI--])T-CREATE and REQUEST-COMMIT inputs arc intended to be identified with the

corresponding outputs of transaction and object automata, and correspondingly for the CREATI--~ COMMIT

and ABORT output operations. Each state s of the serial scheduler consists of four sets:

create- rcqucstcd(s). creatcd(s), commit- rcqucstcd(s). and rcturncd(s). ll1c set commit- requcstcd(s) is a

set of (transaction, value) pairs. 'Ille others arc sets of transactions. 'lllcrc is exactly one initial state, in which

the set create- requested is {'1'0}, and the other sets are empty.

lllc transition relation consists of exactly those triples (s',w .s) satisfying the pre- and postconditions below,

where w is the indicated operation. For brevity, we include in the postconditions only those conditions on the

states which may change with· the operation. If a component of sis not mentioned in the postcondition, (such

11

as rcturned(s) in the postcondition for Rl·:QUEST-CREATF(T)). it is implicit that the set is the same ins'

ands (that rcturncd(s') = rcturned(s). in this example). Note that here. as elsewhere, we have tried to specify

the component as nondeterministically ilS possible, in order lo achieve the greatest possihle generality for our

result<;.

• Rl·:QUEST-CREATl-{I')
Postcondition:
create- requested(s) = create- rcqucstcd(s') U {T}

• REQUEST-COMMIT(T,v)
Postcondition:
commit- requested(s) = commit- requestcd(s') U {(T, v)}

• CREATf-l~T)
Precondition:
TE create- requested(s') - creatcd(s")
siblings(T) n created(s') ~ rcturned(s')
Postcondition:
creatcd(s) = created(s') U {T}

• COMMIT(T.v)
Precondition:
(T,v) E commit-rcqucsted(s')
T fl rcturned(s')
children(T) n create- requcstcd(s') ~ returned(s')
Postcondition:
rcturned(s) = returned(s') U {T}

• ABORT(T)
Precondition:
TE create- requested(s')- created(s')
siblings(T) n created(s') ~ retumed(s')
Postcondition:
created(s) = created(s') U {T}
returned(s) = returned(s') U {T}

The input operations, REQUEST-CREATE and REQUEST-COMMIT, simply result in the request

being recorded. A CREATE operation can only occur if a corresponding REQUEST - CREATE has

occurred and the CREATE has not already occurred. The second prccondiition on the CREATE operation

says that the serial scheduler docs not create a transaction until all its previously created sibling transactions

have returned. That is. siblings arc run sequentially. The precondition on the COMMIT operation says that

the scheduler docs not allow a transaction to commit to its parent until its children have returned. The

precondition on the ABORT operation says that the scheduler docs not abort a transaction while there is

activity going on on behalf o_f any of its siblings. That is, aboned transactions are run sequentially with

respect to their siblings. The next lemma relates a schedule of the serial scheduler to the state which results

12

from applying that schedule.

Lcnum1 7: I.ct a be a schedule of the serial scheduler. and let s be a state which can result from
applying a to the initial state. Then the following conditions arc true.

I.Tis in crcatc-rcqucsted(s) exactly if T = T
0

or a contains a REQUEST-CRFATE(T)
operation.

2. Tis in crcated(s) exactly if a contains either a CREATE('!') or ABORT(T) operation.

3. (T,v) is in commit-rcqucstcd(s) exactly if a contains a REQUEST-COMMIT(T.v)
operation.

4. Tis in returncd(s) exactly if a contains a return operation for T.

3.4. Serial Systems and Serial Schedules

In this subsection, we define serial systems precisely and provide some useful tcnninology for talking about

them.

The composition of transactions with basic objects and the serial scheduler for a given system type is called

a serial system. Define the serial operations to be those operations which occur in the serial system:

REQUEST-CREATES. REQUEST-COMMITS, CREATES, COMMITS and ABORTS. The schedules

of a serial system arc called serial schedules. The non-access transactions and basic objects arc called the

system primitives. (Recall that each basic object is an automaton corresponding to a set of access transactions.

Thus, individual access transactions arc not considered to be primitives.)

Recall that the operations of the basic objects have the same syntax as transaction operations. It is

convenient to refer to CREATFfl') and REQUEST-COMMIT(T). when Tis an access to basic object X,

both as operations of transaction T and of object X. To avoid confusion, it is important to remember that

there is no transaction automaton associated with any access operation.

For any serial operation .,, . we define transaction(w) to be the transaction at which the operation occurs.

(For CREATF.(T) operations and REQUEST-COMMIT operations for T. the transaction is T. while for

REQUEST-CREATE('I) operations. and COMMIT and ABORT operations for T. the transaction is

parcnt(T).) For a sequence a of serial operations. transaction(a) is the set of transactions of the operations in

a.

Two sequences of serial operations. a and a', arc said to be equivalent provided that they consist of the

same operations. and alP = a'IP for each primitive P. Obviously, this yields an equivalence relation on

sequences of serial operations.

l3

We let alT denote the subsequence of a consisting of operations whose transaction is T. even if T is an

access. (This is <m extension of the previous definition of a IT. as accesses arc not component automata of the

serial system.)

I .ct a he a sequence of serial operations. We say that a transaction T is li11r in a provided that a

CRFATl{I'). hut no COMM IT(T,v) or ABORT(T). occurs in a. We say that transaction T' is visible to Tin a

provided that for each ancestor ·1~· of T' which is a proper descendant of lca(T.T), some COMM IT(T',v)

occurs in a. (In particular. any ancestor of Tis visible to Tin a.) For sequence a and transaction T, let

visible(a. T) be the subsequence of a consisting of operations whose transactions arc visible to T in a. (These

include access transactions T'.) We say that transaction T sees everything in a provided that visiblc(a,T) = a.

This is the same definition of visibility as appears. in a different model, in [I .y]. Visibility captures an

intuitive notion suggested by the name: the transactions visible lo a transaction T in a arc those whose effects

Tis permitted to "sec" in a. If transaction Tis visible to transaction Tin a, it means that descendants of T

may have passed to T information about T, obtained by accessing objects that were previously accessed by

descendants ofT.

If a is a sequence of operations, not necessarily all serial. then define serial(a) to be the subsequence of a

consisting of the serial operations. We say that Tis live in a provided that it is live in serial(a). We say that T'

is visible to T in a if T is visible to T in serial(a). and define visible(a,T) to be visiblc(scrial(a),'I). Also, T

sees everything in a provided that T secs everything in scrial(a). Similarly, define transaction(a) =

transaction(serial(a)).

A sequence a of serial operations is said to be well-fum1ed if it.., projection at every primitive is well-formed.

3.5. Correctness Condition

We use serial schedules as the basis of our correctness definitions. Namely, we say that a sequence of

operations is serially correct fur a primitive P provided that its projection on P is identical to the projection on

P of some serial schedule. We say that any sequence of operations is serially correct if it is serially correct for

every non-access transaction. That is, a "looks like" a serial schedule to every non-access transaction.

In the remainder of this paper, we define two systems: concurrent systems and weak concurrent systems.

We show that schedules of concurrent systems arc serially correct. and that schedules of weak concurrent

systems arc serially correct for T0.

Thus. we use the serial scheduler as a way of describing desirable behavior. just as serial schedules describe

14

dcsirahlc hchavior in more classical concurrency control settings (those without nesting). Then serial

correctness plays the role in our theory that scrializahility plays in classical settings.

Motivation for our use of serial schedules to define correctness derives from the simple hchavior of the

serial scheduler. which determines the sequence of interactions hetwccn the primitives. Each transaction T is

created only after parent('!') requests it, no sihlings ofT arc created until T has returned.Tis not committed

until each of its requested children has itself returned. and T is not ahorted until each of its created siblings

has returned. The result is a depth-first traversal of the transaction tree, with requests flowing down and

responses flowing up. We believe this depth-first traversal to he a natural notion of correctness which

corresponds precisely to the intuition of how nested transaction systems ought to behave. Furthennore, it is a

natural generalization of serializability, the correctness condition generally chosen for classical transaction

systems.

Serial correctness is a condition which guarantees to implementors of transactions that their code will

encounter only situations which can arise in serial executions. Correctness for T0 is a natural alternative,

which guarantees only that the external world will encounter only situations which can arise in serial

executions. This condition permits less constrained implementations, in that schedulers in such systems need

not insure that orphans sec consistent data. On the other hand, in such systems the authors of transactions

must insure that their programs hehavc well even if they sec inconsistencies. (For example, orphans that sec

inconsistent data should not consume too many system resources. garble data beyond repair. dispense drugs

or initiate military hostilities.) We hope this work will provide a tool for exploring the inherent costs of

different correctness conditions such as these.

Note that our correctness conditions arc defined at the transaction interface only, and do not constrain the

object interface. We believe that this makes the conditions more meaningful to users, and more likely to

suffice for a large variety of algorithms. which may use a variety of back-out, locking or version schemes to

implement objects. Previous work has focussed on correctness conditions at the object interface [EGLT. etc.].

While we believe that object interface conditions arc important their proper role in the theory is not to serve

as the basic correctness condition. Rather. they arc useful as intermediate conditions for proving correctness

of particular implementations: such conditions can be shown to be sufficient, in combination with an

appropriate scheduler. to ensure our correctness condition at the transaction interface. 'This observation is an

important unifying contribution of our work. Our current research is focussing on demonstrating the

usefulness of this approach, for a variety of object interface correctness conditions.

The serial correctness condition says that a schedule a must look like a serial schedule to each non-access

transaction; this allows for the possibility that a might look like different serial schedules to different non-

15

access transactions. This condition may al firsl seem lo be loo weak. It may seem that we should require that

all transactions sec a projection of the same serial schedule. But this stronger condition is not satisfied by most

of the known concurrency control algorithms. IL is true that stronger conditions than ours can sometimes be

proved. but such conditions arc more complicated to s1.<1te. and it is nol yet clear which such conditions arc

most interesting.

The serial correctness condition is really not as weak as it may seem at first because T0• the root transaction,

is included among the transactions to which a must appear serial. As discussed above. transaction T0 can be

thought of as modelling the environment in which the rest of the transaction system runs. Its

REQUEST- CREATE operations correspond to the invocation of top-level transactions. while its COMM IT

and ABORT operations correspond to return values and external ctTccL'> of those transactions. Since a's

projection on T0 must be serial. the environment of the transaction system will sec only results that could arise

in a serial execution. Indeed. this is the justification of the correctness condition for the weak concurrent

system. whose schedules arc shown to be correct for T
0

• but not necessarily for any other transaction.

It is possible to use a ditTcrcnt serial scheduler as a basis for correctness conditions. For example. the

scheduler might delay creating one sibling until another requests to return. rather than until it actually returns

to the parent [Wc2]. Such a scheduler would provide less infonnation to the parent about the actual order in

which its children arc executed. and consequently provide more freedom for concurrent schedulers to

schedule various events. Timestamp-bascd systems such as (R] may support this weaker correctness

condition. rat11cr than tl1c one described above. but this remains to be studied.

Our approach is really a general technique for studying operating system algoritl1ms. A simple, intuitive

and inefficient algoritl1m (automaton) is used to specify a "contract" between tl1c users and implementor of

an operating system. The user is guaranteed tl1at applications (transactions, in our work) which arc correct

when run with the simple algoritl1m will also be correct when run with tl1c actual operating system, which

presumably will be more efficient On tl1c other hand, tl1c implementor also has a fonnal and intuitive

specification of tl1e user interface.

3.6. Properties of Serial Systems

In tl1is subsection. we prove a number of lemmas about the behavior of serial systems. 'lncy arc collected

here for reference later in this paper and in future work. Most of tl1c lemmas describe properties that are

quite easy to understand and believe, and tl1c corresponding proofs arc very straightforward. In the last

paragraph of this subsection. there arc some specialized lemmas tl1at arc somewhat more difficult These arc

used in tl1c proofof the main ~co rem in Section 7.

16

3.6.1. Fundamental Properties of Visibility

The first few lemmas give fundamcnt;ll properties of visibility in sequences of serial operations. In this

paragraph, we do not even require that the sequences be schedules of serial systems. but only that they be

sequences of serial operations. The proofs of these lemmas arc straigluforward from the definitions.

Lcnumt 8: I .ct a be a seq ucncc of serial operations, and T. T' and T" transactions.

l. lfT" is a descendant ofT. then Tis visible to T' in a.

2. r is visible to T in a if and only if T is visible to lca(T,T) in a.

3. lfT' is visible to Tin a and Tis visible to Tin a, then T" is visible to Tin a.

4. lfT is a descendant ofT and T" is visible to Tin a, then T" is visible to T' in a.

5. lfT' is a descendant ofT and r is visible to T' in a, then Tis visible to T' in a.

6. lfT is a proper descendant ofT. T' is visible to Tin a. but T" is not visible to Tin a. then
T" is a descendant of the child ofT which is an ancestor ofT.

Lemma 9: I .ct a and p be sequences of serial operations. with fJ a subsequence of a.

I. If transaction Tis visible to transaction Tin {J. then it is visible to transaction T' in a.

2. If operation w is in visiblc(/J .T). then it is in visible(a.T).

Lemma 10: Let a, a', fJ and /J' be sequences of serial operations, and let T and T be
transactions.

l. If a is equivalent to a', and Tis visible to Tin a, then Tis visible to Tin a'.

2. If a is equivalent to a', then visiblc(a.T) is equivalent to visiblc(a',T).

3. If fJ is equivalent to /J', then a - fJ = a - fJ'.

4. If a is equivalent to a'. and fJ is equivalent to fJ', then a - fJ is equivalent to a' - fJ'.

5. If fJ = visiblc(a.T). then T secs everything in fJ.

6. If fJ is equivalent to visiblc(a.T). then T secs everything in fJ.

7. If fJ = visiblc(a.T) and T' is visible to Tin a, then visiblc(/J.T) = visiblc(a.T).

8. If fJ is equivalent to visiblc(a.T). /J' is equivalent to visiblc(a,T'), and T' is visible to Tin a,
then /J' is equivalent to visiblc(/l.T).

Lemma 11: Let a be a sequence of serial operations, and let T and T be transactions. Then
visiblc(a.T)IT is equal to alT ifT is visible to Tin a. and is equal to the empty string otherwise.

J ,emma 12: I .ct aw be a sequence of serial operations, where w is a single operation. Let T be a
transaction and assume .that transaction(w) is visible to T in aw. Assume that w is not a COMM IT
operation. Then visible(aw .T) = visible(a,T)w.

17

3.6.2. Operations in Serial Schedules

The lemmas in this paragraph describe the kinds and orders of operations that can occur in well-fonncd

serial schedules. In the next paragraph. we show that all serial schedules arc well-formed. so that all these

properties actually follow just from the fact that the schedules arc serial.

Lemma 13: I .ct a he a well-formed serial schedule. and let T :t:. T0 be a transaction.

I. If a contains any operation with transaction T. then a contains a
R EQU FST-CR EAT Ff I').

2. If a contains a COMMIT for T. then a contains a RFQUEST-COMMIT for T, a
CREATE(T) and a REQUEST-CIH--:ATF.(T).

3. If a contains an ABORT(T). then a contains a REQUEST-CREATE(T).

Proof: Straightforward from well-fonncdncss and the scheduler preconditions. I

Lemma 14: Let a he a well-fonned serial schedule. and T a transaction. Assume that some
descendant ofT is in transaction(a). Then the following hold.

I. CREATE(T) occurs in a.

2. lfT '* T0• then REQUEST-CREATE('!') occurs in a.

Proof: I. By induction on the length of a. The basis is easy. Let a = a'w, where w is a single
operation. and assume that the result holds for a'. Let r = transaction(w). and let T be any
ancestor ofT. We must show that CREATE(T) occurs in a.

Because a is well-fonned, CREATr.(T') occurs in a. If T = T', we arc done. Otherwise,
Lemma 13 implies that REQUEST-CREATE(T) occurs in a. This occurs at parent(T'), which is
a descendant of T. The inductive hypothesis then implies that a contains a CREATPfl').

2. By part I. and 1-emma 13. I

Lemma 15: Let a be a serial schedule, and let T be a transaction. Then a cannot contain both a
CREATl-{J') and an ABORT(T) operation.

Proof: By the scheduler preconditions. I

I..<!mma 16: Let a be a well-fonned serial schedule. and let T be a transaction. If ABORT(T)
occurs in a. then a contains no operations whose transactions arc descendants of T.

Proof: Assume the contrary. Then I ,emma 14 implies that a CREATE('!') operation occurs in a.
But Lemma 15 yields a contradiction. I

Lemma 17: Let a be a well-formed serial schedule. and let T :t:. T0 be a transaction.

I. If a contains a REQUEST-CREATJ-o:('f). but docs not contain a return operation for T,
then parcnt(T) is live in a.

2. IfT is live in a, then parent(T) is live in a.

3. If a contains a REQUEST-CREATE(T) but docs not contain a CREATE(T) or an
ABORT(T), then parcnt(T) is live in a.

I

18

Proof:

I. Well-formedness implies that the Rl·'.QUFST-CRl~ATF(T) is preceded in a by a
CREATF.(parent(T)). Suppose th<.1l parent('!') is not live in a. Then a return operation for
parenl(T) occurs in a. By Lemma 15. ABORT(parent(T)) cannot appear in a. Thus. a
COMMIT operation for parent(T) must appear in u. This COMMIT operation for
parenl(T) must be preceded by a RI ·'.OU FST- COMM IT for parent(T). by the scheduler
preconditions. By well-ti.mnedncss. the R FQU EST- COMM IT for parent('!') must follow
the REQUEST-CREATl{I') operation. so thal the COMMIT for parent(T) follows the
REQUEST-CREATl{I') operation. Then by the scheduler preconditions for the
COMM IT operation. there must be a return operation for Tin a. a contradiction.

2. Since T is live in a. CREATE('!') occurs in a and so Lemma 13 implies that
REQUEST-CREATE('!') tx:curs in a. The result then follows from part 1.

3. Since there is no CRFATF.(T) in a. there can be no REQUEST-COMMIT for T, by
well-formedness. Then there can be no COMM IT for T. by the scheduler preconditions.
The result follows from part 1.

Lemma 18: I .ct a be a well-formed serial schedule. and let T be a transaction.

I. If a contains a REQUEST-CREATE(T) but docs not contain a return operation for T,
then any proper ancestor of Tis live in a.

2. IfT is live in a. then any ancestor ofT is live in a.

3. If a contains a REQUEST-CREATF.(T) but docs not contain a CREATE(T) or an
ABORT(T). then any proper ancestor ofT is live in a.

Proof: By repeated use of Lemma 17. I

Lemma 19: Let a be a well-formed serial schedule. and let T and T be transactions with Ta
descendant of T. Assume that there is a COMM IT operation for Tin a.

I

l. lfa REQUEST-CREATFfn occurs in a, then there is a return operation for T' in a.

2. lfT is in transaction(a). then there is a COMMIT operation for T' in a.

Proof:

1. By Lemma 18.

2. Lemma 13 implies that REQUEST-CREATF.(T') occurs in a. Part I then implies that
there is a return operation for Tin a. Since Tis in transaction(a). Lemma 16 implies that
there cannot be an ABORT(T) in a. Thus, there is a COMMIT for T' in a.

Lemma 20: Let a be a well-formed serial schedule.
If a return operation for T is in a, tJ1en it follows all operations in a whose transaction is T.

Proof: Lemma 16 implies the result if an ABORT(T) occurs in a. So assume that a COMMlT
for T tx:curs in a. This must be preceded by a REQUEST-COMMIT for T, by scheduler
preconditions. Well-formedncss implies that the REQUEST-COMMIT is preceded by a

19

CREATF(T). ;rnd is not followed by any output operations of T. Thus. the only opcralions of T
that could follow the R FOLi FST-COM MIT arc return operations fi.ir children of T. Let T' be a
child ofT for which a return operation occurs in a. By scheduler preconditions. there is only one
return operation fi.ir r in a. By Lemma ll a also contains a Rl·:QUEST-CRl·All·{J"). Since
this is an output opcrntion of T. it precedes the RI ·:QU l·'.ST-COM MIT for T, and hence precedes
the COMM IT for T. Then the scheduler preconditions imply that the return operation for T
precedes the COMM IT for T. I

Lemma 21: I .ct a he a well-formed serial schedule.
tr a return operation for T is in a. then it follows all operations in a whose transactions arc
descendants ofT.

Proor: Since a return operation for T occurs in a, we have T ~ T0. I .ct T be a descendant of T,
and assume for the sake of obtaining a contradiction that an operation .,, with transaction(.,,) = T'
occurs atlcr the return for T in a. Let a' be the prefix of a preceding .,, .

Lemma 16 implies the result if an ABORT(T) occurs in a. So assume that a COMMIT for T
occurs in a. By Lemma 13. a' contains a REQUEST-CREATE(T) operation. Then Lemma 19
implies that a' contains a return operation for T. But then the wcll-frnmcd schedule a'w contains
a return for T' followed by an operation of r. which contradicto; Lemma 20. I

Lemma 22: I .ct a be a well-formed serial schedule. lfT is a pending access in alX. then Tis live
in a.

Proof: If T is a pending access in alX. then a CREATPfl') occurs in a, but no
REQUEST-COMMIT for T occurs in a. Thus. by the scheduler preconditions. no COMMIT
for T can occur in a. I

Lemma 23: Let a be a wcll-fonned serial schedule. and let T and T be distinct transactions live
in a. Then the following arc true.

I

1. T and T arc not siblings.

2. Either Tis an ancestor of T or vice versa.

Proof:

1. Assume the contrary. Assume without loss of generality that CREA TE(T) precedes
CRl--AINT) in a. Then the scheduler preconditions for the CREATE(T) operation
imply that a return operation for T occurs in a. This contradicts the assumption that T is
live in a.

2. By part I and Lemma 18.

3.6.3. Well-Formedness

Now we show that all serial schedules arc wcll·fonned. It follows that all the properties proved in the

previous paragraph for wcll-fonncd serial schedules arc actually true for all serial schedules. Subsequently,

we will use these properties without explicitly mentioning wcll·fonncdncss.

Lemma 24: I .ct a be a serial schedule. Then a is well-fonned.

Proof: By induction on the length of schedules. The base. length = 0. is trivial. Suppose that
aw is a serial schedule. and assume that a is well-fonncd. If w is an output of a primitive P, then

20

n'ITIP is well-formed because P preserves wcll-formcJncss, and so a'IT is well-formed. So assume
that 'IT is an input to a primitive P. It suffices lo show that trnlP is wcll-fonncd. There arc four
cases.

(I) 'IT is CRl·:A'INT) and Tis a non-access transaction.
The scheduler preconditions insure that CRFATE(T) docs not appear in a.

(2) 'IT is COMM IT(T, v) for some transaction T and value v.
Then 'IT is an input to transaction parent('(') = T. The scheduler preconditions imply that a

contains a Rl·:QUl·:ST-COMMIT(T,v). and so Lemma 13 implies that a contains a
REQUEST-CREATl-{I'). Also. the scheduler preconditions imply that no return operation for
T occurs in a.

(3) 'IT is ABORT(T) for some transaction T.
Then 'IT is an input to transaction parcnt(T) = T. The scheduler preconditions imply that a

contains a Rl~QUEST-CRFATE(T). but no return operation for T.

(4) 11 is CREATE(T) and Tis an access to basic object X.
By the scheduler preconditions. no CREATE(T) or ABORT(T) appears in a. but a
RFQU EST-CR EATE(T) appears in a. Assume for the sake of deriving a contradiction that T is
a pending access in alX. Then I .cmma 22 implies that Tis live in a. Also. I .cmma 17 implies that
parcnt(T) is live in a. Then Lemma 23 implies that one of T or parcnt(T) is an ancestor of the
other: since T and T' arc both leaves of the transaction tree, the only possibility is that parcnt(T) is
a proper ancestor ofT. I .ct T' be the sibling ofT which is an ancestor ofT. Then T' is live in a.
by Lemma 18. That is. there is a CREATE(T'). but no COMMIT for T' in a. But this
comradicts the scheduler preconditions for 'IT. Therefore. there is no pending access in a IX. I

3.6.4. Visibility and Serial Schedules

In this paragraph. we prove interesting lemmas about visibility in serial schedules.

Lemma 25: Let a be a serial schedule. and 11 an operation in a. Then transaction(11) is visible in
a to some transaction which is live in a.

Proof: Let T = transaction('IT). Since a is not empty. T0 is live in a. Let T be the least ancestor
of T which is live in a. The proof is by induction on the distance from T to T. If T = T. the
result is trivial. So assume that T ~ T. Then COMM IT(T) is in a. and so Tis visible to parent(T)
in a. Lemma 13 implies that a contains a REQUEST-CREATE(T) operation. which occurs at
parcnt(T). Then the inductive hypothesis implies that parcnt(T) is visible to T. Then Tis visible
to T by Lemma 8. I

Lemma 26:

I. Let a be a serial schedule.Ta transaction and X an object Then visible(a,T)IX is a prefix
ofalX.

2. Let a be a serial schedule, Ta transaction and Pa primitive. lben visible(a.T)IP is a prefix
ofalP.

Proof: I. Let 11 and cp be operations in alX. with .,, preceding cp. and cp an operation in
visiblc(a.T). Let a' be the prefix of a preceding cp. Let T' = transaction(cp) and T" =
transaction(11). Since~ is either a CREATE or a REQUEST-COMMIT for T, wcll-fonnedness

21

of a implies that T is Jive in a'cp. Thus. by I .cmrna 23. the only live transactions in a'cp arc
ancestors of T'. By I cmma 25. T" is visible to an ancestor of T in a'cp. and hence in a. By
l .cmma 8. T" is visible to T' in a. But T' is visible to T in a. by assumption. I .cmma 8 then
implies that T'' is visible to T in a, which gives the result

2. Immediate from l .cmma 11 and part 1. I

Lemma 27: I .ct a be a nonempty serial schedule. I .ct 11 be the last operation in a which is an
output of tJ1c serial scheduler. Then transaction(11) secs everything in a.

Proof: Let T = transaction(w). We first show that Tis live in a. Either 11 is a CREATE('!') or
else it is a return operation for a child T' of T. In tJ1c latter case. I .cmma 14 implies that
CRHATl{I') also occurs in a. Thus, in either case. CREATE('!') occurs in a. Now. if a return
operation for T occurs in a, Lemma 21 implies tJ1at it follows w, which is impossible. Thus, no
return operation for T occurs in a. It follows that Tis live in a.

Then Lemma 23 implies that t11c only other transactions t11at arc Jive in a must be ancestors or
descendants ofT. We claim that no proper descendants ofT arc live in a. So assume for the sake
of obtaining a contradiction t11at U is a proper descendant of T which is Jive in a. "l11cn U is a
descendant of a child V of T. and V is live in a, by J .cm ma 18. I .ct a· be t11c prefix of a preceding
fl. There arc three cases.

(1) 7T is CR EATE(n.
Then Lemma 14 yields a contradiction.

(2) 11 is a COMM IT operation for r. a child ofT.
Then T '# V. since T is not live in a. But T and V arc both live in a', which contradicts Lemma
23.

(3) fl is an A BORT(T), for child T' ofT.
Then T * V. since Tis not live in a. But V is live in a·. But t11cn the scheduler preconditions for
fl arc not satisfied, a contradiction.

Thus. no descendants arc live in a. so the only transactions that arc live in a arc ancestors of
T. Now let cp be any operation in a. Lemma 25 implies t11at transaction(cp) is visible in a to some
ancestor ofT. and hence to T. I

Lemma 28: Let a be a serial schedule, and T a transaction. "lbcn visible(a.T) is a serial
schedule.

Proof: We proceed by induction on the length of a. The basis, length O. is trivial. Let a = a'w.
where ,, is a single operation. Fix transaction T. and let T' = transaction(,,). Jf T is not visible to
Tin a, then visiblc(a.T) = visiblc(a',T), and the result is true by inductive hypothesis. So assume
that T is visible to Tin a.

If 11 is an output operation of a primitive P. then visible(a.T)IP is a prefix of a IP. by Lemma 26,
and thus is a schedule of P. By the inductive hypothesis. visiblc(a',T) is a serial schedule. Also,
visiblc(a,T) = visiblc(a',T)w by Lemma 12. Then Lemma 4 shows that visiblc(a,T) is a serial
schedule.

On the other hand. if w is an output operation of the scheduler. then I .emma 27 implies that T'
secs everything in a. But since T is visible to T in a. it follows that T secs everything in a. Thus,

22

visihlc(a,T) = a, a serial schedule. I

3.6.5. lkordcring and Comhining Serial Schedules

In this paragraph, we describe ways in which serial schedules can he modified and combined to yield other

serial schedules. These lemmas arc used in the proof of the main theorem. in Section 7.

Lcmnrn 29: I ,ct a and a' he two equivalent serial schedules. If fJ is a sequence of serial
operations such that a/3 is a serial schedule. then a'{J is a serial schedule, and is equivalent to a{J.

Proof: Equivalence is trivial. The fact that a'{J is a serial schedule follows because the
preconditions of the serial scheduler depend only upon the presence of previous operations. not
their order. I

The next lemma says that any serial schedule can be transformed by moving all the operations visible to any

particular transaction to the beginning of the schedule, and the result is another serial schedule. This lemma

can be thought of as describing a kind of "canonical form" for a serial schedule, with respect to a particular

transaction.

Lemma 30: I .ct a be a serial schedule, and T any transaction. Let p = visible(a.T). Then /J(a -
P> is equivalent to a and is serial.

Proof: Let a' = fJ(a - {J). If Pis any primitive, then Lemma 26 implies that PIP is a prefix of
alP. 'lbus. a· is equivalent to a.

To show that a· is serial. we proceed by induction on its prefixes. By Lemma 28, p is serial, so
we can use p as the basis. I .ct yw be a prefix of a·. where w is a serial operation in a - p and y is a
serial schedule. If w is an output operation of a primitive P, then ywlP is a prefix of a'IP. = alP
by equivalence. which is a schedule of P. Then Lemma 4 shows that "'(71 is a serial schedule. So
assume that w is an output operation of the serial scheduler.

Lets be the state of the serial scheduler after y. Let y'71 be the prefix of a ending in 71, and lets'
be the state of the serial scheduler after y'. lbcn 71 is enabled in s'. We must show that w is
enabled in s. This suffices. by Lemma 4.

Since every operation in y' is also in y, it follows that each component set of s' is a subset of the
corresponding set of s. There arc three cases.

(I) 71 is CREATP~T) for some transaction T'.
Then transaction(w) = T. and T is not visible to T in a. Then T' E create- requcsted(s') ~
create- requested(s). Also. it is easy to show that T (£ created(s). Now let U be in siblings(T') n
crcated(s). If U E created(s'). then U E rcturncd(s') since .,, is enabled in s', ~ returned(s}. as
needed. So suppose that U (crcated(s'). Then CREATE(U) occurs in fl, so U is visible to Tin a.

Since a contains both CREATE(T) and CREATE(U). Lemma 23 implies that a must contain a
COMMIT for at least one ofT' or U. If a contains a COMMIT for U. then it occurs in p, so U E
rcturned(s). On the other hand. if a contains a COMMIT for T'. then T is visible to U in a. so
Lemma 8 implies that Tis visible to Tin a. a contradiction.

(2) w is COMMIT(T',v) for some transaction T and value v.

23

Then transaction(71') is parent(r). which is not visible to T in a. Then ('I", v) is in
commit- requeslcd(s') ~ commit- rcqueslcd(s). Also, it is easy to show that T is not in
returncd(s). Now let lJ he in children(I") n create- rcquested(s). Then there is a
Rl·'.QUl·'.ST-CREATE(U) in y. ·This Rl·'.Qlll·'.ST-CRFA'IHU) occurs at 'I". which cannot be
visible to T in a since parcnt(T') is not visible Lo Tin a. Thus. the RFQUI·'.ST-CRFATF.(U)
docs not occur in /3. so it <x.:curs in y'. Since 71' is enabled in s·. we hLJvc U E rcturncd(s') ~
rcturncd(s).

(3) 71' is ABORT(r) for some trans..1ction T.
Then trans.1ction(71') = parcnt(T'). and parcnt(T) is not visible to T in a. Then T E
create- requcstcd(s') ~ create- rcquestcd(s). Also. it is easy to show that T' ~ crcatcd(s). Now
let LI E siblings(T) n crcated(s). Then CRFATHU> occurs in y. But CRFATH(U) occurs at U,
and U cannot be visible to Tin a since parcnt(U) = parent(T') is not visible to Tin a. Therefore,
CRFA'IHU) docs not occur in p, so it occurs in y'. Then U is in siblings(T) n crcatcd(s') ~
rcturncd(s') ~ rcturncd(s). I

The following lemma is an easy consequence of the preceding one.

J ..cmma 31: I .ct a be a schedule of serial operations. and let T and T be two transactions with T
visible to Tin a. I .ct P and p· be serial schedules. such that p is equivalent to visiblc(a.T) and {3'
is equivalent to visible(a.T). Then /J" = /J'(/3 - /J') is equivalent top and serial.

Proof: Let y = visihlc(/3.T'). Then y is serial by Lemma 28. Lemma 30 implies that y(/J - y) is
equivalent top and scriLJI. I .cmma 10 implies that p· is equivalent toy, and thus that f3 - y = P -
p·. Then Lemma 29 implies that P" is equivalent to y(/l - y) and serial. Thus. P" is equivalent to
p and serial. I

The next two lemmas arc used in the proof of 'lneorem 68. F.ach describes a way of "cutting and pasting"

two serial schedules to yield a new serial schedule.

Lemma 32: Let ap
1
COMMIT(T.u) and aPi be two serial schedules and T, T and T' three

transactions such that the following conditions hold:
(l) T' is a child of T' and Tis a descendant ofT' but not of T',
(2) T' secs everything in aP l'
(3) T secs everything in aPi·
(4) a = visiblc(ap 1,T") = visiblc(a/Ji,T') and
(5) no basic object has operations in both P 1 and Pi·
'Jllcn a/3 1COMM IT(T,u)Pi is a serial schedule.

Proof: Note first that if T = ·r', then Pi is empty and the result is trivial. So assume that T '#

T'. Then Tis a descendant of a child U ofT", and U '# T'.

Any operation in ap
1

whose transaction is not a descendant ofT', must be in visiblc(ap 1,T') by
Lemma 8. Similarly. any operation in a/Ji whose transaction is not a descendant of U. must be in
visiblc(a/3 2.'f"). Thus. p 1 and Pi contain only operations at descendants ofT and U. respectively.
Since T' and U arc distinct siblings, and by assumption no objects have operations in both p1 and
Pi· it follows that no primitive has an operation occurring in both {11 and Pi·

We proceed by induction on prefixes of a/3 1COMM IT(T.u)/l2" Let a'cp be a prefix of
af3 1COMMIT(T.u)Pi· ·with a' a serial schedule and cp a serial operation. We use a'cp =
af3 1COMMIT(T.u) as the basis, since a{J

1
COMMIT(T,u) is a serial schedule by assumption. So

24

assume that a'= a,8
1
COMMIT(T',u)/f for some sequence ,B'. There arc two t:ases, depending

on whether cp is an output of a primitive or of the serial scheduler.

Suppose that cp is an output <1pcration of a primitive P. Then .aroMMIT(T,v) contains no
operations al P. Thus, a"cplP = afJ'cplP. which is a prefix of afJ,IP. which is a schedule of P since
af3 2 is a serial schedule. Thus. a'cplP is a schedule of P. The resLllt follows by l.cmma 4.

So suppose cp is an output of the serial scheduler. Then transaction(cp) = V for some
descendant V of U. I .ct s be the st<1te of the scri<il scheduler after a·, and lets' be the swtc of the
serial scheduler after af3'. Then the following relationships hold betweens ands'.

1. V E create- rcqucstcd(s') - crcatcd(s') ifT V E create- rcqucstcd(s) - crcatcd(s)

2. childrcn(V) n create- rcqucstcd(s') ~ rcturncd(s') iff childrcn(V) n create- rcqucstcd(s)
~ rctumcd(s)

3. (V,v) E commit-rcqucstcd(s') iff(V,v) E commit-rcqucstcd(s)

4. V (rcturncd(s') iff V (rctumcd(s)

5. siblings(V) n crcatcd(s') ~ rcturncd(s') iff siblings(V) n crcatcd(s) ~ rctumcd(s)

Since the operations in fJ 1 arc all at descendants of T, and those of {3 2 arc all at descendants of
U. the first four biconditionals arc immediate from I .cmma 7. If V is a proper descendant of U,
the last biconditional also follows. It remains to show that siblings(U) n crcatcd(s') ~ rctumcd(s')
iff siblings(U) n crcatcd(s) ~ rcturncd(s). But any sibling of U created in a{J' is created in a',
and the only sibling of U created in a' and not a{J' is T', and T E rcturncd(s). Thus. the claims
arc true.

Since cp is enabled in s', the claims above imply that cp is also enabled in s. The result follows. I

Lemma 33: Let aABORT(T) and a/J be two serial schedules. and let T, T and T' be
transactions. such that the following conditions hold:
(1) 'I'" is a child of T" and Tis a descendant of T" but not ofT,
(2) T secs everything in afJ, and
(3) a = visiblc(a.T') = visiblc(a{J,T').
Then aABORT(T)fJ is a serial schedule.

Proof: Similar to, but somewhat simpler than. the proof of Lemma 32. I

4. Resilient Objects

Having stated our correctness conditions. we arc now ready to begin describing implementations and

proving that they meet the requirements. This section and the next arc devoted to the description of a

concurrent system which pcnnits the abort of transactions that have pcrfonncd steps. An important

component of a concurrent system is a new kind of object called a "resilient object." which we introduce in

this section. J\ resilient object is similar to a basic object. but it has the additional capability to undo

operations of transactions that it discovers have aborted.

25

Resilient ohjects have no capahilities for managing concurrency: rather. they assume that concurrency

control is handled externally (hy lock manager components of the scheduler). This section defines resilient

ohjccts and presents some of their properties. It also digresses slighlly from the main development by

describing and proving correct a particular implementation ol' resilient ohjccts. which arc constrncted by

keeping multiple copies of corresponding basic ohjects. The resilient object manages these copies as versions

of the data object. Upon learning of an abort. the appropriate stored version is used in place of the current

version.

4.1. Definitions

Resilient ohject R(X) mimics the behavior of basic object X. but has two additional input operations.

INFORM-COMMIT-AT(X)OF(T) and INFORM-ABORT-AT(X)OF(T). for every transaction

T. Upon receiving an INFORM-ABORT-AT(X)OF(T). R(X) erases any effects of accesses which arc

descendants ofT. This property is made fonnal as the "Resiliency Condition" below.

R(X) has the following operations. which we call R(X)-operations.

Input Operations:
CR EAT!--~' I'), Tan access to X
INFORM-COMMIT-AT(X)OF(l')
INFORM - ABORT- AT(X)OF(T)

Output Operations:
REQUEST-COMMIT(T.v), Tan access to X

In order to describe wcll-fonncdncss for resilient objects. we require a technical definition for the set of

transactions which arc active after a sequence of R(X)-opcrations. Roughly speaking. the transactions which

arc active arc those on whose behalf the object has carried out some activity. but whose fate the object does

not know.

The definition is recursive on the length of the sequence of R(X) operations. Namely, only T0 is active after

the empty sequence. Let a = /Jw. where w is a single operation. and let A and U denote the sets of active

transactions after a and /J, respectively. If TT is CREATE(T). then A = D U {T}. If .,, is a

REQUEST-COMMIT for T, then A = B. If.,, is INFORM-COMMIT-AT(X)OF(T), and if Tis in B,

then A= (B- {T}) U {parent(T)}: ifT is not in B, then A= B. lfw is INFORM-ABORT-AT(X)OF(T),

then A = B - dcscendants(T).

Now we define well-fon11ed11css for sequences of R(X) operations. Again. the definition is recursive.

Namely, the empty schedule is well-formed. Also, if a = a'w is a sequence of R(X)-opcrations, then a is

26

well-formed provided that a' is well-fonncd, and the following hold.

• If w is CR EATF(T). then
(i) there is no CREATF.(T) in a';

(ii) all I.he transactions which arc active after a' arc ancestors ofT.

• lfw isa REQUEST-COMMIT forT, then
(i) there is no REQUEST-COMMIT forT in a', and
(ii) Tis active after a'.

•If w is INFORM-COMMIT-AT(X)OF(T), then
(i) I.here is no INFORM-ABORT-AT(X)OF(T) in a', and
(ii) ifT is an access to X. I.hen a REQUEST-COMM IT for T occurs in a'.

• lfw is INl·'ORM-ABORT-AT(X)OF(T), then
(i) there is no INFORM-COMMIT-AT(X)OF(T) in a·.

An immediate consequence of these definitions is that the transactions active after any well-formed

sequence of R(X)-opcrations a arc a subset of the ancestors of a single active transaction, which we denote

least(a).

For a a sequence of R(X)-opcrations. define undo(a) recursively as follows. Define undo(;\) = ;\, where ;\

is I.he empty sequence. Let a = f1w. where w is a single operation. If w is a serial operation (a CREATE or a

REQUEST-COMMIT). then undo(a) = undo(/1)71. If 71 is INFORM-COMMIT-AT(X)OF(T), then

undo(a) = undo(/1). ff71 is INFORM-ABORT-AT(X)OF(T), then undo(a) is the result of eliminating,

from undo(/1). all operations whose transactions arc descendants of T. Note that undo(a) contains only serial

operations.

I .ct a be any sequence of R(X)-opcrations, and let 71 be an operation in a of the form

INFORM-ABORT-AT(X)OF(T). Then the scope of 71 in a is the subsequence 'Y of a consisting of

operations eliminated by .,, .

Resiliency Condition

Resilient object R(X) satisfies the resiliency condition if for every well-formed schedule a of R(X), undo(a) is

a schedule of basic object X.

We require that resilient object R(X) preserve wcll-fonnedncss and satisfy the resiliency condition.

The resiliency condition is the correctness condition required by the concurrent schedulers at the object

interface. The wcll-formcdncss requirement is a syntactic restriction, and the condition that undo(a) be a

schedule of basic object X expresses the required semantic relationship between the resilient object and the

27

basic object it incorporates. The important property which must be preserved is that the correctness condition

at the resilient objects. together with the behavior of the concurrent scheduler. assures correctness at the

transaction boundaries.

4.2. Properties of Hcsilicnt Objects

This subsection contains a collection of simple lemmas about the properties of well-formed sequences of

R(X) operations.

Lemma 34: I.ct aw be a well-formed sequence of R(X) operations, with w a single operation.
The following arc true.

I

1. If 'IT is a serial operation. then transaction(w) is active after aw.

2. I fT is an access active after a prefix of a but not after a. then T is not active after aw.

3. If.,, is a REQUEST-COMMIT for T. then CREATl-{I') is the last serial operation in a.

Proof:

1. Immediate from-the definition of active and wcll-fonncdncss.

2. Because T has no descendants. it can only become active when a CREATF.(T) operation
occurs, which can only happen once in a well-formed schedule.

3. Suppose the last serial operation in a is qi. with qi * CR EA TE(T). Let transaction(CJ') =
T. By well-formedness. T * T. Also by well-formcdncss. T is active in a. so that
CR EAT Pf I') must occur in a. and so precedes qi. By part (1). T is active following
CREATF.(T) and after w. and T is active following cp. But T cannot be active when CJ'
occurs. by well-fonncdncss. contradicting part (2) of this lemma.

Lemma 35: I .ct a be a wcll-fonncd sequence of R(X) operations. I ,ct T and T be accesses to X.
with T * T. and let w and qi be serial operations with transactions T and T. respectively. If w
precedes qi in a. then between wand qi. there is either an INFORM -ABORT-AT(X) for some
ancestor of T. or else there arc INFORM -COMM IT-AT(X)OF(U) operations for all ancestors
U ofT which arc not ancestors of T. occurring in order from lowest to highest in the transaction
tree ordering.

Proof: By part 3 of Lemma 34 and wcll-formcdncss. we may assume that qi = CREATE(l").
Lemma 34 implies that Tis active immediately after w. By wcll-formedncss. before CREATE(T')
can occur, it must be that all transactions which arc active arc ancestors of T. There arc only two
ways in which this can happen. One possibility is that R(X) first receives INFORM-COMMITS
for all ancestors of T up to lca(T.T'), in order from lowest to highest in the transaction tree
ordering. The other possibility is that R(X) first receives an INFORM-ABORT for an ancestor
ofT. I

Lemma 36: Let aw be a well-formed sequence of R(X) operations, with ,, =
INFORM-ABORT-AT(X)OF(T). Then undo(aw) is a prefix ofundo(a).

Proof: Suppose not. Then there is a subsequence qiiJ! of two operations in undo(a). such that I/I
is in undo(aw) and cp is not. Clearly, qi and "1 arc serial operations. transaction(qi) is a descendant

28

ofT and Lransaclion(IJi) is nol. Since cp is not in Lhe scope of an INFORM-ABORT in a, by
Lemma 35, there is an INFORM-COMMIT between cp and iii for every proper descendant of
lea(l ransaction(cp),transaction(iii)) that is an ancestor of transaction(cp), including T. This
contradicts the well-formedness.of a'IT. I

Lemma 37: Lei a he a well-formed sequence of R(X) operations, and let T be any transaction
active in a, other than TO' Then undo(a) contains an operation cp at a descendant T' ofT, which is
followed in a by an INFORM -COMM IT for every ancestor of T' which is a proper descendant
ofT.

Proof: The proof is hy induction on a, wilh a trivial basis. Let a= a''IT, such that the lemma is
true for a· and that 'IT is a single operation. Let T be a transaction active after a. There arc four
cases.

Suppose w is CREt\TE(T"). Then undo(a) = undo(a')w. lfT '* T". the result is immediate by
the induction hypothesis, since Tis active after a'. If T = T", then the lemma follows. with w =

'I'·

If w is a Rl~QUEST-COMMIT for a transaction T", then undo(a) = undo(a')w and the same
transactions arc active in a and a'. The result is immediate.

Suppose w is an INFORM-COMM IT for a transaction T'. Then undo(a)= undo(a')'IT. lfT
is active after a', the result is immediate. lfT is not active after a', it follows that T = parcnt(T").
The result is immediate from the induction hypothesis.

Suppose w is an INFORM - t\BORT for a transaction U. Since Tis active after a, it was active
after a' and U is not an ancestor of T. Let cp be the transaction of transaction T which follows
from the inductive hypothesis applied to T and a'. Since a is well-formed and a' contains
INFORM-COMMITs for every ancestor ofT' up to T, U is not an ancestor ofT. It follows that
'I' is in undo(a) and the result holds. I

Lemma 38: Let a be a well-formed sequence of R(X) operations, and let lcast(a) = T. If
undo(a) is nonempty, then it ends in an operation of a descendant ofT.

Proof: If T = T
0

, the result is trivial, so assume otherwise. By the previous lemma, undo(a)
contains an operation cp at a descendant ofT. Without loss of generality, assume that cp is the last
operation in undo(a) at a descendant of T. If any other operation w followed cp in undo(a). by
Lemma 35 a would contain INFORM-COMMITs for every ancestor oftransaction(cp) up to
lea(transaction(cp).transaction(w)). which includes T. Then T is not active in a, a contradiction. I

Lemma 39: Let a'IT be a well-formed sequence of R(X) operations. with "
INFORM-ABORT-AT(X)OF(T). If T is not an ancestor of lcast(a). then undo(a'IT) =
undo(a).

Proof: Suppose that T is not an ancestor of least(a) and that undo(aw) '* undo(a). Then
undo(a) contains a serial operation cp at a descendant T' of T. By Lemma 38, cp is followed in
undo(a) by an operation at a descendant of least(a). By Lemma 35, a contains an
INFORM-COMMIT for every ancestor lcast(a) up to lca(lcast(a),T'), which includes T,

contradicting the wcll-formcdness of aw.

We arc now able to show that the undo operator preserves well-formcdncss.

Lemma 40: If a is a· well-formed sequence of R(X)-opcrations. then undo(a) is a well-formed
sequence of X-operations.

29

Proof: The proof is by induction on the le11glh of a. The basis is lrivial. Assume a = a·.,,.
where .,, is a single operation, and undo(a') is a well-formed sequence of X-opcralions. If.,, is an
INl-l)RM-ABORT or INFORM-COMMIT. undo(a) is a prefix ofundo(a'), by Lemma 36. and
lhc result is immediate.

If.,, is CR FATF.(T). lhen undo(a) = undo(a ')w. By lhe well-formedness of a. CR EATE(T)
docs not appear in tr'. and so not in undo(a'). I lcnce. (i) is satisfied. To sec (ii). assume that
CRl·:J\'l'l{I") occurs in undo(a'), for access T. Then I ,emma 35 implies that
INl·'ORM-COMMIT-AT(X)OF(T) occurs after CRFATF(T) in a. Then wcll-fonnedness
(lhe prccondilion for INFORM-COMMIT-AT(X)OF(T)) implies that a
RFQUI·:ST-COMMIT for T occurs in a'. and wcll-formcdncss also implies that the
Rl·:QUEST-COMMIT fi.>r T follows the CREATl-{I"). Therefore. the REQUEST-COMMIT
occurs in undo(a'), and so Tis not pending in undo(a'). Thus. (ii) is satisfied.

If.,, is a REQUEST-COMMIT for T. then again undo(a) = undo(a').,,, and by the well
fonnedness of a, (i) no REQUEST-COMMIT for T appears in a', and so not in undo(a'), and
(ii) Tis active after a', and it folfows that CREATF.(T) lX.:curs in undo(a'). I

4.3. Construction of a Resilient Object

In this subsection, we describe a construction of a resilient object R(X) from a basic object X.

Recall that a resilient object X is distinguished from a basic object in that it has INFORM-ABORT and

IN FORM -COMM IT operations. a different definition of wcll-forrnedness, and satisfies the resiliency

condition. The resilient object R(X) is constructed from the states, transition function and operation labels of

the basic object X. The resilient object R(X) maintains a collection of "copies of X" (i.e. remembers states of

X). one for each active transaction. with a panicular current copy (corresponding to the least active

transaction) to which CREATE operations arc sent. When R(X) receives an INFORM -ABORT, the

appropriate stored copy becomes the current copy, thereby erasing the effects of the operations in the scope of

the INFORM-ABORT.

The state of R(X) consists of a pair (act.map), where act is a set of "active" transactions., and map is a

function from act to states of basic object X. In the well-formed executions of R(X) (defined below), act will

always be a subset of the set of ancestors of one particular transaction in act. called least(act). (In case act has

no least member (which, again, will not arise in executions with well-formed schedules), define lcast(act)

arbitrarily.) The copy for lcast(act) is considered to be current. The initial states of R(X) arc those in which

act = {T0} and map(T o> is an initial state of the basic object X. In the following specification of the

operations of R(X), let (act',map') be the state of R(X) prior to the operation, and (act.map) be the state of

R(X) after the operation.

• CREATF.(T), Tan access to X:
Postcondition:

JO

act = act' U {T}
map(U) = map"(U) for all U E act - {T}
map(T) = s. where (map'(least(ac()),CRE!\'IHT).s) is in the transition relation of X

• INl·'ORM-ABORT-1\T(X)OF(T):
Postcondition:
act = act' - { descendants(T)}
map(U) = map'(U) for all U E act

• INFORM-COMM IT-AT(X)OF(T):
Postcondition:
ifT E act' then
begin
act= (act' - {T}) U {parent(T)}
map(U) = map'(U) for U E act - {parent('!')}
map(parent(T)) = map'(T)
end
if T ~ act' then act = act' and map = map'

• REQUHST-COMMIT(T,v):
Precondition:
least(act') = T
(map"(T),REQUEST-COMMIT(T.v),s) is in the transition relation ofX
Postcondition:
act= act'
map(U) = map'(U) for all U E act - {T}
map(T) = s

Now we prove that this implementation is a correct resilient object

Lemma 41: Let a be a well-formed schedule of R(X) which can leave R(X) in state (act,map).
Then act coincides with the set of transactions which arc active after a.

Proof: The proof is by induction on the length of a. The basis is trivial. Let a = a'", where "
is a single operation. There arc four cases. depending on the type of operation .,, . f-o'..ach is
immediate from the definition of active and the implementation of R(X). I

Lemma 42: Let a be a well-formed schedule of R(X) which can leave R(X) in state (act.map).
Then the following conditions hold.

•undo(a) is a schedule of basic object X which can leave X in state map(lcast(act)), and

•if Tis any transaction other than T0, and alNFORM-ABORT-AT(X)OF(T)) is wctl
formcd. then undo(alNFORM-ABORT-AT(X)OF(T')) is a schedule of basic object X
which can leave X in state map(U), where U is the least clement of act which is not a
descendant ofT.

Proof: First, observe that if T' is not an ancestor of lcast(act), and
alNrORM-ABORT-AT(X)OF(T) is well-formed, then Lemmas 41 and 39 imply that
undo(alNFORM-ABORT-1\T(X)OF(T')) = undo(a). so the second condition follows from
the first.

31

The proof is by induction on the length of a. In each case. we prove the first condition, then the
second condition assuming that T' is an ancestor of lcast(acl). By the observation above, this is
sufficient.

The basis is trivial. I.ct a = a 'TT. where 1T is a single operation. Let (act'.map ') be a state of
R(X) atlcr a', such that ((act'.rnap'),TT .(act.map)) is a transition for R(X). There arc four cases.

l) TT = CR EATF.(T)
Then undo(a) = undo(a')TT. By the inductive assumption. undo(a') is a schedule of X which can
leave X in state map '(least(act')). By the implementation of R(X). (map '(lcast(act')).TT ,map(T)) is a
transition of X. and T = least(act). Thus the first condition of the lemma is satisfied.

To sec that the second condition holds. note that all active transactions after a arc ancestors ofT,
and by wcll-forrncdncss. arc exactly the transactions active after a·. together with T. Let IP be
INFORM-t\BORT-t\T(X)OF(T'). where r is an ancestor ofT other than T

0
• and a1P is wcll

fonncd. lfT is a proper descendant of least(act'). by I .emma 39. undo(a IP)= undo(a'), which is
a schedule of basic object X which can leave X in state map(least(act'))). by the inductive
hypothesis. If T is an ancestor of lcast(act'), undo(a1P) = undo(a'1P). the least clement of act
which is not a descendant of T is also the least clement of act' which is not a descendant ofT. and
the result follows by the inductive hypothesis.

2) TT = REQUEST-COMMIT(T.v)
Then undo(a)= undo(a')TT. By the inductive assumption. undo(a') is a schedule of X which can
leave X in state map'(lcast(act')). By the implementation of R(X). (map'(least(act')),TT ,map(T)) is a
transition of X. and T = least(act). Thus the first condition of the lemma is satisfied.

To sec that the second condition holds. note that the active transactions after a arc all ancestors
of T. and by wcll-forrncdncss. arc exactly the transactions active after a·. Let IP be
INFORM-ABORT-AT(X)OF(T), where T' is an ancestor ofT other than T0• and acp is wcll
forrncd. Then undo(a1P) = undo(a'IP), which is a schedule of basic object X which can leave X in
state map(lcast(act'))), by the inductive hypothesis. Furthermore, the least clement of act which is
not a descendant of T is also the least clement of act' which is not a descendant of T, and the
result follows by the inductive hypothesis.

3) TT = INFORM-COMMIT-AT(X)OF(T)
Then undo(a) = undo(a'). Also. map(lcast(act)) = map(least(act')), by definition of R(X). The
first condition follows.

Tly the definition of R(X). lcast(act) is an ancestor of least(act'). Let cp be
INFORM-ABORT-AT(X)OF(T). where r is an ancestor of least(act) other than T0• and alP is
wcll-fonncd. Then a'IP is well-formed, and undo(acp) = undo(a'IP). Also, since acp is wcll
fonncd. T * T. Let U and U' be the least clements of act and act', respectively, which arc not
descendants of T.

ff T ct act'. or if U * parent(T). then U = U' and map(U) = map'(U'), and the second
condition follows from the inductive hypothesis. So assume that T E act' and U = parcnt(T).
Then since T * T. it follows that u· = T. Then map'(U') = map(U). and the second condition
again follows from the inductive hypothesis.

32

4)w = INl:ORM-ABORT-AT(X)OF(T)
lfT is not Jn ancestor of lcast(act'), then undo(a) = undo(a'), hy Lemma ~9. Furthem1orc, the
state of R(X) is not changed. alNFORM-ABORT-AT(X)-OF(T) is wcll·fonned only if
a'INFORM- ABORT- AT(X)"-OF(T') is, and the active transactions after a arc exactly those
active after a'. The result follows.

Suppose that T is an ancestor of least(act'). The first condition is immediate from the inductive
hypothesis. Let cp be INFORM-ABORT-AT(X)OF(T'). where r is an ancestor of lcast(acl)
other than T

0
, and acp is well-formed. Since act = act' - desccndants(T), lcasl(act), and hence T,

is an ancestor ofT, undo(acp) = undo(a'wcp) = undo(a'cp), and the second condition follows as
well. I

Theorem 43: R(X) is a resilient object.

Proof: We must show that R(X) preserves well-fonnedness and satisfies the resiliency condition.
That R(X) s.1tisfies the resiliency condition follows immediately from Lemma 42.

Assume that a is a well-formed schedule of R(X) and 'IT is an output operation of R(X) enabled
after an execution with schedule a. We must show that aw is a well-formed sequence of R(X)
opcrations.

Since w is an output, it has the form REQUl~ST-COMMIT(T,v) for some access T and value v.
I .ct (act.map) be a stale of R(X) after a, such that 'IT is enabled in (act.map). Clearly, .,, is an
output of b<.1sic object X enabled from state m<.1p(lcast(act)). lly I .emma 42, undo(a) is a schedule
of basic object X which can leave X in state map(lcast(act))), so undo(a)w = undo(aw) is a
schedule of basic object X.

Since X preserves wcll-fonncdncss for basic objcct'i, and by Lemma 40 undo(a) is a well-formed
sequence of X-opcrations, undo(a) ends with the operation cp = CRF/\TE(T) and contains no
other operations with tranS<lction T. Let {Jcp be the prefix of a ending in cp. Suppose first that a
REQUEST-COMMIT for T occurs in a. Since a is well-formed, cp is the only CRE/\TE(T)
operation in a, and by Lemma 34, the second REQUP..ST-CREATE for T follows cp, and by the
definition of undo, is in undo(a) if <pis, a contradiction.

It remains to show that T is active after a. By Lemma 34, T is active after f1ff'· No
INFORM-COMMIT for T can occur after cp in a. since by well-formcdness, there is no
REQUEST-COMMIT for Tin a. i\lso, since cp is in undo(a), no INFORM-ABORT for an
ancestor of T can occur after cp in a. Thus Tis still active after a. I

5. Concurrent Systems

As with serial schedules in classical settings, our serial schedules contain no concurrency or resiliency and

thus arc too inefficient to use in practice. Their importance is solely for defining correctness for transaction

systems. In this section, we define a new kind of system called a concurrent system. 'Ille new system consists

of the same transactions as in a serial system. a resilient object R(X) for every basic object X of the serial

system, and a concurrent scheduler.

Concurrent systems describe computations in which transactions run concurrently and can be aborted after

33

they have performed some work. 'Ilic concurrent scheduler has the joint responsibility of controlling

concurrency and of seeing that the cflccL'> of aborted transactions (and their descendants) become undone.

Concurrent systems make use of the roll-back capabilities of resilient objects to make sure that ABORT

operations in concurrent systems have the same semantics (so far as the transactions can tell) as they do in

serial systems.

Concurrent systems arc defined in this section. In the next section. the more permissive "weak concurrent

systems" arc defined. In Section 7. we prove that the schedules of concurrent systems arc serially correct, as a

corollary of a weaker correctness property for the weak concurrent system.

5.1. Lock Managers
The scheduler we define is called the concurrent scheduler. It is composed of several automata: a lock

manager for every object X. and a single concurrent co111rul/er. 'I 'he job of the lock managers is to insure that

the associated object receives no CREATES until the lock manager has received abort or commit information

for all necessary preceding transactions. This lock manager models an exclusive locking protocol derived

from Moss' algorithm [Mo]. The lock manager has the following operations.

Input Operations:
INTERNAL-CREATFfl'). where Tis an access to X
INFORM-COMMIT-AT(X)OF(T). forTany transaction
INFORM -AHORT-AT(X)OF(T). for T any transaction

Output Operations:
CREA lHT). where Tis an access to X

The input operations INTERNAL-CREATE. INFORM-COMMIT and INFORM-AHORT will

compose with corresponding output operations of the concurrent scheduler which we wilt construct in this

subsection. The output CREATE operation composes with the CREATE input operation of the resilient

object R(X). The lock manager receives and manages requests to access object X. using a hierarchical locking

scheme. It uses in formation about the commit and abort of transactions to decide when to release locks.

Each state s of the lock manager consists of the following three sets of transactions: lock- holders(s).

crcatc-rcqucsted(s). and creatcd(s). Initially, lock-holders = {T
0
}, and the other sets arc empty. The

operations work as fotlows.

• INTERNAL-CREATE(T)
Postcondition:
create- rcquestcd(s) = create- rcqucstcd(s') U {T}

• INFORM-COMMIT-AT(X)OF(T)

34

Poslcond i lion:
if TE lock- holdcrs(s') then lock-holdcrs(s) = (lock-holdcrs(s') - {T}) U {parcnt(T)}

• INFORM -AllORT-AT(X)OF(I')
Postcondition:
lock - holdcrs(s) = lock - holders(s') - dcsccndant'i(T)

• CREATE(T)
Precondition:
TE create- rcqucstcd(s') - crcatcd(s')
lock - holdcrs(s') ~ anccstors(T)
Postcondition:
lock - holdcrs(s) = lock- holdcrs(s') U [T}
crcatcd(s) = crcatcd(s') U {T}

Note that resilient object R(X) and the lock manager for X share the INFORM-ABORT and

INFORM-COMMIT input operations. These compose with the output from the concurrent controller

defined below.

Thus. the lock manager only sends a CREATE(T) operation on lo the object in case all the current

lock - holders arc ancestors of T. When the lock manager learns about the commit of a transaction T for

which it holds a lock. it releases the lock to Ts parent When the lock manager learns about the abort of a

transaction T for which it holds a lock. it simply releases all locks held by that transaction and its descendants.

Our model provides an exceptionally simple and clear way of describing this important algorithm.

A key property of lock managers is described by the following lemma.

Lemma 44: Let X be an object and let T and T be accesses to X. Let U he an ancestor of T
which is not an ancestor of T. I.ct a be a schedule of the lock manager for X. If CREATE(T)
precedes CREATE('!") in a. then between the two CREATE operations. there is either an
INFORM-COMMIT-AT(X)OF(U) operation. or else an lNFORM-ABORT-AT(X) for
some ancestor of T.

Proof: At the time the CREATE(T) occurs. the lock manager puts T into the set of
lock-holders. Before the lock manager can send in CRE/\TE(T). it must be that all the
transactions in lock-holders arc ancestors of T. There arc only two ways in which this can
happen. One possibility is that the lock manager first receives INFORM-COMMITS for all
ancestors of T up to lca(T.T). including INFORM-COMMIT-AT(X)OF(U). The other
possibility is that the lock manager first receives an INFORM-ABORT for an ancestor ofT. I

5.2. The Concurrent Controller

The concurrent controller is similar to the serial scheduler, but it allows siblings to proceed concurrently. Jn

order to manage this properly, it interacts with "concurrent objects" (lock managers and resilient objects)

instead of just basic objects. The operations arc as follows.

lnpul Operations:
Rl·~QUISl'-CREATE(T)

Rl·:QUEST-COMMIT(T.v)

Oulpul Operations:

35

CREA'IHT). Ta non-access transaction
INTERNAl.-CREATF.(T). Tan access transaclion
COMMIT(T.v)
ABORT(T)
INFORM-COMMIT-AT(X)OF(T)
INFORM -ABORT- AT(X)OF(T)

Each state s of the concurrent conlrollcr consists of five selS: create- requcsted(s), crcatcd(s).

commit- rcquested(s). committed(s). and aborted(s). The set commit- requcstcd(s) is a set of

(transaction, value) pairs. and the others arc seLc;; of transactions. (As before, we will occasionally write T E

commit-rcqucslcd(s) for (T.v) E commit-rcqucslcd(s) for some v.) All sctc;; arc initially empty except for

create- requested. which is {T0}. Define returncd(s) = committed(s) U abortcd(s). The operations arc as

follows.

• REQUEST-CREATE(T)
Postcondition:
crealc- requcstcd(s) = create- requcslcd(s') U {T}

• REQUEST-COMMIT(T.v)
Postcondition:
commit-rcqucstcd(s) = commit-requcsted(s') U {(T,v)}

• CREATJ-<"XT). Ta non-access transaction
Precondition:
T E create- rcqucstcd(s') - creatcd(s')
Postcondition:
created(s) = crcatcd(s') U {T}

• INTERNAL-CREATE(T), Tan access transaction
Precondition:
TE create- rcqucstcd(s') - creatcd(s')
Postcondition:
crcated(s) = created(s') U {T}

• COMMIT(T,v)
Precondition:
(T,v) E commit-requested(s')
T It rcturncd(s')
childrcn('I) n create- rcqucstcd(s') ~ rcturncd(s')
Postcondition:
committcd(s) = committcd(s') U {D

• AUORT(T)
Precondition:

36

TE (crcatc-rcqucstcd(s') - crcatcd(s·)) U (commit- rcqucstcd(s') - rcturncd(s'))
children('!') n create- rcqucstcd(s·) ~ rcturncd(s')
Postcondition:
crcatcd(s) = crcatcd(s') U {T}
at>ortcd(s) = abortcd(s') u rn

e INFORM-COMMIT-AT(X)OF(T):
Precondition:
TE committcd(s')

e INFORM-ABORT-AT(X}OF(T):
Precondition:
T E abortcd(s')

The concurrent controller is closely related to the serial scheduler. In place of the serial scheduler's

CREATE operations. the concurrent controller has two kinds of operations. CREATE operations and

INTERNAL-CREATE operations. The former is used for interaction with non-access transactions, while

the latter is used for interaction with access transactions. From the concurrent controller's viewpoint. the two

operations arc the same; however, our naming convention for operations requires us to assign them different

names. since the INTERNAL-CREATE operations arc intended to be identified with

INTERNAL-CREATE operations of the lock managers (which also have CREATE operations. for

interaction with the resilient objcct'i). The precondition on the serial scheduler's CREATE operation which

insures serial processing of sibling transactions. docs not appear in the concurrent controller. Thus, the

concurrent controller may run any number of sibling transactions concurrently, provided their parent has

requested their creation.

The concurrent controller's COMMIT operation is the same as the serial scheduler's COMMIT operation

(except for a minor difference in bookkeeping). The concurrent controller's ABORT operation is different.

however: in addition to aborting a transaction in the way that the serial scheduler docs. the concurrent

controller has the additional capability to abort a transaction that has actually been created and has carried out

some steps. In this particular formulation, aborts occur if the transaction was not created (as with the serial

scheduler), or if the transaction has previously requested to commit, and its children have returned. Together

with the requirements on the COMMIT operation. this condition insures that all transaction completion

occurs bottom-up. In the weak concurrent system to be considered in Section 6, a different. "weak",

concurrent controller will be used: it differs from the concurrent controller of this section precisely in not

requiring A OORT operations to wait for their transactions (and subtransactions) to complete.

The concurrent controller also has two additional operations not present in the serial scheduler. These

37

operations allow the concurrent controller to forward necessary abort and commit infonnation to the lock

managers and resilient objects.

J ,cmnrn 45: I .ct a be a schedule of the concurrent scheduler. and lets be a slate which can result
from applying a to the initial slate. Then the following conditions arc true.

I. T is in create- rcqucstcd(s) exactly if T = T
0

or a contains a REQUEST- CR EATF.(T)
operation.

2. If T is a non-access trans.1ction. then T is in crcatcd(s) exactly if a contains either a
CREATE('!') or A BORT('I') operation.

3. If T is an access transaction. then T ts m crcatcd(s) exactly if a contains either an
INTERNAL-CREATF.(T) or ABORT(T) operation.

4. (T.v) is in commit- rcqucsted(s) exactly if a contains a COMM IT- REQUEST(T,v)
operation.

5. (T.v) is in committcd(s) exactly if a contains a COMMIT(T,v) operation.

6. Tis in aborted(s) exactly if a contains an ABORT(T) operation.

5.3. Concurrent Systems

The composition of transactions, resilient objects and the concurrent scheduler (Jock managers and

concurrent controller) is the co11curre111 system. A schedule of the concurrent system is a concurrent schedule.

and the operations of a concurrent system arc concurrent operations.

A sequence a of concurrent operations is wel!-fonned if for every primitive P, a IP is well-funned (using the

appropriate definition of wcll-fonnedncss).

The main result of this paper is that every concurrent schedule is serially correct. 'Ibis will be proved as a

corollary of a stronger result, in Section 7.

5.4. Properties of Concurrent Systems

As we did for serial schedules. we now prove some useful basic properties for concurrent schedules. 'lbese

lemmas describe the possible kinds and orders of operations that can occur in well-funned concurrent

schedules. Later. we will sec that all concurrent schedules arc well-formed, so these properties actually follow

just from the fact that these schedules arc concurrent All results and proofs in this subsection are

straightforward.

Lemma 46: Let a be a wcll-fonncd concurrent schedule. and let T-:#: T0 be a transaction.

1. If a contains any operation with transaction T. then a contains a CREATF.(T) and a
REQUEST- CR EATE(T).

J8

2. If a contains a COMMIT for T. lhcn a conL<1ins a Rl~QUEST-COMMIT for T, a
CREATt~~T) and a RFQUEST-CRFATF.(T).

3. If a contains an ABORT(T). then a contains a RFQLIEST-CRFATl-<~T).

Lemma 47: I .ct a he a well-formed concurrent schc<lulc. and Ta transaction. Assume that some
descendant ofT is in transc1ction(a). Then the following hold.

I. CREATE(T) occurs in a.

2. lfT * T0• then REQUEST-CREATl~~T) occurs in a.

Lemma 48: I .ct a be a well-formed concurrent schedule. and let T * T0 be a transaction.

I. If a contains a REQUEST-CREATE(T). hut docs not contain a return operation for T,
lhcn parcnt(T) is live in a.

2. lfT is live in a, then pouent(T) is live in a.

3. If a contains a REQUEST-CREA'IHT) but docs not contain a CREATF.(T) or
ABORT(T). lhcn parcnt(T) is live in a.

Proof: 1. Wcll-formcdncss implies that the REQUEST-CREATl-<~T) is preceded by a
CREATl-<~parcnt(T)). Suppose that parcnt(T) is not live in a. Then a return operation for
parcnl(T) occurs in a. In case lhc return operation for parcnt(T) is an ABORT(parcnt(T)).
scheduler preconditions imply that the CREATE(parcnt(T)) must precede the
ABORT(parcnt(T)). 'll1cn lhc scheduler preconditions for the return operation imply that the
return for parent('r) must be preceded by a REQUEST-COMMIT for parent(T). By wcll
formcdncss. the REQUEST-COMM IT for parent(' I') must follow the REQUEST-CREATE(T).
so lhat the return for parent('!') must follow lhe REQUEST-CREATE(T) Then the scheduler
preconditions for the return operation imply lhat there must be a return operation for T in a, a
contradiction.

2. and 3. arc as in Lemma 17. I

Lemma 49: I .ct a be a well-formed concurrent schedule, and let T be a transaction.

1. If a contains a REQUEST-CREATF.(T). but docs not contain a return operation for T,
then all proper ancestors of T arc live in a.

2. If T is live in a. then any ancestor of T is live in a.

3. If a contains a REQUEST-CREATF.(T) but docs not contain a CREATE('D or
ABORT(T), then all proper ancestors ofT arc live in a.

Lemma 50: Let a be a well-formed concurrent schedule, and let T and T' be transactions with T'
a descendant ofT. Assume that there is a return operation for Tin a.

1. If there is a REQUEST-CREATE.(T) in a, then lhcrc is a return operation for Tin a.

2. lfT' is in transaction(a). then there is a return operation forT in a.

Proof:

39

l. By I .cmma 49.

2. By I .cm ma 46 and part 1.

I

Lemma 51: Let a be a well-formed concurrent schedule. If a return operation for T is in a. then
it follows all operations in a whose transaction is T.

Proof: First consider the case where Tis nol an access. If no CREATE(!') occurs in a, the result
is immediate, so assume that CREATE(T) occurs in a. In case an ABORT('I') occurs in a,
scheduler preconditions imply that the CREATF(T) must precede the ABORT('!'). Then the
return operation for T must be preceded hy a REQUEST- COMM IT for T. by scheduler
preconditions. Well-formedness implies that the REQUEST-COMMIT is preceded by
CR EATl·{I'). and is not followed by any output operations of T. Thus. the only serial operations
of T that could follow the REQUEST-COMM IT arc return operations of children ofT.

I .ct T' be a child of T for which a return operation occurs in a. By scheduler preconditions,
there is only one return operation for T' in a. By J ,cmma 46, a also contains
RFQUEST-CREATF.(T). Since this is an output operation of T, it precedes the
REQUEST-COMMIT forT. and hence precedes the return operation forT. ·111en the scheduler
preconditions imply that the return operation for r precedes the return for T.

Next consider the case where Tis an access. If no INTERNAL-CREATE('!') occurs in a, the
result is immediate. so assume that INTERNt\1.-CREt\TE(T) occurs in a. In case an
ABORT(T) occurs in a. scheduler preconditions imply that the INTERNAL-CREATE(T) must
precede the ABORT(T). Then the return operation for T must be preceded by a
REQUEST-COMMIT for T. and wcll-fonncdncss implies that this is in turn preceded by
CR EAT Ff I'). Thus. no serial operations of T can follow tJ1e return operation for T. I

Lemma 52: Let a he a well-formed concurrent schedule. If a return operation for Tis in a. then
it follows all operations in a whose transactions arc descendants of T.

Proof: Since a return operation for T occurs in a, we have T * T0. Let T' be a descendant ofT.
and assume for the sake of obtaining a contradiction that a serial operation .,, with transaction(.,,}
= T' occurs after the return for T in a. I ,ct a' be the prefix of a preceding w.

By Lemma 46, a' contains a REQUEST-CREATE(T'). Then Lemma 50 implies that a' must
contain a return operation for T. But then the well-formed schedule a'w contains a return
operation for T followed by an operation ofT', which contradicts Lemma 51. I

Weak concurrent systems arc defined in the following section, and many of their properties arc stated and

proved. Weak concurrent systems arc obtained by replacing the concurrent scheduler with a more permissive

scheduler, the weak concurrent scheduler. Resulcs in Section 7 prove that every execution of the concurrent

system is also an execution of the weak concurrent system. Thus, additional interesting properties of

concurrent system behavior follow immediately from the corresponding properties of weak concurrent system

behavior, proven in that section.

40

6. Weak Concurrent Systems

In this section. we define "weak concurrent systems". which arc exactly the same as concurrent systems.

except that they have a more permissive controller. the ''weak concurrent controller". The weak concurrent

controller reports ahorts lo a transaction's parent while there is still activity going on in the aborted

transaction's subtree. In this paper. weak concurrent systems arc used primarily to provide an intermediate

step in proving the correctness of concurrent systems: proving a weaker condition for weak concurrent

systems allows us to infer the stronger correctness condition for concurrent systems. However, weak

concurrent systems arc also of interest in themselves. In a distributed implementation of a nested transaction

system. performance considerations may make it importmt for the system to allow a transaction to abort

without waiting for activity in the transaction's subtree to subside. In this case. a weak concurrent system

might be an appropriate choice. even though the correctness conditions which they satisfy arc weaker. Weak

concurrent systems also appears to have further technical use. for example in providing simple explanations of

the ideas used in "orphan detection" algorithms [HLMW].

6.1. The Weak Concurrent Controller

In this subsection. we define the weak concurrent controller. As we have already said. it is identical to the

concurrent controller except that it has a more permissive ABORT operation. For convenience. we describe

the controller here in its entirety. It has the same operations as the concurrent controller:

Input Operations:
REQUEST-CR EATPff)
REQUEST-COMM IT(T. v)

Output Operations:
CREATFfl'). Ta non-access transaction
INTERNAL-CREATE(T). Tan access transaction
COMMIT(T.v)
ABORT(T)
INFORM-COMMIT-AT(X)OF(T)
INFORM-ABORT-AT(X)Or(f)

Each state s of the concurrent controller consists of five sets: create- requcstcd(s), crcatcd(s).

commit- rcqucstcd(s), committed(s), and abortcd(s). The set commit- rcqucstcd(s) is a set of

(transaction, value) pairs. and the others arc sets of transactions. (As before, we will occasionally write TE

commit- rcqucstcd(s) for (T,v) E commit-rcqucsted(s) for some v.) All arc empty initially except for

create-requested, which is {'1'0}. Define rctumcd(s) = committcd(s) U abortcd(s). 'lbc operations arc as

follows.

• REQUEST-CREATFfr)
Postcondition:

41

create- requestcd(s) = create- requested(s') U {T}

• REQUEST-COMMIT(T.v)
Postcondition:
commit-requested(s) = commit-requesled(s') U {(T,v)}

• CRh'\TF.(T). Ta non-access trans.1ction
Precondition:
TE create- rcquested(s') - created(s')
Postcondition:
creatcd(s) = crcatcd(s') U {T}

• INTERNAl.-CREATi-;ff'), Tan access transaction
Precondition:
TE create- requcstcd(s') - crcatcd(s')
Postcondition:
crcatcd(s) = created(s') U {T}

• COMMIT(T,v)
Precondition:
(T,v) E commit- requested(s')
T E returned(s')
children(T) n create- requestcd(s') ~ returned(s')
Postcondition:
committed(s) = committed(s') U {T}

• ABORT(T)
Precondition:
TE create-requested(s') - rcturncd(s')
Postcondition:
created(s) = crcated(s') U {T}
aborted(s) = aborted(s') U {T}

• INFORM-COMMJT-AT(X)OF(T):
Precondition:
T E committcd(s')

• INFORM-ABORT-AT(X)OF(f):
Precondition:
T E abortcd(s')

Thus, the weak concurrent controller is permitted to abort any transaction that has had its creation

requested, and which has not yet returned.

Lemma 53: Let a be a schedule of the concurrent scheduler. and lets be a state which can result
from applying a to the initial state. Then the following conditions arc true.

1. Tis in create- requested(s) exactly if T = T0 or a contains a REQUEST-CREATl:-""',('f)
operation.

42

2. If T is a non-access transaction. then T is in created(s) exactly if a contains either a
CREATE('!') or /\BORT(T) operation.

J. If T is an access transaction. then T 1s m cre<ated(s) exaclly if a conwins either an
INTERN/\ L- CR E/\TE(T) or /\BO RT(T) operation.

4. (T.v) is in commit- requested(s) exactly if a contains a COMM IT- REQUEST(T.v)
operation.

5. (T.v) is in committcd(s) exactly if a contains a COMM IT(T,v) operation.

6. Tis in abortcd(s) exactly if a contains an /\BORT(T) operation.

6.2. Weak Concurrent Systems

The composition of transactions. resilient objects and the weak concurrent scheduler (lock managers and

weak concurrent controller) is the weak concurren1 sys/em. /\ schedule of the weak concurrent system is a

weak co11curre111 schedule.

Weak concurrent systems exhibit nice behavior to transactions except possibly to those which arc

descendants of aborted transactions. Thus. we say that a transaction T is an orphan in any sequence a of

operations provided that an ancestor of T is aborted in a. In many of the properties we prove for weak

concurrent systems, we will have to specify that the transactions involved arc not orphans.

6.3. Properties of Weak Concurrent Systems

/\s we did for serial and concurrent schedules. we here prove a number of useful basic properties for weak

concurrent schedules. /\s before. most of these properties arc simple to state and prove.

6.3.l. Operations in Weak Concurrent Schedules

As before. we include a collection of lemmas describing the possible kinds and orders of operations that can

occur in well-formed weak concurrent schedules. These lemmas arc analogous to some in Section 5, and have

similar proofs; the main difference is that we must take proper care with orphans. As before. we go on to

show that all weak concurrent schedules arc well-formed. so these properties actually follow just from the fact

that these schedules arc weak concurrent.

Lemma 54: Let a be a well-formed weak concurrent schedule. and let T 'I:- T0 be a transaction.

1. 1 f a contains any operation with transaction T. then a contains a CREATF.(n. and a
REQUEST-CREATf.(T).

2. If a contains a COMMIT for T. then a contains a REQUEST-COMMIT for T, a
CRE/\TE(T) and a REQUEST-CREATE(!').

3. If a contains an /\BORT(T). then a contains a REQUEST-CREATE(T).

43

Lemma 55: I ,et a he a well-formed weak concurrent schedule. and Ta transaction. Assume that
some descendant ofT is in transaction(a). Then the following hold.

I. CR EATE('I') occurs in a . .

2. lfT * T0• then REQUEST-CREATE('!') occurs in a.

Lemma 56: Let a be a well-formed weak concurrent schedule, and let T * T0.

I. If a contains a REQUEST-CREA'l'E(T), hut docs not contain a return operation for T.
then parent(T) is not committed in a.

2. lfT is live in a. then parent(T) is not committed in a.

3. If a contains a REQUEST-CREATE(T) but docs not contain a CREATE(T) or
ABORT(T), then parenl(T) is not committed in a.

Proof: I. Suppose a COMM IT operation for parcnt(T) occurs in a. Then the weak concurrent
controller preconditions for the COMM IT operation imply that the COMM IT for parent(T) must
be preceded by a REQUl·'.ST-COMMIT for parenl(T). By well-fonncdncss, the
REQUEST-COMMIT for parent(T) must follow the RHQUEST-CRHATl·rl'). so that the
COMM IT for parent('!') must follow the REQUEST-CR EATE('I'). 'lllen the weak concurrent
controller preconditions for the COMM IT operation imply that there must be a COMMIT
operation for Tin a, a contradiction.

2. and 3. arc as in 3.6.2. I

Lemma 57: Let a be a well-formed weak concurrent schedule, and let T be a transaction which
is not an orphan in a.

1. If a contains a REQUEST-CREATE(T), but docs not contain a COMMIT operation for
T, then all proper ancestors ofT arc live in a.

2. lfT is Jive in a. then all proper ancestors ofT arc live in a.

3. If a contains a REQUEST-CREJ\Tl--:fr) but docs not contain a CREJ\Tr'.(T), then a11
proper ancestors ofT arc live in a.

Proof: Ry repeated use of the previous lemma, well-formcdness and the weak concurrent
controller preconditions. I

Lemma 58: I ,ct a be a well-formed weak concurrent schedule, and let T and T be transactions
with T' a descendant of T. Assume that T' is not an orphan in a and that there is a COMMIT
operation for Tin a.

1. If there is a REQUEST-CREJ\TE(T') in a, then there is a COMMIT operation for T in
a.

2. lfT is in transaction(a}, then there is a COMMIT operation for Tin a.

Proof:

1. lly I .cm ma 57.

44

2. By I .cmma 54 and part 1.

I

6.3.2. Objects and Locking

In this paragraph, we give two simple lemmas about the heh<Jvior of the locking strategy.

Lemma 59: I .ct a be a weak concurrent schedule. Let X be an object, and let T and T be
accesses to X. I.ct U he an ancestor ofT which is not an ancestor ofT. Assume that CREATE(T)
precedes CR EATE(T') in a.

I

I. 'lllcrc is either an INFORM-COMMIT-AT(X)OF(U). or else an
INFORM - ABORT-AT(X) for some ancestor ofT. occurring between CREATF.(T) and
CREATE('}") in a.

2. Either CREATF.(T) is preceded by a COMMIT operation for U. and by a
REQUEST-COMMIT operation for U. or else CREATrfl") is preceded by an ABORT
operation for some ancestor of T.

Proof:

1. By Lemma 44.

2. By part I and the preconditions of the weak concurrent controller.

Lemma 60: 1.ct a be a well-formed weak concurrent schedule. and X a basic object. Then the
set of active transactions after alR(X) is exactly the set of lock holders in the lock manager for X
after a.

Proof: By induction on the length of a. I

6.3.3. Wcll·Formcdness

Herc. we show that every weak concurrent schedule is well-formed. It follows that all the properties proved

earlier in this section arc actually true for all weak concurrent schedules. From now on. we will use these

properties without explicitly mentioning wcll-fonncdncss.

Lemma 61: Let a be a weak concurrent schedule. Then a is wcll-fonned.

Proof: By induction on the length of schedules. The base. length = O. is trivial. Suppose that
aw is a weak concurrent schedule, where w is a single operation, and assume that a is well
fonncd. If w is an output of a primitive P, then the result is immediate. since each primitive
preserves well-fonnedncss. No INTERNAL-CREATE operation can cause a violation. So
assume that w is an input to a primitive P. It suffices to show that aw IP is well-formed. 'lbere arc
six cases.

(1) w is CREATE(D and Tis a non-access transaction.
'Inc controller preconditions insure that CREATr.(T) docs not appear in a.

(2) w is CREATE(T) and Tis an access to resilient object R(X).
By the lock manager preconditions, no CREATrrn appears in a. 'Ille lock manager
preconditions and l .cmma 60 imply that all the transactions which arc active after a arc ancestors

45

ofT.

(3) 11 is COMMIT(T.v).
Then 11 is an input to transaction parcnt(T). Weak concurrent controller preconditions imply that
a contains RFQUEST-COMMIT(T.v). and so Lemma 54 implies that a contains
RFQUEST-CRl~t\Tl{I'). t\lso. weak concurrent controller preconditions insure that a docs not
contain a return operation for T.

(4) 11 is t\BORT(T).
Then 11 is an input to transaction parcnt(T). Weak concurrent controller preconditions imply that
a contains a REQUEST-CREATPfl'). Weak concurrent controller preconditions insure that a
docs not contain a return operation for T.

(5) 11 is INFORM-COMM IT-t\T(X)OF(T) at resilient object R(X).
By the preconditions of the weak controller, a contains a COMM IT for T. If
INFORM-ABORT-AT(X)OF(T) occurs in a, then a also contains an ABORT for T. which
contradict<; weak concurrent controller preconditions. Thus, no
INFORM-t\BORT-t\T(X)OF(T) occurs in a. Since a COMMIT for T occurs in a, weak
concurrent controller preconditions imply that a REQUEST-COMMIT for T also occurs in a.

(6) 11 is INFORM-t\BORT-t\T(X)OF(T) at resilient object R(X).
By the preconditions of the weak concurrent controller. a contains ABORT('!'). If
INFORM-COMMIT-AT(X)OF(T) occurs in a. then a contains a COMM IT for T, which
contradicts weak concurrent controller preconditions. Thus, no
INFORM-COMMIT-AT(X)OF(T) occurs in a. I

6.3.4. Visibility and Weak Concurrent Schedules

This paragraph states and proves important properties involving visibility in weak concurrent schedules. In

particular. the most important result of this paragraph is Lemma 66. which relates the portion of a weak

concurrent schedule which is visible to a particular transaction. to schedules of transactions and basic objects.

The first lemma shows how visibility propagates among the transactions during a weak concurrent execution.

Lemma 62: I .ct aw be a weak concurrent schedule. where w is a single operation.

l. lfw isCREATrff). then visible(aw.T) = visiblc(a,parent(f))w.

2. lfw isCOMMIT(T.v), then visiblc(aw,parcnt(T)) = visiblc(a,T)'IJ'.

3. If w is AllORT(T). then visiblc(aw,parent(T)) = visible(a.parcnt(T))w.

4. If w is COMMIT(T. v). and T' is a descendant of parent(T) but not T. then visible(aw ,T) •
visible(aw,parcnt(T)) = visiblc(a.T) · visiblc(a,T).

Proof: 1. By Lemma 55, .,, is the first serial operation in aw whose transaction is a descendant of
T. and T is not visible to parent(T). Thus any transaction other than T visible to T in aw is visible
to parent('!') in aw. Then parent(T) is visible to T in aw, and by Lemma 8,
visiblc(aw.parent(T))w = visiblc(aw,T).

46

By lhc definition of visibility, any transaction visible to parent('!') in aw is visible to parcnt(T) in
a. and visiblc(a.parcnt(T)) = visiblc(aw,parcnt(T)). Substituting in the equality above, we have
the result.

2. By the definition of visibility, any transaction visible to parent('!') in aw is either visible to
parcnt(T) in a, or is visible to Tin n. But any transaction visible to parcnt(T) in a is visible to Tin
a. so we have that any transaction visible to parent('!') in aw is visible to T in a, and
visible(aw,parcnl(T)) is a subsequence of visiblc(n.T)w. IL f(lllows immediately from the
definition of visibility that any transaction visible to T in a is visihlc to parent(T) in a'IT. so that
visiblc(a.T) is a subsequence of visiblc(a'IT,parcnt(T). The result is immediate.

3. Immediate from lhe definition of visibility.

4. Clearly, visiblc(a,T') is a subsequence of visiblc(aw:n. Any operation in visiblc(a'IT,T') -
visiblc(a.T) has a transaction which is a descendant of T, and so is either 11 or is visible to Tin a,
and thus is in visiblc(a.T)'IT. Thus we have visiblc(aw,T') - visiblc(a.T)w = visible(a,T') -
visiblc(a,T)w. As .,, is not in visible(a.T). this equals visiblc(a.T') - visiblc(a,T). By part 2,
visiblc(a'IT ,parcnt(T)) = visiblc(a,T)w. and the result follows by substitution in the first identity.
I

Now we prove two lemmas involving visibility and the behavior of resilient objects in weak concurrent

systems.

Lemma 63: I "ct a be a weak concurrent schedule. I ..ct R(X) be a resilient object, and let T and T
be accesses to R(X). lfT is live and not an orphan in a and CREATr~T) occurs in a. then either
T is visible to T in a. or else CREATE(T) is in the scope of an
INFORM-ABORT-AT(X)OF(U) in ajR(X).

Proof: There arc two cases.

(1) CREATE(T) precedes CREATrfr) in a.
Assume T is not visible to T in a. Then Lemma 59 implies that there is an
JN.FORM- ABORT-AT(X) operation for some ancestor ofT. occurring after CREATPfJ') in a.

(2) CREATE(T) precedes CREATr:fl') in a
Then Lemma 59 implies that there is either a COMMIT or an ABORT for some ancestor ofT, in
a. Since r is not an orphan in a. there is a COMMIT for an ancestor ofT' in a. Then Lemma 58
implies that T' is returned in a, a contradiction. I

Lemma 64: Let a be a weak concurrent schedule. Let R(X) be a resilient object, let T and T' be
accesses to R(X). and let T' be any transaction. Assume that r is not an orphan in a. If an
operation .,, of T precedes an operation "· of T in a, v is not in the scope of an
INFORM-ABORT and Tis visible to T' in a, then Tis visible to T' in a.

Proof: By wcll-formedncss. CREATE(T) and CREATP~T') arc operations in a. in that order.
Let a' be the prefix of a ending with CREATE(T'). Then Tis live and not an orphan in a'. By
Lemma 63. Tis visible to T in a·. and so in a. f ,emma 8 implies that T is visible to T' in a. I

'Ille following lemma is straightforward.

Lemma 65: Let a be a weak concurrent schedule. and let T be a transaction which is not an

47

orphan in a. Any lransaction r visible to Tin a is not an orphan in a.

Proof: lfr is an anccslor ofT. lhc result is immediate. Olhcrwisc, COMMIT operations appear
in a for every proper descendant of lca(T.T) lhal is an ancestor of 'I". By wcll-fonncdncss. none
of lhcsc transactions has aborted. Since lhc remaining ancestors of T' arc also ancestors ofT. and
lhc result follows. I

W c arc now ready to prove the key lemma of this paragraph.

I .cmm~ 66: I .ct a be a weak concurrent schedule. let T be live and not an orphan in a, and let P
be a resilient primitive.

1. If Pis a transaction T'. then visiblc(a,'l')IT" is a prefix of a IT and a schedule ofT.

2. If P is a resilient object R(X). then visiblc(a.T)IR(X) is a prefix of undo(alR(X)) and a
schedule of basic object X.

Proof: 1. Immediate from Lemmas 11 and 1.

2. First. we show that any operation in visible(a.T)IR(X) also occurs in undo(alR(X)). If fl is in
visiblc(a.T)IR(X). it means that all ancestors of transaction(fl) up to lea(transaction(fl).T) have
committed. By assumption, Tis not an orphan in a, so Lemma 65 implies that transaction(fl) is
not an orphan in a. Thus, by the preconditions of the wc<1k concurrent controller there is no
INFORM - ABORT for any ancestor of transaction(fl) in a. Therefore. fl is in undo(alR(X)).

Now we consider any two operations fl and fl· of undo(alR(X)). where fl precedes fl·. Assume
that 11 is in visiblc(a,T)IR(X). Let T" = transaction(fl) and T = transaction(fl'). Then T is
visible to T in a. and T is not an orphan in a by Lemma 65. Since .,, is in undo(alR(X)), no
INFORM - ABORT occurs at R(X) for any ancestor ofT' in a, with fl in its scope. Then Lemma
64 implies that T' is visible to T in a. Thus, fl is in visiblc(a.T)IR(X). It follows that
visiblc(a.T)IR(X) is a prefix of undo(alR(X)).

By I ,emma 61. alR(X) is a well-formed schedule of resilient object R(X). Then the resiliency
condition implies that undo(alR(X)) is a schedule of basic object X. So by Lemma 1,
visiblc(a,T)IR(X) is a schedule of basic object X. I

Finally, we prove that. in a weak concurrent schedule, concurrently executing transactions access disjoint

sets of resilient objects.

Lemma 67: Let a be a weak concurrent schedule, with transactions T and T live and not
orphans in a. Let T" = lca(T,T). Let fJ = visiblc(a.T) - visible(a.T") and /J' = visiblc(a,T') -
visiblc(a.T''). Then no resilient object has operations in both fJ and p·.

Proof: The result is trivial if T is an ancestor of T' or vice versa. So assume that lca(T,T') is
neither T nor T'. Let R(X) be a resilient object such that both fJ and {J' contain operations of
R(X). By wcll-formedness. we can assume without loss of generality that there are two accesses to
X (not necessarily distinct) such that fl = CREATE(U) and (f' = CREATE(V) arc in p and /J',
respectively, and neither U nor Vis visible to lca(T,T') in a. Also, we can assume that Tr appears
in a no later than (f'.

We have that U is visible to some ancestor of Tin a, and V is visible to some ancestor of T' in a,

48

and since T and T arc not orphans in a. I .cm ma 65 implies that no ancestor of U or V has aborted
in a. Also. neither U nor V is visible to lct(T.T) in a. so it must he that U -:I: V. But then .,,
precedes 'P in a. and I .cm ma 59 implies that some ancestor of Tis committed in a. Then Lemma
57 implies that T is returned in a. a contradiction. I

7. Simulation of Serial Systems by Concurrent Systems

In this section. we prove the main result'\ of this paper. that concurrent schedules arc serially correct. and

that weak concurrent schedules arc correct at T
0

. Both these rcsulL'i follow from an interesting theorem about

weak concurrent schedules. which says that the portion of any weak concurrent schedule which is visible to a

live non-orphan transaction is equivalent to (i.e. looks the same at all primitives as) a serial schedule.

The proof of this theorem is quite interesting, as it provides considerable insight into the scheduling

algorithm. The proof shows not only that a transaction's view of a weak concurrent schedule is equivalent to

some serial schedule. but by a recursive construction. it actually produces such a schedule. It is interesting and

instructive to observe how the views that different transactions have of the system execution get passed up

and down the transaction tree, as CREATES. COMM ITS and ABORTS occur.

Theorem 68: I .ct a be a weak concurrent schedule. and T any transaction which is live and not
an orphan in a. Then there is a serial schedule p which is equivalent to visible(a,T).

Proof: We proceed hy induction on the length of a. The basis. length 0. is trivial. Fix a of
length at least l. and assume that the claim is true for all shorter weak concurrent schedules. Let.,,
be the last operation of a. and let a = a 'w. Fix T which is live and not an orphan in a. We must
show that there is a serial schedule fJ which is equivalent to visible(a,T).

If.,,. is not a serial operation. then visiblc(a',T) = visible(scrial(a').T) = visiblc(scrial(a),T) =
visiblc(a.T). and the result is immediate by induction. So we can assume that .,,. is a serial
operation. Also. if transaction(w) is not visible to Tin a. then visible(a.T) = visiblc(a',n. and
the result is again immediate by induction. Thus. we can assume that transaction(w) is visible to T
in a. Also.Tis not an orphan in a'.

There arc four cases.

(l) .,,. is an output operation of a transaction or resilient object.
Then the inductive hypothesis implies the existence of a serial schedule p· which is equivalent to
visible(a ',T). Let P = p·.,,.. We must show that fJ is equivalent to visible(a,'O and serial.

Let P be any primitive. Then PIP = P'wlP = visiblc(a',T)wlP by inductive hypothesis, =
visiblc(a,T)IP. by Lemma 12. Therefore. p -is equivalent to visiblc(a,T).

Let w be an output of primitive P. Then PIP = visible(a,T)IP by equivalence, which is a
schedule of P by Lemma 66. Lemma 4 implies that p is serial.

(2).,, is a CREATP..(T) operation.
Then transaction(w) = T, and so Tis visible to Tin a. Then I .cmma 55 implies that.,,. is the first
operation whose transaction is a descendant of T. Then by the definition of visibility, it must be

49

that T = T. By I .cm ma 57. parcnt(T) is live in a·. Since parent(' I') is not an orphan, the inductive
hypothesis implies the existence of a serial schedule /f which is equivolcnt to visiblc(a',parcnt(T)).
I .ct f3 = /J'w. We must show that f3 is equivalent to visiblc(a,T) and serial.

I .ct P he any primitive. Then /31P = /3'wlP. = visihle(a',parent(T))wlP by inductive hypothesis,
= visihlc(a,T)jP. by I .emma 62. Thus. f3 is equivalent to visiblc(a.T).

Consider any execution of the serial system having {3' as its operation sequence. and lets' be the
swte of the serial scheduler after {3'. We show that .,, is enabled in s'. That is, we show that T E
create- requested(s'), Urnt T (£ created(s'), and that siblings('!') n created(s') ~ returned(s').

Consider any execution of the weak concurrent system having a as its operation sequence, and
lets be the state of the weak concurrent scheduler after a'. States contains a component sc for the
weak concurrent controller and a component sx for U1e lock manager for each object X.

If T = T0• then T E create- requested(s') hy the initial conditions. If T -:I:- T0• then T E
create- rcqucstcd(sc) by the preconditions or the concurrent scheduler, so a
REQUEST-CREATE('(') operation occurs in a'. The REQUEST-CREATE(T) operation has
trans.1ction parent(T). and so is in visiblc(a',parent(T)). and thus is in {J'. Therefore, T E
create- requcstcd(s').

If T E crcatcd(s'), then there is either a CREATE(T) or an ABORT(T) operation in fJ', and
hence in a'. In the fonncr case, a would have two such operations, while in the latter case, a

would have an ABORT(T) followed by a CREATE(T). Both arc impossible. so T If crcated(s').

Assume U E siblings(T) n crcatcd(s'). Then there is either a CREATr~U) or an ABORT(U)
operation in /J'. Jn the latter case. U is obviously in rcturncd(s'). So suppose CREATE(U) occurs
in {3', and so in visiblc(a',parent(T)). Since CREATE(U) occurs at U, U is visible to parcnt(T) =
parcnt(U) in a': Ullls, COMM IT(U.u) occurs in a', for some u. Since COMMIT(U.u) occurs at
parent(T), COMMIT(U,u) is in visible(a',parent{T)), and so in {3'. Thus, U E returncd(s').

(3) .,, is a COMM IT(T, v) operation.
Then T' = parcnt(T) = transaction(w) is visible to T and not an orphan in a. Also, Tis not an
orphan in a', by Lemma 65. Then since a is well-formed, Tis live in a'. and so by Lemma 57, T'
is live in a' and so in a. Since T" is live and visible to T, T" is an ancestor of T. Since Tis live in
a, Lemma 58 implies that Tis not a descendant of T. The inductive hypothesis yields two serial
schedules. fJ' and {J'', which arc equivalent to visible(a',T) and visible(a',T), respectively. Let y
= visible(p',T'). Let p 1 = fJ' - y and {1 2 = fJ" - y. We show that fJ = y{J1 w{J2 is equivalent to
visiblc(a,T) and serial.

Lemma 28 implies that y is a serial schedule.

Since T' is visible to Tin a', Lemma 10 implies that visiblc(a',T'') = visiblc(visible(a',T').T'),
which is equivalent to visiblc(fJ',T') = y; thus y is equivalent to visiblc(a',T"). Also, since T' is
visible to T in a', Lemma 10 implies that visiblc(a',T') = visiblc(visiblc(a',T),T"), which is
equivalent to visiblc(p",T'). Thus. y is also equivalent to visible(p",T').

Then by Lemma 31 (applied with scrial(a') as the schedule a hypothesized in the lemma). y{J1

50

and y{3 2 arc scri<1l schedules which arc equivalent to {3' and {3", respectively.

We have that visihlc(a,T') = visihlc(a','1")11 hy I .cmma <12. which is equivalent to {3'11, which is
in turn equivalent to y/l 111. Thal is. visihlc(a.T") is cquhalcnt to y{3 1 w.

Since {3" is equivalent Lo visiblc(a'.T) and y is equivalent to visihlc(a'.T"). hy I .emma 10, {3
2

=
{3" - y is equivalent to visiblc(a',T) - visiblc(a',T"). = visihlc(a,T) - visible(a.T") hy Lemma 62.

Thus. f3 is equivalent to visihlc(a.T")(visiblc(a.T)-(visihle(a.T')). Since 'I'" is visible to Tin a.
hy l.cmma 8. it is easy to sec lh<1l the s.1mc operations appear in this schedule as in visiblc(a,T).
Let P be any primitive. Then visihlc(a.T'))IP is a prefix of visiblc(a.T)IP. by Lemma 66. It
follows that /31P = visiblc(a.T)IP. so that f3 is equivalent to visible(a,T).

It remains to show that P is serial. This follows from I ,emma 32, provided we can show that:
(3.a) y/3 111 is a serial schedule,
(3.h) r secs everything in rPr
(3.c) T secs everything in y{12•

(3.d)y = visible(y/3 1.'I"') = visible(y/32.T') and
(3.c) no basic object has operations in both {J 1 and {3 2.

(3.a) Consider any execution of the serial system having yfJ
1

as its operation sequence, and lets'
be a state of the serial scheduler after yfJ

1
• We show that 11 is enabled in states·. Than is, we show

that (T'. v) E commit- rcquestcd(s'). that r (£ rcturned(s'), and that childrcn(T') n
create- requcsted(s') ~ rcturncd(s').

Consider any execution of the weak concurrent system having a as its operation sequence, and
let s be the state of the weak concurrent scheduler after a', with components sc (the weak
controller state), and sx for every object X (the lock managers).

Since the weak concurrent scheduler is able to perform COMMIT(T',v) in states. it must be that
(T.v) is in commit-requcsted(s). and so it must be that Tissues a REQUEST-COMMIT(T',v) c
in a'. Since T is visible to itc;clf. and p· is equivalent to visible(a',T'), it follows that this
REQUEST-COMMIT(T,v) operation also occurs in YPr Therefore, (T,v) is in
commit-requested(s').

Since a is well-formed, at most one return operation for T appears in a; thus. T is not in
retumed(s ').

Fix U E children(T) n create-requested(s'). Then REQUEST-CREATF~U) is performed at
T' in y/3 1• and hence in a', so U E create-requested(sc). Since the weak concurrent scheduler is
able to perform COMMIT(T.v) in states, it must be that U E returned(s). 'Therefore, a return

c
operation for U is performed at T, in a'. Since T is visible to itself, and yp

1
is equivalent to

visible(a".T'). this implies that the return for U also occurs at T in YPr Therefore, U is in
retumed(s').

(3.b) Immediate from Lemma 10.

(3.c) Immediate from Lemma 10.

51

(3.d) We have that y is equiv<1lent to both visiblc(/f.T") and visiblc(/f'.T"). and that yf3
1

and
y{11 arc cquiv<1lent lo /3' and {3", respectively. By 1.emma IO. y is equivalent to both
visible(yfl 1.T") and visible(yfl2.'1"'). Equality follows.

(3.e) Immediate from I .cmma 67.

(4) 11 is an ABORT(T) operation.
Then T' = parent('I") = transaction(11) is visible to T in a. and so is not an orphan in a. by
Lemma 65. Then Tis live in a', <1nd by Lemma 57. T' is live in a' and so in a. Since T' is live
and visible to Tin a, Tis a descendant of 'I"'. Since Tis not an orphan in a.Tis not a descendant
of T'. The inductive hypothesis yields two serial schedules. /l' and fl", which arc equivalent to
visiblc(a'.T") and visiblc(a',T). respectively. Let {3 1 = {3" - {3'. We show that P = P'11{31 is
equivalent to visiblc(a,T) and serial.

By I .cmma 31. p·p 1 is a serial schedule which is equivalent to fr.

Let P be a primitive other than T". Then PIP = P'P 11P = /f'IP = visiblc(a',T)IP. =
visiblc(a,T)IP by Lemma 62. Also. since T' is visible to T in a. visiblc(a.T)IT' =
visiblc(a.T")IT", = visiblc(a'.T")11IT' by Lemma 62. = {3'11IT' = PIT''. Thus fl is equivalent to
visiblc(a,T).

It remains to show that p is serial. This follows from I .cmma 33. provided we can show that:
(4.a) p·.,, is a serial schedule.
(4.h) T secs everything in p·p 1• and
(4.c) p· = visiblc(P'.T'} = visiblc(/J'/J 1,T").

(4.a) Consider any execution of the serial system having p· as its operation sequence. and lets'
be a state of the serial scheduler after p·. We show that 11 is enabled in states'. That is. we show
that T E create- requested(s'), that T' fl crcatcd(s'), and that siblings(T) n crcatcd(s') k
rcturncd(s').

Consider any execution of the weak concurrent system having a as its operation sequence. and
let s be the state of the weak concurrent scheduler after a', with components sc (the weak
controller state). and 5x for every object X (the lock managers}.

Since the weak concurrent scheduler is able to perform AHORT(T') in state s. it must be that T
is in creatc-rcquestcd(sc). and so it must be that T' issues a REQUEST-CREATE(T) in a'.
Since T" is visible to itself. and p· is equivalent to visiblc(a',T}. it follows that this
REQUEST-CREATE(T) operation also occurs in p·. Therefore, Tis in crcate-rcquestcd(s').

Since a cannot contain two AllORT(T') operations. there cannot be an ABORT(T') operation in
a'. and so there cannot be one in p·. Assume that there is a CREATE(T) in {J'. Then T' is visible
to T" in a', so COMMIT(T) occurs in a'. But then a COMMIT(T') and and ABORT(T') both
occur in a, which cannot occur. Therefore. there is neither an ABORT(T') nor a CREATE(T) in
p·. and so T is not in creatcd(s').

Fix U E siblings(T) n crcatcd(s'). Then there is a CREATE(U) in p·. But then U is visible to
T' in a', so that a COMMIT for U occurs in a·. and hence (because parcnt(U) is visible to T" in

52

a') a COMM IT for U occurs in p·. Therefore. U E rcturncd(s').

(4.b) Immediate from I .cmma 10.

(4.c) The first equality follows from Lemma 10. Clearly, p· = visible(/J',T") is a prefix of
visibk(/rp

1
.T"). Equality follows because any operation in P

1
visible to T" in p·p 1 would also be

visible to T" in a·. and so would be in p· and not pr I

Corollary 69: Every weak concurrent schedule is serially correct for every non-orphan non
acccss transaction.

Proof: I .ct a be a weak concurrent schedule. I .ct T be a non-access transaction that is not an
orphan in a. We must show that alT is a serial schedule. Note that T is not an orphan in any
prefix of a.

There arc three cases:

(l) alT is empty.
Then the result is trivial.

(2) T is live in a.
Then Theorem 68 yields a serial schedule /J that is equivalent to visiblc(a,T). Thus, alT
visiblc(a,T)jT = /JIT. which suffices.

(3) Tis a transaction which is live in some proper prefix of a.
Since a is well-fonned. a has a prefix a'w, where.,,. is a COMMIT operation for T, a'ff = alT
and T is live in a'. Then Theorem 68 yields a serial schedule /J that is equivalent to
visiblc(a',T)jT. Thus. alT = a'IT = visiblc(a',T)IT =PIT. which suffices. I

Now. since 10 cannot become an orphan (having no ancestors to abort), our first major correctness result is

immediate.

Corollary 70: Every weak concurrent schedule is serially correct for T0•

Having proved correctness properties for weak concurrent schedules, we arc now ready to prove the

correctness of concurrent schedules.

Lemma 71: Every concurrent execution is a weak concurrent execution.

Proof: The proof is by induction on execution length. with a trivial basis. Let a = a',s',w,s be a
concurrent execution with (s',w .s) a single step of the concurrent system. and assume the lemma
holds for a·. Lets' ands denote the states of the concurrent controller in system states s' ands.

c c
If .,,. is any operation other than an ABORT. the result is immediate, since the pre- and
postconditions for all other operations arc identical in the concurrent and weak concurrent
systems. Assume that ,,. is an ABORT(T). We must show that T E crcatc-requcsted(s'c) -

retumed(s' c>·

Since ,,. is enabled in state s'c in the concurrent controller, T E (creatc-requested(s'c) -
creatcd(s)) U (commit-requested(s'c) - returned(s)). If T is in create-requested(s) -
crcatcd(s). Lemma 45 implies that a' contains no CREATJ-{J') or ABORT('I') operation. By

53

well-formcdness. a' also conL1ins no COMM IT operation for T. and the result follows from
Lemma 45. On Lile_ other hand. if Tis in commit·requcsted(s) - returned(s). Lemma 45 implies
that a REQUEST-COMMIT operation for T occurs in a'. By welHormedness. this is preceded
by a CRF!\TFf I') operation. and by the concurrent controller precondition, this is preceded by a
REQUl·'.ST-CRl-:1\TE for T. Finally, again by Lemma 45. the result follows. I

Now we can prove the second major result of the paper.

Coroll~1ry 72: Every concurrent schedule is serially correct.

Proor: Let a be a concurrent schedule. Then a is also a weak concurrent schedule, by Lemma
71, and is well-formed. by Lemma 61. We must show that a is serially correct for every
transaction T. There arc three cases:

(1) arr is empty.
Then the result is trivial.

(2) T is live in a.
By Lemma 50, all of Ts ancestors arc live in a, so that Tis not an orphan in a. Then Corollary 69
yields the result

(3) Tis a transaction which is live in some proper prefix of a.
By Lemma 51. a has a prefix a·,,, where w is a return operation for T. a 'IT = a IT and T is live in
a'. By Lemma 50, all of Ts ancestors arc live in a', so Tis is not an orphan in a'. Then Corollary
69 implies that a' is serially correct for T. so that a is serially correct for T. I

For completeness. we include an analog of Theorem 68 for concurrent schedules.

Theorem 73: Let a be a concurrent schedule, and T any transaction which is live in a. 'Jbcn
there is a serial schedule fJ which is equivalent to visiblc(a,T).

Proor: I .cmma 71 implies that a is a weak concurrent schedule. Since T is live in a, Lemma 50
implies that Tis not an orphan in a. Then Theorem 68 yields the result I

8. Discussion
In this paper, we have presented a formal model for describing nested transaction systems and their

properties. The model has many features that we believe make it a major contribution to the understanding

of transaction systems. and we highlight some of these below.

First, the entire model is based on a very general and very simple underlying model for concurrent

computation, the 1/0 automaton model. The general definitions and properties of this underlying model

provide the necessary underpinnings for our entire transaction modelling effort This modelling is very easy

to learn and use. and its usefulness extends much beyond transaction systems. lbus, it seems to us to be a

very satisfactory foundation for our work.

Our transaction system model permits simple. yet completely rigorous description of concurrency control

54

algorithms in ways which correspond very closely to the usual informal ways of understanding the algorithms.

The important components of transaction systems. the transactions. data and schedulers. arc described

explicitly, which greatly facilitates rcas(ining about them.

There is a substantial amount of work in this area which docs not represent all of these components

explicitly, but only implicitly, by properties of their behavior [Ly,BBG,Go, for example]. There arc problems

with this approach. /\ key ingredient that is usually absent from such implicit models is a clear notion of

"causality". describing how particular actions (operations) arc triggered by other actions or states. In contrast.

our explicit representation of all system components as 1/0 automata makes it easy to understand exactly

what causes all operations to occur. When causality is important in reasoning about algorithms. as in [Go].

implicit models can he extraordinarily difficult to use. Even in cases where implicit models can he used, we

sec the present work as providing a formal and intuitive basis for that work.

Our model represent<> transactions as essentially arbitrary automata, subject only to simple syntactic

constraints. This approach is much more general than representing them as programs in some particular,

overly-constrained language.

The 1/0 automata model permit'> description of algorithms in an abstract form which is not tied to a

particular programming language or system, and which allows maximum nondeterminism. An

implementation of an algorithm for a particular system will generally restrict the nondeterminism allowed in

our presentation. because of the need to tailor the implementation to the requirements of a particular

environment. However, since the implementation is just a restriction of the abstract algorithm, correctness

properties of the algorithm within our model will hold a fortiori for the implementation.

Formulating nested transaction systems as 1/0 automata permits precise formulation of the correctness

conditions to be satisfied by concurrency control algorithms: those correctness conditions can be stated at the

transaction interface. an interface which docs not contain explicit information about object representation.

Because of this choice of interface. the correctness conditions can be stated in a robust way: the same

conditions can be useful for describing the properties of many different kinds of algorithms. some of which

manipulate the data in very different ways. Also, the correctness conditions can be described in a way that is

meaningful to a user of the system.

'Inc particular correctness conditions that we describe in this paper involve serial correctness at transaction

interfaces. We believe that these particular correctness definitions arc very interesting. and will be useful for

describing the correctness of most of the usual algorithms studied in the concurrency control area. lbat is. the

same conditions appear to be the right ones to use to describe correctness of many different kinds of

55

algorithms. including those that use locking. timestamps. multiple versions, and replicated data.

The model permiL<; rigorous correctness proofs to be carried out for concurrency control algorithms in ways

that follow intuitive understanding of the algorithms. For example. in this paper. we have used the model to

describe and show the correctness of a very important nested transaction concurrency control algorithm. Our

correctness proof.'> arc constructive and provide considerable intuition about the workings of the algorithm.

In contrast to most correctness proofs for concurrent algorithms. our pnx1fs arc not voluminous low-level

case-analyses: rather. they consist of a large number of clear and natural lemmas about the behavior of the

algorithm. These lemmas can be undcrstm>d individually, and build upon each other in the manner of good

mathematics. Many of the lemmas should be reusable in extensions of this work as well.

A successful model of nested transactions should contain the classical theory as a special case, in a way

which is natural and sheds some light on that case. We believe that our model has contributed much to the

classical theory. For example. the 110 automaton model provides a general underlying model. a missing

component of the classical theory. Also, our explicit and general modelling of the transactions unities the

earlier collection of somewhat arbitrary approaches. Our use of the transaction interface for stating

correctness conditions is also an improvement.

Another contribution to the classical theory is in motivating scrializability as a correctness condition.

Seriali:t.ability consists of two criteria: individually. each transaction must sec a consistent state, and together,

they must appear to run in a serial order. (/\ schedule in which each transaction reads and writes the initial

state of the database provides a consistent state to each transaction. but is not scrializable.) Why is this second

ordering property a part of the generally accepted correctness condition of the classical theory? Clearly,

because of implicit nesting in the context of the transaction system. In practice. transactions perform tasks on

behalf of some external entity or entities, which may expect one transaction to sec the results of the next. In

the natural formulation of classical systems within the present model. the classical transactions arc children of

T0• with data accesses as their only children. The root is an explicit representation of the external

environment in which the system runs. Thus. the ordering property of serializability is a natural consequence

of the requirement that all transactions sec serial schedules. including T0• It docs not have to be introduced as

an independent requirement in need of separate justification.

By now, there has been a large amount of systems design and algorithms work that uses or implements

nested transactions. It seems likely that these ideas will form the basis of future programming languages for

distributed computing. However, there is currently a problem with the presentation of this work. Some of

these algorithms arc presented in the context of specific systems and programming languages. Very useful

and general ideas arc too intimately connected with details of the systems to be fully appreciated. particularly

56

for readers wilh only a passing understanding of those systems. This level of detail also makes careful

reasoning about the algorithms very difficult.

We believe that our model has provided the necessary framework and some of the necessary vocabulary, for

describing this work in a clear and unambiguous way. We arc currently studying much of this work on

systems design and algorithms using our model. and our preliminary results indicate that it works very well.

Throughout the paper. we have described connections with other people's work as appropriate. Herc, we

mention some of the particular modelling work that relates most closely to ours. and describe the connections

in more detail.

First., the pioneering work of Bernstein and Goodman [BG. etc.] has had a strong influence on this work.

Quite early, they recognized the need for a model for single-level transaction systems. that would have many

of the characteristics which we have sought for nested transaction systems. They have carried out extensive

research on precise understanding of single-level transaction concurrency control algorithms. They have

presented fomrnl statements of correctness conditions, in tenns of serializability of the acccs..'iCs to data objects

by different transactions. They have described some concurrency control algorithms with precision, and have

proved correctness of some algorithms, using a lemma which characterizes scrializability by absence of cycles

in a certain dependency relation. Their work has gone a long way toward providing precise understanding of

the work in this area.

However. the particular models used by Bernstein and Goodman have some problems which limit their

applicability. For instance. the basic correctness condition is stated in terms of the interface between the data

objects and the algorithm. There arc many algorithms which handle objects in very different ways, e.g. using

multiple versions, or making multiple copies in order to permit "backing out" of operations. Since these

algorithms do not preserve the specified object interface. they would not be considered correct under the

same correctness condition. Thus, the correctness condition must be modified. Another limitation is that the

proof technique, which involves proving absence of cycles, is a proof by contradiction; it does not give much

insight into the operation of the algorithms. For many reasons, it is not at all clear how to extend these

frameworks to handle nesting of transactions.

Earlier attempts in [Ly,Go,DllGLS] to model nested transactions have made significant contributions. For

example, (Ly) contains a language-independent model. which is used to give precise correctness conditions

and a proof for a Jocking algorithm. Many of the ideas in that work have been useful in providing a

vocabulary for talking about nested transactions. However, attempts to extend the model of [Ly) to handle

correctness of orphans [Go] demonstrate that it is not sufficiently expressive. Certain aspects of the model

57

lead to technical ditlicultics: for example, it fails to model the transactions cxplicitJy. using instead a

specification of their behavior. Our new model builds on the strengths of the earlier work. while managing

(we believe) lO avoid its weaknesses.

Finally, the very recent work in [BBG] proposes another general model for nested transactions. While on

the surface the models appear quite different. they arc actually "compatible". in that the concepts described in

[BBG] seem to be easily definable within our model. The style of the model in (BBG] is different from ours:

their work models transactions and the scheduler implicitly, for instance. However. we believe that their

important axiomatic statements of properties can be described as assumptions and lemmas about behaviors of

components in our model. Also. the partial orders which they use to model executions can actually be

defined simply and directly in terms of our linearly-ordered executions. There arc many point'l of agiccmcnt:

the use of the transaction interface for stating correctness conditions. and the use of the virtual root

transaction T0• to mention two.

On the other hand. the emphasis in [BBG] is on a different example than the one studied in this paper.

They consider multiple levels of abstraction for the data. and regard transactions at any level of the

transaction tree as accesses to data at a corresponding level of abstraction. This view meshes quite well with

our model, where. for example. we use the same CREATE notation for creation of a transaction and

invocation of an operation on data. 'Their paper clarities the concurrency control requirements for data at

different levels. when the correctness condition is serial correctness at T0. We hope and expect that it will be

easy to restate their results as claims about our model.

We note that the work in [BBG] only treats concurrency control. but docs not address the very critical and

difficult issues of resiliency.

9. Further Work
lbis paper is an embarkation on a major project to formulate a unified presentation of the most important

algorithms for concurrency control and resiliency, especially those for nested transactions. So far, we have

defined a general framework meeting the requirements outlined above. We have demonstrated the power of

this framework by using it to specify two correctness conditions for nested transactions. to present two locking

algorithms for implementing nested transactions, and to prove that the algorithms satisfy their respective

requirements.

Future extensions to this work will include treatment of many other algorithms in the same framework.

Among the algorithms we will consider arc timcstamp and multiversion algorithms. algorithms which take

advantage of special properties of the transactions and objects (semantic infonnation). algorithms tor orphan

58

management, and algorithms which use replicated data objects. Although our focus so far has been on nested

transactions, we believe that our viewpoint contributes new insight to the special case of single-level

transactions as well; thus, we will· examine algorithms for non-nested transactions as well as nested

transactions.

We arc particularly interested in studying algorithms which give rise to live orphans, i.e. live transactions

whose ancestors have aborted (Go,1.i, Wa,H M]. Our serial correctness condition provides a formal definition

of orphan correctness - that all transactions (including orphans) "sec consistent data" [Go]. In fact. in work

currently in progress (H LM W), we arc describing and proving correctness of several of the recently-developed

algorithms for orphan management. This work now seems to be quite easy, given the foundation provided by

the present paper. In fact. some of the key results of this paper arc used as lemmas in that work.

Another direction of interest is the explicit representation of distribution within the model. It is fairly

natural to model each transaction and object as located at different sites, each with a local automaton

representing the resident portion of the (distributed) scheduler. These automata would communicate with

each other in order to implement the (centralized) scheduler studied here. The natural next step would be to

model failure resilience, as various components lose information or fail altogether.

The reader might have noted that our correctness conditions do not guarantee anything about the system

making progress, but only about "safety" properties. Further work is needed to incorporate guarantees of

progress. This work is likely to be difficult. however. Only recently, in [Lll. have we achieved what we

consider to be a satisfactory understanding of the eventuality and fairness issues for the basic 1/0 automaton

model, so that we can even formulate the conditions we want to satisfy. But even with the ability to state such

conditions, the algorithmic issues still seem difficult.

10. Acknowledgments

We thank Bill Weihl for many, many comments and questions, and much encouragement. during the

course of this project We also thank all the other members of the ARGUS design and implementation group

at MIT. for providing a concrete model for us to try to abstract and generalize. Also, we thank Yehuda Afek

for his comments on an early draft. and Sharon Perl for her comments on later drafts.

11. References

[AM]

[BBG]

Allchin. J. E., and McKendry, M. S .. "Synchronization and Recovery of Actions," Proc.
1983 Second Annual ACM Symposium on Principles of Distributed Computing, Montreal,
Quebec, Canada, August 17-19, 1982, pp. 31-44.

Becri, C.. Bernstein, P. A .. and Goodman, N .. "A Model for Concurrency in Nested

[BBGLS]

[BG]

[EGL11

[Go]

[Gr]

[HLMW]

[HM]

[Ho]

(KS]

[LaS]

[LHJLSW]

[Li]

[US]

59

Transaction Systems," Manuscript.

Beeri, C., Bernstein. P. A., Goodman, N., Lai, M. Y., and Shasha. D. E .. "A Concurrency
Control Theory for Nested Transactions," Proc. /WU ,\'ecund Annual ACM Symposium on
Principles of Distributed Computing, Montreal, Quebec, Canada, August 17-19, 1983, pp.
45-62.

Bernstein, P. A .. and Goodman, N .. "Concurrency Control in Distributed Database
Systems." ACM Computing Surveys 13.2 (June 1981), pp. 185-221.

Eswaren, K. P .. Gray. J. N .. Lorie, R. A .. and Traiger, I. L., "The Notions of Consistency
and Predicate Locks in a Database Systems," Communications of the ACM, Vol. 19. No. 11,
November 1976. pp. 624-633.

Goree. Jr .. John A., "Internal Consistency of a Distributed Transaction System With
Orphan Detection." MS Thesis. Technical Report MlT/LCS/TR-286. MIT Laboratory for
Computer Science, Cambridge, MA .• January 1983.

Gray, J., "Notes on Database Operating Systems." in Bayer, R .. Graham, R. and
Seegmuller. G. (eds), Operating Systems: an Advanced Course. Lecture Notes in
Computer Science. Vol. 60. Springer-Verlag, 1978.

Herlihy, M .. Lynch, N .. Merritt. M .. and Weihl. W .. "On the Correctness of Orphan
Elimination Algorithms," ln progress.

Herlihy, M .. and McKendry, M., "Time-Driven Orphan Elimination", in Proc. of the 5th
Symposium on Reliability in Distributed Software and Database Systems. Los Angeles, CA.,
January 1986, pp. 42-48.

Hoare. C.A.R., "Communicating Sequential Processes", Prentice Hall International
Englewood Oiffs, NJ, 1985.

Kedem. z .. and Silberschatz, A., "A Characterization of Database Graphs Admitting a
Simple Locking Protocol", Acta lnfonnatica 16 (1981) pp. 1-13.

Lampson. B. W., and Sturgis, H. E., "Crash Recovery in a Distributed Data Storage
System," Tech. Rep., Computer Science Lab., Xerox Palo Alto Research Center, Palo Alto,
Calif., 1979.

Liskov, B., Herlihy, M .. Johnson, P .. Leavens. G., Scheitler, R .. and Weihl, W ..
"Preliminary Argus Reference Manual," Programming Methodology Group Memo 39,
October 1983.

Liskov. B .. and Ladin, R., "Highly-Available Distributed Services and Fault-Tolerant
Distributed Garbage Collection," to appear in the Proc. of the 5th ACM Symposium on
Principles of Distributed Computing, Calgary, Alberta, Canada, August 1986.

Liskov, n.. and Scheifler, R .. "Guardians and Actions: Linguistic Support for Robust,

[Ln

[Ly]

[Mi]

[Mo]

[R]

[RLS]

[Wa)

[Wel]

[We2]

60

Distributed Programs", ACM Transactions on Programming l.anguages and Systems 5, 3,
(July 1983), pp. 381-404.

Lynch. N., and Tuttle, M .. "Correctness Proofs for Distributed Algorithms", in progress.

Lynch. N. A .. "Concurrency Control For Resilient Nested Transactions," Advances in
Computing Research 3, 1986, pp. 335-373.

Milner. R .• "A Calculus of Communicating Systems", /,ecture Notes in Computer Science,
92, Springcr-V crlag, Berlin, 1980.

Moss. J. E. fl. "Nested Transactions: An Approach To Reliable Distributed Computing,"
Ph.D. Thesis. Technical Report M IT/LCS/TR-260, MIT Laboratory for Computer
Science, Cambridge, MA .• April 1981. Also, published by MIT Press. March 1985.

Recd, D. P .. "Naming and Synchronization in a Decentralized Computer System," Ph.D
Thesis. Technical Report MIT/LCS/TR-205, MIT Laboratory for Computer Science,
Cambridge. MA 1978.

Roscnkrantz. D. J.. Lewis. P. M .. and Stearns, R. E., "System I,cvcl Concurrency Control
for Distributed Database Systems," ACM Transactions 011 Database Systems, Vol. 3, No. 2.
June 1978, pp. 178-198.

Walker. E. F.. "Orphan Detection in the Argus System," M.S. Thesis, Technical
Rcport/MIT/LCS/TR-326. MIT Laboratory for Computer Science, Cambridge, MA.,
June 1984.

Weihl, W. E .. "Specification and Implementation of Atomic Data Types," Ph.D Thesis.
Technical Report/MIT /LCS/TR-314, MIT Laboratory for Computer Science, Cambridge,
MA., March 1984.

Weihl, W. E .• Personal communication.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE lllrum Dara Enrered)

I

4.

7.

9.

i l

,.

16

,,

18

19.

2:J

DD

READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
REPORT NUMBER 12. GOVT

ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER

MIT/LCS/TR-367

TITLE tand Subfll/e) s. TYPE OF REPORT l!i PERIOD COVERED

Introduction to the theory of nested
transactions

G. PERFORMlllG ORG. REPORT NUMBER

MIT/LCS/TR-367
AU TH 0 R(•) b. CONTRACT OR GRANT NUMBERl•J

Nancy Lynch and Michael Merritt DARPA/DOD
N00014-85-K-0168

'
PERFORM!NG ORGAt.!ZATION NAME. AND ADDRESS

1

,0 P<iDGRAM E.LE.MENT. PRDJEC~, TASK
ARE.A II WORK UNIT NUMBERS

MIT Laboratory for Computer Science
545 Technology Square

l _G;i mhr.id.2:.c. MA _0.21..3_9.
CO'<TROL.LING OFFICE. NAME. AND ADDRESS I 1; REPORT DATE

DARPA/DOD I Jul_y_ 1986

1400 ' 13 NUMBER or PAGES Wilson Boulevard I

..Ar_ l i.ntl.o..n. J1A. ? 7 ') .ll9._
I

ii2
MON.:o'i:fl,..,..._, A..>E"l::Y NAME b AODREss~11 dt/rerttnt trorr. Conrrollrntt Ott1ce, 1~ SECURITY CLASS. (of thlt1 re1>0rt)

ONR/Department of
Information

the Navy Unclassified
Systems Program

,~ ... DECLASSIF"ICATION . DOWNGRADING
Arlington, VA 22217 SCHEDULE

DISTRIBUTION STATEMENT (of th1a keport)

Approved for Public Release, distribution is unlimited

DlSTR!BU;ION STATEME~~T (of th9 •D•tract entered tn Block 2C, ti dilterent trom keport)

unlimited

~LIPP._ EME~I ... ~ ... N:iTE.:.

KEY WORDS fC...ont1nue on r~ver•e a1oe JI nec:•••arv ...,d taent11v b\.' block number,

nested transactions, transacations, concurrency control, resiliency,
databases, serializability, orphans

ABS'T RACT (C...onrrnue on rever•e •Id• II n•c••••rv #ld taentJty DY bloc.le number)

A new formal model is presented, for studying concurrency and resiliency
properties for nested transactions. The model is used to state and
prove

F"QRM
1 JAN 73

correctness of a well-known

1473 EDITION OF I NOV 65 IS OBSOLETE

SIN 0!02·014•6601

locking algorithm.

·Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Dara anrered)

