
Correctness Conditions for Highly Available Replicated Databases

Nancy Lynch, Massachusetts Institute of Technology
and Com1mter Coqwration of America

Barbara Blaustein, Computer Corporation of America

Michael Siegel, Boston University and
Computer Corporation of America

Abstract

Correctness conditions arc given which describe some of the properties exhibited by highly available

dislribuled database syslems such as Lhc SHARD (System for Highly J\vailablc Replicated Dat;1) system

currently being developed at Computer Corporation of J\mcrica. This system allows a database application to

continue operation in the face of communication failures, including network partitions. ;\ penalty is paid for

this extra availability: the usual correctness conditions, serializability of transactions and preservation of

integrity constraints, arc nut guaranteed. However, it is still possible to make interesting claims about the

behavior of the system. The kinds of claims which can be proved include bounds on the costs of violation of

integrity constraints, and fairness guarantees. In contrast to scrializability's all-or-nothing character, this wor~

has a "continuous" flavor: small changes in available information lead to small perturbations in correctness

conditions.

Tl_1is work is novci, because there has been very little previous success in stating interesting properties which

arc guaranteed by nonserializablc systems.

Keywords and Phrases:

Databases, availability, nonserializablc systems, integrity constraints, resource nonserializablc systems.

integrity constraints, resource allocation, cost bounds, fairness.

© 1986 Massachusetts I nstitutc of Technology

This work was supported by the Defense /\dv;:nccd ResC'arch Projects Agency of the
Dcp;irtmcnt of Defense and by the Air Force Systems Command at Rome J\ir Development
Ce11tcr under Contract No. F30602-84-C-0112. The views and conclusions wntained in this
document arc those of the :wclwrs and should not be interpreted as necessarily rcp1·csenti11g the
official Pl'licics, either expressed or implied, of the Defense Advance Research Projects Agency or
the U. S. Government. The work of the first au!.hor was also supported in part by the Office Df
Naval Research under Contract NOOOl4-85 K-0168. by lhc Office of J\nny Research under
Contract DAJ\G29-84-K-005~. by Lhc National Science h1undation under Grant DCR-83c0239l,_
and by the Dctense Advanced Res.earch Project'.; :\gcncy (DARPA) under Conlract NOOOl4-83-
K-0125.

2

I. Introduction

I. I. Background

In recent years. there has been extensive research on the design and theory of distributed databases. Nearly

all or this work has been directed towards providing f"r;1meworks in which transactions can be processed

concurrently, while preserving integrity constr;iints on the data. Many of the most import<mt advances in

distributed processing have arisen from this work. including U1e development of techniques based on locking

and timestamps, and commit protocols. The work has led to elegant system designs, as welt as to a very

interesting theory.

It is apparent. ho\\ever, that there is still a problem. The tech1liqucs developed in di:-tr:butcd database

research h;1ve not yet been accepted by the commercial world to the extent that researchers might have hoped.

In particular, airline reservation systems. banking systems and inventory control systems (applic;ltions which

motivated much of U1e research), still do not rely on the general mechanisms developed by researchers. The

problem may be fundamental to the general approach. The mechanisms developed in research guarantee

preservation of integrity con:;traints, but they arc inadcqmtc for meeting stringent response Lime and

availability requirements. This inadequacy seems to be an unavoidable result of strong requirements for

synchronization among remote nodes.

Many applications of the sort mentioned <1bovc put a high premium on availability and fast performance,

and in order to obtain these, Uley arc willing to sacrifice something in the way of "correctness" or "data

integrity". The research comnwnity has so far been unable to provide general fr;imcworks which guarantee

weaker correctne~s conditions as well as good performance and availability. As a result, practic<JI systems

development work for these applications is still based on au hoc methods of concurrency control.

There is a need for system development work, as well as associated theory, to fill this gap. New frameworks

arc needed which gu;:rantcc good perfl1rma11ce and availability, yet provide enough discipline on application

programming so that useful correctness claims can he proved. When fast response time and high availability

arc required, it seem:- necessary tu allow violations of intc~rity constraint~; to occur. In U1is case:, traditional

frameworks do not allow anything imcresting to be proved about the behavior of t11c system. The difficult

part of the problem is to guarantee interesting and useful correctness properties, even when integrity

constraints arc violated.

3

1.2. SI IAUD

The new SHARD (System for Highly Available Replicated Data) system under development at Computer

Corporation of America (CC A) is designed to address the problems described above. It provides highly

available distributed data processing in the face of communication failures (including network partitions). It

docs not guarantee serializahility. nor <loes it preserve integrity constraints, but it docs guarantee many

practical and interesting properties of the dattbasc.

The reader is referred to [SBK] for a detailed description of the architecture oflhe SHARD system. Briefly,

the main ideas arc as follows. The network consists of a collection of nodes, each of which has a copy of the

complete database. (Full replic;ition is a simpliiying ;1ssu111ption we have used for our initial prototype; many

of our ideas seem extendible to the case of p:irtial replication, but this extension remains lo be made.)

Replication ;illows transactions to be processed locally, thus reducing communication costs and delays, and

providing high availability.

After a transaction is processed at its originating node. information about the transaction is broadcast

reliably to all the other nodes for incorporation into the database copies at those nodes. The broadcast

algorithm [GLBKSS] ensures that, b;1rring permanent communication failures, every node will eventually

receive information about every transaction. While the broadcast algorithm attempts to deliver information

to all sites in as timely a manner as possible, communication and node failures can cause significant delays.

Since nodes may continue to initiate transactions during communications failures - indeed, they may not even

be aware that there is a failure somewhere in the network - these delays mean that transactions may run

against out-of-date database states.

When a node receives new information about a transaction, no matter when the transaction was initiated,

this in formation must be merged into the node's copy of the database: this merging must be done consistently

at all nodes, to maintain mutual consistency. The following mechanism is used to guarantee consistent

merging. Transactions arc totally ordered by a glob;1lly-unique timcstamp assignment (such as one based on

local timestamps with node identifiers used for ticbrcaking), and each node uses this total ordering to

determine how to merge infrmnation about different transactions. Because all nodes order the transactions in

the same way, they will agree on the result of merging identical :>ets of transactions. Also, at all times during

execution, each node's copy of the database always rcfkcts the effects of all the transactions known to that

node, as if they were run according to the global timcstamp order.

Since messages about different trans<1ctions could arrive at a single twde out of Limestamp order, keeping

the copy correct entails frequent undoing and redoing of transactions. The SHARD system uses an undo

rcdo strategy in lieu of any other inter-node concurrency control mechanism. This strategy allows the nodes

4

to ai:l1icvc mutual consistency without relying on extra network communication. There arc several

implc111cntation ideas which reduce the amount of undoing and redoing that is actually necessary; some of

these arc discussed in [BK,SKS].

Problems arise with the simple scheme described so far in its interactions with the external world. Certain

transactions will trigger external actions. For example, in an airline reservation system, a booking transaction

might determine that there arc available scats on a flight, and might cause a passenger to be informed that he

has been assigned a scat. Although the transaction is run at different nodes, and possibly undone and redone

many times, the external <JCtion should only occur once - at the transaction's origin node, when the transaction

is initiated.

When a tr;msaction is rerun at a node, it may be necessary to undo all its cftel:ts before redoing it starling

from a different database state. This requirement is a serious problem for transactions which trigger external

actions: it is not possible for the system to undo an external action. Moreover, when the Lransaction is

redone, it might not choose to trigger the same external action. In an airline reservation system, a booking

transaction might decide to inform a passenger of an available scat when the transaction is initiated.

I lowcvcr, if this booking transaction is undone and then redone from a database state in which there do not

appear to be any av<1ilablc scats, it would not grant the scat. Thus, alter the undo and redo, the database

wou Id not record the fact that the passenger had been granted a scat, even though the passenger has actually

been in formed that a scat has been granted. This situation produces an inconsistency between the

i1iformation in the dat1basc and the information sent to the passenger. We would like to avoid this kind of

inconsistency.

Thus. we find it useful to limit the interaction of transactions with the external world, by imposing some

extra structure on the transactions. We require that all transactions be divided into two parts: a "decision",

which may read data and trigger external actions. but may not modify the database, and an "update". which

may read and write the database but may not trigger external actions.

The decision part of a transaction is invoked only when the transaction is initimcd. This part of the

transacti(ln may interact with the user, giving some indication of the likely outcome of the completed

transaction. The results returned by the decision determine an urdate, which is then broadcast to all the

nodes to be merged into all the copies of the database. Only the update is broadcast to the other nodes. The

update is the part of the transaction that may be undone and redone; the decision is executed only once.

Since the decision involves no changes to the database, just broadcasting the update is enough to insure

mutual consistency of the database copies.

5

In lhc cx.implc described earlier. the 1.kcision parl oflhc booking lr;1n~action rnuld read the database al the

local (initialing) node and determine whether there appear to be available scats. If lhcre arc, lhc decision

would inform lhe requesting passenger thal he has been granted a scat, and would also cause the system to

invoke an update that writes lhe rcscrvalion into the database. When lhc update is received by the olhcr

nodes, the reservation is also entered into their copies of the database. Thus. every node would correctly

record the facl lhal the passenger was granted a scat.

Because of the distribution, and because of the possible need for undo and redo, the update part of the

booking transaction may execute many times, possibly from different database states. No matter what slalc it

is executed from, the update records the focls that the seal was assigned and the passenger was in formed of

lhc assignment. This update records the facts correctly even if it is executed from a state from which a

booking transaction run in its enlirety would not choose to granl the passenger a scat.

Because decisions arc made with incomplete informalion aboul the updales of preceding transactions, it is

possible that the database could reach an undesirable state, e.g. a ~late in which a flight is overbooked.

I lowcvcr, users or application programmers could monitor the database with addilional "compensating"

transactions, which invoke appropriate corrective actions. In this example, a transaction might check for

overbooking, and decide on a particular passenger to unseat. The decision part of this transaction would

in form the passenger that his reservation has been rescinded. The update would just record, in the database,

the fact that the particular passenger has been unscaled. Of course, applications should be designed to avoid

an excessive amount of compensation. The correctness conditions described in this paper should help to

provide application designers wilh guidelines for coping with lhcsc and other problems caused by a lack of

scrializability.

A preliminary design for SHARD has been complclcd, and is documented in [BK,GLBKSS,S,SBK,SKS).

Also, a protolypc implemcntalion is completed.

1.3. Correctness Conditions

The SHA RD system can be implcmcnlcd efficiently, and seems capable of expressing lhc ki11ds of

transaction behavior actually used in commercial systems. However, if th~ system is going to be widely used,

it should be possible to make precise claims about its behavior. This paper provides a formal setting in which

such claims can be made, and uses that framework to prov1.: some interesting claims aboul Sl-IARl)'s

behavior.

It should be clear that SHARD docs not guarantee scrializability of complete transactions. It docs

guarantee scrializahility or the update part'> of transactions, but that condition by itself docs not say very

6

much. We believe that we can say more about what is guaranteed by such a system than just what we can

conclude from its weak scrializability properties.

We take our cue from some of the intended applications of the system, such as airline reservations. banking,

and in vclllory control. These cxcmpli fy di ffcrcnt kinds of resource allocation applications. In all these cases,

there arc natural integrity constraints which one would want to define; these arc usually expressed as

predicates on the database states. In resource allocation applications, one useful integrity constraint would be

that the number of allocated resources be no greater than the number of available resources. Another would

be that the number of allocated resources be no less than the number of available resources, provided there

arc enough requests for resources. Both of these conditions arc described by predicates on the database state.

However. one can go further: there is oflcn a "cost" assol'i:1tcd with violations of an integrity constraint,

which can be expressed as a function or the database state. In resource allocation applications, the cost of

over-allocation might he some number which is proportional to the excess of the number of allocated

resources over the number of available resources. The cost of unnecessary under-alloc;1tion might he

proportional to the minimum or the number or uns<1tisficd requests, and the excess of the number of available

resources over the number of allocated resources. Each of the applications listed has its own particular cost

functions, characteristic of that application. In each case, it is desirable to keep the costs as low as possible.

Thus, one kind of property we would like to prove is a bound on the cost of violations of integrity

constraints. Results of the form "With absolute certainty, the cost remains at most c." would he unreasonably

strong in our setting, because of the uncertainty that arises from delays and failures. Rather, it seems much

more appropriate to prove results of the form "With probability p, the cost remains at most c." Results of this

form would be very useful to the application designer, since they would allow him to adjust his design in such

a way as to lower the expected cost bound.

We believe that results of this form, arc most conveniently proved in two parts: (1) conditional result'> of

the form "If certain conditions hold. then the cost remains at most c.", and (2) probability distribution

information describing the probability that the conditions hold. Most oflen, the conditions mentioned in (1)

will be parametrized, e.g. "When each transaction is initially executed, the database state includes the effects

of all but at most k of certain kinds of preceding transactions." Similarly, the cost mentioned in lhe

conclusion of (1) will be paramctri1cd. Thus, results of type (1) will usually be a class of related results, giving

cost bounds fi.)r a range of quantitatively different as~urnptions about system operation. The probability

distribution in formation in (2) will be obtained by an independent analysis, using in fonnation such as delay

characteristics of the message system, and expected rates of transaction proccssi ng. It should be relatively easy

to combine the information in (1) and (2) to get probabtlbtic statements of the kind we want. In this paper,

7

we do not carry out the probabilistic analysis required 111 (2). but instcau focus on the parametrized

conditional claims in (I).

Thus, we obtain results of Lhc form "If each trans<1ction "secs" all but at most k of certain kinds of

preceding transactions, then the cost remains al most c(k)." Such cost hounds limit the damage which can be

caused when transactions operate with a bounded amount of missing information. The cost bounds we obtain

arc, in general, intuitively natural, rather th<1n extremely surprising; our main contribution lies in the fact that

we can actually formulate and prove the intuitive claims. Previously, no claims at all could be made when

information about any transactions was missing. We can make such claims, and our claims become stronger

(i.e. the integrity constraints arc better preserved) when information is more complete (i.e. when execution is

closer to being scrializablc). In contrast to scri;tlizability's all-or-nothing character, our work has a

"continuous" Oavor: small changes in available information lcau to small perturbations in integrity

constraints.

The question of how the costs get defined still remains to be addressed. Assignment of costs is something

that must be done by application programmers, who understand the impact of database behavior on the

organization using the system. It is likely that the cost assignment procedure will be complex a11d
'

approximate. Nevertheless, it appears to be what is currently used by organizations, implicitly, in evaluating

the acceptability of database system behavior. Therefore, it seems that such cost assignments should play an

important role in evaluating database behavior.

Another kind of property which is of interest for resource-allocation applications is "fairness". Fairness

properties describe conditions under which a particular request is guaranteed to be granted, or guaranteed not

to be granted. They also deal with relative priority of different requests in obtaining resources. While FIFO

order might be an appropriate fairness condition in a serializablc system, weaker fairness conditions arc more

appropriate in the SI IARD setting, and arc still of interest.

In this paper, we begin by providing the basic definitions and vocabulary for discussing the operation of

systems of this type. Then, following the usual organization in traditional concurrency control theory, we

study the correctness conditions in two groups. First, 'vVC examine conuitions which can be guaranteed by the

system alone (analogous to serializability). '!'he system docs guarantee tn run transactions in some total order.

But whereas serializability would guarantee that each tr:insaction has total information abour the effect'> of the

preceding transactions, the SHARD system only guaramces that each Lrans;1ction has partial information

about the preceding transactions. Second, we examine conditions which can be guaranteed by the

transactions (analogous to preservation of integrity constraints). Transactions might he required not just to

preserve integrity, but also to improve or restore integrity. These two kinds of conctitions, Lhosc guara1~teed

8

by the system and those guaranteed by the transactions, C:l11 be combined lo allow proof or interesting

properties (cost bounds and foirncss) for a running application.

We describe our properties and carry out our proofs in the context of a simple prototypical resource

allocation example. We believe that this example contains many or the clements common to the class of

applications for which SI IARIJ is suited. The types or conditions stated and the techniques for proving their

correctness appear likely to extend to the other applications. Wherever possible, we state conditions and

describe proofa in a general way, so that they will be directly applicable to other applications.

Related work includes several other papers which weaken serialil.ability in various ways [FM, AM, G. B, for

example]. Other work that seems related to the SI li\RIJ approach, <dthough in a very different context, is the

work on "virtual timc" lJ].

The rest of the paper is organi1.cd as follows. In Section 2, we describe our database moucl. In Section 3,

we describe conditions that can he guaranteed by the system alone. In Section 4. we describe conditions that

can be guaranteed by the transactions alone. In Section 5. we prove some interesting cost bound and fairness

properties for the example resource allocation system. These properties arc consequences of both the

conditions gu;U"antccd by the system and those guaranteed by the transactions. 1 n Section 6, we present our

conclusions.

2. Database Model
This section includes formal definitions of database states, integrity constraints, and transactions.

One goal of the SHARD design is Lo keep the distribution and replication of data hidden from the

application. In particular, we attempt to avoid explicit mention of distribution and replication in our

correctness conditions. Our general approach is analogous to the usual approach for describing correctness of

distributed databases [BG, for example]. In the usual approach, correctness of a distributed Jatabasc requires

that the distributcJ dawbasc give the appearance of a centralized, serial database. In our case. the database

will not appear to he serial, but will still appear to be centralized.

In other database research, certain consistency conditio11s, called "integrity constraints," arc given for the

database states. These conditions tit into our model in two ways. The most fund,1111cntal arc modelled as

"well-formcdncss" conditions; we will require that transactions always preserve these. The other consistency

conditions, which we call "integrity constraints," represent dcsir1blc conditions, but we do not assume that

they arc preserved <tt all times. To measure how far a database state is from satisfying the integrity const1«1ints,

we impose cost measures on the st<itcs with respect to each constraint, where a greater cost indicates that the

9

state is further from satisfyi11g the constraint. One goal of SI !/\RD is to minimi1.c the cost of slates that arise

during an execution.

Our transactions arc composed of two parts. a "decision part" and an "update." /\s described in the

Introduction, the decision part reads data and may interact with the external world, but docs not modify the

database. The results returned by the decision part determine an update, which can read and write the

database. but docs not directly interact with the external world.

In addition to providing general definitions in this section. we also define an airline reservation example,

with four transactions. This example will be used throughout the rest of the paper.

2.1. States

The database h;1s a set S of possible database states, ;nnong which a particubr initia/ .\tatcs
0

is distinguished.

There might be some additional structure on the database; for example. it might be composed or a collection

of ol~jffts, where a state would consist or a value for each object. In case X is ;m object, we let X(s) denote the

value of object X in database states.

Among the database states. there may be so111c which foil to satisfy some fundamental consistency

conditions, and we will generally Wilnt to omit thc:i1 entirely from consideration. Therefore, we designate

certain of the datab;1sc ~;tatcs as wcll-for111cd. We assume that the initial state is well-formed.

Hxamplc:

Fly-by-Night Airlines is a little-known airline company which has exactly one scheduled flight,
!;light 1. Flight 1 is scheduled to take off next Jan. 1 and will take its lucky 100 passengers from
Boston to an idyllic resort in the Caribbean.

/\database state consists of the following objects:

- ASSIGNED- LIST, a finite ordered list of people who have been notified that they have
scats on Flight i, and

- W /\IT-1.IST, a finite ordered list of people who have requested scats on Flight 1, but do not
have assigned scats.

The initial state has both lists empty. The well-formed states arc those which satisfy the
fundamental consistency condition that ASSIGNED-LIST anJ WAIT- LIST must contain
disjoint sets of people.

We use the not;ition /\l .(s) as a shonhand for IASSIGNED- l JST(s}I, the number of people on the

assigned list in states; similady, we use WI .(s) for IW /\IT-LIST(s)i. We will sometimes refer to AL and WL

10

as if they were objects themselves: they arc sirnibr to objects, in that they have values in every database state.

I lowcvcr. those values arc always derived from the values of the "real" objects, ASSIGNED- I JS'!' and

WAIT- LIST.

2.2. Integrity Constraints

For us. "integrity constraints" represent desirable conditions, but we do not assume that they arc preserved

at all times. Since integrity constraints arc not always preserved, we find it useful to measure how far a

database state is from satisfying the integrity constraints. In order to do this, we impose nonnegative rcal

valucd cost measures on the states with respect to each constraint, where a greater cost indicates that the state

is further from satisfying the constraint. ;\ cost of zero in<licatcs that the constraint is satisfied. The total cost

of a state is the sum nf the costs associated with all the constraints. One goal or SI !ARD is to minimize the

cost of states that arise during an execution.

More precisely, we assume a linitc collection of integrity c(mstraints, indexed by the set I. Let cost(s.i)

denote the cost of database state s which is attributed to a violation of integrity constraint i. The cost of s,

co.11(\). is then defined as 2:iE 1cost(s,i)

We use the notation X I. Y to denote max(X-Y,0).

!:'xa111p/e:

In the Fly-By- Night airline reservation system, there arc two integrity constraints in addition to
the wcll-formcdncss condition already described.

Integrity Constraint 1: Overbooking should not occur.

Formally, this says that AL ~ 100. While this condition is certainly desirable, we do not
expect that it will always hold. Ir Flight I is overbooked, the cost to Fly-by-Night Airlines is
approximalcly $900 per overbooked passenger. (This cost covers the price of a lir~t-class ticket on
an altcrn<~Livc !light, plus hotel accomodations for a week in the Caribbean.) Thus, we define
cost(s,l). the cost of states which is attributed to violating constraint l, to be 900 (AL(s) /. 100).

!ntcgriLy Constraint 2: Undcrhooking should not occur, if it is avoidable.

Formally, this says that either Al, ;;=:: 100 or else 'NL = 0. That is. either all the scats on Flight
I arc assigned or else there arc no waitlistcd passengers. If Flight 1 is unnecessarily undcrbuokcd,
the cost to the airline company is approxin,atcly $300 for c~1ch waitlistcd passenger who could have
been assigned a scat. (This is the missed profiL) Thus, we define cost(s,2), the cost of states which
is attributed to violating constraint 2, to be 300 min(lOO /.Al (s). WL(s)).

The assignment of costs to database states, for violation of particular integrity constraints. is a part of

I 1

application design. In practice, it might not always be obvious how to assign such costs. It is possible thal the

system could help the application designers, by providing a framework in which the designers could

determine appropriate cost functions. Cost functions often summarize other i11fix111ation which the

application designers might find it easier to think about. For instance, in many interesting cases (such as the

airline reservation system). the data is numerical, and the cost functions have some simple (e.g., linear)

rcbtionship to the data values. Perhaps patterns such as this one could be incorporated into a language flir

describing cost assignments. Systematizing cost assignments is a subject for future research.

2.3. Transactions

In this subsection, we describe the structure of transactions. i\s noted earlier, our transactions arc composed

of two parts, a "decision part" and an "update". The decision p;1rt reads data and may interact with the

external wrnld, but docs not modify the database. The results returned hy the decision part determine an

update, which can read and write the database, but docs not directly interact with the external world.

Formally, an update is any mapping from S to S which preserves wcll-forn1edncss. Let .A denote lhe set of

updates. I .ct e; denote the set of external actions. ;\ transaction T consists of a decision part I)T which is a

mapping from the state set S to .A X c:J{t;). For any database state s, l\(s) is a pair consisting of the update

which is invoked when T is run from s, and the set of external actions triggered by T when T is run from s.

Where no confusion is likely, we will sometimes write l\(s) to denote just the update, ignoring the external

actions.

;\ transaction is designed to execute nonatomically; it "observes" some state of the database when it is

initially run, but then later it transforms other, possibly different, states. The observation of the database

takes place in the decision part, and the sl<tte transformation in the update part. Each of these two parts is

intended to be carried out atomically. The state that a transaction observes is to be thought of as embodying

partial information about past updates, such as the in formation known at the local site at the time the

transaction is first executed. This partial in formation is used to decide on the new update to be generated.

Hxample:

The airline reservation system has only four transactions: a REQUEST for a scat which puts
the passenger on the waiting, list, a Ci\ NCHL transaction. a MOVH- UP transaction which moves
a waitlistcd passenger to the assigned list. and a corresponding MOVE- DOWN transaction which
moves an assigned passenger back to the waiting list. Note that we arc departing slightly from the
example discussed in the Introduction: the cflccts of the bunking transaction described there arc
achieved by a combination ofa RFQUFST transaction and a MOVE-UP transaction.

The four transactions arc as follows:

12

(I) RLQUHST(P), where Pis a person

This transaction is described by the following program.

Decision: TRUE
Action:

if Pis not on WA IT-1 JST and f> is not on
ASSIGNl~l}-LIST

then add P to end of WAIT-LIST

This program is to be interpreted as follows. For ;111y state s, the decision mapping
DRL<)lJFST(P) triggers no external action and invokes the s;ime update/\. A operates on any states'
by adding P to the WAIT-UST provided that Pis not already on either the WAIT-LIST or the
ASSIGNED- LIST, ins'. Jn case Pis un either list ins', A docs nothing. We refer to the unique
update A invoked by the R FQU I '.S' l'(P) transaction, as the T('1111cst(P) update.

(2) CANCl~L(P), where Pis a person

This is described by the following prngram.

I Jccision: TRUE
Action:

if Pis on w A rr-1 JST
then remove I' from WA IT-LIST

if Pis on ASSIGNED-UST
then remove P from ASSIGNEI}-L!ST

Again, from any state s, the decision mapping always yields the same update. This update,
from any state s', removes P from any list on which it happens to appear. If P is not on either list,
the update docs nothing. We refer to the unique update invoked by the CANCEL(P) transaction,
as the canct'!(P) update.

The decision parts of the REQUEST and CANCEL trnnsactions do not perform any
interesting work: they ;dways invoke the same update, and trigger no external actions. On the
other hand, the following two transactions have decision parts that invoke different updates in
different situations, and they sometimes trigger external actions.

(3) MOVE-UP

Decision: Al.< 100 and WL > 0 and Pis the first person
on WAIT-LIST

External event: inform P that Pis now assigned a scat
Action:

if P is on WA IT-I JST
t11cn

[remove P from WAIT-UST
add P t:l end of ASSIGNED--LIST]

Herc, the d.:cision part, running from stale s, tests to sec whether there is room on the
ASSJGNl·D- LIST and a :;crson waiting to be a:,signed. If not, no action is taken. If so, the

13

deci~ion part selects a p;1rticubr person P (the tirst on the W AIT--1 JST in states) to be moved up
frum the WAIT-LIST to the ASSICJNl~D-l.IST. A message is sent Lo P, and the update is
paramctri1.cd by P. l·-rom any stale s', the update moves P from the waiting list lo the end of the
assigned list, provided that Pis actually on the waiting list ins'. Otherwise (i.e. if Pis already on
the assigned list, or Pis on neither list), no change occurs. We refer to the update generated by the
MOVI·:- UP transaction when it selects person Pas the move-- up(/') upd;1te.

(4) MOVE- DOWN

I kcision: A I, > I 00 and P is the last person on
ASS ICi Nl·:l}--1,IS'I'

External event: in form P that Pis now wait listed
Action:

if Pis on ASSICJNEl}--1,IST
then

!remove P from ASSIGNl-:1}--LIST
add P to end of W !\IT-LIST]

The meaning of this transaction is symmetric with the preceding one. We refer lo the update
invokcd by the MOVH--1)OWN transaction \Ii hen it selects person P as the 111ovc-dow11(P}
update.

It is clear that ail the updates. for all four transactions, preserve wcll-formcdncss, as required.

Note that each of the last two transactions contains two conditionals. The two conditionals play different

roles. The first conditional in each case is used to decide which update and external actions will occur. 'l11e

second is part of the execution of the update. Also note that the transactions arc designed to observe the

database state more than once. For cx;implc, in the MOVE- DOWN transaction, the transaction looks at

ASSIGNED-- UST in one states in order to attempt to select a person P to move down. Then whenever the

movc-down(P) update is executed, it looks at ASSIGNED- LIST in another states' to dctenninc whether to

actually move P.

We consider this airline reservation system to be a prototype of a much more general class of resource

allocation systems. It seems that practically all resource allocation systems must have operations of the four

kinds described above: operations that request resources and cancel those requests, as ~rcll as operations that

allocate and deallocate the resources. Those operations will behave in somewhat different ways for each

application. Herc. to be specific, we have made a particular set of choices. but we expect that many of the

ideas in this paper will carry over to other resource allocation systems.

We introduce some additional notation which will be useful later for describing transactions. !!'the first

component of Dis) is an update ""hich maps state s' to state s", we will write T(s,s') = s '. If T(s.~') :::: s", it

means that if T is initially run from states, it cause:> the system to invoke an update which. if it is ever run

14

from states', will produce states".

3. Conditions Guaranteed by the System

This section describes conditions that can be guaranteed by the system alone, i.e. conditions on how the

system will run the transactions. I .ater, in Section 4, we describe conditions that can be guaranteed by the

transactions alone. Then in Section 5, we combine these two kinds of conditions to prove properties of an

application (the Fly-by-Night Airline Reservation System) running on the system.

This approach is roughly analogous to the usual approach in ordinary concurrency control theory. There,

the serializability condition (which can be guaranteed by the system alone) is combined with the condition

that individual transactions preserve integrity (which can he guaranteed by the transactions alone), to

conclude that rcach;1blc database states all satisfy the integrity constraints.

The first subsection formally describes the basic guarantees made by SI IA RD about the way in which

transactions arc run. SI !ARD guarantees that there is some serial order for the transactions which it runs.

The system docs not guarantee scrializability of the transactions in this order, but it docs guarantee that each

transaction "secs" the result of some subsequence of the preceding transactions. While this condition is

fundamental to the semantics of the system. it is too weak to allow proof of interesting properties.

The second subsection contains refinements of the basic condition. Examples of these refinements arc

transitivity and some specific requirements on the subsequences of transactions seen by certain other

tran~actions. The third subsection describes implementation issues. It shows how SI !ARD and similar

systems can guarantee the conditions described in the other two subsections.

3.1. The Prefix Subsequence Condition

The system guarnntecs that there is some serial order for the transactions which it runs, and that each

transaction "secs" the result of some subsequence of the preceding transactions in this serial order. We state

this condition more formally below.

Ifs is any sequence, we writes to denote the ith clement ofs. An CXC'cution of a set of transaction instances,
I

consists of a serial ordering T for the transaction instances, together with a sequence A of updates, a sequence

E of sets of external actions, a sequence CJ'. of finite sequences of integers, and two sequences. s and t, of

database states. An execution is required to satisfy tJ1c following conditions.

1. For i ~ 1, c:r; is a subsequence of' the prefix sequence {l , .. .,i-1}.

2. For i ~ 0, t! is the state obtained by applying the sequence of updates designated by c:r;+ 1 to the
initialdatabascslatcs(J' Th;1tis.t. =A. (... A. (s0)),whcreCJ'. 1 = {i 1, ... ,ik}.

I \ 11 11

3. Fori > l,(/\,H.) = 111.(t. 1).
- I I . 1-

l

15

4. hir i ~ 0, each\ is the stale obtained by applying the sequence of upd<1tcs !\ 1, ... ,1\ to s
0

. Th<1t is,
si = /\i(... /\ 1<so>·

These conditions mean the following. (l) says that each trans<1ction T. has a corresponding subsequence c:f
I 1

of its prefix of preceding trans;ictions; these arc the preceding transactions that it "secs". (2) says that each

state ti describes the crtccts of the updates of Ti+- 1 's prefix subsequence; it is the state of the database which

Ti+ 1 "secs" when its decision part is run. (3) says that the update and external aclions produced by Ti arc

determined by its observed state t. 1. Fin;11ly, (4) says that the states s. describe thL: aclllal effect (not
J- I

necessarily observable by any of the transactions) of running the complete sequence uf updates generated by

alt transactions through T..
I

The systrn1 guarantees Lo simulate (in some sense which we do not specify here) executions of those

transactions which arc sub111illed to it. In particular, it guarantees that the external actions described by

sequence F arc actually performed.

We say that the apparrnt slate brjhrc transaction T 1 is t., and th<1t the apparent stair ajier transaction T + 1 t+ I I

is slate T+ 1(t..t.). Also, the actual slate brjiJre transaction T 1 is s., and the ac111a/ stale ajier transaction T t 1 I I 1 t+ I I·

is state s.
1 1 = T

1 1(t,s.). We extend this notatio11 to nonempty consecutive sequences of transactions in
1-- I-· I l

place of single transactions: the apparent and actual states before the sequence arc just the apparent and

actual states, respectively. before the first transaction in the sequence, while the apparent and actual states

after the sequence arc just the apparent and <1Ctual states, respectively, after the last transaction in the

sequence. We say that each of the si is reachable from s0 in the given execution. We call the state si-I the

co111p/cte prefix stale for Ti in the given execution.

Let qi = {i,i+ l, ... } be a sequence of consecutive indices. Then CU is said to be ,110111ic in an execution

provided that the fotiowing hold. (a) Fach Ui' j E CU, includes each of the other transactions l\. k E cu, k < j,
in its prclix ~;ubscqucncc, and (b) all transactions U., j E CU. have the same subset of the transactions with

J

indices less than i in their prctix subsequences. Atomicity describes the running of several consecutive

transactions without allowin2 new information about the database to intervene.

The prc!ix subsequence condition only gu,1rantcc~.; that e<1ch transaction secs the result of some subsequence

of its prefix. This condition docs not rule nut trivial solutions, such as every tnmsaction seeing the initial

database state (the result of the empty subsequence). In order to insmc w;cful behavior, we would like the

system to allow transactions to sec prefixes which arc as large as possible. Some refinements of the prefix

subsequence condition designed to in'.'>ure large pretixcs arc discussed in the following subsection.

16

h'xample:

This exa111ple shows an execulion or the trans;1clions from the airline rescrvalion system, acting
non-scrializably, but according to the prefix subsequence condition specified above. The left-hand
column lists the successive T., while the right-hand column lisls Lhc corresponding A ..

I I

T

R EQ U I ~s· I'(Pl)
MOVE-UP
Rl'.QUHS'l'(P2)
MOVE-UP

Rl'.QUl'.ST(Pl02)
MOVE-UP
MOVE-DOWN
CANCHL(Pl)

rcq ucsl(I' l)
movc--up(Pl)
rcqucst(P2)
movc-up(P2)

rcquest(P102)
movc-up(Pl02)
move-down(PIO!)
cancel(Pl)

This execution can be obtained by having all the requests, the first 100 MOVE- UP
transactions. and the cancellation operate seeing complete prefixes. The next two MOVE- UP
Lransactions operate with incomplete prefixes. The first secs the results of the first 99 REQUHSTS
and MOVE·-- UPS, plus the REQUEST for PIO!, while the second secs the results of the first 99
Rl'.QUl·'.STS and MOVE- UPS, plus the RFQUl·'.ST for Pl02. Since each observes a state with
only 99 people on the assigned list, each chooses to move a person up. Similarly, the
MOVF- DOWN operates with an incomplete prefix. It secs the results of the first 202
transactions only, but not the results or the two transactions involving PI02. Thus, it SCCS the
assigned list with 101 people, and moves PlOI, the person it observes to be last, down.

Now consider the successive reachable states si. The state after the first 204 transactions, s204,

has 102 people on the assigned list, in numerical order. and no one on the waiting list. After the
MOVE- DOWN, s

205
has PlOI on the waiting list and Pl,P2, ... ,PIOO,Pl02 in ord(!r on the

assigned list. The tinal cancellation then leaves the assigned list with exactly 100 passengers:
P2, ... ,PIOO,Pl02.

This execution differs from a serializablc execution in at least two ways. First, there is a
reachable state (s

104
) for which the overbooking cost is nonzero. Second, the cxeculion is not

entirely "fair" in that Pl02 requests a scat after PIO! (and his request is proce<;scd after PlOl's),
but Pl02 is allowed to remain on the assigned list while PlO! is moved down.

Notice that there is a danger of "thrashing" in this system. If a MOVH- UP transaction docs not sec a

previous request and corresponding MOVE- UP, say for person P, it may move another person Q to the

assigned list. A later MOVE- DOWN transaction might operate with a complete prefix, observe an

overbooking, and move Q down. Another MOVE- UP might then execute, seeing the movc-ctown(Q)

update, but still not seeing the updates missed by the previous MOVE-- UP: it may then reassign Q. A later

MOVE- DOWN might then move Q back down, and so on. This kind of thra<;hing is very undesirable, not

17

just because of its obvious incflicicncy, but because of' the external effects of the conllicting transactions.

3.2. Additional Conditions

In this subsection, we suggest some conditions which say that particular transactions must include al least

certain other transactions in their prefix subsequences. The conditions presented here arc meant to be

examples only, and arc not necessarily intended to hold for all SHARD-like systems and all transactions.

These restrictions arc useful in guaranteeing certain properties of executions, as we demonstrate in Section 5.

On the other hand, they reduce system availability. System and application designers must weigh the

correctness gained by restricting the prefix subsequences against the reductions in availability.

First, we say that execution c is transitive provided that the following condition holds. I .cl T, r and T" be

transactions (i.e. transaction instances) occurring inc. lfT is in the prefix subsequence ofT and T" is in the

prefix subsequence or T', then T" is in the prefix subsequence of T. Transitivity is a natural requirement,

ensuring a basic sort of consistency among the prefixes seen by related transactions.

Hxa111ple:

The execution in the previous example fails to be transitive, but for a trivial reason. Namely,
the REQUJ·:ST(PIOI) and Rl·'.QUFST(PI02) transactions arc assumed to execute with complete
prefixes. Since the MOYE- UP which generates movc--up(PlOl) secs the effects of
REQUEST(PlOl}, transitivity would imply that this MOYE- UP should also sec a complete
prefix, which is not wlwt happens. l lowcvcr, note that REQUEST and CANCEL transactions
have only trivial decision parts, so they would cause the same updates to be generated no matter
what prefix they sec. Therefore, we can modify the execution slightly, assigning each of
REQUFST(PlOI) and REQUFST(Pl02) the prefix subsequence consisting of the first 198
transactions, without changing the updates generated. The resulting mndificd execution is
transitive.

Another restriction which might be useful in some cases is to require that some particular transaction T

must run with the complete prefix. This might be useful for very crucial transactions, say for an audit

transaction in a high-finance banking system: it might be desirable for audits to sec the effects of all the

preceding deposit, withdrawal and transfer transactions. Although we have not done so in this paper. it

should be possible to prove strong correctness results about transactions running with complete prefixes.

Requiring a complete prefix is very restrictive. There arc some variants on Lhis condition which arc less

restrictive but still lead to some very useful properties. For example, we might limit the number of previous

transactions which arc not visible to a particular transaction. Namely, transaction Tis said to be k-complete in

execution c provided that, in c, T secs the results of all but at most k of the preceding transactions. The

k-complctcncss condition, for a particular k, docs not seem to be a natural requirement to impose on an

implementation, since in general, it seems difficult to guarantee a reliable value fork. (It might be possible to

18

obtain an estimate of this value by consiucring known characteristics of the message system together with the

expected rate of transaction processing.) I lowever, k-complcteness seems to he more useful as a hypothesis

for rnnJitional claims which describe the behavior of the system in diflcrent situations, for different values of

k.

Another kinJ of condition which limits the amount of concurrency is as follows. I ,ct G he a group of

tr;•nsaction instances. We say that group G is centralized in execution e provided that, in c, each of the

tran-;actions in G includes in its prefix subsequence all the others from G which precede it in the complete

prefix. For example, it might be useful to centralize all the transactions which could cause the cost of a

particular integrity constraint to becon1e nonzero (e.g. all the withdrawal tr;msactions. in a banking system).

This strategy might be used to guarantee that Lffr, cost can never become no111ero. Alternatively, it might be

useful to centraiizc all the transaction~, which affect a rarticular object, or a particular portion of the database.

This strategy might be used to guarantee serializablc execution for those objects or portions of the datnbasc.

If the system guarantees that tran:;actions 111 G arc centralized, it might be useful for the ;1pplication

programmers and users to imagine the existence of a centralized "agent" for G. For instance. it might be

usctiil for users of the airline system to think of a single agent who manages all the MOVE- UPs and

MOVE- DOWNs, i.e. all the movement between W AIT--1.IST and ASSIGNED- LIST. This abstraction

could be useful even if there is actually no such centralized agent, but rather. if (using some locking strategy,

for example}, the agent is implemented in a distributed way.

Some specific groupings for the airline reservation system arc discussed in detail in Section 5, along with

examples of correctness conditions that result from this requirement.

The final condition presupposes a notion of time. A timed execwion is an execution, together with a

nonnegative real number ("real time") for each transaction instance. These real times arc intended to model

the times at which the transactions arc initiated. In the event that the transaction order is determined by ·

timestamps, these real times need not be the same as the timestamps, and in fact the rc;d times need not even

be ordered in the same way as the transaction sequence. However, if the order of real times is monotonic, we

say that the timed execution is orderly. An execution is said to have 1-buu11ded delay provided that the prefix

subsequence of each transaction T includes every transaction in the prefix whose real time is at least t smaller

than Ts real time. Thus, each transaction can sec the effect of every other transaction that precedes it in the

transaction ordering and is not too recent.

19

3.3. Implementation Issues

It is very natural to use the conditions described in the preceding subsections as the correctness conditions

for the distributed system described in the Introduction. The system is able to assign timestamps in some way

so as to determine a total ordering of the transactions. The transactions arc initially executed at one node, and

then information about the transact.ions is sent to the other nodes. The nodes can undo and redo actions in

order to ensure that as new updates arc seen, each succeeding update has tile effect that it would if executed in

a complete prefix state. There arc a number of optimi1;1tions which allow the system to avoid undoing large

numbers of transactions [BK], and optimized storage structures make this process even more efficient [SKS].

The updates only arc sent around, and arc undone and redone to yield a sequential ordering. The fact that

the decision parts arc not redone means that the system docs not satisfy the usual notion of scrializability;

however, the system docs satisfy the prefix subsc4ucncc property, i.e. that every transaction secs the effects of

a subsequence of its prefix.

It should be clear that an appropriate distributed communication protocol could guarantee transitivity,

perhaps by piggybacking information about known transactions on messages.

There arc a number of ways that a system could guarantee the subsequence restrictions described in the

previous subsection. For instance, consider centralization of the transactions in G. It is possible to fmcc all

the transactions in G to run at the same node of a distributed system. Alternatively, a transaction in G with

timcstamp t might have to wait till it receives messages from all nodes saying "I will issue no more G

transactions with timcstamp earlier than t." This type of concurrency control might significantly reduce

system availability. The probabilistic concurrency control methods of [S] provide other techniques for

obtaining ccntralilation.

4. Conditions Guaranteed by the Transactions
This section describes conditions which might be guaranteed by the transactions, analogous to preservation

of integrity constraints in the usual development. We do not intend to require that all of these conditions

hold for all sets of transactions; rather, we expect different conditions to be useful in different applications.

We attempt to formulate the conditions in a general way, so that they might apply to different resource

allocation applications. We describe how the conditions apply to the airline reservation system.

The first subsection defines some conditions involving costs of datibasc states. Update parts of transactions

arc analyzed to determine whether Of not they have the potl~ntial of increasing the cost, or arc guaranteed to

decrease the cost, with respect to a p,irticular integrity constraint.

20

The second subsection discusses conditinns involving fairness. a property particubrly important in

applications in which certain entities compete for access to some resource or service. We define priority

among competing entities, and prove that certain conditions ensure that transactions preserve priority.

We define an 11pp!icalion to consist of a collection of database states. (including designation of initial and

well-formed states). their integrity constraint information (including costs). and a set of transactions. The

properties we describe in this section arc properties of applications.

4. 1. Conditions Involving Costs

We say that an application is i11i1ia//y zero cos/ provided that Cost(s
0

) = 0. That is, all the integrity

constraints arc satisfied in the initial dat1base state. Clearly, the airline system is initially 1.cro cost.

Another interesting property would be that a transaction T "preserves integrity", just <IS it is required to do

in the usual concurrency control theory. A formal statement of this property might be: "Ifs is a wctl-fonncd

state with cost(s) = 0, and ifT(s,s) =- s', then cost(s') = O." This says that if T runs so that it changes the same

state that it secs. then it docs not cause a violation of the integrity constraints if they were previously satisfied.

(We might say that T docs not cause a violation of the integrity constraints "on purpose".) In tJ1e present

setting, a more general kind of condition is appropriate, which also involves the behavior of transactions when

the costs arc nonzero.

We begin by describing a very strong property of a transaction T that says that there is no possibility of T

ever causing an increase in the cost for constraint i. An update A is said to be increasing for constraint i

provided that there is some wclHormcd s for which cost(A(s),i) > cost(s,i). That is, the update has the

potential of increasing the cost of constraint i, although it need not actually do so in all circumstnnccs.

Otherwise, i.e. if the update could never increase tJ1c cost of constraint i. A is said to be nun-increasing for

constraint i. A transaction T is safe for constraint i provided that the following holds. Ifs is a wcll-rormcd

state and IJ
1
(s) = A, then A is nonincrc<1sing f()r constraint i. Othcrv. isc, i.e. if there is some well-formed s

for which l\(s) is incn:asing, then we say that Tis unsafe for constraint i.

Hxmnplc:

In the airline system, the rcquest(P) update is nunincrcasing for tJ1c overbooking constraint,
but is increasing for the undcrbooking constraint, since in states with fewer tJ1an 100 assigned
pcorlc. and with P not already waitlistcd or assigned, this request causes an increase in cost (of
$~00). The cancel(P) update is also non increasing for the ovcrbookinr; constraint, but is increasing
for the undcrbooking constraint. since in states with at most 100 assigned people (including P) and
sufficiently many waitlisted people, this cancellation causes an incrc;1se in cost (of $300). On the
other hand, the rnovc--11µ(P) update is increasing for the overbooking constraint, since in states

21

with al least 100 assigned people, this move-up causes an increase in cost (of $900). I lowevcr, it is
nonincrcasing for the undcrbooking constraint. hnally, the move - down(P) update is
nonincrcasing for the overbooking constraint. but is increasing for the undcrbooking constraint
since in states with at most 100 assigned people. this move-down causes an increase in cost (of
$300).

Hxample:

The only updates that arc increasing for the overbooking constraint arc those of the form
movc- up(P). Since only the MOY!~- UP transaction can generate a movc-up(P) update, the
other trans;ictions arc all safe for the overbooking constraint. I lowcvcr, the MOVE- UP
transaction is unsafe l(ir the overbooking constraint. On the other hand, the MOVE- UP
transaction is safe for the undcrbooking constraint, but the other three transactions arc all unsafe
for tile underbooking constraint.

/\ less restrictive, interesting property to consider might he intuitively described as: "Transaction T docs

not increase the cost of integrity constraint ion purpose." One simple formal way of stating this property is:

"Ifs is a welt-formed state and ifT(s.s) = s', then cost(s',i) ~ cost(s,i)." For technical reasons, we define a

slightly stronger formulation, as foltows.

We say that transaction T preserves the co.st of constraint i provided that the following holds. Ifs is a

well-formed suite, T(s.s) = s', l\(s) = A and /\ is increasing for constraint i,. then cost(s',i) = 0. That is, the

decision part of a transaction T will only invoke an update part that (potentially) increases the cost of

constraint i, when the state that T believes will exist after the update runs, will have a cost ofO fix constraint i.

It is easy to sec that this condition implies the simpler formulation described above. Also, it is obvious that if

Tis safe for constraint i, then it preserves constraint i.

Example:

We show that all transactions preserve the cost of the overbooking constrainl. Since all
transactions except for the MOVI:- UP transaction arc sate for the overbooking constraint, they
preserve the overbooking constraint. The MOVE- UP transaction is unsafe for the overbooking
constraint, S\l more argument is required in Lhb case. The MOVE- UP transaction only generates
a movc- up(P) update from a state s for which ;\ L(s) < 100 and WL(s) > 0. Then the state s'
resulting from applying the movc-- up(P) update to s has /\ l.(s') ~ I 00, anJ thus cost(s' ,1) = 0.

Now consider the underbooking constraint. The MOYF- UP trans;1ction is safe for the
undcrbooking constraint, and hence preserves the cost of the underbooking constraint. We also
show that the MOVF- DOWN trans;~ction preserves the cost of the undcrbooking constraint.
The MOVE- DOWN tra1:sactio11 only generates an update which is increasing for the
undcrbooking constraint from a states for which /\L(s) > JOO. Then the states' resulting from
applying the update to s has /\I ,(s') ~ 100, and thus cost(s',2) = 0.

22

On the other hand, it is easy to sec that 1n:QUEST(P) and CANCEL(P) transactions do not
preserve the cost of the undcrbooking constraint.

Since we arc working in a setting in which integrity constraints arc not always satisfied. i.e. costs may be

nonzero, another useful property of transactions might be that they actually reduce the cost, not just preserve

it. A transaction which reduces the cost for an integrity constraint can be regarded as a "compensating

transaction" for violations of that integrity constraint. One possible fonnul<ltion is as follows. We say that

transaction T rn111pe11sates for constraint i provided that the following holds. Ifs is well-formed, T(s,s) = s',
and cost(s,i) > 0, then cost(s',i) < cost{s,i).

Lemma I: Assume that all costs arc integral. Assume that T compensates for constraint i. Then
for any wcll-fonncd s, either cost(s,i) = 0, or there is some integer k > 0 such that T(s,s) = s1,

T(s 1,s1) = s2, ••• ,T(\-i·_ 1) = \ andcosl(\.i) = 0.

Proof: By repeated application of the definition. I

This lemma implies that if compensating transactions arc run atomically from any point in an execution,

using any available prefix subsequence, they will eventually result in an app<1rcnt state in which the cost of the

constraint is 0. This idea can be stated formally as follows.

Corollary 2: Assume that all costs arc integral. Assume that T compensates for constraint i. Let
c be any finite execution, cu any subsequence of the indices of c, and t the result of the updates
indexed by CU, applied to s

0
.

Then either cost(t,i) = 0, or else there is an extension of c to another execution, by an atomic
suffix consisting of Ts only, such that the prefix s11bscqucncc of the first T in the suffix is CU, t' is
the apparent state after the last transaction, and cost(t',i) = 0.

H.xample:

It is easy to sec that the MOYE- UP transaction compensates for the undcrbooking constraint,
and the MOYE- DOWN transaction compensates for the overbooking constraint. In fact, it is
possible to show that from any wdl-fonncd state, any atomic sequence or intcnninglcd
MOVE- UP and MOVE- DOWN tran~Jctions which contain sufficiently many of each will
eventually reach an apparent cost of 0 for both in tcgrity constraints.

Our last property involving custs, bounds the increase in cost that can result from the execution of a

bounded number of transactions. First. we say that s <k t pnwidcd that there is a sequence or updates

leading from s
0

to s, and a subscquci1cc of that sequence containing a!l but at most k of the updates, such that

the result of the subsequence applied to s0 is t. That is, state t contains all the information in states, except

possibly for the effects of ill most k updates. Then we say th:1t function f bounds the cost increase for integrity

constraint i provided that the following holds. For well-formed states s and t, ifs Sk t, then cust(s.i) S
cost(t,i) + f{k). Thus, f{k) bounds the increase in Lhc cost of integrity constraint i that can be incurred by k

transactions.

f'."xw11ple:

In the airline reservation system, it is easy lo sec that 900k hounds the cost increase for the
overbooking constraint, while .lOOk bounds the cost increase for the undcrbooking constraint.

I ,l•mnw 3: I .ct ru be an atomic subsequence in execution c. I .cl s be the actual state before cu,
ands' the actual state after cu. I ,cl t be the apparent slate before CU, and t' the apparent state artcr
CU .. Ifs ~kt, thens' ~kt'.

Proof: Straightforward. I

4.2. Conditions Involving Fairness

Another property of interest in some applications, i.e. those in which certain entities cPmpclc for access lo

some resource or service, is "fairness". In order to be able to state fairness conditions, we extend our

application model to include the competing entities. In each slate, we designate certain entities as "known"

(i.e. currently competing). Also, in each state, we assume that there is a partial order on the known entities

which describes priority.

We say that transaction T prcsffvcs priority provided that the following condition holds. Ifs is a wcll

formcd state and T(s.s) = s', then: (a) If P and Q arc both known in sand also in s', and if P precedes Q in s,

then P precedes Qin s'. (b) If Pis known ins and Q is not, and P and Q arc both known ins', then P precedes

Qin s'.

Hxample:

In our example, the people arc the competing entities. In any states, the known people arc
those on the WAIT- LIST or the ASSIGN FD- LIST, ins. For P and Q known ins, we define P
< Q to mean that either P precedes Q on the WA IT- I JST, or P precedes Q on the
ASSIGNED- LIST, or else Pis on the ASSIGNED- LIST and Q is on the W ;\IT- LIST. Then
all of the transactions preserve priority.

;\ stronger property is also of interest. W c say that trans;1ction T strongly preserves priority provided that the

following condition holds. Ifs ands' arc well-formed states and T(s,s') = s", then: (a) If P an<l Q arc buth

known ins' and also ins", and if P precedes Qin s'. then P precedes Qin s". (b) If Pis known ins' and Q is

not, and P and Q arc both known in s", tJ1cn P precedes Q in s".

Example:

It is easy to sec that the RFQUEST and CANCEL transactions strongly preserve priority, but
the MOVE- UP or MOVE- DOWN transactions do not. For example, consider the
MOVE-UP transaction. Assume that in states, person Pis first on the WAIT- LIST. an<l that
transaction T, run from state s, generates a move- up(P) update. In state s', P is on the

24

W !\IT- I ,f ST but is not the first person; person Q is first. Then the move-up(P) action still moves
P to the end of the /\SSIGNl'.D- LIST, in this case moving it ahead ofQ. We have P >Qin state
s', hut P < Q in states". Thus, the MOVE- UP transaction is capable of changing the relative
priorities of P and Q.

Similar remarks hold for the MOVE- DOWN transaction.

5. Properties of the Airline Rc~crvation System

This section illustrates how the ideas presented in the previous sections can be used to prove interesting

properties of executions of a particular application, the Fly-by-Night Airline System. Where it is possible, we

st.<1te the results in a general way, so that they might later be applied to other examples.

Proving properties of executions of SI I!\ R 1)-ltke systems is far more difficult than for systems that preserve

serialin1bility. It is necessary to consider how a transaction's updates will execute on arbitrary well-formed

database states, not just the database stale seen by the decision part. With current techniques, it is not easy to

understand how trans;1clions and upJates will behave in all possible situations, just by examining the

transaction code. Even some of the relatively simple-sounding results in this section have prnofs that arc

somewhat delicate. Our hope is that more experience with examples and proofs of this sort will eventually

make the task easier.

The first ~ubscction gives a brief discussion of some policy decisions affecting priority, that were embodied

in the application design. The second subsection proves upper bounds on the costs of database states that

could result from running the ;1irlinc reservation system. /\II the bounds in this subsection arc proved using

the assumption that transactions sec the effects of all but at most k of the preceding transactions. The cost

bounds arc st.<1ted in terms of this k. The third subsection refines the necessary conditions for obtaining these

cost bounds and sharpens the bounds. The results in this subsection require only that transactions sec the

results of certain critical preceding transactions, rather than arbitrary transactions.

The fourth subsection proves results which rely on "centralization" assumptions, i.e. that some transactions

sec all of the preceding transactions of a certain type. Using centralization, we prove that some integrity

constraints can never be violated. The final subsection proves some fairness properties.

5. 1. Policy Decisions

Transactions in every application embody certain policy decisions. This subsection contains two examples

which illustrate the policy decisions embodied in the Fly-by-Night System.

F.xamp/e:

Suppose that two REQUEST(P) transactions occur without an intervening CANCEL(P). Both

25

RFQUFST(P) tr;msactions gcncr;1tc request(!') upd;1tcs. /\t some point, it might be necessary to
determine the cfkct or a scqucm:c or updates including both or these rcqucst(P) updates. Then
the second rcquest(P) would be arplied to a states which reflects the previous occurrence of the
earlier rcqucst(P). Thus, P might be in W/\IT-LIST(s) or /\SSIGNFD·-LIST(s); in this case,
the update is defined to have no crlccL The policy embodied in this definition is that if a person P
is already on the W!\IT-LIST or ASSIGNED-LIST. ;rnd makes a duplicate request, the new
request docs not change P's original priority. Alternative policy decisions might cause the second
request to alter the priority somehow.

Fxample:

It is possible for two MOVE- UP trans<ictions to occur which invoke movc-up(P) updates for
the same P, without an intervening C/\NCEL(P), or MOVE- DOWN which invokes a
movc·-down(P) update. This could happen if the second MOVE-UP transaction is initiated
without the first in its prefix subsequence. At some point, it might be necessary to determine the
effect of a scq11c11cc of' updates including both of these move-up(I') updates. Then the second
movc--up(P) would be applied to a states which rcnccts the previous occurrence of the earlier
request(!'). Then P could be in /\SSICiNED--l.IST(s); in this case, the update has no effect. The
policy embodied in this definition is that iL1 person Pis '!lrc;1dy on the ASSIGN FD- LIST, a new
a1tcmpt to assign him a scat docs not alter P's previous priority. Alternative policy decisions might
cause the second movc- up(P) to alter the priority.

5.2. Cost Bounds Hcsulting from k-Complctcncss

In this subsection, we prove upper bounds on the costs of the states reachable by running the airline system.

/\II the bounds in this subsection arc proved using the k-complctcncss assumption, i.e. the assumption that

transactions sec the effects of all but at most k of the preceding transactions. We begin with some preliminary

lemmas.

Lemma 4: Let c be an execution, and T a k-complctc transaction instance in c. Let s be the
actual state before T ands' the actual state aflcr T, inc. Lett be the apparent state before T and t'
the apparent state after T.

1. Thens ::s;k tand s' Sk t'.

2. Let i be a constraint, and assume that f bounds the cost of constraint i. Then cost(s,i) :S
cost(t.i) + f{k) and cost(s'j)::::; cost(t',i) + f(k).

Proof: Straightforward. I

The ltiilowing thcorcrn shows that k·complctc transactions that preserve the cost of a constraint arc

guaranteed not to make the cost of that constraint larger, (except in the special case that the cost is very small).

Theorem 5: I ,ct c be an execution, and T a k-complclc transaction instance in c. I ,ct i be a
constraint, and assume th<1t f bounds the cost f(>r cu11straint i. Assume that T preserves the cost of
constraint i. I ,ct s be the actual state before T an<l s' the actual state after T, in c. Then either
cost(s',i) ::s; cost(s,i) or else cost(s',i) ~ f{k).

Proof: I ,ct t be the apparent st.ate before T and t' the apparent state after T. Then t' = T(t,t).
Assume that T invokes action A in execution c, i.e. that l\(t) = A.

26

Assume LhaL cost(s',i) > cost(s.i). Then A is increasing for constraint i. Since T preserves the cost
of constraint i. it ll>llows that cost(t',i) = 0. By Lemma 4. cost(s',i) s cost(t',i) + f{k) = l{k). I

We can specialize the preceding results to obtain bounds for the airline system.

Corollary 6: I .ct c be an execution of the airline system. and Ta k-complcte transaction instance
in e. I .ct s be the actual state before T ands' the actual state after T, in e.

I

I. I fT is any transaction. then either cost(s',l) s cost(s. l) or e.lsc cost(s', 1) s 900k.

2. lfT is a MOVH- UP or MOVE- DOWN transaction, then either cost(s',2) s cost(s,2) or
else cost(s',2) s 300k.

Proof:

I. By I .emrna 5, the fact that all tr;ms;1ctions preserve the overbooking constraint, and the fact
that 900k bounds the cost incrc<L'>C for the overbooking constraint.

2. By Lemma 5, the foct that MOVE- UP and MOVE- DOWN transactions preserve the
undcrbooking constraint, and the foct that 300k bounds the cost increase f{1r the
undcrbooking constraint.

The previous results arc enough to yield an upper bound for the overbooking cost (nlthough not for the

undcrbooking cost) in all reachable stales. We obtain such an upper bound for the overbooking cost as a

special case of the following more general theorem.

Theorem 7: Assume that the application has the property that all transactions preserve the cost
of constraint i. Let c be an execution. I.ct f bound the cost of constraint i. Assume that all
occurrences of transaction-; that arc unsafe for constraint i, in c, arc k-complctc. I ,ct s be any state
reachable inc. Then cost(s,i) :$ f{k).

Proof: The proof is by induction on the length of c. The basis, length 0, is immcdi;itc. For the
inductive step, assume t11at the length of c is at least 1, and that T is the last transaction i11 c. Lets
be the actual state before T, ands' the actual state after T.

The inductive assumption implies that cost(s,i) s t\k). If cost(s',i) s cost(s,i), the claim is
immediate. So assume that cost(s',i) > cost(s,i); then T is unsafe for constraint i, and so T is
k-completc inc, by assumption. Then Theorem 5 implies that cost(s',i) s f{k), as needed. I

Our invariant upper bound on the overbooking cost follows as a corollary.

Corollary 8: Let e be an execution of the airline system. Assume that all MOVE- UP
transactions arc k-cornplctc i11 c. I .ct s be any state reachable inc. Then cost(s, I) s 900k.

Proof: By Theorem Gl~NERAL-INVARIANT-BOUND, the fact that all transactions
preserve the overbooking constraint, the fact that 900k bounds the cost increase fi.ir the
overbooking constraint, and the fact that only MOVE- UP transactions arc unsafe for the
overbooking constraint. I

We would also like to obtain an analogous invariant upper bound for the underbooking cost.

27

Unfortunately, such a bound docs not hold for our airline system, since it can fail in an cxcculion where many

requests or cancellations arrive in rapid succession without sufficient intervening MOVE- UPs. In order to

prove an upper bound on the undcrhooking cost, it appears to be necessary to Jssumc something about the

MOVE- UP transactions occurring surticicnlly frequently.

To be specific. we 1.klinc a partition Q of the indices of c into groups consisting of consecutive indices to be

a grouping of c for constraint i provided that each group satisfies one of the following.

(a) It consists of exactly one index j. and transaclion T, preserves constraint i.
J

(b) !ft is the apparent state after the group, then cost(t.i) = 0.

That is, we will consider instances of transactions that preserve the cost of constraint i individually, but we will

consider other transactions together, paying special attention to points during the execution where the

transactions beiievc they have reduced the cost of the constraint to 0. Of course. not every execution will have

such a grouping. hut if the application contains a compensating transaction for constraint i, Lemma 2 implies

that executions with such groupings arc abundant. The normal st<1tcs of c, with respect to a particular

grouping. arc just those sl<1tc<> which arc reachable after the groups, i.e. the actual states after the groups.

The next theorem says that, if we restrict attention to normal st<1tcs only, an in variant upper bound holds for

the undcrhooking constraint.

Theorem 9: I .ct c be an execution and 0 a grnuping of c for constrai.nt i. Assume that f bounds
the cost of constraint i. Assume that all transactions that preserve the cost of i, as well :is all
transactions that occur at the ends of groups, arc k-completc in c. I ,et s be any normal :>tate
reachable in c. Then cost(s,i) ~ f(k).

Proof: By induction on the length of e. The basis, length 0. is immcdi<1tc. For the inductive
step, assume that the length of c is at least I, and that T is the last transaction in e. I ,ct s he the
actual state he fore T, ands' the actual state after T. I ,ct t be the apparent state before T, and t' the
apparent state after T. There arc only two cases that need to be considered.

If T is the bst transaction in a group, then cost(t',i) = 0. Since T is k-complctc, Lemma 4
implies that cost(s',i) ~ cost(t',i)-+ ttk), = l{k}, as needed.

Otherwise, T is a transaction that preserves the cost of constraint i, and occurs alone in a group.
Thens is a normal state inc. The inductive assumption implies that cost(s,i) ~ f(k). lf cost(s'.i) ~
cost(s.i). the claim is immediate. So assume that cost(s'j) > cost(s,i). Then Theorem 5 implies that
cost(s'.i) ~ t{k), as needed. I

The preceding theorem specializes immediately to our example. The REQUEST and CANCEL

transactions arc the ones that do not preserve the undcrbooking constraint, while the MOVE- UP transaction

compensates for that constraint. Thus, executions which have groupings for the underbooking constraint can

be constructed by including a sequence of MOVE- UP transactions immediately after each REQUEST and

after each CANCEL transaction.

28

Corollary 10: I ,ct c be an execution and (l a grouping of c for the underbooking constraint.
Assume th<1t ;tll MOVE-- UP and MOVE- DOWN transactions, as well as all transactions that
occur at the ends of groups, arc k-complctc in c. Let s be any normal state reachable in c. Then
cost(s.2) S 300k.

Thus. under suitable k-complcteness assu111ptio11s. combined with assumptions about frequency of

compensating transactions, we can prove invariant upper bounds on the costs in all reachable states (or all

normal reachable states).

The ideas used to prove the preceding results can be used to say more. Consider an execution e in which

costs become very large (because k-compktencss or frequency assumptions fail). If there is ever a time during

the execution after which good completeness and frequency properties begin lo hold, it is easy to sec that

correspondingly good upper bounds will be reestablished. For instance, we can get a result of this type for the

undcrbooking constraint, using the ideas of Corollary AIRI ,INE- BOUND-4. If we assume that the

required transactions arc k-completc from some point on in the· execution, then (once the next compensating

group has occurred), the underbooking cost satisfies an upper bound of 300k. On the other hand, if we want

to obtain a similar result for Lhc overbooking co~;t, we cannot base it 011 the simple ideas of Corollary 8.

Rather. we would have to use ideas similar to those used for the undcrbooking cost. At some point after

k-complctcncss begins to hold in the execution. we would hypothesize a group of MOVE- DOWNs. bringing

the apparent overbooking cost to 0, in order to compensate for any excess overbooking cost. With such a

hypothesis, an eventual 900k bound on the overbooking cost could be proved. We omit formal statements of

these results here.

lt is possible to combine the results of Corollaries 8 and AIRLINE- BOUND-4 to get a single invariant

upper bound on the total cost for the airline system. For example, we obtain the following.

Corollary 11: J ,ct c be an execution and (l a grouping of c for the undcrbooking constraint.
Assume that all MOVE- UP and t\10Vl~- DOWN transactions, as well as all transactions that
occur at the ends of groups, arc k-cornplctc in c. I .ct s be any normal state reachable in c. Then
cosl(s) s 900k.

Proof: Immediate from Corollaries 8, AIR! JNE- BOUND-4 and the fact that every wcll
formcd state has either cost(s, I) = 0 or cost(s,2) = 0. I

We linish this subsection with a closer look at the kinds of improvements that arc guaranteed by

compensating transactions. For example, it would be nice to have a lemma which say~; that a k-completc

transaction which compensates for constraint i, is guaranteed to actu;dly improve the cost of constraint i,

unless that cost is small. Unfortunately, this is not true. Although the compcns<1Ling transaction might "try"

to improve matters. it is pos~iblc that, because of missing i11fonna,ion from its own prefix. it mightnot

succeed in doing so. For example, a MOVE- DOWN transaction might observe too many people on the

29

ASSIGNI:IJ--1.IST, anJ might therefore invoke a movc--down update. But if it happens to invoke a

move- down for a person who had actually cancelled in the interim, that move- down will not improve the

actual cost.

We do know, howcvl:r, that running the transaction several times in succession (atomically) can guarantee

actual improvement. More precisely, we ohtain the following.

Lemma 12: Assume th;it all costs :ire integral. Let f bounJ the cost of constraint i. Assume that
T comrensatcs for consll a inti. (,ct c he any finite execution, CU any subsequence of the indices of
c, containing all but at most k of the indices inc, and lets be the actual state after e,

Then either cost(s,i) :::=; f\k), or else there is an extension or c to another execution, by an atomic
suffix consisting of T's only, such that the rrcfix subsequence of the first Tin the sunix is CU, s' is
the actual state after the last transaction, and cost(s',i) ~ ltk).

Proof: I ,ct t be the result of CU applied to \r Thens :::=;kt. By Corollary 2, either cost(t,i) = 0, or
else there is an extension of c to another execution, by an atomic ~u flix consisting of T's only, such
that the prclix subsequence of the first T in the sunix is CU, t' is the apparent state after the last
transaction, and cost(t',i) = 0. lfcost(t,i) = 0, then since s :::=;kt, it follows that cost(s,i) < cost(t,i)
+ flk) = flk). as needed. Otherwise, Lemma 3 implies thats' :::=;kt', and so cost(s',i):::::; cost(t',i) +
flk) = t\k), as needed. I

This theorem specializes to the airline system as follows.

Corollary 13: Let c be any finite execution of the airline system, CU any subsequence of the
indices of e, containing all but al most k of the indices inc, and lets be the actual state after e.

I. Either cost(s, 1) :::=; 900k, or else there is an extension of c to ~mother execution, by an atomic
suffix consisting of MOVE-- DOWNs only, such that the prefix subsequence of the first T
in the suffix is cu, s' is the actual state after the last transaction, and cost(s',l):::::; 900k.

2. Either cost(s,2) :::=; 300k, or else there is an extension of e to another execution, by an atomic
suffix consisting of MOVE- UPs only, such that the prefix subsequence of the first Tin the
suffix is CU, s' is the actual state after the last transaction, and cost(s',2) :::::; 300k.

Thus, the cost bounds of this subsection limit the damage that can be caused when transactions operate with

a bounded amount of missing in formation, As noted before, the bounds we obtain arc intuitive rather than

surprising. However, we know of no way to prove these sorts of intuitive statements in earlier frameworks.

We note that it is possible to obtain more relined versions of the results in this subsection. Generally, it is

not actually necessary that the indicated transactions sec all but k of the entire set of preceding trans;:ctions.

Rather, only certain types of preceding transactions arc important in each case, since they suffice to dctC'rmine

the results of critical dcci->ions. For instance., in Corollary 8, it is not necessary that the MOVE- UPs be

k-complctc; for example, it would su fficc for them to sec all but k of the preceding MO VE-UP and

REQUEST transactions. We examine this issue more closely in the next subsection.

30

5.3. More Ucfincd Cost Bounds

In this subsection, we reconsider some of the results of the preceding subsection. We sharpen those result-;

so that they only require that transactions sec the results of certain critical preceding transactions, rather than

arbitrary preceding transactions. The results in this subsection give detailed information that is specialized to

our application; thus, they arc not stated in very general terms. However, it seems that the grneral approach

used in this subsection should extend to other applications.

We begin by pruving some basic lemmas about sequences of updates. It is helpful to think of these result-;

in terms of an automaton whose states represent (abstractions of) the global states of the database, and whose

state-transitions represent the updates. (The decision parts of transactions arc not modelled by this

automaton.) The sequence of updates which occur in an execution is modelled by a path in the automaton.

We arc interested in identifying subsequences of a sequence of updates, which arc guaranteed to lc<:d to the

same stile in the automaton as docs the whole sequence. If a transaction executes seeing only such a

subsequence as its prefix subsequence, it would be guaranteed to have accurate information.

I ,et .A. be a sequence of updates (of the Fly-by-Night airline system) and Pa person. As assig11111mt witness

for Pin .A. is an ordered pair of updates, (A,B). from .A., satisfying the following conditions.

(a) A is a rcqucsL(P) update, Bis a movc-up(P) update, and A precedes Bin .A..

(b) There arc no canccl(P) updates after A in .A..

(c) There arc no movc-down(P) updates after Bin .A..

A waiting witness for Pin .A. is either of the following:

(l) An update A, from .A., satisfying the following conditions.

(a) A is a rcquest(P) update.

(b) There arc no canccl(P) or move- up(P) updates after A in .A..

(2) A pair (A,B) of updates satisfying lhc following conditions.

(a) A is a req11cst(P) update, Bis a move- down(P) update, and J\ precedes fl int.

(b) There arc no cancel(P) update:; after A in .A..

(c) There arc no move- up(P) updates after Bin .A..

Recall that a person is known in a given state s if he is either in !\SS IG NED- I ,IST(s) or WA !T- I JST(s).

Lrmrna 14: Let .A. he a sequence of updates, ands the state resulting from applying .A. to "o· Let
P be a person.
(a) P is known in state s exactly if there is a request(P) update in .A. which is not followed by a
cancel(P) update.
(b) Pis in ASSIGN I~()- LIST(s) exactly if there is an assignment witness for Pin .A.
(c) Pis in WA IT-1 JST(s) exactly if t11cre is :1 waiting witness for Pin .A..

P,·oof: By analysis of the possible state transitions. I

31

For lhc nexl scver;tl lemmas, Wl' use the following nolation. I .ct .A be a finite sequence of updates and lcl ~n

be a subsequence of .A.. I .ct s be the state which results from applying .A to s
0

, and let t be the state which

results from applying ':.B to s0. The next lcnmws relate the states sand t.

Lemma 15: I .ct P be a person. Assume that I' is in ASSIGN FD- I JST(s), and let (A. B) be an
assignment witness for P in .A. Assume that c:.l\ contains both updates A and B. Then P is in
ASSIGN I~()- LIST(t).

Proof: By definition of an assignment witness. A is a requcst(P) update. Bis a move-up(P)
update, and A precedes B in .A. Also, .A. contains no canccl(P) updates after A and no
move-down(P) updates after B. Now, ':.B contains both A and B, in that order. Also,~ cannot
contain any cancel((>) updates after A or move- down(P) updates after B, since there arc none in
.A. Thus. (A,B) is an assignment witness for P in ~- Lemma 14 implies that P is in
ASSIGNED- LIST(t). I

Lemma 16: Let P be a person. Assume that Pis in WA IT- LIST(s). Assume that at least one of
the following holds.
(a) A is a waiting witness for P in .A, and <jl, contains update A.
(b) (A,B) is a wailing witness for Pin .A and ':.B wntains both updates A and n.
Then Pis in WA IT- LIST(t).

Proof: Similar to the proof of Lemma TWO. I

The preceding two lemmas will be applied in cases where .A denotes the entire sequence of updates

preceding a particular transaction T. while r:n denotes the subsequence of updates actually seen by T. The

lemmas imply that if T secs certain of Lhc preceding transactions, and a person P is actually on the

ASSIGN ED- LIST or WA IT- LIST, then T is guaranteed to know it. On the other hand, the next several

lemmas deal with the opposite implication: they describe circumstances under which a transaction that

believes that a person P is actually 011 the ASSIGN ED- LIST or WA IT- LIST, is guaranteed to be correct.

Lemma 17: Let P be a person. Assume th<it ~ contains the last cancel(P) update, if any, in .A. If
Pis known int, then Pis known ins.

Proof: Assume Pis known in t. Then I ,cmma 14 implies that there is a requcst(P) update in~
which is not followed by a cancel(!') update in c:.l\. This rcqucst(P) update also occurs in .A., <:md
there arc no cancel(P) updates after the rcquest(P) in .A, since~ contains the last canccl(P) update
from .A. Therefore, I .crnma 14 implies that Pis known ins. I

Lemma 18: I.ct P be a person. Assume that c:.l\ contains the last rnovc-down(P) update, if any,
in .A. Also assume that ~ contains the last canccl(P) update, if any, in .A. If P is in
ASSIGNED- LIST(t), then Pis in ASSIGNED- LIST(s).

Proof: Assume that P is in ASSIGNED-LJST(t). Then Lemma 14 implies that there is an
assignment witness (A.B), for P in ':.B. Thus, A is a requcst(P) update and B is a movc--up(P}
update, A precedes B in ~. there arc no canccl(P) updates in c:.l\ after A and there arc no
move-down(P) updates in r:.B after B. Updates A and B also appear in A, in that order. There arc
no canccl(P) updates after A !n .,,.t, since ~ contains the last cancel(P) update (if any) in .A.
Similarly, there arc no movc-down(P) updates after Bin .A. Thus, (A,B) is an assignment witness
for Pin .A. Lemma 14 implies that Pi:; in ASSIGNED-LIST(s). I

Lemma 19: I.ct P be a person. A~>sumc that~ contains the last move·-- up(P) update, if any. i.n .
.A. Also assume that ".S contains the last canccl(P) update, if any, in .A. If P is in W /\ lT- LIST(t),
then P is in WA IT- LIST(s}.

32

Proof: Analogous to the proof of I ,cn1ma ONE. I

/\gain, we can apply the preceding three lemmas to the case where .A denotes the entire sequence of

updates preceding a particular transaction T, and ':Pi denotes the sequence of updates actually seen by T. The

lemmas imply that if T secs certain of the preceding transactions, then T is guaranteed to know that a

particular Pis not on the J\SSIG N FD- LIST or W J\ IT- LIST.

Now we can prove refined versions of the results of the previous subsection. Since the notation and details

become somewhat unwieldy, we present versions of Corollaries 6 and 13 only, and omit the others.

Theorem 20: I ,ct c be an execution of the airline system, and Ta transaction instance in c. I .ct s
be the actual state before T ands' the actual state art.er T, in c.

I. Assume lhat there arc at most k persons P such that Pis in J\SSIGNl~D- llST(s) hut the
prclix subsequence seen by T fails lo include an assignment witness for P. Then either
cost(s',l) ~ cost(s,l)orclsccost(s',1) ~ 900k.

2. Assume that Tis ;1 MOVI~- UP or MOVE- DOWN transaction. Assume that there arc at
most k persons P such that P is not in J\SS IG N FIJ- I JST(s) but the prefix subsequence
seen by T foils to include either the last cancel(P) or the last move- down(P) from .A. Then
either cost(s',2) ~ cost(s,2) or else cost(s',2) ~ 300k.

Proof: I .ct t be t11c apparent state before T and t' the apparent state after T. Then t' = T(t,t).
Assume that T invokes action;\ in execution c. i.e. that IJT(t) = A.

I

I. Assume that cost(s',I) > cost(s,l). Then Tis a MOVE-UP transaction,;\ is a move-up
update, and J\L(t) < 100. For all persons Pin ASSIGNED- LIST(s), except for the k
exceptions described in the hypothesis, Lemma 15 implies that P is in
/\SSICiNED- UST(t). Therefore, Al.(s) ~ J\L(t) + k < 100 + k. lL follows that AL(s') ~
100 + k. and so cost(s',l) ~ 900k.

2. Assume that cost(s',2) > cost(s,2). Then T is a MOVE- DOWN transaction, A is a
move-down update, and J\L(t) > 100. For all persons Pin ASSIGNED- LIST(t), except
for the k exceptions described in the hypothesis, Lemma 18 implies that P is in
ASSIGNED- LIST(s). Therefore, J\L(s) ~ J\(t) - k > 100- k. It follows that J\L(s') ~ 100
- k, and so cost(s',2) ~ 300k.

Theorem 21: Let c be any finite execution of the airline system, CU any subsequence of the
indices of c, Jnd lets he the actual state after c.

1. Assume that there arc at most k persons P such that Pis in ASSIGNED- LIST(s) but cu
fails to include an assignment witness for P.
Then either cost(s, l) ~ 900k. or else there is an extension of c to another execution, by an
atomic suffix consisting of MOVE- DOWNs only, such that the prefix subsequence of the
first T in the suffix is cu, s' is the actual state after the last transaction. and cust(s', 1) s 900k.

2. Assume that there arc at most k persons P such that P is in W ;\ IT-1.IST(s) but CU fails to
include a waiting witness for P. Also a~sume that for all but at most k persons P, if P is not

33

in /\SSIGNFD- LIST(s), then cu includes the last canccl(P) (if any) from c. and qt
includes the last 1110vc-down(P)(if any) from c.
Then either cost(s.2) :::s; 300k. or else there is an extension of c to another execution, by an
atomic suffix consisting of MOVl'.-UPs only, such that the prefix subsequence of the first
Tin the suflix is 'U. s' is the actual state ;iflcr the last transaction, and cost(s',2) ~ 300k.

Proof: Lett be the result of CU applied to s
0

.

I. By Corollary 2, either cost(t.1) = 0, or else there is an extension of c to another execution, by
an atomic suffix consisting of MOY!:- DOWNs only, such that the prefix subsequence of the first
T in the su mx is 'U. such that t' is the apparent state after the su nix. and cost(t'. l) = 0.

First assume cost(t.1) = 0. Then ;\L{t) s 100. Let P be any person in /\SSIGNFD--LIST(s).
If Pis not one of the k exceptions described in the hypothesis, then I .cmma 15 implies that Pis in
/\SSlGNFD-1.lST(t). It fiillows that /\L(s) s /\l.(t) + k s 100 + k, so cost(s.l) S 900k, as
needed.

Second, assume that the extension exists. Then ;\f .(t') s 100. Let the actual state after the
suffix be s'. I .ct P be any person in /\SSIGNHD- LIST(s'). Then P is also in
/\SS IG NI :n- LIST(s). since the suffix docs not add anyone to the assigned list. If P is not one of
the k exceptions described in the hypothesis. then Lemma 15 implies that P is in
/\SSICINED-1.IST(t). None of the MOVl·'.- DOWNs in the suffix could have generated a
rnovc-down(P). since if one did, then P would not be in /\SSIGNHD- LIST(s'). Therefore. Pis
in ASSIGNED- UST(t'). It follows that AL(s') :S /\l.(t') + k :S 100 + k, so cost(s',l) S 900k.

2. By Corollary 2, either cost(t.2) = 0, or else there is an exten~ion of c to another execution, by
an atomic suffix consisting of' MOVE- UPs only, such that the prefix subsequence of the first Tin
the suffix is 'U, t' is the ;1pparcnt state after the suffix, and cost(t',2) = 0.

First assume cost(t.2) = 0. Then either ;\L(t) ~ 100 or ebc WL(t) = 0. Let P be any person in
W ;\ lT- LIST(s). If P is not one of the k exceptions described in the hypothesis. then I .cm ma 16
implies that Pis in W/\IT-LIST(t). It follows that WI.(s) s WL(t) + k. Let P be any person in
ASSIGNED- LIST(t). If P is not one of the k exceptions described in the hypothesis, then
Lemma 18 implies th.it Pis in ASSIGNED- LIST(s). It follows that J\L(t) s /\L.(s) + k. Thus,
eitl1er WL(s) s k or else /\L(s) ~ 100 - k. Thus, cost(s,2) s 300k.

Second, assume that the extension exists. Then either ;\f ,(r) ~ 100 or else WI .(t') = 0. f ,et the
actual state art.er the sumx be s'. I.ct P be any person in WAIT-1.IST(s'). Then P is also in
W1\IT- l.IST(s), since the suffix docs not add anyone to the wait iisL If Pis not one of the k
exceptions described in the hypothesis. then I cmrna 16 implies that P is in W /\IT- LIST(t).
None of the MOYE- UPs in the suflix could have generated a move- up(P). since if one did,
then P would not be in WAIT-LIST(s'). Therefore, Pis in W/\IT-LIST(t'). So WL(s') s
WI (t') + k.

Now let P be any person in ASSIGNED- LIST(t'). Then P must be known int, since otherwise
the move-ups in the suffix could not put P into /\SSIGNI~D- LIST(t'). If P is in
ASSIGN HD-- UST(t). and P is not unc of the k exceptions dcscribC'J in the hypothesis, then
Lemma 18 implies that Pis in ASSlGNED-1 JST(s) and hence in /\SSlGNED-LIST(s'). On
the other hand, if P is in W ;\IT- LIST(t), and P is not one of the~1~ same k exceptions, then

34

Lemma 17 implies that P is known in s. Since P is in ASSIGN FD- LIST(t'), a movc--up(P)
occurs in the sul"lix. Then Pis in ASSIGNl·D-1.IST(s'). So AL(s') > Al.(t') - k. It follows that
either Wl.(s') :S k or AL(s') ~ 100 - k. In either case, cost(s',2) :S 300k.

I

It is also possible to give refined versions of Corollaries 8, IO, and 11. We omit the details.

5.4. Cost Bounds lksulting from Centralization

In this subsection, we give two results which describe conditions under which overbooking cannot occur at

all. These conditions involve foirly strong ccntrali1.ation assumptions. The basic idea is that if all the

move- up decisions arc made centrally, it should not be possible to overbook. • lowevcr, in order to prove

this result. it is necessary for us to make some technical restrictions involving the requests.

Theorem 22: I .ct e be a transitive execution. Assume that the MOVE- UP transactions arc
ccntrali1.ed in e. Assume that for each P, the tra11sactirn.1s that generates updates involving P arc
centralized in e. Lets be any st<1te reachable in e. Then cost(s,1) = 0.

Proof: The proof is by induction on the length of c. The base case, where the length of c is 0, is
easy. So assume that the length of c is at least one. I ,ct T be the last transaction in e. I ,ct t be the
apparent state before T and t' the apparent state after T. Lets be the actual suite before T, and s'
the actual state after T. Let .A be the actual sequence of updates preceding T, and let ':.I\ be the
sequence whose effects arc seen by T.

The inductive assumption says that cost(s,l) = 0. The only way that cost(s',1) can be nonzero is
ifT is a MOVE- UP transaction which generates a move-up update. Then AL(t) < 100.

We claim that ASSIGNED-1,IST(s) ~ASSIGNED- LIST(t). lf this is so, then AL(s) < 100,
so AI ,(s') :S 100 and cost(s', I) = 0, as needed.

So fix P in ASSIGN FD- L!ST(s). Then there is an assignment witness for P in .A. The
move- up(P) of the pair also appears in ~. since the MOVE-- UP transactions arc ceniralizcd.
The rcqucst(P) of the pair appears in the prefix seen by the rnove-up(P), since the transactions
generating P upJ:1tcs arc centralized. Therefore, the rcquest(P) also appears in ':B, by transitivity.
Thus, S contains the assignment witness, and Lemma 15 implies that P is in
ASSIGN!~[)- LIST(t). I

The second result of this subsection is just a minor variant of the first, with an alternative technical

restriction on the requests.

Theorem 23: Let c be a transitive execution. Assume that the MOVE- UP transactions arc
centrali1.cd in e. As:;umc that for each P, there is at mosl one REQUEST(P) transaction in e. Lets
be any state reachable in c. Then cost(s, I) = 0.

Proof: The proof is near!;' identical to the preceding one. The only difference is in the :n-gumcnt
that the rcqticst(P) is in the subsequence s<.:en by the move- up(P). We know tl1<1t some
rcqucst(P) appears in the subsequence seen by the movc- up(P) aclion, for otherwise that action
would not have been invoked. '.:>incc there is only one such request(P}, the claim hold-;. I

35

Of course, it would be better if we could prove the same result only assuming centralization of MOVE- UP

transactions and transitivity, and not making any assumptions about the transactions generating updates for

the same person. But this stronger statement is not true, as is shown by the following example.

Fxa111plc:

Consider an execution which consists of a succession of blocks of 4 transactions each,

RFQUFST(PI), CANCl~l .(Pl). Rl:QUHST(Pl), MOVE-UP,
RLQUFST(P2). CANCl:L(P2), Rl~QUFST(P2), MOVE- UP,
RFQUl~ST(PIOI), CANCFL(l'IOI), RHQUFST(PlOl), MOVE-UP.

The successive MOVE- UP transactions produce updates move- up(Pl) , move- up(PIO I).
This execution is possible if each of the first 100 MOVl~-UP tr:111sactions secs the lirst request in
the same block, but not the cancel or the second request. The last MOVE- UP secs all the
previous MOVH- UP's and the requests that they sec, plus the cancels. Then this last
MOVE- UP will think that the earlier MOVF- UP's aLted erroneously., and that there i:> really no
one on the assigned list. It will therefore decide to move PlOI up. The cost after this execution is
nonzero.

Similar results to those in this section should be provable, at least in principle, for the undcrbooking cost.

However, the centralization assumptions that appear to be needed arc so strong that the results do not seem

very interesting.

5.5. Fairness

In this subsection, we consider fairness properties of the airline reservation system. As before, the results

arc stated in terms of the specific example, but the techniques appear to generalize to other applications.

For this ~cction, we make the following very strong assumption. We assume that all MOVE·- UP and

MOVE- DOWN transactions arc centralized: thus, there is essentially one "agent" making all decisions

about scat assignment. It remains to be seen whether this assumption can be weakened, while still permitting

proof of interesting fairness claims.

Recall the definition of passenger priority from Section 4.2: we say P < Q, for known P and Q, to mean that

either P precedes Q on the W AIT·-LIST. or P precedes Q on the ASSICINED- LIST, or else Pis on the

ASSIGNED-- LIST and Q is on the WAIT-LIST.

J,cmma 24: I .ct .A be a sequence of updates, and let ':.B be a subsequence of .A. I.ct P and Q be
people. Assume that~ contains all move-- up and rnovc--down updates from .A. Also assume
that~ contains all the rcquc~;t and cancel updates for P and Q, from .A. Let s be the result of .A
and t the result of~fl. appli;;d to s0. Then P < Q in t if and only if P <Qin s.

Proof: The updates :n .A which arc not included in ~ arc only request and cancel updates for
persons other than P and Q. These c1nnot affect the relative priority of P and Q. I

36

The following theorem says that, under certain restrictions, the relative priority of two requests is

determined at the time the "agent" for MOVE- UP and MOVE- DOWN transactions first learns about both

requests. Thus, except for an initial period of uncertainty during which the agent has not yet learned about

the requests. their relative priority is fixed.

Theorem 25: Let c be a transitive execution. Assume that t11c MOVE- UP and
MOVE- DOWN transactions arc centralized. Let P and Q be people each of whom h;is exactly
one REQUEST transaction. but no CANCEL transactions. in c. Let T be a MOVE- UP or
MOVE- DOWN transaction having both RFQUHST(P) and REQUEST(Q) in its prefix
subsequence. Lett be the apparent state, and s the actual state, before T. If P < Q in t, then also P
< Q in sand all other ;ictual dat;1basc states occuring later inc.

Proof: First, we show that P < Q in s. I ,ct A be the sequence of updates preceding T, and~ the
subsequence actually seen by T. The ccntralit.ation ;1ssu111ption implies that ~ contains all
move- up and move-down updates from A. The other assumptions impiy that~ contains all
the request <rnd cancel updates f\ir P and Q, from A. Then Lemma 24 implies that P <Qin s.

Assume that T1 is the first transaction (Tor later) atlcr which it is false that P < Q. f ,ct t1 be the
apparent state before T

1
and t 1' L11c apparent state after TI' Lets

1
be the actual state before T 1 and

s
1
' the actual state after T

1
• Then P <Qin s

1
but not in s

1
'. The only possibility is th;1t T

1
is a

MOVE- UP or MOVE-- DOWN transaction that causes the order of P and Q to become
interchanged; thus, Q <Pin s1'.

We claim that P < Q in t
1
• Let A be the sequence of updates preceding Tl' and let~ be the

subsequence actually seen by T
1
• ~contains all the moving updates from A, by the centralization

assumption. Also. ':n contains the requests for P and Q. since the subsequence seen by T docs, Tis
either equal to T1 or else is in T

1
's subsequence, and transitivity holds. Thus, applying I .cmma 24,

the orderings in t1 and s1 arc the same, so P <Qin t1•

Now we claim that Q <Pin t
1
'. This follows using Lemma 24, since Q <Pin s1 '. But if P <Qin

t1 and T 1(t 1,t 1) = t1', then P <Qin t1'. since al! transactions preserve priority. This yields a
contradiction. I

We can interpret the preceding theorem as follows. We might imagine that at the actual flight time, next

JanL1ary l, t11c complete execution becomes known to the check-in attendant. The people that he actually

allows to proceed onto the airplane arc the 100 people who show up, who have the highest priority in the final

database suite. (CANCEL transactions can be run for the others. and then sufficiently 111any MOVH- UP or

MOVE- DOWN transactions to cause Al. to equal 100 or WI, to equal 0.) If P and Q had previously become

known to the "agent'' for MOVE - UP and MOVE- DOWN rran~aclions. with P < Q, and if P and Q both

show up, if Q gets onto Flight l, then so docs P.

Example:

Our transaction definitions can lead to the follo1Ving behavior for passengers' relative priorities.
Assume that REQUFS'l(P) precedes RFQUFST(Q). bm the rcqucst(Q) updJtc becomes known
to the "agent" beli.irc the requc:-;t(P) update. 'I hen a movc--up(Q) can occur.. which moves Q up

37

past P. Later. a movc-down(Q) can occur. When this happens, our definitions st1y that Q gets put
at the head of the W AIT-1.IST, ;1hcad of P. Subsequently, the moving agent can learn about the
rcqucst(P) also. At that point, Q < P, so by Theorem 25, Q remains ahead of P. This happens even
though there is suflicient information in the system to allow for Q to be placed on the
WA IT- UST after P, which is in keeping with their timestamp order for requests. Thus, the
order obtained in the final state is uetcrmincd by the order at the time a MOVE- UP or
MOVI'.- DOWN transaction first secs both requests, but is not necessarily determined by the
actual order in which the requests were initially made.

It is possible to redesign the application to respect the original request order in this situation. It
suffices to include request timestamps explicitly in the database. l'.ach of the two lists would
always be kept sorted according to timcstamp order. Thus, when the requcst(P) becomes known
to the agent, he would insert P ahead of Q on the waiting !isl. (More precisely, when the
move- down(Q) is run f'rom a state in which P is on the waiting list, Q is not placed at the head of
the waiting list, but rather is inserted in timcstamp order, after P.) This relative position would be
maintained trom then on.

Theorem 25 makes a claim about relative priorities at times. after a conceptual "agent" learns about two

requests. In order for this condition to be meaningful as a correctness claim, the user must have a fairly

detailed and sophisticated conceptual model of system operation, including prefix subsequences and agents.

It might also be interesting to state fairness claims which involves a less detailed conceptual model. For

example, we might want to state a condition which could be paraphrased aa follows. "If a REQUEST(P) is

made sufficiently earlier than a REQUEST(Q), then P must precede Q in the final state." The following

lemma can be used to infer such a property.

Lemma 26: Let c be a transitive execution. Assume that the MOVE- UP and MOVE- DOWN
transactions arc centralized. Let P and Q be people each of whom has exactly one REQUEST
tr;111saction, but no CANCEL transactions, in e. Assume that REQUEST(P) precedes
RFQUEST(Q) in c. Further assume that any MOVE- UP or MOVE- DOWN transaction that
has REQUEST(Q) in its prefix also has REQUEST(P) in its prefix. Then P <Qin any actual state
reached during c in which both P and Q arc known.

Proof: Assume the contrary, and let T be the first transaction inc such that Q <Pin the actual
database sr.atc after T. I ,ct t be the apparent state before and t' the apparent state after T. I .ct s be
the actual state before ands' the actual stale after T. Then Q < P in s' but not ins.

First, we claim that T must be a moving transaction. lfT were ~1 REQUEST(P) transaction, then
the REQUEST(Q) cannot be reflected ins' since it occurs after REQUEST(P). All other cases can
be ruled out by similar trivial arguments. So Tis a moving transaction; thus, P and Q arc known
ins, so that P <Qin s. The only possibilities arc that Tis a MOYE- UP transaction that moves Q
up past P, or that T is a MOVE- DOWN transaction that moves P down past Q. For either of
these to happen. at least one of rcqucst(P) and rcqucst(Q) must be in the prefix subsequence ofT.

Case l: T has both rcqucst(P) and rcquest(Q) in its prefix subsequence.
Then both P and Q arc known in t. If P < Q in t, then Theorem 25 implies that P < Q in s', a
contradiction. On the other hand, if Q < Pin t, then Theorem 25 implies tJ1at Q <Pin s, again.a ..
contradiction.

38

Case 2: T has only rcquest(P), hut not rcqucst(Q). in its prefix sub~equcnce.
Then T must be a MOVF- DOWN which moves P down past Q. Therefore, Q must he in
/\SSIGM-'.1)- LIST(s). But in order for this to occur, there must be some MOVE- UP
trnnsaction r appearing earlier than Tine, which moves Q up: clearly, request(Q) must be in the
prefix subsequence of r. T is in the prefix subsequence of T, since the moving transactions arc
centralized. By transitivity, rcquest(Q) is in the prefix su'Jsequencc ofT. This is a contradiction. I

We can use this lemma to obtain a theorem of the form we described earlier. i.e. that if REQUEST(P)

occurs suflicicntly long before REQUHST(Q) (and other suitable conditions hold), then P rct1i11s priority

over Q. ;\II that is needed is an additional assumption that if RFQUEST(P) occurs sufficiently long before

REQUEST(Q). then any MOVE- UP or MOVE- DOWN transaction that has request(Q) in its prcflx also

has request(P) in its prefix.

Theorem 27: J ,ct c he it transitive, orderly timed execution having t-houndcd delay. Assume
that the MOVE- UP and MOVF- DOWN transactions arc cenlrali1.c<l. Let P and Q be people
each of whom has exactly one RFQUFST trans;1ction, but no C/\NCFI, transactions, in e.
;\ssume tlwt RFQUFST(P) precedes Rl'.QUFST(Q) by at least time t, in e. Then P <Qin any
actual slate reached during c in which both P and Q arc known.

Proof: The t-boundcd delay assumption and orderliness imply that any MOVE- UP or
MOYE- DOWN that has Rl:QUEST(Q) in its preflx also has REQUEST(P) in its prefix. The
previous lemma then yields the result. I

6. Conclusions

In this paper, we have given precise correctness conditions for a highly available replicated database system

such as CC;\ 's SH/\RD. First, we gave basic definitions for the SH/\RD database and transaction model. We

then described assumpti,rns about how the system runs the transactions, followed by assumptions about

applications. Finally, these two types of assumptions were combined to prove sumc interesting properties of a

particular running application. an airline reservation system. /\!though the example is simple, it is illustrative

of a large class of important resource-allocation problems.

The assumptions about how the system must run the transactions (in particular. tile prefix subsequence

condition) have been described in a very general way. They embody a new model for data processing, which

is quite different faim, and imposes new strncturc on, the traditional models used in concurrency control

theory. We expect that this model will prove very fruitful for future research and for application design.

In describing our assumptions about the airline reservation application, we have tried to be as general as

possible. The types of assumptions we have listed seem to be very appropriate for resource allocation

applications, but we do not believe that they comprise a complete set of interesting application assumptions.

I l is likely that study of additional cx::unples will yield other interesting types of assumptions as well.

39

The particul<ir properties proved for our application involve hounds on the costs attributable lo violations of

integrity constrain ls, and fairness. hir other resource allocation applications, similar cost bound and fairness

rcsulL<; should be provable.

The system exhibits nonscrializablc behavior, so that being able to prove interesting conditions is an

accomplishment. In the usual development, no guaranlccs at all can be proved in case information about any

preceding transaction is mbsing. In contrast, we can prove interesting properties even with incomplete

in formation. Moreover, small changes in available in formation lead tG small changes in costs for integrity

constraints.

The analysis required to obtain some of our results has been very delicate. This is because it is necessary to

consider how updates will execute in many possible situations, not just from the database sU1Lc seen by the

decision parts llf their transactions. Another difficulty is that SHA R [) docs not impose any a priori

restrictions on the kinds and orders of transactions that arc submitted and processed. The need to consider

the behavior of transactions in the presence of arbitrary preceding transactions, and arbitrary partial

knowledge about the past, makes the analysis of Sll/\RD trausactions more difficult than for ordinary

(scrializablc) transactions. But this kind of analysis seems unavoidable: whether or not a formal.

mathematical ;malysis is carried out for a pal"ticular application, applic~1tion programmers do need to consider,

at least informally, how transactions will behave in the presence of arbit~ary preceding transactions and

arbitrary partial knowledge about the past. We provide a framework for this kind of analysis, but more needs

to be done to develop appropriate styles of programming and 111ethods of analysis.

A next step in this research should be the consideration of other example applications. 1\dditional resource

allocation examples should be examined, such as examples from banking and inventory control. Other,

non-resource-allocation. examples should be studied. Some examples apprnprialc for SI IJ\RIJ might involve

"distributed data strur:turcs". The highly-available distributed dictionary studied itt IFMJ is enc example that

fits the SHARD framework, and there should be others. Also, it has been claimed that name servers such ;:is

Grapevine [BJ have interesting but nonscrializablc behavior; it seems likely that they can be described within

our framework. Still other appropriate ex<1mpks might arise from real-time control.

For each of these examples, simple prototypes could be defined, capturing the essential behavior of the

example. Study of these prototypes should determine the appropriate properties to prove in each case. Cost

bounds and fairr:ess sho11ld reappear, but otlwr properties should also be of interest. It is important Lo look

for general methods of programming and analysis.

Other theon.:lical work also seems possible. For instance, we have described some interesting automaton

40

slruclure in Seclion 5.J. This structure could be sludied and generalized. Also, il should be possible to obtain

complexity results. Particubr examples of desirable application behavior could be sludied individually, and

costs (e.g. amount of communication, or local storage) determined for achieving correct behavior.

On the systems design side, SI JARD itself needs to be generalized in at least two imp(H"tant ways. First, the

inessential full replication assumption needs to be removed. Even with only partial replicalion, it should be

possible to continue to maintain the correclness conditions we describe in this paper, by judicious assignment

of data and transactions to nodes, (i.e. in such a way that each transaction will have copies of all the data il

requires). It should even be possible lo allow some of the data which transactions read lo be present in

summary form, rather th<rn in its f'ull detail. Second, the Sl !ARD work needs lo be integrated wilh earlier

work on serializability. ll should be possible to build an applic;1tion syslern in which certain critical

transactions run ~erializahly. while the olhers run in a highly available nwnner. The application designer

should be able to specify the modes of operalion for different transactions. As lhe system design gels

extended. the theory also needs to be extended to incorporate t11ese two generalizations.

It is apparent to us thal there is an inleresting theory to be developed, for proving properties of

nonscri;1li1ablc highly available replicated database systems. We believe that t11is paper gives some usefi.Jl

ideas on how to begin.

7. References

[AM)

[BJ

[BG]

[BK]

[FM)

[G]

[GLBKSS)

[J]

[S]

[SBK)

[SKS]

[SL)

41

Allchin, J. E. and McKendry, M. S., "Synchronization and Recovery of Actions," />roe. of
the Second Annual ACM Sy111posiu111 011 Principles of /JistributcJ Co111puting, Montreal,
Quebec, Canada, August 17-19, 1983, pp. 31-44.

Birrell, A. D., Levin, R., Needham, R. M .. and Schroeder, M. D., "Grapevine: An
Exercise in Distributed Computing," Comm. of the ACM 25. 4 (April 1982), pp. 260-274.

Bernstein, P. /\., and Goodman, N., "Concurrency Control in Distributed Database
Systems," ACM Computing Surveys 13,2 (June 1981), pp. 185-221.

Blaustein, B. T. and Kaufman, C. W., "Updating Replicated Data During Communication
Failures," Proc. of the Ueventh Intl. Co11j.' 011 Very l.arge Databases, Stockholm, Sweden,
August 1985, pp. 49-58.

Fischer, M. J. and Michael, /\., "Sacrificing Serializability to Attain High Availability of
Data in an Unreliable Network," Proc. of the .'-i'ymposium oil Principles of /Jatabase
Systems, Los Angeles, California, March 29-31, 1982, pp. 70-75.

Garcia-Molina, IL. "Using Sem;mtic Knowledge for Transaction Processing in a
Distributed Database," Tech. Rep. 285, Princeton Univ. Dept. of Electrical Engineering
and Computer Science, April 198 l. Also appeared in Trallsactiuns on Database .'>'ystems, 8,
2 (June, 1983), pp. 186-213.

Garcia-Molina, H., Lynch, N. A., Blaustein, B. T., Kaufman, C. W., Sarin, S. K., and
Shmucli, 0., "Notes on a Reliable Broadcast Protocol," CC/\ technical report, 1985.

Jefferson, D., "Virtual Time," Transactions on Programming Languages and ,\vstems, (July
1985), 7. 3, pp. 404-425.

Sarin, S. K., "Robust Application Design in Highly Available Distributed Databases",
Proc. Fijlh Sy111p. Reliability in Distributed Software and Database Systems, January 1986,
pp. 87-94.

Sarin, S. K., Blaustein, B. T., and Kaufman, C. W., "System Architecture for Partition
Tolcranl Distributed Databases," I FFF Transactions Oil Computers C-34, 12 (December
l 985), pp. 1158-1163.

Sarin, S. K., Kaufman, C. W., and Somers, J. E., "Using History Information to Process
Delayed. D<1tabase Updates," CC/\, 1986, submitled for publication.

Sarin. S. K., and Lynch, N. A .. "Discarding Obsolete Information in a Replicated Database
System." C:CA, 1986, submittcu for publication.

ENiT ASSIFIED
SECURITY CLASSIFICATION or THIS PAGE nl'hen D•t• Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETfNG FORM

I. REPOR1' NUMBER

r-
GOVT ACCESSION NO. 3. RECIPIENT'S C"1'Al...OG NUMBER

'MIT /LCS/T'R- 3 6 4 N/A N/A

"· TITLE (and Subtitle) 15 TYPE ~F REPORT a PER:oD COVERED

"Correctness Conditions for Highly Available Interim Researcn
Replicated Databases" June 1936

16
PERFORMING ORG. REPORT NUMBER

7. AUTHOR(•) 8 co ... TR ... CT OR GR ... NT NUMBER(o)

Nancy Lvnch
. ' Barbara Blaustein and !1I'I' /LCS/TR-3 6 4

Michael Siegel

9. PERFORMING ORGANIZ"TION NAME "ND ADDRESS 1 1C PROGRA.M ELEMENT PROJECT, TASK

Cor.1puter Science
"RE" a WOR><: UNIT NUMBERS

MIT Labor a to rv for
545 Iechnolog\' Sq.
Camhrid~e, M1\. 02139

!

11. CONTROLLING OFFICE N ""'E "ND "DORESS i \ 2 REPORT D"TE

DARrA./DOD- ! June, l<J 86
140J W.il SOli boule\'arc.l : I 3 NUMBER OF P"GES

A:r.linGton, VI'. 22209 I 41
I

f 4. MONITORING "GENCY N"ME a "DDRESS(if d/ller.,,r /rorn Controll1na Olfrce, I 15 SECURITY CLASS. (o/ thia r•pon;

ONE/Department of the Navy I Information Systems Program l'nclassified

Arlington, VA 22217 15a. DEC L "551 Ft C "Tl ON· DOWN GR ... DING
SCHEDULE

16. DISTRIBUTION STATEMENT (ol thto kepor/J

Approved for public release; distributio;; unl i:::i ted.

17. DlSTR1BUTlON STATE~ENT (of the abat111cr erirtu•d Jn BJocX :o. ff dlttorrmt trom R.epor~;

:.,~~

II!. !.UPPLEMENT ... RY NOTES

~~"'f'"'onrt~u• on ,. , •• aid• JI n•c•••ery Wld taentlfv b}' block number)

Databases, availabilitv, replication, distributed processing, net\.'ork
partitions, nonserializable systems, integritv constraints, resource
al lo ca ti on, cost bounds, f ;ii rness.

20. .• ABSrRACT rc.-x-na. mlli ,...-.r- HD tr~ .-rd. ld~nLif~ by block. nlllr'lb..,.}

Correctness conditions are given which describe some of the properties
exhibited bv highlv available distributed database svstems such as the
SHARD (System for Highlv Avail ab le Replicated Data) system currentlv being
developed at Computer Corporation of America. This svs tern allows a data-
base appli ca ti on t (1 continue operation in the face of communication failures,
including network partitions. A penaltv is paid for this extra availability:
the usual correctness conditions, seriali zabili ty of transactions and preserva

DO 1'73 EDITION OF" I N0\16!> I!. OftSOLETE l'.\CLASSFIED

l!NCLASSIFTEp
SECURITY CLASSIFICATION OF THIS PAGE("1a- D•t• Entered)

tion of integrity constraints, are not guaranteed. However, it is still possiblE
to make interesting claims about the behavior of the system. The kinds of
claims which can be proved include bounds on the costs of violation of integrity
constraints, and fairness guarantees. In contrast to serializability's all-or
nothing character, this work has a "continuous" flavor: small changes in
available information lead to small perturbations in correctness conditions.

This work is novel, because there has been very little previous success in
stating interesting properties which are guaranteed by nonserializable systems.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Dt1tt1 Entered)

