
.

-~7--~-~ :.,·,•,"; - .-~~" ~-· ·:..., ,_.,·,., : :•" -• .("" ;·,";·~~~;~:::;~:· <'~··, c• .'

-~--~; ... ,~,~%:c:g'.,:~j:_
0 •

. ·1 n.cn::, :

BOUNDED WIDTH BRANCHING PROGRAMS

by

DAVID ARNO BARRINGTON

B.A., Amherst College (1981)
C.A.S., Cambridge University (1982)

SUBMITTED TO THE DEPARTMENT OF
MATHEMATICS

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June, 1986

©Massachusetts Institute of Technology, 1986

Signature of Author '!?.~. ~: -~
Department of Mathematics

Certified by ~)Y~.~~············~-~~,-~~~~
Professor Michael Sipser

Thesis Supervisor

Accepted by .. .

Professor Nesmith C. Ankeny, Chairman
Departmental Committee on Graduate Students

Department of Mathematics

1

Abstract:

BOUNDED WIDTH BRANCHING PROGRAMS

by

DAVID ARNO BARRINGTON

Submitted to the Department of Mathematks

on May 2, 1986 in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

We examine the branching program model of computation and in particular

the classes of languages which can be recognized when the width of the programs

is bounded by a constant. After slightly revising the framework of definitions to

sharpen analogies with other models, we prove that width 5 polynomial size branch

ing programs can recognize exactly the parallel complexity class NC 1 , refuting a

conjecture of Borodin et al. in [BDFP83]. Other results include an application

to Boolean circuits of constant width (again, width 5 and polynomial size circuits

can recognize exactly NC1) and a characterization of a restricted class of width 3

branching programs. This thesis contains the results of [Ba85] and [Ba86], along

with some additional material.

Thesis Supervisor: Dr. Michael Sipser

Title: Associate Professor of Applied Mathematics

2

Acknowledgements

My Ph.D. research was done under the direction of Mike Sipser, who suggested

this topic and advised me throughout my work on it. I would like to thank him for

all his help and also thank Ravi Boppana, Johan Hastad, David Johnson, Philip

Klein, Tom Leighton, and Leslie Valiant for various helpful discussions.

This thesis was prepared using the M.l.T. Mathematics Department's Xerox

Sun network and Leslie Lamport's LaTeX macros for Donald Knuth's TeX typeset

ting system. I would like to thank system manager Jon Haass, system guru Bob

Thurstans, and local LaTeX guru Steve Lowe for their invaluable assistance.

My paper [Ba86] is a copyrighted work of the Association for Computing Ma

chinery, and I use material from it herein by their permission.

This work was financially supported by National Science Foundation grant

MCS-8304769, by U.S. Air Force grant AFOSR-82-0326, and by a National Sci

ence Foundation Graduate Fellowship. Vital emotional and spiritual support was

provided for the author by his fiance, Jessica Mix, to whom this work is dedicated.

3

CONTENTS

1. Introduction 5

2. Previous Work 7

3. Definitions and Justifications 10

4. The Cook Framework and BWBP 16

5. PBP's and the Width 3 Analysis 21

6. Solvable PBP's and the Fine Structure of NC1 27

7. The Width 5 Result and its Consequences 31

8. Boolean Circuits of Constant Width 33

9. Non-solvable PBP's and Completeness 36

10. Uniformity 38

11. Open Problems 41

12. References 43

4

1. Introduction

Branching programs are a model of computation intermediate between parallel

and sequential computation. The settings of n input variables determine a flow

of control through an array of processors, as each processor triggers one of two

successors depending on the value of one of the inputs. Originally invented for the

analysis of switching problems, they have come to be analyzed as an abstract model.

The bounded-width problem was introduced by Borodin et al. in [BDFP83].

They proposed to develop a lower bound technology for general branching programs

by first considering the case where the width of the processor array was bounded

by a constant. This defined the complexity class which I call B WBP , languages

recognizable by families of branching programs of constant width and polynomial

size. They conjectured that the majority problem was not in B WBP, and provided

a framework for analyzing branching programs of width two. Results in their pa

per and several suceeding papers seemed to support their conjecture - these are

summarized in more detail in Section 2 below.

I began my analysis of bounded-width branching programs with their general

program in mind, but I soon developed a different conceptual framework in which

I changed the definitions of width and other facets of the model in ways that pre

served the fundamental class B W BP. I think of a branching program as a series

of instructions, each associating to one input variable two functions on a finite set

with size equal to the width. This new framework makes more exact an analogy be

tween bounded-width branching programs and a certain class of non-uniform finite

automata. It also allows the introduction of notions from the theory of permuta-

5

tion groups which have made possible the results of this thesis. This conceptual

framework and the ensuing definitions are described in Section 3.

In Section 4 I consider the position of the class B WBP relative to other more

well-known complexity classes. The context in which I do this is the hierarchy of

parallel complexity clases described by Cook [Co85], which I describe and motivate.

I prove that BWBP lies within the class NC1 and properly contains the class AC0
•

Given the redefinition of bounded-width branching programs as sequences of

instructions consisting of finite functions, a natural notion is to restrict these func

tions to being permutations of the finite set. In fact for any group G realized as

a permutation group, we can define a set of G-permutation branching programs

(G-PBP's) where all functions are restricted to be permutations in G. If G is

the symmetric group Sw we speak of width w permutation branching programs or

w-PBP's. In Section 5 I characterize languages recognizable by 3-PBP's, and in

Section 6 I extend part of this analysis to give strong evidence that G-PBP's for

any solvable G have only limited computational power. This will involve a study of

the structure of the complexity class NC 1 under AC0 reductions.

In Section 7 I prove the main result of this thesis, that polynomial size 5-

PBP's can recognize exactly those languages in NC 1• The consequences of this

result for branching programs and NUDFA's are examined. In Section 8 a model of

constant-width Boolean circuits is defined which is closely related to bounded-width

branching programs - the relationship is proved and the consequences of the main

result are examined. An extension of the main argument in Section 9 shows that

polynomial-size G-PBP's can recognize all of NC1 for any non-solvable G, so that

6

solvability appears to be the key property.

The results discussed so far have concerned classes of non-uniform families of

branching programs and Boolean circuits. In Section 10, using the definitions of

Cook [Co85] and Ruzzo [Ru81], I show that the main result that BWBP = NC 1

also holds in a uniform setting.

Finally, in Section 11 I examine the possible applications of these results and

the many open problems suggested by this research.

2. Previous Work

One general program in the study of computational complexity has been to take

general models of computation, such as Turing machines or Boolean circuits, and

examine their behavior under very tight resource constraints. This leads to the

definition of relatively small 'low-level' complexity classes which lie inside those of

primary interest. A prime example is the class AC0 of problems solvable by Boolean

circuits of constant depth, polynomial size, and unbounded fan-in. This class has

been the subject of extensive research since the seminal paper of Furst, Saxe, and

Sipser in 1981 [FSS81].

The study of these classes has a number of purposes. In some cases the pos

sibility or impossibility of performing tasks under tight constraints is of practical

interest. The work of [FSS81] rigorously confirmed a long-standing folk belief as to

the impossibility of multiplying integers with a programmable logic array.

There have been direct mathematical connections to the study of the polynomial

7

time complexity classes - for example, [FSS81] and Sipser in [Si83] showed that

certain lower bounds for circuits of constant depth and unbounded fan-in implied the

existance of oracles under which widely held conjectures about the polynomial time

hierarchy are true. Now that these lower bounds have been provided by Yao [Ya85]

and Hastad [Ha86], we know that the hierarchy can be separated from polynomial

space by an oracle and that another oracle separates the individual levels of the

hierarchy.

Finally, these classes appear to be more amenable to combinatorial analysis,

so that we can discover things about them which will advance our knowledge of

complexity classes in general, and develop new techniques which may have wide

applicability. For example, the study of size complexity for Boolean circuits will be

greatly affected by the recent work of Razborov [Ra85, Ra85a) and Andreev [An85]

on monotone Boolean circuits. We will not discuss this work here - the reader

should consult Johnson's excellent survey article [Jo86] for a description of both

this and the oracle results, and further pointers to the relevant literature.

Our subject here is the branching program model of computation and in par

ticular the effect upon it of tight constraints on width. As we shall see, complexity

classes defined by branching programs fit closely into the framework of already stud

ied low-level classes defined by Turing machines or circuits. It is hoped that the

results here will further the general program of low-level complexity theory.

Branching programs were defined by Lee [Le59] as an alternative to Boolean

circuits in the description of switching problems - he called them 'binary decision

programs'. They were later studied in the Master's thesis of Masek [Ma76] under

8

the name of 'decision graphs'.

Borodin, Dolev, Fich and Paul [BDFP83] raised the question of the power of

bounded-width branching programs. They noted that the class B WBP contains

AG0 (languages recognized by unbounded fan-in, constant-depth, polynomial-size

Boolean circuits) as well as the parity function (shown to be outside AG0 in [FSS81]

and [Aj 83]). They conjectured that the majority function was not in B W BP, in

fact that for bounded width it requires exponential length.

Subsequent results appeared to support this conjecture. Chandra, Furst, and

Lipton [CFL83] and Pudlak [PU.84] showed linear and superlinear length lower

bounds respectively for arbitrary constant width. In [BDFP83J the idea was to

work with width 2 and get exponential bounds. They succeeded for a restricted

class of BP's, and Yao [Ya83] followed with a superpolynomial lower bound for

general width 2. Shearer [Sh85] proved an exponential lower bound for the mod 3

function with general width 2. Ajtai et al. have just proved a nearly n log n size

lower bound for a large class of symmetric functions [ABHKST86], where width is

unconstrained but size is defined to be length times width.

Barrington [Ba85] revised the notion of width to the one used here and con

sidered width 3 permutation branching programs. Their power was characterized

as equal to that of certain depth 2 circuits of mod-2 and mod-3 gates, and it was

shown that these could recognize any set in exponential length and that exponential

length was required to recognize a singleton set.

Finally, in [Ba86] it was shown that the majority function (along with the rest

of the class NG 1) is in BWBP, and thus that the conjecture of [BDFP83] is false.

9

This thesis contains the results of [Ba85] and [Ba86], along with some additional

material.

3. Definitions and Justifications

The original notion of a branching program is that of a directed graph with

decision nodes, accepting nodes, and rejecting nodes. To define the width of a

branching program, we follow the process in [BDFP83]. We first divide the nodes

of the graph into levels, i. e., sets L1i ... , L1c such that all edges out of nodes in L;

go to nodes in some Li+l · We can make a graph levelled by adding more nodes,

possibly squaring the size but keeping the length the same. The width is then the

size of the largest level in an optimal division into levels.

An arbitrary graph of width w and length l can be converted into a w by l array

of nodes by adding dummy nodes, possibly multiplying the size by w. This brings

us to the model of [BDFP83].

Clearly a sequential computation with k internal states and running time t

(where one time step is required to access an input variable) may be simulated by

a branching program of width k and length t. This gives simulations of determin

istic finite automata (DFA's) in constant width and log-space Turing machines in

polynomial width and hence polynomial size.

In fact polynomial-size branching programs are equivalent to log-space Turing

machines except for the problem of uniformity. A language A ~ E• can be recog

nized by a family of polynomial-size branching programs iff it can be recognized

10

by a log-space Turing machine with polynomial advice. That is, along with the

input x of size n the Turing machine receives a stringy," of size polynomial in n.

The class thus defined is called 'non-uniform L', just as the languages definable by

polynomial-size Boolean circuits are 'non-uniform P'. Given our later definition of

width for Boolean circuits in Section 8, non-uniform L may also be defined as those

languages computable by Boolean circuits of width O(log n) and polynomial size,

as mentioned in [Jo86].

There are two approaches to dealing with this analogy - we may work in a

uniform or a non-uniform setting. In the uniform approach we would define uniform

families of branching programs, where the branching program for inputs of length n

can be determined from n with appropriate limits on computational power. We will

do this later when we discuss the parallel complexity classes such as N C 1 • For now,

we will consider arbitrary families of branching programs satisfying constraints of

width, length, or size.

Our changes in the definitions of [BDFP83] are motivated by a desire to strength

en the relationship between branching programs and sequential computation, using

an analogy of time for length and machine state for width. For example, consider an

accepting node in the middle of a branching program. The flow of control through

the program stops and never reaches the end. But if we are to think of the length

dimension of the program as time, we must deal with the fact that at the end

the fact of acceptance is known without having been stored in the meantime. A

machine simulating the program would have to go into a separate 'accepting node

encountered' state, and it seems reasonable to charge for this state in extra width.

11

Thus we require that accepting and rejecting nodes occur at the end, and note that

we can impose this restriction on an arbitrary [BDFP83] branching program at a

cost of adding two to the width without changing the length.

Next, we consider how the branching program is to get its input. As things

stand, at a given level it can access one of several different input bits at the same

'time', depending on the 'state'. We can eliminate this power by insisting that all the

nodes on the same level access the same input variable. A straightforward argument

shows that we can impose this restriction at a cost of doubling the width and

multiplying the length by either the width or by n, the number of input variables.

Now we can think of levels, rather that nodes, as our fundamental objects, and

give the following formal framework for branching programs of bounded width.

Definitions: A branching program of width w (aw-BP) is a series of instructions

(ji, /i, Yi) for 1 ~ i ~ l, where x;; is one of n input variables, /; and Yi are functions

from [w] to [w] (here and throughout, [w] is the set {O, ... ,w -1}), and l is the

length. Given a setting x of the input variables, the instruction (j;, /;, y;) yields

the function /; if x;; is on and Yi if x;; is off. A branching program B yields the

composition of the functions yielded by its instructions - we call this composition

B(x). Thus B(x) applied to i gives the number of the sink reached by following

the flow of control from node i in the first level given input setting x.

There is now a choice in how to define the recognition of a language by a

branching program. To match the earlier definition we should give a partition of

[w] into an accepting and rejecting set and say that B accepts x iff B(x) applied to

0 is in the accepting set. For various reasons, we will use a number of definitions of

12

acceptance below, explaining each when necessary.

It should be noted that all of our modifications of the definitions have preserved

the class B WBP of languages recognized by families of branching programs of con

stant width and size polynomial in n. We will eventually show that this class is

independent of the definition of recognition - for now we may adopt the one given

above.

We can now also formalize our notion of a non-uniform DFA and prove the

relationship between such machines and bounded-width branching programs.

Definition: A non-uniform deterministic finite automaton (an NUDFA) is a

machine with a two-way read-only input tape, a finite control with k states, and a

one-way read-only program tape. On the program tape are instructions of two types

- to move the input read head one position or to change machine state based on

the current state and the input bit being read.

The automaton's resources are time (the length of the program tape) and space

(its number of states, a constant). Note that the automaton must execute the entire

program tape and that the input cell read at a given time does not depend on the

input. These restrictions prevent the NUDFA from storing information about the

input in the input read head position.

A width k braching program can easily simulate an k-state NUDFA program,

with one branching program instruction for each state-changing NUDFA instruc

tion. The simulation in the other direction is also easy, except that the NUDFA

time may be as much as n times greater than the branching program length be

cause the NUDFA may have to move its input head up ton times between branching

13

program instructions. We have the same varied possibilities for how to define ac-

ceptance by an NUDFA - the most natural first notion is to designate a start state

and partition the final states into accepting and rejecting.

This analogy allows us to prove facts about branching programs using standard

arguments about finite automata. FOT example, we can define a non-deterministic

branching program of width w by allowing more than one function for the on-case

and off-case in each instruction. Using the familiar subset construction for DFA's

and NFA's it is easily shown that a non-deterministic branching program of width

w and length l may be simulated by a deterministic program of width 21: and length

l. Thus the class B W BP could equivalently be defined using non-deterministic

programs. When we show later that B WBP is a subset of the parallel complexity

class N C 1 , we will use a simple adaptation of the standard argument that regular

languages are in NC 1• The utility of the analogy, in my view, provides a compelling

justification for the changes I have made in the definition of width.

The view of branching programs as analogous to DFA's makes clear the intuition

behind the conjecture of [BDFP83] that the majority function is not in BWBP.

The finite control and memory of an NUDFA are very simple, and if the number

of states is small enough we might imagine an implementation of an NUDFA using

a chimpanzee 1 as central processor, as follows. The memory (machine state) will
1 We take no position here in the raging debate on chimpanzee intelligence. The defining properties

of the chimpanzee in this discussion will be a capacity for symbolic manipulation with a constant

sized vocabulary, together with an inability to think abstractly as humans do about such things as

large integers. The zoologically informed reader has the option of positing a hypothetical animal

with these properties if a chimpanzee will not do.

14

be stored as a single abstract symbol from a vocabulary of k such symbols known

to the chimpanzee. The input will be a sequence of n cells on a tape, colored

black or white, and accessible to the chimpanzee only one cell at a time through a

window. The chimpanzee is able to move the window one cell at a time in either

direction. The program tape of the NUDFA is now a series of instructions in a

symbolic language known to the chimpanzee. The two types of instructions are

represented by the examples 'move the input head left' and 'if the state is a and

input is black change the state to b' (where a and bare symbols in the chimpanzee's

vocabulary). It should be clear that if the chimpanzee executes the instructions

infallibly, this model is mathematically equivalent to the NUDFA model we descibed

earlier. Thus a language is in B WBP iff there is a polynomial length family of

instruction sequences to a chimpanzee with constant size vocabulary which causes

the chimpanzee to recognize the language.

If majority is in B W BP, then there is a polynomial length sequence of instruc

tions which will enable the chimpanzee to count the black squares in the input.

But, the argument would go, the chimpanzee has only a constant amount of ex

ternal memory and is assumed to be incapable of counting on his own! It is true

that he can count in exponential length (as we shall see below), but this is done

by checking each of the 2n possible cases for the input and giving the output cor

responding to the correct case. Majority, using this method, is no easier than any

other Boolean function. The intuition behind the conjecture is that there can be no

method of counting which is substantially better than this one and can be carried

out by the chimpanzee.

15

The NUDFA model raises some interesting foundational questions. In a Turing

machine, all the problem-solving capacity is stored in the finite control and its ability

to manipulate the memory - the program is of constant size. Now we ask about a

long program and a very limited machine, and compare this to other models.

4. The Cook Framework and BWBP

One of the principal questions in theoretical computer science in recent years

has been the difference in power between sequential computation, such as that of

a Turing machine, and parallel computation, as is contemplated in new types of

machines. What problems can be solved much more quickly by the cooperative

simultaneous action of a large number of processors? This has led to the develop

ment of new complexity classes of problems solvable by parallel algorithms under

various resource constraints. Though bounded-width branching programs appear

to be an essentially sequential model, the class B WBP turns out to have interesting

relationships with these new parallel classes.

We will consider the hierarchy of complexity classes described by Cook in his

survey article [Co85], which covers his own and others' research over the last decade.

As he explains, there are a number of competing abstract models for parallel com

putation, but to develop an abstract complexity theory there is a strong case for

the model of Boolean circuits. They are simple, offering a greater promise for the

use of combinatorial techniques in proving lower bounds, and yet they effectively

simulate the other models so that complexity results carry over into them.

A Boolean circuit is a directed acyclic graph whose nodes, or gates, calculate

16

the and-function or or-function of their input edges and pass the result along their

output edges. Input to the circuit is a fixed number n of bits which may be accessed

individually from special nodes which output the value of an input variable or its

complement. Sinks in the graph are output nodes, of which there may be one

(in which case the circuit recognizes a subset of [2]", i.e., {Q, 1}") or several (in

which case it calculates a function). The important parameters of a circuit are size

(number of nodes), depth (length of the longest path from an input to an output,

and fan-in (the maximum in-degree of a gate). A circuit operates only on inputs of

a given size, so we define families of circuits and treat size and depth as functions

of n. We will assume the reader to have a good understanding of this model -

appropriate references may be found in [Co85J.

The fundamental parallel complexity class, NC, is defined as those functions

computable by Boolean circuit families with polynomial size and depth bounded

by a polynomial in log n. When we examine the degree of this polynomial to make

finer distinctions among functions in NC, we must begin to consider the f an--in of

the circuits.

Definition: For each natural number i, NCi is defined to be those functions

computable by polysize families with depth O(logi n) and fan-in two. ACi is defined

similarly, but with no restriction on fan-in. (Note the remarks on uniformity below.)

Clearly a gate with arbitrary fan-in may be simulated by a binary tree of gates

with fan-in two, and since the fan-in in an ACi circuit is bounded by the size this

tree has depth O(log n) and thus ACi ~ NCi+l.

To properly define these complexity classes we should define a uniformity condi-

17

tion, insisting that the circuit in a family which takes n inputs be computable from n

with appropriate resource constraints. For now, however, we will allow our families

of circuits, as well as our families of branching programs, to be non-uniform. Our

main result remains true in the uniform setting of [Co85], as we will demonstrate

later in Section 10.

Given an appropriate uniformity definition, the classes NCi and ACi have a

wide applicability in the study of parallel computation. For example, each has

an equivalent definition in terms of alternating Turing machines - NC 1 is those

functions computable on an ATM with space O(logn) and time O(logi n) [Ru81],

while ACi is those computable with space O(log n) and alternation depth O(logi n)

[Co85]. Also, ACi is the class of functions computable in time O(logi n) and poly

nomially many processors on a SIMDAG, a type of parallel random-access memory

computer where read and write conflicts are allowed and the lowest numbered pro

cessor succeeds in the case of a write conflict [CSV82].

Both deterministic and nondeterministic log space are easily seen to lie between

NC 1 and AC1 , while all of NC is a subset of polynomial time. As in sequential

complexity theory, proofs that any classes in the hierarchy differ are rare, but it is

generally conjectured that all or nearly all are actually different. Cook[Co85] begins

his survey of these classes with NC1, but to examine a very constrained class like

B WBP we must begin at the very beginning.

NC 0 is simply those functions whose output bits each depend on only a constant

number of input bits (for example, bitwise operations on Boolean vectors). AC0

includes such things as binary integer addition or Boolean matrix multiplication,

18

where the dependence of an output bit on all the input bits is very simple - an

AG0 circuit has only constant depth though it has unbounded fan-in. However,

the parity function (which returns one iff the number of ones in the input is odd)

cannot be computed in AG0
, as was proved by Furst, Saxe, and Sipser [FSS81] and

independently Ajtai [Aj83]. Many other functions can be shown to be outside AG0

using this result and the technique of AG0 reduction - one shows that an AG0

circuit for the desired function could be used to construct one for parity.

We can begin to place B WBP in relation to these classes by showing that it

contains the languages in AG0 • An unbounded fan-in circuit of depth d and size s

can be simulated by a branching program (using our definitions rather than those

of [BDFP83]) of width d + 1 and size sd. We sketch the proof, which is by induction

on d. The circuit of depth d is the AND or the OR of at most s circuits of depth

d-1. We concatenate the branching programs for each of these sub circuits and add

a new row of nodes (increasing the width by one) which the program will branch to

iff the top node of the circuit is satisfied. We arrange that it will remain on this row

if it ever gets there, so that at the end it is on that row iff the circuit is satisfied.

We come next to the class N G1 of functions computable by circuits with fan-in

two and depth O(log n) (the restriction to polynomial size is made redundant by

these two). Parity is easily computable in N G1 (by a binary tree of circuits for

binary exclusive or), so we know that this class strictly contains AG0
• In fact quite

a lot else is in N G1 - integer multiplication, integer matrix multiplication, or any

function which is symmetric (i.e., where the output depends only on the number

of ones in the input). These functions may all easily be calculated using iterated

19

integer addition as a subroutine (e.g., adding n numbers of n bits each), and the

latter may be done in NC 1 by a binary tree of NC0 circuits which add integers

using a redundant notation - see [BCP83] for details. H we allow the circuits to

be less uniform then integer division and several related functions are also in N C 1

- polynomial-time uniform circuits for these are given in [BCH84]. Non-uniform

NC 1 may also be characterized as containing exactly those languages recognizable

by families of polynomial length Boolean formulas (or, equivalently, of polynomial

size circuits which are trees)[Sp71].

NC 1 has long been known to contain all regular languages, and we can exploit

the analogy between finite automata and B WBP to obtain the following proof

that B WBP is contained in NC 1 as well. This is simply a non-uniform version of

an argument which in the uniform case essentially appears in [Sa72] and is given

explicitly in [LF77].

Theorem 1: HA~ [2]" is recognized by aw-BP B of length l, A is recognized

by a fan-in 2 circuit of depth O(log l), where the constant depends on w.

Proof: We may choose the weakest possible notion of recognition here and say

that B accepts x if B(x) is in some arbitrary subset of the functions from [w] to

[w]. We can represent such a function f by w2 Boolean variables telling whether

f(i) = j for each i and j. The composition of two such functions so represented

may be computed by a fixed circuit whose size depends only on w. Our circuit for

A will have a constant-depth section to find the function yielded by each instruction

of B, a binary tree of composition circuits, and a constant-depth section at the top

to determine acceptance given the function yielded by B.

20

We have thus seen that B WBP is a subclass of NC 1 which includes the sub

classes of AC0 languages and regular languages. Given the 'chimpanzees can't

count' intuition which suggests that BWBP f. NC 1 , we might think of BWBP as

the easier problems within N 0 1 and thus an interesting proper subclass of it.

5. PBP's and the Width 3 Analysis

A logical program for studying B WBP would be to begin with specific small

constant bounds on width and investigate what can and cannot be done under

them. This is the program proposed in [BDFP83] for their different definitions and

we begin by retracing their steps. They found much worth studying in width 2,

but under our definitions width 2 is very weak indeed (it is similar to their class

SW2). Most languages can be shown unrecognizable by 2-BP's with the aid of the

following result.

Proposition: A language is recognizable by a width 2 branching program iff

it is recognizable by such a program of length O(n2).

Proof: Of the sixteen possible instructions of a 2-BP, four set the yield to 0,

1, xi, or xi and destroy all previous information. The others change the function f

calculated so far in ways which can be built up from the operations changing f to

l = f ffi 1, f ffi Xi, f /\Xi, or f /\Xi for an input Xi· We may delete any but the last

occurrence of each of the 2n distinct AND instructions, because if their variable is

false the last one destroys all previous information, and if it is true they all have no

effect. Between two AND's, we need have only one XOR for each of then variables

and one NOT. (This idea of this proof is taken from [BDFP83].)

21

When we simulated AC0 circuits by branching programs above, we used a gen

eral technique for simulating depth d unbounded fan-in circuits by width d + 1

branching programs. This allows us to compute any Boolean function in width 3

and exponential length, using its conjunctive normal form circuit. No lower bounds

are yet known for width 3.

Lower bounds can be derived, however, for a restricted class of 3-BP's, which

we now define for width w as they will become important later. This class will turn

out to be more susceptible to analysis because we will be able to bring in the theory

of permutation groups.

Definition: A permutation branching program of width w (a w-PBP) is aw-BP

where both the functions /i and 9i in each instruction are permutations of [w].

An unrestricted w-BP can be thought of as a series of w-PBP's linked by special

instructions which coalesce two or more of thew 'machine states' into one. It is not

immediately clear whether these special instructions are of any use at all, or are

of vital importance to the w-BP. This is somewhat reminiscent of Bennett's work

on Turing machines which do not destroy information during their computations

[Be73]. In any case, we can begin to get a better picture of this by a more detailed

analysis of the width 3 case.

For 2-BP's we had no particular difficulty in defining acceptance of a string by a

branching program, but now we must be more precise. We have the two notions of

partitioning either the nodes themselves or the functions on the nodes into accepting

and rejecting sets. Also, in working with 3-PBP's we are going to want to build

up larger programs from smaller, and this will be far easier if each program can be

22

guaranteed to have only two possible yields. For these reasons we offer the following

definitions and technical results.

Definitions: Aw-BP B weakly recognizes a set A ~ [2]n if there is a subset 8 of

the functions from [w] to [w] such that B(x) E 8 iff x E A. B strongly recognizes A

if there are two fixed functions f and g such that B(x) = f iff x E A and B(x) = g

iff x (/.A.

Proposition: If A is weakly recognized by a 3-PBP there is another 3-PBP,

at most a constant factor longer, which always yields an even permutation and also

weakly recognizes A.

Proof: We sketch this only. Given a permutation u E 83 , many permutations

derived from it are guaranteed to be even, such as uru-1r- 1 for any fixed r. One

must show that given any subset of 83 there is such a mapping from 83 to A3 (the

even permutations) which takes that subset exactly onto a subset of A3 • This is

tedious but not difficult.

Proposition: If A is strongly recognized by a 3-PBP it is also strongly recog

nized by a 3-PBP of the same length which yields the identity if x (/.A and another

fixed permutation if x E A.

Proof: The original 3-PBP gives u or T - we change this to ur-1 or the identity

by composing both permutations in the last instruction with r- 1 .

Proposition: If A is strongly recognized by a 3-PBP and u is an even permu

tation other than the identity, there is a 3-PBP at most twice as long which yields

u for x E A and the identity for x (/. A.

23

Proof: We can change v and the identity to rvr- 1 and the identity for any r

by altering the first and last instructions. This suffices if v and o are conjugates,

i.e., unless v is odd. If v is odd, we can make o as a product of v and one of its

conjugates.

We see from these facts that the function and node definitions coincide for 3-

PBP's, as even permutations of [3] can be characterized by where they take a single

element. We will now think of a 3-PBP, then, as giving a function from [2]n to

[3], which will facilitate our analysis. We will obtain our best results for strong

recognition, though weak recognition is the more natural model.

If each instruction of a 3-PBP yielded an even permutation, we could find out

the entire yield by adding up the individual contributions mod 3. We can't do this

in general, because the individual contribution may be odd. However, we can do

something just as good with a little more information.

Consider S3 as generated by two elements x and r with x2 = r3 = e and xr = r2x.

(Here e is the identity.) Given the input we have a yield xb;rc; for each instruction,

and we want the product. We will assume, using the above facts, that this product

is even (a power of r), so we want to find the number of r's contributed by each

instruction. Note that we could if we wanted write x 11;rc; as r-c;x"i. If we choose

the notation for each instruction correctly, we can have all the x's occurring in pairs

and thus vanishing. In other words, the i'th instruction will contribute c, r's if the

number of x's contributed before it (i.e., E;:Sib;) is even, and -c, if it is odd. Thus

a combination of mod 3 and mod 2 questions can evaluate the 3-PBP - we now

make this precise.

24

Definition: A 9-2 circuit consists of a single mod 3 gate whose inputs are

constant 1 gates or parity (mod 2) gates connected to inputs. Its output is the sum

mod 3 of the number of 1 gates and the number of parity gates which are satisfied.

Its size is the fan-in of the mod 3 gate.

Proposition: A 3-PBP of length l and guaranteed even yield may be simulated

by a 3-2 circuit of size O(l).

Proof: We use the reasoning above, except that we must show how to take the

input into account. It suffices to give a constant number of constant and parity gates

whose output mod 3 is a given parity function of inputs if a given input variable is

on, and 0 otherwise. This is straightforward as P /\ x is the sum mod 3 of 2x, 2P,

and P EB x.

Proposition: A 3-2 circuit of size s may be simulated by a 3-PBP of length

O(ns), where n is the number of input variables.

Proof: It is easy to make a 3-PBP of length at most n which yields either a

2-cycle or the identity depending a a given parity condition. By concatenating two

such 3-PBP's with different outputs and the same parity condition, we get a 3-PBP

which yields a given 3-cycle or the identity depending on the parity condition and

thus simulates a single parity gate of the 3-2 circuit.

Theorem 2: The optimal 3-PBP length and the optimal 3-2 circuit size of any

function from [2]" to [3] differ at most by a multiplicative factor of O(n).

Proof: Immediate from the above.

There are exactly 2" different types of gate in a 3-2 circuit - the constant 1

25

gate and the gate taking the parity of x E A for any nonempty subset A of then

variables. These types may be indexed by the set [2]", and thus a circuit may be

described by a function C from [2]" to [3], with C(A) being the number of gates of

the type corresponding to the set A ~ [n]. (Without loss of generality, there are

zero, one, or two such gates.) The output function D of the circuit is also from [2]"

to [3], where D(B) for B ~ [n] is the output when exactly those variables Xi with

i EB are on.

H we view the functions from [2]" to [3] as a vector space of rank 2" over the

field GF(3), then the mapping from a circuit's description to its output function is

linear, given by the matrix M = {mAB: A~ [n],B ~ [n]} where mAB = 1 if A= 0

and mAB = IA n Bl mod 2 otherwise. This matrix has nonzero determinant over

GF(3) - to see this we look at a similar matrix M' where m~ = 2 - (IA n Bl

mod 2). M' is derivable from M by Gaussian operations and thus has nonzero

determinant iff M does. By explicit calculation one can easily show that the square

of M' is ±I.

Thus this mapping from circuit descriptions to functions is an isomorphism of

the vector space GF(3) 2
n. Each function thus has a unique circuit calculating it,

of size 0(2"). We can thus find the circuit complexity of any specific function if

we can find a general form for its inverse image under this mapping. In the case of

the and-function (D(B) = 1 if B = [n]; D(B) = 0 otherwise) this inverse image is

given by C(A) = 2" · (2 - (IAI mod 3)) mod 3, and so the circuit has size ~ · 2".

Putting this together with the theorem above, we get:

Theorem 3: Every subset of [2]" may be strongly recognized by a 3-PBP of

26

length O(n2"). Length 0(2") is required to strongly recognize the singleton set

{ 1 n}, i.e., to strongly calculate the and-function of n variables.

Allowing weak recognition can help considerably. To weakly recognize {1"}, we

can concatenate two 3-PBP's which strongly calculate the and-functions of the first

n/2 and last n/2 variables respectively. This 3-PBP outputs 2 iff all the variables

are on, and has size 0(2"12
). We conjecture that this is optimal, but this seems

very difficult to prove.

6. Solvable PBP's and the Fine Structure of NC1

We have just shown that the languages strongly recognizable by 3-PBP's are not

all of NC 1
, because they do not include the and-function (so they are not even all of

AC0
). We are going to generalize part of this argument to give strong evidence that

many classes of PBP's cannot recognize all of NC 1
- to do this we must develop a

theory of the internal structure of NC 1 as a complexity class. This will be a degree

theory analagous to the degrees of unsolvability in classical recursion theory or the

polynomial-time degrees within NP.

Inside N C 1
, it is most natural to define AC0 reductions - the function f is

reducible to g (written f ~Aco g) if a constant-depth poly-size unbounded fan-in

circuit, containing oracle nodes for g, can compute f. If f and g are each AC0

reducible to the other we say they are AC0 equivalent, and the AC0 degrees are

the equivalence classes of this relation. The class AC0 is itself a degree, and NC1

is partitioned into it and one or more others.

27

AC0 reducibility was introduced in [FSS81] under the name of 'cp-reducibility'.

They suggested further study of the degree structure (they had only just given the

first proof that the structure of NC 1 was non-trivial) and conjectured that majority

was not reducible to parity.

Their suggestion was taken up by Fagin et al. in [FKPS84], who found many new

AC0 reducibilities among symmetric functions. Modulo the new parity lower bounds

of Yao [Ya85] and Hastad [Ha86], they characterize those symmetric functions in

AC0
• They show that the degree of the majority function is complete for symmetric

functions and contains a large class of symmetric functions (though there seems to

be no reason to believe that this degree is complete for NC1). Interestingly, no

complete symmetric function exists in the projection-reducibility theory of Valiant

[SV81], by a recent result of Gereb-Graus and Szemeredi [GS??].

It is still not known, however, that there are more than two AC0 degrees within

NC 1
• The conjecture that majority is not reducible to parity would settle this, as

parity would then be in an intermediate degree between the majority degree and

AC0
• This conjecture seems very plausible, as the ability to count mod 2 would

not seem to help a circuit to count overall. We make the following conjecture,

strengthening that of [FSS81]:

Conjecture: Majority is not AC0 reducible to the mod k function for any k,

and thus no mod k function is AC0 complete for NC 1 •

In our analysis of 3-PBP's, we saw that a constant depth circuit of mod 2

and mod 3 gates could determine the output of a 3-PBP, so that any language

recognizable by a 3-PBP is AC0 reducible to the mod 6 function. We shall now see

28

that this part of the analysis depended on properties of the group 83 from which

we took permutations, in particular the solvability of that group. First we must

generalize our definitions to arbitrary groups.

Definition: Let G be a finite group realized as a group of permutations of

[w]. A G-permutation branching program (or G-PBP) is a w-PBP where both the

permutations in each instruction are taken from G.

Definition: The word problem for a fixed group G is to input an ordered string

of elements of G (using any fixed representation) and output their product.

Proposition: The problem of evaluating the output of a G-PBP given an input

is AC0 equivalent to the word problem for G.

Proof: Given a G-PBP and an input, simply read off the permutations to be

composed. Given a sequence of elements of G, simply make a G-PBP where each

instruction yields the corresponding element on any input, so the output is the

product of the elements.

Now we will give one of the many equivalent definitions of solvability. (For more

detail see a group theory text such as [Za58].) The commutator subgroup of G is

the subgroup generated by all elements of the form aba- 1b-1 for a and b in G. A

group is solvable if and only if repeated taking of commutator subgroups eventually

gives the trivial group. Thus a group is non-solvable if and only if it has a nontrivial

subgroup whose commutator subgroup is itself. (All groups under discussion are

finite.)

The following theorem extends the earlier argument to arbitrary solvable groups.

29

Theorem 4: The word problem for any fixed solvable group G is AG0-reducible

to the mod g function, where g is the order of G.

Proof: An equivalent definition of a solvable group (see, e.g., [Za58]) is one

which has a series of normal subgroups G = G0 , G1 , ••. , G,,., = { e} where each

quotient group Gi/ Gi+1 is cyclic. We prove the theorem by induction on the length

of this series. So assume that G has a normal subgroup N, where G/N is cyclic

and the word problem for N is solvable by an AG0 circuit containing mod g gates.

Choose an element a such that the coset aN generates G / N.

We are given a product g1 ... gk to evaluate. As N is normal, we can write each

gi uniquely as aEini with ni E N. (Converting between any two bit representations

of an element of G takes constant size and depth.) Now let bi be the product

aE 1 ••• aE; and note that aE 1 n 1 •.• aEknk = (b1n 1b1 1) .•. (bkn1:b; 1)bk. Each bi depends

only on the sum mod g of the appropriate£;, as the order of a in G divides g. Each

term binibi1 is in N by normality, and we can calculate it in constant depth using

mod g gates to get bi. These partial terms may then be multiplied using a circuit

for N.

Theorem 4 is interesting only if the Conjecture above is true. Proving that

conjecture, however, will apparently need an entirely new method. Unfortunately,

the random restriction method of [FSS81] does not seem to extend to even parity

(mod 2) gates, as the restriction of a parity gate is still a parity gate.

Hastad [H!86a] has recently proved a partial result toward the Conjecture. He

shows that any constant depth and polynomial size circuit of AND, OR, and parity

gates which computes majority must have O((log n) 8 /2) parity gates. His method

30

appears to be inherently limited to circuits with fewer than n parity gates, and thus

it appears that something new is still needed.

7. The Width 5 Result and its Consequences

We will now see that the view of branching programs as being composed of

permutations allows us to prove our surprising main result. Unlike 3-PBP's and

4-PBP's (which fall under the above results because 83 and 84 are solvable groups),

5-PBP's can recognize all of NC 1 in polynomial size. We will state the result in an

even stronger form to allow ourselves to carry out the necessary induction.

We say that a 5-PBP B five-cycle recognizes a set A ~ [2]" if there exists a

five-cycle u (called the output) in the permutation group 8 6 such that B(x) = u if

x EA and B(x) = e ifx rt. A (e is the identity permutation).

Theorem 5: Let A be recognized by a depth d fan-in 2 Boolean circuit. Then

A is five-cycle recognized by a 5-PBP B of length at most 4d.

Lemma 1: If B five-cycle recognizes A with output u and .,. is any five-cycle,

then there exists a 5-PBP B', of the same length as B, which five-cycle recognizes

A with output r.

Proof: Since u and r are both five-cycles there exists some permutation fJ with

r = fJufJ- 1• To get B', simply change each instruction of B, replacing each ui and

Ti by fJuifJ-1 and fJrifJ-1.

Lemma 2: If A is five-cycle recognized in length l, so is its complement.

Proof: Let B five-cycle recognize A with output u. Call the last instruction

31

of B (i,µ,v). Let B' be identical to B except for last instruction (i,µu- 1 ,vu-1).

Then B'(x) = e if x E A and B'(x) = u-1 if x ft A. Thus B' five-cycle recognizes

the complement of A.

Lemma 3: There are two five-cycles u1 and u2 in 85 whose commutator is a

five-cycle. (The commutator of a and b is aba- 1b- 1 .)

Proof: (12345)(13542)(54321)(24531) = (13254).

Proof of Theorem 5: By induction on d. If d = 0 the circuit is an input

gate, and A can easily be recognized by a one-instruction 5-PBP. Using Lemma 2

in the case of an OR gate, assume without loss of generality that A = A1 n A2 ,

where A1 and A2 have circuits of depth d-1 and thus 5-PBP's B 1 and B 2 of length

at most 4d-l. Let B1 and B2 have outputs u1 and u2 as in Lemma 3, and B~ and

B~ have outputs a1 1 and a1 1 (This last is possible by Lemma 1). Let B be the

concatenation B1B2B~B~. B yields e unless the input is in both A 1 and A 2 , but

yields the commutator of the two outputs if the input is in A. This commutator is

a five-cycle, and so B five-cycle recognizes A. B has length at most 4d, Given a

circuit and a desired output, this proof gives a deterministic method of constructing

the 5-PBP.

This result has interesting consequences in the realm of NUDFA's - in par

ticular, our earlier intuition appears to be wrong. A chimpanzee can be given a

polynomial-length set of instructions which allow him to count, as well as compute

any symmetric function of the input. In fact, if we allow ourselves a polynomial

time Turing machine to generate his instructions, he can also divide integers and

compute the related functions of [BCH84].

32

8. Boolean Circuits of Constant Width

We define width for Boolean circuits so as to allow nodes at any level to access

the inputs without penalty, and examine the consequences of our main result for

constant-width circuits in this model. It is easy to show [Ho83] that constant width

for branching programs is equivalent to constant width for circuits, but here we go

into more detail in an attempt to get the best possible simulations.

In particular, we show that width w branching programs (using the definitions

of [Ba86]) can be simulated by circuits of width flog w l + 1 and length multiplied by

a constant depending only on w (this is a slight improvement of a result of Hoover

[Ho83], who simulated width w BP's in the [BDFP83] model by circuits of width

flog w l + 4.) In particular, width 5 branching programs can be simulated by width

4 circuits (improving the result cited in [Jo86]), so that width 4 polynomial circuits

can recognize all of NC 1 and thus everything recognized by circuits of constant

width and polynomial size.

We choose the following definition of a width-w circuit from the many equivalent

ones. A circuit is a rectangular array of nodes, consisting of l rows of w nodes each.

Each node has one or two edges entering it which must be from either inputs or

nodes on the immediately previous row. Possible node types are EQUALS (unary),

NOT (unary), AND (binary), and OR (binary). Edges carry Boolean values, and

nodes send out the appropriate value calculated from their input or inputs.

This is equivalent to other definitions which allow wires (edges) to jump over

intermediate levels but count them as part of the width for those levels. (See, for

33

example, [Jo86].) Perhaps the most natural first definition of width would charge

for access to the inputs, but this would lead to a class far too restricted to be

interesting.

Note that for defining the class of functions calculable using width wand length

O(f (n)), we have a lot of latitude in our definitions. We will think of the inputs

as being accessed by unary AND-xi, AND-xi, OR-xi, or OR-xi gates - any other

use of Xi can be simulated by these in a constant number of rows. We will also

assume that only one input variable is accessed by a given row of nodes - this can

be enforced by replacing one row by up tow rows.

Proposition: A Boolean circuit of width w and length l may be simulated by

a branching program of width 2111 and length w.

Proof: Use the 2111 nodes in each instruction to represent the possible settings of

the w Boolean variables on each level of the circuit. By our assumption, we access

only a single input variable and thus the new state depends only on that variable

and the old state.

The simulation in the other direction is less straightforward. It is easy to sim

ulate a w-BP by a 2w-circuit, or even a w + 2-circuit, by storing the branching

program state in unary, i.e., in w gates exactly one of which will be on. We can

improve matters by storing the state in binary.

Theorem 6: A branching program of width w and length l may be simulated by

a Boolean circuit of width flog w l + 1 and length O(l), where the constant depends

on w.

34

Proof: WLOG let w = 2m. be a power of two. To simulate an instruction it

suffices to simulate one where either /i or 9i is the identity, so WLOG we'll assume

it's 9i and that the problem is to do /i if x is on and the identity otherwise.

Note that we need only simulate a set of functions which generates under com

position the entire set of functions from [w] to [w] (Here [w] is the set {O ... w -1}.)

Lemma: The functions from [w] to [w] are generated by: (l)the transpositions

/;, for 0 ~ i < m, defined by f (0) = 2i, /(2i) = O, and /(J') = j otherwise; (2) the

permutations 9i for 0 ~ i < m defined by 9i (j) = ;' + 2i for j < 2i, 9i (;') = j - 2i

for 2i ~ ;· < 2i+i, and gi(j) = j otherwise; and (3) the function h defined by

h(O) = O, h(l) = 0, and h(j) = ;' otherwise.

Proof: We will show that the /i and 9i generate the permutations of [w], by

induction on m. This will suffice, as any function which is not one to one may

easily be made up out of permutations and copies of h. The permutations of [2]

are clearly generated by / 0 • We must show how to generate any permutation of

[w] = [2m.], assuming that the h and 9i for i < m - 1 generate all permutations

of [w /2]. By conjugation with 9m.-l' we can make all permutations of the elements

{ w /2, ... , w - 1}. Using these permutations as necessary among the high-numbered

and low-numbered elements as necessary, we can use fm-l to swap highs for lows

as necessary to generate an arbitrary permutation of [w].

Proof of Theorem 6: We will encode the state by m bits L 0 , Lll ... , Lm-l

with the state encoded being E1Li2i.

We will now view /i and so forth as the function of x which is the old /i if x is

on and the identity if it is off.

35

Each /i or gi is L := L EB y for an appropriate y which is an AND of x and

other L's. This is doable using one extra node along with the first m, as follows.

First compute fi using successive ORs, maintaining the Li's. Then AND fi with Li

and save the result. Now, using the space for Li, compute Li /\ y by a NOT and

successive ANDs. As Li EBY= (Li/\fi) V (Li/\y), we can now get the new Li with one

OR step. The circuit below illustrates this method, computing the transposition / 2

or (0 4) with m = 3 in width 4.

The function h changes Lo by the assignment Lo := Lo /\ fj, where y is the

OR of x and all the other L/s. The other Li's are not changed. This is easily

doable in width m + 1, by using one extra column to compute y by successive ORs,

complementing it, and then ANDing it in at the end.

Comparing this result with that of [Ho83], we see that our definition of BP width

leads to a closer relationship between BP width and circuit width than does the

[BDFP83] model. We conclude by summarizing the main consequence of Theorem

6 for bounded-width circuit complexity.

Corollary: The class of languages recognizable by circuits of constant width

and polynomial size equals the class of those recognizable with width 4 and poly

nomial size, as both are NC 1•

9. Non-solvable PBP's and Completeness

The natural question to ask about the proof of Theorem 5 is what properties of

the group 8 5 were necessary to carry it out. The answer is simply non-solvability,

36

as we will now show. Thus if the Conjecture of Section 6 is true, the languages

recognized by poly-size G-PBP's are all of NG 1 if and only if G is not solvable.

Theorem 7: The word problem for any fixed non-solvable group G is complete

for NG 1 under AG0 reductions.

Proof: Without loss of generality, assume that G's commutator subgroup is

itself. We show that given a fan-in 2 circuit of depth d and an element a of G not

equal to the identity, there is a G-PBP of length at most (4g)d which yields a if the

circuit accepts the input and yields the identity otherwise. Here g is the order of G,

a constant. Evaluating a G-PBP is easily seen to be in AG0 , given oracle nodes for

the word problem for G. This will suffice to show completeness - the word problem

is clearly in NG1 as we can multiply two permutations in constant size and depth

with fan-in two.

The proof, like that of Theorem 5, is by induction on d. The element a must have

a representation as a product of at most g commutators. We carry out the proof

of Theorem 5, except that we use the inductive hypothesis to produce G-PBP's

yielding arbitrary non-identity elements of G instead of five-cycles. This multiplies

the length by at most 4g instead of 4 at each step. Lemma 1 is unnecessary as for

each d, we simultaneously prove the result for all a in G except the identity.

It is interesting to have complete languages for NG 1 which are defined alge

braically. The class of complete languages, of course, gives us another new starting

point for studying the structure of NG 1 under AG0 reductions.

37

10. Uniformity

Before we state and prove a uniform version of Theorem 5, we must review

some background. We define an alternating Turing machine to be a game played

by two players on a nondeterministic Turing machine which has two possible state

transitions in every position. States are labelled White or Black as to which player

has control of the moves from that state. For defining the class ATIME(logn), we

assume that the machine has a random-access input tape of length n (which it can

access only once at the end of the computation), a worktape of size clog n for some

constant c, and a clock which restricts it to running for clog n steps. The players,

who are assumed to be omniscient, direct the computation of the machine until the

end, when White wins iff he can correctly predict the input bit to be read. The

alternating Turing machine is said to accept an input x iff White has a winning

strategy for this game with input x. By standard methods these assumptions may

be shown to be perfectly general.

Ruzzo [Ru81] defines NC 1 circuits as those fan-in 2 depth O(log n) circuits

whose extended connection language is in ATIME(logn). The extended connection

language consists of strings of the form (g, h, s) where g and hare names of nodes in

the circuit, s E {left, right}:c:;;Jogn, and h is the node reached by following the path

s from g. This has the consequence that NC 1 =ATIME(log n). We would like to

show that the class of languages recognized by ATIME(log n)-uniform polynomial

size bounded-width branching programs is also ATIME(log n). This will show that

B WBP = NC 1 in the uniform as well as in the non-uniform setting.

Theorem 8: A language A is in ATIME(log n) iff it is recognized by a branching

38

program B, of constant width and polynomial size, for which the language:

{ (k, f, g, i) : the k'th instruction of B yields

function f if Xi is on and g if Xi is off}

is in ATIME(log n).

Proof: First we define a game in which White tries to prove that B(x) = f,

for some accepting f, and Black tries to refute him. At each stage of the game the

log-time machine will define a range of instructions in Band a function which White

claims is yielded by that range. White advances his claim by naming two functions

g and h, with f = gh, and claiming that the first half of the range yields g and

the second h. Black must choose one of these two subclaims to challenge, and this

becomes White's new claim for the next stage. After O(log n) stages White will be

making a claim about a single instruction, and this can be verified in ATIME(log n)

by hypothesis. Each stage takes constant time, as we can let Black's sequence of

choices be the index of the instruction to be checked - so each bit of this index need

only be written down once.

For the converse, given a log-time machine M and game rules to make it an

alternating machine, we can get an NC 1 circuit C in a standard way by creating a

node for each configuration of M. Let B be the 5-PBP with output (12345), say,

created from C by the method of Theorem 5 above, so that B five-cycle recognizes

A. We must show that B is ATIME(Iog n) uniform. We define a game with input

(k,u,r,i) which White can win iff the input is a correct description of the k'th

instruction. Both players, of course, know the actual circuit C and branching

program B, as these are uniquely defined from M.

39

White at each stage will maintain a claim of the following form:

(s, µ, k, u, r, i)

meaning 'The subcircuit c. of C whose top node is M-configuration s corresponds

to a section B. of B which five-cycle recognizes the language accepted by c. with

outputµ. Further, the k'th instruction of B. yields u if x; is on and r if xi is off.'

White will begin by claiming (start,(12345),k,u,r,i) and refine this through

O(log n) moves, each move corresponding to a step of M or to moving down one

edge of C. For example, ifs is an and-node B. consists of four sections - White must

state in which section the k'th instruction occurs, what its new number is, and which

of s's children the section represents. Eventually s will be a final configuration of M

and White's claim can be quickly decided. Black's moves during this process are to

challenge any White claim which does not follow from his previous claim according

to the definition of M and the procedure for creating B. Such a challenge may be

decided easily in log-time, ending the game. White's moves are each only a constant

number of steps if we choose an appropriate representation for the number k and

don't have to rewrite it every time.

It should be clear that this proof will work for other notions of uniformity as

well, as we only required that at least the power of the class ATIME(log n) be

available to carry out the simulations in each direction. In particular. log-space or

poly-time uniform bounded width branching programs calculate exactly log-space

or poly-time uniform NC 1 respectively.

40

11. Open Problems

We now know that poly-size bounded-width BP's give NC 1 while poly-size

general BP's give L. Certainly this suggests a new attack on the problem of whether

NC 1 =Las this can now be phrased entirely in terms of branching programs. We

also have another new phrasing in terms of bounded width circuits - we would

have to show that width O(logn) is more powerful than width 4, given polynomial

size. It would be useful to develop a lower-bound technology for width 5 PBP's or

width 4 circuits, if this is possible. Even a superpolynomial lower bound for, say,

the clique function would give prove NC 1 different from NP.

The power of general poly-size permutation BP's (no restriction on width) was

mentioned as an open problem in [Ba86a]. Cook and McKenzie [CM86] have just

shown that the word problem for Sn is complete for log space under NC 1 reductions,

even if the inputs and outputs are in pointwise notation (i.e., a permutation u is

given as the list of integers u(l), ... ,u(n)). (In fact, they show that the easier

problem of permutation powering with the exponent in unary is complete.) A poly

size PBP can be constructed to solve this problem, given an appropriate definition of

recognition of a language by a PBP. As these PBP's can be thought of as reversible

non-uniform log-space Turing machine computations, this suggests a comparison

with work of Bennett [Be73].

The effect of non-determinism on these classes must be examined as well, sug

gesting possible new attacks on the problem of whether L = NL. One must be

careful with definitions here, as the wrong sort of non-determinism can turn a very

small class into NP. For example, depth-2 poly-size unbounded fan-in Boolean

41

circuits can only recognize II2-TIME(logn). But if we give such a circuit both x

and y inputs and say that it 'accepts' x iff there is some y such that the circuit

accepts (x, y), it can recognize any language in NP.

We know the power of width 3 [Ba85] and width 5 PBP's - what of width 4?

As S4 is solvable, they cannot do all of NC 1 by the method used here for width 5, .
but we would like to prove they cannot do it at all. The conjecture of Section 6

would settle this, but 4-PBP's are a special case which might be more amenable to

analysis.

We know that BP's without the permutation restriction require width 3 to do

majority in poly-size [Ya83] and we know that width 5 suffices. Does the extra

freedom to use non-permutation instructions help at all?

Circuits of width 2 or 3 are an attractive target for a lower bound proof - it

would be nice to prove that width 4 is necessary to do N C 1 , if it is.

Can one improve Theorem 6 on simulating BP's by circuits? Of course any

bounded width BP can be simulated in width 4 with a polynomial blowup in length

using our main result, but can the simulation be improved while keeping linear

blowup? Here it might be easier to simulate 2m + 1-BP's in width m + 1 than to

do 2m-BP's in width m. If the circuit width is less than pog w l, it would seem that

there aren't enough states for a direct simulation - can this be proved?

The fine structure of N C 1 is another good subject for further study. We know

only that there are at least two classes (from [FSS81] and [Aj83]) but this is

more than is known about most degree theories in complexity theory. Fagin et

al. [FKPS84], give many AC0 reducibilities among symmetric functions, but a

42

new proof technique will be needed to settle the conjecture of Section 6 if it is

true. AG0-reducibility should also be compared with the projection reducibility of

Valiant [SV81] in this setting. Majority is AG0-complete for symmetric functions,

but no function is projection-complete for them [GS??]. It is also interesting that

an algebraically-defined language such as the word problem should be complete.

The unexpected power of NUDFA's suggests some foundational questions. Plac

ing the power to recognize a language in a program to a very simple machine seems

very different than placing it in, say, the state table of a Turing machine. How

different is it, and how does it relate to other known models of computation?

12. References

[ABHKST86] M. Ajtai, L. Babai, P. Hajnal, J. Komlos, E. Szemeredi, and G.

Turan, 'Two lower bounds for branching programs', Proc. 18th ACM STOC. . J86,

to appear.

[Aj83] M. Ajtai, '~~ formulae on finite structures', Annals of Pure and Applied

Logic 24 (1983), 1-48.

[An85] A. E. Andreev, 'On a method for obtaining lower bounds for the com

plexity of individual monotone functions', Dokl. Ak. Nauk. SSSR 282 (1985),

1033-1037 (in Russian). English translation in Sov. Math. Dokl. 31 (1985), 530-

534.

[Ba85] D. A. Barrington, 'Width-3 permutation branching programs', Technical

Memorandum TM-293, M.I.T. Laboratory for Computer Science.

43

[Ba86] D. A. Barrington, 'Bounded-width polynomial-size branching programs

recognize exactly those languages in NC 1', Proc. 18th ACM STOC, 1986, to appear.

[BCH84] P. W. Beame, S. A. Cook, and H. J. Hoover, 'Log-depth circuits for

division and related problems', Proc. 25th IEEE FOCS, 1984, 1-6.

[BCP83] A. Borodin, S. A. Cook, and N. Pippenger, 'Parallel computation for

well-endowed rings and space-bounded probabilistic machines', Information and

Control 58 (Jan. 1983), 113-136.

[BDFP83] A. Borodin, D. Dolev, F. E. Fich, and W. Paul, 'Bounds for width

two branching programs', Proc. 15th ACM STOC, 1983, 87-93.

[Be73] C. H. Bennett, 'Logical reversibility of computation', IBM Journal of

Research and Development, 17 (1973), 525-532.

[CFL83] A. K. Chandra, M. L. Furst, and R. J. Lipton, 'Multiparty protocols',

Proc. 15th ACM STOC, 1983, 94-99.

[CM86] S. A. Cook and P. McKenzie, 'Problems complete for deterministic

logarithmic space', Publication 560 (Fev. 1986), Dept. d'I.R.O., Universite de

Montreal.

[Co85] S. A. Cook, 'The taxonomy of problems with fast parallel algorithms',

Information and Control 64 (Jan. 1985) 2-22.

[FKPS84] R. Fagin, M. M. Klawe, N. J. Pippenger, and L. Stockmeyer, 'Bound

ed depth, polynomial-size circuits for symmetric functions', IBM Report RJ 4040

(45198) (October 1983), IBM Research Laboratory, San Jose.

[FSS81] M. Furst, J.B. Saxe, and M. Sipser, 'Parity, circuits, and the polynomial

44

time hierarchy', Proc. 22nd IEEE FOCS, 1981, 260-270.

[GS??] M. Gereb-Graus and E. Szemeredi, 'There are no p-complete families of

symmetric Boolean functions', preprint.

[Ha86] J. Hastad, 'Improved lower bounds for small depth circuits', Proc. 18th

ACM STOC, 1986, to appear.

[Ha86a] J. Hastad, 'Computation limitations for small depth circuits', Ph.D.

thesis, Dept. of Mathematics, M.I.T., June 1986.

[Ho83] H. J. Hoover, 'Characterizing bounded width', manuscript, 1983.

[Jo86] D.S. Johnson, 'The NP-completeness column: An ongoing guide', Jour

nal of Algorithms 7:2 (June 1986), to appear.

[LF77] R. E. Ladner and M. J. Fischer, 'Parallel prefix computation', Proc.

1977 Intl. Conf. on Parallel Processing, 218-233.

[Le59] C. Y. Lee, 'Representation of switching functions by binary decision

programs', Bell System Technical Journal 38 (1959) 985-999.

[Ma76] W. Masek, 'A fast algorithm for the string editing problem and decision

graph complexity', M.Sc. thesis, Dept. of E.E.C.S., M.I.T., May 1976.

[Pu84] P. Pudlak, 'A lower bound on complexity of branching programs', Proc.

Conference on the Mathematical Foundations of Computer Science, 1984, 480-489.

[Ra85] A. A. Razborov, 'Lower bounds on the monotone complexity of some

Boolean functions', Dokl. Ak. Nauk. SSSR 281 (1985), 798-801 (in Russian).

English translation in Sov. Math. Dokl. 31 (1985), 354-357.

45

[Ra85a] A. A. Razborov, 'A lower bound on the monotone network complexity

of the logical permanent', Mat. Zametki 37 (1985) 887-900 (in Russian). English

translation in Math. Notes of the Academy of Sciences of the USSR 37 (1985),

485-493.

[Ru81] W. L. Ruzzo, 'On uniform circuit complexity', Journal of Computer and

System Sciences 22:3 (June 1981), 365-383.

[Sa72] J. Savage, 'Computation work and time on finite machines', Journal of

the ACM 19 (1972), 660-674.

[Sh85] J. B. Shearer, personal communication, 1985.

[Sp71] P. M. Spira, 'On time-hardware complexity tradeoffs for Boolean func

tions', Proc. 4th Hawaii Symposium on System Sciences (North Hollywood, Calif.,

Western Periodicals Co., 1971), 525-527.

[SV81] S. Skyum and L. G. Valiant, 'A complexity theory based on Boolean

algebra', Proc. 22nd IEEE FOCS, 1981, 244-253.

[Ya83] A. C. Yao, 'Lower bounds by probabilistic arguments', Proc. 24th IEEE

FOCS, 1983, 420-428.

[Ya85] A. C. Yao, 'Separating the polynomial-time hierarchy by oracles', Proc.

26th ACM STOC, 1985, 1-10.

[Za58] H. J. Zassenhaus, The Theory of Groups, 2nd ed. (New York, Chelsea

Publ. Co., 1958).

46

47

Abstract:

Bounded Width Branching Programs

David A. Barrington1

Department of Mathematics
and Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139

16 May 1986

We examine the branching program model of computation and in particular
the classes of languages which can be recognized when the width of the programs
is bounded by a constant. After slightly revising the framework of definitions to
sharpen analogies with other models, we prove that width 5 polynomial size branch
ing programs can recognize exactly the parallel complexity class NC 1

, refuting a
conjecture of Borodin et al. in [BDFP83]. Other results include an application
to Boolean circuits of constant width (here, width 4 and polynomial size circuits
can recognize exactly NC 1) and a characterization of a restricted class of width 3
branching programs. This thesis contains the results of [Ba85] and [Ba86], along
with some additional material.

Key Words and Phrases:

Branching programs, parallel complexity, circuit complexity.

1 This work was supported by NSF grant MCS-8304769 and US Air Force grant AFOSR-82-0326,
and by an NSF Graduate Fellowship.

