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Abstract: 

BOUNDED WIDTH BRANCHING PROGRAMS 

by 

DAVID ARNO BARRINGTON 

Submitted to the Department of Mathematks 

on May 2, 1986 in partial fulfillment of the 

requirements for the degree of 

Doctor of Philosophy 

We examine the branching program model of computation and in particular 

the classes of languages which can be recognized when the width of the programs 

is bounded by a constant. After slightly revising the framework of definitions to 

sharpen analogies with other models, we prove that width 5 polynomial size branch

ing programs can recognize exactly the parallel complexity class NC 1 , refuting a 

conjecture of Borodin et al. in [BDFP83]. Other results include an application 

to Boolean circuits of constant width (again, width 5 and polynomial size circuits 

can recognize exactly NC1) and a characterization of a restricted class of width 3 

branching programs. This thesis contains the results of [Ba85] and [Ba86], along 

with some additional material. 

Thesis Supervisor: Dr. Michael Sipser 
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1. Introduction 

Branching programs are a model of computation intermediate between parallel 

and sequential computation. The settings of n input variables determine a flow 

of control through an array of processors, as each processor triggers one of two 

successors depending on the value of one of the inputs. Originally invented for the 

analysis of switching problems, they have come to be analyzed as an abstract model. 

The bounded-width problem was introduced by Borodin et al. in [BDFP83]. 

They proposed to develop a lower bound technology for general branching programs 

by first considering the case where the width of the processor array was bounded 

by a constant. This defined the complexity class which I call B WBP , languages 

recognizable by families of branching programs of constant width and polynomial 

size. They conjectured that the majority problem was not in B WBP, and provided 

a framework for analyzing branching programs of width two. Results in their pa

per and several suceeding papers seemed to support their conjecture - these are 

summarized in more detail in Section 2 below. 

I began my analysis of bounded-width branching programs with their general 

program in mind, but I soon developed a different conceptual framework in which 

I changed the definitions of width and other facets of the model in ways that pre

served the fundamental class B W BP. I think of a branching program as a series 

of instructions, each associating to one input variable two functions on a finite set 

with size equal to the width. This new framework makes more exact an analogy be

tween bounded-width branching programs and a certain class of non-uniform finite 

automata. It also allows the introduction of notions from the theory of permuta-
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tion groups which have made possible the results of this thesis. This conceptual 

framework and the ensuing definitions are described in Section 3. 

In Section 4 I consider the position of the class B WBP relative to other more 

well-known complexity classes. The context in which I do this is the hierarchy of 

parallel complexity clases described by Cook [Co85], which I describe and motivate. 

I prove that BWBP lies within the class NC1 and properly contains the class AC0
• 

Given the redefinition of bounded-width branching programs as sequences of 

instructions consisting of finite functions, a natural notion is to restrict these func

tions to being permutations of the finite set. In fact for any group G realized as 

a permutation group, we can define a set of G-permutation branching programs 

(G-PBP's) where all functions are restricted to be permutations in G. If G is 

the symmetric group Sw we speak of width w permutation branching programs or 

w-PBP's. In Section 5 I characterize languages recognizable by 3-PBP's, and in 

Section 6 I extend part of this analysis to give strong evidence that G-PBP's for 

any solvable G have only limited computational power. This will involve a study of 

the structure of the complexity class NC 1 under AC0 reductions. 

In Section 7 I prove the main result of this thesis, that polynomial size 5-

PBP's can recognize exactly those languages in NC 1• The consequences of this 

result for branching programs and NUDFA's are examined. In Section 8 a model of 

constant-width Boolean circuits is defined which is closely related to bounded-width 

branching programs - the relationship is proved and the consequences of the main 

result are examined. An extension of the main argument in Section 9 shows that 

polynomial-size G-PBP's can recognize all of NC1 for any non-solvable G, so that 
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solvability appears to be the key property. 

The results discussed so far have concerned classes of non-uniform families of 

branching programs and Boolean circuits. In Section 10, using the definitions of 

Cook [Co85] and Ruzzo [Ru81], I show that the main result that BWBP = NC 1 

also holds in a uniform setting. 

Finally, in Section 11 I examine the possible applications of these results and 

the many open problems suggested by this research. 

2. Previous Work 

One general program in the study of computational complexity has been to take 

general models of computation, such as Turing machines or Boolean circuits, and 

examine their behavior under very tight resource constraints. This leads to the 

definition of relatively small 'low-level' complexity classes which lie inside those of 

primary interest. A prime example is the class AC0 of problems solvable by Boolean 

circuits of constant depth, polynomial size, and unbounded fan-in. This class has 

been the subject of extensive research since the seminal paper of Furst, Saxe, and 

Sipser in 1981 [FSS81]. 

The study of these classes has a number of purposes. In some cases the pos

sibility or impossibility of performing tasks under tight constraints is of practical 

interest. The work of [FSS81] rigorously confirmed a long-standing folk belief as to 

the impossibility of multiplying integers with a programmable logic array. 

There have been direct mathematical connections to the study of the polynomial 
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time complexity classes - for example, [FSS81] and Sipser in [Si83] showed that 

certain lower bounds for circuits of constant depth and unbounded fan-in implied the 

existance of oracles under which widely held conjectures about the polynomial time 

hierarchy are true. Now that these lower bounds have been provided by Yao [Ya85] 

and Hastad [Ha86], we know that the hierarchy can be separated from polynomial 

space by an oracle and that another oracle separates the individual levels of the 

hierarchy. 

Finally, these classes appear to be more amenable to combinatorial analysis, 

so that we can discover things about them which will advance our knowledge of 

complexity classes in general, and develop new techniques which may have wide 

applicability. For example, the study of size complexity for Boolean circuits will be 

greatly affected by the recent work of Razborov [Ra85, Ra85a) and Andreev [An85] 

on monotone Boolean circuits. We will not discuss this work here - the reader 

should consult Johnson's excellent survey article [Jo86] for a description of both 

this and the oracle results, and further pointers to the relevant literature. 

Our subject here is the branching program model of computation and in par

ticular the effect upon it of tight constraints on width. As we shall see, complexity 

classes defined by branching programs fit closely into the framework of already stud

ied low-level classes defined by Turing machines or circuits. It is hoped that the 

results here will further the general program of low-level complexity theory. 

Branching programs were defined by Lee [Le59] as an alternative to Boolean 

circuits in the description of switching problems - he called them 'binary decision 

programs'. They were later studied in the Master's thesis of Masek [Ma76] under 
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the name of 'decision graphs'. 

Borodin, Dolev, Fich and Paul [BDFP83] raised the question of the power of 

bounded-width branching programs. They noted that the class B WBP contains 

AG0 (languages recognized by unbounded fan-in, constant-depth, polynomial-size 

Boolean circuits) as well as the parity function (shown to be outside AG0 in [FSS81] 

and [ Aj 83]). They conjectured that the majority function was not in B W BP, in 

fact that for bounded width it requires exponential length. 

Subsequent results appeared to support this conjecture. Chandra, Furst, and 

Lipton [CFL83] and Pudlak [PU.84] showed linear and superlinear length lower 

bounds respectively for arbitrary constant width. In [BDFP83J the idea was to 

work with width 2 and get exponential bounds. They succeeded for a restricted 

class of BP's, and Yao [Ya83] followed with a superpolynomial lower bound for 

general width 2. Shearer [Sh85] proved an exponential lower bound for the mod 3 

function with general width 2. Ajtai et al. have just proved a nearly n log n size 

lower bound for a large class of symmetric functions [ABHKST86], where width is 

unconstrained but size is defined to be length times width. 

Barrington [Ba85] revised the notion of width to the one used here and con

sidered width 3 permutation branching programs. Their power was characterized 

as equal to that of certain depth 2 circuits of mod-2 and mod-3 gates, and it was 

shown that these could recognize any set in exponential length and that exponential 

length was required to recognize a singleton set. 

Finally, in [Ba86] it was shown that the majority function (along with the rest 

of the class NG 1 ) is in BWBP, and thus that the conjecture of [BDFP83] is false. 
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This thesis contains the results of [Ba85] and [Ba86], along with some additional 

material. 

3. Definitions and Justifications 

The original notion of a branching program is that of a directed graph with 

decision nodes, accepting nodes, and rejecting nodes. To define the width of a 

branching program, we follow the process in [BDFP83]. We first divide the nodes 

of the graph into levels, i. e., sets L1i ... , L1c such that all edges out of nodes in L; 

go to nodes in some Li+l · We can make a graph levelled by adding more nodes, 

possibly squaring the size but keeping the length the same. The width is then the 

size of the largest level in an optimal division into levels. 

An arbitrary graph of width w and length l can be converted into a w by l array 

of nodes by adding dummy nodes, possibly multiplying the size by w. This brings 

us to the model of [BDFP83]. 

Clearly a sequential computation with k internal states and running time t 

(where one time step is required to access an input variable) may be simulated by 

a branching program of width k and length t. This gives simulations of determin

istic finite automata (DFA's) in constant width and log-space Turing machines in 

polynomial width and hence polynomial size. 

In fact polynomial-size branching programs are equivalent to log-space Turing 

machines except for the problem of uniformity. A language A ~ E• can be recog

nized by a family of polynomial-size branching programs iff it can be recognized 

10 



by a log-space Turing machine with polynomial advice. That is, along with the 

input x of size n the Turing machine receives a stringy," of size polynomial in n. 

The class thus defined is called 'non-uniform L', just as the languages definable by 

polynomial-size Boolean circuits are 'non-uniform P'. Given our later definition of 

width for Boolean circuits in Section 8, non-uniform L may also be defined as those 

languages computable by Boolean circuits of width O(log n) and polynomial size, 

as mentioned in [Jo86]. 

There are two approaches to dealing with this analogy - we may work in a 

uniform or a non-uniform setting. In the uniform approach we would define uniform 

families of branching programs, where the branching program for inputs of length n 

can be determined from n with appropriate limits on computational power. We will 

do this later when we discuss the parallel complexity classes such as N C 1 • For now, 

we will consider arbitrary families of branching programs satisfying constraints of 

width, length, or size. 

Our changes in the definitions of [BDFP83] are motivated by a desire to strength

en the relationship between branching programs and sequential computation, using 

an analogy of time for length and machine state for width. For example, consider an 

accepting node in the middle of a branching program. The flow of control through 

the program stops and never reaches the end. But if we are to think of the length 

dimension of the program as time, we must deal with the fact that at the end 

the fact of acceptance is known without having been stored in the meantime. A 

machine simulating the program would have to go into a separate 'accepting node 

encountered' state, and it seems reasonable to charge for this state in extra width. 
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Thus we require that accepting and rejecting nodes occur at the end, and note that 

we can impose this restriction on an arbitrary [BDFP83] branching program at a 

cost of adding two to the width without changing the length. 

Next, we consider how the branching program is to get its input. As things 

stand, at a given level it can access one of several different input bits at the same 

'time', depending on the 'state'. We can eliminate this power by insisting that all the 

nodes on the same level access the same input variable. A straightforward argument 

shows that we can impose this restriction at a cost of doubling the width and 

multiplying the length by either the width or by n, the number of input variables. 

Now we can think of levels, rather that nodes, as our fundamental objects, and 

give the following formal framework for branching programs of bounded width. 

Definitions: A branching program of width w (aw-BP) is a series of instructions 

(ji, /i, Yi) for 1 ~ i ~ l, where x;; is one of n input variables, /; and Yi are functions 

from [w] to [w] (here and throughout, [w] is the set {O, ... ,w -1}), and l is the 

length. Given a setting x of the input variables, the instruction (j;, /;, y;) yields 

the function /; if x;; is on and Yi if x;; is off. A branching program B yields the 

composition of the functions yielded by its instructions - we call this composition 

B(x). Thus B(x) applied to i gives the number of the sink reached by following 

the flow of control from node i in the first level given input setting x. 

There is now a choice in how to define the recognition of a language by a 

branching program. To match the earlier definition we should give a partition of 

[w] into an accepting and rejecting set and say that B accepts x iff B(x) applied to 

0 is in the accepting set. For various reasons, we will use a number of definitions of 
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acceptance below, explaining each when necessary. 

It should be noted that all of our modifications of the definitions have preserved 

the class B WBP of languages recognized by families of branching programs of con

stant width and size polynomial in n. We will eventually show that this class is 

independent of the definition of recognition - for now we may adopt the one given 

above. 

We can now also formalize our notion of a non-uniform DFA and prove the 

relationship between such machines and bounded-width branching programs. 

Definition: A non-uniform deterministic finite automaton (an NUDFA) is a 

machine with a two-way read-only input tape, a finite control with k states, and a 

one-way read-only program tape. On the program tape are instructions of two types 

- to move the input read head one position or to change machine state based on 

the current state and the input bit being read. 

The automaton's resources are time (the length of the program tape) and space 

(its number of states, a constant). Note that the automaton must execute the entire 

program tape and that the input cell read at a given time does not depend on the 

input. These restrictions prevent the NUDFA from storing information about the 

input in the input read head position. 

A width k braching program can easily simulate an k-state NUDFA program, 

with one branching program instruction for each state-changing NUDFA instruc

tion. The simulation in the other direction is also easy, except that the NUDFA 

time may be as much as n times greater than the branching program length be

cause the NUDFA may have to move its input head up ton times between branching 
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program instructions. We have the same varied possibilities for how to define ac-

ceptance by an NUDFA - the most natural first notion is to designate a start state 

and partition the final states into accepting and rejecting. 

This analogy allows us to prove facts about branching programs using standard 

arguments about finite automata. FOT example, we can define a non-deterministic 

branching program of width w by allowing more than one function for the on-case 

and off-case in each instruction. Using the familiar subset construction for DFA's 

and NFA's it is easily shown that a non-deterministic branching program of width 

w and length l may be simulated by a deterministic program of width 21: and length 

l. Thus the class B W BP could equivalently be defined using non-deterministic 

programs. When we show later that B WBP is a subset of the parallel complexity 

class N C 1 , we will use a simple adaptation of the standard argument that regular 

languages are in NC 1• The utility of the analogy, in my view, provides a compelling 

justification for the changes I have made in the definition of width. 

The view of branching programs as analogous to DFA's makes clear the intuition 

behind the conjecture of [BDFP83] that the majority function is not in BWBP. 

The finite control and memory of an NUDFA are very simple, and if the number 

of states is small enough we might imagine an implementation of an NUDFA using 

a chimpanzee 1 as central processor, as follows. The memory (machine state) will 
1 We take no position here in the raging debate on chimpanzee intelligence. The defining properties 

of the chimpanzee in this discussion will be a capacity for symbolic manipulation with a constant 

sized vocabulary, together with an inability to think abstractly as humans do about such things as 

large integers. The zoologically informed reader has the option of positing a hypothetical animal 

with these properties if a chimpanzee will not do. 
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be stored as a single abstract symbol from a vocabulary of k such symbols known 

to the chimpanzee. The input will be a sequence of n cells on a tape, colored 

black or white, and accessible to the chimpanzee only one cell at a time through a 

window. The chimpanzee is able to move the window one cell at a time in either 

direction. The program tape of the NUDFA is now a series of instructions in a 

symbolic language known to the chimpanzee. The two types of instructions are 

represented by the examples 'move the input head left' and 'if the state is a and 

input is black change the state to b' (where a and bare symbols in the chimpanzee's 

vocabulary). It should be clear that if the chimpanzee executes the instructions 

infallibly, this model is mathematically equivalent to the NUDFA model we descibed 

earlier. Thus a language is in B WBP iff there is a polynomial length family of 

instruction sequences to a chimpanzee with constant size vocabulary which causes 

the chimpanzee to recognize the language. 

If majority is in B W BP, then there is a polynomial length sequence of instruc

tions which will enable the chimpanzee to count the black squares in the input. 

But, the argument would go, the chimpanzee has only a constant amount of ex

ternal memory and is assumed to be incapable of counting on his own! It is true 

that he can count in exponential length (as we shall see below), but this is done 

by checking each of the 2n possible cases for the input and giving the output cor

responding to the correct case. Majority, using this method, is no easier than any 

other Boolean function. The intuition behind the conjecture is that there can be no 

method of counting which is substantially better than this one and can be carried 

out by the chimpanzee. 
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The NUDFA model raises some interesting foundational questions. In a Turing 

machine, all the problem-solving capacity is stored in the finite control and its ability 

to manipulate the memory - the program is of constant size. Now we ask about a 

long program and a very limited machine, and compare this to other models. 

4. The Cook Framework and BWBP 

One of the principal questions in theoretical computer science in recent years 

has been the difference in power between sequential computation, such as that of 

a Turing machine, and parallel computation, as is contemplated in new types of 

machines. What problems can be solved much more quickly by the cooperative 

simultaneous action of a large number of processors? This has led to the develop

ment of new complexity classes of problems solvable by parallel algorithms under 

various resource constraints. Though bounded-width branching programs appear 

to be an essentially sequential model, the class B WBP turns out to have interesting 

relationships with these new parallel classes. 

We will consider the hierarchy of complexity classes described by Cook in his 

survey article [Co85], which covers his own and others' research over the last decade. 

As he explains, there are a number of competing abstract models for parallel com

putation, but to develop an abstract complexity theory there is a strong case for 

the model of Boolean circuits. They are simple, offering a greater promise for the 

use of combinatorial techniques in proving lower bounds, and yet they effectively 

simulate the other models so that complexity results carry over into them. 

A Boolean circuit is a directed acyclic graph whose nodes, or gates, calculate 
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the and-function or or-function of their input edges and pass the result along their 

output edges. Input to the circuit is a fixed number n of bits which may be accessed 

individually from special nodes which output the value of an input variable or its 

complement. Sinks in the graph are output nodes, of which there may be one 

(in which case the circuit recognizes a subset of [2]", i.e., {Q, 1}") or several (in 

which case it calculates a function). The important parameters of a circuit are size 

(number of nodes), depth (length of the longest path from an input to an output, 

and fan-in (the maximum in-degree of a gate). A circuit operates only on inputs of 

a given size, so we define families of circuits and treat size and depth as functions 

of n. We will assume the reader to have a good understanding of this model -

appropriate references may be found in [Co85J. 

The fundamental parallel complexity class, NC, is defined as those functions 

computable by Boolean circuit families with polynomial size and depth bounded 

by a polynomial in log n. When we examine the degree of this polynomial to make 

finer distinctions among functions in NC, we must begin to consider the f an--in of 

the circuits. 

Definition: For each natural number i, NCi is defined to be those functions 

computable by polysize families with depth O(logi n) and fan-in two. ACi is defined 

similarly, but with no restriction on fan-in. (Note the remarks on uniformity below.) 

Clearly a gate with arbitrary fan-in may be simulated by a binary tree of gates 

with fan-in two, and since the fan-in in an ACi circuit is bounded by the size this 

tree has depth O(log n) and thus ACi ~ NCi+l. 

To properly define these complexity classes we should define a uniformity condi-
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tion, insisting that the circuit in a family which takes n inputs be computable from n 

with appropriate resource constraints. For now, however, we will allow our families 

of circuits, as well as our families of branching programs, to be non-uniform. Our 

main result remains true in the uniform setting of [Co85], as we will demonstrate 

later in Section 10. 

Given an appropriate uniformity definition, the classes NCi and ACi have a 

wide applicability in the study of parallel computation. For example, each has 

an equivalent definition in terms of alternating Turing machines - NC 1 is those 

functions computable on an ATM with space O(logn) and time O(logi n) [Ru81], 

while ACi is those computable with space O(log n) and alternation depth O(logi n) 

[Co85]. Also, ACi is the class of functions computable in time O(logi n) and poly

nomially many processors on a SIMDAG, a type of parallel random-access memory 

computer where read and write conflicts are allowed and the lowest numbered pro

cessor succeeds in the case of a write conflict [CSV82]. 

Both deterministic and nondeterministic log space are easily seen to lie between 

NC 1 and AC1 , while all of NC is a subset of polynomial time. As in sequential 

complexity theory, proofs that any classes in the hierarchy differ are rare, but it is 

generally conjectured that all or nearly all are actually different. Cook[Co85] begins 

his survey of these classes with NC1, but to examine a very constrained class like 

B WBP we must begin at the very beginning. 

NC 0 is simply those functions whose output bits each depend on only a constant 

number of input bits (for example, bitwise operations on Boolean vectors). AC0 

includes such things as binary integer addition or Boolean matrix multiplication, 
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where the dependence of an output bit on all the input bits is very simple - an 

AG0 circuit has only constant depth though it has unbounded fan-in. However, 

the parity function (which returns one iff the number of ones in the input is odd) 

cannot be computed in AG0
, as was proved by Furst, Saxe, and Sipser [FSS81] and 

independently Ajtai [Aj83]. Many other functions can be shown to be outside AG0 

using this result and the technique of AG0 reduction - one shows that an AG0 

circuit for the desired function could be used to construct one for parity. 

We can begin to place B WBP in relation to these classes by showing that it 

contains the languages in AG0 • An unbounded fan-in circuit of depth d and size s 

can be simulated by a branching program (using our definitions rather than those 

of [BDFP83]) of width d + 1 and size sd. We sketch the proof, which is by induction 

on d. The circuit of depth d is the AND or the OR of at most s circuits of depth 

d-1. We concatenate the branching programs for each of these sub circuits and add 

a new row of nodes (increasing the width by one) which the program will branch to 

iff the top node of the circuit is satisfied. We arrange that it will remain on this row 

if it ever gets there, so that at the end it is on that row iff the circuit is satisfied. 

We come next to the class N G1 of functions computable by circuits with fan-in 

two and depth O(log n) (the restriction to polynomial size is made redundant by 

these two). Parity is easily computable in N G1 (by a binary tree of circuits for 

binary exclusive or), so we know that this class strictly contains AG0
• In fact quite 

a lot else is in N G1 - integer multiplication, integer matrix multiplication, or any 

function which is symmetric (i.e., where the output depends only on the number 

of ones in the input). These functions may all easily be calculated using iterated 

19 



integer addition as a subroutine (e.g., adding n numbers of n bits each), and the 

latter may be done in NC 1 by a binary tree of NC0 circuits which add integers 

using a redundant notation - see [BCP83] for details. H we allow the circuits to 

be less uniform then integer division and several related functions are also in N C 1 

- polynomial-time uniform circuits for these are given in [BCH84]. Non-uniform 

NC 1 may also be characterized as containing exactly those languages recognizable 

by families of polynomial length Boolean formulas (or, equivalently, of polynomial 

size circuits which are trees)[Sp71]. 

NC 1 has long been known to contain all regular languages, and we can exploit 

the analogy between finite automata and B WBP to obtain the following proof 

that B WBP is contained in NC 1 as well. This is simply a non-uniform version of 

an argument which in the uniform case essentially appears in [Sa72] and is given 

explicitly in [LF77]. 

Theorem 1: HA~ [2]" is recognized by aw-BP B of length l, A is recognized 

by a fan-in 2 circuit of depth O(log l), where the constant depends on w. 

Proof: We may choose the weakest possible notion of recognition here and say 

that B accepts x if B(x) is in some arbitrary subset of the functions from [w] to 

[w]. We can represent such a function f by w2 Boolean variables telling whether 

f(i) = j for each i and j. The composition of two such functions so represented 

may be computed by a fixed circuit whose size depends only on w. Our circuit for 

A will have a constant-depth section to find the function yielded by each instruction 

of B, a binary tree of composition circuits, and a constant-depth section at the top 

to determine acceptance given the function yielded by B. 
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We have thus seen that B WBP is a subclass of NC 1 which includes the sub

classes of AC0 languages and regular languages. Given the 'chimpanzees can't 

count' intuition which suggests that BWBP f. NC 1 , we might think of BWBP as 

the easier problems within N 0 1 and thus an interesting proper subclass of it. 

5. PBP's and the Width 3 Analysis 

A logical program for studying B WBP would be to begin with specific small 

constant bounds on width and investigate what can and cannot be done under 

them. This is the program proposed in [BDFP83] for their different definitions and 

we begin by retracing their steps. They found much worth studying in width 2, 

but under our definitions width 2 is very weak indeed (it is similar to their class 

SW2 ). Most languages can be shown unrecognizable by 2-BP's with the aid of the 

following result. 

Proposition: A language is recognizable by a width 2 branching program iff 

it is recognizable by such a program of length O(n2). 

Proof: Of the sixteen possible instructions of a 2-BP, four set the yield to 0, 

1, xi, or xi and destroy all previous information. The others change the function f 

calculated so far in ways which can be built up from the operations changing f to 

l = f ffi 1, f ffi Xi, f /\Xi, or f /\Xi for an input Xi· We may delete any but the last 

occurrence of each of the 2n distinct AND instructions, because if their variable is 

false the last one destroys all previous information, and if it is true they all have no 

effect. Between two AND's, we need have only one XOR for each of then variables 

and one NOT. (This idea of this proof is taken from [BDFP83].) 
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When we simulated AC0 circuits by branching programs above, we used a gen

eral technique for simulating depth d unbounded fan-in circuits by width d + 1 

branching programs. This allows us to compute any Boolean function in width 3 

and exponential length, using its conjunctive normal form circuit. No lower bounds 

are yet known for width 3. 

Lower bounds can be derived, however, for a restricted class of 3-BP's, which 

we now define for width w as they will become important later. This class will turn 

out to be more susceptible to analysis because we will be able to bring in the theory 

of permutation groups. 

Definition: A permutation branching program of width w (a w-PBP) is aw-BP 

where both the functions /i and 9i in each instruction are permutations of [w]. 

An unrestricted w-BP can be thought of as a series of w-PBP's linked by special 

instructions which coalesce two or more of thew 'machine states' into one. It is not 

immediately clear whether these special instructions are of any use at all, or are 

of vital importance to the w-BP. This is somewhat reminiscent of Bennett's work 

on Turing machines which do not destroy information during their computations 

[Be73]. In any case, we can begin to get a better picture of this by a more detailed 

analysis of the width 3 case. 

For 2-BP's we had no particular difficulty in defining acceptance of a string by a 

branching program, but now we must be more precise. We have the two notions of 

partitioning either the nodes themselves or the functions on the nodes into accepting 

and rejecting sets. Also, in working with 3-PBP's we are going to want to build 

up larger programs from smaller, and this will be far easier if each program can be 
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guaranteed to have only two possible yields. For these reasons we offer the following 

definitions and technical results. 

Definitions: Aw-BP B weakly recognizes a set A ~ [2]n if there is a subset 8 of 

the functions from [w] to [w] such that B(x) E 8 iff x E A. B strongly recognizes A 

if there are two fixed functions f and g such that B(x) = f iff x E A and B(x) = g 

iff x (/.A. 

Proposition: If A is weakly recognized by a 3-PBP there is another 3-PBP, 

at most a constant factor longer, which always yields an even permutation and also 

weakly recognizes A. 

Proof: We sketch this only. Given a permutation u E 83 , many permutations 

derived from it are guaranteed to be even, such as uru-1r- 1 for any fixed r. One 

must show that given any subset of 83 there is such a mapping from 83 to A3 (the 

even permutations) which takes that subset exactly onto a subset of A3 • This is 

tedious but not difficult. 

Proposition: If A is strongly recognized by a 3-PBP it is also strongly recog

nized by a 3-PBP of the same length which yields the identity if x (/.A and another 

fixed permutation if x E A. 

Proof: The original 3-PBP gives u or T - we change this to ur-1 or the identity 

by composing both permutations in the last instruction with r- 1 . 

Proposition: If A is strongly recognized by a 3-PBP and u is an even permu

tation other than the identity, there is a 3-PBP at most twice as long which yields 

u for x E A and the identity for x (/. A. 
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Proof: We can change v and the identity to rvr- 1 and the identity for any r 

by altering the first and last instructions. This suffices if v and o are conjugates, 

i.e., unless v is odd. If v is odd, we can make o as a product of v and one of its 

conjugates. 

We see from these facts that the function and node definitions coincide for 3-

PBP's, as even permutations of [3] can be characterized by where they take a single 

element. We will now think of a 3-PBP, then, as giving a function from [2]n to 

[3], which will facilitate our analysis. We will obtain our best results for strong 

recognition, though weak recognition is the more natural model. 

If each instruction of a 3-PBP yielded an even permutation, we could find out 

the entire yield by adding up the individual contributions mod 3. We can't do this 

in general, because the individual contribution may be odd. However, we can do 

something just as good with a little more information. 

Consider S3 as generated by two elements x and r with x2 = r3 = e and xr = r2x. 

(Here e is the identity.) Given the input we have a yield xb;rc; for each instruction, 

and we want the product. We will assume, using the above facts, that this product 

is even (a power of r), so we want to find the number of r's contributed by each 

instruction. Note that we could if we wanted write x 11;rc; as r-c;x"i. If we choose 

the notation for each instruction correctly, we can have all the x's occurring in pairs 

and thus vanishing. In other words, the i'th instruction will contribute c, r's if the 

number of x's contributed before it (i.e., E;:Sib;) is even, and -c, if it is odd. Thus 

a combination of mod 3 and mod 2 questions can evaluate the 3-PBP - we now 

make this precise. 
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Definition: A 9-2 circuit consists of a single mod 3 gate whose inputs are 

constant 1 gates or parity (mod 2) gates connected to inputs. Its output is the sum 

mod 3 of the number of 1 gates and the number of parity gates which are satisfied. 

Its size is the fan-in of the mod 3 gate. 

Proposition: A 3-PBP of length l and guaranteed even yield may be simulated 

by a 3-2 circuit of size O(l). 

Proof: We use the reasoning above, except that we must show how to take the 

input into account. It suffices to give a constant number of constant and parity gates 

whose output mod 3 is a given parity function of inputs if a given input variable is 

on, and 0 otherwise. This is straightforward as P /\ x is the sum mod 3 of 2x, 2P, 

and P EB x. 

Proposition: A 3-2 circuit of size s may be simulated by a 3-PBP of length 

O(ns), where n is the number of input variables. 

Proof: It is easy to make a 3-PBP of length at most n which yields either a 

2-cycle or the identity depending a a given parity condition. By concatenating two 

such 3-PBP's with different outputs and the same parity condition, we get a 3-PBP 

which yields a given 3-cycle or the identity depending on the parity condition and 

thus simulates a single parity gate of the 3-2 circuit. 

Theorem 2: The optimal 3-PBP length and the optimal 3-2 circuit size of any 

function from [2]" to [3] differ at most by a multiplicative factor of O(n). 

Proof: Immediate from the above. 

There are exactly 2" different types of gate in a 3-2 circuit - the constant 1 
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gate and the gate taking the parity of x E A for any nonempty subset A of then 

variables. These types may be indexed by the set [2]", and thus a circuit may be 

described by a function C from [2]" to [3], with C(A) being the number of gates of 

the type corresponding to the set A ~ [n]. (Without loss of generality, there are 

zero, one, or two such gates.) The output function D of the circuit is also from [2]" 

to [3], where D(B) for B ~ [n] is the output when exactly those variables Xi with 

i EB are on. 

H we view the functions from [2]" to [3] as a vector space of rank 2" over the 

field GF(3), then the mapping from a circuit's description to its output function is 

linear, given by the matrix M = {mAB: A~ [n],B ~ [n]} where mAB = 1 if A= 0 

and mAB = IA n Bl mod 2 otherwise. This matrix has nonzero determinant over 

GF(3) - to see this we look at a similar matrix M' where m~ = 2 - (IA n Bl 

mod 2). M' is derivable from M by Gaussian operations and thus has nonzero 

determinant iff M does. By explicit calculation one can easily show that the square 

of M' is ±I. 

Thus this mapping from circuit descriptions to functions is an isomorphism of 

the vector space GF(3) 2
n. Each function thus has a unique circuit calculating it, 

of size 0(2"). We can thus find the circuit complexity of any specific function if 

we can find a general form for its inverse image under this mapping. In the case of 

the and-function (D(B) = 1 if B = [n]; D(B) = 0 otherwise) this inverse image is 

given by C(A) = 2" · (2 - (IAI mod 3)) mod 3, and so the circuit has size ~ · 2". 

Putting this together with the theorem above, we get: 

Theorem 3: Every subset of [2]" may be strongly recognized by a 3-PBP of 
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length O(n2"). Length 0(2") is required to strongly recognize the singleton set 

{ 1 n}, i.e., to strongly calculate the and-function of n variables. 

Allowing weak recognition can help considerably. To weakly recognize {1"}, we 

can concatenate two 3-PBP's which strongly calculate the and-functions of the first 

n/2 and last n/2 variables respectively. This 3-PBP outputs 2 iff all the variables 

are on, and has size 0(2"12
). We conjecture that this is optimal, but this seems 

very difficult to prove. 

6. Solvable PBP's and the Fine Structure of NC1 

We have just shown that the languages strongly recognizable by 3-PBP's are not 

all of NC 1
, because they do not include the and-function (so they are not even all of 

AC0
). We are going to generalize part of this argument to give strong evidence that 

many classes of PBP's cannot recognize all of NC 1 
- to do this we must develop a 

theory of the internal structure of NC 1 as a complexity class. This will be a degree 

theory analagous to the degrees of unsolvability in classical recursion theory or the 

polynomial-time degrees within NP. 

Inside N C 1
, it is most natural to define AC0 reductions - the function f is 

reducible to g (written f ~Aco g) if a constant-depth poly-size unbounded fan-in 

circuit, containing oracle nodes for g, can compute f. If f and g are each AC0 

reducible to the other we say they are AC0 equivalent, and the AC0 degrees are 

the equivalence classes of this relation. The class AC0 is itself a degree, and NC1 

is partitioned into it and one or more others. 
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AC0 reducibility was introduced in [FSS81] under the name of 'cp-reducibility'. 

They suggested further study of the degree structure (they had only just given the 

first proof that the structure of NC 1 was non-trivial) and conjectured that majority 

was not reducible to parity. 

Their suggestion was taken up by Fagin et al. in [FKPS84], who found many new 

AC0 reducibilities among symmetric functions. Modulo the new parity lower bounds 

of Yao [Ya85] and Hastad [Ha86], they characterize those symmetric functions in 

AC0
• They show that the degree of the majority function is complete for symmetric 

functions and contains a large class of symmetric functions (though there seems to 

be no reason to believe that this degree is complete for NC1). Interestingly, no 

complete symmetric function exists in the projection-reducibility theory of Valiant 

[SV81], by a recent result of Gereb-Graus and Szemeredi [GS??]. 

It is still not known, however, that there are more than two AC0 degrees within 

NC 1
• The conjecture that majority is not reducible to parity would settle this, as 

parity would then be in an intermediate degree between the majority degree and 

AC0
• This conjecture seems very plausible, as the ability to count mod 2 would 

not seem to help a circuit to count overall. We make the following conjecture, 

strengthening that of [FSS81]: 

Conjecture: Majority is not AC0 reducible to the mod k function for any k, 

and thus no mod k function is AC0 complete for NC 1 • 

In our analysis of 3-PBP's, we saw that a constant depth circuit of mod 2 

and mod 3 gates could determine the output of a 3-PBP, so that any language 

recognizable by a 3-PBP is AC0 reducible to the mod 6 function. We shall now see 
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that this part of the analysis depended on properties of the group 83 from which 

we took permutations, in particular the solvability of that group. First we must 

generalize our definitions to arbitrary groups. 

Definition: Let G be a finite group realized as a group of permutations of 

[w]. A G-permutation branching program (or G-PBP) is a w-PBP where both the 

permutations in each instruction are taken from G. 

Definition: The word problem for a fixed group G is to input an ordered string 

of elements of G (using any fixed representation) and output their product. 

Proposition: The problem of evaluating the output of a G-PBP given an input 

is AC0 equivalent to the word problem for G. 

Proof: Given a G-PBP and an input, simply read off the permutations to be 

composed. Given a sequence of elements of G, simply make a G-PBP where each 

instruction yields the corresponding element on any input, so the output is the 

product of the elements. 

Now we will give one of the many equivalent definitions of solvability. (For more 

detail see a group theory text such as [Za58].) The commutator subgroup of G is 

the subgroup generated by all elements of the form aba- 1b-1 for a and b in G. A 

group is solvable if and only if repeated taking of commutator subgroups eventually 

gives the trivial group. Thus a group is non-solvable if and only if it has a nontrivial 

subgroup whose commutator subgroup is itself. (All groups under discussion are 

finite.) 

The following theorem extends the earlier argument to arbitrary solvable groups. 
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Theorem 4: The word problem for any fixed solvable group G is AG0-reducible 

to the mod g function, where g is the order of G. 

Proof: An equivalent definition of a solvable group (see, e.g., [Za58]) is one 

which has a series of normal subgroups G = G0 , G1 , ••. , G,,., = { e} where each 

quotient group Gi/ Gi+1 is cyclic. We prove the theorem by induction on the length 

of this series. So assume that G has a normal subgroup N, where G/N is cyclic 

and the word problem for N is solvable by an AG0 circuit containing mod g gates. 

Choose an element a such that the coset aN generates G / N. 

We are given a product g1 ... gk to evaluate. As N is normal, we can write each 

gi uniquely as aEini with ni E N. (Converting between any two bit representations 

of an element of G takes constant size and depth.) Now let bi be the product 

aE 1 ••• aE; and note that aE 1 n 1 •.• aEknk = (b1n 1b1 1) .•. (bkn1:b; 1)bk. Each bi depends 

only on the sum mod g of the appropriate£;, as the order of a in G divides g. Each 

term binibi1 is in N by normality, and we can calculate it in constant depth using 

mod g gates to get bi. These partial terms may then be multiplied using a circuit 

for N. 

Theorem 4 is interesting only if the Conjecture above is true. Proving that 

conjecture, however, will apparently need an entirely new method. Unfortunately, 

the random restriction method of [FSS81] does not seem to extend to even parity 

(mod 2) gates, as the restriction of a parity gate is still a parity gate. 

Hastad [H!86a] has recently proved a partial result toward the Conjecture. He 

shows that any constant depth and polynomial size circuit of AND, OR, and parity 

gates which computes majority must have O((log n) 8 /2) parity gates. His method 
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appears to be inherently limited to circuits with fewer than n parity gates, and thus 

it appears that something new is still needed. 

7. The Width 5 Result and its Consequences 

We will now see that the view of branching programs as being composed of 

permutations allows us to prove our surprising main result. Unlike 3-PBP's and 

4-PBP's (which fall under the above results because 83 and 84 are solvable groups), 

5-PBP's can recognize all of NC 1 in polynomial size. We will state the result in an 

even stronger form to allow ourselves to carry out the necessary induction. 

We say that a 5-PBP B five-cycle recognizes a set A ~ [2]" if there exists a 

five-cycle u (called the output) in the permutation group 8 6 such that B(x) = u if 

x EA and B(x) = e ifx rt. A (e is the identity permutation). 

Theorem 5: Let A be recognized by a depth d fan-in 2 Boolean circuit. Then 

A is five-cycle recognized by a 5-PBP B of length at most 4d. 

Lemma 1: If B five-cycle recognizes A with output u and .,. is any five-cycle, 

then there exists a 5-PBP B', of the same length as B, which five-cycle recognizes 

A with output r. 

Proof: Since u and r are both five-cycles there exists some permutation fJ with 

r = fJufJ- 1• To get B', simply change each instruction of B, replacing each ui and 

Ti by fJuifJ-1 and fJrifJ-1. 

Lemma 2: If A is five-cycle recognized in length l, so is its complement. 

Proof: Let B five-cycle recognize A with output u. Call the last instruction 
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of B (i,µ,v). Let B' be identical to B except for last instruction (i,µu- 1 ,vu-1). 

Then B'(x) = e if x E A and B'(x) = u-1 if x ft A. Thus B' five-cycle recognizes 

the complement of A. 

Lemma 3: There are two five-cycles u1 and u2 in 85 whose commutator is a 

five-cycle. (The commutator of a and b is aba- 1b- 1 .) 

Proof: (12345)(13542)(54321)(24531) = (13254). 

Proof of Theorem 5: By induction on d. If d = 0 the circuit is an input 

gate, and A can easily be recognized by a one-instruction 5-PBP. Using Lemma 2 

in the case of an OR gate, assume without loss of generality that A = A1 n A2 , 

where A1 and A2 have circuits of depth d-1 and thus 5-PBP's B 1 and B 2 of length 

at most 4d-l. Let B1 and B2 have outputs u1 and u2 as in Lemma 3, and B~ and 

B~ have outputs a1 1 and a1 1 (This last is possible by Lemma 1). Let B be the 

concatenation B1B2B~B~. B yields e unless the input is in both A 1 and A 2 , but 

yields the commutator of the two outputs if the input is in A. This commutator is 

a five-cycle, and so B five-cycle recognizes A. B has length at most 4d, Given a 

circuit and a desired output, this proof gives a deterministic method of constructing 

the 5-PBP. 

This result has interesting consequences in the realm of NUDFA's - in par

ticular, our earlier intuition appears to be wrong. A chimpanzee can be given a 

polynomial-length set of instructions which allow him to count, as well as compute 

any symmetric function of the input. In fact, if we allow ourselves a polynomial

time Turing machine to generate his instructions, he can also divide integers and 

compute the related functions of [BCH84]. 
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8. Boolean Circuits of Constant Width 

We define width for Boolean circuits so as to allow nodes at any level to access 

the inputs without penalty, and examine the consequences of our main result for 

constant-width circuits in this model. It is easy to show [Ho83] that constant width 

for branching programs is equivalent to constant width for circuits, but here we go 

into more detail in an attempt to get the best possible simulations. 

In particular, we show that width w branching programs (using the definitions 

of [Ba86]) can be simulated by circuits of width flog w l + 1 and length multiplied by 

a constant depending only on w (this is a slight improvement of a result of Hoover 

[Ho83], who simulated width w BP's in the [BDFP83] model by circuits of width 

flog w l + 4.) In particular, width 5 branching programs can be simulated by width 

4 circuits (improving the result cited in [Jo86]), so that width 4 polynomial circuits 

can recognize all of NC 1 and thus everything recognized by circuits of constant 

width and polynomial size. 

We choose the following definition of a width-w circuit from the many equivalent 

ones. A circuit is a rectangular array of nodes, consisting of l rows of w nodes each. 

Each node has one or two edges entering it which must be from either inputs or 

nodes on the immediately previous row. Possible node types are EQUALS (unary), 

NOT (unary), AND (binary), and OR (binary). Edges carry Boolean values, and 

nodes send out the appropriate value calculated from their input or inputs. 

This is equivalent to other definitions which allow wires (edges) to jump over 

intermediate levels but count them as part of the width for those levels. (See, for 
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example, [Jo86].) Perhaps the most natural first definition of width would charge 

for access to the inputs, but this would lead to a class far too restricted to be 

interesting. 

Note that for defining the class of functions calculable using width wand length 

O(f (n)), we have a lot of latitude in our definitions. We will think of the inputs 

as being accessed by unary AND-xi, AND-xi, OR-xi, or OR-xi gates - any other 

use of Xi can be simulated by these in a constant number of rows. We will also 

assume that only one input variable is accessed by a given row of nodes - this can 

be enforced by replacing one row by up tow rows. 

Proposition: A Boolean circuit of width w and length l may be simulated by 

a branching program of width 2111 and length w. 

Proof: Use the 2111 nodes in each instruction to represent the possible settings of 

the w Boolean variables on each level of the circuit. By our assumption, we access 

only a single input variable and thus the new state depends only on that variable 

and the old state. 

The simulation in the other direction is less straightforward. It is easy to sim

ulate a w-BP by a 2w-circuit, or even a w + 2-circuit, by storing the branching 

program state in unary, i.e., in w gates exactly one of which will be on. We can 

improve matters by storing the state in binary. 

Theorem 6: A branching program of width w and length l may be simulated by 

a Boolean circuit of width flog w l + 1 and length O(l), where the constant depends 

on w. 
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Proof: WLOG let w = 2m. be a power of two. To simulate an instruction it 

suffices to simulate one where either /i or 9i is the identity, so WLOG we'll assume 

it's 9i and that the problem is to do /i if x is on and the identity otherwise. 

Note that we need only simulate a set of functions which generates under com

position the entire set of functions from [w] to [w] (Here [w] is the set {O ... w -1}.) 

Lemma: The functions from [w] to [w] are generated by: (l)the transpositions 

/;, for 0 ~ i < m, defined by f (0) = 2i, /(2i) = O, and /(J') = j otherwise; (2) the 

permutations 9i for 0 ~ i < m defined by 9i (j) = ;' + 2i for j < 2i, 9i (;') = j - 2i 

for 2i ~ ;· < 2i+i, and gi(j) = j otherwise; and (3) the function h defined by 

h(O) = O, h(l) = 0, and h(j) = ;' otherwise. 

Proof: We will show that the /i and 9i generate the permutations of [ w], by 

induction on m. This will suffice, as any function which is not one to one may 

easily be made up out of permutations and copies of h. The permutations of [2] 

are clearly generated by / 0 • We must show how to generate any permutation of 

[w] = [2m.], assuming that the h and 9i for i < m - 1 generate all permutations 

of [ w /2]. By conjugation with 9m.-l' we can make all permutations of the elements 

{ w /2, ... , w - 1}. Using these permutations as necessary among the high-numbered 

and low-numbered elements as necessary, we can use fm-l to swap highs for lows 

as necessary to generate an arbitrary permutation of [w]. 

Proof of Theorem 6: We will encode the state by m bits L 0 , Lll ... , Lm-l 

with the state encoded being E1Li2i. 

We will now view /i and so forth as the function of x which is the old /i if x is 

on and the identity if it is off. 
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Each /i or gi is L := L EB y for an appropriate y which is an AND of x and 

other L's. This is doable using one extra node along with the first m, as follows. 

First compute fi using successive ORs, maintaining the Li's. Then AND fi with Li 

and save the result. Now, using the space for Li, compute Li /\ y by a NOT and 

successive ANDs. As Li EBY= (Li/\fi) V (Li/\y), we can now get the new Li with one 

OR step. The circuit below illustrates this method, computing the transposition / 2 

or (0 4) with m = 3 in width 4. 

The function h changes Lo by the assignment Lo := Lo /\ fj, where y is the 

OR of x and all the other L/s. The other Li's are not changed. This is easily 

doable in width m + 1, by using one extra column to compute y by successive ORs, 

complementing it, and then ANDing it in at the end. 

Comparing this result with that of [Ho83], we see that our definition of BP width 

leads to a closer relationship between BP width and circuit width than does the 

[BDFP83] model. We conclude by summarizing the main consequence of Theorem 

6 for bounded-width circuit complexity. 

Corollary: The class of languages recognizable by circuits of constant width 

and polynomial size equals the class of those recognizable with width 4 and poly

nomial size, as both are NC 1• 

9. Non-solvable PBP's and Completeness 

The natural question to ask about the proof of Theorem 5 is what properties of 

the group 8 5 were necessary to carry it out. The answer is simply non-solvability, 
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as we will now show. Thus if the Conjecture of Section 6 is true, the languages 

recognized by poly-size G-PBP's are all of NG 1 if and only if G is not solvable. 

Theorem 7: The word problem for any fixed non-solvable group G is complete 

for NG 1 under AG0 reductions. 

Proof: Without loss of generality, assume that G's commutator subgroup is 

itself. We show that given a fan-in 2 circuit of depth d and an element a of G not 

equal to the identity, there is a G-PBP of length at most (4g)d which yields a if the 

circuit accepts the input and yields the identity otherwise. Here g is the order of G, 

a constant. Evaluating a G-PBP is easily seen to be in AG0 , given oracle nodes for 

the word problem for G. This will suffice to show completeness - the word problem 

is clearly in NG1 as we can multiply two permutations in constant size and depth 

with fan-in two. 

The proof, like that of Theorem 5, is by induction on d. The element a must have 

a representation as a product of at most g commutators. We carry out the proof 

of Theorem 5, except that we use the inductive hypothesis to produce G-PBP's 

yielding arbitrary non-identity elements of G instead of five-cycles. This multiplies 

the length by at most 4g instead of 4 at each step. Lemma 1 is unnecessary as for 

each d, we simultaneously prove the result for all a in G except the identity. 

It is interesting to have complete languages for NG 1 which are defined alge

braically. The class of complete languages, of course, gives us another new starting 

point for studying the structure of NG 1 under AG0 reductions. 
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10. Uniformity 

Before we state and prove a uniform version of Theorem 5, we must review 

some background. We define an alternating Turing machine to be a game played 

by two players on a nondeterministic Turing machine which has two possible state 

transitions in every position. States are labelled White or Black as to which player 

has control of the moves from that state. For defining the class ATIME(logn), we 

assume that the machine has a random-access input tape of length n (which it can 

access only once at the end of the computation), a worktape of size clog n for some 

constant c, and a clock which restricts it to running for clog n steps. The players, 

who are assumed to be omniscient, direct the computation of the machine until the 

end, when White wins iff he can correctly predict the input bit to be read. The 

alternating Turing machine is said to accept an input x iff White has a winning 

strategy for this game with input x. By standard methods these assumptions may 

be shown to be perfectly general. 

Ruzzo [Ru81] defines NC 1 circuits as those fan-in 2 depth O(log n) circuits 

whose extended connection language is in ATIME(logn). The extended connection 

language consists of strings of the form (g, h, s) where g and hare names of nodes in 

the circuit, s E {left, right}:c:;;Jogn, and h is the node reached by following the path 

s from g. This has the consequence that NC 1 =ATIME(log n). We would like to 

show that the class of languages recognized by ATIME(log n)-uniform polynomial

size bounded-width branching programs is also ATIME(log n). This will show that 

B WBP = NC 1 in the uniform as well as in the non-uniform setting. 

Theorem 8: A language A is in ATIME(log n) iff it is recognized by a branching 

38 



program B, of constant width and polynomial size, for which the language: 

{ (k, f, g, i) : the k'th instruction of B yields 

function f if Xi is on and g if Xi is off} 

is in ATIME(log n). 

Proof: First we define a game in which White tries to prove that B(x) = f, 

for some accepting f, and Black tries to refute him. At each stage of the game the 

log-time machine will define a range of instructions in Band a function which White 

claims is yielded by that range. White advances his claim by naming two functions 

g and h, with f = gh, and claiming that the first half of the range yields g and 

the second h. Black must choose one of these two subclaims to challenge, and this 

becomes White's new claim for the next stage. After O(log n) stages White will be 

making a claim about a single instruction, and this can be verified in ATIME(log n) 

by hypothesis. Each stage takes constant time, as we can let Black's sequence of 

choices be the index of the instruction to be checked - so each bit of this index need 

only be written down once. 

For the converse, given a log-time machine M and game rules to make it an 

alternating machine, we can get an NC 1 circuit C in a standard way by creating a 

node for each configuration of M. Let B be the 5-PBP with output (12345), say, 

created from C by the method of Theorem 5 above, so that B five-cycle recognizes 

A. We must show that B is ATIME(Iog n) uniform. We define a game with input 

(k,u,r,i) which White can win iff the input is a correct description of the k'th 

instruction. Both players, of course, know the actual circuit C and branching 

program B, as these are uniquely defined from M. 
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White at each stage will maintain a claim of the following form: 

(s, µ, k, u, r, i) 

meaning 'The subcircuit c. of C whose top node is M-configuration s corresponds 

to a section B. of B which five-cycle recognizes the language accepted by c. with 

outputµ. Further, the k'th instruction of B. yields u if x; is on and r if xi is off.' 

White will begin by claiming (start,(12345),k,u,r,i) and refine this through 

O(log n) moves, each move corresponding to a step of M or to moving down one 

edge of C. For example, ifs is an and-node B. consists of four sections - White must 

state in which section the k'th instruction occurs, what its new number is, and which 

of s's children the section represents. Eventually s will be a final configuration of M 

and White's claim can be quickly decided. Black's moves during this process are to 

challenge any White claim which does not follow from his previous claim according 

to the definition of M and the procedure for creating B. Such a challenge may be 

decided easily in log-time, ending the game. White's moves are each only a constant 

number of steps if we choose an appropriate representation for the number k and 

don't have to rewrite it every time. 

It should be clear that this proof will work for other notions of uniformity as 

well, as we only required that at least the power of the class ATIME(log n) be 

available to carry out the simulations in each direction. In particular. log-space or 

poly-time uniform bounded width branching programs calculate exactly log-space 

or poly-time uniform NC 1 respectively. 
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11. Open Problems 

We now know that poly-size bounded-width BP's give NC 1 while poly-size 

general BP's give L. Certainly this suggests a new attack on the problem of whether 

NC 1 =Las this can now be phrased entirely in terms of branching programs. We 

also have another new phrasing in terms of bounded width circuits - we would 

have to show that width O(logn) is more powerful than width 4, given polynomial 

size. It would be useful to develop a lower-bound technology for width 5 PBP's or 

width 4 circuits, if this is possible. Even a superpolynomial lower bound for, say, 

the clique function would give prove NC 1 different from NP. 

The power of general poly-size permutation BP's (no restriction on width) was 

mentioned as an open problem in [Ba86a]. Cook and McKenzie [CM86] have just 

shown that the word problem for Sn is complete for log space under NC 1 reductions, 

even if the inputs and outputs are in pointwise notation (i.e., a permutation u is 

given as the list of integers u(l), ... ,u(n)). (In fact, they show that the easier 

problem of permutation powering with the exponent in unary is complete.) A poly

size PBP can be constructed to solve this problem, given an appropriate definition of 

recognition of a language by a PBP. As these PBP's can be thought of as reversible 

non-uniform log-space Turing machine computations, this suggests a comparison 

with work of Bennett [Be73]. 

The effect of non-determinism on these classes must be examined as well, sug

gesting possible new attacks on the problem of whether L = NL. One must be 

careful with definitions here, as the wrong sort of non-determinism can turn a very 

small class into NP. For example, depth-2 poly-size unbounded fan-in Boolean 
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circuits can only recognize II2-TIME(logn). But if we give such a circuit both x 

and y inputs and say that it 'accepts' x iff there is some y such that the circuit 

accepts (x, y), it can recognize any language in NP. 

We know the power of width 3 [Ba85] and width 5 PBP's - what of width 4? 

As S4 is solvable, they cannot do all of NC 1 by the method used here for width 5, . 
but we would like to prove they cannot do it at all. The conjecture of Section 6 

would settle this, but 4-PBP's are a special case which might be more amenable to 

analysis. 

We know that BP's without the permutation restriction require width 3 to do 

majority in poly-size [Ya83] and we know that width 5 suffices. Does the extra 

freedom to use non-permutation instructions help at all? 

Circuits of width 2 or 3 are an attractive target for a lower bound proof - it 

would be nice to prove that width 4 is necessary to do N C 1 , if it is. 

Can one improve Theorem 6 on simulating BP's by circuits? Of course any 

bounded width BP can be simulated in width 4 with a polynomial blowup in length 

using our main result, but can the simulation be improved while keeping linear 

blowup? Here it might be easier to simulate 2m + 1-BP's in width m + 1 than to 

do 2m-BP's in width m. If the circuit width is less than pog w l, it would seem that 

there aren't enough states for a direct simulation - can this be proved? 

The fine structure of N C 1 is another good subject for further study. We know 

only that there are at least two classes (from [FSS81] and [Aj83]) but this is 

more than is known about most degree theories in complexity theory. Fagin et 

al. [FKPS84], give many AC0 reducibilities among symmetric functions, but a 
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new proof technique will be needed to settle the conjecture of Section 6 if it is 

true. AG0-reducibility should also be compared with the projection reducibility of 

Valiant [SV81] in this setting. Majority is AG0-complete for symmetric functions, 

but no function is projection-complete for them [GS??]. It is also interesting that 

an algebraically-defined language such as the word problem should be complete. 

The unexpected power of NUDFA's suggests some foundational questions. Plac

ing the power to recognize a language in a program to a very simple machine seems 

very different than placing it in, say, the state table of a Turing machine. How 

different is it, and how does it relate to other known models of computation? 
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We examine the branching program model of computation and in particular 
the classes of languages which can be recognized when the width of the programs 
is bounded by a constant. After slightly revising the framework of definitions to 
sharpen analogies with other models, we prove that width 5 polynomial size branch
ing programs can recognize exactly the parallel complexity class NC 1

, refuting a 
conjecture of Borodin et al. in [BDFP83]. Other results include an application 
to Boolean circuits of constant width (here, width 4 and polynomial size circuits 
can recognize exactly NC 1 ) and a characterization of a restricted class of width 3 
branching programs. This thesis contains the results of [Ba85] and [Ba86], along 
with some additional material. 

Key Words and Phrases: 

Branching programs, parallel complexity, circuit complexity. 

1 This work was supported by NSF grant MCS-8304769 and US Air Force grant AFOSR-82-0326, 
and by an NSF Graduate Fellowship. 


