
.. Cu1>1 · ; J. ·~·

Prin1itives for Real·Tin1e Anin1ation in Three Dimensions

by

Carol J. Chiang
B.S .. Massachusetts Institute of Technology (1982)

Submitted in partial fulfillment
of the requirements for the

degree of

Master Of Science
in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

September 1985

©Massachusetts Institute of Technology 1985

. (/ihi7i 1 ~7 c1lu iL x ;?! Signature of Author : :I- r z

Certified by

Department of Electrical Engineering and Computer Science

('\ (\,. . Se tember 6.1985

~,~\l'> I ~'1. . .J. . . '-:' .. / ·.
Professor David K. Gifford

Thesis Supervisor

Accepted by

Chainnan, Departmental Committee

Prin1itives for Real·Tin1e Anin1ation in Three Dirnensions

by

Carol 1. Chiang

Submitted to the
Depa1tment of Electrical Engineering and Computer Science

on September 6, 1985 in partial fulfillment of the requirements
for the Degree of Master of Science

Abstract

We present a general purpose imaging model which can efficiently produce
computer-generated animated scenes. Displaying sophisticated graphics scenes is a
computationally complex operation. Thus, an efficient imaging model is necessary for
producing real-time motion. We provide a model, called the Animation Imaging
Model, which lets an application programmer easily specify the transformation of
objects over time. A clear separation between the application program and imaging
system permits animation to be performed by special purpose processors. To
demonstrate the feasibility of the proposed imaging model, a trial implementation has
been devised using a Silicon Graphics IRIS Graphics System.

Thesis Supervisor: David K. Gifford
Title: Assistant Professor of Electrical Engineering and Computer Science

1

Acknowledgn1ents

I would like to express my gratitude to all of the people who provided guidance and

encouragement throughout my work on this project:

David Gifford, for advising the project and giving me guidance and deadlines insure

that I wou Id finish,

My family, especially my sister, Shirley, for providing advice and encouragement,

And to Carey Rappaport, John Wroclawski, and Steve Heller for the many patient

hours they spent helping me with advice, encouragement, moral support, and

understanding when I needed it the most

2

l'able of Contents

Chapter One: Introduction

1.1 Previous Research in Animation
1.2 Thesis Goals
1.3 Road Map of Chapters to follow

Chapter Two: Imaging Models and Animation

2.1 Imaging Models
2.2 A New Imaging Model - The Animation Imaging Model

2.2.1 Building a Scene
2.2.2 Transformation Mechanics
2.2.3 Points of View
2.2.4 Types of Motion
2.2.5 Animation Environment

2.2.5.1 Nested Animation Environments
2.2.6 Basic Primitives
2.2.7 Animation Primitives

2.2.7.1 BcginAniEnv(name)/EndAniEnvO
2.2.7.2 StartAniProc(MainObject)
2.2.7.3 Animate(name.~t.M)
2.2.7.4 GetAniTime(name)!GetAniMatrix(name)
2.2.7.5 HaltAnimation(name)
2.2.7.6 KillAnimation(name)

Chapter Three: Implementation of the Animation Imaging Model

3.1 Graphics System Architecture
3.1.1 Minimizing Processing Bottlenecks

3.2 Architecture Supporting Animation
3.3 The IRIS Graphics System

3.3.1 Adding Animation Capabilities to the IRIS
3.3.1.1 The Animation List
3.3.1.2 Time Slot Data Structure
3.3.1.3 Implementation of the Time Slot Data Structure

3.3.2 A Passive Animation List
3.3.3 The Dedicated Process

3.3.3.1 'The Animation Process

3

6

7
8
8

9

9
10
10
12
13
13
14
15
17
18
19
19
19
21
21
21

22

22
25
28
30
32
36
36
37
39
39
39

3.3.3.2 Event Timer Process 43
3.3.4 Implementation of Animation Primitives 43

3.3.4. l BeginAniEnv(name)/EndAniEnvO 43
3.3.4.2 StartAniProc(MainObject) 44
3.3.4.3 Animate(name,~t.M) 45
3.3.4.4 HaltAnimation(name) 46
3.3.4.5 KillAnimation(name) 46
3.3.4.6 GetAniTime(name)!GetAniMatrix(name) 46
3.3.4.7 GetSlotCounter 47

3.4 "The Resulting Implementation 47

Chapter Four: Application Observations 49

4.1 Using the IRIS 49
4.1.1 IRIS/Host Configuration 49
4.1.2 Testing the Primitives 50

4.2 Observations from the IRIS Implementation 51

Chapter Five: Conclusions 52

5.1 Imaging Model 52
5.2 Enhancements to the Animation Imaging Model 52

5.2.1 Supporting Other Types of Motion -- Acceleration/Deceleration 52
5.2.2 Specifying Animation to Start and Stop in the Future 53
5.2.3 Collision Detection 54

5.3 Summary of Thesis 56

Appendix A: Matrices for Modeling Transformations 57

A.l Translation 57
A.2 Scaling 57
A.3 Rotation about the X-axis 58
A.4 Rotation about the Y-axis 58
A.5 Rotation about the Z-axis 58.

References 59

4

Table of Figures

Figure 2· 1: Display List with Pointers to Objects 11
Figure 2·2: Examples of Nested Animation Environments 16
Figure 2·3: Sample Code Fragment and Resulting Display List 20
Figure 3·1: Architecture ofa Typical 3-0 Graphics System 23
Figure 3·2: Architecture of a Typical Microcomputer-Based 3-D Graphics 24

System
Figure 3·3: Architecture of an IRIS Graphics System 26
Figure 3·4: Architecture Modified to Incorporate Animation 29
Figure 3·5: IRIS in More Detail 31
Figure 3·6: Implementation for the Animation Module 33
Figure 3·7: Approach Using Existing Graphics Library Compiler Routines 34
Figure 3·8: Accessing the Animation Environment Matrix 35
Figure 3·9: Slot Method of Implementing the Animation List 38
Figure 3· JO: Flowchait for Animation Process 40
Figure 3· 1 l: Update Algorithm for Animation Process Corresponding to the 41

First Highlighted Box in Figure 3-10
Figure 3· 12: Positioning Algorithm for Animation Process Corresponding to 42

the Second Highlighted Box in Figure 3-10
Figure 3· 13: Flowcha1t for Event Timer Process 44
Figure 3· 14: Sample Code Fragment and Resulting Display List 45
Figure 3· 15: Display List with Animation 48
Figure 5· l: Architecture Incorporating a Collision Detection Module 55

5

Chapter One

Introduction

In the past few years, improvements in microprocessor and display terminal technology

have caused an increased interest in 3-dimensional (3-0) color graphics. Much of the

work in 3-0 graphics has been devoted to hidden-surface elimination [24], shading [11],

and anti-aliasing [7]. Recently, more research has been devoted to kinematics, or the

addition of motion to graphic images. Although many people associate the term

animation with cartoons and Walt Disney Productions, animation is actually the

concept of adding motion to a still scene. Moreover, when dealing with 3-D images and

scenes, animation adds another aspect of realism by providing the viewer with an

enhanced understanding of the object's actual appearance. For example, the perception

of depth is enhanced by motion, especially when conveyed by rotation about a vertical

axis. The lines and surfaces which are closest to the viewer appear to move more

rapidly than those at a distance [16].

Animation plays an important role in many situations. It has been applied to

• entertainment, for movie special effects, commercials, and cartoons,

• science and engineering, for motion analysis, computer-aided design, and
computer-aided engineering, and

• education and training, for applications such as flight simulation.

For these applications, it is important to create realistic images in real-time. 'This is not

a simple task; rendering a 3-0 scene on a 2-0 display involves perspective or

orthographic projection and other complicated tasks.

6

1.1 Previous Research in Animation

Past research in kinematics includes the areas of film making and the generation of

facial expressions. Such work has been done by Frederic Ira Parke [18], Richard

Chuang and Glenn Entis [4], and Kenneth Kahn [14]. Parke's work concentrated on

computer-generated animation of faces. The skin of the face was represented by 3-0

polygons. This data was stored as the sets of points which defined the polygons. To

allow a face to change expression, data files were created for a number of different

facial expressions. Moving each point of skin a small distance in successive frames

would cause a change in facial expression. Given a previous expression and a next

expression, an animation program would generate the intermediate facial expressions

using cosine interpolation on the positions of each point.

Although the application was different, Chuang and Entis [4] used similar methods to

create their motion design system. The system was designed to help the director and

animator choreograph the photographic image and graphic objects for commercial film

use. In this system, the animator specifies the camera's corresponding view, focal

length, and direction of view for each actor. Key frame positions for the camera and

actor are then processed by computer to generate the intermediate frames.

Also related to film making was Kahn's work on the Ani computer system [14]. Ani

uses high-level film descriptions to create an abstract animated film of Cinderella. The

animation is accomplished solely by choosing the locations and movements of the

characters. Decisions, such as the speed, direction, or distance a character is moved, are

based on suggestions constructed from aspects of the film or from scene and character

descriptions and relationships.

While the above methods are adequate for some applications, they are not necessarily

appropriate for uses which require moving realistic images in real-time. For each of

these projects, the animation aspect is used in conjunction with a specific application:

7

either film making; or expression generation. Integrating the application with the

creation of animated scenes a priori is impractical as a general scheme for generating

real-time animation. Fu1thermore, the first two examples store a large number of

images for intermediate scene generation, which may require an excessive amount of

computer memory. Ani, on the other hand, provides only abstract images.

1.2 Thesis Goals

The purpose of this thesis is to produce a new imaging model which includes primitives

for specifying the transformation of objects over time. This model allows the

applications programmer to easily design a scene which includes animation. A clear

separation between the application program and imaging system permits animation to

be performed by special purpose processors. Once the scene has been designed, the

graphics subsystem automatically brings about the animation. The imaging model lets

individual objects be moved without the need to recompute the position of nonmoving

objects and background objects for every frame, making the process of animating

scenes much faster. Hardware is now becoming available which permits auxiliary

processors to perform the tasks of computing the coordinates of objects for displaying a

scene, thus freeing the host processor to do other jobs. ln this thesis, the tasks in the

system are distributed so that an auxiliary graphics processor perfonns the animation

tasks.

1.3 Road Map of Chapters to follow

The following is a brief overview of the remaining chapters of the thesis. Chapter 2

describes existing imaging models and a new imaging model which includes animation.

Chapter 3 describes a typical graphics system architecture and how it may be modified

to incorporate animation. This is followed by observations regarding implementation,

in Chapter 4, and In Chapter 5, the conclusions mention some possible extensions to the

work done as well as some suggestions for future uses of the system.
8

Chapter Two

In1aging Models and Anin1ation

2.1 Imaging Models

A graphics imaging model is a device independent set of primitives which allow a

programmer to create a desired scene [25]. The model specifies how colors, lines,

surfaces, geometric properties, etc are combined to form images. Complex scenes can

then be created by repeatedly applying varied parameters to the primitives which

specify the images. The two primary types of 3-D imaging models are solid modeling

and polygon modeling.

Solid modeling can create very realistic images by combining primitive shapes such as

spheres and cubes. A common method used for performing solid modeling is

raytracing. Raytracing can realistically shade 3-D objects in the presence of multiple

light sources, as well as produce reflections off shiny surfaces and refractions through

transparent objects. By tracing the path of light rays, those rays which pass through the

viewpoint can be determined [9]. An example of work employing this method of image

generation is a 3-D visual simulation technique developed at MAGI1 [10]. This

technique simulates the photographic process by creating an image which closely

resembles that of an object as it would appear to an imaginary photographer and

camera. By using raytracing, the transmission and reflection of light can be simulated

with a large degree of realism. The resulting images are of very high quality.

Raytracing, however, is very computationally intensive and works most efficiently on

larger computer systems. It has not yet generally been applied to real-time applications.

1MAGI stands for Mathematics Applications Group, Inc.

9

Unlike solid modeling, which works in the 3-D world directly, polygon modeling

approximates 3-D surfaces by using 2-D shapes. Objects are described as collections of

points, vectors, and polygons. These objects arc asscmbkd into a display list [16) by a

program to create a desired scene. A display list consists of a sequence of graphics

commands used to create and manipulate objects within scenes. A graphics interpreter

scans the display list and transfers graphics commands to the display hardware for

processing. Polygonal systems are less computationally intensive than raytracing

systems, and are therefore more suitable for real-time applications.

2.2 A New Imaging Model · The Animation Imaging Model

Since real-time animation algorithms must produce scenes at the rate of 20 to 30 frames

per second, applications involving real-time animation require an imaging model which

specifies animation in such a way that the program does not have to recompute the

position of all the components of the scene every frame time. Thus, polygon modeling,

implemented with display lists, was chosen as the basis for developing a new imaging

model, hereby referred to as the animation imaging model. This model provides

primitives which allow the user to specify how objects should be transformed over time

to create the desired animation effects.

2.2. l Building a Scene

There are three building blocks for 3-0 geometry - points, vectors, and polygons. As

described above for conventional polygon schemes, objects are described by commands

involving these building blocks, possibly in conjunction with other graphics commands,

and are stored as a display list. An object stored in a secondary display list acts like a

subroutine in a program; although the commands defining the object are stored only

once, the object can be called multiple times for display. Likewise, objects can also

contain calls to other objects. 111e main display list therefore consists of pointers to

10

objects, interspersed with other graphics commands. This is illustrated in Figure 2-1.

Note that cal lobj door instantiates an instance of the object, door.

room

push matrix

rotate

translate
callobj door

callobj room

Object: room

scale

callobj door Objects

color red

Main Display List pop matrix

Object: door

Figure 2· l:Display List with Pointers to Objects

There are many different types of graphics commands, including transformations, such

as rotations, translations, and scaling, as well as attributes specifying color and texture,

which can be applied to both the primitive building blocks and objects. Although

multiple instantiations of an object can occur, the transformations and propc1ties

applied to one instance of the object are independent of those applied to another

instance of the san1e object. The transformations allow objects to appear on the screen

in various locations, sizes, and orientations, thus producing a scene.

11

In the case of animation, it is necessary to save the contents of the entire scene in a

display list because the scene must be redrawn whenever a transformation is performed.

The object or objects then move according to this transformation. To facilitate the

repainting of the entire scene, an object, referred to as the MainObjecl, encompasses the

entire scene. Since objects may be part of other objects, all objects and graphics

commands are ultimately part of MainObject. Repeated instantiations of MainObject

by the graphics subsystem reflects the movement in the animated objects. Use of this

MainObject concept is a requirement for the animation imaging model, distinguishing it

from previous schemes.

2.2.2 Transformation Mechanics

Several different types of transformations affect the displaying of a scene on a

screen [16]. Modeling transformations directly affect the object by changing its

position, size, and orientation. Viewing transformations determine the viewpoint from

which the scene is observed. Projection transformations affect the method by which the

3-0 scene is projected onto the 2-0 screen for observation. The composition of these

operations provide the total transformation which maps the object's 3-dimensional

coordinates to 2-dimensional screen coordinates.

For the animation imaging model, a convenient representation for 3-0 transformations

is a 4x4 matrix. All 3-dimensional transfomrntions can be represented as such.

Furthermore, any composite transformation can be represented as a concatenation

(multiplication) of individual simple transformation matrices [1]. Thus, a single matrix

can represent a composite transformation. For example, a scaling transformation,

represented by a matrix S, followed by a translation, represented by the matrix T, will

· have an equivalent matrix associated with it which equals the product of the matrices,

ST, assuming that a resultant matrix is postmultiplied by any subsequent

transformation matrices. Most modeling, viewing, and projection transformations are

compositions of the three basic types of matrices given in Appendix A.

12

TI1e 4x4 matrix representation for transformations requires that points be represented

by the first 3 elements of a lx4 matrix, [x y z 1], with the fou1th clement, always set to 1,

which is necessary for translation. The transformed point is the result of a

postmultiplication with a 4x4 transformation matrix.

2.2.3 Points of View

Scenes can be designed from either the point of view of the observer or the point of

view of the object. With the latter, each object in the scene supports its own fixed

coordinate system, centered at the object's origin. When a transformation is applied to

an object, the object moves relative to its own coordinate system. The animation

imaging model assumes that scenes are generated from the point of view of the object.

2.2.4 Types of Motion

Several types of motion are often observed in animated scenes. These consist of

movement with constant velocity, growth and shrinking, spinning, rolling, spiraling, and

acceleration. Each of these motions, except acceleration, can be represented by a

matrix, .M, which is concatenated with itself at constant time intervals of tit. In other

words, from time = 0 until tit, Mis applied to the object. From time = tit to 2tit, M2

is applied, from time = 2tit to 3tit, M 3 is applied and in general, from time = ntit to

(n+ l)dt, where n is the number of elapsed tit's, M(n+ I) is applied. Moreover, at any

time just after ntit, p = PoAf" + 1 where p
0

is the original point and pis the transformed

point.

Once the method of motion representation has been chosen, other details such as speed

and smoothness, should be examined. The speed at which the object moves is

determined by both Mand di; by changing either parameter, the object can easily be

sped up or slowed down. Using the case of translation as an example, smoother motion

can be achieved through the use of a smaller tit and translating a smaller distance each

13

!11, thus increasing resolution. It will, however, involve more work on the part of the

processor than the converse implementation because the motion occurs more often.

Unfortunately, in the case of a fast moving object, if the object is not moving quickly

enough with !11 = 1 (the smallest time increment), the user may have to res01t to

translating at larger increments.

Use of the basic modeling transformations - translate, rotate, or scale - to represent M,

produces the types of motion previously mentioned. Translation produces linear

motion in any direction and is independent of the point of view and coordinate system

origin but dependent upon coordinate orientation. Rotation is circular motion about an

axis and thus is strongly dependent on the coordinate system and point of view. Scaling

is uniform growth or shrinking in all directions and is also independent of the

coordinate system. Since rotation does depend on the coordinate system, rotation

followed by a translation is very different from translation followed by rotation. The

fo1mer yields rolling motion while the latter produces spiraling motion.

Straight line acceleration, on the other hand, can not be specified in such simple te1ms.

The displacement, s, of the object from its position, s0, at time = 0, is described by the

formulas = s0 + v0 t + 1hat2 where v0 is the initial velocity, tis the elapsed time and a

is the desired acceleration. The transformation matrix which exhibits this behavior is a

translation matrix which requires the translation parameters to be computed by the

given formula after each time interval. The animation imaging model will not support

motion represented in this manner.

2.2.5 Animation Environment

As indicated in the previous section, several common types of animation can be

described by two user-specified pieces of information - a single animation matrix, M,

and a time interval, !11. A third parameter, the matrix, A, initially equals Af but is later

14

updated to contain the most recent composition of M with A. A is initially M, then it

becomes M2, followed by Jr/3, etc. A is updated automatically at D.1 intervals by the

graphics subsystem. Applying A to an object will animate that object. Thus, a feasible

method of animating a scene, or objects within a scene, is to create an animation

environment such that all objects within the environment are transformed by A, now

called the animation environment matrix, which is the most recently updated version of

the A (M2, M3, etc) associated with that animation environment. The display list is

annotated with information pertinent to the kinematic behavior specified by the user

using animation primitives, which are described in a later section. These primitives

allow the user to define Af, the transformation matrix corresponding to the specified

type of motion, D.t, time interval between the updates of the transf01mation matrix, and

the nrune of the animation environment. The display list only contains an application

of the newest A. The M and D.t associated with each environment is stored in the

graphics subsystems in an appropriate data structure.

Two commands, a BcginAniEnv command and an EndAniEnv command, define the the

boundaries of a scene which will be animated by an animation environment. Cnsuring

that the EndAniEnv command ends only the scene which was begun most recently

allows nested animation environments.

2.2.5.1 Nested Animation Environments

The concept of nested environments implies that one animation environment can be

defined within anoth·er animation environment. These environments will be referred to

as the child and parent environments respectively. Three possible configurations

depicting parent/child environment relationships are shown in Figure 2-2.

Figures 2-2a and 2-2b are exrunples in which the child environments are explicitly

defined within the same parent environment. If the time intervals of the parent and

15

abc

Begin Animation
Environment abc

Begin Animation
Environment xyz

abc
xyz

End Animation
Environment

End Animation
Environment

(a)

xyz

abc

Begin Animation
Environment abc

call obj xyz s
End Animation
Environment

(c)

Begin Animation
Environment abc

- - -
Begin Animation
Environment xyz

call obj star

End Animation
Environment

- - -
Begin Animation
Environment efg

call obj star

End Animation
Environment

End Animation
Environment

Begin Animation
Environment efg

End Animation
Environment

(b)

efg

Figure 2·2:Examples of Nested Animation Environments

16

xyz

efg

child environments are equal, 2-2a can actually be thought of as one equivalent

animation environment which has a composite animation environment matrix, Acump'

represented by A!f" M"b at time n~l (where M and Af b are the animation matrices
xyz a c xyz a c

for the two environments. The advantage of using multiple environment~ in this

configuration is apparent if separate modification to the environments is desired; the ~t

or M of one environment can be changed while the other environments are left

untouched.

In example 2-2b, the two child environments, xyz and efg are used to animate separate

objects within the parent environment, abc. This idea illustrates that objects can exist

simultaneously within the same animation environment and also be animated

independently. The child environments have no effect on each other because one

environment ends before the next begins; nevertheless, both are affected by the parent

environment. At any given time, the effective animation environment matrix is equal to

the composition of all the children and parent environments which have not ended.

1lms, the following scenario is possible:
Two stars are rotating in opposite directions while
the entire scene is moving at a constant velocity across
the screen.

The third example of nested environments, shown in 2-2c, depicts an animation

environment, abc, which contains a call to the object, xyz. This object, xyz, contains an

animation environment, efg, in its definition. Thus, the parts of xyz that are within efg

are affected by both.animation environments. Nestings of this type let the applications

programmer easily animate hierarchical objects.

2.2.6 Basic Primitives

Basic primitives are used to create the display list. These primitives correspond very

closely to those found in traditional implementations of polygon modeling. A short list

describing some relevant primitives is given.

17

• PUSHMATRIX/POPMATRIX - This implementation maintains a stack of
transformation matrices such that the top of the stack matrix, TOS, is directly
applied to the objects. All transformations affect the TOS. PUSHMA TRIX
and POPMt\TRIX are used to preserve the state of TOS so that
transformations occurring within the PUSHMATRIX/POPMATRIX do not
affect the objects drawn after the POPMATRIX .

• MAKEOnJ(obj)/CLOSEOBJ - MAKEOBJ and CLOSFOIJJ define the starting
and ending points of the object, obj, which is represented by a unique
integer, generated by the system. The object definition consists of all
graphics commands enclosed by these two commands.

• CALLOnJ(obj)- CALLOIJJ instantiates an instance of the object, obj .

• MULTMATRIX(m) - MULTMA TRIX prcmultiplies TOS by m and stores the
resulting product matrix in TOS. The previous contents of TOS are
destroyed.

• EDITOBJ(obj) - EDITOBJ opens the object, obj, for editing. It should
subsequently be closed by CLOSEOBJ.

• TAG(obj-tag) - TAG labels the next command as obj-lag, which is also a
unique system-generated integer. TAG provides a reference point within an
object definition from which any subsequent graphics commands can be
accessed.

• REPLACE(obj-lag,offset) - REPLACE allows commands within an object
definition to be replaced. The object must already have been opened for
editing by an EDITOBJ(obj). Then all commands within obj starting from
the obj-lag position + offset are replaced by the commands following the
REPLACE(obj-tag,of/sel) until another editing command or a CLOSEOI3J
occurs.

2.2. 7 Animation Primitives

The usefulness of the animation imaging model is determined by the flexibility it

provides for programmers to specify animation. The animation primitives are used in

conjunction with µte basic primitives to describe the trajectories which will provide the

18

desired animation effects. The animation primitives provided by the animation imaging

model can be divided into two groups, primitives which directly affect the display list

and primitives which simply access and manipulate the data structure storing the

animation environment information. BcginAniEnv, EndAniEnv, and StartAniProc are

pa1t of the former. The remaining primitives, which are also defined below, fall into the

latter grouping.

2.2.7. I BcginAniEnv(name)/EndAniEnv()

An animation environment, name, is created by an Animate command which must be

issued before the animation environment will cause any motion. BeginAniEnv and

EndAniEnv define the boundaries for a pait of the total scene which will be animated by

the animation environment name. All graphics commands which appear after a

BcginAniEnv and before the EndAniEnv are animated by name. Several portions of the

total scene may refer to the same animation environment. If name is not a defined

animation environment, the processor simply saves the state of the transformation

matrix stack upon entering the environment and restores the state upon leaving it. A

sample use of the animation environment as well as the resulting display list is shown in

Figure 2-3.

2.2.7.2 StartAniProc(MainObject)

This primitive starts the process which animates the MainObject.

2.2.7.3 Animate(name,~t,NI)

Animate creates an animation environment. Its three arguments are the name of the

environment, name, which is a unique system-generated integer, the time interval, ~t.

and the animation matrix, M. Animate can also be used to modify the parameters of an

existing animation environment. The initial matrix, M, is also used to initialize the

19

Sample Code Fragment

BeginAniEnv(name)

color red

draw polygon X

draw polygon Y

EndAniEnv()

>

Display List

save state

BeginAniEnv name

color red

polygon X

polygon Y

EndAniEnv

restore state

Figure 2·3:Sample Code Fragment and Resulting Display List

animation environment matrix, A, and therefore contributes to the initial location of the

objects within the environment. When the specified time interval, D.t has elapsed, A is

updated by multiplying it by M. This is followed by a call to the MainObject which will

reflect the matrix change. Thus, the subsequent concatenation of matrices accompanied

by calls to the modified MainObject will cause the observer to perceive motion. Note

that Animate creates the animation environment, but does not apply it to any part of the

scene. This is accomplished by BeginAniEnv and EndAniEnv.

Requiring that the animation be described by a matrix rather than a description of the·

motion, such as rotate 90° "X", can be considered less user friendly. However, this

method is more powerful because it allows the use of user-defined transformations and

_ composite transformations such as the transformation matrix which describes rolling.

20

2.2.7.4 GctAniTimc(11ame)/GctAniMatrix(name)

TI1cse routines allow the user to obtain the parameters of an animation list entry. For

an animation environment, name, GctAniTimc and GctAniMatrix return the values of

!lt and M respectively. This allows the user to modify the animation environment

relative to its current state. If, for example, the user wants to double the speed at which

an object was moving, he could get the structure and either divide the !lt by two or

concatenate M onto itself so that M +- M 2. These parameters could then be used to

issue a new Animate command for name.

2.2.7.5 I-IaltAnimation(1UZme)

HaltAnimation halts the motion of the animation environment, name, leaving the parts

of the scene manipulated by name in the position last specified by A name' which is the

animation environment matrix associated with name. The animation can be restarted

by issuing a new Animate command for that environment

2.2.7.6 KillAnimation(1UZme)

KillAnimation stops the motion for the animation environment, name. The system no

longer realizes that name exists, but since the display list has been altered, it places the

portion of the scene within name in the same position as it would be in if a

HaltAnimation command had been issued. Restmting animation for an environment

which has been killed requires the issuing of new Animate, BcginAniEnv, and

EndAniEnv primitives.

21

Chapter 'fhree

In1plen1entation of the Animation hnaging Model

3.1 Graphics System Architecture

A typical architecture which represents most 3-D graphics systems [20] can be described

in te1ms of the block diagram in Figure 3-1. The main components of such systems are

the program, display list, geometric processor, display processor, frame bu ff er, and

display. The program provides the means by which the user accesses the other

components of the graphics system. It uses the operating system, file maintenance

utilities, graphics library, and a network or bus to communicate with any external

components. The applications programmer uses the program to create a display list.

The display list stores the graphics scene the user wishes to display. It stores the

graphics objects as well as the commands responsible for their manipulation. This

collection of graphics commands is then fed to the geometric processor, which performs

the point, vector, and polygon transformations as well as the clipping operations [22].

Sophisticated geometric processors contain special purpose hardware foe mathematical

calculations. The display processor then receives the processed frame of data. The

objects are rendered and conve1ted to screen coordinates. Techniques for scene

enhancement, such as hidden surface elimination, shading, and anti-aliasing, can be

applied by the display processor to aid in the rendering of realistic objects. The

resulting pixels are stored in the frame buffer where it is accessed by the display. 1ne

display can actually be considered a controller and a video monitor or Cathode Ray

Tube (CRT). The controller reads the data from the frame buffer and dumps it to the

· CRT screen. The controller is also responsible for refreshing the screen.

The components of the system are often divided into two physical boxes, a host

22

Program

Display List

Geometric

Processor

Display
Processor

Frame Buffer

Display

Figure 3-l:Architecture of a Typical 3-D Graphics System

processor and a graphics box, connected by a communication channel. The selection of

components for each box depends on the implementation of the system. One common

division is between the frame buffer and the display, as shown in Figure 3-2. The.

graphics box contains the display while the host processor handles everything else. This

configuration is a typical graphics system for personal computers (15). The remaining

graphics hardware and software is completely integrated into one box. The system uses

a memory mapped display; part of the microprocessor's memory is used to store the

pixels and thus emulates a frame buffer. The memory is dual po1ted so that both the

display and the microprocessor can access it. The microprocessor does all the work,

23

including the storage of the pixels. The display is a CRT with a controller chip which

reads the pixels out of memory, converts them to raster signals, and refreshes the screen.

For graphics applications, many of the microcomputer displays have inherent

limitations of display resolution and color graphics capabilities [2].

Program

Display List

Geometric

Processor

Display
Processor

Frame Buffer

- - - - J

Host
Processor

Communication
Channel

Graphics
Box

Figure 3·2:Architecture of a Typical Microcomputer-Based 3-D Graphics System

24

Other ex1stmg configurations involve the integration of more components in the

graphics box. An example of this is an arrangement in which the display list, composed

of a manipulation and storage portion, is divided between the boxes. The host

maintains the program and the display list manipulation components while the graphics

box has the display list storage module as well as all the successive components. The

architecture is shown in Figure 3-3. An example of this type of system is the Silicon

Graphics TRlS2 Graphics System [6]. It uses a Motorola 68000 microprocessor-based

graphics processor to control the components of the graphics box. The geometric

processor contains special purpose hardware in the form of custom VLSI chips [5].

Among other uses, this hardware handles mathematical computations, floating point

transformations, and clipping operations. The special purpose hardware makes this

system appropriate for real-time graphics applications. While this thesis develops a

general purpose framework for specifying animation, a specific implementation is

necessary to prove the feasibility of the idea. The framework described in this thesis has

been implemented on an IRIS Graphics System.

3.1.1 Minimizing Processing Bottlenecks

While all of the described configurations are acceptable systems for specifying

motionless scenes, the architectures are not appropriate for complex real-time

animation applications. In the microcomputer example, speed and memory usage are

important considerations when trying to use a microcomputer to produce animation.

Limited application~ for real-time animation can be achieved by writing the programs

in assembly language [17], thus enabling the programs to run faster and occupy less

memory.

On more powerful systems, the trend of development has been to implement

2 .
IRIS stands for Integrated Raster Imaging System.

25

[n spite of this additional speed advantage, these systems still can have considerable

bottlenecks which arc not usually noticeable when generating motionless graphics

scenes using polygon animation model techniques. The bottlenecks in this arrangement

are the communication channel between the host processor and the graphics box, as

well as the host's inability to provide real-time processing power. For a motionless

scene, the object manipulation portion of the display list module does not significantly

affect system performance. The user creates the description of the scene on the host

using imaging model primitives, and the data is transferred to the graphics box. From

then on, the only responsibility of the graphics box is to refresh the screen. The

network data transfer takes place only when a new scene is displayed, and the host only

has to compute the object positions once. Thus, the bottlenecks have a negligible effect

on the performance of the system.

However, the use of this architecture to create images exhibiting kinematic behavior

places the burden of animation entirely on the host processor. The host processor must

supply enough processing power to the calculate new positions and orientations for the

animated objects every 1/20 - 1/30 of a second. Whether or not the host can

accommodate this demand on processing power depends on the system load. The

following example, in the C programming language, illustrates a box rotating 10 degrees

about the z-axis each time through the loop.
for (i = 0, i < 1000, i++) {

clear screen
rotate 10 ° about the z-ax is
draw box

}

The smoothness of the motion is determined by the consistency with which the host can

supply the processing power. The actual rate of animation is bounded by the execution

time of the for loop and the speed at which the new information can be transferred to

the graphics box. In addition to rotating and drawing the box, the screen must be

cleared each time to erase previously drawn boxes. The host must continuously transfer

27

this data to the the graphics box, so the network connection can also become a

significant bottleneck, especially when a high-speed duta link is not used to transfer the

animation information. This burden on the host processor is not necessary when the

task can be accomplished in hardware through a modification of the existing

architecture. [f the mathematical calculations arc computed in hardware in the graphics

box, the computationally intensive tasks arc handled more efficiently, and the data link

will not become bogged down.

3.2 Architecture Supporting Animation

The effect of the limited bandwidth between the host processor and the graphics box as

well as the host's inability to consistently supply real-time processing power can be

alleviated by creating a new imaging model which includes animation, as described in

Section 2.1. A modification to the architecture of Figure 3-3 is necessary for processing

the animation specified by the imaging model. The change involves the addition of an

animation module to the graphics box. The new architecture is illustrated in Figure 3-4.

The animation module receives instructions from the host processor which describe the

trajectories and speeds of the objects. This information need be sent only when the

process is started or when changes in the animation instructions are desired. The large

quantities of data produced by the animation module can now be processed more

efficiently. Moreover, for many applications, the entire display list component can be

included in the graphics box. The net effect is to transfer the burden of display list

manipulation from the host to the graphics box where it can be accomplished more

efficiently using hardware. The system's dependence on the communication channel

has also been reduced significantly.

Fu1thermore, if the host is a time-shared computer system, the speed, smoothness and

consistency of the animation is greatly dependent on the ever-changing system load. A

heavily loaded system executes much more slowly than a lightly loaded system. Forcing

28

Host

I

Communication I
l Channel

I
Pmgcam I I I

L_ J
I

I

I

I

I
Graphics

I Box

I

I

L

Display List

1
Animation

Module

I
Geometric
Processor

Display
Processor

I
Frame Buffer

Figure 3·4:Architecture Modified to Incorporate Animation

I

I

I

I

I

I

I

I

I

I

I

I

the host to do the animation puts an even greater load on the system. The modified

architecture will eliminate this undesirable dependence on the load of the host by using

special purpose processors to provide the computing power for the animation. The new

architecture lets the host's processing power be applied to other tasks.

29

3.3 The IRIS Graphics System

As mentioned in a previous section, the animation imaging model was implemented on

an IRIS Graphics System. Since the goal of this project was to design an imaging model

which allows the user to specify complex animated scenes rather than just motionless

scenes, the TRIS was an appropriate system to use for the implementation. Animated

scenes involve the application of large numbers of transformations to objects. Each

type of animation (where type is defined by the pattern of motion and speed) requires a

separate animation environment. As the number of types increase, the scene increases

in visual as well as computational complexity. This implies that animation requires a

great deal of matrix multiplication, a computationally intensive task for real-time

applications. Furthermore, it emphasizes the need for a new imaging model which

efficiently handles animation by remembering the positions of motionless objects from

frame to frame.

For this specific implementation the special purpose CRIS hardware can be used to

compute the matrix calculations. A more detailed illustration of the IRIS Graphics

System [23] is shown in Figure 3-5. From the host side, the applications programmer

has access to the graphics library. This graphics library contains routines such as point.

line, and polygon drawing primitives; modeling, viewing, and projection

transformations; routines for defining custom colors, textures, and fonts; and routines

for object creation, modification, and deletion. These routines can be called from

several high-level languages. The host uses a byte stream to transfer the graphics

program to the graphics box.

As shown in Figure 3-5, this byte stream is received at the graphics box by the protocol

reader, which sends it to the graphics library compiler. In the IRIS graphics library

compiler, a routine or macro exists for each graphics library command found in the

host's graphics library. TI1e compiler uses these routines to build a display list. 'Ille

30

Data from Host

Protocol
Reader

Graphics
Library

Compiler

Display List

Display List
Interpreter

Special
Hardware

Frame Buffer

Video Monitor

Figure 3·5:IRIS in More Detail

interpreter reads the commands from the display list and and translates them into a

format which is suitable as input to the special purpose hardware. The hardware

processes the computationally intensive calculations needed to render the objects. The

resulting pixels are stored in a frame buffer and subsequently displayed on the screen.

31

3.3. t Adding Animation Capabilities lo the IRIS

The method chosen for implementing the animation imaging model on the graphics

system requires the integration of an animation model into the existing architecture.

This module creates a process which modifies the matrix for each animation

environment, places each new matrix in the display list, and asks the interpreter to

rescan the display list. The approach also requires double buffering [20], whereby the

interpreter writes to one buffer, while the screen displays the contents of the other

buffer. The buffers are swapped during the first vertical retrace period following the

completion of the interpreter's scanning of the display list. Thus, the new image is

created invisibly while the old one is viewed on the screen.

Our animation algorithm employs a list, the anima1ion list, which maintains the state

information for each animation environment. When the state information changes, the

change must be reflected in the display list. This is accomplished by letting the

animation list and the display list interpreter share each animation environment matrix,

as shown in Figure 3-6. Both have pointers to the memory locations which are storing

the matrices. The animation process accesses the animation environment matrices from

the animation list, updates them, and then places the updated values in the shared

memory locations. The next time the interpreter scans the display list, it applies the

new matrices to the objects in the scene. Thus, the animation list always writes into the

shared memory locations, and the display list interpreter always reads from them. Note

that the animation environment matrices cannot be stored directly inside the display list

because the display list memory can be reallocated. If reallocation occurred, the

animation list would lose track of the location of the matrices and therefore, could not

modify them.

The block diagram of the modified IRIS graphics system is found in Figure 3-7. One

advantage of this approach is that it can be implemented using existing routines in the

graphics library compiler. This approach does not require any modifications to the

32

Animation List

state ptr name info

spin data

roll data

animation

environment

matrix

animation

environment

matrix

Display List
or Object

Begin
Animation

Environment

Begin
Animation

Environment

Figure 3·6:Implementation for the Animation Module

graphics library interpreter. The animation environment matrix is implemented as an

object whose only job is to apply the matrix to the current top of stack matrix, which is

the matrix applied to all subsequent drawing commands. The display list can access the

animation environment matrix by instantiating an instance of the object This is a

convenient implementation for the animation list because it can also use the name of

33

L

Animation Module

Animation
List

Animation
Process

Event Timer
Process

Reader

Process

Graphics
Library

Compiler

Display List

Display List
Interpreter

Special
Hardware

Frame Buffer

Video Monitor

Data from Host

Figure 3·7:Approach Using Existing Graphics Library Compiler Routines

34

the animation environment as the name of the object, as well as the name of the tag

which identifies the matrix command within the object. Thus, it docs not need an

explicit pointer to the memory location. To modify the matrix in the object, a dedicated

process [21] called the animation process simply edits the object. Unfortunately, in the

display list, a call to an object, grow, is not stored as a pointer to the object. Instead, the

call to grow is stored in a display list, as shown in Figure 3-8. The interpreter then uses

the name, grow as the tag for a symbol table which contains the starting address of each

object. The interpreter then jumps to this address to read the commands stored in the

object's definition.

Preserve State

callobj grow

Restore State

- - __.,
implicit
pointer

Object: grow

Animation List

Figure 3·8:Acccssing the Animation Environment Matrix

While the chosen approach is not the most efficient means of implementing the

algorithm, it does not require modifications to the interpreter, which is a very

complicated piece of code, implemented largely in 68000 assembly language. As stated

earlier, the goal of this implementation is to prove the feasibility of the imaging model.

Once that goal has been reached, efforts towards more efficient implementations can be

researched.

35

3.3.1.1 The Animation List

As mentioned in the previous section. the animation list, stores the animation

information for each animation environment. Each entry is a structure containing five

elements. Three elements are user specified. They are the name, the animation matrix,

M, and the time interval, At, which is specified in units of 1/30 of a second. The two

remaining elements describe the current state. They are the matrix, A, which is the

matrix actually applied to the specific animation environment and the time, t which

indicates the next time A should be updated. A global modulo counter, T keeps track

of the current time. The code illustrated below is a sample structure definition in C.
typedef struct Anilist {

int name;
int CLockTicks;
float AniMatrix[4][4];
int LapsedTicks;
float AniEnvMatrix[4][4];
}Anilist, *Alptr

1•
1•
/*
/*
1•

name of Envron. *I
At *I
M •1
t •/
A •/

After n applications of M, the state is as follows: A = Mn+ 1 and t = nAt + T0 where

T0 is the time when the animation environment was originally created.

3.3. l.2 Time Slot Data Structure

It is important to find a data structure which lets the animation process efficiently access

the items that need to be updated at the current time, T. There are several ways this list

could be implemented. They include unsorted and sorted linked lists (19], heaps (12].

For this implementation, however, a less traditional data construct, the "time slot

structure," was chosen. If it is assumed that the maximum time between animation

events is one second, and there is a finite number of updatings per event, the time slot

structure is a simple and appropriate one. If slower animation is desired, a matrix

specifying smaller increments of motion can be used. As mentioned in the previous

chapter, this implementation of slow animation is preferable to that of applying larger

increments of motion over longer time intervals because it will provide a smoother and

more realistic perception of motion.

36

For this time slot structure, the minimum time between the events is one vertical retrace

period which is 1/30 of a second. Therefore, there are 30 time slots in which events can

be scheduled. An event is defined as the updating of an animation environment matrix.

A modulo 30 counter determines the current slot; this counter is incremented each

vertical retrace period. If the slot is empty, there are no matrices which require

updating. Any animation environments stored in a slot must be updated as soon as the

slot counter reaches the counter value corresponding to that slot. Once A has been

updated in an animation environment, the new slot location for the animation

environment can be determined by adding the flt to the current slot modulo 30

position. Thus, repositioning takes constant time, and T, the next time A requires

updating, is implicit in the data structure; it does not need to be stored in the animation

structure.

3.3.1.3 Implementation of the Time Slot Data Structure

The implementation of the slot concept is very straightforward. The 30 time slots are

represented by a one dimensional array of length 30. Each entry of this array contains a

pointer to a structure containing state infonnation for that particular slot. The code

shown below is a sample slot structure definition in C:
typedef struct Slot!nfo {

Alptr AL list; 1• ptr to animation struct •1
int SLOTentries; 1• # of entries at slot •/

}

The slot events are stored as linked lists of animation definitions, as shown in

Figure 3-9. The slot structure contains a pointer to this linked list. Since linked lists

imply that each structure in the list contains a pointer to the next animation structure in

the list, the described animation structure must be modified to include a pointer to the

next structure in the AL list. To facilitate inserting, deleting, and moving structures,

the animation structure also contains a pointer to the previous structure in the list.

Hence, the events µre actually stored in a doubly linked list.

37

0
NULL !!i.t; M 2 A2

NULL

2

NULL tl L M3 A3

name 3 NULL

27

NULL

29

Figure 3·9:Slot Method of Implementing the Animation List

The other information stored at the slot is the total number of animation structures

there at any given time. Once the maximum number of updates occurring on a vertical

retrace period has been determined, the number of structures allowed per slot at any

given time can be limited. This limit is determined by the capabilities of the display list

interpreter and compiler. If a slot is full, any additional events for that slot can be

scheduled either one slot earlier or later. The effect on the resulting scene is negligible

since the change 'h'.ould only involve a 1/30 of a second time difference. In this

implementation, if a slot is filled, the process places the structure in the next succeeding

slot that has space. A ceiling on the total number of animation environments protects

the system against errors accumulating over time because of filled slots.

38

3.3.2 A Passive Animation List

Our implementation has one additional animation list. It is a passive animation list

which is used to store animation environments which have been halted by the

IlaltAnimation primitive. This allows an environment to stop its motion temporarily.

This list stores the animation structure for the environment until it asks to be reinstated

in the active animation list (slot structure) where by it will resume being updated. The

passive animation list is implemented as an unsorted set of pointers to animation

structures.

3.3.3 The Dedicated Process

The dedicated process, mentioned earlier, has actually been implemented as two

processes: the animalion process and the event Limer process. This two process system

was chosen because it allowed easy integration into the V-kernel operating system (the

IRIS' operating system) by using V-kernel message primitives [3]. Upon receiving a

message, the animal ion process immediately sends back a reply because the event timer

process, described in a later section, blocks until it receives the reply. A global flag,

done, indicates that the animation process is waiting for the event timer process to send

it a message. Since the animation list and display list are shared data structures, the

process also contains locks to insure that a second process does not modify a shared data

structure until the first process has finished accessing it.

3.3.3.1 The Animation Process

The animation process is the process that changes the display list to reflect the

animation. When called, it executes the procedure shown in Figure 3-10. Following

· the flowchart in Figure 3-10, the process first increments the modulo 30 slot counter. It

then checks the current slot selected by the slot counter. If it is empty, the process

becomes dormant and waits for another message from the event timer process.

39

Start

~
Increment

Slot Counter

Slot Empty?

yes

done = 1

WaitforMsg

{blocked until

msg arrives)

Send Reply

no

Display List Locked?

yes

no

Lock Display List

Animation List Locked?

yes

no

Lock Animation List

Update 1st Structure ••--....
In Linked List

Put Structure in
New Slot Position

Slot Empty?

yes

Callobj MainObject

Swap Buffers

Unlock Animation List

and Display List

no

Figure 3· 10: Flowchart for Animation Process

40

Wait .01 sec

Wait .01 sec

Otherwise, it checks to see if anything is modifying the display list. If so, it waits for the

display list lock to be released. It then locks the display list, and follows the same

procedure to insure that the animation list is not being modified. Once it is able to lock

the animation list, the process updates the first animation structure in the slot by

concatenating M onto A and stores the result as A. In other words, A +- MA. It then

updates the display list by modifying the object containing the matrix which is applied

to that particular environment. This object has the same name as that associated with

the animation environment and is called immediately upon entering the environment.

The state of the transformation matrix stack is preserved prior to entering the animation

environment and subsequently restored upon exiting the environment. This updating

procedure is illustrated in Figure 3-11. The repositioning algorithm, shown in Figure

3-12, is also very simple. The new slot location is calculated by using modulo arithmetic

to add t,.1 to the current slot position. The structure is then moved from its current list

to the front of the linked list of the new slot

----1----
A ~ MA

Modify Object

in Display List

- -
+

Update 1st Structure

in Linked List

Figure 3· 1 l:Update Algorithm for Animation Process
Corresponding to the First Highlighted Box in Figure 3-10

After the structure has been repositioned in its new slot position, the current slot is

checked to see if it has any more animation structures. If so, the entire updating and

41

----------1

L - - -

New Slot ,.___ Current Slot + ~ t

Remove Structure from
Current Linked List

Add to Ney.i Linked
List Located at New Slot

Put Structure in

New Slot Position

Figure 3· 12:Positioning Algorithm for Animation Process
Corresponding to the Second Highlighted Box in Figure 3-10

I

I

I

I

I

repositioning process is repeated until the slot is empty. This iterative checking is

necessary because multiple animation environments may need updating during the

same frame time. Once all the animation structures have been updated, MainObject is

instantiated and the interpreter is called to rescan the modified display list. TI1e newly

rendered scene is then stored in the non-visible buffer. The two buffers are then

swapped during the next ve11ical retrace period. Vertical retraces actually occur once

every 1/60 of a second, but the screen is only refreshed once every 1/30 of a second

because of interlacing. Thus, it is not necessary to swap buffers any sooner than a

vertical retrace period, defined as 1130 of a second. Swapping more often could also

change the picture halfway through the refresh cycle.

· The final step in the animation process is to unlock all the shared data structures. It

then activates done and blocks until it receives a message from the event timer process,

at which point it sends a reply and repeats the entire routine.

42

3.3.3.2 Event Timer Process

The event timer process is used to unblock the animation process. This timer is

implemented as a vertical retrace event whose only purpose is to wake up the animation

process after it has completed execution for the current slot counter value. At the start

of every vertical retrace period, it checks the done flag. If done has been activated, the

process deactivates the flag and sends a message to the animation process. It is blocked

itself until the animation process replies. Once the reply is received, the animation

process begins updating environments for the next time slot. A flowchart of the event

timer process is given in Figure 3-13.

3.3.4 Implementation of Animation Primitives

Having described the new graphics system, the actual imaging model primitives can be

implemented. The basic polygon modeling primitives, also described earlier, are used

in the implementation of the animation primitives; the functions and groupings of these

animation primitives themselves are described in detail in Chapter 2.

3.3.4.1 BcginAni Env(name)/EndAniEnv()

BeginAniEnv and EndAniEnv is analogous to MAKEOilJ/CLOSEOilJ. 'f1le main

difference is that when space is allocated in the display list, BeginAniEnv actually does a

PUSHMATRIX followed by a CALLORJ(name). EndAnvScene is simply a POPMATRIX.

The name of the environment, name, is an object which contains just a

MULTMATRIX(m) where mis the animation environment matrix, A, described earlier.

The object, name, is created by Animate, which must be issued before the animation

environment will cause any motion. Otherwise, BeginAniEnv and EnvAniEnv simply

act as PUSHMATRIX and POPMATRIX respectively. A sample use of the animation

environment as well as the resulting display list is shown in Figure 3-14. Note that

name is a transformation, stored as an object merely for address purposes.

43

Reply

Received

Start

Wait for Retrace

done = 1?

yes

done = 0

Send Msg to

Animation

Process

Wait for Reply
(blocked until

reply is received)

no

Figure 3· 13:Flowchart for Event Timer Process

3.3.4.2 StartAniProc(MainOhject)

StartAniProc is the .routine which puts into motion, the process of animating the scene:

In addition to instantiating the first instance of MainObject, StartAniProc must

initialize the slot counter to 0, create the animation process and set up the event timer

process.

44

Display List

Sample Code Fragment
pushmatrix

BeginAniEnv(name) callobj name - -., OBJECT: name
/

> - ~

EndAniEnv() TAG: name multmatrix A

popmatrix

Figure 3· 14:Sample Code Fragment and Resulting Display List

3.3.4.3 Animate(name,~t,M)

Animate manipulates an animation environment, name, with matrix A, multiplying A

by the animation matrix M every ~t time units. If name has previously been defined by

another Animate command, Animate simply modifies the existing animation list entry.

The existing Mand ~/are replaced by the new values of Mand ~t and the position of

the entry in the slot structure is readjusted relative to T, the current slot counter value.

In other words, the change in animation will occur in ~t + Ttime intervals.

The current implementation requires that when using Animate to restore motion to a

halted animation enviroment, the user must keep track of the original values of Mand

~t for the halted environment or else use GetAniTime and GetAniMatrix to obtain

them. The most commonly used modeling transformation matrices are provided in

Appendix A.

45

3.3.4.4 I laltAnimation(name)

llaltAnimation halts the motion of the animation environment leaving it in the position

last specified by name. There are several methods of implementing this primitive. The

simplest is to change the animation matrix to an identity matrix. Thus, each time it is

applied to A, A remains unchanged. This approach, however, forces the animation

process to update matrices needlessly. Our implementation removes each halted

animation definition from the active animation list and places it in an passive list that is

not checked by the animation process. As described earlier, the passive animation list

merely stores the definitions of halted animation environments. The animation can

easily be restarted by issuing a new Animate command for that animation environment.

This lets that entry be moved back to the active animation list and placed in the proper

slot.

3.3.4.5 KillAnimation(11ame)

KillAnimation removes the entry, name, from either the active or passive animation list,

in whichever it resides. This means the object can no longer be animated. As with

HaltAnimation, the position of the objects within the environment is that described by

the most recent animation environment matrix, A, for name.

3.3.4.6 GetAniTime(name)/GctAniMatrix(name)

These routines allow the user to obtain the parameters of an animation list entry. For

an animation definition, name, GctAniTime and GetAniMatrix return the values of flt

and M respectively. The primitives look up the animation list entry for name, and

return the value of the requested parameter.

46

3.3.4.7 GctSlotCountcr

A modulo counter is used to keep track of the current slot number. This primitive

returns the current value of the slot counter.

3.4 The Resulting Implementation

While this implementation has been designed on the TRIS, the approach used is a

general, system-independent method. Now that the parts have been described in detail,

a full illustration of the implementation can be drawn, as shown in Figure 3-15. It is

essentially a combination of Figures 3-8, 3-9, and 2-2c. The main components are the

animation list, which contains the state of the animation environments travel, spin, and

roll, the main display list, which just contains an instantiation of MainObj, and the

object, MainObj. MainObj shows a simple use of an animation environment, roll,

which causes all objects within the environment to exhibit rolling. The second

animation environment, travel, is a nested environment of the type illustrated in Figure

2-2c, containing the actual object frisbee and transformation "objects" travel and spin.

111is combination yields a spinning frisbee, which is simultaneously following a

trajectory specified by the travel environment

47

(

travel

A M

, ~

spin

Animation List

roll

A1

y
......._ NULL

I
I

~

M1

M7

I

Main Display List

callobj MainObj 1- -

OBJECT: roll

TAG
roll: multmatrix A

1
.-- -,

• / /

'\.. end obj

" /

OBJECT: travel
A2 M2

TAG 1--~~~~~-J - ...
travel: tit 2

\ ,
NULL \

)
/ --

......... OBJECT: spin /
~ Ji.

TAG

spin: multmatrix A
2

end obj

' \
\

multmatrix A
)

end obj /

I -
OBJECT: f risbee

push matrix

callobj spin

- - - -

popmatrix

\ .)

animation
environment

spin

\
OBJECT: MainObj

\.

'f

pushmatrix

callobj roll

popmatrix

.

.

push matrix

callobj travel

callobj Frisbee

popmatrix

LEGEND

animation
environment

roll

animation
environment

travel

implicit pointer

explicit pointer

Figure 3· JS: Display List with Animation

48

Chapter Four

Application Observations

4.l Using the IRIS

This section describes the method used to test the animation module and animation

primitives.

4.1. l IRIS/Host Configuration

The network topology of the IRIS allows it to communicate with host computers using

several methods - an RS232 serial line, an Ethernet using IP/TCP or XNS protocol, or

an IEEE 488 parallel port. Multiple hosts can be used to access the IRIS. Our

particular configuration has 2 hosts, a VAX3 111750 mnning Unix4, and a Symbolics

3600 LISP Machine. The VAX communicates with the IRIS via an Ethernet interface

using XNS while the LISP Machine uses a 9600 baud RS232 serial line. Because the

IRIS does not currently support LISP, the host's graphics library and input/output

routines were translated from C to LISP.

Despite the slow communication channel, the LISP Machine performs animation better

than the VAX when using the conventional polygon imaging model. This superior

performance occurs because the LISP Machine is a single user system; it does not

experience the same load problems as a VAX 111750 which is supporting several users

simultaneously. By relying on the host to cause the animation, the speed of the motion

is directly dependent on the how quickly the host can execute the animation loop; the

3v AX is a trademark of the Digital Equipment Corporation.

4
Unix is a trademark of Bell Laboratories.

49

loop is the means by which the host can continuously change the transformations

affecting the objects. On a mainframe such as the VAX, the speed of execution

depends on many parameters such as the number of users on the system and what

programs are being run. These parameters are not constant, and hence animation

should not directly depend on them.

4.1.2 Testing the Primitives

One of the advantages of the chosen implementation was that most of the code for the

animation module and animation primitives could initially be tested on the VAX; the

code was written in C, and therefore could be tested using the host's graphics library.

Furthe1more, source level debuggers and Unix environment could be used to debug the

code. A sample animation test program was written for the VAX to test the new

animation primitives. The program would draw a flower and cause it to roll (rotate and

translate) across the screen. The animation process and timer events were simulated by

a while loop. Because the VAX was heavily loaded at the time of the test, the varying

load had a noticeable effect on the excuting animation program. The flower moved in a

very jerky manner; the motion was neither smooth nor continuous and the speed was

constantly changing. Executing the same program when the system was not as heavily

loaded improved performance considerably. The flower still moved in discrete jumps,

but the rate was much more consistent. Decreasing the time interval would cause the

motion to appear smoother and more continuous, but it would also slow it down.

Motion which was l;Joth rapid and smooth could not be achieved with this particular·

choice of host.

A slightly different test was run on the LISP Machine. Since the animation module was

written in C, it would not run on the LISP Machine without explicitly translating the

code to LISP. However, for testing purposes, similar results could be produced without

explicit use of the animation primitives. The USP Machine did not have any difficulty

50

producing the motion at a consistent rate, but had the same problem with producing

rapid and smooth motion. This is mainly because the loop cannot execute quickly

enough to produce the continuous motion. By causing motion to happen at a rate as

quickly as 1130 of a second, the animation would appear smoother. Furthermore, by

executing on the IRIS rather than the host, the motion would be independent of the

load on the host system.

4.2 Observations from the IRIS Implementation

The actual IRIS implementation was very difficult to completely debug because of

limited debugging facilities. Nevertheless, once the animation module was integrated

into the IRIS architecture, tests showed that motion was consistent, without the jerky

effects produced by host animation. This was the expected result. However, a

somewhat surprising result was that the overhead for updating the animation matrices

and display list was negligible compared to the overhead for instantiating the new

instances of MainObject. The frame repaint time was heavily dependent on the

complexity of the scene, rather than the number of animation environments. The more

complex the scene, the slower the animation for the same animation specifications.

Thus, the refresh rate for the animated scene is bounded by the complexity of the scene

rather than the complexity of the animation specification.

51

Chapter Five

Conclusions

5.1 Imaging Model

A new imaging model, based on a conventional polygon model, has been proposed.

The model, which provides a set of animation primitives that can be used to specify

certain types of motion, allows the user to easily animate parts of scenes. Once the

scene has been specified, the graphics subsystem brings about the animation

automatically in a manner which does not require recomputing the positions of objects

every frame time. Without this unique feature, real-time animation would not be

possible with current technology, unless very expensive and specialized hardware were

used.

5.2 Enhancements to the Animation Imaging Model

There are many improvements which can be made to the animation imaging model

implementation which would enable the system to bring about animation more

efficiently. While most improvements would enhance this implementation, they are

device dependent changes and therefore do not extend the capabilities of the imaging

model. This section focuses on enhancements to the imaging model.

5.2.1 Supporting Other Types of Motion·· Acceleration/Deceleration

One added feature would be the ability of the model to support accelerating and

decelerating motion. This can be accomplished by using an algorithm which requires

increasing or decreasing the time interval bat by a user-specified quantity when updating

the application matrix. Besides being less computationally intensive than the one

52

described in Chapter 2, this approach has the added advantage of allowing acceleration

or deceleration of any type of motion that can be specified by one matrix. The

previously described approach is restricted to applications of acceleration in a straight

line. This algorithm allows cases such as the following example:
A ball is rolling in a straight line. Its rate of
rotation gradually slows down with time until it
stops completely.

This approach also produces smoother motion when moving in small increments at a

faster rate. If the object is decelerating, the effect of movement in large increments is

especially noticeable; as the lit increases, the object may appear to be moving at

discrete time intervals instead of displaying continuous motion.

This feature can be implemented by specifying two additional parameters in the

Animate command. These parameters are r, the number of retraces which should

elapse before lit is changed, and i, the increment by which the time interval, lit, will

change every r retrace periods. The only major change to the described implementation

would be a modification to the updating algorithm, which would be more complicated

because there are limits as to how small or large flt can become. If the object is

accelerating, the flt can not reach a value less than lit = 1. Therefore, the algorithm

must know that if flt = 1, the time interval cannot be updated anymore. It can,

however, still update the animation environment matrix, A, so the net effect is an object

moving at a terminal velocity. If, on the other hand, the object is decelerating, it should

eventually stop moving; therefore, a ceiling on flt must be determined. When

flt = flt .1. , the animation process should transfer the animation list entry to the ce1 mg

passive animation list since it should not require movement

5.2.2 Specifying Animation to Start and Stop in the Future

Another possible enhancement to the imaging model is the capability of specifying two

parameters which. would enable animation to commence and end at a future time,

53

relative to the current value of the slot counter. These parameters specify the times in

terms of vertical retrace periods, allowing predetermined changes in the specified scene

without host intervention. Animation list definitions which are not yet active or are

already deactivated can be stored in the passive animation list. By specifying a limit on

the future starting and ending time intervals, a method similar the slot method can be

used to keep track of future events. This slot structure could be maintained by another

auxiliary process whose purpose is to insert and remove animation entries from the

passive and active animation lists as specified by the applications program.

5.2.3 Collision Detection

An important feature, missing from the animation imaging model, is a means of

detection collisions between objects. Collision detection is a necessary task, especially

when the animated scenes involve dynamic interactions. This capability would allow

the host to be informed, should an exceptional circumstance occur. Such cases include

a collision between two or more objects, or an object moving out of view. The former

occurs when boundaries of objects overlap, while the latter case is modeled as the

intersection of the object with the boundaries of the current viewing window. Once the

host has been informed of the occurrence of a collision as well as the objects involved, it

can proceed with three possible actions: alter the scene to take into account the effect of

the collision; ignore the collision completely; or process the collision later.

There are many ways to implement a collision detection module. An approach taken by

Evans and Sutherland for their Improved Scene Generator [8] used a separate graphics

subsystem to process the collision detecting and reporting information. A simpler

approach is to incorporate checking for collisions into the imaging model. If each

object is surrounded by a bounding box, the scheme would just need to determine if

any two parts of a bounding box overlapped. This information could be determined by

a new module, the collision detection module, which obtains collision information and

54

reports its results to the host. The architecture of a system which incorporates this

module is shown in Figure 5-1.

Host Program

Communication
l Channel

I

!._ - .J

Collision
Detection
Module

- - - l

L

Display List

Animation

Module

Geometric
Processor

Display
Processor

Frame Buffer

I

I

I

I

I

I

I

I
I

I

I

I
- - _I

Graphics
Box

Figure 5-l:Architecture Incorporating a Collision Detection Module

55

5.3 Summary of Thesis

It is possible to separate animation generation from an animation application by

incorporating animation into the imaging model. By enabling special purpose

processors to take care of the animation tasks, the host was able to distribute its

processing power to other tasks. and the dependence on the the communication channel

was reduced considerably. The model also provides primitives which allowed the

application programmer to easily specify how the objects should be transformed over

time.

The main disadvantage is that the program is not aware of the positions of objects at all

times, making collision detection capabilities essential for applications involving

dynamic interaction of objects. Nevertheless, the animation imaging model provides a

great deal of power. Its advantages include the fact that high performance animation

can be specified simplistically by the applications programmer and that the animation

capabilities in the imaging model are device independent

56

- I - ,

Appendix A

Matrices fer Me•e•11 lr1inft'41natiollS

A.I. Traaslatiu

A.2Scaliaa

Scale(S ,S v ,S):
• , &

-_,...---

1 0 0 0
0 1 0 0
0 0 1 0
T. T., Ti 1

s. 0 0 0
0 s, 0 0
o o s& o
0 0 0 1

S1

A.3 Rotation al»out tile X ·axis

1 0 0 0
0 coel •• 0

Rotate Jt ('): 0 -·· coe• 0
0 0 0 1

-,~::-

A.4 Rotation about the Y·ub

coal 0 -aln' 0
0 1 0 0

Rotate
1

(I):
8ln' 0 C88I 0

-~

0 0 0 1 __ __,_.

A.5 Rotation about the Z-axis

C081 , 0 0
.... , ... 0 0

Rotate .< '): 0 0 1 0
0 0 0 1

,_

-~ ~~ , ___ :_ -_~_:.:

S8

I~eferences

[l] Bentley, D. L. and Cooke, K. L.
Linear Algebra with Differential Equations.
Holt, Rinehart, and Winston, Inc, NewYork, 1973.

[2] Chang, K. Y.
Microcomputer Graphics and Applications with NAPLPS Videotex.
IEEE Computer Graphics & Applications :21-33, June, 1985.

[3] Cheriton, D. and Zwaencpoel, W.
The Distributed V Kernel and its Performance for Diskless Workstations.
Computer Systems Laboratory, Stanford University.

[4] Chuang, R. and Entis, G.
3-0 Shaded Computer Animation -- Step by Step.
IEEE Computer Graphics & Applications :18-25, December, 1983.

[5] Clark, J. H.
The Geometry Engine: A VLS[Geometry System for Graphics.
Computer Graphics 16(3):127-133, July, 1982.

[6] Clark, J. H. and Davis, T.
Work Station Unites Real-Time Graphics with Unix, Ethernet.
Eleclronics :113-119, October, 1983.

[7] Crow, F. C.
The Use of Greyscale for Improved raster Display of Vectors and Characters.
Computer Graphics(Proc. Siggraph '7812(3):1-5, August, 1978.

[8] Evans & Sutherland Computer Corporation.
Improved Scene Generator Capability.
1977.
Prepared for NASA, Lyndon B. Johnson Space Center, Houston, Texas.

[9] Foley, J. D. and Dam, A. V.
Fundamentals of fnteraclive Computer Graphics.
Addison-Wesley Publishing Co., 1982.

59

[10] Goldstein, R. A., and Nagel, R.
3-D Visual Simulation.
Simula/ion :25-31, January, 1971.

[11] Gouraud, H.
Computer Display of Curved Surfaces.
Technical Report Report CSc-71-113, University of Utah, June, 1971.

[12] Horowitz, E. and Sahni, S.
Fundamanlals of Computer Algorithms.
Computer Science Press, Inc, Rockville, 1978.

[13] Ikeda, T.
High-Speed Techniques for a 3-D Color Graphics Terminal.
IEEE Computer Graphics & Applications :46-58, May, 1984.

[14] Kahn, K. M.
Creation of Computer Animation from Story Descriplions.
Technical Report Technical Report 540, Massachusetts Institute Technology AI

Lab, August, 1979.

[15] Miller, R. R.
Simulation and Graphics on Microcomputers.
Byte 9(3):194-200, March, 1984.

[16] Newman, W. M. and Sproull, R. F.
Principles of Interactive Computer Graphics.
McGraw-Hill, NewYork, 1979.

[17] Newton, M.
Real-Time 3-D Graphics for Microcomputers.
Byte9(10):251-286, September, 1984.

[18] Parke, F. I.
Computer Generated Animation of Faces.
Technical Report Report CSc-72-120, University of Utah, June, 1972.

[19] Reingold, E. M., Nievergelt, J. and Deo, N.
Combinatorial Algorithms: Theory and Practice.
Prentice-Hall, Inc, EnglewoodCliffs, 1977.

60

[20] Rogers, D. F.
Procedural Elements/or Computer Graphics.
McGraw-Hill, NewYork, 1985.

(21) Saltzer, J. H.
Traffic Control in a Multiplexed Computer System.
Technical Report MAC-TR-30, Massachusetts Institute of Technology, July,

1966.

(22) Schumacker, R. A.
A New Visual System Architecture.
In Proceedings of the 2nd lnterservice//ndustry Training Equipment Conference,

pages 94-101. Salt Lake City, UT, November, 1980.

[23] IRIS User's Guide
Version LO edition, Silicon Graphics, Inc., Mountainview, CA, 1983.

[24) Sutherland, I. E., Sproul, R. F., and Schumacker, R. A.
A Characterization of Ten Hidden-Surface Algorithms.
Computing Surveys 6(1):1-55, March, 1974.

(25] Warnock, J. and Wyatt, D.
A Device Independent Graphics Imaging Model for Use with Raster Devices.
ACM Computer Graphics 16(3):313-319, July, 1982.

61

