
MIT /LCS/TR-357

COMPUTATION MANAGEMENT

IN A

SINGLE ADDRESS SPACE SYSTEM

James C. Gibson

January 1986

This blank page was inserted to presenie pagination.

Computation Management in a
Single Address Space System

James Cameron Gibson

January, 1986

© Massachusetts Institute of Technology 1986

Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, Massachusetts 02139

This research was support by the Defense Advanced Research Projects Agency of
the Department of Defense and was monitored by the Office of Naval Research under
Contract No. N00014-83-K-0125.

2

Computation Management in a
Single Address Space System

by

James Cameron Gibson

Submitted to the
Department of Electrical Engineering and Computer Science

on November 26, 1985 in partial fulfillment of the requirements
for the Degree of Master of Science

Abstract

A multiprogramming operating system needs a mechanism to recover from the
termination of one of its computations. Cleaning up, or unlinkjng a terminated
computation from those remaining requires identifying the end of a computation,
freeing resources that the computation was using, and shutting down its interfaces
with other computations. This problem is especially important, and usually more
difficult, when the computation fails.

The nature of the unlinking mechanism depends strongly on the operating system for
which it is designed. Swift is a multiprogramming operating system which provides a
single address space, and is designed to support applications naturally implemented
using cooperating asynchronous processes. Swift's mechanisms for structuring
programs, including upcalls, encourage close sharing between computations in a
structured fashion. This sharing makes unlinking more difficult.

In this thesis, a computation management mechanism is presented and its goals are
analyzed. The jgb, a new unit corresponding to a Swift computation, is defined, and
its use is detailed. The conditions under which a job terminates are described. An
algorithm to unlink a terminated job and recover Its resources is presented.

Key Words: single address space, operating system, unlinking, error recovery,
Swift, upcalts

Thesis Supervisor: Dr. David D. Clark.

3

Acknowledgments

Foremost, thanks to my thesis advisor, Dr. David Clark. His willingness to sort out my

frequent confusion and his patient guidance throughout the development of this

thesis were greatly appreciated.

Pui Ng spent countless hours enthusiastically subjecting my ideas to rigorous

scrutiny: improving the good, filtering out the bad, and forcing me to do better work

in the process.

Larry Allen laid the groundwork for this thesis by speculating about jobs in Swift, and

contributed valuable comment and criticism to my proposal.

Larry Allen, Michael Greenwald, and Wayne Gramlich were not only able but willing

to answer questions about all aspects of the Swift system, from the nature and goals

of the project to the details of pin configurations for RS-232 cables.

Finally, I am grateful to the numerous people on the fifth floor at Tech Square who

have created such an exciting and enjoyable environment in which to work.

4

- --~~-- --~---- --
,,-.. ,•.o;o.•.,o.<_.-, '

Table of Contents

Chapter One: Introduction

1.1 The Unlinking Problem
1.2 Related Work

1.2.1 UNIX
1.2.2 Multics
1.2.3 Pilot

Chapter Two: The Swift Operating System

2.1 Goals of Swift
2.2 Structures and Mechanisms

2.2.1 The Addressing Model
2.2.2 Static Structure
2.2.3 Dynamic Structure
2.2.4 The CLU Signal Mechanism
2.2.5 Swift in Action

Chapter Three: Unlinking

3.1 Issues in Unlinking
3.1.1 The Role of Sharing
3.1.2 Perfect Termination, Normal Termination, and Failure
3.1.3 Levels of UnHnking ·

3.2 Swift Structures and Unlinking

Chapter Four: An Unlinking Mechanism For Swift: Design and
I mplementatlon

4.1 The Job
4.1.1 Goals of the Job Mechanism
4.1.2 Description of the Job Mechanism
4.1.3 Operations Added to Support Jobs

4.2 How Jobs Terminate
4.2.1 Normal Terminations
4.2.2 Recoverable Errors
4.2.3 Unrecoverable Errors

4.3Cleanup
4.3.1 Phase 1
4.3.2 Phase 2
4.3.3 Phase 3
4.3.4 Audit Tools

5

8

9
11
12
14
17

20

22
23
23
26
28
33
:rT

47

47
48
48
51
54

57

58
58
61
82
90
90
91

103
105
107
107
123
126

4.4 Implementation
4.4.1 The Swift Testbed
4.4.2 The Effect of Jobs on Normal System Operation
4.4.3 The Implementation of Unlinking
4.4.4 Experience with the Implementation

Chapter Five: Conclusion

5.1 Conclusions
5.2 Future Work

6

129
130
132
141
144

146

146
147

Table of Figures

Figure 2·1 : Simple Examples of CLU Signals 35
Figure 2·2: An Organization of Subsystems for a Network Protocol 40
Figure 2·3: The Receive Side of a Simple Three-Layer Protocol Package, 41

With User
Figure 4·1: Multiple Jobs Instantiating One Subsystem 66
Figure 4-2: Simulating Multiple Jobs in a Single Subsystem 68
Figure 4-3: Static Organization of a Subsystem with a Managing Job 70
Figure 4-4: Dynamic Organization of a Subsystem with a Managing Job 71
Figure 4·5: Where Jobs Store Their State n
Figure 4·6: A Taxonomy of Failures Signaled Through Gateway 95

Procedures
Figure 4-7: Examples of Different Configurations at Job Termination 114
Figure 4·8: Modifications to Support the Unwind Signal 117
Figure 4·9: Costs of Common Operations With and Without Jobs 133
Figure 4·10: The Job Record 134
Figure 4· 11: Notification of Other Jobs 134
Figure 4-12: Additions to the Task Record 134
Figure 4·13: Additions to the Monitor Record 139

7

Chapter One

Introduction

Commonly, operating systems support dynamic creation and termination of multiple

computations. A computation is a dynamic unit (the instantiation of a program) that,

as far as the users and programmers of the system are concerned, should be

relatively independent of other computations. In many systems, although not in the

one this thesis will discuss, a computation is realized as a process. Examples of

computations include a compiler session and a layer in a network protocol package.

A system with multiple computations needs a mechanism that cleans up when one of

them terminates. The mechanism needs to disentangle the finished computation

from those that remain, and free resources temporarily owned by that computation.

This cleanup problem will hereafter also be referred to as unlinking.

An important notion in unlinking is that of the "failure" of a computation. A familiar

example is an attempt by a program to divide some number by zero. Frequently, the

system and the program have no agreement on how to continue the computation

after this error. When an event unplanned for by the program occurs, the

computation is said to fail. Failure makes unlinking harder for several reasons

discussed later. Since the program does not terminate gracefully, and since the user

wants to know what went wrong with the program, the level of function provided by

the unlinking mechanism is also more important when a computation fails.

This thesis describes a set of computation management mechanisms and

conventions for the the Swift operating system [5]. Some of these mechanisms are

used to divide the system into computations. Others step in when a computation

terminates, to unlink that computation.

8

The nature of the operating system in question has a substantial impact on these

mechanisms. The Swift operating system runs entirely in a single address space, a

feature that has substantial impact on the unlinking mechanism. Swift has a number

of novel features related to the sorts of sharing and communication allowed in the

system. These features, and the techniques used to implement them, require that the

unlinking mechanism differs substantially from those for other operating systems.

This thesis describes a solution to the problem of unlinking a computation in Swift. A

"proof of concept" implementation has been completed to verify the design

presented in the thesis.

The remainder of this chapter consists of a brief discussion of unlinking and a

description of related work. The second chapter presents an overview of the relevant

features of Swift as it exists without unlinking. Without a moderately detailed

knowledge of Swift, the unlinking mechanism and the constraints and motivations

underlying its design will not be comprehensible. The third chapter contains a more

detailed discussion of the unlinking problem in general, and an analysis of why

existing Swift structures are inadequate to solve the problem. The fourth chapter, the

heart of the thesis, defines the jgb, a new structure, recognized by the system, onto

which programmers can map their computations. Chapter four also explains how a

job is maintained while it Is running; categorizes how jobs terminate; presents the

design of an unlinking mechanism; and discusses the implementation of jobs and

unlinking, including an analysis of performance considerations. The fifth chapter

presents a conclusion, and lists directions for future research.

The short form of this thesis includes sections 1.1 , 4.0, 4.1.1, 4.1.2 (just the

summary), 4.2 (skim), 4.3.1-4.3.3, 4.4.0, and 5.1.

1.1 The Unlinking Problem

Four problems should be solved in the development of an unlinking mechanism.

First, the mechanism needs a definition of a computation. Of what does a

9

computation consist (e.g. what resources does it possess), and where are the

boundaries between computations? Second, the mechanism must be able to identify

a terminated computation. Third, it should allow other computations to clean up their

interactions with the dead computation. Fourth, it should free any resources held by

the dead computation and then dispose of that computation.

An unlinking mechanism will not solve all of these problems in all cases. In specific

systems, some of the problems cannot be solved. Others may not be worth solving:

the machinery to achieve the solution would impose unacceptable costs given the

performance requirements of some Swift applications. This thesis will present a

practical design that makes compromises in functionality to maintain performance,

rather than a theoretical model for computation unlinking and resource recovery.

When a problem cannot be or is not solved, the user must endure some inferior level

of functionality. For instance, in a static, system that runs a fixed number of

predetermined programs, unlinking may not be done at au. The programs are not

-intended to terminate until the system is shut down. In the event of an error such as a

coding bug in one of the programs, the system's behavior Is simply left undefined.

The system builder is responsible for making sure such errors do not occur.

Two factors have the greatest impact on the unlinking problem. The first Is the sorts

of failures that can occur in the system. For each type of failure, certain problems

must be solved.

- The system must be able to Identify that the failure has occurred.

- The system must decide how to start running correctly aoatn.

- The system must give information about the failure to the user(s)
involved. so that they can attempt to diagnose the cause of the failure.

Also, since the computation has failed, it cannot be relied on to assist in its own

cleanup. In contrast, when the end of the computation occurs in a way planned and

provided for by the programmer of the computation, the programmer may do much of

10

the work required to clean up, for example by explicitly closing files.

The second factor is the types of sharing and communication that occur between

computations. Looking at two extreme examples gives some insight into the

relationship between sharing and unlinking. In some abstract machine in which no

sharing or communication occurs between computations, the problem does not

exist, since computations can terminate or not, in whatever way they please, without

affecting the rest of the system. On the other hand, if the abstract machine allows

such tight sharing among components that its operation cannot be broken up into

computations, an unlinking mechanism has no role. For more realistic examples,

sharing constrains the shape of the solution.

1.2 Related Work

Many operating systems must solve the unlinking problem. Unfortunately, that does

not imply that a mechanism only needs to be invented once. Unlinking mechanisms

differ widely due to features or goals specific to their systems, some so much so that

their mechanisms are not relevant to each other. On the other hand, many operating

systems fall into a few classes, whose members unlink in the same general way,

although perhaps differing substantially in the details. Thus, this section talks briefly

about a few systems which have some relevance to Swift and/or which are important

representatives of some broad trends. The systems are compared, and their

unlinking mechanisms are presented. They will frequently be used elsewhere in the

thesis, for comparison purposes.

The three systems discussed here are UNIX1 , Multics, and Pilot. UNIX allows only

very restricted sharing between computations, making the protection between

different computations strong without requiring special hardware. Multics allows

flexible sharing and maintains protection, but requires specialized hardware to do so.

Pilot allows sharing without specialized hardware, but sacrifices some protection to

1 UNIX is a trademark of Bell Laboratories.

11

achieve these goals. Also, Pilot is a single-user system, while both UNIX and Multics

support multiple users. A single-user system can ignore the problem of malicious

behavior by one user towards another, which substantially simplifies the control

needed over programs. Pilot can tolerate a level of protection between programs

that would be unacceptably low if different users ran the different programs. The

choices these systems make greatly affects their respective unlinking mechanisms.

Swift is closest to Pilot in this classification scheme, but has significantly different

emphases that influence the unlinking mechanism.

1.2.1 UNIX

UNIX [16), a multiuser operating system, divides its user computations into

processes, each with its own address space protected by some sort of address

translation hardware. A computation may also be realized as a group of processes,

although the tools for managing multiple processes are not powerful.

Communication between processes is limited. Messages (interprocess signals) can

be passed between processes that agree on a protocol. More general information

can be passed less efficiently through "pipes," which are FIFO buffers between

processes.

A process is also a member of a process group, with assignment of process to group

done by a few simple rules. A signal may be sent to all the members of a process

group, allowing for mass termination of a set of cooperating processes.

UNIX sidesteps most of the problems of unlinking in Swift. Unlinking of user

processes is done using the one-to-one correspondence between processes and

address spaces. When a process exits, its address space is deallocated. Pipes and

signals, the interfaces between processes, are also managed by the system. The

system can usually recognize when a pipe is no longer being used by the two

processes that were communicating through it, and can throw it away. A signal

12

disappears if the process to which it is sent dies before receiving it.

User processes sit on top of the UNIX kernel, which application processes can invoke

by procedure call for services. A sharp split divides users from the kernel; to ·

maintain the splft, functions tend to be pushed either into the kernel or Into the

address space of user processes. A tightly controlled kernel interface prevents

misbehaving user processes from disrupting the kernel. A bug in the kernel, on the

other hand, can affect user processes or some other part of the kernel In

unpredictable ways.

The next question is how unlinking operates in the kernel. The user process Is

assumed to depend on the kernel's correct operation, so the problem of kernel bugs

corrupting user processes is ignored. UNIX avoids more unlinking problems by

making the kernel static, and by running it in a single address space. Unlike running

user applications, which can have their address spaces terminated and then be

changed and reexecuted without effect on the rest of the system, the kernel cannot

be modified without shutting the system down. Pieces of the kernel cannot be

unlinked separately. The system does not provide any boundaries in the kernel to

protect the various pieces from each other, so a kernel bug such as the use of an

invalid address may destroy arbitrary parts of the kernel. The absence of protection

means that every part of the system relies on each piece of the kernel working

correctly. If a piece of the kernel falls, even parts not using the function provided by

that piece will be terminated. The effect of these decisions is to push work back on

the kernel programmers, who are responsible for determining in advance what

pieces are needed, and who must solve the problem of failures by avoiding them,

since the system will give them no help.

A process may also hold system resources such as open files, whose management is

built in at a low level of the system. The system keeps track of all open files held by a

process and closes them if the process terminates. Unfortunately, a sharp distinction

exists between the kernel and applications; any higher level semantics of files or

13

' ,

other resources must be maintained by applications programs without further help

from the system.

Not infrequently, the system's unlinking mechanisms fail. As a last resort (as in all

systems}, a human with sufficient knowledge must unlink by hand with some level of

system assistance, deciding what processes need to be kUled, what temporary files

deleted, and so on (or rebooting the entire system), recovering as well as possible.

1.2.2 Multics

Multics [14, 6] is another multiuser operating system. The unit of execution is the

process. Memory is divided into (usually large) "segments," used to store data or

code, which can be referenced by multiple processes. A code segment usually

represents an entire application or a substantiat piece of an application. Sharing of

segments allows processes to share the same code, and to exchange data. Multics

has some rather elaborate unlinking mechanisms, and has two kinds of unlinking:

one related to cleaning up a process which has terminated, the other concerned with

shutting down a code segment to allow it to be changed. 2

Processes send messages to each other, to synchronize themselves. These

processes communicate via messages sent on "event channels". A process waits on

an event channel for a message. The system has no way of telling whether or not

another process will ever send a message on that channel. If the communication

protocol breaks down, for instance as the result of the death of a participating

process, another process may quite possibly be left waiting for a message that will

never arrive. A human agent must notice and manually correct this situation.

At the death of a process, a number of bookkeeping adjustments must be made to

manage resources associated in some way with the process. For example, for

2Unlinking is used here the way it has been defined in this thesis. Multics has its own definition of
unlinking, which is being ignored.

14

' .

garbage collection purposes, Multics keeps track of every process that knows about

a segment. If a process dies, all the segments it knew about are adjusted to reflect

the death of the process. If a segment is no longer in use, it is marked as inactive. 3

Device management must be done when a process terminates, since processes may

own 1/0 devices. Information about device ownership is stored with the process. If a

process dies, the system notifies the devices owned by the process, allowing the

devices to free and reinitialize themselves in whatever way is appropriate. The device

management module sets up this notification in advance, when it registers the device

with the system, by giving the system a procedure variable associated with a

procedure from the module. When a process dies, the system notifies the devices

owned by the process by invoking the procedure variables associated with each of

them. Each device then uses its own procedure to ctean Itself up and free itself,

providing a modular split between the system and the device by freeing the system of

needing to know any details of the device's operations. This mechanism is much like

the Swift upcall, which will be discussed in chapter 2, with the significant difference

that, in Multics, the device procedure must be part of the system (i.e. cannot be user

code) for protection purposes.

Multics allows the dynamic unlinking of pieces Qf code with much less effect on the

rest of the system than occurs in UNIX. It takes advantage of the ability to share code

segments, and of a more continuous spectrum of trustedness from system to

application code. To unlink a program segment from any others which may be using

it, as when a segment is not working property or is to be replaced, Multics attempts to

ensure that any future attempt to reference the unlinked segment is intercepted. The

system is atded in this quest by the restrictions placed on intersegment

communication. Specifically, segments reference other segments indirectly, through

a "linkage segment," which translates from symbolic addresses in the code to

3 An inactive segment occupies space on disk until a more elaborate and intrusive scavenging occurs,
but does not occupy primary memory. nor does it use loaded table space. This practical compromise
reuses the two much scarcer resources that a segment can tie up.

15

physical addresses in other segments. Thus, the linkage segments are searched for

references to the unlinked segment, and these references are replaced by

"tombstone" references which will trap to the operating system if the process

attempts to use them.''

A process can actually access code segments in another way beside a direct

reference in the code segment it is currently executing. A procedure the process is

executing can use a procedure variable, which is stored on the stack of the process,

to reference another segment. This facility poses the danger that a procedure

variable may be a reference to a procedure in a segment which has been unlinked,

and changed. An attempt to execute the code now pointed to by the procedure

variable could conceivably cause any sort of damage that an incorrect program

might cause. Multics ignores this danger, which is a practical compromlae. The

problem will not occur often and, when it does, will with high probability result in an

immediate attempt to execute an invalid instruction and a harmless trap to the

operating system.

Finally, Multics has a rather complex unwinding mechanism which allows procedures

to clean themselves up in the event of an unexpected termination. unw1 nd in Multics

is somewhat like a simpler mechanism in Pilot and in the unlinking design for Swift,

but must also take into account the Multics protection system, which is irrelevant to

the other two systems. Therefore, this feature is discussed in section 1.2.3 as part of

Pilot.

4Multics only performs this service for the user who changes the segment. To protect users from
each other. the new version does not replace the old one in the address space of a user who did not
create the new version. If this user attempts to use the old version. which is no longer valid, his process
will fail. If the changed segment is system code, the two versions will exist sunultaneously for a time, in
such a way that any processes using the old version will continue to do so. while new processes will run
the new version. When the last old process dres. the old version will be made inactive as described
above.

16

1.2.3 Pilot

Pilot (15, 11] is an operating system for a personal machine. Like Swift, it runs all its

computations in a single address space, also using a typechecked language (in this

case, Mesa [13]) to provide structure and protection. A running Pilot system consists

of a set of client programs which sit on top of a layered set of comoonents, each of

which represents some substantial 1 modular piece of the system. The various

components of the kernel cannot be unlinked separately.

A client program is realized as a set of processes which use the services of the

kernel. Interprocess communication and synchronization· is achieved through

shared memory guarded by monitors (101 11], extended with condition variables,

both of which are present in Swift and are described In more detail in Chapter 2.

Communication between client programs and the underlying kernel is done

differently depending on whether that communication is up or down. The client calls

down into the kernel for a service, passing the necessary information as arguments

to the procedure. Communication up from kernel to client is described in [15] for the

network protocol case, in which information must flow up from the kernel to the

client. The client leaves a buffer with the kemel 1 into which the kernel will copy the

incoming packet. The client can call down with one of its processes to get the packet

whenever it expects a communication 1 or can have a process permanently waiting for

packets to come in. Thus, a boundary between kernel client is maintained by having

them both use only client processes to communicate with each other1 insulating the

kernel processes from client failures.

Unlinking of a computation must be done by the computation itself. Specifically, the

Mesa exception mechanism (Exceptions are a Mesa mechanism for indicating and

coping with unusual events.) has been augmented with two system-defined

exceptions. If one process thinks a computation should be terminated, it can notify

another process to abort through the abort exception. Usually, the process will exit.

The "aborted" process can reject the abort and continue to run, howevert and no

17

way exists for a process to stop some other process that is out of control.

For abort, as well as other exceptions, the system's routine for coping with

exceptions looks through the stack for a procedure that has a handler for the

exception. If, after executing the handler, the process continues to run where the

exception was handled instead of where it was raised, the routines on the stack

between the raiser and handler of the exception did not finish as planned, nor did

they get a chance to clean up. To solve this problem, the unwind exception was

added. Each procedure that is unwound from the stack has a chance to clean up by

associating some cleanup code with an unwind handler. If, for instance, an abort

exception was received by a process calling a kernel procedure, the procedure can

restore its state, especially unlocking any monitors it currently has locked, after

restoring their invariants. Thus, the procedure and its associated module can

continue to operate after an abort.

Pilot does not try to recover from several sorts of errors, but rather invokes the

debugger, which swaps in a new system to do the debugging, suspending and saving

the old state. These errors include unhandled exceptions, among others. If multiple

computations are running simultaneously, they are all affected by one of these errors

in any one of them.

As this discussion of unlinking and error handling shows, Pilot pushes much of the

work of unlinking and failure handling back on the programmer and user. Pilot is

willing to endure significant upheaval as the result of an application error, including

automatically suspending the system to use the debugger. This philosophy is

acceptable for a single user system, but, ideally, some of these errors could be

handled less traumatically.

Pilot does manage the file system and protect it from errors. A file scavenger

restores the integrity of the files in response to certain events such as system

crashes. Additionally (and unlike the restrictions on upward information flow and

client processes in the network protocol case), the scavenger can invoke a piece of

18

client software through an "escape-hatch," much like a Swift upcall, to let the client

do its own scavenging and thereby maintain higher level semantics on the storage.

This scavenging is not part of normal system operation, but only of (restartable)

crash recovery, so unrecoverable errors in the client routine (e.g. an infinite loop)

could be handled appropriately by crashing the system again. "Tags" on files,

managed by the file system, indicate which scavenger procedure should be called on

which file, and thereby make it less likely that a bug in the module maintaining one

type of file will accidentally affect files of any other type.

In sharp contrast to Swift, Pilot's virtual memory facilities and their close interaction

with the file system make it quite acceptable to create a new "copy" of a user

program for each instantiation. Part of the abundant address space need be used for

an extra copy of the program, but no more of scarce physical memory.

19

Chapter Two

The Swift Operating System

The Swift operating system (5, 4, 7] provides a set of efficient, flexible mechanisms

for organizing computing on a personal workstation. In particular, Swift is designed

to support applications that are naturally implemented using cooperating

asynchronous tasks, particularly those with rigorous performance requirements. The

motivation for the Swift project is the belief that the support for these applications in

existing operating systems is inadequate either because it is too inefficient or

because it makes writing and debugging these programs more difficult than

necessary. Thus, Swift supports both the developing and running of such programs.

Swift is intended for programs that have been designed in layers, including network

. protocols and many operating system functions. Layering is a powerful design

principle, and, when property supported by the system, can also provide protection

between layers. For example, UNIX supports only two layers, user and kernel, and

controls user communication with the kernel so that a faulty user program cannot

cause the kernel to stop operating correctly. A user program is not similarly

insulated from the kernel, but that problem can be ignored because the user program

is assumed to depend on the kernel's correct operation. Multics supports multiple

layers in a much more sophisticated fashion.

Swift allows more flexible and powerful two-way communication between layers than

that permitted in many other layered systems. This tight communication makes error

recovery and unlinking harder, and necessitates some different sort of protection

between pieces of the system. Also, Swift supports programs that are not strictly

layered, or, more accurately, it does not force programs to conform to any layering

standard. The application programmer is free to choose whatever structure is

20

natural. The system, as a result, cannot take immediate advantage of layering and

trustedness.

In this thesis, a network protocol package will be the paradigm Swift application.

Such a package is rayered, and is typically implemented as a set of cooperating,

asynchronous tasks communicating with each other via mechanisms provided by the

operating system. 5 The use of cooperating asynchronous tasks is particularly

natural because a network protocol has two separate sources of activity: the

application program, which sends packets; and the network interface, which receives

them. One task can be responsible for executing the application program, while

another listens to the network interface, providing a modular split in responsibilities

and making the job of programmers easier whether they implement network software

or client applications. In any system under which such a program is implemented, an

intertask communication mechanism must be used at the interface between the two

tasks, for example to allow information received over the network to be passed by the

network task to the application task. The sort of intertask communication allowed In

Swift is described in section 2.2.3. Section 2.2.5 shows how a simple network

protocol would be implemented in Swift, thereby demonstrating the mechanisms

described and their intended use.

Swift is described without any of the features added to support unlinking. This

presentation will make it possible to motivate the actual unlinking mechanism. First,

the goals of Swift are presented and discussed. Following that is a description of the

mechanisms and system structures used by Swift to achieve those goals. A

reasonably complete understanding of Swift as presented in this overview is needed

to make senaaof the rest of the thesis.

5rhese might be called "system" applications. They provide services to other applications. In Swift,
(and unlike. for example, UNIX) they do not need to be part of "the kernel" which is rigidly separated
from user code. In Swift, the entire system need not be compromised if one of these system applications
has a bug.

21

2.1 Goals of Swift

The system should provide structuring devices to make implementing and running

the discussed class of applications more efficient or less complicated than in

previous systems. Swift uses two mechanisms, multitask modules and uoca!ls,

discussed in more detail below, to structure applications.

In applications implemented using cooperating asynchronous tasks, interprocess

communication must be fast, so as not to become a performance bottleneck.

Obviously, if the mechanism is sufficiently expensive, high performance applications

such as network protocols must try to program around it. If the mechanism can be

·programmed around, it is still a useless hindrance, while if it cannot, the system is

unusable for these applications.

Swift should be easily portable to a large set of architectures. Special hardware

requirements make the system harder to port and reduce the number of architectures

on which it can be implemented. Such requirements should thus be avoided. One

result is that the Swift testbed is implemented without virtual memory. Extra

hardware could speed up many functions, such as intertask communication, so this

portability goal conflicts directly with requirements for high performance. 8

Swift mechanisms should be easy to use in a number of ways. They should allow the

programmer to structure applications as desired. They should be as little prone to

errors as possible. Debugging should be no more difficult than necessary. The

applications which do not make use of the interesting features of Swift should not be

burdened by those features. Those that do use the trickier features should not be

unduly complicated to write, even though the programmera will not be novices and

the progr~themselves will be inherently complicated. Unfortunately, one of the

drawbacks of a more flexible mechanism is that usually it pushes work back onto the

application programmer. This tendency should be avoided where possible.

6rhe necessity of avoiding special hardware also caused a number of other difficulties. some of which
are discussed in (5).

22

One non-goal concerns malicious behavior by users or programmers. Since Swift is

a single user system, protecting one program from the malicious behavior of another

is not the serious problem it is in multiuser systems. Swift relies on approaches

external to the system to protect against maliciousness. 7 Within the system,

programmers are trusted to behave themsefves; the user writing a new program, for

instance, can only harm himself by behaving maliciously. Constraints to prevent

malicious behavior may prevent a programmer from doing desirable or necessary

things, and so should· be avoided. Issues in controlling malicious behavior will be

ignored in this thesis.

Programming errors, on the other hand, are a problem that the system should make

some effort to control. These errors should not, as far as possible, have negative

consequences, and in particular should not have disastrous consequences for parts

of the system that are unrelated to the error. Also, programmers should, whenever

possible, at least have to make an effort to do something that is risky or apparently

stupid.

2.2 Structures and Mechanisms

This section describes the aspects of Swift that are relevant to the thesis. It

concludes with an example (in section 2.2.5) which may make the rest of this

overview more comprehensible.

2.2.1 The Addressing Model

An early design decision concerning the address space model had a substantial

impact on the rest of the system, including the unlinking mechanism. To achieve fast

and flexible sharing without the use of special hardware, Swift runs entirely in a

single flat address space, i.e. one without any structure at all. The advantages of this

approach are substantial, but the disadvantages are so great that additional structure

7 This is the same approach used by many other systems for system code.

23

is needed to overcome the problem.

The advantages of running in a single address space are associated with

performance and hardware simplicity. Sharing between tasks can be done easily and

efficiently, through shared memory. Since all tasks have the same address space, an

address refers to the same location in memory for both tasks, so no sort of special

mapping is needed when addresses are passed from one task to another. No

hardware is needed to do address translation, or to protect different address spaces

from one another.

The disadvantages are associated with a loss of protection and of modularity

between computations. The protections provided by multiple address spaces are

sacrificed. For instance, address translation in multiple address space systems

automatically catches references to many inappropriate addresses. In a single

address space, these validity checks are sacrificed. A rogue task can corrupt the

address space, destroying critical information being used by another task, such as

data structures, stacks, or even code, merely by writing to the wrong address. Thus,

in the absence of further restrictions, each task depends on the correctness of all

other tasks. Meeting this standard is difficult and time-consuming, even for expert

programmers, and the problem scales worse than linearly with the size of the system.

Debugging is a nightmare, since a failure in one computation may be caused by the

behavior of another computation which is apparently working. For a less

experienced programmer, and/or one not expert in the system, this lack of

modularity is not reasonable. Furthermore, modifications are so expensive that only

those with huge benefits or that are widely distributed, can be made.

Also, for the purposes of unlinking, an address space in a multiple address space

system provides a convenient unit corresponding to a computation. The

computation, consisting of all processes running in the address space,

communicates with other computations only through a few, carefully controlled

gateways (e.g. UNIX signals) and can be isolated easily from other computations

24

when it terminates, often relying on mechanisms already in place to maintain the

separate address spaces. This isolated unit can then be cleaned up without any

effect on other computations. In a single address space system, on the other hand,

the boundaries of a computation, and the resources associated with it are not

instantly clear, nor is the required support immediatety evident. Therefore, the

system must define and manage some structures corresponding to computations.

To provide some structure to the address apace, the Swift system and its application

programs are written in a typechecked, object oriented language that, assisted by a
"runtime system" which provides dynamic support for built-In data types and other

functions, eliminates a number of the disadvantages of a single address space. This

language, CLU (12), enforces a few simple rules which make It Impossible for a task

to overwrite arbitrary locations. 8 Data in CLU conaists of objects, to which programs

have pointers. The type of each object is either one of the built-in types (e.g. integer

or bool), or a built-in composite of theee types (e.g. an array).9 The Only way to

manipulate an object is to invoke the CLU runtime system with a pointer to the object.

Type checking, done when a procedure is compiled, enaurea that pointers cannot be

forged, and that a procedure in the runtime system cannot be fooled about the type

of object it receives. The concern in a single addt'981 apace system is with bugs that

occur in one computation, but affect an unrelated computation in an unpredictable

way; the existence of such disastrous bugs la confined to the runtime system, which

is small, implemented only once, and extensively tested.

Another useful feature of CLU is that a program does not have to do its own storage

management. Objects reside in an (abstract) region of the address space known as

the heap. A CLU variable is a pointer or reference to a heap object. These objects

8 Actually, thiS iS true only if certain loopholes in the language are not used. Even in programs which
use the loopholes, however. the danger ot memory corruption is tocatized and restricted.

9i-hose who know something about CLU may be· aware that one of its main purposes is the support of
abstract types, the representation of which (in terms of built·in typea) is concealed by the compiler from
procedures that use the type. The representation is not concealed from the runtime system, and is thus
irrelevant to this discussion.

25

are not explicitly freed by a using program, but rather the heap is garbage-collected

by the runtime system. Garbage collection eliminates the infamous "dangling

pointer" problem caused by incorrectly freeing a piece of storage, which can result in

address space corruption.10 The opposite problem is to ensure that all objects will

be freed once they are no longer in use, which requires deleting all references to

unused objects. One of the challenges of unlinking is to make sure that once a

computation has finished, all its objects are freed. In Swift, references to an object

may exist in three places: in Own variables (described in section 2.2.2), in local

variables (section 2.2.3), and in "computation storage" (section 4.1.2).

2.2.2 Static Structure

A Swift programmer links together a set of procedures into a subsystem (stored as a

file). In response to a later user request, a running Swift system loads (and relocates)

a copy of the subsystem into a contiguous region of the address space. One of the

subsystem's procedures is an initialization procedure which the system calls once

the subsystem is loaded. This initialization procedure, part of the subsystem's

external interface, has some well-known name, and can only be called by Swift, not

by other subsystems.

A subsystem's interface to the rest of the world also includes a set of ~

proceciures or entry oojats, the main· Swift support for structuring subsystems. An

entry procedure is like a normal typechecked procedure call. The user must agree

with the provider on the conventions for using the call (type and number of

arguments, and so on), as partly enforced by the Swift type system. Entry procedures

(and entry procedure variables) are declared as such syntactically, as described in

[17).

1
O A dangling pointer occurs when a piece of storage is mistakenly freed and an associated pointer is

later reused. If the freed storage is reallocated. the storage is being used for two different purposes, and
its contents may become inconsistent as tar as one or both of the uses is concerned. as different values
are written into the stornge. The result may quite possibly be the use of an invalid address. wilh potential
resulting disaster. When multiple computations depend on their all deallocating storage correctly, the
problem is. of course, much more serious.

26

Swift currently has a two-level scoping structure for its procedures names, which

seems to be adequate. First, an entry procedure's name must be unique across all

currently loaded subsystems running in a Swift system. A given subsystem will

usually have few entry procedures, which will have names related to their function

(e.g., 1pSopen opens an internet protocol connection), so the constraints imposed by

the global name space are not onerous. Another subsystem may call only a

subsystem's entry procedures.

Second, procedures that are not entry procedures are internal procedures, the other

scope in the naming structure. All the procedures inside a subsystem are allowed to

call each other dlrectly,11 and names inside a subsystem need to be unique only

within the subsystem. An additional naming restriction Is that a subsystem cannot

give an internal procedure the same name as another subsystem's entry procedure

that it wishes to use.

Since the procedures in a subsystem are linked together to form this one unit, and

since they have a closer naming relationship with each other than with procedures

outside the subsystem due to the naming structure, a subsystem is a natural unit for

tying together one or several sets of related procedures, each set implementing an

application, whether that application is a compiler, or a layer in a network protocol. A

subsystem, by convention, is the static representation of one or more multitasls

modules [5], discussed below.

A subsystem can store references to objects in its Qwo yariables. These variables

can be read and written, but persist throughout the life of the subsystem, unlike local

variables in procedures, which must be reinitialized each time the procedure is

called. ~ inlltance, a subsystem representing a layer in some network protocol

might keep a·Uat of all the connections it was managing in an Own variable.

11 Actually, CLU has its own levels of scoping which apply to internal procedures. A set of procedures
may be combined into a "cluster," and some of the procedures in the cluster may be invisible to
procedures outside the cluster.

27

Swift has an incremental loader, which loads static information about a subsystem,

e.g. code and constants, into the address space. If a procedure from one system

calls an entry procedure in another subsystem, the first subsystem has a static

dependency on the second. A subsystem cannot be loaded into Swift unless all the

subsystems on which it depends are already loaded. Thus, loading is a hierarchical

proceeding. Circular dependencies are therefore not allowed in the static structure.

In the common case that two subsystems want to call each other recursively, special

sorts of procedure variables are used, as described in section 2.2.3.

This simplified and highly restricted type of loading has a number of benefits. The

system was easier to develop than one with a full dynamic linking mechanism. The

design and Implementation of an unlinking mechanism was. significantly less

complicated. Making entry procedures callable only from higher levels (more

accurately, eliminating the possibility of circular calling between entry procedures in

two different subsystems) is a common and convenient default for layered

applications, in which a higher level calls down to a lower level for services. If the

layering enforced by static dependencies is too restrictive, the programmers can give

a set of modules any relationship that is appropriate to the application by using other

structuring tools described in section 2.2.3.

2.2.3 Dynamic Structure

The unit of execution in Swift is the 1as!s (rather than process). In many systems,

such as UNIX, the unit of execution has its own address space, but not in Swift.

Since a task is not associated with an address space, tasks are inexpensive to create,

and context-switching is cheap. Tasks may execute code from multiple subsystems,

traveling from one subsystem to another by calls to entry procedures or through

upcalls (described below). For instance, a task executing an application may call into

a "stream" subsystem to print out a line on the terminal; during this operation, the

task executes code in an 1/0 module rather than in the application subsystem. A

task consists of a stack, and some state, and is created by a call into the system

28

kernel with an argument of an initialization procedure for the task to start running.

The stack stores information about the procedures the task is executing, including

local variables for the procedures. Thus, it maintains references to objects used by

those procedures.

Tasks are scheduled using a three-level deadline scheduler. The three levels are,

from highest to lowest priority, realtime, foreground, and background, with each task,

at any given time, belonging to one level (although that level can change

dynamically). A realtime task has a realtime deadline by which it must complete its

curren~ operation, based on, for instance, the time between receipt of network

packets. A foreground task will produce results in which the user is interested, for

example a compiler. A background task has no scheduling requirements. A

runnable task in a higher level is scheduled ahead of tasks in any lower level. Within

the realtime and foreground levels, the task with the nearest deadline is scheduled

ahead of any others. Background tasks have no deadlines and the scheduling

regimen for choosing among different background tasks is unimportant.

A task can lose the processor either by voluntarily surrendering it, or as the result of

an asynchronous event (interrupt), which produces a ready task of higher priority.

An interrupt handler is expected to do very little processing. The timer interrupt

handler, for instance, just wakes up a task to handle any timeouts. This timer task

has some deadline, and is scheduled like any other task.

The dynamic instantiation of a subsystem is a multitask module (MTM), or perhaps

several multitask modules. The name stems from the fact that more than one task

can call into the module and execute its code. A Swift multitask module corresponds

roughly to what has been called a computation or a layer. Communication between

multitask modules in Swift is, by convention, done by procedure call rather than by

intertask communication. These procedure calls come in the two flavors, known for

historical reasons as downcalls and ~. Downcalls correspond to the traditional

notion of a procedure call between layers in a layered system. A call is made by a

29

higher level to a lower level, and the lower level carries out some service for the

higher level. Downcalls are made to entry procedures in other subsystems and many

layers can downcall the same entry procedure. Upcalls are made to upcall

procedures or "upcalls" for short.

Upcalls

Upcalls [3] are procedure calls from a lower level to a higher level, or, more generally,

between MTMs in any direction which seems appropriate. An upcall is implemented

in Swift using a procedure variable, and thus is more dynamic than an entry

procedure. A multitask module creates an upcall at runtime by associating a

procedure with it, and gives it away to another multitask module to use in response to

some later event of interest to the giver. In fact, an upcall works much like the

procedure calls used to notify devices in Multics.

A paradigm for their usage, in an upward direction, will be presented first. Afterward,

the paradigm will be modified to include other uses. When upcalls are used, control

-flows upward, from one layer to a higher one, by procedure call rather than by

process switch, as in a more traditional system such as the THE system [8].

Typically, as seen in section 2.2.5, a calling layer demultiplexes part of its state to

choose one client and its associated upcall from a group it is managing. The client

layer procedure associated with the upcall was chosen by the client, which created

and provided the upcall, subjeet to the restriction that the procedure had to match

the template of type and number of arguments provided by the caller. The caller (the

lower layer) has no idea what the call accomplishes. This organization is the dual of

the downcall, where many layers invoke the same entry procedure in another layer.

Also, unlike the downcall, an upcall performs a service for the called rather than

calling layer.

An upcall may be thought of as a synchronous process switch that runs on the stack

of the caller, since the called procedure executes in a different context (that of the

called layer). Among the advantages of upcalls, no real process switching, extra

30

scheduling, explicit context-switching, or buffering of information needs to be done,

and a procedure call should be more efficient than even the most efficient process

switch.12 The called layer runs right away; the calling layer can not run until the call

is finished, and runs immediately when the call is finished. A disadvantage of this
_,

methodology is that, when using an upcall Instead of an interprocess message, a

layer gives up some protection, since it gives up a task and must rely on the called

layer to return the task.

In a system using an interprocess message to communicate with a less trusted layer,

the task which sends off the message is automatically guaranteed that it will not be

harmed by that action since it leaves information In a buffer and continues, while the

receiver of the message uses its own stack. If the destination task is already dead,

the system's message manager can reflect the death back to the sender, allowing it

to shut down its interface with the dead task and recover from the problem as it

wishes. In Swift, the procedure calling Into another layer would like to be able to

count on the eventual return of the task making the call. Thus. it would like to have

errors reflected back to it in some graceful way and would also Jike to know that the

task's stack is all right when it returns from the other job's procedure. Chapter 4 will

describe protection mechanisms appropriate to a single-user system.

An upcall, by convention, has, in addition to any other arguments, one argument

known as a runt or closure. This information provides a context in which the

procedure is to be executed. Just as the called layer decided which of its procedures

would be called, it also decides the value of the hint. When the upcall is invoked, the

state of the chosen client is passed in the hint, whereas, in a system using intertask

communicalfo!'I between server and client, that Information would be stored on the

stacks of the various client tasks that receive the various signals. The signal from the

12A task's scheduling level and deadline usually stay the same on an upeall. If a network layer task,
having processed a packet, determines it should upcall the next higher layer with the resulting
information. the time constraint for the task to finish and be ready for the next packet does not change.
Tools do exist to change a task's priority, however, if that is called for.

31

lower layer would cause the appropriate client task to be awakened, and would

ensure that other information from the lower layer would be given to the client task. It

is the presence of the hint that allows an upcall to act as a process switch. When

implementing hints in CLU, since the caller does not care about the types of the hints

used by the upcalls to its various clients and does not know those types in advance,

the type of the hint is any, i.e. typeless.

As promised, upcalls are more general than the paradigmatic case presented above.

They are allowed to go in any direction, since restricting them benefits neither the

system implementor, nor the programmer, and may at times be a colossal nuisance to

the programmer. For instance, two layers in parallel, or two layers that each wish to

use services provided by the other, cannot call each other's entry procedures due to

the hierarchical nature of loading. They can use upcalls to get around this problem,

and to achieve general patterns of communication between layers. Also, whenever

two layers have a synchronous communication requiring some shared state, an

upcall may be used to avoid unnecessary process scheduling and buffering. Finally,

as covered in section 4.1.2, upcalls as extended by the thesis may usefully replace

entry procedures when a more dynamic downcall is required.

Whether the call is up, down or sideways, the two layers involved, instead of using an

almost invariably awkward intertask communication mechanism, can use the familiar

and flexible procedure call/return mechanism to work out a communication protocol.

Call arguments and return values are far superior to, for instance, the predefined

signals which exist in UNIX.

Intertask Communication

Since Swift provides procedure calls for intermodule communication, it assumes that

all intertask communication takes place within a multitask module. Each MTM is able

to work out its own intertask protocol in a modular manner without worrying about

what any other MTM does. A more extended case for this rule is presented in [5].

Swift implements two types of intertask communication. The first consists of block

32

and wakeup calls. One task blocks itself. Another task, communicating with the first,

wakes up the first task in response to some event. The second form of

communication uses shared memory, a mechanism which is flexible and, particularly

in a single address space system, highly efficient. Access to the shared memory is

synchronized by monitors [10, 11], or, more accurately, "monitored records." (These

terms will be used interchangeably in this thesis.)

A monitor protects a heap object shared by a set of tasks. A task attempts to enter a

monitored record and, if no other task holds the monitor, it receives access to the

protected object. If another task does hold the monitor, the new task is queued

(invisibly to the new task) waiting for the monitor to be freed. If more than one task is

waiting for the same monitor, some scheduling algorithm is used to choose between

them when the monitor becomes available.

The abstract view of a monitor is that the protected object satisfies a set of

"invariants" (constraints on its contents), except possibly while the monitor is held by

some task. If the invariant is not satisfied, then the holding task must restore it before

releasing the monitor.

Monitors may also be augmented by "resource variables" [11], which provide a

technique for communication between the producers and the consumers of a

resource. Briefly, if the consumer enters the monitor and finds that an instance of the

resource it needs is not available, it restores the invariant and "waits on" . the

resource. A producer enters the monitor, records the instance of the resource it has

produced, and, as it releases the monitor, "signals" the resource. A waiting

consumer is informed that an interesting change has occurred, and reenters the

monitor to get the instance of the resource.

2.2.4 The CLU Signal Mechanism

One more feature of the Swift/CLU environment deserves mention. CLU uses its

"signal" mechanism [12], which is much like the exception mechanism in Ada (1], to

33

return an abnormal result from a procedure.13 Instead of returning normally, a called

procedure signals an event; the calling procedure "handles" the abnormal result by

associating a piece of code with the event. This construct obviates the need to

check for unusual results on every call and localizes the handling of abnormal

events, with the result that code to handle them is easier to write, debug, and

understand. Examples of signal usage are shown in figure 2· 1.

If the caller does not handle the signal, the CLU signal mechanism considers that an

error. ·By refusing to implicitly propagate a signal, CLU forces a procedure to

maintain tight control over its procedure interface. The user of a procedure, in turn is

guaranteed that no unexpected signals can come from the procedure. A more

extended discussion of CLU signals is found in (12].

CLU has one predefined signal, ·fa11ur1, which may be signaled by all procedures.

The failure signal is meant to Indicate some unrecoverable disaster. ta11ure may be

signaled by a piece of user code; by the system in reaponse to some error in the

-runtime system, such as an object not having the expected type; or automatically, as

the result of an unhandled signal. (In the latter case, as shown in figure 2-1.c, a

procedure signals an event that is not handled by the caller.) fa1lur1, unlike other

signals, is automatically propagated, so the runtime system looks up the stack,

unwinding frames and checking the corresponding procedures for code to handle

the failure.

A procedure should not usually attempt to handle failure, since it should not know

what to do with it, as indicated by the following analysis. r111ur1 is used as a last

resort, indicating that the procedure that found the error did not know how to correct

it, nor how to reflect it back in some form meaningful to the calling procedure. If

some calling procedure handles a failure signal, it does not know where it came from,

nor what the called procedure may have done. If it knows how to recover from some

13".rhis signal from one procedure to another is yet a third type of signal, totally different from the
signal used for UNIX interprocess communication and the signal used with resource variables.

34

signaler • proc(B: bool) returns(string) signals(no_good(str1ng))
if B then

return("TRUE")
else

signal no_good("FALSE")
end

end signaler

2·1.a: Raising a Signal

handler • proc·()
print(s1gna1er(False))

except when no_good{s1g_arg: string):
pr1nt(s1g_arg)

end
end handler

The call signaler will cause the signal no_good to be
raised, and "FALSE" will be printed by the handler code.

dummy • proc()
signaler(False)

end dummy

top_level • proc ()
begin

dummy()

2· 1.b: Handling a Signal

print("Returned normally from dummy.")
end

except when failure(fa11_1nfo: string):
print(fa11_ 1nfo)

end
end top_level

When top_ 1eve1 is executed, its code to handle failure
will print "unhandled exception: no_gooct"

2·1.c: An Unhandled Exception

Figure 2-1: Simple Examples of CLU Signals

failures (and there must be some errors it cannot recover from), the calling

procedure did have a meaningful way to communicate those errors to its caller, and

should have used some other signal.

The failure signar carries with it a string, designed to give someone debugging the

program information to fix the problem. It might be thought that a routine handling

failure could look at the associated string and determine what caused the failure and

whether it could be handled. Unfortunately, the handler still does not know for

certain where the failure was signaled. The handling procedure does not know

where the procedure it called might have called in tum, and the procedure it called is

not vouching for the signal, since a failure would be propagated right through it.

Furthermore, if the string does have meaning to the handler, then it should have been

the name of a new signal, raised in the usual way.

Therefore, the existence of a failure signal implies that no one should handle it.

Occasionally, when debugging, it is useful to have a top-level routine handle failure

and print some useful information. In general, however, the entire stack will be

unwound.

When the stack is fully unwound, the program has no way to proceed. If the CLU

program is being run under (for instance) UNIX, and has its own address space, and

a single thread of control, i.e. a single process, then if no handler is found on any of

the calling procedures on the stack, the runtime system can inform the operating

system that the process should be terminated, possibly after printing some error

message. This approach is unacceptable for Swift. Since multiple tasks and multiple

computations are running in a single address space, the system cannot be shut down

in response to what is a common error, especially when a new program is being

debugged. Keeping the system running is particularly important since the failure is

specific to a single computation. In Swift, the computation responsible for the failure

must be determined according to the rules presented in section 4.2. and then it must

be unlinked from the rest.

36

2.2.5 Swift in Action

The kernel, a special subsystem, implements the CLU runtime system; the garbage

collector; procedures to manipulate system objects such as tasks, monitors, and

subsystems; the scheduler; and a variety of operating system services, including a

clock, a file system, the 110 packages, and so on. The services tend to be well-tested

and necessary to the operation of the system, but could be loaded separately and are

collected this way mostly for convenience. The kernel runs a command shell which

loads in other subsystems in response to user requests and creates tasks to run the

initialization code in each subsystem. An estimate of a load for which Swift should be

prepared is 20 subsystems and 100 tasks.

The kernel is what is actually meant by "Swift" or the "system." The "running

system" refers to all the various subsystems, tasks, etc. that are in existence while

Swift is in operation. The only exception to this rule, which should be clear from

context. is that "shutting down the system" means terminating the operation of the

kernel and, as a result, everything else in the running system.

An Example

An example of a common organization of a set of modules may make the descriptions

in the previous sections more concrete, and explain the roots of "up" and "down" to

describe the two different types of calls. A layered network protocol is the example

used. Figure 2·2 gives a pictorial representation of the receive side of a network

protocol that might be written under Swift. Figure 2·3 gives, at some length, the

corresponding code. The example illustrates a number of the features discussed in

the preceding pages, and other features that will become important in later chapters.

The user layer, included for completeness. catls into the network to get a buffer, and

keeps reading out of that buffer forever. Note that this example gives no indication of

who is sending the information.

The buffer layer provides a standard interface to its clients. The clients call down to

announce themselves, and then call down whenever they want information. The first

37

Swift-like features show up inside the layer, and in the interface to the layer beneath

it. A monitor mediates between the two tasks, one from above and one from below,

which are the consumer and producer in this application. The producer leaves

information during an upcall from the next-lower layer.

The buffer layer does not do any demultiplexing. The decision about which client

gets a packet is made in the lower layers of the protocol. Since the procedures in the

buffer layer only manipulate their arguments, and have no permanent state, the same

code can be used with multiple user-level clients, by using different hints. The buffer

therefore creates a different hint for each client.

Both the transport and network layers are designed to multiplex a number of higher

layers (although only one higher layer is shown in each case). A higher level client

(the buffer layer or transport layer) downcalls through an entry procedure

(transportSopen or netSopen). to announce itself to the lower level. It passes the

lower level a set of upcalls, and a hint. Each upcall corresponds to a specific

interesting event (e.g. packet receipt) which the lower level will inform the upper level

about. The lower level will demultiplex on the event, and call the appropriate upcall

with the appropriate hint.

Due to its implementation, the transport layer cannot create multiple instantiations of

itself, the way the buffer layer can. The reason is that it uses Own variables instead of

a hint, implying that only one version of this particular transport layer should exist. (A

subsystem implementing a transport layer for a different protocol, or even a

subsystem implementing another version of the transport layer for this protocol could

be loaded, as long as the names of its entry procedures were different.) Since the

network layer supports a more general organization by asking for a hint, the transport

layer gives away some dummy state.14 Similarly, only one instantiation of the

network subsystem can exist in a running Swift system, since the implementation of

14
This dummy state is created by "any-izing" (hiding the type of) the special "nil" object.

38

---~-----, .

that layer also stores its state in Owns.

The interl'.'Upt handler does little but wake up a task. The network task pulls packets

off the network queue as long as any are there, removes the header information

associated with the network layer, and then upcalls to eventually leave the packet In

the buffer layer. The upcall must return reasonabfy quickly to be In time for the next

packet, so the task will be realtime with the appropriate deadline.

Since t~e information must pass from the network task to the application task, there

must be at least one asynchronous boundary at which the exchange occurs. In this

example, the point is a resource variable inside the buffer layer.15 Upcalls can be

used at synchronous boundaries, but at some point the information must be left with

a monitor. At that point, the application task retrieves the information by a traditional

downcall. This has the advantage that the application program does not need to be

concerned with the more tricky structuring aspects of Swift, and in fact cannot

benefit itself through these devices.

Processing a packet involves another asynchronous interface, a packet queue

resource variable in the network layer. The interrupt handler cannot do all the

processing of a packet, so must wake up a task to do the work. This interface is not

inherently asynchronous.

The transport and network layers also have intertask communication of another sort,

mediated by the monitor that stores their internal state consisting of lists of clients. In

this case, the monitor is used only to serialize access between multiple tasks, and not

to exchange information. For that reason, resource variables are not needed. These

arrays of clients should be quite static relative to the time required for an upcall.

15Note some of the attractions of this approach. The butter layer can be different for different
applications. and has a better idea of the buffering requirements of the applieation than any lower layers
do. Different buffering strategies can be used for different applications. in parallel, without changing the
innards of the system.

39

Subsystems: Tasks

User Layer:

Buffer Layer:

I

Transport Layer:

I
Resourceo \ Monitors <

\

Network Layer:

Interrupt Layer:

\

\

I

\

Subsystems

J
//

I I
/ I

I
I

J

Figure 2·2: An Organization of Subsystems for a Network Protocol

40

~ Called by system at subsystem initialization.
~ Du11111y routine that just prints out info from network.
user$procedure • initialization_proc()

Bufferlayer: monitor :• buffer_layer$open()
do forever

Bundle: info_bundle :• buffer_layer$extract(Bufferlayer)
print(Bundle)

end
end user$procedure

2 • 3a: User Subsystem

~ Downcalled once per user-level client.
buffer_layer$open • entry_proc() returns(mon1tor)

New8uffer: good_buffer :• good_bufferScreate()
NewMonitor: monitor :• monitorSnew(New8uffer)
Hint: any :• anyize(NewMonitor)
transportSopen(buffer_layerSreceive_upcall, Hint)
return(NewMonitor)

end buffer _layerSopen

~ Downcalled every time user wants more information.
buffer_layer$extract • entry_proc(Mon: monitor) returns(info_bundle)

X Remove information from shared buffer.
X warning: simplified use of resource variables.
Buf: good_buffer :•

monitorSawait_resource(Mon)fmon1torSenter(Mon)
Info: info_bundle :• good_bufferSextract(Buf)
monitorSleave(Mon)

return(Info)
end buffer _layer$extract

~ Upcalled by transport layer, once per received packet.
buffer_layer$receive_upcall • proc(P: packet, Hint: any)

Mon: monitor :• deanyize(Hint)

X Store information 1n shared buffer.
Buf: good_buffer :• monitorlenter(Mon)
good_bufferSstore(Buf, P)
X warning: simplified use of resource variables.
monitorSs1gnal_resource(Mon)fmonitorSleave(Mon)

end buffer _layer$receive_upcall

2·3b: Display Subsystem

Figure 2·3: The Receive Side of a Simple Three-Layer Protocol Package,
With User

41

'*1 Array of procedures and hints from various buffers (clients)
Own BufferlayerCl i en ts: monitor

'*1 Called once, by system, at subsystem initialization.
transport$initialize "' initialization_proc()

% Initialize Own variable.
BuffertayerClients :• monitorSnew(arraySnew())
% Inform network that transport layer is open for business.
net$open(transportSreceiva_upcall, anyize(nil), ProtocolID)

end transport$initialize

'*' Called for every new client of transport layer.
transport$open .. entry_proc(ReceiveUpcall: proc_var, FakeHi nt: any)

% Network manages port numbers: one per client.
LocalPort: int :• netSopen_port()

% Add upcall and hint for the new client.
TransportClients: array :•

monitorSenter(BufferlayerClients)
TransportClients[LocalPort].upcall :• ReceiveUpcall
TransportC1ients[Loca1Port].h1nt :• Hint
monitorSleave(BufferLayerClients)

end transport$open

'*' Upcalled by net layer, once per received packet.
transport$receive_upcall • proc(Packet: packet, Hint: any)

Port: int :• validate packet header for this layer

% Retrieve upcall and hint for appropriate client.
TransportClient: array :•

monitorSenter(BuffarLayerClients)
Upcall: proc_var :• TransportClient[Port].upcall
Hint: any :• TransportCliant[Port].hint
monitorSleave(BufferLayarCliants)

Upcall(strip_header(Packet), Hint)
end transport$receive_upcall

2·3c: Transport Subsystem

Figure 2-3, continued

42

Own TransportlayerCl 1ents: monitor
Own NewPackets: monitor
Own InputTask: task

~ Called once, by system, at subsystem initialization.
net$initiallze • initialization_proc(}

TransportlayerClients :• monitorSnew(arraySnew())
NewPackets :• monitorSnew{arraySnew())
InputTask :• taskScreate(netSrece1ve)

end net$initiallze

~Called once per using protocol.
net$open • ·

entry_proc(ReceiveUpcall: proc_var, Hint: any, ProtID: 1nt)
% Add upcall and hint for new client protocol

Clients: array :• monitorSenter(TransportlayerC11ents)
Clients(ProtID].upcall :• ReceiveUpcall ·
Clients[ProtID].hint :• Hint
monitorSleave(TransportLayerClients)

end net$open

~ Called once per user-level client.
net$open_port • proc() returns(1nt)

return{get_port())
end net$open_port

~ Upcalled by interrupt handler, once per received packet.
net$dispatch • entry_proc()

P: packet :• read packet from device
restart device

% Store packet for network task.
PacketArray: array :• monitorSenter(NewPackets}
arraySaddh(PacketArray, P}
% warning: simplified use of resource variables.
monitorSsignal_resource(NewPackets)I
monitorSleave(NewPackets)

end net$dispatch

Figure 2·3, continued

43

~ Infinite loop that gets packets and starts processing them.
net$recelve • proc{}

do forever

end

% Remove packet from queue.
% warning: simplified use of resource variables.
PacketArray: array :•

monitorSawait_resource{NewPackets)I
monitorSenter(NewPackets)

P: packet :• arraySreml{PacketArray)
monitorSleave{NewPackets)
Protocol: int :• get_protocol{P)

% Retrieve upcall and hint for appropriate protocol.
Clients:array :• monitorSenter(TransportLayerClients)
ReceiveUpcall: proc_var :• C11ents[Protocol].upcal1

except when uninitialized:

end

% Transport layer not initialized yet ...
% since upcall not yet initialized.
log packet before throwing 1t away

Hint: any :• Clients[Protocol].hint
Rece1veUpcall{str1p_header(P), Hint)
mon1torSleave{TransportLayerC11ents)

end net$recelve

2·3d: Network Subsystem

Figure 2·3, concluded

44

A standard problem in this style of coding is that a client task might call down to shut

down the client's interface with the server while the server is upcalling the client. The

result of this problem is that the upcalling task can become confused after the upcall

returns. In the network layer, the monitor on the state is held during the upcall. If a

client calls netSclose {not shown), netSclo11 will first try to grab the monitor lock

on the state. It cannot close down the interface until the upcall returns and the

associated task releases the lock, solving the problem. A disadvantage of this style

of coding is that, when a task calls out while holding a monitor, the possibility of

deadlock exists. In the transport layer, since the monitor in the transport layer is

released during the upcall to the buffer layer, the race condition is a danger. No

solution is shown.

Note that, as promised, all intertask communication is modularized inside a single

layer. The buffer layer, for instance, use a resource variable to manage the packets.

The two tasks, and associated layers, that call into the buffer manager do not have to

know how the intertask communication was implemented. Furthermore, the

multiplexing lower layers could have structured their tasks as they felt appropriate.

They could upcall using only one task, one task per connection, or some other

arrangement.

Discussion

One task per connection may be appropriate if, for instance, the task will be blocked

at a higher layer for some reason. Then, other connections will not have to wait for

the upcall to finish to get their packets. This is another example of the the idea that

each layer structures its intertask communication as it wishes.

If a lower layer upcalls a higher layer that in turn calls back to the lower layer, tricky

problems may result. The most obvious is deadlock, if the lower layer leaves a

monitor locked on an upcall and then tries to lock the same object again. This trap is

easy to fall into because the downcall is not related to the upcall as far as the lower

layer is concerned. The monitor entry code specifically checks for this "mylock"

45

error, and signals a failure when it happens. Also, if the lower layer releases all its

locks, a return downcall may change the state of the lower layer, so that, after the

upcall returns, its state is confusing to the upcalling code. The best solution

proposed to this problem is to set conventions for the use of downcalls from an

upcalled procedure. The end result is that higher layers must be more careful with

lower layers and lower layers must put more trust in higher layers than is ideal.

Upcalls provide an elegant method of implementing timers, another demonstration of

the usefulness of Swift structuring tools. A program sets a timer by giving the timer

module a time interval (which is converted into an absolute time) and an upcall. The

clock interrupt wakes up a timer task that finds all the deadlines that have passed and

upcalls the corresponding jobs to do whatever work is appropriate.

46

Chapter Three

Unlinking

This chapter contains two parts. First is a detailed discussion of issues in unlinking.

Although Swift is used as an example, the discussion is somewhat more general.

Second is an analysis of the problems associated with unlinking in Swift, which

should motivate the solution given in chapter 4.

In Swift, computations take the form of the multitask modules described in chapter 2.

The job, defined in chapter 4, is an abstraction corresponding to one or more

multitask modules and supported by the system. This system support means that

programmers can map their computations onto jobs, thereby solving some of the

problems described below.

3. 1 Issues in Unlinking

As already described, when a computation ends, several things should happen. The

system, and computations unrelated to the finished one, should keep running. Since

computations communicate, the ending of one computation may be of interest to

other computations. The system, the other computations, or both together should

cooperate to clean up appropriately and allow those other computations to keep

running if possible. The abstract system structures associated with the finished

computation should be identified, and the associated resources should be freed. For

instance, memory used by the computation should be returned to a general pool, and

devices should be made available to other computations. An unlinking mechanism

should also attempt to meet several "motherhood" goals. It should operate quickly

and efficiently. It should not unnecessarily discommode other parts of the system.

47

3.1.1 The Role of Sharing

The types and amount of sharing between computations affect how difficult it is to

pry a dead computation out of a running Swift system. Sharing may be either visible

or invisible to the applications doing the sharing. The two cases pose different sorts

of problems for an unlinking mechanism. If the sharing is invisible, the system has

complete control over it, but cannot ask for any help from the user. For example, the

essence of multiprogramming is sharing of hardware, usually in a way invisible to the

user. Computations share devices, memory, and so forth, to get better use of

resources. This sharing may occur either in parallel (e.g; two files, sharing a disk at

the same time, have been produced by two different computations), or over time (e.g.

two separate files use the same page on a disk at different times).

Often, the mechanisms already needed to control allocation of the resource can be

extended easily so that unlinking falls out of them. In Swift, for example, much of the

invisible sharing of addresses is handled by CLU and the garbage collector.

Computations may do other sorts of sharing, of which the programmer of a

computation is more aware, and that is hence more difficult for the system to control.

A group of computations may communicate, through a piece of shared memory, or a

shared file for example, and each computation in the group must understand and

maintain the semantics of that memory. The unlinker does not know these

semantics. In this type of sharing, unlinking may require placing additional

restrictions on applications, asking for help from applications, or accepting an

incomplete solution.

3.1.2 Perfect Termination, Normal Termination, and Failure

A useful case for comparison purposes is the perfect termination of a computation.

A perfect termination is one in which the tasks involved in the computation have

released all their locks and exited. Any resources that the computation held and that

are no longer useful, have been freed. Any associated computations have been

instructed, through some prearranged protocol, to clean up their interfaces with the

48

terminating computation or have had this cleanup done for them, and the cleanup

has been done correctly. In this case, the computation has essentially unlinked itself,

and the system has nothing to do but a little tidying up of Its internal tables.

Requiring the programmers of computations to always program in such a way that

computations terminate perfectly would solve the unlinking problem. Unfortunately,

it would require a major effort from the programmer. Ideally, the unlinking

mechanism should make the programmer's job substantially easier. If the

programmer forgets to free a resource in some cases, the unlinker should recover

from the problem.

More important, relying on the programmer would make the system insufficiently

resistant to programmer error. The system must be able to handle various sorts of

unexpected conditions. A running Swift system is envisioned to contain a reasonable

number of substantial programs, including some under development. In this

environment, solving the problem of failure by avoidance (i.e. requiring that programs

work) is inappropriate. The programs under development will certainly have bugs,

and even those that are working will still have residual problems.

Therefore, Swift should be as robust as possible in the face of unexpected

terminations of computations caused by program errors. Computations should be

protected as much as possible from one another's failures. Unlinking in such cases

poses additional difficulties. Finally, if the system cannot recover, the user should at

least be given the best possible information to diagnose the error.

The Swift user, the pr9Qrammers who write code to operate under Swift, and the

system itself must cooperate in solving the problem. The unlinking mechanism must,

in the general case, be able to free a dead computation's resources without help from

the computation, because it may have failed in some way which prevents it from

running (for instance, a necessary monitor may be locked by a dead task}, and

because any help it gave would be suspect due to the failure of the computation. The

programmer of a computation cannot write a procedure which will operate correctly

49

in the face of the different possible failures in the computation. Even handling a large

body of foreseeable failures is a difficult, error-prone process. Further, a

computation that dies normally could arrange to do its own cleanup, but the task of

the programmer is easier if the system can be relied on to do some of the unlinking.

A computation which has an interface with another computation cannot, in general,

know when that other computation terminates (and hence when it should shut down

that interface) unless it gets help from the unlinking mechanism. The dead

computation cannot be counted on to notify others with which it was communicating,

or to help clean up the interfaces by invoking any shutdown procedures provided by

the other computation, for the same reasons that it cannot help in its own cleanup.

Even insofar as it is possible, it is an irritating burden for the programmer of the

terminated computation to bear. On the other hand, a continuing computation

cannot conveniently keep checking all its interfaces to see if the computations on the

other side are still alive. Therefore, the unlinker must assume the burden of keeping

track of the relationships between computations so it can determine where unlinking

needs to be done.

Unfortunately, the unlinker could not do all the work itself without knowing details of

the internal operation of the various computations. The system should not know the

internal operation of computations for several reasons. Requiring the system to work

so closely with a computation is a complicated extra interaction where mistakes can

occur. A computation should be modular, but, under this scheme, modifying an old

subsystem or supporting a new one may require modifi~tions to the unlinking

mechanism, making the system less flexible. Also, the number of different possible

applications is infinite, while the number of applications that the unlinker can know

about is relatively small. Therefore, the various applications wishing to shut down

their interfaces with a terminated computation must assist the unlinker.

A wide variety of less and more serious errors and problems are lumped under the

heading of failures, as indicated by the following non-exhaustive list. A failed

50

computation could still hold a pointer to a piece of storage that is no longer useful,

thus preventing the garbage collector from freeing it. Some other computation could

retain possession of an upcall from the computation that has terminated, either

because it was not properly notified of the end of the dead computation, or because it
..

used an incorrect algorithm to clean up its interface with the dead computation. A

task from the computation could exit without releasing one of its locks, or without

restoring a monitor invariant. The tasks within the computation could fail to interact

properly, so that some tasks might be waiting for events that would never happen, so

that the task would never finish. One task might be in an infinite loop, preventing the

computation from ever terminating. Some of these errors can be recognized by the

system, others require user intervention. An unlinking mechanism will deaJ with

these problems with varying degrees of succeaa.

Successful unlinking in the face of any of these problems is, of course, a special case

of a general solution. Unfortunately, a general solution is not possible in Swift. In the

event of an error, even a partial solution to the unlinking problem can still be helpful

to the user.

3. 1.3 Levels of Unlinking

At the lowest level of unlinking function, the system can simply be stopped and

reinitialized after an error or computation termination, so that any state in the system

is lost. This approach has the merit that It is easy to achieve, but is otherwise

unsatisfactory. First, the user is better off allowing the system to keep running if at all

possible, since computations not involved with the dead mechanism can still do

useful work.16 For instance, even if a dead task has left some locks locked, the code

to enter a monitor could, if the lock were already held, check whether the the task

holding the lock was dead. Some drastic action could be taken if this misfortune

16
1n certain cases, for instance if the finished computation were holding onto so much memory that

other computations would be unable to run to comptetion, it might be faster to stop and start again.
These cases are classified as pathological and ignored.

51

occurred. This minimal mechanism allows unaffected computations to continue to

run. Second, if the termination was the result of a program error, the loss of state

means the user has lost any chance to diagnose what went wrong.

If the system is fott:ed to stop running as the result of an error, the user would at least

like to pass his debugger over the system and attempt to figure out what went wrong.

If the debugger is local, it must first gain control of the CPU. Even if the debugger is

remote, it probably would prefer to stop the system, since the error may cause the

system to act in peculiar ways which make it more difficult to debug. Some ta!31< may

be in an infinite loop, or some system task may be running and be unaware that it

should relinquish control, so the debugger needs some entry into the system. The

debugger will want to access as much information as possible about the specific

cause of the error and the state of the machine, so preserving that information is a

goal. Alf work in progress is still lost, and the system must be rebooted before it can

be reused.

In the pre-unlinking Swift implementation, these first two levels happened more or

less automatically. The system could recognize certain errors, but either could not or

did not recover from them, examples being stack overflow and unhandled exception

respectively. In response to these events, the recognizing code simply shut the

system down. Errors not recognized by the system, such as infinite loops, were

caught when the user "timed out" and rebooted the system. The state after these

shutdowns is usually consistent enough so that the debugger can look at it. If not, or

if the user is not interested in debugging, the kernel can be reloaded and the system

started again. These largely solved problems are Ignored In the thesis.

A third levet of unlinking is one that enables the system to keep running. The system

again needs the CPU back. The details of the state of the system must still be usable

by the system. The system also needs some memory to run with. This level of

function is distinguished from complete recovery by the possibility that some

resources, for instance some of the memory, may be lost forever. Since Swift does

52

not have infinite quantities of memory, the system cannot sustain itself indefinitely

under these conditions, but useful work can still be done and at least some of the

work being done by the machine at the time of unlinking can continue. Also, the

system will often be shut down before the incremental effect of losing, for instance,

small amounts of memory cripples operation.

Finally, at the fourth level, the unlinking mechanisms isolate the remains of the

computation from the rest of the system, and recover all resources. For instance, if a

piece of code is no longer needed, its memory can be reclaimed. With this sort of

unlinking, the system can run indefinitely. The unlinking mechanism has enabled the

system to make the termination a successful one, even if it was not originally.

If the system is to keep running after an unlink, two further goals are to allow the

debugger to run on the terminated computation and to minimize the upheaval

associated with the unlink. With respect to the second goal, subsystems and tasl<s

unrelated to whatever was unlinked should not be affected. Ideally, even subsystems

and tasks affected by the termination should be affected as little as possible. For

example, a network package should continue to function when one of its clients fails.

Two related problems must be solved to achieve this goal. First, the existence and

extent of relationships among computations must be identified. Second, it must be

possible to quarantine the computation that is being unlinked, severing its

relationships with other computations in a controlled fashion.

An unlinking mechanism has one more goal. If boundaries can be drawn around

subsystems, perhaps it may be possible to susoend a computation. A suspension is a

partial and temporary unlinking which allows the system to free resources associated

with a computation while that computation is not running. This suspension should be

as transparent as possible to the rest of the system. Suspension is useful when

computations hold resources that they are not using currently but will use at some

point in the future (memory, for instance). If those resources can be given to other

computations that do currently need them, the capacity of the system can be

53

increased by multiplexing the resources that can be temporarily freed. Boundaries

are necessary because a suspended computation cannot operate normally. Any

communication with the computation must be intercepted by the system, at which

point it can either _make the computation operational again or reflect some message

back to the communicator, depending on whether the computation can be resumed

and how transparent the suspension mechanism is.

3.2 Swift Structures and Unlinking

One element conspicuously lacking in the Swift overview is a unit corresponding to a

computation. Such a single unit is not absolutely necessary: Multics, as described in

section 1.2.2, has two different kinds of "computations," which are unlinked in

completely different ways. A single unit will be the approach used in Swift, however.

In the next chapter, the thesis presents a new system structure, the jgb, as the unit of

computation. First is this analysis of the inadequacy of each of the units discussed

thus far.

A task does not fill the role the way a process does in a multiple address space

system. Tasks provide a thread of control on which activities may occur, but do not

have an address space with which resources are associated. A task can be created

in one subsystem, then execute a procedure which calls into another subsystem,

which calls into a third subsystem, or maybe upcalls back into the first. If a failure (an

event, unexpected by the programmer, which is converted into a failure "signal" as

described in section 2.2.4) occurs, disposing of the task may not be necessary, or

desired. For instance, if the error is associated with one of the subsystems upcalled

by a network task, eliminating the network task will penalize the network layer without

solving the problem. On the other hand, eliminating the task may not be sufficient. If

a group of tasks are cooperating and one of them dies, the others may be unable to

proceed, and may even behave in peculiar ways because their mechanism for

communication has broken down. For instance, a task may go into an infinite loop or

block itself waiting for the dead task to do something, tying up resources forever.

54

Nor, in general, does eliminating a group of tasks suffice for cleanup, since other

sorts of cleanup needs to be done. After a pair of tasks die, for example, a monitor

may still exist in Own storage which was only accessed by those two tasks. This

monitor will never be cleaned up.

A subsystem is a static device for structuring code, with Own variables added. Swift

will not attempt to identify bugs in the subsystem's code, of course. Therefore, to

make a subsystem the unit of unlinking, it needs to be associated with the dynamic

element of a computation. System elements such as tasks would have to be

associated with the subsystem in some way. A simple approach, such as killing all

the tasks which use the subsystem if an error occurs in the subsystem, does not

work; the tasks which called in are participating in multiple computations, so killing

them would destroy those other computations as well. More complicated, a

subsystem should be able to run two different computations. If two programs are

being compiled at the same time, the same compiler code should be used, as

opposed to loading in another copy. If a failure happens in the process of compiling

one program, the other compilation should continue. Thus, the meaning of a

subsystem would have to be greatly extended for it to serve as the unit of

computation.

Monitors are closely associated with computations. First, one of a layer's primary ·

tasks is often to manage a monitor; The procedures to manage a monitor are

intuitively all part of one application, since they must agree on a protocol for using

the shared memory. Second (since afl writable objects shared between tasks should

be monitored), if a task is not modifying a monitor (or using an 110 device), it is only

fiddling with its internal state. Monitors thus contain the state of a computation.

On the other hand, a monitor also fails to function as a unit of computation. One

possibility would be to have each computation be represented by one monitor, and

this approach is not that different from the actual solution. Unfortunately, this

organization is not natural; an application frequently includes several monitors, and

55

forcing the programmer to combine them into one is a nuisance. Other

computations; such as the simple compiler, contain no monitors. Also, the

relationship between tasks and monitors is not clear. If a task holds no monitors, of

what computation_ is it a part? What about if it holds two monitors from different

computations? If a monitor dies, what tasks are killed? As with the subsystem, the

definition of a monitor would need to be greatly extended. An extension is especially

bad because a monitor is a self-contained, well-understood concept whose

semantics are reasonably standard, and which should thus be left alone as much as

possible.

Ideally, no new mechanism would be required, because every new mechanism makes

the system more complicated to use and maintain. A new mechanism is superior,

however, to a modification of an existing mechanism designed for some unrelated

purpose. A multitask module is close to what is wanted. However, a multitask

module is a way of structuring programs, essentially unsupported by the system.

(Some minimal static support is provided by the notion of a subsystem.) A precisely

defined unit, used and maintained by the system, is needed. Therefore, a job, a unit

corresponding to one or more multitask modules, is introduced.

56

Chapter Four

An Unlinking Mechanism For Swift:
Design and Implementation

This chapter describes jobs and unlinking. The job mechanism, and the unlinking

(cleanup) mechanism are closely related but not identical. The job mechanism works

during normal operation to maintain information about jobs. When a job fails, the

unlinking mechanism can uses that information to clean up the job. The

implementation, however, does not draw hard lines between the two.

Section 4.1 describes the job, which is the central element of the computation

management strategy. In particular, section 4.1.1 summarizes the goals of the Job

mechanism. Section 4.1.2 begins with a summary of the job mechanism. Section

4.1.3 lists the operations on the job object and other operations needed to support

jobs, with accompanying explanations. References to this section may be useful at

various other points throughout the chapter. Section 4.2 discusses job termination.

Section 4.3 gives the cleanup algorithm which is used to unlink a dead job from

others. Section 4.4 analyzes the performance cost of the job mechanism and

unlinking under various possible implementations.

An additional Swift feature may potentially be added at five different places: the

language (compiler), the linker, the loader, the runtime system, and the set of

conventions that programmers are expected to follow. The Swift implementation was

affected by a practical decision to avoid, as far as possible, compiler modifications, a

restriction that did not affect the unlinking design. This design will specify where

each change is to be made, but the implementation actually relied on having the

application code fake up the language change.

57

4.1 The Job

The approach taken to unlinking in Swift was to develop a new structure, the job, as

the centerpiece of the unlinking mechanism. A job is a representation, recognized

and supported by the system, for one or more multitask modules (which are abstract

structuring tools without system support). Unlinking is done through the job instead

of some combination of existing structures (as is done in Multics (section 1.2.2), for

example). All the resources in the system are associated, either explicitly or

implicitly, with a certain job, although the association may change over time.17

Sharing and communication between jobs is tightly controlled, so that different jobs

can be pulled apart when one of them terminates.

Swift computations fall into two classes. The first is a traditional user application

such as a compiler, which sits on a set of services provided by the system or by some

other layer. These applications make no use of the special features provided by

Swift. The second class of computation is a layer that interacts with other layers both

above and below it, as described in 2.2.5, such as the transport layer in a network.

These computations are those that Swift was designed to support better than other

operating systems. They have more complicated interactions with the rest of the

system, and are more complicated to unlink.

4. 1. 1 Goals of the Job Mechanism

The job mechanism should meet a number of goals. These goals are not mutually

satisfiable, so some compromise among them is required.

1. It should correspond to the intuitive notion of a computation: The
job is intended for managing computations. Thus, it must be possible for
the programmer to map a computation, whatever that may happen to be,
onto a job. For example, a mechanism in which the system had only one
job of which everything was a part might satisfy some definition of
correctness, but would not be a very useful tool.

17 Although the job is only used for unlinking in this document, it might also be an appropriate unit for
terminal control, and might provide a useful naming context [2].

58

------~-- ----- ------ --~-------

Furthermore, the programmer should be able to structure computations
as desired, rather than having to force computations into a restrictive
definition imposed by the system. The more easily the programmer can
map computations into jobs, the more useful the mechanism is. In return
for this flexibility, the programmer must provide more assistance to the
system in defining the boundaries of a job.

2. It should function as a unit of failure: One of the major purposes of
an unlinking mechanism is to enable the system to cope with failures.
Since computations are what fail, the asaignment will be easier for
programmers and require less additional mechanism from the system If
jobs are the unit of failure. To look at It another way, if jobs cannot be
the unit of failure, they have not been designed property.

3. It should keep track of the resources uMd by the job: If a job dies,
the resources it used should be returned to the appropriate resource
managers for other jobs to use. The job ia the natural place to keep track
of this information, since the death of the job la what triggers the freeing
of the resources.

4. It should enforce restrictions to protect the various jobs from
one another: The failure of one job should affect other jobs as little as
possible. This problem ia particularly severe in Swift, due to the cloae
cooperation between jobs. Even if the job mechanism cannot provide
complete protection between jobs, either because of the nature of the
communication (one job absolutely depends on another and will die if the
other one does regardtess of job protection) or becaule the cost of some
type of protection is too high (loopholes in the CLU type system must
sometimes be used for efficiency's sake), intet'faces between jobs should
be controlled to provide feasible protection.

Swift makes extensive use of upcaHs, allowing and encouraging a trusted
job, which may multiplex a number of clients, to call into any of those
clients with one of its tasks. These clients may be new programs which
are in the process of being debugged. A protection mechanism which
walls off the new client so that most of its fatlures do not force the trusted
job and its other clients to shut down or, even worse, to behave in
unexpected ways, is particularly helpful both because jobs do not have
their computations inconvenienced by failures in other, unrelated jobs,
and because the fire walls provide useful guarantees for a programmer
trying to find a bug.

5. It should be easy to use: Since the job mechanism is supposed to

59

cover computations from the simple to the complex, the (potentially more
naive) programmer of a simple application should not be burdened with
features for complex applications. As part of achieving goal 1. the
programmer must give the system information about job boundaries. If
appropriate defaults can be determined for simple cases, they should be
used to alleviate this problem.

Programmer help is also required when the system cleans up, for the
reasons given in chapter 3. This help should be easy to give.

A system is made up of parts written by different programmers (or at best
the same programmer at different times) with each programmer writing a
coherent and somewhat modular piece. The (dynamic) job mechanism
should not compromise this modularity, which in Swift is reflected by the
static organization into subsystems.

6. It should be efficient: Of course efficiency is always important, so
what does this mean? Briefly, a primary motivation for Swift is support
for applications with rigorous performance constraints. If the job
mechanism makes an application too inefficient to meet Its goals, It has
already failed disastrously.

Furthermore, although the protection provided between jobs by the Job
mechanism are useful, particularly in the event of failure. the
programmer can survive without those protections, as indicated by
experience with, for example, the Unix kernel. The cost is a great deal of
extra work in modifying the system. If the system is too inefficient, on the
other hand, that problem cannot be overcome with any amount of work.
The trick is to allow the programmer to trade off the organization and
protection of the job mechanism for resulting savings in efficiency at as
fine a granularity as possible. The job mechanism should have
convenient loopholes which are localized in use and effect. In other
words, the loophole should be an agreement among a small set of jobs
which are not protected from each other, with normal protection
continuing between any of those jobs and the rest of the system, freeing
the programmer of any other job from having to know about the
loophole.

These goals are in consonance with the Swift philosophy presented in section 2.1.

Programmers are trusted to do the right thing, and should not be restricted

unnecessarily, since a restriction may prove a hindrance in some program. Thus, the

programmer should have a flexible set of tools to build a computation, including even

60

loopholes to subvert the job mechanism.

4. 1.2 Description of the Job Mechanism

This section expla!ns what goes into a job, how it is used, and what the relationship is

between jobs and other entities in the system, such as subsystems, tasks, monitors,

heap objects, and so on. The following summary also serves to introduce the issues

that will be discussed in more depth in the following segments. Recall during this

description that the primary purpose of the job is to allow unlinking to occur in the

manner described later in the chapter.

Summary

As previously stated, a job is one or more multitask modules. Although other

relationships are possible, a job is usually an instantiation of a subsystem. This

mapping between subsystems and jobs corresponds to the way applications are

written, making jobs easier for the application programmer to use. It also allows the

semantics of subsystems to be used to simplify implementation of the job mechanism,

and provides an effective design for loopholes in the job mechanism. Keeping this

rough idea of the relationship between jobs and subsystems in mind may make it

easier to get a grasp of what a job Is, so jobs and subsystems ar'G discussed first

below; other job-related system modifications will be added to the framework

established by that discussion.

Communication between jobs, like communication between multitask modules, is by

procedure call from one job to the ot..-.18 Theae procedure calls, may only be to

gateway pcocec:Jures, · provided by the job. Gateway procedures are the entry

procedures and upcalls of chapter 2, extended to cope with jobs. The ability to

define the- aet of gateway procedures gives a job some control over how other jobs

communicate with it.

18rhe only exceptions to this rule concern job creation and termination.

61

An important new distinction is that gateways are either multiplexjng or

non-multiplexjng; the unlinking mechanism uses this information to determine, for a

given call that goes awry, which of the two jobs involved is the server and which is the

client. (Clients call servers through multiplexing gateways; servers call clients

through non-multiplexing gateways.) The information is useful because, in certain

situations, the system will allow a job to live if it is a server, but will kill it if it is a client.

Tasks are extended to reflect their interactions with jobs. One job communicates
\

with another when a task running on behalf of one job invokes a gateway procedure

associated with the other job. That task is then temporarily running on behalf of the

new job until it returns to the first job (or calls into some third job). To reflect this, the

job mechanism implicitly associates with each task a stack of the jobs in which It is

running; the task's current job is the one on top of the stack. The job stack gives the

job mechanism the ability to associate actions taken by a task with a specific job and

the ability to determine, at the granularity of jobs, what the task Is doing.

By convention all communication between tasks should take place within a job. The

unlinking mechanism relies on this convention in its treatment of shared state by

assuming that each monitor belongs to a single job. Monitors should be protected as

long as the job is alive, but, when the job dies, can be thrown away with the job. If the

convention is violated, the unlinking mechanism makes much weaker guarantees.

For instance, if a task blocks itself in job A, expecting to get awakened by a task in

job B, the unlinking mechanism wifl not inform the blocked task if job B and its task

die. (It will allow the two jobs to work out this form of cooperation themselves, if they

insist.) Even worse, if a monitor is shared by two jobs and one of them dies, the

monitor is not guaranteed to be unlocked and consistent for the remaining job.

A job has its own job storage that can be accessed by any task executing on behalf of

that job. Job storage replaces many of the functions of the hint passed with upcalls

and described in chapter 2. It allows different tasks, running on behalf of the same

job, to share state in a way better controlled by the system. Own variables are too

62

---~--------------------

restricted to perform this function properly, as will become clear.

Resources are divided into three categories: memory, managed by the garbage

collector; system abstractions such as tasks, managed by the unlinking mechanism;

and abstract reso.urces, which are resources provided by other jobs. Resources

provided by the system (the first two categories) are associated with jobs through a

few simple rules. Each job providing an abstract resource is expected to manage the

recovery of instances of that resource itself, using hooks provided by the unlinking

mechanism to notify resource providers about the death of a client job. Specifically,

for each client, the server registers an upcall with the system which the unlinker will

invoke when the client dies as described in section 4.3.3. Pushing most of the work

of resource recovery back on the server solves many of the problems described in

chapter3.

The kernel subsystem and job have unique features, and require special support.

The job mechanism has controlled loopholes. These allow the job programmer to

trade off error control for performance by sacrificing certain job protections in return

for avoiding job costs.

Jobs and Subsystems

A job is usually an instantiation of a single subsystem. Often, a subsystem, in turn,

has only a single job running in it. In a typical protocol implementation, for example,

a transport layer subsystem has only a single job tying together the dynamic elements

of the layer with the actual code. All the users of that particular transport layer

protocol are clients of the one job. These clients use the layer by calling into the job

· through the entry points of the subsystem, which would probably have names such

as transportSopen_connection and transportSaend_packet.

When a subsystem is loaded, a job is created as an instantiation of the subsystem

and a task is created, running on behalf of that job, to execute the subsystem's

initialization procedure. The subsystem's initialization procedure has some well-

63

known name, but is not an entry point. It can appear only as an argument to the

jobScrtatt_? commands.

As previously mentioned, Swift has two types of subsystems: those which provide

services to other jobs, usually through entry points, and those which are top-layer

applications, without entry points. If the subsystem has entry points, they are

gateways to the job created at load time.

This description leaves two problems unsolved.

1. Multiple jobs should be able to run using the same subsystem for their
code. For instance, two compiler jobs should run in the same compiler
subsystem. Unfortunately, a subsystem has several unique resources
which must somehow be associated with an arbitrary number of Jobs.

a. The subsystem's code must be reentrant to be shared.

b. The subsystem has only one set of entry points, but needs
gateways to an arbitrary number of jobs.

c. The subsystem has only one set of Own variables (Owns are
described in section 2.2.2.), so multiple jobs must somehow take
into account the fact that they are sharing theae objects.

One way around this might be to duplicate the code, but forcing the user
to keep multiple copies of a huge subsystem Is inappropriate in a system
without virtual memory. Further, it would require some more elaborate
naming structure to distinguish the entry points of one copy from those
of another.

2. Although the default case is for a job to correspond to one subsystem,
the user should be able to put the job protection at other boundaries.

Swift code i8 already read-only, eliminating problem 1.a.

If the subsystem does have entry points, Swift cannot load a second copy. If some

job invoked an entry procedure to a subsystem with multiple copies, the system could

not distinguish which capy was meant. Therefore, the attempted load fails.

Subsystems with entry points require more complex techniques, presented in the

64

following section, to allow multiple jobs per subsystem.

Thus, the simpler case of subsystems without entry points will be covered first. Since

a subsystem has only one copy of its Own variables, the subsystem cannot support

multiple jobs inside it unless it was programmed with that idea in mind. This problem

is not fundamental to the Swift operating system, but is an artifact of the

implementation language (CLU) used in the project. A more general solution to the

storage problem is given on page 75 in the discussion of job storage, but provision Is

also made for the use of Owns, in the interests of convenience, and portability of old

code.

Several observations about Own variables may be made. If the two jobs carry out

different functions, then it may be possible to partition their Owns. If the function is

the same (as would be the case, for example, with two compilers), and the two jobs

differ only in their state, they will conflict with each other if they each try to alter Own

variables. For Owns to be shared in this manner and also writable, quite apart from

the elaborate coding required, tasks from different jobs would have to have their

accesses synchronized by monitors, which would imply that two jobs would be

sharing the same monitor, which Is unacceptable. Although the subsystem could

have one job act as a configuration manager, distributing storage to the rest, an

easier and more elegant solution is for each job to rely entirely on its job storage.

The first question, then, is whether the code is prepared to handle more than one job.

Many small applications, for instance, may have been. programmed using writable

Own variables, to save trouble. In response to a user request to run a job

corresponding to an already loaded subsystem, the loader will choose between two

options, depending on whether or not the subsystem has any entry points. If it does

not, the linked subsystem image will have stored with it an indication, set by the

programmer who linked together the subsystem, of whether it is designed to support

multiple jobs. If the flag is set, the loader will simply create a new job and start it

65

running the initialization pr~cedure. 19 Otherwise, a second copy of the code will be

loaded and run. This information is summarized in figure 4-1

Entry Procedures Link· Time Switch Set Action Taken by Loader

No No Load a new subsystem to run

the Job In.

No Yes Create new job running in same

subsystem.

Yes No Load fails. The more elaborate

techniques described below must

be used.

·Yes Yes Link fails. This situation should

never arise in the loader.

Figure 4·1: Multiple Jobs Instantiating One SubsyStem

Swift and CLU do no checking, such as warning of attempts to write Owns, to ensure

that a subsystem really can support multiple jobs. The programmer is responsible for

not making any mistakes.

19i-he reader may wonder how Own variables are initialized if they are not writable. and how the same
initialization procedure can be used for a new job regardless of whether the job's subsystem has been
initialized. The procedure will store a "subsystem initialization object" in an Own variable, created
through the Swift mechanism for initializing Owns. This object is maintained by the kernel. The first job
to check the object will initialize the subsystem and its Owns, and notify. the object when it is through.
Future jobs will find that the subsystem has already been initialized. Should a task try to check the
variable while subsystem initialization is proceeding, it will be suspended until the initialization is done.
Note that the jobs are not really sharing the object. The sharing occurs in the kernel.

66

Entry Procedures and Upca/ls

The organization in which a subsystem that proVIClllS a service to a higher level is

represented by a single job is a very frequent special case. The testbed Swift system

has one timer, one network attachment, and so on. If this default is appropriate for a

server, the user and programmer of the server can ignore much of the mechanism

associated with jobs and treat a call to the gateway procedure almost as a normal

procedure call.

In some cases, however, having multiple jobs running in the same subsystem Is

desirable, either for getting a finer granularity of protection or for convenience. For

instance, if a machine were attached to two networks, a sending job might be

sending on either one, but does not know when it calls Into the network layer which

network to address. Maybe it does not even know how many networks are attached

to the machine. A solution without multiple jobs, shown In figure 4-2, is for the client

job to call into an network manager when it opens a connection, providing some

information that allows the manager to decide which network should be used. The

manager returns some network identifier, which will function much like a hint.

Whenever the client wants to send a packet, it passes in the identifier so that the

network code will know which connection to send the packet on. In this solution, the

manager and the handlers of the two networks are not protected from each other by

the job mechanism, and the user must keep track of the hint

The better approach used in this design is to have one job that acts as a manager for

the other jobs in the subsystem. In subsystems with no entry procedures, multiple

jobs can, as was described, operate on an equal basis. If subsystems with entry

procedures are intended to run multiple jobs, the job created at load time has special

status among those jobs due to its association with the subsystem's entry

procedures. Instead of having a call to an entry procedure establish communications

by returning a hint, as in the example above, the entry procedure returns a set of

upcalls to the appropriate job running the server code. The manager will first create

the subsidiary job and upcalfs to go with it, if required. Upcalls, as detailed below,

67

User Job

Parameters

Net Manager Job

initialize • eproc(parameters)
returns(netid)

if is-1 (parameters) then

return(net1)

elseif is-2(parameters) then

return(net2)

else error

end

Net 1

netsend • eproc(id: netid, info: packet)

if id = net1 then

send-1 (Info)

elseif id • net2 then

send-2(info)

else error

end netsend

Net2

Figure 4-2: Simulating Multiple Jobs in a Single Subsystem

are already supported by the system and have a job associated with them.

In other words, Swift applications use upcalls masquerading as entry procedures to

allow clients to downcall any of several different jobs in the same subsystem. This

68

{

solution, as compared with the one presented above, provides protection between

different instantiations of the subsystem by turning them into different jobs. It differs

also in the lower possibility of error and greater convenience associated with letting

the job mechanism do more of the management. Note that having upcalls act as

downcalls is an extension to the functionality of upcalls as described in chapter 2.

The job mechanism supports this solution in several ways. The subsystem manager

can use the jobScreate_dependent_ ... procedures provided by the job mechanism

to create secondary jobs (as described in section 4.1.3). These procedures allow the

job managing the subsystem, as part of creating a subsidiary job, to set the storage

for the new job. They also allow the new job to communicate back the new upcalls

that will act as its entry procedures, so that the manager job can distribute those

entry procedures as it thinks fit. Figures 4·3 and 4-4 give static and dynamic views of

this proceeding. The static picture shows the code structure that allows a managing

job, after a call to the open_connectlon procedure, to create a subsidiary job. The

dynamic picture shows how, once the subsidiary jobs are created, the managing job

can keep track of gateways to its already created subsidiary jobs in some sort of data

structure, passing the gateways for the appropriate job out to a new client in

response to calls to open_connectlon.

The commands to create dependent jobs also provide information that is used by the

job mechanism to keep track of all the jobs associated with a subsystem, which is

easy to do except for the more complicated cases described below. The unlinker

considers that a subsystem is no longer in use when it has no associated jobs. This

information helps the unlinker decide when a subsystem's Own variables and code

can be cleaned up. (Ideally, as mentioned in section 5.2, the garbage collection

algorithm could be modified to do this work.)

upcal 1 is a new built-in type supported by the language. An upcall is much like a

procedure variable, but with the additional operations described in section 4.1.3. An

upcall is created by a specific job, to which the upcall is a gateway. The creating job

69

ca11 with storage

from ()pen-Connection

entry procedure

.-------JI

Subsystem A
can with storaoe I 7I

~Return upcalls /? /
Procedure calla Return new job and upcalla to the new job ,,,,.

Job$Create-Dependent-Job

Kernel Subsystem

Figure 4-3: Static Organization of a Subsystem with a Managing Job

turns a procedure from its subsystem into an upcall by associating itself with the

procedure. (An upcall is created at run time as a CLU object from the heap.) This

new upcall object is then given away to another job, to be called when certain events

of interest to the creator occur in the other job. When a task does invoke the upcall,

it changes jobs to the job associated with the upcall.

Upcalls are more dynamic gateways than entry points, since unbounded numbers of

them can be created at runtime. Since upcalls are created dynamically, upcalls to

multiple jobs {for instance, upca!ls into two buffer layer jobs that use the same buffer

layer subsystem) could be created from the same procedure, with job storage

70

gateway (entry) procedure
~

Open-Connection

Job A

Manager ot Subsystem A

init procedure

~
I Create I I Create I

JobA1 JobA2

gateway procedure

Subsidiary Jobs of Subsystem A

I Create I

JobA3

Figure 4-4: Dynamic Organization of a Subsystem with a Managing Job

providing the dynamic element. In the paradigm case, the calling job is a

demultiplexing lower layer possessing upcalls from a number of higher layer jobs. If,

for instance, a packet comes in from the network, the demultiplexing layer uses

information in the packet to decide which job's upcall to invoke.

Jobs maintain· control over their gateways, giving them some confidence that certain

errors do not occur. A job can create gateways only to itself, not to other jobs, a rule

that a job should follow anyway. Thus, no job is accidentally creating upcalls to

another job. A job can olways give away upcalls received from other jobs, but there

does not seem to be any reason to do so, although this restriction cannot be

71

enforced easily, and so is not. The job to be called creates upcalls using procedures

from only one subsystem (usually), and, without cooperation from another

subsystem. Since this job does not know about any procedures from other

subsystems except entry procedures, accidentally violating this convention is

difficult, and a compile· time check would be easy to add.

Achieving Other Relationships Between Subsystems and Jobs

Another issue is how programmers may avoid the default of a job having the same

boundaries as a subsystem. This might be desirable if multiple jobs wanted to use

some of the same procedures, but desired different protection boundaries. The job

designer may make a job from part of a subsystem, or even allow a job to span more

than one subsystem. This sort of structuring is not enthusiastically supported, since

convincing examples of its desirability have not appeared, but is possible.

Upcalls can be used to achieve general placement of job boundaries within a

subsystem. A job simply decides what procedures will be the gateways to the job,

and creates upcalls out of them. Any other job that calls this one will have to use

those upcalls, enforcing the boundaries. In other words, the job creates its entry

points at runtime with upcalls, thereby defining its own "subsystem" which does not

correspond to any static unit. Of course, some entry point must be used once to

establish communication with this new job.

Suppose that a job wants to include procedures from more than one subsystem.

Normally, a call to another subsystem results in a change of jobs. The new job

dodges this restriction by calling an entry procedure from another subsystem that

returns a set of procedure variables (not upcalls) from that subsystem. Having

established this communication, the new job can now call into the other subsystem

without changing jobs. Once this is done, the new multi-subsystem job depends on

the second subsystem, as well as its original one. The entry procedure of the second

subsystem, when it gives away the upcalls, should (in the absence of an improved

garbage collector) inform the job mechanism that the multisubsystem job depends on

72

the job managing the second subsystem.

The programmer is, as always, required to observe the convention that any monitor

stored in Own variables is accessed by only one job. As usual, enforcing this

restriction would be too expensive. In this situation, the compiler cannot even notice

a potential misuse of monitors and give a warning, as it can by noticing a monitor as a

return value from a gateway procedure. This restriction does not rule out the

possibility that the manager can initialize a monitor for use by a subordinate job. The

commands to create dependent jobs allow the monitor to be handed off to the new

job.

Multiplexing and Nonmultiplexing Job Gateways

What are the differences between entry procedures and upcalls and how can those

differences be exploited by the unlinking mechanism?

- A server job needs some sort of interface, whether entry procedure or
system-wide configuration manager, to allow potential clients to contact
it. Aside from establishing contact, the client could (somewhat less
conveniently) use upcalls instead of entry procedures, exactly as was
done with subsidiary jobs in the previous discussion of jobs and
subsystems. Thus, entry procedures are just a more convenient but less
general form of upcalls.

- Calls to entry procedures are downward to more trusted layers. These
more trusted layers perform a service for a higher layer and often
multiplex a number of higher layers, either simultaneously or over time
(i.e., after one client job has died, the server can support another).
Upcalls are usually to higher layers, perform a service for the higher
layer, and are from a multiplexing layer. That is not always true,
however, since upcalls may be used to create two lower level jobs, as
has been described.

Entry procedures and upcalls, therefore, are not different in a way that can be used

by the unlinking mechanism. A similar property of gateway procedures that is

important for unlinking, however, is the distinction between gateways to non

multiplexing layers, and those to multiplexing layers.

73

Non-multiplexing gateways correspond to the paradigmatic use of upcalls, which

operate on behalf of the job called into. Any failure during the execution of the upcall

indicates that the job is no longer able to function. Its internal state has quite

possibly broken down.

Multiplexed gateways support multiple other jobs, either simultaneously or over time.

Calls into it are to do a service for the caller. Entry procedures fall into this category.

So do upcalls which are being used in place of entry procedures so that a lower

subsystem can support more than one job. One result is that they tend to be

gateways from less to more trusted jobs so that, in the event of an error, the less

trusted job is more likely to be responsible than would be the case if the jobs were

equally trusted.

More important is the implication that the death of the job associated with such a

gateway will disrupt a number of other jobs. If the multiplexing is simultaneous, the

death will cause the other jobs to lose the state they have built up with the

multiplexing job. Quite possibly, these other jobs will die in turn. If the multiplexing is

over time, jobs that wish to use the. service provided by the multiplexing job will not

be able to run until the user restarts the dead job, which is an inconvenience to the

user. For both these reasons, the multiplexing job is worth saving. Further, since a

multiplexing job handles multiple other jobs, it presumably divides up its operations

by the client on whose behalf the operation is taking place. Due to this division,

therefore, even though the server could not operate on behalf of the job to which it

signaled failure, it can quite possibly continue to operate on behalf of other jobs.

Based on these facts. a multiplexing job should be a little harder than a regular job to

kill, if that effect can be achieved in some reasonable way. A gateway is allowed to

declare itself to be multiplexing and get extra protection, as described in section

4.2.2.

One question that may be puzzling is why the distinction is made on different

gateways and not on different jobs. The reason is that a job that multiplexes to

74

provide a service to one set of jobs is generally a client for other jobs which provide

services to it. A job should be treated differently depending on whether the call

which has some problem is from a server or a client. The phrase "multiplexing job"

refers to the interface consisting of a group of multiplexing gateways that a server job

presents to its clients, or to the job that these multiplexing gateways enter.

The sort of gateway one job uses to call another thus determines the relationship

between the two jobs in the event anything goes wrong on the call. One job might

possibly call another through both multiplexing and non-multiplexing gateways and

the relationship would be different for each call. Although that may seem surprising,

the relationship between the jobs actually should be determined for each interaction.

These two calls almost certainly would not be working together the way two calls to

entry procedures (e.g. open and close) might. Instead, the calling job would be

using a low level part of the other job, and providing a service to a high-level part.

Job Storage

A change associated with the unlinking mechanism is to add a new form of storage,

associated with a job. This storage replaces many of the functions of the hint, which

was formerly passed as an extra argument to an upcall. The big advantage for the

unlinking mechanism is that making the hint part of the job allows the system more

control over the resources used by the job, which must be freed when the job is

unlinked. This change also makes life a bit easier for invokers of upcalls, by

eliminating the need for separate management of hints and upcalls.

This decision is debatable, however. It interacts poorly with the job loophole

mechanism described below. Requiring all the job's storage to be part of one hint

may occasionally be slightly, although not very, inconvenient, since various different

objects from different upcalls will have to be organized into one data object.

Fortunately, in most layers. the information needed by the different upcalls is

organized that way already. Finally, h some common cases, a hint is still needed to

75

allow a lower layer to store the state of some computation for a higher layer, 20

reducing the benefits of the approach.

If a job is the instantiation of a subsystem that will never have more than one job

running in it at a time, or is a subsystem manager, it may use the subsystem's Own

variables for its storage as well. The job mechanism still has the same control over

the job, since It knows that the job and subsystem are closely related, and that Owns

can be freed when the job dies.

Figure 4-5 summarizes this information.

Loopholes in the Job Mechanism

One of the goals of the job mechanism was to allow the programmer to selectively

bypass the protection provided by jobs to avoid the associated cost. This result can

be achieved conveniently In Swift merely by compitlng what would normally be two

subsystems into one, joining what are intuitively two computations into a single job.

Then, calls from one layer to the other do not cause a change In jobs, and avoid the

resulting record keeping. Of course, if one of these computations dies, the other will

now die too.

To minimize the need for changes in source code when this loophole might be used,

the job mechanism assumes that, if a procedure makes a call to an entry procedure

in the same subsystem, the job should not be changed. Thus, the procedure is not

treated as a gateway for intrasubsystem calls. Thus, when the two layers are linked

20 An example of this necesaity occurs in the send Side of a protocol. Under Swift, the most natural
way to send a pecket turns out to be to leave the packet in a buffer at some high layer and call down to
the network.._., "arm the network for sending." Usually, this means that the network's arming entry
procecture wakee up a network send task. This approach has the advantage that the network is not
bombarded with packets it is not ready to send. Since the send task is associated with the network, it
has the best idea of when the network is ready. At that time, it cans up to get the packet.

When the task calls up, it demultiplexes back up to the user buffer. Information passed down during
the arming must be passed up to direct the task to the right butter. It an intermediate layer is
implemented as a single job, a hint is needed to store the roadmap through that layer for use by the
upcall.

76

Type of Storage Conditions Under Which Use is Acceptable

Job Storage Always Acceptable

Own Variables Acceptable for job managing multiple job subsystem

Own Variables Acceptable if subsystem only intends to supports one Job

Figure 4-5: Where Jobs Store Their State

together, the entry points in the lower layer do not have to be changed to regular

procedures to reflect the fact that two subsystems have been merged into one. On

the other hand, the lower layer-ts entry procedures still act as gateway procedures If

called by other jobs outside the subsystem. If the lower layer iS multiplexing several

instantiations of the upper layer, the two layers wiH have to use an additional

argument, the hint described in chapter 2, in place of job storage.

A programmer of two layers might switch frequently between running them as one or

two jobs, probably using two jobs to debug a change to one of the layers and one job

for a release version. The programmer will use various tricks to localize and minimize

any changes in the source code during these switches back and forth, such as

leaving the hint as an argument but not using it when the layers are separate jobs.

Several dangers accompany the loophole mechanism. The two layers will know

more of the details of each other's operation, instead of merely a few entry

procedures. so that bugs will not be as well localized. A failure in the higher layer will

impact any other clients of the lower layer. Using this technique indicates that either

77

the two layers are considered bug free, or that they cannot be debugged under job

protection due to its inefficiency. In the latter case, the programmer of the layers will

have to do the extra work to debug them.

On the other hand·, the effect of the loophole is localized to two or more layers which

presumably already worked closely together, for example a set of layers in a network

protocol. Jobs which are not involved with the joined layers are not affected, and

even jobs which do associate with the layers sacrifice no protection. They only lose

in th~t they will now be forced to die when failures occur in the upper layer of the

paired job.

Monitors

Dependencies between jobs and monitors exist in both directions. Each monitor

depends on the job in which it was created since the creating job should be the only

one manipulating the monitor, and since, if this job fails, the monitor is no longer

guaranteed to be correct. The advantage of this rule is that, if the Job dies, the

unlinking mechanism does not need to worry about saving the monitors in the job.

Not needing to save the monitor is a big advantage, since the mechanism does not

know how to fix a monitor which has been left locked, the job cannot be counted on

because it is faulty, and the monitor may have been ruined by the failure anyway.

Furthermore, jobs protect monitors from the unlinking mechanism. As long as the

job is alive and used correctly, the unlinker will not destroy the monitor.

Frequently, a monitor is maintained by a job to. store its state, and is vital to the

operation of the job. In this case, the job depends on the monitor as well as the other

way around, since if the monitor becomes inconsistent, or is not released when it

should be, the job can no longer carry out its functions. Also, the fact that the

monitor is incorrectly locked indicates that a bug in the job has corrupted the job's

state, so even monitors that do not maintain the job's ongoing state must be

unlocked, as discussed on page 125. Therefore, when a job creates a monitor, that

monitor is registered with the system as essential to the job's operation. Later, in the

78

event of a failure somewhere in the system, the unlinking mechanism may examine

that job's monitors to determine if the associated job is probably still healthy. The

unlinking mechanism cannot prove that a monitor is all right, but it can determine

cases in which it is definitely not all right.

The assumption is that if a task has called into a job, locked a monitor, and returned

from the job without unlocking the monitor, then a disaster has occurred. Under

certain circumstances, monitors are checked and, if they have not been released, the

job is killed. The precise rules are given in section 4.2, but a monitor is most often left

locked as the result of a CLU failure signal (or unwind signal, described below) that

was not properly handled by the procedure(s) in charge of locking and unlocking the

monitor in question. In this case, the job, as an instantiation of the subsystem with

the faulty procedures, really is responsible for the problem.

Jobs, Resources, and Memory Management

Freeing resources associated with a dead job requires associating resources with

that job, which in turn requires defining what a resource 18. In Swift, all resources

can be split into three categories. One category consists of objects from the CLU

heap that are referenced only by the job, which should be freed so that the space

they take up can be recycled. The Swift/CLU garbage collector gives the unlinking

mechanism substantial help in freeing these resources. Another category consists of

abstract resources which are managed by other jObs, network connections, files, and

the like. The unlinking mechanism relies on the jobs implementing these resources

for help.21 The third is system abstractions such as tasks and subsystems.

ACLU heap object will be freed by the garbage collector if it can find no remaining

referenc~ tG it The unlinking mechanism must keep track of the locations of all

references to objects which are associated with each job, so that the references can

be eliminated as part· of cleanup, allowing the garbage collector to free those objects

21 These other jobs are doubtless using heap objects in their implementations. That fact can be
ignored by forcing the 1ob implementing the resource to help in unlinking.

79

if appropriate. In Swift, references to job resources can exist in four places: in the

dead job's storage, in its Own variables, on the stacks of tasks running on behalf of

the job, and inside other jobs. The job storage and Own variables are associated

directly with their job and will disappear with it. Tasks, which store references on

behalf of different jobs as they journey from job to job, are managed as described in

4.3.2. If the dead job is a resource manager, and other jobs hold references to the

resources it managed, then either the other jobs will die since their resource is no

longer being managed, causing their references to go away; they will eliminate the

references as part of disentangling themselves from the dead job; or they will hold

onto the references until they themselves terminate at some point in the future.

Abstract resources must be handled by their resource manager. The manager keeps

track of any resources it has given to other jobs and wishes to recover when those

jobs die. The unlinking mechanism makes sure that the resource manager is notified

about the death of a client job. The manager arranges for this notification using the

jobSnot1fy_at_death_of operation described in section 4.1.3. Essentially, the

manager registers an upcall per client with the system: to be invoked by the system

when a given client dies. The job must use the notification when it occurs to recover

its resources being used by the dead job. In other words, much of the work is pushed

back on the programmer of the resource. This operation is described more fully in

section 4.3.3.

Abstract units that are partly managed by Swift include jobs, tasks, upcalls, monitors,

and subsystems. Jobs and tasks that die are eliminated from system tables, and the

storage used to implement the abstraction will be garbage collected unless

references to them remain in other jobs, much like resources managed by the dead

job, as described above. Upcalls act as regular CLU objects, and should also be

garbage collected once their job dies, subject to the same proviso. Monitors, since

they are used entirely inside a single job, should not be referenced outside that job,

and will definitely be garbage collected once their job dies.

80

Subsystems require more substantial management from the unlinking mechanism. A

single subsystem may use a significant amount of a scarce resource, the space their

code occupies. The current garbage collector is not properly equipped to handle

code segments. T_he job mechanism, however, solves part of the problem by making

subsystems depend on certain jobs. The code manager knows that the subsystem

can be freed when the job(s) on which it depends are dead.

The Kernel

The kernel is a special case subsystem associated, like other multiplexing

subsystems, with its own job. Most subsystems are written to perform one or two

functions, and have a small number of entry points (somewhere between 0 and 25).

Most subsystems manage a monitor or a set of monitors. The kernel contains some

functions of this type, such as the "stream n abstraction for terminal input and output,

which should certainly be protected by the normal job mechanism. Stream and

similar functions could be loaded as separate jobs, but that is more work for the user,

slower, takes up job table space, and requires extra management, so making these

functions part of one kernel job is a useful optimization.

The kernel also contains many other procedures meant to be called from other

subsystems. The CLU runtime system, which manipulates built-in types and handles

language signals, has many procedures. The kernel also contains calls to read-only

system information. {A routine to g1t_vers1on_nullb1r would be a good example.)

Neither of these types of procedures has shared state protected by monitors.

Procedures to manipulate system objects such as monitors and tasks are in the

kernel and cannot use the job mechanism since they lie under it. These routines,

particularly those in the runtime system, are called very frequently, and cannot afford

to be slowed down by the job mechanism. Therefore, kernel procedures which want

job protection declare themselves as entry procedures. The rest can be called from

other subsystems, but are not protected by the job mechanism. These are like

normal procedures calls. except that they need to be able to survive the death of one

of their callers. Without job protection, they have to be written so that they can

81

endure preemption at arbitrary points when the job that calls them dies, and still

provide their services to other jobs.

A final difference between the kernel and other subsystems is that, if the kernel job

fails, the system is assumed unable to continue. The kernel job should therefore only

contain functions that are thoroughly debugged or that the system cannot live

without.

4.1.3 Operations Added to Support Joba

The operations on jobs are described below, followed by operations added to other

abstractions to support unlinking. Some are explicitly called by the application

programmer; others are caHed by the system. This section is more in the nature of a

reference than something that must be read straight through to understand the

thesis.

The use of some of the operations may not be clear at this point, so it may be

necessary to refer back to this section later once the unlinking algorithm has been

explained in detail.

create_realtlme = proc(strlng, inlt_proc, array[arg], stack_size)
retu rns(job) slgnals(cant_create)

create_foreground = proc(string, init_proc, array(arg], stack_size)
retu rns(job) signats(cant_create)

create_background = proc(strlng, init_proc, array[arg], stack_size)
retu rns(job) slgnals(cant_create)
Each of these calls creates a job. Once the job is created, a task is also
created, running on behalf of that job. The task runs 1n1 t_proc, which is
invoked with the given argument vector. The initialization procedure must
be an entry procedure if the job is being created by another job, and is the
special subsystem initialization procedure if this call is made by the system
to create the job associated with a newly loaded subsystem. The stack
size is set somewhat arbitrarily, to a value specified by the procedure
which makes the call.

The name is given by the user via some sort of command processor, or by

82

the programmer of whatever job is creating the new job. Usually, the name
will be the filename of the load image which corresponds to the job's
subsystem. If a job has the same name as an earlier job, it has an integral
extension added, as in foo.2.

The task which is created to initialize the job will be ,iQQ-critjcal until it
specifically declares itself otherwise. This means that if that task exits, the
job is killed and unlinked.

The difference between these three calls is how the job is scheduled. As
described in section 2.2.3, the programmer schedules tasks to meet
various constraints. The creator of a job schedules the job. This
information is used when a task running on behalf of the job has no
scheduling requirements of its own. The task then inherits the job1s
scheduling parameters.

create_dependent_?_SchedullngClass = proc(string, lnit_proc, array[arg],
any) returna(job, any) signals(cant_create)
These three other operations, one for each scheduling class, allow the
creation of dependent jobs. These are meant to be used by jobs which
manage a subsystem. The 1n1 t_proc for the new job is run on the stack
of the current task instead of on the stack of a new task. The created Job
is killed if the creator dies.

The any argument is the storage for the new job, thus allowing the creator
to initialize the created job's storage. The any return value is a structure
containing the upcalls that act as entry procedures to the new job. It is
meant to be returned to client jobs to give them a handle on the new job.

get_scheduling_class = proc(job) returns(scheduling_ctass)
This operation returns the scheduling class of its argument.

call_into_job = proc(entry_proc) signals(dead_Job(job), unwind)
This operation announces to the system a call into another job. This
operation, like the next two, is called implicitly by the system, rather than
by user code, as part of calling and returning from an entry procedure. It
changes jobs atomically, so that the unlinking mechanism can never get
confused about what job a task is in.

The system expands a programmer's call to a gateway procedure as
follows, using either this or the following operation as appropriate.

83

begin

end

{upcall,call}_1nto_job{gateway_procedure)
gateway_procedure(...)
pop_job()

The operation stores information with the calling task about the job being
entered. If the job being called into is dead or the task has a cleanup
waiting, the system will take action as described in section 4.3.2.

upcall_into_Job = proc(upcall) signala(dead_Job(job), unwind)
This operation is invoked implicitly as part of a upcall into another job.
The only difference between this and the previous operation is that an
upcall can be to either a normal or a multiplexing gateway. By examining
the upcall, this procedure determines which case applies and behaves
accordingly. For a muttiptexing gateway, if the call fails, the system
considers that the called job is more likely to be healthy than on other
gateway calls. Specifically, the multiplexing job survives a failure unless
one of its monitors is corrupted.

pop_Job = procO returns(Job) signals(dead_Job(job), unwind)
This operation announces to the system that the current task is leaving the
job it is in. The operation is invoked implicitly as part of the return
sequence from a gateway procedure. Like the two previous operations, it
is atomic. The job mechanism checks on the health of the current task as
part of jobSpop_job's execution.

set_storage = proc(any)
This operation sets the job storage of the current job to be the argument.
It is intended to be called only once per job, as the job initializes itself, and
signals failure if called again.

get_storage = procO returns(any)
This operation returns the job storage of the current job, in the form of a
CLU any. It signals failure if called before jobSaet_storage.

me = procO returns(job)
This operation returns the current job of the current task, or, in other
words, the job that the current procedure is executing in. Many of the
operations below require a job as an argument, so this is a way to get a
handle on the current job.

kill = proc(job)
This operation kills the job argument and starts cleaning up the job, as

84

described in section 4.3. Any task, running on behalf of any job, may call
jobSk 111 on any job it knows about. This capabifity fits in with the desire
not to restrict programmers unnecessarily. Since a variable for a job
cannot easily be forged, a program cannot accidentally kill a job with
which it is not associated. Also, since in the normal case a job does not
need ta know the job associated with the gateway procedures it calls, it
cannot easily accidentally kill another job with which it is communicating.

alive = proc(job) returna(bool)
This operation returns true If its job argument is currently alive, and false
otherwise. If a job is dead, it is guaranteed to be dead forever, so this
operation can be used to write code depending on a job's being dead.
jobSa 11 ve is used by the system, but could be used by a user job. For
instance, a utility procedure that was part of some cleanup code might
wish to know whether an interface to a job was being shut down at that
job's request, or as part of the cleanup procedure after the job's death.

Since any task may kill any job, job death is an asynchronous event from
the point of view of an application programmer. Even if a job was alive the
last time jobSa11ve was allled, it is not guaranteed to be alive now, so a
procedure cannot use this operation to write code that depends on the
fact that a job is alive.

equal = proc(Job, job) returna(bool)
This operation returns' true If the two arguments are the same job, false
otherwise. The job management package ensures that all copies of a job
are the same. (PracticaUy, the package maintains only one copy of each
job object, to which programs receive a pointer.)

initialize = procO
This operation initializes the job mechanism. It is called only once, at
system startup, by the system initialization code, and an attempt to call it
again results in a failure signet

notlfy_at_death_of = proc(job, death_proc, array[arg], deadline) signals
(dead_job(job), deadline_too_large)
This operation allows the current job to ask the system to notify it when the
job passed as an argument dies. The notification takes the tortn of an
upcall to death_proc with the argument vector as an argument. The
deadline is a recommended scheduling value which the system can use to
set a timer on the upcall. The system can reject this value if it exceeds
some limit.

85

This procedure is intended to be called by a server job as part of the
procedure to register a new client. When the client presents the server
with a set of upcalls and other useful information by calling a registration
gateway, the server leaves this notice with the system before doing
whatever is necessary to actually start working on behalf of the client.

register_monitor = proc(monitor)
This operation is used by the monitor creation code to inform the job
mechanism that the creating job depends on the integrity of the monitored
argument. The significance of this dependency is described in the
discussion of monitors in section 4.2.2. If a check by the system shows
that a task exited a job without releasing one of that job's monitors, then
the job is killed. This check is done on a multiplexing job, which has
declared itself to be specially trusted.

register_dependency = proc(job, Job)
This operation allows the first job argument to tell the system that it
depends on the second job's being alive. If the second job dies (or is dead
at the time of the call), the first job will be killed as well. The main use of
this operation is as part of the creation of dependent jobs by a subsystem
manager. The operations to create a dependent job call this operation.
This in turn provides a crude way of figuring out when a subsystem is no
longer being used by any jobs.

This operations is also a public-spirited optimization by the first job, which
may allow it to be cleaned up faster than it would be otherwise. The first
job would presumably die anyway when It called into the (dead) second
job, since it would not know what to do if the second job were dead. This
optimization is useful when the first job does not call into the second job
very often, but will not be able to accomplish anything without the dead
job. If a group of jobs will all die together, cleanup may be cheaper if they
are all cleaned up at the same time, since no work is wasted to save jobs
that will soon die anyway.

get_calling_job = procO returns(Job)
This operation returns the identity of the calling job so that the called job
can register a dependency as described above.

unparse = proc(job) returns(string)
This operation returns the name of the job. The name of the job is useful
for printing debugging messages and making the output of the auditing
tools easier to use.

86

find_job = proc(string) returns(array(job]) signals(not_found)
This operation looks for all jobs with name of the string argument and
returns either the jobs or an indication that none can be found. This is
used for system or user audit tools.

list_job = proc(job)
This operation gives information about its job argument, including the
number of times one of Its gateway procedures has signaled fa11ure, and
the number of times a call to some gateway procedure from another job
has signaled f11lur1 to it. This information is used as described in
section 4.3.4.

list_all_joba = procO
This operation lists current active jobs and gives the same information
about them that jobS11st_job does. Since job death is asynchronous,
and this operation should not be uninterruptlble for a number of reasons
covered in 4.4, chiefly that the time required is potentially unbounded, the
list will include all jobs which were running at both the beginning and the
end of the operation~ Jobs which die during the operation may or may not
be listed. Jobs which are created during the operation may or may not be
listed. Most of the time the view of the system will be consistent, i.e. will
correspond to the actual state of the system at some point, but that is not
guaranteed. This view of the system should be adequate for a human
user.

get_deaths = proc() returna(lnt)
This operation returns the number of jobs which have died since system
startup.

Operations on Upcalls

upcall has been added as a new abstraction. This requires a change in the CLU

language, corresponding to the change needed to support entry procedures [17).

create_upcall = proc(procedure) returns(upcall)
This operation returns an upcall to a less trusted layer. The upcall
associates the procedure argument associated with the current job.

create_mux_upcall = proc(procedure) returns(upcall)
This operation returns an upcall to a more trusted layer, and is used to
create upcalls that mimic downcafls.

get_job = proc(upcall) returns(job)

87

This operation returns the job associated with a given upcall. It could be
used, for instance, when a client was establishing communication with a
server, to allow the server to register the communication with the system
using jobSnot 1 fy_at_daath_of.

New Operations on Tasks

cleanup_waiting = proc() returns(bool)
This operation returns true if the task is associated with a dead job, and
thus still needs to be cleaned up. It is used by system procedures.

not_job_critical = proc() signals(already_not_critical, not_your_task)
Th is operation declares that the current task may exit without the job in
which it was created dying. It is meant to called only from that job. The
current task must currently be running on behalf of the job that created it.

check_current_task = procO
This operation prints the current deadline and current job of the last task
running before the system task actually running
taskSchack_currant_task. It is used by the special audit toe>ls described
in section 4.3.4.

list_all_tasks = procO
This operation gives information about all the tasks in the system, listed by
the task's unique id. It tells the names of all the jobs associated with each
task, and what the task is doing at the time this procedure looked at it.

The consistency constraints are the same as those for
jobSl 1 st_al l_jobs, for the same reasons.

list_job_tasks = proc(job)
This operation works just like ta1kSl11t_a11_ta1k1 except that the only
tasks listed are those associated with a certain job.

list_task = proc(uld)
This operation works like the previous two except that it only gives
information about a single task. This operation would be useful to look
again at an anomalous task turned up by one of the previous two
operations to see if it still looked peculiar, as a prelude to an attempted
cleanup by a user.

88

Operations on Subsystems

get_job = proc(entry_procedure) returns(Job)
This operation returns the job associated with a given entry procedure. It
allows the unlinker or a client to get a handle on the job associated with a
subsys~em. A client will generally not need to use this operation.

One operation on subsystems: declaring that a subsystem can support multiple jobs,

is performed at link time. Declaring an entry procedure or writing a subsystem

initialization procedure is done in the source code through language mechanisms.

New Signals and Associated Operations

Two new, globally defined signals have been added, along with two supporting

operations. Figure 4-8 demonstrates the use of these operations.

job_dead(Job)

This signal is raised on a call to a job that Is dead or that dies during the call. All

gateway procedures can raise this signal.

unwind

This signal is raised as part of getting a task out of a dead job as described in section

4.3.2. It allow procedure frames associated with live jobs to do programmer-defined

cleanup. The signal, like fa i 1 ur1, can automatically be raised by any procedure

and, at the end of an unwind handler, is automatically propagated unless either a

signal is r~ised or one of the two following control statements is used. (The use of

these statements is demonstrated In figure 2· 1).

retu rn_no_slgnal

This statement returns out of an unwind signal handler without resignaling.

exit_no_signal

This statement exits out of the unwind signal handler without resignaling, allowing

the task to keep running in the procedure that handled the exception.

89

4.2 How Jobs Terminate

The model of job termination and system failures presents an abstract view of the

system from the point of view of the unlinking mechanism. This model explains the

basis for determif1ing which jobs are blamed for various failures. The model also

helped drive the development of the unlinking algorithm, and makes it easier to

understand the algorithm and to judge whether it works.

Jobs may terminate either "normally" or as a result of a failure; the unlinking

mechanism assumes that normal terminations are much more common. Failures

may be divided into three classes: those that the system can recognize and handle

(by associating the failure with a job and successfully unlinking that job); those that

the system can recognize but which require a system shutdown; and those that the

system cannot recognize and which thus require user action. These categories

overlap somewhat; for instance, the system is not guaranteed to notice certain

failures (e.g. Infinite loops) but, if It does notice them It can handle them cleanly (and

if it does not, they will not cause a disaster).

Since the unlinker does not manipulate the system at a lower granularity than that of

jobs, the Job is the unit of failure. To handle a failure successfully it must be

associated with a job whic~ takes the blame. The model will explain how that

association is made.

4.2.1 Normal Terminations

The first task created by a job is declared job critical. If this task exits, the Job dies.

This default applies to at least two cases.

- Many simple jobs, such as a typical compiler or editor, have only one
task which carries out the activities of the job. That task calls into lower
layers for services. and is not upcalled by those lower layers. When this
task exits, the job is done. If it exits, the job should be killed and cleanup
should begin.

- Other jobs have one initial task that manages some others. In this case,
also, the initial task will exit when the job is done.

90

A task may declare itself not critical to the job, allowing other methods of

organization. In these other cases, the unlinking mechanism requires that the job

notify the system when it is done instead of trying to come up with other default rules.

Specifically, a task must call jobSk111 to kill its current job. If a job finishes but

forgets to notify the system, the current design reties on the user, assisted by system

audit tools, to notice the error.

A non-exhaustive list of these other organizations includes the following.

· A job might contain multiple tasks, none of which is job critical.

· A layer may expect to be called into after all its tasks are gone. An
example would be a network layer with one task which only initializes the
job's state. This initializing task must declare itself to be not critical to
the job before exiting.

Another type of termination occurs in situations where Job A depends for its

operation on job 8. Once job 8 dies, job A is doomed as welt. One time this occurs is

when a job manages multiple child jobs in a layer; the children are assumed unable to

survive the manager. In other cases, however, job A will presumably die the next time

it tries to call job 8, since it will not know what to do without job 8, a fact which will be

converted into a failure signal. This special treatment is useful in several situations.

Having job A die along with job 8 may allow resources to be freed sooner if job A

does not call into job 8 very frequently. This approach may be more convenient to

the user, who might otherwise be forced to wait for the call to finally occur or kill job

A by hand. Finally, the cleanup of a group of jobs may require less work if they are all

killed at once than if they die one by one as they call into each other.

4.2.2 Recoverable Errors

A job may also die as a result of a number of different errors, here divided into three

categories.

1 . Miscellaneous errors

2. Failures signaled from gateway procedures

91

3. Other recoverable errors on gateway calls

Miscellaneous Errors

One general sort of error, which is much like a normal termination, is when a task

discovers a situation which it feels should not occur, either in its current job or In the

results returned from a gateway call. The task may choose to call jobSk 111 on Its

current job or the one it called, as it deems appropriate.

Another error occurs when the base procedure of a task raises a signal, since no

caller can catch it. Such a signal is considered to indicate some sort of breakdown in

the job. Therefore, the job is killed.

Failures Signaled from Gateway Procedures

The unlinking mechanism preempts, for its own purposes, the semantics of failure

signaled from gateway procedures. Such a signal Is considered by the unlinking

mechanism to indicate that something has gone seriously wrong, probably in the job

that signaled. Therefore the unlinking mechanism takea over.

This section first presents some analysis of the meaning of failure signals, then

describes in more detail how they are treated by the unlinker.

A failure is usually signaled when either a system routine or a procedure in a job

comes across some unexpected condition, or an error that it does not know how to

handle but is also meaningless to its caller. Frequently, killing the current job is not

the right thing to do, particularly if it is a system routine which discovers the problem.

Instead, the event manifests itself (in Swift as in CLU) as a failure signal, the only

signal (apart from the new unwind signal) that is automatically propagated up the

stack.22 Thtl'·same signal, it should be noted, might be said to be received by a

procedure, a task, or a job, depending on what point is being made.

22The discussion of signals in CLU from section 2.2.4 may prove a helpful reference for this section

92

In CLU unextended tor Swift, this signal usually means the end of the computation

that is running on the stack on which the signal occurs. Since Swift allows multiple

computations on the same stack, the semantics of CLU failures must be extended for

Swift. The unlinking mechanism must make some decision about how failure signals

are interpreted and how to recover from them. (Even if the failures still propagate up

the stack as they did before, the semantics have been extended since the role of the

stack is different in Swift.) A particular problem with failure signals is that they may

occur on procedure cans made with a monitor locked. The interactions between

monitors and signals are discussed in depth in section 4.3.2, but briefly, if allowed to

propagate unchecked, the signal will result in the monitor lock not being released as

the stack is unwound, or else require tedious, error-prone, and often inefficient

programming to save the monitor.

As an example of the problems with failure signals, suppose a network task upcalls a

piece of application code with an incoming packet, and the application code signals

a failure. CLU semantics for failure signals would result in the failure propagating up
'

the stack. Recalling that failures are not normaJly supposed to be handled, and

assuming that the network code fotlows this rule, the signal will eventually propagate

to the bottom of the task, and the network task will exit. One problem with this

solution are that the network layer is inconvenienced when in fact nothing is wrong

inside it. Either the network layer must be coded to handle failures and save

monitors, or the system must have some mechanism to allow the network to recover

when one of its tasks goes away, or the network layer dies whenever one of its clients

signals failure. Another problem is that, although the client job has probably failed

and should be cleaned up, the system has not learned that fact, and thus the client

will continue to run.

Several observations may be made about failures signaled by gateway procedures.

1. A failure signal from a gateway procedure means some job has done
something wrong, gotten confused, and should be shut down unless
reason exists to believe it can keep running.

93

2. Responsibility for the failure signal should somehow be fixed on the
appropriate job, a necessary precursor to cleaning the job up.

3. A job which has not failed should not be shut down. If failure signals are
allowed to propagate up the stack, as happens in CLU, that may have a
disastrous effect on any of the jobs into which the task has called, so that
these jobs will be shut down by default (about which more later, In
section 4.3.2). A simple solution would be for the unlinking mechanism
to declare an unenforced convention that each call to a gateway
procedure could be wrapped in a handler for failure, but (aside from
being an inconvenience for the programmer) in some cases, it is the job
which makes the call that has failed. The failure signal does not carry
enough information to distinguish easily between these ~· System
intervention is appropriate to manage this failure signal and control its
propagation property.

The unlinking mechanism's solution, as previously stated, is to take control of failures

signaled from gateway procedures and proceed on the assumption that some job is

probably broken. Failure signals may still (although still should not) be used by a job

to communicate information between procedures within the job, but may not be used

from one job to another. Since failure signals should not used for interprocedure

communication, and since a failure signal usually does mean something is wrong in

the computation, this approach is a natural one, and the limitation on the use of

failure is not severe.

The treatment of a failure signaled by a gateway procedure depends on whether the

gateway procedure that raises the signal is multiplexing or not. A failure signaled

through a normal gateway results in the death of the signaling job. An upcall to a

non-multiplexing gateway operates on behalf of the called job. If failure is signaled,

the call did not finish, since it was interrupted by the failure signal. Something

important to that job did not get done. The job's internal state is quite possibly

corrupted.

A failure signaled back through a multiplexing gateway may not result in the death of

the signaling job. The signal is propagated back to the calling job if no other

evidence exists that the called job should be killed. The caller does not necessarily

94

fail, since it may have some way to continue by unlinking itself from the dead job, but

the expectation is that the caller will not handle the failure, and will die. This

information about failures is summarized in figure 4-6. Note that it is at the discretion

of the programmer of the multiplexing job whether its gateways are declared

multiplexing to get extra protection from the system.

A question is why the distinction is made for gateways instead of for the failures

signaled through them, since on some failure signals the multiplexing job should be

killed and on others it should not. The answer is that a failure signal in CLU is a last

resort, used when nothing else is appropriate, so that, as far as the signaler is

concerned, no other semantics come with it. If the signaler knows additional

information useful to a handler, it should use a different approach for the error.

Action taken by Swift on failure signaled from job A to job B
(through one of job A's gateway procedures)

Type of gateway Monitors of signaler Job that is killed
procedure left consistent

Nonmultiplexing Not Important A

Multiplexing No A

Multiplexing Yes B

Figure 4-8: A Taxonomy of Failures Signaled Through Gateway Procedures

Treating a failure signal differently in this way is a slight retreat from the position that

failure has no additional semantics. In Swift. where two jobs are involved in the

failure signal, one of them has probably failed and one possibly has not. The

95

unlinking mechanism takes its best guess, not always correctly, as to what should be

done, by divtding failure signals into two groups based on its knowledge at the job

rather than the procedure level.

Perhaps more justification is needed for the claim that a job will frequently signal

failure and still be able to operate, and that the unlinking mechanism can take

advantage of that fact to improve Swift. Also, It might appear that whatever situation

signaled failure could be found and reprogrammed so that the failure signal did not

occur. One consideration is that Swift lower layers rely on conventions to prevent

deadlock, as discussed in section 2.2.5. If a client layer violates those conventions

and the monitor code signals a ·mylock error, the client layer has in fact failed, in a

way that cannot be coded around.

Practical concerns also intrude.

1. The user may lack the time, inclination, or ability, especially in the short
term, to track down some problems, particularly those that show up only
~rely. The user would rather endure the occasional failure signal In·
response to some rare event, even if that means the unnecessary death
of some job, as long as the other clients of the multiplexing layer survive.
Frequently occurring problems are found during testing, but the rarer
sort described here often sneak through.

2. Frequently, the failure signal really does indicate a problem with the job
which called into the multiplexing job through the gateway procedure.
This case often occurs when the programmer of the multiplexing job was
remiss in checking all error cases. A common example concerns the use
of a CLU variant data type. A programmer who is extracting the
component will frequently neglect to check for the case where the
variant's 'tag' was an unexpected value. The unhandled wrong_tag
signal wilt become a failure.

3. The-CUJ programming system has a few holes, the details of which are
of little interest, which result in objects having unexpected values which
cannot be planned for, and which the CLU runtime system will turn into
failure signals. 23

23Some of these errors could potentially cause the corruption of the address space. but the fact that
the system could recognize them makes that less likely, so halting the system is an overly harsh
response.

96

Suppose the multiplexing job actually did fail, in the sense that it will no longer be

able to supply its service to other jobs. The unlinker makes an effort to see if this

failure has happened. It checks to make sure that the task does not hold any monitor

locks in the job that just signaled failure. Monitors left locked are an excellent

indicator that the job has failed, and can occur easily on failure signals for two

reasons.

- The relationship between locked monitors and job failure is that the job's
internal state is protected by its monitors. If the job's internal state is not
corrupted, the call which signaled failure did not do anything that the rest
of the layer could notice, so the layer can continue to operate. If a
monitor is left locked, part of the job's internal state has certainty been
corrupted.

- A monitor will not be released if a failure is signaled while it is locked
unless the lock/unlock sequence is wrapPed with a failure handler that
restores the monitor. The problem is covered in more depth in section
4.3.2, but the programmer may not write all the appropriate handler
code, since failure may be signaled on any procedure invocation. The
programmer may not even be able to figure out what the handler code
should do. Both of these factors make it more probable that a failure
signal will corrupt a multiplexing job.

An additional complication is that the task may be in the same job twice (in two

different job frames). It might hold a monitor in the frame that is not signaling failure,

in which case it should not be killed. For example, this situation arises on a mytock

error. The solution is to store, for each locked monitor, the job frame that the task

was in when it locked the monitor. Happily, as discussed in 4.4.2, this does not

impose a cost on monitor entry and exit.

A hole in this scheme occurs if something is wrong in the internal state so that the job

should be killed, but the problem does not get converted to a failure signal until after

the lock is released, so the unlinking mechanism will not kin the job. (A programming

error might also be considered an error in the "internal state" and fall under this

category.) Jobs will not notice or recover from this error. The only "solution" is to

require the user of the system to notice that a server keeps signaling failure. The job

97

mechanism supplies audit tools to make this job easier. Insofar as the problem is not

noticed, system resources are wasted, and jobs using the service cannot complete.

The multiplexing job that is signaling failure, assuming that it lives, should eventually

clean up the state associated with job to which it signals, since its communication

with that job has broken down. This effect can be achieved by waiting for the

signaled job to die and the system to notify the multiplexing job through the usual

procedure, since the presumption is that the signaled job will die. A small problem is

that the signaled job may not die and not shut down its interface with the multiplexing

job, wasting resources. If this is a problem, the multiplexing gateway can catch the

failure, do the cleanup, and resignal the failure back to the caller.

The unwind signal, introduced in section 4.3.2, is much like a failure signal with

regard to monitors being left locked. When unwind is signaled by a gateway

procedure, the same check on monitors is done.

Other Recoverable Errors on Gateway Calls

This section discusses errors that are not converted to failure signals, because the

error is not recognized in a synchronous way that can be converted into a failure

signal. These errors are difficult to recognize, as well as to clean up. They include

infinite loops, jnfinjte wajts, and jnfinjte recursjons. These three have in common that

it is impossible, in general, to determine if the condition actually exists. The job

mechanism, for the first two problems, takes the two usual escape routes of relying

on the user or a timer, although it tries to make these alternatives as palatable as

possible. Asking the job is not a satisfactory approach since the job is suspect

already. Even barring that, these errors are impossible for the job to recognize in

general, so the unlinking mechanism does not try to take advantage of any special

cases the job might be able to catch.

The significance of errors that occur on gateway calls is that a layer which

temporarily surrenders a task to another job would like a guarantee that it will not

suffer as a result of the misbehavior of the called job, or at least that the misbehavior

98

is controlled; and reflected back to the caller in some expected form. Errors such as

infinite loops can occur just as easily inside the job that created the task, but Swift

makes no effort to recognize these problems. Problems with surrendering a task are

more common when the called layer is a less-trusted, higher layer which is entered

via an upcall from a multiplexing layer, for the same reasons that calls in the opposite

direction are treated differently when they signal failure. However, the error

detection and correction techniques presented here work just as well for gateway

calls whether they go down or up.

CLU already provides some help with this problem by guarding the task and its stack.

CLU typechecking guarantees that the programmer cannot modify the stack except

by going through the Swift system (by calling procedures, for example). The

upcalled procedure cannot corrupt the stack in such a way that the caller will later be

unable to run unless It misuses CLU type loopholes, a class of errors the job

mechanism does not guard against. This level of safety Is sufficient for the Swift

environment. Thus, the unlinking mechanism assumes that, regardless of errors in

the upcalled job, the stack's history of the task's execution outside of the upcalled

job is accurate and useful.

The infinite loop case that has been mentioned several times is a specific case of

the problem with relying on the cooperation of an applications programmer: the

programmer might not cooperate. In a single-user system such as Swift, the

programmer is unlikely to intentionaUy program an Infinite loop, but bugs are

inevitable. In other systems, an infinite loop may be handled by letting the task

continue to loop, using resources· and probably losing its high priority over time

through some aging mechanism, but, under the Swift deadline scheduler, such a task

will quickly get the highest priority in the system. If the loop occurs inside the job that

created the task, for instance, the only solution under Swift is for the user to notice.

Another method of dealing with the problem of infinite loops is needed, however,

because, particularly under certain program organizations, a job may wish to

99

guarantee that it gets its task back. The need to get a task back will, with exceptions,

be on a call to a higher layer, since jobs rarely expect to survive failures in the jobs

they downcall.

One possible solution is to make the user handle the problem. The chance of a user

noticing this problem is uncertain at best, and the user should not have to be

responsible for figuring out if a problem exists except in extreme cases. Further, the

job may want its task back in a time period much shorter than that in which the user

could possibly respond. Also, catching some infinite loops is better than catching

none, from the point of view of avoiding wasted resources.

A timeout mechanism, then, is the only way for one job to catch an infinite loop in

another. The job boundary is the natural pJace to set the timer. The calling job has

the best idea of what timing constraints it wants the called job to meet, so it sets the

timer just before making the call. The disadvantage, of course, is that occasionally a

timeout may occur on a computation that is just progressing slowly, for instance due

to high system load. Fortunately, it is more acceptable in Swift than in a multiuser

system to, on rare occasions, do something nasty and unnecessary to another
•

computation. It must be emphasized that mistaken identification of ongoing

computations as infinite loops is supposed to be a very rare event; the unlinking

mechanism assumes that most timeouts indicate an infinite loop, or else an upcall

that took too long regardless of whether it was in an infinite loop or not.

To further ameliorate the problem of inappropriate timeouts, one job can query a

slow job to see if it is still making progress, and give it more time if it is. The two jobs

can work out a protocol on this matter if they wish (and have some way of doing so).

In some cases, however, more drastic action will be required to retrieve the task. The

effect of permanently preempting a task is potentially bad and cannot be analyzed in

specific cases. Monitors might be left locked by the task, with accompanying

possibility for deadlock. Further, if an infinite loop occurs, a strong presumption

exists that the called job is faulty in some way. Therefore, the task is retrieved by

100

killing the called job, since the unlinking mechanism guarantees to retrieve tasks

from that point. The possibility exists that the infinite loop is actually occurring in yet

a third job that the called job called into in turn. The middle job will die even though it

does not have a bug, since it did not protect itself from the third job. Even in that

case, however, the task will be retrieved during the unlinking of the middle (and newly

killed) job, since the third job will be killed as part of the cleanup process.

Setting timers is not free. In high speed, layered applications, timers will probably be

set on at most one layer boundary, e.g. between a network protocol suite and its

application-level clients. If such a distinction can be made, the boundary between

system and user code is a good choice. Deciding where not to set timers involves

many of the same considerations that go into deciding where to use the job loophole

mechanism.

Another problem is figuring out how to set the timer. If this is a realtime task that will

lose network packets if it is trapped on an upcall, the job has a reasonable idea of

what the timer should be. The upcaU timer can be determined by the same method

used to set the task's deadline on the upcall. Also, if the task a job is giving away was

originally given to it by an upcall from some other job which has set a timer on that

original call, the timer on the new call should, of course, be set to a smaller value to

avoid the problem described above. In the relatively rare cases where the upcall

does not have a deadline, some arbitrary one can given to the upcall timer if

protection against infinite loops is desired. Since the upcall did not have a deadline,

the upcall timer can be generous.

Timers in Swift (described on page 46) have rather subtle interactions with infinite

loops. Two problems present themselves.

1. If a realtime task goes into an infinite loop and its deadline gets small
enough, the timer task will never get to run.

2. If the timer task gets hijacked by an upcall, the timer does not currently
have a way to gets its task back.

101

The solution (which is not implemented) is to provide special support for timers in the

clock interrupt handler and the scheduler. If the timer task is never getting to run and

has missed its deadline by a certain amount, the reason is that some realtime task

has missed its deadline by more. The clock Interrupt routine checks for this case and

sets the deadline of the timer task to a special very low number so that the task will

run.

If the timer task is running but has failed to make its deadline by some large amount,

the assumption is that it has been hijacked. The clock Interrupt handler checks for

this case and schedules a special task with a deadline lower than any other possible

deadline. This task retrieves the timer task by killing the job in which it Is currently

running, unless that job is the kernel.

The main difference between an Infinite watt and an infinite loop is that an infinite

wait does not use up processor resources. An infinite wait also cannot Interfere with

the timer mechanism. For both reasons, It is not as aerious. The calling job,

-however, can not distinguish the two cases, and so wfft handle them both the same

way, through the use of a timer.

Infinite recursions require a different solution. If a task is in an infinite-recursion, it

will eventually overflow its stack. If a task overflows its stack, on the other hand, the

fault lies either with the creator of the task, who made the stack too small, or with

some job which called more deeply than it should have as the result of an infinite

recursion. The current implemented solution for stack overflows is to shut down the

system, since the stack overflow detection machinery in Swift is quite clumsy, and an

overflow can have disastrous and unpredictable effects on the system.

Ideally, the creator of a task should not be responsible for knowing how big the stack

is supposed to be, since this is a ridiculous loss of modularity. Further, tricks exist for

allowing stacks to be very large and grow dynamicaHy .if necessary, to a size limit

imposed by the system. Finally, the job associated with the task that overflowed its

stack cannot continue anyway. Therefore, the design's model is that a stack

102

overflow indicates a programming bug leading to an infinite recursion. Since bounds

checking hardware on the stack is straightforward to add, and prevents the

unrecoverable errors which can currently occur, the system need not be shut down.

The job associated with the task at the time the stack overflows can be killed.

4.2.3 Unrecoverable Errors

Another set of errors are those which the unlinking mechanism does not handle.

- This category includes both those which the system does not notice, and which

cause a job or a group of jobs to break in some way; and those which cause a system

shutdown, possibly after user Intervention. These errors are either unlikely to occur

in a non-malicious environment, or impossible to recover from, or recoverable from

only at too great a cost. The errors, covered in more detail below this list, include

• Writing an Own variable shared between two jobs.

· Failure to release a monitor.

·Some infinite computations.

·Deadlock.

· Misuse of CLU type loopholes.

· Bugs in the CLU runtime system.

If two jobs share the same subsystem and one writes an Own variable

inappropriately, the other will quite possibly be corrupted. Neither the compiler nor

the runtime system makes any effort to check for this error.

If a procedure simply neglects to release a monitor it acquired, the unlinker will not

notice unless failure or unwind is signaled before the task returns from the job. Once

it returns, future attempts to check the health of the job may become confused. The

job may be killed later ostensibly for some other reason, or may never be killed at all.

This error could be caught in the runtime system, at considerable expense, by

examining all the monitors in a job on every return from one of the job's gateway

103

procedures. Compiler support could also catch this error at somewhat less expense.

Infinite loops and waits that either are, not or cannot be timed will, as already

mentioned, never be caught by the unlinker. The user may sometimes solve these
..

problems, as described in section 4.3.4.

A common and interesting error, occurring frequently while a new job is being

debugged, is deadlock. The monitor code does check for the special case of a task

trying to lock a monitor it already holds. Any more sophisticated deadlocks are

partially "solved" by deadlock avoidance through job-specific conventions for

monitor use which should prevent deadlock if fotlowed. Convention is also

sometimes used to protect an upcalting layer from the effects of a downcall back into

the layer, as described in section 2.2.5. In the event of deadlock, however, the parts

of the system which are not Involved can keep running. Also, deadlock can be solved

by timers, if a job wants to use such an approach, but finding the source of a

deadlock and rewriting the code to avoid it would be much more typical in Swift.

Finally, a sophisticated debugger and system monitoring tool might allow the user to

find deadlock or guess it exists and pick a job to abort.

Misuse of CLU type loopholes can cause all sorts of disastrous, unspecified behavior.

Unfortunately, eliminating the loopholes is impossible, both for efficiency reasons

and because CLU has some limitations that the loopholes circumvent. Attempting to

restrict their use is not appropriate in the Swift environment. Treating jobs which use

loopholes differently from those that do not might be effective in cases where a smart

debugger can recognize a certain error as resolting from a type violation or to help

localize an error. Particularly in the absence of such a debugger, an ad hoc

approach to debugging programs which misuse loopholes is acceptable, as

indicated by experience in building the system. If the symptoms of a type loophole

bug, e.g. an attempt to execute an invalid instruction, are noticed, the system is shut

down immediately.

Bugs in the CLU runtime system cannot be dealt with inside Swift, of course, since

104

Swift sits on top of the runtime system. These are much like hardware errors, such as

parity errors, which should also cause system shutdown if noticed. Errors in the

runtime system should be extremely rare.

4.3 Cleanup

The chief role of the job is to facilitate cleanup. This cleanup is of two types. First,

the dead job must be eliminated from the system, which requires eliminating its

associated resources. Second, jobs that are still running ·must shut down their

interfaces with the dead Job.

As pointed out in chapter 3, the dead job cannot be counted on to help with its own

unlinking. On the other hand, inside a dead job, nothing is worth saving, so the

cleanup procedure can be radical. The unlinker throws out the entire job instead of

using assistance from inside it.

Since the unlinking mechanism is able to free resources associated with many failed

jobs, it can also be used to clean up after jobs that terminate without failing. This

service saves such a job from worrying about whether it has freed all its resources.

Fortunately, unlinking is sufficiently efficient so that it can be used for this purpose.

The unlinking mechanism relies on the cooperation of the interfacing job to unlink

that interface, the price paid for avoiding the disadvantages described in chapter 3.

Since these jobs are still alive and hence assumed working correctly, relying on them

for help is acceptable, particularly since each job only helps clean up itself. If a job

fails to clean itself up property, that will probably appear as an error, which will result

in the job failing and getting cleaned up in turn. If the job's cleanup procedure has

bugs, the job can break down, but that is true of all the code run by the job.

The unlinking process is divided into three phases. First, the job is marked dead, so

that no new interaction with it may start. Then, each of the tasks involved with the

dead job is allowed to clean itself up. Possibly, depending on the scheduling

105

•

constraints that a task is operating under, it should receive special scheduling

treatment to allow it to clean up more quickly (in real time). At a specifi6 point in the

middle of phaae two, all dynamic interaction has ceased, and the job's storage may

be freed. Finally, in phase 3, since there is no dynamic element of interaction with

dead job left, other jobs which communicated with the dead job may shut down the

static interfaces for that communication. Unlinking should not be unnecessarily

delayed, but, since those static resources are probably not in great demand, this

phase does not have urgent priority.

The three phases transform the system from one with a live job in the middle of a

computation to one In which the job has gone except for some information in the

system log. During the cleanup between these two equilibria, the "dead" job is partly

dead but still partly alive, since its interfaces still exist. Furthermore, tasks can still

temporarily run on behalf of the dead job, due to the delay In propagating the death.

A straightforward way of avoiding this problem would be to shut down the other

computations in the system until unlinking was completed, so that continuing

computations did not have to be prepared to face unlinking.24 Unfortunately,

computations have realtime constraints, and unlinking requires more time than these

constraints allow. Therefore, some compromise is necessary. The results of

unlinking will be visible to different tasks asynchronously and at unpredictable times.

For instance, a network task may find that a job is dead, even though it is still able to

leave a packet in a buffer that some other job is maintaining for the dead job. The

phases will give the job a framework of what conditions it might encounter after the

death of a job with which it is communicating.

24
This solution provides the same sort of guarantees as those provided by atomic transaction

mechanisms. It costs nothing in resources. but allows less concurrency.

106

4.3.1 Phase 1

In phase 1, the job is marked as dead. After that, a task is scheduled to kill any jobs

that are dependent, as described in 4.1.3, on the newly killed job .

. .

No job should be allowed to start an interaction with a job once it has been declared

dead, since the interaction cannot accomplish anything, will have to be cleaned up

anyway, and may unnecessarily poison a healthy calling job. From this point, any

attempt to enter a dead job by a call to one of its gateway procedures will be caught

by the sY8tem and will result in a signal being raised to allow the calling job to take

appropriate action. The specific changes to the signaling mechanism for the

purposes of unlinking are described below. On the other hand, job death is

necessarily asynchronous, since propagating the death of the job will take time, and

the tasks in a job must be written to endure that. All action on behalf of the dead job

will not cease immediately.

Phase 1 also gives the unlinking mechanism a place to stand. After the job is marked

dead, the unlinker can proceed on the assumption that no new work is being created

for it as it unlinks the already existing interactions with the dead job.

One of the advantages of the three phase implementation is that phase 1 is quite fast.

The call to jobSk 111 does enter a monitor (which should rarely be locked) so might

temporarily be blocked, and does schedule a task, however it 8hould still be fast

enough so that tasks with realtime constraints do not need to make special

arrangements to kill a job.

4.3.2 Phase 2

In this phase, all the tasks associated with the dead job are unlinked from it. Tasks

are supposed to unwind and clean up up their own execution, rather than worry

about cleaning up interfaces between jobs, because that is what they know best

about and because other tasks may need to use those interfaces. A task is

associated with a job if the job appears anywhere on the task's job stack.

107

A task should be unlinked from a dead job for several reasons. First, any work it does

will be wasted. Second, the code associated with dead job may not be prepared to

handle the conditions that occur after the job dies. If the task gets confused by the

failure of the job, such disasters as infinite loops and infinite waits are a possibility if

the unlinker does not do anything to prevent them. Third, even if the tasks are not

confused, some of them will want to back out of their interaction with the dead job at

some point. This backing out may involve interfaces the dead job has with other jobs.

Therefore, those interfaces may not be cleaned up until the tasks are unlinked.

Preemption of a Task in a Live Job?

As implied in the last paragraph, since some sort of backout is required, unlinking a

task, or allowing the task to unlink itself, is not just a matter of freeing the resources

explicitly associated with the task (i.e. its ~ack) and never allowing it to run again.

Truncating the stack and allowing the task to start running again at the point where it

would return from the dead job is also not acceptable. While running on behalf of a

job that dies, a task may enter a live job, and a live job cannot endure having tasks

preempted at arbitrary points inside it, for several reasons.

The first is that a job might want to experiment with a stack-oriented allocation of

resources that was not explicitly tied to the stack of the task using the resource. One

example often discussed in the Swift project is a network protocol using packet

buffers which it allocates out of its own pool without going through the CLU allocator.

The protocol wants to allocate the buffers, upcall, and free them when the upcall

returns. Preemption could prevent a buffer from ever being freed.

A second and more convincing reason has to do with monitors. The task may hold

monitors in its current job at the time it is preempted. A layer may wish to call into

another job while leaving a monitor held, to achieve the appropriate synchronization,

so might hold monitors in multiple layers. For these monitors to continue to be used,

and for the job that owns them to continue to run, they must be put back in a

consistent state. Only the tasks which have made the state inconsistent can restore

108

it.

The final reasc>n stems from the non-atomic implementation of built-in operations in

Swift, and is closely related to the problem with monitors. Preemption inside of a
..

non-atomic operations could result in the creation of an invalid object. Under certain

obscure circumstances, detailed below, the invalid object could be used, and

potentially corrupt the address space as a result.

First, if the object is shared between tasks, it will be protected by a monitor left locked

by the preemption, as described above. Therefore, the object must be used by only

one task so that it does not have to be protected by a monitor. Second, the task is

being preempted out of one job frame, so it must access the object in another job

frame for the same job if problems are to occur. Specifically, let job A have a single

task T and an unprotected object O. Let job B be another job. Suppose T calls from

an original job frame for A into B, and in tum back Into a second job frame for A,

where it starts to non-atomically manipulate 0. If B dies and T is preempted in the

middle of changing 0, then T will eventually return from B to the original frame for A,

which can look at a corrupted 0. This sequence could only happen if A and B had

some sort of agreement that B does not call in with a different task.

The conclusion is that a more complex approach is needed to clean up tasks in live

jobs. The unlinking mechanism uses a modified form of CLU signals, as described

below.

Preemption of a Task in a Dead Job

If the task is running inside a dead job, on the other hand, it can be preempted and

restarted at an appropriate point outside the job (after some surgery on the task's

state). Similarly, as a task is being unlinked and unwound, any dead jobs it passed

through do not need a chance to clean up. The problems with preemption in live jobs

were part of efforts to maintain the job's state. Once the job is dead, the unlinking

mechanism can use a radical cleanup procedure to dispose of all the job's resources.

As claimed, treeing a dead and hence suspect job's resources does not require using

109

the job itself.

Specifically, the problems with preemption in dead jobs are handled as follows.

1. Any resources inside the job that were allocated from a pool (as
hypothesized above) are used only by the dead job and jobs that
communicate with it. As part of the job's death, the entire pool will be
freed by the garbage collector since the only references to it are in the
dead job.25

2. If monitors inside the dead job are left locked as the result of a
preemption, any tasks waiting on those monitors will be preempted at
some point, since they are then associated with a dead Job. The
monitors will be garbage cottected along with the dead job. Notice that,
as the result of preemption, monitors would be left locked If the monitors
were shared between jobs. Tasks in the still-live job attempting to use
the monitor would be in trouble.

3. For the case of non-atomic built-in types, since only one task is Involved,
if it is preempted, it will, due to the design of task cleanup, never again
run inside the dead job, so will never see the potentiaJly corrupted object.

Also note that kernel operations that do not require the calling task to switch to the

kernel job may be preempted if the calling job dies, since, as far as the unlinker can

tell, the task is inside the dead job. That is why such routines must be written to

endure this possibility.

Phase two, in turn, is divided into two subphases. First, the unlinking mechanism

must find all tasks associated with the job and notify them to begin cleanup. Second,

the tasks must clean themselves up. Due to the asynpttronous nature of unlinking, it

is quite possible that the phases overlap for different tasks. For·example, one task

associated with a dead job could be cleaning itself up while another has not yet been

notified.

25To ensure that the pool will actually be freed under certain possible implementations of the pool
scheme, jobs that are communicating with the dead job may be required. as part of the process of
disentangling themselves from the dead job, to eliminate references to the pool's elements. In these
implementations. if the other 1obs do not behave responsibly, the pool wrll not be freed until those jobs
die.

110

A task is associated with a job if it is currently running on behalf of that job (the job is

on top of the task's job stack), or if it was in the middle of running on behalf of that

job and its action in the dead job was temporarily suspended to call into another job

{the job is someYihere else on the task's job stack). The two different states are

distinguished because they are require slightly differently treatment from the

unlinking mechanism. In the former case, although a task should not run on behalf of

a dead job indefinitely, the unlinking mechanism could not prevent it from doing so

temporarily unless it checked a task's job every time the task was about to gain the

processor. Needing to clean up Is much rarer than process switching and the

expense of checking the job's status on every gateway call is already painful enough;

additional checks should be avoided if possible. Also, the job loophole mechanism

would not avoid a check done on every task scheduling, and so would be less

effective in avoiding the cost of jobs.

Fortunately, this additional check can be avoided in Swift. A task currently running

on behalf of a dead job wastes processor resources. It can call out and temporarily

use resources in another job, but that is exactly as if it had called out before the job

was killed, a condition the two jobs have to be able to endure anyway. The task, at

worst, can make a small nuisance of itself until the unlinking mechanism gets around

to identifying it as a task that needs to be cleaned up.

When the unlinking mechanism does find a task currently operating inside a dead

job, it immediately and atomically terminates the call. The task will resume in the

calling job, and will receive some appropriate signal.

For tasks that have a dead job suspended on their job stack but are currently in a live

job, the approach used is to set a cleanup-waiting switch in the task. Once this

switch is set, it will be checked at certain places, and from these few places,

synchronously passed to the task as a CLU signal {as opposed to immediately

$ending the signal up the stack regardless of what the task might be in the middle of

executing), a graceful mechanism for task-based cleanup. Once no dead jobs are

111

left on its stack, the switch is turned off. Specifically, the switch is checked on

gateway calls, and also in certain situations (detailed in the discussion about

monitors below) when the task puts itself to sleep or wakes itself up. If the task is

already asleep in one of these situations, the unlinker sends the task a wakeup after it

checks the switch.

Once the unlinking mechanism has found all tasks associated with the dead job,

phase 2.a is over. Once all the tasks actively running on behalf of the dead job are

found and repaired, no task can run inside the dead job due to the various checks

done at the walls of the job. At this point, the job storage is freed, merely by

eliminating the reference to it associated with the job and/or deleting Own

references if this is the last job using the subsystem.

In phase 2.b, each task cleans itself up, with help from the modified CLU signal

handling code. The task keeps its old scheduling parameters while cleaning itself up,

although it can change those parameters if that is appropriate.

Once a task gets a signal indicating that it has a cleanup waiting, it is expected to

clean up and get out as soon as possible, for efficiency reasons. A number of

restrictions were considered on tasks that were cleaning up, such as not allowing

them to call into other jobs or enter monitors, but were rejected as too limiting. For

instance, a restriction on calls to other jobs would rule out printing error messages.

Since tasks can call anywhere, the unlinker has no clever heuristics to tell if the

cleanup has bogged down somewhere; it cannot, for instance, notice that a task is

waiting for a wakeup that will never occur. The unlinker sets a timer on task cleanup,

and otherwise once again expects the job to behave in a responsible manner.

The Mechanics of Retrieving Tasks

The next three sections describe how CLU signals are used to retrieve tasks from

dead jobs while allowing them to clean up their state in any live jobs they may pass

through on the way, using exception handling code in the procedures belonging to

the job. In particular, locked monitors must be restored to consistency and unlocked

112

during cleanup. Note that, after phase 2.a, no task is currently operating inside a

dead job. A task associated with a dead job is in a live job, with some collection of

live and dead jobs suspended beneath it, as show in figure 4-7. The unlinking

mechanism has an algorithm that works for the general case.

Signals

The unlinking mechanism uses two new signals, job_dead(dead_job), and unwind,

to retrieve tasks. The signals can be raised only by the unlinker, not by application

code. They represent a system-defined global protocol for communication between

jobs for the purposes of cleanup, and jobs that wish to do cleanup must be prepared

to handle them. The global nature of the protocol is a drawback, but not a very

serious one due to the fact that the number of signals is limited and small.26 The

two signals work in different ways. job_dead may happen· only on a call to another

job, and on any call to another job. It guarantees only that the job died before the call

returned completely, although the job may have died even before the call was made.

A task receives this signal only if the unlinking mechanism believes that the task has

no other dead jobs on its job stack. If the unllnker finds other dead jobs, the task is

unwound until all dead jobs are off it. That includes not only the job that the unlinker

is dealing with at that moment, but any dead jobs it comes across on the task's stack.

job_dead is like a usual CLU signal, indicating an abnormal return result. However,

26 Another approach, employed by Dave Clark for cleanup in an early prototype upcall system, avoids
globally defined signals. This approach requires that, if job A allows job B to call into it, and wishes to
survive the death of job B, job A provide a gateway procedure to return tasks belonging to job B, which
will be called aa pert of job B's cleanup. The philosophy behind this approach is that tasks which call
into another l8flf do not do much computing, but either enter a monitor, do their work, and retum, or
else have to Wllll'an mme event. In the latter case, the one that an unlinking mechanism needs to worry
about, the cl8..., calt uaually has an obvious way to change the state of the called layer so that the
desired task will Wiike up and notice that it has to leave when it looks around to determine why it was
awakened. It will then return, cleaning up its interaction wtth the catled layer on the way.

This approach would require no more job management than the current approach. to keep track of all
the tasks in a job instead of keeping track of all the jobs a task is in. It might arguably be more difficult to
write and maintain the cleanup procedure in the presence of changes to the lower level, particularly if
the lower level used some complicated organizational technique. In the current solution, the unlinking
mechanism's solution works automatically tor the general case.

113

If Job 8 dies, it may leave Task T's job frame in several possible states.

A1

Job A has gateway procedures A 1 and A2.

A2

Job A

Job 8 has gateway procedures 81 and 82.

JobB

Job C has gateway procedures C1 and C2.

JobC

Entry Proc 81 C1

Stack for T E l=I
Frame A(1) 8(1) C(1)

Case 1: T, running on behalf of A, calls 81, which in turn calls Cl.

Entry Proc 81 C1 82 C2 A 1 81 C2

Stack forT E I =I · I =I I I =I I
Frame- A (1) 8 (1) C(1) 8(2)' C (2) A (2) B (3) C (3)

Case 2: T, running on behalf of A, calls 81, which in turn calls Cl, which in turn calls ... C2.

Figure 4· 7: Examples of Different Configurations at Job Termination

114

since all gateway procedures should be able to signal it, forcing the programmer to

specify the signal in the procedure interface has little benefit and high potential for

error, therefore is not required. Another difference between job_dead and a regular

CLU signal is that, when a task leaves a job, it may call back into the job and change

the state of the job out from under the procedure which called out. After the signal,

the job may find that some cleanup has already been done. This is just a variant on

the need for some strategy to handle circular calls.

The unw1 nd signal has rather tricky semantics, but the basic idea is straightforward.

As mentioned, if a dead job is somewhere on the stack of a task, the stack must clean

off all appearances of the job, which requires cleaning off intervening live jobs as

well. These other jobs which must be removed first need a chance to clean up, and

unwind gives them that opportunity. The signal mechanism notices that an unwind is

needed, using the rules described in the monitor section below. It then propagates

the unwind signal up the stack until all the dead Jobs are gone, giving live jobs a

chance to handle the signal. After a job's code is notified, it has a certain amount of

time to clean up that job frame, after which point the job Is killed. Whether a frame

cleans itself up or is killed, the next job on the stack is notified with an unwind in tum,

until finally all the dead jobs have been removed and Job_dead is signaled to the job

calling the lowest dead job. The way the scheme Is envisioned to work is that as the

stack is unwound, most frames will not need user-defined unwinding, so no handler

code needs to be written or executed. The main case that handlers must take care of

is locked monitors.

unwind is somewhat different from normal CLU signals. ACLU signal is a method of

returning an exceptional, but not unexpected, result from a procedure invocation.

The conditions which a procedure can signal are part of its interface, so the caller of

a procedure knows all the events it might have to face. unwind, on the other hand,

might appropriately be signaled by any procedure, therefore, just as with failure, all

procedures automatically have the capability to signal unwind.

115

Code that does not have anything to unwind should be able to ignore the signal.

Further, every procedure on the stack should get a chance to receive it, unless some

procedure specifically takes responsibility for stopping the signal. Therefore, this

signal, like failure •. will be propagated automatically up the stack as each procedure

invocation unwinds. These two factors make it more asynchronous that other signals

in the sense that it can, as far as the language is concerned, be received anywhere.

On the other hand, the procedures that can signal unw1 nd are, from the perspective

of the programmer, limited by higher-level knowledge in the manner as described

below.

Once the signal is handled, the task should usually keep unwinding, since the task is

supposed to be cleaning up its state in the job it is currently in and getting back to a

point where the damage is all cleared off. On the other hand, the programmer should

not be burdened with having to resignal unwind. Therefore, when a program leaves

an unwind handler, unwind is signaled again as a default case. This default may be

bypassed by signaling something else, or by specifying a return_no_11gna 1 or an

ex 1t_no_s1gna1 (to keep running in the procedure which handled the exception).

The three options are demonstrated in figure 4-8, in which two procedures from the

same job are involved with an unwind. The only requirement is that the cleanup of

one job's interaction with the stack must occur within the limit set by the unlinker's

timer.

Regardless of what the procedures inside a job frame do with an unwind signal, each

job frame should receive this signal in turn. Therefore, no matter what happens

inside a job after it handles an unwind, returning from a gateway procedure into

another job C8tJ8eS unwind to be signaled again. Once all dead jobs are off the stack,

the cleanup_ waiting is turned off.

Problems with Monitors

Monitors, and their interactions with unwinding tasks, represent the biggest problem

in task cleanup. As described in section 2.2.3, a monitor controls access to a piece

116

caller • proc()
handler()

except when unwind:
statement-Ct

end
statement-CZ

end caller

handler • proc()
unwind_signaler()

except when unwind:
statement-Ht
statement-H• % Several possibilities here

end
statement-HZ

end handler

caller calls handler. handler calls unwind_aignaler,
which signals unwind.

handler handles the signal, executes stat .. ent-Ht,
and then executes 1tate11ent-H• Three different
statements might be executed after 1tat ... nt-H• 1

depending on whether atate•nt-H• is the empty
statement, return_no_aignal, or exit_no_aignal.

1. the empty statement:
unwind will be resignaled. state .. nt-C1 will be
executed.

2. return_no_s1gna1:
stat•••nt-C2 will be executed.

3.ex1t_no_a1gna1:
statement-HZ will be executed.

Figure 4-8: Modifications to Support the Unwind Signal

117

of shared data. When a procedure enters the monitor, it is able to use the data

because it makes certain assumptions about the data's state. Once the monitor is

entered, a procedure is free to violate those assumptions, as long as they are

restored before th~ monitor is released and another procedure gets to use the data.

A job, particularly a multiplexing one, must not lose control of its monitored data in

the event that a task that has called into it must be unwound. The problem is that

signals switch the flow of control out of the expected path. If a signal can occur at

any point, including a point at which a monitor lock is held, the programmer will find it

difficult to handle all the cases which may occur in such a way that the monitor

invariant is restored. For instance, it may be in the middle of an atomic change to the

state and find it difficult to go forward or back. A critical complication is that the

monitor mechanism should be fast, and should thus be burdened as little as possible

by the job mechanism.

Several solutions to this problem have been considered and rejected.

1. Defer the cleanup until the task holds no more monitors. A counter of
the number of monitors held can be incremented at every monitor entry,
and decremented at every monitor exit. If the count reaches 0, and the
task has a cleanup waiting, a signal is raised. The performance penalty
is not great, but is paid on every monitor entry and exit. A problem with
this simple version is that the task would potentially have to clean up
inside a dead job, if it held one of the dead job's monitors. Two possible
ways around that are to forbid holding a monitor when calling into
another job, or to keep a stack, with one entry per job frame, keeping
track of the number of monitors held by that frame. The first is more
inflexible than is desirable. The second further raises the expense of
calls to gateway procedures.

This scheme also appears to satisfy another goal, that of reducing the
interference between normal execution and cleanup, since cleanup does
not happen until no monitors are held, and the interactions between
normal execution and cleanup are much more straightforward. In fact,
however, the opposite is true, since the job is now responsible for getting
itself out of monitors. The interactions are now more subtle and handling
them is correspondingly harder. For instance, it a tusk blocks itself while
holding a monitor, and its wakeup is lost as the result of an error, the

118

unlinking mechanism will never be able to get the task back gracefully.
The various procedures which hold monitor tocks must understand and
plan for the possible interactions between tasks that occur when the
tasks are being cleaned up. The mechanisms to handle this must be
interspersed with the regular code, since the procedure will not be
informed by the system of a job death.

Apart from expense, this scheme is still acceptable, although is not the
one used in this. design. Assuming the second optimization is chosen,
the drawbacks to this scheme reveal themselves in rather Intricate
organizations of' monitors, and only during failures, which are rare. An
unlinking mechanism could be useful even without handling these
situations gracefully. Instead, the mechanism could recover by killing
more jobs. The jobs themselves would not need to worry about handling
these situations, and cleanup would be less effective but not more
complicated.

A possible optimization for this scheme is to distinguish between locking
a monitor to alter an object, and tocking only to read the object. In the
latter case, no cleanup on the shared state is required, so this monitor
does not have to be counted. This optimization is of use if a read-only
lock is held for a very long time, slowing down the cleanup process as a
result.

2. Keep track of the monitors held by a task, and assume that their
invariants no longer holds if the task Is unlinked. This is a safe approach,
but loses monitors, and thus jobs, which are otherwise healthy.

3. Automatically release the monitor lock on unwind, but force each
entering task to check to see that the invariant holds: this is
unacceptably inefficient. The check on the invariant may be impossible
to write without adding redundancy to the monitor, adding additional
expense. This scheme also loses monitors unnecessarily since it does
not provide a chance to clean up.

4. Checkpoint monitors and restore them if there is an abort. A cleanup
would then have both the initial state and the current state to use in
cleanup. As with checking the invariant, it may not be obvious whether
the modification should back out or finish. This approach would also
make monitor entry and exit prohibitively more expensive in the normal
(non-abort) case.

5. Put an exception handler on every statement. If the procedure does this,

119

it knows exactly where the problem occurred, and how to fix it. On the
other hand, several serious disadvantages present themselves. An
exception handler per statement within a monitor implies a large amount
of extra code. The extra code will be a nuisance for the programmer to
write, and to maintain. Programming the cleanup will sometimes be
difficult or unclean. In some cases, it will require saving extra
information during normal operation to provide hooks for cleanup, which
slows down normal code execution.

The scheme finally chosen is designed to add no performance cost to the monitor

mechanism. It does not requiring checking a flag, changing a counter, or any more

complicated approach on normal monitor entry and exit. The cleanup_ waiting switch

is checked and signals may thus come when monitors are held, but only at certain

plausible times. By allowing unlinking signals to be passed to a task at only a few

points, it imposes a necessary order for the benefit of operations that cannot tolerate

asynchrony. This approach requires the job to have extra exception handling code

to protect any monitor whose job is worth preserving. The scheme is not ideal, but is

a practical compromise.

The task checks for a waiting cleanup when It blocks itself, when it waits on a

resource variable, and when it wakes up from either of these events. Any of these

could occur on a call to another gateway procedure, which is already checked for

other reasons. Thus, a programmer who locks a monitor must keep track of whether

any of the procedure calls made with the monitor locked might do one of these

things, and must write exception handling code to recover. Usually, at most one or

two of these calls will occur with a monitor held.

This loss of modularity is not particularly painful. The programmer does not need to

know what happens inside another job, only that it is entered. Under the Swift

conventions for communication between jobs, a programmer generally needs to

know when a call with monitor held might result in the job being changed, as part of

the information needed to avoid deadlock. Also, since the call to the other job might

be dead, some mechanism is needed to pass the fact to the locked monitor anyway.

120

The programmer usually, although not necessarily, would already also want to know

about calls that might go blocked with a monitor held. Finally, a task's interaction

with a job is usually "thin", only one or two procedures deep, so finding calls to other

jobs should not be too difficult.

This approach will not work as well for applications which want to do some sort of

unwinding that is not stack-based, or do not want to keep track of calls into other

jobs. Programmers, in these more obscure cases, will have to pay the penalties of

extra work and lack of modularity. Since these cases are not believed to be common,

this solution is acceptable.

The situations the unlinking mechanism avoids are those in which a task that should

be unlinked is blocked for a tong or unbounded period, preventing the unlink from

occurring. Long waits can happen when a task blocks itself, or waits on a resource

variable. In the first case, the blocked task must be awakened by some other task at

. some unpredictable point in the future. The other task may be waiting for external

input, or some breakdown in communication may prevent the other task from ever

doing the wakeup at all.27 Similarly, in the second case, the task must wait for some

other task to free a quantity of the desired resource, with the same danger that the

other task will never come. Furthermore, the blocked task will eventually receive a

resource for which it has no use. In both cases, the unlinker solves the problem by

defining an extra wakeup that a task may receive in the event of an error.

The unlinker ignores situations In which the task has not explicitly blocked itself. If a

task is not blocked, it will, unless it is in an infinite loop, eventually and usually

quickly, try to enter or leave a job, and receive the signal then. If the task loses the

processor _through being preempted by another, that other task is more important,

and the first task cannot act on the notification until the task with the lower deadline

27 The job in which the task blocks itself is still alive in this case. If this job somehow kept track of
tasks from other jobs that blocked themselves, it could wake those tasks up if the other jobs died.
Unfortunately, the live job will not be notified about the dead jobs until their tasks have cleaned
themselves up.

121

is through anyway. The unlinker might try to notify the task when it was resumed,

but, since job death is asynchronous, the unlinking mechanism cannot guarantee a

programmer that a task is not running on behalf of a dead job. Making a bigger effort

to notify the task while inside the job does not give more functionality, allows signals

to be raised at any point, and provides performance benefits that are insignificant

compared to the cost.

The unlinker also does not check the switch on -calls to 110n1toredSent1r and

mon1tor1dS1tav1. In the case where the task gets the monitor lock, the situation is

much as it would have been if the task had never entered the monitor. If the task

blocks itself or calls into another job while holding the monitor, the other

mechanisms will notice the fact and clean up the task in some graceful or not-so

graceful way. If not, the task should leave the monitor quickly, for the same reason

that tasks tend to leave jobs quickly.

If the task fails to get the monitor, it must wait for the current holder to release the

lock. This will usually happen quickly, allowing the waiting task to continue; a task

will generally not block while holding a monitor since that will potentially

inconvenience other tasks. If the task holding the lock does block, it will, of course,

have no way of knowing that some other task waiting for the lock has a cleanup

waiting, so the other task will be forced to wait. On the other hand, the tasks using

the monitor must normally (in the absence of cleanup) be able to endure whatever

wait the managing job imposes on them, so the same wait during cleanup should not

be a serious problem.

Checking the switch at an additional spot provides benefits only in rare situations,

and entails significant costs. Checking the switch at monitor entry does not

guarantee that the switch is not set immediately afterward. Not only does the cost of

monitor entry and exit rise, but the check forces the programmer to be prepared to

handle an extra signal from aon1tor1dS1nter and 110n1tor1dS1tav1.

In summary, a programmer of a job must know whether certain events happen during

122

a procedure call. unwind might be signaled on procedure caUs which potentially lead

to

1 . A call to another job.

2. A call to tal-k$b 1 ock.

3. A call to monitorSawait_reaource.

On the other hand, unwind is not signaled by 110nitorSenter.

4.3.3 Phase 3

After phase 2, tasks that were interacting with the dead job have been notified. They

may have been able to handle that notification in such a way that some jobs that have

an interface with the dead job are still alive. In phase 3 the question becomes how

one job shuts down its interface with a job that has died.

Shutting Down the Interlace

A job shuts down its interface through a natural use of the upcall mechanism which is

so useful elsewhere in Swift. A job that wishes to be notified of the death of another

registers three items with the system: the identity of that other job, an upcall, and an

argument. When the other job dies, the system uses a cleanup task to upcall the first

job using the registered procedure and argument, as shown In figure 4-11, page 134.

It does this, in turn, for each job that registered itself. The called job cleans Itself up,

in whatever way is appropriate. The unlinker's task is protected by the job

mechanism from errors in the called job's cleanup.

This technique is quite flexible. For instance, suppose job A, which did not

communicate directly with a dead job B still wanted to be informed when job B died.

That desire implies the existence of an intermediary job C that did communicate

directly with the both B and A. Job C either can call into job A after its own

notification at cleanup time, or could have passed the value of the job B to job A at

the time communications were established, allowing job A to request its own

notification from the system.

123

As for scheduling this upcall, phase 3 need not be particularly fast, since the tasks in

a job. have to be able to survive while phase 3 is occurring anyway. A standard

problem with upcalls remains, which is what to do with an infinite loop. The problem

is more difficult in that the unlinker has no way to decide how to set the timer on its

upcalls since it has no time constraints of its own. This scheduling decision is

pushed back on the notifying job. (The system can check to make sure that the timer

period does not exceed some maximum value.)

A problem

Some tasks in this still live job may not yet realize that the job they were working with

is dead. If they try to call into the dead job, they will receive notification by signal,

and so will learn of the problem. The race condition that must be worried about is

when the task enters a monitor, for instance after returning from an upcall to a job

that later died, to do a service for the dead job. The same race condition occurs

when a client job closes down an interface normally while the server job is attempting

to upcall it. The task can then confuse its current layer, which has already cleaned

up its interface with the dead job.

An example may make this clearer. Suppose that the lowest layer in a network

protocol creates a task for every client job. (This organization is not essential for the

problem to exist, but should make the point clearer.) When an interrupt comes in, the

handler looks at information in the packet to determine which client should be

upcalled, and then wakes up the corresponding task to. carry the packet to the

correct client. Further suppose that the lowest layer maintains a pool of packet

buffers, one of which is user to store a packet when it comes in and is passed to the

next higher layer on the upcall.

In this contrived example, the packet buffer is used by some other task, which leaves

it in a list in the higher layer when done. Upcalls from the lower layer, in addition to

leaving a new packet, look at this list to see if any old packet buffers can be freed. An

upcafl returns whatever it finds in the list.

124

--------- --------------------------

If a client job dies just before a packet for it is received, the lower layer will wake up

its corresponding task, which will attempt to upcall the dead client and be told, via a

failure signal, that the client is no longer there. Suppose, on the other hand, that the

upcall returns with a list of packets to be freed, its task is preempted, and then the

client job dies. As far as the unlinker is concerned, the lower layer is no longer in

contact with the client, so phase 3 can begin. During phase 3, all the packets owned

by the client job are freed. Then, in the fullness of time, the sleeping task associated

with the client wakes up and attempts to free the packets again, causing great

confusion. The problem is that the task is still communicating with the dead job, but

the unlinker cannot identify that fact.

The problem can be programmed around in this case. The lower layer might put in a

check to prevent a packet from being freed twice, but that is inconvenient, and may

be inefficient as well. The unlinker might have added a mechanism for aborting a

task so that, as part of phase 3, the lower layer could, without putting monitors at risk,

kill the t~ associated with the client before freeing the packets, but that requires

tricky programming from the implementor of the layer as well as more function from

the system. Ideally, a layer that works in this fashion should not become a much

bigger chore to implement in the presence of jobs.

Jobs work out their own conventions to cope with this problem, but the usual one is

to keep a monitored flag per client job, telling whether the communication with that

other job is still active. Another task wishing to clean up the interface will first

change that flag. A task that holds the monitor lock on the flag is thus guaranteed

that its operation is synchronized before any cleanup. If the task neglects to release

this monitor, a cleanup task in the job could be permanently confused. This is

another reason that a job is considered to fail when a task leaves some of that job's

monitors locked on exit from the job.

125

4.3.4 Audit Tools

In Swift, as in the other systems discussed, the unlinking mechanism will fail in

certain circumstances, requiring the user to intervene. This intervention is limited to

two choices: shutting down the running Swift system or killing a single job. The

coarse grain of the two provided actions is dictated by several factors. First, these

two choices do provide the user with the important abilities to kill a piece of the

system believed to be faulty and to "recover" from a disastrous situation by restartir;ig

the system. Second is the belief that users cannot generally make finer grained

decisions in a sensible manner. Finally, maintaining the information that the user

would need to manipulate units other than jobs would entail significant extra

expense.

Therefore, these tools do not give the user an opportunity to, for instance, abort

individual tasks or try to fix monitors. These pieces exist inside jobs, and the user

usually cannot analyze these objects without detailed knowledge of the application.

The unlinker will carry out the required manipulation of tasks and monitors after a job

is killed.

This section draws a line between the unlinker and the debugger. It describes a few

tools needed to allow a user to participate in unlinking. This user is assumed not to

have experience programming the applications being used. A good debugger would

be able to make use of much more elaborate functions to support a user who was

programming an application, or who was willing to attack an application bug as a

programmer.

The user requires information to decide when and what kind of unlinking action

should be taken, and access to the system to actually carry out a decision. The

information gets to the user in two ways. The first is that the job mechanism can

notify the user {in some form determined by the user interface) when it suspects that

something is wrong. This notification will be given whenever a job is killed by the

job/unlinking mechanism. Examples of job deaths in this category include those

126

caused by failures signaled from jobs and by timeouts occurring on cleanup. These

cases are considered to indicate bugs in the job, of which the user should be aware.

This information will also be kept in a system log.

The second way of learning about a problem is that the user can ask the job

mechanism for information to help in diagnosing some suspicious situation. The

mechanism maintains several types of information. It will record how often a

multiplexing job signals failure back to a client. As mentioned in section 4.2.2,

although such a job is allowed to survive, It may have an error. It will also keep track

of how many times f allure is signaled to a job. The job mechanism will not kill a job

after it signals or receives failure some arbitrary number of times, but will rely on the

user's judgment. It might, after some number of signals, notify the user of the job's

behavior. In any case, the user can ask for this information on any or all jobs.

The job mechanism, as previously described, does not make an effort to find infinite

loops and waits, but merely provides other jobs with the opportunity to detect them.

· tf a job creates a task that starts looping inside that Job, no other job can possibly

detect the loop. Furthermore, jobs will frequently choose not to set timers on calls to

other jobs to catch problems. As a result, some infinite loops will only be detected by

the user, who is required either to guess which job is looping and kill it or to reboot

the system. To assist in this endeavor, the job mechanism provides

task.Scheck_current_taak. This procedure will, in response to a user request, give

information about the current job and deadline of the currently running task, or, more

accurately, the task that was preempted to run the task executing

task.Scheck_current_task. As claimed at the start of this section, manipulating and

even looking at tasks is too confusing in general, but the user can cope with the

special case of deciding that a task has missed its deadline by an unreasonable

amount.

Infinite loops come in two types, those which never surrender the processor unless

interrupted, and those which periodically allow other tasks to run. The second type

127

are less severe, since other work may still be done, but are harder to detect for the

same reason. Checking the current task will help the user identify the first type, since

the current task will quickly show a long-expired deadline which indicates that

something is wrong. Its current job can be killed to end the problem.

Catching the second type of infinite loop cannot be done with the same certainty, but

certain frequent cases can be handled with the right support. Such a loop will

sometimes be caught by checking the current task as above, possibly several times.

Perhaps the loop will surrender the processor to print out a message or perform

some other action that the user notices. The user can also get a picture of what all

the tasks in the system, or all the tasks associated with a certain job, or a single task,

are doing. This information, since it is not maintained and must be collected while

the system is in operation, will not be consistent across all the tasks listed. The hope

is that the user can notice a single anomalous case when already looking for

something wrong, and thus save a system reboot.

This discussion has glossed over the question of how the user gains access to the

machine to carry out these requests. If a realtime task is looping without releasing

the processor, it will become highest priority and prevent any user task from running

to notice the situation. This same problem showed up when the timer task needed to

run ahead of higher priority tasks that it was supposed to kill and when the timer task

itself was hijacked by a user's upcall(section 4.2.2). The solution is the same one

used for the timer problems (and is also not implemented). The user must be

provided with a system-supported, highest priority task that can be summoned up to

to inspect the system through an interrupt mechanism, just as the timer task has a

checker task and other support from the clock interrupt handler. Notice that a task

running at this highest priority executes only kernel code, giving the user more

confidence that any bug is not in the observer, but in the observed jobs.

128

4.4 Implementation

The unlinking mechanism has two high-level requirements. First, it must be usable.

That aspect was covered in the previous two sections. Second, and arguably more

important, if the unlinking mechanism is inefficient the mechanism is inadequate.

This section will focus on the second concern. Inevitably, implementation issues

affected the design, so this division is somewhat artificial. Discussions in this section

will tend more toward details such as how many instructions the call sequence

requires, which are more separable from the design, although indications of how

implementation considerations influenced the design will also appear.

One way to improve efficiency is to use special hardware to make critical functions

faster, or to allow them to run in parallel. An important Swift goal was to avoid special

hardware requirements, so this thesis will not pay much attentjon to such

possibilities. Hardware to speed up a particular function will be considered in the

discussion of that function.

Another approach to efficient operation, of course, is to, where possible, do less

work during operations which are frequent and time-sensitive at the cost of doing

more during other operations. In the context of Swift, calling a procedure, returning

or signaling from a procedure, entering and leaving a monitor, and entering and

leaving another job, happen frequently in normal operation. These operations must

be fast, so any burden put on them by the unlinking mechanism should be as light as

possible. Relatively less frequent conditions include job termination, unwind signals,

job_dead signals, and failure signals.

Unlinking in Swift is inherently asynchronous, for the reasons given elsewhere in this

section. Thus, the unlinking mechanism has to tolerate the effect of asynchrony in its

operations, such as alteration of system tables that occurs while unlinking

progresses.

129

4.4.1 The Swift Testbed

A source of complication in this section is the difference between the design of Swift

and the somewhat simpler testbed used for the unlinking implementation. The chief

difference between the two is that the incremental linker was not . used with the

unlinking mechanism. The abstract "subsystems" were linked together into one big

subsystem. To test unlinking, subsystem boundaries were simulated with wired-in

procedure calls in user code. Thus, the implementation did not fully test the features

of the mechanism associated with subsystems.

Since Swift is supposed to be easily portable, its specific hardware should not be of

overwhelming importance. On the other hand, the same problems will recur at the

interface between the system and any machine, and thus merit discussion. Also,

many features in any other architecture will be broadly similar to those described

here, e.g. the number of instructions for a specific implementation will be

approximately comparable across machines. Using the actual hardware as a

concrete example will make the problems easier to understand.

The hardware base for the Swift project is the NOW machine, (The description in [9]

is moderately close to reality), an architecture built from off-the-shelf components

including the Motorola 68000 microprocessor. The machine has a separate clock to

generate timer interrupts. Each machine has one or two megabytes of main memory,

sufficient for development purposes although not for a full running system.

The 68000 provides hardware support for concurrent programming through its

instructions to disable and enable interrupts. This technique provides an inflexible

and error-prone form of exclusion that is used by a few system routines to provide

synchronization at high speed and to implement monitors. Great care must be taken

when manipulating interrupts, since interrupts will be discarded if they are disabled

for too long.

Outline of the Rest of This Section

The rest of section 4.4 is divided into two subsections. The first will analyze the

130

normal operation of the system with jobs added. The second will discuss the

implementation of unlinking, an abnormal and comparatively rarer condition. When a

feature of the system is discussed, the actual implementation will be presented first;

this implementation might need to be altered to make it part of a usable system. The

modifications are of three types.

1. Changes needed to make unlinking work for Swift as designed rather
than implemented. Treatment for entry points would be needed, for
instance, had the incremental linker been used.

2. Changes needed to make the unlinking implementation correspond to
the unlinking design. The design caUs for language modifications but the
implementation relied instead on applications correctly using procedures
provided by the unlinker to notify the unlinker of important events. These
changes would cause the compiler to generate the code needed for
unlinking, rather than forcing the application to do it.

In the absence of language support, the implemented mechanism is
more prone to be used incorrectly, but was much easier to write. It
proves almost as much about how unlinking works, since the
transformations mapping from this implementation to a full one are
straightforward. Substantial modifications to the rest of the system
would have to be made and debugged to realize the full design. Since no
user community needed the improvements, and with the project in its
final stages, a more elaborate implementation did not seem a profitable
effort.

3. Optimizations to speed up the implementation. The implementation
takes the most straightforward approach at every point, with primary
attention to correct functioning of unlinking rather than efficiency.

This third class of changes will receive much attention in this section, particularly in

the discussion of common operations. These changes are crucial because of the

need for the operations to be efficient. Many of the optimizations reduce

substantially the time required for time-sensitive operations, making the difference

between unacceptable and acceptable cost.

131

4.4.2 The Effect of Jobs on Normal System Operation

Three specific features of Swift under normal operation: call to and return from

gateway procedures, monitor entry and exit, and signaling, are affected by the job

mechanism and are also required to be fast. This section will focus primarily on

these features.

For those not interested in the gritty details, Figure 4.9 summarizes section 4.4.2.

The chart gives the crucial costs of the job m~hanism, in instruction counts. The

first column lists the costs in the absence of jobs. The second column gives the

instructions required for the naive implementation. The third column gives the

instructions required when several straightforward optimizations are used. The third

column, when compared with the first, gives the additional costs imposed by jobs (In

an optimized implementation).

Jobs

The information associated with a job is stored in a job object, with the system

-ensuring that only one job object exists per job. The object is structured as shown if

figure 4·10.

not1fy_job_11st, death_procs, and arg_vecs are parallel arrays. When this job

dies, the system executes the code in figure 4-11 to notify everyone interested in the

death.

lnterjob Communication

Gateway calls are tracked through additions made to the task record, shown in figure

4-12. A task now has a stack of "job frames" associated with it, which is altered on

entry to and exit from a gateway procedure. Each job frame corresponds to a set of

contiguous procedure frames executing on behalf of a single job.

The three arrays are needed to determine where unlinking needs to be done. They

move in parallel. On a call to a gateway procedure, the new job is pushed on the job

stack. If this is a multiplexing gateway, "true" is pushed on the multiplex stack,

132

Cost in Instructions

Operation Pre job Implemented OpUmlzed Additional Cost

Version Jobs Version Jobs Version (Optimized)

Gateway Procedure. 7 2
, 5 164

10 5 Linkage

Monitor Access -150
2

160 150 0

lnterjob 35 45
35 0

Signaling
,

40 5

Costs for two plausible optimizations are listed for these operations.

2
Normal case (task gets monitor without waiting). The prejob implementation is unoptimized.

Figure 4-9: Costs of Common Operations With and Without Jobs

otherwise "false" is pushed. The pointer stack points into the task's execution stack,

indicating where job frames begin and end in the stack. Interrupt lockout is used to

make the operations atomic.

Both a call to and a return from a gateway procedure are divided into three parts.

The first two parts of the call and the last two parts of the return are carried out by the

calling procedure, since only the caller knows whether this is actually a gateway call.

The three parts of calling a gateway procedure:

1. The system checks to see if some error has occurred, which would
reveal itself in two ways.

a. The target job might be dead.

133

job '" record[
name: string,
storage: any, % job storage
store_init_flag, % storage set already?
monitors: array[monitored_objects], % monitors created by job
tasks: array[task], % tasks created by job
dependent~job_list: array(job], % jobs dependent on job
notify_job_list: array(job],
death_procs: array(proctype(array[any])],
arg_vecs: array[array(any]],
scheduling_class: int, % realtime, foreground, etc.
status: int, % alive, dead, etc.
task_flag: boo·1 % are tasks still in job?
uid: int,
index: int

]

Figure 4-10: The Job Record

size: int :• array[job]Ssize(dead_job.notify_job_11st)

for i: int from 1 to size do

end

set timer
dead_job.death_procs[i](dead_job.arg_vecs[1])

except when job_dead(j: job):
% don't need to do anything but catch the signal

end
unset timer

Figure 4·11: Notification of Other Jobs

task • record(

cleanup_waiting: bool,
job_stack: array[job],
multiplex_stack: array[bool],
ptr_stack: array(int],

]

Figure 4·12: Additions to the Task Record

b. cleanup_wa1t1ng might be set on this taSk.

The cost of these checks is about 10 instructions if no error turns up.

134

2. The current job is changed.

a. Push the job onto its stack.

b. Push the pointer onto its stack.

c. Push the flag on its stack.

In the normal case, an arraySaddh takes 25 instructions. The total for
this operations is 20 + 3*25 = 95 instructions.

3. The actual call to the gateway procedure is made at a cost of about 3
instructions, depending on factors such as how many arguments the
procedure has.

The total for calling a gateway procedure 10 + 95 + -3 = 108 instructions.

The three parts of returning from a gateway procedure:

1. The return from the gateway procedure occurs at a cost of 2 or 3
instructions.

2. The system checks the cleanup-waiting switch to see if an error has
occurred, at a cost of 3 instructions.

3. The current job is changed back, which requires popping the three
stacks. An arraySr••h requires 8 instructions. The total for this
operation is 27 + 3*8 = 51 instructions.

The total for jobSpop_job is 3 + 51 + 2 = 56 instructions.

Since CLU procedure linkage requires an average of about 5 instructions (depending

on several factors such as how many arguments the procedure takes), the overall

total = 56 + 108 = 164 as opposed to 5 instructions, which is obviously

unacceptable.

CLU arrays are not efficient enough for this purpose. Furthermore, they are more

general than is necessary. An arraySremh checks to ensure that the array is not

empty, even though, in this case, it never will be. Therefore, much of the cost can be

eliminated by having the compiler generate hand-optimized code.

135

A number of additional improvements can be made. First, instead of locking out

interrupts on job changes, the system can rely on the unlinker to maintain atomicity.

If the unlinker wants to operate on a task's state, it must first see if the task is in the

middle of a gateway call, a fact it can recognize by looking at the instructions the task

is executing. It can then complete or back out of the job change as need be.

The following list of other optimizations is by no means exhaustive, but gives an idea

of how the call/return sequence could be improved.

1. When checking a gateway call (part 1 of a gateway call}, a hand·
optimized sequence can28

move job_address, R1
move job_status(R1), Rj
move current_task, Rk
or cleanup_wa1t1ng(Rk), Rj
bne abnormal_caae_handler.

2. Saving job information on a call to a gateway procedure (part 2 of a
gateway call) can be done in a couple of ways. Both of them require that
the compiler modify the call sequence. They both u. the task's stack,
eliminating the need for extra stacks and storage management for those
stacks. Assume that, as a result of the previous phase, the job is already
in Ai and the current task is already in Rk.

a. Use the gateway procedure frame to save the job frames as well,
thereby eliminating the need for the ptr _stack information.
cal l_flag is a bit pattern tagging the word as a pointer to a job
and Indicating whether the associated gateway is multiplexing or
not. This flag wilt enable a procedure ecanning a stack to
distinguish words containing job information from any other words
on the stack.

The italicized instructions set up frame pointers for job frames. In
the absence of such frames, finding the current job requires
scanning back through an unbounded number of procedure
frames looking for the one that has the current job at the bottom of
it. Adding these frames costs two instructions on call and one
(which will not be shown) on return. Since the number of frames

281nstruction sequences are, in some cases, modified to eliminate 68000-specific features and make
the code more comprehensible. Thus, the instruction counts are ctose to the actual values, but may not
be exact.

136

scanned should usually be only one or two, these job·frames are
probably not necessary.

or call_flag,R1
push Ri
push currentjob_trame(Rk)
move sp,currentjob_trame(Rk)

Calling, thus requires only two extra instructions, and returning is
done as part of the regular return sequence. The job information
looks like an extra argument as far as the return sequence and the
signal handling mechanism are concerned. (This would impose
yet another slight additional cost in the relatively uncommon event
that the procedure had no arguments.)

b. The approach here is to use the other end of the task's stack to
store the job information. The pointer information, since it
happens to be needed by the task, is already in register ep. The
task contains a stack pointer for the other job stack at js_off set,
which must be loaded, used and updated, and stored back.

move flag, Rj
move task, Rk
move js_offset(Rk), Rl
move R1, (Rl)+
move Rj, (Rl)+
move ep, (Rl)+
move Rl, js_offset(Rk)

3. When checking cleanup_wa1t1ng on return (part 2 of returning from a
gateway call), two approaches are also possible.

a. The first involves the following simple code sequence.
move current_task, Rm
move cleanup_waiting(Rm),Rm
bne cleanup_handler

b. The cost can be eliminated totally from the error-free case by, if a
cleanup is waiting, having the unlinking mechanism modify the
task's stack to alter the course of its execution. Since the
unlinking mechanism takes responsibility for notifying the task, the
task does not need to check for itself. The details of the trick are
described on page 140.

4. As described above, popping the job information off the stack (part 3 of
returning from a gateway call) can be free if the job information is stored
in the procedure stack. If a different stack is used, that stack will, of

137

course, have to be cleaned up.

The cost has now been reduced to as few as 7 instructions, which is tolerable. 29 This

cost could be reduced further by allocating registers to hold certain pieces of

information, but at some cost to normal computation which would depend on the

abundance of registers.. Hardware support could also be added to support

procedure linkage. If hardware support was a critical factor allowing some

application to run under Swift, then porting that application to a machine without the

support would require using the loophole mechanism to run the application. This

degradation in protection is reasonably graceful.

lnterprocedure Communication

Calls and normal returns from non-gateway procedures are not affected by the job

mechanism, but the CLU signal mechanism does interact with jobs. If a gateway

procedure signals, the signal mechanism must clear off the job stack just as the

return sequence does on a normal return.

In the unlinking implementation, the signal handling routine checks, on every signal,

whether or not the signaling routine is an gateway procedure. If it is, the signaling

job is cleaned off the stack. This approach is unsatisfactory, since an extra check is

needed on every signal, slowing down a common and time-sensitive mechanism.

The cost of the checking is 1 O instructions, which might be reduced or eliminated in

the following ways.

1. If optimization a, page 136, for gateway calls is used, the problem goes
away. Since the "job stack" is merged with the regular stack, it is
cleared off automatically. In any of the other schemes, which have an
explicit job stack, the system needs to notice that a task has left a job and
pop an entry off the job stack.

2. The compiler can distinguish between calls to gateway and regular
procedures. It also knows what a gateway procedure might signal. It
can use this information to determine if the signal associated with a

291t a timer must be set on the upcall, the cost is somewhat higher.

138

handler 1) is definitely raised by a gateway procedure, 2) might be raised
by a gateway procedure, or 3) is definitely not ,raised by a gateway
procedure. When it generates the code corresponding to a handler, it
can generate code to check whether the signal came from a gateway
procedure and also generate code to clear off the job stacks if
appropriate.· If a signal from a gateway procedure is not handled, the
result is a failure, so the signal handling mechanism can then, without
burdening normal signals, check whether the signal was originally raised
by a gateway procedure.

3. The code on an gateway call could, at the cost of 5 extra instructions,
build up an additional frame which would catch all signals, clear off the
stack, and resignal.

Intertask Communication

mpnitor • record[

creator: job,
job_frame_depth: int,

]
Figure 4-13: Additions to the Monitor Record

Only two changes to the monitor record, shown in figure 4..13, are required. Aside

from the addition of a creating job, the monitor must maintain the job_fraM_depth

field. This field keeps track of what job frame locked the monitor. In th~ event of a

failure signaled out of a multiplexing job, the unlinking mechanism checks to see if

that job frame failed to release any monitor locks. In the actual implementation, the

high index of the task's job array is stored in this stack at a cost of about 10

instructions. A simple optimization is to store the current task frame pointer at a cost

of only 1 instruction. Since the frame pointer is never 0 when 11on1toredSenter is

called, the frame pointer can be used instead of the simple boolean lock which

currently indicates that a monitor is held, reducing the cost to O so that normal

monitor entry and exit is unaffected.

The absence of an additional cost for monitor access is an important advantage of

139

this scheme. Multiple monitor entries can occur in the same job frame at no extra

cost. Furthermore, the job mechanism loophole, which lowers the cost of job entry

and exit, controls the costs of jobs in a manner easy to understand and to use. It is

not clear how one would get rid of job-imposed costs on monitor entry and exit in a

modular manner while maintaining some job protection.

For resource variables, mon1torSawa1t_reaource and taskSblock now check for

cleanup waiting on both sleep and wakeup. The cost is 4 instructions per check, for

a total of 8. The cost for these checks could potentially be as low as two instructions

on sleep and none on wakeup, using the following trick.

Checks occur in two sorts of places: when a task Is going somewhere, e.g. when it

tries to enter another job or tries to block itself; or when it returns from somewhere,

e.g. when it returns from another job or gets awakened. In the former case, the

unlinking mechanism cannot easily predict what the task will do nor does the task's

stack have in its state something that can be modified by the unlinker to cause the

task to take a different direction without doing a check. As a result, polling is

necessary at these points.

In the latter case, a task's normal operation can ,be speeded up. The unlinking

mechanism can modify the state of the stack so that it executes a different set of

instructions when the task is resumed. This system code will restore the task's state

as necessary and do whatever else is required.

In the specific case of taakSblock, when the task resumes and the switch is not set,

it finishes executing the procedure. Preemption in the middle of this routine is

inconvenient. Procedure return is a safe place to do the preemption, so the unlinking

mechanism will change the return address. The system code will call the runtime

system's signal handling code to send the appropriate signal. The task needs only a

place to hold the address corresponding to the stack frame which is temporarily

displaced, so the task's operation can later be resumed.

140

4.4.3 The Implementation of Unlinking

Speed at the level of number of instructions is not nearly as important for the unlinker

itself, so will not be a focus here. No more instruction sequences will be presented.

In phase 1, a call .to JobSk 111 merely sets the status of the job to dead, enters and

exits a monitor, and wakes up a task.

In phase 3, the unlinking mechanism just sets timers and upcalls the appropriate

jobs.

Phase 2 is more complicated. Two problems must be solved. First, tasks associated

with the dead job must be found. Since storing information with the job each time a

task enters or leaves it is too expensive, the approach used here is to check a group

of potentially associated tasks when a job dies. Given this approach, the second

problem is, for any task, to determine if it is associated with a dead job. The reason

either of these is hard is that the number of tasks and the size of a task's stack are

unbounded, and the unlinking mechanism does not want to lock out interrupts while

doing an unbounded computation.

Searching For Tasks

The problem to be solved is to look at all tasks that might need to be cleaned up, not

necessarily all tasks. The unlinking mechanism does not need a consistent view of all

the tasks in the system, as long as it looks at all potentially bad tasks at some point.

The unlinker is only interested in ensuring that tasks that would not otherwise clean

themselves up are notified. It does not care if a task disassociates itself from a dead

job without realizing tbat the job was dead, so it does not matter if a task leaves a

dead job while the job is being unlinked. If a task dies before the unlinker looks at it,

it was not associated with the dead job at the time of its death, and can be ignored.

Swift maintains an array of all the tasks in the system. When a task dies, it is removed

from the array and the task at the tail of the array is moved into the vacated spot at a

lower index. The unlinker starts at the highest element in the task array, and iterates

141

------ ----------------

through it in reverse order. When the lowest element has been checked, the first half

of phase 2 is complete.

This approach takes advantage of the significance of phase 1. The design

guarantees that a task created after the job is marked dead cannot possibly be

associated with the dead job, and that a task not associated with the job when it dies

cannot later get to it.

The implementation also uses several facts about the task array. Since tasks only

move downward in the task array, once the unlinking mechanism looks at the task at

a certain index, no task with an higher or equal index can be associated with the

dead job. If the task array shrinks between the time the unlinker looks at one element

and the next, so that no task remains at the index the unlinker attempts to access, the

unlinker will merely reset its index to that of the new highest element in the task array.

Under this approach, the unlinker only need to lock out interrupts while actually

accessing the array a single element of the array, to make sure the access Is

-consistent.

A useful optimization to avoid this work applies to applications that do not have any

entry points or create any upcalls. This organization is characteristic of many top

layer application programs that use the services of Swift. These are just the sort of

jobs that will die most often. If such a job dies cleanly, with all its task exiting

{especially if it only had one task), then the job does not need to go through phase 2.

Even if some of its tasks are still alive, the unlinker only needs to look at the tasks

created by the job. The linker can recognize if subsystem has no entry procedures

and creates no upcalls, and pass that information to the running Swift system. The

unlinker can use its list of all the tasks created by the job.

Searching a Stack

The other problem is to look at a stack. For each task looked at, if its cleanup-waiting

switch is not already set and it is associated with a dead job, the switch is turned on

and, if it is actively running on behalf of a dead job, the top of its stack is removed.

142

Note that the unlinker does not care if the dead job it finds is the one for which it was

looking, and will set the switch anyway. Under the implemented approach, or the

optimization that maintains a separate stack for job frames, scanning a stack is

exactly like scanning the array of tasks.

When the job stack and task stack are merged, the unlinking mechanism must look at

all the stack's procedure frames, checking each to see if it is the base of a job frame

and, if so, checking to see if the job is dead. The problem is that, if the task runs

again and its stack changes sufficiently, the index into the stack might no longer

point to the base of a procedure frame. The unlinker can scan the task much more

easily with some sort of mutual exclusion guarantees. One solution is to lock out

interrupts, scan a portion of the stack, and then, at the cost of a couple of

instructions, modify the stack so that, if its task ever returns to this point, it will jump

to an error handler that will restore the stack, modify the state of the unlinker so that

it will scan the job again, and restart the task. This is another use of the trick from

page 140.

Signals and the Cleanup_Waiting Switch

In the current implementation, the unlinker, in trying to unlink tasks, leaves a

message with the task. The task will check this message box on calls to and returns

from gateway procedures, and just before and after blocking itself or waiting on a

resource variable. This sort of polling technique still imposes costs even if no

cleanup is needed. Once the task actually receives an unlinking signal, the signaling

mechanism can and does do a significant amount of processing as the task's stack is

unwound from any dead jobs. As each job frame is left, the signal code steps in to

see if the task is now healthy by examining its stack again. Optimizations of this step

are possible, but not necessary, since cleanup is sufficiently rare.

Ending Phase 2

A second unlinking task scavenges tasks using a simple garbage collection algorithm

to determine when a job is no longer associated with any tasks. This task resets the

143

task._ flag's of all jobs in phase 2 to false. It then looks through the array of tasks,

marking jobs that still have tasks associated with them as still ineligible for phase 3. It

looks only at tasks whose cllanup_wa1t1ng switch is still set. When done, it starts

phase 3 on all appropriate jobs.

4.4.4 Experience with the Implementation

The implementation was tested on a simulation of a network protocol, modified from

an actual protocol implementation, which both sent and received packets. The

simulation allowed the various failure modes of the jobs involved to be tested, and

guaranteed that the mechanism worked and could be used in the way anticipated by

the design. It did not subject the system to anything corresponding to the test of

actual use by a community.

The protocol had a network layer, two intermediate demultiplexing layers, a buffer

layer, and a client layer. Different job structures were used in different layers,

including one job per layer, two jobs per layer (one for input and one for output), and

one job per client. The different structures required different sorts of demultiplexing

on incoming and outgoing packets. Each job except the client maintained shared

state in monitors, which had to be preserved in the face of a death in a using job.

Various types of failures and job deaths were caused in the simulation and cleaned

up by the unlinking mechanism.

This test produced two important observations, as well as many design refinements.

The first observation was that attempting to restrict the behavior of a task that is

unwinding itself is not a reasonable thing to do. Restrictions such as forbidding calls

into other jobs became inconvenient almost immediately, and hence were dropped

from the design.

Second, programming in the face of the possibility of asynchronous cleanup does

not seem to be difficult when the activity is already asynchronous. (Conversely, if the

activity is synchronous, the cleanup is synchronous as well.) The mechanisms

144

already in place to mediate between tasks in a job's normal operation tended to do

the same during cleanup with little or no extension. The implication is not only that

the job mechanism is convenient to use, but that any extensions to it should not

compromise this ease of use by introducing differences between normal operation

and unlinking.

145

Chapter Five

Conclusion

5.1 Conclusions

This thesis has, as the chief element of its computation management strategy,

mapped the intuitive notion of a computation in Swift onto a job object. The mapping

is a natural reflection of the organizational techniques used by programmers under

this system. The system, programmer, and user manipulate this object in ways that,

in many situations, allow Swift to achieve a number of desirable ends.

- The system, acting on advice from programmers, lays down boundaries
to protect jobs from many sorts of failures in other jobs.

- The job mechanism provides mechanisms allowing programmers to
inform the system about the end of a job. Furthermore, a class of events
that would or might otherwise have led to misfortunes such as system
shutdown can now be associated with jobs and thereby quarantined
from the rest of the system.

- The termination of one job has no effect on unrelated jobs. Related jobs,
which must be affected, are informed of the termination in a controlled
way and allowed to recover (or terminate as well) as they see fit.

·The resources used by terminating computations can be recovered and
reused by the system, although full recovery requires the participation of
the programmer implementing the resource. This unlinking process
occasionally requires tricky cooperation· from the programmer, but
usually does not, particularly in simple applications.

Jobs are believed to be convenient for the programmer to use, although,

unfortunately, experience on this point is sparse. This belief is intertwined with the

fact that jobs map closely to subsystems, and therefore tend to resemble the

organization of Swift programs.

146

Several compromises are evident in the design of the mechanism. Computations are

protected from errors to a much greater extent than from malicious behavior. In a

single-user environment, this level of protection is acceptable. Furthermore, due to

Swift's main goals, its single address space, and the way in which its structuring take

advantage of shared addresses, a higher level of protection is not feasible. A number

of protections that would have been possible were rejected as too expensive.

Another set of protections would be quite useful, but were impossible to achieve.

The important point is not merely that cases exist in which the happy ends itemized

above are not achieved, but that some of the cases are not at all implausible. The

result is that work is pushed back on the programmers and/or users of Swift.

As a result of a great concern about efficiency, the new mechanisms are relatively

inexpensive. Furthermore, they can be subverted in a controlled manner. This

efficiency is particularly important because a major motivation of Swift is its ability to

meet rigorous performance requirements.

-Thus, the job mechanism both provides structure to support modularity and gives the

operating system a finer grain of control over the computations under it. Without the

job mechanism, using and programming under Swift is a rather fragile proceeding,

particularly in the programming of low-level applications. With jobs, using,

programming under, and debugging under Swift should be more productive and

more satisfying.

5.2 Future Work

Aside from the improvements required for the implementation, and the need for

greater experience with the unlinking mechanism, a number of potentially fruitful

extensions have suggested themselves in the course of this research.

Other Uses of Jobs

As mentioned briefly in [2], the job has been considered for other purposes. One of

these is terminal control. The usual approach in other operating systems is to allow

147

only one computation to control the terminal at a time. Others must buffer their

output and wait for their input until they get control of the terminal. In Swift as it now

stands, output and requests for input from different tasks appear on the terminal

mixed together. Almost any mechanism to bring order would be superior to the

present confusion. Perhaps the job is the right unit to use for terminal control; the

feasibility and details of this approach need to be worked out.

Another possibility, also presented in [2], is that the job might provide a useful

naming context. The naming context would prob~bly require much the same sort of

management that the job's storage does. The usefulness of this extension needs to

be considered.

Subsystem Management

The management of memory for code has been neglected. The extensions to

actually free the space are straightforward. The garbage collector, however, needs

to be extended to determine when it is safe to deallocate a subsystem, instead of

relying on the current mechanism of having jobs made dependent on a subsystem

manager job. Given that the garbage collector has determined that the subsystem is

no longer in use, the system or the user must take responsibility for declaring that a

subsystem (as opposed to its job) should have its code space recycled, or that the

subsystem should be reinitialized, as might be desirable in the event of a failure.

Suspension, discussed briefly in chapter 3, needs more consideration to decide

whether it has any benefits to offer and, given that it has, when it should be done,

how it should be done, and what are the appropriate Interfaces for the user and

programmer.

Extensions to Monitors

A potentially useful extension to monitor turned up in the process of seeing how

layers shut down their interfaces to other layers. Monitors inside a multiplexing layer

tend to be split into two types. The first type, of which there are a fixed number

(usually one) per layer, manages the state of the layer. The second type requires one

148

-------------------------------~-------

instantiation for each client, and manages the interface with that client. This second

type provides synchronization without limiting concurrency as much, since only tasks

interested in the specific c1ient will be blocked if one of these monitors is locked.

Such a monitor is more likely to be held on a call to another job, specifically its

associated client, to synchronize some interaction involving that client, for instance

by avoiding the race condition between an upcall to a client and a downcali from that

client to terminate a connection.

This second type has two characteristics of interest. First, it usually contains within it

a flag corresponding to the state of the interface, either open or closed. A race

condition can occur when one task calls in to close down the interface, while another

attempts to do something with it. Holding this flag eliminates the race condition by

serializing the two operations in one order or the other.

Second, this monitor is thrown away after the Interface is shut down. In accordance

with the rules laid down in this thesis, however, the monitor must still be carefully

maintained unlocked, even in the event of a failure that will inevitably cause it to be

eliminated. The problem is that, if the monitor is left locked, then, when the layer tries

to dispose of it, no way exists to Inform any tasks waiting for the lock that the monitor

is dead, since that requires both changing the state in the monitor to reflect the

monitor's death, and unlocking the monitor.

The proposal is to allow the owner of a monitor to shut it down through a new

operation that changes the state of the monitor in such a way that future attempts to

enter it will result in a signal indicating the monitor Is shut down. This operation

would efficiently replace the the flag recording the monitor's state that currently must

be checked on every monitor access and/or obviate the need for maintaining the

monitor if the client it was managing failed. Precise semantics of this operation are

needed, as well as some analysis of and experimentation on its actual benefits.

More Control Over Gateways

Currently, a gateway to a job is open unless the job dies. Two jobs must work out

149

their own protocol should they want any finer-grained control. The job mechanism

could support additional operations on gateways.

1. A job might be able to declare that individual gateways were closed, or
all its gateways were closed to individual jobs. This would be useful if job
A wanted to shut down unilaterally its interface with a live job 8. For
instance, if job A signaled_ failure to job 8, but teared that job B might not
die (the problem described on page 96), it could protect itself from any
future action by job B.

2. A job might also want to change the procedure associated with an upcall
it gave away.

The benefit of these operations is not proved.

150

[11

[2]

[3)

(4)

(5)

[6]

[7]

[8]

[9]

References

Reference Manual for the Ada Programming Language, ANSllMIL-STD-1815
A.
United States Department of Defense, February, 1983.

Allen, L.W.
Job Management Facilities.
Unpublished n<?te

Baldwin, R.
What's an Upcall?
Swift Planning Note 37 (unpublished)

Clark, D.D.
Distributed Computer Systems Annual Progress Report.
MIT Laboratory for Computer Science Annual Report, 1984.

Clark, D.D.
The Structuring of Systems Using Upcalls.
MIT, Laboratory for Computer Science, C8mbridge, MA, 1985.
To appear in Proceedings of Tenth Symposium on Operating System

Principles

Clark, 0.0., Personal Communication.

Clark, D.D.
Distributed Computer Systems Annual Progress Report.
MIT Laboratory for Computer Science Annual Report, 1985.

Djikstra, E.W.
The Structure of the THE Multiprogramming System.
Communications of the ACM 11 (5):341-346, May, 1968.

Gramlich, W.C.
The NOW Machine.
Swift Planning Note 21 (unpublished)

151

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Hoare, C.A.R.
Monitors: An Operating System Structuring Concept.
Communications of the ACM 17(10):549-557, October, 1974.

Lampson, B.W., and Redell, D.D.
Experience with Processes and Monitors in Mesa.
Communications of the ACM 23(2):105-117, February, 1980.

Liskov, 8.
· CLU Reference Manual.
Springer-Verlag, New York, NY, 1981.

Mitchell, J.G., Maybury, W., and Sweet, R.
Mesa Language Manual.
Xerox Research Center, Palo Alto, ca., 1979.

Organick, E.I.
The Multics System: An Examination of Its Structure.
MIT Press, cambridge, Ma and London, England, 1972.

Redell, D.D., et. al.
Pilot: An Operating System for a Personal Computer.
Communications of the ACM 23(2):81-92, February, 1980.

Ritchie, D.M., and Thompson, K.
The UNIX Time-Sharing System.
Communications of the ACM 17(7):365-375, July, 1974.

Siegel, E.
Dynamic Linking in a Typesafe Environment.
Bachelor's Thesis, Massachusetts Institute of Technology, August, 1984

152

Unclassified

REPORT NU

MIT/lCS/TR .. 357
4. TITLE (Md Subtttie~ .

Computation Hanagement·in a Single'Address"
Space System

?. AUTHOR(•)

James.c. Gibson

II. PERFORM11'4 ORGANIZATION N'AMI: At!D AODR£SS

MIT Laboratory for!:,Goaputer SCience
545 Technology Square
Cambridge, MA 02139

11. CONTROLLING OFFICE NAME AND ADDRESS

DARPA/DOD
1400 Wilson Boulevard

4. MONITOR G AG NCY NAME 6 ADDIUSS(ll different I,_ Controllln' Olllce)

ONR/Department of the Navy
Information Systems Program
Arlington, VA 22217

16. DISTRIBUTION STATEMENT (ol tltle Report)

12. REPORT DATE

11. SECURITY CLASS. (ol tltl• ,..,...rt)

Unc1assi fied
Sa. DE LASSll'"ICATION DOWNGRADING

SCHEDULE

Approved for Public RElease, distribution is unlimited

17. DISTRIBUTION STATEMENT (ol the abetract _,terod In Bloc.Ir 20, II dlltwent ,_ lteport)

Unlimited

II. SUPPLEMENT ARY NOTES

It. KEY WORDS (Continue en re,,ere• elde 11 necee...,. Md Identify.,. bloc.Ir -hr)

Single address space, Operating system, Unlinking,Error recovery,
Swift, Upcalls

20. ABSTRACT (Continue on ,,. •• eldo II n•c-•-r Md Identify.,. ltlec.lr _.._,

A multiprogramming operating system needs a mechanism to recover
from the termination of one of its computations. Cleaning up, or
unlinking a terminated computation from those remaining requires identify
ing the end of a computation, freeing resources that the computation was
using, and shutting down its interfaces with other computations. This
problem is especially important, and usually more difficult, when the

.. C9ITl.P~.i~ t.i,Q.~Lf ~ n s . ., ... _ . _ . ., "- . . . -"···· "

Unclassified
SllCU .. ITY CLASSll'ICATION 01' TMIS PAOll (ft.,. Dela llntand)

~···

' -

Unclassified

. _, ··"•·-•-"'• .. -..,,- -.. ·~ ·',. __ ,.

The nature of the unlinki.nq 11ee·h.lnBm depends strongly on Oe
operating system for which it is designed. Swift is a multipr,-9gramming
operating system which prov-i·de-s a sittgle· aeet"ess s-paee, aM--4.s deSiifled
to support applicatiQns naturally implemented usfng cooperating
asynchronous processes.. Swfft"s ;ineth1liam~ fon: s:tnucttrnfot.J programs,
inc:ludift.g all,· ~--age close sharing between computati9ns in a
structured fasbion •.. This sharing makes unlinking more difftcu1t.

In this thesis, a computation management mechanism_1.·s_ p_resen.ted
and its goals are analyzed. The job, a new unit corres~nqi[)g to a
Swift computation, is defined, anOTts use is detailed. "The eonditfons
under which a jab terminates- are descrtb,ct.. An. irlattr.i,thm- to unH11k. a
termf nated job and recover its resources: is presented-.;'

Um:las5i.f~ed - -~ _, ., .
ll!CUl'llTV CLAPllti'&J~N '61i'l:;t4li$°AG1E-(Wlwl Dita Snt...0

