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Abstract 

The VIM computer system, an experimental project under development in the Computation 
Structures Group at MIT, is intended to examine the efficient implementation of functional 
languages using the princip~ of data flow computation. In this thesis, we examine how to 
incorporate backup and recovery mechanisms into this system to guarantee that no online 
information is lost because of hardware malfunction. Our solution, which takes advantage of VIM's 
powerful applicative base language and its uniform treatment of data and files, integrates the 
operation of the backup and recovery system within the interpreter itself, resulting in a system that 
can ensure a high degree of data security without ex~ive performance degradation. Unlike 
schemes found in other systems to guarantee data security, operation of the backup facility requires 
no user intervention. 

To present our algorithms rigorously, we first develop a formal operational model of system 
behaviour. This set-theoretic model views VIM as a state trapsition system with the interpreter 
serving as a state transition function. The specification language is a superset of the applicative 
language, VIMV AL. We enhance this model to include a concept of system failure and augment to 
the basic components in the system a backup state with the base language instructions now 
operating· on both the VIM as well as the backup state. A formal proof demonstrating the 
correctness of our algorithms is also given. Issues concerning the implementation of .these 
algorithms are also addressed in the thesis. 
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2 GOALS OF THE THESIS §1.1 

found in our system provides a framewoi:k QO which a highly secure system can be designed. 

Unlike its more conventional counterparts, the backup and recovery utilities we present are 

simple and efficient and do not require any ,.ttF·~ce to perform their task. We model the 

presence of failures and the actions undertaken by the backup and recovery mechanisms by 

defming a formal operational semantics of system beh'a~o1.lr. This formal model is used to give a 

precise description ortbel>ehavidur or the backup and reawery system. we demonstrate. usins 
this formal model, that the backup algorithms deveiOped p~y records the relevant portions 

of the system state and' that the recovery system does.~y·fest.ore the.proper system state as 

well. 

1.2 Motivation 

The prot>lem of ~tc;eing • secwity il ,certainly not a new one. Virtually every 

major computer systelJl develo~~lude$ some.tYJ)l ":pro)edionaechanism tosafoguard:the 

.. information. entrusted to it.. It. is. the~fore. · natu~ :for :tM re.- Utqttemti0tt why the ·studf of 

data security for· tlle VIM .5Yltem is. ai problem ·wtlr'dtr pf 0i~·· .lllere :are two main 

reasons why '\VC have not cbe$ea to·simpJy.usebaeimp;• ~ algoriduns de.eloped.for 

other systems for. VIM. First, l¥ld fo"810SL baetup.J11bd.,111icaaf • svstems in «!>RV«ldonal 

systems. are not able to J>4Dvidc full,1da'8.fllC\IDW,MJlaout~siemmivd~Mx>mplex·.nd 

inefficient In gene:ral tl\eJIJlplementadoat Of •lhWrlditidelJlre'inot·ial* fl> 0 ~'full' ·data 

security witb04,1t incQrring $pifkant ~ m ~--; ·lll'.addition'to dritmajor 

drawback, these schemes are based on a computational model which is much different from that 

found in VIM. The implementation strategy that we present in this dYeSl!s igWttanteet fon data 

security ~d exploi~ the ~~~resof VJMin ~-·· k il~r·.~t&om other 

data seQlrity ~ ~ b.,both ~~-~~~i\Someofthe more 

interesting aspects of VIM pert.inpn~ ~··~ •ue of datai~ •dlcd helow: 

. •VIM is based on .a d¥Mmic dala flow ardlitectUfl'. 

In a data flow computer system, all instructions in ,.the prog~, are viewed as potentially 
, - ' ' ' ' - • .. -',: ' ·. -. . 1 ' . ·, ; ' - • ; • ' ~ ' • ' -

executable. with the only constraint ~ing that they must hav,e received all n!!C~ry operam:.ts 
' ' ' - -· -.- ' ' ';~ •• :· ~ > '; i,,· .i~~!'>- ;!~' ; ,·': ·' : . _, ;t 

and control signals. This execution model allows f9r.~ gr~t 1deaJ},>f~cu.rr:cqcy t9 be rcaljz.e~. 

Thus. our data security mecha~ism. ~usl 'be d~isn~ci'k>''i>e -~~,' i,~,i~ hlg~ly co~cu~ent 
. ' ," ; ; : : ~ ' ~· -· . ' 

environment. 



§1.2 .MOTIVATION 

•VIM interprets an applicative base Janguaae, -namely. the· langwage of ,dynamic data 
flow graphs. 

3 

A dynamic data flow graph i1 a directed: acyclic gr3t!'h where nodes represeftt mstructions and arcs 

define data dependencies eetween thelJe i~ A:>graph; w dynamiC if the execution of a 

function activation is explicidy, 0initiated by SOMe·applyl~.· 11r1·buf' system. each l\inction 

activation has its own graph,created by dle"'flP/y in8tAlttiart 'flie.tJiaSe~afll\iase instruction set is 

very powerful, containing instructions for function application and reU.m,.:muct\Jte tteatiort and 

manipulation as well as instructions to. handle Sfffflie ~~Ille:~~' .1ff F ~ take advantage of 

this feature in the. design of O\Jr data ~urity m~~~~ b,~ i~~fiP8- tile ~m,antics of these 
instructions to support the backup and recovery p~ures. 

•There is no distinction between files and data in: VIM. 
' ' . ,- . ' ... . '. 

Unlike conventional systems, the units of storage alkX:atlon tn 'VIM''are the infonnation uriits on 

which the prifnitive operations of Vrtvfoperaw I.e. h'lstrltetionS, sclifjf \;Qiti~. arrays, ~d feC6tds. 
· This feature will allow us to design badtup a1~1 thlt',ca1ftti'i\itiy · cbgnizant or how 

infonnation is being created and rttanipufated in ~~ · 

•The unit of transfer between dtslc and main 'memory is ~small fixed-si~e unit ~f 
infonnatioa calkd'a ahlutlt. · ' · · · · 

The small unit of information transfer will allow extensive concurrency of operation to be 

·· achieved by exptolting the 1data :driven execution ~1t6'90~ •*-h1*h 1evetlof information 

· traffic between disk; and ..,. me~. The' uS&'lt'Jf" ~: as':the 'unit cif tnlriSfer Jj&ses 

interesting. J>ft)bJems .. fbr lit~ backup- system·· when' infbfrnatm tt'eMI Ii»~ Cx>pi~ ·trom·m~mory 
to a more stable storage medium. W•:ditCussthis iSS .. ri\ tft6~ 

l.3 Background . 

While hardware is generally reliable for the rno5t·p8rt: catastrophes do indeed occur and it 

is necessary that the compute_r sxs~m designer be scqsipy'i. to AA1~~plitY~--(d~ .. we would like 
. ' . ·«' . . ,. . .... ~.' . ' ... '. 

to provide a guarantee to the users of our system that all ac~~pJ.c qi\tij )wm survive .the effects. of 
' ; • ·, .. 1'"' ''" ,.,, ,,•.4 . . ' 

any hardware malfunclion. The approach .that i~ -~op~~dt.~9,.,erf'i-;1wi'1,.na~urallY,, be .. st~~>ngly 

influenced by efficiency constraints. In mostconvcQtiQnaj CQ_mpµ~~fsYS~~lS lhat clo not p~.ovide 
~ ' ' ; . : . " . ' - . ' ' .' . 

extra hardware support to achieve this aim, the cost of realizing f11ll.4?ta.scc~rity.~tJally inyqlvcs 
' • . ' ' ·Ji : · ~ .'' • · ; r 

Lcxl much overhead and reduced performance to be a realistic gp•d. In the~ S}'~tpms. users arc 



4 ' BACKGROUND §1.3 

forewarned that some of the informarion they have"entruSted'tO'the'system· may not survive a 

hardware failure. Consequently, these users must take explicit action to preserve data they deem 

important by perioqk:ally-"baoking up.0 their ~oatoa;rll<ft11Wiable.storage medium. 

lnfonnation which is not lAlflsfeA'ed OJHt> ~ MrC:I isAmt~:.t\s _a mmlL lt is usually not 

pos.iible in most systems to~ thiJ,lostQel.a ~- ,.....instJie·QQl'DPLttations·whioh initially 

produced it since there is 11<>-mechanisrlHo mo•Nttonaaon ~·of information 

occurrins in tile sy~ 

We shall 5ay that the information· held by ·a eomputer system is fully secure from lea or 

corruption if the system contains m~anisms ~hieh''en.U~ die.pr~~ati~n of all data despite 
,·'. • ,.:~';,: , . ,.$ ·' .:·,:r~ ~~~:f nu><,:(~ :L~.! r: -~·,':: · ,- -~· 1

: ··i: 
the presence of unreliable underlying hardWal'e components. These mechanisms may be 

incorporated as backup and recoveeySC>f\wate uttlititSnr1rriiifik~the:tbrirt ofrepli~ storage 

elements. or m~y ~· ~.~JDC1ll~d, ~ SQIJJ~ ;W~,f#~~··;~~ ~,¢:4,a~~ty 
P,rovided by;,~ C:O~P;µter~~;m ,W}>n~ ~"r,e,1911~t~~{Q;d~!'i~stc.4l ~,~1iable.,~ra of 

the system can_ conft'1t:m1¥:~~ ~~~:~~L~;~Wfi.~;i.~rJltat;pta~~Yrdoes 
not necessarily imply reliability si.~;~,~~: ~r~ ~,~1 ... • ~AIS ~ithe 

external wort~. , ,A sys~: ~.hidt does .en;>~i~ !}H1 ~ ~~~~~ ~~r •. ~tp«;s its users 
that no failure iit the System will caUse any accessible in~tor.1-bil·'fYCftlthough users 

may be prevented from acccsing it for a time if a ~lure takos place. 
,· - ' 

.. The~tt:11,UO>.v~.~~~def.4;~datJ1---~Jlitheavailabilityof 

.~e sy~ •• In, app~ ~---~J~~·Wnw1e11_.le.rit ia~dtat no1single 

1 .hardwa.t;e. f~re ~c;si ~· wSWl\ •. U"9i-~, ~~~tllMrtMtdP~hof,·.~ ·f The ,basic 

approach to masking ~,pf~.!Pni"1a...., ••••done•ieheibarftal'e 
level itself. by incorporating sufficient redundancy into the systeni'{26i In this thesis, we shall 

not be concerned with availability. Radler, we shall be focusing out attention~CIM\t9MMemiof 

, enttanciqa YtM to proy~~.~ ~ ~ljiy,;foqtll9'W~· 

For systems which need not mask, failufes. 'the ·sbuld~Af ~h uScd 'to guarantee data 

security h~ ·beerr to prdvide liaelup 3nd reco~er; soft~arej uili~fror1 
the; system. ·me backup 

utltity serves la safegunrcf1nfohnatlt>n' bl11iso·m~·s1of.lge;~ic~1thai1 l~ 1 i1~rimne to. the effects of 

hardware . failure. The recovet1 utility' 'is invoked ·w~~n. k h~~~~ie Jfattiire. Occurs and u~ the 
irtfotrt1alion preserved by me' bidu~. taeifity to fl.~ri~ i~ '~yitcfu 1to~ a· si~iic ~hich existed before 

' • • • • ~ .' < • ''. ' • • • - i ' ' ' ~· ' ; - . : ' ' 

the faih1rc. The dcgr~c of datd security 'ptt)viclcCt by'the 'systci11uis·'di{:(iltc'd hy the (,,)St of the 
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backup and recovery process., Most· current systemS 'ha""· ha& tO'·sa<?rit'ice the goal of providing 

full data security .because of the high overhead tllat wootd be inv00ed0 ih suppOrting thejbackup 

and recovery systam. In these systems,; tlM state' ffJlt&Nd ·by; th•~very utility may not be the 

· one which existedJmmedia&cly.prior to the faiJuAt. . MOret>Vet!,-it\is ustiaHy the case that thete is 

no means ofrecoveriat thi1 desired state: from the one ~~by tlte recovezy"procedure. 

Thus. information lf.lm is a possibility whicb users-Of-the 1'}1telli MUSf lccept. · 

1.4 Previous Works 

In this section, we: Wietly describe some-·previ<>uS' ~ftbits in the .. design Of highly secure 

systems undertaken for both centralized ~d d~b~~,5¥~ .~.,WJ'll ~ S<?I~ proposed for 
- • < .; ", \ ' ; ; • , ',. '*""' -~. ,_' ·: • 

providing fault-tolerance, for a cl• of <Jata flow ~it.ectuflS.~ ·: W~: J>().int out SQtJle, •. major 

deficiencies ~d ~mptions ~e in these p~ tti~t ~e Ut~~ nQt suitable for 
• ··~ ' \ • - , ' ~ : J /, ; ) • ' ' : • " , • " 

implementati~n in our system. 

t4.l Data Securtty In centralized SJStem 

t~ conventional sinsJe-proCessor machines.·~~ simplest "1d pe~aps m0$t di~ect.~~ of 

recording state; infonnation for recovery pu~' is to' ~~~b, a ~~lcpoint -~~J:ibiqg all 
', ; ~ ' '. " ;• ~·,.. -: ':' > •• ~ •• f '• ./'!..:· ;(;~ ~--: . ..:·.,. 1i~-t ;- '-..; ,_ 'i.,~ ,, • ,·.< 

aspects of the system state. The checkpoint state is const.n,t~d by ~~ina the ~e of the 
, ; • • ~ ... - . " , • :" . ,' f_f -.~;~J; -·;;'if~'-' 1~l·.·: .. ,~ ; : . -.· .. 

system at some point onto a reliable storage mediu:i:r.t suGh 8',• .lJt~,~QStpbviO\IS dr,awbact 
• • ' ~ f - .·- > ,- - - :i,; -· .' '-) l :'" ~ ; ' ; .: ,,': . . '. .' \' t· ! ' • , ~ 

of this seheme is the potentially large amount of data, wh~h must ~-~in~ -- an o~tim,es 
' . - . : ,• " •: • ' .. , .... :: '1_~',o,,:,,:,..'.,; ~'-~ .)..,iJ: j:! .;, ~·-J '. : '; .. · 

.unneces.wy and expensive strategy si~ce most of th~·;o~bj~ ~ ~~ SY.~IJl ~?~.Id Pro~blt not 

have· been modified .betwee,n successive. ch.eckpo~~· .. Te> ~~'!.~,,tP~ ,p,i:qb,tem. so~~luit. 
. many tiinesharlng sy~iem5'.perfonn ~ acti~ty ~ferred"to ··~ ,i~crem~ntal dumping to k~p Ute 

• 'i '' ..• : ; ,,; ""---~ 

backup system abreast of any modifications to the file hierarchy between su~ive checkpoints. 

In the event of a major mishap that necessitates the reconstructk>f\ 9f. 1JIJ°- ~.·h~hy.,.,~e 
. system can be rek>ade~_from the last c?ec~point ~~ ~~-~·~,~x.~jn~d,p).,usin~ ~~current 

incremental dumps to restore the system to a more rece.nt Qte. ,, All ig~~r:n~q.tal du~ ¥C 
_, .. • ._ .-, '· , · .. -~. i, . ,: :L'.:.f~i -'. ,;~, -~ .:-· >.)>. - { !'. • -.J ~- ·.. '·- · · ., • 

copied onto magnetic tape. In order that the nx;overy phase of ~t~ .res~ration may p~.ed 
' • ; ·- : : ' '. : .. · '4; 1 • ' . ' ' . • ~ ~ .. · ' ·" , . .' ,-

. faster. incremental dumps ~re periodically C?nsolidat.~~ ~- rcmo~e ,Q,~~~t~~ copies of files .. This 
- • • - < ' '. • •• ", ',. • - • ' 

consolidation process is known as secondary dumpiflg. 
' . ' 

. . 

Using incrementat and secondary dumps to ttrord·infunnution :ibout the system State is 

the hasic itpproat:h used by the Multics Of)Cr.tting sysk!m {27): ltl rtmvidc secure· ~Nice 'to its 



6 PREVIOUS WORKS § 1.4 

users. A modification to the 1*;kup and recovery. protocol employed by Multics was sugested 

by Benjamin [6) for the Dpta Network Computer. la8'ead;of usiag magnetic tape as the rrledium 

to store backup copies. it wasadyoaited,tbat the aillllputecs)'Stembe:int.egnlted widriln1 network 

of autonomous systems. wi~h each. sy~ being.allowed ~ to dle'5t0nlge.devicesof·the other 

processing elements. The backl.IP facility mamtaias a oonsment i11111e·of the file stotage at a 

remote site within the .network. The motivation b·havjngsaa.a 8aekap:system is the greater 

ease in managing the backup system that results when we do not have to deal with sequential 

access tape storage. The problem in using such a system. however. coriies 1ftom 1the deCre&se in 

availability that may occur due to: the e'1ra ~<i>tlOlfdatUliation)lines etc. 

Perhaps the most Serious objection to the solution ad0ptCd by Multics iS the cost involved 

in periodically scanning the file hierarchy to find~those tiles ~hicll h~~e been created or.upd,ated 

since the last incremental dump. The co5t of' peJo~big .ichee~J>O~t i~ ·Multics·~~ 
0' ...,\.: .I' . .;/ ·:: ,~: ':: } , ' ~ , .. - : : 1 : • ·"; 

linearly as the size of the system increases. To achieve the same degree of data security in a 

heavily used system where files are constantly ~. ~~\~ ,9~~ 8$ 1iQ 1a. li.glldy 
.,'4.-' ·(..·1-.1 .• ~~--·-,,-l-'$~.,_-·.~lt ,.,.-· '. 

used one, it is necessary that the backup system be invoked more frequently. This, in tum. 
, - • - . , • j~ ·- . ;.:··, < :-· ~"; l D: - '. · .. t ·. - .· ! . 

implies degraded service to the user community.' 'tb'e baSic, re89oD wJlY Multics (and other 

conventional centralized system$} are not able to provide full ~· ~rihr' ~fficiently ~Ppears to 

be the inability on the part of th~ backup system· tri' l~edl~ly d~~ when d~ta, h~ :been 
-. - - .·· --· .- - .!: .L ::-·;; ';·_:t~r·· ~.:1 -._--;. , , , ~ _. ~ _. ' ·: 

· created or altered and tb re fleet this fact ontri the bal:kup image of the system state. BeaAJse the 

-mechanism by which data ~·created and' ~pdatecf~' ~ refu~~~d \~ 'ilie 'file system with which 
•· _ ;. ... '"·, i _ : ! . ::; .... ;·?~/ ; .1.'t:·· L'.: _,\ _.,_.. -: - --~ ~, 1 ·, : -~~~-.:: .• < ·'> - , 

· the backup system interactS, the incremental- dumping proceE is costly '1'd jnefficient The end 
__ , . ._ . .- -; .. .,.:~· _ ~,-_,:,,.~_._;;~-- j·::i-::~:~;:..<)·~;~:. --<-·i.J.,,..., .. :v· r .. ··:- i:_1:..~~- : 'f 1 , 

'-result IS a computer system which cannot guarantee full data security without incurring exc~ive 
~ - .. ~ ~~ , . · ,·~ ·· ~- - ~ ' ~--"r,. · 

overhead. 

· · 1.4.2 Distributed Systems 
. . _ , : · _ ,' . , -- · _ · .. ~ r · ' ' - ·, , · , . . ,, ~ 

Unlike single-processor machines or multi-prdeessor machines under centralized control, it 
. - . ·.~ . .-. ..'.'- ~· - ,'£~ . ;.1 ~!.,. ·/.·" ·~:(t .0 :\,I,.,;~ . ;.>-;-·/>:,.., - , , ' . ~· -
is difficult to· perf'orm global checkpoints in· multi-processor systems under distributed control 

- . . .. •. ""·~1.. 1).(; "J'.1~J1Ci ~~ ,t~ : '-'·· ;·-'..:~- -,,: .. . : ~, 

· because of the lack of any system wide ·synchronizat10n capability. Hence. although distributed 
, _ . . . _ . • r. .-·' :. . . ;··'{, I.· ~J -~;- >".1·;~--~ ;·,_ n r ~v· ,'\· _-, 

systems may have the potential or providing a more secure computing environment as a result of 
~- ,\. ''°'!}\\ ,,·:.·.1' ·._. >=_,. In {i ;~ :·: -::J.~ 1' ~1 ·. -; . 

the redundancy present in their architecture (29). exPtoi'ting sU~h redundancy to achieve this end 

becomes much more diffl(;ult. A ~pic~l mod~I ch,Qmct.criaftga_diuributcd sySlem woWd be one 

where both, the data as wcU as the qx.lc of a pl\>eQti.~ is ~ltctu'.l oNcr sc\la.'n1l phy.sit."':11 nodc!dll·d1c 
l 
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8ystem. Communication between processes in such a model is usually· throtigh some form of 

remote procedure ca11 l2S)or m-. pb&Sing.medtanism (llJ.·18,JlJi' Failure in these systems 

can ·cause ~ to·tleadtfjCk{lj:after the recowry;phue·'GOmpfetes. To· avoid deadlock 

.proOiems arisiq. from the tQ!ll' 11CC>Wry of a ptoOlllla :f.hat i9 a. tttemtiet of a collection of 

communicating .prooessas, taca1 · disiributed systems: or ·· netWM · codaipu~ts usually have' the 

ability to sctkicalited chac:kpoiata-fereach.p~· &lclhd'cd~rta~'tefet'ri~tfto as 1ectnery 

poittLs. -If a faiklt!e ofa:paessJsdctected. ltis~ •Wibfm)fimH'·laekthe faited'J)rocess 

to its most reccnt.~ry :peint.ribut to aiao:NSlti alf-C>llWN·~· that hacf·eXdianged 

·information with 1he miJell:p&ugea.lince th& tiMdiof! a "81t·;ft:MwY 1pofnt in order tOo a'void 

.. deadlocks from omurrina when .epreration ·»·wntiriUedI··' ff flMISei.~" points are not set 

J>topedy. it is· quite likoly;t(J:tlave a.domino dM'~~"~'ilf'PtatelSes 1 lnitiate··retovery 

actioauhatJead. tlaem to dlemadiat re:overyfdai~ whtHO set !mWery points 

and finding a canmtentaetd SllCh poilats ts -~~Jtft)CilJlli'[JlJ~·dften' ~Y 
reducrsithe overall ~otdle.sys&llhL · 

Borg -et·alfij and ~gaui-fS}·P~sthemel .'fbr eRIM'iJt8·'M~rity of.data in a 

distribtateci m~bwd·s11•. ·The baltc 4dtla-11t:1M111:~. tn~eit·maintaihfnl an 
i, inactive backup pro:m on;a ·ditfeNDt. psou1810f3tlftfldl::a.M1~:irl'ttie·systetn·: ·If a 

:.· failuteof a·primary.procesOCQmS. ·lbe bM:tup..p-..·lll•tJ+er'•xettitlen. ltt:Bofl'sdteme, 

:. IJlesAFI exchanged between two.JllR'Cl••s"are alsO·lll~~ 98beekup J>roetlSes 

• ·well bl .. addidoo.· ,bofD 'the Wc:tup :.-t Ntlolf1ry; ·pA: •• -~ipftiodiallly' syncflfclntted. 

, WheJl a failure tXCUIS OD a. p...,,..proceSs., D .... ---·~lift tile ate 'tflafl!he 

.. failed .primary had. at the1•IJllClll'QJlliaUon ~;'JtW a.klP an tatdt up to the-staterthe 

primuyhadjust befontdae failurerbyi~W cJftth•~ WMdt·were aettttxHt. 

Barigazzi uses a similar approach in his system .. ~wever, i.nsteacl ofh::lY;ins m~es 54=nt 

from the primary tO th~ backup process. an exp!icit_ ~~~~·~~tr~~~'1~1~1'1 ~~~~~~cf for 
every primary. Setting a recovery point for a process also requires establishing recovery points 

for all proce~ that communicated with this proc::ea since thq, 1~,,.~~ .P<>inl li~:.SFL 

Recovery in this scheme involves rescuing all processes to their. !mt recovery point While both 
, •'' : r. ." . - . ' i~f; ~'.-: •. / ;.; ~: ;(. :,. f:)•_:f)? i~; •" - . " 

these' schemes provide full data security. they do s0 at the oost of higl.l ov~.rheµctin O)Ujntaining 
' ·, : ; J: " ·_.. ... . .;.;_-</ .:.;,' ,,.._ -,~, ~_;1 ~~·:~t"L-.i:.-?" ;, ;; . .'1 -' • -· 7 

up-to-date multiple copies of the primary . p~. on disJ~int P.~rs. In a<;ldition~ both 
. . - . _ _ 1_;. ... -~~)~.f-""·/ . ! ,~: n }~P~1· 1L".: , ~·· ; '·" : · · 

proposals assume the tmnsmis..liion of meS&.1gcs to -be ~ relatively ifl_cxpensi\'C ppcration. qn 
' ' • <" ' , -~ ~ : • 1 : ~ ·,l· ' :t • •' I l '! ; ,' ~; i • • > • ' • ." ! 

~L"isumption whkh is ccrclinly argmtblc. 
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In addition to general distributed systems, ibere · ltas been much interest of late in 

distributed transaction systems for which a hiah dclree of data security is essential. A 

sophisticated approach to handling data security. for transac1ion based applications can be found 

in the Argus system. The Argw.s integrated pqrammiq: lanpage and distributed system being 

developed at MIT [231 is a comprehensive attempt to PtOYidcJiaguistic support for ensuring data 

security and consistency within a dl$lributed roml>tltin11envimnment The· language provides 

constructs to encapsulate vjtal data objects which are- dml auaraatecd to survive cremes of the 

host processor with high probability. In addition9a ~~provided.to express atomicity 

of p~ adivity, When a hardware failure occurs. •h~ng, atomic action is forced to 

abort. A two phase oommit protocol is . used to· c..._, .that ~I tramactions preserve the 

consistency of the active data. To guar&Qlee da&a.stcwity,,objectS.are dmtnguished a being 

either stable or volaU/e. All &&able objeccs,are writtcnea10*1>le stoap: ~whenever a 

transaction completes. The. intearitY of stable :Oltjeds:~ thelWbre. praerveckeven though 

crashes of the host node may take place. Volatile -..is·pMlml'd to be lost upon failure. 

Perhaps the greateSt point of contrast betw;een: the'~ implementation of data security 

anc;l that which we want ·to: prov:ide in ow- ·IY*Rl is'. the.~· in Arsus that the user 

prespecify thQse objects which a.re tQ surrivo crasltm. Our goeUs to easure .that measures taken 

to provide data security are transparent to·the:J11Ct;,J10.tinpistie primitives are.provided to 

specify the ob~ he wishes to survive failure all(ino cxpticit,.amstructs are: provided to control 

backw.p operations. Whilt the gap betwten tM prog,...mng.mode},and .the backup facility is 

-not IK> severe in Argus as in Multiott dae·fact that th.e:~:J)IStem is.based on an updatable 

memory execution mocW makfl the tut Gf ensuring ·a ~nt state a oompllcas.t one 

involving expensive protQa)ls auch as two-phase .-.it. and stJphisticated. algorithms to 

maintain a correct and up-to-date backup image. Moreover. the application domain for which 

Argus is best suited is a relatively restrictive one and the oomplexity of the system is probably not 

·warranted for most non-transaction 1-ed computations. 

1.4.3 Fault Tolerant Systems 

There have been several proposals put forth for the design of fault-tolerant data flow 

computers which attempt to achieve data security (as well as availability) by incorpomting low 

level fault masking capability into the system. We outline several ot these proposals here to 

present an alternative approach to solving the problem of providing data security for a computer 

system. 
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An error recovery system in the context of a fault-tolerant data flow·rtiachine based on the 

Dennis~Miswias architecture'(9]1was-described·t)y ·~; inf24];; .. 'fhie lbodel advocated was 

b$ed on providing tripJe modular;·redundlney·~(FMR1):ft'>r: memt>t'Yi>and the 'l\Jticdoriat wits. 

Each instruction cdl acts as a va&er and. r«eive&<ttttee Mui~ fat1i'leh q,emncf pnetating ctror 

packeu if discrepancies arc found. In adEMdUn,·;~ failiiNS 1l'te mihdletf 'by~:atfOWing the 

network. to be recoofiamed. The scheme· invol• .mmtt~i~eftd· in «Urns Of mcn:ased 

. packet traffic.and extra hardware. ad is ~-tbe~fde ~f:'~edgthent signals to 

allow reconfiguration »tate9'aoe. A fiwlMOimMdei1P"fot abtfei(l~fa1tbWahittct'are was 
also proposed by Leuag (211.: ·In ~is, ~t•-OJMlft.kH'ddlhline~ltechrtktuec was etnplOYed 

whereby redundant units-are used to•detect'and ...... !tiulfta.<·wfdfltffficted corriputatfons 

reexecuted when necesaJy. : .,i' ; ;f . ;· 

Hughes (19) suggests that; a dleokpoinma .. ...,....., ls&ftaMy · · modifiett~ t>t data flow 

oomputation.may, be.an ~ nt1eflatlls•ifi>tilllceJ~ tttor~teiCeYeryln a ·tfatil ftow 

machine. Basically, eadl cd~r;~;wilidl-'is1dt._tid •ml~ When~fthe 

backup system initiat,es adMkpointt allfaMJ·cdl<tJOt ~1~~ 'are9ivedt On 

recovery, all active cells that \!ere checkpointed ;u-e ~~ , Wh~~ ~inple ~. iqiplement, 
'~- <. . _ ~;-· - , ~~ _. ~f·.p: ,_,_ff.~. ·;)Vi . d{Jf. •. L. ·. .., 

. recovery, in. this scheme requi~ ~e ~i~!~ializa~,, ~~L!!.1~. ~?:r,e,j 1~~,, wPich ,~ .an, .~en 
unnecessary step. In addition. the memory of~~~.~ W~,!Je.~~ine,c;t.at ~,cfl~~ppint 

' - . '· .. ' • :i • : . '.: ~ -" - ' ' ~· .,_ , . ~ 

to determine which ite~ have not yet ~? ~pi~;~~is i!.;~~~~-~ ~~~ful, ini~t. ID,s~~ 
Finally, this proposal as&lmes that all infonnation is resident in memory whenev~r the 

checkpoint .process is. iinokedi by contrllt,·irUhe iJ1tlntMtMt!WeviM;JeHlala wiff ibe spread 

across the memmy.hierarclly Mt\veendisk altd nmilflf0Mlciufi8g~:necution. '· · · · ··· 
l · ; f .. '" ;'.} :·I ~ j } 

All three of the proposSJs cited here are based on ~ architectural model much diffe~nt 
, . ·' ~ .- . , : : ·.·; , ·. ~( .:, ,;; f~,:~15-./J;, ("··~ .. ·,r.~ .,: ";(\:., '· .. :·:'.'·<\ 

.. ~mm the dynamic data flow m?<iel des!gn~, fO.~, VI~., , .'.~?repv~r·.-: th~ycreq~ire special 

· architectural erichancements to mask hardware faults. VJM is not intended. fof appliqtiqps 
·-- \ ' . ' ~ 

which have high availability requirements and. thus. there is no need for fault-masking strategies 

to be incorporated into- lhe s¥stem. · COftsequentty •. tlle,app~··ro achieving data security 

taken by these schemes will. not be directly .,.1k.'able 1n sabsfYHtg lhe n?EfUirementS we have ~t 

forlh tOr our system. 
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1.5 Thesis Outline 

In the next chapter. we present a detailed model of the VIM Computer System. We 

describe in detail the applicative base langµage bein& used alllidle dynamic data flow execution 

model employed. In addition. a fonnal semantiies of S¥Sfam Qehavioor is also developed to 

rigorously define its operation. The manner in: 'Yhiclt. usm CJCllmnmnicate with, the qstem and 

the means by which looa·lived · ~ are defined are ,aJso ~. To simplifY the 

presentation. we assume .a 5)'stom supportiq c.Wy a aingle:ar./ .Because of the applicative 

programming.model use4 ill VIM, thia·simJ>lification dom,aot.Ulvatidateias applicability to a 

multi-user system. We 49 not consider ~°* 1~.aon ·in dill' model This 

restriction also simp~es .the alloritb-. .Thf' C0Jt1pH.catioas invohed:in incorporatins non­

determinacy into the model is a topic which we discuss in Chapter SU. 

The third chapter in -the thesis presenm ~ pneral-strategy.i>r the backup and· recovery 

system. W& defiqe the, ~ which .the bactiq>: ~,,will useJ in determining what 

infonnadon should. be.~· on -the ,backup . .,_e -~-· We· ·Mo present the 

architectural enhancoinents ~ to suppottiho: bkt.u.p-'tlkXlYeqradtitiea. 

In the fourth chapter, we give a more detailed· descrtPtion of ~e backup and recovery 
. ' , . , , . . I ~ , . ;..~· " 

algorithms. The alterations necessary to the interpreter are discussed. We also formalize the role 
~ •' ' •' ' • • :· '· ,· ·, / ;~ '• '~-" 1:, i.,. I ' • '~ '·' ·~ 

of the backup and recovery system in the context of the abstr&Ct model given in Chapter Two 
' ' . . ' ' (. l ;.' ;'.. ,' ' ' .. ~~; -:. ; ~- . 'I' ,' ' ' , • • ; i . 

and present the changes necessary.to the ba5e language itis~ctions to support our algorithms. 
. ~ . '- . ,· ' , 

The ti(Ul chapter deailwiS low level details .. in the. transfer of, information between the 

backup storage medium· aQd .the VJM. srstem. ~ .dfsaus. how ,fllt guarantee the. atomicity of 

information transfer so that a consistent image of the system state is maintained on the backup 

srorage medium. We al&> mention.how storage m~nagement :i~ handJ~d· 0n the backup srore as 
. . . 

welJ as describing how t0 minimize the copying of information from system memory onto 
< •• '·' 

·backup memory. 

The final chapter presents a summary of the thesis and discu~ some topics for further 

research. W c pay particular attention ao the changes wbich mar. need tD ·be made to the backup 

and recovery algorithms if our model of system behaviour is augmented to altow non­

dcterm inatc computation. 
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The VIM Computer System i~ an e~perlmen~cprri~ ii:t .d1e .·Computation Structures 
. . .- .· -.-.• ~ .:] /j .; "if·.·~~~ q~ >'"'!·, +·;:. : ;- ' ".i.~-- .. 

Group intended for the irivestlgatiori' of a novel dat4 tlow architecture for the efficient support of 
~. ·.,-· ._ . . _ •<., ~~1 . ·;·: > ·~'~::~·~,! f ·ii,;~ ::~"~!L ;i:1''; ·:. · .:·, '",;...,· 1'' • 

futttdonal languages. In this Chapter, we discus,, the desian of tile system an.d p~nt an 

:. operatiohal · semanties ror. its appli~ive b~ lmi~f ;1 fht~~~. p~~~ ian~age 
,. • • • • '< _.,. , ~·, , ~- •• , ,_ :._-~!-> ·! ···fL ~ --~;: 1rr~ (tS":).· :_,._·-~1~- ·- : · ~:·-~_-._,. ·~, 

- ' supported by VIM is 'VIMV AL. a majorextension of.the applicative l~guage VAL [l). VIMV AL 
. . . . . . ')- . . ! •··. : ._ : ~~··' ''"· ti~-~.·\ J:-, .i ·, '/ i t ' ;' •' ' . '< -~ ' '. . '. ' -

programs are translated mto the bue 1anguage d8ia. flew/ graph representation which is then 

.executed by .tlle VJM Jn~~ .f.Jaep;~icale,,1fidl.,VlMftUolaab1a:i.S'IJeJZ,~ The 

Shell provicies a ~werfulin~ to the $Yf&em •t ~rs to bliijd and manipulate VIM 

!llViT()lllMl'llS.- t.Jto mai,nJMjijt.y for GQaJUueUoa _,lbttci«1Wtt.1ft1L•;Wedilr:u8s each;of1tbese 

. ~pon~ • .VIMVJ..!...·the,~qm:tQr,-4 Ule1'Slwg~~ 

2.1 The Applicat.ive Lanp •• VIMV AL 

In. i this seQ;on. we. PfW!l~ m i'1formal overview· of tbe·~· VIM bigtWevel applicatk>ns 

. languap, VIMVAL. VIM\l.U. di&rs·fmm VN..i, i•pmdeesS.WiliUh11Amcdons·Mitfeat4kf as 

first.-cla$s-0bj~·froe use-:Qf m:ursion and mulualaJeCUl'Sion;is~drand>polytnoq>hin is 

~PPP~ th~h a MibtetittyJt· type inferenea m,eallanim lfeli,aan ... prc>lram lnc:a suu.ttured 

and hierarchical manneuJu-.IJfte;.useofai~i41.Zrll«t~. 

In addition to various scalar types such as integers. reals,~~ aq4.~~Ji$!.y.:1~V:AL 
. ,.,.'",_ .. :.-.·.-' . . 

also contains struc11:1re types suclt as amys and ~- Users can expreu histocy,sensitive 
' . ' , , .· •-":."'. •',f'.-~ ; . .':;·«, '« / ~;-1,·~ ·~:.;:.,,;< i :;~~t :._; . ·' ~ 

oomputation through the use· of streams [JO]. A stream is a potentially. infinite sequence _of 
._· . , • ·. ·. ' ~ :;; ~ __ i; 0·' _·;;";.•, ,.. .! ·.·,J::~ .,..1;.'~:f',/, :,.· :,' f"; I• ,,- . ' 

homogeneous Values which may be of any type (induding stream) that allows users to write 

' hisWty' sensidve c:od~ (stich as· the mOdeling of a convent~l; ~~ory cell) within. a fun~tlonal 
, ; _ .. , - ··. :· .. ~ !,··~·•· .• : r~t '.:·· . ·.-' · " · 1 

fmmewort. Thtre are· three opemdoits 00 streams:'·llrit whiCh< returns the fi,rst element of a 
' . ~ ._ ,- ~-' .~;~:··i ~~·>·'-;.· .. ;..-. '•;f~,''. j ii_:. <,. ~ 'i 

... sttearri. rest which given a stream returns the stream· wilhobt it$' tirSt clement. and amx which 

amxes an el~ment to the head of a stream. We ~afl di~uss 'the 
1 impl~~e~tation of streams. in 

greater detail in the next section. 

Because functions arc treated as first-:class objects. :lhey·may be· paaed as Qrguments to 

othl!r functions. rcturn1.'d as the result of a Junction ·acti.\·atiem; and, may be buih into data 
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structures e.g., array[Function]. The body of a functibn is an expression whose type is the result 

type of the function. The fonn of an expression may contain conditional expressions, function 

in vocations, tagcase expressions. wbi;b altow one of:t series of expressions to be chosen based on 

the value of a tag, and let expressions which are viewed ~ susC!fing for lambda abstractions. 
l ' ,} 1·-~ . ' 

Conventional iteration in VIMVAL is expressed using tail recursion. Variablc;s in VIMVAL are 
-. > ·', ' ,-'°'. . • .... ;- < \ 

considered as only identifiers for a value. Once an identifier ~ ~efi.ned, it cannot be chang"1-

VIMV AL is a single-assignmen-t language. The treatment of varjables 8$ identifiers for v;,Uues as 

opposed to placeholders for memory cells which may be MbiUlUl~,'}lUtat~d as found .ht more . .. 

conventional constructive languages js a distinguishing ch~te~ of VIMV AL 

A module in VIM VAL is a function. which may be itwoked ·ftom other modules or by a user 

command to the -system. A m0dute ·provides a -medlamsm· 1 tbr ·gtoopi11g related funCtions 

.together. These.functions may be invoked fft>m•withift: t1'e lllOdtile<>r, if they are passed as a 

result of the module; by- funolioas,extemat to the mectule. · 1M-b0dy of a moduiemay use names 

that are not bound by definitions in the module. These free names must be bound before the 

module can be run. Modules may be separately compiled wkhi·iype consistency of" identifiers 

used across. modules being checked by a linker~ -1)1>e spedftealions are:eptional ·in V1MV AL 

Omitting type definitions allows free names in modules to be,bound 1n possibly several contexts. 

each binding causing a. different resolution of. the typeS of die Bee variables. Users can, thus. 

expc9 useful polymorphic ~ctions using the type tfnfcremte Mtabafsm. For a· more detailed 

exposition on the. VIM VAL language. the reader should see [ll) Mc:t (28J. 

2.2 The V1M Interpreter 

The base language for the VIM system is the lan&lJC!&e of 9ynamic data. flow graphs. 

Programs written in VIMVAL are translated into their data flo\\f, graph repO*ntation. Base 
• • ' l , • 

language programs are evaluated by the VIM interpreter. A dyn~ic data t1Qw sraph is a 
.. ' .. ... ,· _,.. :- . ' -

directed acyclic graph in which nodes represent base lan&UIF in~ctiQflS."14-arcs are u- to 
~ ~ - . ' 

indicate data dependencies among instructions. There are two types of arcs io,the graph: value 
. - ; ';'. ; - -

arcs and signal arcs. An arc (s. 1) is a value arc if it carries the valµe proouc~ by the execution of 

node s to node t. A signal arc is used for perfonning a control function sµch as selecting which 
«,: . 

ann of a conditional expression is to be evaluated. A node is said to be enabled if and onJy if it 

has received all necessary vulm.-s and signals. Enabled instmctions c.tn be executed in any order 

ancl the interpreter is free to chcx>SC the execution of any cn:.tbfcd 1nstntction from any current 

fu1Ktion activation. 
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To illustrate the structure ofa VrM data flow graph, we show in Fig. 2 the base language 

representation of the VIMV AL function shown in Fig. 1. Instructions are drawn as boxes, with 

the opcode of the instructi9n 1*led iQside the. box. Value arcs are drawn from the bottom of 

the instruction which produces the value to the appropriate operand slot in the target instruction. 

Thus, operand number one for an instruction will be sent along the leftmost value arc entering 

that instruction. Signal arcs are drawn entering into the side of instructions. Each instruction has 

an index in the activation used for addressing purposes. The behaviour of: the base language 

instructions are described in greater detail later in this chapter. 

Function/(x :boek!la; h, g: Funct)on returns illt) 
if x =true 

then h(l) % h returns an iJ1teger. 
else g(2) % g ...iums an· inager. 

end if 
endfwa 

F1pn 1: A simple VJMV AL ProsflDl 

Any non-scalar value produced during the evaAsation of-an activation is placed on the VIM 
" . ':, .. ' .· ~ />, ~ 

heap. The objects which may be found on ttte-·· tieap-· inctudt function templates and data 
' 

structures such as arrays and records. As,,ociated wilh evecy object is a unique identifier, u«t 

which distinguishes this object fn;>m every other ~-on tbl11eap. Thus, unlfict:-~mple scalar 
' ''.· ·. .,;._. ' . ..! .'' ',.: . i ·j'1 ' 

values, data structures and functiOn templates are ftot ttifillnitted alOng value arcs in an 

activation. Rather, .the result of producing a oomptei Structufi~t~it~ ~js;st~~. on the 

heap and to send its uid to all targeLdcstinatiou--illi&cad. ---\4M.-IR1f)loys a--reference eount 

mechanism to manage the.~··• "111en the~ ex_• µo,~fe~~1~~ QJl tlle,heap f~ 

within any current activ~tjo~. dia,t ~~e can be; ~~d_,,~JAe J\f.ffP: ~ ~~ ~d. 
The VIM heap may be COJ)side~d to be a multi~~d, 4ir~~BIW.~l'J ~ere an arc (iS. t). 

connecting nodes sand t, in~~ that t .is a ~~~·i'-;i:~ts;on Ule))~p may be 

safely shared among objects. This feature is a resuk C?f:tJ>~-#JP~Y~ na&µre .of the base 

language. An object on the heap consists of a unique identifier and a structure value. 

A distinctive feature of VIM base language programs is that no. arc in the graph is ever 

reused. This is a consequence of the graph being acyclic with tail recursion used to model 

iteration. This model of data now graphs rcqt!ircs that every new function application create a 
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Fi111n J: Function applk:ation in VIM 

2.3 The VIM Shell 

lS 

F 

Users communicate with the VIM system th~gh a sy~ Shell. The VIM shell is 
. -· ··-·- --~- ......... ~ .. ·"·--_,.,,...-~.- ·-·---~ 

responsible for accepting user commands. andf transl~,r~em i~to the appropriate base 

language representation and then invoking the interpreter to remte this base language program 

whenever necessary. A user sessio~ typically consists of the f*r axnmunicating with the Shell 

in an interactive mode, inputing Shell commands whose tefiflts are subsequently output to the 

user. Every user executes in a unique enrironmeni~ A'-Vii.4 enVi~me+t relates symbolic names 
.-·1 ~--~·L'-i -~,~-~-- -~··- ,~_, ..... ,.___ -4 ·~-~ 1'.f:,_-.~·(B-1~)r.~~ l ; 

to values.and acts~-a r.eposi&ory for all long-lived ehjeeta.· Objects referenced in an environment 

must be explicitly deleted by the user. The V1M0cn~{~~en:;tiphty~jth~.;~le. of a 'dlrectory 
- - . ' ._,,,,_, .. _..,. ... -~- , . ...,,.,.,. --~ """-···----- _,,,_,...,..-.. ~-,.,_...., __ :·· ~--~~ ___ ......,,_..__ - -··- ·- .-. 

structure in conventional systems. Users specify that a particular <name. value> pair is to be 

ptilccd in'hiS'envlrdriment lhrb~gft thc"tiiNb'cii1{~anlf.;JTh~ ~p ~~~d':' , - , ' , 
1 f \ - - ~: ;·i ;., ; :·: ~ , . F ~ ·. :.Jn , ,: "· 

BIND name:= <expression> 
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binds the value of the expFession to the name specified: ~'fhis·bindingis then·ptacedin the user's 

environment In addition to the BIND command, there is a DELETE command which, when given 

a name, removes the <name, Value> binding from the user's environment The command: 

DFLEl'EN 

removes the bindiq. <N. Va/lie> from the current Cl)vil'Otitnent. .Ulers must execute a DELETE 

command to have an entry in their VJM environment removed. 

The VIM shell ~·a BIND cxxnmand into its base language,rep~tuion which can 

then be executed by the VIM Interpreter. The translation for the command BIND x : = / (z) is 

shown in Fig. 4. The APPLY instruction creates an activation of the function /with argument z. 

The result of this activation is sent to a spec(ial instruction, JOMINATE, which informs the shell 

that the value which is to be bound to the nanib~, is avJMlable. The storage occupied by this top 
/ 

level activation can then be reclaimed by the systegr\fbll the RELEASE instruction. Thus, once 
_,/ . 

the value which is to be bound to the symboliC.1iame is ~ the activation created by the shell 

can be removed from the system. 

,, ,. 

F z 

APPLY 

- ~~, { 

TERMINATE RB.EASE 

Fig1Ue 4: The translation qf the BIND oommand 

There is no translation into a base lartBU<Jgc prog"?m nec~.ry f<>rdte [)~LETf: ce>mmund. ll,lis 

command is processed by the shell entirely - no assistance is required from the Interpreter to 

execute it 
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The TERMINA TE·instruction ·described above 'is ·t1secf to synchronize the operation of the 

interpreter progr.mr with the sheil: . f·f this synchronization· medianistrt '~ere removed and BIND 

commands were allowed to al'bitraily··over~p with''one anbttter;'1r:is p<>sSibJe for in<:orrect 

environments to be constructed. To see why, consider two BIND c:dmmandS input il1 suceession: 

BIND{x, f) and BINI)(x, G). It i~ clear w~tif tile ~~Rl.~~:~roctly. x should 
- ' ' - ' . - - ~ _ _, ~ . . - ·- . -. . ' 

finally get ~unci to the ~Jilt of ~v.µuaµng G. Jo1 .~~ • ~2~;~iiatioo talt" place, 

however, requires that theJi~~d Bl!\l:f? CQm~d ~·"'~ ~~~til ~ fi£$t one,~ 

As we shall see later. it is possible .to $ill exploit..a ~ ~J>f:~~ »y,~o .. the 
. ; . 'i ·• . ,,,, - - . , __ - . . 

computation of F tQ be sUU p~~d,i~ eyen if Bl~O (~ f!)_ e~~~ . 'f9is f~iu~ known~ •rlY 

compl~io~ is described in ~OD 2.*'2· 

In the next section, we will present a formal operationartrl&tef for the VtM interpreter. 

base language and shell. This model, ~led, Ml ,,wjjl,~p~,.;w '(l/.rJ;, "a~ ; We wMl aot be 

considering, for example, internal representation of ~:i~W,~ .in. ~emof.Y.~ p~J)S: of 

structures to and from memory or scheduling algorithms. We make two simplifications of the 

actual system in our model. First. we assume that all cbffl1'ut.aridd m the ~m is Hhtrminate. 

A computation is determinate if its output is totally specified by .Jbt; ;~ue of ,j"' ipputs; it's 

output does not depend on such factors as the relative arrival time of its inputs. Secondly, we 
. . . . ~ i . 

assume that only a single environment exists in the system and, thus, there is no need for 

providing an explicit environment name to. lhOlll ~.lllhida:imanipalate :envirolments. 

In the following chapters, we shall refine this model tQ describe the backup and recovery 
, . _, ' -1 · _ " E ~ .1 r 1 :· , • ~ ·... • . · , • 

algorithms. 

2.4 A Formal Operational Model • Ml 

The VIM system contains three major components: an Interpreter, a system State and a 
~ . ..:• ' 

• • • > " - ~ ·: ~ .. ~ ~ -- • • ' 

Shell. The State ·embodies all current information in· the system Le.. henp. activations. enabled 

instructjons and envirO,Dm~ Thc,interPreter • .._. .. .a iballi:18111W1P ~iation or a 

Shell com~nd and rc;t"mi the valJJe of lhut,commaruh :1 lbc.~aluc ..Cwmofl by . .the mteq>reter is 

bound to a symbolic nariie,in .thtl ~r cnvironmeat The~name Odngi bound,,is determined by 

t.he current BJNP command bcing.proq:ssed. A sheH ~dis .translated inn its base 

language .represcn talion and is ~n executed by the; illJe~,. . 'Ehili tramlation is perfonned by 

t.he Shell. The shell as described above isa function mi•r>Pinl fN>m.a S11Me1111d a session to a new 

Swte. A session denotes the history of Shell t·ommands input to the system. The shell translates 
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shell commands, invokes the interpreter to execute ~:c<>mman.ds in the current state, and 

binds the result of these commands to names in the Uself eqvhpnm~ot.. Itr.ewms the state which 

is produced after evaluating all shell commands in the;~ The ~~ architectut~ of the 

VIM system is shown in Ftg. S. 

In the following discussion, sets are denoted by bold font. elements of sets are denoted by 

italicized letters and names are indicated by a scriputrmp <>f tetail'S. ThUS. Set is a set. Elt € Set 

and 'G9 is a tag. We present our semantic definitions· u~mg~VlMVAL~tike syntax augmented with 

·operations for performing set abstraction, set metriberilttp,-eic~·dri the domains defined below. 

Function ·domains are specified using· arrow · (:.....) .Wtalfori. · thus, · the domam equation, 

A = B -+ C defines A to be the set of all functions ·'Wfth·· dottr~n 'B ·and range C. Tuples are 

enclosed using angle brackets. 

Formally, we define the VIM System to be a three-tuple: 

VIM= <Shell, lnterp, State> where 

State ::::: <Act x H x EIS x £ay) 

Act = u A -+ Adnlty 

H = U8 -+ST 

U A = the set of unique identifiers used for activatioftl. 

UH = the set of unique identifiers used for structures. 

EIS = the set of enabled instructions. described later. 

Env = Name - (U U Scalar) 

Activity = N -+ lastruetioa, N being the set of qatu~ numbers. 

An element Act in the domain. of VIM activations. Act; ·is a mapt)ing ftom unique identifiers to 

activities. An activity is a fundion mapping from natural nttmbefS to instruetions and represents 

the code of an activation. An activity am be thought'0fanarny·ofirrstructions. the I" element 

in the array specifying the /h instru(;tion. The VIM-'ttel~ H~ is modeled ns a function from 

unique identifiers to structure types. ST defined below .. The striJctufe ·of the heap is detennined 

from the mapping dcl1ncd by the heap function. SC:Jl:ir vafucs, ate not represented on the heap. 
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Acti¥idolt 

Instructions 
. Interpreter Shell 

value Env News._ 

i, 

Fi6111"1 S: The Abstract VIM System 

In the actual system, such values are transmitted directly along the :value arcs in the gnijlh. The 
- -.· ~.·· ,·. " ,(' ·> ,:· ::~.:~f·f,.Tt. ,-~ .~' ~ i>_:,;· "t:L.! { ·r; . . ~ - . ·ld . 

Environment component in the SlilJe is also fl fuDGd<>Jl, ~~ ftt>m,,., .1,1~e. wflicb is ,'PY 
0: ... _, ·. • ~- :; .. ·. ,,, .. ·~:·,,., \~j~', '·~ .,•:-· :;J·-_. . .• ,_ : '--·~,- ..... 1 .~ 

sequence of characters, to either a .unique ide.ntifi~_r ~fe~cj,~ a ~ture}>f1 the heap <?' a 
'< • -; • •• :' •• -·,' '•·' \.,• _,_: , 

scalar value. 

The data types supported by.thesptennue given below: 

Name = Character•, the set of aff character seqtiences'. 

Integers = the set of all iotc&ecs U·{.u.ndt:/l 
Reals = the set of alT reals U { undej} 

· IJooluas ==· { tru« j}JJ$1!.· .· 'fikde}t' 
Character = the set of characters in the machine U { undej} 

Null = {nil. undej} 
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ST= {ArrayU{undej}}U {RecordU{undej}} U {OneofU{URdej}} U {Function} 
U {ECQ} U {Clsr} U {Dests} 

Array= Z-+ (Uu u Scalars), Z being t.hesetofintegers. 

Record = N -+ (UH U Scalars U SUSP U Dest). N being the set of natural numbers. 

Oneof = N-+ (Uu U Scalars U SUSP), N being the set..ofnatural numbers. 

Function = N -+ Instruction, N being the set of natural.numbers. 

§2.4 

The set of structure types includes arrays. rec...U, and eneofs.,:_Arrays are modeled as functions 

from integers to either unique identifie~ representing structures on the heap or scalar values. 

Records are modeled as functions from natural numbers to either unique identifers representing 

some structure on the heap. scalar values. suspensions. wtiiCh we describe later. or destination 

lists. As we explain below, the return address of an activ.aµoa is packaged into a record and 

transmitted to that activation when it is mstantiated bythe APPLY .instruction. The destination 

list represents the list of return addresses which are to receive the: res,ult of the activation. While 

components of record structures are add~ by their field·name in VIMVAL, the compiler 

translates these names to the omet of the addfe5$ed c0mponent in the record. 

Note also that the set of functions is also included among the elements of the structure 
- - -. - .. . ----- _, 

types in the system. This is consonant with our treatment of functions as first class citizens. An 
- -f 

element of type Function is a mapping from natural nlimbers .tO instructions just as elements of 
- - - • • : '.,_ ' • . :~-· " ' ; ; ~ ' :·. -· ; - ,« 

the set of activations are. As we shall see below. the only difference between a function 
' ., 

definition and its corresponding activation is that the tatter is Sensitive to the effect of instruction 

execution since operands and signals are received by the instructions within an activation 

whereas a function is a pristine object like any~ VJM-stnactlU8. 

A function closure is a special ft!COl'd of•twe «>mpainGffw.itheflrstcemponent is the uid of 

the function template of the closure and the seco~d QJmpooent is the U$1 of free variable 
• ~ ; :·] i, ' . . . • I - , ,•' . ' · ' 

definitions found in the function. The closure of a function completely defines the bindings of 

the free variables in the function and. thus. must be dC'ttn~ b~f"Ote the func~ion can be applied. 

Free variables are acc~d by its index in the free variable li$l. The dctlnition of a closure is 

given fonnally as: 

Clsr = <U 11 x (N -+ (U 11 U Scalar))> 
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2.4.1 The Base Language Instructions 

A base language instruction i&an seven~tutle·00116islinl<>f'an'operxle1 three operand fields 

(not all need be used). an operand,c:ormt used,,t.o:iindicate;1'()w:omany··oper.ands must attive, a 

signal .c;owit U1ed to indicate .bow maay signais'musf:8etf&lli•edHmd the·desti11af.ion teeord 

CQntaining the list of d~ for dlis instrucCiolL l'be;taUJf~-we will be C()ftsidmng 

in our opera\ional modo1 ,Mfl ·.·.indude irecoid~<ltl..ur.e«~oos,· function application 

in~ons. Md .operations< cm eady oompletion *-•ta ,;ft•d*s of inslNcti6n5 wiH be 

the onc;s of greatest interest When, we preaentoui.hacltup antt--iy algorithmB. 

Instruction = OPS x (U8 u-Scalars)'' x N x N ·x Dests 

A de$Lination ·1- a type .which is~-~tonaL if tbtuault of 1he it1$tl'UOtion is to be 

sent automatically to the destination, true or false usedr,0,f& SWll'CHJbsmu:tioil to' ~I 

conditional evaluation. If the type of the destination is true, then the result is a signal which is 

Sent t0 the destination inStttictiOri if and only it't)i~' s\VnOf: ~raior ~~~l~a~d· ~ ~e. A similar 
, . - ·: -- , ,,.. • '•, '·· - :-\ .; --: - ,. ; _1 ~1r '~·1V r ~i.',} :)l";~ "j ;: ~"<' ... - " :·· ·:., : 
descilptlon ·applies for a fmse' type destinatk>n; All destinations ot ari· instruction must be within 

._ .1 . : . ~, . ~ :- .·" ... -. r' ': -. ,/":~.L~ :"' ·.~J.'s../ .':;.:·~~iti.L,,;··;;J_.- ·_"':~-_:·'.·· -· ' '·'.,·'_,,-.<, 

the same activation. The Sect>hd comp0nent or a desthiatlOn is the instruction number to which 
c·., --, : . - . {· - ~.- ,'.·. ,"/'!. :· :·, ;_ ~·-·:·-~{ r?i ;':_,~;i) // .:-~Jj""._: .. -iJ~·' ._. '": :·\ ':'~ ::.;1. ~ .. : 
· the signal or re8utt value Shootd be 'sent. If the ·destination is to receive a signal, then ~is must 

' . ""·'- , •. ' -., ; ,ft~··· ·.-·-: ~i . .,.,. . "'-,-' 1 i' ·,_ ;.;··) ·'1;"'• : ._·; :.~-

be specified. Otherwise, the operand field tO whidi the''reslitt iS t()'!le Sent' must be .Provided. 

For convenience we shall refer to the elements of an instruction using ~-·~ notation. For 

example, the opcode of instruction I shall be denoted as I.opcode etc. 

Dests = ~(ll) . . 
. 'ff= "{U.hCOftd., 'true, falSe} x N )( {op1, Op2, ops, stqnal} 

An enabled instruction is a two-tuple (u. 1) repraion-.. ~ ·in·.s:>me activation which 

has received all nec~ry operands .and signals. Any enabled instruction can be executed by the 

interpreter. The applicative nature of the system guara1WetS1thlf~ ~a'riotir bf ~program 
w:m be ~~ ·~~ Qt' tho: order in whidt;aJablat1cinllrucdobaJkr:•the ptdgram are 

executed. \ ,. 

El=<UAXN>. 

EIS = ~(El) is the set of enabled instructions. 
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2.4.2 Early Completion Structures 

Acmrding to the model of operation presented above, an instructiPn is allowed to execute 

only when it receives all necessary operands and sipals~ In :the case when an, instruction is to 

operate on a data struature such as an array or ~;this means that the emire:scructure must 

be fully constructed before tbs irastru.ctioa can execute. Jf die mstructioh only needs to examine 

a certain portion of the struotvre. then the execution· model iURJl.,.rily, constrains parallelism 

in the program. To alleviate this proQ.lem. there· is a. faditJ ia VIM: know11 '•, emly cmnpl~ion. 

Early completion structures allow areater ooncurrency:9f openiUoa by; allowing a data structure 

to be constructed and used before all of its component$ are available. , The q;>JQpUer designer ,can · -. . -.. · ·-; r:·~ "'·' ~h"" i _ < .. ,._ ·. i · - , : 

use this facility, for example, to generate code which will cause the results of an activation to be 

an early completion structure to allow the ealling 'adMtiGn 'to·me-!bme of the results of the 

callee before aH of them are knowtt. 

An element of the set ECQ is an early completion e/em~(Jp]. An early completion 
' . . ' . ·;. 

element is a two tuple, (u, 1), where u € UA and I €_ .N. '{be WIY compl~ti()n stnlC~ is 
' , . . . '', i' \ \_ .-... :. . . _,. ' 

essentially a queue containing target addresses Qf those instt:uctions. which r~qq,ir.e the vatu~ of 
. . • ·: - . : ! f ~ ~' - •• •. , • • •• " ",: . • j ·. . ' . • ' 

this element in the structure. When the value is,fll)allX.Pr9d~· it wi~ i:epJace theec·s~cture 
. , ' ; . ~ : ' .. ,,, . . . .. ' ' "' . 

and will be sent to all targets. This process is illustrated, in F°~ ,6 •. 
' J • 1 ; ~ . . 

ECE = <UA X N>. 

ECQ = ~(ECE) 

An element, (u, 1) € ECE denotes an instruction \\'.h,ich,h~ ~u~ted t,he vatue whicb is to 
' ... , ' '.J .. .. . < -''.~~~~' . ' ·..- . . 

replace this early completion structure. The uid u denotes a function activation, and I is the 

index in. this .activatk>n of tho ta11et .illstnJctton. 

2.4.3 Uela1ed EYaluation Usm& StrellllS 

The astutetader would haw noticed ,tJtac the;..._ t)lpe,,,_.d m an earlier section is 

not defined in our fonnal model. We represent streams using the record and oneof type!: 

Strcam[f] = oneof 
[empty: null 
non-empty : record 

(first: T 
rest : Stream[ f]]] 
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We have previously mentiQn~ that stf~rt1$ are.J~~tcm~'1W lt\(i,nite ~iuctures. In a purely 
1• - • · · t . ; ~ -· ~ '~ ' -.t ,. -· ' r • • 1 

data driven execution model. the production of a stream may far outstrip its consumption. To 

avoid wasteful computation. streams are produced in a demfM"'"*''"Jas~H6).: lndem4nd 

driven evalua~on~ an ele.meni of a ~ream is J?J'o4~~,,9f11X w.ti~n}lS.cpn~rner ~iros it To 
' . .. . ' ' . - ,,. . ~ , ~ -. . l - : ... - - - - . • .. - . - . 

implement this foature,_ a speci_al record element call~ 8if#l.Rf~~iR'!i !~Jr,a,t('9du~. A suspension 

contains the address of ~e instruction in , the strca~ P,~U,~fr . re1J?On.sible ror in~~Ol~l~~ng 

production of the next stream element ,When a ~~11~f~~~~' ~-::su~~?~io~~r!he s~pension 
\ _,. . -

becomes replaced by an early completion queue and a sig~al is~~nt W the addrc5$ which the 
' ; ' , ' - ' ' • ':. 7 !_' ' • J ~ ! ~ < •• - : ; ' ~ • ' ' : ; •• -

suspension holds. A new record is created for the next .~lcmcni and the early t'OOlpl~Lion queue 
, • ' ; - - ' j - : • ~ \ • 0' ' . . 

will get replaced with the uid of this record. The hc~td. of this r,cw record will (,."Ontain the new 
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stream element and the tail of this record will again hold a -SUSJ'CftSion. We illustrate this process 

graphically in Fig. 7. 

1. Stream S withjin(S) = Y. 1. After suspension accessed, it becomu an ECQ. 

s 

~-sp-..-~ 
(11, I) Is the consumer lnslnlctlon 

s 

v 

vl 

J.. Producer yields next element which is transmitted to waittng consumers. 

Fipre 7: Demand driven evaluation of a stream using suspensions 

SUSP = <U x N> 

The suspension structure is a pair <u. 1) which represents the address in the stream 

producer that is to be signalled When the suspension is accmed. 

2.S Semantic. FUllCtions for Ml 

In this section, we present an operational model for the VIM Shell Interpreter and base 

language instn1ctions which extends the operational model denned in the previous section. The 

instructions which we examine here are chosen because of their relevance to the backup and 

recovery algorithms developed in the following chaplerS. 'We partition our presentation into 

four categories: formal dt!Scription of the Shell and Interpreter, instructions which operate on 
. . 

structure types. instmctions which are used for manipulating early completion structures <Uld 

stream clements. and instructions which arc concerned with function application and return. 
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· In the next section,· we define' sortte auxUittty · furictfons that' wiit be uSeful for our 

presentation. These functions are Used 1ri the dendfrlc>ns·· ()f·ffie 11!Kive· ntentidried base language 
instructionS. 

2.S.l Au1dliary Functiom 

TM re are sevenll printitive·auxiliary ~ctit>ns WhiCh · ~tteed· to define before presenting 

our operational model; :~est fundions ~·bri'tt.e'1 flti1J, 1*:tivatlbn~- 'and envirotunent 

components of the VIM state. , The ft:nlttibM) M!Wlhapi,'·lenihvtihdp'adds and .. rettiove an 

element to and from the heap respectively. Th~-~~~~,~~~Jl·~es~ ~ree ~µments: a 
current heap H, a uid u, and a structure. v. It returns a new heap, H •• identical to H except that 

this new heap is defined ft>futUdr that·et(-u1·=· '~ Tbisicfef'friitit,ii bf'Newlteap allows us to 

rebind existing uid's to different val~ a featµte w~~l ~~·~·~ltfMl'ting early 

completion structures and suspensions as we shall see later. The RemoveHeap function takes as 

arguments a heap H and uid u, and returns a new heap, H'identkw ~·1l:ex~t that n·(u) is 

undefined. 

NewHeap: ff x UH X ST - ff 

Function NewHeap(H. u, v) 
V u1 € UH let H'(ul) _=_ H{ti1)'1f "t"' u 

= vMlllWl!le··· 
In 

n· 
end let 

end fun 

RemoveHeap: ff x u8 - ff 

Function RemoveHeap (H, u) 

V u1 E UH let n·(u1) = H(u1) if u1 :it u 
= undefined othenrile 

in 
n· 

end let 
end run 

" 

There are similar funclions. AddAct ~tr\a R1:moveAcq:1cn~~d fbt, Ute activatiOn component 

of the stale und AddEm• and Rcmol'ef:"nv defined fi>r the environment component as well. 
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Since the transmission of results and signals i& an ~ity J::omqx>n to ev~ry instruction, we 

define an auxiliaryJunction, SendTo/)est ~hich is ~"1QP~~JF.-for ~ding a vahre .~r a sianal as 

the case may be to the specified target instruction and constructing a new activatiOll fµocU<>n and 

new set of enabled instructions to reflect the effect of this transmission. SendToDesl constructs a 

new activation component in which the target instruction found in tha!destinadon qan\ent has 

been updated to ~tlect theJ~o.n of the vatl¥.Qf:si&4t~ .. Ud•fHl!~ltof.this tnnsmmion, 

the target instruction \>CCOmos e~ed,.J.e.,bav~ ~$~ ~.-Jt.tJidds be®me·zero. that 

instruction is appended W the epable<Un~~~ 

ResultType = (U8 ·useallr) U si9na1 
Sentlf0Des1: Act x EIS x lJ A. X D x ~Tftl 1'1'.~· X £1S 

Fanetion Sl!nd'l'oBatf.Act, EIS, UFA' <de, I.' opftm)/ rnalij 

let FA= Act(uF) 
I = FA(I) 
resultval = if ruult = s'9ftal. 

tlltl undllf 
else mult 

endlf 

newopnuml = if opnum ;t op1 theD;/.QPt .tstelf'4dlyq( 
newopnum2 = if opnum '* OP2 then I.O'(l ~J?fl . 
newopnum3 = if opnum '* op3 thea /.op3 else tmtltJOJ 

newopcnl = if result = s'9ftal. 
then / .opc;nt 
else /.opcnt-1 

endif 
newsigcnl = if result = signal 

then /.~nt-1 
else /.slgi;nt 

cndif 
. •, •. ,t,, 

I'= l.opcoae X newopl X newop2 X newopJ X newopcnl X newsigcnl X /i4&ests 

V j E N FA 'CJ) = F A(J). j :if: i. 
=I'. J=i. 

NewAct = Add.4cl(Act. uFA' FA)% new set of activations 
NewEis = if{/'.Q~tlt ~ 0) I\ (f.~'1\t,=. 0} \ 

then E/5'u {<uFA. l>J " , · 
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in 

else EIS 
endlf 

New.Act, NewEis 
endfun. 
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Two functions which call Sentfl'oDest are S~Y~e IUld·. Senf!Sipal. The function 
. ' . -- . - ,-. ' 

,SendValue011ls Sen!lfoDest forevery target in tbedestiuatioo listofan-~·whose opnum 

is not signal. That is, all target instructions ·d!at:are· u,:~~fthe iestttt otjtlie instruction are 
-' -·' T _~ t ! ' 

sent the result value by SendValue. This operation is accomplished through the use of 

Senr/ToDest. SendSignal operates in a similar fashion~'• Stnd.JO:lltie ~xcept that it calls 

Senr/ToDest for all targets in the destination list of an in~~ wbQle..pR!J~.iJslglM,IL 
~- :~ ?t ' ~ F 7 L• · }·,- · · 

SendVa/ue: Act X EIS X UA X Dests X ResultT}8!~·~>(f.IS 

Function SendValue(Act, EIS, uFA' dests. v) 

let Va/Dest = {<de. i, opnum> € •I. DplUlllf E; (qp,i~~ QJO}} 
<del' il' OPIUl"'J.), .. ~ ~· • · 

opnufni>. .... <den•;,.. opnum,,> = 
n components of Va/Dest 

in 
SendToDesl(. 

SendToDes(t.. 
SendoDeit(.A.ct, EIS, uFA' <tk1, i1,o"""'1>• v) 

end let 
UFAt ~~~Q_p~, y):.) ,, <' . 

end fun 

Send.Sii1'Qt Ad X EIS X l1A X Dests X ..... Ad X EIS 

Function SendSignal(Act, EIS, uFA' desJs) 

let Sig Dest ~ {<de. I, _opnum> € tints I opntµ;r!.::: siqnal} 
<de1• i1• opn_um,v.<t:Jc1.;,_.~>,, .... <4q_,,,, im, opnwnm> = 

m c:omp0nents of Sig Dal ... 
in 

SendToDesJ( 
SendToDesl(... . ... 

SendToDesl(Act. EIS. uFA' <dc1. i1• opnum1>. st~. 
uFA' <dc2• i2• opnum2>. s~nal) ... ) 
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end let 
endfun 
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2.5.2 A Formal Model of the Shell 

§2.5 

As we described above, the VIM shell serves as the interface between the interpreter and 

the VIM user. The fonnal definitiott of the shell iS given below: 

Command = C x Name x (Exp U unMJJ 
C = {BIND, DELETE} 

Session: StreamlC°'8111Ud) 

Shell: Session x State - State 

Function Shell (&Sllon, State) 

let <A.ct, H, EIS, En1> = State 
NewState= 

If CltooltToExecule (State, Seoiolt) 
then ShelK..Sesslon, Execute(State, 1ChooS#(EIS1J) 
elseif emptf(Se.uion) 

end if 

then State 
else let c, = flrst(Se.uion) 

in if c1 .C = DELETE 
then <A.ct, H. EIS, De/En't(.En1, Name)> 

end let 

elseif Ci .C == BlND . ·. . ' 
then let CJ, cotftinanctis BIND 

FA = Translate(c 1) 
"FA= newtiidfrom UA 
Ac(= AddAcl(.Act. uM FA). . 
Nt!WEIS::: EIS'U(. ~uF~ t> I FA(i).apcnt = 0 

A F A(i).sigcn.t = UJ . 

State','= Inter/J(.State, Cholce(NewEIS)) 
<Act', H·. ETS'. Eif1) r::s101e• · 
Env· = AddtoErit'(En~~ c1 .name. v) 

in 
<Ac(, H', EIS'. Env) 

end let 
end if 

--- ··~- -----------------
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In 
if empty (Session) 

thesl'ff EIS':;e {} 
tllelt-Slfel/,(SISlion..Ext1cute(N~;Choltcl!(EJ&))) 
else Newstate 

end If 
else Shell (rest(Session), Newstate) 

end if 

..net 
endfun - , } t' 
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The shell takes' in • input a SlteOm of' WJll1 i~<tt: J'k ' cans dte function 

Clloo.re1'0Encu11.which.·.e..._ 1he-cuffeftt .ateclftd :tlttirSft··'lnd'determllies if tire shell 

should process the next shell command or whether it should call the~ funCtian usliig the 

current enabled instruetiolr" ·!fer····· Thi!. function. -illOWS ~ffie 'ijiteni to . continue ~ process 
instructions even if the remainder of the ~P."1f:Jt~puflti';"*r' OM. poaible 

implementation of this function would be a routine which examines the current input buffer -
- - .: ' - ,. ' ;. . ; . ! _";- ~- ,, ;..-j ~.~, ~&> :\· (<~ ,~J) ~.fi~~~~(-') '1 ~'"- .::.:-,\ J'. ~:: ;'_. - : 

if the buffer is empty and there are instrucuom still to be executed, it returns true. If, on the 

other hand, there are shell commands available to be processed, it returns false. In tile case when 

there are both commands and enabled instructions avit~e:= i{~· ~rl~ '~m either true 

or false. If the function returns false and the tiqt.~Qllliltia~·ctream is DELETE. 

then the shell removes the <name. ¥alue> bindiaf'fWSitt'the ~n?~trohment and processes 

the rest of the command stream. If it is a BIND com~-!,J"OE. ~ J",l¥Hiary function, 

Translate with this command stream element T~~·ill·aetiVftY~ PJf.\vhich embodies 
~ .)\ _,,_ ~>- .. ··,ir1~\." .··~-1~--\l':1\~~'/, ~: -;~~'.~ \ ' :~~-

this command. For example, if the command input to Ttf:uulate was BIN~~, ,= f (z)), the 

activity returned would be of the fonn shown in Fig. 4. The n:sult of evaluatht&i~ activity 

represents the value of the command. A new activation is constructed from this aetlvtfyan~.this 
< --· ·- ·-~ - ....... ' - ..... , •• -~ .,, ..... , __ ...,... • ..,,...,_- --""' ~....:...- ----->'''*"''"' -·---··=·-~- ,.._,_ ~ ., .. -- - _,..... 

activation augments the current activation state. The enabled instruction component is also 

app.qnlatdy augmemed.-iltdude.alt4M~ lhts~vfiltin,t.fftii b~ilieiroperand 

and signal a>llnt al~;zeft}. · "fhe lttclt eaD>• ~te~r·'WftfflififSi~~ 'state amr some 

enatlled instruction front &he set ·Of' <lt\9Hled' 1iftllN~ 1''fl\ei,~hbi<.:C' o( •hidt eriabfclt 

instruction ·to,cxccute:is mack19'y •at1e:c1to1u.f1Mttteft:·'1'ffe11ewl.ttafe f&CitftC(t by' tfltdnt~,.Prefer 

ti used by. the shell m1ifOQCsin9 ttte11ext'5hefl·cemtrimntflf ~~·an~ imrc io'.b<i p~. 
lbc value. 1. returned by the: intcrprcfetr is'~ iftltfttJW?i' efttrMttrffcnHO'the symbolic name 
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which is an argument to the BIND command. If there are no more stream commands to be 

processed, the shell calls the Execute function described belp~· to ~ecute the remaining 

instructions found in enableddnstruction set. If there are no more enabled instructions, the 

function returns with the final state. 

2.5.3 A Formal Model of the Interpreter 

The interpreter is a state transition function from states and enabled instructions to a state 

and either a unique id or a scalar value: 

lnterp (<A.ct, H, EIS, Env>, Choice(EIS)) t- <Ac(, H', EIS', Env"> X (UH U Scalar) 

The Choice function, as we explained-above, is Uled to.determine which enabled instruction 

should be chosen for execl41~ from tbe en.abltd instl\K8aa ·.sec. The, definition of the 

Interpreter is given below: 

/nterp: State X El - State X (U8 U Scalar) 

Function Interp(State, <u, l>) %<u, i'> is an enabled instruction 

let 

in 

<Act, H. EIS, Env> = State 
FA= Ac(u) . 
Newstate = ~ff(SUM. (14 i.>) 
<Ac(, a·. EIS', Env> .= New3lale 

if FA( l).opc;ode :: mt:MfNAT£ 
thuN~w~(e, FA(i~1 
else lnterp(Newstate, Choice(E/S')) 

endlf 
eadlet 

endfun 

The instruction which is chosen for execution must be paitofsomc activation defined in 

the set of current actiwations. Act. The _interpreter alla' on an·. ,auxiliary function. ExecUJe, 

defined below whic~ wntains the ciefiniJions of all tlle bQse language primitives. Note that the 

interpreter only rctums-iei result when the TERMl~ATE instBUrtion'.&uw.executcd. This restriction 

guarantees that environments will be.updated axrectly ~rding to the:Ordcr in which· BIND 

commands were input. When the inlerprctcr returns. a new eommand can. be pmce~d by the 
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shell. Note that because of the presence of early c6trip~tion structures, there' may still be many 

activities in progress at ·the tim-e the TEltM1NA TE:'· insttuctiott : ~xecutes arid 'tile next shell 

command iS processed. Thus, our mGdel attowi insin.tctitms' fbaitd ifi'a&ivlties created fl'oril the 

evaluation ofdifferentbind commands to·execute·in patatter: We' do not oome into problems in 

augmenting environments though, because, as we di~~, .~tier, ~~np are: al~ays 

constructed in the proper serial order. 

The Execrt1e function examines the instructfoD 1HHs· ~and perfomts the necessary 

functhm. The·resultofthia funetion wttt be.a rtew··VIMltate.~'Thesthtcture Of'this'function can 

be given • follows: 

Execute: State X El -+ State 

Function Execute (State, <u FA' k F ,,.» 
let <Act, H, EIS, Env> = State 

FA= Acl(.uF) 
I= FA(kFA) 
destinations = /.Dest, 

NewEIS = EIS- {<uFA' kFA>} 
in 

if /.opcode = SET then ... 
elseif /.opcode = APPLY then ... 

endlf 
end let 

endfua 

' '. 

The destination list specifies those instructions in the current activatiQn l:O: which the result 

of executing this particular instruction should be sent. ;,~l"~at
1 

in ~dditi~ to tran~itting 
} ' ; • i ~ ·." • ~ > • • ," f' , ' . : I. '; ; i 

results, we may also need to send signals to destination& 
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2.5.4 Formal Definition of Base Language Instructions 

In this section, we present a formal definition of th'* ba$C language, inS,tructions that will 

be useful to us in describing the backup and re~yery algpritluD,s• lawrJn the thesis. K~p in 

mind that these definitions are actually found within the (.¥«Ute ~tjon given above. 

2.5.4.1 The TERMINATE lnstructloa 

The TERMINATE instruction is used to receive the result of evaluating a base language 

program. This resultv1llue is Chen bound by,the alleH4atbeuer,environment Tue: instruction 

takes in one argument. which is either a seal¥ value or a uid.. It sends no>msults but will ~nd a 

signal to a RELFASE instruction which is used to remove the activity from the set of current 

activities. We describe the operation of the REI.EA-SE instruction -tater in the chapter. The 

interpreter picks up the result from the first operand slot iii the instruction ~hen it returns back 

to the shell. 

if /.opcode = TERMINATE then 
let 

val = H(I.op 1) 

Act', NewEis' = SendSignal(Act, EIS, "FA' destinations) 

in 
<Act', H, NewEts: Env> 

end let 
end if 

2.5.4.2 Structure Operations 

The base language a>ntains powerful insuuctions for the creation and manipulation of 

structure types. There are three structure operations of partic.tJlar inte.rest - CREA TE. REPLACE 

and SELECT. The CltEATE operator is used to~ a str\JctU~ ~f'.a particular dimension. In a 

functional language. a structure.• onee defined, cann~ be ,su~uen'ti>' altered. Replacement of 

an element a in a structure with an element p is done by creating a new version of the structure 

with /J replacing a in the new version. The SELECT operation returns the value of a specified 

field in a structure. 

The operations we describe below are for the record structure type but are very easily 

converted fi.>r the array or oncof type. 
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To create a record 5tructure. we have a MAKEREC·iftstruction. -"It takes in one argument. the 

size of the record structure to be created and constructs a reeofd' of such a dimensjQll. setting all 

the fields in the record to be undef. In addition to the MAKEREC. i~on. there is also a 

MAKERECEC instruction which constructs a· record.· all of Wh<'* elements are early completion 

structures. 

if /.opcode = MAKEREC then 
let 

m = J.op1 % m is a natural number 

uv =anew uid in u8 • . ' 
Ac(, NewEis. = SendValue(,Act. EIS, uf.d_. destlnadtlna.':Gp 
Act ... NewEis .. = SendSignal(Ac(, Ne~l.t',:MN.tl#Jinations) 
H = NewHeap(H. uv' MakeRecortl.,1 .. m-./Jntliilj) · <' 

la ' 
<Act ... H'. NewE/s .. , Enr> 

end let 
end if 

The RFPLACE instruction on records takes in three argurnM.,,the uid of a record R, the 
' ' ' '.' ' '' " ' ' l ' ' '.', ' "'·i ,-.,:-

field in the record which is to~ be rer>JacedJ."and the vafue:Qflb~new element. x. which may be a 
' > • ' c. • - • ' " , ' -'. ·"'; - ..., ~ " • '!."" 

scalar or a uid. It creates a new copy of the record. R', with field fin this copy having value x. 

We mention the RFPLACE instruction here maidf~f·~~ as it will not be involved in 

the design of the backup and recovery algorithms we develop' later)jp;~e thesis. For a detailed 

semantic description of this operation, the reader should see (In 

The SELECT instruction is given a record structure and the offset in the reeord .of the field 
,:; ,. 

to be selected. If the item .to . .be._seiected is.an ear4-complelioD 5'1'>JaUs:e. thea the inskUction 

queues itself onto the ec-queue. When the value of this field is finally known, the. sel~t 
rrni~l''Viiti;; »: ·. ' ·· 

instruction will be placed again on the enabled instruction queue so that it may execute. It is also 

possible that the· item being ~ected may be ja · sli$pe;Js1Wt1f tl\~··tel'Brtf f~ l)rut of a strearil. Recall 

,.that the rest opetation on~srrearmris' tmtisl3tediintt> :a sereci'~Hitidtrotdhe'setond c0mtM>~ent 
· Of·the head of~ currentstl"C'Jm. ftccnust streams attfpi&tucca1

fn a demana driven manner, 

this field may be a suspen'Sion in which case the:sftEci''fnsthiet16ti1\vift n~d to send a'slgnafto 

the instruction referenced' by tt'fc su~nsion. The' field occtfpfcd1tiy th~'suSpensit)n ~m then get 

changed to an early completion queue which will gct·~t-r·rn;·thc'acti~ation resi>6nsibfo for 

pro<lucing Lhc next stream clement 
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if /.opcode = SELECT then 
let . 

R = H(/.op1) 
f = /.op2 % /must be a natural number 

t = R(j) 
Newstate =if t €UH A H(t) € ECQ 

then <Act, 

in 
Newstate 

end let 
end If 

NewHeaJX..H, t, H(t) U {<uFA' kFA>}) 
NewEis, . 
En1> 

elseif t € U8 A H(t) € SUSP 
tlaen let 

<u',. k'> = H(t) 
Act', NtwEis'· = 

SendToDesl(_Act, NewEis, u·, <unGOnd., k;stgnal>, signal)) 
In . 

<Act', 
NewHeaJX..H, t, MalceECQ (<uFA' kFA>)) 
NewEIS; 
E1t1> 

eacllet 
elselet 

emltf 

Act', New£;~· ... = Se1r~r~"-'~~1., lfnifis. ~f..,datinat_~· t) 
Aci, NewEts = SenilS1gnal(Act, New£1s, uFA.' desJ1nat1ons) 

in . 
<Act .. , If. NewEis .. , En•> 

endlet 

2.5.4.3 The Set Operation 

§2.5 

The majn ope!Jltion on early rompletion elemeqt,s. i' r.be. ~ .. jnstruction. The instruction 

truces in three arguments. a record R. an offset in!)le.recqfcl wJ\ic~~nt•tUle. field wmch is to 

be set. and a value. x. When the set instruction ex*t~ it ~P~~. lhe .eacly completion 
,- 0 ' .- • ·' ' - ' 

structure found at the specified component with· x. .. MQ.t:eQ~er, all the. elements in the ' - . . . - . . . .,,.. , 

ec-strµcture arc appended onto the enabled instruction 91'CUC sin~ the value.of the .field which 

these instructions initially requested is now avail;.1blc. The. St& i~fuction. unlik~ the REPl.J\CE 
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operation mentioned above. dQes.aot cause a new vefSion'Of the structure w be created. Instead, 

the early completion structure is replaced with tbe V61ue l/f.islla.' This.,does;not vlolate·any 

principle of referential.tnmsparenq becau• no instructiOn ts aflowethG read a field which Is an 

ec-structure. Since the SELECT instruction on structures prevents any of its targets from 'reading 

the value of the field until it is property set. the appltcatiti property of the ba5e 1an8\lase is not 
~~j(; -F -~·. ,·, ··.~·/ I·}~ ' 

compromised. Because all instructions which require the value of this field are ·Oil the early 

completion queue, SET does not send any results to any of its destinations, onty signlls. 

if /.opcode = SET tbea 
let 

u =/.opt 
R = H(u) 
f= /.Of'2 
x =I.ops 
u·= H(R(/J) 

V v€ N 
RlY) = R(v) If v ;a I 

= x otllenrise 

Ac(, NewEis' = SendSignal(Act, NewEis, uFA' ~~fltlllotll) 
H' = NewHeafi..H, u, R) . . · · ·':', ,:-\' .. 

in 
<Ac(, 
H', 
NewEis' U H(u) 
Env> 

end let 
encllf 

2.5.4 •. 4 The S...•a.n pPerator 

The SETS~P ~ ~ ... >Gtiitl>le'.i« seatiftaJ•••t•nlie•uill;anmrclstructure. It takes 

in thrt;e ai;gumeou. ~u~orG~ fOP~W tbtwMwtof18e\cumnt.aream; an offtrec!into 

.. ~is structure whereU,le $1~s«m.is.l0 ~.PJMICI. an~hlilatsuvaaionJaddrm.:irtq>resenting;lfte 
. - . ' . -
insLrU~ion wh.icii is 19. be s.isn~<l wJw~· ~~ su~.-. 1$1~ :TM.Alffset ·must 'be an .early 

comp~ti~n elemei;lt ,pres~pl)I ~1$1d 9y, a,Mld<f.iaECECJiastruatiolii Stn5USP se1SU'I this 

record the value. <u f'A· 1). ~ F A''being i\hc .uif!. of ·1'~, ~tt~[tlHthich .ate SEF'SIJSIP e>pcrat.or is 

executing. If Lhc cc-Structure i&·OOt. empty,, then SfiTS\J$:1Nlignals~c activation :is well smauuch 
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a situation implie.5 that some select operation has alreado/,:attempted to read the next stream 

element Like the SET instruction, SETSUSP does not send any results. The instruction is only 

used in the translation of the VIMVAL operator, aftlx. which is responsible for the conStruction of 

streams. 

if /.opcode = SETSUSP then 
let 
. "= /.op1 
R = H(u) 
!= 1.op2 
i = /.Op3 
Act', NewEis' = SendSignal(Act, NewEis, "FA.' destinations) 

V v€N, 
R~v) = R(v) if v 'f* I 

in 
= Makl!Susp(<uFA.' i>) otherwise 

if R (/) € ECQ A IR (1)1 = 0 
then <Act, 

NewHeap (H. u, R), 
NewEis' 
Env> 

else let Act .. , NrNEis' = 

end If 
end let 

end if 

in 
SendToDest(Ac(, NewEis', "FA' <u.ncon4, i, signal>, signal) 

<Act, H, NewEis .. , Env> 
end let 

2.5.4.S Function Application and Retun 

The instructions which will be of greatest interest to us in the coming chapters will be those 

ronccmed with the manipuladen of functions. 'Flfere IN ftitlr lftsttUCtions in VIM which deal 

with this: APPLY, TAil.APPL¥, STREAMTAIL, andREJltJR.fill. ~AIPt.t instruction is the •andatd 

function application instruction, taking a funtft>n closure and an · argument record · and 

constructing a new activation for this function. By: CMYentm. tfre ·first operand of the fil'St 

instruction in the activation receives the cloSure of the functff>n. thfis' aUowing the activation to 

access the free variables of the· function. the first operand of tfie: second instruction receives the 

argument ret'Ol'd. and the first operand of the third in~1:ructk>n· in the activation receives the 
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destination listcof the APPLY operator. APPLY uses an aud1iary function, MakeDnt which 

packages the destination entries found in the destinatiolt list of &be inSU'uctibn intO a ~d and 

p~ this record on the heap .. MakeDasHakeilcin thteei~lftts,)the currentJreap,'the arid of 

the current ;.etjvation and the :destinatioa compOntllt ol dte inMn&ctioft, · Jt retums a record. a, o( 
\ 

two ektments. tlte first element contains tfle uid argumentJ anti fb1·flec0hd oontains the ukl·of the 

record contai~ing the elements found· in the .dastirlatiarl list TM uid of a is passed a an 

argument to the called activation. Placing the destinationa>mponeAU-into.a-r«Ord allows them 

to be acc~d by the RETURN instruction in the called activation. 

if /.Opcode = APPLY tllell 
let 
c = J.op1 
arg = ·1.op2 

<uf'free> = H{C') 

u· = a new uid from ':_J A' 
u .. -= a new utd from u8 
Ac(=:= AtldACl(.Act • • ~·· H(u/.)) 
Jr= AddHeal(.H, u , MakiDeSl(H. "FA' /.desdlsi)) 

Ac(*, NewEis' = 

in 

SendToDesl. 
(SendToDest 

(Sent!ToDest 
(Act. NewEis. u·. <unconlt, L op1>. C'), 
u·, <un®ncl. 2. op1>._ arg) 
u·. <uru;on4, 3, opt>, u') 

<Act... H'. NewE1s: Env> 
end let 

end If 

There is no explicit iteration construct in either VIMVAC or dte.,llme:language. Instead, 

iteration is modeled using tail-recursive functions wherein_ die resaft' Or the- iteration is obtained 

in the final recursive call. Otherwise. while the recursive call is bei'll 1pJ'(ICCSSCd. the calling 

activation would exist merely to route lhe result back to the caller. To avoid having the calling 
" ·"'· . 

activation persist until the call is l.'Olnplete. there is a special ~)~Ji.W~C instruction for 
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handling tail-recursion. TAILAPPLY. The TAILAPPLY operator differs from the APPLY instruction 

in that it requires a third. operand, which is the return address to which the result should be sent 

By providing its own return link to the callee. the caUer need· not wait for the recursion to 

complete. We illustrate this process ia Fig. 8. The tailappJy instruction sends only signals to its 

targets. Typically. the t.araet of TAU.APPLY will be a RELEASE i.-ruction. described below. 

which reclaims the space used by this activation. 

closure closure closure 
I I I 

f • • • f 

I I 
Arg. Record 1 

'-
Arg. Record 2 

I - -

UnkL 

Figun 8: Tail application in VIM 

if /.Opcode = TAil.APPLY then 
let 

C =/.opt, 
arg = /.Op2 
dest = /.op3 

<u1 free>= H(C) 

u· =a new uid fmm UA. 
Act'= AddAcl( Act. u: H(u

1
)) 

Act·. NewEu· = 
SenaroDest 

(SendToDest 
(SendTo/Jest 

Fint le· I actiratiolU eon bt rrclamutl witlfOrlt wa_ltinf for submtuent calls to complete. 
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. (Ac(, NewEis •.. u:.<unroncl..-l.op14-C). 
u·, <uru;oNt, 2, op1>, arg) 
u', <uru;oNt, 3, op1 >. dest) 

Act' ... NewEis .. = SendSignal(Act ... NewEis', uFA' destinations) 

in 
<Ac(", H, NewEis", Enr> 

end let 
endtf 
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The STREAMT AIL instruction is similar to t1Je fAJLAPPL Y operator in that both are used for 
i ! • 

implementi9j tail recursion. 'nlP SlJEAMlAIL t instruct.ton, h~evec, . is ~ in the 

implementation of a· STREAM prOducer. . \,iiitike i tie tAILAPfi.Y-~: the return link 
. : . .f-: .~ . ', ~ . . ~ - : ~ l 

argument to STR.EltMr AIL is a recdrd fiet<Htr die hist; strefam'element created. When the next 
; ; ~ ~ 

activation of the producer is instantiated, this retu~-~~~!f SET to the llid of the new stream 

element Thus. while the destination of the T~Y ~-!~.~wats an instruction, the 

return link of the STREAMTAIL operator must be~ reeeftl field eithe last stream element created. 

The basic structure of a stream producer using~ ~Zt~~~~·s&~wn 'i~'Ag. 9. 
• • -=~•c- ... ._ ... ,,<~L·•• > '""'°''''"-.,....0 ___ ,,_ •. ,-._,~-··--· --~,".-..~~-V• .,,,•->••'' •' ~ ''"" • 

The RETURN instruction takes as input two ~~,,~~~~.f fetU~~fJresses and a 

value. It sends to each of these re..., ackl....--,spmiled vaJue a14ilheft: 9ellds signals to 

target instructions within ;i~,o~~-,.~v~~~ _U,yt~~-~.!r~~~,l~~e i~truction, the 
execution of the Rij'T,~-9~~~~~~-~~--U..own. Thus. 

having the RETURN operator execute may lead to instructions in other activations_ becoming 
"'' H'* 

enabled'. The value _argument to the return instruction reprfW!§l;~·X~~f~·~vation; no 

other effects of the activation will be visible outside of the- value sent by the retth'rt·eperator to 

the receiving instructions in the calling activation .. J"h!~_J?.~.1J~ __ a_.9Qll~.Q.Y~-"~ ..9( the 
< -·- _,. .-.,.,,.. ~-·--~,· _., ... - ----~-·h--· ~ ...., ___ ;.,__., ......... 

applicative property of the base language. The RETURN instruction uses an auxiliary function, 

GetliJas1,: which,fs the COMf'•eM oftta.~Millelklt~'~.'·· oetfJest when 

gf~en thc:heop and 1ttetaid-0ft11e~rd:;~ums ti set N!~dihg'tffe aesthrati&r'llst~d~ 
in dtat record. 

ifopcock = RETURN. thee 
let ,. . . 

IJL::: 11(/;opt' 4J, lhe·listoffCttan1nddrcsses 
u = Dl (I) % uid of Lhc calling activ.ation r 

' ·' 
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2 

MKREC·EC 

2 A 1. v 
closure Arg. rec. 

SET A STREAMTAIL 

F1111n 9: Skeleton of a Stream ~ucer 

targets= GetDes'l(_H, Dl.(1J) 
val ::: /.opZ 'It the value.to be retumed 

Ac(, NewEis' = SendValue{Act, NewEis, u~ targets, val) ... · 
Ac(', NewEis .. , m Selt<IStgltalfAcr,~NetVEb~ t1£A0ddmdtions) 

in 
<Act .. , H, NewEtJ'; Enr> 

end let 
end if 

§2.5 

The last instru~ we ~allpraetlt is the·.ttEJ..fA&E ~· Unlike an>' of the other 

instructions presented thus far, .RELEASf. is not used if\';~Jrnpt.leiatation of 81W VIMVAL 

construct Instead. it is used for memory management purposes in the machine. Wiien all 

instructions within an activation have tompleted, theSlarage ·ocettrtied by the activation may be 

reclaimed by the system. The RELEASE instruction performs thi~ function. In a language 

without early completion ilructures, this operaiio1c1> wouki: ~uatly be a. part of the RETURN 
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instruction, but because there may still be computations still in progress within the activation at 

the time the RETURN . executes, it is neces.wy for a separate instruction to handle storage 

reclamation. 

if opcode = RELEASE then 
<RemoveAcl(.Act, uF) 
H, 
New EU. 
Env> 

end If 

2.6Summary 

In this chapter, we have presented a fonnal operational model for the VIM computer 

system. We introduced the application language. VIMVAL, and described the role of the Shell in 

the system. A rigorous definition describing the behiiviour of some of the more interesting base 

language instructions was also presented. There are two key points raised in this chapter that 

should be noted. First, for the most part, an object created by an instruction is immutable. For 

those cases where it is not, as in early completion structures. the ~ and updating of these 

objects is carefully regulated to prevent incorrect infonnation from being read This feature of 

the system has major ramifications for the design of a backup system because it means that 

objects copied onto a backup storage device will, by and large. never need to be updated. The 

second characteristic of the system is the power of the individual base language instructions. 

Because of the expressive power of the base Ianguaae. it should be poaible to integrate the 

design of the backup and recovery system within the base language itself. The means by which 

this can be done is addressed in the following chapters. 

We are now ready to develop the backup and recovery algorithms for the system. In the 

next chapter, we give a general overview of the approach we take in designing these procedures 

and the enhancements which need to be made to the system in order to support them. In 

subsequent chapters. we shall use the formal model given here to precisely describe the 

algorithms as well as to show their correctness. We will fonnalize our notion of "correctn~" 

later in the thesis. 
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,; f '·/ 

The goal of this thesis is to de8ign efficient-8!gorlt1Jms ~hJch. ~uar~~e _ compl,et~ ~urity 
. - l ·; ,,... ; .. - .,';"'"', ; '/i ~;,·, .. i>J-t;:_,l!: . ;f' ; ' -~ 

of all infonnation in the VIM system against km or corruption becau~ of hardware nvllfun~tion . 
. "_ _, L !··., .• -:>::.'.:· ,.~: ,:~ b:)Jr;t:-:-·vy:;;:·)t(.'·': .,-···._·; ___ : ·,· .:i:r~-· .. ,-;1;. 

In this chapter, we discus,, the genefal aP.P,roagt ~t ~e. -~~I ~-~ in _fo,~t!}l'.lt.i_ng _f!tese 
' -·_, :· ;_.' . . /.:' ~.;L'.._;<; F-; · .. ~~~-Li~':·_.· 1.---~-- :.· -~-- .··., . __ .,,,_ .. .;·-. 

procedures. In the next se~tion, we present a failure model of system operation. This model 

_defines the appropriat&M'Ontnt in;wbic*to:...oti..a.,.:the;Clfdlb f>f•'badcup ·aftd recovery 

. aljorithms.- In section 3il.1we<.raile;lomoJbada111eDClll -- atrrtiusribf addtesaett'bY. the 

backup and ~tysystem.,,.'Jbaeillliewm:~~--i~;ts~onwed,:how 

backup procuhas .. :imr:Olled and;how1dle'tm , f:tt:of'ialbattadon::1mm'-IM main rneme!Wy to 

the,bacJwp sttft is ~led:brfhe.backups~'W•tllaall -~ftlthe ~ff\;c>ftdata 

s_ecurity- jn, 1" 'COlltexto£a liqle ueer systemdni !whic:ll".110n~-*· aMtp~··is· not 

allowed Section 3.3 gives a hi&h lev.-,dllsi..-:otdlllt.._llftd"~ ~thma; We 

. classify the infonn~tion_ .~oun~i i~. th~ VIM ~e ,ft1~:'twg" 1?~~t ~ffifi>?~, ~~. d~~ how the 

infonnation in each ~f, these a,t~~es is VieW~ ~r~~~~~I~~~ Vi~ -~· ~~ribe 
the basic operation of the recovery algorithm in . this sectiop.. Section 3.4 ~~ the 

,. , ., \. • 1 -< :,: ' ,·· ,' , __ ,· : ~ \ _,: ,·~-~,/~;{,.fl"'.-; -:~~~j;~'?i_:·! ,r;.-, f, .!f'f: ' -.,, ~··· 

architectural enhancements that need to be made to the. ~c VIM a,chitr;cture to efficiendy 
_., . .,iL .~J:~ ; · ·-:, :r1 .'n ··r:~ >!£~tr· :::n~l \l"i)f~ ??.c ·1 _, -~-,·-·, .. 2 ... , > · :-: · ·. -

support the implementation of these procedures. These enhancements are primarily concerned 

with the physical organization of the backup store. The last section is,~~J?f~,fifat>ter. 

3.1 Fa11ute Model 
'1 ' 

Many of the decisions. that are made in the c;lesign of the ~kup and .~very sy~m 
: .' · , ·. ···~' . .;.~ --.~: ,:_ .. !" '_,.~, ... _.-', ,._A_.;··t(._.fi!}rt<')~~--. ~'"'!! :· .,.J·.,_. - ;,~ •. /·· · .. 

follow from the f~ilure _m~~.1 that. is aau.~ed.-. A ~~~~' ~1,!fi:,~JJ?ec\f~~i!l~cof ~"°dware 
behaviour characterizing~~~~ o(f~ults_e;~~d '1d.-~~ ig~~~,~~w-~~J~!~~ .~~~on· 
failed c001ponents in the mactifoe. Some of the facto~ whis;h will ~~"ence th~ ~ign of __ ~e 

""\ _ :-· _ · _ ~:J -~~ -:~~ ... u ~r.:-i. ~~1;ra:·u : .. .-. __ f J;: '!: ~-- .: .' • ,_. :~, .. -,.- ..,,_ ... ; 

backup and recovery algorithms that are described by the failure model include the frequency of 

failures,in the system and the lewl ofhardware eilrotldct.mon'cap19i*'h&t1ist:»rnvided. 
i/ ~. ] ' ' ~ ·; - -~ 1 

VrM is not a faulMolcrant system and. therefore. there will be faults that are not masked 
• .:. ~ • '- • ' - ' ) ! • • '> 

I .\ ' > ~ j t ; . _,' 

which will cause the system to behave erro_neo~sl~. ~tis, u.n~~~ble, to ~~~~t .however. t!1at 

there will be no fault covcmge in the system at all: like many copventional systems. VIM. is 
• < " • ' : ~ ·, < I .' ' . \·· . ' . . .. ' 
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expected to provide enough fault coverage to QQl'l'ect many common errors arising from minor 

transient faults. Correction of single bit errors in memory, for example, is a feature which is 

found in many commercially available memory,, units'anti, thus. the services of the recovery 

utility should not be required when such an error is detected. In this thesis, we shall assume that 

the recovery utility is· invoked only when errors cause information found on main memory or 

secondary store to be lost or corrupted. Power outage, short circuits, a malfunctioning disk head 
. " . 

etc. are some examples of the type of faults which lead to such erron. 

We do not expect that such faults will occur frequently; hardware is mumed to be reliable 

most of the time. We do make the aBimption, Ji~ -that invalid information created 

because of an error is detected· when it is accessed. ·,For example;. ifa faulty dist head ~uses data 

to be written incorrectly onto disk. then what the data is.·mad atiBOme ftltur~ time, the error will 

be detected. This auumption is important becaqse itdneans ·that any infbrmation which the 

backup system observes and copies will either be eol!l'OCt-Or detected • being erroneous -

invalid :data is ne:ver maintained by the badcup utility. 

If the recovery utility is invoked, it will need to reconstruct the system state based on the 

information preserved by the backup facility. Duri~g this period, ~pther failure may occur; the 

recovery facility must be robust enough to correctly. restore the Syste~ state even following such 
' . ~ ' ! • ". . ' . 

circumstances. We discuss how this may be.achieved later in the thesis. 

3.2 Fundamental Issues 

The backup system will need to interface with the interpreter and shell to monioor the 

progress of computations in the system. We need ~decide. however, when it should a<;tually get 

invoked and by wh~m. · SCcondly, once it is invoked, ~h• info~tioti' sho~,ld it actually copy to 
, . . , . ;· . !. . ., . , 

the backup store? Thirdly, how should this copy operation be performed i.e. could normal 

system operation be intermixed with the execution of the backup procedures or must normal 

processing cease while the transfer of data is taking place? 

The first question was alreudy partially answered in the previous chapter where it was 

mentioned that the semantics of the base language instructions could be suitably altered to 
I • . . . 

support the backup procedures. Unlike most conventional systems. the backup utility is not 

explicitly invoked by any process or user: it is implicitly activated whenever the appropriate base 

language instruction is fired. In a sense. the "logic" of lhe backup algorithms is distributed 
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among the. various b~ JanauaJC. i~c,tipnSf ~~:~Jjqc~ Th~ (fUO$tiiln of which process 

activates th.e )>ackµp facility is not wrnane l&JWOf, .th~ desjp .. ~;Q~~ ~ j~ Ie6J>Ollsi1He for 

invoking the enti~e ~ti,lity; different por.tiqQS. P.f ,&bfL-~'l#lLP~ are ~tfvaled as 

instructions in an activati<m are enabled. ffi. JPjf ~. Jh4 •lwl> t;aqjlijy.,i.i. more an• e.ktension 

of the interpreter. W'l.d shelL ratlJ.er than •.a ~ ~: wki<tb. •::Miodica,HY iw(oked 

ac~rd,ina.to S9me.pred~j~~~~~ v~ .QffO!J ~~.!Q meJte,tJte.1*kup1fadlity 

.more ~ftlcient .becalJse. it js ~bed~p witqm,tJ;w,~.~~. Th.is~~ will 

allow us to .desim :a b~~ fac¥ity ~,c;an ~~1~-~ of Ql;>mPJJtadoa:w a greater 

degree than would othe~* be ~le. 

The answer to 'the seedtld que$tk>n involves· dettrmfnins;how'lnuch information Should be 

preserved and how the rem~itder of·bie sy~riiiist&te~·t,e· ~tivea;from t.his·'dati . While all 

data generated by the system could conceivably be copied onto the backtlp ·st.Or&ge mediufu, it 

.. would ~.ot ~a veqr ~~aieQ<:al.splµtio1'. ~'4$e,of~ qv~~,,~~., iQstructions 
. '. '· " ... . .: ' - '· 

. in the~ l•~ae~•~e ~-~ ~~~--~--zff~ of1thiJ._egy 
would involve modifying ey~ •Jan~,~~-'tg ~~:-~t~-~~~ to 

backup store. This would clearly result in severe performance degradation. The backup 

algorithms will, theref~ ne.d•to ~:in~ ~ dlei.,.m ate:m;a Cblidi:nsed 

form ~Jlicl) th~_~v~cy 5Y$teW-~ . .$p~~~: ~:~ lf*i9,V~~ ~of~;~~ state not 

explicitly preserved. As w~ sb.al.l _~~ ~-.of~~.~~ .~~,.fpr,.~~-1>."*UR·~ ~""'ry 
system wiU. be d~voted to devj$ins,~~cieqt ~.-{p ~" an4r,in~t these ~ds. 
We discu§ .tltis i§u.e in ~~r det$liAthe n~t.~ 

. ,,, . . . ' ·, " '' 

Because VIM ·is an applttative ·syStem, no 'data Jbiincf ·&\ the heap, once created call be 

~bsequently ·altered bf eltfter the bd:up ·system 'ot'tifi tnreh>~~.·; nus. 'havinfthe backup 

pmcederes operate cOnc\srreritly wittrnortnat sYstem ~tidrt 'cimwck cause' any irtvanants over 
:> . •' 

the data to be violated: ·Moreover. 'dte dilta capWib)t dr'e ~pu~em wilt" never be in ;an 

inconsistent !late when the -c~f operition · ts· perfOtrrte<f 1~' hfr 'updttting' of fn'fdrmation 

takes place. Our baekap:·pmccdurtS can·~ therefbfe:' He1tdtd~eCftc{e-Xccute tx'>ncrirrentty With 

'·nornud system operation 1 without 'the need for any·cxpHtlt '001f~ii~y Ch~ 

During the recovery process. no shell comn~ arp.~ppt~ ~Y die.system. If.shell 

1There is a <.'avcal lo U1is d:1im which will be explained in lhc nexl chapter 
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commands could be processed concurrently with the recovery proces5, it may be possible to have 

computations reference .data which has still not been restored by· the recovery:·procedures.: . .In 

addition, this restriction also simplifies the interface between the recovery procedures and the 

shell by avoiding the need for any synchronization protocols' between the two p~ in 

updating (or deleting) environment entries. When the tecOvery procedures ·are invoked, they 

make no· assumption about the integrity of the data which mat stiff be. accessible. Thus, the only 

information used in the reconstruction of the state is that found on the baCkup store. Of course. 

it is inetftcient to restore the entire state ofthe system if only a fraciion of it were affected by an 
- . 

error. Significant-complexity is added to the backup. and reco~ ·procedures. however, if we 

requir~-the system to support partial recovery. -·~ is not dear wllether"llle ~efit$ -dcrlv~ f~~ 
. - . - ) . ' - .. - ~ .- '. . ,_ . . . . .. :: . .. - . ·. : - . ''. ;:"' 

implementing partial recovery outweighs this increased ~rµplelity. We sha!l addr~ this topi~ 

again later in the thesis. 
.. - . . . - ..... , 

In the next section, we present the high level _ design of the backup and recovery 

algorithms. · The rationale for oor design decisions have- been mainly based on· the effectiveness 

of these algorithms in addresSing the questions ~'it1 thJssecdon:·:· _:'·· .: ... _ .-~: 

3.3 A High IA!Yel Oveniew of the Backup· and RecO'fel'J F~ltles: 

The design of the backup and recovery facilities are based on on~ important observation: 

every computation in the system is associated with the eva~tlon of some shell co~n_<! __ lnput ~o 

the system. Thus, one immediate solution which presents itselr is to simply record all shell 
_ _ _ . • - , . -. - .' .. • " ~ _' • .• ·· - · , :c'. : -. • l 

commands on the backup state. This is obviously a correct sol\ldon since the behaviour of the 

system is presumed to be determinate. Reexeclltin,&. _in , ~ pro~r serial order, the shell 

commands that were input to the system before the f~re oc;curecJ. is. therefore, guaranteed to 

yield a correct state. This state will be identical to the-.state,imnu;pwely prior to the .f~lure 

except for the uid's associated with structures and activations. . The uiQ's chosen during the 

recovery pi:~ may not be the same as chosen originally2 but beca"se these uid's are not _v~ible 
_ to the programmer, no difference in the two states will be .ex~mally discemable. Obviously, 

such a scheme would inflict little degradation to system performal)<.'C since only the text ofthe 

shell command need be maintained. On the other hand. recovery would be intolerably slow 

because every shell command is reexccutcd from scratch with no irifom1ation about the results of 

2Rccall from Chapter two LhaL no n.'Slrictions arc m.ide on how uid's may he schx:ted 
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these ~nunands being,kept ort -IB;kup store .. The ~•J>tsya\em.·.start.in& Jrom some initial 

recovery Slate. wo~ld ~.1'<> '8eiecutiee~CJYshjff1~~·lO·~tbcsys14m from t.U1start 

of system operaU. ~._no infi>nnalion·.~ •mo :ltlUk:d;:aitJ of.these eontlDlnds are 

recorded. Such a major drawback makes this strategy unattractive for all practicaJ purposes. 
! : { : : . -f •-; 1.. : { ~ '. - ·, ~: . 

To see w~ opti~QIR be Rl4lde to; aUoriate:,,;thit<problem.. let ~ axamine how shell 

comrnanqs ~ \lseft lo. flltt(·Ua4 . .-aa.._ .'D1ei.thdl1co•••M'.ofi.._,to,us•·here is the 

BIND co~and Th,e';JJ?t;µ~,;~· '1 ..... -~ compulllltioa.andiplaces 

this binding in thcu•i;·~ ~~ . TJ;ao- ·•~;1*JlMl,..,tlle ....,.:.,... a.~lived 
value - it S,Urvivcs the-~ in wtUch~.w. ..._. :jlllt-dela111tB.by·dlet1SCt of the 

$)'stem. are Prea-.tl the. ¥81-.: ~4·.in -1*/ ~ u.._ ·*- :valaes- bare li:ftsdmes 

greater ., ~. c;:O,JnmJMt~·· ill:. wh~ ••x···.wm.::...-Jto~ .eeriain}1 he. a .uuQor 

optimization. if..d,le ~ -~ ~'1* ---!dlot•&pittore .. ·Thia ~d 

,obY:iate. the n~< for'..~ ~l'J ~ ao,:~idlAI aMMllll•rwbose CVlhultion 

.~. :P~~ .tl;leae Val\&e$., ~ ~ap;f~ --MJAViin·--*>alfO IDlilttaiDinl.Lloi.;ofthe 

.:·CQllll1W1~,,ippu.t .lP ~ M'stelll.,,alla.·~~ 4t:<,..~ tfiradiqs-.;foundJn. ;tb&"uset 

.. CllYmmq:nt.i. ~ l>RtW...-..en9'1.be, .... l'tlriJlsi.th__. ·~• "'* .~ ·•· applicati'fe; thus. 

once.a J?inPin&is.~Qn,;~·*"·•*' ~--~ apitt maMmiae1hat 
entry in the user environment to check if it has been altered. 

Th~~fQun4inYN.~-~~-'11Jt:O~.,. ....... tfthm.-corresponds 

,to theresu.ltv~~ qf~~~'~";.IH•tta~We:beca bemid.to a 

;.name.illiuset.en~~Ml~J-"'1rfi4·•Will•.,111Mdl~*-i~.__..d&her 

.. ··pan of~om~J•C~Y~.~;Qf~--.r. • ._rMficecda.._...not JCt"1eeiJ;bound 

to a name in some environment A computation consists of the collection of activatioos.Odata 

created during the evaluation of a shell command. lnstruc&ions in these activations produce 

· ~ transitional daraJi~ce ·U.tS· ~'*111 ~~~trror16rii). ~t~j'~¥fle;~Pbt;d~ ''~ which it wa 

'·:~etf~itsts: 1'be valub nfl•nf ~rocfucecfby a ·~p- ~tlj~h1iun8'~}~'~· a:.'vi~~ent 
and. as·u 1resu1t:·•itrbc&me qu~~f. :~ 1b~ilp1 r~)t~'~l'{g ~ s&~fri,n,~~ted 
·above; Woutd ·Oh1Y be a~ali or·4uie.~nt oota., 'f rliii11~;~rJmit1~1f ~rr~di~I 'to' d'ata 
: pr6ducetf dlrring a ~~utalihft_;~~ld'~ be un&r1Jdli~tiriy11~fih~;l~k~~ pR>i:Cd~~ 
··When a failure· U&kes ,,1k ttnd th~ ~8t~·sta~ ~aflO·'' ?=rl~ 1~reit. the ~';ery 
. fadlity first rest()rcs"~lt quiesCefiedata presetved tiy~~··~ui(~mi~ l~nto'the '.new recovery 

. •},·".-~···-~ ··,r.~,-~_::·~, ·--~·,, .. ,: 
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state. It must then reexecute tllose shell commands ·1NAd-on· the command 10g which had ~ither 

not yet. oomple(ed .or w~;result bindittg;·f:Ot'itd· nm~ Hee~"Y me···baoktip' tacltity before 

the.failure. These sheU·comlriands will befefernut>to • W>Mtfl~ 
t ':- < ·- •• :.,- • ; ·f .'. { ~ 

Having the backup facility ·record only quiescent data is an optimization that reduces 

overall l'CCOVery time.· It does'so·wRHout•elelllllSiwl ~·:~because the 

backup facility· is only mvollett<When•an M>tmal!N¥'itilltl\lio1i38~'t&i act&aHy place the 

binding m.dle•environnsentc• .,..,..r.·cm:~~fldf·tht cfata·fri'paraltef'with 

normal system cperatioll. It·wodld·M:a&·evert~ff'tlie1bacltup •m;cnu1d 

help reduce. reexocudoll time oi:•tMMe, .. le4lelH!CiWi1lll:dlrtiund~ on ·lhe tOg by ~tding 

information about those G:OMPutaetOMiwttteh' '\fflei~af ~·bf taHute.' If tfttre are many 
resource intensive, time'<Oftsu'lllinr•11ctmatioasti a!~JMdfhWing~-blckdJ) ftiWity 

ignore the praaeuce ofthe:tnmsidoftal MB'pmdU'la.~itNfilatn~ifteans 1htt 1t1e time to 

.nmver this state lllUlt be at-W. ~·~~t;yJtfti ~·1 1t: tlUs ta 'rem!COte this 

entn ooaiputation. · Thisrif not virf••ftMI --~·eouta-~ atready~hen 

·executing fora very Ion& .,...... .wlMft -llw~·toll'PlaPi~~·~ fit the 

oomputation on•·tht 1backaf>:.,.,,weulf, . ....,"tftil''~Hratilly 1 to-~-n:~ly 

reexecuting th018 subpartl of a·~ Wliidf~f~ theil"·~ befofe the 

failure. 

It is remonable. to expect'.diat th4ft Will M' mawy ~s·ini pnjgress at the time of 

failure~ To ttcOJd; dle-Pf'OIMld~ ...... w-~ nUdntaim int'Ortbation 
-·about•tM&ecirawpu~1.-~,.,,,'*r#MW\iff~jwe~lfltSttiicwnn>ra 

computation rooonllmllloW~i~~~fadtltyln th~next 
cl1apler. _. ~~ i r~ . ~-= i ,-1, 

I~ : • 1 .· 

We <'.811 noW,J>~O,t,Qllr}nte~~~ ~I ot~.~~,f~,:YlM.: ~ ~p~~~ 

.. oomplete, ~.v,~es}9.~ ~~ff 1~;~~~ ~~~&~.mtlJF;~~ ~~¥it¥:~~rves -
th.ese ~i~~ings o~ the ~u,p1 ~,~~~~·,,nl;n ~~imh::~~2Yii~;'~; ~,~i~ve 
_c;ompu_tations i~ ,P~~ ,!ll~ :~k~Jt f~,i\itY ,~n,w~~w1~~a~~~~,~~,tJ.~,~pns 
as. well. Th,is _ infonna~~~ CJ!!~i~ ,~ .~; ~ma~f.~~hJ~f~LJfiC'Pr>.~ ~~;·~~· tfl~ ~~~ry 
procedur~ to av?id ~~~-·~ ~c~ec~~~~ o,r. ~'W~V~~ ~P,!f~J~p l~lf~4): :Pu~4i1 fbeir 

result before Ute failur~ .. When th.e.~very ~~~'~)s i~1y~y~1JL~~ ~,r~_?I., CW~;~ta 
found on the backup store. It then uses the computation records to restore the remaining part of 
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the state. The mite after recover)' is eomplete will be tiquivatern to the: state which existed prior 

to the failure insofar m the ~cture and information content of both· state8 will be the same. 

The states need not be ide'ntital; h0\¥ever, becaU9e die 'uid'sL~iated · with ·activations and 

structures may be different The reason why·the' sfates'woaltfWofbe identical is betause the 

order in which enabled iMtruclians are· thoisefi'ifOr exeCution may be diff'erent -dtlrfug the 

recovery process thaft before me failure. ibis• 'ctoes·•ndfc:drrit)rdmiSe the ~ctness of the 

recovered state· because of th 1ll)pficative nature df VtM ...:.: rto ;side:.etfects occur and. ·thus. no 

explicit ordering on instructiori exetution ~ ·ro 't>e ad~tmc 1fb. We· itlustrate the system 

operation in Fig. 10. 

Flpn 10: System Operation 

3.4 Architectural E11118ncements 

i ,. 

FailrmDmt-' 

Active ConijKRldob · 

(Computation Records) 

s is equivalent to al 

--------4 
·' · uteeovesif Procedure> 

Tuna 

State al 

Up to- this point, we have only mentioned that· the backup store on which backup data is 

kept has the 'propeny that infonnation entrusted tO if ~m ~rviv~ failu.res of th~, machine with 
. : . . . ·, .. ' ~ ~'~ : ; ' .·~. . " .· ,· ·: - ' ,: 

very high probability. The most corriinon type of baCkup ~. usCcl. is masnet~ tape. . The 
· - · .-r··.· ~),: .. ,:)t;!;~'·,·f. . . ~- . 

sequential ace~ nature of· tape drives. however. mak~ it inconvienent to update the 

information found on .. the tape. ·· Since lhe "back~p 'racill~y ~ill be freq~ently updating 

computation records assbciated · with :ictive MP~tations fu.::,~n~{ the progre~' of the 
, ·. .• : .. ' -:• ,~" .• -··;L·:~ ... ~.-~ .. . ,; : , . : 

·computation. using tape as the only backup storage device wo\d~ _be imprac~cal. Our design 

dictates the need for a faif-safc storage device fro~'_ w'.hich in(or~nation m~y be easily accessed. 
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updated. and deleted. We call a devic;e which has th~ p(Qp&rt~ a stable storage device. It is 

not difficult to implement such a ,dev~ on top Qf non.le SlPfase devices. Lampson 

{21] gives one implementation of a stable stor9.~~ice, in,~ disk ~e is converted in to 

stable storage by maintajning multiple eopies of~~~~ diA"e.-..di§ks and ensuring that all 

writes to disk are atomic Le the. write either tak~ pl~,pn. ~ 4~ Qr o~ none. Because both 

. disks are guaranteed to have .consistent infoanatio~;,~!iost; .. use-of failure of any one disk 

can be recovered from the other .. Advances in V~l,~:~e ~it ~vable to 

consider a ~ardware implementation of~ ~'°' ~ JQ113'wm>1e,. CMOS static RAMS 

and a backup battery supply. Because of the low power consug1ptic;;Jn of CMOS chips, 

infonnation on RAM could be retained. despite power failure. using the backup battery supply. 
'~" • - ., • •• , ,,_.,. > • - - • __ , __ -, 

In this thesis, we shall not be considering implementations of stable storage but will mume that 

stlch a device is available for use by the backup and recovery utilities. Because of its relatively 

high cost. we shall also murne that stable storage is qot very large (certainly much smaller than 

the size of the backup state) and. therefore. in order ~ guarantee that backup infonnation is not 

susceptible to l~. it willbl necmary to have anothe1 backup storage device capable of holding 
- " ·, . ·''-" --~ ., . .,.,· ···' ,_ ""'-"~..........,.,.-.. ~·;. . " - ., - . 

that part of the ~k1,1p state which ~ot be.hekt in.stable~.· We,mume magnetic tape 

storage is used for this purpose. 

Quiescent data is never updated by the backup procedures and, therefore, can be kept on 

tape. Of course, if the binding is subsequently deleted, the data will have to be removed from 

the backup state as well. A delete record indicating that a value has been removed from the user 

environment can be written onto tape i~ such ~~~na . 'Jb;',~i>.u.~tlon ~rds ~ated 
with active computations do need to be accessed and a>nstruct.ed relatively frequently. These 

records will, therefore. need to be held on stable sto~ .~~~ -~d.'°8:. which 

.con~~s al~ shell com01~ds,~nP.ut to~~~~'~~·~ ~ftv~,,~th~~,nQtye~ ~n produced 

or have not yet been ~d~ onto back.up ~ .. wilt~r~~,"?,~ hel~ OP sta~le storaJ~· As 
• • ' \ :I. ' ;l ~ < ;; • ' ~ _, ) 1 • > ' ' ' ••• - • 

we shall see. most compu~~n records .wiU,be r~,~:~~? ~~!~fld ~,,lh~. wUI, oot occupy 

stable storage. for aJ!Y. ~~iftcant amount of time •.. ;nie ~~n,. .1~~~ o~ a ~putatioo . f'CC9rd is 

quiescent and can be migrated onto tape, allowing the space ~ by: the computation recqrd to 
. ; L , ' " J : ( . r·· .. } ~ ! ~; t <.'.:(CJ :':; ! ~ r 'H} ; L l ,_ •• ' '. ' 

be reclaimed. It is expected that st~b!e st?1'3ge w~ll p,l,way~ ~,-~I~ to,,&,JPport all comp~tation 
·. . • ~ :·; ~!- < '-,· '· , __ : ·~,.- .:!, ~i;1 <' ~.~J•} ~i·'.-:. f",. ;· ': ' •. '• 

record~ in the system becaµse of their short Ii f etime. W~en th~ recovery. system is jnvoked after 
~~l _J t~ .,' '. ,'~~ ··: :J. ',·.'::~" ,1l1J,'i' ..... \ ::. ' . ~· ';. 

a failure is detected. it ~ill first re~d. from the tape '111 t,hc,qp~sccf\t qa~a al)d will restore~ n:mch 
[ ' -I ' ;•k . • . ) ~' ' ' 

of the environment image as possible from this data. Volatile shell commands arc then executed 
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• • • 
Backup Environment · 

Quiac/1111 Data 

• 
• 
• 

x &p . 

• 
• 

Commanll Lot Tran1itional Data 

Flg11n 11: High Level Organization of the Backup S&ore 

from the command log in the order in which they were originally input The computation 

records found on stable store are used to reduce the overall reexecution time during this· phase. 

When this phase is c;:omple~, th~ .. system can J)J:OCACdwith.normaLoperation. The high level 

organization of the backup store is depicted in Fig. 11. 

We illustrate the organization of the.VlM £¥item· witlithe-&ackup heap·and environment in 

Fig. 12. The backup heap is used to hold all tnmsitional data whereas quiescent data is held on 

the backup environment The backup heap and environment constitute the VtKii;battttp stare. 
The Interpreter constructs wmpti&laf.ion. recor~an • bM111>.iM&p.auriag;oonmt proce~ing 

and interprets them during rec<.>vcry~ Jn adQit~. the inW~i* ,..Aas ()fa computation are 

also stored .on the backup beilp· by the intcrpr~, .. <~r.>:l>io~&lHll'C plateed QO the 

backup en.vironmcnt by th~ ~/Jell which also builds'~ ~wnd:k>& f®nd.on the backup, heap. 
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flow of information during recovery 

--- flow of informarton during normal processing 

Instruction 

value 

Interpreter 

Activation 

value.. 

sfanal 

value 

L - - - , -----

Btndina 

~· 

Fi1an 12: Abstracl. Architecture of the VrM System with Bactup Store 

3.5 Summary 

§3.5 

session 

Shell 

New State 

In this chapter. we have presented a high levet strategy fbt' the bxkup and recovery 

algorithms for the VIM syscem. Our main observation aboutsystetn behrivioO-r was thatall active 

computation in the system is as&>eiatcd with the evaluation oftmme Shell cdmmand. The first 

!Dlution proposed involved simply storing the log of all shefi'commands. recxccudng them from 

the beginning if a failure occurcd. While correct. because VIM is a determinate system. thjs 



§3.S SUMMARY 53 

solution has the drawback of a very slow recovery time. A major optimization to this solution is 

to record all quiescent data Le. data bound in some user environment A further optimization, 

intended to reduce the overall recovery time in reexecuting volatile shell commands is to have 

the backup facility maintain some m~re of information about all active computations. The 

recovery facility uses this infonnation to avoid needless rccomputation. Once this reexecution 

phase is complete, the state of the system is properly restored. During this reexecution ph~. 

the order in which instructions are executed may be different from the original execution 

sequence. This may lead to different uid's being migned to different structures but the overall 

structure of the heap and activations component remain identical. The reason why the order of 

instruction execution is not important during the recovery process is because VIM is an 

applicative system. 

We also introduced the notion of stable storage in this chapter. Infonnation about active 

computations will need to be frequently recorded by the backup system. A backup storage 

device on which data can be easily accessed and added is required to support these computation 

records. While quiescent data can be copied on~ tape storage, computation records need to be 

maintained on stable store. 

In the next chapter, we present the detailed organizatiOO of a computation record and 

discuss how the backup system monitors the progress of computation. As we noted earlier in this 

chapter. the logic of the backup procedures is actually distributed among certain bme language 

instructions. We present a formal model of the VIM system supporting the backup and recovery 

procedures and argue that the information embodied in the computation records is consistent 

with the actual system state being represented. 
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Chapter :Four 

Constructing Computation Records 

A major ~t of the bawkup and. rea:wcey•:algoridsma·ii>J ·VJM ooneems the construction 

of computatipn rec()(ds.. ·Recall fronl dle: last chapter dlat~• be~ ;J1!COl'd is used· to record 

infonnation. a.bout ~e.nt1y eweudng ¢0lllputad.aaa.0k·ln· dU1ullaptery we shalt be primarily 

int~ ii) l)Qw C0'1Pu.*3ti9n RaOrds Olaf,bc ~~dgniaintained. In Secdon 4.i, we 

Pl'.eseJlt the a~t,rep~~ ofcomputatipn:nooa ?fbe..atcomponem:in tJae:tecord 

is kno~ as an ~liWlfk>IJ •ri/HOf mtry whicb ~-.illbmation· abeut an indtvidual 

activation. In order to ~ a (X)fllfUtation NICOnl·cllal&etodte"OplratiOnal behaviour of 

. the base language ~s gi¥ea in. O.pter ·:n-.,will.1be. --.ary; ··Section 4,2 dmasses 

these ch~ as well as ai.._.,aeoHr~ .toAhosllicH arutdaterp1eter. In. secdco.4.S., we'"ptesent 

.. the.aliere9 opera~n,ef.~IMle ~'im&mctioD~of:m~toperationalmt>del, 

M~_which.is an.~leGSk>n.of.-I.AH··~'iniQapal':ltwo.••• 'fhei.,areaeverat major 
optimii.ations. ~hich· am .lJt made in managin& ~·RJOOrds. . 'J!'hea optimlrattons are 

~- fom>.aliz.od U. U1is ...... 

4.1 The Computation Record 

In Chapter three, we argued that the backup sy•m. should. record the progrea of active 
- , ... _ ,,q.(.·. 1 f1':lr',·-rn ~:-:·~:;~-~-:~.->·~- -~,.-- '· · ,~ · · 

computation in' the system to help rCduce reawerr ~ ~ co~puti~o~ .,record is an 
. . , ,. . ,, " .. , - , r, ,, ) • , [ . , , 

information structure ~~ructed by the· &~u~, ~~ f~ J~1,~ pu~. , Our focus in this 

sectiOn will be ort determining how much infol111ati0n''Shooki ·~.kept~ the 'compu\ation).CCOrd 
. ,_ !,·, .: -:. ' __ . _ ,"· l ~·-.. :r~-l-~r:·J :·,}z __ ,,·~J, ;· ;·"'~-:_, .. : ~,~ ~· , ·_· -. ·- -~,, •• 

to allow the recovery procedures to restore the system to its state prior to the failure. One simple 
, . ; : .. : , __ : -·, ~ --·~_,~.;:,:.?{·:·;~-• .-1rr1 .~~i ··uLr-t~ ,._ '._, ·)· _...,. ·, .. 

scheme would be to J)eriOdically .checkpoint all actfvatiQns cceated .by a computation. To 
. . - , , :· , , i · .-- _ -: -. ; . , ~ .. 1 • • r; ~- _: ; _ ; : _; · · t ... ~ ~ .- · i t .: · ! : ; ; ",.: - " : : • ' 

checkpoint an activation means recording the state of all il1$lructions which have not yet 
. \ ' - . : ' - :" - . ~ '_ . ',_: )' ". ~{~;: 1 ,.~~ :_; )i ·~,; . ,,_ ~ ~-' 

executed in that activadon at the time of the checkpoint The state of 81) instruction consists of 

its opcode, destination list. operand ~d'si~nal ~~t ~,~;ir~,~~ ~~:l~e ~r i~ ~~randsj .. This 
., ! . ,. J , 

approach·would be very si111ilar to that take~ in ma~y Olh~r ~~rall~l ~puter syste~s where a 
. , - . . . , - ,'-.. , _:; ·1~,:;·r(~·:: :'.':~ J .... ~~ _:.': =~ ·;; - . : 

recovery point representing the state of one of possibly many concurrently executing processes is 
, ! ,. ,- _ . ., r: ~ - '. ~ ·;,.. . ; , 

31 f :m opcnmd is 1u.'001plex ~truc:t ute. 1.h is m~ms reu1rding :ill i-uhstruclures tderenced frottJ the torWevd stnK.1urc 
:1swdL · 
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periodically taken by the systems',: bm:klp faail~J ~~our system, the recovery procedures would 

only need to find all enabled instructions in the computation records to begin the reexecution 

phase. '' 1 '· 1 • · 1'.' 

Periodically recording dle 21tate of all• acdvationl ae&Nd hY'a'COmpet.ation· ·ts •simple idea 

but hes two majordmwhas whicltdolsnot~a:faiiitJl&iMlu~ obf pilijtOSes.' First, 

. chedcpointina allacth•tio11S:iaacomputa&on1.U.,...,,'be:\l1ltiltf t.Mk~dte;Size of 

activations can be very· big. ~~:in otdef:«>:.IUlllhrM'lMlll 1ar«>Mist~e~·or the 

oomputation is mainWllcd cm stae·backup udti'1r~ ·we ~:fll-itojdistllow ·any- enabled 

inst.ruction witbm ID)' .uhatioa bl tliatcomJ'{ltilk>tf ft'onl~tlnt"WNi~-thedleekpbfttt of that 

activation is bcina·perfamed. ·. ·T:o see whT t1Ri.fil dlt1-. (lfJdli\fW'tWO alttffation~ « arid· {J in 

the· same computation where •hatcai•lffJi ilti1JlW allowed1a1l1Mw,Wftile··ad\eekpt)MH>f a is 

being .made. lhon JI. J1l8fi .raium its' ~toi:«:and1-...,.t11¥r REfu!ASI! opetaderi~ :•If the 

~of a on .. baok.Up state·lfaes ~ idect1:t11e;..-:~1tdt'W0 ·<!, aitd;"/J w8S1 not 

. dieckpoil)ted. hcfore tbe11ll'lJ!Ma operadCJ1NDC1CtirW.ltM·~}ftcbl'd "WOukf rePtesent 
an .incomct;star& Upc:xueccway~ daent>woutdilter•• ~t1t11e'r«'titn·testilt'vahte'of fJ 
without reexecuting a. This is precisely a manifestation of the1~ eneouttteft!dimother 

concurrent systems that use recovery points to guarantee data security . 
. , .' i 

A more clever approach to recording state infQrmatio.n about activatk>ns takt$,advantage of 
· · t..- .-; ,· : , '.,, .i.:-:t~ ':rf?_ ~\_J;_; LI,-~~""""';..;~ J\ ,·.;:: ... !f-~: .. ;.-~-. 

the applicative progranuri~g model VIM mes.· A ~~~e ·~~~'! .~f ,al!, ~P.li~t.~v~ lan~e is 
, _ . ·- - : ."'.~·; ,., ~.:i .. './'<.·~·~ ~'.-~>,i.",.J~ f.;i_;~) 1 /'1' !f2L .. ,.· ·. ,; : u 1 ~ .,, ; • •1 ' 

· that ·each function ~.be trea~ ~; ~ cons~~'/~~/f[f~~ C!:!:v:ff'fn; j A .~r CX?D~i'8.:<?.f, CX)~~ts 
combined by functioh c0mposition and' ap"pl~. In oonventional Plpg!'anun)llS l;mSWlles 

. , , , '.-.~·~ ~~:, :.v~ __ -_r:.,··,,}P.':'.!Jffl ... .,,r:· ··:rrrn:;;.~i-~-·~:: "··- ",~··? 

stich as Pascal or F0rtran. a function cannot be treated as a ~t because its ev'1uatiQn may 
· _ .,\,. . ...... -;~. _ _;;·· · ._ .. .,~,.r:-;5--~c.~J~:.~: .. !;:~)~Ll .. ;~YJ>"'~'-... ,· 1 ·~-.;-~; ' 

cause side-effects to occur in the program. In. V~¥: ,~aviiw .. alJ J~~~s 9e. simply. ~ts 
, ·. l '. ·. . ·. ·: - ; 1 I~-\; _ _,,'.). ... ~,~~ ~ f ~ l t,-,J1 LJ\.--·• 'j, .; ·~:' ,_ - 1· ' ' ' 

means that the behaviour of the function can be dCtermined by just knowins its inputs. In the 
• : • ~ •. : y'~- • ~ ·_. ~ 1 •rt:fnr(~ .. : ')it; f";·;"L.; · - .. ~ ·.-. " · -· 

base language. an activation is the appliCcilion Of aTunetion to !l>l1le inP.ul Becaf.,lse functions are 
.. · . ". : ,~. "_ - ':r-,: ~ ', -~J ~~~L ... ~O :; .... P.: ~::<,I~ JL ::;~-J:>.' .. n ~, \ f; :_·:,, ·~: · ?. · 

cars. we can embody an activation on the ·backup •e by record,ins the (u~n closure, its 
1, . .- _~,., , .-_- <· ~- · ~ ·-·~r.- O.!·r~. Lr, ~"f ·:--(};(: _J<·: · · .. , · :·' 

inputs and return link. Under this scheme. the recovery, systen, w()Uld need to only APPLY the 
< • ' ' - ~ '' ': ; '· -~{'.~ ~- .·:·} l.i-} ~;·.~~fl:•.: ,· J, :; • • ,, • ' 

closure to the argument list to construct the corrcspopding acti~ation being represented. An 
!. . .-.. , ,~· r, , '.:~~i;~ ~" .i;:,_,_-,.~;.:~'.H!; ·. ,'' · :"i. -..: 

important advantage of this prop(>sal over the checkpointing one is that no executing code is 

maintained on backup store. Because all data is immutable. the transfer operation of the data 

from m:.tm memory to backup store can· proceed· in :para,ltet wim · the·cAecution of any activations 
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which operate on this data. Mofeover. the aftlOllnt of information which needs to be copied is 

also greatly reduced. since no data c~ by instatctians willUn ·these. instl'U£tions are- preserved. 

Such data would be recovered :w~n the activation is reexecuted. 

A natural representation for a computation record in this ~heme is as a directed tree in 

which nodes represent activations and edges indicate caller/callee.relationships between pairs of 
;- . ' ~ ~ '-,,: ~ ' '·~ •'. . . ' 

activations. This tree is known as the compulalioir tree for· the oomputation. We illustrate this 

representation in Fig. 13. 

Name exp 

/ 
/ \ 

\ I 
/ Comp11tatltnt tl'n I 

L. ...!!!!!!a:lat a2. _\ _ 

Fig11n I J: Rcpresentat.ion of a Compu~ Record 

\ 
\. I 
_\/_ 

The root of a computation record represents the initial acdvation con1tructed by the Translate 

function of the shell Every node in the computation tree is labeled with the uid of its 

corresponding activation. If (s.t) is a fl)ember of Ee. the sel of edges in a computation tree c, then 

activation t is instantiated from activatk>n s. Each computation has a unique computation tree. 

A node in a computation tree is called an acti~lion •riplar entry. An activation 

descriptor contains the necessary infoflllation about an activation needed to restore the state of 

the activation. The representation of a computation record giycp above is simple qutccrtainly 

docs not help much to alleviate rel.'Overy time fiu: transilil-)Ual data. Thisi..~ because computation 
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trees may become very large for long running computations. Reducing· the size of the 

computation tree would speed up the recovery ~; The· informatidn in an activation 

descriptor entry in this schente contains the closure and aFg\ftllent list of that activation. During 

recovery, however, every activation represented by S:1l1 activatipn. ~f:SCtjptor entry in the backup 
·, . ,' ·.,' .. "'" 

state would be reexecuted. The time to reexeaite all these activation~ would result in an 
; : '. / .• :' ' : : ·:' " ~ • J : ' • ~ ' ' ' . < ' • 

unacceptably high recovery time. Qearly, what is needed is a m~aµism. to record ~ults of 
. . - . - - ~ ', ~. ;::··._.:{ ~-'. .. ";, .-:·. ' ~ . . 

activations as well as their instantiations. Thus, when a result o( an activation is known, it 
' ·- . ;1 ,· ' ·'1 .. ' 

replaces that activation in the computation tree.· When this value is encountered by the recovery 
-~ .. - - ... 

procedures, it is sent directly to the destination addrcses, eliminating the need to reexecute any 

activation in the subtree rooted at the node containing the result. In this way, we can imagine 

the computation tree growing and shrinking in response t.9- the iastantiatioo and completion of 

function activations. This process is shown in Fig.14. 

' ' ' ' ' I 
' I I v 

'/ 

I 

I 

Qresult of a2 Is a 

I 

SuhtrceJ roow.J at al, aJ, afld a4 

figure 14: Dynamics of a C'ompuintion Tree 
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When an activation is instantiated. a new descriptor ~ty iS ptncid in the t:Omputilrlon tree 

and an edge is added from ~e ~fer to this new 9}ff'.Y· )V,h~fh~ ~!Jlt of an~tivatiqp becomes 

known, it replaces this n()Qe. ill ~e- co.mp~tati<>p U'~ i'~ ~po~qffi* -~vatj.9;tl •tiptor 

. entries are then removed. Th~~e a,re ~wpfeau,a~.,O~QUJ~h.~~WMMt.~n11~)tJ~wi>ical 
d_ata bac~cup strategies found in conventipnaj -X~~.;J~f,J.3~ ~ ~ ttfF;~~na1of.$ate 

info_nnation in our schem~J~.9-~~qd~~t w~y,x.OA 1W~WfAPl_~hf.¥itntr. ~\~e, h~ ~ijql\O(f in 

the last chapter, tYPical · .. back~p sy-at,~i~ 1'*' ~-l~e~~.i-~ 20H9 .~t d~~"!lPle Jw, •. the 

checkpo~!lt9t_,js to,_~- ~ppe.. lb~ ~d, an~~}~ftid.W~~: ~-#lat~- the 
construction of the computation tree talc es advantage of the applicative programming model. the 

computation~ tree -ain·ibe ~~· whenever t1 YesUTt1dr ~\ctita~~ t1iec6tnt$· riio\vn. In a 

tangU8gewhtth pennia'side. efftct!f'8rid~atirif 01hott~F~rlltiii. ~~ ~ld tior·'be able to 
manage the bBtlcUp nae ~tht'Cd~on1Wtlifs imntiet. i• 'j i , • l ; . .. 

. - ·-~ ·~ , 
'•. •• k 

It n9~ remmn,s ~- ~P~ e~~ h_Qr the.:m~~-- ~l!f.11~.J?MF~~e~tia 
need to he. J,llodified tD __ StJp~rttl)e ~~~.pf0tq~1~cja. ·:W~ e~.the 
structure of an activatio~ q~r;ptpr ~~Jp'.J~~~,~~jl ~J/14;~~1~~; , ,~ · 

4.2 The Ac_t~vation ~criptor Entry 

We,had meotio~e<l iJJ ~-·.l~ ~lionlP~:"l.,ac~~-~~~14.w~n ~gh 
inform~tiQn S?.;tbatJh,e .. ~coverr ~~µ~ ~~"~~~:~&JM,_ -=tivaMfl, _,,We 

observed~~ if the. fllActJ9n}~~~"fe ~ ~~y~,W~~·--~e 

. recovery p~~u~ pee~ only ~ply,th~,cl~.~ -~ ~~!~~.th~~~-lin~ to 
·. -. t - ' " 

restore the activapon ~· 
"i. .• . ! ..-. 

The reco1Cry ~ in this propo5al is 'Stndghtfbhvartt. = ~1f ~ttvat16tt d~riptor entries 

· containing the functibn dost1re. argument tec6t'ft att(('~ntLJtnk 'takli~v~, the funca~n 
. applicatian take place in puralltt Whenever' an appfy Otiratlon :7J to 't>lf~kiclitecf during the 

recovery phase, a check is made to see if the forlctitm1 ft~' ~~~rl' tii~tintiated: ·· That is.= all 

APPLY instructions dutjng .th~ recovery_ p'1~.«ll;lq 1 tp, ~e J~ wi ~P.~~i~R 4esqiptq~ already 

. exists for the activation they ar~ t~ ini*nc. If oi:i.~ ~iSJA, "~J;•p.~~f;(Jv~~,Y., i~ ~e jnstrue\wn 

since the rcsu It of the appli(;atiPn. is :.ilNac,ly known. Jf rul li&Jcl;t;d~or, ~'ists,, we perform. ttae 
. . . ,. - ' , .. ·~ _;..,, - , l . } •• . ' ,,' . < - • ' -

application. Result values found on an activation descriptor entry are used top.revcnUnitiation 

of an activation. Whe11 a value is founu i_n ~111_ Af?~,.i-~,~•tpJ>e Will aircc~I)· .l.P thc,dcstination 

-------- ---r ---
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address specified in its return Iink4• 

In a system in which errors requiring intervention of recovery procedures are assumed to 

be relatively infrequent, we may find the CC>St ()t evert :maintaining function closures and 

argument records too expensive. As we explain below, ·the~thtib ~for nee.ding the closure 

of the activation on the backup store. fs if we w~lt' fu'·h~ve' alf activat!On deScriptor entries 

· evaluated in paraHet. If we are witting: to · toteratk ·rORM~fr rec6vit}i trihe, we ~ Signflcantly 

reduce the amount of infbrmatiort whith needs 110''tk h~Jd. c:>n ·the activirtion entries by 

eliminating the need to hold even the run:ction ttoslire 'o-t ai1ument recoi-d on' baekup store. 

Instead of having all activa~ initiaf.¢ .. Jn p~ . we ~;)Jave the (X)ffipuiation 

reexecuted from the initial ~tivatiop d~J3Ptor 'in: ~'>~~~,tr~ wt\cn&V~f a new 

activation is about to be initia~ 1~~ ~~J:Y ~~-·~ ~~~-~~ :(Ji)C~ing 
activation descriptor entry for that activation (remember that there is a unique computation tree 

for every computation). ·If that entry coltt&ns'a reslitt.;ttieti; that' ;val~e'iSused di.~y and the 
• f • • 

new activation is not initiated.'. If, on tht!other ftatl<i;'no ~tt ~1ts found in the deseriptor. a 

new activation is constn:icttd 1'nd ·~g p~ e"rabrtnat. No function closure or 

argument record needs to be maintained in this scheme ~se the computation is reeyal,µated 
·.:~1::.?1·>;<',i'.;(J)''·~·:\:>~.:·: ... 

from its initial activation - no parallel invocation of activations within the computation takes 

place. Whtte the time to ~re a coattputatiob 1$: gieltei- thaif tr rOnction closures were 

maintained in the backup· state, it iS bounded bf the titftt the' 51~· -woiittt have taken to have 

processed this comJ'utatiOn under nortnat cfrcu11'9fmicet · lf1bn'cdo~:-crosu~ :and ·atgument list 

of activations were rnaintairted, ·then the recov~ry ·· 5ystern •chukl ;~xp1oit ·more·· parall~lism ·than 

what was available during the original evaluation of the compuuttfbrl predsely because all 

activation descriptor en9res in the CX>Jnputati99 ~~fd'.~11J4. ~ ~~l'l~ted -~rrent)y. It is 

important to k~p in mind, ,hqwev~f, that_ ~ven if ~is ex.µ-a,jnfon,µ,Jl9n. is not :kq>t ~ the 

activation descriP,tors. the ~xecution of the CO!pp_Utation; ""'?"~ ~ s,tiU ~Mi~ .w . ll\Uch 

concurrency as it would h~ve uo®r npnnat conaitiont. 

The infom1ation hcfd by an activation descriptor-entry must affow the recovery procedures 

to detem1ine if an acti\'ation needs to be initiated or· not . THete are two fomts of an acti'vation 

descriptor. The first fonn is for those activations ·whose restilts ·were· recbrded by the backup 

4wc arc assuming lh:it uid's of .icti\'alions arc pn:scrvcd-in 1.hc had.;up sWlc and ;ire used during the rccmcry phase 



§4.2 61 

··.facility. If an ADE for bll ectivatlbn troontaiM a vatiit'/~ 1hfS"vUhre rep~nts the tesulf of a. 

The second ftWm.· Of'8fl.;AJ!J£i is usetflvttett"the;teSWftiPiii itti9iti& Has nm S'tt'~1frefu~ded 
. by dre .baoWp tkility. c tit Yris Cise;: ti~ ADE 'Ctlfttais r~i ~'.}tb; altidWali6rts· thit\vere 

· ··· initiated ftam· a"befort the ralhltei eet\lrtaJ 1-elMH11~.r;y;'& #Ht 1tk·1~iJa~' -Rd that 

edges inthe~tlltim Uet! ~H!tl~~•etil~nslHpi~w~'ldN~· ! · 
'<; 

uid 

of 

··.~ 

· - ~,' ....•. ·~ . ·.~ ~. · .. ''·" ;~.,1~,,·;.··,.·'.·.,;,· ... ,tn-1,_--.J,~r,,r LJ~~· J<:.J_(': ::J(~L) :?ii.:j~~>"i < !i( 'tC;;~'.,~ .. i~ '_·.·~ ! ,; ,';._t;· i,;_:·_.,; -.1· - ~ ·~ ~ ~ ........ ~ ··-~ 

'; ,~~.~~t ~ ~,~(}~ ~~~~;.;~~f,~L~~ gfb\hmrJPR;Jd<~,Hlff?t:!~r.~•t 
·~,;.~~~~.ts .. the ~~~. ~'.·).~~: ~~~~~··i~~1.,0t~rf breft1~!ff~.n}~~.:?fJPch 
~h·,~~~18-?~.~~~:·~~ · ~e~. · ~~~~J~2 :'r~~!).~"£f~~o'fh:&o¥J1'Jl{JPRd~,qy~f!~TIRtor 
· · ~iated with the.alll~,!'!~~~~~.·:J~~ ffll'-lfu~~M~l)~fR8~i.~ .fFli~~~on 

being initiated. When an application instruction is encountered during recovery, the activation 

( ·,~.cdmlspoadillg •iew~i&o W11ttiftlialii~-cff1tllvawie 1$~~resent in 

·,, ,thi&AD6'~itan4Jt1111t~~~iitbr.n!he~\liltdis 
· ~ 'used ta'iocate*,'~tii:f>t'iU. flOdV.._ ·IW>-.!M~m1w·1tWifiilW wn'eei\11ht·OJ".se1 
· -~ .Cdil1*1ose:Ue ... '1dlldw · ~'.~~nbt~1ihe 
,·sameaa·tlle··~~-"'*lltitWy:-.e .... 11i·wteMit!i<~~H1i~ei,:;r~~ry 

. tfuac:ticm.applieation ,ii onilfld>'Wlttl ...-1~;,1Mttt11~' RBet~iOw;tit'·aiJven 

; : : «thcatiomwill •otduse ~'.\IAia odileutfilil-M'Wdii •VM.~tfflte ~'ffot'~t 
-:.!any·s F'°" ~-~~e~ .. 1:m.s.s tflf1Kit1JM.;~nmti~~· O://Sl!t~ttir1 the 
; ifu'ncUoa :appHtadOIUJIMlfal>t,t£11t~i'Tm.AM..•NWM1!Mkn(tt/MaR'W1tejW & :1*tt.p 

I • ' , ·' .. ; • • f- . ~ ' 

Th~, ~he.me ~e·~~~:vej.{v.~~ ,a~.ve:·. r~~p11~'.~tt }~~l,~;:ii~~i~~Yfp1 •1~.rJ~~ ,b,~··~lfl?. l~~if_~y. 
·. ~un~.ti~~ ~~P.~~~t~; i~lln~e~.,~Y ,~~~i~i ,}1 .. ~~~,?~~~~1.:~~P:};?!. :~; .~~' ~J.>~mPrJ~e 
· computati~n tree. ~~n tfle res~lt.of~ ~~y.at~);,.~~?;,ilif~J>l.~~ .. ~0~, 1~esr;~~~~ ~fryJpr 
. Lhat activation on the backup stale. We do not ~ri~W":ia!l~~W"~t5f?.r~s; .. ~.d. Fl~rcs,;of 
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activations. choosing instead to reexecute the co~tatian fll)l)l .the beginning, onlf avoiding 

reexecution of ~tivatio(l$: whose results, are .. 1r~cly}kt1PWP· While re@.v~ry time in this proposal 

. is greater than .the e>ne iq whip11 closures and ar&Jlll)Ali ~'45 ~ . ~ed. dler:e is a 

su bstantia.l redµction in. the COrtlP.Utati~~ resqu~ ~~-~ tm; '**up facility. As we have 

mentionedprevioU$ly. efficient,Jp,1plemen&i91l of~.-. ~U ~-,~ ofaome of 

the base language instructions. A fonnal_ definition_~f-~~~Jj~ven io Section 4.5. 

4.3 Early Comple.tion Structures 

The preceeding sections have presented,·dlo g~n~~-~~er_o~- and rationale upon which 

computation records can be organized. While sufficient for; most' cases, there are certain 
. . 1-., . , : ~ ;_ i;I:; ~· -'~ ; 

progr.am structures for .which our design ts still-inadequate; H 'Fhe--first ·type of program structure 

not properly addressed in our presentation iS. the '4if;~pldl~~ structure. "~y l~lf,_ an early 
- "• ·~~~o--<•-,.-w_,,,.._,. .. ~,~-~ . ....-·."--"'~ --~- .,..., .. ·~ • • 

completion structure does not add useful information to the backup state since it only indi~tes 
- . . . "- ,. ."""',- ~- . .:~~-- ..-,, ;· ;.:,,.~ ., .~ r~~ ·';"·,~-\ · .. ·' ,,-.· _ ,: : ,,,'} 

that' an a'ctivatiotlba5 beet\ Initiated .tO produee tlledCSire<J VBlui" eopfing an early completion 
·. . . .· ,·:··-.. :, ;~ ·.· ;:t~-J-ri:,.i-·,~_,_. ··.·'{t l*'" <--.".1·;· \«,' ... ·· ·: 1 ~~· 

structure<>nto the backup'stdre would not alfow the reooveey sYiem t0'1estore the proper state 

uritess the"actiwtion teSPottslbte 1for'pfu<rm.in~';tbe~~~e ~j:.Idj'~1io 1ie1>~·di~i-~cni~ is also 

copied. This1Sobvtouslfrtofades1tll0tesitu\atlc)n iJ'have'6n1~rWii1t' .: - , . · : · '- -
j -.~ ,. - '• .I" : ~ 1 : - . - -

For our pu~La &imp~ {1'84·-~.~~-..._ ~•to avoid-copJing early 

.compl~~n ~~~ts until .U~-~~~i~ 9eGome set "W:btn a 

.. -~wr,e w~icb ~eaf1¥-cpmpJ4aicHJ;~is1'f> •..- .uo<1>1abqn111>m,;.dutsa;~elds 

.are_ f~l~ .witlt, ~special. flaf~~~-~ ~:_-iato<bc-i:vtnom)J c:opied. 

When a SET instnl~: e,oa>uQtMS .SUJ:h ·Bu~ iti•ec:UJ tGlAcllr 9edler :anJ1 other• arty 
i . .,,· - " ' ;~ - . - - ' - ' ' 

: wmpletion el~menta ex~Mi-~~i if.fQ,1~ ........ 1llt'fomledl·otherwise.·the 

stl4ctu~e is Q>Pi~_-00ip .. ~,~w>~$1't •. ·'IM l~e,--.:,is?titrmf•mnc&•dlis.1tftJCllH'e>wilt 
. initially ~ve,icsvah.aef~~·~• a~tur.e_N11i~tPeaial1Yllhd. •MiOl What all fields . . \ ·. '"" ' . - ... ' ' 

.. in Jhe .~re are kJJ~. ~ ~~~ce • .-~-~~ce:.tnthe'ility-:clefiiled 

structure. If the recovery routines ena>ijAWr~ ~--it~-a v.alue·~ it is trcated;as 

not being defined and is ignored during the reexecution process. Th_c structure containing the 

early completion clement being set may be 'a'co~tpoocnt'~r ~:.l~..gei si.ruci~re which ~needs to 
• • ~ ' • J . ' . ~ ~ :,~·, h ~' : . ' ) : : ' 

be copfed onto the backup store. l'fthis structure beComes-rully' defined as a result of executing 

this in~rruccion. lticn it too wm ·sct ropicd onto ilie b~k~i> '~ti~~- ·we· m
1

u~ratc. tllC ctrcct of the 

Sf.T operator on the b.ickup store in Fig. 16. 
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S isfulfy defined~>' SET operations and.~ !rotteferrttl to ~W" SIOf't. 
' : •.• ,, J' ' ' 

u u' 
' ~ '. : 

. u' u 

Fig11n 16: The Effect of the sBT 0pe•r on BIK:kup S~ 

4.4 Further Enhancements 
1 ,- : 

There are two other program structures whose bc=havi~r ~pgt be effic_ientl)' captured by 
' " . ':·' _;"'; ,;-.. ' .' ,· ,i .~::_; -/~-- ~ ;::1_'. ,r ~.l' i_~ ~ "' >," ~·'. •••• ;~ 

the backup facility by just modifying the semantics of the APPLY and RETURN operators. The 

fil'$t is the tail rec&USMpqranutxpraied.using dleTMllAMJY opeAtor.:·1Jlte'seconct'c1m of 

'programs notbandfed by ourspean.~ in~dlfl>~ of'.Jt1Wlms implemented 

using the SETSUSP and, S1'lEAllTA1L instJUttions.: ·a.m;'11Mlep•es·Ofptt>gratns·use·Speda1 

Junction.application and sipaltin1 t>peraticl>ns whim Mqdile~illleatect ,algorMuns than 

those presented above.· .ladle next two.subleotions vre 1diaa.alSff'iew1tMe:~up:S,Stem shOOkf t;e 

augmented tQ. handle tail JeCUnive. accRations and"dtMat\iCF.41iWWt~ ·Of •ream 
structures. 
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4.4.1 Tail Recursion 

Recall that tail recursion is used to implement iteration in the base language. The key 

feature of tail recursive activations is that they need j)Ot persist until the recursive call completes 

because the return link is provided as the third operand to the TAILAPPLY instruction. In our 

current design of the backup system, if tlte TAILAPPLY operator was treated as being identical to 

the APPLY instruction. then every tail-recursive activation WQUJ4. cause a new activation 

descriptor entry to be ~nstructed. The structure of· the ~~d co1np11tation tree would 
' 

contain a long chain of ADEs with only the last ADE in thei ch•in having the relevant result 
' ' __ ,P, .••• ; ' ~ " 

value. The backup system can optimize the construction of Aj.DEs when tail recursion is 

involved by reusing the same ADE for tail recursive calls instead of building new ones for each 

new tail recursive application. An important observation c;oncetning tail recursion b that tail 

recursive activations differ from each other only .in the}r argulnent records. All activations 

initiated from a tail recursive call use the same ~&tosure and return link. Each activation 

serves only to construct a new argument record for the sua:Oeding one to use. In fact. because 

activations in which the TAILAPPLY operator executes--do'not return a result value, there is no 

RETURN instruction which is executed. It shOuld be clear that" this 'behaviour is not well 

supported by our backup algorithms which very much depend on results of activations being 

recorded on backup store in order to help reduce recovery tim~, ~ v9latile ~ com~d& The 

reason for this incompatability is the fact that no tail-recursive activation except the last returns a 
, I _; (' • 'c· '. ' :-•;";'~::: :, ' • ,•· o• 

result. making any intermediate tail recursive activation descriptor entries essentially uselea 
' ' :1 ,; "'; \ 

We introduce a new type of activation descriptor ibri tail· recursive· activations whk:h 

includes the argument recocd of; the activation. ·."Mis a. fuae&m. is instantiated by an APPLY 

insiruction .. an activation descri~ ·B c:oastructed fof!i& with·tnte"""1J.- ·If t:IU·function was tail 

recursiv._ then during. the eval...Uon Jlf this futtcti0n·a:·TAltAIPl)Y iinstrudion rnay execute. 

Execution of this .instrucWo. while. cavsing a new actiwtiea ta·be·8'!16ted to the Set of activations 

.in the ~~doe& aot ~-•new actiYation.descripter, toae amstNcted as well. ·Instead, 

we change the activation descriptor of the current activation to type tailapply. The argument 

record passed as the second operand LO the TAILAPPLY instruction is recorded in this activation 

descriptor. In addition. all edges emanating from this ADE are removed. The old state of the 

activation descriptor is thus replaced to reflect the new activation. Other function applications 

that take place in the activation arc recorded in the tailappl1J ADE as was done in the apply 

ADE. Suhscqucnt tail recursive calls in this activation will cause the same elTcct as took place 
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initially:_the old argument record is replaced with &heargument,FUOOffl ofdlenewaetivation, and 

the edges emanating from the ADE are removed. 

The inclusion of the argument record in the descriptor allows the recovery system to avoid 

reexecution of aH the tail recursive calls leading up to Jbe·one ,represented on backup st.Ore. 

Since th~ closure and retum link·~ the same, keeping th~ ~~<tta>rd in the ·ADE ina.k~ it 
. '--·-"""",.! . 

unnecessary to reexeeute .any of the prior tail recursive activations originally executed from the 

initial APPLY. The rep~sentation of tail recursive activations we have chosen· qas two beneficial 

aspects. First. the depth of the oomputation tree is n~ fat e~ery.tal} recursiv~ <=all since 
- ' . l . ' ' ' "' .,.,, 

the tf4w'ADE can replace ~e ADE of the calling ~-tiyaft6Jl.1 ': This iS. b.Ccause.tail iecursive 

activations send their result directly to the address specified in dleir third operand; the calling 
,;..",;:::-1 .. : ~ ,, ·~~.- ,•. \ .,., \(\, "'"' , ": -

activation does not receive the ~It of the callee. Secondly, by storing the argument record on 
•. _,, •,l'' \ ·-

backup store, reexecution can begin by applying the function to this argument record and the 

return link provided by the APPLY instruction which initially instantiated this function . 
. '',._ ,. 

lit Fig. 17, we show some steps in the transfonnation of a computation tree which 

embodies the evaluation of the following function to illustrate the process described above: 

Function Example (f: Function, n : Integer returns Int•r) 

Function Tailexample(m,n : Integer, f :Function returns lntepr) 
lfm>n · .... · ·· · ·· 

. tbeam 
eke TailemnllJ/i(f(m). n) 

endfun 

Tailexample(l.nJJ 
e..U. 

4.4.2 Stream Structures 

Our . basic approadt to 'recording th~ PfOll'.~ of a>rnputatiens is· OIO not welfmited for 
,' "!' 

expressing the behaviour of computatioqs involving tJ1e production of stream structures. Recall 

from Chapter Two that streams are produced by tail n.'Cursivc functions in a demand driven 

fashion. The unique instruction in a stream producer wh~~,_.,a~IR~~ ;the, \;ll¥: .· cvalu'1~ioP of a 

stn~ai::n is the suspension pperator. The.backup and recav.ecy..algorithms.as curr.emly defme4 are 

not capable of modeling the kind of progmm behaviour exhibited by stream producers for 

reasons discussed below. 
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Steps in the computation of TailExample, with initial arguments: m = 1 n = 1 and f (x) = x + 1. 

Step 1 Step2 

u """'• 
lllldef 

II 

\ 
y 

empty appt.y. undef 

qfter Tailtxampl~ i1Uta11tlaled. 

qftu /lllSI01lllaled. 

Step 3 Step4 

a~y 
lllldef 

u 

\ '. 

ul empty 

Figure 17: Handling Tail Recursion 
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4.4.2.1 Rationale 

To see why our rurrent method is insufficient. conmder the struct\Jre of the computation 

tree produced by the backup algorithm. ~as currencty 4eflned~ •~stream producing function. 

Since such a function is tail recursive. its associateft · aotJvati0n :would be represented by a 

taiklppl.~ ADE. The:JCtum link in a stream ,producer· is ua;d. to rronneet tOgether succmive 

elements in a stream. When a new &tivadon of a llftMI ~-1s initiated, the ~tum link 

which is pas.wd.to this new activatioa~is:tbe uidofdle-lasl-~-~~ Thus; when the new 

. stream element is produced. the field previously GOntainh'il the ·slispeftsi&rl ift· the last stream 

element would now reference this new element TIM new .._t., iti :turrt; -woul<f either be a 

record whose second field is a suspension to the ~ .inSlftlction in the current 

activation or the value nuU denoting the empty stream. 

Now. consider the behaviour of the computation ·tree. if tile sntEAMTAIL instruction were 

to· be treated -as being idealic:a1 to.the TAJLAPPL''l"oplrltQI'; - tllder this aisUmpdon~ our backup 

algorithm would pMServe the argument· tecGril for· eaclt ;e'8ti0ft of 'the 9treatn · ptioducer 

function initiated. in aca>rdance with the descripCion oftfdl.~ twen ~e. Notice·that 

because a stream activation only executes a urruRN. wMft·· RO· more taf1 reeursiVe calls are 

necessary, the only ramlt value that would~ he ~<Off tlle' bacltup·'store Would be the last 

stream element produced. Intennediate elements which 8(C a:ms~cted ~S the SET and 
. ' _. . -·' l\ ,,.,~;~·.: f '•. ~; . ' 

SETSUSP operators would not be maintained on backup store ••. Mor~ver, recording only the 
• • • ! - • - ' . ' -L." :·:s •., ~ '. \ , :' ; • • -~ ' ' ' u• ' 

argument record of the tail recursive activation for a stream producer would not be ~fficient to 
' :· ' ' _·~. ! ·~. ~ ':;~ •'·l·.:.f~::'·,'• .~ !· :', "" ~ , ' ... -. 

restore the rest of the stream because the return link for each activation is different Recall from 
: . . . - ~ -:..~): ~ : ~- . i ,{: ~ : (~ ~') ..... i: '. :._, _,. ··: ' . • 

Chapter two that the return link paed to an activation ~ a ~- producer is ~ally the 
, . ' . . . . :-: ' -- t ,/ ' • ~ . • ' . . . [ 

second field of the record representing the last stream e~ment ~' b~, ~is producer. nius. 
• - • • • • • • ' • • • :' • • • • : : < i ' : .- .- . ~--...... ' •·. . • . • l ' . . • • . 

the return link or each call to the stream producer would be different 

This analysis indicates that the current design of the backup and recovery algorithms suffer 
.. . .. ' \ .• ,. '• ~ . . . :, : ' ·. :'"': ' '\f·;:).·t.\~ <:\', .. ,;. ' ~ 

frOm two drawbacks with respect to the handling of ..-earns. First. bcquse tail recursive 
•• '~ • • ~ "'I. : ' , ~ •• , ' .,. ' ' • ·-. 

activations associated with a stream producer differ from each oth~r in more than just their 
- ~: . ' . - . ~ ' .• ' ' . ! 

argument records. we need to maintain more infonnation about Vle activation on backup store. 

The extra infonnation ~hich ~eeds to be ~rded, must ~~i~~:~~,,!~ci~de ~e .m!w ~t-ream 
element produced. The second drawback is the_ i~~bility of _f!l~. back.up, algorithms to 

. ·, ! •' ' ,• -, >A 

incrementally construct a data structure on the backup store. When a stream element is created. 

--- ---.--~ - ---- ------
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it does not define the entire stream but represents only one element in the stream. Because 

streams are created in a demand driven manner. whenever.anew. stream element is created. there 

is also an activation aB>Ciated with it whose &aate is :relevant to the backup &;'Stem. The 

suspension signals an instruction in this activation to initiate . pro<iuetion of die next stream 

elemenL Of most importance to the backup system la the aJiument record held by the 

STREAMT AIL instruction which instandates the next lkeam activation. The backup system must 

record this infonnation if it is to properly restore the s&atei of: the S)tStem. If the arawruutt record 

is not copied. then there would be no way for the recmi.er}' systetn to.generate any further stream 

elements beyond that which has been copied ·onto the backup store. We discuss the 

ramifications of this requirement below. 

The instruction responsible for setting the suspension in the stream is the SETSUSP 

instruction. The argument to SETSUSP is the record. representing· the· new· stream element. We 

see that one means of noting the production of. new sueam ~. drerefbre. is to alter the 

behaviour of the SETSUSP instnlction. The SEl'SUSP instructiotl, in , addition to setting a 

suspension in the new stream element, also initiales .the. transfer of this streaa element onto the 

backup store. Of course. the vah.te of the stream may :be an early completion structure in which 

case it will be the responsibility of the sa instruction· to pertbtm •the ;actual transfer. 

The instruction responsible for initiating a new activation of the stream producer is the 
. . 

STREAMTAIL instruction. The main operand to this instruction of interest to us is the argument 

record that is used to initiate the new activation.· ·Recording the argument record serves a 

different purpose from its use in normal tail ~cursive &ctivations. F~r streams. recordbia the 
. ' ' 

argument record of the STREAMTAIL operator is essential to restoring the state of the stream - ;;. " 

· producer activation to allow further generation of stream elements after th~ the recovery 

procedures complete. 

The advantage in altering the behaviour of the SETSUSP instruction to initiate the copying 

of the stream element instead of the STREAMTAIL instruction is that th.e transfer of the stream 

clement can take place before a demand is made for the next element If we choose to record the 
'' 

creation of stream elements by making the STREAMTAIL instructi9n ~PY its return link structure, 

we would need to wait for the next demand to be made (sin~e tha~ 
1

it is wh~n the STREAMTAIL 

instmction fl res) before the copy operation of the current stream element can be started. 
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Because· stream elements are produced tn ·a dematt<f dtfven fiiSliiori, iftlte evaluation of a 

bind expression yields a stream, the value field in <name, value> pair bound in the backup 

environment will contain a single element initially,' nam~ly the first element in the stream. As 

more elements of the stream are produced. they are afded. §titg the back.µp imag~ and are 
.. ' . ...<~ -.- . :~. ,,_ 

considered as part of the stream image in the badup envialemnenl· · 

4.4.2.2 Implementation 

To monitor a stream producer, we introduce ~ atew type of activation descriptor called a 

stream ADE. A strallft ADE fs.stn1J1ar to a~ descriptor in that both maintain 

information about a function activation other than ~-fst its return value. The stream ADE, 

however, in addition to containing the argument • for the next stream activation to be 

initiated, also contains the stream element result of its associated stream producer activation. 

These stream elements are linked together on the backup ~-During the reqovery procea, the 
. ( .. _.,, .- l L~ , ·-· 

backup stream image is tint restored. lbe rerovellY sy5*mf then ~cts; a Skelet6n of the 
' - -~--..l. I 

activation of the stream producer. ThiS·steteton1s used. to1111111mlfioduction orthe · nex:t stream 

element when the next demand is made. The only instruction that can be enabled in this 

ac.tivation . .is· the St'REAMTAIL operator whose argument record is taken from the backup store 

and whose return link iS the addteis'ot the last stream element. The suspension field in this 

element is set to the addresS .of the STREAMTAJL instruction. The reason for storing the 
.. . . ·: ,, ·'.J''"'--t°V':Y<.·' /'v:,;:;, ... <.1 ,:;--'t.C'5·>·,-.> ~',').:\ ~· ·, ' • 

argument recof4 is. to set/ up,..the skeleton activattort to support the demand driven execuuon 

mechanism-for streams. When the recovery procedure a>mpletes. a subset of the stream image 

recorded on backup. store will be restored. Let <X}~·.r;:~.'.x~?1it tHi ~, 'e'Rrnents ~rited on 

backup store. Then the ~verr system restores- ·the 'fini~i~~J ·~s · ~.· ~h~~- ·x; is. ,the 

~teSt element for whiClftJre ·~· r~c!:otc2'~wn~--~·ttfte1 rr~kf~ ef~m~t has 
been preserved; A titetob 'itttfatioD 1s· tofisl~ «J1Yfii lWehj~tfMr~l~frleri{~fieh }the 

demand tbr ifis made~ ''DUntt1fthe eon~io« ofittteWi6~1~~'..~te~ filsufuerlt reca~ 
may be remo.ed fn)m:the~ -When rrtat. ~jiiltWM~\kllflfi~9 wf noflx(n~ 

Wf1en., th~ sus~n~ fi~ld, i9/ ~. e)asl .. , c~rn~·:9.fl !!lw,~14.Piii~. ~ ~d '1\lri98 
, ' . ' ., 

recovery. the STREAMTAIL instruction in: fbc:. ''1Clf?H ~f4~1'~i~ ~~~AS tflC,qext 
. . 

activation of the producer to produce the j+ Ith element We illustrate this p~ in Fig. 18 .. 

To summarize~ unlike all the other structures we have examined. there arc two operators 

---·, - --------------
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Stream image on the backup h«1p. 

va11 vain 
arg 1 • • l1 

undt{ 

Ul:. 
vall vain 

F 11 the c/0111n of the 1tnam p~er fa1tetlt»L . 

. ·; . '·'. ' 

which are responsible fo~ ~~~in~~ ~~p~J~,_ ~~. Tb•,S~SP QPe@f,Qr is 

responsible for:iniUaQIJ8 ~ ~~ QftJ1~~9~ ,~~~ ~'9irm 9'K:klJQ~·· Tile Jmk 

field qfthe st~ eJe~~"')rp~~,~kl!P.,i~Wl&'!;~,\tM~.A'Y~~~'JR~......-.AJL;qpe,ratpr.w)l,en 

it executes. The S~A:~~ .~ 41f>r~~ ~~IHJlMh•~ ~to 
the backup store. The backup system should treat the ara~~.;~: to J)le 

STREAMTAlL instruction in an activation and the stream element created within that activation 

~:oollcctiveiy to ensure U1at a oortcct Strcurif'.itrtage;:isjl*&i\;lill'. 1Tt\e' irilptem~ntadon of this 

<value, af'gumenr> rccotcl-'is d~d fn the ntit sectidh.'' '; •';. . ,. 

In the next section. we fom1ali1e the backup algorithms outlined informally above. Our 
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fonnal model is an extension of the one given in Chapter twa'and mainly in¥Olves tittering the 

definitions of those base language instructions responsible for the c~eation and updatit;lg of 

ADFs on the backup store. 

4.S A Formal Model of Backup and Recovery 

Beyond the need.fur mOdiflying the oohaviour of some of the base language instructions, a 
' . i. ; :'· '. ·. r .: ,,:::. • J ' ' • ' 

fonnal model of VIM augmented with the backup and recovery algorithms must also have some 
f·~ :>~ -.:.(~~~-~-.,:,;. ·-· - / . ~~: .. ~ 

concept of failure. A failure should be that special state which cal.lses the system to invoke the 

recovery procedures. The modified operation of the base iflRIJaaltta.racdOns dUTerltmm their 

counterparts in Chapter two in that the~r execu~o~. ~~~in;' ~1 ~~PR ~ :~ wen 1IS in a 
new VIM state being constructed. 

. ' ' 

In the following presentation, we ~all be using_~~1n<:>1i'ti<>r;t: as in Qta,p~~ tw9:,, 
' ' • • • •• ' , __ , ,__ ~ ~ • 1 

4~.l ne Battup State 

Fonnally, the VIM system is now treated as a fouf..tuple: 

VIM = · <Shett,Interp,Backu~tlte,viniStite> ~here· 
i' .. 

VbnState =<Act x H,?'.(~ x Eaf>.u,y~ ·• 

Backap8t1te = <I:.oa ><·BH~rx'fi'9'>: 
,, 

j .. •· 

·, ,, 

The Act.H,D,S,aiJq Env :~~ent,s.i~ th~Y~~1~1~~J.ltd,r~ijpj~' i~.model 
.. Ml. ~~ti~ that. thp Y~fr ~,in, ~?i~.)~ ~!Aof.J9,, ~ ~~~-l~·iP 1M!;• 

contains the special value, fake&. A failure in the system is modeled by having the V~tt 

take on the value fAIWl All info~atio~ ~~;~~ !~ ,~e, ~:re~~f~"¥~js :~~:·.if ~e. r~tate 
has the f ail.et.i value. The domain Back~tate is de tined as a three· tuple where the first 

component in the tuple, Loa represents the command bJt'Uf iilitl>talite ·Maet/ Cbtltttttin({s$, the 

second component. BHeap. denotes the set~~;;~~~~~~~ b;lckup Prost=(iures. 

and the third component. REnv contains all <name. value> bindings preserved by the backup 
.,.~_·· ': ' : ~ ..... ,~~~ .. ~ -, ); ) ~ {'' : :' 

utility. These values constitute lhe quiescent data in the syStcm: Thctoorna1nequatfon for BEnv 

is the same as that for the environment component in the VIM state, nan:lely., ·. 

5 c •• ;·· . . • 

· Rl>call that m!dtile l'ommands arc those comm;mds whose results have either not bt.>en producl.'d or have not been 
1:opi1:J 01110 ltic ~ladup Slorc. · 
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BEnv = Name -<Uu U Scalar) 

The command log, as was described in Chapter three, is used to hold the record of all currently 
', 

volatile Shell commands input to the system. By safely recording these commands, we are 

guaranteed of being able to restore the correct,syst~m Sl4\te•,'f\le~,is,~,~tu,&?~e. coqsistipg of 
• ' '.• ~ • , _ ~·O s • ~ · · " , • 

a function mapping from natural numbers to log entries and a size q;>mponent indicatipg the size 
' : ' " ' ·. ' ~ I ; - ' • . . , ' ' ' ' ~ 

of the log. New log entries are appended to the end of the log. 

Log = <N - LogEntry> X N 

LogEntry = <Com•and X U.> 

U8 = the set ofuid·s used for computation records. · 

As new Shell commands are input to the system, the text of the command is copied by the 

backup proeedures onto the I~ This'iext ~~ds: to the C~~nd.com~nent of the 

Logentry. The second component in a log entry is a reference to the <:qffi&,>PfApPn ~~ted 
with this computation. This computation tree will reside on the backup heap. 

! ~ ·~i;: ;; .--.-~. 

Every element on the backup heap, BH~~\9~~.M~~PJ<i,~ Tu,ere ~,,~e ~of 
elements on the heap: structures which are nonnal VIM structures discussed previously, 

activation descriptor entries. and strearri . ooordinitbr' ~ritJ l diat": are used tO' package 

information about a stream activation. We di~~ot!'~ ~~l ~t*>r~record in 

greater detail when presenting the operation of the suspension operator later in this chapter. 

Every ADE ofrthe backup hQp' Will~enttef be reteieHce(rlW ~~ 1iiheL~BE irl" ilie' coinp~tation 
tree or will bt teretenCed rrom a command toienuyi tr it1is dt'~friiilitl ADE in the ror;.pu~tlon 
tree. 

BHeap = (UH U U~) - (STU Ade U S~m~ec) 

StreamRec =, <VaJ x '.Al&;)( I.Jiik> 

, Ade = <U A X AdcEntry X AdeTypc X Result> 

Val. Arg = UH U Scalar U undef 

Link = U8 U undef 

AdeEntry = (N - U8 U empttj 

d ', 
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AdeType = {apply,tailapply, stream, ual.ue} 

Result= (UH U ScalarU unde/J) 

An activation descriptor entry is a structure of four components. The first component is 

the uid of the activation being represented. As we show bei:JW;1,t1is fieki is ¥sed to idehtify the 

activation descriptor so that the result of the activation can be properly forwarded to the ADE 

when it becomes known. 'Fhe SCCC!"d aompGRC~ tJte• ...tdrEndy,' iS iJ1Atnetion mapping from 

natural numbers to backup uick.. If there am llO entrieS tnltl\e' JliltBntry, this compontnt has 

value 81nf"Y. The domain ,Of the AlleEn1ry l\:mcden is tiMl(Jf MHnstructiord1umbers in the 

corresponding activation which are either APPLY, tAH.JcM:T,;o~STRl?AM'tMl.1>PCfltions. The 

range denotes the uid'softlle ADCs intheBH.,oorrespeHdittj t&theseacdvatiOiis. Thus. if J 
was the instruction number in some activation a correspondins tot}a.tt APPLY instruction~ then 

AdeEntry{j) would be the uid of the ADE associated with the activation created by this APPLY 

instruction. Because the computation tree i$ pruned whenever f' 're"sulf of. an aetivation is 

recorded. activation descriptor entries· will hayij1befr'l1Mt£Hkf1if1etd·*t to' the vatue empty 

indicating that there RN no subordinate A.DEs Of thw'\eti._llott ad' that the result of this 

activation has already been·~ded. TH third ~t:in~ ADE Ooritidns the type of the 

descriptor. There are at Jeast·two types ofADB'-S~ ·~~,~~dn* acttvMirins for 

which a result is not yet knmyn; and llCll.ue AD£'~.~hWb-.~~~.~~tJ~U~ oftpe.activation. In 
. • : _ • , ·. - . .,. -t , - ., r •. i _ .- ~·· _. ·, .1 ~: ~• · • ~- _., 

addition to theSe two types of d~io...,. the~.~~-·~ fr-~' ~riP.tqJJ_ for tail ~csive 
activations and stream pr<>Qucers which.we ~J:i~~J~.J!te~~~9~'. The ~Mtth µeld 

represents the result of the activation. It can either be a ~·Qt, a uiq, »1hicb. refer;11ces. the 
"· .1 ••• I. ,, . . ·' . ' •' . ,. . .. ' •• 

structure on the backup heap., All stru~tures. 811. ~jaie.d.Jmlt.only one uid Thus. the uid's 

used to reference structures on the backup heap •·.the -aMe;:Jfs' tJ\<Me-lused tEJ•·i:eference 

structures on the VIM heap. We shall use dot notation tc?.J~~~i: ~ ~~~.Pf an. activation 

descriptor. 

When an ADE is initially constructed. there wiH 1be'n&·value to•plat"C'in its result field. 

Thus. this component is initially set to undef. When a ·~1r~·a1ue is subscquertly_produced. it 

will replace the undefined element 
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4.5.2 Early Completion 

Early completion structures are represented in MR as follows: 

ECQ = ~(ECE) 

ECE = <U8 X N> U {Nell} 

back is a special flaa which i1'cijc:ates that this early a..nple1ion stn.lciUre is part of a structure 

which needs to be p~d on the backup heap. "l\O ftag .Wrp1-:ed in the queue by the Copy 

function. We present the defillition of this fu4e&ion below..· WbClG. the: SET operat>r replaces an 

early cornpJetion struc~e contiaining this flag wJth a ·valut, lt will check if the structure 

containing this field can be copled by detelll)bUog if dtere •·any more early oompletion 

·elements in the structure. 

4.5.3 Auxiliary Functions 

As was the case with du: heap in ·Ml. we have .8MO' auiliary ·functions defined on the 

backup heap. AddBHeap an4 R.tmodHeap, w~ ~a,dd: 4111d temove, an element from the 

backup heap respectb:ely. The:~ns are omif.tlrd h• ,'11Kctht rtader mar simply substitute 

BHeap for Hin the definiht>n$&i¥te fQr Adt/Hf!al;~d·ll~l{IJllP*1 Olapter two. 

There are also two functions· defined on the con:lmand ~ AddLog and RemoveLog. 

AddLog adds a new log entry to the end of the log an(f Rimovelog entry removes a deflned entry 
\ '·' - " ,~ ,- ' l .-_;"'' , 

on the log. In addition, we alSo define two funclions over AtkEntries to replace and remove 

elements from a given A.deEntry. 

Adi/Log-. Lea X IA&fMrJ ..., Loa 

Function AddLog( Log,Logentry) 

let <LogVal. size> = Log 
LogVaJlm) = LosvdnJ)if m ;a size+}, . 

= logenlfy if m = size + 1. 
size+ I 

In 
<Log Vat, size+ l> 

end let 
endfun 

' 
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Removelo,-. Loa x N ...... Los 

Function Removelog (log, n) 

~· . I 

let Log Ya/, size = Log 
l:.Of'Vaf,llft;;;: ~m)M:m• 11 

= utyl#/11 f1:1 .:;:: n 
in 

<LogVar. s1:0 
end let 

end fun 

NewA.deEntry. AdeEntl')' X U A X N - AdeEntrJ 

Function NewA.deEntf')(.AdeEntry,u, n) 

let AdeEntry'(m) = AdeEntf')(.m) If m • .n = "lf1'1 ~ .,,. :: ' • .. , 
In 

AdeEntry• 
end let 

end fun 

RA.deEntry. AdeEntry X N - AdeEntrf 

Function RA.deEntf')(.A.deEntTy,n) ; )' · 
let AdeEntry•(m) = A«Y:~m) llm·tt: ii " · 

d~'4:·•·;' · .. 
In .· .. 

AdeEntry• 
endlet 

endfun 

4.S.3.1 The Con Opentloa 

~.;-:' "'! .,. _,:' - . '- 'i' -~' "\.'. 

1S 

l, ~; " •• '· 

'<'. 

. ~ ·. --.. 

Before describing the CQpy~opetadbn., •fett<US\ .......... llfeiibstract representation of a 

structure on the VIM heap.; "1ftfti~~ i~ ·~~ti&~a.~}h~~'>·~·i" which every node is 

labeled with a unique identifier. Nodes on the heap correspond to structures in our s)ISlem. This 
'~ ' ' 

representation allows for structures to be components of other structur~~ ~N· an ARRAY of , .. , (· . '' 
RECORDS. In our discussion. whenever we refer to a VIM structure, we also inclMllM)is to mean 

all of the component structures which this stnacturc references unless we eit\lk:tify state 
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otherwise. Thus, when a VIM structure is to be copied to the backup heap, it is also necessary 

that all component structures be transferred as well 

In order to preserve information found on the VIM state .. itjs nee~ to have a function 

which can transfer data from the heap and environment ~ of the YimState to their 

respective counterparts in the BackupState. This Copy functlob is given below: 

Copy: {UH U Scalar) X H X BHeap - H X BHeap 

Function Copy { Va/,H,BHeap) 

let NewH, NewBH = 
if Val E Scalan 

then H,BHeap 
else let 

in 
NewH. 
NewBH 

endlet 
end run 

RejStruct = {u I 3 m EN, RE R~nl.s.L 
H(Val) E Rec/\ H(Val)(m) = u} 

u1.~ •••. ,uk =elements of RejStruct 
ECStruct = {u € UHi H(u) E: ECQ /\ SteAYal) = u} 

NewH', NewBH. = 
if ECStruct = {} 

In 

then if RejStruct ;it {} 
then CopJ(u1, 

(Copy("2, ... 
(Copy (u~, HJJHfllP)_) 

else H,BHeap 
endif 

else AddBack(H, ECStruct), BHeap 
end if 

New ff', 
if ECStruct = {} 
t'- AddllHet1~NewBH~. lfa/, H(Val)) 
else Add/JHeap(BHeap.wi/, ({riotco~})) 

endlet ,. · 
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The Copy function talces as input the uid of the structure· to be oopied and first detennines 

if there are any early completion elements in the ~ructure. If there are, the structure is not 
- . 

copied; instead, those fields which are early compleQqn Q\l~e$ are,.gmented with the special 

flag back. The function, AddBack, talces as arg11.ments-the' ~- heap and the set of uid's 

which reference early completion elemen~ in the ~lure. It ~UJrns a new heap in which the 
• ,r f,.,; , ' •' 

flag, back, has been added to each ofthese4'aflyQ'.)fRpletioh llructures. Detennining if there are 

any early. completion elements in . the structut:e 1*l~•i:es that all component structures be 

examined to see if they refef'Ollee any su.dl elent8*; The function Step takes as input the uid of 

the top level structure and returns the set of a.ti uid's referenced from any substructure 

referenced from it that is ~a~ with al) early coqtpletion structure on the heap. 

If there are no early completion element$ Jn the structure. then it is transferred to the 

backup heap. Since a structure tnay reference many substructures, the Copy function copies rill 

substructures referenced from tile ~tllfe by .n:qirsively calling itself. A structure if fully 

copied only when· it and till substru<;tuNS it reterenees have been placed on the backup heap. 
' 

While the Copy function is e3sily 'expressed m .()UT abstract model, it is significantly more 

complex in the actual implemeaaatioll. We addral the implementation problems in the next 

chapter. 

4.5.4 The Shell 

The command log contains the te~t of the sbcll comand input and the name to which the 

result of evaluating this command' *>uUM>e: botlrul > This information is used by the recovery 
" 

system which reinterprets the command text The ~pwation record mociated with the log 

entry is used to avoid unneccesarily reexecuting operations .whase results have already been 

recorded. Maintaining this inform~tion requires modifying the ope~li'6n of the shel~ The shell 

must now. in addition to the stream of shell commands and curre1n-J<iAi~alsolake as input 

the current BackupState. It returns a new VimS~te result.in& { rrQtri 'ttt~. evaluation of these 

commands and a new BackupState which COl1UU'1$·a Q~'"k:W ~n.~ ~ ev~~ command input 

Shell: Session x VimState x BackupState -+ VilnState x BackupState 

Function Shell(Session. VimState. BackupState) 

let <Acl. II. EIS. Env> = VimS1a1e 

---- -----·- -----,-·-- -----
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<Log. BHeap, BEnv> = BackupState 
NewState = 

if ChooseToExecute ( VimState, Session) 
then Sltell(Session, Execute (VimState. Ch(J(lst(EIS)). BackupState) 
elseil~)~ 

endlf 

then VimStale, BackupState 
else let ~1 · = Mt(Sesslon) . 

ia if c1 .C i:a. D6fEm · 

..... 

tben <.Act. H. E,JS. lklf.n'(EnY,.Name)>. BackupSIQle 
elseff c

1
.C . BIND · .·· . 1 

. • . . 

thetilat 'lr~U'BIHD· 

FA = Translate(c 1) 
u :A = neW1lid'tt0m U A 
Act'= A.ddAcl(_~ct, uF.f FA) 
NewEJS"l:'£18;t.i>ffi.;-A• f>if'FA(i).e,c;nt = 0 

A F~~;;:,pJ .. 

State', v = lnterp(.State, ·Choict(NewEIS)) 
<Act'. H', EIS', Env> = YimState" 
Env· = AddtoEnv (Enr. cerame, v) 

in 
<Act', H', E~·; Etrl>. 
<NewLfJ&dlll.e.B'iAr? 

encllet 
elldlf 

.if empty·( Sat/on) 
tltea if EIS'• {} . . .. . . 

·then Shell (Session. Executt(Newstaf~. Choice( EIS))) 
else Newsldle. NewBaclcupSttJJ~ ·· ·' · · 

endif 
else Shell(rest(Session), Newstate. NewBadcupState) 

endif 

end let 
end fun 

§4.5 
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The new log entry constructed by the shell contains the text of the' command input and a 

reference to the root of the CorriJ)umtion tree to be asSO'daii!~-'~ttt'tbis·computatiah. The uid 

field in the· l'OOt activation· descriptor entry Conufus ifi~ uitt 'of tllt~tr~ation being instantiated. 

Its AdeEntry is undefined Since no funCtloils hive·~ djjpueJtfufu' tllls actlvtatiort'yet The log 

can be thought·6f~·m arfay <ff"log entrf~. The '1re1''u~'ih~·-ifb8 l)y adding the new log 

entry_ to some :curren~y .u~9~f¥1~ ;~~~~:'. :N<?tC-~ii~~~~-~~;HJvoked. qfler the log 

entry has been recorded. The shell acknowledges a shell input by demanding the next command 

in the irtput sttearll olitfwrten thc.f currertrshett'~ffiih~ tlii' hie~: ndied' on the ba~kup store. 

This guarantees that no processing will be done on a computation which cannot-etc recovered 

from failure since the text of the command is use!-'btli~; ri:dvert·P,totedU~ to reexecute the 
!\t ~~' i,. f. 

command. The two functions which are ~.~ ~~t~!i~nt, De/Env and 

AddEnv'rnust atao· be. modifted. 11ref,Df1Bn• .ii ~'«w3temtmnl: an· ef!vironment entry 
\''•} ,\"1.-,.:. ·,~ _r-; ,~-/\ \ ~~-.-~i ... iY\.. ·.:.. ~\.,\'.,-_·j~~: -' ·· ·', 

from the current envrionmenl Since ertvJ.~W""(~'I~ ,~1~ p( the backup state, 

De/Env must remove the entry from the BEnv as well 

4.S.4.1 Removing Log Entries 
.,,. , .. .c~ - ~ ~~-~,.~,~~, ·, . 

The A.ddEnv funclio$1,is,.~b~ ~.'4<Jl8ap~.~~:'1inding to the current 

environment The,baehp~,1R~ 'ian•~·~ of._ computation record 
t .- i~ ,.-~ 

about the computation that produced this value.. This computation record n~1~:;kept on the 

backup store only so long a the binding was not placed in the image of the envimfllWMt kept on 

·me backup state .. Once the biridirig 'iS' plaCed. ill die b&Cfup State enVf ronment and ihe"i-esutt 
_ v~1Je is fully qefulecl.tbt.~~,a~~~11"w·••~~.W~and can 

be rem,oved f~.~ ~~''l?J'•· tq~~J,,~itM ~~ctft!~JM;~lt ·Yalu.t QlllfMins 

,r.arly COJ1ill>~e¥~!!:WU~~~- ~JIOID ~-~;1q .. ])e.<Nalue 

conipPnent in~e ~~,'1 thi$1~,~~~z ,lli~~~~~it,\Nt;~liaf of 

th~ ~Gr ppera,tor ·to J'C,fll?~cr,lb~ ~~~'~ ~ 1vMfti~1fullr1dogned. If 

. there W'E;;no ep.rly CX>nlP~:·~~·~J.·,:i~t1~~~-~ m.. die 

. bindi~icon the l>Q~p ~v.iroqm~ancJ,rcmQ~~--•lf.V: ~~~,•-•'• 
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4.5.5 The Interpreter 

Because base language instructions will be nQw be operatitl~,oo the backup state as well as 

the VIM state, it is n~r.y to alter the ~haviour of theJ~_terprete~~ The interpreter is now a 

state transition function frQm a VJmState, a. Ba~~Up$lffle. ~-~-~instruction to a new 

VimState a new BackupState and a, result value. I.ts de,f~tiQ,ll is:8ivea bc;low: . 

lnterp: VllllState X BadUp.State X D - VU.State X BactU,.State X {U8 U Scalar) 

Function Interp { VimState, BackupState, <u.i>) %<u,i> is .,.en.abl.ed inltruction 

let 

in 

<Act,H,EIS.Env> = VimSuue 
FA= Act(u) 
<Log,BHf!flp;1BEn?> = BackupStat~ 
NewV~e.New~ISIO# = &-.ltf-YlmStt:IMJlack.,Sta-.<u.t>) 
NewVimsta1~· = Failure(NewYimstat~) 
<Act';H',EJ~. Eilv"'>'= iltwYlmslate' . 

if failetl.New Yimstale) 
then Recovery(BaclcupState) 
elseif F A(1).opcode = TERMINATE 
· ttH· N~N'ltitatt';Ntt;/kriu/)Statt,FA(lj.opftUm1 
else J111#i(NewVimSkU8Jiew~._~1s~)) 

endif 
end let 

end fun 

The Failure function n'lOdels the Introduction of a f1llld State in the system. It returns 

either the state fc&ilerl er the state' passed tb ·jf as input 'Fite· funttk>n fatted returns true if the 

new ~te is a failed state amffalse otherwise. Wl1ett ~tettJt'nStrtJe, the interpreter irtvotes 

the recovery procedures to restore the systetrt to a cdrtect State'. b The 'rriodel of failure glven here 

is, of course. sirnptisl'ic imofar as it mu mes that a -taifuf~ dbes n<>foccur during the middle of 

instruction execution. In the actual· impfernentadbrf tlf'the system. care must be taken to 

guarantee that copy opcratiOns on the bttclrnp Store ate pefronnechttomicatfy; The model given 

here, however. is convenient for expre~ing the salient aspects of the backup algorithms, 

abstracting low level details such as preserving atomicity of copy opc~tions. These i~ues are 

addressed in the next chapter. 
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4.S.6 Function Application 

In this sectioh, we present. the modified operatioodl'sermattic:S' of two of the base language 
. ·. )' '·f4 

instructions responsfble tor function apPtication'fo ~~'~ste~ the APPLY and the TAILAPPLY 
. ~ ~ 

instructions. 

4.S.6.1 The Apply Instruction. 

The effect of executing the APPLY operator is to augment the number of activations in the 

VimState. The addition of a new activation is reflected on the. backup heap~ b~. adding a new 

activation descriptor entry for this new activation and creating a new A.dei,1!111: function in the 

ADE of the currently executing activation. This new function maps from Off*t to uid where 
< '- ('\-~' \\ . (:\~/_\\ ~ '·\ ·· .. ~. . ... 

offset is the instruction number of the APPLY operator and uld JS tJrte unique .Wtitier of the 

A.DE representing the new activation on the backup heap. The new A.DE will contall? in its uid 

fietd, the uid or me new activation; itS AdeEnl,.Y"liel(ris se(to empty, and its type field is 

initiali~ed. to, a,ppt.,¥ ht4lcatiq~ ~t: ~qpv~~i ·W.~ ~JAl.f, aa, ·~1.Y. hlstruction. 

Sine~ the J:CS~lt of tbjs ~~V~';l ~,Rot Y,4t kp~~· ~ ~!~~~ 14RNJfl. .. " 

if/:~= APPLY .. 
let 
c = /.op1, 
arg::: 'lop2, 

<u1 Jree> = H(C), 

u· = a ne~ ui~ fro,m tJA• . i 

u .. =a new·uKI tram u;. 

i:' ·::-' 

A.ct ~ ,Add.4el{*1.. 11'-.l~)!. , , . 
H' = A.ddff eaJl..H.u.··.A/,qkiP,~«R,~.11'F1I~P,,.. . •. 

Act", NfWEls' = 
Sen(/fo.Desl 

cseridT0Des1 
(Sent/TbDt!lt 

(Ac(. JYewi~w·, <~j Vopl);. Cl • 
u·, <u~ntt. 2. op_1 ), a,.,) 
u·: <lincond.' J~ opi'>'.'1''). 

u bit = a newuid chQ$Cn from ~ .• .. 
newade = <u·. empt~. fappt~r. undeP. 
B.Heaf}) = AddBHeiJti.}IHt'rlfJ.~b(/lelWJtie), •, 
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BHeap2 = if 3. uh s..L Bhea. !fJ. (u.,) = <uF.f .. ·: A.:d .. eE. ntry . • T.ype .• Result>. 
then let.AdeE11~q· = /;IB'tl{.~tlJl,BN~µ~A~1Jl()', unn11), 

in 
<A.ct ... 
n·. 
NewE/J', 

UpdateAde = <uFJ.' A.deEntry', T1pe! Re~lt>, 
tn ' ·" ,. " 

AddBHea/i._BHeap1, u11UpdateAde) 
end let 

else BHeap 
end If 

En•>. 
<Log,BHeapl'BEn•> 

endtet 
end if 

§4.5 

It is possible that there is no computatiori"teeord on tlle'batkUp lteap that contains the 

activation descriptor for the activation ir1 which th., A'lff.:f instruCtidrt is round. '' This may 

happen if the result of the oomputation has already been ils>llR4 in die ¥up. emdronment 
~ ,, ~.. • • ·« 

before the APPLY executes. In this case, there is no change to the backup state. If there is an 

activation descriptor oorresponding to the current activation, its AdeEntly is"ujxlate(l to reference 

this new A.DE. 

4.5.6.2 The TailApply Instruction 

The TAILAPPLY operator is also modified to monitor ,th~ -P~ of tail recursive 

functions. If a TAILAPPLY operation executes as part of•lail~ve activation, we oopy the 

argument record p~d as the seconcflnput tat.he lttStioa~·tolhe baekup heap. replacing the 

old argument reoord found in the activation descriptor entry. As we ment.ionect earlier, doing 

this substantially .reduces the time needed to reexecute a tail recursivCe ·1\fpctlbn. Copying the 
:. -:. 

argument record becomes a non-trivial issue, however. beca~·· of ··dle.:presence of early 

completion structures. ff the argument record to bt ~ contmns early completion elements, 
. ' .·': . . ,.u· · .. .-- , , 

the copy operation can only take place after all sucb elcm*,Qts ~Y.~: ~n ~L The old argument 

record on backup heap mld the AdeEntry component cannot be replaced until the new record is 

fully copied. To ensure that this restriction is obsori~d .. it is o.~~ry to create a new ADE 

corresponding to this new activation. We now need ~ liAk,the'old,JofD£ ~d the new ADE 

together. Since the idea of noting the argument record on the backup heap is to avoid 
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reexecution of prior tail recursive calls, we interpose the new ADE between the activation 

descriptor corresponding to the current activation and its parent ADE. The parent ADE 

represents the activation in which the initial call to the tail recursive function was made. In this 

sense, the compu*8tion tree bttilt from tail recursive activations.i&ronstntetecl"bottom-up", with 

old tail recursive ADEs•ms pushed down the tree and new AD£7s·~'fltted in between itS 
....... _ - --

caller and the original caller of the· function. We illustrate thi~ .J)te><:e§ in Fig. 19. · Wilen an 

argument record is copied. we set the AdeEntry field in ~ descriptor to en\pt~. effectively . - ... •.) . . . 

discarding prior AD Es m6ciated with this function. Th"5. onee ~ ~gument record is fully 

copied, all previous A~Es of this tail ~rsive function are-removed from the backup state since 

the link connecting these activation descriptors with the rest of the oomputation tree is severed. 

The fonnal definition of the modified TAILAPPLY instruction is given below: 

--· ---

if /.opc;odc = T AILAJIPL Y then 
let 

C = /.op1, 
arg = /.Op2 
dest = /.OP3 

u· = a new uid from U , 
Act:.= AddA~I( Act,u: ~(•) 
Act , NewEis = 

SendToDest 
(SenDoDat 

(Sent/I'oDat 
(Ac(, NewEis, u·.<~.op1>. C) 
u·. <unconA.2.op t >. arg) 
u',<uncoNl,J,opt>, tkst) 

Ac( .. , NewEis·· = SendSignaK_Acf.'JVe..eis'dlF-~slilllitlons) 
'. .!r· ·. 

unew =new uid from u8 
•• j ~ 

BHeap1 ::::: if 3 uti'fUh>..k at. ·BHecz/i."0)= ,(u~.NleEttll,rTYJll,·Result> 
A AdeRntQ(k) = ;Uade. ~»BNi:ia!A.•Ju>::::1 1 '11jA 

then Atid811ra~BHl!Oli.ub.<u~~:, ". \) .. ni c·,,.u 
New Ade Emf')( AdeEntry.u W'k)/f'ype,R esult>) 

else .Bff*'P ' · ,f!'. 
end if 
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/. 

After jlrsr tail recuni~ call 

u I I tailapfJL!i 

u1 empty ~ 

Flgve 19: Recording Tail Recursive Functions 

H',BHeap2 = if BHeap1 = BHeap 
then H.BHeap 
eke ·Cap>(.arg.H~HaJJJi) 

end if 

v2 

BHeap3 = if BHeap2(arg) * notcopted. 
· the• AddBltl«lP( 8Heap2~~tw<al.empt~~,Jl1J.arg>) 
elwif 3 u'-fe.a1o.BNeap(u~='&1r,4 · · 

then let AdeEn1ry·=~Ailf!Em1'({1'..fl-ad~·•J 
la ' 
AddBHea~BHeap2".unew'<u';MtEntq·:tauappl~.arg>) 

cndlet 
else BHeap2 

§4.5 

vl 
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endif 
in 

<Act' ... 
n·. 
NewEis .. 
Env>. 
<Log.BHeapJ'BEnv> 

end let 
end If 

8S 

The backup heap is modified in three steps by the TAil.APPLY operator. In the first step. 
:,' ',·. ·., .~ ""'-'. . ,. :-~ :~ .· .; '.1 - -.· 

the ADE of the activation which initially in~~tf4, tlJ'.j ~· '4=uiSiv~ fun~ is modified to 

have its AdeEntry field ~:ttae;·~tivatioruleid'*'~ for this new application. 
' ".,.Ir,, .. ,,. 

This new descriptor has its AdeEntry field initialized to reretenCC ~; 4DE of its caller. If no 
:. i j f . ' ~-

such ADE exists. then no change is made. In the next step. the argument record is placed on the . . . ; _, ···. ~ '·... ::_ . ·. . ; __ ' \_.' 

backup heap. If the copy operation was ~~fu-~ .. t{ie1J. iti (be tti.f(d'step, tbe A.deEntry field of 
<\,_ c"' -,_ · .• \. ~--. _ ~~ ·~ ":.._:·,,,\:~.) f~'Jf! ~ 

the newly created descriptor is set to empty since ~.~~ MJCe(lure can use the argument 

record directly during the restoration of the system state. If the ~re was not copied. then a 

reference in the AdeEntry component of~!JlF net,y .~~ ~ ~~"!«> • c;al~r .,,.... '{bis allows us 

to still reference previous activati>ns.d:tbe taili'~~ «iridioa>until the argument record is 
\c:. 'L•:!·, 

finally oopied. · · 

4.5. 7 The Return Operator 

One of the ~poctqPt featUres ,of pur ~1'Jgorithm is that results of activations are 

recorded on the cOlnPutadcln tree~ Tliis,• t.he p~lmeans of reducing reexecution time of ,, 
volatile shell commands. lbe R~UJlr-i. ~: ~smits the result of an activation to the 

' ' ,• •- ,. ' • .-_, "·--" 'I 

backup heap. The return value •. if it is a VIM Striilaare will. in most cases. oontain early 

oompletion elements. The SET operator is responsible. in ~~~~~ces. for ensuring that 

the structure does finally get copied. If the return value is copied, tht'A,all ADEs referenced 

from this descriptor are removed from the backup state. This has the effect ,of pruning the 

oomputation tree. Because ADE's can be removed in this manner, it may be the caJe that when 

the RETURN instruction executes. there maybe no ADE associated with its ·activation since a 

return instruction in a parent activation may have placed its rcsuJ~ (}1):0ih~ .P~~PP heap. In this 

case, no action on the backup state is required by the instruction. The modified d~ftttition of the 

instruction is given below: 

--- --- -- ___ T___ -- ----------
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if opcode = RETURN then 
let 

DL = H(l.op1) % the list of return addre85 
u, = DL(l) % uid of the calling activation 

targets= Ge1Desd,.H,DL(2)) 
Val= /.op2, % the value to be returned 

Act', NewEis' = SendValue(Act,NewEis,1#,- tarrftJ, wz!) 
Ac(', NewEis .. , = SendSignal(_Acl',NewEis',uFA'destinatlons) 

Ade= <uFA'AdeEnllJ!,Type,Result> . . 
BHeap1 = if 3 u;, s.t. BHetzl(uj =:: Adlt · . · · 

tllelt ~H«ll(Blleap.111'<u F ~-.1Jl1bdj YaJ>) 
else BHeap . . 

endlf · 

H',BHeap2 = if Val E U8 . 
then Copy( Val,H',BHeap) 
elR HJJHfi4?i' 

enclif 1 

H .. ,BHeap3 = if 3. ub s.t. .• BHeapJ,(u,) =. Ade . 
the9iifBH#P1(¥al) =! lldiaapim 

fben H'.IJHeaJJ.i 
else let 

in 
<Ac(', 

endir 
else H,BHeap 

entllf 

NewEis .. 
Env>, 
<Log.BHeap3,BEnv> 

endlet. 
end if 

Re/= {nf AdeEntf)'(.n) is defined} 
n1 ,ni:_ ... ,n ~ = Ir. elements of Rel ·. · · 
AdeEntry = RAdeEntl')(. •• 

(RAtltEtrtiy(Ad~itttiJ}itjJ,.::n ic))) ' 
,NewAtk =.4.1'f1AiMIEnttry,: .... Yaf> 
in 

H',AddBH«JJJ..Jiltea,.;_,u~ewAde) 
endlet ' 

§4.5 
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The backup heap is updated in three steps by the RETURN instruction. The first step 

determines if an activadoa desaiptpr ft>rthe CUl'Mtlltti¥ati0ft e•ittSitt itthls activation has an 

ADE which ia part of some computation uee. ·Jr S<X 1At:HYY>d ~this acth·ation·-descriptOr is 

changed to· UCll.ue indicating1thata IS1lt bas been mtat8d ~1reliltn valtte is Writtett Utto the 

result field of that AllE. ,J:f;the retumvalue'is'aisttuceare;..,.wemltllte a Capy·ope'ratkjn to 

place this structure on tbe backup heap.> If the ~ljj MJ'«>J>H!d·becallse if}~mris no 

early romp1etioa elemeots.crif thetault we a _.,.'vlf._ifleWWICJ...fbB's:iefereneed fn>llfthis 

descriptor ~ removed.from .the backup.heap, .. effectivcl¥~-dle-~· tree as 

discussed earlier. If, on the other hand, the result was a structure contains early completion 

structures, it is the responsibility of the SET-~ ·10-p:erroriri iie pruning of the 

computation tree. 

4.5.8 Stream Operatlom 

There are two operations which manipulate stream activatiOn descriptors on backup heap: 
,.c·.,. 

the SETSUSP instruction and the STREAMTAIL instruction. 1btSC operators are responsible for 

recording the creatiOrl of new stream e~~. ~d..'•. arlt\ment records of activations to 

allow the recovery procedures to reconstruct the stream image ~ to permit demand driven 

evaluation of those elements not recorded. 

4.5.8.1 The Suspension Operator 

As we bad dC$Cribed earlier. the "SETSUSP operator peeds to l:>e altered to record the 
··'>· ; _,,~·"" ':···· . :1 s..'.;~·1:-,,,., 

production of stream' etemeius on tlw tJackup heap. ~,..,·OW ~thm is the use of a 
.f. ,,, ·,;_· ·-··~·~...-~, .. -.,._.-·-·····-· - "'·•·' ,_ .... --.. ' 

stream coordinator record which contains the element produced by a stream producer activation 

and the argument_ record to the ST~f.AM:TAIL.irl~~,~,fl>-~~-~liv~ofthe 

producer. When a new .stream aclivalion is in&ian&iat.&.·-a-MW-A9E isaated· fortt. ·· Unlike1he 

case with the APPLY operator, hQWt:Y-4'r1 ADr$:;~Pfi~ ~~~ .. ~~:are 

~c~d through the stream._wordinator record. lbe.liAJdielci~d·is used 

to link together all stream activation descriptors in a chainPn'ml~tittg thchcdh~~pn of the 
' : 

stream on the VimS1a1e. The SETSUSP instruction is responsible for i~ly c;reating the 

coordinator record and for linking the clements in the backup stream<1rtiage ... When the 
l~ r · 

STREAMTAIL instruction executes. il initiates the copy operation for the arg~ot ._~ord of the 
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new activation being instantiated. In addition, it sets the liRk field in the coordinator record of 

its corresponding ADE to that of the new stream producer activation. 

The SETSUSP operator takes as input the reoord ~g dae new stream element It 

updates the .ADE associated with this activaeon to ~ .,_. and constructs • new stream 

coordinator which is referenced from the Resuu. of 1this. clesctipf.Or~ It then initiates the, copy 

operation for tbis stream element. Each new ia:vocationi of ·die :StreaJn producer causes a new 

ADE to be constructed. witluhe link field in the coordiaator of:the;previous activation sot to :this 

new ADE. In Fig. 20, we illustmte the effect of tile SfiSl.:ISP intlnlCtion on the hookup heap. 

u 

) 
Mer a SETS USP opmz/(W bl Octiratlo11 wttlt. tM.11 1x«111a. 

and Jtrmm ""'""' 1'fli:onljd. 

u Stret.&m 

FW11n 10: TM Effect of the SETSusP lnsttuction on lhe Bac:tup ·1teap 

The format definition of the SETSUSP operator is given below: 

if /.opcoae = SETSUSP then 
let 

u =I.opt 
R = H(u) 
f= /.op2 
i = /.Of" 



. §4.5 89 

,. ···~ . • ! 

U ew = anew'uid~ u ' ·. . _ .. ·· '>•~ '' .·•• :·,C,'J., ' 

r -lfi~ :.;,,A~~-'ti'~~h,,,,· ·' .. _, , 

In . 
if R(J)f. t£Q A JR QJf = 0 . 

tlMNl'•Acl'i' : · ' n ,. • 

' ~~(/f;;,'hclf), 
v1;,ew::~ > . 

' <IA&~~-., ' ' -.; . ' ; "''" ; 

. elsei1et (:4trivH~1s.;if ~'1iJtl9l>ei(A~t .Ar~iii~.~.~.slqriai> 
- ~- .. <·:.d'·J ~~:.,;;L,, l ~~: -~~f·_-rh~;.].5~T?. ~-1dJ O.~ b~Jt;:(:r:q b1~~.~.-·:t '·,;;;·.:t·~- ' 

_ <.dct. 
'H-~- ,· 
·NtwW"-. 
£!1.M,:;,< \\ ... ··· ..... 
<¥>1. Bl(lflP BEnv> 

''.~,:;,l ;,., .'J::1 ·::~: -~. 

·eadi · "U• ':.,_, J, . : :. ,._, en41et ,-.: 
endif 

·.>.''.! 

There are three major tasks that the SETSUSP oper.itor is responsib~, tjR~. i_~ J/J~t update of 

the backup heap. The first is the construction of the sucmn coonfitU•ftd\~cer.,, It creates a 

record. whose first component is the ~&:orttW~~ kl~• QWrient. ~ the second . ~ . -

and third components are given value. untkf. This second mm~"" 19 ~~-t"fw>value of the 

argument record but may only be defined when the STREAMf AIL instruction in this activation 

~ ' '-. ---- .... 
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executes. The third component holds the link to the 'ADE bf the next activation of the stream 

producer and can also only be set when the STREAMT AIL operator executes. The second task is 

the copying of the value component of the stream record. Recall that our definition of a non­

empty stream element is a n;cord of tWo fields,.the fiiSt being the,eJement itself~d the second 

holding the suspension to the rest of the stream. The.badup··fa¢Uity Beed only copy the first 

element of the record since the link field to the ne~t ~ .elell)ent can be set by the recovery 
'', t : • 

procedure when the stream is reconstructed. The third major •·that the operator performs is 

the updating of the activation descriptor entry associated with .~e stream producer. It changes 

the type field of the ADE to stream'. 8l}d . up<latea a., .lwr,vil(>,tp. reference the new stream 

coordinator record. We next examine how the STREAMTAIL instruction needs to be modified to 

maintain a consistent and up-to-date imap of~~~ 

4.5.8.2 The StreamTail Operator 

The STREAMTAIL instruction operates in conjunctiQll with fbe, SETSUSP operator in 
"·;'; 

maintaining the stream coordinator records and activation descriptors- ·.When this instruction 

executes, it initiates the transfer of the argument reconl passctf '8,its ~d argument onto the 

backup heap. The stream coordinator corresponding to this activatio1' j$,,~pdated to reference 

this argument record. If both the value field and the·arsument·~<iiare fully copied, then all 

subordinate AD Es can be removed from the backuP. b~ ln lb.is ~nse,, the stream value and . ' ~. ', ~ : .. ··" . " ) •, ' . .·'' . 

argument record passed to the STREAMT AIL instruction constitute the result value of this 

activation and just as the computation tree is pruned by the RETURN ihst'ruction when the. return 

value is placed on the backup heap, we perform the same action here when both the stream value 

and argument record are safely recorded. Like the TAILAPPLY instrbttion, STREAMTAIL is also 
~ < • ' ,,, • .,: ' 

responsible for creating a new activation descriptor. The type of this t4/)4is set to stream and 

the link field in the current stream activation record is set to the uid of this descriptor. We give 

the formal definition of the STREAMTAIL instruction below: 

if /.opcode= STREAMTAJL then 
let 

C =/.Op1. 
arg = /.op2 
desl = I .op3 % deSI is a field in a stream record 
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"~ -= a new tiid from· U· , 
Act:.= AddA~t( Act.u: tiru) 
Act .,,~ti ,= . · 

SendToDat 
(senilfolfesr 

in 

· (Stnd1lallal.'. : ,:, 
(Act, NewpiJ.,1{,~~' nti, 1 n P.P"f:> .. 
u·.<uncofta,l~opt). ~)~ ~· ... 
u·.<~)i}"*"; ., .. ~,,,,,,.'. ·'.· 

·<Act .. , 
·H"r· 

. ' 
New1~·1s .. 
'Eriv>. · 
<'4.MHlllPJ,B&~ , 
~~ 

endif. 

91 

;_1.' 

_.,.· 

!. ' 't. ·,:.' 
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' . ' 

There are four steps that the STREAMT AIL instruction follows in updating the backup heap. 

The first step is the construction of the activation descriptor for~~,~· activation to be 

instantiated. In the next step, the instruction calls the Copy ftnwam\ to-ttansfer the argument 

record to the backup heap. In the·thftd'.~;'~'~,-~(~fl~thr aB>Ciated with this 
.. ·~"IP , •, H$u ,,.,.,,.;fi(' .'!" 1. 

activation is updated to have its argument rerord ~~:Finally, the instruction 

checks to see if both th~ st~ element ~~1th~ ~~~1~~f .~r~ -~':~}'1n copied, and if so, 
removes the subordinate A1Jt's frdm ·the b8ckup liea'P. · Weicfulve avoided describing the removal 

of argument records of old stream coordinatior records ~fS'ifhe ~ltadon. 
·~l ,(),_,;""'": ,::'~.,, ~.~· ... "' 

4.S.9 The Set Operator 

The operation of th~ SET ~~ctioD. is~~·~~ !Jif!,n,on the backup 
heap. A structure.containing an early~··~ ~.iHW1iQfren argument reoord to 

a TAILAPPLY i~Qt-~ ... 'Plft:iof.a~t~"~iliactivation. In section 4.3. we 

argued that such a structure should augment !he'=~" .;/,_,only when it and all of its 

substructures are fully defined L~ when they contain no early a>mpletion structures. If the early 

completion queu.~ in_th~.~~-~ ~<~,~~-·u.i~(=: it means that this 
field is part of some structure wt.idt°"* to_....,...."*> &he backup· heap. In fact, because 

elements on ·ttre heap-drri'tit'..red. di&~~@. ~is field may be a component of 
.5. 11 •. :n 

many structures. some o~:w,~c~~l~--~;·~;~::IO,:;~up heap. The SET instruction 

examines each of these ~-to1• lf~re ,afe'·9't.iarly .completion structures in them 
l-5-'., .-~ ::·-; •.• -; (\.fie .l.~~~:~\ 

which still need to get seL. ,Tlt<* ~~.~~Y defined are copied. 
~,; 

The.. ~ ... in~.also ex~i~\~~t~ flescriptors or stream coordinators that 
"' 

have a reference to any of those structures that become ,~Cleft"~ because of its execution. If. 
.'>W:H\b 'f', 'Wi~ 

for example, there is a UGI.Uc or ta.iiappty Ade wllose ~?f1'#4~ferences a structure that 

becomes fully defined because of the SET instruction, then. as was 1~ by the RETURN and 
;11 

TAILAPPLY instructions. all references to activation descriptors from the AdeEn1r,,:C9mponent of 

the associated ADE can be removed. Similarly. if the reference to a fully delihccl structure 

emanates from a stream roordinator. then the SET operator must check to se~ 1r'th,~ JdeEntry list 
-. . } ~ 

of the associated stream activation descriptor can be reset using.:ihe:~\wc 4is£ussed above. 

The instruction is also responsible for removing a log entry if the element being'·~~\~ part of a 
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strucwre- to· be~boond ·in .an envifOIJQleftt· '.We give the formal definition of the instruction ·. · 

below: 

if /.opcode = SET then 
let 

u = /.opl 
R = H(u) 
I= /.OP2 
X = /.Op3 
u·= H(R(J)) 

V v€N 
R'(v) = R(v) if Y ¢ / 

= x otherwise 

Ac(, New Eis' = SendSignal(Act,NeivEis,u FA.'flislintztldliif 
H' = NewHea/l...H. u. R) 

·Parent = {u)il £'Stej:(u)} · 
u1.14i •••• ,u1c = koom~entsof~arenl , 

. . . . 

. ~·. ' . 

,_-' 

.,;l,..< ' 

· Add'11f eCJfl(.INtait1•"9-<Mtp-44MEntry tT>J16.1t;» . ::f 1!,~1 ;1 ~· . . . ''" " " . ' . 

elscif Type= streara~:· 1i 

then let <val.arg.link> = BHeap(u) 
111 ,if ,~(.;;rl~,. '<•••J>;ft.:~' 

the~ ~~~ar;>,~.~!L. 

. .' 



MdB.HmpbllHe1111 su;,. (ju f'A•At/IEnlryi Ty!Jll,u;>) 
else H ... 

end If 

encllet 
else H.BHeap 

enclif 
encllet 

else BHeap 

NewLog = CheckLog(Log,Parrnt) 

in 
<Act', 
Jr, 
NewEis' U H(u) 
Enr>. 
<NewLog, BHeap2., pg_,,-,> 

endlet ·, · 
endil 

BHeal't 

§4.S 

t,7~·:i'·.;->~ ~:>._ -tJL:~.~~s-:--·-.;t~1 .- ,·\ · ),} , . ~ 
Because objects on the heap can be shared, the record whose field IS being set may be a 

substructure of several objects. The set Parent denotes dQ Uifiiijflies.'s't~ Recall that 

the auxiliary function Step when given the uid of .~~i)liahn structure returns the set of 

all uids aB>Ciated with structures v41.i$MVe ~~·heap to this ec-structure. If the flag, 

baclt, is found in the early oompletion queue, the inlri.zb\t\'Je Copy function to attempt 

to copy all those structures whose uid's are in Parent. This function will only copy those 

structures which do not~~~)'~~.~:.,~ l>aci:ujf tteap returned 

from the calls to Copy will ~~·~U~~naquresJ~~- from Parent which were able to 

be copied.becaJDe:ttiey .,,,..._,CantaiJted'<•t ~·. " . 
. ; i~!~;- ~ .. _ .... ,~\ ·/ _;..-.,,_1• :~r·~~· ; ~· .. ~-

If the activation descriptof ·re~~inj' a copied~~ was of type ualue or tatlqp~. 
·-A, .~=it~·-

then the subtree rooted at the ADE is removed If. on the other hand. this structure was 

referenced fmm a stream <:Q(ln:liaat0r:·tirf. ct:htf·ffistruction removes the subtree of the 

corresponding stream activation descriptor it:; ,,,;,,4 'tf.e value and argument field in the 
' .. -~' ~ -

coordinator have been completely define& . , • 

We afal introduce- ODe'Otl\er auxiliary' fbntdenJ Orecklog. Some of the structures in the 

Parent set maybe values which· are to be bO,und_, in the user environment. Among these 
·. . . ',; '~ ~ 
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structures. there maybe some whidt are ROW' ,fully ·•tmtd··as a resuft of executiflg the SET 

operalion and are placed m the t1'e enViR>mMalim111n• ~kupate: These. structures 

are the result vaktaof d•'computations.. T:IMse~ lN"fJ'leltAled·"Olt the-backup 

beapas computatien·ll:COl'ds·whidi.ue·refereaced·t..rthd..,...1in'tke~'tog;·· The 

function CheckLog removes these log entries and returns the new k)8. 

4.6 Summ81'J 
' ', ~ -·· , 

ln thiS chapter, we p~nted the backup and rec.o~e!}' !l&orlttmis fqr ~e YI:M sy~tem. Our 
- ; ••.. ' "; - ··~ .. · _; . 1, 1 r~ ·;~(:rr1~1~i~ l;.~v '•'.··' ,., eJ 1-- :•~' .·~ .. ·. ' 

attention focused on the representation and.maniPul~~fflfl'~~p,,.~~iwhj~~ ~tain 
infonnation about the progrm of volatile oommands in the system. A computation record is 

represented as a directed tree where nodes in the tree denote activations and edges signify 

caller/callee relationships. To update a oomputadon record requires altering the semantics of 

the APPLY and RETURN instructions. The APPLY operator adds a new node to the tree and the 

RETURN-operator replaces a node with the result value of its corresponding activation. 

A node in the computation tree is referred to as an acl/wJtlon dacriptor entry and embodies 

infonnation about an activation in some active computation. There are two basic types of 

ADEs: cip~ and UGlue, the fonner used to denote an activation whose result value is not yet 

known and the latter designating an aaivation whole ·value bas been recorded on the backup 

heap. 

The main disadvantage with this simple scheme is that it is not sufficiently expreaive to 

handle early completion or stream structures and is inefficient when tail recursive functions are 

involved. F.arly oompletion is handled by requirina that all ec-elements in a structure be SET 

before the structure is oopied. Fnsuring that such a structure eventuaJly does get oopied 

necessitated the .modifteation of the SET instruction tO update the backup heap when the 

structure becomes fully defined. Tail recursive functions are represented on the backup heap 

using a special tci~ ADE which holds the argument record of the tail recursive activation. 

We based the design of the tciilappl.¥ ADE on the observation that the recovery procedures 

could avoid executing intermediate activations of a tail recursive function if the argument 

records to the activations of the functions were recorded. During recovery. the function could be 

instantiated directly with the argument recorded found on the backup heap. Finally. we 

introduced a special descriptor to handle stream strul1urcs. A stream ADE contains a reference 
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to a stream coof'fiinlUor '*'°"''.which embodies··infimnation• about 'Bc.streaat activation. In 

addition to st()riQg1the SlfearD ole~·pmdumUrrthll;alti¥~ w~aiso keep the argument 

record needed• Pf';Q4tiK:e the.-t ~-. .. ,1hHSORll1'1C8un•andllllinWtanoeofstream 

000,diuator ~· ~ ;rncwifyiot. me:'ope11tidli•ief:cl1w.,senU1P'alld SfRliAMTAIL 

instructions. 

The algorithms presented in this chapter were developed for a very a~t {n8Ch\ne in 
i . 

which such issues as structure organization, guaranteei• atomicity of information tnuisfer from 

memory to backup heap, and ~mori-mana-ifai~l~·:~~~ h~p ~~, ~C>t addressed. In 
• ·• '· .. : .. ~ -.', .... : ... ~l ,1,"~f;fJ:·i·~~f.:· ;;·;::.nc-";:r~-..-~~~;~c~}~,: .... ~ ·-;, · 

the next 'Chapter, w«fdiSCu'ss these isSueS. · · 

·' 

.,," ; .. 

} .. l~. : ' 

'•'; ., 

'.} .. ,· )j: ·, \ ~ ,- ~ 

i·' 

'i 

~ '· ) 
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Chapter Five 

Implementati9n Issues 

In this chapter, we are concerned witll concrete problems that arise when we attempt to 
• • : • : • '~ <! - • - •• 

implement the backup algorithms presented in Chapter Four for the VIM system. These 
! , .• ; ' ~ t - _. ,' . ' . 

algorithms were described in the context of an abstract model MR. which was used as a vehicle to 
... ' ' 

rigorously describe their behaviour. Issues which were oon~~niently hidden in our model will 

now have. to be more thorougbly addressed. In p..-tituflr;wt •in~out'tttention on how the 

Copy function ~ay be implemented. The compl_., of.~ operation arises ·because oF·the 

represen&ation of structures in ot1r system. Ouamnteeifta !that .tlfl oopy operation wut ·idways be 

IJIQmic is a non~trivial task given the stol'll80 re~ntfQf•4ata;strucmres that VIP.f·Uses. 

Section 5.l concen.uates on this issue. Section 514 ~alllrtplt·ttoN8e 'management policy 

for stable storage. ·;' 

S.1 The Copy Operation 

The copy operation, as described in -Chapter F4>ur, ·is ~Ible for copying· a VIM 

structure object to .the backup heap. An.iefficient ~,otttJtit ~-is•nCcesSary 

foE any practical realization of uur. badtup algodtbms.· hi QM' tiblbot ttk>def/the· ooPY ol>etadon 

was treated asa function which transmiUedthe~oftheoopy"** le its caller. l'he callers 

of this fullction were· base< lanpage instructions that ·requlret( .-alt values or argument records 

to be placed on the backup heap. There iscno 0 ClMCUl'tdlOY'1*Weeri.:the-ex«ution of the aaHer 

t e. .instructions and the Copy function ·in this model. Aw iMtnittRJiHfmN:alls the Copy fuftetion 

must wait for .the ·oopy to be mmplele before'. it C81f:coedrtuo eibtbt. In an aetual 
imp!ementatiolt.· having the interpreler wait for the mmtet of:ttati from memory to stUble 

storage before beginning execution of the next instruefiaa. woofcf' lead to 'tntdlerably slow 

· perfonnance. Examination of the fonnal description of these instructions, however, reveals no 

reason why the transfer of data to stable storage cannot proeeeii lh patal~I With the'·exectition of 

other. .instructions. Our ap_proodl to implementing the batkup algorithms is to consolidate th~ 

"logic" for modifying the backup state into a bnckup .. systtm t-mel that is responsible for 

updating the oomputation records on backup stor<Mmd initiating die ~ operation to perfbnn 

data transfer to stable storage. Base language instructions invoke' the kernel. passing as 

arguments. the type of opcrution to be perfomu .. '<i le se1.' result. tai/Bpplyetc. and the necessary 
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operands Le. data structure to be copied. The instructions can then proceed with nonnal · · · 

execution without having to wait for any results from the kernel. The responsibility of updating--­

the backup state would then be primarily in . the 'putview of the backup system kernel. 

Overlapping execution of base language instructions with transfer of data to and from backup 

store makes the backup algorithms presented a much more a~ractive solution. If sufficient 

concurrency can be exploited in the base language programs~ then we conjecture that updating 

stable storage should not cause major degradation in system performance. 
' .,,, 

An imp0f1ant requirement of the Copy funct:ion:is tbat it' be akJmic. In database· literature, 

atomicity is a property of a transaction whose overall· etTect i$ all"Or·nothing: either all the 

changes mac;le to the data by the transaction bappen~or,none ofdte th&Ages happen. 'Thus, all 

transactions appear extemally as indivisible operationL: This reqWUment is essential to SUi'l>Ort 

recoverability of data after hardware failures occur. Atemidty in VIM is a property of an 

activation that refers to the point at which the effects of the activation are perceived. by other 

executing activities in the system. It is necessary that the Copy function be atomic because the 

effect of its execution i.e. the augmenting of backup state infonnatiOrt, 'sbolifd be 'made visible to 

the recovery procedures only aft.er the entire stNcltn'has:bem oomplelely oopied to backup 

store. If a failure were to take p'8ce dacing the middlcJ.of amp, ,operation,- and the ftJRction was 

not atom~ the recovery system ~Id see-data in'thebackup1ataterthatdoes-riotcorrespondwith 

. any data that was present in the Vim state at,thc am. ae; ftlilure took·place. Guaranteeing 

atomicity isa non-trivial is$1e for two reasons. Fimt..-•ta;StnlelUres.in VIM may be ar~ittarily 

complex; if the structure to be copied represenced a node ci on the VIM heap, then the entire 

graph rooted .at a must also be QOpietl onro the ,backup heap. :Tile other mmplexity involved 

with the copy operation is due t'Hhe way data stllleturos in mf,..csented·in· ~M~ We discuss the 

S\Orage organiiation of die VIM heap in the nut sedicln :mid ·the11 present our solution to 

guaranteeing atomicity for this operation. 

5.2 Storage Organization in VIM 

VIM structures have been thus far treated as monofidric entities that are created and 

manipulated as a single unit This representation was useful in theprascntation of our backup 

and recovery algorithms· but is far removed from the a:tual MPl'eSentation of structures in our 

system. The representation chosen for structures in ViM is inRuenccd 1by the organization of 

physical memory and the desire to have only informution necdcd:by the (.'Ohlputalion be resident 



§5.2 STORAGE OROANIZI\ TIQN IN VIM 99 

in main memory. VIM is b~ on a hierachically OfAOiz~d p~y,sK:al IJlemory consistin1 of main 

memory and disk in which infonnation is broughtA¥J9 ~'~ only u~ demand. To 

facilitate the transfer of infonnation between memory ll.lld dis~. the virtual .address space is 

partitioned into a number of fixed size pages .. The o~izati()n of the address space in VIM 

differs from convenUonal deman? paged systems, however, in Ute ~e size chosen. To avoid 

the overhead of unnece&4Sa.rily paging in unwanted infonnat.ion,.:dle unit of storage allocation in 

VIM is a small page of 24-32 words, known as a chunk. Having a small pase size is the primary 

means of exploiting parallelism in base language PrcJrams. In ,?~r ~ata flow ex~tion model, 

there is no dependency between any two enabled instru~8'd tllus.1/0 service required by 

one instructiorl does not prohibit the execution. of tl,le Qtll~r: in lbe interim period. By having a 

high level of concurrency of data transfer between the disk and main memory, the processing 

unit is seldom expected to be idle waiting for a pending 1/0 request to be serviced during 

program execution. It is expected that. in general, 1)1ere will be enough enabled instructions 
. ~ 

during program execution to make disk access completely transparent 

Because of the small page size used, each chunk holds at .most a single object Complex 

structures such as arrays and records are held in a number of chunks. The representation chosen 

- for these structures should be sensitive to the applicative Jlature of the programming model by 

allowing infonnation to be shared between structures whenever possible. One implementation 

well suited to our goal of efficient sharing is to ~p~nt Vl~tstructw:es as k-ary trees of chunks 
• ' < ' ' •, ('. : .~ 

with the leaves of the tree wntaining the. elements af1hestructurF andthe ~tenial nodes of the 

tree containing pointers to other dluD&(l1}. ~~un·'he complex. leaf chunks 

may hold uid's to other structures in addition to. C9llUli.l:lirla-~ v,al,ue& The ~oi~ of a tree 

. organization to represent chunks allows a high .._-Of:sllariRg te'\,4Mlehieved~ For example. to 

construct a new version of a stru~ure differing from its p~r in a single element. the 
.,'. <~·1 ··~·>°' -~' --~ (~z-; }tn::d· . . __ -~·' · .-.· .. ~-:, 

system need only construct a new path from the root ()f the new structure to the leaf chunk which 
~ '. ~ ; • ,.. -, '~. • _'. ·- • : < ' ' - ~ ; : - •• 7 

is to hold the new element; all other elements which are sdft''~mdn 10 ooth Structtires are still 

shared between them by having both structures use the same paths to the' common Jcafchunks. 

The REPLACE instruction bricny described in Chapter Two, for example, which returns a new 
1!t·<; .• '_; '.-'..- '. !_ 

version of a record differing from the old version in a single element operates;jn.this~~~· 

The address of an element in a structure is specified by a two-tuple. <uid. accesspath>. uid 

denotes the uid of the structure in Lhe system. The actcSs~tfr~S'ttic'b.isc frcprcscntalirln Of the 

-------,- - ---·--~--------
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offset of the desired element in the structure. The length of the ace~ path· for a given structure 

is the height of its VIM tree representation. 

Internal chunk cl 
size 

• • • 

Internal chunk c1 
siU' low' . '. ·• . 

• 
• 

k 0 low" .~ .. 
·'' 

d2 • • • 
/erif chunk I 

dl 
k elements ,,, tlrls ci.ifti' ' 

Flptt 21: The RepresentadOn of• Vnastttia~ue 

Abstractly, we view a chunk as a th~ tuple: 

Chunk = Cid x Header x Da&a , ' . . . ~ ' . i -

Helder= N-+ N 

Oata = Internal U Leaf 
lftteniiU = Cid'" 
Lear= (U u Scalar)m 

Cid = the domain of chunk.identifiers 

;. j 

1 

1 
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The Cid ofa chunk is lhe chunk~s.uniqueidentifllrachna!fbe1hougbtt>fas ttt.vinual addr~ 

of the chunk m the system. lt·shoukl be a.a lhat f.bt1~ditutft: id's is not-~ktted ID the 

. qomain of s&rueture Wds. wlricli ~am. used t£»unicflittlf tdetidfy ~' oo- the VtM heap.· ·The 

Header fieldia a chunk mntaiflS .-iaistrative iDbfl1adfJW~-thechunl; .. [n;1'artiCulat; the 

mHn~ of refetcnces·.10~tbis dtunti in the~ tll«'ttetgbt!W' thls!~hi itf the VIM ttee~ ·and 

the .high. and low .tndicics ot;dae .elemebta.of U. ~tlidttt' lffimk' in ell in~ation 

kept in the hoader field. ifa·chunk.Jbas~).t\tfef.atiCG it'i·1t11Siptaoed on afm/isl 

. and its space may·. be re.med wborntee*dr ; 11le Wt comtMA•·• tlllf:ditct'Pertiort aftlle chunk. 
For an internal chunk, this consists.1!118 Ctf~.of .._..._( .... deritsiin truflrie: For a 

leaf chunk, this consists of .ei~er _u~·s. i~.~e: ~~~~~~"~1f r~~;~~8I~~ ~~~lv~-~ctures 
or scalar values. The size of the data portion is some ftx~d m. The siz.e of the ~unk Js m plus,the 

... . . ,,. , (, .,,.>t; .. !~--:-:L~ 1 0; ... ;r~;· . .,,~- ·, ·" 

size of the header portion.' · . , 

For a complete desc:rip&ion of the·stOraip C>flll*ation~NIM..sti'Uctllre, the reader should 

see [17). In ·the next ~:Jw~_,.,..,,tbe.pl'8ble•.,"'8killf ~y-~tioft atomic. 

_Structurw which are SO·be·copied;fftm, the5 ¥~:illlaP Olld.&hi-~ heipJmU. be copied 

aionaicalty i.c. • -strudUre :conmtina' of:tlllhJi·c1iari11zs1tlb»I 'tif<tlt•ftlMt • Mini copied ooty 

when all of~ -c:hunb'wMdt C1J11ljllis it·,tmverbee,-ttMl!..elt& baelc:UJ>~·atete and::not 

befQre. In °"r·discussion;:we alaalafer:10 adllum ... 1m _..1.,. as a VfMiChurit1lrld a 

chunk f®nd.01t baek .. p *>re as1a bamap lhuakL1 iW.lllllhlst'41*1'10td!~re to "'fer to 'mly 

5.3 Performing __ the COl1_ Otcratioa ,. . - . 

. When at.e·!.....-1.iarucdon ~~~lie1batlcoJPstate execute$; it 

· .invokes the baalmpilfW temef 'whidl : ........ iilJJIWMlib~~IJOOt; tht!1eurrent ~tuS1 of 

·structuta·which:areiA the1pmccm ~tiliag~ie.t~·-;'.Jhl~lqj ~~fut~- the 

. oompu«atioo trm and·COlllllWlctq<J11ibaUbJfJ·llOd ....,._lie it&flill#b,Mweh ift~r 

, Four .. -Whenastructure;~to1b«q>ie"4 dteterriel aitlst.IMVC6'1'~'1'kis1 fvnetiorr~a 

as input the uid of the structure to be oopied and produces as its output an acknow~ent. 

. copied if the structure was fully coe~~~:~t~ bac~ur,,~~ ~=~,.~~it;~'~ ,;nOJ, be. The 

latter acknowl~dgcment occ~.~ w_he~ ~ st~u~~:·~~.-~X ?,f, 1\~,,~~~J~~>.~~~tainl,~~Jy 
completion clements. The backup system kernel __ uscs

1 
t'1\s.~k~~"'~"~m~ntto de~~ine, ~~n 

· .. , . " , ._, , .,1,1 ,,,__,i;,,,.,.1 %1 .1 .... IJ<., , : ... ,... · 

· activation dl'SCriptors should be given a new type and when '-'ommand log entries c:m be 

removed. 
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A major complexity in implementing the copy,function·for the VIM system is due to the 

representation of VIM stl'\lctures as, trees of.chuaks. For the sake ofunithrmft:y ·and simplicity, 

structures found on the backup heap will aJso have t8e same:~tion as lheir ·countef1'arts 

on the VIM heap i.e. trees pf ehuaka. AUhe start ·of systat operation, :alldnmks oti the backup 

store wm be· on ~ freeli~t. Whenever. a VIM chunk needs to be ropted omo· backup store, a 

backup: chunk is remov~d·frorn the backup freelistaru:hh«u:onietKsoftheVIM'dnmk are copied 

onto it. This apprQach will iwnove-the·need forsophisticatod 1illterpretationof,the.ctata found on 

the backup store by tbe ff*COVery: sr~ ActMtion.-dmcriptOl!muies:corriprislng a oomputation 

record are treated as ~rds which ~Ya single ehdk. 

To see how the Copy function can be implemented, let us first consider a simple scenario. 
. ' . . :· .. 

Suppose that the function is to transfer a structure whose leaves contain n scalar values onto the 
~ ) 

backup heap, where n > m. This structure will be represented on the heap as a tree of chunks. 

Let the leaf chunks of the structure be: Jabeleci IJ, IJ .... ,lj. Cllarl¥. 'these la.f ohunks can be 

copied onto the backup heap without any,preproaaiq bf:.the;:copy routine isince the leaves 

contain ®lY data. Letbl,b1 •..• ~11i be dlualcs·on the fleelist.ot'l;dJe backuP'store. Then,· the· data 

found on 11 can be oopied ontO bl. that of 12 can becopitcHoi/Jietc., :After tile leaf chunks have 

been thus copied. the Q.ltloe PR>Ceeds with oopying dle intem.i'dlurtks • well. Copying an 

internal chunk is a little more complex became these. aauntl cantain, referentes to other VIM 

chunk id'$. The copy routine translates these; ,tefitmbea 'to:. their appropriate backup ·store 

equivalents. Since the copy operation is being performed kMt·tkXtotn-up fashion though, all 

chunks referenced by an internal chunk would already have been given chunk id's on the backup 

store. If an internal chunk C has references to churib · cl,c1L,ci1r. then th~ aitTesponding 

backup chunk has references to bl ,b2, ••. ,bm wMl'e bi is dle.bark.upt._k. id mrresponding to Ii. 

The copy routine updates the activation descriptor; ~to·Jetennace 4his strooture only when all 

chunks have ~ wriwm to backup •store. If a. failare takes place before the ADE can be 

updated. it will .appear to the reaweey 5Y5'em that. ne i iDfonmtion. ab>ut this acdvation was 

recorded by the backup S)lstem. Note that all chun• at a pvcn ·height-in the tree can be oopied 

in parallel. 

The copy routine performs a bottom-up breadth-first traversal of the structure. When a 

chunk is copied onto backup store. its backup chunk id is recorded ·in, the header portion of the 

chunk. If the copy routine is invoked later on. to copy a chunk which, has already been copied 
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on the backup store. it-can·avoid recopying theidlunt '~first 'chectking w see if that chunk 

already has a backup chunk ·id.: By smtply· llWOfdirlg tbiM id'1ttJt~sanle level- of-Sharing found 

on t,h~ VJM l1~ is aebk:vtd on.thebaclmpiteapas \vellr: · 

In this simple scenario. guaranteeing atomicity iS Q faI~Jy euy _task because the structure is 
~-~r~.jf~·:r-1• ~;·''1'ij ~.·,:,~ ··:• .f. ' • ·; 

not recorded as being copied until the copy funtion transfers all Vim chunks to the backup heap. 

The situati<>Jl ~ :Jiightly,tllOl!e, dOmJlielt; wbeai -a•~tt&W-'IClionl··Wblcti~d to be 

undenaken for mpx'1&.'1'0._.comp¥Qltedr~ •-partitdlaaVlhe!solution'~a~ is 
n,ot &aU$i'~ for haadHu-..~,w!tote1isltrntnll1ntfhnaMJs sauc:wNs e.:g . .ian:ARJtA Y 

of RECORDS.· Let llS irst.COQlider tb.e11it'lfl&ibnrWitboub•IJ1JDUIPled01t1. • ~· tftat-~&1eaf 
chwnk, Ii. which is-tc>·1'e-copied eontain'1ftferenc:cwntoi._~.on-·e·llea .. ·It is 

necessary th.i each of U..,•~1~rilUlllibanttl:•ribeUly ~ Mft>Fel'this 

leaf chu.nkJta ~-tQ-'be \dittan_:on10;qacbp ... --~ thei copy I9Utille in 

Chapter Foµr bad i\ . ...,IJiwol)'· taa:itlelf·to·fll!PT *-!~' 'Wlten alf-~ 

-_me~ from, this ehwhtvo,• capiedJ tlltfl._ilefdl.U~ttSelrbe tr8t1Sfettecl-Oitto 

backup_ sto~. •use-tho:~• onl1:.ntua'.'.tl>iaall11n..-ni:1tt~ h.we teen 

- oopied. die~ ~·is.atonaic•oe dle -bacdolip_. Wliltfier~ -Unttlc~ the 

_ existence of thil sttueture.41IJIJ- \¥heft Abe top'\'leaiiQJPf·J9U•ll8pletts·awt~ hi mutt to 

the kemd. BoOIHIJte we 111 llDt ~eadJ-' ~81elleM9i. the eopy;,ftlftttbii is 

guarantaed tQ return •-ac~e~ ~'' Nb pallilll:r :uoplied ·attudllre ean: evet•be 

-. refere.nced by ~Y activ.- ._._..flin~.SUch;~ .,._,,.-_.,by,tbe'untel~:the 

copy ,operation is~. 

5.3.l Earl7 co...,~ 

The presence of early a>mJ?letion elements in the leaf chunks of· SllUctares - t\Udier 

complicates the copy procedure. In Chapter Four. we noted that it is n~ry for the backup 
. _ _ i ~ i .. _ .. : ;, .. , :·:~ .. >.::, ·:.·-:,, !vur! ·--'t~~--1~;·.:·:; .,.~ ···'/ 

System to be able' tO determine when there are rio runher early axnpletion elements still to be 
'. . " ·:;.~ "; ~ ,. ;_- ., .:' ~ ! .,,.-.. •. ·: ;' )(f~'f'.·.··._; ~y:r_. Jj_~;·''. ·( ·1!'1.tl,· :· 1··-~~· .. 

SET before the backup, state can- be updated. In our implementation, we can dctermme this 
.; . . ·, . (. ·, .' . _ ;~·: ,-.;lh.. ~·_::· ~-~Ln :..'· :·.- 1 · :i,:. --: 

_--information through the use of reference counts. Every chunk has two reference counts 
. . . •. : . • , · . . i': ~ ' 1; : .~ . , . _,,., f," ~ . . A ; '. : • .. 1 . . . ' t · .. ' ~ '. ;;,_ 

associated with it: the refcnt is.the total number of references to this chunk fourd in the system. 
·. . -~· ". " .. ; ._' . -· ., ... ,,~,,. ·~~ .. ~_,-,<~, :·~,_;;.:-., -·;~·· ~· ... · ·~ •' '." 
futd the setcnt is the number ofsET· instructions stiU pclld'i'ng whiCh, are t0 5et early completion 

elements found in this chunk. The meaning of the refcnt is the same for.nnJntcmalchunk~il 

is for a lcnf chunk. The setcnt field in the hl~tdcr of ?¥J-~cn~;-~~¥Wk.r~,lh~ num~r ~f early 

---- -----
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completion elements which need to be set in the_ tr.Ge, rooted'at thistdlunk.1-Thus, the rsfGnt field 

in the root chunk of a structure holds the -tot.at number Of rdellenCts to tJ-m: structure· and the 

setcnt field indicates the total number of earl>t mQIJJlelio11etemenu·.foundl~in; the stmcl'Ure6. 

When an early completion structure gets SET, the setcnt field in the headers of all chunks on the 
" ~ '.· ' ' ' ';... ' -, ' ,.. : ; ' 

path to this element get decremented. 

Let us first conskler a siinpiestructme te onerwbkm doe$. nut- reference any other structure 

on the heap. To implemcmt the:mpy operatjon,hf -tMi~iofiCitty. toml)letioft structures. 

we do the-following .Wherr-albafchunt:with:-rt:m&:_.,?.tUft~ZIR> i!eneountered bf the 

_.copy proce®re. we do not:110PY it ooto;the-·bmUJrsto-.. ~-weljlotatea MctUpdtutilc id 

for tJtis ehunlcand-Ollltimte examining;1he otJrer,:chunks ilM.tats.·sctbet.tuie. To:itlbm tbeSET 

operator which 'rilevenwaily·ceplaM.tho:early.~~1fduntf fft tttiScbunt·that it 

should copy the: chunk~ bacbip store., dacepycroutind:ao~ -dtunk · Wffh the taa 

~- At the Uine the-earlJcempleam eleJncnt:blcotn~iU.sSI' •ratorwilfnote-the 

fact that this cbunk ... beloap ID' a strutture d1at is to!be capted -~ tlbre; -If tlle_.fd of 

this leaf chunk is zen>,, th~-~ invokes dm:.bact:upj S)l•fttMei:10-«ipy this thwdc· onto 

the ~ chunk alloic:ated- fi>r ,k. In ad~ if::dlere-are.no·~sE'l' imtnlotkms that 

are to be .executed tbr dtis,~ detannitledbJ" udlildftl dlt91Cftli Uf th mot dtunt for 

tbis structure., the kelncl also ~ tile" ~i4escfipbftt: _.,,~ this :Strucftlre 

according to tlle algorithms gi!ven4o the laa:~. ·N~.U-.\Wlth'm ~ are only 

updated when all elemettta. in a &tructWe are lbUyr*"*'dJ anf Clfpild 0onto4he battUp Heap. 

Th us, it will never be the case that activation descriptors are aware olif!Mitture'tbr wltich not-all 

elements are known. Atomicity is still guaranteed even with early oompletion structures because 

a structure becomes a part of a oomputation record only when no 1tiitfit¥ '~ien1~n~··~ 
referenced from- it 

We next examine how the backup system should handle_ early com,P>eti.Qn. _structures 
• <c • • ,.·. ".,-.'"; ~""i.;~,:~: ~,., Jf!~::l~ .. ~: ,:-·, j; .~~'•.,'" j\ • '. - .. •}J:. ,' 

belonging to structures that are components of a larg,r stru~re w~~h js tp Qc: cgpied .. When, a 
: , . . '. '-.: -: ; i <~ ··; ; ; • ;, , ', - '\.. • • : ' - : , i ,. ' ' 

leaf chunk which contains uid's to other structures is enoountef'.Cd _by the a?Pf f.1;1~ction, tl,te 
• • :· • '~ - - ,, • , '. ; • ~ ,F' ( ! :._;; -1 ";: ' ~ • ' - . " - , ' ~ •. - - ' 

setcnt of the root chunk of this subordinate strµcture must ~ eMm\OW7, _ tf i~ .is. ~eat~r th~n 
• • ' ' ! . ~ ; < - i ..;: l ' ., .! : • - ' , 

zero, it means there are early complccion elements which stil,l n.eed tp _be setin this $~cwrq. As 
•. . ' ( . t : ' ~ ' : ' . 

6inis does not ind udc the refcnt or ~tent of its su bstrul1ures. 
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before, the copy routine is-recvrsively invoked ba>py thedtunks finund m this subStiftleture. It 

is necessary that the baskup sta~ .does not ;act· updat..-1 with' the- puent -structure unl~ all 

-subordinate stru~res-0fthis_parcnt become fully Gefmeci;·;OtJr ,imf>lementatiotJ follows closely 

with th~ algorith~ aiVim in th_, la$t ehaptel'. .Eveiy :tQObChunic 1bf a stAK:tUre contains a'field in 

its header. P~rent, co~niog; the uid of all ~'whiatl nfereace this structure tbatiai'e to 

be copied. This ti.eld ismanpged-by the.-mpy :function• iU1nenestherhe8p-. As9ociated with 

each uid ill the list. we also stQ.11 the dlunk id O{;thcrleaf dmllk ·in· the parent-stru<m.116 from 

which the reference eman*8. When Jlllearly a.pleiioQ:.dement.s are :set in a SlrUCtute that is 

to be copied onto bagl{up store, .il.struef.tilm tefeMlelfd. ia>its.~list~examined- The 

backup state is updated with those structures referenced tilJdlil>tist whiclr have become-, fully 

copied. Determining whether a structure has been fully copied involves keeping track of the 

nurnber of chunks that still need to be tr~sferred an<fthe ~~f~ti~ ~bstru~tures. Counters 

are used to record this inrormation. Every root chunk~ fu'~did~n to ,the Parent list. also 

- contains a TostCo"" counter htdicatfng the ~uni~r of ~~nks still ~ be copied onto ~~up 
store. When this va1ue becomes zero, -the ~kup ~t~;~ -be u~~~ -~vecy leaf ch~k-also 

' . , , - .,._ ~, -- ~., . ·:v __ -,-·;~) .. _ 1-· :/':~:;t~';f: 1· , , •• :- : .• ~ 

contains a counter indieadng the number of substructures which have not yet been fuJly copied. 

When this. counter reaches aro. the loaf dumk can :be c;q,ifdi.onta. '*kup store and the 

ToBeCopied. wunter .. can. be dlefemenun Muoh,of fhei<lemllGwolved·An imptemendng the 

incrementing and decren1onliq.of tbese.eounte11ds,fl0l1llel7ri-..stiag·.aad is omit• titre. 

The important point to not4 lll(itb· ~ k>_:eadJ;UJOtpledea-·is*8l 8'1e badcup system· ·kernel is 

~nsible. not aµly fQI' ~I U)e. · baekuP- ttatc; ..a •:*1ldl1Je cmataiAing die ·"8rly 

completion element bei1,11,eet. :llut also; for,updatiin& theJ.:aq.,._ ·witb alL.of its ftal'ent 

structures that need to be.q>iftd as welL 

5.4 Storage Manacement 

One Qther imple1'*1~ detail that deserNCS ,tJrief. ll'llMion~is the .manner in wftich 

_ storage ~nageJ'l\eAt is llondlod orurablestore. The 01111Rimtillnh•h&fe·~tbf stableftt<)re 

lends i~lf to a ~ery simple and effi~nt lil0ragc maaagumentSlmOflJI. ~INhat stable stqe 

is used to hold transitio-1al dala represented in tile; form"Gf 1aompUUldon • record$t - &ch 

computation n:cord embOOies eke progress ofsome.aatiYe ~cmputatic>w• in eke system. Wt.en the 

result of a computation is recorded on Slable store-~ -the;OSllOCiated;ciompucation ·recorded can be 

deleted. Deleted computation records arc added onto a fn'Clist of backup chunks. We expect 
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that the set of quiescient data found on stable ,stOre Will'.~ pettodically written onto tape. After 

the transfer. the space occupied by these data items·• ... ~f'e'-can'beteclaitned. It is not 

necessary, however. to wait fonhe transfer,ofin~ibtlt'Dtape1 Wore·sp&cecan be reused on 

stable store .. Once the result of a:computatioA is 'bolirid W;&h·en¥itt>nmtftt. the swrage Occllpied 

by the ~tivation"descril*>r onttia of theCOMSpOddift8d*Jl*tion1'teoor<¥CM! be reused. We 

use a variant ofa mark and>sweep prbapcdlleak>A1poiltfaa:tt;0181fn:strilctutesreferettced from 

activation descriptor entrioin:a compdtata>CU1icontidllt dlftW*i.wned'.' Orice thtn·esult of a 

wmputation isJmown and :is copied ~ the- badkup '*'re.~ aJFdtinks itl that ..-ubture are 

, marked. We canthe1Mmlaim,all dlwnlcs betoftM teistWicblt'S rete~ trom 'Abes' irl that 

computation ·that are not·tnlUted. 

The storage management policy is very ~mple fqr Olµ' sy~ ~u~ we can .d~tennine 
' - .. ._ . . , .: -. ~ ' - . {_ . ! .: " ,. i /. ! ; - ·". i" : , l ' - i :· ' --

precisely when data is no longer accessible by obsefvins the d_nmpi!R of the command k>J .;..... 
. • · __ ·: ~ ~: ... ·_ .,_·,1 i -_::·:itsH'] -~·1Dt ~~:;Jr:· ·; ·. ·-, 

removal ~fan item in the log implies !¥t the ~~;~~,ff~~J"~~4t4'1 be reclaiJned. 
Waiting for a computation~ com~lete ~fore rec~~~e,~~,i~~pi~ Qn.~le)$f0rage 

obviates the need for intfodiicing a complicated~ -~~~J~ ~n stable store •. '. 
- ' . .,1 ~ ' .. ·-.. - ' ~·· ' ' ~ 

It may be the case that the value.of a(Odlf>utatioft'ls retbrdM'M the'badcnp environment 

even befin· all the: valuesof dletADl"s in the~'*-''~itofl\putatic;ii· ~; 'Stitte the tesult 

of the computation ilas be=-~eel in t!MMn~t '1le:a9odatec:H~ml>utatk>n record can 

be placed on the,,baclcup sto12frecist .~"tht...,~'tecOl'tf;hOWever. necesSitates 

taking soma. action tG> mfonn • ·acd¥adons .-. 1111idta•••t1Mrinall}' ·~·teoordtditl ·t11ese 

ADEs that the computation ftJCOni: is:JUJ longtr' pa«~~·-~ ~p; · T<> d()'this, · we 

maintain a uid entry table which contains referenciha·~''fet:au activations-ht the 

system. Entries in this table include the uid of the activation. the add~ of the activation in 

memory and the address of its ADE on backup store and a refe~~1 td itbbole:M flag which 

indi~tes whether the contf*l8tion NconUUIS· been •Jaimedtetinot./ =When the aSntputation 

record. is ~~ from the ba:kup state. itS 'assodatedtllg is let:to'ctue mfNhtH'esult value is 

.oot copied. Only the tnQC:activation of. a.~ibaft•changc·this ftag. Clearly, this 

·'operation is outside ofthe,puRSly functionat.pqmmming paWAli8m thusfur used: such resource 

managers are to .be writtcn·ua.ing tbe·.paMitJn COMUllC((ltf wMcW.anO..W this sort o'f"non­

applicative behaviout to expressed in an appHcatiY.cildling. · 
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Chaptei' Six 

Conclusion 

This thesis has .Proposed a design for the Vitrt .. cotnputcr .. system which guarantees the 

.. security of all onfule ~furm.aU<>n aaainst loss or COl'l!t,lpacm aaa:rcaldt,ot' hardware faihare. We 

. ~eveloped l>ackup. procedure;s tbat a. .in-.<fod:,110, eiOClll* macurrently wlth. normal 

computation. These proced~ l'OCX>fd the p~ oflllh:omputatim:in~a-.'COIDpact fomu>n a 

bat,kup: storase mediwn. When a <XWP*tioft ~rits85'dt ta,.boulld btome ~ in 

the VIM users,' envi~t~ ~ thil:.binqm& is-l.adlled ,11> the backup,· en¥irorrment 

image, the computa~ ~rfi ~ated witlti dris ·unp'**>n · il ... Rtnoved fmla lhe :backup 

state. We make no assumption as to the integrity otiaoJtdlla'wijch.llll'YiYesa·failureucept:for 

data found on the backup medium. The backup medium consists of two main devices: tape 
··,· . . '. .. ' .- .' ~-< •.. ~-1: ·;,.'._.,; .. ..;.('.-'" .~: .. : . ' '< • '_ '_, '-',, 

storage use<f to hold aI1 data bound to identitlen in the user ·environment, and stable storage 
· .. · . · _ _,; i_ '"2. :;.~- .± lT. ~1:· ~ -~~~l _.::· ,~ ~, > 

which COlltllirts' infonnation in. the fonn of oomputation ~rds about all active C901putatiOf1S in 

the system. When die' recovery procedure ·i~' iq.:Ot~'alter 1~· tadlu~·. 'it firSt. ~to~ 'lite VIM 
, .., _ . ! . :: • , , :) , i• , ) : _n : ~ ~- ,.,_; ; .· _,- , _ _ --~ . ·: 

environment structure using the backup environment image. It then begins ~ex~tion of thpse 
< :: ' L • • >' -.,.·:· •• .<:;., ,i~1: • 0:;_. ; ~.·· <".' ' •t:t; •· -. 

commands which were executing at the tirrie the failure occured. The time to reexecute these 
, . • , •• .' , • , _. '. ;· .• "' :~: 1-~--- _. :~'.- "-~- f'"'c' '';_ i ,,., , '.·. 

commands is greatly reduCed because of the infonnation kept on the corresponding computation 

. reoords. Once atl Commands 'have .been reex~uied.'.tlit~~~~'>,'·p~ss -~>~mpl~~ and the 
' '.~ . : . . . " ' ~ ' . ~ : . ." . -. 

system can accept further oommands from its users. 

6.1 Contributions of the Thesis 
: : ~ 

The contributions of this thesis have been two-fold First, we developed backup and 

. recove..Y algorltllms :fur the VIM system. These; aliorithms ~ verY dlffere~t ~ fhose found in 
: - ~ .," 1 • , - : 1 .~.-.;:_~~-.~~'. ··;~_-: '.j~, ... ~;_.-:: .. ; _, ,·-, !, 

more conventional systems. The unique feauires 'of VIM that required a novel approach to 
•• ' ... ' , • • ' • .._. • • ;' '• • • • ' • ' .. ~: ¥ .:: i .. :. ~·. '· '• .~ ~ ' ~- ,; I ,~· ~ 
provuftng data security he m its applicative programmmg model and m the use of a umfonn 

representation rorboth data and programs. Thi~ tmrilogefieit/~ff~i~~ted the 'n~,to ma;intain 
• • • • ~-· • ' > :,, "·l ·', ~- -~- '-·, ·~ ;.': ,• l- ~ ' • 

distinction between tiles and <fata. thus allowing the.baCku1) system to be more closely integrated 
' ' . ' ' ' .J ' ·" ' 

with the VIM interpreter than would otherwise be possible. The use of an applicative base 

language made it possible to have a simple orgahiu;tlon or'bac:kJp st~ because data in such. a 
• t • • «- , . ' . > 

mndcl never changes its value. We cxploit~d th~ exprc~ivc power of the base language 

inslructions by distributing the logic of our algorithms antong the salient base language 

-~---------------------------
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instructions. The APPLY operator, responsible for creating a new function activation, was 

augmented to append to the appropriate computation record a new activation descriptor 

corresponding to the activation to be instantiate~ Similar enhancements were made to the 

RETURN operator and various structure operators as well. By embedding these algorithms within 

the interpreter itself, it~ poaible to achieve a 11le&Sld'eof data·ttcUrity far greater than what is 

possible in conventional systems. In addition. such·a design makes the opetation of the· backup 

facility completely transpaiat to users of the sy-.n. ··Similarly; once the reoovery procedures 

restore the system state al\er a faihlre, subsequent.amtpatatiollS Wiff not be able to determine 

that a failure occurred by examining .the restc>rtd state .. lbe:fact' •that the base language is 

applicative also freed us .from having to introduce tomfJlk:attd · bttcblp storage policies. Data 

.. once written onto to bactupstote·is neverupdat~'it istiid\~rgafbarge'COliected oroound to a 

symbolic name in the backup erwitbnment. 

In order to rigorously specify these algorithms, we ~evelope~ a fQl'ffial operationaJ mqdel 
' •. ' ·'. ~ - ~. -· ! ' . ' , . • , 

of system behaviour for VIM. This model. views VIM as ~ state trcu'l~lti.<>n sys~m with the VIM 
'·- . ... \ ... , ... 

interpreter being a state transition function. We p~nted the 4eflnitions of some of the more 
' ' ; ~ t : :~ . , '~. . - , :: ! : ! ; • ' : - . ' 

interesting base language instructions in this model u~ a v~~t ot: the t;v~ctional language 

VIMV AL. This basic model wa later enhanced to inco~te _the. b~~pp $}'Stem as well The 
. . . . -

backup state was treated as a separate component of VIM. The, ipterprc;ter was_ now treated ~ a 
. ': ; ~ . -·4,...: .·. ;_!. i ~ '~ : • . . - . ' 

state transition system on a two-tuple consisting of~ VIM, state . .and_~ ~~MP stl¢e. Beyond being 
• - > ' ,. - ,;, . , ~ i f • < , ' 

an important tool for expressing our algorithms, this model also allowed us to give a formal 
• ~ , : ' .. •,. '. -. , ,' I I ; ' " 

proof of correctness of our algorithms (presented in the Appendix). 

6.2 Future Research 

One important area of investigation that was not addressed in ~ tbesis is the i§ue of 

correctly preserving the state of non-determinate oomputations.. A n<;>n-de~enninate computatipn 
• . ~ ! ~ ,•. • . ; 

is one which may exhibit different behaviours for the ~me inPU,ts.. . ~js type pf cornputaJ.ion 
' ' -•. : . ' -

contrasts with determinate computations for which repeatable ~h~viour isjuamnteed. A m¥>r 

assumption made in this thesis was that all computation was dctcnnina~. This allowed us to 
. . ~ ' ~ '. .• . _, i -_ (, . ; - . 

design a recovery system which can reeXCCl,Jte computatiolls wh~ re~u.lts are f'\Ol rccord,~d on 

the backup store by preserving the arguments to the computatkl'1· Such a design is ~~le 

because any computation in this model is guaranteed to produce the same result when.presented 

with the same inputs. The basic non-determinate operator in the VIM base language is the 
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MERGE instruction. The merge operator is enabled whenever an input arrives on either ofits two 

input arcs. Thus, the behaviour of this operator is characterized by the arrival order of its inputs. 

Such behaviour is inherently non-determinate. 

An important area of future research is augmenting the design proposed in this thesis to 

handle non-determinate computation. The changes made must take into consideration the fact 

that non-determinate computations cannot simply be reexecuted by the recovery system since 

there is a multiplicity of output behaviours possible. Reexecuting such a computation with the 

same inputs is, therefore, not guaranteed to produce the identical outputs. 

Most transaction systems such as airline reservations, banking, etc. are based on non· 

determinate computation. Such systems also typically have very high data security requirements. 

Enhancing the VIM backup and recovery system to support non-detenninate computation would 

be an important step in understanding how highly secure transaction systems can be written in 

an applicative computer system. Issues of atomicity and indivisibility of transactions could then 

be addressed in this context. 

It would also be a challenging task to map the abstract specification of the algorithms given 

in Chapter 4 into an efficient implementation on the VIM system. i Realization of these 

algorithms will require optimizations not addressed in the thesis. Such optimizations include 

minimizing the amount of copying done to stable storaae and efficiently reclaiming storage on 

the backup medium. These problems which were hidden in our abstract model were briefly 

addressed in Chapter 5. A truly viable implementation will need to confront these issues in 

much greater detail. 
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Proof of Correctness 
">'··-~: .:c~·:-~.;d !" .~ ~ • • 

In the previous chapters, we have developed a form8I model of the VIM system to describe 

our backup and recovery algorithms. Beyond being a conven'Mrtf~tctt'tn'~fdcli to preeisely 

state our algorithms.·me-ft>rftlWalrMOdlh•n al9o ~~:if'~~ ofdur design. 

Intuitively~ demonstrating the~ of"the batJclfltlM<f{lEO+d)r J)~utes:invotves 

showing that the FeCOVef'¥~idonot2 ~-1~ Sbite:~··~'tfte irltbrWt'ation 

kept on backup· ttoJ!e· bf· 'the· 1*Jkup-procedu~:.· 1 ~ UJfri~ ;fhidf~xe'Ctite ·after the 

:recovery.procedurcts·completl should not be able to·~ilhtlfft1tiat1a failure hatt ~rred 

before. 1- die bte of ..cha iYlt*n ~ed 1by'~--~6*mstllirtiate(h1f\et l'etOvery 
from failure must be equivalent to the obse..Vable state which itlsted;Pribr tti'the'1lilhire. In 

VIM, comp~tatiops o~rye :~~ effects «~toth~f -~\llP~~~;~~-;~J~ environment 

sU'Uctme. . It is. therefe1e. ~••the OllldftJmnmt...._~ lbythculfcovery system 

be equivalent to the ettVirort~,~- whidli ~: .. ~(~ .. ~~J~Tt~,~: ·~~.)?~?~.a formal 
definition of environment equivalence later in this appendix. To establish that environment 

equivalence is. preserved, we eqmine Uie.~~. 1~'\P~~,,l>¥»~ system when 
. ' -' - - -· ' - -

interpreting the command q'dllrins lm>very ·add·~ 1t ~-tl\e·state"'tranSitions that ,, ~·· '(, ' 

result when interpreting the same log when no backup state informatlOh is used." To show that 

environment equivalence~ presei:yed ~ U1~ tw~;~~~~~~~~; ~pie fact that no 

instruction is executed durihg the recovery P~--~ -\~have bccnoucuted by 

the VIM interpreter eval~~Ung ~e,sam~ q;>n;)(llQllJl w~~,nq."~~~JR~ ~packup state is 
' . . ~ - ' . - i- - . . . 

utilized. Our proof is as follows: We first examine thO:-.C·~·~-eUcvtint'aparticular 
• < -~ •• 

instruction in the transition sequence of the recovery process. We then demonstrate that this 

environment is equfYatenr m the environment-d'Jl1l~1ewf Ottn~ statt'~ bi executing the 

· equivalent ntrudion under normal iruerpretatloit. 'Usitigi ~·tntf.Xctlbthttgumeit~· we.then 

~ow 'that the envimnment COfnpOrienFof the. fhfat· ftOOv&f'!lnte'is equivalent 10 ;the 

environment component that woufd have resulted'ftnb firitffreft~d illtett1ptace: · 

In the following sections. we formally defio~ .. qur qo~i91.1S; ~r trnnsitipn $CQUCl\Ct? ~d 

equivalence. We then prove our main theorem: The system state after the recovery proce~ 

COntf)letcs is equivalent to the state that would have resulted tfad no·fai1UrC taken place. This 
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implies that it is not possible for any tci>Mputalion to observe the effects of a failure once the 

recovery procedures complete. 

A.1 Definitions and Terminology 

State Transition SeCJueoces 
Because we are CX>ftSi4erins,VIM to be a~teo:nj..-JM._. we.QJn-modd tile execution of 

a program as a sequences of~t~ 1be E~te~ whidt "!hDO ;gir,en a;cu.rrent ·state and 

..... enabled instruction tetu.rns Uie~.~ibY e~li•·•~· .. 'llMtoperationofsome 

of the b~,langi,wge ~~.diffe~i ~-i~~bfdler lbe~wstem is executing 

using tl_le no~ or ~qry mteij> .. {, In ow' RIOO.f., ~~~1 • (lOQCeruO with oamining 

state transition sequea;ices ~ by the· ~MlCCtiv• ,.l'JICW..on dlc Qli)lllmand stream 

preserved on the ~bap lo&. 

Definition t: The System State is a tw~tuple, < VimStaie, BackupState> where 
Yim&late and ·Jlack.wpStptr WCl'O<deftned> ift\Odlptef~1 .Dt:.'mf61try· c<Hlllntlitd 
stream fo,r .. a sy~ ~ S is,~;~~~.qf .~· <i:1~~·••tCy·W4ere­
BackupState = <Log,BHeap,BEnv> and Log(~.command = c, 

Definition 2: A state t1'tl1tsitlon · matiOn, 1-. is a relation on states. Let S = 
<ActJl.£JS.~nr>.and T:: <Ad',H:.EJ&-.E•'~ Tilen.·6 ~ T:ifal(ll\1) E EJSs.t. 
Execute(S,(u,i)) = T. 

·Definition 3: A state transition sequence, <S rs ?,"'•S ;. is a sequence of states 
such that s

1 
f- Sr.;.., rc>r l ~ .; s k•l. · · . ·.· · • · 

For notational convenience, we shalt se>rtietirrles .,denote a · state transition 
• sequence <SrSr·••Sf'• S;t-S1 

The recovery p~ is divided into .two ~ . In, die f~·d•'*• -~ content$ of the 

backup environment a{C ~re4 onto the VI1!1, ~.~~Ill~·~· ,~e tJMs is ~ the 

command log i& reexecuted; during this reexecut,ion ~, .~kµp ~ation i$ used to a"oid 

unneccs.sary recomputation. The state of the sys,tc:ql after~ fi~P.h~wmpletes is.caJlcd.Cbe 

initial recovery slate. The heap in the initial re<.-overy state contains aJl structures referenced from 

environment entries in the backup cnvironrilent image'. 

Ocfinition 4: Let Sk b~ a VIM state such.th~ F<r1ilure(S1c> = Inµ, Let B,_. the 
backup slate corresponding lo Sk. be <Log.H/feap.IJEnv>. 
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Then, the initial recovery state for S k is the state: < {}, H fJ' {}, En·v~> where 
! :;, 

HJ.u) = if3 names.I. BEnv(~fl'te) = uandBlf~p(~),=.v then v. 
= if 3 R.u1.m·s.'t. (H;f:u 1) == R.) A · · · · · · · · · · 

(~},• ¥);A.(Blllaip(rt)\:,\t)tften~v.L r ;: · , 

= undef otherwise. 

Env0 = BEnv ,• ... ' 
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< -· _;. i \ ... _;i' 

Unlike ~structiq~.,e~~, ~i-~~~i:~".lJ•~~d during the 

recovery process use infonnation found ilube ~~.i tffe:APP£v~etion, for example, 

avt>ids instaritiation of 11~· ~vatiorts if tli~v~u~' lb,t'~·~Y~~~ ~~~k-.ll{~~i~usly executed 
*"·-~.:t\,·l~' 'i .. 1\,: ~ ... -,,. .. _, ..,,,_, ' ' '·. ,. -

has been recorded on backup store. The commanfitol~itf•IFtllf1'*b.lp 1~ is a sequence 
·-~-·'.'' :.;· : . ~ .·" -. ;· .~ -~~ ~..-.~ ):'l.·. ~ i -·,:~ ~ 

of comman~ wn.ose ~.~I' ,ha~e no.t ret ~~~~~:~~~jlf ~e'.:~~~up environment 
structure. When a failure occurs. the recovery system reexecutes the commands found on the 

_. . . . ,· . :_>·: .•:/' >..,¥·! ;:}.-.Hi~~~-~:.:-~;.n~i ·_·)~~~~--~" 
log, uSing backup ~ information it hu accumulated abOut the ~tip". Tn <19monstrate 

that ~e ~very. p~ in~rpre!J' ~is,in~~~ ~fulii~~r~x~~~' how the VIM 

Interpreter would execute these same com~,if >N?:i~!f~-.1:~formatjcpn, iJ.:ijSC(f. The 

transition sequences produced by the respective interprete~~~J~ ,~, a tran~ition sequence 

pair. If the recovery system interprets the in~JouldfOfl'dlie Rbkup,S&ate correctly, it 

follows that the final states iif-ttie'tw~ trariSiticSni~~·~t~~~~~aJen~ environment 
' . , c.' . ;•' - - . v 

compooents. 

Definition ~: Let R be the recovery command stRiam (Qr~ and let STS = 
<s

1
.s2 ..... s) be the state transition se~ ·~ tMievaluaU.O of the 

~;;:. R~~~::.~~~:.·~~=·~=~ ~~ 
mttr.s1tmni~e b ~ S. . '·' ., ,., , .. _,, 

Let R be the recovery command stream for system state Sand Jet RTS = 
<R1.R2 ..... RJ be the state transition sequence ~rod~~i~.th~~~~O.~~On of the 
call: Recovel)(<Log,BHeap.BEn-,>) . . Theta/ ltf',•~~~1 1~~·1ttld Rr is 

· · the final il!COfel!? .s:talt'for •IV- 'EIS°t- IS fJ'. 'th*°'~ Mt ck ts i9~1ed the" recovery 
transition sequence for system state "S. '.J ·· · . · · , · 

Definition 6: A sequence pair for a system state. S:'IS')a twcMupf'e:· <·Rts.STS> 
. where R.TS = ,<R~~iJ··t·-.~I apd srs = ,~~~ .. ~·J,~Jc 'te'h.~~, .. R1~.S;tcare ·the 
final rccrivcry state and ideal remvcry state roi-""thc command ·r~-im. r~sp. R1 = S1, 
the initial:rccovery&utcfflrsystem sttite s: · ·~ 1 ' ' '· • · ·' " i · ··· · · 
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State Equivalence 

In the following definition, we shall use the symbol, ::, to denote the equivalence relation 
.- . 

between corresponding state components in .differ~qt\.si.att:S. Tin~s. if Env1 and Env
1 

are two 

environments in states Sands·, then E111,pr• Enr1Jttbese tw.>environments are equivalent 
,', ' < ,' 

Definition 7: Instruction Equivalence: Let FA and FA ·be two activities. Then. 
FA(m) a FA.(n) for m,n € N if: 

•FA(m).opcode = FA.(n).opcode. 
•¥ opnum-E {O,ttumT,opnurit!~~u~~ FA(m).opltum = FA\n).opnum if 
FA(m).opnum~FA(n).o,...~Sc:lallrA·' · . .. 

•V opnum E ~OJ1Rl4fn.1,~pn~m2,o,pn...,m3), fA(m).o"num = FA.(n).opnum if 
FA(m).opnum arid 'P'A.(n).opnun(~ U. · · · ' · · 

•FA(m);Opont;:::; FJC~n.).opc;~. 
•F A(m).,sigcnt = F 4 '(n).sigitnt. . . . . . . 
•V (dc,k,opnum) € Fi(i).ckst, 3 (dc,l,opnum) m FAV).ckst s.L FA(k) a FA'(/). 

Activity Equivale~e: Two Activities FA and FA~are ~Qivalent if for ev_ecy .m -~ 
N, F A(m) m F:Atm). . . 

'·. ' ' 

Object Equivalence: Let H1 and H_i be ~o heaps d~fined such that HJu) = v 
and H ju) = v'for u~u·e U. Then. v =tl''lf · · 

•V = undef, v'= undef. 
• v E Scalar, then v'€ Scalar actd ' = ,·. 
ev E Re~ord. then v'€ !JecqllJ ~d _ l(J) •: v~ 1). ij)r e~ry i E N. 
•v € ECQ, then v"E ECQ and'v (uk,1) e· ·v. 3 (u

1
m) € v's.L (uk,1) = (u

1
m). 

ev E SUSP. v· € SUSP s.t. if v = (u ,m) and v = (un,n), Ac'd..u~m) = 
Act(u,,)(n) o_ R Ht v) € Record and v"E SUSP and ~ sta~e ~A:,_whe~ SJ t-S k and 
Hi•1s H~J). · ·· .. · · 

•Y € U, then v·E Uand Htv) • Hj1'). 

Eavif:o1UDe1t Eapatvalpee: Let ~nv1 and E1111 .be two envimnmems in states S1 
and s1 Then. Env1 and Envj are equivalent if fi>r .• ._, "J 1.t. En~n 1)= " 3 112 s.L 
Env}n~= v'where if 

• V ::; undef. ·V· = WJdef. 
ev € Scalar. thon ·v'E: Scalar .and v == v. 
•v € U~ then vE U and ff,(v) a Hjv'), H1andH

1
are the heap components in 

states S1 and s
1 

resp. 

Containment and Completeness 

In order to show that environment equivalence is preserved between states in the recovery . 
transition sequence and the standard tr<msition sequence. we w41J ;need to examine the effect of 
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executing equivalent instructions in the two states. Thus, it is necmatr.y that ·for every enabled 

instruction -in the recovery state. there be an eqwi~lent instnactiqn in the ~rr~nding VIM 

. state. This property is called .conlainment. 

Definition 8: Let <RTS,STS> be a sequence·pait fbr a·ststem·sta~ S, where R1 
is an ele~ent of RTS an~. S1}s,an ~1rrne_µ' 1·0.~,ff~. 1 ~,,~ ~R~_. aA_._ !J'f4.in1t ii V(":"') € 
EIS1 3 (u ,n) € EJS1 S.L F A{m) a FA (n) wh~,rt;. A,ctjM). :,fl',~:¥JA:~ctJu > = FA • 

Dehitiml 9: .if <RTS,,STS> is a seGfUenC»'pait-,ft>F.a~ ~. S; and R, is an 
element of RTSanctSLllanelementofSJ'S;'dten~/'9 c8ti~fwit·Sj if Enr1 • EffY1 
and R 1 is contained in -s1 

Computation Sets 

In Chapter 4, we introd~ the computation ·tree. as -~ ~oiJ to describe the 
''. '>-• , : : : ! .. : ·-- ! ~· ,. " ; • - ' - ; . , • 

instantiation of function ICJiivations in.a CXlmput,atiQfa, ]bt;:fohwial three. Mfinitions fonnalize . . . 

this idea. 

. Deftaitioa 10: .. Let aa a;uvation a be· instantiated .• in state S. · Then, the 
computalion set C of" i& Gefi•ed es follewa: 

•a€C. 

•Any activation instantiated from an activation in the computation $Ct C is also inC. . . . ·. .,.. . .... · . . :"' . . . . 

That is. the computation • of an. aetivatiort c-..iep .... .the: transitive dosure over all 

activations in the computattop tree rooted at (a.a). · 
/. 

Definition 12: Av .. •€ Sc.alarV ST,'.•~itla·state·<Act,H.EIS.En•> 
if either: 

•There is some activity A s.L A(n) = I and J.ppflum =? l' for opnum € 
{op1 .Op2.0P3}. ~d Acl(u) = A. . . . . 

•There is some, activity A. s.t · A(n). = ./ ,1n4 1.,,,,,.,,, = u for opnum € 
{opt.op2.op3}. AcJtu') = A and H(u} = '· Jt 

• There is some v'E Rt'COrd S.L v'(m) = v'or v'(m) = u where li(u) = v and v'is 
acccssi bte. 
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A.l Proof of Correctness 

Lemma 1: Let R; = <Ac1rH1.,EISrEnv? be an element of R!S an~ S1 = 
<ActlH1EIS

1
Env> be an element of STS. Suppose,,iib- Ry.,_ron aa.e~bJed mstructaon. 1(u,1), 

wh~re Act,(u) = FA and FA(1).opcoc:k ;it APPLY. Then, if RI is oomplete wrt s, 3 a state sk S.L 
s11-S k and Rt+ l is complete wrtSt. 

Proof: To prove ~e lemma .we neecf tQ .,show, tha,t .en~Jronm~nt equivalence and 
containment holds between R +I and some stat'e'Sk tor any insuuction 'whose opcoc:k is not 
APPLY. We prove the lemma by examining the different classes of instructions defined in our 
model and.show that ~IM!Gl&b<>ld&,~M,ea£h of~·~~ ;Jf'..l;ilicom,iete wrt s1 then, 
by the property of~~ t8CJ:C.-taan:~ble4l~ ~a~J)( Ets1 •('lit/). 

1. Scalar Operations: The effect of executing a scalar ~ration doe8 not alter the 
environment and so, both environments in Ri+l and SJ+/ remain equivalenl f:JY 
definition of instruction equivalence, we know that every destinatioft 1(.flc,f,d~ m 
FA(1).aest = 5'?flile ~~t}~ati<>n •• ~<k~~orlt~~ ~iF·f~: ~we' ~'t~ s;aiar 
values are sent to eqwvalent mstructrons. these destinations remain equivalent 
Thus. equiivalont ~'.~~.aBlid iti'R;~}~Sj+/~ Htnce, '1t1+1 ls 
contained in SJ+ 1 and, so, the lemma holds for scalar operations. 

2. Structure Operations: A structure operation.performed,~~~ ~t.rni~ht cause the 
newQate R1+JlD have.e4iffUlllllt trap~, Nott~tha~~'ebtipOnent does 
not change when any structure operatkJn:ei~i:;1'0W'tllat"ttie letWtrtastBl'lmlds 
for these types of instructions, we examine the various structure. OJ>CRld.ons in our 
system. 

a CRFATE: A create ·instruction executed in R
1 

wili. produce a new 1tl;Ucture on 
the heap in RI+ 1 with uid u 1 and size n. with all elements of the structure 
having value undef. where n is the operand to the instruction. The equivalent 
instruc:tion iBr£JS~afJ)Wlaea'ne:attcMrt~~a!f\W'~ on 
the heap in s.+1 with uid u2 and.~~.~t.~~<J~(§ll\EHlt9~~~ittvaJeo~ 
H;+ 1 and ~+ 1 are still equivalent · Showing that R1+ 1 is still contained in 
SJ+ 1 fo~lows th~ ~e a~t ~ji~en •.~e. , : . . , . 

b. SELF.Cr: A ~ operatiqn ,ca ·heupct INlned .u\: a,a....,. dtment that is 
ejdler .ascalar,Or.~.value .. ~eaflr ~•u•He•of'a ~on. 
We examine each of these in tiam: 

i. Wllue: There are two cases '? be consi~e_red if the item selec~d from H1 is 
a scaJarorastAiCUlre .. 'in ttre·fiMieate}tfle:~ selCtielftmm'H. would 
also be a scalar or structure value. By the propcny of contain~ri( the 
operands to the SELECT instruc.tion, mllS! be ~jvqk:~L Si~ .the. heaps 
and envfronmcru components do ~c~9~~~t~ 'tJ_ti~.H,.,.. ,ifi H +r 
R i+ I is still contained in S ·+I bCCausc aff deStlriatfom of'ilie {E'tECf in 
R; are equi#ment toflcSlina{ioftlin.SJ and«.Jbtlr.»irtg'lhe argumeht given 
in ( 1). these instructioos wofttd, 'relhaiR :equivalent. · : D.tis. · R; + 1 is 
complete wn, sj+ 1 in. Lhis case. 
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3. Terminate Opentioal: Execution of the TERMINATE instruction causts,-tt>rltrt>Jt to 
retttm tothe~:with·1he <nmrtc!WliuV bt~ll ~ ·ro me.user·envirQhm~t 
Since 1R·nis-~ ,ift<J$ •Jt1ter~ 1&fth@f>~te ~JHHJ~'be 
equivale~t in both R1 and s

1
1 

Envl+I is. therefore. equ~V~iiv);("f1oilt>Wffli'"''· 
··~ . the sam~ a~V~.cnt;Jivcn~1\n J~> '"o(~c .~ ~~;~frtlr~; ~l ~~P~~ ~i+ r ... 
4. J.l••~;~ioa: ,'Wle "1"U~N ifts~~ltk• f*>."'1J1111JG\G •. lhe:.f"Ctum ·value · : 

and the target list By the property of containment the return value and target lisl in··,·'·· 
the equivalent instructions in R .. and S. must be C51Uivalcnt. R #; ~ ,i~ l'(lntained. ,in 
s1+ / sk1ae t~·cargct'_iMf<f~ ~the ~1~r~;iihh.'tfuwa~·an~lr.c··td~1~ 
values arc cquiv.1lcnl 111 the two Slates. · · · · 
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5. Tailapply Operation: The. TAIL.APPLY instruction takes in three arguments, the 
function closure, arsument list and return link. By the;property of containment, all 
three operands must be equivalent in the ex«Uting instru<Sions in corresponding 
states. The result pf exeicutiJlg.the instructioft·js te:a:ld a.Mw·-aaivadon and to signal 
instructions in its, own activ~on. ~use- the; ;dbsures and argument lists are 
equivalent, the instruaiofli en~lac;Un tho n1w .Uvatioa must abo:be equivalent in 
Rt+ 1 and SJ+,.·. following the ;qument &ivert':tn<(l). it i~ _easily ·seen that R1f 1 is 
contained in s1+r A simHar . ..-.ument can. he applied. in tile analysis o the 
streamtail operator and i$ .Qmiue4ltere.. · ·. 

§A.2 

Since we have shown that the lemma holds for all in~pn classes (excluding APPLY), 

the lemma is proved. CJ 

The effect of executing a function is visible only in. the . ..Wt value returned by that 

function. Thus, given a oornpwation sequence for.9Bfife· adi'iadon, ·the values that are still 

accessible after all activations in the computation ~u~nce ~v:e completed are precisely those 

returned by that activation to its caller. 
Lemma 2: Let <S,Sr···Si> be a CC>J11PUtaticm sequen~ for~ ~tivadon A. Then, the 

values accessible in slr.+l' but fi()t in s are 'those values ~DleJ~J~e. instructions found in 
the destination list of the activatkm. A. • · · 

. Pr~r: (by«J1ttradiclfon). Suppose there issorl\e-Yatft. r, that is ~ible in Sk+l but not 
m Sand JS also not accessible from.thtt'.Wnt lint to the'attiriltioft:. Thi$~value must nave been 
created by !Dme instructbl that:u1an element of s&Me':ac8¥8fiott'iif the cbmputation set of A. 
Let this activation be a. tn order fOnhil sthlct\Mle ttl~lile''after the termination of this 
activation. it m\l&\ be ·returned ·as a resUtt &f that dva&m·~iri:fteferences to it from 
instructions within. «'are lost onm:4he.R:EU'JtSE' fnstru~ ~.:tet·m·-tatter be p. In order 
for the value to beacc:es.1!ib~ in S '+r itmt*.'by.µie ~· ~gf11$ above, be returned as a 
result .or this. activ~ti?n as well~ ~~µ~~$ ,~is ~.JP~&·";~ ~'·~:~~ v~e ~ only ~ 
accessible in S le+ I. tf tt is retur1ttd ~ the ~It of A. ,IJUt .tlus ~~~ Opr, QIJiUlal hypothCS1s 
and so the temma is·proved C . . . . , .· . 

Theorem t: Let <:RTSftS> be ~ sequ~nce ~ir ~a ~~m·.~~. S,~~]~ ll 1 E RTS and 
S. € STS. Then, if R1 ~ Ri+I and R;·is c:Omplete wrt S1 then 3 a state Sk s.L SJ ~Sk and Rt+/ i' complete wrt S1: ' 

Proqf: Our proof is by ~on. The i11Qµcl4on_,, shows thut·tMrtbeorem bolds over aJI 
instruction. cl~s for our system.. · 

. . . Basis: Let RTS = <R rR j and STS = <S,.S /· Since kl = S,. ~d.by. definition of th.e 
m1~1al recovery state, EIS1 = rp, R1 = R1 and.S1 = s1 Tha~.;/11 *' SJ'Oftd··tt.~Hheorem 1s 
sausticd. · · · · · 

I lypotbcsis: Suppose that the theorem holds ror aU scqucna:. p,airs <;RTS.STS> where RTS 
is of uplo length i. i > 2. 
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Step: We show that the theotem holds for a sequence ·pair <RTS,STS> where RTS is of 
length /+l 

Non·Apply Instruction: Refer to Lemma 1. 

Apply h•stnK?tion: There are , four types of: -adivalion deseripton that are found on a 
computation. reoo.Fd. Th•~PlOts can either;be.of&ype:, -~· uat.ue, rotl4~ or 
str~ When an APPLY .instruct.ion exocut11 in krit'mminetfdteJacdvadon ddcriptor for 
the activation to be initiated. 

1. apply or nonexistent Ath: If no Ade exi~ . then ~e. R;,.,.1 is complete wrt state 
s1+1 since the APPLY if1~ executing~ -tp~~~.-~,~P inf~on. 
Since R;is a;m~p~~.wft s1 ap~_equ~va1ent~,~~:iA tb~~two$te5. 
then by analysis 5Jni1tar to the one 81Ven fpr -~ t~¥i.~ m Lem• l, 
Ri+l ail~ SJ1-L re~~ ~uiv~~n~ th~,:~e)p~;,~:·~r:n ~ APPLY 
operator •$ to m~u.ie. an .. acuvauon w~, has,;~:~~-~p~r entry of 
type apply. Since no ~lt is found in the..4tM. i..oe.w.~~:~co:ated by the 
APPLY. . . . 

2. ual~: I.fa ual~ Ade_existsfor~iJ ~vatio~~ ~~~!l~i,sli~~~ froru R1,in ~1lt the 

:1ti~t; ~ ~tb~:O:u~al:;~~:U~ ~~~;l~:~~ :~sa: 
instantiation of an activation, (u~,.A), beC8use no backup inforination is used. By 
Lemma 2. there is a~ ~ SCAUeawa <SA+-i~J+~ ~ithat ~ vQies 
accessible in SJ+k but not accessib"' in ,~;.,..,~> ._, ~lffe from . 
instructions found in the destination list pasSed to the activity, A. These values 
represent the result of the activation and thus must be eqUMtentedle tatuesfbUnd 
in the Ade of the activation used IJ:t.. R1 _(since, "!,C . h~ve n~ n~~cletenni~~ 
oomputation) ... Sinee the· mtY· fnstructiob: ei~n >lf' sends' the vtlfue or the. 
activatiOn found·~ thch4e to·aJHtesttnltiohS; 1*f1•ftW1~y 0f~lWnn1ent. 
the two APfl'l.Y itstrtletiOtts eltCUtlngj iti ,J j~+-snttM tdU~t destination 1

. 

instructions. state 'R· .. ··ttHlst;fxfcontaitteififf5diJ~/1 !1 S~0tti-'ettvtriJftjnent ,. 
image ·does 00t ·dt~~ in 'attter1tate; ·R . · •~~·Wit"S' ,, an'd. ·so, the · 
tbeorein IM>kts rotthtsra.e. , , : , l+..I ~ :, .. : . ,, ; , .·. 'Jtk , , , .· . ' 

3. tatlapply: If the Ade for an activation has ~'.1'41~"~"·'dwn:R1~1 ••11·from, , 
R1 in t.JJ~t R.1+ 1 wilLwntain a n.ew activity. A. whose. argument r.eeord ia"8ll'ieved 
from the activation descriptor. When the corresponding APPLY instruction executes 
in s1 it will cause a new activity, A·. to be created whose argument record is not 
nec9arily the same as in A. Consider the state transition sequence. 
<S1Sj+r· ... Sj+m> where Sl+m-l t- Sj+m on a TAILAPPLY instruction which creates a 
new activity, B. such that B = A. There must be such a transition sequence since all 
compumtion in the system is determinate. B is a descendent in the computation tree 
rooted at A: Fix the transition sequence from S/o S.+m !l> that EIS.+m contains no 
instruction from any activation on the path from A't6 B (or descend~nts of any such 
activations) in the compu~ttion tree rooted at A'. This is clearly pos.~ible because of 
the non-dctcnninacy of the Choice function. The only new values OCC(..'SSiblc in S.+,,, 
not accessible in ~}arc those referenced from B. Since B =A. R;+/ is still contafncd 
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in Sj+m· Since the environment image is not updated in,either tnnsition sequence, 
environment equivalence is still preserved. Thus, R1+1 remains complete wrt SJ+m· 

4. Streamtail: The case when the Ade is of tme Sl'Jt£A~R,. .~ v~ $imilar to the 
TAILAPPLY Ade given above. In this instance, Rt+l diffe~ from R1 in two ways. 
First, the stream. image. on saablesti>F. e is,JeStDNd. . :OfttG'~~, 1 'S~dty, a *.·efeton 
activation is cieated to instanb&te procluction ofltnetNIWli · -&f the1tt'&m. Irr ute 
S the apply opemtoi'wiUause• new.actwationv"Acte;be~itOlpfuduciethe ftrst 
element of the stream. To satisfy the property of con~ we 'c:eMidtr the 

:~::: ~= :r:~;:~6ii:~: Jt¥~~w:1:~;;:i~~{r: 
point. the first; Stream element iS cbmpletely'd~iji~'ttl~' is.a 5uspqtsion in A 
which is· not yet enabled lb .. protltite. ;the riexf>~~C1lt.,, SJ, :@t Cleflhi~on of QJjjm 

=t~:::·in~~::= ~ ~~~j~~ate:=~~~lt ~~ 
enabled also remam equtvatent: Hence a)ntli~~~)c~t~ee,~tS . ·and 
RI+/' Since the en~ image does nor'thlnle.(:R,~J rettialnt)c:Orn6S.wrt 

SJ+m· 

§A.2 

Since we have shown the theorem for. each of the et.es of, ~~s. which may be found on a 
computation record, th~ thebrem is proved o · · · · · · · · · 

COrollary: If <RTS.STS> is a ,sequence pair, ttren:.Rl~ ~plete· wrt Sj ~here R 1 and s1 are the tinahtates for Rm aftd·STSlapectfvely. · · · · · -

Proof: (by COlltl'fldictlon) 

Supp·~ .. th. at Rfw~ ... · Ni)tcom,p···· le .. te .... wrt.· .to $1. Sm ... pe; .. -4¥.$'1 :::; i>• '",knqw Uiat,R1 1&.·. contained 
in SJ It must. theref~ ~: tbe.•~~~¥i~\1~i~ •1'~ ~44 ·bd.ween. the 
two Sqltes., By lbQOte~l. ~~~w1~ ~~~~~~AU~·-- ~,w)18fQ SJ .,_SJ 
As ,a (;9,qsequenq:_ ,of the hYJ>OCh~, thefF ~(~}~r~vi~t .~R.1Jnwuctioh 
exe(;uted in ~ tranSki~ seq~ ~:f~Jtffi·~~Aia\*tft9t ~·:111J&TS·•)vjjo;~. This 
is a contradiCtion since by defini\ion s. me 8ame ex>mmand ~~.•-~.wi:l\liboth the 
ideal recovery state and final recovery _state. Thus, ~r ~.~.\fl~t .~(iJ, 00!. oo,mp!e:te wrt s1 must·bt,fllhle•d tJleCO'IOUatyi~~ t1 ·. · ri, "·'' -"'' 11. 11 

·• !. "'1 
' • · , 

_., . - ; ; . . ! : .c ,! ; ~ .: f. 

.',• j'. ' 
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