Equational Theories and Database Constraints

by
Stavros Stylianos Cosmadakis
B.S., Massachusetts Institute of Technology (1981)
M.S., Massachusctts Institute of Technology (1983)
Submitted to the Department of Electrical Engincering
and Computer Science in Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy in Computer Science
at the

Massachusetts Institute of Technology

August 1985

©M.LT 1985

Signature of Author M‘;

Department of Electrical Engineering and Computer Science

; August 1985
Certified by J / 6' ”@

/s > Paris C. Kanellakis, Thesis Co-Supervisor
[e
Certified by LU 7 /%A

Accepted by

Albert R. Meyer, Thesis Co-Supervisor

Arthur C. Smith, Chairman, Departmental Committec on Graduate Students

Iquational Theories and Database Constraints
Stavros Stylianos Cosmadakis

Submitted to the Department of Electrical Engineering and Computer Science
on August 1985, in Partial IFulfillment of the Requircments
for the Degree of Doctor of Philosophy in Computer Science

Abstract
The implication problem for databasc constraints is central in the ficlds of automated schema
design and query optimization and has been traditionally approached with resolution-based
techniques. We present a novel approach to databasc constraints, using equations instcad of Horn
clauses. This formulation enables us to use new techniques for database theory, which derive from
universal algebra, cquational logic and lattice theory. 1t also points 1o the possibility of employing
theorem-proving techniques originally developed for equational theories to deal with implication in

the context of logical databases.

We apply our approach to study fienctional and inclusion dependencics. These constraints can model
functional determination and data duplication and they have been cxtensively proposed as a
powcerful and realistic featurc for secmantic data modcls. We prove completencss of new proof
procedures and we derive new upper and lower bounds for the complexity of various implication
problems involving these dependencies.

We also present a new class of constraints which are definced equationally, using algebraic opcerations
on sct-theoretic partitions. These partition dependencies provide an clegant generalization of
functional dependencies (in the direction of incorporating transitive closure), for which the

implication problem remains efficiently solvable.

Thesis Co-Supervisor: Paris C. Kancllakis, Visiting Assistant Professor of Computer Science

(on leave from Brown University).
Thesis Co-Supervisor: Albert R. Meyer, Professor of Computer Science.

Keywords: Rclational data model, logical databascs, dependencics, implication, proof proccdures,

completeness, cquational theories, word problems, lattices.

Chapter One

Introduction

1.1 Functional and Inclusion Dependencies in the Relational Model

The development of the relational data model 21, 22] led to major progress in the arca of database
management. The model and its implementations have contributed significantly both to the increase

of programmer productivity [23] and to the fundamental understanding of computation {62].

Among the advantages of the model, which account for its success, are [23]:
1. The sharp, clear boundary it provides between the conceptual and the physical aspects of database
managcement.
2. Its simplicity, which allows users and programmers to have a common undcrstanding of the data
and thercfore communicate casily about it.
3. The introduction of truly high level language concepts, which enables users to express operations
on large picces of information, without detailed knowledge of its representation or of the access paths
to where it is stored.
4. A sound, mathematical foundation, which makes possible the theoretical study of the (often

formidable) problems of database design and manipulation.

The relational data model consists of a structural part (with a unique data type, the relation), a
manipulative part (with powerful algebraic operators such as selection, projection and join) and an
integrily part (constraints defining consistent database states, intended to capture the semantics of
particular applications) [62, 51]. A relation is a table with columns named by atfributes and with rows
containing values from some domain, cach row being a fuple. A database is a finite set of relations. A
logical database or database schema consists of a database scheme, i.e. a finitc sct D of relation
schemes (sequences of attributes naming the columns of relations), along with a finite set 2 of

integrity constraints (dependencies), which should be satisfied by all Icgal physical databases (database

instances).

For an examplc (invariant throughout the database literature), consider a database of two relations

R,S, where R has attributes EMPLOYEE and MANAGER and S has attributes MANAGER and
DEPARTMENT. If we take as our semantic restrictions that "every employce has exactly one manager”
and "cvery manager manages cxactly one department”, we define the following database schema:
D={R[EMPLOYEE, MANAGER], SIMANAGIR, DEPARTMENT]}
2 ={R:EMPLOYEE—MANAGER, SIMANAGER— DEPARTMENT}

In this case, our constraints arc examples of functional dependencies [21,22, 62, 51]. Formally, a
Junctional dependency (FD) is an assertion of the form R:X—Y, where R is the name of a relation
and XY are sets of attributes from the relation scheme of R. It is satisficd by a databasc instance iff
whenever two tuples of relation R agree on all attributes appearing in X, they also agree on all
attributes appearing in Y. Obscrve that, with no loss of generality, we can take Y to consist of a single
attribute.

Functional dependencics form a conceptually simple and naturally occuring class of constraints. For
this reason, they have been extensively studied in the literature (see [7, 62, 51] for reviews of the arca).
Combined with the algebraic operators of the relational model they provide a practical and elegant

approach to the problems of databasc design and manipulation.

At present, a major rescarch cffort is underway towards extending the relational model. This effort
is motivated in large part by the success of the relational methodology and by the demands of specific
application domains, in particular Office Automation (see, ¢.g., [20, 24, 37, 42, 59, 61], which is by no
means an cxhaustive list). The approach generally taken is to appropriately enrich the integrity part
by adding constraints which will enhance the expressive power of the model, while at the same time

preserving its original advantages.

Returning to our example, suppose we also want to be able to express simple facts such as
"everyone who manages employces belongs to some department”. In other words, we want to add to
the semantics of our relations that a MANAGER entry in relation R must also appear as a MANAGER
entry in relation S.This constraint is formally captured by the inclusion dependency [16]
R:MANAGERCS:MANAGER. In general, an inclusion dependency (IND) is a statement of the form
R:A1..ALCS:B,..B.. Such a statement is satisficd by a databasc instance iff whenever a tuple with
entrics ay.....a,, for attributes Aj,..,A,, appears in relation R, a tuple with cntries a,,...a, for

attributes By....,B,, appcars in rclation S.

Inclusion dependencies make it possible to sclectively define what data must be duplicated in

what rclations and thus they provide a valuable tool for databasc design [24, 59, 69]. The central
notion of referential integrity [24, 29] can be expressed using IND's. Together with FI's, INI's form
the basis of the structural model of [67]. Descriptions of logical databases written in a variety of
languages can be translated into a common language which uses relations, FI)’s and IND’s [45].
Inclusion dependencies have also been employed to map an cntity-relationship schema to the
relational model [20]. We mention in passing that IND’s have been commonly known in Artificial

Inteltigence applications as 1S4 relationships (cf. [9]).

Although the addition of IND’s to the rclational model has been recognized as realistic and
desirable (because of their conceptual simplicity and cxpressive power), they have become only
recently the object of theoretical investigation [16, 43, 54, 19, 58, 17, 44, 48, 26]. General questions
relating to the implication problem for INID’s and FI)’s have been studicd in [16, 54, 19]. A rather
surprising result [S4, 19] is that the combination of IND's with FI)’s is as powerful computationally as
first-order predicate calculus. This result can be considered both positive (as it hints to the possibly
rich potential of two simple primitive forms) and negative, as it implics inherent computational
intractability of the general case. From a more practical standpoint, [43, 17, 44, 26] provide solutions
to databasc design and query optimization problems in the presence of (suitably restricted) IND’s
and FD)’s. Also, central notions such as the Universal Instance Assumption [62, 51] have been
investigated using IND's [58, 48]. We will review the theoretical work on IND’s in more detail in the

sequel.

1.2 The Implication Problem

The (unrestricted) implication problem for a class of dependencics is the following: Given a finite
set 2 of dependencies and a dependency o, test if o holds in all (not necessarily finite) databases
which satisfy the dependencies in Z. By restricting attention to finite databasecs, we obtain the finite

implication problem.

Solving the implication problem is the main computational task associated with a class of
dependencies. As a rule, algorithmic approaches to database schema design and query optimization
arc based on cfficicnt solutions of the implication problem (sce, c.g., [12, 6, 3, 18, 62, 51]). Evidently,
if we arc concerned with applications then the finite implication problem is the once which is most

relevant. However, it tends to be much more difficult to deal with. Morcover, for the classes of

dependencies for which implication is dcecidable, it gencrally happens that finite implication

coincides with unrestricted implication.

The problem of dependency implication can be approached in a very gencral setting by
formulating dependencics as sentences in first-order logic, namely as Horn clauses [34] (sce Scction
5.1 of this thesis for some examples). Closely related to this approach is a particular proof procedure,
the chase; sce [52, 11, 62, 51] for its wide applicability (proof procedures for general dependencies
also appear in {10, 68, 57]). 1t has been observed that the chase is a special case of a classical theorem
proving technique, namecly resolution {10, 11]. The chase provides straightforward algorithms for
implication of classes of dependencies for which it can be shown to terminate. Furthcrmore, in these
cases the chase produces a finite counterexample whenever implication does not hold; it is for this

reason that finitc implication coincides with unrestricted implication in these cases.

Returning now to functional and inclusion dependencies, what appears to be the fundamental
difficulty is preciscly that IND’s can prevent the chase from terminating. Of course, in the case of
general FID’s and INID’s one cannot hope to circumvent this obstacle, since the implication problem
is undccidable [54, 19]. Nevertheless, given the practical importance of these dependencies it makes
scnse to study the complexity of special cases. The obvious approach that has been suggested is to
analyze the chase, but this turns out to be a very dclicate task (cf. [43]), which can only give partial

results {43, 26]. Thus, it scems that new tools are required in order to make major progress.

The main contribution of this thesis is the introduction of such tools, borrowed from equational
logic. This is a fragment of first-order logic which has attracted a lot of attention, because of its
relevance to areas such as applicative languages, interpreters and data types (see [41] for a survey).
However, it does not scem to have been noticed by the database theory community, since a constant
cffort has been made to minimize the role of equality in dependencies (rmultivalued dependencies
(MVDrs) [62, 51], the most widely studied after FD’s, do not involve cquality). The only case where
ideas from cquational logic were applied in databasc theory seems to be the best algorithm for
losslessness of joins (a basic computational problem), which was derived from an cfficient algorithm
for congruence closure [31]. Also, the best algorithm for implication of FID’s [6] can be scen directly
(as we obscrve) as a special case of an algorithm of [47] for the generator problem in finitely presented

algebras.

We use the methods of equational logic to formulate and study implication problems involving

IF1>’s and INI)'s. We also use equations to define a new class of dependencies (generalizing F1)'s) and
to investigate its implication problem. In the subscquent Sections, we review in more detail the

content of cach Chapter.

1.3 Chapter Two: The Equational Approach to Dependencies

Let r be a relation over a sct of attributes AU, with values taken from a domain 9. Suppose r
satisfics the FID AB—C, i.c. whenever two tuples of r agree on A, B they also agree on C (here and in
the scquel we consider single relations, so we can suppress relation names from dependencics). Let x
be a variable ranging over the tuples of rand let a(x) (&(x), ¢(x)) be a function which assigns to a tuple
x the entry of x at attribute A (B,C). Now since r satisfiecs AB—C, it is casy to sce that there is a

function f(from 52 to) such that the following sentence is true in r:

Vx. fla(x), Hx))=c(x)

This obscrvation suggests the following syntactic transformation: the FD AB—C is rewritten as

an cquation

faxbx =cx,
where now the symbol a (b.c) is a function symbol of ARITY 1 representing the attribute A (B,C) and £
is a function symbol of ARITY 2 corresponding to the FD. Using the standard convention of

cquational logic, we omit the universal quantifier on the variable x,
We now illustrate how this cquational formalism can be used to infer FD's.

Example 1.1: Given the FD’s
A—B;, A—B,, B;B,—C
we can infer the FD A—C, Using our transformation, the given sct of FID’s produces the equations
flax=b,x, Hax=b,x, gb;xbyx=cx.
From these we can infer the cquation

gfaxfrax=cx.

In general, we can infer an FI such as A—C if we can infer an equation r[x/ax]=cx, where 7 is a
term over the f's and a variable x (in Example 1.1, 7 is the term gf)xf,x). The notation r[x/ax] means

that we substitute ax for x in r.

Interestingly, this cquational formulation can be extended to IN1Y's as well. Suppose relation r
satisfics the IND AyA,C BB, i.c. for cach tuple t of r there is a tuple t” of r such that the values of t
on B},B, are the same as the values of t on A},A, respectively. This means the following sentence is
true in r:

Vx 3y. [b,(0)= (0 A byfy)=a,x)]
(as before, x,y arc variables ranging over the tuples of r and ay,a,,b;,b, are functions corresponding to
the attributes A,A5,B;,B)).
Consider now the Skolemization of the existential quantifier Jy: one obtains the sentence

Vx. [by(i(x)) = a)(x) A by(i(x))=ay(x)],
which is true in r for some suitable function (x) (from tuples to tuples). This suggests transforming
the IND AjA,C BB, into the sef of cquations

byix=ax, byix =ax

(here i is a function symbol of ARITY 1 corresponding to the IND).

Example 1.2: From the dependencies
AAC BBy, A)A;CB,B;, By,— B,
we can infer the IND A A,A3CBB,B; [16, 54]. Using our transformation, the given set of
dependencies produces the cquations

bjix=a;x, byix=ayx,
byix=ayx, byjx =asx,
szx = b3X.

From these we can infer
bix = fbyix = fayx = fb,jx = bjjx = asx,
i.c. we can infer the set of cquations
bix=a)x, byix =a,x, byix=azx.
In general, we can infer an IND such as A;A,A3CB{B,B; if we can infer a set of cquations
b7 =a;x, byt =ayx, byr =ayx, where 7 is some term over the i’s and a variable x (in Example 1.2, 7 is

simply ix).

Thus, we can use cquational reasoning to obtain a proof procedure for FID's and IND’s, The
soundness and completeness of this approach is demonstrated in Theorem 2.1. As a matter of fact, the

soundness part (whenever an cquation of the appropriate form is implied, the corresponding

dependency is implied) is casy and it should already be plausible from the preceding discussion. The
difficult part is completeness (whenever a dependency is implied, an equation of the appropriate
form is implied). This is proved by a rather delicate induction, which shows that cquational rcasoning

can simulate the chase.

We can also have a slightly different syntactic transformation of dependencics into equations. This

transformation, however, does not have a straightforward scmantic justification.

Consider the FI>'s in Example 1.1: We can transform them into the equations
fla=b,, Ha=b,, gb;b,=c,
from which we can infer the cquation
gfiafha=c.

The symbols a,by,b,,c arc now constant symbols representing the attributes A,Bq,B,,C.

When approached this way, the implication problem for FI)'s becomes a special case of the
generator problem for finitely presented algebras [47], for which [47] gives a polynomial-time
algorithm. By inspecting the behaviour of [47]'s algorithm in this special case, we obtain the linear-

time algorithm for implication of FI)’s given in [6].

This alternative transformation can also be cxtended to IND's. We transform the IND
A1A,CB,; B, into the sct of cquations
iby =a,, iby=a,.
Obscrve that we have now eliminated the variable x, which can play an essential role when IND’s are
combined with FID’s (cf. Example 1.2). For this reason we also need cquations of the form
fix =ifx,
which permit us to move the f's over the i’s and vice versa. The soundness and completeness of this

approach is also proved in Theorem 2.1.

The cquational formulation of dependencies is more redundant than the standard one, since we
neced to introduce new symbols (f's and i's). On the other hand, inferences of dependencics now give
us more information: whenever we infer a dependency o from a sct of dependencies 2, the
associated term 7 (cf. Examples 1.1, 1.2) tells us how o results (in any database satisfying Z) by

"composing” dependencices in Z.

In the remainder of Chapter 2, we use our cquational approach to prove several results relating to

FIDD and IND implication, We first give a new proof procedure for FI1I's and IND's (Theorem 2.2).
This proof procedure is different in spirit both from the chase and the proof procedure of [54] and it
treats FI1>’s and INID>’s in a symmetric fashion. The cquational tools come into play in the proof of
completeness of this proof procedure. Usually, completeness is proved by constructing a database
which satisfies a sct of dependencies 2 but violates a dependency o (assuming ¢ cannot be proved
from Z); see, c.g., [11, 54, 62]. In our case, we consider the sct of equations 8y obtained from X and

we construct an algebra which satisfies 8y, but violates any cquation that could correspond to o.

Our sccond result is a precise characterization of the complexity of acyelic IND’s and FD's.
Intuitively, a sct of IND's is acyclic [58] if it does not contain any cycles of inclusions, such as
{R:AJACR:B By}, {R:ACS:B, S:B'CR:A’} and so on. Acyclic sets of INID's have been proposed
as a uscful tool for databasc schema design [58]. One can casily observe that the implication problem
for acyclic IND’s and FD’s can be solved in cxponential time (the chase terminates in this case). NP-

hardness lower bounds for the problem were obtained in [26].

We show that the implication problem for acyclic IND’s and FD’s requires exponential time
(Theorem 2.4). The main obscrvation is that, when all FID’s are unary (i.e. the left-hand side contains
a single attribute), the cquational inferences of Examples 1.1, 1.2 can be viewed as infcrences in
semigroups (Corollary 2.3). Such inferences can in turn simulate computations of an automaton with
two pushdown stores. Since such automata are universal computing devices, we obtain a tight
undccidability result for FD and IND implication (Theorem 2.3). Furthermore, the acyclicity
condition on the IND’s corresponds to bounding the size of one of the pushdown stores, which gives

us exponential time.

1.4 Chapter Three: Application to Typed IND’s

A usual assumption in database theory is that all databasc relations are projections of a single
universal relation (Universal Instance Assumption [62, 51]). In practice this is not always the case, so
onc has the problem of testing the existence of a universal instance and the problem of adjusting the
database relations to maintain the existence of a universal instance as the database is updated. Both of
these problems are known to be NP-complete [39]. An alternative, weaker condition we may impose
on a multi-relational databasc is pairwise consistency, i.e. every pair of the databasc rclations is

required to have a universal relation. This condition is casy to test and maintain, as described in

10

numecrous works on the subject (sec [8] for a review). In fact, if the database scheme is acyclic [8] then

pairwisc consistency implies the existence of a universal instance.

Most of the theoretical work on dependencies is donc in the context of databascs consisting of a
single relation, i.c. it assumes the existence of a universal instance [62, 51]. A natural question, then,
is to investigate the cffect of the weaker assumption of pairwisc consistency on the implication
problem, say for functional dependencics. Although the implication problem for FID’s is solvable in
lincar time assuming a universal instance [6], it is not clear even if it is decidable in the context of

pairwisc consistency.

Let r,r, be relations over relation schemes Ry[U], Ry{U,] respectively. It is not difficult to sce

that rj.r, have a universal instance iff the projection of ry on U;NU, is the same as the projection of

1, on U;NU, [1]. This can be expressed (with a slight abuse of notation) by the pair of IND’s

RIUlﬂU2(_:_]{2UIOU2
1{2:U10U2gl{1:Uan2.

These arc examples of fyped IND’s. An IND is typed[17, 48] if it has the form R:A;. A CS:A LA .
By the above observation, we can then formutate the implication problem for FD'’s in the presence of

pairwisc consistency as an implication problem for FD’s and (typed) IND’s.

In this Chapter, we apply the cquational techniques of Chapter 2 to study the implication problem
for FI>’s and typed IND’s. The main tool we develop is a proof procedure for general FD's and IND’s
(Theorem 3.1). This proof procedure is different from the procedure of Theorem 2.2 and somewhat
reminiscent in spirit of the axiomatization of [54]. We prove completencss of the procedure by

showing that it captures (indirectly) equational inferences as in Examples 1.1, 1.2,

By analyzing the behaviour of this proof procedure in the case of typed INIY’s, we obtain a
decidability result for typed IND’s and FD’s satisfying an acyclicity condition (Corollary 3.1). We
then further specialize the proof procedure to the case of unary FIY's in the presence of pairwise
consistency (Lemma 3.2). By a rather complicated analysis of derivations, we show that this
implication problem is undecidable (Thcorem 3.3). This provides a very tight undccidable case of FD

and IND implication.

Finally, we use Lemma 3.2 to show that there is no k-ary axiomatization (involving only F1)’s and

INDY’s) for implication of unary FI)’s under pairwisc consistency (Thcorem 3.4; the technical notion

11

of a k-ary axiomatization is explained in Chapter 3). 'This strengthens a previous result of {16] about

non-existence of k-ary axiomatizations for F1)'s and INID’s.

1.5 Chapter Four: Finite Implication of FD’s and Unary IND’s

Given the importance of the finite implication problem, it is natural to ask if our cquational
approach can be extended to finite implication. Unfortunately, there arc difficultics. The
completeness part of Theorem 2.1 is proved by analyzing a proof procedure (the chase). However, in

the casc of finite implication of FID's and IND's such a proof procedure does not cven exist [54, 19].

Nevertheless, we can have a complete proof procedure for finite implication of FID's and IND’s, if
we restrict oursclves to INI)'s with onc attribute per side (unary INIY's). Unrestricted implication
becomes rather uninteresting in this case, because F1)’s and unary IN1Y’s do not interact in any non-
trivial way (Proposition 4.1). However, in the finite casc we have the following interaction:

Jrom Ag— Ay and A\ DAy and...and A 1 — Ay and A, DA,
derive Aj— Ay and Ay DAy and...and A ,— A, 1 and AgIA,

(m odd).
It turns out that this is the only non-trivial interaction: by turning the above observation into a set of
inference rules (one for each odd m) and including the usual inference rules for FID's [S] and IND’s
[16], we obtain a complete axiomatization for FD's and unary IND’s in the finite case (Theorem 4.1).
The completeness proof is rather long and it involves an intricate construction of a finite
counterexample relation, We also remark that this axiomatization leads to a polynomial-time
algorithm for finite implication of FID’s and unary INI)’s [44]. The class of FD’s and unary IND’s is
the only known class of dependencics for which unrestricted and finite implication are both solvable

without being identical.

Interestingly, the above axiomatization can also be used to prove an analogue of Theorem 2.1 for
finitc implication of FI)'s and unary IND’s (Thecorem 4.2). However, this result is weaker, in the
following way. Suppose, for example, that we want to test if the FID A—B is implicd from a set of
dependencices . In the unrestricted case we can show that, if A—1B is implicd, then there is a term
such that the cquation r[x/ax]=Dbx is implicd (cf. Example 1.1); i.c., 7[x/ax]=bx holds in all algebras
which satisfy the cquations corresponding to Z. In the finite case, we can only show that, for cach

algebra A as above, there is a term 7 (depending on A) such that the equation 7{x/ax]=bx holds in

12

1.6 Chapter Five: Partition Dependencies

We have presented in Chapter 2 an cquational formulgtion of funetional dependencies. One can
also have another formulation of quite different flavor, usjng algebraiy operations on partitions (this

scems to be a folklore obscrvation, sce c.g. [15, 60]).

Spccifically, let r be a relation and for cach attribute A fet o, be the following partition of the set
of tuples of r: tuples ts arc in the same block of o iff they agree on atgribute A. Now it is easy to sce
that r satisfics the FD A— B iff

TAL TR,
or, cquivalently,

TA=TA TR
mg= 7TA+'”B.

Here < is the usual refines relation and ¢, + are the usual product and sum operation on partitions.

We are thus led to consider general equations over ¢+ and the @ ’s. We call such equations

partition dependencies (PD’s) [27].

We first compare the expressive power of PID’s to that of previously studied database constraints,
namely embedded implicational dependencies {34]. A first observation is that PD’s of the form
TA=mg+wC can express symmetric transitive closure (Example 5.2). It follows by a simple
compactness argument that such PID’s cannot be expressed by any set of EID’s (Theorem 5.1). On
the other hand, P1)’s are unable to detect complicated patierns of equalities in relations and for this

reason they cannot express, for instance, multivalued dependencies (Theorem 5.2).

We then study the implication problem for PD’s. We observe that the (finite) implication problem
for PD’s is cquivalent to the uniform word problem for (finite) Jattices (.emma 5.1). This follows
from two deep results of lattice theory, namely that (finitc) cquivalence rclations can represent
arbitrary (finite) lattices [66, 56}. Using techniques from universal algebra [36, 47] and lattice theory
[28], we show that these word problems are cquivalent and they can be solved in polynomial time

(Thcorem 5.3).

13

Finally, we examine the problem of testing consistency [38, 64] of a databasce with a sct of PD’s.
Using our polynomial-time algorithm for implication, we show that it can be reduced to testing
consistency with a sct of IF1>’s [38]. It follows that the problem can be solved in polynomial time

(Thcorem 5.4).

1.7 Credits

The rescarch reported in this thesis was donce in close collaboration with Paris C. Kaneliakis, and
has been documented in a serics of joint publications [25, 26, 44, 27]. Individual credit for the main

results gocs as follows:
Theorems 2.1, 2.2, 2.3, 2.4 were obtained jointly, and appcared in [25].

Theorems 3.1, 3.2, 3.3 are duc to the author of this thesis, and appeared in [25]. Theorem 3.4 was

obtained jointly, and appcared in [26].

Thecorem 4.1 was obtained jointly, but Paris C. Kancllakis was the main contributor; this result

appeared in [44]. Theorem 4.2 was obtained jointly, and appeared in [25].

Theorem 5.3 was obtained jointly, but the author of this thesis was the main contributor; this

result appeared in [27]. Theorems 5.1, 5.2, 5.4 were obtained jointly, and appeared also in [27].

The extension to gencral dependencics outlined in the concluding chapter is due to the author of

this thesis.

14

Chapter Two

The Equational Approach to Dependencies

We present in this Chapter the equational formalization of functional and inclusion dependencies.
Scction 2.1 gives the necessary definitions and background from databasc theory and cquational
logic. In Scction 2.2 we present the main Theorem and its Corollarics. We usc it in Scction 2.3 to
prove completeness of a new proof procedure for F1Y's and IND's. In Scction 2.4 we apply the

cquational formulation to prove new lower bounds for FID and IND implication.

2.1 Definitions

2.1.1 Relational Database Theory

Lct AU be a finite sct of attributes and < a countably infinite sct of values, such that UNF=@. A
relation scheme is an object R[U], where R is the name of the relation scheme and UCY. A wplet
over U is a function from U to 9. Let U={A;,...,A,} and a; a value, k=1,..,n; if A]=a,, we
represent tuple t over U as aja,...a,. We represent the restriction of tuple t on a subset X of U as t[X].
A relation r over U (named R) is a (possibly infinite) nonempty sct of tuples over U. A database
scheme D is a finite set of relation schemes {R I[U]]*""Rqruq]} and a database d:{rl,...,rq} associates
cach relation scheme Ry [U,] in D with a relation r, over Uy. A databasc is finite if all of its relations
arc finite. A databasc can be visualized as a sct of tables, onc for each relation, whose headers are the

relation schemes (cach column headed by an attribute) and whose rows are the tuples.

The logical constraints which determing the sct of legal databascs are called database dependencies

[62, 51]. We will be examining two very common types of dependencies.

FD R:A A=A (nD0) is a functional dependency [62, 51].
Relation r (named R) satisfics this FD iff,
for tuples t;, ty in 1, t)[A .. A]=t[A ..A] implies t;]A]=t,[A].

15

If n=1, i.c. the left-hand side contains a single attribute, we have a unary functional dependency

(u-FD).

IND §:D,..0,,CR:C,..C, (m>0) is an inclusion dependency [16].
Relations s,r (named S,R respectively) satisfy this IND iff,

for cach tuple tin s, there is a tuple ty in r with t)[C,]=1t[1);]}, k=1,...m.
If m=1, we have a unary inclusion dependency (u-1D).

Fquality of two columns headed by attributes A,B in a relation named R can be expressed as a

special case of IND's: Use an IND such as RiABCR:AA. These dependencics arc particularly

illustrative of our analysis; we will usc A=DB to denote them.

Database Notation: Wc use a graph notation to represent an input database scheme D and a sct of

dependencies 2 (input schema). We construct a labeled directed graph Gy, (sce Figure 2-1), which has
exactly one node a]i(for cach attribute Ay of cach relation scheme R; For cach IND
Ry: DD, CR:C..C in Z, the graph Gy contains m black arcs (c},d%),...,(c,ln,dﬁl); each arc is
labeled by the name i of the IND. For cach FD Rj:A;..A —A in Z, the graph Gy contains a group
of n red arcs (a},al),...,(a}],al); the group is labeled by the name f of the FD and its arcs are ordered

from 1 to n as listed above.

We also construct two directed graphs Iy, and Fy (see Figure 2-1): The graph Iy has one node for
cach relation scheme name in 2 and arc (Rj,Rk) iff Gy contains some black arc (Aj,Bk). The graph Fy
has on¢ nodc a for cach attribute A of D and arc (a,b) iff Gy, contains some red arc (ak,bk). We now

define special syntactically restricted forms of input schemata:

Acyclic IND’s: 1y, is acyclic [58].

Acyclic FD’s: Fy, is acyclic.

Typed IND's. The black arcs of Gy arc all of the form (Aj,/\k) for relation names RJ-,Rk and attribute
A[17, 48].

Typed INIDY’s are between occurrences of the same attribute names in different relation schemes.

If we assume that all possible typed IND’s are in the input schema, (i.e., with some abuse of notation

R:UNUCS:UNU" for all relation schemes R[UJ, S[U"] in database scheme D), then we have
pairwise consistency PC(D) [48].

16

Implication: We say that X implies o (Zk=0) if, whenever a database d satisfics Z, it also satisfics
o. We say that Z finitely implies ¢ (ZF=,0) if, whenever a finite databasce d satistics Z, it also
satisfics o.
Clearly if ZE=o (implication) then ZF= 0 (finite implication), but the converse is not always true.

Deciding implication of dependencics is a central problem in database theory.

Since dependencics are sentences in first-order predicate calculus with cquality, we have proof
procedures for the implication problem (we denote provability as o). A proof procedure is sound

if whenever ZHo, we have 20 and complete if it is sound and whenever 2o, we have Zo.

The standard complete proof procedure for database dependencics is the chase [62, 11]. We now

present the chase for F1D's and IND’s (cf. [43]).

Chase: Given an input schema D, 2 and a dependency o, construct a sct of tables T, with D’s
relation schemes as headers. Thesce tables are originally empty and will be filled with symbols from
the countably infinite set $. Whenever we insert a new row of symbols from 9 in a table of T and we
do not specify some of the entrics of this row, we assume that distinct symbols from %, which have
not yet appeared clsewhere in T, are used to fill these entries. We usc ti for the k-th row of table R

and t[X] for this row’s entries in the columns of attributes X.

The initial configuration of T depends on o as follows:

(i) If o is the FD R:A ...A—A: insert rows t], t5, with the only restriction that

tS[Ak] = tg[/\k], k= 1,...,n.
(i) If ¢ is the IND S:D;..D,,CR:C;..C,: insert t}.

Every dependency in Z produces a rule, as follows:
If fisan FD in X the corresponding FDD-rule is:

{Consider T a database over symbols in <. If T docs not satisfy f, because two symbols x and y are

different, then replace y by x in T,
Ifiis an IND R:XCS:Y in Z the corresponding IND-rule is:

<Consider T a databasc over symbols in 9. If T does not satisfy i, because some t'[X] docs not appear

in the table S as some tY], then insert t¥ in S with t]Y]=t[X]>

We will say that 2k 4. .o, if there is a finite sequence of applications of the FD-rules and IND-

rules produced by Z that transforms 1’s initial configuration to a final configuration satisfying:

17

(i) [T o is an FD as above: t)[A]=t§A].
(i) If o is an IND as above: for some j,

GD=4ICy) k=1,..m.
Proposition 2.1: 2 4. 0 iff Zk=a. 1

An alternative proof procedure for FID's and INID's is provided by the axiomatization of [54]. If =
is a sct of FID's and IND's and o is an FD) or IND, then Zk=g iff o can be proved from 2 using the

following rules (X,Y denote sets of attributes):
1. (reflexivity) RitA—A.
2. (augmentation) from R:X— A derive R:XY—A.
3. (transitivity) from R:X— Ay, k=1,...n, RiA[...A —A, derive X—A.
4. (IND reflexivity) R:A LA L CR:A LA,

5.(IND transitivity) from Ry:ALLALCRy:B.B, and Ry:B..B CR;3:C,..Cp, derive
RlAlAng:;CICm'

6. (permutation, projection and redundancy): from R:ALACS:By..B, derive

R:Ajl...Ajpg S:le...ij, where 1<j, <m, k=1,...,p.

7. (equivalence) from R:ABCS:CC and o derive v, where 7 is obtained from o by
substituting A for one or more occurrences of B.

8. (pullback) from R:A..A ,ACS:B,..B,B and S:B,...B,— B derive R:A{.. A —A.

9. (collection) from R:A..AB,..B CS:A;..ABi..B,, R:B..B, CCS:B;..B;C" and
S:B;]..B;—C" derive R:A;...AB)...B ,CCS:A;..A;B;..B;,C".

10. (attribute introduction) from R:A..A CS:By..B, and S:B..B,—B derive
R:ALL.ANCS:B,..B, B, where N is a new attribute.

Rules 1-3 arc the standard rules for FD's [S, 62] (written in our notation) and Rules 4-6 are the
rules of [16] for INID's without repeated attributes. The salient rule is attribute introduction (Rule 10).
Whenever this rule is applicd, the attribute N is chosen to be an attribute which does not appear in 2
or in any previous step of the derivation, Rule 10 is sound in the following scnse: Whenever the

antccedents are true in relations r,s (over relation schemes R,S respectively), there is a relation r’

18

which differs from r only on a new column headed by N and which satisfics the conclusion.

2.1.2 Equational Logic

Let M be a set of symbols and ARITY a function from M to the nonncgative integers N, The set of
finite strings over M is M*. Partition M into two sets:

G={g&M| ARITY(g)=0} is the sct of generators,
O={0eM| ARITY(8)>0 } is the sct of operators.

Definition 2.1: F{M), the sct of terms over M, is the smallest subset of M* such that,
1) every gin G is a term,
2)if 7,...,7 arc terms and @ is in O with ARITY(8)=m, then §7,...7 is a term.

A subterm of 7 is a substring of =, which is also a term. Let V={xx;,x,,...} be a sct of variables.
The sct of terms over operators O and generators GUV will be denoted by 97 (M). For terms 14,...,7,
in (M) we have a substitution p=1{ (xq+74) | k=1,..n }, which is a function from gJt(M) to
g+ (M). We use @(7) or 7[xy/7y,...x, /7] for the result of replacing all occurrences of variables x, in

term 7 by term 7y, k=1....,n, where these changes are made simultaneously.

Definition 2.2: A binary relation = on 9{M) or ¥* (M) is a congruence provided that,
1) = is an equivalence relation,
2)if ARITY(@)=m and 7, =<7, k=1,...m, then .7, T br] .7}
An equation ¢ is a string of the form =7/ where 7,7 "are in " (M). We usc the symbol E for a set
of cquations. We will be dealing with models for sets of cquations, i.e., algebras. We consider each
equation ¢ as a sentence of first-order predicate calculus (with equality), where all the variables from

V arc universally quantified.

Definition 2.3: An algebra A is a pair (4,F), where A4 is a nonempty sct and F'is a sct of functions.

Each f in Fis a function from A" to 4, for some n in X which we denote as type(f).

Example 2.1:
(a) A semigroup (A,{+}) is an algebra with one binary operator which is associative, i.e., for all x,y,z
in 4 we have (x+y)+z=x+(y+7). An cxample of a semigroup is the set of functions from Nto N,
together with the composition operation. [n semigroups we use ab instcad of a+b. We also omit

parcnthescs, without ambiguity.

19

(b) Ay is an algebra with A=9{M). For cach 8 in O wc define a function @ in F with
fype(@)= ARITY(8): here we usc the same symbol for the syntactic object 8 and its interpretation.
The function § maps terms 7....,7,,, from 9(M) to the term @17, (i.c, 8(Ty,ety) =071).
This algebra is referred to as the free algebra on M. From this example it is clear that we can without

ambiguity usc both @1y...7, and #(7,.....,7,) to denote the same term.

(c) Let = be a congruence on 9{M). Condition (2) of Definition 2.2 guarantees that the operations
in O arc well-defined on =-cquivalence (or congruence) classes. Thus we can form a quotient

algebra J{M)/ = with domain {[r]] 7 in 9{M), [r] is the ==-congruecnce class of r} and with functions

corresponding to the opcrators in O.
(d) Obscrvations similar to (b).(c) can be made for the sct of terms ' (M).

Implication: Let ¢ be an cquation and A an algebra. A satisfies ¢, or is a model for ¢, if ¢ becomes
truc when its operators and nonvariable gencerators are interpreted as the functions of A and its
variables take any values in the domain of A. The class of all algebras which are models for a set of

cquations E is called a variety or an equational class. We say that E implics ¢ (El=c) if the equation €

is true in every model of E,

Definition 2.4: An equational theory is a sct of equalities E (of terms over 91 (M)), closed under

implication.
Sec [41] for a survey of cquational theories.

We write Eb—c, if there cxists a finite proof of ¢ starting from E and using only the following five
rules:
T=1T,
Srom 1) =7, deduce T9=14,
Jrom 1y =1, and 1y =1y deduce 1, =15,
Srom =7, k=1..m, deduce §ry..7,=07]..7}, (ARITY(§)=m),

Jrom 1= 1, deduce @(71)=p(r,) (p is any substitution).
Proposition 2.2: [14, 41 EE=r=7"iff E—r=71. 1

Proofs in the above system can also be viewed as reduction sequences, as follows [41]: Whenever

Eb=7=17", there is a sequence of terms 7,...,r, such that 7 is 7, 7, is 7°, and for k=0,...,m-1 the

20

term 7, | is obtained from 7, by rewriting a subterm @(o) as ¢(o,), where 0 =0, (g,=01) is an

cquation in FE and ¢ is a substitution.

Let I be a sct of equations over terms in HM) (i.c.. containing no variables). Consider the
cquational theory consisting of all cquations =7 "such that =1 =7 By Proposition 2.2 this theory
induces a congruence = on 9{M), where 1 =77 iff 'E7=1". FFrom cxample (c) above we sce that
this congruence naturally defines an algebra 9(M)/ =p. If I' is a finite set, M)/ = is known as a

finitely presented algebra [47].

2.2 Functional and Inclusion Dependencies as Equations

Let 2 be a sct of FID's and INIY's over a database scheme D and o an FD or IND. We will
transform X into two scts of equations Iiy and 8y. We will show that 2= iff Egy=E_iff 858,
for some sets of cquations E_,8,_ whose form depends on Z and 0. We assume that D only contains

one relation scheme. This simplifies notation, and there is no loss of gencrality.

Transformation: From the dependencics in Z construct the following sets of symbols:

M= {f; | for each FID with n attribute left-hand side include onc operator f of ARITY n},
M;={i | for cach IND) include one operator iy of ARITY 1},

M, ={a, | for each attributc A, include onc operator a, of ARITY 1},

M, ={a, | for cach attribute A include one generator ay}.

Now let M=MUM,;UM,UM,, and V={x,x},X,,...} be a set of variables. I*(Mp (I (M),)) are the
sets of terms constructed using operators in M; (M;) and generators in V.

The set Ey, consists of the following cquations (presented in string notation):

1) one equation for each FD A A —A: fiax..ax=ax,

2) m equations for each IND B,..B ,CA,.. A : ajiix=byxand .. and aji,x=bx.

The sct &5 consists of the following cquations:
3) onc cquation for cach FD AL A —A: fiap.a,=a,
4) m cquations for cach IND B,..B,CA..A: iya;=p1and ..and jya,, =8,
5) for cach pair of symbols f;, in My and i in M; the cquation fii Xy..igX, =1 fpx1...%,

(ARITY(fp) =n).

Note that in 8y only equations (5) contain variables. Equations (5) are commutativity conditions

21

between the fi's and the iy 's. We now present Theorem 2.1, which is central to our analysis.

Theorem 2.1: In cach of the following three cases, (i),(ii).(iii) arc cquivalent.

= Casc:

i) 2= A=B

ii) Ey = ax=bx

iii) 6y = a=g.
FD Case:

) ZFEALA A

i) By = 7[x)/a;x,....x,/a,x] =ax, for some 7 in T (M)

iii) 8y =[x,/ @}, X/ @] = a, for some 7 in T (M),
IND Case:

)2 B..B,CAL. AL

ii) Ey F= ajr=bx and ... and a7 =b,x, for some 7 in I (M;)

iii) 85k= r{x/a;]= B, and ... and r[x/a }= B, for some 7 in T (M,).

Proof: Obscrve that the = Casc follows immediately from the IND Case, by writing A=B as

ABCAA. Weusc E_ (8,) to denote the set of equations corresponding to term 7 in (i), (iid).

(i)=>(i):
Suppose Ey=E,, and let relation r satisfy Z; we will show that r satisfics o (o is Aj...A;—A in the
FD Case and B;..B CA,..A, in the IND Casc). Relation r is, by definition, nonempty and its
entries can be assumed w.l.o.g. to be positive integers. Let the tuples of r be ty,ty,... (it could contain
a countably infinite number of tuples).
For cach attribute A in U, define a function a(.): N— N (Nis the set of nonnegative integers) so that, if
v is the index of a tuple in r, then a(v) is the entry in tuple t, at attribute A; clse a() is 0.
For each FD) C,..C;—C in Z, definc a function A N— X so that, if a,=1,[C] k=1.....j, then
Aa 1,,..,aj): t,[C]; clse Aa 1,...,le) is 0. This is a well-defined function, since r satisfics Cl...Cj—»C.
For cach IND D;..1D;CC,..C; in Z, definc a function 4.): N— N 'so that, if » is the index of a tuple in
r, then {p)=p where »is the index of the first tuple in r where t,[Dy..Dy]=t,[C;...Cj); elsc {») is 0.
This is also a well-defined function, since r satisfies D;..I3,CC;...C;.
We have constructed an algebra with domain N and functions a(.),....f...)....,i{.),..., which, as is casy to

verify, is a model for Es. Let o be an IND. By interpreting cach symbol in 7 as an i(.), we sce that,

22

when pois a tuple number, r[x/»] is another tuple number. Since Eyk=E_, we must have

a (t[x/v]y=by(x), k=1,....m, which mcans that r satisfies o. The casc of an FD is similar.

(iii)=>(ii):
Suppose &yF=6_, and let Ab be a model of Ey; we will show that M satisfics E_. From Ab we
construct a model A(Ab) for 8. The domain of A(Ab) is the set of all functions from b to A, ie,
So— A,
In A(A) the interpretation of a is the function a(x), which is the interpretation of a(.) in Ab. The
interpretation of i(.) is the function AA.A(i(x)), where {x) is the interpretation of i(.) in Ab., This is a
function from M— M to Mo, The interpretation of f...) is the function
Ahyhg (X)), (X)), where f(x,...,x,) is the interpretation of f{...) in Ab. This is a function from
(Mo—)" to Mo—r Mo,
It is straightforward to check that equations (3),(4) hold in A(AM), because Ab is a model for Es.
Also equations (5) hold in A(AM): For example, if n=1 the interpretation of f{i(A)) in A(A) is
AA({x)), which is also the interpretation of i{f(4)) (& is any clement of M— M), Thus A(Ab) is a
model for 8y. Since 8xF=8_, A(Mb) satisfics 8. From this it follows that Ab satisfies E, .

(i)=>(iii):
IND Case:
Consider a chase proof of B,..B CA,..A, from Z. This chase starts from a single tuple t; and

gencrates tuples t,...,t,, where t [A;. A]=t[B,..B]. Now a tuple can only be gencrated by

”
applying an IND-rule on some previously gencrated tuple. Thus, we can assign (inductively) to each
tuple t, p=1,....»,a term 7, in 97 (M;), as follows:

lr=x

2.0If t, was generated from ty» a<p, by applying the IND-rule corresponding to some IND i in Z, then
Tp=Tg[x/ix].

The term = records the sequence of applications of IND-rules which produced t (starting from ty).

p

We will show the following

Claim: For 1<p,q<v, C,D in U, if tp[C]:tq[D], then 8x1='rp[x/y]:-rq[x/6]. where v,6 arc the

symbols in M, corresponding to C,D.

Clcarly, the IND Case follows from the Claim: Since t[A[..Apl=tB..B,]l, we have

23

SyF=7 Ix/ay]=B k=1,..m.

Proof of Claim; Supposc the cquality tp[C]:tq[D] appears after cxactly z steps of the chase. We

arguc by induction on z.

Basis: 2=0.Then p=q=1, Cis D, and the conclusion is straightforward.

Induction Step: Let t[Cl=x, tq[D]:}\. The symbols k,A werg cquated by the chase. We

distinguish three cascs, according to how this happened.

a. k is a freshly created symbol, identical to A. This means t, was created from tys p<p, using an
IND X;C"X,CY CY; in 2 (XY, CU, k=12), and t, [C]=1y[D]. By the induction hypothesis
EyEr x/yl=1[x/8]. Now 7,
X1CX,CY CY,y, and also iy =y is in 8. Thus, EyF=r, [x/iy]= 'Tq[X/(S], i.c. Szi=7p[x/y]= Tq[x/B].

= 'rp—[x/ ix], where i is the operator corresponding to

b.x was cquated to A in order to satisfy some FD C;.C—C in Z. This means
tp[Cl...C.j]:tq[Cﬂl...Cj], and D is C. By the induction hypothesis th'—'fp[x/yk]:Tq[x/yk], k=1,..J.
Also, we have in 8y the cquation fyl...yjzy, where f is the operator in M; corresponding to the FD
C;..C;—C. Thus, €y implics pr[X/yl]...Tp[X/‘yj]:Tp[X/fyl...Yj] (by the commutativity conditions
(5)) =mplx/y]l. Similarly 83 implics f'rq[x/yl]...'rq[x/yj]f—‘ Tq[x/fyl...yj]:'rq[x/ﬂ, S0
Eyk= Tp[x/y] = Tq[x/'y].

c. There are tuples t-tg-, p’<p, 9'’<q, and C".D"in U such that t, [CT=«, t;[D]=A, and L, 1C1]
was cquated to tq-[D'] at some carlier step. Then by the induction hypothesis 8y implies
'rp[x/}'] =1px/y] 7[x/8]=1,{x/87, and To[X/yT=14{x/87 Thus, 84k Tlx/Y]= 'rq[x/S].

FD Case:

Consider, as before, a chase proof of Ay...A,—A from . This chase starts from two tuples t;,t) and
generates tuples ty,....t,; finally, ;JA]=t,JA]. Again a tuple can only be gencrated by applying an
IND-rule on some previously generated tuple, so we can assign (inductively) to each tuple ts
p=1,..», aterm 7, in 9 (M;), as follows:

Lr=xp, 19=X%,.

2. If t, was gencrated from tg- A<p. by applying the IND-rule corresponding to some IND i in Z, then
Ty = TglX1/ixy, X5/i%)).

Obscrve that 7, also records the uple (t) or tp) which produced b (apart from the sequence of

24

applications of IND-rules).
We will show the following

Claim: For 1<p,q<r, C.D in A, if tp[C]:tq[l)], ten 8):}=7p[xk/y]:'rq[xk/8] (k=12). If,
additionally, t, is produced from t; and t; is produced from t, then &y implics

1. [x1/Y]=7,[X2/ 8] = 7[Xy/ @ X /@], fOr SOME 7 in TH(M)).
pttl ql*2 1741 n’ &n f

Clearly, the IND Casc follows from the sccond part of the Claim: Since tj[A]=t)[A],
8yFa=r[x;/a),...x,/a,). for some 7 in I (M.

Proof of Claim: Suppose the cquality tp[C]:tq[l)] appears after exactly z steps of the chase. We

argue by induction on z.

Basis: z=0. Then p=q=1, C and D are both some A, 1<k<n, and the conclusion is

straightforward.

Induction Step: let tp[C]zn, tq[D]:}\. The symbals k,A were cquated by the chase. We

distinguish three cascs, according to how this happened.

a. k is a freshly created symbol, identical to A. This means tp was created from Ly p<p, using an
IND X,CX,CY,CY, in 2 (X,,Y,CU, k=1.2), and tp»[(j ’]:tq[l')]. For the first part of the Claim,
wc argue cxactly as in the IND Case. For the second part, note that if tp is produced from t; then so is

ty- Therefore we can use the induction hypothesis on tontg.

b.k was equated to A in order to satisfy some FD C,..C—C in Z. This means
tp[Cl...Cj]:tq[Cl...Cj], and D is C. The argument for the first part proceeds exactly as in the IND
Case. For the sccond part, note that since 8 implies 7[x,/vyl= 7y[x;/ay,..x /o) k=1....]

(by the induction hypothesis), we have that 8 implies
Tp[XI/Y] - Tp[xl/f'}’l..'}’l] = pr[xl/YI]Tp[X]/YJ] =fr l[xl/a1,...,Xn/an]...'rj[xl/al...xn/an]=
=7[x{/ay,...x,/a,), where 7 is f71...¢j. Similarly, 8y implies

o1/ Yl=7lx 1/ ay,xy/ag]

¢. There are tuples Ll p’<p, q9'<q, and C",1D"in U such that tp'[C’]-—— K, tq-[D’]: A, and tp.[C'J
was cquated to tq«[D’] at some carlier step. The argument for the first part proceeds cxactly as in the

IND Case. For the sccond part, if ty Was produced from t,, use the induction hypothesis on toolps

25

clse, if tyr was produced from ty, usc the induction hypothesis on A N clse, use the induction

hypothesis on tyn by

This concludes the proof of (i)=>(iii), so we arc done. I

We remark here that the (i)=>(iii) direction can also be proved by showing that cach of the rules
of [54] (sce Subsection 2.1.1) can be simulated using the equational reasoning of Proposition 2.2. We

illustrate this simulation with an example;
From A—B and CDCAB the pullback rule of [54] derives C-—D. In cquational language fa =4,

ia=7v,iB =4 and fix=ifx imply fy =fia=ifa =i = 4.

Corollary 2.1: l.ct 2 be a set of F1)'s and ¢ an FD. The implication problem 2F=¢ is cquivalent

to a generator problen for a finitely presented algebra [47).

Proof: 8y is now a finite sct of cquations with no variables. If = is the congruence induced by €5
on 9{M) then 9{M)/ = is a finitely presented algebra. The cquational implication in Theorem 2.1 is

known, in this case, as a generator problem for the finitely presented algebra JMy/=<. 1

Using Corollary 2.1, one can obscrve that the linear time algorithm of [6] for implication of FD’s

can be derived in a straightforward way from the algorithm of [47] for the generator problem.

Corollary 2.2: Let Z be a sct of FI)’s. The implication problem ZF=A=B is a uniform word
problem for a finitely presented algebra{47]. 1

If the given FD’s are all unary. then the equational inferences in the theory Ey can be thought of
as inferences in semigroups. This gives yet another transformation of (unary) FD’s and IND’s into

cquations:

Semigroup Transformation: Let 2 be a sct of IND’s and u-FD’s. Construct a sct of symbols Mg
from M as follows: for cach f,(.) in M; add one generator fi in M; for cach iy(.) in M; add one

generator iy in M; for cach ay(.) in M, add one generator a, in M; add one binary opcrator + in M,

The set of equations Eg consists of the associative axiom for + and the following word (string)
cquations (we omit + and parentheses):
1) onc cquation for cach u-FID A;—A: fia;=a,

2) m cquations for cach IND B..B CA..A,: ajig=Dbyand .. and a,i, =b,,.

26

Coroltary 2.3: I.ct = be asct of u-FI)'s and IND's:
2EA=Biff Eg= a=b.
ZF=A = A ff Egk= wa) =a, for some string w in M.
ZE=BLLB CA LA, iff EgE ajw=D; and ... and a ,w =b, for somc string w in M¢. I

Note that the first casc is an instance of the uniform word problent for semigroups. The other two

cascs arc known as Eg-unification problems [41].

2.3 A Proof Procedure for FD’s and IND’s

We will now describe a proof procedure for DD and IND implication, which cxploits the special
structure of the cquational theory &, (Theorem 2.1). Whenever a dependency o cannot be proved
from a set of dependencics =, the procedure provides us (in a natural way) with an algebra which
satisfics 8y but violates any cquation that could correspond to ¢. Thus, by Theorem 2.1 we have that

Z docs not imply g, i.c. the procedure is complete for FD and IND implication.

The Proof Procedure G:

Given a set 2 of FD's and IND’s construct their graphical representation Gy, defined in Subsection
2.1.1. Fach attribute name in X is associated with one of the nodes of Gy.

Rules: Apply some finite sequence of the graph manipulation rules 1,2,3 and 4 of Figure 2-2 on Gy.
Rules 1 and 2 introduce new unnamed nodes. Rules 3 and 4 identify two existing nodes; the node
resulting from this identification is associated with the union of the two sets of attribute names that
were associated with cach of the identified nodes. Note that rules 1,2 w.l.o.g. nced be applied at most
once to every left-hand side configuration.

Let G be the resulting graph. Associate a unique new name with every unnamed node in G.
We say that 2o when:

a is A=B: A,B are associated with the same node.
o is an FD A;..A —A: The node associated with A gets marked by the following algorithm: We
mark the nodes associated with Ajy,...,A,; whenever nodes vy....,v; are marked and there is a group of
red arcs (vl,v),...,(vj,v) labeled by the name fof some FD in 2, we mark v.

oisan IND B..B CA;..A: Fork=1,..m thercis a black dirccted path from A, to By; morcover,

all these paths have the same sequence of labels.

27

Note that, as expected, the A=B Casc is a specialization of the IND Case: if 2= ABCAA, then

A.B can be identificd using Rule 3.

Theorem 2.2: 2o iff 2k~ 0.

Proof:
(=): Rules 3,4 arc obviously sound. Rules 1 and 2 arc sound in the sensc of the artribute introduction

rule of [54] (scc Subsection 2.1.1), which we illustrate as rule 5 of Figure 2-2.

(=>): Let G be a (possibly infinite) graph obtained by closing Gy under Rules 1-4. We will
construct from G a model b of 8.
'The domain Af of Ab is the sct V of nodes of G, together with a special node L. The gencrator ay is
interpreted as the node associated with A,.
An operator i in 8y (corresponding to some INID in Z) is interpreted as a function i:M—M as
follows: if v is in V and has an outgoing arc (v,w) labeled i, then {v)=w; else {v)=_L. This function
is well-defined, because G is closed with respect to Rule 3.
An opcrator f of ARITY j in 85 (corresponding to some FD in 2) is interpreted as a function f:Mj—»M
as follows: if V},..,Vj are in V and there is a group of red arcs (vl,v),...,(vj,v) labeled f, then
ﬂvl,...,vj):v; clse j(vl,...,vj):_L. This function is well-defined, because G is closed with respect to
Rule 4.
One can check that b satisfics the commutativity conditions (5) of 8y (because G is closed with
respect to Rules 1,2) and Ab satisfies cquations (3),(4) of 8y (because G was constructed starting from
Gy). Thus, M is a model of 8.
Now suppose we cannot prove o from Z. If o is an FD Ay ..A — A, then clearly there is no 7 in
gt (Mp) such that 7[x)/ay,..x,/a]=a in M. Thus, Ab is a counterexample to condition (iii) of

Theorem 2.1 and therefore Z does not imply o. Similarly if ¢ is an IND.

2.4 Computations as Inferences

It has been known, since at least Post’s proof of the unsolvability of the word problem for Thue
systems [55, 50], that arbitrary computations can be simulated by inferences in semigroups. Using
Corollary 2.3, we show that we can simulate computations by inferences of INID's and unary F1D’s.

We thus obtain lower bounds on the complexity of the implication problem for IND's and FID’s.

28

We first describe our machine model: A deterministic two-stack machinc M is a 5-tuple
(Q.1M,gg4,-1,8), where Q is a finite sct of states, T1 is a finite sct of spmbols (QNT =), qy,n€Q is

the start state, WNEQ is the halt state, and § is the transition function. Each move of M falls into one of

the following two types:

1. 8(q.a)=(p,por;): This mcans that, if M is in state q and «€II is the top symbol of
STACK, then on the next step M goces to state p and pops STACK,.

2. 8(q)=(p,pusiL;(B)): If M is in state g, then on the next step M goces to state p and pushes
BEIT on STACK;.
Of course, analogous instructions can manipulate STACK,.

An instantaneous description (1D) of M is a string x,...x,qQy,,...y;, where q€Q, x,y;€IT: the string

X)...X, is the contents of STACK, (the top symbol is x,); the string y,....y7 is the contents of STACK,
(the top symbol is y_.). The rclation w;=>p,w, (11D wy yields 11D w, via one step of M) is defined in
m 1= MW2 1 2

the standard way [50, 40]. =>§; is the reflexive, transitive closure of => .
Let us now define a set S of word equations (over gencrators QUIT) which capture the
computation of M:

1. 1If 8(q,a)=(p,pOP;), then aq=pisin S.
If 8(q,a)=(p,POP,), then qa=p isin S.

2. 1f 8(q)=(p.pusii(B)), then q=BpisinS.
If §(q)=(p,PUSI,(B)), then q=pBisin §.

We write u=gv iff SFFu=v. By a standard argument, based on the fact that M is deterministic

{55, 50], we have

Lemma 2.1 gy, = §h iff gy, =¢h.

To prove our first lower bound, we transform S into another sct of equations T which looks like
the scts obtained (as in Corollary 2.3) from INI)’s and u-FD’s. The set of generators is now
QU{A B, .fy | a€IT}U{I, | «€TT}U{j, | €€S}.

1. Ifqa=pisin S, thenqiy=pisinT.

2. Ifag=p isin S, then T contains the cquations q=A j., f,A, =B, B,j.=p, where e is
agq=p.

29

Lemma 2.2: qg, =gh iff qgaq=rh.

Proof: Given a word w over QUITT of the form a..a,,qf8,.-B). a€11, «;B,€l1, definc a

corresponding word w'to be f,_..f qip ..ip . We claim that, if wy.w, arc words over QUII, then
p a "‘nq Bm B 172

Wy =gW, iff w) = wj. The Lemma follows from this claim,

To prove the "only if” dircction of the claim, consider the cquations in S that can be used to
rewrite w) as w,. If qa=p is in S, then qi, =P, since qi, =p is in T. If ag=p isin §, then f,g=1p,

since f,q="f A jc.=1Bue=1P. Theconverse is also straightforward. I
Theorem 2.3: The implication problem for IND’s and two u-F1)'s is undecidable.

Proof: Given a deterministic two-stack machine M, it is undecidable if qg, = ¥h, cven if [T1{=2
[53,40]. By Lemmas 2.1 and 2.2, quq=>%h iff quq=rh. By Corollary 2.3, qg,q=rh iff
2E=Qq=H, where Z is the set of INI)'s and FI)'s which gives rise to T. But now obscrve that Z

only contains FD’s of the form A ,— B, «€T1. Since |T1{=2, Z only contains two unary FD’s. I

Undeccidability of the implication problem for INID’s and FI)'s has alrcady been proved [54, 19].
By way of comparison, these reductions use arbitrarily many IND’s of the form 1D;D,CC,C, and

arbitrarily many u-FI)’s, while our reduction uscs arbitrarily many INID’s and only two u-FID’s,

To prove our sccond lower bound, we consider computations of a deterministic two-stack machine

M where one of the two stacks has bounded size. Let us write wy=>3,w, iff ID w, follows from ID w;

by a computation of M during which STACK, contains at most s symbols.

Let S be the set of word cquations described before: this time we transform S into a set T° of
cquations which can be obtained (as in Corollary 2.3) from acyclic IND's and u-FD’s. The sct of
generators now is QOU...UQSU{AQ,Ba,fa | a€TI}U i o | a€TT, k=1,....83U
Ufjex | €€S, k=0,...s}, where Q*={q* | g€Q}, k=0,...s.

L.Ifga=pisin$, then g1, ,=p*isin 1% k=0,., s-L

2.1f aq=p is in S, then T° contains the equations qszaje,k, f AL =Bg Baje’k=pk,
k=0,..,s, wherec e is aq=p.

It is not hard to sce that T® can be taken to represent a set =° of acyclic IND's and u-FD’s: the

relation names are R[A B, | a€11], Rk[Qk], k=0,...,s. It is also casy to see the following

30

Lemma 2.3 quq=>yh iff ¢ =117 iff 28%= R% Q0 =H". 1

‘Theorem 2.4: ‘There are constants ¢;.c,>0 such that the implication problem for acyclic INID’s and

FID's can be solved in time ¢} but not in time cé‘/ n/logn,

Proof: Since the IND's are acyclic, the chase gives us a decision procedure, running in cxponential
time.
To prove the lower bound, let L be any language in DTIME(C"), ¢>0. We will show that 1. is
polynomial-time reducible to the implication problem for acyclic INID’s and u-FD's.
Let M be a deterministic n-AuxiliaryPushdownAutomaton accepting 1. [40]. Given string x, we
construct a deterministic two-stack machine M, which first puts x on STACK; and then simulates
M. This simulation is done as follows: if M is in state g, its auxiliary storage contains a;...a aw (a is
the symbol scanned) and its stack contains uf (8 is the top symbol), then the ID of M, is
uBay g...a, ggaw. It is not hard to sec how M, can simulate a move of M. Thus, M accepts x iff My
halts and STACK, always contains at most [x| symbols, i.c. x€L iff qg, = k‘,}xh. Note also that the size
of M,, [IM, |, is O(|x}).
Now let =¥ be the set of acyclic INID’s and u-FI)'s corresponding to M,. Using Lemma 2.3, x€L iff
M= RO QY =H" To complete the proof, observe that =M can be computed from x in

polynomial time, and that the size of s O(IM, | |x| loglx]), i.c. O(Ix[zloglxl). |

31

D={ gi(_&scl , Rz[.ﬁbm}

| —— red
2={ R,: AB=D, '
R’.‘L: B-C, |
R,: AB S R,:AB,
Ry ASRyB)

Figure 2-1: Graph notation for FD’s and IND’s

32

Rude 1

Rule 3

Rude 4

Rw(L 5
LMitchell]

Figure 2-2; Graph rules for FD's and IND’s @ : new ner,

33

Chapter Three

Application to Typed IND’s

In this Chapter we usc the tools developed in Chapter 2 (Section 2.2) to study the particular
implication problem for FID's and typed INID’s. We first present a proof procedure for general FD
and IND implication (Scction 3.1), similar in spirit to the proof procedure of Theorem 2.2. By
specializing this proof procedure to typed IND's, we obtain as a corollary that the implication
problem for acyclic F1>’s and typed IND's is decidable (Section 3.2). In Scction 3.3 we study the
special casc of inferring FID’s under pairwise consistency. By analyzing derivations (in the proof
procedure of Section 3.1), we show that the problem is undecidable. We also prove that there is no k-
ary axiomatization for implication of FI)’s under pairwise consistency. As a by-product of our

techniques, we obtain finite controllability of acyclic unary FID’s under pairwise consistency.

3.1 Another Proof Procedure for FD’s and IND’s

We present in this Scction a proof procedure for general FID and IND implication. This procedure
is the main tool we usc to study thc implication problem for typed IND's and FD's, To prove
completencess of the procedure, we show that it captures (in an indirect way) cquational inferences in

the theory Ey of Theorem 2.1.

Let Z be a given sct of FD’s and IND’s over a database scheme D, containing a single relation
scheme R[U]. We represent attribute A €U by a node a;. An FD A|..A,—A in Z is rcepresented as
shown in Figurc 3-1 by introducing a node fa;...a; (we use a different function symbol f for each
given FD), a group of directed arcs (ay, fa)..ap),....(a,, fa;..a,) labeled f and ordered from 1 to n, and
an undirccted arc <fa,...a;,, a>. The undirected arc is the only modification to our graph notation of
Scction 2.1.1. Its purpose is to represent the equation fa;x...a X = ax.

An IND B..B,CA.A, in Z is represented (sce Figure 3-1) by introducing directed arcs

(a}.b))....(a,b,), labeled i (we use a different label for cach given IND).

34

let Hy be the mixed graph obtained from X as described above. Repeatedly apply Rules
T(wransitivity), ¥\, (equality), 1,3 (introduction) (sce Figure 3-2) on Hy, in some arbitrary fixed
order, until no more rules arc applicablc. As was the casc with Rules 1,2 in Theorem 2.2, the

introduction rules need only be applied once for cach left-hand side configuration.

Let H=(Ny,A{.E;p) be the mixed graph obtained this way (Ny; is a set of nodes, Ay is a sct of
labeled directed arcs on Nyj, and Ey; is a set of undirected arcs on Npj). Notice that cach node of H is
labeled Fu 1 where F is a term over the function symbols and Uy,....Ug are nodes representing
attributes (by a slight abusc of notation, we write Fuy..uy as a shorthand for F[xl/ul,...,xq/uq]).
Morcover, cvery subterm of Ful...uq appears as a node of H.

By a path labeled v, where 7 is a term over the i's (and a variable x), we mean a mixed path where the
sequence of labels corresponds to 7 (see Figure 3-1). In the special case where 7 is simply x, the path

consists of undirected arcs.
The graph H fully captures implication of FID’s and IND’s from X, as we now show:

Theorem 3.1:

FD Case:
2F=A ..A —A iff there is a node Fa;...a; of H such that <Faj...a,, a>€Ey;.

IND Case:
2F=B,..B,CA,..A, iff there is a path from ay to by labeled 7, k=1,....m, where 7 is a term over the

i's.
Proof: L.ct Eg be the set of equations of Theorem 2.1. Assume that the various names in Ey are

consistent with the names in H.

(=)
Claim:
(i) If <Fuy..up, Gvy..v>€Ey;, where the uy’s, vi's are nodes corresponding to attributes and F,G are

terms over the fs, then EyFEFuix..upx=Gvix..vgx.

(i) If (Fuy...up, Gvy...vg) is a directed arc labeled i, then EyF=Fujix...upix = Gvix..vgx.
Clcarly, the "if" direction follows from the Claim, by Theorem 2.1.

Proof of Claim: We prove both (i) and (ii) by sinultaneous induction on the number of

35

applications of rules that created an (undirected) arc of H.
Basis: No rules were applied. 'The conclusion is straightforward.

Induction Step: We have to check Rules T, E |5, I3, cach of which might have been applied at

the last step.
Rules T, E,; Straightforward.

Rule E; The undirected are <Fuj...up, Gvy...vg> was created from the undirected arc
<F'ui...ur’,», G‘vi...vé-). where (F'ui...ul',-, Ful...up), (G 'vi...vé', le...vq) are directed arcs labeled i. By
the induction hypothesis, Ey implies Fupx..upx=Gvix..vgx, Fujix..up-ix=Fux..uyx,

Gviix..vgix=Gvix..vgx. Thus, Ey implics Fuyx..upx=Gvix..vx.

Rule 1) The undirected ares <Fuy..up, Gyvy..vg,...XFpug.ug, Govy.vg> create the undirected
arc <Fup..u,, Gvy..vg>, where F=1fF. F,, G=1G..G,. By the induction hypothesis, Ey implies
Fupx.upx = Gyvix..vgx, k=1,..,n. Thus, Ey implies
Fupx..ux=fFux.u

X o Fnulx...upx: fGyvix..vx .. Gnle...vqx = lex...vqx.

p q

Rule T The directed arcs (Fyuj..up, Gyvp.vgh..(Faup..up, Gyvy..vy) (labeled i) create the
directed arc (Ful...up, le...vq) (labcled i), where F=fI..F,, G=fG;..G,. By thc induction
hypothesis, Ey implies Fiujix..upix=Gyvix..vgx, k=1..n. Thus, Ey implies

Fuyix..ugix = fFpupix..upix ... Fpugpixeugix = fGyvix..vgx . Gpvix. vgx = Gvix..vgx.

p

Rule I; Identical to Rule I,.

(=>): Let u be a node of H labeled Fu,...u,, where the uy’s are nodes corresponding to attributes.

We denote by ur the term Fuyr..ugr.

p

Claim: Supposc Ey implics Ful'r...up'r:lep...vqp, where the u,’s, vj’s correspond to arbitrary
nodes of H, F,G are terms over the f's, and 7,p arc terms over the i's (and a variable x). Also assume
Ful...up is a node of H, and there are nodes wy, k=1,...,p, such that there is a path from uy to wy

labeled . Then Gvy...vg is a node of H and there is a path from Gvy...vg to Fwy...w, labeled p.

q

The "only if" dircction follows casily from the Claim, by Theorem 2.1.

Proof of Claim: If Eyl=0=¢", then there is a sequence of terms oyy....,0,, such that ¢ is o, o, is

36

o', and for k=0,..,m-1 the term o}, is obtained from o) by rewriting a subterm (8)) as @(8,),
where 8 =6, (6,=464) is an cquation in Ey, and ¢ is a substitution (Proposition 2.2). We call such a

scquence a progf of the cquation e =0¢".
We define a relation << on pairs of terms as follows:

(£.£)=<(n.n) iff Ey implics { = "and n=7", and cither
(i) the shortest proof of ¢ = ¢ “is shorter than the shortest proof of n=17", or

(ii) the above proofs have the same length, and ¢ is a proper subterm of , §"is a proper subterm of 9.

Obviously, < is well-founded, so we can argue by induction on <. l.et gy,...0,, be a shortest

proof of the cquation Fuyr..u,r=Gvyp..vgp.

Basis: m=0. Using I,, I;, we sce by an casy induction on the structure of F that there is a node

Fw)..w, and a path from Fuj...u; to Fwy...w,, labeled 7 (sce Figure 3-3).

Induction Step: We assume that the Claim holds for all cquations {={" implicd by Ey, where
(§.§)=(Fuyr..u,r, Gvip..vgp); we will show that it holds for the equation Fuyr..upr=Gvyp..vgp.

We distinguish two cases:

Case 1: For k=0,...m-1, gy ; is obtained from oy by rewriting a proper subterm. This means F is
fFy..Fp G is £G..G,, and Fuyr..upr is rewritten as Ggvyp..vgp, s=1...,n. Now for s=1,..,n,
Fouj..u, is a node of H and (Fyuyr...upr, Ggvyp...vgp)<(Fujr..u,r, Gvip...vgp), so by the induction
hypothesis Gyv...vq is a node of H and there is a path from Ggvy..vy to Fowy..w,, labeled p (see
Figure 3-4). Now by Rules I, I} and an easy induction on the structurc of F, there is a path from
Fguy..up to Fowy..w, labeled 7; then by Rules Iy, I; there is a node fFywy..wy, ... Fowq.wp, de. a
node labeled Fw...w,,. It follows by Rules Iy, Iy that there is a node fGyvy...vg ... Gyvy..vg, i.e. anode

Gv}...vg, and that there is a path from Gvy...vg to Fwy..w labeled p.

Casc 2: For some k, 0<k<m-1, o, is rewritten into o, ;. We distinguish four subcases:

Case 2a: Fuyr..u,r is rewritten as fa §...a €, then as a using an cquation fa;x..a x=ax in Ey

P
and then as lep...vqp. Clearly (Fulr...upT, fa].f...ang)<(Ful'r...upﬂr, lep...qu), so by the
induction hypothesis there is a path from fa;..a; to le...wp labeled € (sec Figure 3-5). Since
<fay...ap, a>€kyy, there is a path from a to Fwy...w, labeled §. We also have

(ag, lep...vqp)—<(FuJ7...up1-, lep...vqp), so by the induction hypothesis le...vq is a node of H

37

and there is a path from Gv...v, to Fw..w, labeled p.

Casc 2b: Fujr..uy7 is rewritten as a§, then as fa §..a £ using an cquation fajx..a,x=ax in Eg

p
and then as Gvyp..vgp. Clearly (Fujr..upr, ad)<(Fuyr..u,t, Gvip..vgp), so by the induction
hypothesis there is a path from a to Fw...w, labeled § (sce Figure 3-6). Since <fa...a,, a>€Fyy, there
is a path from fa,...a, to Fwy..w labeled §. We also have

(fa;§..a,8. lep...vqp)<(Fu17...up7, lep...vqp), so by the induction hypothesis le...vq is a node

of H and there is a path from Gvy...vg to Fw)...w, labeled p.

Casc 2c: Fujr..uyr is rewritten as ag, then as bi§ using an cquation ax=bix in Ey and then as

p
lep...vqp. Clearly (Fulv-...upf, a$)<(l*‘u17...upfr, lep...vqp), so by the induction hypothesis there
is a path from a to Fw 1-Wp, labeled £ (sce Figure 3-7). Since there is a directed arc (b, a) labeled i,
there is a path from b to Fwy...w, labeled i§. We also have

(bi¢, Gv]p...vqp)<(Fu17...up7, Gv]p...vqp), so by the induction hypothesis le""’q is a node of H

and there is a path from Gvy...vg to Fwy..w, labeled p.

Case 2d: Fuyr..u,r is rewritten as big, then as a§ using an cquation ax=bix in Ey and then as
Gvyp..vgp. Clearly (Fulv...up'r, big)=<(Fuyr..up7, Gv1p...vgp), so by the induction hypothesis there
is a path from b to le...wp labeled i€ (see Figure 3-8). Now there is a node ¢ on this path such that
the subpath from b to ¢ is labeled i. Since there is a directed arc (b, a) labeled i, by Rules E;, E,, T we
have <a, ¢>€E};. Thus there is a path from a to Fw,..w; labcled £. We also have

(a¢, lep...vqp)<(Fu17...up7, Gvyp...vgp), so by the induction hypothesis le...vq is a node of H

and there is a path from Gv,...v, to Fwy..w labeled p.

This concludes the Proof of the Claim, so we are done, I

We remark here that Theorem 3.1 can be strengthened using the axiomatization of [54] for FD’s
and IND's (sce Subsection 2.1.1). Specifically, we can show that we need not use Rule 15 in the
construction of H. To scce this, consider the following sets of dependencies:

Fyy={u..up—ufuy, k=1...p and u arc nodes of H such that <Fuy..up, u>€E}
Ijp={u1..ugCvy..vg | uy,vy are nodes of H such that there is a path from v to uy labeled 7, k=1.....q,
where 7 is a term over the i's}.

Here we assume that Rule I3 was not used in the construction of H. Clearly 2CF;Uly;. Morcover, it

is straightforward (but lengthy) to verify that Fj;UIy, is closed under the rules of [54] (using the fact

38

that H is closed under Rules T, K, 1).5). Therefore, ZEA A —A iff aj..a,—a is in I and

2=BLLBLCA LA L Db Caya is in 1. This stronger version, however, is not necessary for

Our purposes.

3.2 Typed IND’s and Acyclic FD’s

Suppose we are given a sct Z of FD's and 1yped INDY's, over database scheme D={R[U;]:

the graph notation of Scction 2.1.1). The FI)'s and IND’s in 2 arc represented in Hy as explained at

the beginning of this Scction. We wuse a different label X for cach typed IND
Rk:Al"'Am(—:- R_].AlAm in %,

The fact that 2 contains only typed IND’s induces a special structure on the graph H (of Theorem
3.1), which we will now analyze. Consider the graph Fy, of Section 2.1.1. This graph has a node a for
cach attribute A in U and a group of red arcs (aj.a),...(a;.a) labeled f for cach group of red arcs
(a'l‘,ak),...,(a‘r‘l,ak) labeled f of Hy. We define two partial functions fype, node on the sct of terms (over
the a%s and the f s). If r is a term, {ype(r) is the name of a relation scheme in D and node(7) is a node

of Fy. The functions fype, node arc defined inductively as follows:
1. For cach attribute A of Ry, type(a®)= Ry, node(a¥) =a.

2.1f ype(r)=Ry and node(t;)=v; for j=1,..n, where there is a group of red arcs
(v1,V),e(vy.v) labeled fin Fy, then gype(fry...t) =Ry, node(fry...t)=Vv.

The crucial property of H (in the casc of typed IND’s) is given in the following

I.emma 3.1: The functions fype, node arc defincd on all terms that appear as labels of nodes of

H. Morcover,
1 If fry..7 is a nodc of H then for j=1,...,n we have Iypc('rj):Rk and node(rj):vj, where there is a

group of red arcs (v, v).....(v,,v) labeled fin Fy.
2, If<u,v> is an undirected arc of H then gype(u) = type(v) and node(u) = node(v).
3. If (u,v) is a directed arc of H labeled i¥* then type(u) = Rj, type(v)=R, and node(u)= node(v).

Proof: Straightforward simultancous induction on the number of applications of rules that

produced a node (arc) of H. 1

39

Assumc now that Fy is acyelic: It is not hard to sce that in this case cach node of Fy, can be the
image (under node) of at most an exponential number of terms (in the size of Iy). Therefore by

L.emma 3.1 the size of H is at most cxponential, and by Theorem 3.1 we obtain

Corollary 3.1: The implication problem for acyclic F12's and typed INID’s is decidable. |

In particular, implication of an IFDJ can be tested in exponential time, and implication of an IND

can be tested in nondeterministic cxponential time (by guessing appropriate paths of H). Whether

these bounds can be improved is an open question.

We remark here that if 2 is a sct of FID's and typed INDD’s over databasc scheme 2 and 2o,
where o is an IND, then o must be typed. 'This follows casily from Theorem 3.1 and Lemma 3.1, but
can also be scen directly as follows: Consider a database d which associates to cach relation scheme

R, of D asingle tuple ty, where tk[Aj] =j. AJECU. Clearly d satisfies all FDD’s and all typed IND's (over

D), but violates any IND which is not typed.

3.3 Inference of FD’s under Pairwise Consistency

et Z be a set of FD’s over database scheme D and let PC(D) be the set of all typed IND’s over D
(recall that PC(D) cxpresses the fact that the databasc is pairwise consistent). By the remark at the
end of the previous Section, PC(D)U Z does not imply any new IND's, so we nced only be concerned
with implication of FID)’s. Furthcrmore, observe that if a database d over D satisfics PC(D), then
Ry:A1...Ag— A holds in relation Ry iff Rj:Aq...A;—A holds in relation R;, where Ry[U,], R;[U;] both

contain attributes Ay,...,A A, For this reason we can suppress relation names from FD’s.

In the presence of only typed INIDD’s, every term that appears as label of a node of the graph H (of
Theorem 3.1) is of the form Fall‘...ai‘), where lype(Falf...ag):Rk; this is an casy conscquence of Lemma
3.1. Now supposc we have pairwisc consistency, there is a node labeled Fall‘...ag, and A, appcars in
relation scheme R;, m=1,...,p; then there is a directed arc labeled i% from arl; to aj;n. Thus, by Rule I
(and an casy induction on the structure of F) there is a node labeled F ajl...a{,. This observation allows
us to represent the graph H more succinctly, by having only onc node a, for cach attribute A, and a
node Fa;...a for cach term

Fall(...ag that appcars as a label of a node of H.

40

This representation can be further simplificd if the FI)'s in 2 are all unary. In this case all we need
to observe is that the terms that appear as labels of nodes correspond to paths in the graph Fy (recall
that Fy is a directed graph with a node ay, for cach attribute A and an arc (ay,a;) for cach FD
Ag—A;in Z). Moreover, it is not difficult to see that afl such paths will appear as labels of nodes. We

now give the formal details of this representation.

Let V be the sct of nodes of Fy. For cach attribute A, let TAm be the following (possibly infinite)
directed tree:

the sct of nodes PAm(_'__amV* is the set of all paths in Fy, which start at a;, (denoted as scquences of

nodes);
the set of arcs is {(say. saya;) | SEV*, sakGPAm, Ay—A€ZL

LetP=U AmE‘UPAm- Define E to be the smallest sct of undirected arcs on P which contains <s,s>

for all s€P and <ayaj, ap> for all Ay—A; in 2, and is closcd under the following rules:
1. Propagation: If <sa, s'a, >€E, then <sa,a;, s'a, 3 >€E for all Ay—A; in Z.

2. Pscudo-Transitivity: 1f <s;,s,>, <s,,83> arc in E, skGPAk, and there is a rclation scheme in
D which contains A},A,,A3, then <sj,s3> is in E.

By the preceding remarks and Theorem 3.1, we have

Lemma 3.2: PC(D)UZ=A— A, iff <s,a,>€E for some s€PAk. 1

Example 3.1: Figure 3-9 has an example where D= {Ry[A;Q,Q,B]. Ry[AA Q1] Ry[A;Q;A,Q;],
R;[A,Q,B]} and X is {A—Qy, Aj—= Ay, Ay—B, Q= A,, Qy— B}. In this case, PC(D)UZF=A—B.

The "only if" dircction of LLemma 3.2 can also be proved by a counterecxample construction.
Supposc <s,aj> is notin E, for any sin P A We will construct a pairwisc consistent database d over D
which satisfics the FD's in 2 but violates Ay—A;

For cach attribute A, in U the domain of A, T A,y CODSists of all functions f:P Ap ™ {0,1} such that,
if <s,sD€EE, s,s‘GPAm, then As) =As").

Let Uy be Aj..A,. We construct a relation 1 over R [U,] as follows: A tuple f,...f; (f;(—:?DAK) isinr,
iff, for any s in PAK’ s”in PA)\ (1<k.ALp) with <s,s>€E, we have f,(s)=£(s).

It is casy to scc that the database d consisting of the relations r satisfies the FD's in 2 (by the

definition of the sct E). We also claim that d is pairwise consistent, The key observation is that, if

41

A A

K] Kq

j,'(]...fxq for which fi(s)=f(s") whenever <s,s>€E (B.C in AKI"'A"q)' Finally, onc can verify that if

is any subsct of U, then the projection of r; on /\KI...AK consists of exactly those tuples
q

<s,aj> is notin E, for any sin P/\k’ then d violates Ak—u\j.

The above construction produces in general an uncountable counterexample. Observe, however,
that if Z is acyclic then cach P, s finite, so the counterexample is finite. Tt follows that for acyclic
m

unary [FI>’s under pairwisc consistency, finite implication coincides with (unrestricted) implication:

Theorem 3.2: The class of acyclic unary IFI1D’s under pairwisc consistency is finitcly controllable. B

We now make some simple remarks about the set of undirected arcs E. Obscrve that, if <s;, $>€E
and s;s", 558" arc in P, then <sys”, 5,8 >€E. This is an casy consequence of Propagation. Also, if
<asy, as,>€E and sas,, sas, arc in P, then <sas), sas,>€E. To scc this, suppose s is s'b, where b is a
node such that B— A is in Z. Then <ba, a>€L, so by Propagation <bas,, as;>€E. Similarly
<bas,, as,>€E. Then by Pscudo-Transitivity <bas,, bas,>€E. We arc now ready to prove the main

result of this Section.

Theorem 3.3: The implication problem for unary FID’s in the presence of pairwise consistency is

undecidable.

Proof: We reduce the uniform word problem for semigroups (Thue systems [50]) to implication of

u-FI)'s under pairwise consistency. We assume that we are given a set S of word cquations of the

form a;a= ay; the problem is to determine whether SF=a ey = a;. Recall that this happens iff the
string a3 can be obtained from the string aya, by successively replacing a substring wy by a substring

w5, where w=w, (w,=w1) is an equation in S.

For cach given cquation in §, say a;a = ay, we include in our database scheme relation
schemes Ry, Ky, Ri3, [, My.,, as shown in Figure 3-10. The dirccted arcs represent unary FID's,
There arc two gencral-purpose attributes X,Y. For cach a, there arc two attributes A B, and for
cach cquation there is a sct of attributes Q;.g.
If the equation to be inferred is aa, = a3, then we includc in the database scheme relation
schemes R .7, Ky, Ry, L, Ji3 and FDD's as in Figure 3-10 (where now Ay B; are Ay, By, A.B; are
Ay.By, ApBy are A3,B;, and we have used attributes Qfg). We will show that the u-FDD Q¢—Q is

implicd iff SE=ajay=a3. Let P be asct of nodes and E a set of undirccted arcs as in Lemma 3.2,

42

Claim: The undirected arc <xa;b,yxa,b,y, xasbyy> isin Eiff SE=a) = aj.

Proof of Claim: We will give a characterization of the set E. Let ¢ be an equation aja=ay in §,
and supposc ¢ gives risc to relation schemes Ry 5, Ky_5, Ri3, L., M|, as in Figure 3-10. Consider the

following scts of undirected arcs which correspond to ¢ (all these arcs are in E):

ES:
{xay, ap,
<aibi, bi>’ <qlbi‘ bi>’ <aibi, q]bi>’
<byy, ¥2,£qyy. y2, <byy, qyy>,
<yx, x>, <q3x, x>, <yX, q3x>,
<Xaj, aj>, <Q4aj, aj>, <Xaj, Q4aj),
<ajbj, b.>, <q5bj, bj>, <ajbj, q5bj>,
<byy, ¥2, <qeY, ¥, <bjy, Gey>,
<Xak, ak>,
(akbk, bk>’ <q7bk‘ bk>’ (akbk, Q’/bk),
<byy, ¥2, <qgy, ¥, <byy, qgy>.
ES:
(xaibi, qlbi>’
<byyx, q3%2, <qyyx, q3%>,
<yxay, qqa;2, <q3Xay, 443y,
<ﬂjbjy, Qey?, <Q5bjy, dey?,
<Xakbk, q7bk>’
<aybyy, qgy>, <q7byy, qgy>.
ES:
(qlbiyx, Q3X>, (qzyxaj, q4aj>. <Q3X3jbj, quJ>, <Q4ajb]y, q6y>’

<xaybyy, qgy>.

Eg:

43

<q lblyxaj, Q421J>, (quXdeJ. quJ>, <q3xa.]bjy, q6y>'

pLoN
ES:

(qlbiyxajbj, qu_]>' <q2yxajb_|y9 q6y>'

:€.
ES:

(xaibiyxajbjy, q6y>

Es:
<Qey, Qgy>. <xaybyy, Qey>, <xa;b;yxab;y, qgy>,
<xajbyxajb;y, xagbyy>.

It is not difficult to sce that for cach equation ¢ in S, k=1,...,7, E} is contained in E (compare with
Figure 3-9).
Now consider the following sct of arcs E” Let <s;,8,> be a member of some Eg (for some ¢,k), and
suppose s’ is obtained from s by successively replacing a subscquence xaibiyxajbjy by a subscquence
xaybyy (or vice versa), where ajaj=ay is in S. If s18, 5,8”are in P, then put <ss, s3> in E". Also if's, s°
are in P, then put <s, s> in E°,

By the remarks immediately preceding the statement of Theorem 3.3 (and the fact that Eﬁg E) we

have E'CE. Furthermore E’ contains the arcs initially put in E, and clearly it is closed under

Propagation. It is also straightforward (albeit a bit tedious) to verify that E” is closed under Pseudo-

Transitivity, Therefore ECE’, and thus E=E", The Claim now follows from this charactcrization of

E.

To finish the Proof, obscrve that Q¢—Q is implied (IL.emma 3.2) iff <xa;b,yxa,b,y, xasb3y> isin E
(cf. Figure 3-10).

We will now show that there is no k-ary axiomatization for implication of u-FD’s in the presence

of pairwise consistency.

Let D be a database scheme and O a sct of sentences about D (for instance, FD's and IND’s). An
axiom system for implication of sentences in O is k-ary [16] iff it is universe-bounded (i.c. only
attributes in 2 arc mentioned) and every rule has at most k antccedents, for some fixed integer
k. Observe that the axiom system of [54] for implication of FID’s and INID's is not k-ary, because Rule

10 violates the boundedness condition (sce Subscction 2.1.1).

let 2CO, o in O. We say that 2 is closed under implication iff whenever 26 we have 0 €2, Also,
2 is closed under k-ary implication iff whenever 20, where 2°CY, |27|<k, we have 0 €Z. The

following characterization for the cxistence of k-ary axiomatizations is yaken from [16]:

Proposition 3.1: Therc is a k-ary axiomatization for implication af sentences in © iff whenever

ZC 0 is closed under k-ary implication, Z is closed under implication. i

Theorem 3.4: There is no k-ary axiomatization for implicatian of u-FI)’s under pairwise

consistency (we consider here axiomatizations involving arbitrary FID's and IND’s).

Proof: L.ct U be {AA}....ALQy.....Q4, B} and let D be a database scheme over Qb consisting of
relation schemes RolAQ ..Qy B Ry[AAQ], RilA;Qi 1A QL i=2,...k, Ry 1[AQyB]. Let @ be the
following set of FI's over D1 RiTA— A Rj:AL = A j=2,0.K Rj1Qj 1= A j=2,..k,

Ry 4 1:A—= B, Ry, :Q— B, Rg:Qj— B, j=1,... k (cf. Figure 3-9 for the case k=2).

Consider the set @ of FI's which are consequences of @. The sct @’ can be constructed by
closing @ under Rules 1,2,3 of the axiom system of [54] (see Subsection 2.1.1). Let 2 be @' UPC(D).
We will show that 3 is not closed under implication (of FD's and IN[)’s), but is closed under k-ary

implication (of FI>’s and IND's). Theorem 3.4 will then follow by Proposition 3.1.

For the first part, it is not hard to see that ZF=0, where o is Ry:A~ B (cf. Figure 3-9). Since o is

not in 2, we are done.

For the second part, supposc 2'F=o, where Z'CZ, |2°|<k, o is an IND or an FD. We will show

that ¢ is in Z.
If o is an IND, then ¢ must be typed, by the remark at the end of Scction 3.2. Thus ¢ is in 2.

Suppose now ¢ is an FD RP:CI...CQ—-»CO, where 0<p<k+1 and all the Cj’s are in . Since all
the FID’s in @ arc unary, it casily follows from Theorem 3.1 that X'F=Rp:Cm-—+C0, for some m,
1<m<q. We will arguc that Rp:Cpi—Cy is in @; from this it easily follows that ¢ is in $ ie. itisin

2.

Consider the nodcs ¢, ¢g of the graph Fy, (cf. Figure 3-9). If there is no directed path from ¢, to
Cp- then we can construct a relation r over U which satisfics all the FI)'s in @ (without their relation

names) but violates C;;—Cy. We can then project r over the R’s to obtain a database d over D which

45

satisfics = (and thus also X) and vielatos R :Cpy—Co |

'mus,mmisadimmm%w%smqwc,mwﬁmmvm name, it is
~ casy to check that R,:C,,—C is in @, unless R:C,,—Cy is RtA~+B. However, since |Z1<k one of
the FD's Ri:A— A, RijAL 1 —A;, j=2;-.;k. Rg; I:Ar—»ﬁnﬁftbem from £’ and therefore we
cannot have Z'F=Ro:A—B (since there is no directed path from a o b in Fy-). This concludes the

proof. §

&

.2
T
5

Ij_.' ~ y 4 A Z 12.
v w }—_ W
1y 1
fuv Fuv Fzw
1:
® : new noée 3

Figure 3-2: Graph rules for FID's and IND’s

48

<
(3

-
k3

N

77 “

\

1

'

)
Y

'

1

T i
------ »----ag

Fu, le

Figure 3-3: Basis case

Figure 3-4: Case 1

49

Figure 35; Case h :

''''

‘dcli

- - ———

Figue’ »
igwe 34: Cae 2
|

50

Figare 37: Cese 20

Figure 38; Case 2d

51

ﬁ

//GL
P‘s. A
A &

. A R,O o
a
) i 9%
R, 1
Qz’ qu
° QQ,
R
S B b
FZ

Figure 3-9: Example of D inference under pairwise consistency

52

x4
e
A Qs

&
e
B (&

Y N

/ [) 14
QW Qg
Qs, S

Pk
A" Y X
A, ,|Ry
‘Q,
B, '
/ -Q
B Q| Rs :
e 2
\\{Y
XM,
Qe "Qq
Qe Oy MZ
N
% %
xabyxatad — 94 994
e
944 194

53

Figure 3-10: Gadgets for Proof of Theorem 3.3

49

Chapter Four

Finite Implication of FD’s and Unary IND’s

A natural question is whether our equational approach can handle finite implication of database
constraints. Idcally, we would like to be able to replace = by k=g throughout Theorem 2.1. It is
casily scen that the same arguments can show that (iii)=>(ii) and (ii)=>(i) in the finitc case (the
constructions given map finite counterexamples to finite counterexamples). The argument for
(i)=>(iii), however, breaks down, because it is based on the existence of a complete proof procedure
for implication (namely the chasc) and such a proof procedure cannot cxist for finite implication
|54, 19]. As a matter of fact, the same syntactic nature of the proofs of Theorems 2.3 and 3.3 prevents
us from proving undecidability of finite implication. The weaker proofs of [54, 19], because of their

semantic nature, can easily be done for the finite case.

However, Theorem 2.4 also holds for the finite case: By the discussion above one can see that =
can be replaced by =g, in Theorem 2.1 if we have a finitely controllable class of FD’s and IND’s, i.e.
a class where k=g is the same as F=. Acyclic IND’s and FI)'s provide an casy example of such a
class, because the chase in this case constructs a finite counterexample if the implication does not
hold. Another example of a finitely controllable class is acyclic unary FD’s under pairwise

consistency (Theorem 3.2).

If k=g, is different from =, we might still be able to handle the finite case if there is a complete

proof procedure for finite implication. In this Chapter we provide such a class: we show that there is
a complete proof procedure for finite implication of FI)'s and unary IND’s. This proof procedure is

then used to prove a (weaker) analogue of Theorem 2.1. for finite implication of FI)’s and u-ID’s.

Let Z be a sct of FD's and u-11)’s over a database scheme D containing a single relation scheme
R[U]. If ¢ is an FD or u-ID, we will show that 2= 0 iff o can be proved from Z using the
following sct of rules (*). We use X,Y to denote sets of attributes. We denote a u-ID ACB

altcrnatively as BDA.

54

Rules (*):

1. (reflexivity) A— A, AEQU.

2. (augmentation) from X— A derive XY— A, A€AU.

3. (transitivity) from X—= Ay, k=1,...n, A|..A —A, derive X— A, AEAU.
4. (u-1D reflexivity) ACA, A€Q,

5. (u-1D transitivity) from ACB and BCC derive ACC, A,B,C€QL.

6. (cycle rules) For every odd positive integer m and attributes Ay,
Jrom Ag— Ay and A\ DAy and..and A1 — A and A DA
derive A\ — Ay and Ay A and...and A, — A and Ag DA,

Rules 1,2,3 arc the standard rules for FI)'s [5] (written in our notation) and Rules 4,5 are the
specialization of the general IND rules of [16] to u-1D>'s. Thus, Rules 1-5 are sound for general
databascs (infinite as well as finitc). A simple countcrexample construction shows that Rules 1-5 are

also complete for unrestricted implication of FDD’s and u-1ID’s. More specifically, FID’s and u-1D’s

decouple in the case of unrestricted implication.

Proposition 4.1: Let 21 be a set of FD’s and 2 a set of u-1Ds.
2. ZpUZ=ACBIfT 2=ACB.

Proof: The "if" direction is obvious in both cases. We will show the "only if" direction.

1. Suppose = docs not imply X—A. Let X* ={B | BEY, ZpF=X—B}. Consider a relation r
consisting of tuples t, k=0,1,2,..., where tg[B]=0, BEQU, and for k=1.2,..., {;[B]=k-1 if BEX™ and
t[B]=k othcrwisc. It is casy to scc that r satisfics the FD’s in 2 (the only tuples to check are t,ty),
and obviously r satisfies a// u-1D’s. Now since A is not in X, r violates X—A. Therefore, ZRUZ,

does not imply X—A.

2. Supposc X docs not imply ACB. L.et G| be a directed graph which has a node a,, for cach
attribute A, in U and a directed arc (aj,ay) for cach u-1D AyCA; in Z. By our assumption, there is
no directed path from b to a in Gy (cf. Rules 4,5). Thus, we can assign to cach node u of Gj a number

u) so that c{lu)<c(v) whenever there is a directed path from u to v, and (b)>¢{a) (this can be done

55

by a topological sort of the dag of strongly connected components of Gy [2]). Now consider a relation
rconsisting of tuples t, k=0,12,..., where for A in U we have t,[A J=k+a,,). Clearly r satisfies

allu-ID)’s in Z; and violates ACB. Morcover, rsatisfics all F1)'s, so 2 ;UZ; does notimply ACB. I

As a matter of fact, the cycle rules are nor sound for infinite databases: Consider a relation r over
rclation scheme R[AB], consisting of tuples t,, k=0,1,2,..., where t[A]=k, t[B]=k+1: clearly r
satisfics B—A, ADB, but violates BDA. On the other hand, a simplc counting argument shows that
the cycle rules are sound in the finite casc. Let [ifA]] denote the cardinality of column A of relation
r. If the antecedents of a cycle rule hold in r we have [fAg]l=]i[A]l=...=[1[A,]l. Now if a finite
relation r satisfics [r[All=l{B]] and A—B, it casily follows that it satisfies B—A. Similarly, from

[r[A]l=|r[B}] and ADB it follows for finite databases that BDA.

In order to analyze the rules (*), we use a graph notation for dependencics similar to the notation
of Subscction 2.1.1. If X is a set of FI)’s and u-I)’s, Gy is a graph which has a node a, for each
attribute Ap,, a red arc (ay,a)) for ecach FD Ay —A;in 2, and a black arc (a;,a,) for each u-ID A CA;
in Z. If between nodes u,v of Gy we have red (black) arcs in both dircctions, we replace them with an
undirected red (black) edge. The transitivity and cycle rules imply that, when Ay A (AkZ_)AJ-)
corresponds to some arc in a directed cycle of Gy, we can infer A Ay (AjQAk). In fact, if 2 is

closed under the rules (*) then Gy has a good dcal of structure, as can be casily verified.

Proposition 4.2: If 2 is a sct of FD's and u-1D’s closed under the rules (*) then Gy has the
following properties:
1. Nodes have red (black) sclf-loops. The red (black) subgraph of Gy, is transitively closed.
2. The subgraphs induced by the strongly connected components of Gy, are undirected.
3. In cach strongly connected component of Gy, the red (black) edges partition the set of nodes into a

collection of node-disjoint cliques.
4. If Ay..Ap—A is an FD in 2 and ay,...,a; have a common ancestor u in the red subgraph of Gy,

then Gy contains a red arc (u,a).

By a topological sort of the dag of strongly connected components of Gy we can assign to each
component a unique scc-number, smaller than the scc-number of all its descendant components in the
dag [2]. Thus every node u in the graph Gy of Proposition 4.2 belongs to a unique maximal red
(black) clique and a unique strongly connected component. Let scc(u) denote the scc-number of the

component of node u.

56

Figurc 4-1 illustrates an cxample of such a graph Gs. There are four strongly conneccted
components, cach a black clique, with all black arcs present from components with smaller to

components with larger scc-number, The red cliques and red arcs arc shpwn explicitly.,
We now give a construction which lics at the heart of our completengss proof,

Lemma 4.1: Let = and Gy be as in Proposition 4.2 (i.c,, closed undey the rules (*)). Let the dag of
strongly connected components of Gy be topologically sarted, so that cach component has a unique
scc-number. We can construct a finite relation r such that:

1.’ Theu-FD A—Bholdsin riffitisin Z. Also all FID’sin Z hold in r.

2. 'The only repeated symbol in cach column of ris 0, and the symbols in r[A] arc exactly the integers
from 0 to |r[A]l-1. Morcover, [f[A]|>|r[B]} iff sco(a)<sce(b) (thus, the u-11D ADB holds in r iff
sce(a)<sce(b), and all u-11¥sin X hold in r).

Proof: First put in r a tuple of all 0’s. Process cach strongly connected component of Gy in turn, in
order of increasing scc-number. Begin processing a component by progessing in turn cach of its red
cliques. To process a red clique &, add a tuple with all 0’s in the columns of the attributes of ¥ and of
the attributes in all red cliques that are descendants of x in the red subgraph of Gy. For now leave all
other positions blank.

For every red clique k keep a count of the number of 0's in one of its columns (by the way the
construction proceeds all columns of k have the same number of 0’s). Now that one tuple was added
for each red clique in the component, in order to terminate processing the component repeat certain
of the tuples just added, so as to make the counts of all cliques in the component equal, and strictly
greater than the counts of the cliques of the previous component. This is possible because no red
clique is a red descendant of another red clique in the same component, or in a component with
larger scc-number. Once a component is processed, no further 0’s arc added in its columns and its
countis no longer change.

After adding tuples for all red cliques in all strongly conncected components, we examine in turn cach
column. If the column has s blank positions, we fill them in with the numbers 1 to s, without any

repetitions. We illustrate the construction in Figure 4-1,

Now it is casy to check that conditions 1,2 hold:
1. No u-FD in Z was violated during the construction. Furthermore, all u-FI)’s not in 2 were

violated. To sce this, observe that if A—B is not in Z, then the tuple inscrted for the red clique of A

57

and the initial tuple of all 0’s disprove A—B.

We must also verify that all non-unary FD's in 2 arc satisfied. Suppose Aj..A,—A isan FDin 2
violated by r. Since the only repeated symbol in cach column is 0, there is a tuple t of r such that
A]=0. k=1,..n, t{APO. Now t was inscrted in r while processing a red clique &, so all 0's in t
correspond to attributes that are functionally determined by every attribute B of k. Since X is closed
under Rules 1,2,3, it follows that B—A, is in X, k=1,..,n, and also B—A is in . But then r satisfies
B—A, and since t[B]=0 and there is an initial tuple of all 0’s, we obtain tJA]=0, which is a
contradiction.

2. By the way r is constructed, the final counts arc strictly increasing with the sce-numbers, and are

cqual in all columns of a strongly connected component. i

We will now prove our main result:
Theorem 4.1; The rules (*) are sound and complete for finite implication of FID’s and u-1D’s.

Proof: We have alrcady argued for soundness, so it remains to show completeness. Let 2 be a set
of FI»’s and u-1D’s closed under the rules (*), and let o be an FD or u-ID not in 2. We will exhibit a

finitc counterexample relation r which satisfies Z but violates o.

Casc 1 (o is an FD):

If o is unary, then the relation constructed in Lemma 4.1 is the desired counterexample. If ¢ is not
unary, we can usc¢ a construction similar to that of Lemma 4.1. In this case the countcrexample
relation is the union of two relations rg,ry.

Let o be X—A. The first relation ry is a two-tuple relation with one tuple all x’s and the other having
x’s only in the attributes that are functionally determincd by X in the set 2. The remaining positions
of this second tuple arc initially left blank.

The second relation r) contains the symbols 0,1,... (but not x) and is constructed so that the union of
1y and 1y has the right number of repetitions of the symbol 0 in ry to satisfy all u-ID’s in X. The
construction of ry parallcls the Proof of Lemma 4.1. The only difference is that now the counts are the
number of 0’s and x’s in the union of the two relations. When the correct number of blanks have been
inserted in all columns, i.c. all columns in a strongly connected component have the same count and
count increascs with scc-number, then the blanks can be filled in as in the Proof of Lemma 4.1 and all

u-11>’s in 2 are satisfied.

58

Casc 2 (o isau-ID):
l.ct o be COD. Repeat the construction in the Proof of L.emma 4.1, with the following modification:
if the column for attribute A has s blank positions, fill in the blanks with the numbers 1 to s if there is
no black arc (a,d) in Gy; otherwise, fill in the blanks with 1,....s-1, x. The relation thus constructed
satisfics the F1)’s in 3, by the same argument as in the Proof of l.emma 4.1, To sce that the u-1D's in
2 arc also satisfied, observe that ADB is violated iff cither
(i) scc(a)>sce(b), or
(i1) sce(a)<scc(b), there is no black arc (a.d), and there is a black arc (b,d).
By the propertics of Gy, this means there is no black arc (a,b), i.c. ADB s notin Z. Finally, it is clear
that CDD is violated.

Sce Figure 4-2 for an example of this construction. I

We remark that Theorem 4.1 lcads casily to a polynomial-time algorithm for finite implication of
FI>'s and u-11)s [44]. We will now use Theorem 4.1 to prove an analogue of Theorem 2.1, this time

for finite implication of FD’s and u-11)’s. The notation is taken from Chapter 2.

Theorem 4.2: In cach of the following two cases, (i),(ii),(iii) are cquivalent:
FD Case:
i) ZE=q, A Ap—AL
i) EsFan Vo€gt Mp r[x1/2X,....X,/aX] = ax.
iil) 8yF=g Vr€“.T+(Mf) T[x)/ay,..x/ap]=a.
u-ID Case:
i) 2k=g, BCA.
i) EgF=g, VT€GJ‘+(Mi) ar=bx.
iii) 8xF= g, Vfgcﬁ(Mi) T[x/a]=g.
Proof: 'The implications (iii)=>(ii), (ii)=>(i) can be proved by the samc argument as in the Proof
of Theorem 2.1. The reason is that the constructions we give map finite countcrexamples to finite

counterexamples.

(i)=>(iii): Suppose Zk=g,0, where o is an FD or u-ID. By Theorem 4.1, there is a proofof o from
Z using the rules (*). etz be the number of steps of such a proof. We show both the FD and the

u-1D Cascs by simultancous induction on z.

59

Basis: 1=0. The conclusion is straightforward.

Induction Step: We distinguish six cascs, depending on the last rule which was applied to prove o.

Rules 1.2 Straightforward.

Rule 3 This means the FID's A .A =B, k=1,...m, B|..B,—A can bc proved from Z (in lcss
than z steps); Rule 3 is then applied to derive Ay...A,—A. By the induction hypothesis, €y finitely
implies V. €9+ (mp Ti[x1/aix,... x /a x]=byx, k=1,...m, and also &y, finitcly implics
V€9t mp T[X;/bX.... X, /b X] = ax. Thus, 8, finitcly implies
\% €T (Mp rlx /7 [x/a1x,..xp/agx], .. X /Tplx/a) . x /e x]] = ax, de.

€ Vo€t (p T8 Xy /apx] =ax.
Rule 4 Straightforward.

Rule 5 Similar to Rule 3.

Rule 6 Now the dependencies Ag—Aq, A DA, Ay 1 —AL, Ay2Ap (m odd) can be proved

from 2Z (in less than z steps); then by a cycle rule we derive Aj—A,,.

Let A be a finite model of €y. By the induction hypothesis A satisfies pyag= a3, 1107 =ay,...,
Pr1Qm 1= 0. Tn@, = o, where pKG?T*(Mf), frk€ﬂ'+(Mi) (we write rea as a shorthand for 7[x/a]).

We will show that there is some p”* in I (Mp) such that A satisfies p ‘a; = ay.

Observe first that A satisfies pyr,pm1.-T3pT10; = & (concatenation denotes composition). By
the commutativity conditions (5) of 8y, PoTmPm-1-T3P2T1=PoPm-1-P2Tm-T3T1, S0 A satisfies
POPm-1--PTm-T3T1a = 1. NOW PUt PP 1.P2 =P, T 3T =T, T T3T 10 = QL
We now have ray=a, pa=ay. We will argue from these two equations that there cxists some p”in
I*(Mp such that A satisfies p’a;=a. It will then follow, since p,,_;..pra =ag, that A satisfies
Pm-1--P20 @ = atg.

Consider the set K= {pka1 : k>0} (pk is p composed with itsclf k times). Since A is finite, K is

finite, and therefore there exists a least integer g such that p%a; = p*a), for some s greater than q. We

will first argue that q=0. Assumec on the contrary that gq>1. By commutativity,
'rpqal:qualzpqa:pq_]pa:pq_]al, and similarly rplay=p*lay. But this means

p% e = p¥a, which contradicts the choice of q.

60

- Since g=0, A satisfies ay = p’a;, where 0. lhtmvcuugmp‘n;ap“wﬁp pa=p* al‘te.
.uadsﬁesp o =a. mmaumm

Ifacw&enﬂeswhﬁtadafwawﬁa mmhawmw]

|
DL o ! " |
,
DiOiO_l..J ~561._0000
}
i {
CLO “A e MO L =0 0,_561. oo
i
!
Cio © - KO .05.1_561.8
. f
— T
o i _
c0 | © _ |
! .
o v RIMmoo 7w voirewe 8
| |
|
O'le owioa T W0 ol v 2
L) 1 "
I | —
£|© wolam T nw 0w 0=
I |
An300 . _ _
1
Q |
o © _ |
L | " |
<o owlam D D Mooy 2 =
| _

Figure 4-1: Construction of a finite countercxample relation

62

AL A A3 Ay As A
o © © o o o0
4 ¢ ©) 0 o
2 4 o o o O
3 2 i 0 R 7
4y 3 2 L+ o o0
5 4 3 2 L o
¢ X 4 = 2 x
P OAL2 A
Figare 42 Relaion hat violsiesawiD

Chapter Five

Partition Dependencies

5.1 Preliminaries

Let D be a databasc scheme containing a single relation scheme R[AU], U={A,,...A }. We can
cxpress database constraints as formulas of first-order predicate calculus with cquality [32]. These
formulas have a single relation symbol R of ARITY u which represents the relation R, and no function

(or constant) symbols.

Spccifically, let us call atomic formulas of the form Rx..x, relational formulas and atomic
formulas x =y equalities. A formula is {yped iff there are disjoint classes (1ypes) of variables such that
1. if Rx;...x,, appears in the formula, then xy is of type k, k=1,...,u, and

2. if x=y appears in the formula, then x,y have the same type.

Definition 5.1: An embedded implicational dependency (E1D [34]) is a typed sentence of the form
VX)X (@) A A)=> 3y .y (ALAY],
where each gy is a relational formula, each ¢, is either a relational formula or an cquality between

two of the x’s, and each of the x,’s appears in one of the g, ’s.

Example 5.1:
(a) Let UW={A,A5,A,B}. The FD A;A;— A can be expressed as the EID

Vx1x5xyx ¥ [(Rx1xxy ARX x,x Y)=>x=x].

(b) Let U={A,B,C}. The MVD A—— B [62, 51} is equivalent to the EID
Vzxyx'y' [(RzxyARzx y)=>Rzxy].

Now let r be a relation over a finite universe of attributes AU, and let ¢ be an EID. As one can
casily observe, to decide whether r=o we do not need to know the particular values appearing in 1,
but only the equalities between these values. As a matter of fact, all that is relevant about two tuples

ts of r is the sct of attributes on which they agree. We can capture this information formally by

64

considering, for cach attribute A in U, the partition w , which is induced on the set of tuples of r by
the values of r in column A: two tuples t,s of rare in the same block of a7, iff they agree on A, The set

{7 o | A€U} characterizes the EID's satisfied by r.

Although the above observation does not seem to take us very far regarding general EID's, it does
lead to an clegant algebraic formulation of FI's [15, 60, 27]. Recall that partitions have a natural

partial order <, and two natural binary opcrations *,+: Given partitions a7, 7 "of a set S,

a<wiff for every block x of & there is a block x” of o " such that xCx".
ara’'={x|x=yNz£D, y€x, zEx"}.

w+7'={x|abES arcin x iff there is a sequence xg,...,x,, such that
x;€xUx fori=0,...n, a€xp, b€x,, and x;Nx;, ;% fori=0,...,n-1}
Notice that 77 *# " is the coarsest common refinement of w,a” (in the sense of <) and o 4 " is their

finest common generalization. Also *,+ are associative, commutative and idempotent (cf. Scction 5.3).

With the above remarks, it is easy to sce that an FID such as AB—CD holds in relation riff
TASTRSTC T
or, equivalently,
TATR=TA TR TC*Tp
or, still,

Tt = 'ITA"TTB+ T TD-

Thus, F1)'s can be expressed equationally using product and sum of partitions, It is then natural to

investigate the expressive power of general equations one can write using ®,+.

Decfinition 5.2:
a. The sct of partition expressions over U, W(U), is the least set satisfying the following closure

conditions:

1. AEW(QU), for A in AU.
2. Ifc,c"€W(U), then (cec’), (e+¢”) arc in W(U).

(=,+ arc meant here as uninterpreted operator symbols)

b. A partition dependency (PD) is an cquation e=¢’, where e,¢ '€ W(Q).

65

The above definition gives the syniax of PIY’s. The semantics of P1)’s are given below:

Definition 5.3;
a. Letrbe a relation over 4, S the sct of tuples of 1. For A in AU,
@ o ={x | ts€S arcin x iff {A]=5s[A]}.
Then L(r) is the sct obtained by closing {4 | ‘A €1} under product and sum of partitions,

b. Let c€W(AU). The meaning of ¢ in 1.(r), p(c), is defined inductively as follows:
L pA)=m , Ain Q.

2. pesc’)=ple) ple’),
ple+c)=ple)+pdle’).

Relation r satisfies a PID e=c " (notation: rl=e=¢") iff p(e)=p(e").

Observe that 1.(r) is actually a lattice [28], gencrated by the set {74 | A€U}. As a matter of fact,
r=c=c’iff L(r) satisfies thc equation ¢=c"(with A interpreted as o 4, A€U).

From Definition 5.3, we sce that we can use the formalism of PD’s to express an FD AB—CD as

the PD A*B=A*BCeD. Clearly ri=AB—CD iff rtk=A*B=A*B+C*D (here¢ and in the scquel we

omit parcntheses from PD’s wherever possible, for the sake of clarity). Partition dependencies of the

above form, which are equivalent to FD’s, are of special interest; we call them FPD’s,

In the remainder of this Chapter, we investigate various questions concerning PD’s. Scction 5.2
dcals with the expressive power of PD’s, and comparcs PD’s to EID’s from this point of view. In
Section 5.3 we give a polynomial-time algorithm for the implication problem for PD’s. Finally, in

Section 5.4 we present a polynomial-time test for consistency of a database with a set of PD’s.

5.2 Expressive Power

We want to study what properties of a relation r can by expressed using sets of PD’s. From the

definitions of *,+ and Definition 5.3 it it casy to scc the following:

1. T=C = A+Biff for any tuples t,s€r,
{Cl=s[C] iff [A]=s|A] and ({B] =S$[B].

2. =C= A+ Biff for any tuples t.s€r,

66

([C]=s[C] iff there is a scquence sp,...s, of tuples of r with t=sy s;=s, and for
i=0..n-1, 5{A]=s; , |[A] ors[B]=s; , ,[B].
From obscrvation (2) above, onc sces that symunetric transitive closure can be cxpressed by a PD,

as follows:

Example 5.2: Consider a relation r representing an undirected graph. This relation has three
attributes: 1HEAD, TAIL and COMPONENT. For every edge {a,b} in the graph we have in the relation
tuples abc, bac, aac, bbc, where c is a number which could vary with {a,b}. These are the only tuples
in r. We would like to cxpress that: for cach tuple t of r, t{COMPONENT] is the connected component in
which the arc (UEAD]L ([TA1L]) belongs. We can do this by insisting that r satisfics the PD

COMPONENT = HEAD + TAIL.

We now want to compare the expressive power of PID’s to that of previously studied database
constraints, namely EID’s [34]. Lct us say that an EID o is expressed by a sct E of P1)’s iff for any
relation r, rk=o iff r=E. From the algebraic propertics of », the PID C=A*B is cquivalent to
C=C+*A*B A A*B=C*A*1B, and therefore it is expressed by the set {C—AB, AB—C}. However,
because of Example 5.2 above it should come as no surprisc [4] that the PD C=A+B cannot be

expressed by any set of EID’s:

Theorem 5.1: Let U=ABC; thc PD C=A+B cannot be expressed by any set of first-order

sentences.

Proof: L.ct 2 be a set of first-order sentences (with a single ternary relation symbol R as the only

non-logical symbot) which expresses C=A +B. For k>1, let ¢, be the following first-order formula,

with free variables t,s:

"t[C]=s[C] and there is no sequence Sp,...s; such that t=sj s,=s, and for i=0,..k-1,

s{A]l=s; . [A] or s[B]=s; ,[B]"

(it is easy to see how to write ¢ without tuple variables). Observe that the relation r in Figure 5-1
(with t,s as indicated) is a model for ZU{¢p,}: r=C=A+B so r=%, and clearly rk=¢,. Thus, any
finitc subsct of £'=23U{¢,: k>1} has a model, and thus by the Compactness Theorem [32] 2" has a
model, say r". But this is a contradiction, since r’satisfics 2 and thus r’ satisfics C=A + B, and on the

other hand r'=o, for all k> 1 and therefore it does not satisfy C=A+B. |

67

On the other hand, an EID as simple as an MV cannot be expressed by PD's:
Theorem 5.2: Let W=ABC; the MVI) A——B cannot by cxpressed by any sct of PD's.

Proof: Ict E be a sct of P1)’s which expresses A—— B (sce Fxample 5.1 for the meaning of this
MVD). Referring to Figure 5-2, rclation ry satisfies A——B, so 1(rj))=E. On the other hand,
rclation 1, does not satisfy A——B, so L.(r) does not satisfy E. But this is a contradiction, because

L(r}), I.(ry) arc isomorphic, and thus they satisfy exactly the same P1>’s. 11

5.3 The Implication Problem

Given a finite sct E of PI)'s and a PID §, we want to know if EE=4, i.c. if § holds in every relation
that satisfies E. We also want to know if Eb=g 8, i.c. if § holds in every finite relation that satisfies

E. We first observe that these questions can be approached as implication problems for lattices.

Lemma 5.1:
a. EE=4 iff BF=(,, 8, i.c. iff § holds in cvery latfice that satisfics E.
b. EF=g, 8 iff EFE=py 8, L.e. iff 8 holds in every finite lattice that satisfies E.

Proof:
a. (=): Suppose EF=,8, and let r be a relation that satisfies E. Then L(r)=E, so § holds in L(r), and

thus r satisfies 6.

(=>): Suppose EE=8, and let L be a lattice satisfying E. By the Representation Theorem for

lattices, [28, 66], we may take the elements of L to be partitions of some set X. Thus, each A in U is
interpreted in L as a partition 7, of X (and, of course, *,+ in L arc partition product and sum
respectively). Now consider a relation r over AU containing a tuple t; for each clement i of X (these are
the only tuples in 1), where t[A]= tj[/\] iff i,j arc in the same block of 7 4, A in Q. Clearly r satisfies
exactly the same PD’s as 1. Thus ri=E, so by the hypothesis r=§, and therefore LE=§.

b. (<=): Obscrve, in the proof of the "if" direction of (a), that if r is finite then 1(r) is also finite.

(=>): Obscrve, in the proof of the "only if" direction of (a), that if L is finite then the set X can be
taken to be finite, by the Representation Theorem for finite lattices [S6]. Then the relation r is also

finite. 1

68

Now Ek=, 6 can be viewed as a (uniform) word problem, since a sct with two binary opcrations

*,+ is a latticc iff the following sct of axioms (I.A) is satisficd [28):
1. x+ x=x, x*x=x (idempotency)
2. x+y=y+Xx, x*y=y*x (commutativity)
J.x+(y+2)=x+y)+2z, x+(y*z)=(x"y)*z (associativity)
4, x+(x*y)=x, x*{x+y)=x (absorption)

Le., EF= 1,8 iff 8 is implied from E U LLA. We arc going to show that =y, g is equivalent to F=,,,

$0 =1 i, €an also be viewed as a word problem.

at,fin

In particular, let §; be the FPD corresponding to an FD o (8§, is A=A*B if ¢ is A—DB), and let
Ey be the sct of FPD’s corresponding to a sct of FD’s Z. Since r=o iff =6, 20 iff EgE=4,.
Thus, the implication problem for FD’s can be reduced, in a straightforward way, to the (uniform)

word problem for idempotent commutative semigroups (structurcs with a single associative,

commutative and idempotent operator). On the other hand, since X =Y is cquivalent to X=X*Y A

Y =YX, we can also reduce the above word problem to the implication problem for FD’s.

We now present a polynomial-time algorithm for the (finite) implication problem for PD’s.

Suppose we are given a set E of PD’s, and a PD ¢=¢": by Lemma 5.1, it suffices to test if Eb=, e=¢’

(B gae=¢e").

Consider the sct W(U) of partition expressions over U, ¢, +: we define several binary relations on

W(U). First, define <;4 (identically less-than-or-cqual) inductively as follows:
1L A< 4A, Ain Q.
2. if pLyyr, < qr then p+q <yt
3 ifpLiyr or q< yr then peq<iyr.
4. if r<;yp, r<iqq then r<4pq.
S.ifr<yp or r<4q then r<yp +q.
(The intended meaning of <4 is that p<;4q iff every lattice satisfics p<q, no matter how the A’s

in U are interpreted).

69

The relation <4 is reflexive and transitive [28,65] Also, if p1<4q1. Pr<iq9y. then

P1HPy<igd; +dyand p*prKigd) "G
Now definc =4 as follows: p=,,q iff both p<,4q and q<;4p.

The relation =4 is an equivalence relation, and in particular it is a congruence: i.c., if p;=4q),
Py=iqqy. then p;+p;=;4q,+g; and p;*p;=;4q,°qy. Thus, onc can definc *,+ on the set of

equivalence classes of =;4. The structure obtained this way is a lattice [28, 65].

We now capture the cffect of E. Define the following relation ——; on W(U) : p——.q iff g can
be obtained from p as follows: for i=0,...,n, substitute w, for some (zero or more) occurences of z;,

where z;=w; (w;=1z,) is in E. It is casily verificd that ——; is a congruence.

Now define <j; as the sum of <y, ——p: p<pq iff there is a scquence of expressions sg,....S,

such that p=sy, s, =q, and fori=0,...,n-1, §;<48;, | 0r $;—— g8 1.

It is casy to scc that <g is reflexive and transitive. Also if p;<gq; pP2<gQy then

p1+P,<pq; +9; and p*py<Ed;*q; (because both <4 and ——; have this property [36]).
Finally, define = as follows: p=q iff both p<q and q<gp.

The relation = is an equivalence relation, and moreover it is a congruence. One can further

observe that the cquivalence classes of = form a lattice Ly under the induced *,+: just check the

axioms LA, e.g. p+p=pp because p-+p=4p, and in gencral if p=,4q then p=gq. Note that Ly
satisfies a PD p=q iff p=zq (A€ is interpreted in Ly; as the equivalence class of A).

We now show that the relation =, captures the PD’s (finitely) implied by E:

L.emma 5.2: The following statements are equivalent:

a.e=ge
b. B e=e¢’

c. Eblat,ﬁne:e

Proof: Observe that, from the way <4 and <y, were defined, if e<ge” then e<e”in cvery lattice
satisfying E (where < is the partial order of the lattice). Thus, (a)=>(b). To prove (b)=>(a), recall
that L; satisfics a PD p=q iff p=q. Thus, if e#e”then L docs not satisfy e =c’, whereas it satisfics

E;i.e., Liis a counterexample to EF=p,e=e”.

70

We now show the cquivalence of (b),(c). The direction (b)=>(c) is obvious. To prove the converse,

we adapt an argument of [30] (sce also [28]). originally given for the special case E=@.

Suppose E docs not imply e=c¢”; we will show that there is a finite lattice which satisfics E but
violates e=c¢”. Let {A; | i=1....,n} be the set of attributes appearing in E,c,¢’, and let V be the sct of all

partition expressions (over the A;’s) of complexity at most as high as the maximum complexity of e,e”

and the expressions in E (complexity can be measured by the number of instances of ,+). Note that

V is finite, since E is finite.

Consider now the subsct L. of I; consisting of all finitc products of the equivalence classes (under

=1;) of elements of V, together with the equivalence class of A +...+ A It is not hard to verify that

I.is a sublattice of 1. But by the cquivalence of (a),(b) e#¢e”, so L satisfies E and violates e=e¢".

Since L. is also obviously finite, we arc done. 1
We can now prove our main result;
Theorem 5.3: There is a polynomial-time algorithm for the (finite) implication problem for PD’s.

Proof: By Lemmas 5.1, 5.2, it is sufficient to describe a polynomial-time algorithm to test, given

E,c,e; whether e<pe’s

Let V be the set of all subexpressions of ¢,e”, and of the expressions appearing in E. The following

algorithm constructs a set I' of directed arcs over V such that, whenever (p,q)€T, p<4q or p——gg:

71

begin
Fe—g
repeat until no new arcs arc added
1. Add (A A), A€U
2.if (p,r)€T, (q.1)€ET, p+q€V
then add (p+q,r)
3.if (p,n)El or(q.)ET, p*qEV
then add (peq,r)
4.if (r,p)€T, (rq)€T, p*q€V
then add (r,p*q)
5.iM(r,p)ET or (r,q)€T, p+qEV
then add (r,p+q)
6. Add (z,w),(w,z), where z=win E
7.if (p,r)€T, (r,q)€T
then add (p,q)
end

end

Obscrve that Steps 1-5 in the above algorithm mirror the definition of <y4.

We will now prove the following

Claim: For p,q€V, p<gq iff (p,q)€T.

Clearly, the Theorem follows from the Claim: to test if e<ge’, construct the digraph (V,I') and

check if it has an arc from e to e”. This can be done in polynomial time.

72

Proof of Claim:
(=): Straightforward.

(=>): We first give a sct of rewrite rules [41] for <p:

L x4+ x——x

2. X*y——X

3. yex——x

4. x——x°X

S, X——x+y

6. x——y+x

7. z——w, where z=w (w=z)isin E

Observe, regarding Rules 5,6, that y can be an arbitrary expression,

An casy induction shows that, if p<,4q, then p can be rewritten as q using Rules 1-6. By the
definition of <p, if p<zq then there is a sequence of expressions s,...,s;, such that p=sy, s, =q, and
fori=0,..,n~1, s;——s; |, i.e. 8, is obtaincd from s; by rewriting a subexpression of's; according to

one of the Rules 1-7. We call such a sequence a proof that p<q.
Now we define a relation < on pairs of expressions:

(P1,9D=<(p2.9)) iff py<gq). Py< Ay, and cither
(i) the shortest proof that p; <gq; is shorter than the shortest proof that p,<y.q,, or

(ii) the shortest proofs that p; <1.q;, Py <gq; have the same length, and p, is a proper subexpression

of py, q; is a proper subexpression of q,.
Clearly < is well-founded. We procced by induction on <,
Basis: There is a proof that p<y.q of length 0. Then p is identical to g, and (p,q)€T.

Induction Step: Let p,q€V, and assume that the Claim holds for p",q"€V whenever (p',q")<(p.q).
We will show that the Claim holds for (p,q). Let sy,...,s,, n>0, be a shortest proof that p<pq.

73

Case I For i=0,...n~1, 5, is obtained from s; by rewriting a proper subexpression of s;
according to Rules 1-7. Then p=p,fp,, q=q;0q; (6€{=.+1}), where p;<;.q; via proofs at most as
long as the proof that p<y.q, and p; (g;) is a proper subexpression of p (q). Thus (p;.q;)=<(p.q), and
furthermore p;,q;€E V., so by the induction hypothesis (p;,q;)€T. It then casily follows that (p,q)€T.

Case 2: For some i, 0<i<n-1, s; is rewritten into s; , § according to onc of the Rules 1-7.

Casc 2a: For some i as above, the Rule used is Rule 7. This means p is rewritten to z, z=w (W=12)

isin E, and w is rewritten to q. Then clearly (p,2)—=<(p.q), and sincc zEV, by the induction hypothesis
(p.2)€l. Similarly (w,q)&T. It follows that (p,q)€T.

Case 2b: For any i as above, the Rule used is one of the Rules 1-6. We consider the Jeast such i,

and we distinguish cases according to which Rule was used to rewrite s; to s; 5.

Rule 1 This means p=p,+p,, p; rewrites to r, p, rewrites to r, and r rewrites to q. Then p;<gq
via proofs shorter than the proof that p<pq, so (p;,9)<(p,q). Also p;€V, so by the induction
hypothesis (p;,q)€T. It follows that (p,q)€T.

Rule 2 This means p=p;*p,, p; rewrites to r, r rewrites to q. Then py<;;q via a proof shorter than

the proof that p<yq, so (p1.9)<(p.q). Also p;€V, so by the induction hypothesis (p;.q)€T. It follows
that (p,q)€T.

Rule 3 Similar to Rule 2.

Rule 4 Now p rewrites to r, and Rule 4 rewrites r to rer. Observe that the expression rer will not be
rewritten subsequently using Rules 2,3, because in that case we could shorten the proof that p<gq
(however, cither subexpression of rer may be rewritten). Moreover, if at some later point Rule § is
applied to rewrite the whole expression s; as s;+y, then s;+y will not be rewritten subsequently using
Rutle 1. Thus, the expression q eventually obtained is built up, using Rules 4,5,6, by some expressions
r., j=1,...,m, such that r rewritcs to I for all j, and by some completely new cxpressions yy, k=1,..,m’,
which were introduced by Rules 5,6. Now clearly (p,rj)—<(p,q) and rj€V, so by the induction
hypothcsis (p,rj)€ I". It then follows by an casy induction on the structure of q that {(p,g)€T.

Rules 5.6 Similar to Rule 4.

This concludes the Proof of the Claim, so we arc done. I

74

Since inference of FID's can be scen as a special case of inference of PID's, the problem is actually
polynomial-time complete {63]. However, in the special case where E is empty [28, 65] it can be solved

in logarithmic space [40]. as we now outline. By L.emma 3, it suffices to describe how to recognize <iy

in logarithmic space.
First, obscrve the following:
1 AL 4ATiff A s identical to A', A,A%in Al.
2ALqp"q IfF AL qp and A< 4q°, A in QL.
AL P+ IfFAL 4p or A<4q” A in AU
4. peqKgATiff p<gA 0or g€y’ A'in AU
5.p*q<gp qiff prq<ijgp” and p*q<i4q”
6. p*q<;gp +q iIff p<igp +q 0or q<iyp’+q" 0rprq<igp orp*a<igq”
7. p+q<yeiff p<jye” and q<;4e”

In each of the above cascs, the "if" direction is trivial. The "only-if" dircction follows in Case 5

because
p*q'<;yp and p'*q'<;4q, and in Case 7 because p<;yp+4, 4<;4qp +4. In the remaining cases, the

"only-if" dircction follows by the definition of <q.

The above observation gives a recursive algorithm to test, given e,e’, whether ¢<;4¢”. We now

describe how to implement this recursion using only logarithmic auxiliary space.

First, note that the results of intermediate recursive calls nced not be stored. For example,

consider Casc 7: if the recursive call for p<q¢” returns false, then we immediatcly return faise;

otherwise, we return the result of the recursive call for g<;4e”

We will also argue that we do not need to store the arguments of previous recursive calls. Thus, alt
we necd to have in storage at any particular point is the arguments of the recursive call which is being
evaluated. Since these arguments arc subexpressions of ¢,¢”, we can just have two pointers to the

appropriatc places in the input, and this only takes logarithmic space.

We will now describe how, given two pointers to two subexpressions p,p” of ¢,¢” respectively, we

75

can find the next recursive call to be evaluated, using only logarithmic additional space. We assume
that ¢,¢” arc represented (in the standard way) as binary trees, so that, given a pointer to a node u, we
can find a pointer to the father (right son, Icft son) of u.

We use two auxiliary pointers a,a’, initialized to the root of e,¢” respectively. Let Cle,e”) be the set of
recursive calls gencrated from the call e<jye” (Cle,e”) contains either two or four members,
depending on which of Cases 2-7 is the relevant one). We will show that we can determine which
member of C{e.¢”) eventually gives risc to the call p<;4p”, using only logarithmic additional space. If
this member of C(e,e”) turns out to be the call ;< 4e1, we sct the pointers a,a” to the expressions
¢;.e; respectively and we repeat with C(ey,eq). Continuing in this way, we will eventually find ¢;.ef

such that the call p<yyp”is in C(e;,c;). We can then casily determine the next call to be cvaluated.

Finally, note that, to detcrmine which member of ({c,¢”) cventually gives rise to the call p<iyp’,
we only nced to know whether p (p”) is in the Ieft or in the right subtree of ¢ (¢”). This can be found
be walking the tree representing ¢ in a depth-first fashion, until we encounter p. This walk can be
done using only logarithmic additional space, because all we need to remember is the node v which is
currently visited and the node w which was visited immediately before v: if w is the father of v, we
next visit the left son of v; if w is the left son of v, we next visit the right son of v; if w is the right son

of v, we next visit the father of v.

5.4 Testing Satisfaction

Given a databasce d over U and a sct of PD’s E, we want to test if d is consistent with E, i.e if there
is a weak instance w for d satisfying E. Recall that a relation w over U is a weak instance for d iff
every tuple of relation R[U] of d appears in the projection of w on U. Weak instances have been
proposcd as a way to model incomplete information in databases [38, 64]. Given a database d and a
sct of FD's E, we can test if d has a weak instance satisfying E in polynomial time [38]. We now show

how this test can be generalized to arbitrary PD’s,

First, we teplace E by a set E” of PD’s of the form C=A*B or C=A+B, where A,B,C are
attributes from a universe U’ containing U: this is done by (recursively) replacing X=Y+Z by the

PD’s X=C, Y=A, Z=B, C=A+B, where A B,C arc new attribute names. It is casy to check that

there is a weak instance for d satisfying E iff there is a weak instance for d satisfying E”.

76

l.ct us denote by p—q, where p,q are partition expressions, the P> p=peq. This slight abuse of
notation is consistent, since the FPD X—Y is actually equivalent to the FID X—Y. Now a PD
C=A*B in " can be replaced by the FPD's C—AB, AB—C, and a PID C=A+B in E" can be
replaced by the PD’s A+ B—C, C—A+B. Furthermore, the PD A+ B—C can be replaced by the
IFPD's A—C, B—C. We now have a set F consisting of FPIY's and of PI)’s of the form C—A + B, and
it is obvious that there is a weak instance for d satisfying E”iff there is a weak instance for d satisfying

F.

Now compute (using the algorithm of the previous Scction) all consequences of F of the form
A—DB, A B in U, and add them to F. Furthermore, if now F contains A— B and C— A+ B, replace
C—A+B by C—B. Let Fbe the set of FPI's in F. The crucial fact is given in the following

Lemma 5.3: There is a weak instance for d satisfying F iff there is a weak instance for d satisfying

Proof: The "only if" dircction is obvious. For the converse, let w be a weak instance for d
satisfying F. Supposc some PDD C—A+ B in F is violated by tuples t;.t, of w, where {JABC]=a;b;c,
t[ABC]=a;b,c, a;#a,, bj#b,. We can remedy this violation by adding to w a tuple s such that
s[AB]=a,b,. To make sure that the relation w, obtained still satisfies F', let A* ={X | F'=EA—X},
B ={X | F=B—X}: we make s[A* |=t,]A™], s[B*]=1,[B*], and fill in the rest of the attributes of
s with distinct new valucs (not appearing in w). To arguc that this is indced possible, observe first that
Bis notin A* and A is not in B* (otherwise C—A+ B would not appcar in F). We also have to
make sure that, if Q€A™ and QEBY, then t,[Q]=1,[Q]. But if Q appears in both AT and Bt we
have F'E=A—Q, FE=B—Q, so since C—A+B is in F we have Fi=C—Q, and therefore C—Q is in

F’. This implics that t;[Q]=1t,[Q], since t;[C]=1,[C] and w satisfies F".

We now repeat the above argument, starting with wy, to obtain relations wj, wy and so on. The
rclation w,, obtained after an infinite number of steps is a weak instance for d satisfying E’, because

any violation of some PDD C— A + B appearing at any stage has been taken care of at some later stage.

We can now prove the main result;

Theorem 5.4: There is a polynomial-time algorithm to test whether a given database d is consistent

with a st E of PD's.

71

Proof: Using the polynomial-time a}souﬁmforiahmefm‘sdm laSection 5.3, we can

.‘ constmctﬁ;esetF‘ByLms.s wm&mm&aWMauﬂhmm
o F. 8

Mmmmmwmmmmmma‘msahmmwmm
‘ m&mmdamwmhw

8

o

-

>
o
o

B & e

9¢'a¢

L

H kL O

i K O
k4 W2 0

o b G
o b & M= (120 M. = (13)(24)
o by ¢
> kg T, = (D) (3)(4)
nE
L1 F AR Lo
=(123
A B C om
a b < Tg = (3@ T =(D(23)
(0 bZ (’2
a b ¢ TMy= (N2 (3)
LB A L)

Figure 5-2: MVD’s are not expressible by PD’s

80

Chapter Six

Directions for Further Investigation

Extending the Fquational Approach

Of course, the most obvious question is whether our equational formulation of FD’s and IND’s
can be extended to more general dependencics. We outline some partial results we have at this point,

which indicate that such an cxtension is indeed possible.

Recall that an embedded implicational dependency (EIDD) is a typed sentence of the form
Vxpxp (1AL A @)=y .y (Y ALAY)L,
where each ¢y is a rclational formula, cach y; is cither a relational formula or an cquality between
two of the x;’s, and cach of the x;’s appears in onc of the @ ’s (cf. Section 5.1). If all the ¥, ’s are
rclational formulas, we have a wple generating dependency (TGD); if all the ;s are cqualities, we

have an equality generating dependency (EGD)[10, 11, 34].

Every EID is obviously equivalent to the conjunction of a TGD and an EGD. Furthermore, it can
be shown that every EGD is equivalent to a conjunction of FD’s and TGD’s [11]. The question then

is whether we can have an cquational formulation of FD’s and TGD’s.

Let U={A,B,C} and consider thc MVD A——B (cf. Example 5.1). We can formulate it as the

sentence

Vx5, [a(x)) = a(xp)=>y. (a(y) = alx YA Ky) = x DA (y) = cd(x)))].
Here xy,x,,y arc variables ranging over tuples; see Section 1.3. Now Skolemization suggests
transforming this MVD into an equational implication

ax; =ax,=>(aix;x; = ax; A bix;x, = bx; Acix; x, =cx,)
In this way, we can transform any TGD into an equational implication. In fact, we can cven relax the
typedness restriction, to obtain a class of constraints which properly includes IND’s: specifically, it

suffices if only the part of the sentence consisting of the ¢, ’s is typed.

We can go even further and transform these equational implications into equations. We illustrate

81

how this is done with the implication
ax) = ax,=>aix;X, =ax,.
This can be transformed into the set of cquations

aix| Xy = f X X,ax;ax,
faxXyxx =ax,,

where f is a new function symbol of ARITY 4.

The above cquational formulation of TGID’s can be used to prove a generalization of Theorem
2.1, for implication of TGD)’s from F1)'s and TGI)’s (i.c., we actually genceralize the IND Case of
Theorem 2.1). The proof uses the same ideas as the proof of Theorem 2.1. Unfortunately, the proof of
the FD Case docs not generalize, because the inductive argument for the completeness part depends
critically on the fact that Skolem functions have only onc argument (which only happens in the case

of IND's).

Designing Normal Form Schemas

An active arca of rescarch in logical database design is concerned with canonical representations
of the database schema, which avoid potential update anomalies (i.e. updates that can result in
inconsistent data), and minimize data redundancy. Several such representations have been proposed
and analyzed, assuming that the only integrity constraints of the database schema are FD’s. The
general idea is that the database schema should be in a certain normal form [22,77, 62, 51], i.e. certain
restrictive conditions should be satisfied by the FD’s of the schema and their logical consequences.
Given a universe AU of attributes and a finite set £ of FD’s, one can construct a database schema
satisfying such restrictions [12, 6]. These algorithms are bascd on cfficient solutions of the implication

problem.

An interesting question is to investigate normal forms in the presence of FD)'s and IND’s (cf. [33]).
Eventually onc would hope to extend the known schema synthesis algorithms to incorporate IND’s of
some restricted form (for example, unary IND’s). The insights we have gained on the implication

problem can potentially be useful for this investigation.
Query Equivalence in the Presence of IND’s

The problem of optimizing querics has received a lot of attention, because of its central role in all

relational database implementations [62]. Given a query @, the goal is to design an equivalent query

82

Q" which can be processed as cfficiently as possible (i.c. contains a minimum number of instances of
cxpensive operators, such as join). Since cquivalence of two querics is a data dependency, the
problem of testing equivalence of queries in the presence of dependencics can be approached with

the standard tools for implication problems [3, 18, 62].

The equivalence of relational database queries in the presence of FID's and IND’s has been
cxamined in [43, 48], essentially by extending classical techniques (namely the chasc). The authors of
[43] show that under reasonable restrictions on the IND's, query equivalence can be reduced to well-
understood cases involving only FID’s. The approach of [48] is to introduce the weak instance
assumption [38, 64]; under this restriction, query equivalence in the presence of FI)'s and typed

IND’s can be handled by the methods of [43].

Many questions remain unanswered in the arca and new techniques seem to be required to handle
major ncw cascs. The techniques we have developed for FD and IND implication may be useful in
this respect. In particular, it would be interesting to sce if the tools we provide for typed IND’s can
be used to study cquivalence of (typed) conjunctive queries [18, 43] in the presence of typed IND’s

and FD’s, without the weak instance assumption of [48].
Expressing Data Distribution

An important consideration in the context of distributed databases is to find ways to preprocess
relations stored at different sites, so that a given query can be processed with a minimum amount of
data communication between sites. Some work has already becn done on characterizing database
schemes and querics for which such preprocessing is possible [8, 13]. An intcresting rescarch direction
is to extend these results to allow for the presence of FID’s (conceivably we will be able to preprocess
more queries if the database is constrained to satisfy a set of FD’s). Since data distribution can be
modeled by IND’s, these questions can be approached as implication problems involving FI’s and

IND’s.

Performance of Equational Theorem Provers

An interesting practical question is how well theorem provers designed around the Knuth-Bendix
method [46] perform on scts of equations obtained from database constraints. We have experimented
with the REVE system [35, 49}, which has been able to handle various non-trivial inferences of FD’s

and INID’s. However, more work needs to be done in this direction.

83

References

1. Aho, A.V., Beeri, C. and Ullman, 1.1J. The Theory of Joins in Relational Databases. ACM
Transactions on Database Systems 4, 3 (1979), 297-314,

2. Aho, A.V_, Hopcroft, 1.LE. and Ullman, J.1D. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

3. Aho, A.V., Sagiv, Y. and Ullman, J.DD. Equivalences of Relational Expressions. SI/AM Journal on
Computing 8, 2 (1979), 218-246.

4. Aho, A.V. and Ullman, J.DD. Universality of Data Retricval [Languages. Proccedings of the 6
ACM Symposium on Principles of Programming Languages, ACM, 1979, pp. 110-120.

5. Armstrong, W.W. Dcpendency Structure of Database Relationships. Proceedings IFIP 74,
Amsterdam, 1974, pp. 580-583.

6. Beeri, C. and Bernstein, P.A. Computational Problems Related to the Design of Normal Form
Reclational Schemas. ACM Transactions on Database Systems 4, 1 (March 1979), 30-59.

7. Beeri, C., Bernstein, P.A. and Goodman, N, A Sophisticate’s Introduction to Database
Normalization Theory. Proceedings of the 4" vi.DB Conference, 1978, pp. 113-124.

8. Beeri, C., Fagin, R., Maier, D. and Yannakakis, M. On the Desirability of Acyclic Database
Schemes. Journal of the ACM 30, 3 (July 1983), 479-513. '

9. Beeri, C. and Korth, H.F. Compatible Attributes in a Universal Relation. Procecdings of the 1%
ACM Symposium on Principles of Database Systems, ACM, 1982, pp. 55-62.

10. Beeri, C. and Vardi, M.Y. Formal Systems for Tuple and Equality Generating Dependencies.
STAM Journal on Computing 13,1 (February 1984), 76-98.

11. Beeri, C. and Vardi, M.Y. A Proof Procedure for Data Dependencies. Journal of the ACM 31, 4
(October 1984), 718-741.

12. Bernstein, P.A. Synthesizing Third Normal Form Relations from Functional Dependencies.
ACM Transactions on Database Systems 1 (1976), 277-298.

13. Beranstein, P.A. and Goodman, N. Power of Natural Semijoins. SIAM Journal on Computing 10,
4 (November 1981), 751-771.

14. Birkhoff, G. On the Structure of Abstract Algebras. Proceedings of the Cambridge Philosophical
Society 31 (1935), 433-454.

15. Breazu, V. Scmantics in Complete Lattices for Relational Database Functional Dependencies.
Analele Stiintifice ale Universitatii "ALL Cuza" din lasi 28 (1982), 177-182,

84

16. Casanova, M.A., Fagin, R. and Papadimitriou, C.H. Inclusion Dependencies and Their
Interaction with Functional Dependencices. Journal of Computer and System Sciences 28, 1 (February
1984), 29-59.

17. Casanova, V. and Vidal, V.M.P. Towards a Sound Vicw Integration Mcthodology. Proccedings
of the 2" ACM Symposium on Principles of Databasc Systems, ACM, 1983, pp. 36-47.

18. Chandra, A.K. and Mecrlin, P.M. Optimal Implementation of Conjunctive Queries in Relational
Databases. Proceedings of the 9™ ACM Symposium on Theory of Computing, ACM, 1977, pp. 77-
90.

19. Chandra, A.K. and Vardi, M.Y. The Implication Problem for Functional and Inclusion
Dependencices is Undecidable. STAM Journal on Computing 14, 3 (August 1985), 671-677.

20. Chen, P.P.S. The Entity-Relationship Model: Towards a Unified View of Data. ACM
Transactions on Database Systems 1, 1 (March 1976), 9-36.

21. Codd, E.F. A Relational Model for Large Shared Data Banks. Communications of the ACM 13,
6 (Junc 1970), 377-387.

22. Codd, E.F. Further Normalization of the Database Relational Model. In Database Systems,
Rustin, R., Ed., Prentice Hall, 1972, pp. 33-64. -

23. Codd, E.F. Relational Databasc: A Practical Foundation for Productivity. Communications of
the ACM 25,2 (February 1982), 109-117.

24. Codd, E.F. Extending the Database Relational Model to Capture More Meaning. ACM
Transactions on Database Systems 4, 4 (Dccember 1979), 397-434.

25. Cosmadakis, S.S. and Kanellakis, P.C. Equational Thcorics and Databasc Constraints.
Proceedings of the 17" ACM Symposium on Theory of Computing, ACM, May, 1984, pp. 273-284.

26. Cosmadakis, S.S. and Kanellakis, P.C. Functional and Inclusion Dependencies: A Graph
Theoretic Approach. Proceedings of the 34 ACM Symposium on Principles of Database Systems,
ACM, April, 1984, pp. 24-37.

27. Cosmadakis, S.S., Kanellakis, P.C. and Spyratos, N. Partition Scmantics for Relations.
Proceedings of the 4" ACM Symposium on Principles of Databasc Systems, ACM, March, 1985, pp.
261-275.

28. Crawlcy, P. and Dilworth, R.P. Algebraic Theory of Lattices. Prentice-Hall, 1973.
29. Date, C. Referential Integrity. Procecdings of the 7% V1.DB Conference, 1981, pp. 2-12.

30. Dcan, R.A. Componcnt Subscts of the Free Lattice on # Generators. Proceedings of the
American Mathematical Society 7 (1956), 220-226,

85

31. Downey, P.J.,, Scthi, R. and Tarjan, R.E. Variations on the Common Subexpression Problem.
Journal of the ACM 27, 4 (October 1980), 758-771.

32. Enderton, H.B. A Mathematical Introduction to Logic. Academic Press, 1972.

33. Fagin, R. A Normal Form for Relational Databases that is Based on Domains and Keys. ACM
Transactions on Database Systems 6, 3 (September 1981), 387-415.

34. Fagin, R. Horn Clauses and Database Dependencics. Journal of the ACM 29, 4 (October 1982),
952-985.

35. Forgaard, R. and Guttag, J.V. REVE: A Term Rewriting System Generator with Failure Resistant:
Knuth-Bendix. Proccedings of an NSEF Workshop on the Rewrite Rule laboratory, NSF,
April, 1984, pp. 5-31.

36. Gritzer, G. Universal Algebra. Springer-Verlag, New York, 1979.

37. Hammer, M. and McLcod, D. Database Description with SDM: A Scmantic Database Model.
ACM Transactions on Database Systems 6, 3 (September 1981), 351-386.

38. Honeyman, P. Testing Satisfaction of Functional Dependencics. Journal of the ACM 29, 3 (July
1982), 668-677.

39. Honeyman, P., Ladner, R.E., Yannakakis, M. Testing the Universal Instance Assumption.
Information Processing Letters 10, 1 (1980), 14-19.

40. Hopcroft, L.E. and Ullman, J.D. Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley Publishing Company, 1979.

41. Huet, G. and Oppen, D. Equations and Rewrite Rules: a Survey. In Formal Languages:
Perspectives and Open Problems, Book, R., Ed., Academic Press, 1980, pp. 349-403.

42. Hull, R. and Yap, C.K. The Format Modcl: A Theory of Database Organization. Proceedings of
the 1 ACM Symposium on Principles of Database Systems, ACM, 1982, pp. 205-211.

43. Johnson, D.S. and Klug, A. Testing Containment of Conjunctive Queries Under Functional and
Inclusion Dependencics. Journal of Computer and System Sciences 28, 1 (February 1984), 167-189.

44. Kancllakis, P.C., Cosmadakis, S.S. and Vardi, M.Y. Unary Inclusion Dependencies Have
Polynomial Time Inference Problems. Proceedings of the 15% ACM Symposium on Theory of
Computing, ACM, 1983, pp. 264-277.

45. Klug, A. Entity-Relationship Views over Uninterpreted Enterprise Schemas. In International
Conference on Entity-Relationship Approach, Chen, P.P.S., Ed., North Holland, 1980, pp. 39-59.

86

46. Knuth, D.E, and Bendix, P.B. Simple Word Problems in Universal Algebras. In Computational
Problems in Abstract Algebra, 1.ccch, 1., Ed., Pergamon, Oxford, 1970, pp. 263-297.

47. Kozen, D. Complexity of Finitely Presented Algebras. Proceedings of the 9™ ACM Symposium
on Theory of Computing, ACM, May, 1977, pp. 164-177.

48. Laver, K., Mcndelzon, A.O. and Graham, M.H. Functional Dependencies on Cyclic Database
Schemes. Proceedings of the ACM SIGMOD Conference, ACM, 1983, pp. 79-91.

49. Lescanne, P. Computer Experiments with the REVE Term Rewriting System Generator.
Proceedings of the 10" ACM Symposium on Principles of Programming Languages, ACM,
January, 1983, pp. 99-108.

50. Lewis, H.R. and Rapadimitriou, C.H. Llements of the Theory of Computation. Prentice-Hall,
Englcwood Cliffs, New Jersey, 1981.

51. Maier, D. The Théory of Relational Databases. Computer Science Press, 1983,

52. Maier, D., Mendelzon, A.O. and Sagiv, Y. 'I“csting Implications of Data Dependencics. ACM
Transactions on Database S, ystems 4, 4 (December 1979), 455-469.

53. Minsky, M.L.. Recursive Unsolvability of Post’s Problem of "Tag" and Other Topics in the
Theory of Turing Machines. Annals of Mathematics 74, 3 (1961), 437-455.

54. Mitchell, J.C. The Implication Problem for Functional and Inclusion Dependencies.
Information and Control 56, 3 (March 1983), 154-173.

55. E.L. Post. Recursive Unsolvability of a Problem of Thue. Journal of Symbolic Logic 13 (1947),
1-11.

56. Pudlak, P. and Tuma, J. Every Finite Lattice Can Be Embedded in a Finite Partition Lattice.
Algebra Universalis 10, 1 (1980), 74-95.

57. Sadri, F. and Ullman, J.D.,. Template Dependencies: A Large Class of Dependencices in
Relational Databascs and its Complete Axiomatization. Journal of the ACM 29, 2 (April 1982), 363-

372.

58. Sciore, E. Inclusion Dependencies and the Universal Instance. Proceedings of the ™ ACM
Symposium on Principles of Databasc Systems, ACM, 1983, pp. 48-57.

59. Smith, J.M. and Smith, D.C.P. Databasc Abstractions: Aggregation. Communications of the
ACM 20, 6 (1977), 405-413.

60. Spyratos, N. The Partition Model: A Deductive Database Model. Tech. Rep. No. 286, INRIA,
April, 1984.

87

61. Tsichritzis, D.C. and Lochovsky, F.H. Data Models. Prentice Hall, 1982.
62. Ullman, J.D. Principles of Database Systems. Computer Science Press, 1983.

63. Vardi, M.Y. The Implication Problem for FI1D’s is Polynomial-Time Complete. Personal
Communication.

64. Vassiliou, Y. A Formal Treatment of Imperfect Information in Database Management. Ph.D, Th,,
University of Toronto, 1980,

65. Whitman, P.M. Free Lattices. Annals of Mathematics 42 (1941), 325-330.

66. Whitman, P.M. Lattices, Equivalence Relations, and Subgroups. Bulletin of the American
Mathematical Society 52 (1946), 507-522.

67. Wicderhold, G. and El-Masri, R. A Structural Model for Database Systems. Tech. Rep. STAN-
CS-79-722, Stanford University, February, 1979,

68. Yannakakis, M. and Papadimitriou, C.H. Algebraic Dependencies. Journal of Computer and
System Sciences 21, 1 (August 1982), 2-41.

69. Zaniolo, C. Design of Relational Views over Network Schemas. Proceedings of the ACM
SIGMOD Conference, ACM, 1979,

88

Table of Contents

Chapter One: Introduction

1.1 Functional and Inclusion Dependencies in the Relational Model
1.2 The Implication Problem

1.3 Chapter Two: The Equational Approach to Dependencies

1.4 Chapter Three: Application to Typed IND’s

1.5 Chapter Four: Finite Implication of FD’s and Unary IND’s

1.6 Chapter Five: Partition Dependencies

1.7 Credits

Chapter Two: The Equational Approach to Dependencies

2.1 Definitions
2.1.1 Relational Database Theory
2.1.2 Equational Logic
2.2 Functional and Inclusion Dependencies as Equations
2.3 A Proof Procedure for F1)’s and IND’s
2.4 Computations as Inferences

Chapter Three: Application to Typed IND’s

3.1 Another Proof Procedure for FD’s and IND’s
3.2 Typed IND’s and Acyclic FD’s
3.3 Inference of FD’s under Pairwise Consistency

Chapter Four: Finite Implication of FD’s and Unary IND’s

Chapter Five: Partition Dependencies

5.1 Prcliminaries

5.2 Expressive Power

5.3 The Implication Problem
5.4 Testing Satisfaction

Chapter Six: Directions for Further Investigation

89

~3 WK W

10
12
13
14

15

15
15
19
21
27
28

34

34
39

54

64

64
66
68
76

81

Figure 2-1:
Figure 2-2:
Figure 3-1:
Figure 3-2;
Figure 3-3;
Figure 3-4;
Figure 3-5;
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 3-9:

Table of Figures

Graph notation for FD's and INID’s

Graph rules for F1)'s and IND’s

Another graph notation for FD’s and IND’s
Graph rules for FD’s and IND’s

Basis case

Casel

Case 2a

Case 2b

Case 2¢

Case 2d

Example of FD inference under pairwise consistency

Figure 3-10: Gadgets for Proof of Theorem 3.3

Figure 4-1:
Figure 4-2;
Figure 5-1:
Figure 5-2:

Construction of a finitc counterexample reclation
Relation that violates a u-ID

A model for @y

MVD’s are not expressible by PD’s

90

32
33
47
48
49
49
50
50
51
51
52
53
62
63
79
80

