Equational Theories and Database Constraints

by

Stavros Stylianos Cosmadakis
B.S., Massachusetts Institute of Technology (1981)
M.S., Massachusetts Institute of Technology (1983)

Submitted to the Department of Electrical Enginecring and Computer Science in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy in Computer Science
at the
Massachusetts Institute of Technology

August 1985
© M.I.T 1985

Accepted by \qquad
Arthur C. Smith, Chairman, Departmental Committec on Graduate Students

Equational Theories and Datahase Constraints

Stavros Stylianos Cosmadakis

Submitted to the Department of Electrical Engineering and Computer Science on August 1985, in Partial Fulfillment of the Requirements
for the Degrec of Doctor of Philosophy in Computer Science

Abstract

The implication problem for database constraints is central in the ficlds of automated schema design and query optimization and has been traditionally approached with resolution-based techniques. We present a novel approach to database constraints, using equations instead of Horn clauses. This formulation enables us to use new techniques for database theory, which derive from universal algebra, equational logic and lattice theory. It also points to the possibility of employing theorem-proving techniques originally developed for equational theories to deal with implication in the context of logical databases. We apply our approach to study functional and inclusion dependencics. These constraints can model functional determination and data duplication and they have been extensively proposed as a powerful and realistic feature for semantic data models. We prove completeness of new proof procedures and we derive new upper and lower bounds for the complexity of various implication problems involving these dependencies. We also present a new class of constraints which are defined equationally, using algebraic operations on set-theoretic partitions. These partition dependencies provide an elegant generalization of functional dependencies (in the direction of incorporating transitive closure), for which the implication problem remains efficiently solvable.

Thesis Co-Supervisor: Paris C. Kanellakis, Visiting Assistant Professor of Computer Science (on leave from Brown University).

Thesis Co-Supervisor: Albert R. Meyer, Professor of Computer Science. Keywords: Relational data model, logical databases, dependencics, implication, proof procedures, completencss, cquational theorics, word problems, lattices.

Chapter One

Introduction

1.1 Functional and Inclusion Dependencies in the Relational Model

The development of the relational data model [21, 22] led to major progress in the arca of database management. The model and its implementations have contributed significantly both to the increase of programmer productivity [23] and to the fundamental understanding of computation [62].

Among the advantages of the model, which account for its success, are [23]:

1. The sharp, clear boundary it provides between the conceptual and the physical aspects of database management.
2. Its simplicity, which allows users and programmers to have a common understanding of the data and therefore communicate easily about it.
3. The introduction of truly high level language concepts, which enables users to express operations on large pieces of information, without detailed knowledge of its representation or of the access paths to where it is stored.
4. A sound, mathematical foundation, which makes possible the theoretical study of the (often formidable) problems of database design and manipulation.

The relational data model consists of a structural part (with a unique data type, the relation), a manipulative part (with powerful algebraic operators such as selection, projection and join) and an integrily part (constraints defining consistent database states, intended to capture the semantics of particular applications) [62,51]. A relation is a table with columns named by attributes and with rows containing values from some domain, each row being a tuple. Λ database is a finite set of relations. A logical database or database schema consists of a database scheme, i.e. a finite sct D of relation schemes (sequences of attributes naming the columns of relations), along with a finite set Σ of integrity constraints (dependencies), which should be satisficd by all legal physical databases (database instances).

For an example (invariant throughout the database literature), consider a database of two relations

R,S, where R has attributes lemployere and managir and S has attributes manager and departmini. If we take as our semantic restrictions that "every employee has exactly one manager" and "every manager manages exactly one department", we define the following database schema:

$$
\begin{aligned}
& D=\{\text { [Employee, manager]. S[unnagier, dipartment] }\} \\
& \Sigma=\{\text { R:IMPI OY:E: } \rightarrow \text { MANAGI:R, S:mAnagi:R } \rightarrow \text { DiPArtment }\}
\end{aligned}
$$

In this casc, our constraints are examples of functional dependencies [21,22, 62, 51]. Formally, a functional dependency (FD) is an assertion of the form $\mathrm{R}: \mathrm{X} \rightarrow \mathrm{Y}$, where R is the name of a relation and X, Y are sets of attributes from the relation scheme of R. It is satisfied by a database instance iff whenever two tuples of relation R agree on all attributes appearing in X, they also agree on all attributes appearing in Y. Observe that, with no loss of generality, we can take Y to consist of a single attribute.

Functional dependencies form a conceptually simple and naturally occuring class of constraints. For this reason, they have been extensively studied in the literature (see [7, 62,51] for reviews of the area). Combined with the algebraic operators of the relational model they provide a practical and elegant approach to the problems of database design and manipulation.

At present, a major research effort is underway towards extending the relational model. This effort is motivated in large part by the success of the relational methodology and by the demands of specific application domains, in particular Office Automation (see, c.g., [20, 24, 37, 42, 59, 61], which is by no means an exhaustive list). The approach generally taken is to appropriately enrich the integrity part by adding constraints which will enhance the expressive power of the model, while at the same time preserving its original advantages.

Returning to our example, suppose we also want to be able to express simple facts such as "everyone who manages employces belongs to some department". In other words, we want to add to the semantics of our relations that a MANAGER entry in relation R must also appear as a MANAGER entry in relation S. This constraint is formally captured by the inclusion dependency [16] R:manager \subseteq S:manager. In general, an inclusion dependency (IND) is a statement of the form $R: \Lambda_{1} \ldots \Lambda_{m} \subseteq S: B_{1} \ldots B_{m}$. Such a statement is satisfied by a database instance iff whenever a tuple with entrics a_{1}, \ldots, a_{m} for attributes $\Lambda_{1}, \ldots, \Lambda_{m}$ appears in relation R, a tuple with entries a_{1}, \ldots, a_{m} for attributes B_{1}, \ldots, B_{m} appears in relation S.

Inclusion dependencies make it possible to sclectively define what data must be duplicated in
what relations and thus they provide a valuable tool for database design [24, 59, 69]. The central notion of referential integrity [24, 29] can be expressed using IND's. Together with FI's, IND's form the basis of the structural model of [67]. Descriptions of logical databases written in a variety of languages can be translated into a common language which uses relations, FI's and IND's [45]. Inclusion dependencies have also been employed to map an entity-relationship schema to the relational model [20]. We mention in passing that IND's have been commonly known in Artificial Intelligence applications as $I S A$ relationships (cf. [9]).

Nlthough the addition of IND's to the relational model has been recognized as realistic and desirable (because of their conceptual simplicity and expressive power), they have become only recently the object of theoretical investigation $[16,43,54,19,58,17,44,48,26]$. General questions relating to the implication problem for IND's and FI's have been studicd in [16,54, 19]. Λ rather surprising result $[54,19]$ is that the combination of IND's with FD's is as powerful computationally as first-order predicate calculus. This result can be considered both positive (as it hints to the possibly rich potential of two simple primitive forms) and negative, as it implies inherent computational intractability of the general case. From a more practical standpoint, [43, 17, 44, 26] provide solutions to database design and query optimization problems in the presence of (suitably restricted) IND's and FD's. Also, central notions such as the Universal Instance Assumption [62, 51] have been investigated using IND's [58, 48]. We will review the theoretical work on IND's in more detail in the sequel.

1.2 The Implication Problem

The (unrestricted) implication problem for a class of dependencies is the following: Given a finite set Σ of dependencies and a dependency σ, test if σ holds in all (not necessarily finite) databases which satisfy the dependencies in Σ. By restricting attention to finite databases, we obtain the finite implication problem.

Solving the implication problem is the main computational task associated with a class of dependencies. As a rule, algorithmic approaches to database schema design and query optimization are based on efficient solutions of the implication problem (sec, c.g., $[12,6,3,18,62,51])$. Evidently, if we are concerned with applications then the finite implication problem is the one which is most relevant. However, it tends to be much more difficult to deal with. Morcover, for the classes of
dependencies for which implication is decidable, it generally happens that finite implication coincides with unrestricted implication.

The problem of dependency implication can be approached in a very general setting by formulating dependencies as sentences in first-order logic, namely as Horn clauses [34] (see Section 5.1 of this thesis for some examples). Closely related to this approach is a particular proof procedure, the chase; see $[52,11,62,51]$ for its wide applicability (proof procedures for general dependencies also appear in $[10,68,57])$. It has been observed that the chase is a special case of a classical theorem proving technique, namely resolution [10, 11]. The chase provides straightforward algorithms for implication of classes of dependencies for which it can be shown to terminate. Furthermore, in these cases the chase produces a finite counterexample whenever implication does not hold; it is for this reason that finite implication coincides with unrestricted implication in these cases.

Returning now to functional and inclusion dependencies, what appears to be the fundamental difficulty is preciscly that IND's can prevent the chase from terminating. Of course, in the case of general FI's and IND's one cannot hope to circumvent this obstacle, since the implication problem is undecidable [54, 19]. Nevertheless, given the practical importance of these dependencies it makes sense to study the complexity of special cases. The obvious approach that has been suggested is to analyze the chase, but this turns out to be a very delicate task (cf. [43]), which can only give partial results [43, 26]. Thus, it seems that new tools are required in order to make major progress.

The main contribution of this thesis is the introduction of such tools, borrowed from equational logic. This is a fragment of first-order logic which has attracted a lot of attention, because of its relevance to areas such as applicative languages, interpreters and data types (see [41] for a survey). However, it does not seem to have been noticed by the database theory community, since a constant effort has been made to minimize the role of equality in dependencies (multivalued dependencies (MVD's) [62, 51], the most widely studied after FD's, do not involve equality). The only case where ideas from equational logic were applied in database theory seems to be the best algorithm for losslesshess of joins (a basic computational problem), which was derived from an efficient algorithm for congruence closure [31]. Also, the best algorithm for implication of FD's [6] can be scen directly (as we observe) as a special case of an algorithm of [47] for the generator problem in finitely presented algebras.

We use the methods of equational logic to formulate and study implication problems involving

Fl)'s and IND's. We also use equations to define a new class of dependencies (generalizing FI's) and to investigate its implication problem. In the subsequent Sections, we review in more detail the content of each Chapter.

1.3 Chapter Two: The Equational Approach to Dependencies

Let r be a relation over a set of attributes \mathfrak{U}, with values taken from a domain $ף$. Suppose r satisfies the $\mathrm{FD} \triangle \mathrm{BB} \rightarrow \mathrm{C}$, i.e. whenever two tuples of r agree on Λ, B they also agree on C (here and in the sequel we consider single relations, so we can suppress relation names from dependencies). I et \mathbf{x} be a variable ranging over the tuples of r and let $a(x)(b(x), c(x))$ be a function which assigns to a tuple x the entry of x at attribute $\Lambda(B, C)$. Now since r satisfies $\Lambda B \rightarrow C$, it is easy to see that there is a function $f\left(\right.$ from \mathscr{D}^{2} to \mathscr{D}) such that the following sentence is true in r :

$$
\forall \mathrm{x} . f(a(\mathrm{x}), b(\mathrm{x}))=c(\mathrm{x})
$$

This observation suggests the following syntactic transformation: the $\mathrm{FD} \wedge \mathrm{AB} \rightarrow \mathrm{C}$ is rewritten as an equation

$$
f a x b x=c x
$$

where now the symbol a (b,c) is a function symbol of ARITY 1 representing the attribute $A(B, C)$ and f is a function symbol of ARITY 2 corresponding to the FD. Using the standard convention of equational logic, we omit the universal quantifier on the variable x.

We now illustrate how this equational formalism can be used to infer FD's.
Example 1.1: Given the FD's

$$
\mathrm{A} \rightarrow \mathrm{~B}_{1}, \mathrm{~A} \rightarrow \mathrm{~B}_{2}, \mathrm{~B}_{1} \mathrm{~B}_{2} \rightarrow \mathrm{C}
$$

we can infer the $\mathrm{FD} A \rightarrow C$. Using our transformation, the given set of FD 's produces the equations

$$
f_{1} a x=b_{1} x, f_{2} a x=b_{2} x, g b_{1} x b_{2} x=c x
$$

From these we can infer the equation

$$
\mathrm{gf}_{1} \mathrm{axf}_{2} \mathrm{ax}=\mathrm{cx}
$$

In general, we can infer an FD such as $\mathrm{A} \rightarrow \mathrm{C}$ if we can infer an equation $\tau[\mathrm{x} / \mathrm{ax}]=\mathrm{cx}$, where τ is a term over the f's and a variable x (in Example 1.1, τ is the term $\mathrm{gf}_{1} \mathrm{xf}_{2} \mathrm{x}$). The notation $\tau[\mathrm{x} / \mathrm{ax}]$ means that we substitute ax for x in τ.

Interestingly, this equational formulation can be extended to IND's as well. Suppose relation r satisfies the IND) $\Lambda_{1} \Lambda_{2} \subseteq B_{1} B_{2}$, i.e. for each tuple t of r there is a tuple t^{*} of r such that the values of t^{*} on $\mathrm{B}_{1}, \mathrm{~B}_{2}$ are the same as the values of t on Λ_{1}, Λ_{2} respectively. This means the following sentence is true in r :

$$
\forall x \exists y \cdot\left[b_{1}(\mathrm{y})=a_{1}(\mathrm{x}) \wedge b_{2}(\mathrm{y})=a_{2}(\mathrm{x})\right]
$$

(as before, x, y are variables ranging over the tuples of r and $a_{1}, a_{2}, b_{1}, b_{2}$ are functions corresponding to the attributes $\left.\Lambda_{1}, \Lambda_{2}, B_{1}, B_{2}\right)$.
Consider now the Skolemization of the existential quantifier $\exists y$: one obtains the sentence

$$
\forall \mathrm{x} .\left[b_{1}(i(\mathrm{x}))=a_{1}(\mathrm{x}) \wedge b_{2}(i(\mathrm{x}))=a_{2}(\mathrm{x})\right]
$$

which is true in r for some suitable function $i(x)$ (from tuples to tuples). This suggests transforming the IND $\Lambda_{1} \Lambda_{2} \subseteq B_{1} B_{2}$ into the set of equations

$$
b_{1} i x=a_{1} x, b_{2} i x=a_{2} x
$$

(here i is a function symbol of ARITY 1 corresponding to the IND).
Example 1.2: From the dependencies

$$
A_{1} \Lambda_{2} \subseteq B_{1} B_{2}, A_{2} \Lambda_{3} \subseteq B_{2} B_{3}, B_{2} \rightarrow B_{3}
$$

we can infer the IND $A_{1} A_{2} \Lambda_{3} \subseteq \mathcal{B}_{1} B_{2} B_{3}[16,54]$. Using our transformation, the given set of dependencies produces the equations

$$
\begin{aligned}
& b_{1} i x=a_{1} x, b_{2} i x=a_{2} x, \\
& b_{2} j x=a_{2} x, b_{3} j x=a_{3} x, \\
& f_{2} x=b_{3} x .
\end{aligned}
$$

From these we can infer

$$
\mathrm{b}_{3} \mathrm{ix}=\mathrm{fb}_{2} \mathrm{ix}=\mathrm{fa}_{2} \mathrm{x}=\mathrm{fb}_{2} \mathrm{j} \mathrm{x}=\mathrm{b}_{3} \mathrm{j} \mathrm{x}=\mathrm{a}_{3} \mathrm{x}
$$

i.e. we can infer the set of equations

$$
b_{1} i x=a_{1} x, b_{2} i x=a_{2} x, b_{3} i x=a_{3} x
$$

In general, we can infer an IND such as $A_{1} A_{2} A_{3} \subseteq B_{1} B_{2} B_{3}$ if we can infer a set of equations $\mathrm{b}_{1} \tau=\mathrm{a}_{1} \mathrm{x}, \mathrm{b}_{2} \tau=\mathrm{a}_{2} \mathrm{x}, \mathrm{b}_{3} \tau=\mathrm{a}_{3} \mathrm{x}$, where τ is some term over the i's and a variable x (in Example $1.2, \tau$ is simply ix).

Thus, we can use cquational reasoning to obtain a proof procedure for FD's and IND's. The soundness and completeness of this approach is demonstrated in Theorem 2.1. As a matter of fact, the soundness part (whenever an equation of the appropriate form is implied, the corresponding
dependency is implied) is casy and it should already be plausible from the preceding discussion. The difficult part is completeness (whenever a dependency is implied, an equation of the appropriate form is implied). This is proved by a rather delicate induction, which shows that equational reasoning can simulate the chase.

We can also have a slightly different syntactic transformation of dependencies into equations. This transformation, however, does not have a straightforward semantic justification.

Consider the FD's in Example 1.1: We can transform them into the equations

$$
f_{1} a=b_{1}, f_{2} a=b_{2}, g b_{1} b_{2}=c,
$$

from which we can infer the equation

$$
\mathrm{gf}_{1} \mathrm{af}_{2} \mathrm{a}=\mathrm{c}
$$

The symbols $\mathrm{a}, \mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{c}$ are now constant symbols representing the attributes $\mathrm{A}, \mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{C}$.
When approached this way, the implication problem for FD's becomes a special case of the generator problem for finitely presented algebras [47], for which [47] gives a polynomial-time algorithm. By inspecting the behaviour of [47]'s algorithm in this special case, we obtain the lineartime algorithm for implication of FD's given in [6].

This alternative transformation can also be extended to IND's. We transform the IND $\Lambda_{1} A_{2} \subseteq B_{1} B_{2}$ into the set of equations

$$
\mathrm{ib}_{1}=\mathrm{a}_{1}, \mathrm{ib}_{2}=\mathrm{a}_{2} .
$$

Observe that we have now eliminated the variable x , which can play an essential role when IND's are combined with FD's (cf. Example 1.2). For this reason we also need equations of the form

$$
\mathrm{fix}=\mathrm{ifx},
$$

which permit us to move the fs over the i's and vice versa. The soundness and completeness of this approach is also proved in Theorem 2.1.

The equational formulation of dependencies is more redundant than the standard one, since we need to introduce new symbols (fs and i's). On the other hand, inferences of dependencies now give us more information: whenever we infer a dependency σ from a set of dependencies Σ, the associated term τ (cf. Examples 1.1, 1.2) tells us how σ results (in any database satisfying Σ) by "composing" dependencies in Σ.

In the remainder of Chapter 2, we use our equational approach to prove several results relating to

FI) and IND implication. We first give a new proof procedure for FI)'s and IND's (Theorem 2.2). This proof procedure is different in spirit both from the chase and the proof procedure of [54] and it treats FD's and IND's in a symmetric fashion. The cquational tools come into play in the proof of completeness of this proof procedure. Usually, completeness is proved by constructing a database which satisfies a set of dependencies Σ but violates a dependency σ (assuming σ cannot be proved from Σ); see, c.g., [11, 54, 62]. In our case, we consider the set of equations \mathcal{E}_{Σ} obtained from Σ and we construct an algebra which satisfies \mathcal{B}_{Σ} but violates any equation that could correspond to σ.

Our second result is a precise characterization of the complexity of acyclic IND's and FD's. Intuitively, a set of IND's is acyclic [58] if it does not contain any cycles of inclusions, such as $\left\{R: \Lambda_{1} \Lambda_{2} \subseteq R: B_{1} B_{2}\right\},\left\{R: \Lambda \subseteq S: B, S: B^{\prime} \subseteq R: \Lambda^{\prime}\right\}$ and so on. Acyclic sets of IND's have been proposed as a useful tool for database schema design [58]. One can easily observe that the implication problem for acyclic IND's and FD's can be solved in exponential time (the chase terminates in this case). NP. hardness lower bounds for the problem were obtained in [26].

We show that the implication problem for acyclic IND's and FD's requires exponential time (Theorem 2.4). The main observation is that, when all FD's are unary (i.e. the left-hand side contains a single attribute), the equational inferences of Examples $1.1,1.2$ can be viewed as inferences in semigroups (Corollary 2.3). Such inferences can in turn simulate computations of an automaton with two pushdown stores. Since such automata are universal computing devices, we obtain a tight undecidability result for FD and IND implication (Theorem 2.3). Furthermore, the acyclicity condition on the IND's corresponds to bounding the size of one of the pushdown stores, which gives us exponential time.

1.4 Chapter Three: Application to Typed IND's

A usual assumption in database theory is that all database relations are projections of a single universal relation (Universal Instance Assumption [62,51]). In practice this is not always the case, so one has the problem of testing the existence of a universal instance and the problem of adjusting the database relations to maintain the existence of a universal instance as the database is updated. Both of these problems are known to be NP-complete [39]. An alternative, weaker condition we may impose on a multi-relational database is pairwise consistency, i.e. every pair of the database relations is required to have a universal relation. This condition is casy to test and maintain, as described in
numerous works on the subject (sec [8] for a review). In fact, if the database scheme is acyelic [8] then pairwise consistency implies the existence of a universal instance.

Most of the theoretical work on dependencies is done in the context of databases consisting of a single relation, i.e. it assumes the existence of a universal instance $[62,51]$. Λ natural question, then, is to investigate the effect of the weaker assumption of pairwise consistency on the implication problem, say for functional dependencies. Although the implication problem for FI's is solvable in linear time assuming a universal instance [6], it is not clear even if it is decidable in the context of pairwise consistency.

Let r_{1}, r_{2} be relations over relation schemes $R_{1}\left[U_{1}\right], R_{2}\left[U_{2}\right]$ respectively. It is not difficult to see that r_{1}, r_{2} have a universal instance iff the projection of r_{1} on $U_{1} \cap U_{2}$ is the same as the projection of r_{2} on $U_{1} \cap U_{2}$ [1]. This can be expressed (with a slight abuse of notation) by the pair of IND's
$\mathrm{R}_{1}: \mathrm{U}_{1} \cap \mathrm{U}_{2} \subseteq \mathrm{R}_{2}: \mathrm{U}_{1} \cap \mathrm{U}_{2}$
$\mathrm{R}_{2}: \mathrm{U}_{1} \cap \mathrm{U}_{2} \subseteq \mathrm{R}_{1}: \mathrm{U}_{1} \cap \mathrm{U}_{2}$.
These are examples of typed IND's. An IND is typed [17, 48] if it has the form $\mathrm{R}: \mathrm{A}_{1} \ldots \mathrm{~A}_{\mathrm{m}} \subseteq \mathrm{S}: \mathrm{A}_{1} \ldots \mathrm{~A}_{\mathrm{m}}$. By the above observation, we can then formulate the implication problem for FD's in the presence of pairwise consistency as an implication problem for FD's and (typed) IND's.

In this Chapter, we apply the equational techniques of Chapter 2 to study the implication problem for FD's and typed INID's. The main tool we develop is a proof procedure for general FD's and IND's (Theorem 3.1). This proof procedure is different from the procedure of Theorem 2.2 and somewhat reminisecnt in spirit of the axiomatization of [54]. We prove completeness of the procedure by showing that it captures (indirectly) equational inferences as in Examples 1.1, 1.2.

By analyzing the behaviour of this proof procedure in the case of typed IND's, we obtain a decidability result for typed IND's and FD's satisfying an acyclicity condition (Corollary 3.1). We then further specialize the proof procedure to the case of unary FD's in the presence of pairwise consistency (Lemma 3.2). By a rather complicated analysis of derivations, we show that this implication problem is undecidable (Theorem 3.3). This provides a very tight undecidable case of FD and IND implication.

Finally, we use Lemma 3.2 to show that there is no k-ary axiomatization (involving only FD's and IND's) for implication of unary FI's under pairwise consistency (Theorem 3.4; the technical notion
of a k-ary axiomatization is explained in Chapter 3). This strengthens a previous result of [16] about non-existence of k-ary axiomatizations for Fl)'s and IND's.

1.5 Chapter Four: Finite Implication of FD's and Unary IND's

Given the importance of the finite implication problem, it is natural to ask if our equational approach can be extended to finite implication. Unfortunately, there are difficulties. The completeness part of 'Theorem 2.1 is proved by analyzing a proof procedure (the chase). However, in the case of finite implication of FD's and IND's such a proof procedure does not even exist [54, 19].

Nevertheless, we can have a complete proof procedure for finite implication of FD's and IND's, if we restrict ourselves to IND's with one attribute per side (unary IND's). Unrestricted implication becomes rather uninteresting in this case, because FD's and unary IND's do not interact in any nontrivial way (Proposition 4.1). However, in the finite case we have the following interaction:

$$
\begin{aligned}
& \text { from } \Lambda_{0} \rightarrow \Lambda_{1} \text { and } \Lambda_{1} \supseteq \Lambda_{2} \text { and... and } \mathrm{A}_{\mathrm{m}-1} \rightarrow \Lambda_{\mathrm{m}} \text { and } \Lambda_{\mathrm{m}} \supseteq \Lambda_{0} \\
& \text { derive } \Lambda_{1} \rightarrow \Lambda_{0} \text { and } \Lambda_{2} \supseteq \Lambda_{1} \text { and... and } \Lambda_{\mathrm{m}} \rightarrow \mathrm{~A}_{\mathrm{m}-1} \text { and } \Lambda_{0} \supseteq \Lambda_{\mathrm{m}} \\
& \text { (m odd). }
\end{aligned}
$$

It turns out that this is the only non-trivial interaction: by turning the above observation into a set of inference rules (one for each odd m) and including the usual inference rules for FD's [5] and IND's [16], we obtain a complete axiomatization for FD's and unary IND's in the finite case (Theorem 4.1). The completeness proof is rather long and it involves an intricate construction of a finite counterexample relation. We also remark that this axiomatization leads to a polynomial-time algorithm for finite implication of FD's and unary IND's [44]. The class of FD's and unary IND's is the only known class of dependencies for which unrestricted and finite implication are both solvable without being identical.

Interestingly, the above axiomatization can also be used to prove an analogue of Theorem 2.1 for finite implication of FD's and unary IND's (Theorem 4.2). However, this result is weaker, in the following way. Suppose, for example, that we want to test if the $\mathrm{FD} \Lambda \rightarrow \mathrm{B}$ is implicd from a set of dependencies Σ. In the unrestricted case we can show that, if $A \rightarrow B$ is implied, then there is a term τ such that the equation $\tau[x / a x]=b x$ is implied (cf. Example 1.1); i.e., $\tau[x / a x]=b x$ holds in all algebras which satisfy the equations corresponding to Σ. In the finite case, we can only show that, for each algebra \mathcal{A} as above, there is a term τ (depending on \mathcal{A}) such that the equation $\tau[\mathrm{x} / \mathrm{ax}]=\mathrm{bx}$ holds in

A.

1.6 Chapter Five: Partition Dependencies

We have presented in Chapter 2 an equational formulation of functional dependencies. One can also have another formulation of quite different flavor, using algebraic operations on partitions (this seems to be a folklore observation, sec c.g. [15, 60]).

Specifically, let r be a relation and for each attribute Λ tet π_{A} be the following partition of the set of tuples of r : tuples t, s are in the same block of π_{A} iff they agree on atrribute Λ. Now it is easy to see that r satisfics the FD$) \wedge \rightarrow B$ iff

$$
\pi_{\mathrm{A}} \leq \pi_{\mathrm{B}}
$$

or, equivalently,
$\pi_{\mathrm{A}}=\pi_{\mathrm{A}}{ }^{\cdot} \pi_{\mathrm{B}}$,
$\pi_{\mathrm{B}}=\pi_{\mathrm{A}}+\pi_{\mathrm{B}}$.
Here \leq is the usual refines relation and $\cdot,+$ are the usual product and sum operation on partitions.
We are thus led to consider general equations over $\cdot++$ and the π_{A} 's. We call such equations partition dependencies (PD's) [27].

We first compare the expressive power of PI's to that of previously studied database constraints, namely embedded implicational dependencies [34]. A first observation is that PD's of the form $\pi_{\mathrm{A}}=\pi_{\mathrm{B}}+\pi_{\mathrm{C}}$ can express symmetric transitive closure (Example 5.2). It follows by a simple compactness argument that such PD's cannot be expressed by any set of EID's (Theorem 5.1). On the other hand, PD's are unable to detect complicated patterns of equalities in relations and for this reason they cannot express, for instance, multivalued dependencies (Theorem 5.2).

We then study the implication problem for PD's. We observe that the (finite) implication problem for PD's is equivalent to the uniform word problem for (finite) latices (Lemma 5.1). This follows from two deep results of lattice theory, namely that (finite) equivalence relations can represent arbitrary (finite) lattices [66,56]. Using techniques from universal algebra [36, 47] and lattice theory [28], we show that these word problems are equivalent and they can be solved in polynomial time (Theorem 5.3).

Finally, we examine the problem of testing consistency $[38,64]$ of a database with a set of PD's. Using our polynomial-time algorithm for implication, we show that it can be reduced to testing consistency with a set of Fl)'s [38]. It follows that the problem can be solved in polynomial time (Theorem 5.4).

1.7 Credits

The research reported in this thesis was done in close collaboration with Paris C. Kanellakis, and has been documented in a series of joint publications [25, 26, 44, 27]. Individual credit for the main results gocs as follows:

Theorems 2.1, 2.2, 2.3, 2.4 were obtained jointly, and appeared in [25].
Theorems 3.1, 3.2, 3.3 are duc to the author of this thesis, and appeared in [25]. Theorem 3.4 was obtained jointly, and appeared in [26].

Theorem 4.1 was obtained jointly, but Paris C. Kanellakis was the main contributor; this result appeared in [44]. Theorem 4.2 was obtained jointly, and appeared in [25].

Theorem 5.3 was obtained jointly, but the author of this thesis was the main contributor; this result appeared in [27]. Theorems 5.1, 5.2, 5.4 were obtained jointly, and appeared also in [27].

The extension to general dependencies outlined in the concluding chapter is due to the author of this thesis.

Chapter Two

The Equational Approach to Dependencies

We present in this Chapter the cquational formalization of functional and inclusion dependencies. Section 2.1 gives the necessary definitions and background from database theory and equational logic. In Section 2.2 we present the main Theorem and its Corollarics. We use it in Scetion 2.3 to prove completeness of a new proof procedure for FI's and IND's. In Section 2.4 we apply the equational formulation to prove new lower bounds for FD and IND implication.

2.1 Definitions

2.1.1 Relational Database Theory

Let ϑ be a finite set of attributes and $₫$ a countably infinite set of values, such that $\cup \cap \Im=\varnothing . A$ relation scheme is an object $R[U]$, where R is the name of the relation scheme and $U \subseteq \mathcal{U}$. A tuple t over U is a function from U to \mathscr{D}. Let $U=\left\{A_{1}, \ldots, A_{n}\right\}$ and a_{k} a value, $k=1, \ldots, n$; if $t\left[\Lambda_{k}\right]=a_{k}$, we represent tuple t over U as $a_{1} a_{2} \ldots a_{n}$. We represent the restriction of tuple t on a subset X of U as $t[X]$. A relation r over $\mathrm{U}($ named R$)$ is a (possibly infinite) nonempty set of tuples over U . A database scheme D is a finite set of relation schemes $\left\{\mathrm{R}_{1}\left[\mathrm{U}_{1}\right] \ldots, \mathrm{R}_{\mathrm{q}}\left[\mathrm{U}_{\mathrm{q}}\right]\right\}$ and a database $\mathrm{d}=\left\{\mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{q}}\right\}$ associatcs each relation scheme $\mathrm{R}_{\mathrm{k}}\left[\mathrm{U}_{\mathrm{k}}\right]$ in D with a relation r_{k} over $\mathrm{U}_{\mathrm{k}} . \Lambda$ database is finite if all of its relations are finite. A database can be visualized as a set of tables, one for cach relation, whose headers are the relation schemes (each column headed by an attribute) and whose rows are the tuples.

The logical constraints which determine the set of legal databases are called database dependencies [62,51$]$. We will be examining two very common types of dependencies.

FI) $\mathrm{R}: \mathrm{A}_{1} \ldots \Lambda_{\mathrm{n}} \rightarrow \mathrm{\Lambda}(\mathrm{n}>0)$ is a functional dependency $[62,51]$.
Rclation r (named R) satisfics this FD iff, for tuples $\mathrm{t}_{1}, \mathrm{t}_{2}$ in $\mathrm{r}, \mathrm{t}_{1}\left[\Lambda_{1} \ldots \Lambda_{\mathrm{n}}\right]=\mathrm{t}_{2}\left[\Lambda_{1} \ldots \Lambda_{\mathrm{n}}\right]$ implies $\mathrm{t}_{1}[\Lambda]=\mathrm{t}_{2}[\mathrm{~A}]$.

If $\mathrm{n}=1$, i.e. the left-hand side contains a single attribute, we have a unary functional dependency ($u-\mathrm{FD}$) .

INI) $\mathrm{S}: \mathrm{D}_{1} \ldots \mathrm{D}_{\mathrm{m}} \subseteq \mathrm{R}: \mathrm{C}_{1} \ldots \mathrm{C}_{\mathrm{m}}(\mathrm{m}>0)$ is an inclusion dependency [16].
Relations s, r (named S, R respectively) satisfy this IND) iff, for each tuple t in s, there is a tuple t_{1} in r with $t_{1}\left[C_{k}\right]=t\left[D_{k}\right], k=1, \ldots, m$.

If $\mathrm{m}=1$, we have a unary inclusion dependency ($\mathrm{u}-\mathrm{ID}$).

Equality of two columns headed by attributes Λ, B in a relation named R can be expressed as a special case of IND's: Use an IND such as R:ABCR:AA. These dependencies are particularly illustrative of our analysis; we will use $\Lambda \equiv B$ to denote them.

Database Notation: We use a graph notation to represent an input database scheme D and a set of dependencies Σ (input schema). We construct a labeled directed graph G_{Σ} (sec Figure 2-1), which has exactly one node a_{k}^{j} for each attribute Λ_{k} of each relation scheme R_{j}. For each IND $\mathrm{R}_{2}: \mathrm{D}_{1} \ldots \mathrm{D}_{\mathrm{m}} \subseteq \mathrm{R}_{1}: \mathrm{C}_{1} \ldots \mathrm{C}_{\mathrm{m}}$ in Σ, the graph G_{Σ} contains m black arcs $\left(\mathrm{c}_{1}^{1}, \mathrm{~d}_{1}^{2}\right), \ldots,\left(\mathrm{c}_{\mathrm{m}}^{1}, \mathrm{~d}_{\mathrm{m}}^{2}\right)$; each arc is labeled by the name i of the IND. For each FD $R_{1}: \Lambda_{1} \ldots A_{n} \rightarrow \Lambda$ in Σ, the graph G_{Σ} contains a group of n red $\operatorname{arcs}\left(a_{1}^{1}, a^{1}\right), \ldots,\left(a_{n}^{1}, a^{1}\right)$; the group is labeled by the name f of the $F D$ and its arcs are ordered from 1 to n as listed above.

We also construct two directed graphs I_{Σ} and F_{Σ} (see Figure 2-1): The graph I_{Σ} has one node for each relation scheme name in D and arc $\left(R_{j}, R_{k}\right)$ iff G_{Σ} contains some black arc $\left(A^{j}, B^{k}\right)$. The graph F_{Σ} has one node a for cach attribute Λ of D and $\operatorname{arc}(a, b)$ iff G_{Σ} contains some red $\operatorname{arc}\left(a^{k}, b^{k}\right)$. We now define special syntactically restricted forms of input schemata:

Acyclic IND's: I_{Σ} is acyclic [58].
Acyclic $F D$'s: F_{Σ} is acyclic.
Typed IND's: The black arcs of G_{Σ} are all of the form $\left(\Lambda^{j}, \Lambda^{\mathrm{k}}\right)$ for relation names $\mathrm{R}_{\mathrm{j}}, \mathrm{R}_{\mathrm{k}}$ and attribute $\Lambda[17,48]$.

Typed IND's are between occurrences of the same attribute names in different relation schemes. If we assume that all possible typed IND's are in the input schema, (i.e., with some abuse of notation $\mathrm{R}: \mathrm{U} \cap \mathrm{U}^{\prime} \subseteq \mathrm{S}: \mathrm{U} \cap \mathrm{U}^{\prime}$ for all relation schemes $\mathrm{R}[\mathrm{U}], \mathrm{S}\left[\mathrm{U}^{\prime}\right]$ in database scheme D), then we have pairwise consistency $\mathrm{PC}(D)$ [48].

Implication: We say that Σ implies $\sigma(\Sigma \vDash \sigma)$ if, whenever a database d satisfies Σ, it also satisfies σ. We say that Σ fimitely implies $\sigma\left(\Sigma \models_{\text {fin }} \sigma\right)$ if, whenever a finite database d satisfies Σ, it also satisfics σ.
Clearly if $\Sigma \vDash \sigma$ (implication) then $\Sigma \models_{\text {fin }} \sigma$ (finite implication), but the converse is not always true. Deciding implication of dependencies is a central problem in database theory.

Since dependencies are sentences in first-order predicate calculus with equality, we have proof procedures for the implication problem (we denote provability as $\Sigma \vdash \sigma$). A proof procedure is sound if whenever $\Sigma \vdash \sigma$, we have $\Sigma \vDash \sigma$; and complete if it is sound and whenever $\Sigma \vDash \sigma$, we have $\Sigma \vdash \sigma$.

The standard complete proof procedure for database dependencies is the chase [62, 11]. We now present the chase for FD's and IND's (cf. [43]).

Chase: Given an input schema D, Σ and a dependency σ, construct a set of tables T, with D 's relation schemes as headers. These tables are originally empty and will be filled with symbols from the countably infinite set \mathscr{I}. Whenever we insert a new row of symbols from \mathscr{D} in a table of T and we do not specify some of the entrics of this row, we assume that distinct symbols from \mathscr{G}, which have not yet appeared elsewhere in T, are used to fill these entries. We use t_{k}^{r} for the k-th row of table R and $t_{k}^{T}[X]$ for this row's entries in the columns of attributes X.

The initial configuration of T depends on σ as follows:
(i) If σ is the FD R: $\Lambda_{1} \ldots \Lambda_{\mathrm{n}} \rightarrow \Lambda$: insert rows $\mathrm{t}_{1}^{\mathrm{r}}, \mathrm{t}_{2}^{\mathrm{r}}$ with the only restriction that $\left.\mathrm{t}_{1}^{\mathrm{T}}\left[\Lambda_{\mathrm{k}}\right]=\mathrm{t}_{\mathrm{T}}^{\mathrm{T}} \Lambda_{\mathrm{k}}\right], \mathrm{k}=1, \ldots, \mathrm{n}$.
(ii) If σ is the $\operatorname{IND} S: D_{1} \ldots D_{m} \subseteq R: C_{1} \ldots C_{m}$ insert t_{1}^{s}.

Every dependency in Σ produces a rule, as follows:
If f is an FD in Σ the corresponding FI-rule is:
<Consider T a database over symbols in $\mathfrak{\Im}$. If T docs not satisfy f , because two symbols x and y are different, then replace y by x in T\rangle.
If i is an IND R: $\mathrm{X} \subseteq \mathrm{S}: \mathrm{Y}$ in Σ the corresponding IND-rule is:
<Consider T a database over symbols in \mathfrak{I}. If T does not satisfy i, because some $\mathrm{t}^{\mathrm{T}}[\mathrm{X}]$ does not appear in the table S as some $t^{5}[\mathrm{Y}]$, then insert t^{s} in S with $t^{s}[Y]=t^{r}[\mathrm{X}]$. $>$

We will say that $\Sigma \vdash_{\text {chase }} \sigma$, if there is a finite sequence of applications of the FD-rules and INDrules produced by Σ that transforms ' T"s initial configuration to a final configuration satisfying:
(i) If σ is an FD) as above: $\mathfrak{t}_{1}^{r}[\Lambda]=t_{2}^{r}[\Lambda]$.
(ii) If $\boldsymbol{\sigma}$ is an INI) as above: for some j ,
$\mathrm{t}_{[}^{\mathrm{s}}\left[\mathrm{D}_{\mathrm{k}}\right]=\mathrm{t}_{\mathrm{j}}^{\mathrm{r}}\left[\mathrm{C}_{\mathrm{k}}\right], \mathrm{k}=1, \ldots, \mathrm{~m}$.
Proposition 2.1: $\Sigma \vdash_{\text {chase }} \sigma$ iff $\Sigma \vDash \sigma$.
An alternative proof procedure for FD's and IND's is provided by the axiomatization of [54]. If $\boldsymbol{\Sigma}$ is a set of FI's and IND's and σ is an FD or IND, then $\Sigma \vDash \sigma$ iff σ can be proved from Σ using the following rules (X, Y denote sets of attributes):

1. (reflexivity) $R: A \rightarrow A$.
2. (augmentation) from $\mathrm{R}: \mathrm{X} \rightarrow \mathrm{A}$ derive $\mathrm{R}: \mathrm{XY} \rightarrow \mathrm{A}$.
3. (transitivity) from $R: X \rightarrow A_{k}, k=1, \ldots, n, R: \Lambda_{1} \ldots \Lambda_{n} \rightarrow \Lambda$, derive $X \rightarrow A$.
4. (IND reflexivity) $\mathrm{R}: \mathrm{A}_{1} \ldots \mathrm{~A}_{\mathrm{m}} \subseteq \mathrm{R}: \mathrm{A}_{1} \ldots \mathrm{~A}_{\mathrm{m}}$.
5. (IND transitivity) from $\mathrm{R}_{1}: \mathrm{A}_{1} \ldots \mathrm{~A}_{\mathrm{m}} \subseteq \mathrm{R}_{2}: \mathrm{B}_{1} \ldots \mathrm{~B}_{\mathrm{m}}$ and $\mathrm{R}_{2}: \mathrm{B}_{1} \ldots \mathrm{~B}_{\mathrm{m}} \subseteq \mathrm{R}_{3}: \mathrm{C}_{1} \ldots \mathrm{C}_{\mathrm{m}}$ derive $\mathrm{R}_{1}: \mathrm{A}_{1} \ldots \mathrm{~A}_{\mathrm{m}} \subseteq \mathrm{R}_{3}: \mathrm{C}_{1} \ldots \mathrm{C}_{\mathrm{m}}$.
6. (permutation, projection and redundancy): from $\mathrm{R}: \mathrm{A}_{1} \ldots \mathrm{~A}_{\mathrm{m}} \subseteq \mathrm{S}: \mathrm{B}_{1} \ldots \mathrm{~B}_{\mathrm{m}}$ derive $R: A_{j_{1}} \ldots A_{j_{p}} \subseteq S: B_{j_{1}} \ldots B_{j_{p}}$, where $1 \leq j_{k} \leq m, k=1, \ldots, p$.
7. (equivalence) from $\mathrm{R}: \wedge \mathrm{B} \subseteq \mathrm{S}: \mathrm{CC}$ and σ derive τ, where τ is obtained from σ by substituting A for one or more occurrences of B.
8. (pullback) from $\mathrm{R}: \mathrm{A}_{1} \ldots \mathrm{~A}_{\mathrm{n}} \mathrm{A} \subseteq \mathrm{S}: \mathrm{B}_{1} \ldots \mathrm{~B}_{\mathrm{n}} \mathrm{B}$ and $\mathrm{S}: \mathrm{B}_{1} \ldots \mathrm{~B}_{\mathrm{n}} \rightarrow \mathrm{B}$ derive $\mathrm{R}: \mathrm{A}_{1} \ldots \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{A}$.
9. (collcetion) from $\mathrm{R}: \mathrm{A}_{1} \ldots \mathrm{~A}_{\mathrm{n}} \mathrm{B}_{1} \ldots \mathrm{~B}_{\mathrm{m}} \subseteq \mathrm{S}: \mathrm{A}_{1}^{\prime} \ldots \mathrm{A}_{\mathrm{n}}^{\prime} \mathrm{B}_{1}^{\prime} \ldots \mathrm{B}_{\mathrm{m}}^{\prime}, \mathrm{R}: \mathrm{B}_{1} \ldots \mathrm{~B}_{\mathrm{m}} \mathrm{C} \subseteq \mathrm{S}: \mathrm{B}_{1}^{\prime} \ldots \mathrm{B}_{\mathrm{m}}^{\prime} \mathrm{C}^{\prime}$ and $\mathrm{S}: \mathrm{B}_{1}^{\prime} \ldots \mathrm{B}_{\mathrm{m}}^{\prime} \rightarrow \mathrm{C}^{\prime}$ derive $\mathrm{R}: \mathrm{A}_{1} \ldots \mathrm{~A}_{\mathrm{n}} \mathrm{B}_{1} \ldots \mathrm{~B}_{\mathrm{m}} \mathrm{C} \subseteq \mathrm{S}_{\mathrm{S}}: \mathrm{A}_{1}^{\prime} \ldots \mathrm{A}_{\mathrm{n}}^{\prime} \mathrm{B}_{1}^{\prime} \ldots \mathrm{B}_{\mathrm{m}}^{\prime} \mathrm{C}^{\prime}$.
10. (attribute introduction) from $\mathrm{R}: \mathrm{A}_{1} \ldots \mathrm{~A}_{\mathrm{n}} \subseteq \mathrm{S}: \mathrm{B}_{1} \ldots \mathrm{~B}_{\mathrm{n}}$ and $\mathrm{S}: \mathrm{B}_{1} \ldots \mathrm{~B}_{\mathrm{n}} \rightarrow \mathrm{B}$ derive $\mathrm{R}: \mathrm{A}_{1} \ldots \mathrm{~A}_{\mathrm{n}} \mathrm{N} \subseteq \mathrm{S}: \mathrm{B}_{1} \ldots \mathrm{~B}_{\mathrm{n}} \mathrm{B}$, where N is a new attribute.

Rules 1-3 are the standard rules for FD's [5, 62] (written in our notation) and Rules 4-6 are the rules of [16] for IND's without repeated attributes. The salient rulc is attribute introduction (Rule 10). Whenever this rule is applied, the attribute N is chosen to be an attribute which does not appear in Σ or in any previous step of the derivation. Rule 10 is sound in the following sense: Whenever the antecedents are true in relations r, s (over relation schemes R, S respectively), there is a relation r°
which differs from ronly on a new column headed by N and which satisfies the conclusion.

2.1.2 Equational Logic

Let M be a set of symbols and Arity a function from M to the nonnegative integers \mathcal{N}. The set of finite strings over M is M^{*}. Partition M into two sets:
$\mathrm{G}=\{\mathrm{g} \in \mathrm{M} \mid \operatorname{ARITY}(\mathrm{g})=0\}$ is the set of generators, $\mathrm{O}=\{\theta \in \mathrm{M} \mid \wedge \operatorname{RITY}(\theta)>0\}$ is the set of operators.

Definition 2.1: 厅(M), the set of terms over M , is the smallest subset of M^{*} such that,

1) every g in G is a term,
2) if $\tau_{1}, \ldots, \tau_{\mathrm{m}}$ are terms and θ is in O with $\operatorname{ARITY}(\theta)=\mathrm{m}$, then $\theta \tau_{1} \ldots \tau_{\mathrm{m}}$ is a term.

A subterm of τ is a substring of τ, which is also a term. Let $V=\left\{x, x_{1}, x_{2}, \ldots\right\}$ be a set of variables. The set of terms over operators O and generators GUV will be denoted by $\sigma^{+}(\mathrm{M})$. For terms $\tau_{1}, \ldots, \tau_{\mathrm{n}}$ in $\mathcal{T}^{+}(\mathrm{M})$ we have a substitution $\varphi=\left\{\left(\mathrm{x}_{\mathrm{k}} \leftarrow \tau_{\mathrm{k}}\right) \mid \mathrm{k}=1, \ldots, \mathrm{n}\right\}$, which is a function from $\mathcal{T}^{+}(\mathrm{M})$ to $\mathcal{T}^{+}(\mathrm{M})$. We use $\varphi(\tau)$ or $\tau\left[\mathrm{x}_{1} / \tau_{1}, \ldots, \mathrm{x}_{\mathrm{n}} / \tau_{\mathrm{n}}\right]$ for the result of replacing all occurrences of variables x_{k} in term τ by term $\tau_{\mathrm{k}}, \mathrm{k}=1, \ldots, \mathrm{n}$, where these changes are made simultaneously.

Definition 2.2: Λ binary relation \approx on $\sigma(M)$ or $\sigma^{+}(M)$ is a congruence provided that,

1) \approx is an equivalence rclation,
2) if $\operatorname{ARITY}(\theta)=\mathrm{m}$ and $\tau_{\mathrm{k}} \approx \tau_{\mathrm{k}}^{\dot{\mathrm{k}}}, \mathrm{k}=1, \ldots, \mathrm{~m}$, then $\theta \tau_{1} \ldots \tau_{\mathrm{m}} \approx \theta \tau_{1} \ldots \tau_{\mathrm{m}}^{\circ}$.

An equation e is a string of the form $\tau=\tau$; where τ, τ are in $\tau^{+}(\mathrm{M})$. We use the symbol E for a set of equations. We will be dealing with models for sets of equations, i.e., algebras. We consider each equation c as a sentence of first-order predicate calculus (with equality), where all the variables from V are universally quantified.

Definition 2.3: An algebra \mathcal{A} is a pair (A, F), where A is a nonempty set and F is a set of functions. Each f in F is a function from A^{n} to A, for some n in \mathcal{N} which we denote as type($(f$.

Example 2.1:

(a) Λ semigroup $(A,\{+\})$ is an algebra with one binary operator which is associative, i.e., for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in A we have $(\mathrm{x}+\mathrm{y})+\mathrm{z}=\mathrm{x}+(\mathrm{y}+\mathrm{z})$. $\Lambda \mathrm{n}$ example of a semigroup is the set of functions from \mathcal{N} to \mathcal{N}, together with the composition operation. In semigroups we use $a b$ instead of $a+b$. We also omit parentheses, without ambiguity.
(b) \mathcal{A}_{M} is an algebra with $A=פ(\mathrm{M})$. For cach θ in O we define a function θ in F with $\operatorname{typ}(\theta)=\operatorname{Arry}(\theta)$: here we use the same symbol for the syntactic object θ and its interpretation. The function $\boldsymbol{\theta}$ maps terms $\tau_{1}, \ldots, \tau_{\mathrm{m}}$ from $\mathscr{\sigma}^{(\mathrm{M})}$ to the term $\boldsymbol{\theta} \tau_{1} \ldots \tau_{\mathrm{m}}$, (i.e., $\boldsymbol{\theta}\left(\tau_{1}, \ldots, \tau_{\mathrm{m}}\right)=\boldsymbol{\theta} \tau_{1} \ldots \tau_{\mathrm{m}}$). This algebra is referred to as the free algebra on M. From this example it is clear that we can without ambiguity use both $\theta \tau_{1} \ldots \tau_{\mathrm{m}}$ and $\theta\left(\tau_{1}, \ldots, \tau_{\mathrm{m}}\right)$ to denote the same term.
(c) Let \approx be a congruence on $\operatorname{\sigma }(\mathrm{M})$. Condition (2) of Definition 2.2 guarantecs that the operations in O are well-defined on \approx-cquivalence (or congruence) classes. Thus we can form a quotient algebra $\mathscr{T}(\mathrm{M}) / \approx$ with domain $\{[\tau] \mid \tau$ in $9(\mathrm{M}),[\tau]$ is the \approx-congruence class of $\tau\}$ and with functions corresponding to the operators in O .
(d) Observations similar to (b),(c) can be made for the set of terms $\sigma^{+}(\mathrm{M})$.

Implication: Let c be an cquation and \mathcal{A} an algebra. \mathcal{A} satisfies c , or is a model for c , if c becomes true when its operators and nonvariable generators are interpreted as the functions of \mathcal{A} and its variables take any values in the domain of \mathcal{A}. The class of all algebras which are models for a set of cquations E is called a variety or an equational class. We say that E implics $e(E=c)$ if the equation e is truc in every model of E .

Definition 2.4: An equational theory is a set of equalities E (of terms over $\sigma^{++}(M)$), closed under implication.

Sec [41] for a survey of cquational theories.
We write $\mathrm{E} \vdash \mathrm{e}$, if there exists a finite proof of e starting from E and using only the following five rules:
$\tau=\tau$,
from $\tau_{1}=\tau_{2}$ deduce $\tau_{2}=\tau_{1}$,
from $\tau_{1}=\tau_{2}$ and $\tau_{2}=\tau_{3}$ deduce $\tau_{1}=\tau_{3}$,
from $\tau_{\mathrm{k}}=\tau_{\mathrm{k}}^{\prime}, \mathrm{k}=1, \ldots, \mathrm{~m}$, deduce $\theta \tau_{1} \ldots \tau_{\mathrm{m}}=\theta \tau_{\mathrm{i}}^{2} \ldots \tau_{\mathrm{m}}^{\prime}(\operatorname{ARITY}(\theta)=\mathrm{m})$,
from $\tau_{1}=\tau_{2}$ deduce $\varphi\left(\tau_{1}\right)=\varphi\left(\tau_{2}\right)$ (φ is any substitution).
Proposition 2.2: $[14,41] \mathrm{E} \vDash \tau=\tau^{\prime}$ iff $\mathrm{E} \vdash \tau=\tau:$
Proofs in the above system can also be viewed as reduction sequences, as follows [41]: Whenever $\mathrm{E}=\tau=\tau^{\prime}$, there is a sequence of terms $\tau_{0} \ldots, \tau_{\mathrm{m}}$ such that τ_{0} is τ, τ_{m} is τ^{\prime}, and for $\mathrm{k}=0, \ldots, \mathrm{~m}-1$ the
term τ_{k+1} is obtained from τ_{k} by rewriting a subterm $\varphi\left(\sigma_{1}\right)$ as $\varphi\left(\sigma_{2}\right)$, where $\sigma_{1}=\sigma_{2}\left(\sigma_{2}=\sigma_{1}\right)$ is an cquation in E and φ is a substitution.

Let Γ be a set of equations over terms in $\sigma(M)$ (i.c., containing no variables). Consider the cquational theory consisting of all equations $\tau=\tau$ 'such that $\Gamma \equiv \tau=\tau$ '. By Proposition 2.2 this theory induces a congruence $={ }_{1^{\circ}}$ on $\sigma(M)$, where $\tau={ }_{\Gamma^{*}} \tau^{*}$ iff $\Gamma \equiv \tau=\tau^{\circ}$. From example (c) above we sec that this congruence naturally defines an algebra $\sigma(M) /=_{\Gamma}$. If Γ is a finite set, $\sigma(M) /=_{\Gamma}$ is known as a finitely presented algebra [47].

2.2 Functional and Inclusion Dependencies as Equations

Let Σ be a set of FD's and IND's over a database scheme D and σ an FD or IND. We will transform Σ into two sets of cquations E_{Σ} and \mathcal{E}_{Σ}. We will show that $\Sigma \vDash \sigma$ iff $E_{\Sigma} \vDash E_{\tau}$ iff $\mathcal{E}_{\Sigma} \vDash \mathcal{E}_{\tau}$, for some sets of equations $\mathrm{E}_{\tau}, \mathcal{E}_{\tau}$ whose form depends on Σ and σ. We assume that D only contains one relation scheme. 'This simplifies notation, and there is no loss of generality.

Transformation: From the dependencies in Σ construct the following sets of symbols:
$M_{f}=\left\{f_{k} \mid\right.$ for each FD with n attribute left-hand side include one operator f_{k} of ARITY $\left.n\right\}$,
$\mathrm{M}_{\mathrm{i}}=\left\{\mathrm{i}_{\mathrm{k}} \mid\right.$ for each IND include one operator i_{k} of ARITY 1$\}$,
$M_{a}=\left\{a_{k} \mid\right.$ for each attribute Λ_{k} include one operator a_{k} of ARITY 1$\}$,
$\mathrm{M}_{\alpha}=\left\{\alpha_{\mathrm{k}} \mid\right.$ for each attribute Λ_{k} include one generator $\left.\alpha_{\mathrm{k}}\right\}$.
Now let $M=M_{f} \cup M_{i} \cup M_{a} \cup M_{\alpha}$ and $V=\left\{x, x_{1}, x_{2}, \ldots\right\}$ be a set of variables. $\mathscr{T}^{+}\left(M_{f}\right)\left(\mathscr{T}^{+}\left(M_{i}\right)\right)$ are the sets of terms constructed using operators in $\mathrm{M}_{\mathrm{f}}\left(\mathrm{M}_{\mathrm{j}}\right)$ and generators in V .

The set E_{Σ} consists of the following cquations (presented in string notation):

1) one equation for each $F D A_{1} \ldots A_{n} \rightarrow A: \quad f_{k} a_{1} x \ldots a_{n} x=a x$,
2) m equations for each $I N D B_{1} \ldots B_{m} \subseteq A_{1} \ldots A_{m}: a_{1} i_{k} x=b_{1} x$ and \ldots and $a_{m} i_{k} x=b_{m} x$.

The set \mathcal{E}_{Σ} consists of the following equations:
3) one equation for each $\mathrm{FD} \mathrm{A}_{1} \ldots \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{A}: \quad \mathrm{f}_{\mathrm{k}} \alpha_{1} \ldots \alpha_{\mathrm{n}}=\alpha$,
4) m equations for cach IND $B_{1} \ldots B_{m} \subseteq \Lambda_{1} \ldots A_{m}$: $i_{k} \alpha_{1}=\beta_{1}$ and \ldots and $i_{k} \alpha_{m}=\beta_{m}$,
5) for each pair of symbols f_{p} in M_{f} and i_{q} in M_{i} the equation $f_{p} i_{q} x_{1} \ldots i_{q} x_{n}=i_{q} f_{p} x_{1} \ldots x_{n}$ $\left(\operatorname{ARITY}\left(f_{p}\right)=n\right)$.

Note that in \mathcal{E}_{Σ} only equations (5) contain variables. Equations (5) are commutativity conditions
between the f_{k} 's and the i_{k} 's. We now present Theorem 2.1, which is central to our analysis.
Theorem 2.1: In each of the following three cases, (i),(ii),(iii) are equivalent. \equiv Casc:
i) $\Sigma \vDash \Lambda \equiv B$
ii) $E_{\Sigma} \models a x=b x$
iii) $\varepsilon_{\Sigma} \vDash \alpha=\beta$.

FD Case:
i) $\Sigma \models A_{1} \ldots A_{n} \rightarrow A$
ii) $\mathrm{E}_{2} \vDash \tau\left[\mathrm{x}_{1} / \mathrm{a}_{1} \mathrm{x}, \ldots, \mathrm{x}_{\mathrm{n}} / \mathrm{a}_{\mathrm{n}} \mathrm{x}\right]=\mathrm{ax}$, for some τ in $\sigma^{+}\left(\mathrm{M}_{\mathrm{f}}\right)$
iii) $\mathcal{E}_{\mathrm{E}} \vDash \tau\left[\mathrm{x}_{1} / \alpha_{1}, \ldots, \mathrm{x}_{\mathrm{n}} / \alpha_{\mathrm{n}}\right]=\alpha$, for some τ in $\mathcal{T}^{+}\left(\mathrm{M}_{\mathrm{f}}\right)$.

IND Case:

i) $\Sigma \vDash B_{1} \ldots B_{m} \subseteq A_{1} \ldots A_{m}$
ii) $\mathrm{E}_{\Sigma} \vDash \mathrm{a}_{1} \tau=\mathrm{b}_{1} \mathrm{x}$ and \ldots and $\mathrm{a}_{\mathrm{m}} \tau=\mathrm{b}_{\mathrm{m}} \mathrm{x}$, for some τ in $\sigma^{+}\left(\mathrm{M}_{\mathrm{i}}\right)$
iii) $\mathcal{E}_{\Sigma} \models \tau\left[\mathrm{x} / \alpha_{\mathrm{l}}\right]=\beta_{1}$ and \ldots and $\tau\left[\mathrm{x} / \alpha_{\mathrm{m}}\right]=\beta_{\mathrm{m}}$, for some τ in $\mathcal{T}^{+}\left(\mathrm{M}_{\mathrm{i}}\right)$.

Proof: Observe that the \equiv Case follows immediately from the IND Case, by writing $\mathrm{A} \equiv \mathrm{B}$ as $\mathrm{AB} \subseteq \mathrm{AA}$. We use $\mathrm{E}_{\tau}\left(\mathcal{E}_{\tau}\right)$ to denote the set of equations corresponding to term τ in (ii),(iii).
(ii) \Rightarrow (i):

Suppose $\mathrm{E}_{\Sigma} \models \mathrm{E}_{\tau}$, and let relation r satisfy Σ; we will show that r satisfics $\sigma\left(\sigma\right.$ is $\mathrm{A}_{1} \ldots \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{A}$ in the FD Case and $B_{1} \ldots B_{m} \subseteq A_{1} \ldots A_{m}$ in the IND Casc). Relation r is, by definition, nonempty and its entries can be assumed w.1.o.g. to be positive integers. Let the tuples of r be $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots$ (it could contain a countably infinite number of tuples).
For each attribute A in \mathcal{U}, define a function $\propto():. \mathcal{N} \rightarrow \mathcal{N}(\mathcal{N}$ is the set of nonnegative integers) so that, if $\boldsymbol{\nu}$ is the index of a tuple in r , then $a(\boldsymbol{\nu})$ is the entry in tuple t_{ν} at atribute A ; else $a(\boldsymbol{\nu})$ is 0 .
For each $\mathrm{FD} \mathrm{C}_{1} \ldots \mathrm{C}_{\mathrm{j}} \rightarrow \mathrm{C}$ in Σ, define a function $f(\ldots): \mathcal{N}^{\dot{j}} \rightarrow \mathcal{N}$ so that, if $\mathrm{a}_{\mathrm{k}}=\mathrm{t}_{\nu}\left[\mathrm{C}_{\mathrm{k}}\right], \mathrm{k}=1, \ldots, \mathrm{j}$, then $f\left(a_{1}, \ldots, a_{j}\right)=t_{\nu}[C]$; clse $f\left(a_{1}, \ldots, a_{j}\right)$ is 0 . This is a well-defined function, since r satisfics $C_{1} \ldots C_{j} \rightarrow C$.
For each $\operatorname{IND} D_{1} \ldots \mathrm{D}_{\mathrm{j}} \subseteq \mathrm{C}_{1} \ldots \mathrm{C}_{\mathrm{j}}$ in Σ, define a function $i($ (.): $\mathcal{N} \rightarrow \mathcal{N}$ so that, if $\boldsymbol{\nu}$ is the index of a tuple in r , then $i(\nu)=\nu^{\prime}$, where ν^{\prime} is the index of the first tuple in r where $\mathrm{t}_{\nu}\left[\mathrm{D}_{1} \ldots \mathrm{D}_{\mathrm{j}}\right]=\mathrm{t}_{\nu} \cdot\left[\mathrm{C}_{1} \ldots \mathrm{C}_{\mathrm{j}}\right]$; else $i(\nu)$ is 0 . This is also a well-defined function, since r satisfies $D_{1} \ldots D_{j} \subseteq C_{1} \ldots C_{j}$.
We have constructed an algebra with domain \mathcal{N} and functions $a(),. \ldots, f(\ldots), \ldots, i(),. \ldots$, which, as is easy to verify, is a model for $\mathrm{E}_{\mathbf{\Sigma}}$. Let $\boldsymbol{\sigma}$ be an IND. By interpreting cach symbol in τ as an $i($.), we sce that,
when ν is a tuple number, $\tau[x / \nu]$ is another tuple number. Since $\mathrm{E}_{2}=\mathrm{E}_{\tau}$, we must have $a_{\mathrm{k}}(\tau[\mathrm{x} / \nu])=b_{\mathrm{k}}(\mathrm{x}), \mathrm{k}=1, \ldots, \mathrm{~m}$, which means that r satisfies σ. The case of an FD is similar.
(iii) \Rightarrow (ii):

Suppose $\mathcal{E}_{\Sigma}=\mathcal{E}_{\tau}$, and let \mathcal{M} be a model of E_{Σ}; we will show that \mathcal{M} satisfics E_{τ}. From \mathcal{M} we construct a model $\mathcal{A}(\mathcal{M})$ for \mathcal{E}_{Σ}. The domain of $\mathcal{A}(\mathcal{M})$ is the set of all functions from \mathcal{M} to \mathcal{M}, i.e., $\mathcal{N} \rightarrow \mathcal{M}$.

In $\mathcal{A}(\mathcal{M})$ the interpretation of α is the function $\alpha(x)$, which is the interpretation of $a($.$) in \mathcal{N}$. The interpretation of $i($.$) is the function \lambda h . h(i(x))$, where $i(x)$ is the interpretation of $i($.$) in \mathcal{M}$. This is a function from $\mathcal{M} \rightarrow \mathcal{M}$ to $\mathcal{M} \rightarrow \mathcal{M}$. The interpretation of $f(\ldots)$ is the function $\left.\lambda h_{1} \ldots h_{\mathrm{n}} . \mathcal{A} h_{1}(\mathrm{x}), \ldots, h_{\mathrm{n}}(\mathrm{x})\right)$, where $\left.\mathcal{f} \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ is the interpretation of $\mathrm{f}(\ldots)$ in \mathcal{M}. This is a function from $(\mathcal{M} \rightarrow \mathcal{M})^{n}$ to $\mathcal{M} \rightarrow \mathcal{M}$.
It is straightforward to check that equations (3),(4) hold in $\mathcal{A}(\mathcal{M})$, because \mathcal{M} is a model for E_{Σ}. Also equations (5) hold in $\mathcal{A}(\mathcal{M})$: For example, if $\mathrm{n}=1$ the interpretation of $\mathrm{f}(\mathrm{i}(h))$ in $\mathcal{A}(\mathcal{N})$ is $\mathcal{A} h(i(x))$, which is also the interpretation of $\mathrm{i}(\mathrm{f}(h))$ (h is any element of $\mathcal{M} \rightarrow \mathcal{M}$). Thus $\mathcal{A}(\mathcal{M})$ is a model for \mathcal{E}_{Σ}. Since $\mathcal{E}_{\Sigma} \vDash \mathcal{E}_{\tau}, \mathcal{A}(\mathcal{M})$ satisfies \mathcal{B}_{τ}. From this it follows that \mathcal{M} satisfies E_{τ}.

$$
\text { (i) } \Rightarrow \text { (iii): }
$$

IND Case:

Consider a chase proof of $\mathrm{B}_{1} \ldots \mathrm{~B}_{\mathrm{m}} \subseteq \mathrm{A}_{1} \ldots \mathrm{~A}_{\mathrm{m}}$ from Σ. This chase starts from a single tuple t_{1} and gencrates tuples $t_{2} \ldots, t_{\nu}$, where $t_{\nu}\left[A_{1} \ldots A_{m}\right]=t_{1}\left[B_{1} \ldots B_{m}\right]$. Now a tuple can only be generated by applying an IND-rule on some previously gencrated tuple. Thus, we can assign (inductively) to each tuple $\mathrm{t}_{\mathrm{p}}, \mathrm{p}=1, \ldots, \nu$, a term τ_{p} in $\mathscr{F}^{+}\left(\mathrm{M}_{\mathrm{i}}\right)$, as follows:

1. $\tau_{1}=\mathrm{x}$.
2. If t_{p} was generated from $\mathrm{t}_{\mathrm{q}}, \mathrm{q}<\mathrm{p}$, by applying the IND-rule corresponding to some IND i in Σ, then $\tau_{\mathrm{p}}=\tau_{\mathrm{q}}[\mathrm{x} / \mathrm{ix}]$.
The term τ_{p} records the sequence of applications of IND-rules which produced t_{p} (starting from t_{p}).
We will show the following
Claim: For $1 \leq \mathrm{p}, \mathrm{q} \leq \nu, \mathrm{C}, \mathrm{D}$ in \mathfrak{U}, if $\mathrm{t}_{\mathrm{p}}[\mathrm{C}]=\mathrm{t}_{\mathrm{q}}[\mathrm{D}]$, then $\mathcal{E}_{\mathrm{\Sigma}} \vDash \tau_{\mathrm{p}}[\mathrm{x} / \gamma]=\tau_{\mathrm{q}}[\mathrm{X} / \delta]$, where γ, δ are the symbols in M_{α} corresponding to C, D.

Clearly, the INI) Case follows from the Claim: Since $t_{\nu}\left[\Lambda_{1} \ldots \Lambda_{m}\right]=t_{1}\left[B_{1} \ldots B_{m}\right]$, we have
$\left.\mathcal{B}_{\mathrm{L}} \vDash \tau_{\nu} \mid \mathrm{x} / \alpha_{\mathrm{k}}\right]=\beta_{\mathrm{k}}, \mathrm{k}=1, \ldots, \mathrm{~m}$.
Proof of Claim: Suppose the equality $\mathrm{t}_{\mathrm{p}}[\mathrm{C}]=\mathrm{t}_{\mathrm{q}}[\mathrm{D}]$ appears after exactly z steps of the chase. We argue by induction on 7 .

Basis: $z=0$. Then $\mathrm{p}=\mathrm{q}=1, \mathrm{C}$ is D , and the conclusion is straightforward.
Induction Step: Let $\mathrm{t}_{\mathrm{p}}[\mathrm{C}]=\kappa, \mathrm{t}_{\mathrm{q}}[\mathrm{D}]=\lambda$. The symbols κ, λ were equated by the chase. We distinguish three cases, according to how this happened.
a. κ is a freshly created symbol, identical to λ. This means t_{p} was created from $t_{p^{\prime}}, p^{\prime}<p$, using an IND $X_{1} C^{\prime} X_{2} \subseteq Y_{1} C Y_{2}$ in $\Sigma\left(X_{k}, Y_{k} \subseteq \mathcal{U}, k=1,2\right)$, and $\mathrm{t}_{\mathrm{p}} \cdot\left[\mathrm{C}^{\prime}\right]=\mathrm{t}_{\mathrm{q}}[\mathrm{D}]$. By the induction hypothesis $\mathcal{E}_{\mathrm{\Sigma}} \vDash \tau_{\mathrm{p}}\{\mathrm{x} / \gamma\}=\tau_{\mathrm{q}}[\mathrm{x} / \delta]$. Now $\tau_{\mathrm{p}}=\tau_{\mathrm{p}}\{\mathrm{x} / \mathrm{ix}]$, where i is the operator corresponding to $\mathrm{X}_{1} \mathrm{CX}_{2} \subseteq \mathrm{Y}_{1} \mathrm{CY}_{2}$, and also $\mathrm{i} \gamma=\gamma^{\prime}$ is in $\mathcal{E}_{\mathrm{\Sigma}}$. Thus, $\mathcal{E}_{\mathrm{\Sigma}} \models \tau_{\mathrm{p}}\{\mathrm{x} / \mathrm{i} \gamma]=\tau_{\mathrm{q}}[\mathrm{x} / \delta]$, i.c. $\mathcal{E}_{\Sigma} \models \tau_{\mathrm{p}}[\mathrm{x} / \gamma]=\tau_{\mathrm{q}}[\mathrm{x} / \delta]$.
b. κ was equated to λ in order to satisfy some $F D C_{1}, \ldots C_{j} \rightarrow C$ in Σ. This means $\mathrm{t}_{\mathrm{p}}\left[\mathrm{C}_{1} \ldots \mathrm{C}_{\mathrm{j}}\right]=\mathrm{t}_{\mathrm{q}}\left[\mathrm{C}_{1} \ldots \mathrm{C}_{\mathrm{j}}\right]$, and D is C . By the induction hypothesis $\mathcal{E}_{\Sigma} \vDash \approx \tau_{\mathrm{p}}\left[\mathrm{x} / \gamma_{\mathrm{k}}\right]=\tau_{\mathrm{q}}\left[\mathrm{x} / \gamma_{\mathrm{k}}\right], \mathrm{k}=1, \ldots, \mathrm{j}$. Also, we have in $\mathcal{E}_{\mathrm{\Sigma}}$ the cquation $\mathrm{f} \gamma_{1} \ldots \gamma_{j}=\gamma$, where f is the operator in M_{i} corresponding to the FD $\mathrm{C}_{1} \ldots \mathrm{C}_{\mathrm{j}} \rightarrow \mathrm{C}$. Thus, $\mathcal{E}_{\mathrm{\Sigma}}$ implies $\mathrm{f} \tau_{\mathrm{p}}\left[\mathrm{x} / \gamma_{1}\right] \ldots \tau_{\mathrm{p}}\left[\mathrm{x} / \gamma_{\mathrm{j}}\right]=\tau_{\mathrm{p}}\left[\mathrm{x} / \mathrm{f}_{\gamma_{1}} \ldots \gamma_{\mathrm{j}}\right]$ (by the commutativity conditions (5)) $=\tau_{\mathrm{p}}[\mathrm{x} / \gamma] . \quad$ Similarly $\quad \mathcal{E}_{\Sigma} \quad$ implics $\quad \mathrm{f} \tau_{\mathrm{q}}\left[\mathrm{x} / \gamma_{1}\right] \ldots \tau_{\mathrm{q}}\left[\mathrm{x} / \gamma_{\mathrm{j}}\right]=\tau_{\mathrm{q}}\left[\mathrm{x} / \mathrm{f} \gamma_{1} \ldots \gamma_{\mathrm{j}}\right]=\tau_{\mathrm{q}}[\mathrm{x} / \gamma], \quad$ so $\mathcal{S}_{\Sigma} \vDash \tau_{\mathrm{p}}[\mathrm{x} / \gamma]=\tau_{\mathrm{q}}[\mathrm{x} / \gamma]$.
c. There are tuples $t_{p^{\prime}}, t_{q^{\prime}}, p^{\prime} \leq p, q^{\prime} \leq q$, and C^{\prime}, D^{\prime} in Q such that $t_{p} \cdot[C]=\kappa, t_{q} \cdot[D]=\lambda$, and $t_{p} \cdot[C]$ was equated to t_{q} [D] at some earlier step. Then by the induction hypothesis $\mathcal{E}_{\mathrm{\Sigma}}$ implies $\tau_{\mathrm{p}}[\mathrm{x} / \gamma]=\tau_{\mathrm{p}}[\mathrm{x} / \gamma], \tau_{\mathrm{q}}[\mathrm{x} / \delta]=\tau_{\mathrm{q}}[\mathrm{x} / \delta]$, and $\tau_{\mathrm{p}} \cdot[\mathrm{x} / \gamma]=\tau_{\mathrm{q}}[\mathrm{x} / \delta]$. Thus, $\mathcal{B}_{\mathrm{z}}=\tau_{\mathrm{p}}[\mathrm{x} / \gamma]=\tau_{\mathrm{q}}[\mathrm{x} / \delta]$.

FD Case:

Consider, as before, a chase proof of $\mathrm{A}_{1} \ldots \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{A}$ from $\mathrm{\Sigma}$. This chase starts from two tuples $\mathrm{t}_{1}, \mathrm{t}_{2}$ and generates tuples $\mathrm{t}_{3}, \ldots, \mathrm{t}_{\nu}$; finally, $\mathrm{t}_{1}[\Lambda]=\mathrm{t}_{2}[\mathrm{~A}]$. Again a tuple can only be generated by applying an IND-rule on some previously generated tuple, so we can assign (inductively) to each tuple t_{p}, $\mathrm{p}=1, \ldots, \nu$, a term τ_{p} in $\mathcal{F}^{+}\left(\mathrm{M}_{\mathrm{i}}\right)$, as follows:

1. $\boldsymbol{\tau}_{1}=\mathrm{x}_{1}, \tau_{2}=\mathrm{x}_{2}$.
2. If t_{p} was generated from $\mathrm{t}_{\mathrm{q}}, \mathrm{q}<\mathrm{p}$, by applying the IND-rule corresponding to some IND i in Σ, then $\tau_{\mathrm{p}}=\tau_{\mathrm{q}}\left[\mathrm{x}_{1} / \mathrm{ix}_{1}, \mathrm{x}_{2} / \mathrm{ix}_{2}\right]$.
Obscrve that τ_{p} also records the tuple $\left(\mathrm{t}_{1}\right.$ or t_{2}) which produced t_{p} (apart from the sequence of
applications of (NI)-rules).
We will show the following
Claim: For $1 \leq \mathrm{p}, \mathrm{q} \leq \nu, \mathrm{C}, \mathrm{D}$ in \mathcal{U}, if $\mathrm{t}_{\mathrm{p}}[\mathrm{C}]=\mathrm{t}_{\mathrm{q}}[\mathrm{D}]$, tpen $\mathcal{E}_{\Sigma} \vDash \tau_{\mathrm{p}}\left[\mathrm{x}_{\mathrm{k}} / \gamma\right]=\tau_{\mathrm{q}}\left[\mathrm{x}_{\mathrm{k}} / \delta\right](\mathrm{k}=1,2)$. If, additionally, t_{p} is produced from t_{1} and t_{q} is produced from t_{2}, then \mathcal{E}_{Σ} implies $\tau_{\mathrm{p}}\left[\mathrm{x}_{1} / \gamma\right]=\tau_{\mathrm{q}}\left[\mathrm{x}_{2} / \delta\right]=\tau\left[\mathrm{x}_{1} / \alpha_{1}, \ldots, \mathrm{x}_{\mathrm{n}} / \alpha_{\mathrm{n}}\right]$, for some τ in $\boldsymbol{\sigma}^{+}\left(\mathrm{M}_{\mathrm{f}}\right)$.

Clearly, the IND Casc follows from the second part of the Claim: Since $t_{1}[\Lambda]=t_{2}[A]$, $\mathcal{E}_{\Sigma} \models \alpha=\tau\left[\mathrm{x}_{1} / \alpha_{1}, \ldots, \mathrm{x}_{\mathrm{n}} / \alpha_{\mathrm{n}}\right]$, for some τ in $\boldsymbol{\mathcal { G }}^{+}\left(\mathrm{M}_{\mathrm{f}}\right)$.

Proof of Claim: Suppose the equality $t_{\mathrm{p}}[\mathrm{C}]=\mathrm{t}_{\mathrm{q}}[\mathrm{D}]$ appears after exactly z steps of the chase. We argue by induction on z.

Basis: $\mathrm{z}=0$. Then $\mathrm{p}=\mathrm{q}=1, \mathrm{C}$ and D are both some $\Lambda_{\mathrm{k}}, \mathrm{l} \leq \mathrm{k} \leq \mathrm{n}$, and the conclusion is straightforward.

Induction Step: Let $\mathrm{t}_{\mathrm{p}}[\mathrm{C}]=\kappa, \mathrm{t}_{\mathrm{q}}[\mathrm{D}]=\lambda$. The symbols κ, λ were equated by the chase. We distinguish three cases, according to how this happened.
a. κ is a freshly created symbol, identical to λ. This means t_{p} was created from $t_{p}, p^{\circ}<p$, using an IND $X_{1} C^{\prime} X_{2} \subseteq Y_{1} \mathrm{CY}_{2}$ in $\Sigma\left(\mathrm{X}_{\mathrm{k}}, \mathrm{Y}_{\mathrm{k}} \subseteq \mathcal{Q}, \mathrm{k}=1,2\right)$, and $\mathrm{t}_{\mathrm{p}} \cdot\left[\mathrm{C}^{\prime}\right]=\mathrm{t}_{\mathrm{q}}[\mathrm{D}]$. For the first part of the Claim, we argue exactly as in the IND Case. For the second part, note that if t_{p} is produced from t_{1} then so is t_{p}. Thercfore we can use the induction hypothesis on $t_{\mathrm{p}}, \mathrm{t}_{\mathrm{q}}$.
b. κ was equated to λ in order to satisfy some $F D C_{1} \ldots C_{j} \rightarrow C$ in Σ. This means $\mathrm{t}_{\mathrm{p}}\left[\mathrm{C}_{1} \ldots \mathrm{C}_{\mathrm{j}}\right]=\mathrm{t}_{\mathrm{q}}\left[\mathrm{C}_{1} \ldots \mathrm{C}_{\mathrm{j}}\right]$, and D is C . The argument for the first part proceeds exactly as in the IND Case. For the second part, note that since \mathcal{E}_{Σ} implies $\tau_{\mathrm{p}}\left[\mathrm{x}_{1} / \gamma_{\mathrm{k}}\right]=\tau_{\mathrm{k}}\left[\mathrm{x}_{1} / \alpha_{1}, \ldots, \mathrm{x}_{\mathrm{n}} / \alpha_{\mathrm{n}}\right], \mathrm{k}=1, \ldots, \mathrm{j}$ (by the induction hypothesis), we have that \mathcal{E}_{Σ} implies $\tau_{\mathrm{p}}\left[\mathrm{x}_{1} / \gamma\right]=\tau_{\mathrm{p}}\left[\mathrm{x}_{1} / \mathrm{f}_{\gamma_{1}} \ldots \gamma_{\mathrm{j}}\right]=\mathrm{f} \tau_{\mathrm{p}}\left[\mathrm{x}_{1} / \gamma_{1}\right] \ldots \tau_{\mathrm{p}}\left[\mathrm{x}_{1} / \gamma_{\mathrm{j}}\right]=\mathrm{f} \tau_{1}\left[\mathrm{x}_{1} / \alpha_{1}, \ldots, \mathrm{x}_{\mathrm{n}} / \alpha_{\mathrm{n}}\right] \ldots \tau_{\mathrm{j}}\left[\mathrm{x}_{1} / \alpha_{1} \ldots \mathrm{x}_{\mathrm{n}} / \alpha_{\mathrm{n}}\right]=$ $=\tau\left[x_{1} / \alpha_{1}, \ldots, \mathrm{x}_{\mathrm{n}} / \alpha_{\mathrm{n}}\right]$, where τ is $\mathrm{f} \tau_{1} \ldots \tau_{\mathrm{j}}$. Similarly, $\mathcal{E}_{\mathrm{\Sigma}}$ implies $\tau_{\mathrm{q}}\left[\mathrm{x}_{1} / \gamma\right]=\tau\left[\mathrm{x}_{1} / \alpha_{1}, \ldots, \mathrm{x}_{\mathrm{n}} / \alpha_{\mathrm{n}}\right]$.
c. There are tuples $\mathrm{t}_{\mathrm{p}}, \mathrm{t}_{\mathrm{q}^{\prime}}, \mathrm{p}^{\prime} \leq \mathrm{p}, \mathrm{q}^{\prime} \leq \mathrm{q}$, and $\mathrm{C}^{\prime}, \mathrm{D}^{\prime}$ in q^{U} such that $\mathrm{t}_{\mathrm{p}} \cdot[\mathrm{C}]=\kappa, \mathrm{t}_{\mathrm{q}} \cdot[\mathrm{D}]=\lambda$, and $\mathrm{t}_{\mathrm{p}} \cdot[\mathrm{C}]$ was equated to t_{q} [D] at some carlier step. The argument for the first part proceeds exactly as in the IND Casc. For the second part, if t_{p}, was produced from t_{2}, use the induction hypothesis on $t_{p}, t_{p} ;$;
else, if $\mathrm{t}_{\mathrm{q}^{\prime}}$ was produced from t_{2}, use the induction hypothesis on $\mathrm{t}_{\mathrm{p}^{\prime}}, \mathrm{t}_{\mathrm{q}^{\prime}}$; else, use the induction hypothesis on $\mathrm{t}_{\mathbf{q}}, \mathrm{t}_{\mathrm{q}}$.

This concludes the proof of $(\mathrm{i}) \Rightarrow$ (iii), so we are done. I
We remark here that the (i) \Rightarrow (iii) direction can also be proved by showing that each of the rules of [54] (sec Subsection 2.1.1) can be simulated using the equational reasoning of Proposition 2.2. We illustrate this simulation with an example:
 $\mathrm{i} \alpha=\gamma, \mathrm{i} \beta=\delta$ and $\mathrm{fix}=\mathrm{ifx}$ imply $\mathrm{f} \gamma=\mathrm{fi} \boldsymbol{\alpha}=\mathrm{if} \boldsymbol{\alpha}=\mathrm{i} \boldsymbol{\beta}=\boldsymbol{\delta}$.

Corollary 2.1: Let Σ be a set of FI 's and σ an FD. The implication problem $\Sigma \vDash \sigma$ is equivalent to a generator problem for a finitely presented algebra [47].

Proof: \mathcal{E}_{Σ} is now a finite set of cquations with no variables. If \approx is the congruence induced by 8_{Σ} on $\sigma(M)$ then $\sigma(M) / \approx$ is a finitely presented algebra. The cquational implication in Theorem 2.1 is known, in this case, as a generator problem for the finitely presented algebra $\sigma(\mathrm{M}) / \approx$.

Using Corollary 2.1, one can observe that the linear time algorithm of [6] for implication of FD's can be derived in a straightforward way from the algorithm of [47] for the generator problem.

Corollary 2.2: Let Σ be a set of FD's. The implication problem $\Sigma \vDash \mathrm{A} \equiv \mathrm{B}$ is a uniform word problem for a finitely presented algebra [47].

If the given FD's are all unary, then the equational inferences in the theory E_{Σ} can be thought of as inferences in semigroups. This gives yet another transformation of (unary) FD's and IND's into equations:

Semigroup Transformation: Let Σ be a set of IND's and u-FD's. Construct a set of symbols M_{s} from M as follows: for each $\mathrm{f}_{\mathrm{k}}($.$) in \mathrm{M}_{\mathrm{f}}$ add one generator f_{k} in M_{g}; for each $\mathrm{i}_{\mathrm{k}}($.$) in \mathrm{M}_{\mathrm{i}}$ add one generator i_{k} in M_{s}; for each $a_{k}($.$) in M_{a}$ add one generator a_{k} in M_{s}; add one binary operator + in M_{s}.

The set of equations F_{S} consists of the associative axiom for + and the following word (string) equations (we omit + and parentheses):

1) one equation for each $u-F D A_{1} \rightarrow A: f_{k} a_{1}=a$,
2) m cquations for each IND $B_{1} \ldots B_{m} \subseteq A_{1} \ldots A_{m}: a_{1} i_{k}=b_{1}$ and \ldots and $a_{m} i_{k}=b_{m}$.

Corollary 2.3: I et Σ be a set of $u-F D$'s and IND's:
$\Sigma \models \Lambda \equiv B$ iff $\mathrm{E}_{\mathrm{S}} \vDash \mathrm{a}=\mathrm{b}$.
$\Sigma \vDash \Lambda_{1} \rightarrow \Lambda$ iff $E_{S} \vDash$ wa $=$ a, for some string w in M_{s}^{*}.
$\Sigma \models B_{1} \ldots B_{m} \subseteq \Lambda_{1} \ldots \Lambda_{m}$ iff $\mathrm{F}_{\mathrm{S}} \models \mathrm{a}_{1} \mathrm{w}=\mathrm{b}_{1}$ and \ldots and $\mathrm{a}_{\mathrm{m}} \mathrm{w}=\mathrm{b}_{\mathrm{m}}$, for some string w in $\mathrm{M}_{\mathrm{s}}^{*}$. I
Note that the first case is an instance of the uniform word problem for semigroups. The other two cases arc known as E_{S}-unification problems [41].

2.3 A Proof Procedure for FD's and IND's

We will now describe a proof procedure for FD) and IND) implication, which exploits the special structure of the equational theory \mathcal{E}_{Σ} (Theorem 2.1). Whenever a dependency σ cannot be proved from a set of dependencies Σ, the procedure provides us (in a natural way) with an algebra which satisfics \mathcal{E}_{Σ} but violates any cquation that could correspond to $\boldsymbol{\sigma}$. Thus, by Theorem 2.1 we have that Σ docs not imply σ, i.c. the procedure is complete for FD and IND implication.

The Proof Procedure G :

Given a set Σ of FD's and IND's construct their graphical representation G_{Σ} defined in Subsection 2.1.1. Each attribute name in Σ is associated with one of the nodes of G_{Σ}.

Rules: Apply some finite sequence of the graph manipulation rules $1,2,3$ and 4 of Figure $2-2$ on G_{Σ}. Rules 1 and 2 introduce new unnamed nodes. Rules 3 and 4 identify two existing nodes; the node resulting from this identification is associated with the union of the two sets of attribute names that were associated with each of the identified nodes. Note that rules 1,2 w.l.o.g. need be applied at most once to every left-hand side configuration.

Let G be the resulting graph. Associate a unique new name with every unnamed node in G .
We say that $\Sigma \vdash_{G} \sigma$ when:
σ is $\Lambda \equiv B: \Lambda, B$ are associated with the same node.
σ is an $F D A_{1} \ldots A_{\mathrm{n}} \rightarrow \mathrm{A}$: The node associated with Λ gets marked by the following algorithm: We mark the nodes associated with $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}$; whenever nodes $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{j}}$ are marked and there is a group of red $\operatorname{arcs}\left(v_{1}, v\right), \ldots,\left(v_{j}, v\right)$ labeled by the name f of some FD in Σ, we mark v. σ is an IND $B_{1} \ldots B_{m} \subseteq \Lambda_{1} \ldots A_{m}$: For $k=1, \ldots, m$ there is a black directed path from Λ_{k} to B_{k}; morcover, all these paths have the same sequence of labels.

Note that, as expected, the $\Lambda \equiv B$ Case is a specialization of the IND Case: if $\Sigma \square_{G} \Lambda B \subseteq \wedge A$, then Λ, B can be identified using Rule 3.

Theorem 2.2: $\Sigma \models \sigma$ iff $\Sigma \vdash_{G} \sigma$.

Proof:

(\Longleftarrow) : Rules 3,4 are obviously sound. Rules 1 and 2 are sound in the sense of the attribute introduction rule of [54] (sec Subsection 2.1.1), which we illustrate as rule 5 of Figure 2-2.
(\Rightarrow) : Let G be a (possibly infinite) graph obtained by closing G_{2} under Rules $1-4$. We will construct from G a model \mathcal{M} of \mathcal{E}_{Σ}.
The domain M of \mathcal{M} is the set V of nodes of G, together with a special node \perp. The generator $\boldsymbol{\alpha}_{\mathrm{k}}$ is interpreted as the node associated with Λ_{k}.
An operator in in \mathcal{E}_{Σ} (corresponding to some IND) in Σ) is interpreted as a function $i: M \rightarrow M$ as follows: if v is in V and has an outgoing $\operatorname{arc}(\mathrm{v}, \mathrm{w})$ labeled i , then $i(\mathrm{v})=\mathrm{w}$; else $i(\mathrm{v})=\perp$. This function is well-defined, because G is closed with respect to Rule 3.
An operator fof ARITY j in ε_{Σ} (corresponding to some FD in Σ) is interpreted as a function $f: M^{j} \rightarrow M$ as follows: if v_{1}, \ldots, v_{j} are in V and there is a group of red $\operatorname{arcs}\left(v_{1}, v\right), \ldots,\left(v_{j}, v\right)$ labeled f, then $f\left(v_{1}, \ldots, v_{j}\right)=v$; else $f\left(v_{1}, \ldots, v_{j}\right)=\perp$. This function is well-defined, because G is closed with respect to Rule 4.

One can check that \mathcal{N} satisfies the commutativity conditions (5) of \mathcal{E}_{Σ} (because G is closed with respect to Rules 1,2) and \mathcal{M} satisfies equations (3),(4) of \mathcal{E}_{Σ} (because G was constructed starting from G_{Σ}. Thus, \mathcal{M} is a model of \mathcal{E}_{Σ}.

Now suppose we cannot prove σ from Σ. If σ is an $F D A_{1} \ldots A_{n} \rightarrow \Lambda$, then clearly there is no τ in $\sigma^{+}\left(\mathrm{M}_{\mathrm{f}}\right)$ such that $\tau\left[\mathrm{x}_{1} / \alpha_{1}, \ldots, \mathrm{x}_{\mathrm{n}} / \alpha_{\mathrm{n}}\right]=\alpha$ in \mathcal{M}. Thus, \mathcal{H} is a counterexample to condition (iii) of Theorem 2.1 and therefore Σ does not imply σ. Similarly if σ is an IND. \square

2.4 Computations as Inferences

It has been known, since at least Post's proof of the unsolvability of the word problem for Thue systems [55,50], that arbitrary computations can be simulated by inferences in semigroups. Using Corollary 2.3 , we show that we can simulate computations by inferences of IND's and unary FD's. We thus obtain lower bounds on the complexity of the implication problem for IND's and FD's.

We first describe our machine model: A deterministic two-stack machine M is a 5 -tuple $\left(\mathrm{Q}, \Pi, \mathrm{q}_{\mathrm{start}}, \mathrm{h}, \delta\right)$, where Q is a finite set of states, Π is a finite set of symbols $(\mathrm{Q} \cap \Pi=\varnothing), \mathrm{q}_{\text {start }} \in \mathrm{Q}$ is the start state, $h \in \mathrm{Q}$ is the halt state, and δ is the transition function. Fach move of M falls into one of the following two types:

1. $\delta(\mathrm{q}, \alpha)=\left(\mathrm{p}, \mathrm{POP}_{1}\right)$: This means that, if M is in state q and $\alpha \in \Pi$ is the top symbol of stack_{1}, then on the next step M goes to state p and pops STACK $_{1}$.
2. $\delta(\mathrm{q})=\left(\mathrm{p}, \mathrm{PUSIH}_{1}(\beta)\right)$: If M is in state q , then on the next step M goes to state p and pushes $\beta \in \Pi$ on STACK $_{1}$.

Of course, analogous instructions can manipulate STACK_{2}.
An instantaneous description (II)) of M is a string $x_{1} \ldots x_{n} q y_{m} \ldots y_{1}$, where $q \in Q, x_{i}, y_{i} \in \Pi$: the string $x_{1} \ldots x_{n}$ is the contents of STACK_{1} (the top symbol is x_{n}); the string $y_{m} \ldots y_{1}$ is the contents of STACK $_{2}$ (the top symbol is y_{m}). The relation $\mathrm{w}_{1} \Rightarrow{ }_{\mathrm{M}} \mathrm{w}_{2}$ (ID) w_{1} yields ID) w_{2} via one step of M) is defined in the standard way $[50,40] . \Rightarrow_{\mathrm{M}}^{*}$ is the reflexive, transitive closure of $\Rightarrow{ }_{\mathrm{M}}$.

Let us now define a set S of word equations (over gencrators QUII) which capture the computation of M :

1. If $\delta(\mathrm{q}, \alpha)=\left(\mathrm{p}, \mathrm{POP}_{1}\right)$, then $\alpha \mathrm{q}=\mathrm{p}$ is in S . If $\delta(\mathrm{q}, \alpha)=\left(\mathrm{p}, \mathrm{POP}_{2}\right)$, then $\mathrm{q} \alpha=\mathrm{p}$ is in S .
2. If $\delta(\mathrm{q})=\left(\mathrm{p} \cdot \mathrm{PUSI}_{1}(\beta)\right)$, then $\mathrm{q}=\beta \mathrm{p}$ is in S .

If $\delta(q)=\left(p\right.$, PUSH $\left._{2}(\beta)\right)$, then $q=p \beta$ is in S.
We write $u={ }^{v}$ iff $S \models u=v$. By a standard argument, based on the fact that M is deterministic [55, 50], we have

Lemma 2.1: $\mathrm{q}_{\text {start }} \Rightarrow{ }_{\mathrm{M}}^{*} \mathrm{~h}$ iff $\mathrm{q}_{\text {start }}={ }_{\mathrm{s}} \mathrm{h}$.
To prove our first lower bound, we transform S into another set of equations T which looks like the sets obtained (as in Corollary 2.3) from IND's and u-FD's. The set of generators is now $\mathrm{Q} \cup\left\{\Lambda_{\alpha}, \mathrm{B}_{\alpha}, \mathrm{f}_{\alpha} \mid \alpha \in \Pi\right\} \cup\left\{\mathrm{i}_{\alpha} \mid \alpha \in \Pi\right\} \cup\left\{\mathrm{j}_{\mathrm{c}} \mid \mathrm{e} \in \mathrm{S}\right\}$.

1. If $\mathrm{q} \alpha=\mathrm{p}$ is in S , then $\mathrm{qi}_{\alpha}=\mathrm{p}$ is in T.
2. If $\alpha q=p$ is in S, then T contains the cquations $q=\Lambda_{\alpha} j_{c}, f_{\alpha} \Lambda_{\alpha}=B_{\alpha}, B_{\alpha} j_{e}=p$, where e is $\alpha \mathrm{q}=\mathrm{p}$.

Lemmal 2.2: $\mathrm{q}_{\text {start }}=\mathrm{S}^{\mathrm{h}}$ iff $\mathrm{q}_{\text {start }}=\mathrm{T}^{\mathrm{h}}$.
Proof: Given a word w over $\mathrm{Q} \cup \Pi$ of the form $\alpha_{1} \ldots \alpha_{\mathrm{n}} \mathrm{q} \beta_{\mathrm{m}} \ldots \beta_{1}, \mathrm{q} \in \Pi, \alpha_{\mathrm{i}}, \beta_{\mathrm{i}} \in \Pi$, define a corresponding word w^{\cdot} to be $\mathrm{f}_{\alpha_{1}} \ldots \mathrm{f}_{\alpha_{n}} \mathrm{qi}_{\beta_{\mathrm{m}}} \ldots \mathrm{i}_{\beta_{1}}$. We claim that, if w_{1}, w_{2} are words over $Q \cup \Pi$, then $w_{1}={ }_{S} W_{2}$ iff $w_{1}={ }_{\mathrm{T}} \mathrm{w}_{2}$. The L.cmma follows from this claim.

To prove the "only if" direction of the claim, consider the equations in S that can be used to rewrite w_{1} as w_{2}. If $q \alpha=p$ is in S, then $q i_{\alpha}={ }_{p} p$, since $q i_{\alpha}=p$ is in T. If $\alpha q=p$ is in S, then $f_{\alpha} q={ }_{T} p$, since $f_{\alpha} q={ }_{\gamma} f_{\alpha} \Lambda_{\alpha} j_{c}={ }_{r} B_{\alpha} j_{e}={ }_{T} p$. The converse is also straightforward.

Theorem 2.3: The implication problem for IND's and two u-FI's is undecidable.
Proof: Given a deterministic two-stack machine M, it is undecidable if $\mathrm{q}_{\text {start }} \Rightarrow{ }_{M}^{*} \mathrm{~h}$, cven if $|\Pi|=2$ $[53,40]$. By Lemmas 2.1 and $2.2, \mathrm{q}_{\text {start }} \Rightarrow{ }_{M}^{*} \mathrm{~h}$ iff $\mathrm{q}_{\text {start }}={ }_{\mathrm{T}} \mathrm{h}$. By Corollary 2.3, $\mathrm{q}_{\text {start }}={ }_{\mathrm{T}} \mathrm{h}$ iff $\Sigma \equiv \mathrm{Q}_{\text {start }} \equiv \mathrm{H}$, where Σ is the set of IND's and FD's which gives rise to 'T. But now observe that Σ only contains FD's of the form $\Lambda_{\alpha} \rightarrow B_{\alpha}, \alpha \in \Pi$. Since $|\Pi|=2, \Sigma$ only contains two unary FD's.

Undecidability of the implication problem for INI's and FI's has already been proved [54, 19]. By way of comparison, these reductions use arbitrarily many IND's of the form $\mathrm{D}_{1} \mathrm{D}_{2} \subseteq \mathrm{C}_{1} \mathrm{C}_{2}$ and arbitrarily many u-FD's, while our reduction uses arbitrarily many IND's and only two u-FD's.

To prove our second lower bound, we consider computations of a deterministic two-stack machine M where one of the two stacks has bounded size. Let us write $w_{1} \Rightarrow{ }_{M}^{s} w_{2}$ iff ID w_{2} follows from ID w_{1} by a computation of M during which STACK_{2} contains at most s symbols.

Let S be the set of word cquations described before: this time we transform S into a set T^{s} of equations which can be obtained (as in Corollary 2.3) from acyclic IND's and u-FD's. The set of generators now is $Q^{0} \cup \ldots \cup Q^{\mathrm{S}} \cup\left\{\mathrm{A}_{\alpha}, \beta_{\alpha}, \mathrm{f}_{\alpha} \mid \alpha \in \Pi\right\} \cup\left\{\mathrm{i}_{\alpha, \mathrm{k}} \mid \alpha \in \Pi, \mathrm{k}=1, \ldots, \mathrm{~s}\right\} \cup$ $\cup\left\{j_{e, k} \mid e \in S, k=0, \ldots, s\right\}$, where $Q^{k}=\left\{q^{k} \mid q \in Q\right\}, k=0, \ldots, s$.

2. If $\alpha q=p$ is in S, then T^{s} contains the equations $q^{k}=A_{\alpha} j_{e, k}, f_{\alpha} A_{\alpha}=B_{\alpha}, B_{\alpha} j_{e, k}=p^{k}$, $\mathrm{k}=0, \ldots, \mathrm{~s}$, wherc e is $\alpha \mathrm{q}=\mathrm{p}$.

It is not hard to see that T^{S} can be taken to represent a set Σ^{s} of acyclic IND's and u-FD's: the relation names are $R\left[\Lambda_{\alpha} B_{\alpha} \mid \alpha \in \Pi\right], \mathrm{R}^{\mathrm{k}}\left[\mathrm{Q}^{\mathrm{k}}\right], \mathrm{k}=0, \ldots, \mathrm{~s}$. It is also easy to see the following

Lemma 2.3: $\mathrm{q}_{\text {start }} \Rightarrow{ }_{M^{\mathrm{h}}}^{\mathrm{h}}$ iff $q_{\text {start }}^{0}=\mathrm{I}^{\mathrm{s}} \mathrm{h}^{0}$, iff $\Sigma^{s} \models \mathrm{R}^{0}: \mathrm{Q}_{\text {start }}^{0} \equiv \mathrm{H}^{0}$.
Theorem 2.4: There are constants $\mathrm{c}_{1}, \mathrm{c}_{2}>0$ such that the implication problem for acyclic IND's and FD's can be solved in time c_{1}^{n} but not in time $c_{2}^{\sqrt{ } n / \operatorname{logn}}$.

Proof: Since the IND's are acyclic, the chase gives us a decision procedure, running in exponential time.
To prove the lower bound, let L be any language in $\operatorname{DTIME}\left(\mathrm{c}^{\mathrm{n}}\right), \mathrm{c}>0$. We will show that L . is polynomial-time reducible to the implication problem for acyclic IND's and u-FD's.
Let M be a deterministic n-AuxiliaryPushdownAutomaton accepting L [40]. Given string x , we construct a deterministic two-stack machine M_{x} which first puts x on STACK_{2} and then simulates M . This simulation is done as follows: if M is in state q , its auxiliary storage contains $\alpha_{1} \ldots \alpha_{\mathrm{n}} \alpha \mathrm{w}$ (α is the symbol scanned) and its stack contains $u \beta$ (β is the top symbol), then the ID of M_{x} is $u \beta \alpha_{1, \beta} \ldots \alpha_{\mathrm{n}, \beta} q \alpha w$. It is not hard to sec how M_{x} can simulate a move of M . Thus, M accepts x iff M_{x} halts and STACK 2 always contains at most $|x|$ symbols, i.c. $x \in L$ iff $q_{\text {start }} \Rightarrow \mid{\underset{M}{x}}_{x}^{x}$. Note also that the size of $M_{x},\left|M_{x}\right|$, is $O(|x|)$.
Now let $\Sigma^{|x|}$ be the set of acyclic IND's and u-FD's corresponding to M_{x}. Using Lemma 2.3, $x \in L$ iff $\Sigma^{|x|} \equiv \mathrm{R}^{0}: \mathrm{Q}_{\text {start }}^{0} \equiv \mathrm{H}^{0}$. To complete the proof, observe that $\Sigma^{|\mathrm{x}|}$ can be computed from x in polynomial time, and that the size of $\Sigma^{|x|}$ is $O\left(\left|M_{x}\right||x| \log |x|\right)$, i.c. $O\left(|x|^{2} \log |x|\right)$.

G_{Σ}
$D=\left\{R_{1}(\operatorname{ABCC}), R_{2}(A B D 1\}\right.$
$\begin{aligned} \Sigma=\{ & \begin{array}{l}R_{2}: A B \rightarrow D, \\ R_{1}: B \rightarrow C,\end{array} \\ & R_{2}: B \in R_{1},\end{aligned}$
$R_{2}: A B \in R_{1}: A B$, $\left.R_{2}: A \subseteq R_{2}: B\right\}$

F_{Σ}

Figure 2-1: Graph notation for FD's and IND's

Rule 1

Rule 2

Rule 3

Rule 4

$\frac{\text { Rule } 5}{\text { [Mitchell] }}$

Figure 2-2: Graph rules for FD's and IND's © : new node

Chapter Three

Application to Typed IND's

In this Chapter we use the tools developed in Chapter 2 (Section 2.2) to study the particular implication problem for FD's and typed IND's. We first present a proof procedure for general FD and IND) implication (Section 3.1), similar in spirit to the proof procedure of Theorem 2.2. By specializing this proof procedure to typed IND's, we obtain as a corollary that the implication problem for acyclic FD's and typed IND's is decidable (Section 3.2). In Section 3.3 we study the special case of inferring FD's under pairwise consistency. By analyzing derivations (in the proof procedure of Section 3.1), we show that the problem is undecidable. We also prove that there is no k ary axiomatization for implication of FD's under pairwise consistency. As a by-product of our techniques, we obtain finite controllability of acyclic unary FD's under pairwise consistency.

3.1 Another Proof Procedure for FD's and IND's

We present in this Section a proof procedure for general FD and IND implication. This procedure is the main tool we use to study the implication problem for typed IND's and FD's. To prove completeness of the procedure, we show that it captures (in an indirect way) equational inferences in the theory E_{2} of Theorem 2.1.

Let Σ be a given set of FD's and IND's over a database scheme D, containing a single relation scheme $R[\mathcal{U}]$. We represent attribute $\Lambda_{k} \in \mathcal{U}$ by a node $a_{k} . \operatorname{An~} \mathrm{FD} \Lambda_{1} \ldots \Lambda_{\mathrm{n}} \rightarrow \mathrm{A}$ in Σ is represented as shown in Figure $3-1$ by introducing a node $\mathrm{fa}_{1} \ldots \mathrm{a}_{\mathrm{n}}$ (we use a different function symbol f for each given FD), a group of directed $\operatorname{arcs}\left(a_{1}, f_{1} \ldots a_{n}\right), \ldots,\left(a_{n}, f a_{1} \ldots a_{n}\right)$ labeled f and ordered from 1 to n, and an undirected $\operatorname{arc}\left\langle f \mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{n}}, \mathrm{a}\right\rangle$. The undirected are is the only modification to our graph notation of Section 2.1.1. Its purpose is to represent the equation $\mathrm{fa}_{1} \mathrm{x} \ldots \mathrm{a}_{\mathrm{n}} \mathrm{x}=\mathrm{ax}$.
An INI) $B_{1} \ldots B_{m} \subseteq \Lambda_{1} \ldots \Lambda_{m}$ in Σ is represented (sce Figure 3-1) by introducing directed arcs $\left(a_{1}, b_{1}\right), \ldots,\left(a_{m}, b_{m}\right)$, labeled i (we use a different label for each given IND).
I.ct H_{Σ} be the mixed graph obtained from Σ as described above. Repeatedly apply Rules T (Iransitivity), E_{1-2} (equality), I_{1-3} (introduction) (sce Figure 3-2) on H_{Σ}, in some arbitrary fixed order, until no more rules are applicable. As was the case with Rules 1.2 in Theorem 2.2, the introduction rules need only be applied once for each left-hand side configuration.
I.ct $\mathrm{H}=\left(\mathrm{N}_{\mathrm{H}}, \Lambda_{\mathrm{II}}, \mathrm{F}_{11}\right)$ be the mixed graph obtained this way (N_{II} is a set of nodes, A_{H} is a set of labeled directed arcs on N_{II}, and F_{H} is a set of undirected arcs on N_{HI}. Notice that each node of H is labeled $\mathrm{Fu}_{1} \ldots \mathrm{u}_{\mathrm{q}}$, where F is a term over the function symbols and $\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{q}}$ are nodes representing attributes (by a slight abuse of notation, we write $\mathrm{Fu}_{1} \ldots \mathrm{u}_{\mathrm{q}}$ as a shorthand for $\mathrm{F}\left[\mathrm{x}_{1} / \mathrm{u}_{1}, \ldots, \mathrm{x}_{\mathrm{q}} / \mathrm{u}_{\mathrm{q}}\right]$). Morcover, every subterm of $\mathrm{Fu}_{\mathrm{l}} \ldots \mathrm{u}_{\mathrm{q}}$ appears as a node of H .
By a path labeled τ, where τ is a term over the i's (and a variable x), we mean a mixed path where the sequence of labels corresponds to τ (see Figure 3-1). In the special case where τ is simply x , the path consists of undirected arcs.

The graph H fully capturcs implication of FD's and IND's from Σ, as we now show:

Theorem 3.1:

FD Case:
$\Sigma \models A_{1} \ldots \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{A}$ iff there is a node $\mathrm{Fa}_{1} \ldots \mathrm{a}_{\mathrm{n}}$ of H such that $\left\langle\mathrm{Fa}_{1} \ldots \mathrm{a}_{\mathrm{n}}, \mathrm{a}\right\rangle \in \mathrm{E}_{\mathrm{H}}$.
IND Case:
$\Sigma \equiv B_{1} \ldots B_{m} \subseteq \Lambda_{1} \ldots A_{m}$ iff there is a path from a_{k} to b_{k} labeled $\tau, k=1, \ldots, m$, where τ is a term over the i's.

Proof: Let E_{Σ} be the set of equations of Theorem 2.1. Assume that the various names in E_{Σ} are consistent with the names in H .

$$
(\models)
$$

Claim:

(i) If $\left\langle\mathrm{Fu}_{1} \ldots \mathrm{u}_{\mathrm{p}}, \mathrm{Gv}_{1} \ldots \mathrm{v}_{\mathrm{q}}\right\rangle \in \mathrm{E}_{\mathrm{H}}$, where the u_{k} 's, v_{j} 's are nodes corresponding to attributes and F, G are terms over the fs, then $E_{2}=\mathrm{Fu}_{1} \mathrm{x} \ldots \mathrm{u}_{\mathrm{p}} \mathrm{x}=\mathrm{Gv}_{1} \mathrm{x} \ldots \mathrm{v}_{\mathrm{q}} \mathrm{x}$.
(ii) If $\left(\mathrm{Fu}_{1} \ldots \mathrm{u}_{\mathrm{p}}, \mathrm{Gv}_{1} \ldots \mathrm{v}_{\mathrm{q}}\right)$ is a directed arc labeled i, then $\mathrm{E}_{\Sigma} \models \mathrm{Fu}_{1} \mathrm{ix} \ldots \mathrm{u}_{\mathrm{p}} \mathrm{ix}=\mathrm{Gv}_{1} \mathrm{x} . . . \mathrm{v}_{\mathrm{q}} \mathrm{x}$.

Clearly, the "if" direction follows from the Claim, by Theorem 2.1.
Proof of Claim: We prove both (i) and (ii) by simultaneous induction on the number of
applications of rules that created an (undirected) arc of H .

Basis: No rules were applied. The conclusion is straightforward.
Induction Step: We have to check Rules T, $\mathrm{E}_{1-2}, \mathrm{I}_{1-3}$, each of which might have been applied at the last step.

Rules I, E_{4} Straightforward.
Rule E_{2} The undirected arc $\left\langle\mathrm{Fu}_{1} \ldots \mathrm{u}_{\mathrm{p}}, \mathrm{Gv}_{1} \ldots \mathrm{v}_{\mathrm{q}}\right\rangle$ was created from the undirected arc $\left\langle F^{\prime} u_{1}^{\prime} \ldots u_{p}^{\prime}, G^{\prime} v_{1}^{\prime} \ldots v_{q}^{\prime}\right\rangle$, where ($\left.F^{\prime} u_{1}^{\prime} \ldots u_{p}^{\prime}, \mathrm{Fu}_{1} \ldots u_{p}\right),\left(G^{\prime} v_{1}^{\prime} \ldots v_{q^{\prime}}^{\prime}, G v_{1} \ldots v_{q}\right)$ are directed arcs labeled i. By the induction hypothesis, E_{Σ} implies $F u_{1}^{\prime} x \ldots u_{p}^{*} \cdot x=G^{\circ} v_{1}^{\prime} x \ldots v_{q}^{*} \cdot x, F^{\prime} u_{1}^{\prime i x} \ldots . . u_{p}^{*} \cdot{ }^{-i x}=F u_{1} x \ldots u_{p} x$,
$\mathrm{G}^{\prime} \mathrm{v}_{1} \mathrm{ix} \ldots \mathrm{v}_{\mathrm{q}}^{\prime} \cdot \mathrm{ix}=\mathrm{Gv}_{1} \mathrm{x} \ldots \mathrm{v}_{\mathrm{q}} \mathrm{x}$. Thus, E_{L} implics $\mathrm{Fu}_{1} \mathrm{x} \ldots \mathrm{u}_{\mathrm{p}} \mathrm{x}=\mathrm{Gv}_{1} \mathrm{x} \ldots . . v_{q} \mathrm{x}$.
Rule I_{4} The undirected arcs $\left\langle\mathrm{F}_{1} \mathrm{u}_{1} \ldots \mathrm{u}_{\mathrm{p}}, \mathrm{G}_{1} \mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{q}}\right\rangle, \ldots,\left\langle\mathrm{F}_{\mathrm{n}} \mathrm{u}_{1} \ldots \mathrm{u}_{\mathrm{p}}, \mathrm{G}_{\mathrm{n}} \mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{q}}\right\rangle$ create the undirected $\operatorname{arc}\left\langle\mathrm{Fu}_{1} \ldots \mathrm{u}_{\mathrm{p}}, \mathrm{Gv}_{1} \ldots \mathrm{v}_{\mathrm{q}}\right\rangle$, where $\mathrm{F}=\mathrm{fF}_{1} \ldots \mathrm{~F}_{\mathrm{n}}, \mathrm{G}=\mathrm{fG}_{1} \ldots \mathrm{G}_{\mathrm{n}}$. By the induction hypothesis, $\mathrm{E}_{\mathrm{\Sigma}}$ implies $F_{k} u_{1} x \ldots u_{p} x=G_{k} v_{1} x^{x} \ldots v_{q} x, k=1 \ldots, n$. Thus, $E_{\mathcal{L}}$ implies
$F u_{1} x \ldots u_{p} x=f F_{1} u_{1} x \ldots u_{p} x \ldots F_{n} u_{1} x \ldots u_{p} x=f G_{1} v_{1} x \ldots v_{q} x \ldots G_{n} v_{1} x \ldots v_{q} x=G v_{1} x \ldots v_{q} x$.
Rule I_{2} The directed $\operatorname{arcs}\left(F_{1} u_{1} \ldots u_{p}, G_{1} v_{1} \ldots v_{q}\right), \ldots,\left(F_{n} u_{1} \ldots u_{p}, G_{n} v_{1} \ldots v_{q}\right)$ (labeled i) create the directed arc $\left(\mathrm{Fu}_{1} \ldots \mathrm{u}_{\mathrm{p}}, \mathrm{Gv}_{1} \ldots \mathrm{v}_{\mathrm{q}}\right)$ (labeled i), where $\mathrm{F}=\mathrm{fF}_{1} \ldots \mathrm{~F}_{\mathrm{n}}, \mathrm{G}=\mathrm{fG}_{1} \ldots \mathrm{G}_{\mathrm{n}}$. By the induction hypothesis, E_{Σ} implies $\quad F_{k} u_{1} i x \ldots u_{p} i x=G_{k} v_{1} x \ldots v_{q} x, \quad k=1, \ldots, n$. Thus, $\quad E_{\Sigma} \quad$ implies $\mathrm{Fu}_{1} \mathrm{ix} \ldots \mathrm{u}_{\mathrm{p}} \mathrm{ix}=f \mathrm{FF}_{1} \mathrm{u}_{1} \mathrm{ix} \ldots \mathrm{u}_{\mathrm{p}} \mathrm{ix} \ldots \mathrm{F}_{\mathrm{n}} \mathrm{u}_{1} \mathrm{ix} \ldots \mathrm{u}_{\mathrm{p}} \mathrm{ix}=\mathrm{fG}_{1} \mathrm{v}_{1} \mathrm{x} \ldots \mathrm{v}_{\mathrm{q}} \mathrm{x} \ldots \mathrm{G}_{\mathrm{n}} \mathrm{v}_{1} \mathrm{x} \ldots \mathrm{v}_{\mathrm{q}} \mathrm{x}=\mathrm{Gv}_{1} \mathrm{x} \ldots \mathrm{v}_{\mathrm{q}} \mathrm{x}$.
$\underline{\text { Rule } I_{3}}$ Identical to Rule I_{2}.
(\Rightarrow) : Let u be a node of H labeled $\mathrm{Fu}_{1} \ldots \mathrm{u}_{\mathrm{p}}$, where the u_{k} 's are nodes corresponding to attributes. We denote by $\mathrm{u} \tau$ the term $\mathrm{Fu}_{1} \tau \ldots \mathrm{u}_{\mathrm{p}} \tau$.

Claim: Suppose E_{Σ} implics $\mathrm{Fu}_{1} \tau \ldots \mathrm{u}_{\mathrm{p}} \tau=\mathrm{Gv}_{1} \rho \ldots \mathrm{v}_{\mathrm{q}} \rho$, where the u_{k} 's, v_{j} 's correspond to arbitrary nodes of H, F, G are terms over the fs, and τ, ρ are terms over the i's (and a variable x). Also assume $F u_{1} \ldots u_{p}$ is a node of H, and there are nodes $w_{k}, k=1, \ldots, p$, such that there is a path from u_{k} to w_{k} labeled τ. Then $\mathrm{Gv}_{1} \ldots \mathrm{v}_{\mathrm{q}}$ is a node of H and there is a path from $\mathrm{Gv}_{1} \ldots \mathrm{v}_{\mathrm{q}}$ to $\mathrm{Fw}_{1} \ldots \mathrm{w}_{\mathrm{p}}$ labeled ρ.

The "only if" direction follows casily from the Claim, by Theorem 2.1.
Proof of Claim: If $\mathrm{E}_{\Sigma} \vDash \sigma=\sigma^{\prime}$, then there is a sequence of terms $\sigma_{0} \ldots, \sigma_{\mathrm{m}}$ such that σ_{0} is $\sigma, \sigma_{\mathrm{m}}$ is
σ^{\prime}, and for $\mathrm{k}=0, \ldots, \mathrm{~m}-1$ the term $\sigma_{\mathrm{k}+1}$ is obtained from σ_{k} by rewriting a subterm $\varphi\left(\theta_{1}\right)$ as $\varphi\left(\theta_{2}\right)$, where $\theta_{1}=\theta_{2}\left(\theta_{2}=\theta_{1}\right)$ is an equation in E_{X} and φ is a substitution (Proposition 2.2). We call such a sequence a proof of the equation $\sigma=\sigma^{\prime}$.

We define a relation \prec on pairs of terms as follows:
$\left(\zeta . \zeta^{\circ}\right)<\left(\eta, \eta^{\prime}\right)$ iff E_{Σ} implies $\zeta=\zeta^{\circ}$ and $\eta=\eta^{*}$, and cither
(i) the shortest proof of $\zeta=\zeta^{\prime}$ is shorter than the shortest proof of $\eta=\eta^{\prime}$, or
(ii) the above proofs have the same length, and ζ is a proper subterm of η, ζ^{\prime} is a proper subterm of η.

Obviously, \prec is well-founded, so we can argue by induction on \prec. I et $\sigma_{0}, \ldots, \sigma_{\mathrm{m}}$ be a shortest proof of the equation $\mathrm{Fu}_{1} \tau \ldots \mathrm{u}_{\mathrm{p}} \tau=\mathrm{Gv}_{1} \rho \ldots \mathrm{v}_{\mathrm{q}} \rho$.

Basis: $\mathrm{m}=0$. Using $\mathrm{I}_{2}, \mathrm{I}_{1}$, we see by an casy induction on the structure of F that there is a node $\mathrm{Fw}_{1} \ldots \mathrm{w}_{\mathrm{p}}$ and a path from $\mathrm{Fu}_{1} \ldots \mathrm{u}_{\mathrm{p}}$ to $\mathrm{Fw}_{1} \ldots \mathrm{w}_{\mathrm{p}}$ labeled τ (sce Figure 3-3).

Induction Step: We assume that the Claim holds for all equations $\zeta=\zeta^{*}$ implicd by E_{Σ}, where $(\zeta, \zeta)<\left(\mathrm{Fu}_{1} \tau \ldots \mathrm{u}_{\mathrm{p}} \tau, \mathrm{Gv}_{1} \rho \ldots \mathrm{v}_{\mathrm{q}} \rho\right)$; we will show that it holds for the equation $\mathrm{Fu}_{1} \tau \ldots \mathrm{u}_{\mathrm{p}} \tau=\mathrm{Gv}_{1} \rho \ldots \mathrm{v}_{\mathrm{q}} \rho$. We distinguish two cases:

Case 1: For $\mathrm{k}=0, \ldots, \mathrm{~m}-1, \sigma_{\mathrm{k}+1}$ is obtained from σ_{k} by rewriting a proper subterm. This means F is $\mathrm{fF}_{1} \ldots \mathrm{~F}_{\mathrm{n}}, \mathrm{G}$ is $\mathrm{fG}_{1} \ldots \mathrm{G}_{\mathrm{n}}$, and $\mathrm{F}_{\mathrm{s}} \mathrm{u}_{1} \tau \ldots \mathrm{u}_{\mathrm{p}} \tau$ is rewritten as $\mathrm{G}_{\mathrm{s}} \mathrm{v}_{1} \rho \ldots \mathrm{v}_{\mathrm{q}} \rho, \mathrm{s}=1, \ldots, \mathrm{n}$. Now for $\mathrm{s}=1, \ldots, \mathrm{n}$, $\mathrm{F}_{\mathrm{s}} \mathrm{u}_{1} \ldots \mathrm{u}_{\mathrm{p}}$ is a node of H and $\left(\mathrm{F}_{\mathrm{s}} \mathrm{u}_{1} \tau \ldots \mathrm{u}_{\mathrm{p}} \tau, \mathrm{G}_{\mathrm{s}} \mathrm{v}_{1} \rho \ldots \mathrm{v}_{\mathrm{q}} \rho\right)<\left(\mathrm{Fu}_{1} \tau \ldots \mathrm{u}_{\mathrm{p}} \tau, \mathrm{Gv}_{1} \rho \ldots \mathrm{v}_{\mathrm{q}} \rho\right)$, so by the induction hypothesis $\mathrm{G}_{\mathrm{s}} \mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{q}}$ is a node of H and there is a path from $\mathrm{G}_{\mathrm{s}} \mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{q}}$ to $\mathrm{F}_{\mathrm{s}} \mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{p}}$ labeled ρ (see Figure 3-4). Now by Rules I_{2}, I_{1} and an easy induction on the structure of F_{S}, there is a path from $\mathrm{F}_{\mathrm{s}} \mathrm{u}_{1} \ldots \mathrm{u}_{\mathrm{p}}$ to $\mathrm{F}_{\mathrm{s}} \mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{p}}$ labeled τ; then by Rules $\mathrm{I}_{2}, \mathrm{I}_{1}$ there is a node $\mathrm{fF}_{1} \mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{p}} \ldots \mathrm{F}_{\mathrm{n}} \mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{p}}$, i.e. a
 $\mathrm{Gv}_{1} \ldots \mathrm{v}_{\mathrm{q}}$, and that there is a path from $\mathrm{Gv}_{1} \ldots \mathrm{v}_{\mathrm{q}}$ to $\mathrm{Fw}_{1} \ldots \mathrm{w}_{\mathrm{p}}$ labeled ρ.

Case 2: For some $\mathrm{k}, 0 \leq \mathrm{k} \leq \mathrm{m}-1, \sigma_{\mathrm{k}}$ is rewritten into $\sigma_{\mathrm{k}+1}$. We distinguish four subcases:
Case 2a: $\mathrm{Fu}_{1} \tau \ldots \mathrm{u}_{\mathrm{p}} \tau$ is rewritten as $\mathrm{fa}_{1} \xi \ldots \mathrm{a}_{\mathrm{n}} \xi$, then as $\mathrm{a} \xi$ using an cquation $\mathrm{fa}_{1} \mathrm{x} \ldots \mathrm{a}_{\mathrm{n}} \mathrm{x}=\mathrm{ax}$ in $\mathrm{E}_{\boldsymbol{\Sigma}}$ and then as $G v_{1} \rho \ldots v_{q} \rho$. Clcarly $\left(\mathrm{Fu}_{1} \tau \ldots \mathrm{u}_{\mathrm{p}} \tau, \mathrm{fa}_{1} \xi \ldots \mathrm{a}_{\mathrm{n}} \xi\right)<\left(\mathrm{Fu}_{1} \tau \ldots \mathrm{u}_{\mathrm{p}} \tau, \mathrm{Gv}_{1} \rho \ldots \mathrm{v}_{\mathrm{q}} \rho\right.$), so by the induction hypothesis there is a path from $\mathrm{fa}_{1} \ldots \mathrm{a}_{\mathrm{n}}$ to $\mathrm{Fw}_{1} \ldots \mathrm{w}_{\mathrm{p}}$ labeled ξ (sec Figure 3-5). Since $\left\langle\mathrm{fa}_{1} \ldots \mathrm{a}_{\mathrm{n}}, \mathrm{a}\right\rangle \in \mathrm{E}_{\mathrm{H}}$, there is a path from a to $\mathrm{Fw}_{1} \ldots \mathrm{w}_{\mathrm{p}}$ labeled ξ. We also have $\left(\mathrm{a} \xi, \mathrm{Gv}_{1} \rho \ldots \mathrm{v}_{\mathrm{q}} \rho\right) \prec\left(\mathrm{Fu}_{1} \tau \ldots \mathrm{u}_{\mathrm{p}} \tau, \mathrm{Gv}_{1} \rho \ldots \mathrm{v}_{\mathrm{q}} \rho\right.$), so by the induction hypothesis $\mathrm{Gv}_{1} \ldots \mathrm{v}_{\mathrm{q}}$ is a node of H
and there is a path from $\mathrm{Gv}_{1} \ldots \mathrm{v}_{\mathrm{q}}$ to $\mathrm{F} \mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{p}}$ labeled ρ.
Case 2 b : $\mathrm{Fu}_{1} \tau \ldots \mathrm{u}_{\mathrm{p}} \tau$ is rewritten as $\mathrm{a} \xi$, then as $\mathrm{fa}_{1} \xi \ldots \mathrm{a}_{\mathrm{n}} \xi$ using an equation $\mathrm{fa}_{1} \mathrm{x} \ldots . \mathrm{a}_{\mathrm{n}} \mathrm{x}=\mathrm{ax}$ in E_{Σ} and then as $\mathrm{Gv}_{1} \rho \ldots \mathrm{v}_{\mathrm{q}} \rho$. Clearly ($\left.\mathrm{Fu}_{1} \tau \ldots \mathrm{u}_{\mathrm{p}} \tau, \mathrm{a} \xi\right)<\left(\mathrm{Fu}_{1} \tau \ldots \mathrm{u}_{\mathrm{p}} \tau, \mathrm{Gv}_{1} \rho \ldots \mathrm{v}_{\mathrm{q}} \rho\right.$), so by the induction hypothesis there is a path from a to $\mathrm{Fw}_{1} \ldots \mathrm{w}_{\mathrm{p}}$ labeled ξ (sce Figure 3-6). Since $\left\langle\mathrm{fa}_{1} \ldots \mathrm{a}_{\mathrm{n}}, \mathrm{a}\right\rangle \in \mathrm{E}_{\mathrm{H}}$, there is a path from $\mathrm{fa}_{1} \ldots \mathrm{a}_{\mathrm{n}}$ to $\mathrm{Fw}_{1} \ldots \mathrm{w}_{\mathrm{p}}$ labeled ξ. We also have $\left(\mathrm{fa}_{1} \xi \ldots \mathrm{a}_{\mathrm{n}} \xi, \mathrm{Gv}_{1} \rho \ldots \mathrm{v}_{\mathrm{q}} \rho\right) \ll\left(\mathrm{Fu}_{1} \tau \ldots \mathrm{u}_{\mathrm{p}} \tau, \mathrm{Gv}_{1} \rho \ldots \mathrm{v}_{\mathrm{q}} \rho\right)$, so by the induction hypothesis $\mathrm{Gv}_{1} \ldots \mathrm{v}_{\mathrm{q}}$ is a node of H and there is a path from $\mathrm{Gv}_{1} \ldots \mathrm{v}_{\mathrm{q}}$ to $\mathrm{Fw}_{1} \ldots \mathrm{w}_{\mathrm{p}}$ labeled ρ.

Case 2c: $F u_{1} \tau \ldots u_{p} \tau$ is rewritten as $a \xi$, then as bi ξ using an equation $a x=b i x$ in E_{Σ} and then as $\mathrm{Gv}_{1} \rho \ldots \mathrm{v}_{\mathrm{q}} \rho$. Clearly $\left(\mathrm{Fu}_{1} \tau \ldots \mathrm{u}_{\mathrm{p}} \tau, \mathrm{a} \xi\right)<\left(\mathrm{Fu}_{1} \tau \ldots \mathrm{u}_{\mathrm{p}} \tau, \mathrm{Gv}_{1} \rho \ldots \mathrm{v}_{\mathrm{q}} \rho\right)$, so by the induction hypothesis there is a path from a to $\mathrm{Fw}_{1} \ldots \mathrm{w}_{\mathrm{p}}$ labeled ξ (sec Figure 3-7). Since there is a directed arc (b, a) labeled i , there is a path from b to $\mathrm{Fw}_{1} \ldots w_{p}$ labeled $i \xi$. We also have
(bi $\left.\xi, G v_{1} \rho \ldots v_{q} \rho\right)<\left(\mathrm{Fu}_{1} \tau \ldots \mathrm{u}_{\mathrm{p}} \tau, G v_{1} \rho \ldots \mathrm{v}_{\mathrm{q}} \rho\right.$), so by the induction hypothesis $\mathrm{Gv}_{1} \ldots \mathrm{v}_{\mathrm{q}}$ is a node of H and there is a path from $\mathrm{Gv}_{1} \ldots \mathrm{v}_{\mathrm{q}}$ to $\mathrm{Fw}_{1} \ldots \mathrm{w}_{\mathrm{p}}$ labeled ρ.

Case 2d: $\mathrm{Fu}_{1} \tau \ldots \mathrm{u}_{\mathrm{p}} \tau$ is rewritten as bi ξ, then as a ξ using an equation $\mathrm{ax}=$ bix in E_{Σ} and then as $\mathrm{Gv}_{1} \rho \ldots \mathrm{v}_{\mathrm{q}} \rho$. Clearly $\left(\mathrm{Fu}_{1} \tau \ldots \mathrm{u}_{\mathrm{p}} \tau, \mathrm{bi} \xi\right)<\left(\mathrm{Fu}_{1} \tau \ldots \mathrm{u}_{\mathrm{p}} \tau, \mathrm{Gv}_{1} \rho \ldots \mathrm{v}_{\mathrm{q}} \rho\right)$, so by the induction hypothesis there is a path from b to $\mathrm{Fw}_{1} \ldots \mathrm{w}_{\mathrm{p}}$ labeled $\mathrm{i} \xi$ (see Figure 3-8). Now there is a node c on this path such that the subpath from b to c is labeled i. Since there is a directed arc (b, a) labeled i, by Rulcs E_{1}, F_{2}, T we have $\langle\mathrm{a}, \mathrm{c}\rangle \in \mathrm{E}_{\mathrm{H}}$. Thus there is a path from a to $\mathrm{Fw}_{1} \ldots \mathrm{w}_{\mathrm{p}}$ labeled ξ. We also have
$\left(\mathrm{a} \xi, \mathrm{Gv}_{1} \rho \ldots \mathrm{v}_{\mathrm{q}} \rho\right)<\left(\mathrm{Fu}_{1} \tau \ldots \mathrm{u}_{\mathrm{p}} \tau, G v_{1} \rho \ldots \mathrm{v}_{\mathrm{q}} \rho\right)$, so by the induction hypothesis $\mathrm{Gv}_{1} \ldots \mathrm{v}_{\mathrm{q}}$ is a node of H and there is a path from $\mathrm{Gv}_{1} \ldots \mathrm{v}_{\mathrm{q}}$ to $\mathrm{Fw}_{\mathrm{p}} \ldots \mathrm{w}_{\mathrm{p}}$ labeled ρ.

This concludes the Proof of the Claim, so we are done. I

We remark here that Theorem 3.1 can be strengthencd using the axiomatization of [54] for FD's and IND's (see Subsection 2.1.1). Specifically, we can show that we need not use Rule I_{3} in the construction of H . To see this, consider the following sets of dependencies:
$F_{H}=\left\{u_{1} \ldots u_{p} \rightarrow u \mid u_{k}, k=1, \ldots, p\right.$ and u are nodes of H such that $\left.\left\langle\mathrm{Fu}_{1} \ldots u_{p}, u\right\rangle \in E_{H}\right\}$.
$\mathrm{I}_{\mathrm{H}}=\left\{\mathrm{u}_{1} \ldots \mathrm{u}_{\mathrm{q}} \subseteq \mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{q}} \mid \mathrm{u}_{\mathrm{k}}, \mathrm{v}_{\mathrm{k}}\right.$ are nodes of H such that there is a path from v_{k} to u_{k} labeled $\tau, \mathrm{k}=1, \ldots, \mathrm{q}$, where τ is a term over the i's $\}$.
Here we assume that Rule I_{3} was not used in the construction of H . Clearly $\Sigma \subseteq \mathrm{F}_{\mathrm{H}} \cup I_{\mathrm{H}}$. Morcover, it is straightforward (but lengthy) to verify that $\mathrm{F}_{\mathrm{H}} \mathrm{UI}_{\mathrm{H}}$ is closed under the rules of [54] (using the fact
that H is closed under Rules T, E_{1-2}, I_{1-2}). Therefore, $\Sigma \vDash \Lambda_{1} \ldots \Lambda_{n} \rightarrow \Lambda$ iff $a_{1} \ldots a_{n} \rightarrow a$ is in F_{11} and $\Sigma \equiv B_{1} \ldots B_{m} \subseteq \Lambda_{1} \ldots \Lambda_{m}$ iff $b_{1} \ldots b_{m} \subseteq a_{1} \ldots a_{m}$ is in $I_{1 I}$. This stronger version, however, is not necessary for our purposes.

3.2 Typed IND's and Acyclic FD's

Suppose we are given a set Σ of FD's and typed IND's, over database scheme $D=\left\{R_{k}\left[U_{k}\right]\right.$: $k=1, \ldots . q\}, U_{k} \subseteq \mathcal{U}$. Λn attribute Λ_{j} of relation scheme R_{k} is now represented by a node a_{j}^{k} of H_{Σ} (cf. the graph notation of Section 2.1.1). The FD's and IND's in Σ are represented in H_{Σ} as explained at the beginning of this Section. We use a different label i^{jk} for each typed IND $R_{k}: \Lambda_{1} \ldots \Lambda_{m} \subseteq R_{j}: \Lambda_{1} \ldots \Lambda_{m}$ in Σ.

The fact that Σ contains only typed IND's induces a special structure on the graph H (of Theorem 3.1), which we will now analyze. Consider the graph F_{Σ} of Section 2.1.1. This graph has a node a for each attribute Λ in \mathcal{U} and a group of red arcs $\left(a_{1}, a\right), \ldots,\left(a_{n}, a\right)$ labcled f for each group of red arcs $\left(\mathrm{a}_{1}^{\mathrm{k}}, \mathrm{a}^{\mathrm{k}}\right), \ldots,\left(\mathrm{a}_{\mathrm{n}}^{\mathrm{k}}, \mathrm{a}^{\mathrm{k}}\right)$ labeled f of H_{Σ}. We define two partial functions type, node on the set of terms (over the $\mathrm{a}^{\mathrm{k}} \mathrm{s}$ and the fs). If τ is a term, type (τ) is the name of a relation scheme in D and node (τ) is a node of F_{Σ}. The functions type, node are defined inductively as follows:

1. For cach attribute A of R_{k}, type $\left(\mathrm{a}^{\mathrm{k}}\right)=\mathrm{R}_{\mathrm{k}}$, $\operatorname{node}\left(\mathrm{a}^{\mathrm{k}}\right)=\mathrm{a}$.
2. If $\operatorname{type}\left(\tau_{j}\right)=R_{k}$ and $\operatorname{node}\left(\tau_{j}\right)=v_{j}$ for $j=1, \ldots, n$, where there is a group of red arcs $\left(\mathrm{v}_{1}, \mathrm{v}\right), \ldots,\left(\mathrm{v}_{\mathrm{n}}, \mathrm{v}\right)$ labcled f in $\mathrm{F}_{\mathrm{\Sigma}}$, then $\operatorname{type}\left(\mathrm{f} \tau_{1 \ldots} \ldots \tau_{\mathrm{n}}\right)=\mathrm{R}_{\mathrm{k}}$, $\operatorname{\text {ode}}\left(\mathrm{f} \tau_{1} \ldots \tau_{\mathrm{n}}\right)=\mathrm{v}$.

The crucial property of H (in the case of typed IND's) is given in the following
Lemma 3.1: The functions type, node are defined on all terms that appear as labels of nodes of

H. Morcover,

1. If $\mathrm{f} \tau_{1} \ldots \tau_{\mathrm{n}}$ is a node of H then for $\mathrm{j}=1, \ldots, \mathrm{n}$ we have $\operatorname{typ}\left(\tau_{\mathrm{j}}\right)=\mathrm{R}_{\mathrm{k}}$ and node $\left(\tau_{\mathrm{j}}\right)=\mathrm{v}_{\mathrm{j}}$, where there is a group of red arcs $\left(v_{1}, v\right), \ldots,\left(v_{n}, v\right)$ labeled f in F_{Σ}.
2. If $\langle u, v\rangle$ is an undirected arc of H then $t y p e(u)=t y p e(v)$ and node $(\mathrm{u})=$ node (v).
3. If (u, v) is a directed arc of H labeled i^{jk} then $\operatorname{type}(\mathrm{u})=\mathrm{R}_{\mathrm{j}}, t y p e(\mathrm{v})=\mathrm{R}_{\mathrm{k}}$ and node $(\mathrm{u})=$ node (v).

Proof: Straightforward simultaneous induction on the number of applications of rules that produced a node (arc) of H .

Assume now that F_{2} is acyclic: It is not hard to see that in this case cach node of F_{2} can be the image (under node) of at most an exponential number of terms (in the size of F_{2}). Therefore by l.emma 3.1 the size of H is at most exponential, and by Theorem 3.1 we obtain

Corollary 3.1: The implication problem for acyclic Fl's and typed IND's is decidable.

In particular, implication of an FD can be tested in exponential time, and implication of an IND can be tested in nondeterministic exponential time (by guessing appropriate paths of H). Whether these bounds can be improved is an open question.

We remark here that if Σ is a set of FD's and typed IND's over database scheme D and $\Sigma \vDash \sigma$, where σ is an IND, then σ must be typed. This follows easily from Theorem 3.1 and Lemma 3.1, but can also be seen directly as follows: Consider a database d which associates to each relation scheme R_{k} of D a single tuple t_{k}, where $\mathrm{t}_{\mathrm{k}}\left[\Lambda_{\mathrm{j}}\right]=\mathrm{j}, \Lambda_{\mathrm{j}} \in \mathcal{U}$. Clearly d satisfies all FD's and all typed IND's (over $D)$, but violates any IND which is not typed.

3.3 Inference of FD's under Pairwise Consistency

Let Σ be a set of FD's over database scheme D and let $\mathrm{PC}(D)$ be the set of all typed IND's over D (recall that $\mathrm{PC}(D)$ expresses the fact that the database is pairwise consistent). By the remark at the end of the previous Section, $\mathrm{PC}(D) \cup \Sigma$ does not imply any new IND's, so we need only be concerned with implication of FD's. Furthermore, observe that if a database d over D satisfies $\operatorname{PC}(D)$, then $R_{k}: \Lambda_{1} \ldots A_{n} \rightarrow \Lambda$ holds in relation R_{k} iff $R_{j}: A_{1} \ldots A_{n} \rightarrow \Lambda$ holds in relation R_{j}, where $R_{k}\left[U_{k}\right], R_{j}\left[U_{j}\right]$ both contain attributes $A_{1}, \ldots, A_{n}, \Lambda$. For this reason we can suppress relation names from FD's.

In the presence of only typed IND's, cvery term that appears as label of a node of the graph H (of Theorem 3.1) is of the form $\mathrm{Fa}_{1}^{\mathrm{k}} \ldots \mathrm{a}_{\mathrm{p}}^{\mathrm{k}}$, where type $\left(\mathrm{Fa}_{1}^{\mathrm{k}} \ldots \mathrm{a}_{\mathrm{p}}^{\mathrm{k}}\right)=\mathrm{R}_{\mathrm{k}}$; this is an casy consequence of Lemma 3.1. Now suppose we have pairwise consistency, there is a node labeled $F a_{1}^{k} \ldots a_{p}^{k}$, and Λ_{m} appears in relation scheme $R_{j}, m=1, \ldots, p$; then there is a directed are labeled $i^{k j}$ from a_{m}^{k} to a_{m}^{j}. Thus, by Rule I_{2} (and an easy induction on the structure of F) there is a node labeled $F a_{2}^{j} \ldots a_{p}^{j}$. This observation allows us to represent the graph H more succinctly, by having only one node a_{m} for each attribute A_{m} and a node $\mathrm{Fa}_{1} \ldots \mathrm{a}_{\mathrm{p}}$ for each term
$\mathrm{Fa}_{1}^{\mathrm{k}} \ldots \mathrm{a}_{\mathrm{p}}^{\mathrm{k}}$ that appears as a label of a node of H .

This representation can be further simplified if the Fl's in Σ are all unary. In this case all we need to observe is that the terms that appear as labels of nodes correspond to paths in the graph $\mathrm{F}_{\mathrm{\Sigma}}$ (recall that F_{Σ} is a directed graph with a node a_{m} for each attribute Λ_{m} and an arc (a_{k}, a_{j}) for cach FD) $\Lambda_{k} \rightarrow \Lambda_{j}$ in Σ). Morcover, it is not difficult to see that all such paths will appear as labels of nodes. We now give the formal details of this representation.

Let V be the set of nodes of F_{Σ}. For each attribute Λ_{m}, let $\mathrm{T}_{\lambda_{m}}$ be the following (possibly infinite) directed tree:
the set of nodes $\mathrm{P}_{\mathrm{A}_{\mathrm{m}}} \subseteq \mathrm{a}_{\mathrm{m}} \mathrm{V}^{*}$ is the set of all paths in F_{L} which start at a_{m} (denoted as sequences of nodes);
the set of arcs is $\left\{\left(s a_{k}, s a_{k} a_{j}\right) \mid s \in V^{*}, s a_{k} \in P_{A_{m}}, \Lambda_{k} \rightarrow \Lambda_{j} \in \Sigma\right\}$.
Let $P=U_{A_{m}} \in \mathcal{U} P_{A_{m}}$. Define E to be the smallest set of undirected arcs on P which contains $\langle s, s\rangle$ for all $s \in P$ and $\left\langle a_{k} a_{j}, a_{j}\right\rangle$ for all $\Lambda_{k} \rightarrow \Lambda_{j}$ in Σ, and is closed under the following rules:

1. Propagation: If $\left\langle s a_{k}, s^{\prime} a_{k}\right\rangle \in E$, then $\left\langle s a_{k} a_{j}, s^{\prime} a_{k} a_{j}\right\rangle \in E$ for all $\Lambda_{k} \rightarrow A_{j}$ in Σ.
2. Pscudo-Transitivity: If $\left\langle s_{1}, s_{2}\right\rangle,\left\langle s_{2}, s_{3}\right\rangle$ are in $E, s_{k} \in P_{A_{k}}$, and there is a relation scheme in D which contains $\Lambda_{1}, A_{2}, \Lambda_{3}$, then $\left\langle\mathrm{s}_{1}, \mathrm{~s}_{3}\right\rangle$ is in E .

By the preceding remarks and Theorem 3.1, we have
Lemma 3.2: $\operatorname{PC}(D) \cup \Sigma \vDash \Lambda_{k} \rightarrow \Lambda_{j}$ iff $\left\langle s, a_{j}\right\rangle \in E$ for some $s \in P_{A_{k}}$.
Example 3.1: Figure 3-9 has an example where $D=\left\{R_{0}\left[\Lambda_{1} Q_{1} Q_{2} B\right], R_{1}\left[A_{1} Q_{1}\right], R_{2}\left[\Lambda_{1} Q_{1} A_{2} Q_{2}\right]\right.$, $\left.\mathrm{R}_{3}\left[\Lambda_{2} \mathrm{Q}_{2} \mathrm{~B}\right]\right\}$ and Σ is $\left\{\mathrm{A} \rightarrow \mathrm{Q}_{1}, \mathrm{~A}_{1} \rightarrow \mathrm{~A}_{2}, \mathrm{~A}_{2} \rightarrow \mathrm{~B}, \mathrm{Q}_{1} \rightarrow \Lambda_{2}, \mathrm{Q}_{2} \rightarrow \mathrm{~B}\right\}$. In this case, $\mathrm{PC}(D) \cup \Sigma \vDash \mathrm{A} \rightarrow \mathrm{B}$.

The "only if" direction of Lemma 3.2 can also be proved by a counterexample construction. Suppose $\left\langle s, a_{j}\right\rangle$ is not in E, for any s in $P_{A_{k}}$; we will construct a pairwise consistent database d over D which satisfics the FD's in Σ but violates $A_{k} \rightarrow A_{j}$.
For each attribute A_{m} in \mathcal{U}_{1} the domain of $\Lambda_{m}, \mathscr{D}_{A_{m}}$, consists of all functions $f: \mathrm{P}_{A_{m}} \rightarrow\{0,1\}$ such that, if $\langle s, s\rangle \in E, s, s^{\prime} \in P_{A_{m}}$, then $f(s)=f\left(s^{\prime}\right)$.
Let U_{n} be $\Lambda_{1} \ldots \Lambda_{\mathrm{p}}$. We construct a relation r_{n} over $\mathrm{R}_{\mathrm{n}}\left[\mathrm{U}_{\mathrm{n}}\right]$ as follows: Λ tuple $f_{1} \ldots f_{\mathrm{p}}\left(f_{\kappa} \in \mathscr{D}_{\mathrm{A}_{\kappa}}\right)$ is in r_{n} iff, for any s in $\mathrm{P}_{\mathrm{A}_{\kappa}}, \mathrm{s}^{\prime}$ in $\mathrm{P}_{\Lambda_{\lambda}}(1 \leq \kappa, \lambda \leq \mathrm{p})$ with $\langle\mathrm{s}, \mathrm{s}\rangle \in \mathrm{E}$, we have $f_{\kappa}(\mathrm{s})=f_{\lambda}\left(\mathrm{s}^{\prime}\right)$.
It is easy to see that the database d consisting of the relations r_{n} satisfies the FD's in Σ (by the definition of the set F.). We also claim that d is pairwise consistent. The key observation is that, if
$\Lambda_{\kappa_{1}} \ldots \Lambda_{\kappa_{q}}$ is any subset of U_{11}, then the projection of r_{n} on $\Lambda_{\kappa_{1}} \ldots \Lambda_{\kappa_{q}}$ consists of exactly those tuples $f_{\kappa_{1}} \ldots f_{\kappa_{q}}$ for which $f_{1_{3}}(s)=f_{C^{\prime}}\left(s^{\prime}\right)$ whenever $\left\langle\mathrm{s}, \mathrm{s}^{\prime}\right\rangle \in \mathrm{E}$ (B, C in $\Lambda_{\kappa_{1}} \ldots \Lambda_{\kappa_{\mathrm{q}}}$). Finally, one can verify that if $\left\langle s, a_{j}\right\rangle$ is not in E, for any s in $P_{A_{k}}$, then d violates $A_{k} \rightarrow A_{j}$.

The above construction produces in general an uncountable counterexample. Observe, however, that if Σ is acyclic then each $\mathrm{P}_{\Lambda_{\mathrm{m}}}$ is finite, so the counterexample is finite. It follows that for acyclic unary FD's under pairwise consistency, finite implication coincides with (unrestricted) implication:

Theorem 3.2: The class of acyclic unary FD's under pairwise consistency is finitely controllable.
We now make some simple remarks about the set of undirected arcs E. Observe that, if $\left\langle\mathrm{s}_{1}, \mathrm{~s}_{2}\right\rangle \in \mathrm{E}$ and $s_{1} s^{\circ}, s_{2} s^{\prime}$ are in P, then $\left\langle s_{1} s^{\prime}, s_{2} s\right\rangle \in E$. This is an casy consequence of Propagation. $\Lambda l s o$, if $\left\langle\mathrm{as}_{1}, \mathrm{as}_{2}\right\rangle \in E$ and sas ${ }_{1}$, sas $_{2}$ are in P, then $\left\langle\right.$ sas $_{1}$, sas $\left._{2}\right\rangle \in E$. To sec this, suppose s is $s^{\circ} b$, where b is a node such that $B \rightarrow \Lambda$ is in Σ. Then $\langle b a, a\rangle \in E$, so by Propagation $\left\langle\right.$ bas $_{1}$, as $\gg \in E$. Similarly $\left\langle\right.$ bas $_{2}$, as $\left._{2}\right\rangle \in E$. Then by Pscudo-Transitivity $\left\langle\right.$ bas $_{1}$, bas $\left.{ }_{2}\right\rangle \in E$. We are now ready to prove the main result of this Section.

Theorem 3.3: The implication problem for unary FD's in the presence of pairwise consistency is undecidable.

Proof: We reduce the uniform word problem for semigroups (Thue systems [50]) to implication of u-FD's under pairwise consistency. We assume that we are given a set S of word equations of the form $\alpha_{\mathrm{i}} \alpha_{\mathrm{j}}=\alpha_{\mathrm{k}}$; the problem is to determine whether $\mathrm{S} \vDash \alpha_{1} \alpha_{2}=\alpha_{3}$. Recall that this happens iff the string α_{3} can be obtained from the string $\alpha_{1} \alpha_{2}$ by successively replacing a substring w_{1} by a substring w_{2}, where $w_{1}=w_{2}\left(w_{2}=w_{1}\right)$ is an equation in S.

For each given equation in S , say $\alpha_{\mathrm{i}} \alpha_{\mathrm{j}}=\alpha_{\mathrm{k}}$, we include in our database scheme relation schemes $\mathrm{R}_{1-7}, \mathrm{~K}_{1-2}, \mathrm{R}_{1-3}^{\prime}, \mathrm{L}, \mathrm{M}_{1-2}$, as shown in Figure 3-10. The directed ares represent unary FD's. There are two general-purpose attributes X, Y. For each α_{m} there are two attributes $\mathrm{A}_{\mathrm{m}}, \mathrm{B}_{\mathrm{m}}$, and for each equation there is a set of attributes Q_{1-8}.
If the equation to be inferred is $\alpha_{1} \alpha_{2}=\alpha_{3}$, then we include in the database scheme relation schemes $R_{1-7}, K_{1-2}, R_{1-3}^{\prime}, L, J_{1-3}$ and FD's as in Figure 3-10 (where now A_{i}, B_{i} are $A_{1}, B_{1}, \Lambda_{j}, B_{j}$ are $A_{2}, B_{2}, \Lambda_{k}, B_{k}$ are Λ_{3}, B_{3}, and we have used attributes Q_{i-8}^{\prime}). We will show that the $u-F D Q_{6}^{\prime} \rightarrow Q$ is implied iff $\mathrm{S} \vDash \alpha_{1} \alpha_{2}=\alpha_{3}$. Let P be a set of nodes and E a set of undirected arcs as in Lemma 3.2.

Claim: The undirected $\operatorname{arc}\left\langle x a_{1} b_{1} y x a_{2} b_{2} y, x a_{3} b_{3} y\right\rangle$ is in E iff $S=\alpha_{1} \alpha_{2}=\alpha_{3}$.

Proof of Claim: We will give a chatacterization of the set F. Let c be an equation $\alpha_{i} \alpha_{j}=\alpha_{k}$ in S , and suppose e gives rise to relation schemes $\mathrm{R}_{1-7}, \mathrm{~K}_{1-2}, \mathrm{R}_{1-3}^{\prime}, \mathrm{L}, \mathrm{M}_{1-2}$, as in Figure 3-10. Consider the following sets of undirected ares which correspond to c (all these arcs are in E):
$\mathrm{E}_{1}^{\mathrm{e}}$
$\left\langle x a_{i}, a_{j}\right\rangle$,
$\left\langle a_{i} b_{i}, b_{i}\right\rangle,\left\langle q_{1} b_{i}, b_{i}\right\rangle,\left\langle a_{i} b_{i}, q_{1} b_{i}\right\rangle$,
$\left\langle b_{i} y, y\right\rangle,\left\langle q_{2} y, y\right\rangle,\left\langle b_{i} y, q_{2} y\right\rangle$,
$\langle y x, x\rangle,\left\langle q_{3} x, x\right\rangle,\left\langle y x, q_{3} x\right\rangle$,
$\left\langle x a_{j}, a_{j}\right\rangle,\left\langle q_{4} a_{j}, a_{j}\right\rangle,\left\langle x a_{j}, q_{4} a_{j}\right\rangle$,
$\left\langle a_{j} b_{j}, b_{j}\right\rangle,\left\langle q_{5} b_{j}, b_{j}\right\rangle,\left\langle a_{j} b_{j}, q_{5} b_{j}\right\rangle$,
$\left\langle b_{j} y, y\right\rangle,\left\langle q_{6} y, y\right\rangle,\left\langle b_{j} y, q_{6} y\right\rangle$,
$\left\langle x a_{k}, a_{k}\right\rangle$,
$\left\langle a_{k} b_{k}, b_{k}\right\rangle,\left\langle q_{7} b_{k}, b_{k}\right\rangle,\left\langle a_{k} b_{k}, q_{7} b_{k}\right\rangle$,
$\left\langle b_{k} y, y\right\rangle,\left\langle q_{8} y, y\right\rangle,\left\langle b_{k} y, q_{8} y\right\rangle$.
$\mathrm{E}_{2}^{\mathrm{e}}$:
$\left\langle x \mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}, \mathrm{q}_{1} \mathrm{~b}_{\mathrm{i}}\right\rangle$,
$\left\langle a_{i} b_{i} y, q_{2} y\right\rangle,\left\langle q_{1} b_{i} y, q_{2} y\right\rangle$,
$\left\langle b_{1} y x, q_{3} x\right\rangle,\left\langle q_{2} y x, q_{3} x\right\rangle$,
$\left\langle y x a_{j}, q_{4} a_{j}\right\rangle,\left\langle q_{3} x a_{j}, q_{4} a_{j}\right\rangle$,
$\left\langle x a_{j} b_{j}, q_{5} b_{j}\right\rangle,\left\langle q_{4} a_{j} b_{j}, q_{5} b_{j}\right\rangle$,
$\left\langle a_{j} b_{j} y, q_{6} y\right\rangle,\left\langle q_{5} b_{j} y, q_{6} y\right\rangle$,
$\left\langle x a_{k} b_{k}, q_{7} b_{k}\right\rangle$,
$\left\langle\mathrm{a}_{\mathrm{k}} \mathrm{b}_{\mathrm{k}} \mathrm{y}, \mathrm{q}_{8} \mathrm{y}\right\rangle,\left\langle\mathrm{q}_{7} \mathrm{~b}_{\mathrm{k}} \mathrm{y}, \mathrm{q}_{8} \mathrm{y}\right\rangle$.
$\mathrm{E}_{3}^{\mathrm{c}}:$
$\left\langle q_{1} b_{j} y x, q_{3} x\right\rangle,\left\langle q_{2} y x a_{j}, q_{4} a_{j}\right\rangle,\left\langle q_{3} x a_{j} b_{j}, q_{5} b_{j}\right\rangle,\left\langle q_{4} a_{j} b_{j} y, q_{6} y\right\rangle$,
$\left\langle x a_{k} b_{k} y, q_{8} y\right\rangle$.
$\mathrm{E}_{4}^{\mathrm{e}}$:

```
\(\left\langle q_{1} b_{i} y x a_{j}, q_{4} a_{j}\right\rangle,\left\langle q_{2} y x a_{j} b_{j}, q_{5} b_{j}\right\rangle,\left\langle q_{3} x a_{j} b_{j} y, q_{6} y\right\rangle\).
    \(\mathrm{E}_{5}^{\mathrm{e}}\) :
\(\left\langle q_{1} b_{j} y x a_{j} b_{j}, q_{5} b_{j}\right\rangle,\left\langle q_{2} y x a_{j} b_{j} y, q_{6} y\right\rangle\).
    \(\mathrm{E}_{6}^{\mathrm{e}}\).
\(\left\langle x a_{i} b_{j} y x a_{j} b_{j} y, q_{6} y\right\rangle\).
    \(\mathrm{E}_{7}^{\mathrm{e}}\) :
\(\left\langle q_{6} y, q_{8} y\right\rangle,\left\langle x a_{k} b_{k} y, q_{6} y\right\rangle,\left\langle x a_{i} b_{i} y x a_{j} b_{j} y, q_{8} y\right\rangle\),
\(\left\langle x a_{i} b_{i} y x a_{j} b_{j} y, x a_{k} b_{k} y\right\rangle\).
```

It is not difficult to see that for each equation c in $\mathrm{S}, \mathrm{k}=1, \ldots, 7, \mathrm{E}_{\mathrm{k}}^{\mathrm{e}}$ is contained in E (compare with Figure 3-9).
Now consider the following set of arcs E : Let $\left\langle s_{1}, s_{2}\right\rangle$ be a member of some E_{k}^{e} (for some e,k), and suppose s^{\prime} is obtained from s by successively replacing a subscquence $x a_{j} b_{j} y x a_{j} b_{j} y$ by a subsequence $\mathrm{xa}_{\mathrm{k}} \mathrm{b}_{\mathrm{k}} \mathrm{y}$ (or vice versa), where $\boldsymbol{\alpha}_{\mathrm{i}} \alpha_{\mathrm{j}}=\alpha_{\mathrm{k}}$ is in S . If $\mathrm{s}_{1} \mathrm{~s}, \mathrm{~s}_{2} \mathrm{~s}^{\prime}$ are in P , then put $\left\langle\mathrm{s}_{1} \mathrm{~s}, \mathrm{~s}_{2} \mathrm{~s}\right\rangle$ in E . Also if $\mathrm{s}, \mathrm{s}^{\circ}$ are in P, then put $\langle s, s\rangle$ in E.

By the remarks immediately preceding the statement of Theorem 3.3 (and the fact that $\mathrm{E}_{\mathrm{k}}^{\mathrm{c}} \mathrm{C} E$) we have $E^{\prime} \subseteq E$. Furthermore E^{\prime} contains the arcs initially put in E, and clearly it is closed under Propagation. It is also straightforward (albcit a bit tedious) to verify that E^{\prime} is closed under PseudoTransitivity. Therefore $\mathrm{E} \subseteq \mathrm{E}^{\prime}$, and thus $\mathrm{E}=\mathrm{E}^{\prime}$. The Claim now follows from this characterization of E.

To finish the Proof, obscrve that $Q_{6} \rightarrow \mathrm{Q}$ is implied (Lemma 3.2) iff $\left\langle\mathrm{xa}_{1} \mathrm{~b}_{1} \mathrm{yxa}_{2} \mathrm{~b}_{2} \mathrm{y}, \mathrm{xa}_{3} \mathrm{~b}_{3} \mathrm{y}\right\rangle$ is in E (cf. Figure 3-10).

We will now show that there is no k -ary axiomatization for implication of u -FD's in the presence of pairwise consistency.

Let D be a database scheme and Θ a set of sentences about D (for instance, FD's and IND's). An axiom system for implication of sentences in Θ is k-ary [16] iff it is universe-bounded (i.c. only attributes in D are mentioned) and every rule has at most k antecedents, for some fixed integer k. Observe that the axiom system of [54] for implication of FD's and IND's is not k-ary, because Rule 10 violates the boundedness condition (sce Subsection 2.1.1).

Let $\Sigma \subseteq \Theta, \sigma$ in Θ. We say that Σ is closed under implication iff whenever $\Sigma \vDash \sigma$ we have $\sigma \in \Sigma$. Niso, Σ is closed under k-ary implication iff whenever $\Sigma^{\prime}=\sigma$, where $\Sigma^{\prime} \subseteq \Sigma^{\prime},\left|\Sigma^{\prime}\right| \leq k$, we have $\sigma \in \Sigma$. The following characterization for the existence of k-ary axiomatizations is faken from [16]:

Proposition 3.1: There is a k-ary axiomatization for implication of sentences in Θ iff whenever $\Sigma \subseteq \Theta$ is closed under k-ary implication, Σ is closed under implication.

Theorem 3.4: There is no k-ary axiomatization for implication of u-FD's under pairwise consistency (we consider here axiomatizations involving arbitrary FD's and IND's).

Proof: I et Ψl be $\left\{\Lambda, \Lambda_{1}, \ldots, \Lambda_{k}, Q_{1}, \ldots, Q_{k}, B\right\}$ and let D be a database scheme over \mathcal{Q} consisting of relation schemes $R_{0}\left[\Lambda Q_{1} \ldots Q_{k} B\right], R_{1}\left[\Lambda \Lambda_{1} Q_{1}\right], R_{j}\left[\Lambda_{j-1} Q_{j-1} \Lambda_{j} Q_{j}\right], j=2, \ldots, k, R_{k+1}\left[\Lambda_{k} Q_{k}[B]\right.$. Let Φ be the following set of FD's over $D: R_{1}: \Lambda \rightarrow \Lambda_{1}, R_{j}: A_{j-1} \rightarrow A_{j}, j=2, \ldots, k, R_{j}: Q_{j \sim 1} \rightarrow A_{j}, j=2, \ldots, k$, $R_{k+1}: \Lambda_{k} \rightarrow B, R_{k+1}: Q_{k} \rightarrow B, R_{0}: Q_{j} \rightarrow B, j=1, \ldots, k$ (cf. Figure 3-9 for the case $k=2$).

Consider the set Φ^{\prime} of FD's which are consequences of Φ. The set Φ^{\prime} can be constructed by closing Φ under Rules $1,2,3$ of the axiom system of $[54]$ (see Subsection 2.1.1). Let Σ be $\Phi{ }^{\circ} \cup P C(D)$. We will show that Σ is not closed under implication (of FD's and IND's), but is closed under k-ary implication (of FD's and IND's). Theorem 3.4 will then follow by Proposition 3.1.

For the first part, it is not hard to see that $\Sigma \Leftarrow \sigma$, where σ is $R_{0}: A \sim B$ (cf. Figure 3-9). Since σ is not in Σ, we are done.

For the second part, suppose $\Sigma^{\prime}=\sigma$, where $\Sigma^{\prime} \subseteq \Sigma,\left|\Sigma^{\prime}\right| \leq k, \sigma$ is an IND or an FD. We will show that σ is in Σ.

If σ is an IND, then σ must be typed, by the remark at the end of Section 3.2. Thus σ is in Σ.

Suppose now σ is an $F D R_{p}: \mathrm{C}_{1} \ldots \mathrm{C}_{\mathrm{q}} \rightarrow \mathrm{C}_{0}$, where $0 \leq \mathrm{p} \leq \mathrm{k}+1$ and all the C_{j} 's are in \mathfrak{q}. Since all the FD's in Φ are unary, it casily follows from Theorem 3.1 that $\Sigma=R_{p}: C_{m} \rightarrow C_{0}$, for some m, $\mathrm{l} \leq \mathrm{m} \leq \mathrm{q}$. We will argue that $\mathrm{R}_{\mathrm{p}}: \mathrm{C}_{\mathrm{m}}-+\mathrm{C}_{0}$ is in Φ; from this it easily follows that σ is in Φ^{\prime}, i.e. it is in Σ.

Consider the nodes c_{m}, c_{0} of the graph F_{Σ} (cf. Figure 3-9). If there is no directed path from c_{m} to c_{0}, then we can construct a relation r over \mathcal{U} which satisfies all the Fl)'s in Φ (without their relation names) but violates $\mathrm{C}_{\mathrm{m}} \rightarrow \mathrm{C}_{0}$. We can then project r over the R_{j} 's to obtain a database d over D which
satisfics Σ (and thus also Σ) and violatos $R_{p} \cdot C_{m} \rightarrow C_{0}$
Thus, there is a directed path from C_{n} to c_{0}. Since $\mathrm{C}_{\mathrm{m}} . \mathrm{C}_{0}$ aloo appear in the same relation name, it is easy to check that $R_{p}: C_{m} \rightarrow C_{0}$ is in ϕ, unless $R_{p}: C_{m} \rightarrow C_{0}$ is $R_{0} A \rightarrow B$. However, since $\mid \Sigma 1 \leq k$ ane of the FD's $R_{1}: A \rightarrow A_{1}, R_{j}: A_{5-1} \rightarrow A_{j} j=2, \ldots, k, R_{k+1}: A_{k} \rightarrow B$ mut be mining form $\Sigma '$ and therefore we cannot have $\Sigma^{\prime \prime} \neq \mathrm{R}_{0}: \mathrm{A} \rightarrow \mathrm{B}$ (since there is no directed prith frem a to b in $\mathrm{F}_{\mathbf{\Sigma}}$). This concludes the proof. 1

$$
A_{1} A_{2} \rightarrow A
$$

$$
A_{1} B_{2} \subseteq A_{1} A_{2}
$$

path Curled ijx

Figure 3-1: Another graph notation for FDI End IMDS:

E_{2}

O : new node

Figure 3-2: Graph rules for FI's and IND's

Figure 3-3: Basis case

Figure 3-4: Case 1

Figure 35: Cuse 2a

Figare 36: Case 20

Figure 37: Case 2c

Figure 38: Case 2d

Figure 3-9: Example of FD inference under pairwise consistency

Figure 3-10: Gadgets for Proof of Theorem 3.3

Chapter Four

Finite Implication of FD's and Unary IND's

A natural question is whether our equational approach can handle finite implication of database constraints. Ideally, we would like to be able to replace \vDash by $\vDash_{\text {fin }}$ throughout Theorem 2.1. It is easily seen that the same arguments can show that (iii) \Rightarrow (ii) and (ii) \Rightarrow (i) in the finite case (the constructions given map finite counterexamples to finite counterexamples). The argument for $(\mathrm{i}) \Rightarrow$ (iii), however, breaks down, because it is based on the existence of a complete proof procedure for implication (namely the chase) and such a proof procedure cannot exist for finite implication [54,19$]$. As a matter of fact, the same syntactic nature of the proofs of Theorems 2.3 and 3.3 prevents us from proving undecidability of finite implication. The weaker proofs of $[54,19]$, because of their semantic nature, can easily be done for the finite case.

However, Theorem 2.4 also holds for the finite case: By the discussion above one can see that \vDash can be replaced by $\models_{\text {fin }}$ in Theorem 2.1 if we have a finitely controllable class of FD's and IND's, i.e. a class where $\vDash_{\text {fin }}$ is the same as \vDash. Acyclic IND's and FD's provide an easy example of such a class, because the chase in this case constructs a finite counterexample if the implication docs not hold. Another example of a finitely controllable class is acyclic unary FD's under pairwise consistency (Theorem 3.2).

If $\vDash_{\text {fin }}$ is different from \vDash, we might still be able to handle the finite case if there is a complete proof procedure for finite implication. In this Chapter we provide such a class: we show that there is a complete proof procedure for finite implication of FD's and unary IND's. This proof procedure is then used to prove a (weaker) analogue of Theorem 2.1. for finite implication of FD's and u-ID's.

Let Σ be a sct of FD's and u-ID's over a database scheme D containing a single relation scheme R[U]. If σ is an FD or $u-I D$, we will show that $\Sigma \models_{\text {fin }} \sigma$ iff σ can be proved from Σ using the following set of rules $\left(^{*}\right)$. We use X, Y to denote sets of attributes. We denote a $u-I D A \subseteq B$ alternatively as $B \supseteq A$.

Rules (${ }^{*}$):

1. (reflexivity) $\Lambda \rightarrow \Lambda, \Lambda \in \mathfrak{U}$.
2. (augmentation) from $\mathrm{X} \rightarrow \Lambda$ derive $\mathrm{XY} \rightarrow \Lambda, \Lambda \in \mathcal{U}$.
3. (transitivity) from $\mathrm{X} \rightarrow \Lambda_{\mathrm{k}}, \mathrm{k}=1, \ldots, \mathrm{n}, \Lambda_{1} \ldots \Lambda_{\mathrm{n}} \rightarrow \Lambda$, derive $\mathrm{X} \rightarrow \mathrm{A}, \mathrm{A} \in \mathcal{U}$.
4. (u-II) reflexivity) $\Lambda \subseteq \Lambda, \Lambda \in \mathcal{U}$.
5. (u-ID transitivity) from $\Lambda \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{C}$ derive $\Lambda \subseteq \mathrm{C}, \Lambda, \mathrm{B}, \mathrm{C} \in \mathcal{U}$.
6. (cycle rules) For every odd positive integer m and attributes A_{k}, from $\Lambda_{0} \rightarrow \Lambda_{1}$ and $\Lambda_{1} \supseteq \Lambda_{2}$ and \ldots and $\Lambda_{m-1} \rightarrow \Lambda_{m}$ and $\Lambda_{m} \supseteq \Lambda_{0}$ derive $\Lambda_{1} \rightarrow \Lambda_{0}$ and $\Lambda_{2} \supseteq \Lambda_{1}$ and... and $\Lambda_{m} \rightarrow \Lambda_{m-1}$ and $\Lambda_{0} \supseteq \Lambda_{m}$.

Rules 1,2,3 are the standard rules for FI's [5] (written in our notation) and Rules 4,5 are the specialization of the general IND rules of [16] to u-ID's. Thus, Rules $1-5$ are sound for general databases (infinite as well as finite). A simple counterexample construction shows that Rules $1-5$ are also complete for unrestricted implication of FD's and u-ID's. More specifically, FD's and u-ID's decouple in the case of unrestricted implication.

Proposition 4.1: Let Σ_{F} be a set of FD's and Σ_{I} a set of u-ID's.

1. $\Sigma_{\mathrm{F}} \cup \Sigma_{\mathrm{I}} \vDash \mathrm{X} \rightarrow \mathrm{A}$ iff $\Sigma_{\mathrm{F}} \vDash \mathrm{X} \rightarrow \mathrm{A}$.
2. $\Sigma_{\mathrm{F}} \cup \Sigma_{\mathrm{I}} \vDash \Lambda \subseteq B$ iff $\Sigma_{\mathrm{I}} \vDash A \subseteq B$.

Proof: The "if" direction is obvious in both cases. We will show the "only if" direction.

1. Suppose Σ_{F} docs not imply $X \rightarrow A$. Let $X^{+}=\left\{B \mid B \in q, \Sigma_{F}=X \rightarrow B\right\}$. Consider a relation r consisting of tuples $t_{k}, k=0,1,2, \ldots$, where $t_{0}[B]=0, B \in \mathcal{U}$, and for $k=1,2, \ldots, t_{k}[B]=k-1$ if $B \in X^{+}$and $t_{k}[B]=k$ otherwise. It is casy to see that r satisfies the FD's in Σ_{F} (the only tuples to check are t_{0}, t_{1}), and obviously r satisfies all u-ID's. Now since A is not in X^{+}, r violates $X \rightarrow A$. Therefore, $\Sigma_{F} \cup \Sigma_{I}$ does not imply $\mathrm{X} \rightarrow \mathrm{A}$.
2. Suppose Σ_{1} docs not imply $A \subseteq B$. I et G_{I} be a directed graph which has a node a_{m} for each attribute Λ_{m} in \mathcal{U} and a directed arc $\left(a_{j}, a_{k}\right)$ for cach $u-I D A_{k} \subseteq \Lambda_{j}$ in Σ_{I}. By our assumption, there is no directed path from b to a in G_{I} (cf. Rules 4,5). Thus, we can assign to cach node u of G_{I} a number $c(u)$ so that $c(u) \leq c(v)$ whenever there is a directed path from u to v, and $c(b)>c(a)$ (this can be done
by a topological sort of the dag of strongly connected components of $\mathrm{G}_{1}[2]$). Now consider a relation r consisting of tuples $t_{k}, k=0,1,2, \ldots$, where for Λ_{m} in \mathcal{U} we have $t_{k}\left[\Lambda_{m}\right]=k+c\left(a_{m}\right)$. Clearly r satisfies all u-ID's in Σ_{1} and violates $\Lambda \subseteq$. Moreover, r satisfics all FI 's, so $\Sigma_{1} \cup \Sigma_{1}$ docs not imply $\Lambda \subseteq B$. I

As a matter of fact, the cycle rules are not sound for infinite databases: Consider a relation r over relation scheme $R[\Lambda B]$, consisting of tuples $t_{k}, k=0,1,2, \ldots$, where $t_{k}[\Lambda]=k, t_{k}[B]=k+1$: clearly r satisfies $B \rightarrow \Lambda, \Lambda \supseteq B$, but violates $B \supseteq \Lambda$. On the other hand, a simple counting argument shows that the cycle rules are sound in the finite case. Let $|r| \Lambda] \mid$ denote the cardinality of column A of relation r . If the antecedents of a cycle rule hold in r we have $\left|\mathrm{r}\left[\Lambda_{0}\right]\right|=\left|\mathrm{r}\left[\Lambda_{1}\right]\right|=\ldots=\operatorname{rr}\left[\Lambda_{\mathrm{m}}\right] \mid$. Now if a finite relation r satisfics $|r[\Lambda]|=|r[B]|$ and $\Lambda \rightarrow B$, it easily follows that it satisfies $B \rightarrow A$. Similarly, from $|r[\Lambda]|=|r[B]|$ and $\Lambda \supseteq B$ it follows for finite databases that $B \supseteq A$.

In order to analyze the rules (*), we use a graph notation for dependencies similar to the notation of Subsection 2.1.1. If Σ is a set of FD's and u-ID's, G_{Σ} is a graph which has a node a_{m} for each attribute A_{m}, a red arc (a_{k}, a_{j}) for each FD $A_{k} \rightarrow A_{j}$ in Σ, and a black arc (a_{j}, a_{k}) for each $u-I D ~ A_{k} \subseteq A_{j}$ in Σ. If between nodes u, v of G_{Σ} we have red (black) ares in both directions, we replace them with an undirected red (black) edge. The transitivity and cycle rules imply that, when $\Lambda_{k} \rightarrow A_{j}\left(A_{k} \supseteq A_{j}\right)$ corresponds to some are in a directed cycle of G_{Σ}, we can infer $A_{j} \rightarrow \Lambda_{k}\left(\Lambda_{j} \supseteq A_{k}\right)$. In fact, if Σ is closed under the rules (*) then G_{Σ} has a good deal of structure, as can be easily verified.

Proposition 4.2: If Σ is a set of FD's and u-ID's closed under the rules (*) then G_{Σ} has the following properties:

1. Nodes have red (black) self-loops. The red (black) subgraph of G_{Σ} is transitively closed.
2. The subgraphs induced by the strongly connected components of G_{Σ} are undirected.
3. In each strongly connected component of G_{Σ}, the red (black) edges partition the set of nodes into a collection of node-disjoint cliques.
4. If $\Lambda_{1} \ldots \Lambda_{n} \rightarrow A$ is an $F D$ in Σ and a_{1}, \ldots, a_{n} have a common ancestor u in the red subgraph of G_{Σ}, then G_{Σ} contains a red $\operatorname{arc}(u, a)$.

By a topological sort of the dag of strongly connected components of G_{Σ} we can assign to each component a unique scc-number, smaller than the scc-number of all its descendant components in the dag [2]. Thus every node \mathbf{u} in the graph G_{Σ} of Proposition 4.2 belongs to a unique maximal red (black) clique and a unique strongly connected component. Let scc(u) denote the scc-number of the component of node u.

Figure 4-1 illustrates an example of such a graph $\mathrm{G}_{\mathbf{L}}$. There are four strongly connected components, each a black clique, with all black ares present from components with smaller to components with larger sce-number. The red cliques and red arcs are shown explicitly.

We now give a construction which lics at the heart of our completeness proof.
Lemma 4.1: Let Σ and G_{Σ} be as in Proposition 4.2 (i.c., closed unde; the rules (${ }^{*}$)). Let the dag of strongly connected components of G_{Σ} be topologically sorted, so that cach component has a unique scc-number. We can construct a finite relation r such that:

1. The $u-F D A \rightarrow B$ holds in r iff it is in Σ. Also all FI's in Σ hold in r.
2. The only repeated symbol in each column of r is 0 , and the symbols in $r[\Lambda]$ are exactly the integers from 0 to $|\mathrm{r}[\Lambda]|-1$. Morcover, $|r[\Lambda]| \geq|r[B]|$ iff $\operatorname{scc}(a) \leq \operatorname{scc}(b)$ (thus, the $u-I D) ~ \Lambda \supseteq B$ holds in r iff $\operatorname{scc}(\mathrm{a}) \leq \operatorname{scc}(\mathrm{b})$, and all $\mathrm{u}-\mathrm{II}) \mathrm{s}$ in $\mathrm{\Sigma}$ hold in r$)$.

Proof: First put in r a tuple of all 0 's. Process each strongly connected component of G_{Σ} in turn, in order of increasing scc-number. Begin processing a component by processing in turn each of its red cliques. To process a red clique κ, add a tuple with all 0 's in the columns of the attributes of κ and of the attributes in all red cliques that are descendants of κ in the red subgraph of G_{Σ}. For now leave all other positions blank.
For every red clique κ keep a count of the number of 0 's in one of its columns (by the way the construction proceeds all columns of $\boldsymbol{\kappa}$ have the same number of 0 's). Now that one tuple was added for each red clique in the component, in order to terminate processing the component repeat certain of the tuples just added, so as to make the counts of all cliques in the component equal, and strictly greater than the counts of the cliques of the previous component. This is possible because no red clique is a red descendant of another red clique in the same component, or in a component with larger sec-number. Once a component is processed, no further 0's are added in its columns and its counts no longer change.
After adding tuples for all red cliques in all strongly connected components, we examine in turn each column. If the column has s blank positions, we fill them in with the numbers 1 to s , without any repetitions. We illustrate the construction in Figure 4-1.

Now it is casy to check that conditions 1,2 hold:

1. No u-FD in Σ was violated during the construction. Furthermore, all u-FD's not in Σ were violated. To see this, observe that if $\mathrm{A} \rightarrow \mathrm{B}$ is not in Σ, then the tuple inserted for the red clique of A
and the initial tuple of all 0 's disprove $\Lambda \rightarrow B$.
We must also verify that all non-unary FD's in Σ are satisficd. Suppose $\Lambda_{1} \ldots \Lambda_{n} \rightarrow \Lambda$ is an Fl) in Σ violated by r. Since the only repeated symbol in each column is 0 , there is a tuple t of r such that $\mathrm{t}\left[\Lambda_{\mathrm{k}}\right]=0, \mathrm{k}=1, \ldots, \mathrm{n}, \mathrm{t}[\Lambda]>0$. Now t was inserted in r while processing a red clique κ, so all 0 's in t correspond to attributes that are functionally determined by every attribute B of κ. Since Σ is closed under Rules $1,2,3$, it follows that $B \rightarrow \Lambda_{k}$ is in $\Sigma, k=1, \ldots, n$, and also $B \rightarrow \Lambda$ is in Σ. But then r satisfies $B \rightarrow A$, and since $t[B]=0$ and there is an initial tuple of all 0 's, we obtain $t[\Lambda]=0$, which is a contradiction.
2. By the way r is constructed, the final counts are strictly increasing with the sec-numbers, and are equal in all columns of a strongly connected component.

We will now prove our main result:
Theorem 4.1: 'The rules (*) are sound and complete for finite implication of FD's and u-ID's.
Proof: We have already argucd for soundness, so it remains to show completeness. Let Σ be a set of FD's and u-1D's closed under the rules (*), and let σ be an FD or u-ID not in Σ. We will exhibit a finite counterexample relation r which satisfies Σ but violates σ.

Case 1 (σ is an FD):

If σ is unary, then the relation constructed in Lemma 4.1 is the desired counterexample. If σ is not unary, we can use a construction similar to that of Lemma 4.1. In this case the counterexample relation is the union of two relations $\mathrm{r}_{0}, \mathrm{r}_{1}$.
Let σ be $\mathrm{X} \rightarrow \mathrm{A}$. The first relation r_{0} is a two-tuple relation with one tuple all x 's and the other having x's only in the attributes that are functionally determined by X in the set Σ. The remaining positions of this second tuple are initially left blank.
The sccond relation r_{1} contains the symbols $0,1, \ldots$ (but not x) and is constructed so that the union of r_{0} and r_{1} has the right number of repetitions of the symbol 0 in r_{1} to satisfy all u-ID's in Σ. The construction of r_{1} parallels the Proof of Lemma 4.1. The only difference is that now the counts are the number of 0 's and x 's in the union of the two relations. When the correct number of blanks have been inserted in all columns, i.c. all columns in a strongly connected component have the same count and count increases with sce-number, then the blanks can be filled in as in the Proof of Lemma 4.1 and all u-ID's in Σ are satisfied.

Case $2(\sigma$ is a u-ID):

Let σ be C〇I). Repeat the construction in the Proof of I emma 4.1, with the following modification: if the column for attribute Λ has s blank positions, fill in the blanks with the numbers 1 to s if there is no black are (a, d) in G_{2}; otherwise, fill in the blanks with $1, \ldots, \mathrm{~s}-1$, x. The relation thus constructed satisfics the FD's in Σ, by the same argument as in the Proof of Lemma 4.1. To see that the u-ID's in Σ are also satisfied, observe that $\Lambda \supseteq \mathrm{B}$ is violated iff either
(i) $\operatorname{scc}(\mathrm{a})>\operatorname{scc}(\mathrm{b})$, or
(ii) $\sec (\mathrm{a}) \leq \operatorname{scc}(\mathrm{b})$, there is no black arc (a,d), and there is a black are (b,d).

By the properties of G_{2}, this means there is no black arc (a, b), i.c. $\Lambda \supseteq B$ is not in Σ. Finally, it is clear that $\mathrm{C} \supseteq \mathrm{D}$ is violated.
Sce Figure 4-2 for an example of this construction.
We remark that Theorem 4.1 leads easily to a polynomial-time algorithm for finite implication of FI's and u-II's [44]. We will now use Theorem 4.1 to prove an analogue of Theorem 2.1, this time for finite implication of FD's and u-ID's. The notation is taken from Chapter 2.

Theorem 4.2: In each of the following two cases, (i),(ii),(iii) are equivalent:

FD Case:

i) $\Sigma \vDash_{\text {fin }} A_{1} \ldots A_{n} \rightarrow A$.
ii) $E_{\Sigma} \vDash_{\text {fin }} \vee_{\tau} \in \sigma^{+}\left(M_{\mathrm{f}}\right) \tau\left[\mathrm{x}_{1} / \mathrm{a}_{1} \mathrm{x}, \ldots, \mathrm{x}_{\mathrm{n}} / \mathrm{a}_{\mathrm{n}} \mathrm{x}\right]=\mathrm{ax}$.
iii) $\mathcal{E}_{\Sigma} \vDash_{\text {fin }} \vee_{\tau} \in \mathcal{T}^{+}\left(M_{\mathrm{f}}\right) \tau\left[\mathrm{x}_{1} / \alpha_{1}, \ldots, \mathrm{x}_{\mathrm{n}} / \alpha_{\mathrm{n}}\right]=\alpha$.
u -ID Case:
i) $\Sigma \vDash_{\text {fin }} B \subseteq A$.
ii) $\mathrm{E}_{\Sigma} \models_{\text {fin }} \vee_{\tau} \in \mathcal{T}^{+}\left(\mathrm{M}_{\mathrm{i}}\right) \mathrm{a} \tau=\mathrm{bx}$.
iii) $\mathbb{E}_{\Sigma} \vDash_{\text {fin }} \vee_{\tau} \in \mathcal{G}^{+}\left(M_{\mathrm{i}}\right) \tau[\mathrm{x} / \alpha]=\beta$.

Proof: The implications (iii) \Rightarrow (ii), (ii) \Rightarrow (i) can be proved by the same argument as in the Proof of Theorem 2.1. The reason is that the constructions we give map finite counterexamples to finite countcrexamples.
(i) \Rightarrow (iii): Suppose $\Sigma \vDash_{\text {fin }} \sigma$, where σ is an FD or $u-I D$. By Theorem 4.1, there is a proof of σ from Σ using the rules (*). Let z be the number of steps of such a proof. We show both the FD and the u-ID Cases by simultancous induction on z.

Basis: $z=0$. The conclusion is straightforward.

Induction Step: We distinguish six cases, depending on the last rule which was applied to prove $\boldsymbol{\sigma}$.

Rules 1,2 Straightforward.
Rule 3 This means the FD's $\Lambda_{1} \ldots \Lambda_{n} \rightarrow B_{k}, k=1, \ldots, m, B_{1} \ldots B_{m} \rightarrow \Lambda$ can be proved from Σ (in less than z steps); Rule 3 is then applied to derive $\Lambda_{1} \ldots A_{n} \rightarrow \Lambda$. By the induction hypothesis, $\mathcal{E}_{\mathrm{\Sigma}}$ finitely implics $V_{\tau_{k}} \in \mathcal{G}^{+}\left(M_{f}\right) \tau_{k}\left[x_{1} / a_{1} \mathrm{x}, \ldots, x_{n} / a_{n} \mathrm{x}\right]=b_{k} \mathrm{x}, \mathrm{k}=1, \ldots, \mathrm{~m}$, and also \mathcal{E}_{E} finitcly implics $V_{\tau} \in \mathcal{T}^{+}{ }_{\left(M_{f}\right)} \tau\left[x_{1} / b_{1} x_{1} \ldots, x_{m 1} / b_{m} x\right]=a x$. Thus, \mathscr{E}_{Σ} finitely implies
$V_{\tau, \tau_{1} \ldots, \tau_{m} \in \mathcal{T}^{+}\left(M_{\mathrm{f}}\right)} \tau\left[\mathrm{x}_{1} / \tau_{1}\left[\mathrm{x}_{1} / \mathrm{a}_{1} \mathrm{x}, \ldots, \mathrm{x}_{\mathrm{n}} / \mathrm{a}_{\mathrm{n}} \mathrm{x}\right], \ldots, \mathrm{x}_{\mathrm{m}} / \tau_{\mathrm{m}}\left[\mathrm{x}_{1} / \mathrm{a}_{1} \mathrm{x}, \ldots, \mathrm{x}_{\mathrm{n}} / \mathrm{a}_{\mathrm{n}} \mathrm{x}\right]\right]=\mathrm{ax}$, i.e.
$\mathcal{g}_{\mathrm{\Sigma}} \vDash_{\mathrm{fin}} \vee_{\tau} \in \mathcal{G}^{+}\left(\mathrm{M}_{\mathrm{f}}\right) \tau\left[\mathrm{x}_{1} / \mathrm{a}_{1} \mathrm{x}, \ldots, \mathrm{x}_{\mathrm{n}} / \mathrm{a}_{\mathrm{n}} \mathrm{x}\right]=\mathrm{ax}$.

Rulc 4 Straightforward.

Rule 5 Similar to Rule 3.

Rule 6 Now the dependencies $A_{0} \rightarrow A_{1}, A_{1} \supseteq A_{2}, \ldots, A_{m-1} \rightarrow A_{m}, A_{m} \supseteq \Lambda_{0}$ (m odd) can be proved from Σ (in less than z steps); then by a cycle rule we derive $\mathrm{A}_{1} \rightarrow \mathrm{~A}_{0}$.

Let \mathcal{A} be a finite model of \mathcal{E}_{Σ}. By the induction hypothesis \mathcal{A} satisfies $\rho_{0} \alpha_{0}=\boldsymbol{\alpha}_{1}, \boldsymbol{\tau}_{1} \alpha_{1}=\alpha_{2}, \ldots$, $\rho_{\mathrm{m}-1} \alpha_{\mathrm{m}-1}=\alpha_{\mathrm{m}}, \tau_{\mathrm{m}} \alpha_{\mathrm{m}}=\alpha_{0}$, where $\rho_{\mathrm{k}} \in \bigoplus^{+}\left(\mathrm{M}_{\mathrm{i}}\right), \tau_{\mathrm{k}} \in \mathscr{G}^{+}\left(\mathrm{M}_{\mathrm{i}}\right)$ (we write $\tau \alpha$ as a shorthand for $\tau[\mathrm{x} / \alpha]$). We will show that there is some ρ^{\prime} in $\mathscr{F}^{+}\left(M_{f}\right)$ such that \mathcal{A} satisfies $\rho^{\prime} \alpha_{1}=\alpha_{0}$.

Obscrve first that \mathcal{A} satisfies $\rho_{0} \tau_{\mathrm{m}} \rho_{\mathrm{m}-1} \ldots \tau_{3} \rho_{2} \tau_{1} \alpha_{1}=\alpha_{1}$ (concatenation denotes composition). By the commutativity conditions (5) of $\mathcal{E}_{\Sigma}, \rho_{0} \tau_{\mathrm{m}} \rho_{\mathrm{m}-1} \ldots \tau_{3} \rho_{2} \tau_{1}=\rho_{0} \rho_{\mathrm{m}-1} \ldots \rho_{2} \tau_{\mathrm{m}} \ldots \tau_{3} \tau_{1}$, so \mathcal{A} satisfies $\rho_{0} \rho_{\mathrm{m}-1 \ldots} \ldots \rho_{2} \tau_{\mathrm{m}} \ldots \tau_{3} \tau_{1} \alpha_{1}=\alpha_{1}$. Now put $\rho_{0} \rho_{\mathrm{m}-1 \ldots} \ldots \rho_{2}=\rho, \tau_{\mathrm{m} \cdot \ldots} \tau_{3} \tau_{1}=\tau, \tau_{\mathrm{m}} \ldots \tau_{3} \tau_{1} \alpha_{1}=\alpha$.
We now have $\tau \alpha_{1}=\alpha, \rho \alpha=\alpha_{1}$. We will argue from these two equations that there exists some ρ^{\prime} in $\mathcal{T}^{+}\left(\mathrm{M}_{\mathrm{f}}\right)$ such that \mathcal{A} satisfies $\rho^{\prime} \alpha_{1}=\alpha$. It will then follow, since $\rho_{\mathrm{m}-1} \ldots \rho_{2} \alpha=\alpha_{0}$, that \mathcal{A} satisfies $\rho_{\mathrm{m}-1 \cdots} \ldots \rho_{2} \rho^{\prime} \alpha_{1}=\alpha_{0}$.

Consider the set $K=\left\{\rho^{k} \alpha_{1}: k \geq 0\right\}$ (ρ^{k} is ρ composed with itself k times). Since \mathcal{A} is finite, K is finite, and therefore there exists a least integer q such that $\rho^{\mathrm{q}} \alpha_{1}=\rho^{\mathrm{s}} \alpha_{1}$, for some s greater than q. We will first argue that $\mathrm{q}=0$. Assume on the contrary that $\mathrm{q} \geq 1$. By commutativity, $\tau \rho^{\mathrm{q}} \alpha_{1}=\rho^{\mathrm{q}} \tau \alpha_{1}=\rho^{\mathrm{q}} \alpha=\rho^{\mathrm{q}-1} \rho \alpha=\rho^{\mathrm{q}-1} \alpha_{1}$, and similarly $\tau \rho^{\mathrm{s}} \alpha_{1}=\rho^{\mathrm{s}-1} \alpha_{1}$. But this means $\rho^{q-1} \alpha_{1}=\rho^{s-1} \alpha_{1}$, which contradicts the choice of q.

Since $q=0$, Λ satisfies $\alpha_{1}=\rho^{2} \alpha_{1}$, where so. But now $\alpha=r \alpha_{1}=r p^{h} \alpha_{1}=\rho^{h} r \alpha_{1}=\rho^{n-1} \rho \alpha=\rho^{q-1} \alpha_{1}$, i.e. \mathcal{l} satisfies $\rho^{n-1} \alpha_{1}=\alpha$. This concludes the preof.

If a cycle rule is applied to derive a u-ID, we argue in an enindy amiopous way. I

$A_{1} A_{2}$	A_{3}	A_{4}	B_{1}	B_{2}	B_{3}	C_{1}	C_{2}	D_{1}	D_{2}	
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	1		0	1	1	
1			0	1	2		1	2	0	0
2			2	0	3		2	3	2	\cdots
3		3	2	0	0	0	0	3		
4		4	3	0	0	0	0	4		
5		5	4	4		0	4	5		
6		6	5	5		3	0	6		
7		7	6	6	4	0	7			
8		8	7	7		5	5	0	0	
9		9	8	8		6	6	0	0	
10		10	9	9	7	7	0	0		
11		11	10	10		8	8	0	0	

r

Figure 4-1: Construction of a finite counterexample relation

A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}
0	0	0	0	0	0
1	0	0	0	0	0
2	1	0	0	0	0
3	2	1	0	0	0
4	3	2	1	0	0
5	4	3	2	1	0
6	x	4	\times	2	x

$$
r \neq A_{1} \supseteq A_{6}
$$

Figure 4-2: Relation that violates a u ID

Chapter Five

Partition Dependencies

5.1 Preliminaries

Iet D be a database scheme containing a single relation scheme $\mathrm{R}[\mathfrak{U}], \mathcal{U}=\left\{\Lambda_{1}, \ldots, \mathrm{~A}_{u}\right\}$. We can express database constraints as formulas of first-order predicate calculus with equality [32]. These formulas have a single relation symbol R of arity u which represents the relation R, and no function (or constant) symbols.

Specifically, let us call atomic formulas of the form $\mathrm{Rx}_{1} \ldots \mathrm{x}_{\mathrm{u}}$ relational formulas and atomic formulas $\mathrm{x}=\mathrm{y}$ equalities. A formula is typed iff there are disjoint classes (types) of variables such that 1. if $R x_{1} \ldots x_{u}$ appears in the formula, then x_{k} is of type $k, k=1, \ldots, u$, and 2. if $x=y$ appears in the formula, then x, y have the same type.

Definition 5.1: An embedded implicational dependency (EID [34]) is a typed sentence of the form

$$
\forall \mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{p}} \cdot\left[\left(\varphi_{1} \wedge \ldots \wedge \varphi_{\mathrm{n}}\right) \Rightarrow \exists \mathrm{y}_{1} \ldots \mathrm{y}_{\mathrm{q}} \cdot\left(\psi_{1} \wedge \ldots \wedge \psi_{\mathrm{m}}\right)\right]
$$

where each φ_{k} is a relational formula, each ψ_{k} is either a relational formula or an equality between two of the x_{k} 's, and each of the x_{k} 's appears in one of the φ_{k} 's.

Example 5.1:

(a) Let $\mathcal{U}=\left\{\Lambda_{1}, \Lambda_{2}, \mathrm{~A}, \mathrm{~B}\right\}$. The FD $\mathrm{A}_{1} \mathrm{~A}_{2} \rightarrow \mathrm{~A}$ can be expressed as the EID

$$
\forall x_{1} x_{2} x y x y^{\prime} \cdot\left[\left(R x_{1} x_{2} x y \wedge R x_{1} x_{2} x^{\prime} y\right) \Rightarrow x=x\right] .
$$

(b) Let $\mathcal{U}=\{\Lambda, B, C\}$. The MVD $A \rightarrow \rightarrow B[62,51]$ is equivalent to the EID
$\forall z x y x^{\prime} y^{\prime} .\left[\left(R z x y \wedge R z x^{\prime} y^{\prime}\right) \Rightarrow R z x y\right]$.
Now let r be a relation over a finite universe of attributes \mathcal{U}, and let σ be an EID. As one can easily observe, to decide whether $r=\sigma$ we do not need to know the particular values appearing in r, but only the equalities between these values. As a matter of fact, all that is relevant about two tuples t, s of r is the set of attributes on which they agree. We can capture this information formally by
considering, for each attribute \wedge in ϑ, the partition π_{A} which is induced on the set of tuples of r by the values of r in column Λ : two tuples t. s of r are in the same block of π_{A} iff they agree on Λ. The set $\left\{\pi_{\Lambda} \mid \Lambda \in थ\right\}$ characterizes the EII)'s satisfied by $г$.

Although the above observation does not seem to take us very far regarding general EID's, it does lead to an elegant algebraic formulation of FD's $[15,60,27]$. Recall that partitions have a natural partial order \leq, and two natural binary operations $\bullet,+$: Given partitions π, π of a set S,
$\pi \leq \pi^{\prime}$ iff for every block x of π there is a block x^{\prime} of π^{\prime} such that $x \subseteq x^{\prime}$.

$$
\pi^{\bullet} \pi^{\cdot}=\left\{x \mid x=y \cap z \neq \varnothing, y \in \pi, z \in_{\pi^{*}}\right\}
$$

$\pi+\pi^{\prime}=\left\{x \mid \mathrm{a}, \mathrm{b} \in \mathrm{S}\right.$ are in x iff there is a sequence $x_{0}, \ldots, x_{\mathrm{n}}$ such that $x_{\mathrm{i}} \in \pi \cup \pi^{\prime}$ for $\mathrm{i}=0, \ldots, \mathrm{n}, \mathrm{a} \in x_{0}, \mathrm{~b} \in x_{\mathrm{n}}$, and $x_{\mathrm{i}} \cap x_{\mathrm{i}+1} \neq \varnothing$ for $\left.\mathrm{i}=0, \ldots, \mathrm{n}-1\right\}$

Notice that $\pi^{*} \pi^{\prime}$ is the coarsest common refinement of π, π^{\prime} (in the sense of \leq) and $\pi+\pi \pi^{*}$ is their finest common generalization. Also $\bullet,+$ are associative, commutative and idempotent (cf. Section 5.3).

With the above remarks, it is easy to see that an $F D$ such as $A B \rightarrow C D$ holds in relation r iff

$$
\pi_{\mathrm{A}} \pi_{\mathrm{B}} \leq \pi_{\mathrm{C}}{ }^{\bullet} \pi_{\mathrm{D}}
$$

or, equivalently,

$$
\pi_{\mathrm{A}}^{\bullet} \pi_{\mathrm{B}}=\pi_{\mathrm{A}}^{\bullet} \pi_{\mathrm{B}}^{\bullet} \pi_{\mathrm{C}}^{\bullet} \pi_{\mathrm{D}}
$$

or, still,

$$
\pi_{\mathrm{C}} \cdot \pi_{\mathrm{D}}=\pi_{\mathrm{A}} \cdot \pi_{\mathrm{B}}+\pi_{\mathrm{C}}^{\bullet} \pi_{\mathrm{D}}
$$

Thus, FD's can be expressed equationally using product and sum of partitions. It is then natural to investigate the expressive power of general cquations one can write using $\bullet,+$.

Definition 5.2:

a. The set of partition expressions over $\mathcal{U}, W(\mathcal{Q})$, is the least set satisfying the following closure conditions:

1. $\Lambda \in W(\mathcal{U})$, for A in \mathcal{U}.
2. If $c, c^{\circ} \in W(\cup)$, then $\left(c^{\bullet} c^{\prime}\right)$, $\left(c+e^{\bullet}\right)$ are in $W(थ)$.
($\cdot,+$ are meant here as uninterpreted operator symbols)
b. A partition dependency (PD) is an cquation $\mathrm{c}=\mathrm{e}^{\prime}$, where $\mathrm{e}, \mathrm{c}^{\circ} \in \mathrm{W}(\stackrel{(}{ })$.

The above definition gives the syntax of PI's. The semantics of PI)'s are given below:

Definition 5.3:

a. Let r be a relation over \mathfrak{U}, S the set of tuples of r. For Λ in \mathcal{U},
$\pi_{\Lambda}=\{x \mid \mathrm{t}, \mathrm{s} \in \mathrm{S}$ are in x iff $\mathrm{t}[\Lambda]=\mathrm{s}[\Lambda]\}$.
Then L (r) is the set obtained by closing $\left\{\pi_{\Lambda} \mid \Lambda \in \mathscr{Q}\right\}$ under product and sum of partitions.
b. Let $\mathrm{c} \in \mathrm{W}(\mathrm{Q})$. The meaning of c in $\mathrm{I}(\mathrm{r}), \mu_{\mathrm{r}}(\mathrm{c})$, is defined inductively as follows:

1. $\mu_{\mathrm{r}}(\mathrm{A})=\pi_{\mathrm{A}}, \Lambda$ in 9 l .
2. $\mu_{\mathrm{r}}\left(\mathrm{c} \cdot \mathrm{c}^{\prime}\right)=\mu_{\mathrm{r}}(\mathrm{c}) \cdot \mu_{\mathrm{r}}\left(\mathrm{c}^{\prime}\right)$,

$$
\mu_{\mathrm{r}}\left(\mathrm{c}+\mathrm{c}^{\prime}\right)=\mu_{\mathrm{r}}(\mathrm{c})+\mu_{\mathrm{r}}\left(\mathrm{e}^{\prime}\right)
$$

Relation r satisfies a PD $c=e^{\prime}\left(\right.$ notation: $\left.r \equiv e=e^{\prime}\right)$ iff $\mu_{r}(\mathrm{e})=\mu_{\mathrm{r}}\left(\mathrm{e}^{\prime}\right)$.

Observe that $I(\mathrm{r})$ is actually a lattice [28], generated by the set $\left\{\pi_{\mathrm{A}} \mid \mathrm{A} \in \mathcal{U}\right\}$. As a matter of fact, $r \equiv c=c^{*}$ iff $L(r)$ satisfies the equation $c=c^{*}$ (with A interpreted as $\pi_{A}, A \in \mathcal{U}$).

From Definition 5.3, we see that we can use the formalism of PD's to express an $F D \Lambda B \rightarrow C D$ as the $\operatorname{PD} \Lambda \cdot B=\Lambda \cdot B \cdot C \cdot D$. Clearly $r=A B \rightarrow C D$ iff $r=A \cdot B=\Lambda \cdot B \cdot C \cdot D$ (here and in the sequel we omit parentheses from PD's wherever possible, for the sake of clarity). Partition dependencies of the above form, which are equivalent to FD's, are of special interest; we call them FPD's.

In the remainder of this Chapter, we investigate various questions concerning PD's. Section 5.2 deals with the expressive power of PD's, and compares PD's to EID's from this point of view. In Section 5.3 we give a polynomial-time algorithm for the implication problem for PD's. Finally, in Section 5.4 we present a polynomial-time test for consistency of a database with a set of PD's.

5.2 Expressive Power

We want to study what properties of a relation r can by expressed using sets of PD's. From the definitions of $\bullet,+$ and Definition 5.3 it it easy to sec the following:

1. $\mathrm{r}=\mathrm{C}=\mathrm{A} \cdot \mathrm{B}$ iff for any tuples $\mathrm{t}, \mathrm{s} \in \mathrm{r}$,

$$
\mathrm{t}[\mathrm{C}]=\mathrm{s}[\mathrm{C}] \text { iff } \mathrm{t}[\mathrm{~A}]=\mathrm{s}[\mathrm{~A}] \text { and } \mathrm{t}[\mathrm{~B}]=\mathrm{s}[\mathrm{~B}] .
$$

2. $\mathrm{r} \vDash \mathrm{C}=\mathrm{A}+\mathrm{B}$ iff for any tuples $\mathrm{t}, \mathrm{s} \in \mathrm{r}$,
$\mathrm{t}[\mathrm{C}]=\mathrm{s}[\mathrm{C}]$ iff there is a sequence $\mathrm{s}_{0}, \ldots, \mathrm{~s}_{\mathrm{n}}$ of tuples of r with $\mathrm{t}=\mathrm{s}_{0}, \mathrm{~s}_{\mathrm{n}}=\mathrm{s}$, and for $\mathrm{i}=0, \ldots, \mathrm{n}-1, \mathrm{~s}_{\mathrm{i}}[\Lambda]=\mathrm{s}_{\mathrm{i}+1}[\Lambda]$ or $\mathrm{s}_{\mathrm{i}}[\mathrm{B}]=\mathrm{s}_{\mathrm{i}+1}[B]$.

From observation (2) above, one sees that symmetric transitive closure can be expressed by a PD, as follows:

Example 5.2: Consider a relation r representing an undirected graph. This relation has three attributes: HEAD, TAIL and COMPONENT. For every edge $\{a, b\}$ in the graph we have in the relation tuples $a b c, b a c, a a c, b b c$, where c is a number which could vary with $\{a, b\}$. These are the only tuples in r . We would like to express that: for cach tuple t of $\mathrm{r}, \mathrm{t}[\mathrm{COMPONENT}]$ is the connected component in which the are (t[HEAD], [[TALI]) belongs. We can do this by insisting that r satisfics the PD COMPONENT $=$ IIEAD + TAIL.

We now want to compare the expressive power of PD's to that of previously studied database constraints, namely EID's [34]. Let us say that an EID σ is expressed by a set E of PID's iff for any relation r, $r=\sigma$ iff $r=E$. From the algebraic propertics of \bullet, the $P D C=A \cdot B$ is cquivalent to $C=C \cdot A \cdot B \wedge A \cdot B=C \cdot A \cdot B$, and therefore it is expressed by the set $\{C \rightarrow A B, A B \rightarrow C\}$. However, because of Example 5.2 above it should come as no surprise [4] that the $\mathrm{PD} \mathrm{C}=\mathrm{A}+\mathrm{B}$ cannot be expressed by any set of EID's:

Theorem 5.1: Let $\mathcal{U}=\mathrm{ABC}$; the $\mathrm{PD} \mathrm{C}=\mathrm{A}+\mathrm{B}$ cannot be expressed by any set of first-order sentences.

Proof: Let Σ be a set of first-order sentences (with a single ternary relation symbol R as the only non-logical symbol) which expresses $C=A+B$. For $k \geq 1$, let φ_{k} be the following first-order formula, with free variables t, s :
$" t[C]=s[C]$ and there is no sequence s_{0}, \ldots, s_{k} such that $t=s_{0}, s_{k}=s$, and for $i=0, \ldots, k-1$, $s_{i}[A]=s_{i+1}[A]$ or $s_{i}[B]=s_{i+1}[B]^{\prime \prime}$
(it is easy to see how to write φ_{k} without tuple variables). Observe that the relation r in Figure 5-1 (with ths as indicated) is a model for $\Sigma \cup\left\{\varphi_{\mathrm{k}}\right\}: \mathrm{r} \vDash \mathrm{C}=\mathrm{A}+\mathrm{B}$ so $\mathrm{r} \vDash \Sigma$, and clearly $\mathrm{r} \vDash \varphi_{\mathrm{k}}$. Thus, any finite subsct of $\Sigma^{\prime}=\Sigma \bigcup\left\{\varphi_{k}: k \geq 1\right\}$ has a model, and thus by the Compactness Theorem [32] Σ^{\prime} has a model, say r°. But this is a contradiction, since r° satisfics Σ and thus r^{\prime} satisfics $C=A+B$, and on the other hand $\mathrm{r}^{\prime}=\varphi_{\mathrm{k}}$ for all $\mathrm{k} \geq 1$ and therefore it docs not satisfy $\mathrm{C}=\mathrm{A}+\mathrm{B}$.

On the other hand, an EII) as simple as an MVI cannot be expressed by PI's:
Theorem 5.2: Let $q=A B C$; the MVI $\Lambda \rightarrow \rightarrow B$ cannot by expressed by any set of PD's.
Proof: Iet E be a set of PD's which expresses $\Lambda \rightarrow \rightarrow B$ (sec Example 5.1 for the meaning of this MVD). Referring to Figure $5-2$, relation r_{1} satisfies $A \rightarrow \rightarrow B$, so $L\left(r_{1}\right) \models E$. On the other hand, relation r_{2} docs not satisfy $A \rightarrow \rightarrow$, so $L\left(r_{2}\right)$ does not satisfy E. But this is a contradiction, because $\mathrm{L}\left(\mathrm{r}_{1}\right), \mathrm{L}\left(\mathrm{r}_{2}\right)$ are isomorphic, and thus they satisfy exactly the same PD's.

5.3 The Implication Problem

Given a finite set E of PI)'s and a PI) δ, we want to know if $\mathrm{E} \vDash \delta$, i.c. if δ holds in every relation that satisfies E . We also want to know if $\mathrm{E} \mathrm{E}_{\mathrm{fin}} \delta$, i.c. if δ holds in every finite relation that satisfies E. We first observe that these questions can be approached as implication problems for lattices.

Lemma 5.1:

a. $\mathrm{E} \models \delta$ iff $\mathrm{E} \models_{\text {lat }} \delta$, i.e. iff δ holds in every lattice that satisfies E .
b. $\mathrm{E} \models_{\text {fin }} \delta$ iff $\mathrm{E} \models_{\text {lat,fin }} \delta$, i.c. iff δ holds in every finite lattice that satisfies E .

Proof:
a. (\curvearrowleft) : Suppose $E \neq{ }_{\text {lat }} \delta$, and let r be a relation that satisfies E. Then $L(r) \models E$, so δ holds in $L(r)$, and thus r satisfies $\boldsymbol{\delta}$.
(\Rightarrow) : Suppose $\mathrm{E} \vDash \delta$, and let L be a lattice satisfying E. By the Representation Theorem for lattices, [28, 66], we may take the elements of L to be partitions of some set X. Thus, each A in \mathcal{U} is interpreted in L as a partition π_{A} of X (and, of course, $\cdot,+$ in L are partition product and sum respectively). Now consider a relation r over U containing a tuple t_{i} for each element i of X (these are the only tuples in r), where $\mathrm{t}_{\mathrm{i}}[\mathrm{A}]=\mathrm{t}_{\mathrm{j}}[\mathrm{A}]$ iff i, j are in the same block of π_{Λ}, A in Q. Clearly r satisfies exactly the same PD's as L. Thus $r=E$, so by the hypothesis $i=\delta$, and therefore $L \models \delta$.
b. (\models) : Obscrve, in the proof of the "if" direction of (a), that if r is finite then $\mathrm{L}(\mathrm{r})$ is also finite.
(\Rightarrow) : Observe, in the proof of the "only if" direction of (a), that if L is finite then the set X can be taken to be finite, by the Representation Theorem for finite lattices [56]. Then the relation r is also finite. $\sqrt{1}$

Now $\mathrm{E}={ }_{\text {lat }} \delta$ can be vicwed as a (uniform) word problem, since a set with two binary operations $\bullet,+$ is a lattice iff the following set of axioms ($\mathrm{L} \Lambda$) is satisfied [28]:

1. $x+x=x, x \cdot x=x$ (idempotency)
2. $x+y=y+x, x \cdot y=y \bullet x$ (commutativity)
3. $x+(y+z)=(x+y)+z, x \cdot(y \cdot z)=(x \cdot y) \cdot z$ (associativity $)$
4. $x+(x \cdot y)=x, x \cdot(x+y)=x$ (absorption)
I.c., $\mathrm{E} \models_{\text {lat }} \delta$ iff δ is implied from $\mathrm{E} \cup \mathrm{L} \Lambda$. We are going to show that $\vDash_{\text {lat. in }}$ is equivalent to $\vDash_{\text {lat }}$, so $\vDash_{\text {lat,fin }}$ can also be viewed as a word problem.

In particular, let $\delta_{\boldsymbol{\sigma}}$ be the FPD corresponding to an $\mathrm{FD} \boldsymbol{\sigma}\left(\delta_{\boldsymbol{\sigma}}\right.$ is $\mathrm{A}=\Lambda \cdot \mathrm{B}$ if $\boldsymbol{\sigma}$ is $\left.\Lambda \rightarrow \mathrm{B}\right)$, and let E_{Σ} be the set of FPD's corresponding to a set of FD's Σ. Since $\mathfrak{r} \vDash \sigma$ iff $r=\delta_{\sigma}, \Sigma \vDash \sigma$ iff $\mathrm{E}_{\Sigma} \vDash \boldsymbol{\delta}_{\boldsymbol{\sigma}}$. Thus, the implication problem for FD's can be reduced, in a straightforward way, to the (uniform) word problem for idempotent commutative semigroups (structures with a single associative, commutative and idempotent operator). On the other hand, since $\mathrm{X}=\mathrm{Y}$ is equivalent to $\mathrm{X}=\mathrm{X} \cdot \mathrm{Y} \wedge$ $\mathrm{Y}=\mathrm{Y} \cdot \mathrm{X}$, we can also reduce the above word problem to the implication problem for FD's.

We now present a polynomial-time algorithm for the (finite) implication problem for PD's. Suppose we are given a set E of PD's, and a PD $\mathrm{c}=\mathrm{c}^{\circ}$: by Lemma 5.1, it suffices to test if $\mathrm{E}==_{\mathrm{lat}} \mathrm{e}=\mathrm{e}^{\circ}$ $\left(\mathrm{E} \models_{\text {lat }, \text { fin }} \mathrm{e}=\mathrm{e}^{*}\right)$.

Consider the set $\mathrm{W}(\mathcal{Q})$ of partition expressions over $\mathcal{Q}, \bullet,+:$ we define several binary relations on $\mathrm{W}(\mathrm{U})$. First, define $\leq_{\text {id }}$ (identically less-than-or-equal) inductively as follows:

1. $\Lambda \leq_{i d} \mathrm{~A}, \mathrm{~A}$ in q .
2. if $\mathrm{p} \leq_{i d} \mathrm{r}, \mathrm{q} \leq_{\mathrm{id}} \mathrm{r}$ then $\mathrm{p}+\mathrm{q} \leq_{i d} \mathrm{r}$.
3. if $\mathrm{p} \leq_{i d} \mathrm{r}$ or $\mathrm{q} \leq_{\text {id }} \mathrm{r}$ then $\mathrm{p} \cdot \mathrm{q} \leq_{\mathrm{id}} \mathrm{r}$.
4. if $r \leq_{i d} p, r \leq{ }_{i d} q$ then $r \leq i d p \cdot q$.
5. if $r \leq_{i d} p$ or $r \leq_{i d} q$ then $r \leq_{i d} p+q$.
(The intended meaning of $\leq_{i d}$ is that $p \leq_{i d} q$ iff every lattice satisfics $p \leq q$, no matter how the A's in ϑ are interpreted).

The relation $\leq_{i d}$ is reflexive and transitive [28,65]. Nlso, if $p_{1} \leq{ }_{i d} q_{1}, p_{2} \leq{ }_{i d} q_{2}$, then $p_{1}+p_{2} \leq_{i d} q_{1}+q_{2}$ and $p_{1} \cdot p_{2} \leq_{i d} q_{1} \cdot q_{2}$.

Now define $={ }_{i d}$ as follows: $\mathrm{p}={ }_{i d} q$ iff both $\mathrm{p} \leq{ }_{i d} q$ and $q \leq{ }_{i d} \mathrm{p}$.
The relation ${ }_{i d}$ is an equivalence relation, and in particular it is a congruence: i.c., if $p_{1}={ }_{i d} q_{1}$, $\mathrm{p}_{2}={ }_{i d} \mathrm{q}_{2}$, then $\mathrm{p}_{1}+\mathrm{p}_{2}={ }_{i d} \mathrm{q}_{1}+\mathrm{q}_{2}$ and $\mathrm{p}_{1} \cdot \mathrm{p}_{2}={ }_{i d} q_{1} \cdot \mathrm{q}_{2}$. Thus, one can define $\cdot,+$ on the set of equivalence classes of $=_{\text {id }}$. The structure obtained this way is a lattice $[28,65]$.

We now capture the effect of E . Define the following relation $\rightarrow \rightarrow_{\mathrm{E}}$ on $\mathrm{W}(\mathcal{Q}): \mathrm{p} \rightarrow \rightarrow_{1} \mathrm{q}$ iff q can be obtained from p as follows: for $i=0, \ldots, n$, substitute w_{i} for some (zero or morc) occurences of z_{i}, where $z_{i}=w_{i}\left(w_{i}=z_{i}\right)$ is in E. It is easily verificd that $\rightarrow \rightarrow_{\mathrm{E}}$ is a congruence.

Now define \leq_{E} as the sum of $\leq_{\mathrm{id}}, \rightarrow_{\mathrm{E}}$: $\mathrm{p} \leq_{\mathrm{E}} \mathrm{q}$ iff there is a sequence of expressions $\mathrm{s}_{0} \ldots, \mathrm{~s}_{\mathrm{n}}$ such that $\mathrm{p}=\mathrm{s}_{0}, \mathrm{~s}_{\mathrm{n}}=\mathrm{q}$, and for $\mathrm{i}=0, \ldots, \mathrm{n}-1, \mathrm{~s}_{\mathrm{i}} \leq_{\mathrm{id}} \mathrm{s}_{\mathrm{i}+1}$ or $\mathrm{s}_{\mathrm{i}} \rightarrow \rightarrow \mathrm{E}_{\mathrm{i}+1}$.

It is easy to see that \leq_{E} is reflexive and transitive. Also if $p_{1} \leq_{E} q_{1}, p_{2} \leq_{E} q_{2}$, then $p_{1}+p_{2} \leq_{E} q_{1}+q_{2}$ and $p_{1} \cdot p_{2} \leq_{E} q_{1} \cdot q_{2}$ (because both $\leq_{\text {id }}$ and $\rightarrow \rightarrow E$ have this property [36]).

Finally, define $={ }_{E}$ as follows: $p={ }_{E} q$ iff both $p \leq_{E} q$ and $q \leq_{E} p$.
The relation $=_{\mathrm{E}}$ is an equivalence relation, and moreover it is a congruence. One can further observe that the equivalence classes of $=_{E}$ form a lattice L_{E} under the induced $\bullet,+$: just check the axioms LA, e.g. $p+p={ }_{E} p$ because $p+p={ }_{i d} p$, and in general if $p={ }_{i d} q$ then $p={ }_{E} q$. Note that L_{E} satisfies a PD $p=q$ iff $p={ }_{E} q$ ($A \in \mathcal{U}$ is interpreted in L_{E} as the equivalence class of A).

We now show that the relation $={ }_{\mathrm{E}}$ captures the PD's (finitely) implied by E:
Lemma 5.2: The following statements are equivalent:
a. $\mathrm{e}=\mathrm{E}^{\mathrm{e}}$
b. $E \models_{\text {lat }} \mathrm{e}=\mathrm{e}^{-}$
c. $\mathrm{E}==_{\mathrm{lat}, \mathrm{fin}}^{\mathrm{e}}=\mathrm{e}^{\prime}$

Proof: Observe that, from the way $\leq_{i d}$ and \leq_{E} were defined, if $\mathrm{c} \leq_{\mathrm{E}} \mathrm{e}^{\prime}$ then $\mathrm{e} \leq \mathrm{e}^{\prime}$ in every lattice satisfying E (where \leq is the partial order of the lattice). Thus, $(\mathrm{a}) \Rightarrow(\mathrm{b})$. To prove $(\mathrm{b}) \Rightarrow(\mathrm{a})$, recall that L_{E} satisfics a PD $p=q$ iff $p={ }_{E} q$. Thus, if $c \neq E_{E} e^{\prime}$ then L_{E} docs not satisfy $\mathrm{e}=\mathrm{e}^{\prime}$, whereas it satisfics E ; i.e., L_{E} is a counterexample to $\mathrm{E}={ }_{1 a \mathrm{t}} \mathrm{e}=\mathrm{e}^{\prime}$.

We now show the cquivalence of (b),(c). The direction (b) \Rightarrow (c) is obvious. To prove the converse, we adapt an argument of [30] (see also [28]), originally given for the special case $\mathrm{E}=\varnothing$.

Suppose E docs not imply $\mathrm{c}=\mathrm{c}^{\prime}$; we will show that there is a finite lattice which satisfics E but violates $\mathrm{c}=\mathrm{c}^{\circ}$. Let $\left\{\Lambda_{\mathrm{i}} \mid \mathrm{i}=1, \ldots, \mathrm{n}\right\}$ be the set of attributes appearing in $\mathrm{E}, \mathrm{c}, \mathrm{c}^{\prime}$, and let V be the set of all partition expressions (over the Λ_{i} 's) of complexity at most as high as the maximum complexity of e, e ${ }^{\text {e }}$ and the expressions in E (complexity can be measured by the number of instances of $\bullet,+$). Note that V is finite, since E is finite.

Consider now the subset L of I_{E} consisting of all finite products of the equivalence classes (under $={ }_{1}$) of elements of V, together with the equivalence class of $\Lambda_{1}+\ldots+\Lambda_{n}$. It is not hard to verify that L is a sublattice of L_{E}. But by the equivalence of $(\mathrm{a}),(\mathrm{b}) \mathrm{e} \not{ }_{\mathrm{E}^{2}} \mathrm{c}^{\prime}$, so L satisfies E and violates $\mathrm{e}=\mathrm{e}^{\prime}$. Since I . is also obviously finite, we are done.

We can now prove our main result:
Theorem 5.3: There is a polynomial-time algorithm for the (finite) implication problem for PD's.
Proof: By Lemmas 5.1, 5.2, it is sufficient to describe a polynomial-time algorithm to test, given $\mathrm{E}, \mathrm{e}, \mathrm{e}$, whether $\mathrm{e} \leq_{\mathrm{E}^{\mathrm{e}}}{ }^{\text {. }}$.

Let V be the set of all subexpressions of $\mathrm{c}, \mathrm{e}^{\prime}$, and of the expressions appearing in E . The following algorithm constructs a set Γ of directed arcs over V such that, whenever $(p, q) \in \Gamma, p \leq{ }_{i d} q$ or $p \rightarrow \rightarrow{ }_{E} q$:

```
    begin
    \Gamma\leftarrow-\varnothing
    repeat until no new arcs are added
    1. Add (A,A), A\inU
    2. if (p,r)\in\Gamma,(q,r)\in\Gamma, p+q\inV
    then add ( }\textrm{p}+\textrm{q},\textrm{r}
    3. if (p,r)\in\Gamma or (q,r)\in\Gamma, p\bulletq\inV
    then add (p\bulletq,r)
    4. if (r,p)\in\Gamma,(r,q)\in\Gamma,p\bulletq\inV
    then add (r,p\bulletq)
    5. if (r,p)\in\Gamma or (r,q)\inГ, p+q\inV
    then add (r,p+q)
    6. Add (z,w),(w,z), where z z w in E
    7. if (p,r)\in\Gamma, (r,q)\in\Gamma
    then add (p,q)
end
end
```

Obscrve that Steps 1-5 in the above algorithm mirror the definition of $\leq_{i d}$.
We will now prove the following
Claim: For $\mathrm{p}, \mathrm{q} \in \mathrm{V}, \mathrm{p} \leq_{\mathrm{E}} \mathrm{q}$ iff $(\mathrm{p}, \mathrm{q}) \in \Gamma$.
 check if it has an arc from e to e . This can be done in polynomial time.

Proof of Claim:

(\curvearrowleft) : Straightforward.
(\Rightarrow) : We first give a set of rewrite rules $[41]$ for \leq_{E} :

1. $\mathrm{x}+\mathrm{x} \rightarrow \rightarrow \mathrm{x}$
2. $x \cdot y \rightarrow \rightarrow x$
3. $y \cdot x \rightarrow \rightarrow x$
4. $x \rightarrow \rightarrow x \cdot x$
5. $x \rightarrow \rightarrow x+y$
6. $x \rightarrow \rightarrow y+x$
7. $z \rightarrow \rightarrow$, where $z=w(w=z)$ is in E

Observe, regarding Rules 5,6 , that y can be an arbitrary expression.
An easy induction shows that, if $\mathrm{p} \leq_{i d} q$, then p can be rewritten as q using Rules 1-6. By the definition of \leq_{E}, if $p \leq_{E} q$ then there is a sequence of expressions s_{0}, \ldots, s_{n} such that $p=s_{0}, s_{n}=q$, and for $\mathrm{i}=0, \ldots, n-1, \mathrm{~s}_{\mathrm{i}} \rightarrow \rightarrow \mathrm{s}_{\mathrm{i}+1}$, i.e. $\mathrm{s}_{\mathrm{i}+1}$ is obtained from s_{i} by rewriting a subexpression of s_{i} according to one of the Rules 1-7. We call such a sequence a proof that $\mathrm{p} \leq_{\mathrm{E}} \mathrm{q}$.

Now we define a relation \prec on pairs of expressions:
$\left(p_{1}, q_{1}\right)<\left(p_{2}, q_{2}\right)$ iff $p_{1} \leq_{E} q_{1}, p_{2} \leq_{E} q_{2}$, and either
(i) the shortest proof that $\mathrm{p}_{1} \leq_{E} \mathrm{q}_{1}$ is shorter than the shortest proof that $\mathrm{p}_{2} \leq_{\mathrm{E}} \mathrm{q}_{2}$, or
(ii) the shortest proofs that $\mathrm{p}_{1} \leq_{\mathrm{I}} \mathrm{q}_{1}, \mathrm{p}_{2} \leq_{\mathrm{E}} \mathrm{q}_{2}$ have the same length, and p_{1} is a proper subexpression of p_{2}, q_{1} is a proper subexpression of q_{2}.

Clearly \prec is well-founded. We proceed by induction on \prec.
Basis: There is a proof that $\mathrm{p} \leq_{\mathrm{E}} \mathrm{q}$ of length 0 . Then p is identical to q , and $(\mathrm{p}, \mathrm{q}) \in \Gamma$.
Induction Step: Let $\mathrm{p}, \mathrm{q} \in \mathrm{V}$, and assume that the Claim holds for $\mathrm{p}^{*}, \mathrm{q}^{\circ} \in \mathrm{V}$ whenever $\left(\mathrm{p}^{\circ}, \mathrm{q}^{*}\right) \prec(\mathrm{p}, \mathrm{q})$. We will show that the Claim holds for (p, q). Let $\mathrm{s}_{0}, \ldots, \mathrm{~s}_{\mathrm{n}}, \mathrm{n}>0$, be a shortest proof that $\mathrm{p} \leq_{\mathrm{E}} \mathrm{q}$.

Case 1: For $\mathrm{i}=0, \ldots, \mathrm{n}-1, \mathrm{~s}_{\mathrm{i}+1}$ is obtained from s_{i} by rewriting a proper subexpression of s_{i} according to Rules 1-7. Then $\mathrm{p}=\mathrm{p}_{1} \theta \mathrm{p}_{2}, \mathrm{q}=\mathrm{q}_{1} \theta \mathrm{q}_{2}(\theta \in\{\cdot,+\})$, where $\mathrm{p}_{\mathrm{i}} \leq_{1} \mathrm{q}_{\mathrm{i}}$ via proofs at most as long as the proof that $p \leq_{1: q}$, and $p_{i}\left(q_{i}\right)$ is a proper subexpression of $p(q)$. Thus $\left(p_{i}, q_{i}\right)<(p, q)$, and furthermore $\mathrm{p}_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}} \in \mathrm{V}$, so by the induction hypothesis $\left(\mathrm{p}_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}\right) \in \Gamma$. It then casily follows that $(\mathrm{p}, \mathrm{q}) \in \Gamma$.

Case 2: For some $\mathrm{i}, 0 \leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{~s}_{\mathrm{i}}$ is rewritten into $\mathrm{s}_{\mathrm{i}+1}$ according to one of the Rules 1-7.
Case 2a: For some i as above, the Rule used is Rule 7. This means p is rewritten to $\mathrm{z}, \mathrm{z}=\mathrm{w}(\mathrm{w}=\mathrm{z})$ is in E , and w is rewritten to q . Then clearly $(\mathrm{p}, \mathrm{z}) \prec(\mathrm{p}, \mathrm{q})$, and since $z \in \mathrm{~V}$, by the induction hypothesis $(p, z) \in \Gamma$. Similarly $(w, q) \in \Gamma$. It follows that $(p, q) \in \Gamma$.

Case 2b: For any i as above, the Rule used is one of the Rules 1-6. We consider the least such i , and we distinguish cases according to which Rule was used to rewrite s_{i} to s_{i+1}.

Rule 1 This means $p=p_{1}+p_{2}$, p_{1} rewrites to r, p_{2} rewrites to r, and r rewrites to q. Then $p_{i} \leq_{E} q$ via proofs shorter than the proof that $\mathrm{p} \leq_{\mathrm{E}} \mathrm{q}$, so $\left(\mathrm{p}_{\mathrm{i}}, \mathrm{q}\right)<(\mathrm{p}, \mathrm{q})$. Also $\mathrm{p}_{i} \in \mathrm{~V}$, so by the induction hypothesis $\left(p_{i}, q\right) \in \Gamma$. It follows that $(p, q) \in \Gamma$.

Rule 2 This means $p=p_{1} \cdot p_{2}, p_{1}$ rewrites to r, r rewrites to q. Then $p_{1} \leq_{E q} q$ via a proof shorter than the proof that $\mathrm{p} \leq_{E} \mathrm{q}$, so $\left(\mathrm{p}_{1}, \mathrm{q}\right) \prec(\mathrm{p}, \mathrm{q})$. Also $\mathrm{p}_{1} \in \mathrm{~V}$, so by the induction hypothesis $\left(\mathrm{p}_{1}, \mathrm{q}\right) \in \Gamma$. It follows that $(\mathrm{p}, \mathrm{q}) \in \Gamma$.

Rule 3 Similar to Rule 2.

Rule 4 Now p rewrites to r, and Rule 4 rewrites r to $r \cdot r$. Observe that the expression $r \cdot r$ will not be rewritten subsequently using Rules 2,3 , because in that case we could shorten the proof that $p \leq_{E} q$ (however, either subexpression of $\mathrm{r} \cdot \mathrm{r}$ may be rewritten). Moreover, if at some later point Rule 5 is applied to rewrite the whole expression s_{i} as $s_{i}+y$, then $s_{i}+y$ will not be rewritten subsequently using Rule 1 . Thus, the expression q eventually obtained is built up, using Rules $4,5,6$, by some expressions $r_{j}, j=1, \ldots, m$, such that r rewrites to r_{j} for all j, and by some completely new expressions $y_{k}, k=1, \ldots, m^{\prime}$, which were introduced by Rules 5,6 . Now clearly $\left(p, r_{j}\right)<(p, q)$ and $r_{j} \in V$, so by the induction hypothesis $\left(\mathrm{p}, \mathrm{r}_{\mathrm{j}}\right) \in \Gamma$. It then follows by an casy induction on the structure of q that $(\mathrm{p}, \mathrm{q}) \in \Gamma$.

Rules 5,6 Similar to Rule 4.

This concludes the Proof of the Claim, so we are done.

Since inference of FD's can be seen as a special case of inference of PD's, the problem is actually polynomial-time complete [63]. However, in the special case where E is empty $[28,65]$ it can be solved in logarithmic space [40], as we now outline. By l.cmma 3, it suffices to describe how to recognize $\leq_{\text {id }}$ in logarithmic space.

First, obscrve the following:

1. $\Lambda \leq \leq_{i d} \Lambda^{\prime}$ iff Λ is identical to $A^{\prime}, A, \Lambda^{\prime}$ in \mathcal{U}^{U}.
2. $\Lambda \leq_{i d} p^{\circ} \cdot q^{\prime}$ iff $A \leq_{i d} p^{\prime}$ and $A \leq_{i d} q^{*}, \mathrm{~A}$ in \uparrow.
3. $A \leq_{i d} p^{\circ}+q^{\circ}$ iff $\Lambda \leq_{i d} p^{\circ}$ or $\Lambda \leq_{i d} q^{*}, \lambda$ in Q.
4. $\mathrm{p}^{*} \mathrm{q} \leq_{\mathrm{id}} \Lambda^{\prime}$ iff $\mathrm{p} \leq_{\mathrm{id}} \Lambda^{\prime}$ or $q \leq_{i d} \Lambda^{\prime}, \Lambda^{\prime}$ in Q .
5. $\mathrm{p} \cdot \mathrm{q} \leq \leq_{i d} \mathrm{p}^{\bullet} \mathrm{q}^{\prime}$ iff $\mathrm{p}^{\bullet} \mathrm{q} \leq_{\mathrm{id}} \mathrm{p}^{\prime}$ and $\mathrm{p}^{\bullet} \mathrm{q} \leq_{\mathrm{id}} \mathrm{q}^{\prime}$.
6. $\mathrm{p}^{\bullet} \mathrm{q} \leq_{\mathrm{id}} \mathrm{p}^{\prime}+\mathrm{q}^{\prime}$ iff $\mathrm{p} \leq_{\mathrm{id}} \mathrm{p}^{\prime}+\mathrm{q}^{\prime}$ or $\mathrm{q} \leq_{i d} \mathrm{p}^{\prime}+\mathrm{q}^{\prime}$ or $\mathrm{p}^{\bullet} \mathrm{q} \leq_{i d} \mathrm{p}^{\prime}$ or $\mathrm{p}^{\bullet} \mathrm{q} \leq_{\mathrm{id}} \mathrm{q}^{\prime}$.
7. $\mathrm{p}+\mathrm{q} \leq_{\mathrm{id}} \mathrm{e}^{\prime}$ iff $\mathrm{p} \leq_{\mathrm{id}} \mathrm{e}^{\prime}$ and $\mathrm{q} \leq_{\mathrm{id}} \mathrm{e}^{*}$.

In each of the above cascs, the "if" direction is trivial. The "only-if" direction follows in Case 5 because
$p^{\prime} \cdot q^{\prime} \leq_{i d} p^{\prime}$ and $p^{\cdot} \cdot q^{\prime} \leq_{i d} q^{\prime}$, and in Case 7 bccause $p \leq_{i d} p+q, q \leq_{i d} p+q$. In the remaining cases, the "only-if" direction follows by the definition of $\leq_{i d}$.

The above observation gives a recursive algorithm to test, given $\mathrm{e}, \mathrm{e}^{\prime}$, whether $\mathrm{c} \leq_{\mathrm{id}} \mathrm{e}^{\prime}$. We now describe how to implement this recursion using only logarithmic auxiliary space.

First, note that the results of intermediate recursive calls need not be stored. For example, consider Case 7: if the recursive call for $\mathrm{p} \leq_{\mathrm{id}} \mathrm{c}^{\prime}$ returns false, then we immediately return false; otherwise, we return the result of the recursive call for $q \leq \leq_{i d} e^{\prime}$.

We will also argue that we do not need to store the arguments of previous recursive calls. Thus, all we need to have in storage at any particular point is the arguments of the recursive call which is being evaluated. Since these arguments are subexpressions of e, é, we can just have two pointers to the appropriate places in the input, and this only takes logarithmic space.

We will now describe how, given two pointers to two subexpressions p, p^{\prime} of $\mathrm{e}, \mathrm{e}^{\prime}$ respectively, we
can find the next recursive call to be cvaluated, using only logarithmic additional space. We assume that e, c^{\prime} are represented (in the standard way) as binary trees, so that, given a pointer to a node u, we can find a pointer to the father (right son, left son) of u.
We use two auxiliary pointers α, α^{\prime}, initialized to the root of e, e^{\prime} respectively. Let $C\left(\mathrm{c}, \mathrm{c}^{\prime}\right)$ be the set of recursive calls gencrated from the call $\mathrm{e} \leq_{i d} \mathrm{e}^{\prime}\left(C\left(\mathrm{e}, \mathrm{e}^{\prime}\right)\right.$ contains either two or four members, depending on which of Cases 2-7 is the relevant one). We will show that we can determine which member of $C\left(e, e^{\prime}\right)$ eventually gives rise to the call $\mathrm{p} \leq_{i d} \mathrm{p}^{\prime}$, using only logarithmic additional space. If this member of $C\left(\mathrm{e}, \mathrm{e}^{\prime}\right)$ turns out to be the call $\mathrm{e}_{1} \leq_{\mathrm{id}} \mathrm{c}_{\mathrm{j}}$, we set the pointers α, α^{*} to the expressions $\mathrm{e}_{1}, \mathrm{e}_{1}^{\prime}$ respectively and we repeat with $C\left(\mathrm{e}_{1}, \mathrm{c}_{1}^{\prime}\right)$. Continuing in this way, we will eventually find $\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{i}}^{\prime}$ such that the call $\mathrm{p} \leq_{\mathrm{id}} \mathrm{p}^{\prime}$ is in $C\left(\mathrm{e}_{\mathrm{i}}, \mathrm{c}_{\mathrm{j}}\right)$. We can then easily determine the next call to be cvaluated.

Finally, note that, to determine which member of $C\left(\mathrm{c}, \mathrm{c}^{\circ}\right)$ eventually gives rise to the call $\mathrm{p} \leq_{i d} p^{\text {p }}$, we only need to know whether p (p^{\prime}) is in the left or in the right subtree of c (e^{\prime}). This can be found be walking the tree representing e in a depth-first fashion, until we encounter p . This walk can be done using only logarithmic additional space, because all we need to remember is the node v which is currently visited and the node w which was visited immediately before v : if w is the father of v, we next visit the left son of v; if w is the left son of v, we next visit the right son of v; if w is the right son of v, we next visit the father of v.

5.4 Testing Satisfaction

Given a database d over \mathfrak{U} and a set of PD's E , we want to test if d is consistent with E , i.e if there is a weak instance w for d satisfying E. Recall that a relation w over \mathcal{U} is a weak instance for d iff every tuple of relation $R[U]$ of d appears in the projection of w on U. Weak instances have been proposed as a way to model incomplete information in databases [38, 64]. Given a database d and a set of FD's E , we can test if d has a weak instance satisfying E in polynomial time [38]. We now show how this test can be generalized to arbitrary PD's.

First, we replace E by a set E^{\prime} of PD's of the form $C=A \cdot B$ or $C=A+B$, where A, B, C are attributes from a universe U° containing \mathcal{U} : this is done by (recursively) replacing $X=Y \cdot Z$ by the PD's $\mathrm{X}=\mathrm{C}, \mathrm{Y}=\mathrm{A}, \mathrm{Z}=\mathrm{B}, \mathrm{C}=\mathrm{A} \cdot \mathrm{B}$, where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are new attribute names. It is casy to check that there is a weak instance for d satisfying E iff there is a weak instance for d satisfying E .
L.ct us denote by $\mathrm{p} \rightarrow \mathrm{q}$, where p, q are partition expressions, the PI$) \mathrm{p}=\mathrm{p} \bullet \mathrm{q}$. This slight abuse of notation is consistent, since the $\mathrm{FPD} \mathrm{X} \rightarrow \mathrm{Y}$ is actually equivalent to the FI$) \mathrm{X} \rightarrow \mathrm{Y}$. Now a PI$)$ $C=\Lambda \cdot B$ in $E^{\prime \prime}$ can be replaced by the FPI)s $C \rightarrow A B, A B \rightarrow C$, and a PI) $C=\Lambda+B$ in E^{\prime} can be replaced by the PD's $\Lambda+B \rightarrow C, C \rightarrow A+B$. Furthermore, the PD $\Lambda+B \rightarrow C$ can be replaced by the FPD's $A \rightarrow C, B \rightarrow C$. We now have a set F consisting of FPI's and of PI's of the form $C \rightarrow A+B$, and it is obvious that there is a weak instance for d satisfying E^{\prime} iff there is a weak instance for d satisfying F.

Now compute (using the algorithm of the previous Section) all consequences of F of the form $A \rightarrow B, \Lambda, B$ in q^{\prime}, and add them to F. Furthermore, if now F contains $\Lambda \rightarrow B$ and $C \rightarrow A+B$, replace $\mathrm{C} \rightarrow \mathrm{A}+\mathrm{B}$ by $\mathrm{C} \rightarrow \mathrm{B}$. Let F^{\prime} be the set of FPI's in F . The crucial fact is given in the following

Lemma 5.3: There is a weak instance for d satisfying F iff there is a weak instance for d satisfying F:

Proof: The "only if" direction is obvious. For the converse, let w be a weak instance for d satisfying F: Suppose some PD C $\rightarrow A+B$ in F is violated by tuples t_{1}, t_{2} of w, where $t_{1}[A B C]=a_{1} b_{1} c$, $t_{2}[A B C]=a_{2} b_{2} c, a_{1} \neq a_{2}, b_{1} \neq b_{2}$. We can remedy this violation by adding to w a tuple s such that $s[A B]=a_{1} b_{2}$. To make sure that the relation w_{1} obtained still satisfies F^{\prime}, let $A^{+}=\left\{X \mid F^{\prime} \vDash A \rightarrow X\right\}$, $B^{+}=\{X \mid F=B \rightarrow X\}:$ we make $s\left[A^{+}\right]=t_{1}\left[\Lambda^{+}\right], s\left[B^{+}\right]=t_{2}\left[B^{+}\right]$, and fill in the rest of the attributes of s with distinct new values (not appearing in w). To argue that this is indeed possible, observe first that B is not in A^{+}and A is not in B^{+}(otherwise $C \rightarrow A+B$ would not appear in F). We also have to make sure that, if $Q \in A^{+}$and $Q \in B^{+}$, then $t_{1}[Q]=t_{2}[Q]$. But if Q appears in both A^{+}and B^{+}we have $F^{\prime} \vDash \Lambda \rightarrow Q, F^{\prime}=B \rightarrow Q$, so since $C \rightarrow A+B$ is in F we have $F \vDash C \rightarrow Q$, and therefore $C \rightarrow Q$ is in F^{\prime}. This implies that $\mathrm{t}_{1}[\mathrm{Q}]=\mathrm{t}_{2}[\mathrm{Q}]$, since $\mathrm{t}_{1}[\mathrm{C}]=\mathrm{t}_{2}[\mathrm{C}]$ and w satisfies F^{*}.

We now repeat the above argument, starting with w_{1}, to obtain relations w_{2}, w_{3} and so on. The relation w_{ω} obtained after an infinite number of steps is a weak instance for d satisfying E^{\prime}, because any violation of some $\mathrm{PDC} \rightarrow \Lambda+B$ appearing at any stage has been taken care of at some later stage.

We can now prove the main result:
Theorem 5.4: There is a polynomial-time algorithm to test whether a given database d is consistent with a set E of PD's.

Proof; Using the polynomial-time algorithm for inftresce of PDr given in Section 5.3, we can construct the set F^{\prime}. By Lemma 5.3, we can then une the arovithn offilfo test if a is constent with F. 1

Observe that the weak instance constructed in the Proof of Lemman 5.3 is in zeneral infinite. The problem of testing cxistence of a finte wenk inatence in epen.
$r:$

$t=$| $A B$ | C | |
| :--- | :--- | :--- |
| 1 | 2 | 0 |
| 3 | 2 | 0 |
| 3 | 4 | 0 |
| 5 | 4 | 0 |

$$
\begin{aligned}
& r=\Sigma, \varphi_{n} \\
& (K \text { even) }
\end{aligned}
$$

5: $x+1$ - 0

Fumet El: A modelfor
$r_{1}:$
1: $\begin{array}{lll}A & B & C \\ a & b_{1} & c_{1}\end{array}$
2: $\begin{array}{llll}a & b_{1} & c_{2}\end{array}$
3: $a \quad \begin{array}{llll}a & b_{2} & c_{1}\end{array}$
4: $\quad \begin{array}{llll}a & b_{2} & c_{2}\end{array}$

$$
r_{1} \vDash A \rightarrow B
$$

$r_{2}:$

$L\left(r_{2}\right)$

Figure 5-2: MVD's are not expressible by PD's

Chapter Six

Directions for Further Investigation

Extending the Equational Approach

Of course, the most obvious question is whether our equational formulation of FD's and IND's can be extended to more general dependencies. We outline some partial results we have at this point, which indicate that such an extension is indecd possible.

Recall that an embedded implicational dependency (EII) is a typed sentence of the form

$$
\forall x_{1} \ldots x_{p} .\left[\left(\varphi_{1} \wedge \ldots \wedge \varphi_{\mathrm{n}}\right) \Rightarrow \exists y_{1} \ldots y_{\mathrm{q}} \cdot\left(\psi_{1} \wedge \ldots \wedge \psi_{\mathrm{m}}\right)\right],
$$

where each φ_{k} is a relational formula, each ψ_{k} is either a relational formula or an equality between two of the x_{k} 's, and each of the x_{k} 's appears in one of the φ_{k} 's (cf. Section 5.1). If all the ψ_{k} 's are relational formulas, we have a tuple generating dependency (TGD); if all the ψ_{k} 's are cqualities, we have an equality generating dependency (EGD) $[10,11,34]$.

Every EID is obviously equivalent to the conjunction of a TGD and an EGD. Furthermore, it can be shown that every EGD is equivalent to a conjunction of FD's and TGD's [11]. The question then is whether we can have an equational formulation of FD's and TGD's.

Let $\mathcal{U}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$ and consider the MVD $\mathrm{A} \rightarrow \rightarrow \mathrm{B}$ (cf. Example 5.1). We can formulate it as the sentence

$$
\forall \mathrm{x}_{1} \mathrm{x}_{2} \cdot\left[a\left(\mathrm{x}_{1}\right)=a\left(\mathrm{x}_{2}\right) \Rightarrow \exists \mathrm{y} \cdot\left(a(\mathrm{y})=a\left(\mathrm{x}_{1}\right) \wedge b(\mathrm{y})=b\left(\mathrm{x}_{1}\right) \wedge c(\mathrm{y})=c\left(\mathrm{x}_{2}\right)\right)\right] .
$$

Here $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{y}$ are variables ranging over tuples; see Section 1.3. Now Skolemization suggests transforming this MVD into an equational implication

$$
\mathrm{ax}_{1}=a \mathrm{x}_{2} \Rightarrow\left(\mathrm{aix}_{1} \mathrm{x}_{2}=\mathrm{ax}_{1} \wedge \mathrm{bix}_{1} \mathrm{x}_{2}=\mathrm{bx}_{1} \wedge \mathrm{cix}_{1} \mathrm{x}_{2}=\mathrm{cx}_{2}\right)
$$

In this way, we can transform any TGD into an equational implication. In fact, we can even relax the typedness restriction, to obtain a class of constraints which properly includes IND's: specifically, it suffices if only the part of the sentence consisting of the φ_{k} 's is typed.

We can go even further and transform these equational implications into equations. We illustrate
how this is done with the implication

$$
\mathrm{ax}_{1}=\mathrm{ax}_{2} \Rightarrow a \mathrm{aix}_{1} \mathrm{x}_{2}=a \mathrm{x}_{1}
$$

This can be transformed into the set of equations

$$
\operatorname{aix}_{1} x_{2}=f_{a} x_{1} x_{2} a x_{1} a x_{2}
$$

$$
\mathrm{f}_{\mathrm{a}} \mathrm{x}_{1} \mathrm{x}_{2} \mathrm{xx}=\mathrm{ax} \mathrm{x}_{1}
$$

where f_{a} is a new function symbol of ARITY 4.

The above cquational formulation of TGD's can be used to prove a generalization of Theorem 2.1, for implication of TGD's from FD's and TGD's (i.c., we actually generalize the IND Case of Theorem 2.1). The proof uses the same ideas as the proof of Theorem 2.1. Unfortunately, the proof of the FD Case does not generalize, because the inductive argument for the completeness part depends critically on the fact that Skolem functions have only one argument (which only happens in the case of IND's).

Designing Normal Form Schemas

An active area of research in logical database design is concerned with canonical representations of the database schema, which avoid potential update anomalies (i.e. updates that can result in inconsistent data), and minimize data redundancy. Several such representations have been proposed and analyzed, assuming that the only integrity constraints of the database schema are FD's. The general idea is that the database schema should be in a certain normal form $[22,7,62,51]$, i.e. certain restrictive conditions should be satisfied by the FD's of the schema and their logical consequences. Given a universe \because of attributes and a finite set Σ of FD's, one can construct a database schema satisfying such restrictions $[12,6]$. These algorithms are based on efficient solutions of the implication problem.

An interesting question is to investigate normal forms in the presence of FD's and IND's (cf. [33]). Eventually one would hope to extend the known schema synthesis algorithms to incorporate IND's of some restricted form (for example, unary IND's). The insights we have gained on the implication problem can potentially be useful for this investigation.

Query Equivalence in the Presence of IND's

The problem of optimizing queries has reccived a lot of attention, because of its central role in all relational database implementations [62]. Given a query Q, the goal is to design an equivalent query
Q° which can be processed as efficiently as possible (i.c. contains a minimum number of instances of expensive operators, such as join). Since equivalence of two queries is a data dependency, the problem of testing equivalence of queries in the presence of dependencies can be approached with the standard tools for implication problems $[3,18,62]$.

The equivalence of relational database queries in the presence of FD's and IND's has been examined in $[43,48]$, essentially by extending classical techniques (namely the chase). The authors of [43] show that under reasonable restrictions on the IND's, query equivalence can be reduced to wellunderstood cases involving only FD's. The approach of [48] is to introduce the weak instance assumption [38,64]; under this restriction, query cquivalence in the presence of FD's and typed IND's can be handled by the methods of [43].

Many questions remain unanswered in the area and new techniques seem to be required to handle major new cases. The techniques we have developed for FD and IND implication may be uscful in this respect. In particular, it would be interesting to see if the tools we provide for typed IND's can be used to study equivalence of (typed) conjunctive queries $[18,43]$ in the presence of typed IND's and FD's, without the weak instance assumption of [48].

Expressing Data Distribution

An important consideration in the context of distributed databases is to find ways to preprocess relations stored at different sites, so that a given query can be processed with a minimum amount of data communication between sites. Some work has already been done on characterizing database schemes and queries for which such preprocessing is possible [8, 13]. An interesting research direction is to extend these results to allow for the presence of FD's (conceivably we will be able to preprocess more queries if the database is constrained to satisfy a set of FD's). Since data distribution can be modeled by IND's, these questions can be approached as implication problems involving FD's and IND's.

Performance of Equational Theorem Provers

An interesting practical question is how well theorem provers designed around the Knuth-Bendix method [46] perform on sets of equations obtained from database constraints. We have experimented with the REVE system [35, 49], which has been able to handle various non-trivial inferences of FD's and IND's. However, more work needs to be done in this direction.

References

1. Aho, A.V., Becri, C. and Ullman, J.D. The 'Theory of Joins in Relational Databases. ACM Transactions on Database Systems 4, 3 (1979), 297-314.
2. Aho, A.V., Hopcroft, J.E. and Ullman, J.I. The Design and Analysis of Computer Algorithms. Addison-Wesley, 1974.
3. Aho, A.V., Sagiv, Y. and Ullman, J.D. Fquivalences of Relational Expressions. SIAM Journal on Computing 8, 2 (1979), 218-246.
4. Aho, A.V. and Ullman, J.D. Universality of Data Retrieval Languages. Proccedings of the $6^{\text {th }}$ ACM Symposium on Principles of Programming Languages, ACM, 1979, pp. 110-120.
5. Armstrong, W.W. Dependency Structure of Database Relationships. Proceedings IFIP 74, Amsterdam, 1974, pp. 580-583.
6. Becri, C. and Bernstein, P.A. Computational Problems Related to the Design of Normal Form Relational Schemas. ACM Transactions on Database Systems 4, 1 (March 1979), 30-59.
7. Becri, C., Bernstein, P.A. and Goodman, N. A Sophisticate's Introduction to Database Normalization Theory. Proceedings of the $4^{\text {th }}$ VLDB Conference, 1978, pp. 113-124.
8. Beeri, C., Fagin, R., Maicr, D. and Yannakakis, M. On the Desirability of Acyclic Database Schemes. Journal of the ACM 30, 3 (July 1983), 479-513.
9. Beeri, C. and Korth, H.F. Compatible Attributes in a Universal Relation. Procecdings of the $1^{\text {st }}$ ACM Symposium on Principles of Database Systems, ACM, 1982, pp. 55-62.
10. Becri, C. and Vardi, M.Y. Formal Systems for Tuple and Equality Generating Dependencies. SIAM Journal on Computing 13, 1 (February 1984), 76-98.
11. Becri, C. and Vardi, M.Y. A Proof Procedure for Data Dependencies. Journal of the ACM 31, 4 (October 1984), 718-741.
12. Bernstein, P.A. Synthesizing Third Normal Form Relations from Functional Dependencies. ACM Transactions on Database Systems I (1976), 277-298.
13. Bernstcin, P. Λ. and Goodman, N. Power of Natural Semijoins. SIAM Journal on Computing 10, 4 (November 1981), 751-771.
14. Birkhoff, G. On the Structure of Λ bstract Algebras. Proceedings of the Cambridge Philosophical Society 31 (1935), 433-454.
15. Breazu, V. Scmantics in Complete Lattices for Relational Database Functional Dependencies. Analele Stiintifice ale Universitatii "Al.I. Cuza" din Iasi 28 (1982), 177-182.
16. Casanova, M.A., Fagin, R. and Papadimitriou, C.H. Inclusion Dependencies and Their Interaction with Functional Dependencies. Journal of Computer and System Sciences 28, 1 (February 1984), 29-59.
17. Casanova, V. and Vidal, V.M.P. Towards a Sound View Integration Methodology. Procecdings of the $2^{\text {nd }}$ ACM Symposium on Principles of Database Systems, $\Lambda C M, 1983$, pp. 36-47.
18. Chandra, A.K. and Merlin, P.M. Optimal Implementation of Conjunctive Queries in Relational Databases. Proceedings of the $9^{\text {th }} \Lambda$ CM Symposium on Theory of Computing, $\Lambda \mathrm{CM}, 1977, \mathrm{pp} .77-$ 90.
19. Chandra, A.K. and Vardi, M.Y. The Implication Problem for Functional and Inclusion Dependencies is Undecidable. SIAM Journal on Computing 14, 3 (August 1985), 671-677.
20. Chen, P.P.S. The Entity-Relationship Model: Towards a Unified View of Data. $A C M$ Transactions on Database Systems 1, 1 (March 1976), 9-36.
21. Codd, E.F. Λ Relational Model for Large Shared Data Banks. Communications of the ACM 13, 6 (Junc 1970), 377-387.
22. Codd, E.F. Further Normalization of the Database Relational Model. In Database Systems, Rustin, R., Ed., Prentice Hall, 1972, pp. 33-64.
23. Codd, E.F. Relational Database: A Practical Foundation for Productivity. Communications of the ACM 25, 2 (February 1982), 109-117.
24. Codd, E.F. Extending the Database Relational Model to Capture More Meaning. ACM Transactions on Database Systems 4, 4 (December 1979), 397-434.
25. Cosmadakis, S.S. and Kanellakis, P.C. Equational Theories and Database Constraints. Proceedings of the $17^{\text {th }}$ ACM Symposium on Theory of Computing, ACM, May, 1984, pp. 273-284.
26. Cosmadakis, S.S. and Kanellakis, P.C. Functional and Inclusion Dependencies: A Graph Theoretic Approach. Proceedings of the $3^{\text {rd }}$ ACM Symposium on Principles of Database Systems, ^CM, April, 1984, pp. 24-37.
27. Cosmadakis, S.S., Kancllakis, P.C. and Spyratos, N. Partition Scmantics for Relations. Proceedings of the $4^{\text {th }}$ ACM Symposium on Principles of Database Systems, ACM, March, 1985, pp. 261-275.
28. Crawlcy, P. and Dilworth, R.P. Algebraic Theory of Lattices. Prentice-Hall, 1973.
29. Date, C. Referential Integrity. Proccedings of the $7^{\text {th }}$ VLDB Conference, 1981, pp. 2-12.
30. Dean, R.A. Component Subsets of the Free Lattice on n Gencrators. Proceedings of the American Mathematical Society 7 (1956), 220-226.
31. Downey, P.J., Scthi, R. and Tarjan, R.E. Variations on the Common Subexpression Problem. Journal of the ACM 27, 4 (October 1980), 758-771.
32. Enderton, H.B. A Mathematical Introduction to Logic. Academic Press, 1972.
33. Fagin, R. A Normal Form for Relational Databases that is Based on Domains and Keys. $A C M$ Transactions on Database Systems 6, 3 (September 1981), 387-415.
34. Fagin, R. Horn Clauses and Database Dependencies. Journal of the ACM 29, 4 (October 1982), 952-985.
35. Forgaard, R. and Guttag, J.V. Reve: A Term Rewriting System Generator with Failure Resistant Knuth-Bendix. Proccedings of an NSF Workshop on the Rewrite Rule Laboratory, NSF, April, 1984, pp. 5-31.
36. Grätzer, G. Universal Algebra. Springer-Verlag, New York, 1979.
37. Hammer, M. and McLcod, D. Database Description with SDM: A Scmantic Database Model. ACM Transactions on Database Systems 6, 3 (September 1981), 351-386.
38. Honeyman, P. Testing Satisfaction of Functional Dependencies. Journal of the ACM 29, 3 (July 1982), 668-677.
39. Honeyman, P., Ladner, R.E., Yannakakis, M. Testing the Universal Instance Assumption. Information Processing Letters 10, 1 (1980), 14-19.
40. Hopcroft, J.E. and Ullman, J.D. Introduction to Automata Theory, Languages, and Computation. Addison-Weslcy Publishing Company, 1979.
41. Huct, G. and Oppen, D. Equations and Rewrite Rules: a Survey. In Formal Languages: Perspectives and Open Problems, Book, R., Ed., Acadcmic Press, 1980, pp. 349-403.
42. Hull, R. and Yap, C.K. The Format Model: A Theory of Database Organization. Proceedings of the $1^{\text {st }} \Lambda$ CM Symposium on Principles of Database Systems, ACM, 1982, pp. 205-211.
43. Johnson, D.S. and Klug, A. '「esting Containment of Conjunctive Queries Under Functional and Inclusion Dependencies. Journal of Computer and System Sciences 28, 1 (Fcbruary 1984), 167-189.
44. Kancllakis, P.C., Cosmadakis, S.S. and Vardi, M.Y. Unary Inclusion Dependencies Have Polynomial Time Inference Problems. Proceedings of the $15^{\text {th }} \mathrm{ACM}$ Symposium on Theory of Computing, ACM, 1983, pp. 264-277.
45. Klug, A. Entity-Relationship Views over Uninterpreted Enterprise Schemas. In International Conference on Entity-Relationship Approach, Chen, P.P.S., Ed., North Holland, 1980, pp. 39-59.
46. Knuth, D.E. and Bendix, P.B. Simple Word Problems in Universal Algebras. In Computational Problems in Abstract Algebra, Lecch, J., Ed., Pcrgamon, Oxford, 1970, pp. 263-297.
47. Kozen, D. Complexity of Finitely Presented Algebras. Proceedings of the $9^{\text {th }} \Lambda$ CM Symposium on Theory of Computing, Λ CM, May, 1977, pp. 164-177.
48. Laver, K., Mendelzon, A.O. and Graham, M.H. Functional Dependencies on Cyclic Database Schemes. Proceedings of the Λ CM SIGMOD Conference, 1 CM, 1983, pp. 79-91.
49. Lescanne, P. Computer Experiments with the REve Term Rewriting System Generator. Proceedings of the $10^{\text {th }}$ ACM Symposium on Principles of Programming Languages, ACM, January, 1983, pp. 99-108.
50. Lewis, H.R. and Papadimitriou, C.H. Elements of the Theory of Computation. Prentice-Hall, Englewood Cliffs, New Jersey, 1981.
51. Maier, D. The Theory of Relational Databases. Computer Science Press, 1983.
52. Maier, D., Mendelzon, A.O. and Sagiv, Y. Testing Implications of Data Dependencies. ACM Transactions on Database Systems 4, 4 (December 1979), 455-469.
53. Minsky, M.L. Recursive Unsolvability of Post's Problem of "Tag" and Other Topics in the Theory of Turing Machines. Annals of Mathematics 74, 3 (1961), 437-455.
54. Mitchell, J.C. The Implication Problem for Functional and Inclusion Dependencies. Information and Control 56, 3 (March 1983), 154-173.
55. E.L. Post. Recursive Unsolvability of a Problem of Thue. Journal of Symbolic Logic 13 (1947), 1-11.
56. Pudlak, P. and Tuma, J. Every Finite Lattice Can Be Embedded in a Finite Partition Lattice. Algebra Universalis 10, 1 (1980), 74-95.
57. Sadri, F. and Ullman, J.D.., Template Dependencies: A Large Class of Dependencies in Relational Databases and its Complete Axiomatization. Journal of the ACM 29, 2 (April 1982), 363372.
58. Sciore, E. Inclusion Dependencies and the Universal Instance. Proceedings of the $2^{\text {nd }} A C M$ Symposium on Principles of Database Systems, ACM, 1983, pp. 48-57.
59. Smith, J.M. and Smith, D.C.P. Database Λ bstractions: Aggregation. Communications of the ACM 20, 6 (1977), 405-413.
60. Spyratos, N. The Partition Model: A Deductive Database Model. Tech. Rep. No. 286, INRIA, April, 1984.
61. Tsichritzis, D.C. and Lochovsky, F.H. Data Models. Prentice Hall, 1982.
62. Ullman, J.D. Principles of Database Systems. Computer Science Press, 1983.
63. Vardi, M.Y. The Implication Problem for FD's is Polynomial-Time Complete. Personal Communication.
64. Vassiliou, Y. A Formal Treatment of Imperfect Information in Database Management. Ph.D. Th., University of Toronto, 1980.
65. Whitman, P.M. Frec Lattices. Annals of Mathematics 42 (1941), 325-330.
66. Whitman, P.M. Lattices, Equivalence Relations, and Subgroups. Bulletin of the American Mathematical Society 52 (1946), 507-522.
67. Wiederhold, G. and El-Masri, R. \wedge Structural Model for Database Systems. Tech. Rep. STAN-CS-79-722, Stanford University, February, 1979.
68. Yannakakis, M. and Papadimitriou, C.H. Algcbraic Dependencies. Journal of Computer and System Sciences 21, 1 (August 1982), 2-41.
69. Zaniolo, C. Design of Relational Views over Network Schemas. Proceedings of the ACM SIGMOD Conference, ACM, 1979.

Table of Contents

Chapter One: Introduction 3
1.1 Functional and Inclusion Dependencies in the Relational Model 3
1.2 The Implication Problem 5
1.3 Chapter Two: The Equational Λ pproach to Dependencies 7
1.4 Chapter Three: Application to Typed IND's 10
1.5 Chapter Four: Finite Implication of FD's and Unary IND's 12
1.6 Chapter Five: Partition Dependencies 13
1.7 Credits 14
Chapter Two: The Equational Approach to Dependencies 15
2.1 Dcfinitions 15
2.1.1 Relational Database Theory 15
2.1.2 Equational Logic 19
2.2 Functional and Inclusion Dependencies as Equations 21
2.3 A Proof Procedure for FD's and IND's 27
2.4 Computations as Inferences 28
Chapter Three: Application to Typed IND's 34
3.1 Another Proof Procedure for FD's and IND's 34
3.2 Typed IND's and Acyclic FD's 39
3.3 Inference of FD's under Pairwise Consistency 40
Chapter Four: Finite Implication of FD's and Unary IND's 54
Chapter Five: Partition Dependencies 64
5.1 Preliminaries 64
5.2 Expressive Power 66
5.3 The Implication Problem 68
5.4 Testing Satisfaction 76
Chapter Six: Directions for Further Investigation 81

Table of Figures

Figure 2-1: Graph notation for FD's and IND's 32
Figure 2-2: Graph rules for FD's and IND's 33
Figure 3-1: Another graph notation for FD's and IND's 47
Figure 3-2: Graph rules for FD's and IND's 48
Figure 3-3: Basis case 49
Figure 3-4: Case 1 49
Figure 3-5: Case 2a 50
Figure 3-6: Case 2b 50
Figure 3-7: Case 2c 51
Figure 3-8: Case 2d 51
Figure 3-9: Example of FD inference under pairwise consistency 52
Figure 3-10: Gadgets for Proof of Theorem 3.3 53
Figure 4-1: Construction of a finite counterexample relation 62
Figure 4-2: Relation that violates a u-ID 63
Figure 5-1: Λ model for φ_{k} 79
Figure 5-2: MVD's are not expressible by PD's 80

