
Equational Theories and Database Constraints

by

Stavros Stylianos Cosmadakis

B.S .• Massachusetts Institute of Technology (1981)

M.S .• Massachusetts Institute of Technology (1983)

Submitted to the Department of Electrical Engineering
and Computer Science in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy in Computer Science

at the

Massachusetts Institute ofTechnology

August 1985

©M.l.T 1985

Department of Electrical Engineering and Computer Science
August 1985

Accepted by .. ·--·---·-·--·········-····-.. ······--·-··-·····-
Arthur C. Smith. Chainnan. Departmental Committee on Graduate Students

Equ:1t ional Theories and Database Constra,ints

Stavros Stylianos Cosmadakis

Submitted to the Department of Electrical Engineering and Computer Science
on August 1985. in Parlial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in Computer Science

Abstract

The i111plicatio11 problem for database constraints is central in the fields of automated schema

design and query optimization and has been traditionally approached with resolution-based

techniques. We present a novel approach to database constraints, w;ing equations instead of Horn

clauses. This formulation enables us to use new techniques for database theory, which derive from

universal algebra, equational logic and lattice theory. It also points io the possibility of employing

theorem-proving techniques originally developed for equational theories to deal with implication in

the context oflogical databases.

We apply our approach to study functional and inclusion dependencies. 'll1esc constraints can model

functiona1 determination and data duplication and they have been extensively proposed as a

powerful and realistic feature for semantic data models. We prove completeness of new proof

procedures and we derive new upper and lower bounds for the complexity of various implication

problems involving these dependencies.

W c also present a new class of constraints which arc defined equationally, using algebraic operations

on set-theoretic partitions. These partition dependencies provide an elegant generalization of

functional dependencies (in the direction of incorporating transitive closure), for which the

implication problem remains efficiently solvable.

Thesis Co-Supervisor: Paris C. Kanellakis, Visiting Assistant Professor of Computer Science

(on leave from Brown University).

Thesis Co-Supervisor: Albert R. Meyer, Professor of Computer Science.

Keywords: Relational data model, logical databases, dependencies, implication, proof procedures,

completeness, equational theories. word problems, lattices.

2

Chapter One

Introduction

1.1 Functional and Inclusion Dependencies in the Relational Model

The development of the relational data model [21, 22] led to major progress in the area of database

management. The model and its implementations have contributed significantly both to the increase

of programmer productivity [23] and to the fundamental understanding of computation [62].

Among the advantages of the model, which account for its success, arc [23]:

l. The sharp, clear boundary it provides between the conceptual and the physical aspects of database

management.

2. It<> simplicity, which allows users and programmers to have a common understanding of the data

and therefore communicate easily about it.

3. The introduction of truly high level language concepts, which enables users to express operations

on large pieces of infonnation, without detailed knowkdge of its representation or of the access paths

to where it is stored.

4. A sound, mathematical foundation, which makes possible the theoretical study of the (often

formidable) problems of database design and manipulation.

The relational data model consists of a structural part (with a unique data type, the relation), a

manipulative part (with powerful algebraic operators such as selection, projection and join) and an

integrity part (constraints defining consistent database states, intended to capture the semantics of

particular applications) [62, 51]. A relation is a table with columns named by attributes and with rows

containing values from some domain, each row being a tuple. A database is a finite set of relations. A

logical database or database schema consists of a database scheme, i.e. a finite set D of relation

schemes (sequences of attributes naming the columns of relations), along with a finite set ~ of

integrity constraints (dependencies), which should be satisfied by all legal physical databases (database

instances).

For an example (invariant throughout the database literature}, consider a database of two relations

3

ItS. where R has attributes EMPLOYFF and MANAGFR and S has attributes MANAGER and

DFPARTMFNT. If we take as our semantic restrictions that "every employee has exactly one manager"

and "every manager manages exactly one department", we define the following database schema:

D= { R[EMPLOYFE, MA NAG FR), S[MANAGER, DEPARTMENT]}
L= {R:EMPLOYEE-+MANAGJ:R, S:MANAGER-+DEPARTMENT}

In this case, our constraints arc examples of functional dependencies (21, 22, 62, 51). Formally, a

functional dependency (FD) is an assertion of the form R:X-+ Y, where R is the name of a relation

and X,Y arc sets of attributes from the relation scheme of R. It is satisfied by a database instance iff

whenever two tuples of relation R agree on all attributes appearing in X, they also agree on all

attributes appearing in Y. Observe that, with no loss of generality, we can take Y to consist of a single

attribute.

Functional dependencies form a conceptually simple and naturally occuring class of constraints. For

this reason, they have been extensively studied in the literature (sec [7, 62, 51) for reviews of the area).

Combined with the algebraic operators of the relational model they provide a practical and elegant

approach to the problems of database design and manipulation.

At present, a major research effort is underway towards extending the relational model. This effort

is motivated in large part by the success of the relational methodology and by the demands of specific

application domains, in particular Office Automation (sec, e.g., [20, 24, 37, 42, 59, 61), which is by no

means an exhaustive list). The approach generally taken is to appropriately enrich the integrity part

by adding constraints which will enhance the expressive power of the model, while at the same time

preserving its miginal advantages.

Returning to our example, suppose we also want to be able to express simple facts such as

"everyone who manages employees belongs to some department". In other words, we want to add to

the semantics of our relations that a MANAGER entry in relation R must also appear as a MANAGER

entry in relation S. This constraint is formally captured by the inclusion dependency (16)

R:MANAGER~S:MANAGER. In general, an inclusion dependency (IND) is a statement of the form

R:A1 ... Am~S:B1 ... Bm. Such a statement is satisfied by a database instance iff whcnevcr a tuple with

entries a1, <iu1 for attributes A1, ... ,Am appears in relation R, a tuple with entries a1, ~ for

attributes B1, ... ,Bm appears in relation S.

Inclusion dependencies make it possible to selectively define what data must be duplicated in

4

what relations and thus they provide a valuable tool for database design [24, 59, 69]. The central

notion of rcfcr('lltial integrity [24, 29] can be expressed using fNlYs. Together with FD's, lNl)'s fonn

the basis of the structural model of [67]. Descriptions of logical databases written in a variety of

languages can be translated into a common language which uses relations, Fl)'s and IND's [45].

lnclusion dependencies have also been employed to map an entity-relationship schema to the

relational model [20]. We mention in passing that IND's have been commonly known in Artificial

Intelligence applications as ISA relationships (cf. [9]).

Although the addition of IND's to tl1e relational model has been recognized as realistic and

desirable (because of their conceptual simplicity and expressive power). tl1ey have become only

recently the object of tl1eoretical investigation [16, 43, 54. 19, 58, 17, 44, 48, 26]. General questions

relating to the implication problem for IND's and FD's have been studied in [16, 54, 19]. A rather

surprising result [54, 19] is that the combination of IND's with FlYs is as powerful computationally as

first-order predicate calculus. This result can be considered botl1 positive (as it hints to the possibly

rich potential of two simple primitive forms) and negative, as it implies inherent computational

intractability of the general case. From a more practical standpoint, [43, 17, 44, 26] provide solutions

to database design and query optimization problems in the presence of (suitably restricted) IND's

and FD's. Also, central notions such as the Universal Instance Assumption [62, 51] have been

investigated using INIYs [58, 48]. We will review the tl1eoretical work on IND's in more detail in the

sequel.

1.2 The Implication Problem

The (unrestricted) implication problem for a class of dependencies is the following: Given a finite

set }: of dependencies and a dependency a, test if a holds in all (not necessarily finite) databases

which satisfy the dependencies in }:, By restricting attention to finite databases, we obtain the finite

implication problem.

Solving tJ1c implication problem is tJ1e main computational task associated with a class of

dependencies. As a rnle, algoritl1mic approaches to database schema design and query optimization

arc based on efficient solutions of the implication problem (sec, e.g., [12, 6, 3, 18, 62, 51]). Evidently,

if we arc concerned witll applications then tJ1c finite implication problem is tJ1c one which is most

relevant. However, it tends to be much more difficult to deal with. Moreover, for tl1c classes of

5

dependencies for which implication is decidable. it generally h<1ppcns that finite implication

coincides with unrestricted implication.

The problem of dependency implication can be approached in a very general setting by

formulating dependencies as sentences in first-order logic, namely as Hom clauses [34] (sec Section

5.l of this thesis for some examples). Closely related to this approach is a particular proof procedure,

the chase; sec [52, 11, 62, 51] for its wide applicability (proof procedures for general dependencies

also appear in [10, 68, 57)). It has been observed that the chase is a special case of a classical theorem

proving technique, namely resolution [10. 11]. The chase provides straightforward algorithms for

implication of classes of dependencies for which it can be shown to terminate. Furthermore, in these

cases the chase produces a finite cow11erexamp/e whenever implication docs not hold; it is for this

reason that finite implication coincides with unrestricted implication in these cases.

Returning now to functional and inclusion dependencies, what appears to be the fundamental

difficulty is precisely that IND's can prevent the chase from terminating. Of course, in the case of

general FIYs and IND's one cannot hope to circumvent this obstacle, since the implication problem

is undecidable [54, 19]. Nevertheless, given the practical importance of these dependencies it makes

sense to study the complexity of special cases. The obvious approach that has been suggested is to

analyze the chase, but this turns out to be a very delicate task (cf. [43]), which can only give partial

results [43, 26]. Thus, it seems that new tools arc required in order to make major progress.

The main contribution of this thesis is the introduction of such tools, borrowed from equational

logic. This is a fragment of first-order logic which has attracted a lot of attention, because of its

relevance to areas such as applicative languages, interpreters and data types (see [41] for a survey).

However, it docs not seem to have been noticed by the database theory community, since a constant

effort has been made to minimize the role of equality in dependencies (multivalued dependencies

(MVD's) [62, 51], the most widely studied after FD's, do not involve equality). The only case where

ideas from cquational logic were applied in database theory seems to be the best algorithm for

losslessness of joins (a basic computational problem), which was derived from an efficient algorithm

for congruence closure [31]. Also, the best algorithm for implication of FD's [6] can be seen directly

(as we observe) as a special case of an algorithm of [47] for the generator problem in finitely presented

algebras.

We use the methods of cquational logic to formulate and study implication problems involving

6

FIYs and IN D's. We also use equations to define a new class of dependencies (generalizing FIYs) and

to investigate its implication problem. In the subsequent Sections, we review in more detail the

content of each Chapter.

1.3 Chapter Two: The Equational Approach to Dependencies

Let r be a relation over a set of attributes CU, with values taken from a domain ~. Suppose r

satisfies the FD AB-+C, i.e. whenever two tuples of r agree on A,B they also agree on C (here and in

the sequel we consider single relations, so we can suppress relation names from dependencies). Let x

be a variable ranging over the tuples of rand Jct a(x) (b(x), c(x)) be a function which assigns to a tuple

x the entry of x at attribute A (B,C). Now since r satisfies AB-+C. it is easy to sec that there is a

function/(from ~2 to~) such that the following sentence is trnc in r:

Yx. J(a(x), l(x)) = c(x)

This observation suggests the following syntactic transformation: the FD AB-+C is rewritten as

an equation

faxbx=cx,

where now the symbol a (b,c) is a function symbol of ARITY 1 representing the attribute A (13,C} and f

is a function symbol of ARITY 2 corresponding to the FD. Using the standard convention of

cquational logic, we omit the universal quantifier on the variable x.

We now illustrate how this cquational formalism can be used to infer FD's.

Example 1.1: Given the FD's

A-+B1, A-+B2, B1B2-+C

we can infer the FD A-+C. Using our transformation, the given set of FD's produces the equations

f1ax=b 1x, f2ax=b2x, gb1xb2x=cx.

From these we can infer the equation

gf1axf2ax=cx.

In general, we can infer an FD such as A-+C if we can infer an equation T[x/ax]=cx, where Tis a

term over the fs and a variable x (in Example 1.1, T is the term gf1xf2x). The notation T[x/ax] means

that we substitute ax for x in T.

7

Interestingly, this cquational formu!<Jtion can be extended to INI rs as well. Suppose relation r

satisfies the IND J\ 1 J\ 2~ B1 B2, i.e. for each tuple t of r there is a tuple t' of r such that the values oft'

on B1,Il2 arc the same as the values oft on A1,A2 respectively. This means the following sentence is

true in r:

(as before, x,y arc variables ranging over the tuples of rand a1,a2,b1,b2 arc functions corresponding to

the attributes A 1.A 2,1l1,B2).

Consider now the Skolemization of the existential quantifier 3y: one olJtains the sentence

which is true in r for some suitable function i(x) (from tuples to tuples). This suggests transforming

the IND J\ 1A2(;;; B1 B2 into the set of equations

b1 ix= a1 x, b2ix = a2x

(here i is a function symbol of ARITY 1 corresponding to the IND).

Example 1.2: From the dependencies

A 1A2~131 132, A2A3~ B2B3, B2-+ B3

we can infer the IND A1A2A3~B1B2B3 [16, 54]. Using our transformation, the given set of

dependencies produces the equations

b 1ix = a1 x, b2ix = a2x,

b;Jx = a2x, bJix = a3x,

fb2x=b3X.

From these we can infer

b3ix = fb 2ix = fa2x = fb;Jx = bJix = a3x,

i.e. we can in fer the set of equations

b1ix=a1x, b2ix=a2x, b3ix=a3x.

In general, we can infer an IND such as A1A2A3~n1B2B3 if we can infer a set of equations

b1 r = a1x, b2r = a2x, b3r = a3x, where r is some te1m over the i's and a variable x (in Example 1.2, r is

simply ix).

Thus, we can use cquational reasoning to obtain a proof procedure for FD's and IND's. The

soundness and completeness of tJ1is approach is demonstrated in Theorem 2.1. As a matter of fact, the

soundness part (whenever an equation of the appropriate form is implied, the corresponding

8

dependency is implied) is easy and il should already he plausible from the preceding discussion. The

difficult parl is completeness (whenever a dependency is implied, an equation of the appropriate

form is implied). 'Jl1is is proved by a rather delicate induction, which shows that cquational reasoning

can simulate the chase.

We can also have a slightly different syntactic transformation of dependencies into equations. This

transformation, however, docs not have a straightforward semantic justification.

Consider the FD's in Example 1.1: We can transform them in lo the equations

f1a=b 1, f2a=b2, gb1b2=c,

from which we can infer the equation

gf1af2a=c.

The symbols a,b1,b2,c arc now constant symbols representing the attributes A,B1,B2,C.

When approached this way, the implication problem for FIYs becomes a special case of the

generator problem for finitely presented algebras [47], for which [47] gives a polynomial-time

algorithm. By inspecting the behaviour of [47]'s algorithm in this special case, we obtain the linear­

timc algorithm for implication of FD's given in [6].

111is alternative transformation can also be extended to IND's. We transform the IND

A1 A2~B1 B2 into the set of equations

ib1 = a1, ib2 = a2.

Observe that we have now eliminated the variable x, which can play an essential role when IND's are

combined with FD's (cf. Example 1.2). For this reason we also need equations of the form

fix =ifx,

which permit us to move the fs over the i's and vice versa. The soundness and completeness of this

approach is also proved in Theorem 2.1.

The cquational formulation of dependencies is more redundant than the standard one, since we

need to introduce new symbols (fs and i's). On the other hand, inferences of dependencies now give

us more infmmation: whenever we infer a dependency a from a set of dependencies L, the

associated term r (cf. Examples 1.1, 1.2) tclts us how a results (in any database satisfying L) by

"composing" dependencies in L.

In the remainder of Chapter 2, we use our equational approach to prove several results relating to

9

FD and IND implication. We first give a new proof procedure for Firs and IN I rs (Theorem 2.2).

This proof procedure is different in spirit hoth from the chase and the proof procedure of [54] and it

treats FD's and IND's in a symmetric fashion. The cquational tools come into play in the proof of

completeness of this proof procedure. Usually, completeness is proved by constructing a database

which satisfies a set of dependencies L but violates a dependency a (assuming a cannot be proved

from 2:); sec, e.g., [11. 54. 62]. In our case, we consider the set of equations e;l: obtained from ~ and

we construct an algebra which satisfies e;~ but violates any equation that could correspond to a.

Our second result is a precise characterization of the complexity of acyclic IND's and FD's.

Intuitively, a set of IN!Ys is acyclic [58] if it docs not contain any cycles of inclusions, such as

{R:A1A2~R:B 1 B2}. {lb\~S:B, S:B'~R:A'} and so on. Acyclic sets of IN D's have been proposed

as a useful tool for database schema design [58]. One can easily observe that the implication problem

for acyclic IND's and FD's can be solved in exponential time (the chase terminates in this case). NP·

hardness lower bounds for the problem were obtained in [26].

We show that the implication problem for acyclic IND's and FD's requires exponential time

(Theorem 2.4). The main observation is that, when all FD's arc unary (i.e. t11c left-hand side contains

a single attribute), the cquational inferences of Examples 1.1, 1.2 can be viewed as inferences in

scmigroups (Corollary 2.3). Such inferences can in turn simulate computations of an automaton with

two pushdown stores. Since such automata arc universal computing devices, we obtain a tight

undecidability result for FD and IND implication (Theorem 2.3). Furt11crmorc, the acyclicity

condition on the IND's corresponds to bounding the size of one of t11c pushdown stores, which gives

us exponential time.

1.4 Chapter Three: Application to Typed IND's

A usual assumption in database theory is that all database relations arc projections of a single

universal relation (Universal Instance Assumption [62, 51]). In practice iliis is not always the case, so

one has t11c problem of testing t11e existence of a universal instance and the problem of adjusting ilie

database relations to maintain t11c existence of a universal instance as t11e database is updated. Both of

t11esc problems arc known to be NP-complete [39]. An alternative, weaker condition we may impose

on a multi-relational database is pairwise consistency, i.e. every pair of ilic database relations is

required to have a universal relation. This condition is easy to test and maintain, as described in

10

numerous works on the subject (sec [8] for a review). In fact, if the database scheme is acyclic [8] then

pairwise consistency implies the existence of a universal instance.

Most of the theoretical work on dependencies is done in the context of databases consisting of a

single relation, i.e. it assumes the existence of a universal instance [62, 51]. A natural question, then,

is to investigate the effect of the weaker assumption of pairwise consistency on the implication

problem, say for functional dependencies. Although the implication problem for FD's is solvable in

linear time assuming a universal instance [6], it is not clear even if it is decidable in the context of

pairwise consistency.

Let r1.ri be relations over relation schemes R 1[U 1], H-i[U 2] respectively. It is not difficult to see

that r1.r2 have a universal instance iff the projection of r1 on U 1 n U2 is the same as the projection of

r2 on U 1nU2 [l]. This can be expressed (with a slight abuse of notation) by the pair of IND's

R1:U 1nU2sR2:U1nU2
R1:U lnU2~R1:U1nU2.

These arc examples of typedIND's. An IND is typed[l7, 48] ifit has the form R:A1 ... AmsS:A1 ... Am.

Ily the above observation, we can then formulate the implication problem for FD's in the presence of

pairwise consistency as an implication problem for FD's and (typed) IND's.

In this Chapter, we apply the equational techniques of Chapter 2 to study the implication problem

for FD's and typed IND's. The main tool we develop is a proof procedure for general FD's and IND's

(Theorem 3.1). TI1is proof procedure is different from the procedure of Theorem 2.2 and somewhat

reminiscent in spirit of the axiomatization of [54]. We prove completeness of the procedure by

showing that it captures (indirectly) equational inferences as in Examples 1.1, 1.2.

By analyzing the behaviour of this proof procedure in the case of typed IND's, we obtain a

decidability result for typed IND's and FD's satisfying an acyclicity condition (Corollary 3.1). We

then further specialize the proof procedure to the case of unary FD's in the presence of pairwise

consistency (Lemma 3.2). Ily a rather complicated analysis of derivations, we show that this

implication problem is undecidable (Theorem 3.3). This provides a very tight undecidable case of FD

and IND implication.

Finally, we use Lemma 3.2 to show that there is no k-ary axiomatization (involving only FD's and

IN D's) for implication of unary FD's under pairwise consistency (Theorem 3.4; the technical notion

11

of a k-ary axiomatization is explained in Ch;1ptcr 3). This strengthens a previous result of [16] about

non-existence ofk-ary axiomatizations for FIYs and IND's.

1.5 Chapter Four: Finite Implication of FD's and Unary IND's

Given the importance of the finite implication problem, it is natural to ask if our cquational

approach can be extended to finite implication. Unfortunately, there arc difficulties. The

completeness part of Theorem 2.1 is proved by analyzing a proof procedure (the chase). However, in

the case of finite implication of FD's and INI)'s such a proof procedure docs not even exist [54, 19].

Nevertheless. we can have a complete proof procedure for finite implication of FD's and IND's, if

we restrict ourselves to INIYs with one attribute per side (unary IND's). Unrestricted implication

becomes rather uninteresting in this case, because FD's and unary IND's do not interact in any non­

trivial way (Proposition 4.1). However, in the finite case we have the following interaction:

from A0-+A1 and A1;;2A2 and ... and Am_1-+Am and Am;dAo

derive A1-+A0 and A2;;2A1 and. .. and Am-+Am-l and A0;2Am

(m odd).

It turns out that this is the only non-trivial interaction: by turning the above observation into a set of

inference rules (one for each odd m) and including the usual inference rules for FD's [5] and IND's

[16], we obtain a complete axiomatization for FD's and unary IND's in the finite case (Theorem 4.1).

1l1c completeness proof is rather long and it involves an intricate construction of a finite

counterexample relation. We also remark that this axiomatization leads to a polynomial-time

algorithm for finite implication of FD's and unary JND's [44]. The class of FD's and unary IND's is

the only known class of dependencies for which unrestricted and finite implication arc both solvable

without being identical.

Interestingly, the above axiomatization can also be used to prove an analogue of 1l1corcm 2.1 for

finite implication of FD's and unary IND's (Theorem 4.2). However, this result is weaker, in the

following way. Suppose, for example, that we want to test if the FD A-+ B is implied from a set of

dependencies L. In the unrestricted case we can show that, if A-+ Bis implied, then there is a term -r

such that the equation -r[x/ax] =bx is implied (cf. Example 1.1); i.e., -r[x/ax] =bx holds in all algebras

which satisfy the equations corresponding to L. In the finite case, we can only show that, for each

algebra .A as above, there is a term -r (depending on .A) such that the equation T[x/ax] =bx holds in

12

.A..

1.6 Chapter Five: Partition Dependencies

We have presented in Chapter 2 an cquational formul;1tion of funttional dependencies. One can

also have another formulation of quite different flavor, usjng algcbrai1;; operations on partitions (this

seems to be a folklore observation, sec e.g. [15, 60]).

Spcci fically, let r be a relation and for each attribute A tct 11 A be the following partition of the set

of tuples of r: tuples t,s arc in the same block of 11 A iff they agree on auributc A. Now it is easy to see

that r satisfies the FD A-t B iff

71 A~'lTB,

or, equivalently,

71 A= '1T A •wB,

11 n= '1T A +wn.

Herc ~ is the usual refines relation and •, + arc the usual product and ~um operation on partitions.

We are thus led to consider general equations over •, + and the w A's. W c call such equations

partition dependencies (PD's) [27].

We first compare the expressive power of PD's to that of previously studied database constraints,

namely embedded implicational dependencies [34]. A first observation is that PD's of the fonn

11A=11 8 + w c can express symmetric transitive closure (Example 5.2). It follows by a simple

compactness argument that such PD's cannot be expressed by any set of EID's (Theorem 5.1). On

the other hand, PD's are unable to detect complicated patterns of equalities in relations and for this

reason they cannot express, for instance, multivalued dependencies (Theorem 5.2).

We then study the implication problem for PD's. We observe that the (finite) implication problem

for PI)'s is equivalent to the uniform word problem for (finite) lattices (Lemma 5.1). This follows

from two deep results of lattice theory, namely that (finite) equivalence relations can represent

arbitrary (finite) lattices [66, 56]. Using techniques from universal algebra [36, 47] and lattice theory

[28], we show that these word problems arc equivalent and they can be solved in polynomial time

(Theorem 5.3).

13

Finally, we examine the problem of testing consistency [38, 64] of a database with a set of PD's.

Using our polynomial-time algorithm for implication, we show that it can be reduced to testing

consistency with a set of FD's (38]. It follows that the problem can be solved in polynomial time

(Theorem 5.4).

1. 7 Credits

The research reported in this thesis was done in close collaboration with Paris C. Kancllakis, and

has been documented in a series of joint publications [25, 26, 44, 27]. Individual credit for the main

results goes as follows:

Theorems 2.1, 2.2, 2.3, 2.4 were obtained jointly, and appeared in [25].

Theorems 3.1, 3.2, 3.3 arc due to the author of this thesis, and appeared in [25]. Theorem 3.4 was

obtained jointly, and appeared in [26].

Theorem 4.1 was obtained jointly, but Paris C. Kanellakis was the main contributor; this result

appeared in [44]. Theorem 4.2 was obtained jointly, and appeared in [25].

111corcm 5.3 was obtained jointly, but the author of this thesis was the main contributor; this

result appeared in [27]. 'I11corems 5.1, 5.2, 5.4 were obtained jointly, and appeared also in [27].

The extension to general dependencies outlined in the concluding chapter is due to the author of

this thesis.

14

Chapter Two

The Equational Approach to Dependencies

We present in this Chapter the cquational formalization of functional and inclusion dependencies.

Section 2.1 gives the necessary definitions and background from database theory and cquational

logic. In Section 2.2 we present the main Theorem and its Corollaries. We use it in Section 2.3 to

prove completeness of a new proof procedure for FD's and INIYs. In Section 2.4 we apply the

cquational fo1mulation to prove new lower bounds for FD and IND implication.

2.1 Definitions

2.1.1 Relational Database Theory

Let CU be a finite set of attributes and Cl] a countably infinite set of values, such that cun~ = 0. A

relation scheme is an object R[U], where R is the name of the relation scheme and U~CU. A tuple t

over U is a function from U to~- Let U={A1, ... ,An} and aka value, k=l, ... ,n; if t[Ad=ak, we

represent tuple t over U as a1a2 ... an- We represent the restriction of tuple ton a subset X ofU as t[X].

/\ relation r over U (named R) is a (possibly infinite) nonempty set of tuples over U. A database

scheme Dis a finite set of relation schemes {R1[U1], ... ,Rq[Uq]} and a database d={r1, ... ,rq} associates

each relation scheme RdUd in D with a relation rk over Uk. /\database is finite if all of its relations

arc finite. A database can be visualized as a set of tables, one for each relation, whose headers are the

relation schemes (each column headed by an attribute) and whose rows are the tuples.

The logical constraints which determine the set of legal databases arc called database dependencies

[62, 51]. We will be examining two very common types of dependencies.

FD R:A1 ... /\n----+/\ (n>O) is afunctional dependcncy[62, 51).

Relation r (named R) satisfies this FD iff,

for tuples t1, t2 in r, t 1[A1 ... /\n]=t2[A1 ... Anl implies t1[A]=t2[A].

15

If n = I. i.e. the left-hand side contains a single attribute, we have a unary fu11ctio11al dependency

(u-FD).

IND S:D1 ... D01~ R :C 1 ... Cm (m>O) is an inclusion dependency [16].

Relations s,r (named S.R respectively) satisfy this IND iff,

for each tuple tin s. there is a tuple t1 in r with t 1[Cd = t[Dk], k = l, ... ,m.

If m = 1, we have a unary inclusion dependency (u-ID).

Fquality of two columns headed by attributes A,B in a relation named R can be expressed as a

special case of INlYs: Use an IND such as R:AB~R:AA. These dependencies arc particularly

illustrative of our analysis; we will use A::::B to denote them.

Database Notation: We use a graph notation to represent an input database scheme D and a set of

dependencies L (input schema). We construct a labeled directed graph G2: (sec Figure 2-1), which has

exactly one node at for each attribute Ak of each relation scheme Rj. For each IND

R2:D1 ... Dm~R1 :C1 ... Cm in L, the graph GL contains m black arcs (c},df),. . .,(c~.d~); each arc is

labeled by the name i of the IND. For each FD R1:A1 ... An-+A in L, the graph GL contains a group

of n red arcs (a},a1
), .. .,(a~,a1); the group is labeled by the name f of the FD and its arcs arc ordered

from 1 to n as listed above.

We also construct two directed graphs IL and FL (see Figure 2-1): The graph IL has one node for

each relation scheme name in D and arc (Rj.Rk) iff GL contains some black arc (Aj,Bk). The graph F~

has one node a for each attribute A of D and arc (a,b) iff GL contains some red arc (ak,bk). We now

define special syntactically restricted forms of input schemata:

Acyclic IN D's: IL is acyclic [58].

Acyclic FD's: FL is acyclic.

Typed IN D's: The black arcs ofGL arc all of the form (Aj,Ak) for relation names Rj.Rk and attribute

A [17, 48].

Typed IND's arc between occurrences of the same attribute names in different relation schemes.

If we assume that all possible typed 1ND's arc in the input schema. (i.e .. with some abuse of notation

R:Unu· ~S:Unu· for all relation schemes R[U]. S[U'] in database scheme D), then we have

pairwise consistency PC(D) [48).

16

Implication: We say that L i111plies a (Ll=a) if. whenever a databased satisfies L, it also satisfies

a. W c say that L finitely implies a (l:I= fin a) if, whenever a finite database d satisfies L, it also

satisfies a.

Clearly if Ll=a (implication) then Ll=ri 11 a (finite i111plicatio11), but the converse is not always true.

Deciding implication of dependencies is a central problem in database theory.

Since dependencies arc sentences in first-order predicate calculus with equality, we have proof

procedures for the implication problem (we denote provability as LI-a). A proof procedure is sound

if whenever LI-a, we have LI= a; and complete ifit is sound and whenever }:l=a, we have };I-a.

The standard complete proof procedure for database dependencies is the chase [62, 11]. We now

present the chase for FD's and IND's (cf. [43]).

Chase: Given an input schema D, L and a dependency a, construct a set of tables T, with D's

relation schemes as headers. These tables arc originally empty and will be filled with symbols from

the countably infinite set~. Whenever we insert a new row of symbols from~ in a table ofT and we

do not specify some of the entries of this row, we assume that distinct symbols from ~. which have

not yet appeared elsewhere in T, arc used to fill these entries. We use t~ for the k-th row of table R

and tllXl for this row's entries in the columns of attributes X.

The initial configuration of T depends on a as follows:

(i) If a is the FD R:A1 ... A11---+A: insert rows t~. t~ with the only restriction that

t~[Ak]=t~Ak], k=l, ... ,n.

(ii) If a is the IND S:D1 .. .Dm~R:C1 ... Cm: insert tl.

Every dependency in L produces a rule, as follows:

If f is an FD in L the corresponding FD-rule is:

<Consider T a database over symbols in ~. If T docs not satisfy f, because two symbols x and y are

different, then replace y by x in T>.

lfi is an IND R:X~S:Y in L the corresponding IND-rule is:

<Consider Ta database over symbols in~. If T docs not satisfy i, because some tr[X] docs not appear

in the table S as some ts[Y], then insert t5 in S with ts[Y] = tr[X].>

We will say that LI- chasca. if there is a finite sequence of applications of the FD-rules and IND­

rulcs produced by :L that transforms T's initial configuration to a final configuration satisfying:

17

(i) !fa is an FU as above: t~[A]=t~A].

(ii) If a is an IND as above: for some j,

t1[Dk]= tj[Cd, k = 1, ... ,m.

Proposition 2.l: LI- chase a iff LF a. I

An alternative proof procedure for FD's and INf)'s is provided by the axiomatization of[54]. If L

is a set of Fl)'s and IND's and a is an FD or IND, then Lt= a iff a can be proved from L using the

following rules (X, Y denote sets of attributes):

1. (reflexivity) R:A--+A.

2. (augmentation) from R:X--+A derive R:XY--+A.

3. (transitivity)from R:X--+Ak, k = l, ... ,n, R:A 1 ... An--+A, derive X--+A.

5. (IND transitivity) from R1:A1 ... Am~R2:Il 1 ... Bm and R2:B1 ... Bm~R3:C1 ... Cm derive

R1:A1 ... Am~R3:C1···Cm.

6. (permutation, projection and redundancy): from R:A1 ... Am~S:B1 ... Bm derive

R:AJ· ... Ai· CS: Ill· ... BJ· , where l<jk<m, k= 1, ... ,p.
1 p- 1 p - -

7. (equivalence) from R:AB~S:CC and a derive T, where T is obtained from a by

substituting A for one or more occurrences of B.

9. (collection) from R:A1 ... AnB1 ... Bm~S:Ai ... A~Bi ... B~v R:B1 ... BmC~S:Bi ... Bi'nC' and

S:Bi ... B:n--+C' derive R:A1 ... AnB1 ... BmC~S:Ai ... A~Bi ... Bi'nC'.

10. (attribute introduction) from R:A1 ... An~S:B1 ... Bn and S:B1 ... Bn--+B derive

R:A1 ... AnN~S:B1 ... BnB, where N is a new attribute.

Rules 1-3 arc the standard rules for FD's [5, 62] (written in our notation) and Rules 4-6 arc the

rules of [16] for IND's without repeated attributes. The salient rule is attribute introduction (Rule 10).

Whenever this rule is applied, the attribute N is chosen to be an attribute which does not appear in L

or in any previous step of the derivation. Ruic 10 is sound in the following sense: Whenever the

antecedents arc true in relations r,s (over relation schemes R,S respectively), there is a relation r'

18

which differs from r only on a new column headed by N and which satisfies the conclusion.

2.1.2 Equational Logic

Let M be a set of symbols and ARITY a function from M to the nonnegative integers .N". 'Ille set of

finite strings over M is M*. Partition M into two sets:

G = {gEMJ ARITY(g) = 0} is the set of generators,
0= {OEMJ ARITY(O)>O} is the set of operators.

Definition 2.1: ':J{M), the set of terms over M, is the smallest subset of M* such that,

1) every g in G is a term,
2) if 'T 1, ••• ,'T m arc terms and 0 is in 0 with ARITY(O)= m, then 0'T1 ... T mis a term.

A subterm of 'T is a substring of 'T, which is also a tcnn. Let V = {x,x 1,x2, ... } be a set of variables.

The set of terms over operators 0 and generators GU V will be denoted by '54 (M). For terms T1, ... ,T n

in '54(M) we have a substitution cp={ (xkt--'Tk) I k=l, ... ,n }, which is a function from '54(M) to

'54(M). We use cp('T) or 'T[x1h 1, .. .,xnh 11] for the result of replacing all occurrences of variables xk in

term T by term Tk, k = L .. ,n, where these changes arc made simultaneously.

Definition 2.2: A binary relation ~ on CJ(M) or '54 (M) is a congruence provided that,

1) ~ is an equivalence relation,
2) if ARITY(O)=m and Tk~Tk_, k= l, ... ,m, then 0'T1 ... 'Tm~O'Ti···'T:n.

An equation c is a string of the form 'T = 'T: where 'T, 'T 'are in '54 (M). We use tl1e symbol E for a set

of equations. We will be dealing with models for sets of equations, i.e., algebras. We consider each

equation e as a sentence of first-order predicate calculus (with equality), where all the variables from

V arc universally quantified.

Definition 2.3: An algebra .A is a pair (A,F), where A is a nonempty set and Fis a set of functions.

Each/ in Fis a function from A11 to A, for some n in ..N"which we denote as type(/).

:r<:xample 2.1:

(a) A semigroup (A, { +}) is an algebra with one binary operator which is associative, i.e., for all x,y,z

in A we have (x + y) + z = x + (y + z). An example of a semi group is the set of functions from ..N" to X.

together with the composition operation. In scmigroups we use ab instead of a+b. We also omit

parentheses, without ambiguity.

19

(b) AM is an algebra with A ='J{M). For each () in 0 we define a function () in F with

typl{ 8) = ARITY(()): here we use the same symbol for the syntactic object () and its interpretation.

The function(} maps terms T 1, ... ,Tm from 'J{M) to the term 0T1 ... T 111 , (i.e., 0(T1,. .. ,'Tm)=0T1···Tm).

This algebra is referred to as the free algebra on M. From this example it is clear that we can without

ambiguity use both 0T1 ... 'Tm and 0(Tl, ... , Tm> to denote the same term.

(c) Let::::: be a congruence on 'J{M). Condition (2) of Definition 2.2 guarantees that the operations

in 0 arc well-defined on :::::-equivalence (or congruence) classes. Thus we can form a quotient

algebra 'J{M)/::::: with domain {[T] IT in 'J{M), [T] is the :::::-congruence class of 'T} and with functions

corresponding to the operators in 0.

(d) Observations similar to (b),(c) can be made for the set of terms ~(M).

Implication: Let c be an equation and A an algebra. A satisfies c, or is a model for c, if c becomes

trne when its operators and nonvariable generators are interpreted as the functions of A and its

variables take any values in the domain of A. The class of all algebras which arc models for a set of

equations Eis called a variety or an equationa/ class. We say that E implies c (El=c) if the equation e

is trnc in every model ofE.

Definition 2.4: An equational theory is a set of equalities E (of terms over ~(M}), closed under

implication.

Sec [41] for a survey of cquational theories.

We write El-c, if there exists a finite proof of c starting from E and using only the following five

rules:

'T='T,

from T1 = T2 deduce T2 = T1,

from T1 = T2 and T2 = T 3 deduce T1 = T 3,

from Tk = Tk_, k = l, ... ,m, deduce 0T1 ... Tm = 0Ti ... T:n (ARITY(O)=m),

from T1 = T2 deduce cp(T 1) = cp(T2) (cp is any substitution).

Proposition 2.2: (14, 41] El= T = 'T • iff El-T = T: I

Proofs in the above system can also be viewed as reduction sequences, as follows (41]: Whenever

El= T = T ', there is a sequence of terms T 0, ... , Tm such that To is T, Tm is T ', and for k = O, ... ,m-1 the

20

term 'Tk+ 1 is obtained from Tk by rewriting a subtenn q:i(a1) as q:i(a2), where a 1 =a2 (a2=a 1) is an

equation in E and q:i is a substitution.

Let r be a set of equations over terms in ~{M) (i.e., containing no variables). Consider the

cquational theory consisting of all equations 'T = 'T 'such that fl=T = 'T: By Proposition 2.2 this theory

induces a congruence = r on 'mM). where 'T = rT · iff fl=T = 'T •• From example (c) above we sec that

this congruence naturally defines an algebra 'mM)/ = r· If r is a finite set, 'mM)/ = r is known as a

finitely presented algebra [47].

2.2 Functional and Inclusion Dependencies as Equations

Let :L be a set of FIYs and INl)'s over a database scheme D and a an FD or IND. We will

transform :L into two sets of equations E~ and gL. We will show that :Ll=a iff E~:l=ET iff SLl=ST,

for some sets of equations Er,gr whose form depends on :Land a. We assume that D only contains

one relation scheme. This simplifies notation, and there is no loss of generality.

Transformation: From the dependencies in :L construct the following sets of symbols:

Mr= {fk I for each FD with n attribute left-hand side include one operator fk of ARITY n},
Mi= {ik I for each IND include one operator ik of ARITY l},
M3 = {ak I for each attribute Ak include one operator ak of ARITY l},
Ma= { ak I for each attribute Ak include one generator ak}.

Now let M=MrlJMiUM3 UMa and V={x,x1,x2, ... } be a set of variables. cr+(Mr) (cr+(Mi)) are the

sets of terms constructed using operators in Mr(M) and generators in V.

The set E~ consists of the following equations (presented in string notation):

1) one equation for each FD A1 ... An-+A: fka1x ... anx=ax,

2) m equations for each IND B1 ... Bm~A1 ... Am: a1ikx=b1x and ... and amikx=bmx.

The set gL consists of the following equations:

3) one equation for each FD A1 ... An-+A: fka 1 ... an =a,

4) m equations for each IND B1 ... Bm~A1 ... Am: ikal =/31 and ... and ikam=/3m,

5) for each pair of symbols fp in Mr and iq in Mi the equation fpiqx1 .. .iqxn=ilPx1 ... xn

(ARITY(fp)= n).

Note that in gL only equations (5) contain variables. Equations (5) arc commutativity conditions

21

between the fk's and the ik's. We now present Theorem 2.1. which is central to our analysis.

Theorem 2.1: In each of the following three cases, (i),(ii).(iii) arc equivalent.

=Case:

i) LI= A::B

ii) E2.: I= ax=bx

iii) g2.: I= a ={3.

FD Case:

i) LI= A1 ... A0
--+A

ii) E2.: I= T[x/a1x, ... ,x1/anx]=ax, for some Tin ~(Mr)

iii) g2.: I= T[xtla1, ... ,xn/a 0]= a, for some Tin <J+-(Mr).

IND Case:

i) LI= B1 ... l3m~A1 ... Am

ii) EL I= a1T=b1x and ... and amT=bmx, for some Tin ~(Mi)

iii) gL1= T[x/a 1]= {3 1 and ... and T[x/aml= Pm• for some Tin ~(Mi).

Proof: Observe that the = Case follows immediately from the IND Case, by writing A::B as

Al3~AA. We use E'T (l'.:r) to denote the set of equations corresponding to term Tin (ii),(iii).

(ii)=>(i):

Suppose ELI= Er, and let relation r satisfy L; we will show that r satisfies a (a is A1 ... A0 --+A in the

FD Case and B1 ... Bm~A1 ... Am in the IND Case). Relation r is, by definition, nonempty and its

entries can be assumed w.l.o.g. to be positive integers. Let the tuples of r be t1,t2, ... (it could contain

a countably infinite number of tuples).

For each attribute A in CU, define a function a(.):X--+X(Jf is the set of nonnegative integers) so that, if

P is the index of a tuple in r, then a(v) is the entry in tuple tv at attribute A; else a(v) is 0.

For each FD C1 ... Cj--+C in L, define a function .f{ ...):.Ni--+X so that, if ak = tv[Ck], k= l, ... ,j, then

.f{a 1, ... ,aj) = tv[C]; else .f{a1, ... ,aj) is 0. This is a well-defined function, since r satisfies C1 ... Cj--+C.

For each IND D1 .. .Dj~Ct ... Ci in L, define a function i(.):Jf--+X so that, if v is the index of a tuple in

r, then i(v)= P: where P ·is the index of the first tuple in r where tv[D 1 .. .Di]= tv·[C1 ... Cj]; else i(v) is 0.

This is also a well-defined function, since r satisfies D1 ... Di~C1 ... Cj.

We have constructed an algebra with domain J{ and functions a(.), ... J(...), ... ,i(.), ... , which, as is easy to

verify, is a model for EL. Let a be an IND. By interpreting each symbol in -r as an i(.), we sec that,

22

when 11 is a tuple number, T[x/11) is another tuple number. Since E};l==Er. we must have

ak(T[x/ 11]) = bk(x), k = l , ... ,m, which means that r satisfies u. The case of an FD is similar.

(iii)~(ii):

Suppose g};1==gr· and let .Ab be a model of EL; we will show that .Ab satisfies Er. From .Ab we

construct a model .A.(.Ab) for E;L. The domain of .A.(.Ab) is the set of all functions from .Ab to .Ab, i.e.,

.Ab-+.Ab.

In .A.(.Ab) the interpretation of a is the function a(x), which is the interpretation of a(.) in .Ab. The

interpretation of i(.) is the function t..h.h(i(x)), where i(x) is the interpretation of i(.) in .Ab. 'Ibis is a

function from .Ab-+.Ab to .Ab-+.Ab. The interpretation of f(...) is the function

A.h 1 .•. h11.J(h 1(x), ... ,h11(x)), where J(x1, .•. ,x11) is the interpretation off(...) in .Ab. This is a function from

(.Ab-+.Ab)11 to .Ab-+.Ab.

It is straightforward to check that equations (3),(4) hold in .A.(.Ab), because .Ab is a model for EL.

Also equations (5) hold in .A.(.Ab): For example, if n= 1 the interpretation of f(i(h)) in .A.(.Ab) is

J(h(i(x)). which is also the interpretation of i(f(h)) (h is any clement of .Ab-+.Ab). Thus .A.(.Ab) is a

model for E;L. Since g};1==gr• .A.(.Ab) satisfies gr· From this it follows that .Ab satisfies Er.

(i)~(iii):

IND Case:

Consider a chase proof of B1 ... nm~A 1 ... Am from L. This chase starts from a single tuple t1 and

generates tuples t2, ... ,t11 , where t11 [A 1 ... A111
] = t1[131 ... Ilm1· Now a tuple can only be generated by

applying an IND-rule on some previously generated tuple. Thus, we can assign (inductively) to each

tuple lr· p = 1, ... ,11, a tcnn T P in ~(Mi), as foJJows:

1. 'Tl =X.

2. If tp was generated from tq, q<p, by applying the IND-rule corresponding to some IND i in L, then

T P = T q[x/ix].

The term T P records the sequence of applications ofIND-rulcs which produced lr (starting from t1).

We will show the foJJowing

Claim: For lsp,qs11, C,D in CU, iflr[CJ=tq[D), then g};l==TP[x/y)=Tq[x/8], where y,8 arc the

symbols in Ma corresponding to C,D.

23

Proof of Claim: Suppose the equality tp[C] = tq[D] appears after e)(actly z steps of the chase. We

argue by induction on z.

Basis: z=O. Then p=q = 1, C is D, and the conclusion is straightforward.

Induction Step: Let tµ[C] = K, tq[D] = ,\. 'I11e symbols K,.\ weri.'! equated by the chase. We

distinguish three cases, according to how this happened.

a." is a freshly created symbol, identical to ,\.This means tP was created from tµ·. p '(p, using an

IND X 1C'X2~Y1CY 2 in L (Xk,Y k~CU, k = 1,2), and tp·[C']= t
4
[D]. By the induction hypothesis

gkl=r P-(x/yl = r 4[x/ <5]. Now r P = Tp·(x/ix], where i is the operator corresponding to

X 1C'X2~Y 1CY 2, and also iy = y· is in gk. Thus, gkl=r P-(x/iy] = r q[x/8], i.e. gkl=r p(x/y]= r q[x/8].

b. " was equated to ,\ in order to satisfy some FD C1, .. Ci-+C in L. This means

tp[C1 ... Cjl = t4[C1 ... Ci], and D is C. By the induction hypothesis gLR:=r p[x/yk] = r q[x/yk], k = l,. .. j.

Also, we have in e;L the equation fy 1 ... yi = y, where f is the operator in Mi corresponding to the FD

C1 ... Cr-+C. Thus, e;L implies fr p(x/n] ... r p[x/yi]= r p(x/fy1 ···'Yj] (by the commutativity conditions

(5)) = r p[x/y]. Similarly e;L implies fr q[x/y1]. .. r q[x/yi]:::: r 4[x/fy1 ... yi] = r q[x/y], so

e;Ll=r p[x/y]= r q[x/y].

c. There arc tuples tµ·,t4·, p'<p, q'~q, and C',D' in CU such that tµ-[C1= "· tq·[D1= ,\,and tµ·[C1

was equated to t4 ·[D1 at some earlier step. Then by the induction hypothesis e;k implies

r p[x/y] = r p·[x/y 1, r q[x/ 8] = r q.[xl 81, and r P.[x/y 1=rq·[x/8 l Thus, e;Ll=r p[x/y] = r q[x/ 8].

FD Case:

Consider, as before, a chase proof of A1 ... An--+A from L. This chase starts from two tuples t1,t2 and

generates tuples t3, ... ,tv; finally, t1[A]=t2[A]. Again a tuple can only be generated by applying an

IND-rule on some previously generated tuple, so we can assign (inductively) to each tuple tµ.

p = l,. .. ,v, a term r P in ~(Mi), as follows:

1. Tl =X1, T2=X2.

2. Iftµ was generated from tq- q<p. by applying the IND-rule corresponding to some IND i in L, then

rp=rq[x 1/ix1, x2/ixJ

Observe that r P also records the tuple (t1 or t2) which produced tµ (apart from the sequence of

24

applications of IND-rules).

We will show the following

Claim: For lsp,qsv. C,D in CU, if Lp[C]=tq[D], tpcn 8~;1=-r 11[xk/y]=-rq[xk/8] (k=l,2). If,

additionally, ~ is produced from t1 and tq is produced from t2, then gL implies

-r p[x /y] = -r q[x/ 8] = -r[x/ a L·····xn/ an], for some -r in g+ (Mr).

Clearly, tlic IND Case follows from tlic second part of tllc Claim: Since t1[A] = t2[A],

8Ll==a =-r[x/a 1, ... ,xn/anl· for some -r in <J4(Mr).

Proof of Claim: Suppose tllc equality ;
1
[C] = tq[D] appears after exactly z steps of tllc chase. We

argue by induction on z.

Basis: z = 0. Then p = q = 1, C and D arc both so1nc Ak, 1 s ks n, and tllc conclusion is

straightforward.

Induction Step: Let tp[C] = K, tq[D] = t... The symbols K,A were equated by tlle chase. We

distinguish tllrce cases, according to how this happened.

a. K is a freshly created symbol, identical to ;\.This mQans Lp was created from tp·· p ·<p, using an

IND X1CX2kY1CY2 in L (Xk,YkkCU, k=l,2}, and Lp·[C.]=tq[D]. For the first part of tlle Claim,

we argue exactly as in tlic IND Case. For tllc second part, ttotc tllat if tP is produced from t1 tl1en so is

Lp·. Therefore we can use tlle induction hypotllesis on Lp·.tq·

b. K was equated to ;\ in order to satisfy some FD C1 ... Cr-+C in L. This means

Lp[C1 ... C) = tq[C1 ... Cj], and D is C. The argument for the first part proceeds exactly as in tllc IND

Case. For tlle second part, note tlrnt since gL implies -r p[xifyk]= -rk[x/a 1, ... ,x0 / an], k = l, ... j

(by tl1e induction hypotllesis), we have tllat gL implies

'T p[x /y] = 'T p[x/fy 1 ... y) =fr p[x /y 1]. .. -r p[x /Yj] =fr 1[x /a 1, ... ,xn/ an] ... -rj[x/ 0'.1 ... xn/ an]=

=-r[x/a1, .. .,xn/an], where -r is fr 1 ... -rj. Similarly, K~:: implies

'T q[x 1/y] = -r[x 11a1, ... ,xnl a 0].

c. There arc tuples Lp·.tq·· p·sp. q·sq, and C,D' in CU such tllat Lp·[C1= K, tq·[D1= t.., and Lp·[C1

was equated to tq·[D1 at some earlier step. The argument for tl1e first part proceeds exactly as in tlle

lND Case. For tlle second part, if Lp· was produced from t2, use tllc induction hypotl1csis on ~.Lp·;

25

else, if tq· was produced from t2, use the induction hypothesis on lr" tq·; else, use the induction

hypothesis on tq" tq.

This concludes the proof of (i}=>(iii), so we arc done. I

We remark here that the (i)=>(iii) direction can also be proved by showing that each of the rules

of[54] (sec Subsection 2.1.1) can be simulated using the cquational reasoning of Proposition 2.2. We

illustrate this simulation with an example:

From A--+B and CD~AB the pullback rule of{54] derives C--+D. In cquational language fa=/3,

ia = y, i/J = 8 and fix= ifx imply fy = fia = ifa = i/J = 8.

Corollary 2.1: Let L be a set of F!Ys and a an FD. The implication problem Ll=a is equivalent

to a generator problem for a finitely presented algebra [47].

Proof: SL is now a finite set of equations with no variables. If:::::::: is the congruence induced by g}.;

on 'J(M) then 'J(M)/::::: is a finitely presented algebra. The cquational implication in Theorem 2.1 is

known, in this case, as a generator problem for the finitely presented algebra 'J(M)/:::::. I

Using Corollary 2.1, one can observe that the linear time algorithm of [6] for implication of FD's

can be derived in a straightforward way from the algorithm of [47] for the generator problem.

Corollary 2.2: Let L be a set of FD's. 111e implication problem Ll=A:=:B is a uniform word

problem for a finitely presented algebra [47). I

If the given FD's arc all unary, then the cquational inferences in the theory Ek can be thought of

as inferences in semigroups. This gives yet another transformation of (unary) FD's and IND's into

equations:

Scmigroup Transformation: Let L be a set of IND's and u-FO's. Construct a set of symbols M5

from M as follows: for each fk(.) in Mr add one generator fk in Ms; for each ik(.) in Mi add one

generator ik in Ms; for each ak(.) in Ma add one generator akin M5; add one binary operator + in Ms.

The set of equations F'S consists of the associative axiom for + and the following word (string)

equations (we omit + and parentheses):

1) one equation for each u-FD A1--+A: fkal =a,

2) m equations for each IND B1 ... llm~A 1 ..• Am: a1ik=b1 and ... and amik=bnr

26

Corollary 2.3: J,ct L be a set of u-Fl)'s and IN I rs:

Ll=A=:B iff Esl= a=b.

Ll=A 1---1 A iff Esl= wa1 =a, for some string win M;_
Ll=B1 •.. Bm~A 1 ... Am iff Esl= a1w = b1 and ... and amw = bm, for some string win M;. I

Note that the first case is an instance of the unifonn word problem jiJr se111igroups. The other two

cases arc known as Es-unification problems [41].

2.3 A Proof Procedure for FD's and IND's

We will now describe a proof procedure for FD and IND implication, which exploits the special

structure of the cquational theory g); (Theorem 2.1). Whenever a dependency CJ cannot be proved

from a set of dependencies L, the procedure provides us (in a natural way) with an algebra which

satisfies g); but violates any equation that could correspond to CJ. Thus, by Theorem 2.1 we have that

L docs not imply CJ, i.e. the procedure is complete for FD and IND implication.

The Proof Procedure G:

Given a set L of FD's and IND's construct their graphical representation G); defined in Subsection

2.1.1. Each attribute name in Lis associated with one of the nodes ofG~.

Rules: Apply some finite sequence of the graph manipulation rules 1,2,3 and 4 of Figure 2-2 on G~.

Rules 1 and 2 introduce new unnamed nodes. Rules 3 and 4 identify two existing nodes; the node

resulting from this identification is associated with the union of the two sets of attribute names that

were associated with each of the identified nodes. Note that rules 1,2 w.l.o.g. need be applied at most

once to every left-hand side configuration.

Let G be the resulting graph. Associate a unique new name with every unnamed node in G.

We say that LI- cCJ when:

CJ is A:=: B: A,B arc associated with the same node.

CJ is an FD A1 ... An---1A: The node associated with A gets marked by the following algorithm: We

mark the nodes associated with A1, ... ,An; whenever nodes v1, ... ,vj arc marked and there is a group of

red arcs (v1,v), ... ,(vj,v) labeled by the name f of some FD in L, we mark v.

CJ is an IND B1 ... Bm~A1 ... Am: Fork= l, ... ,m there is a black directed path from Ak to Bk; moreover,

all these paths have the same sequence oflabcls.

27

Nole lhat, as ex peeled, the A= B Case is a specialization of the IN I) Case: if LI- c;A B~ AA, then

A,B can be identified using Ruic 3.

Theorem 2.2: Ll=a iff Ll-- 6-0".

Proof:

(=): Rules 3,4 arc obviously sound. Rules I and 2 arc sound in the sense of the attribute introduction

rnlc of[54] (sec Subsection 2.1.1), which we illustrate as rnle 5 of Figure 2-2.

(==>): Let G be a (possibly infinilc) graph obtained by closing G}.; under Rules 1-4. We will

construct from Ga model At, of gL'

The domain At of At, is the set V of nodes of G, together with a special node ..L. The generator ak is

interpreted as the node associated with Ak.

An operator i in E;::i: (corresponding to some IND in L) is interpreted as a function i:M-+M as

follows: ifv is in V and has an outgoing arc (v,w) labeled i, then i(v)=w; else i(v)= ..L. This function

is well-defined, because G is closed with respect to Rule 3.

An operator f of ARITY j in bL (corresponding to some FD in L) is interpreted as a functionfMi-+ M

as follows: if v1, ... ,vi arc in V and there is a group of red arcs (v1,v), ... ,(vi,v) labeled f, then

.f(v1, ... ,vj)=v; clsc.f(v1, ... ,vj)=..L. This function is well-defined, because G is closed with respect to

Rule 4.

One can check that At, satisfies the commutativity conditions (5) of g}.; (because G is closed with

respect to Rules 1,2) and At, satisfies equations (3),(4) orb}; (because G was constructed starting from

G}.;). Thus, At, is a model ofb};.

Now suppose we cannot prove a from L. If a is an FD A 1 ... i\n-+ A, then clearly there is no T in

cf+(Mr) such that T[xifa 1, ... ,xn/an]=a in At,, Thus, At, is a counterexample to condition (iii) of

Theorem 2.1 and therefore L docs not imply a. Similarly if a is an IND. I

2.4 Computations as Inferences

It has been known, since at least Post's proof of the unsolvability of the word problem for Thue

systems [55, 50], that arbitrary computations can be simulated by inferences in scmigroups. Using

Corollary 2.3, we show that we can simulate computations by inferences of IND's and unary FD's.

We thus obtain lower bounds on the complexity of the implication problem for INl)'s and FD's.

28

We first describe our machine model: A deterministic two-stack machine M is a 5-tuplc

(Q, n ,qstart·h,8). where Q is a finite set of states. n is a finite set of symbols (Qn n = 0), qstart EQ is

the start state, hEQ is the halt state. and o is the transition function . . Each move of M falls into one of

the following two types:

1. o(q,a)=(p,POP1): This means that, if M is in state q and aEO is the top symbol of

STACK 1, then on the next step M goes to state p and pops STACK1.

2. o(q) = (p,PUSII 1(,8)): If M is in state q, then on the next step M goes to state p and pushes

/3EO on STACK1.

Of course, analogous instructions can manipulate STACK2.

An instantaneous description (ID) of M is a string x1 ... xnqYm···Y1, where qEQ, xi,yiEn: the string

x1 ... xn is the contents of STACK 1 (the top symbol is x0); the string Ym···Yl is the contents of STACK2

(the top symbol is Ym). TI1e relation w1=>Mw2 (ID w1 yields ID w2 via one step of M) is defined in

the standard way [50, 40]. => .M is the reflexive, transitive closure of =>M.

Let us now define a set S of word equations (over generators QUIT) which capture the

computation of M:

1. If o(q,a)=(p,POP1), then aq =pis in S.
If o(q,a)=(p,POP2), then qa=p is ins.

2. If o(q)=(p,PUSII1(/3)), then q =/3p is in S.
If o(q)= (p,PUSII2(/3)), then q = p,8 is in S.

We write u = s v iff S l=u = v. By a standard argument, based on the fact that M is detenninistic

[55, 50], we have

To prove our first lower bound, we transform S into another set of equations T which looks like

the sets obtained (as in Corollary 2.3) from INIYs and u-FD's. The set of generators is now

QU{Aa,BcJa I a En }U{ia I aEO}U{jc I eES}.

1. If qa =pis in S. then qia =pis in T.

2. If aq = p is in S, then T contains the equations q = Aajc• fa A a= Ba, Bajc = p, where e is

aq=p.

29

J ,cmm~• 2.2: qstarl =sh iff qslarl = rh.

Proof: Given a word w over QUfl of the fonn a 1 .•. anqf3m .. ./Ji. qEn. ai,/3iEn. define a

corresponding word w· to be fal'·.fanqipm··.if:lt" We claim that, if w1.w2 arc words over QUO, then

w1 = sw2 iff wi =Twi. The Lemma follows from this claim.

To prove the "only if' direction of the claim, consider the equations in S that can be used to

rewrite w1 as w2. If qa =pis in S, then qia =TP· since qia =pis in T. If aq =pis in S, then faq =TP•

since faq = TfaJ\ajc = TBajc = TP· The converse is also straightforward. I

Theorem 2.3: The implication problem for IN D's and two u-FIYs is undecidable.

Proof: Given a deterministic two-stack machine M, it is undecidable ifqstart=:>Mh, even if 101=2

[53, 40]. By Lemmas 2.1 and 2.2, qstart =:> Mh iff qstart =Th. By Corollary 2.3, qstart =Th iff

2:1=0sian=H. where 2: is the set of INlYs and FIYs which gives rise to T. But now observe that 2:

only contains FD's of the form J\a-+ Ba, aEfl. Since In!== 2, 2: only contains two unary FD's. I

Undecidability of the implication problem for IND's and FD's has already been proved [54, 19].

By way of comparison, these reductions use arbitrarily many IND's of the form D1D2~C1C2 and

arbitrarily many u-FD's, while our reduction uses arbitrarily many IND's and only two u-FD's.

To prove our second lower bound, we consider computations of a deterministic two-stack machine

M where one of the two stacks has bounded size. Let us write w1=:>~w2 iffID w2 follows from ID w1

by a computation of M during which STACK2 contains at mosts symbols.

Let S be the set of word equations described before: this time we transform S into a set 1-.s of

equations which can be obtained (as in Corollary 2.3) from acyclic IND's and u-FD's. The set of

generators now is Q0U ... UQ5U{J\a,Ba,fa I aEfl}U{ia,k I aEO, k= l, .. .,s}U

UDe,k I eES, k=O, ... ,s}, where Qk={qk I qEQ}, k=O,. . .,s.

1 If .. S tl k+ l· k .. '1'5 k 0 1 . qa = p 1s m , 1cn q la.k + 1 = p 1s m , = , ... , s- .

2. If aq == p is in S, then T5 contains tl1c equations qk = Aajc.k• fa A a= Ba, Bajc,k =pk,
k = O, ... ,s, where c is aq = p.

It is not hard to sec tllat T8 can be taken to represent a set 2:5 of acyclic IND's and u-FD's: tlle

relation names arc R[J\aBa I aE fl], Rk[Qk], k =0, ... ,s. It is also easy to sec tl1c following

30

Theorem 2.4: There arc constants c1.c2>0 such that the implication problem for acyclic IND's and

FD's can be solved in time cJ1 but not in time cf n/logn.

Proof: Since the IND's arc acyclic, the chase gives us a decision procedure, n11111ing in exponential

time.

To prove the lower bound, let L be any language in DTIME(c0
), c>O. We will show that L is

polynomial-time reducible to the implication problem for acyclic IN D's and u-FD's.

Let M be a deterministic n-J\uxiliaryPushdownJ\utomaton accepting L [40]. Given string x, we

construct a deterministic two-stack machine Mx which first puts x on STACK2 and then simulates

M. This simulation is done as follows: ifM is in state q, its auxiliary storage contains a 1 ... a 0 aw (a is

the symbol scanned) and its stack contains u/3 (/3 is the top symbol), then the ID of Mx is

uf3a 1,p ... an.{Jqaw. It is not hard to sec how Mx can simulate a move of M. Thus, M accepts x iff Mx

halts and STACK2 always contains at most lxl symbols, i.e. xEL iff qstait~kJ h. Note aiso that the size
x

ofMx, IMxl• is O(lxl).

Now let Llxl be the set of acyclic IN D's and u-FD's corresponding to Mx. Using Lemma 2.3, xEL iff

Llxl1== R0: Q~tart=H0. To complete the proof, observe that Llxl can be computed from x in

polynomial time, and that the size of Llxl is O(IMxl lxl loglxl), i.e. O(lxl2logjxl). I

31

a.s. . bi

.
'1

I : {. ll2.: ~s-.. D ~

tlJ..: P,-+C.,

It~: A~~ tti.: A&,

~:A~~:g}

Fipre 2-t: Graph notation forFD'sand INIYs

32

>(

J

, . .

J-

I-

Figure 2·2: Graph mies for FD's and IND's

33

. ,,

i
'">)

.
'L

Chapter Three

Application to Typed IND's

In this Chapter we use the tools developed in Chapter 2 (Section 2.2) to study the particular

implication problem for FD's and typed INIYs. We first present a proof procedure for general FD

and IND implication (Section 3.1). similar in spirit to the proof procedure of Theorem 2.2. By

specializing this proof procedure to typed IND's, we obtain as a corollary that the implication

problem for acyclic FlYs and typed IND's is decidable (Section 3.2). ln Section 3.3 we study the

special case of inferring FD's under pairwise consistency. ny analyzing derivations (in the proof

procedure of Section 3.1), we show that the problem is undecidable. We also prove that there is no k­

ary axiomatization for implication of FD's under pairwise consistency. As a by-product of our

techniques, we obtain finite controllability of acyclic unary FD's under pairwise consistency.

3.1 Another Proof Procedure for FD's and IND's

We present in this Section a proof procedure for general FD and IND implication. This procedure

is the main tool we use to study the implication problem for typed IND's and FD's. To prove

completeness of the procedure, we show that it captures (in an indirect way) cquational inferences in

the theory E~: of Theorem 2.1.

Let L be a given set of FD's and IND's over a database scheme D, containing a single relation

scheme R[CU]. We represent attribute AkECU by a node ak. An FD A1 ... An---+A in Lis represented as

shown in Figure 3-1 by introducing a node fa1 ... an (we use a different function symbol f for each

given FD), a group of directed arcs (a1, fa1 ... an), ... ,(an, fa1 ... an) labeled f and ordered from 1 ton, and

an undirected arc <fa1 ... an, a>. The undirected arc is the only modification to our graph notation of

Section 2.1.1. Its purpose is to represent the equation fa1x ... anx=ax.

An IND B1 ... Bm~At···Am in L is represented (sec Figure 3-1) by introducing directed arcs

(a1,b1), ... ,(~.bm), labeled i (we use a different label for each given IND).

34

Let H L be the mixed graph obtained from }: as described above. Repeatedly apply Rules

T(transitivity), E1_2 (equality), 11_3 (i11troductio11) (sec Figure 3-2) on J-1 L' in some arbitrary fixed

order, until no more rules arc applicable. As was the case with Rules 1,2 in Theorem 2.2, the

introduction rules need only be applied once for each left-hand side configuration.

Let H=(NII,AII,E11) be the mixed graph obtained this way (NII is a set of nodes, A11 is a set of

labeled directed arcs on N11 , and E11 is a set of undirected arcs on NII). Notice that each node ofH is

labeled Fu1 ... uq, where Fis a term over the function symbols and u1,. .. ,uq arc nodes representing

attributes (by a slight abuse of notation, we write Fu 1 ... uq as a shorthand for F[x1/u 1,. .. ,xq/uqD·

Moreover, every sub term of Fu 1 ... uq appears as a node of H.

By a path labeled 'T, where 'Tis a tcnn over the i's (and a variable x), we mean a mixed path where the

sequence of labels corresponds to 'T (sec Figure 3-1). In the special case where 'T is simply x, the path

consists of undirected arcs.

The graph H fully captures implication of FD's and IND's from L, as we now show:

Theorem 3.1:

FD Case:

Ll=A1 ... An-+A ifftherc is a node Fa1 ... an ofH such that <Fa1 ... an, a>EEu.

IND Case:

Ll=I31 ... Bm~A1 ... Am iff there is a path from ak to bk labeled T, k = l,. . .,m, where 'T is a term over the

i's.

Proof: Let Ek be the set of equations of Theorem 2.1. Assume that the various names in Ek are

consistent with the names in H.

(=):

Claim:

(i) If<Fu1 ... uP, Gv1 ... vq>EEH, where the uk's, v/s are nodes corresponding to attributes and F,G arc

terms over the fs, then ELl=Fu1x ... upx=Gv1x ... vqx.

(ii) If (Fu1 ... up, Gv1 ... vq) is a directed arc labeled i, then ELl==Fu1ix ... upix = Gv1x ... vqx.

Clearly, the "if' direction follows from the Claim, by Theorem 2.1.

Proof of Claim: We prove both (i) and (ii) by simultaneous induction on the number of

35

applications of rules that created an (undirected) arc of H.

!Jasis: No rules were applied. The conclusion is straightforward.

/11ductio11 Step: We have to check Rules T, E1.2, I 1•3, each of which might have been applied at

the last step.

Rules T, E1 Straightforward.

Rule E;i, The undirected arc <Fu1 ... uP, Gv1 ... v4> was created from the undirected arc

<F't1j ... u~., G'vi ... v~·>. where (F'uj ... u;)·, Fu1 ... up). (G'vj ... v~-. Gv 1 ... v4) arc directed arcs labeled i. By

the induction hypothesis, FL implies F"ujx ... U~·x=G'vix ... V~·X, F'uiix ... u~-ix=Fu1x ... upx,

G'vjix ... v~·ix=Gv 1 x ... v4x. Thus, EL implies Fu1x ... upx=Gv1x ... v4x.

Rule 11 The undirected arcs <F1u1 ... up, G1v1 ... vq>. <Fnu1 ... up, Gnv1 ... vq> create the undirected

arc <Fu1 ... up, Gv1 ... vq>, where F=&'1 ... Fn, G=tG1 ... Gn- By the induction hypothesis, Ek implies

I\u1 x ... upx =Gk v1x ... v4x. k = l, ... ,n. Thus, EL implies

Fu1x ... upx = IF1u1x ... upx ... F nul x ... upx= tG1 v1x ... vqx ... Gn v1x ... vqx = Gv1x ... vqx.

Rule I;i, The directed arcs (F1u1 ... up, G1v1 ... vq), ... ,(Fnu1 ... up, Gnv1 ... vq) (labeled i) create the

directed arc (Fu1 ... up, Gv1 ... vq) (labeled i), where F=fF1 ... Fn, G=fD1 ... Gn. By the induction

hypothesis, Ek implies l\u1ix ... upix=Gkv1x ... vqx, k=l, ... ,n. Thus, Ek implies

Fu1ix ... upix = fF1u1ix ... upix ... F nu1ix ... upix = tG1 v1x ... vqx ... Gn v1x ... vqx= Gv1x ... YqX.

Rule I3 Identical to Ruic 12.

(=>): Let u be a node of H labeled Fu 1 ... up, where the uk's are nodes corresponding to attributes.

We denote by ur the term Fu1r ... UPT.

Claim: Suppose Ek implies Fu1T ... UpT=Gv1p ... vqp, where the uk's, v/s correspond to arbitrary

nodes of H, F,G arc terms over the fs, and T,p arc terms over the i's (and a variable x). Also assume

Fu1 ... up is a node of H, and there are nodes wk, k = l, ... ,p, such that there is a path from uk to wk

labeled r. Then Gv1 ... vq is a node of Hand there is a path from Gv1 ... vq to Fw1 ... wp labeled p.

The "only if' direction follows easily from the Claim, by Theorem 2.1.

Proof of Claim: IfELl==a=a·, then there is a sequence of terms a 0, .. .,am such that a0 is <1, am is

36

a', and for k=O, .. .,m-1 the term ak+ 1 is obtained from ak by rewriting a subtcrm ip(8 1) as ip(82),

where 8 1=82 (8 2 = 81) is an equation in E}; and ip is a substitution (Proposition 2.2). We call such a

sequence a proof of the equation a= a·.

We define a relation--< on pairs oftcnns as follows:

(f ,f)--<(71.11) iff E}; implies f = f ·and 71=71 ',and either

(i) the shortest proof off= f ·is shorter than the shortest proof of 71=1J ·, or

(ii) the above proofs have the same length, and t is a proper sub term of 1J, r. is a proper subtcrm of 11:

Obviously,--< is well-founded, so we can argue by induction on --<. Let a0, .. .,am be a shortest

proof of the equation Fu1r ... upr=Gv1p ... VqP·

Basis: m = 0. Using I2, 11, we sec by an easy induction on the structure of F that there is a node

Fw1 ... wp and a path from Fu 1 ... up to Fw 1 ... wP labeled r (sec Figure 3-3).

Induction Step: We assume that the Claim holds for all equations f = f · implied by E~;. where

(f.f)--<(Fu1r ... upr, Gv1p ... vqp); we will show that it holds for the equation Fu1r ... upr=Gv1p ... YqP·

W c distinguish two cases:

Case 1: Fork= O,. .. ,m-1, ak + 1 is obtained from ak by rewriting a proper subtcnn. This means Fis

tF1 ... Fn, G is fG 1 ... Gn, and F5u1r ... upr is rewritten as G 5v1p ... vqp, s= l, ... ,n. Now for s= l, .. .,n,

F5u1 ... up is a node of Hand (F5u1r ... upr, G 5v1p ... vqp)--<(Fu1r ... upr, Gv1p ... vqp), so by the induction

hypothesis G 5v1 ... vq is a node of H and there is a path from G 5v1 ... vq to F5w1 ... wp labeled p (see

Figure 3-4). Now by Rules 12, 11 and an easy induction on the structure of F5, there is a path from

F5u1 ... up to F5w1 ... wp labeled r; then by Rules T2, 11 there is a node tF1w1 ... wP ... Fnw1 ... wp, i.e. a

node labeled Fw1 ... wp. It follows by Rules 11, 13 that there is a node fG 1v1 ... vq ... Gnv1 ... vqo i.e. a node

Gv1 ... vq, and that there is a path from Gv1 ... vq to Fw1 ... wp labeled p.

Case 2: For some k, O~ksm-1, ak is rewritten into ak+ 1. We distinguish four subcascs:

Case 2a: Fu1r ... upr is rewritten as fa1f .. ant then as a~ using an equation fa1x ... anx=ax in E};

and then as Gv1p ... VqP· Clearly (Fu 1r ... upr, fa 1 ~ ... an0--<(Fu1r ... upr, Gv1p ... vqp), so by tl1e

induction hypothesis there is a path from fa 1 ... an to Fw1 ... w P labeled ~ (sec Figure 3-5). Since

<fa1 ... an, a>EE11, there is a path from a to Fw 1 ... wP labeled~. We also have

(a~. Gv1p ... vqp)--<(Fu1r ... upr, Gv1p ... vqp), so by the induction hypothesis Gv1 ... vq is a node of H

37

and there is a path from Gv 1 ... v4
to Fw 1 ••• wp labeled p.

Case 2b: Fu 1T ... UPT is rewritten as at then as fa 1 ~ ... an~ using an equation fa1x ... anx=ax in E}:

and then as Gv 1p ... v4p. Clearly (Fu 1T ... UPT, a0--<(Fu1T ... UPT, Gv1p ... v4p), so by the induction

hypothesis there is a path from a to Fw1 ... wp labeled~ (sec Figure 3-6). Since <fa1 ... an, a>EE11, there

is a path from fa1 ... a11 to Fw1 ... wp labeled~- We also have

(fa 1 ~ ... an~· Gv 1p ... v4p)--<(Fu1T ... UPT, Gv1p ... v4p), so by the induction hypothesis Gv1 ... v4 is a node

ofH and there is a path from Gv1 ... v4
to Fw1 ... wp labeled p.

Case 2c: Fu1T ... UPT is rewritten as a~. then as bi~ using an equation ax=bix in E}; and then as

Gv 1p ... v4p. Clearly (Fu 1T ... UPT' a~)--<(Fu 1 T ... UPT, Gv 1p ... v
4
p), so by the induction hypothesis there

is a path from a to Fw1 ... wp labeled ~ (sec Figure 3-7). Since there is a directed arc (b, a) labeled i,

there is a path from b to Fw1 ... wp labeled i~. We also have

(bit Gv1p ... v4p)--<(Fu1T ... UPT, Gv1p ... v
4
p), so by the induction hypothesis Gv1 ... vq is a node of H

and there is a path from Gv1 ... v4 to Fw1 ... wp labeled p.

Case 2d: Fu1T ... uPT is rewritten as bi~. then as a~ using an equation ax=bix in E}: and then as

Gv1p ... vqP· Clearly (Fu1-r. .. UPT, bi~)--<(Fu 1T ... UPT, Gv1p ... v4p), so by the induction hypothesis there

is a path from b to Fw1 ... wp labeled i~ (sec Figure 3-8). Now there is a node con this path such that

the subpath from b to c is labeled i. Since there is a directed arc (b, a) labeled i, by Rules E1, F1., T we

have <a, c>EEu. Thus there is a path from a to Fw1 ... wp labeled~- We also have

(a~. Gv1p ... vqp)--<(Fu1T ... uPT, Gv1p ... vqp), so by the induction hypothesis Gv1 ... vq is a node of H

and there is a path from Gv1 ... v4
to Fw1 ... wp labeled p.

This concludes the Proof of the Claim, so we arc done. I

We remark here that Theorem 3.1 can be strengthened using the axiomatization of [54] for FD's

and INIYs (sec Subsection 2.1.1). Specifically, we can show that we need not use Rule 13 in the

construction of H. To sec this, consider the following set<; of dependencies:

F11 = { u1 ... up-+u I uk, k= l, ... ,p and u arc nodes of H such that <Fu1 ... uP, u>EEu}.

IH = {u1 ... u4~v1 ... v4 I uk,vk arc nodes of H such that there is a path from vk to uk labeled T, k = l, ... ,q,

where Tis a term over the i's}.

Herc we assume that Rule I3 was not used in the construction of H. Clearly L~F11U IH. Moreover, it

is straightforward (but lengthy) to verify that F1:1UIH is closed under the rules of [54] (using the fact

38

that H is closed under Rules T, E1_2, 11_2). Therefore. :Ll=/\ 1 .•. t\n----+A iff a1 ... an----+a is in Fil and

Ll=B 1 ... Bm~A 1 •.• Am iffb1 •.. bm~a 1 ... a111 is in lu. This stronger version, however, is not necessary for

our purposes.

3.2 Typed IND's and Acyclic FD's

Suppose we arc given a set '}: of FD's and typed INl)'s, over database scheme D = {Rk[Uk]:

k = 1,. .. ,q}, Uk~CU. An attribute Aj of relation scheme Rk is now represented by a node ajk of H L (cf.

the graph notation of Section 2.1.1). The Fl)'s and IN D's in :L arc represented in HL as explained at

the beginning of this Section. We use a different label ijk for each typed IND

Rk:A1···Am~Rj:A 1 ... Am in L.

The fact that L contains only typed IN O's induces a special structure on the graph H (of Theorem

3.1), which we will now analyze. Consider the graph F~ of Section 2.1.1. This graph has a node a for

each attribute J\ in CU and a group of red arcs (a1,a), ... ,(an.a) labeled f for each group of red arcs

(a~,ak), ... ,(a~,ak) labeled f of HL. We define two partial functions type, node on the set of terms (over

the a k's and the fs). If T is a tenn, type(T) is tJ1c name of a relation scheme in D and node(T) is a node

of FL. The functions type, node are defined inductively as follows:

2. If type(Tj)=Rk and node(T)=vj for j=l, ... ,n, where there is a group of red arcs
(v1,v),. .. ,(v11,v)labeled fin FL, tJ1en type(fr1 ... T11)=Rk, node(fr1 ... T11

)=v.

The cmcial property of H (in the case of typed IND's) is given in me following

Lemma 3.1: The functions type, node are defined on all terms that appear as labels of nodes of

H. Moreover,

1. If fr1 ... T11 is a node of H then for j = l,. .. ,n we have type(Tj) = Rk and node(T) = vj, where mere is a

group of red arcs (v1,v), ... ,(v11,v) labeled fin F};.

2. If <u. v> is an undirected arc of H tJ1en type(u) = type(_v) and node(u) = node(v).

3. If (u,v) is a directed arc of H labeled ijk tJ1cn type(u)= Rj. type(v)= Rk and node(u)= node(v).

Proof: Straightforward simultaneous induction on the number of applications of rules mat

produced a node (arc) of H. I

39

Assume now that F).: is acyclic: It is not hard to sec that in this case each node of F).: can be the

image (under node) of at most an cxpu11e11tial number of terms (in the size of F};)· Therefore by

Lemma 3.1 the size of H is at most exponential, and by Theorem 3.1 we obtain

CoroIIary 3.1: The implication problem for acyclic FD's and typed INIYs is decidable. I

In particular, implication of an FD can be tested in exponential time, and implication of an IND

can be tested in 11011detcnninistic exponential time (by guessing appropriate paths of H). Whether

these bounds can be improved is an open question.

We remark here that if L is a set of FD's and typed IND's over database scheme D and Ll=11,

where a is an IND, then a must be typed. This follows easily from Theorem 3.1 and Lemma 3.1, but

can also be seen directly as follows: Consider a database d which associates to each relation scheme

Rk of D a single tuple tk, where tk[Ai] = j, AjE'll. Clearly d satisfies all FD's and all typed IND's (over

D}, but violates any IND which is not typed.

3.3 lnfe re nee of FD's under Pairwise Consistency

Let L be a set of FD's over database scheme D and let PC(D) be the set of all typed IND's over D

(recall that PC(D) expresses the fact that the database is pairwise consistent). By the remark at the

end of the previous Section, PC(JJ)U L docs not imply any new IND's, so we need only be concerned

with implication of FD's. Furthermore, observe that if a database d over D satisfies PC(D), then

Rk:A1 ... A0 -+A holds in relation Rk iff HfA1 ... A0 -+A holds in relation Rj, where Rk[Ud, Rj[Uj] both

contain attributes A1, ... ,A0 ,A. For this reason we can suppress relation names from FD's.

ln the presence of only typed IND's, every term that appears as label of a node of the graph H (of

1bcorcm 3.1) is of the form Fat ... a~. where type(Fa1 ... a~=Rk; this is an easy consequence of Lemma

3.1. Now suppose we have pairwise consistency, there is a node labeled Fat ... a~. and Am appears in

relation scheme Rj, m = l, ... ,p; then there is a directed arc labeled ikj from a~ to aim. 1bus, by Rule 12

(and an easy induction on the structure of F) there is a node labeled Fa-ir .. ab. This observation allows

us to represent the graph H more succinctly, by having only one node am for each attribute Am and a

node Fa1 ... ap for each term

Fat ... a~ that appears as a label of a node of H.

40

This representation can be further simplified if the F!Ys in L arc all wia1y. In this case all we need

to observe is that the terms that appear as labels of nodes correspond to paths in the graph FL (recall

that FL is a directed graph with a node am for each attribute 1\n and an arc (ak,a) for each FD

Ak-+Ai in L). Moreover, it is not difficult to sec that all such paths will appear as labels of nodes. We

now give the formal details of this representation.

Let V be the set of nodes of FL. For each attribute Am, let TA be the following (possibly infinite)
m

directed tree:

the set of nodes PA Ca111V* is the set of all paths in FL which start at~ (denoted as sequences of m-

nodcs);

the set of arcs is {(sak, saka) I sEV*, sakEP Am· Ak-+AjEL}.

Let P= U A euP A . Define E to be the smallest set of undirected arcs on P which contains <s,s>
m m

for all sEP and <akaj, a/ for all Ak-+Ai in L, and is closed under the following rules:

2. Pseudo-Transitivity: If <s1,s2>, <s2,s3> arc in E, skEP Ak' and there is a relation scheme in

D which contains A 1,A2,A3• then <s1,s3> is in E.

By the preceding remarks and Theorem 3.1, we have

Lemma 3.2: PC(D)ULl=Ak-+Ai iff <s,ai>EE for some sEP Ak' I

Example 3.1: Figure 3-9 has an example where D= {R0[A1Q1Q2B], R1[AA101], R2[A1Q1A2QiJ,

R3[A2Q2B]} and Lis {A-+Q1, A1-+A2, A2-+B, Q1-+A2, Q2-+B}. In this case, PC(D)ULl=A-+B.

The "only if' direction of Lemma 3.2 can also be proved by a counterexample construction.

Suppose <s,a/ is not in E, for any sin P Ak; we will construct a pairwise consistent databased over D

which satisfies the FD's in L but violates Ak-+Ai.

For each attribute Am in CU the domain of Am,~ A , consists of all functionsf PA -+{0,1} such that,
m m

if<s,s)EE, s,s'EPA , thcn.f(s)=.f(s).
m

Let Un be A1 ... AP. We construct a relation rn over Rn[Unl as follows: A tuplcfi .. Jp ificE~A,) is in rn

iff. for any sin PA"· s· in P A.x. (1 s K,ASP) with <s.s)EE, we havc..0c(s)= f>..(s').

It is easy to sec that the database d consisting of the relations rn satisfies the FD's in L (by the

definition of the set E). We also claim that d is pairwise consistent. The key observation is that, if

41

AK ... AK is any subset of Un, then the projection of rn on AK ... AK consists of exactly those tuples
j q 1 q

j~ .. .!,,. for which Ji1(s)= k(s') whenever <s,s'>EE (B,C in AK ... AK). Finally, one can verify that if
1 q l q

<s.a? is not in E, for any sin P Ak• then d violates Ak-+Aj.

The above construction produces in general an uncountable counterexample. Observe, however,

that if L is acyclic then each PA is finite, so the counterexample is finite. It follows that for acyclic
m

unary FIYs under pairwise consistency, finite implication coincides with (unrestricted) implication:

Theorem 3.2: The class of acyclic unary Fl)'s under pairwise consistency is finitely controllable. I

We now make some simple remarks about the set of undirected arcs E. Observe that, if<s1, s2>EE

and s1s', s2s' arc in P, then <s1s', s2s'>EE. This is an easy consequence of Propagation. Also, if

<as1, as2>EE and sas1, sas2 are in P, then <sas 1, sas2>EE. To sec this, supposes is s'b, where b is a

node such that B-+A is in L. Then <ba, a>EE, so by Propagation <bas1, as1>EE. Similarly

<bas2, as2>E E. Then by Pseudo-Transitivity <bas1, bas2>EE. We arc now ready to prove the main

result of this Section.

Theorem 3.3: The implication problem for unary FIYs in the presence of pairwise consistency is

undecidable.

Proof: We reduce the uniform word problem for scmigroups (Thuc systems [50]) to implication of

u-FD's under pairwise consistency. We assume that we arc given a set S of word equations of the

form aiaj=ak; the problem is to determine whether Sl=a 1a 2=a3. Recall that this happens iff the

string a 3 can be obtained from the string a 1a 2 by successively replacing a substring w1 by a substring

w2, where w1 = w2 (w2= w1) is an equation in S.

For each given equation in S, say aiaj = ak, we include in our database scheme relation

schemes R1_7, K1_2, Ri_3, L, M1_2, as shown in Figure 3-10. The directed arcs represent unary FD's.

There arc two general-purpose attributes X,Y. For each am there arc two attributes Am,Bm, and for

each equation there is a set of attributes Q1_8.

If the equation to be inferred is a 1a 2=a3, then we include in the database scheme relation

schemes R1_7, K1_2, Ri_3, L, J1_3 and FI)'s as in Figure 3-10 (where now Ai,Bi are A1, B1, Aj,Bj are

A2,I32, Ak,Bk are A3,B3, and we have used attributes Qi_8). We will show that the u-FD 06-+Q is

implied iff Sl=a 1 a 2 = a 3. Let P be a set of nodes and Ea set of undirected arcs as in Lemma 3.2.

42

Proof of Claim: We will give a characterization of the set E. Let e be an equation aiaj = ak in S,

and suppose c gives rise to relation schemes R1_7, K 1_2, R i-3, L, M 1_2, as in Figure 3-10. Consider the

following sets of undirected arcs which correspond toe (all these arcs arc in E):

Ee.
l•

<x<ij, <ij),

<aibi, bi>, <q1bi, bi>, <aibi, Q1bi>,

<biy, y>, <Q2Y· y>, <biy, Q2Y>.

<yx,x>,<q3x,x>,<yx,q3x>,

<xaj, aj>, <q4aj, a?, <xaj, q4aj>,

<ajbj, b?, <q5bi, b?, <ajbj, q5b?,

<bjy, y), <q6y, y), <bjy, q6y>,

<xak, ak>,

<akbk, bk>, <q7bk, bk>, <akbk, Q7bk>,

<bky,y>,<qgy,y>,<bky,qgy>.

Ee.
~2·

<xaibi, Q1 bi),

<aibiy, q2y>, <q1biy, Q2Y>.

<biyx, q3x>, <q2yx, q3x>,

<yxaj, q4a?, <q3xaj, q4a?,
<xajbj, q5bj>, <q4ajbj, q5bj),

<aibiy, q6y>, <q5biy, q6y),

<xakbk, q7bk>•

<akbky,qgy>,<q7bky,qgy>.

Ee.
3•

<q1 biyx, q3x>, <q2yxai, q4ai>. <q3xajbj, q5b?, <q4ajbjy, q6y>,

Fe
'4•

43

R~:

<q 1 biyxajbj• q5bj>. <q2yxajbjy, q6y>.

Ee
~6·

<xaibiyxajbjy, q6y>.

pe
'1·

<q6y, q8y>, <xakbky, q6y>, <xaibiyxajbjy, q8y>,

<xaibiyxajbjy, xakbky>.

It is not difficult to sec that for each equation c in S, k = 1, ... ,7, E~ is contained in E (compare with

Figure 3-9).

Now consider the following set of arcs E': Let <s1,s2> be a member of some E~ (for some e,k), and

suppose s' is obtained from s by successively replacing a subsequence xaibiyxajbjY by a subsequence

xak bky (or vice versa), where aio:j = o:k is in S. If s1 s, s2s ·arc in P, then put <s1 s, s2s ') in E '. Also ifs, s'

are in P, then put <s, s) in E'.

By the remarks immediately preceding the statement of Theorem 3.3 (and the fact that E~~E) we

have E' ~E. Furthermore E' contains the arcs initially put in E, and clearly it is closed under

Propagation. It is also straightforward (albeit a bit tedious) to verify that E' is closed under Pseudo­

Transitivity. Therefore E~E', and thus E=E'. The Claim now follows from this characterization of

E.

To finish the Proof, observe that Q6---4Q is implied (Lemma 3.2) iff <xa1b1yxa2b2y, xa3b3y> is in E

(cf. Figure 3-10). I

We will now show that there is no k-ary axiomatization for implication of u-FD's in the presence

of pairwise consistency.

Let D be a database scheme and 8 a set of sentences about D (for instance, FD's and IND's). An

axiom system for implication of sentences in 8 is k-ary (16] iff it is universe-bounded (i.e. only

attributes in D arc mentioned) and every rule has at most k antecedents, for some fixed integer

k. Observe that the axiom system of[54] for implication of FD's and INI)'s is not k-ary, because Rule

10 violates the boundedness condition (sec Subsection 2.1.1).

44

I.ct L~O. a in 0. We say that Lis closed under implirntio11 iff whenever Ll=a we have a EL. Also,

L is closed under k-ary implication iff whenever L'l=a, where L·~~. IL'ISk, we have aE};. The

following characterization for the existence of k-ary axiomatizations is taken from [16]:

Proposition 3.1: There is a k-ary axiomatization for implication of sentences in 8 iff whenever

L~8 is closed under k-ary implication, }; is closed under implication.•

Theorem 3.4: There is no k-ary axiomatization for implication of u-FD's under pairwise

consistency (we consider here axiomatizations involving arbitrary FD's and TND's).

Proof: Let CU be {A,A 1, ... ,Ak,Q1, ... ,Qk,B} and let D be a databas(I scheme over CU consisting of

relation schemes Ro[AQ 1 ... QkB], R1[Ai\ 1Qi], RJAj_1Qi_1AjQj], j=2, ... ,k, Rk+l[i\kQkB]. Let <I> be the

following set ofFl)'s over D: R1:A-1A 1, Rj:Ai_1-+Ai,j=2, ... ,k, R{Qj-,,1-+Aj,j=2, ... ,k,

Rk+ i:Ak-1B, Rk+ 1:Qk-+B, R0:Qi-1B, j = l, ... ,k (cf. Figure 3-9 for the case k=2).

Consider the set <I>' of F!Ys which arc consequences of <I>. The set <I>' can be constructed by

closing <I> under Rules l,2,3 of the axiom system of [54] (sec Subsccti()n 2.1.1). Let L be <I> 'UPC(D).

We will show that L is not closed under implication (of FD's and INP's), but is closed under k-ary

implication (of FD's and IND's). Theorem 3.4 will then follow by Provosition 3.1.

For the first part, it is not hard to sec that Ll=a, where a is R0:A-v-+B (cf. Figure 3-9). Since a is

not in L, we are done.

For the second part, suppose L'l=a, where L·~L, jL'j:$;k, a is an IND or an FD. We will show

that a is in L.

If a is an IND, then a must be typed, by the remark at the end of Section 3.2. 'Dms a is in L.

Suppose now a is an FD RP:C1 ... Cq-1C0, where 0:$;pSk + 1 and Jll the Cj's arc in CU. Since all

the Fl)'s in <I> arc unary, it easily follows from Theorem 3.1 that };'l=RP:Cm-1C0, for some m,

1Sm:$;q. We will argue that RP:Cm-1C0 is in cf>; from this it easily follows that a is in <I>', i.e. it is in

L.

Consider the nodes cm, c0 of the graph F ~ (cf. Figure 3-9). If there is no directed path from cm to

c0, then we can construct a relation rover CU which satisfies all the FD's in <I> (without their relation

names) but violates Cm-1C0. We can then project rover the R/s to obtain a databased over D which

45

11fJllL!ll19'.#t .. •J. •:~Ml1J ttJMJldU!iJ't"IW~•mt.Jfi~•!!t¥MIJlll Jr ·111Jll~llMIJ.4$1$Z!1Qk.Q£Jl.UIJ'"'9.illlttl•lllllfllllJll .. Jl,,14Jt!IQI
'.~ '.': . . ' ' '. ' '

satisfies l: (and thus also l: ') and violatoa R,:<;., -+Co-
Thus, there is a directed path from c.i •cu- Since C... ·Ca.• appear ii ~same relation name. it is

easy to check that it,:Ca-+Ca is in•. ""1m R.,:~-+GJ is le:A...,ll RaH¥e&", liRce J:Zl~t CMlO of

the FD's R1:A-+A1. RfA,t-1-+At J=4...t. ftt+ i:At.,...B-be tt 11 l 1 tom z· and thereftn we

cannot have l:.lmR@:A-+B (lint:e ii no directe4 - .. a to' tn Fx·). This CODCluclel che
proot:I

----·---~--------------------------

• ... t_.\
. .. t ..b,, .,

47

E1:
'U..
•

r~
i ~

v

.fu..v

~ uO

%. '\.L :z

w v '\V r-
fu..v .:h, 1.U

®: nuv noJe

I I :
2

I:
3

E:
2

l\.l.

;f u..v

"\A;'

"

v .

1,.

i.

Figure 3·2: Graph rules for FD's and IND's

48

1, r- '~ . \ 1
,, .
111..

}._ l.
v v w

~ \l 1.

,. w v i.

\--

fu.v f z'\J

.
'L

~

'\. 'W ~

l-

, . .

I
I
I
I
I
y
I
I

T I
I -- ----)')'- --- --o

F-u1 Fw
1

Figure 3· 3: Basis case

Figure 3·4: Case 1

49

,\
• , ,

' ,
I ,.

-•

~· T

T

r\ •
' ,
' ' I r

I ,
I

~- ,
f111,, ------. - _,.

... --,,-----------~

.{1 ,
I
I ,

. , ,,
,
t ' ,

r"'i -----------... J
. f' -----------<>G\

Flpre 3'-1: .ea. 2d

Sl

I\ Ri

A/e., • A R,o

!.

•Q 91.

'\v"1 Ri i

92-
•Q A~ ·~ 1

1\~Q.2 R3
·e,

B

Figure 3-9: Example of FD inference under pairwise consistency

52

" .

0~ l I

[0R2

/"' F.:1
r , \<,

• Q1.
A "Q

~
1

"' 1 iv .x

'Q AkVQ' R.'

B~f_/.Q2 R.3 "'
·~

2

'(•Q

.Q
B 'Q

3 "Q
"' 9

1

4

0R~ 'Q
& R.'

• Qi

Q
5

~~~ ~ 

" • Q6 
y 

~~5 
Q s .x \(,!!, 

AJ Qs R, .Qi 
LJM1 

5.t-<Q, 

• g 

1sd~~1R~ [SZT i y 

r I x Ji 
q~ 

• 

q~ 

, . 
' I 13 

LQf> Qi I 
<i 

8 

-
q~~ 

~ ,--, J y 
• ,Q'8 l, 

~9 

• 
Q, 

Q. 

9~~~ ~R~t\ 

Figure 3-10· G d . a gets for Proof of'I'l 1corcm 3.3 

53 



Chapter Four 

Finite Implication of FD's and Unary IN D's 

A natural question is whether our cquational approach can handle finite implication of database 

constraints. Ideally, we would like to be able to replace I= by l=nn throughout Theorem 2.1. It is 

easily seen that the same arguments can show that (iii)=:.(ii) and (ii)=:>(i) in the finite case (the 

constructions given map finite counterexamples to finite counterexamples). 'I11c argument for 

(i)=:>(iii}, however, breaks down, because it is based on the existence of a complete proof procedure 

for implication (namely the chase) and such a proof procedure cannot exist for finite implication 

[54, 19). As a matter of fact, the same ~yntactic nature of the proofs of Theorems 2.3 and 3.3 prevents 

us from proving undecidability of finite implication. The weaker proofs of [54, 19), because of their 

semantic nature, can easily be done for the finite case. 

However, Theorem 2.4 also holds for the finite case: fiy the discussion above one can see that I= 

can be replaced by l=nn in Theorem 2.1 if we have a finitely controllable class of FD's and IND's, i.e. 

a class where l=nn is the same as I=. Acyclic IND's and FD's provide an easy example of such a 

class, because the chase in this case constructs a finite counterexample if the implication docs not 

hold. Another example of a finitely controllable class is acyclic unary FD's under pairwise 

consistency (Theorem 3.2). 

If l=nn is different from I=, we might still be able to handle the finite case if there is a complete 

proof procedure for finite implication. In this Chapter we provide such a class: we show that there is 

a complete proof procedure for finite implication of FD's and unary IND's. This proof procedure is 

then used to prove a (weaker) analogue of Theorem 2.1. for finite implication of FD's and u-ID's. 

Let L be a set of FD's and u-ID's over a database scheme D containing a single relation scheme 

R[CU]. If a is an FD or u-ID, we will show that Ll=nn" iff a can be proved from L using the 

following set of rules (*). We use X,Y to denote sets of attributes. We denote a u-ID A~B 

alternatively as B:;dA. 

54 



Rules(*): 

1. (reflexivity) A-+A, AECU. 

2. (augmentation) from X-+A derive XY-+A, AECU. 

3. (transitivity)/rom X-+Ak, k = l,. .. ,n, A 1 ... An-+A, derive X-+A, AECU. 

4. (u-ID reflexivity) A~A. AECU. 

5. (u-ID transitivity)jirnn A~ Band B~C derive A~C, A,B,CECU. 

6. (cycle rules) For every odd positive integer m and attributes Ak, 
from A0-+A1 and A 1 ~A2 a11d ... a11d Am_1-+Am and Am:!Ao 

derive A1-+A0 and A2:;!A1 and ... and Am-+ Am-I and A02Am. 

Rules 1,2,3 arc the standard rules for FD's [5] (written in our notation) and Rules 4,5 arc the 

specialization of the general IND rules of [16] to u- I D's. Thus. Rules 1-5 arc sound for general 

databases (infinite as well as finite). A simple counterexample construction shows that Rules 1-5 are 

also complete for unrestricted implication of FD's and u-ID's. More specifically, FD's and u-ID's 

decouple in the case of unrestricted implication. 

Proposition 4.1: Let }:F be a set of FD's and }:1 a set of u-ID's. 

1. }:FLJ}:11:=X-+A iff LFl==X-+A. 

2. LFUL11:=A~B iff L11==A~B. 

Proof: The "if' direction is obvious in both cases. We will show the "only if' direction. 

1. Suppose LF docs not imply X-+A. Let x+ ={B I BECU, LFl==X-+B}. Consider a relation r 

consisting of tuples tk, k = 0,1,2, .. ., where to[B] = 0, BECU, and for k = 1,2, ... , tk[B] = k-1 if BEX+ and 

tdB] = k otherwise. It is easy to sec that r satisfies the FD's in LF (the only tuples to check are to.t1), 

and obviously r satisfies all u-ID's. Now since A is not in x+, r violates X-+A. Therefore, LFUL1 

does not imply X-+A. 

2. Suppose L 1 docs not imply A~B. I.ct G1 be a directed graph which has a node am for each 

attribute Am in CU and a directed arc (aj,ak) for each u-ID Ak~Aj in L1. By our assumption, there is 

no directed path from b to a in G1 (cf. Rules 4,5). Thus, we can assign to each node u of G1 a number 

c(u) so that c(u)sc(v) whenever there is a directed path from u to v, and c(b)>l{a) (this can be done 

55 



by a topological sort of the dag of strongly connected components of G1 [2]). Now consider a relation 

r consisting of tuples tk· k = 0,1,2, ... , where for 1\n in CU we have tk[!\11] = k + c{am). Clearly r satisfies 

all u-II)'s in L1 and violates A~B. Moreover, r satisfies all FlYs, so LFUI1 docs not imply A~B. I 

As a matter of fact, the cycle rules arc not sound for infinite databases: Consider a relation rover 

relation scheme R[AJ1], consisting of tuples tk, k=0,1,2, ... , where tk[A]=k, tk[B]=k+l: clearly r 

satisfies B---tA, A;;;?B, but violates B;;;?A. On the other hand, a simple counting argument shows that 

the cycle rules arc sound in the finite case. Let Ir[ A JI denote the cardinality of column A of relation 

r. If the antecedents of a cycle rule hold in r we have lr[A0Jl=lr[A1Jl= ... =lr[AmJI. Now if a finite 

relation r satisfies Ir[ A JI= jr[BJI and A-+ B, it easily follows that it satisfies B---tA. Similarly, from 

lr[A]I = lr[B]I and A;;;:? Bit follows for finite databases that B;;;:?A. 

In order to analyze the rules(*), we use a graph notation for dependencies similar to the notation 

of Subsection 2.1.1. If L is a set of FD's and u-IIYs, G2: is a graph which has a node am for each 

attribute Am, a red arc (ak,aj) for each FD Ak---tAj in L, and a black arc (aj,ak) for each u-ID Ak~Aj 

in I. If between nodes u,v ofGL we have red (black) arcs in both directions, we replace them with an 

undirected red (black) edge. The transitivity and cycle rules imply that, when Ak---tAj (Ak;;;?Aj) 

corresponds to some arc in a directed cycle of G2:, we can infer Aj---tAk (Aj;;;?Ak). In fact, if I is 

closed under the rules (*) then G2: has a good deal of structure, as can be easily verified. 

Proposition 4.2: If L is a set of FD's and u- ID's closed under the rules (*) then GL has the 

following properties: 

1. Nodes have red (black) self-loops. The red (black) subgraph of GL is transitively closed. 

2. 1l1e subgraphs induced by the strongly connected components ofGL arc undirected. 

3. In each strongly connected component of G~:. the red {black) edges partition the set of nodes into a 

collection of node-disjoint cliques. 

4. If A1 ... An---tA is an FD in I and a1, .. .,an have a common ancestor u in the red subgraph of GL, 

then GL contains a red arc (u,a). I 

By a topological sort of the dag of strongly connected components of GL we can assign to each 

component a unique sec-number, smaller than the sec-number of all its descendant components in the 

dag [2]. Thus every node u in the graph G2: of Proposition 4.2 belongs to a unique maximal red 

(black) clique and a unique strongly connected component. Let scc(u) denote the sec-number of the 

component of node u. 

56 



Figure 4-1 illustrates an example of such a graph GL. There ;He four strongly connected 

components. each a black clique, with all black arcs present from components with smaller to 

components with larger sec-number. The red cliques and red arcs arc sht>Wn explicitly. 

W c now give a construction which lies at the heart of Ollf complctcn(!SS proof. 

Lemma 4.1: Let Land GL be as in Proposition 4.2 (i.e., closed undcf the rules(*)). Let the dag of 

strongly connected components of GL be topologically sorted, so that \'ach component has a unique 

sec-number. We can construct a finite relation r such that: 

l. The u-FD A-+B holds in riff it is in L. Also all FD's in}"; hold in r. 

2. The only repeated symbol in each column of r is 0, and the symbols in r[A] arc exactly the integers 

from 0 to lr[A]l-1. Moreover. lr[A]l~lr[B]I iff scc(a)<scc(b) (thus, the u-ID A;21l holds in r iff 

scc(a):::;scc(b), and all u-ID's in L hold in r). 

Proof: First put in r a tuple of all O's. Process each strongly connccte<t component of GL in turn, in 

order of increasing sec-number. Begin processing a component by pr<X;essing in turn each of its red 

cliques. To process a red clique K, add a tuple with all O's in the columns of the attributes of Kand of 

the attributes in all red cliques that arc descendants of Kin the red subgraph of GL. For now leave all 

other positions blank. 

For every red clique K keep a count of the number of O's in one of its columns (by the way the 

construction proceeds all columns of K have the same number of O's). Now that one tuple was added 

for each red clique in the component, in order to te1minate processing the component repeat certain 

of the tuples just added, so as to make the counts of all cliques in the component equal, and strictly 

greater than the counts of the cliques of the previous component. This is possible because no red 

clique is a red descendant of another red clique in the same component, or in a component with 

larger sec-number. Once a component is processed, no further O's arc added in its columns and its 

counts no longer change. 

After adding tuples for all red cliques in all strongly connected components, we examine in turn each 

column. If the column has s blank positions, we fill them in with the numbers 1 to s, without any 

repetitions. We illustrate the construction in Figure 4-1. 

Now it is easy to check that conditions 1,2 hold: 

l. No u-FD in L was violated during the construction. Furthermore, all u-FD's not in L were 

violated. To sec this, observe that if A-+ Bis not in L, then the tuple inserted for the red clique of A 

57 



and the initial tuple of all O's disprove A--t B. 

We must also verify that all non-unary FIYs in L arc satisfied. Suppose A1 ... An--tA is an FD in I 

violated by r. Since the only repeated symbol in each column is 0, there is a tuple t of r such that 

t[Ak]=O, k= l, ... ,n, t[A]>O. Nowt was inserted in r while processing a red clique"· so all O's int 

correspond to attributes that arc functionally determined by every attribute B of ic. Since L is closed 

under Rules 1.2,3, it follows that B--+Ak is in L, k = l, ... ,n, and also B--tA is in L. But then r satisfies 

B--t A, and since t[ BJ= 0 and there is an initial tuple of all O's, we obtain t[ A]= 0, which is a 

contradiction. 

2. By the way r is constructed, the final counts arc strictly increasing with the sec-numbers, and arc 

equal in all columns of a strongly connected component. I 

We will now prove our main result: 

Theorem 4.1: The rules(*) arc sound and complete for finite implication of FD's and u-ID's. 

Proof: We have already argued for soundness, so it remains to show completeness. Let L be a set 

of FD's and u-ID's closed under the rules(*), and let a be an FD or u-10 not in L. We will exhibit a 

finite counterexample relation r which satisfies L but violates u. 

Case 1 (a is an FD): 

If a is unary, then the relation constructed in Lemma 4.1 is the desired counterexample. If a is not 

unary, we can use a construction similar to that of Lemma 4.1. In this case the counterexample 

relation is the union of two relations r0,r1. 

Let a be X--tA. The first relation r0 is a two-tuple relation with one tuple all x's and the other having 

x's only in the attributes that arc functionally determined by X in the set L. The remaining positions 

of this second tuple arc initially left blank. 

The second relation r1 contains the symbols 0,1,. .. (but not x) and is constructed so that the union of 

r0 and r1 has the right number of repetitions of the symbol 0 in r1 to satisfy all u-ID's in L. The 

construction of r1 parallels the Proof of Lemma 4.1. The only difference is that now the counts arc the 

number of O's and x's in the union of the two relations. When the correct number of blanks have been 

inserted in all columns, i.e. all columns in a strongly connected component have the same count and 

count increases with sec-number, then the blanks can be filled in as in the Proof of Lemma 4.1 and all 

u-ID's in L arc satisfied. 

58 



Case 2 (O' is au-ID): 

Let O' be C;;JD. Repeat the construction in the Proof of Lemma 4.1, with the following modification: 

if the column for attribute /\ has s blank positions, fill in the blanks with the numbers 1 to s if there is 

nu black arc (a,d) in GL; otherwise, fill in the blanks with l, ... ,s-1, x. The relation thus constructed 

satisfies the FD's in L, by the same argument as in the Proof of Lemma 4.1. To sec that the u-ID's in 

L arc also satisfied, observe that A;:) B is violated iff either 

(i) scc(a)>scc(b), or 

(ii) scc(a)::s;scc(b), there is no black arc (a.d), and there is a black arc (b,d). 

By the properties of G~;. this means there is no black arc (a,b), i.e. A;:)B is not in L. Finally, it is clear 

that C;:)D is violated. 

Sec Figure 4-2 for an example of this construction. I 

We remark that Theorem 4.1 leads easily to a pulynumial-time algorithm for finite implication of 

FD's and u-IIYs [44]. We will now use Theorem 4.1 to prove an analogue of Theorem 2.1, this time 

for finite implication ofFD's and u-UYs. The notation is taken from Chapter 2. 

Theorem 4.2: In each of the following two cases, (i),(ii),(iii) arc equivalent: 

FD Case: 

i) LI= fin A1 ... An-+A. 

ii) ELI= fin V rE~ (Mr) T[x1/a1 x, .. .,xn/anx] =ax. 

iii) !;LI= fin V rE~(Mr) T[x1/a1,. . .,xn/an]= a. 

u-ID Case: 

i) Ll=fin B~A. 

ii) ELI= fin V rE~ (Mi) aT =bx. 

iii) l;l:l=fin V rE~(Mj) T[x/a]=,8. 

Proof: The implications (iii)~(ii), (ii)~(i) can be proved by the same argument as in the Proof 

of CI11corcm 2.1. The reason is that the constructions we give map finite counterexamples to finite 

counterexamples. 

(i)~(iii): Suppose Ll=finO', where O' is an FD or u-ID. By Theorem 4.1, there is a proof of O' from 

L using the rules(*). Let z be the number of steps of such a proof. We show both the FD and the 

u-ID Cases by simultaneous induction on z. 

59 



/Jasis: z = 0. The conclusion is straightforward. 

!11ductio11 Step: We distinguish six cases, depending on the last rule which was applied to prove u. 

Rules 1.2 Straightforward. 

Ruic 3 This means the FD's A1 ... An--+Bk, k=l,. .. ,m, B1 ... Bm--+A can be proved from}; (in less 

than z steps); Ruic 3 is then applied to derive A1 ... An--+ A. By the induction hypothesis, gL finitely 

implies V 7 kE<:r+ (Mr) Tk[x /a 1x, ... ,xn/anx1 = bkx, k = l,. .. ,m, and also gL finitely implies 

V rE<:r+ (Mr) T[X 1/b1 x, ... ,xn/bmxJ =ax. Thus, gL finitely implies 

V r,r 
1
, ... ,rm E':f~ (Mr) T[x if T J[x l/a1 x,. .. ,xn/anxJ, ... ,xmh m[x 1/a 1 x, ... ,xn/anx]] =ax, i.e. 

gL1=fin v rE<:r+(Mr) T[x/a1x, ... ,xn/anx]=ax. 

Ruic 4 Straightforward. 

Ruic 5 Similar to Rule 3. 

Ruic 6 Now the dependencies A0--+A1, A1;;]A2,. . ., Am_1--+Am, Am;;]A0 (m odd) can be proved 

from}; (in less than z steps); then by a cycle rule we derive A1--+A0. 

Let .A be a finite model of gL. By the induction hypothesis .A satisfies p0a0 = a 1, T1 a 1 = a2,. . ., 

Pm-1 am-1 =am, T mam = ao, where PkE<:r+ (Mr), TkE~ (M) (we write Ta as a shorthand for T[x/ a]). 

We will show that there is some p • in~ (Mr) such that .A satisfies p 'a1 = a 0• 

Observe first that .A satisfies PoT mPm-l···T3p2T1a 1 = a 1 (concatenation denotes composition). Dy 

the commutativity conditions (5) of gL' PoT mPm-1 ... -r3p2T1 = PoPm-I ···P2T m ... -r3T1, so .A satisfies 

P0Pm-1 .. ·P2T m ... T3T1 a1 =al. Now put P0Pm-l "·P2 = p, 'T m ... 'T3T1 = 'T, 'T m ... T3T1a1 =a. 

We now have Ta1 =a, pa= a 1. We will argue from these two equations that there exists some p ·in 

<:r+ (Mr) such that .A satisfies p • a 1 =a. It will then follow, since Pm+ .. p2a = a0, that .A satisfies 

Pm-l· .. P2P'a1 =ao. 

Consider the set K= {pka1 : k~O} (pk is p composed with itself k times). Since .A is finite, K is 

finite, and therefore there exists a least integer q such that pqa1=p5a1, for some s greater than q. We 

will first argue that q = 0. Assume on the contrary that q> 1. By commutativity, 

Tpqa1 =pqTa1 =pqa=pq-1pa=pq-1a 1, and similarly 

pq-1a 1=ps-la1, which contradicts the choice of q. 

60 

But this means 



I 
1 •. 

Siaee q=O • .Alltilfies •1=P•ai. whefe&)O. But now •·••1=T,.--._'1ll:','Ta1apt-l1H1=P1-l•1• i.e. 

A sadsftes ,,..1«1 =•· This~da41le . ....-t. 
If a cycle rule is applied to 4Crive a wlD. we 8111JC ia • eMe1J . .,._way. I 

61 



A2. A3; 
\ 

Cz 
~ 

' -

GL 

A1 A~ A3 Ali Bi B:i B3 Ci Ci. 01 D:i., 
0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 i 0 i 1 

1 0 1 1 1 i 0 0 
--------- - - - - - - -- - - - - --

z 2- 0 3 2 3 l 
"3 3 2. 0 0 0 0 3 

~ Lt 3 0 0 0 0 Li 
--------- - -- - - - - - - -- -

5 5 Lt ~ 0 ~ 5 
~ () 5 s 3 0 b 
.,. 1 {, ~ ~ 0 t 

-------- ------ - - - --- -

i 8 r 1 s 5 0 0 

9 ~ s ~ (, b 0 0 

to 9 ~ t t 0 0 
10 

11 II f o 10 '6 g 0 0 

J<igurc 4· 1: Construction of a finite counterexample relation 

62 



fti. A~ A3 A,. As ."' 
0 0 0 0 0 0 

1 0 0 0 0 0 

J, 1. 0 0 0 0 

3 2, i 0 0 a 

't 3 ;z, J.. 0 0 

5 " '3 2.. 1. 0 

' x q " 2, )l 

63 



Chapter Five 

Partition Dependencies 

5.1 Preliminaries 

Let D be a database scheme containing a single relation scheme R[CUJ, CU={A1,. .. .Au}. We can 

express database constraints as formulas of first-order predicate calculus with equality [32]. These 

formulas have a single relation symbol R of ARITY u which represents the relation R, and no function 

(or constant) symbols. 

Specifically, let us call atomic formulas of the form Rx1 ... xu relational fonnulas and atomic 

formulas x = y equalities. A fonnula is typed iff there arc disjoint classes (types) of variables such that 

1. if Rx1 ... xu appears in the formula, then xk is of type k, k = l,. .. ,u, and 

2. if x = y appears in the formula, then x,y have the same type. 

Definition 5.1: An embedded implicational dependency (EID [34]) is a typed sentence of the form 

Vx J···xp. [(<pl A. .. l\q;n)~ 3Y1···Yq· ( 1'111\. .. /\ ilim)J, 

where each <i>k is a relational formula, each ij;k is either a relational formula or an equality between 

two of the xk's, and each of the xk's appears in one of the q;k's. 

Example 5.1: 

(a) Let CU= {A1,A2,A,B}. The FD A1A2-+A can be expressed as the EID 

Vx1x2xyx ·y·. [(Rx1x2xy l\Rx1x2x'y)~x = x]. 

(b) Let CU={A,B,C}. The MVD A-t-tB (62, 51] is equivalent to the EID 

Vzxyx'y'. [(Rzxyl\Rzx'y')~Rzxy]. 

Now let r be a relation over a finite universe of attributes CU, and let a be an EID. As one can 

easily observe, to decide whether rl==a we do not need to know the particular values appearing in r, 

but only the equalities between these values. As a matter of fact, all that is relevant about two tuples 

t,s of r is the set of attributes on which they agree. We can capture this information formally by 

64 



considering, for each attribute A in CU, the partition 7T A which is induced on the set of tuples of r by 

the values of r in column A: two tuples t,s of r arc in the same block of 7T A iff they agree on A. The set 

{ 7T A I A ECU} characterizes the Ell)'s satisfied by r. 

Although the above observation docs not seem to take us very far regarding general ErD's, it docs 

lead to an elegant algebraic formulation of FD's [15, 60, 27]. Recall that partitions have a natural 

partial order~. and two natural binary operations •. +: Given partitions w, 11 of a set S, 

7T < 7T • iff for every block x of 7T there is a block x' of 7T ·such that x~ x'. 

77•w ·= {x Ix= ynz:t:0, yf 17. zf 77 • }. 

7T + 7T ·= {x I a,bES arc in x iff there is a sequence x0, ... ,xn such that 
xiE77LJ77' for i=O,. .. ,n, aEx0, bExn, and xinxi+ 1:t:0 for i=O,. . .,n-1} 

Notice that 7T • 7T ·is the coarsest common refinement of 7T ,7T ·(in the sense of<) and 7T + 11 ·is their 

finest common generalization. Also •, + arc associative, commutative and idempotelll (cf. Section 5.3). 

With the above remarks, it is easy to sec that an FD such as AB-+CD holds in relation riff 

71 A •77n~11c•77n 

or, equivalently, 

or, still, 

Thus, Fl)'s can be expressed cquationally using product and sum of partitions. It is then natural to 

investigate the expressive power of general equations one can write using •, +. 

Definition 5.2: 

a. The set of partition expressions over CU, W(CU), is the least set satisfying the following closure 

conditions: 

1. AEW(CU), for A in CU. 

2. Ifc,c'EW(CU}, then (c•c' ), (c+e') arc in W(CU). 

( •, + arc meant here as uninterpreted operator symbols) 

b. A partition dependency (PD) is an equation e = e ', where c,e 'EW(CU). 

65 



The above definition gives the .\)'JJtax of PD's. The se111a11tics of PD's arc given below: 

Definition 5.3: 

a. Let r be a relation over CU, S the set of tuples of r. For A in CU, 

'TT A ={x I t,sES arc in x ifft[A]=s[A]}. 

Then L(r) is the set obtained by closing {'TT A I A ECU} under product and sum of partitions. 

b. Let cEW(CU). The meaning of c in L(r), µ)c), is defined inductively as follows: 

2. µ./c•c')=µ./c)•µ.r(c'), 

J..Lr( c + c ·) = J..Lr(c)+ J..Lr(e' ). 

Relation r satisfies a PD c = c' (notation: rl=c = c') iff µ./e)= J..Lr(e' ). 

Observe that I ,(r) is actually a la II ice [28], generated by the set {'TT A I A ECU}. As a matter of fact, 

rl=c = c' iff L(r) satisfies the equation c = c· (with A interpreted as 'TT A• AECU). 

From Definition 5.3, we sec that we can use the formalism of PD's to express an FD AB-+CD as 

the PD A•B=A•B•C•D. Clearly rl=/\.13-+CD iff rl=A•B=A•B•C•D (here and in the sequel we 

omit parentheses from PD's wherever possible, for the sake of clarity). Partition dependencies of the 

above form, which arc equivalent to FD's, are of special interest; we call them FPD's. 

In the remainder of this Chapter, we investigate various questions concerning PD's. Section 5.2 

deals with the expressive power of PD's, and compares PD's to EID's from this point of view. In 

Section 5.3 we give a polynomial-time algorithm for the implication problem for PD's. Finally, in 

Section 5.4 we present a polynomial-time test for consistency of a database with a set of PD's. 

5.2 Expressive Power 

We want to study what properties of a relation r can by expressed using sets of PD's. From the 

definitions of•,+ and Definition 5.3 it it easy to sec the following: 

1. rl=C =A• B iff for any tuples t,sEr, 

t[C] = s[C] iff t[A] = s[A] and tlB] = s[B]. 

2. rl=C =A+ B iff for any tuples t,sEr, 

66 



t[C]=s[C] iff there is a sequence s0 •...• sn of tuples of r with t=s0, sn=s, and for 
i = o ..... n-1, sJA] =Si+ i[A] or sJB] =Si+ 1[B]. 

From observation (2) above, one secs that symmetric transitive closure can be expressed by a PD, 

as follows: 

Example 5.2: Consider a relation r representing an undirected graph. This relation has three 

attributes: IIEAD, TAIL and COMPONENT. For every edge {a,b} in the graph we have in the relation 

tuples abc, bac, aac, bbc, where c is a number which could vary with {a,b}. These arc the only tuples 

in r. We would like to express that: for each tuple t ofr, t[COMPONENT] is the connected component in 

which the arc (t[llEAD], t[TAIL]) belongs. We can do this by insisting that r satisfies the PD 

COMPONENT = JIEAD + TAIL. 

We now want to compare the expressive power of PD's to that of previously studied database 

constraints, namely EID's [34]. Let us say that an EID CT is expressed by a set E of PD's iff for any 

relation r, rl= CT iff rl= E. From the algebraic properties of •, the PD C =A• B is equivalent to 

C=C•A•B /\ A•B=C•A•B, and therefore it is expressed by the set {C-+AB, AB-+C}. However, 

because of Example 5.2 above it should come as no surprise [4] that the PD C =A+ B cannot be 

expressed by any set of EID's: 

Theorem 5.1: Let CU= ABC; the PD C =A+ B cannot be expressed by any set of first-order 

sentences. 

Proof: Let L be a set of first-order sentences (with a single ternary relation symbol R as the only 

non-logical symbol) which expresses C =A+ B. Fork;::: 1, let 'Pk be the following first-order formula, 

with free variables t,s: 

"t[C] = s[C] and there is 110 sequence s0, ... ,sk such that t= s0, sk = s, and for i = O, ... ,k-1, 

sJA] = si+ 1[A] or si[B] =si+ 1[B]" 

(it is easy to sec how to write 'Pk without tuple variables). Observe that the relation r in Figure 5-1 

(with t,s as indicated) is a model for LU{qik}: rl=C=A+ B so rl=L, and clearly rl=cpk. Thus, any 

finite subset of 2:'= :LU{ cpk: k;::: l} has a model, and thus by the Compactness 'Ibcorcm [32] 2:' has a 

model, say r·. But this is a contradiction, since r· satisfies 2: and thus r' satisfies C =A+ B, and on the 

other hand r'l=cpkfor all k;::: 1 and therefore it docs not satisfy C= A+ B. I 

67 



On the other hand, an EID as simple as an MVD cannot be expressed by PD's: 

Theorem 5.2: Let CU= ABC; the MVD A---+---+ B cannot by expressed by any set of PD's. 

Proof: Let Ebe a set of PD's which expresses A---t--tB (sec Example 5.1 for the meaning of this 

MVD). Referring to Figure 5-2. relation r1 satisfies A---+---+ B, so L(r1)1=E. On the other hand, 

relation r2 docs not satisfy A---+--t B. so L(r2) docs not satisfy E. But this is a contradiction. because 

L(r1), L(r2) arc isomorphic, and thus they satisfy exactly the same PD's. I 

5.3 The Implication Problem 

Given a finite set E of PD's and a PD o, we want to know if El=o, i.e. if o holds in every relation 

that satisfies E. We also want to know if El=fi11 o, i.e. if o holds in every finite relation that satisfies 

E. We first observe that these questions can be approached as implication problems for lattices. 

LcmmaS.1: 

a. El=o iff El=iato, i.e. iff o holds in every lattice that satisfies E. 

b. El= lino iff El= Jat,fino• i.e. iff o holds in every finite !aLtice that satisfies E. 

Proof: 

a.(=): Suppose El=iato• and let r be a relation that satisfies E. Then L(r)l=E, so o holds in L(r), and 

thus r satisfies o. 

(=> ): Suppose El=o, and Jct L be a lattice satisfying E. Dy the Representation 1bcorcm for 

lattices, [28, 66]. we may take the clements of L to be partitions of some set X. Thus, each A in CU is 

interpreted in L as a partition 'TT A of X (and, of course, •, + in L arc partition product and sum 

respectively). Now consider a relation rover CU containing a tuple~ for each clement i of X (these are 

the only tuples in r), where ~[A]= tJAJ iff i,j arc in the same block of 'TT A• A in CU. Clearly r satisfies 

exactly the same PD's as L. Thus rl=E, so by the hypothesis rl=o, and therefore Ll=o. 

b. ( = ): Observe, in the proof of the "if' direction of (a), that if r is finite then L(r) is also finite. 

( => ): Observe. in the proof of the "only if' direction of (a), that if Lis finite then the set X can be 

taken to be finite, by the Representation Theorem for finite lattices [56). Then the relation r is also 

finite. I 

68 



Now E1=iat8 can he viewed as a (uniform) word problem, since a set with two binary operations 

•, + is a lattice iff the following set of axioms (I ,A) is satisfied [28): 

1. x + x = x, x·x = x (idcmpotcncy) 

2. x+y=y+x, x•y=y-x (commutativity) 

3. x + (y + z) =(x + y)+ z, x•(y•z)= (x•y)•z (associativity) 

4. x+(x•y)=x, x•(x+y)=x (absorption) 

I.e., El=1a18 iff 8 is implied from EU LA. We arc going to show that l=iat,fin is equivalent to l=iat• 

so l=iat,fin can also he viewed as a word problem. 

In particular, let 8(1 be the FPD corresponding to an FD a (8(1 is A=A•B if a is A-+B), and let 

Ek be the set of FPD's corresponding to a set of FD's L. Since rl=a iff rl=8(J, Ll=a iff ELl=8(J. 

Thus, the implication problem for FD's can be reduced, in a straightforward way, to the (uniform) 

word problem for idempotent commutative semigroups (structures with a single associative, 

commutative and idempotent operator). On the other hand, since X = Y is equivalent to X = X • Y /\ 

Y = Y • X, we can also reduce the above word problem to the implication problem for FD's. 

We now present a polynomial-time algorithm for the (finite) implication problem for PD's. 

Suppose we arc given a set E of PD's, and a PD c=c·: by Lemma 5.1, it suffices to test if El=1atc=e· 

(El=1at,tine = e· ). 

Consider the set W(CU) of partition expressions over CU, •, +: we define several binary relations on 

W(CU). First, define Sid (identically less-than-or-equal) inductively as follows: 

5. ifr~idP orr~idq then rsidp+q. 

(111e intended meaning of Sid is that P~idq iff every lattice satisfies p<q. no matter how the A's 

in CU arc interpreted). 

69 



The relation ~id is reflexive and transitive [28, 65). Also, if p 1 ~idq 1 , p2~idq2 , then 

P1 +P2~idql +q2 and P1 •p2~idql •q2. 

Now define =id as follows: p = idq iff both P~idq and q ~ictP· 

The relation =id is an equivalence relation, and in particular it is a congruence: i.e., if p1 = idq1, 

P2 = idq2, then p 1 + P2 = idql + q2 and p 1 •p2 = idql •q2. Thus, one can define •, + on the set of 

equivalence classes of= id· The structure obtained this way is a lallice [28, 65). 

We now capture the effect ofE. Define the following relation -t-tE on W(CU): p-t-+Eq iff q can 

be obtained from p as follows: for i = O, ... ,n, substitute wi for some (zero or more) occurences of Zj. 

where zi = wi (wi = zi) is in E. It is easily verified that -t-tE is a congruence. 

Now define ~E as the sum of ~id• -t-tE: P~Eq iff there is a sequence of expressions s0, ... ,sn 

such that p=s0, sn =q, and for i=O, ... ,n-1, si~idsi+l arsi-t-tE5i+I· 

It is easy to sec that ~E is reflexive and transitive. Also if Pi~Eq1 , P2~Eq2, then 

P1 +P2~Eql +q2 and p1 •p2~Eql •q2 (because both <id and -t-tE have this property [36)). 

Finally, define =E as follows: p=Eq iffboth P~Eq andq~EP· 

The relation = E is an equivalence relation, and moreover it is a congruence. One can further 

observe that the equivalence classes of = E form a lattice LE under the induced •, +: just check the 

axioms LA, e.g. p + p = 1~ because p + p = idP· and in general if p = idq then p = Eq. Note that LE 

satisfies a PD p = q iff p = Eq (A ECU is interpreted in LE as the equivalence class of A). 

We now show that the relation = E captures the PD's (finitely) implied by E: 

Lemma 5.2: 'The following statements arc equivalent: 

a. e=Ee' 

b. El=iatc=e' 

c. El=1at.finc=e' 

Proof: Observe that, from the way ~id and <E were defined, if c~Ec' then e<e' in every lattice 

satisfying E (where ~ is the partial order of the lattice). Thus, (a)=>(b). To prove (b)=>(a), recall 

that LE satisfies a PD p = q iff p = Eq. Thus, if c:;t:Ee' then LE docs not satisfy c = e', whereas it satisfies 

E; i.e., LE is a counterexample to El=iate =e'. 

70 



We now show the equivalence of (b),(c). The direction (b)=:-(c) is obvious. To prove the converse, 

we adapt an argument of [30) (sec also [28)), originally given for the special case E= 0. 

Suppose E docs not imply c = c · : we will show that there is a finite lattice which satisfies E but 

violates c = c ·. Let {Ai I i = l,...,n} be the set of attributes appearing in E,c,c ·, and Jct V be the set of all 

partition expressions (over the A i's) of complexity at most as high as the maximum complexity of e,e· 

and the expressions in E (complexity can be measured by the number of instances of•,+). Note that 

V is finite, since Eis finite. 

Consider now the subset I, of J ,E consisting of all finite products of the equivalence classes (under 

= 1) of clements of V, together with the equivalence class of A1 + ... +Aw It is not hard to verify that 

Lis a sublattice of LE. Ilut by the equivalence of (a),(b) c;t:Ec·, so L satisfies E and violates e=e·. 

Since I, is also obviously finite, we arc done. I 

We can now prove our main result: 

Theorem 5.3: There is a polynomial-time algorithm for the (finite) implication problem for PD's. 

Proof: Ily Lemmas 5.1, 5.2, it is sufficient to describe a polynomial-time algorithm to test, given 

E,e,e; whether e<Ee·. 

Let V be the set of all subexpressions of c,e·, and of the expressions appearing in E. The following 

algorithm constmcts a set r of directed arcs over V such that, whenever (p,q)Ef, P~idq or p-+-+Eq: 

71 



begin 

r.--0 

repeat until no new arcs arc added 

1. Add (A,A}, AEC.U 

2. if (p,r}Ef, (q,r)Ef, p+qEV 

then add (p + q,r} 

3. if (p,r)E r or (q,r)Ef, p•qEV 

then add (p•q,r) 

4. if (r,p)Ef, (r,q)Ef, p•qEV 

then add (r,p•q) 

5. if (r,p)Er ar(r,q)Er, p+qEV 

then add (r,p + q) 

6. Add (z,w),(w,z}, where z=w in E 

7. if (p,r)Er, (r,q)Er 

then add (p,q) 

end 

end 

Observe that Steps 1-5 in the above algorithm mirror the definition of <id· 

We will now prove the following 

Claim: For p,qEV, P~Eq iff(p,q)Ef. 

Clearly, the 111eorem follows from the Claim: to test if e~Ee·, construct the digraph (V,f} and 

check if it has an arc from e to e '. This can be done in polynomial time. 

72 



Proof of Claim: 

( = ): Straightforward. 

( ==!> ): We first give a set of rewrite rules [41] for SE: 

1. x+x-+-+X 

5. X-+-+x+y 

6. X-+-+y+x 

7. z-+-+w, where z=w (w=z) is in E 

Observe, regarding Rules 5.6, that y can be an arbitrary expression. 

An easy induction shows that, if p=:::;idq· then p can be rewritten as q using Rules 1-6. By the 

definition of =:::;E, if PSEq then there is a sequence of expressions s0, ... ,sn such that p=s0, sn=q, and 

for i = O, ... ,n-1, si-+-+si + 1, i.e. si + 1 is obtained from si by rewriting a subexpression of si according to 

one of the Rules 1-7. We call such a sequence a proof that p=:::;Eq. 

Now we define a relation -<on pairs of expressions: 

(P1.Q1)-<(p2.Q2) iff P1SEQ1, P2SEQ2. and either 

(i) the shortest proof that p 1=:::; Eql is shorter than the shortest proof that p2s Eq2, or 

(ii) the shortest proofs that p1=:::;Eq1, p2=:::;Eq2 have the same length, and p1 is a proper subexpression 

of p2, q1 is a proper subexpression of q2. 

Clearly-< is well-founded. We proceed by induction on-<. 

Basis: There is a proof that p<Eq of length 0. Then pis identical to q, and (p,q)Ef. 

Induction Step: Let p,qEV, and assume that the Claim holds for p ',q 'EV whenever (p',q' )-<(p,q). 

We will show that the Claim holds for (p,q). Let s0, .. .,sn. n>O. be a shortest proof that p=:::;Eq. 

73 



Case I: For i = O, ... ,n-1, si + 1 is obtained from si by rewriting a prop('r subexpression of Sj 

according to Rules 1-7. Then p=p10p2, q=q 10q2 (OE{•,+}). where Pi::;;Eqi via proofs at most as 

long as the proof that r<Eq, and Pi (qi) is a proper subexpression of p (q). Thus (pi,q)-<(p,q), and 

furthermore Pi,qiEV, so by the induction hypothesis (pi,qi)Ef. It then easily follows that (p,q)Ef. 

Case 2: For some i, O<i::s;n-1, si is rewritten into si+l according to one of the Rules 1-7. 

Case 2a: For some i as above, the Rule used is Rule 7. This means pis rewritten to z, z=w (w=z) 

is in E, and w is rewritten to q. 'Il1cn clearly (p,z)-<(p,q), and since zEV, by the induction hypothesis 

(p,z)Ef. Similarly (w,q)Ef. It follows that (p,q)Ef. 

Case 2b: For any i as above, the Ruic used is one of the Rules 1-6. We consider the least such i, 

and we distinguish cases according to which Ruic was used to rewrite si to Si+ 1. 

Ruic 1 This means p=p1 +p2, p1 rewrites tor, p2 rewrites tor, and r rewrites to q. Then Pi::;;Eq 

via proofs shorter than the proof that p::;;Eq, so (pA)-<(p,q). Also piEV, so by the induction 

hypothesis (pi,q)Ef. It follows that (p,q)Ef. 

Ruic 2 This means p = p 1 •p2, p1 rewrites tor, r rewrites to q. Then p1 <Eq via a proof shorter than 

the proof that p<Eq, so (p1,q)-<(p,q). Also p1 EV, so by the induction hypothesis (p1,q)Ef. It follows 

that (p,q)Ef. 

Ruic 3 Similar to Rule 2. 

Ruic 4 Now p rewrites tor, and Rule 4 rewrites r to r•r. Observe that the expression r•r will not be 

rewritten subsequently using Rules 2,3, because in that case we could shorten the proof that p::s;Eq 

(however, either subexpression of r• r may be rewritten). Moreover, if at some later point Rule 5 is 

applied to rewrite the whole expression si as si + y, then si + y will not be rewritten subsequently using 

Rule 1. Thus, the expression q eventually obtained is built up, using Rules 4,5,6, by some expressions 

rj, j = l, .. .,m, such that r rewrites to rj for all j, and by some completely new expressions Yk· k = l, ... ,m ·, 

which were introduced by Rules 5,6. Now clearly (p,1J)-<(p,q) and rjEV, so by the induction 

hypothesis (p,rj)E r. It then follows by an easy induction on the structure of q that (p,q)Ef. 

Rules 5.6 Similar to Rule 4. 

This concludes the Proof of the Claim, so we arc done. I 

74 



Since inference of F!Ys can be seen as a special case of inference of PI J's, the problem is actually 

polyno111ial-ti111e co111p!cte [63]. However, in the special case where Eis empty (28, 65] it can be solved 

in logarithmic space (40], as we now outline. By Lemma 3, it suffices to describe how to recognize ::;id 

in logarithmic space. 

First, observe the following: 

1. A::; idA · iff A is identical to A·, A,A ·in CU. 

6. p•q<idP. +q· iffp::;ictP" +q' orq::;;idp' +q' or p•q::;;idp' orp•q::;;idq'. 

7. p+q<idc· iffp::;;idc' andq<ide'. 

In each of the above cases, the "if' direction is trivial. The "only-if' direction follows in Case 5 

because 

p"·q·::;;ictP' and p'•q'::;;idq; and in Case 7 because p::;idp+q, q::;;idp+q. In the remaining cases, the 

"only-if' direction follows by the definition of ::;id· 

The above observation gives a recursive algorithm to test, given e,e', whether c::;ide'. We now 

describe how to implement this recursion using only logarithmic auxiliary space. 

First, note that the results of intermediate recursive calls need not be stored. For example, 

consider Case 7: if the recursive call for p::;;idc' returns false, then we immediately return false; 

otherwise, we return the result of the recursive call for q <icte'. 

We will also argue that we do not need to store the arguments of previous recursive calls. Thus, all 

we need to have in storage at any particular point is the arguments of the recursive call which is being 

evaluated. Since these arguments arc subexpressions of e,c', we can just have two pointers to the 

appropriate places in the input, and this only takes logarithmic space. 

We will now describe how, given two pointers to two subexpressions p,p· of c,c· respectively, we 

75 



can find the next recursive call to he evaluated, using only logarithmic additional space. We assume 

that c,c· arc represented (in the standard way) as binary trees, so that, given a pointer to a node u, we 

can find a pointer to the father (right son, left son) of u. 

We use two auxiliary pointers o:,o:·, initialized to the root of e,c· respectively. Let C(c,c') be the set of 

recursive calls generated from the call c::s:;idc· (C(c,c') contains either two or four members, 

depending on which of Cases 2-7 is the relevant one). We will show that we can determine which 

member of C( c,c') eventually gives rise to the call p::s:;ictP ·, using only logarithmic additional space. If 

this member of C(e,c') turns out to be the call c1::s:;ictci, we set the pointers a.a· to the expressions 

c1,ci respectively and we repeat with C(c1,ci). Continuing in this way, we will eventually find ei,ei 

such that the call p ::s:; ictP ·is in C( ei,ci). W c can then easily determine the next call to be evaluated. 

Finally, note that, to determine which member of C(c,c') eventually gives rise to the call p:::s:;ictP'. 

we only need to know whether p (p ') is in the left or in the right subtree of c ( e} This can be found 

be walking the tree representing c in a depth-first fashion, until we encounter p. 'I11is walk can be 

done using only logarithmic additional space, because all we need to remember is the node v which is 

currently visited and the node w which was visited immediately before v: if w is the father of v, we 

next visit the left son of v; if w is the left son of v, we next visit the right son of v; if w is the right son 

of v, we next visit the father of v. 

5.4 Testing Satisfaction 

Given a database d over CU and a set of PD's E, we want to test if d is consistent with E, i.e if there 

is a weak instance w for d satisfying E. Recall that a relation w over CU is a weak instance for d iff 

every tuple of relation R[U] of d appears in the projection of w on U. Weak instances have been 

proposed as a way to model incomplete information in databases [38, 64). Given a database d and a 

set of FD's E, we can test if d has a weak instance satisfying E in polynomial time [38]. We now show 

how this test can be generalized to arbitrary PD's. 

First, we replace E by a set E · of PD's of the form C =A• B or C =A+ B, where A,B,C are 

attributes from a universe cu· containing CU: this is done by (rccur~ivcly) replacing X=Y•Z by the 

PD's X=C, Y=A, Z=B, C=A•B, where A,B,C arc new attribute names. It is easy to check that 

there is a weak instance ford satisfying E iff therc is a weak instance ford satisfying E'. 

76 



Let us denote by p---+q, where p,q arc partition expressions, the PD p = p•q. This slight abuse of 

notation is consistent, since the FPD X---+ Y is actually equivalent to the FD X---+ Y. Now a PD 

C=A•B in E' can be replaced by the FPD's C---+AB, AB---+C, and a PD C=A+B in E' can be 

replaced by the PIYs A+ B---+C, C---+ A+ B. Furthermore, the PD A+ B---+C can be replaced by the 

FPD's A---+C. B---+C. We now have a set F consisting of FPJ)'s and of PD's of the form C---+A + B, and 

it is obvious that there is a weak instance ford satisfying E' iff there is a weak instance ford satisfying 

F. 

Now compute (using the algorithm of the previous Section) all consequencesofF of the form 

A---+B, A,B in cu:. and add them to F. Furthermore, if now F contains A---+B and C---+A+Il, replace 

C---+ A+ 13 by C---+ B. Let F' be the set of FPD's in F. The crucial fact is given in the following 

Lemm.a 5.3: There is a weak instance for d satisfying F iff there is a weak instance for d satisfying 

Proof: The "only if' direction is obvious. For the converse, let w be a weak instance for d 

satisfying F: Suppose some PD C---+A + B in F is violated by tuples t1 .t2 of w, where t1[ABC] = a1 b1c, 

t2[ABC]=a2b2c, a1:;t:a2, b1:;t:b2. We can remedy this violation by adding tow a tuples such that 

s[AB]=a1b2. To make sure that the relation w1 obtained still satisfies F', let A+ ={XI F'l=A---+X}, 

B + = {X I F ·1= B---+ X}: we make s[ A+]= t 1[A + ], s[B +] = t2[B + ], and fill in the rest of the attributes of 

s with distinct new values (not appearing in w). To argue that this is indeed possible, observe first that 

B is not in A+ and A is not in B + (otherwise C---+A + B would not appear in F). We also have to 

make sure that, if QEA + and QEB +, then t1[Q] = t2[Q]. But if Q appears in both A+ and B + we 

have F'l=A---+Q, F'l=B---+Q, so since c-A +Bis in F WC have Fl=C---+Q, and therefore c-Q is in 

F'. This implies that t1[Q] = t2[Q], since t1[C] = t2[C] and w satisfies F'. 

We now repeat the above argument, starting with w1, to obtain relations w2, w3 and so on. The 

relation w w obtained after an infinite number of steps is a weak instance for d satisfying E', because 

any violation of some PD C---+ A+ B appearing at any stage has been taken care of at some later stage. 

I 

We can now prove the main result: 

Theorem 5.4: There is a polynomial-time algorithm to test whether a given databased is consistent 

with a set E of PD's. 

77 



construct the set F' .. By Lemma S.3. we c:an diem •die r'911 l .. 11 afPI'.• • itc1 ii coaaistent wkh 
F'. I 

Observe that the weak imtaace ~ in dle ·PMf r4L r n n115.3 II in paera1 llf/lnill. The 

problem of ttailla aiatenee of.a,/lltile.- ... 11r.-e 11.-. 

78 



_ -. . •n•.,,. ___ 1111va10111111111maa•z®''lflMl-;;;t44Ql\ftflt-a-- _,~J'-i·' .. --;llP-,1-J-)l~-~ILt~-~ -)2 ~ , , ,. - , • · · . . . . · . 
. '\;·' ... . . . . . 

',·-:· 

r: 

ii : 
• 

s: 

,··.· 
::· 

A g t 

1 L • 
3 :L 0 

3 't 0 

6 't. 0 
• 

H .. 0 

..... k 0 

'*" • o 

.,.,._~:tl··t.. . 
{L--,....) 



r;_: 
A B c 

1~ Q b1 Ci 

.z: Q\.. lo!. c.i nc. = ( r~) t24) 
3~ °'- bl c.1. 
4: 0.. bi. c:t. 

T[
0

:: l\) (2..) (3)( 'I) 

fi_F=A-H-B llr1) 

S.,: 
A ~ c 

i: Q.. bi Ci 
'TIB = (\3)(2) Tr. =(l)(i3) c 

Z,: Q bl c!t 

3~ Q bi G.!t if o = ( \ '> ( !t) ( ~) 

r;_ ~ A-+7 e, L U:i_) 

Figure 5-2: MVD's are not expressible by PD's 

80 



Chapter Six 

Directions for Further Investigation 

Extending the Equational Approach 

Of course, the most obvious question is whether our cquational fonnulation of FD's and JND's 

can be extended to more general dependencies. We outline some partial results we have at this point, 

which indicate that such an extension is indeed possible. 

Recall that an embedded implicational dependency (EID) is a typed sentence of the form 

'v'x1···xp. [(tp1A ... t\tpn)=>3y1···Yq· (1/11A .. t\1/;m)J, 

where each 'Pk is a relational formula, each 1/;k is either a relational formula or an equality between 

two of the xk's, and each of the xk's appears in one of the cpk's (cf. Section 5.1). If all the 1/;k's are 

relational fo1mulas, we have a tuple generating dependency (TGD); if all the 1/;k's arc equalities, we 

have an equality generating dependency (EGD) [10, 11, 34]. 

Every EID is obviously equivalent to the conjunction of a TGD and an EGO. Furthermore, it can 

be shown that every EGO is equivalent to a conjunction of FD's and TGD's [11]. The question then 

is whether we can have an cquational formulation of FD's and TGD's. 

Let CU={A,B,C} and consider the MVD A-+--+B (cf. Example 5.1). We can formulate it as the 

sentence 

Vx1x2. [a(x1) = a(x2)=> 3y. (a(y) = a(x 1)1\b(y)= b(x1)t\c(y)= c(xi})]. 

Herc x1,x2,y arc variables ranging over tuples; sec Section 1.3. Now Skolcmization suggests 

transforming this MVD into an equationa/ implication 

ax1 =ax2=>(aix1x2 = ax1t\bix1 x2 = bx1 t\cix1 x2 =cxi) 

In this way, we can transform any TGD into an cquational implication. In fact, we can even relax the 

typcdness restriction, to obtain a class of constraints which properly includes IND's: specifically, it 

suffices if only the part of the sentence consisting of the cpk's is typed. 

We can go even further and transform these cquational implications into equations. We illustrate 

81 



how this is done with the implication 

ax1 =ax2~aix1 x2 =ax1. 

This can be transformed into the set of equations 

aix1 x2 = fax1x2ax1ax2 
faX1X2XX=ax1. 

where fa is a new function symbol of ARITY 4. 

The above cquational formulation of TGD's can be used to prove a generalization of Theorem 

2.1, for implication of TGD's from FD's and TGD's (i.e., we actually generalize the IND Case of 

Theorem 2.1). The proof uses the same ideas as the proof of Theorem 2.1. Unfortunately, the proof of 

the FD Case docs not generalize, because the inductive argument for the completeness part depends 

critically on the fact that Skolem functions have only one argument (which only happens in the case 

ofIND's). 

Designing Normal Form Schemas 

An active area of research in logical database design is concerned with canonical representations 

of the database schema, which avoid potential update anomalies (i.e. updates that can result in 

inconsistent data), and minimize data redundancy. Several such representations have been proposed 

and analyzed, assuming that the only integrity constraints of the database schema arc FD's. The 

general idea is that the database schema should be in a certain normal form [22, 7, 62, 51], i.e. certain 

restrictive conditions should be satisfied by the FD's of the schema and their logical consequences. 

Given a universe CU of attributes and a finite set ~ of FD's, one can construct a database schema 

satisfying such restrictions [12, 6]. These algorithms arc based on efficient solutions of the implication 

problem. 

An interesting question is to investigate normal forms in the presence of FD's and IND's (cf. [33]). 

Eventually one would hope to extend the known schema synthesis algorithms to incorporate IND's of 

some restricted form (for example, unary IND's). The insights we have gained on the implication 

problem can potentially be useful for this investigation. 

Query Equivalence in the Presence of IN D's 

The problem of optimizing queries has received a lot of attention, because of its central role in all 

relational database implementations [62]. Given a query Q, the goal is to design an equivalent query 

82 



Q' which can be processed as efficiently as possible (i.e. contains a minimum number of instances of 

expensive operators, such as join). Since equivalence of two queries is a data dependency, the 

problem of testing equivalence of queries in the presence of dependencies can be approached with 

the standard tools for implication problems [3, 18, 62]. 

The equivalence of relational database queries in the presence of FD's and IND's has been 

examined in [43, 48], essentially by extending classical techniques (namely the chase). The authors of 

[43] show that under reasonable restrictions on the IND's, query equivalence can be reduced to well­

undcrstood cases involving only FD's. The approach of [48] is to introduce the weak instance 

assumption [38, 64]; under this restriction, query equivalence in the presence of FD's and typed 

IN D's can be handled by the methods of[43]. 

Many questions remain unanswered in the area and new techniques seem to be required to handle 

major new cases. The techniques we have developed for FD and IND implication may be useful in 

this respect. In particular, it would be interesting to sec if the tools we provide for typed IND's can 

be used to study equivalence of (typed) conjunctive queries [18, 43] in the presence of typed IND's 

and FD's, without the weak instance assumption of[48]. 

Expressing Data Distribution 

An important consideration in the context of distributed databases is to find ways to preprocess 

relations stored at different sites, so that a given query can be processed with a minimum amount of 

data communication between sites. Some work has already been done on characterizing database 

schemes and queries for which such preprocessing is possible [8, 13]. An interesting research direction 

is to extend these results to allow for the presence of FD's (conceivably we will be able to prcprocess 

more queries if the database is constrained to satisfy a set of FD's). Since data distribution can be 

modeled by IND's, these questions can be approached as implication problems involving FD's and 

IND's. 

Performance of Equational Theorem Provers 

An interesting practical question is how well theorem provers designed around the Knuth-Bendix 

method [46] perform on sets of equations obtained from database constraints. We have experimented 

with the REVE system [35, 49], which has been able to handle various non-trivial inferences of FD's 

and IND's. However, more work needs to be done in this direction. 

83 



References 

1. Aho, A.V., Beeri, C. and Ullman, J.D. The Theory of Joins in Relational Databases. ACM 

Transactions 011 Database Systems 4, 3 (1979), 297-314. 

2. Aho, A.V., Hopcroft, J.E. and Ullman, J.D. The Design and Analysis of Computer Algorithms. 

Addison-Wesley, 1974. 

3. Aho, A.V .. Sagiv, Y. and Ullman, J.D. Equivalences of Relational Expressions. SIAM Journal on 

Computing8, 2 (1979), 218-246. 

4. Aho, A.V. and Ullman, J.D. Universality of Data Retrieval Languages. Proceedings of the 6th 

ACM Symposium on Principles of Programming I ~anguages, ACM, 1979, pp. 110-120. 

5. Annstrong, W.W. Dependency Structure of Database Relationships. Proceedings IFIP 74, 
Amsterdam, 1974, pp. 580-583. 

6. Beeri, C. and Ikrnstein, P.A. Computational Problems Related to the Design of Nonnal Form 
Relational Schemas. ACM Transactions on Database Systems 4, l (March 1979), 30-59. 

7. Beeri, C., Bernstein, P.A. and Goodman, N. A Sophisticate's Introduction to Database 
No1malization Theory. Proceedings of the 4th VLDB Conference, 1978, pp.113-124. 

8. Beeri, C., Fagin, R., Maier, D. and Yannakakis, M. On the Desirability of Acyclic Database 
Schemes. Journal of the ACM 30, 3 (July 1983), 479-513. 

9. Beeri, C. and Korth, H.F. Compatible Attributes in a Universal Relation. Proceedings of the 1st 
ACM Symposium on Principles of Database Systems, ACM, 1982, pp. 55-62. 

JO. Beeri, C. and Vardi, M.Y. Formal Systems for Tuple and Equality Generating Dependencies. 
SIAM Journal on Computing 13, 1(February1984), 76-98. 

11. Ikeri, C. and Vardi, M.Y. A Proof Procedure for Data Dependencies. Journal of the ACM 3I, 4 
(October 1984), 718-741. 

12. Bernstein, P.A. Synthesizing Third Normal Form Relations from Functional Dependencies. 
ACM Transactions on Database Systems I (1976), 277-298. 

13. Bernstein, P.A. and Goodman, N. Power of Natural Semijoins. SIAM Journal on Computing IO, 

4(November1981), 751-771. 

14. Birkhoff, G. On the Stmcture of Abstract Algebras. Proceedings of the Cambridge Philosophical 

Society 31 (1935), 433-454. 

15. Breazu, V. Semantics in Complete Lattices for Relational Database Functional Dependencies. 
Analele Stiintijice ale Universitatii "Al.I. Cuza" din Iasi 28 (1982), 177-182. 

84 



16. Casanova. M.A., Fagin, R. and Papadimitriou, C.H. Inclusion Dependencies and Their 
Interaction with Functional Dependencies. Journal of Computer and System Sciences 28, I (February 

1984), 29-59. 

17. Casanova, V. and Vidal, V.M.P. Towards a Sound View Integration Methodology. Proceedings 

of the 2nd ACM Symposium on Principles of Database Systems, ACM, 1983, pp. 36-47. 

18. Chandra. A.K. and Merlin, P.M. Optimal Implementation of Conjunctive Queries in Relational' 

Databases. Proceedings of the 9th ACM Symposium on Theory of Computing, ACM, 1977, pp. 77-
90. 

19. Chandra, A.K. and Vardi. M.Y. The Implication Problem for Functional and Inclusion 
Dependencies is Undecidable. SI AM Journal on Computing 14, 3 (August 1985), 671-677. 

20. Chen, P.P.S. The Entity-Relationship Model: Towards a Unified View of Data. ACM 

Transactions 011 Database .\)'stems I, l (March 1976), 9-36. 

21. Codd, E.F. A Relational Model for Large Shared Data Banks. Communications of the ACM 13, 

6 (June 1970), 377-387. 

22. Codd, E.F. Further Nonnalization of the Database Relational Model. In Database Systems, 

Rustin, R., Ed., Prentice Hall, 1972, pp. 33-64. 

23. Codd, E.F. Relational Database: A Practical Foundation for Productivity. Communications of 

the ACM 25, 2 (February 1982), 109-117. 

24. Codd, E.F. Extending the Database Relational Model to Capture More Meaning. ACM 

Transactions on Database Systems 4, 4 (December 1979), 397-434. 

25. Cosmadakis, S.S. and Kaneltakis, P.C. Equational Theories and Database Constraints. 

Proceedings of the 17th ACM Symposium on Theory of Computing, ACM, May, 1984, pp. 273-284. 

26. Cosmadakis, S.S. and Kanellakis, P.C. Functional and Inclusion Dependencies: A Graph 

Theoretic Approach. Proceedings of the 3rd ACM Symposium on Principles of Database Systems, 
ACM, Aprii, 1984, pp. 24-37. 

27. Cosmadakis, S.S., Kanellakis, P.C. and Spyratos, N. Partition Semantics for Relations. 

Proceedings of the 4th ACM Symposium on Principles of Database Systems, ACM, March, 1985, pp. 
261-275. 

28. Crawley, P. and Dilworth, R.P. Algebraic Theory of Lattices. Prentice-Hall, 1973. 

29. Date, C. Referential Integrity. Proceedings of the 7th VLDB Conference, 1981, pp. 2-12. 

30. Dean, R.A. Component Subsets of the Free Lattice on n Generators. Proceedings of the 

American Mathematical Society 7 (1956), 220-226. 

85 



31. Downey, P.J., Sethi, R. and Ta1jan, R.E. Variations on the Common Subexpression Problem. 
Journal ufthe ACM 27, 4 (October 1980), 758-771. 

32. Enderton, H.B. A Mathematical Introduction to l,ogic. Academic Press, 1972. 

33. Fagin, R. A Normal Form for Relational Databases that is Based on Domains and Keys. ACM 

Transactions on Database Systems 6, 3 (September 1981), 387-415. 

34. Fagin, R. Horn Clauses and Database Dependencies. Journal of the ACM 29, 4 (October 1982), 

952-985. 

35. Forgaard, R. and Guttag, J.V. REYE: A Tenn Rewriting System Generator with Failure Resistant 

Knuth-Bendix. Proceedings of an NSF Workshop on the Rewrite Ruic Laboratory, NSF, 
April, 1984, pp. 5-31. 

36. Griitzcr, G. Universal Algebra. Springer-Verlag, New York, 1979. 

37. Hammer, M. and McLeod, D. Database Description with SDM: A Semantic Database Model. 
ACM Transactions on Database Systems 6, 3(September1981), 351-386. 

38. Honeyman, P. Testing Satisfaction of Functional Dependencies. Journal of the ACM 29, 3 (July 
1982), 668-677. 

39. Honeyman, P., Ladner, R.E., Yannakakis, M. Testing the Universal Instance Assumption. 
Information Processing Letters JO, 1 (1980), 14-19 .. 

40. Hopcroft, J.E. and Ullman, J.D. Introduction to Automata Theory, Languages, and Computation. 

Addison-Wesley Publishing Company, 1979. 

41. Huet, G. and Oppen, D. Equations and Rewrite Rules: a Survey. In Formal Languages: 

Perspectives and Open Problems, Book, R., Ed., Academic Press, 1980, pp. 349-403. 

42. Hull, R. and Yap, C.K. The Fonnat Model: A Theory of Database Organization. Proceedings of 
the 1st ACM Symposium on Principles of Database Systems, ACM, 1982, pp. 205-211. 

43. Johnson, D.S. and Klug, A. Testing Containment of Conjunctive Queries Under Functional and 
Inclusion Dependencies. Journal of Computer and System Sciences 28, 1 (February 1984), 167-189. 

44. Kanellakis, P.C., Cosmadakis, S.S. and Vardi, M.Y. Unary Inclusion Dependencies Have 

Polynomial Time Inference Problems. Proceedings of the 15th ACM Symposium on Theory of 
Computing, ACM, 1983, pp. 264-277. 

45. Klug, A. Entity-Relationship Views over Uninterpreted Enterprise Schemas. In International 

Conference on Entity-Relationship Approach, Chen, P.P.S., Ed., North Holland, 1980, pp. 39-59. 

86 



46. Knuth, D.E. and Bendix, P.11. Simple Word Problems in Universal Algebras. In Computational 

Problems in Abstract Algebra, Leech, J., Ed., Pergamon, Oxford, 1970, pp. 263-297. 

47. Kozcn, D. Complexity of Finitely Presented Algebras. Proceedings of the 9th ACM Symposium 

on Theory of Computing, ACM, May, 1977, pp. 164-177. 

48. Laver, K., Mendelzon, A.O. and Graham. M.H. Functional Dependencies on Cyclic Database 

Schemes. Proceedings of the J\CM SIG MOD Conference, J\CM, 1983, pp. 79-91. 

49. Lescanne, P. Computer Experiments with the RI:VE Tetm Rewriting System Generator. 

Proceedings of the 10th ACM Symposium on Principles of Programming Languages, ACM, 
January, 1983, pp. 99-108. 

50. Lewis, H.R. and ttapadimitriou, C.H. Hlements of the Theory of Computation. Prentice-Hall, 

Englewood Cliffs, New Jersey, 1981. 

51. Maier, D. The Theory of Relational Databases. Computer Science Press, 1983. 

52. Maier, D., Mende1zon, J\.O. and Sagi\,', Y. Testing Implications of Data Dependencies. ACM 

Transactions 011 Database Systems 4, 4 (December 1979), 455-469. 

53. Minsky, M.L. Recursive Unsolvability of Post's Problem of"Tag" and Other Topics in the 
Theory of Turing Machines. Annals of Mathematics 74, 3 (1961), 437-455. 

54. Mitchell, J.C. The Implication Problem for Functional and Inclusion Dependencies. 
Information and Control 56, 3 (March 1983), 154-173. 

55. E.L. Post. Recursive Unsolvability of a Problem of Thue. Journal of Symbolic Logic 13 (1947), 
1-11. 

56. Pudlak, P. and Tuma, J. Every Finite Lattice Can Be Embedded in a Finite Partition Lattice. 
Algebra Universalis JO, 1 (1980), 74-95. 

57. Sadri, F. and Ullman, J.D.,. Template Dependencies: A Large Class of Dependencies in 
Relational Databases and its Complete Axiomatization. Journal of the ACM 29, 2 (April 1982), 363-
372. 

58. Sciore, E. Inclusion Dependencies and the Universal Instance. Proceedings of the 2nd ACM 

Symposium on Principles of Database Systems, ACM. 1983, pp. 48-57. 

59. Smith, J.M. and Smith, D.C.P. Database Abstractions: Aggregation. Communications of the 

ACM 20, 6 (1977), 405-413. 

60. Spyratos, N. The Partition Model: J\ Deductive Database Model. Tech. Rep. No. 286, INRIA, 

April, 1984. 

87 



61. Tsichritzis, D.C. and Lochovsky, F.H. Data Models. Prentice Hall, 1982. 

62. Ullman, J.D. Principles uf Database Systems. Computer Science Press, 1983. 

63. Vardi, M.Y. The Implication Problem for FD's is Polynomial-Time Complete. Personal 

Communication. 

64. Vassiliou, Y. A Fonnal Treatment of Imperfect lnfunnation in Database Management. Ph.D. Th., 
University of Toronto, 1980. 

65. Whitman, P.M. Free Lattices. Annals of Mathematics 42 (1941), 325-330. 

66. Whitman, P.M. Lattices, Equivalence Relations, and Subgroups. Bulletin of the American 

Mathematical Society 52 (1946), 507-522. 

67. Wiederhold, G. and El-Masri, R. A Structural Model for Database Systems. Tech. Rep. STAN­

CS-79-722, Stanford University, February, 1979. 

68. Yannakakis, M. and Papadimitriou, C.H. Algebraic Dependencies. Journal ofComputerand 
System Sciences 21, 1(August1982), 2-41. 

69. Zaniolo, C. Design of Relational Views over Network Schemas. Proceedings of the ACM 

SIGMOD Conference, ACM, 1979. 

88 



Table of Contents 

Chapter One: Introduction 

1.1 Functional and Inclusion Dependencies in the Relational Model 
1.2 The lmplication Problem 
1.3 Chapter Two: The Equational Approach to Dependencies 
1.4 Chapter Three: Application to Typed IND's 
1.5 Chapter Four: Finite Implication of FD's and Unary IND's 
1.6 Chapter Five: Partition Dependencies 
1.7 Credits 

Chapter Two: The Equational Approach to Dependencies 

2.1 Definitions 
2.1.1 Relational Database Theory 
2.1.2 Equational Logic 

2.2 Functional and Inclusion Dependencies as Equations 
2.3 A Proof Procedure for FD's and IND's 
2.4 Computations as Inferences 

Chapter Three: Application to Typed IND's 

3.1 Another Proof Procedure for FD's and IND's 
3.2 Typed IN D's and Acyclic FD's 
3.3 Inference of FD's under Pairwise Consistency 

Chapter Four: Finite Implication of FD's and Unary IND's 

Chapter Five: Partition Dependencies 

5.1 Preliminaries 
5.2 Expressive Power 
5.3 The Implication Problem 
5.4 Testing Satisfaction 

Chapter Six: Directions for Further Investigation 

89 

3 

3 
5 
7 

10 
12 
13 
14 

15 

15 
15 
19 
21 
27 
28 

34 

34 
39 
40 

54 

64 

64 
66 
68 
76 

81 



Table of Figures 

Figure 2·1: Graph notation for FD's and IND's 
Figure 2·2: Graph rules for FD's and IND's 
Figure 3· 1: Another graph notation for FD's and IND's 
Figure 3-2: Graph rules for FD's and IND's 
Figure 3· 3: Basis case 
Figure 3·4: Case 1 
Figure 3·5: Case 2a 
Figure 3·6: Case 2b 
Figure 3-7: Case 2c 
Figure 3-8: Case 2d 
Figure 3-9: Example of FD inference under pairwise consistency 
Figure 3-10: Gadgets for Proof of Theorem 3.3 
Figure 4-1: Construction of a finite counterexample relation 
Figure 4-2: Relation that violates a u·ID 
Figure 5-1: A model for 'Pk 
Figure 5-2: MVD's arc not expressible by PD's 

90 

32 
33 
47 
48 
49 
49 
50 
50 
51 
51 
52 
53 
62 
63 
79 
80 


