

A Program for Generating and Analyzing
Term Rewriting Systems

by
Randy Forgaard

Submitted to the Department of Electrical Engineering
and Computer Science on 4 September 1984, in partial
fulfillment of the requirements for the Degree of
Master of Science in Computer Science

Abstract

This thesis presents new results in the use of term rewriting systems for automatic theorem
proving. The design and impiementation of REVE 2, a computer program that incorporates
these results, is déscribed. In addition, an introduction to the basic theory, procedures, and
algorithms of term rewriting is provided, in a manner suitable for non-specialists.

A principal application of rewriting systems is reasoning about the equational and inductive
theories associated with a finite set of axioms. in this context, the Knuth-Bendix completion
procedure is typically used in the hope of constructing a confluent and terminating rewriting
system from the axioms. Knuth-Bendix incrementally ensures termination by using a reduc-
tion ordering on terms to order equations into rewrite rules during the completion process.
Serious impediments to the use of Knuth-Bendix in automatic proofs of equational and induc-
tive theorems have been: 1) the need for user interaction, and 2) the lack of available state-of-
the-art implementations. '

REVE 2 reduces the need for user interaction in two ways. First, it uses automatic orderings,

-whose implementations automatically compute all of the possible valid extensions to the or-
dering that allow an unorderable equation to be ordered. Second, it uses a robust, task-
based, failure-resistant Knuth-Bendix design that incorporates a fine-grained scheme for
automatic equation postponement. ‘

From the beginning, it has been a fundamental design goal to make REVE 2 a well-
documented, highly-modular, easily-modified program, based on sound principles of software
engineering. The user interface to REVE 2 has been designed for ease of use by both novice
and expert.

Thesis Supervisor: Prof. John V. Guttag
Title: Associate Professor of Computer Science

Acknowledgments

| would like to express my foremost thanks to my advisor, John Guttag, for his unceasing
encouragement and support throughout this thesis and my graduate career, for having suf-
ficient faith in this fledgling research area to suggest this thesis topic to me, for his numerous
technical insights, and for his uncanny ability to hone and reorganize my prose. | owe special
thanks to Dave Detlefs, friend, officemate, visionary, realist, colieague, devil’'s advocate,
patient audience, technicai collaborator, tireless implementor, and Renaissance man, for
taking over REVE 2, and for being crazy enough to suggest and implement automatic order-

ings.

Many peopie in the term rewriting community generously gave of their time to discuss ideas
and share their knowledge with me, without which this work would not have been possible. |
am especially grafeful to Pierre Lescanne for REVE 1, for his encouragement and ideas for
REVE 2, for the countless discussions, for carefully reading and commenting on this thesis,
and for his great patience and responsiveness to my never-ending questions. The exchange
of ideas with peopie at General Electric Corporate Research and Development, especially
Deepak Kapur, has been particularly helpful. | want to thank David Plaisted for suggesting the
closure ordering, and Lescanne and Guttag for bringing Plaisted’s ordering to my attention.
Many thanks to Jean-Pierre Jouannaud for answering my ordering guestions. Those who
attended the NSF Workshop on the Rewrite Rule Laboratory have provided valuable feedback
and suggestions.

| am greatly indebted to everyone "on the hall" for the pleasant, supportive, and stimulating
working environment. Kathy Yelick lent a sympathetic ear and brought fresh perspectives to
many technical problems. Gene Stark, Ron Kownacki, Joe Zachary, and Jim Restivo gave me
their good humor and technical expertise on many occasions. Bob Scheifler rescued my
computer files when all hope was lost. Julie Lancaster offered her invaluable wisdom,
friendship, and support through the good times and the bad.

Finally, | am very thankful to my parents, who have given me an optimistic outlook, a taste for
quality, and total support for whatever | want to do.

Preface

This thesis documents the theory and design behind the REVE 2 term rewriting system gener-
ator. Though most of the new material contained in this document originated with the author,
REVE is in no way a single-handed effort. it is a team project, reflecting the work of resear-
chers from several laboratories and serving a growing international community of users.

An implementation of the Knuth-Bendix completion procedure was produced by John Goree
[Goree 81] in John Guttag's Systematic Program Development (SPD) group at the MIT
Laboratory for Computer Science. Though only a bare-bones implementation, it featured a
modular design, and the subsidiary abstractions used by Knuth-Bendix were organized as
layered "virtual machine” primitives.

REVE 1 [Lescanne 83a] was conceived and implemented by Pierre Lescanne’, a researcher
at the Centre de Recherche en Informatique de Nancy (CRIN) in France, during his vigit with
SPD in 1980-82. It included one of the first implementations of Knuth-Bendix to deal effec-
tively and fiexibly with rewriting system termination, making use of a néw, incremental class of
simplification orderings [Jouannaud 82a}. REVE 1 pioneered the idea of extending the order-
ing, as needed, during termination proofs. The program had an interactive interface that
allowed users to enter equations and rewrite rules in conventional notation (including infix),
and provided a number of user commands that allowed access to some basic rewriting and
unification primitives. REVE 1 introduced important notions regarding the style and scope
appropriate to a system for experimenting with term rewriting,

REVE 2 has been written from the ground up, using and expanding on the ideas in REVE 1.
However, REVE 2 has the additional goals of providing 1) a solid source code base upon
which to build, 2) automatic theorem proving capabilities, suitable for embedding in other
applications, and 3) a friendly and powerful user interface. REVE 2 has been carefully
modularized and documented to meet the first goal, including a complete set of data and
procedural abstraction implementations that are pertinent to rewriting applications. We have
made substantial progress toward the second goal by incorporating features into REVE 2 that

1The name "REVE," pronounced "rev,” was chosen by Lescanne.- Réve is a French word, meaning "dream."

allow termination proofs and Knuth-Bendix to proceed nearly automatically. The third goal
has been addressed with a flexible command interpreter that provides a rich set of com-
mands, on-line help facilities, and detailed error messages. REVE is an "open system":
anyone may obtain the source code and tailor it to their purposes. It is hoped that REVE 2 can
serve as groundwork for implementation efforts by many researchers, permitting easier trans-
ference of algorithms among colleagues and expanded opportunities for experimentation.

The author designed and implemented the core of REVE 2, including the failure-resistant
Knuth-Bendix, during 1982-83. David Detlefs, also of SPD, designed and implemented the
EPOS automatic ordering, and has taken over primary responsibility for maintaining REVE.
We have also greatly profitted from rela;ed theoretical and implementation work of colleagues
in SPD, at CRIN, at General Electric Corporate Research and Development, at the State
University of New York at Stony Brook, and at the University of illinois at Urbana-Champaign.

REVE 2 is currently in use in many university and industrial laboratories in the United States
and abroad. The source code and executable version of REVE, together with the CLU [Liskov
81] programming language in which it is implemented, are available for research and educa-
tional uses for a nominal distribution charge. REVE and CLU currently run on VAX2
computers under Berkeley UNIXS, Inquiries should be sent to John V. Guttag, MIT Laboratory
for Computer Science, 545 Technology Square, Cambridge, MA 02139.

In this thesis, we will refer to REVE 2 as simply REVE.

Randy Forgaard
September 1984

2VAX is a Trademark of Digital Equipment Corporation.

SUNIX is a Trademark of ATAT Bell Laboratories.

o b
Neo-=0

-
]

33 3 88BEBANR 284488 8 28RBRIS3S 3

&

4.3.4 Computing Normal Forms of Postponed Equations
4.3.5 Knuth-Bendix Tasks and Organization -
4.4 Knuth-Bendix Using Autamatic Orderings
Chapter Five: The REVE Program

5.1 Introduction

5.2 User imterface Of REVE S ——"

5.2.1 System

5.2.2 Ordering and Ragietry

5.2.3 Knuth-Bendix and Praols

5.2.4 Basic Operalions o

5.2.5 TerminatGopplon

5.2.6 Possible Enhancements
5.3 Examples of REVE's Use | s

a1 mum

388883888882 RBRE

]

2833

i A g i S i R

8

iid

- Table of 18:30 .

L . ﬂiagugng,f!t:in'!-: REVE

. SESRERIINGRBBRAAESBEBNBSS

Chapter One

Introduction

1.1 Background

In recent years there has been a surge of interest in term rewriting systems. This has been
sparked both by significant progress in understanding the theoretical aspects of rewriting
systems and by the development of important new applications for these systems. These
applications include automated deduction, program verification, specification analysis,
program transformation, synthesis of programs, compilers, data base management systems,
computer algebra systems, and the study of word problems in algebra, where term rewriting
methods were first applied. '

Term rewriting systems are often used to reason about the equational and inductive theories
associated with a finite set of equations, cailed axioms. For nearly any interesting equational
or inductive theory, the equivalence classes with respect to that theory are infinite. Proving
that a particular equation is in the equational or inductive theory of a set of axioms is typically
an ad-hoc process, using those axioms and the proof rules of equational and inductive
reasoning. However, in some cases, a rewriting system with certain properties can be con-
structed for those axioms, enabling proofs to be effectively automated.

A rewriting system is a set of rewrite rules. Each rule is a "one-way" equation: if a term, or
one of its subterms, matches the form of the left-hand side of the rule, the term or subterm
may be "rewritten” to have the form of the rule’'s right-hand side. Every rewrite rule in a
rewriting system for a set of axioma is in the equational theory of those axioms, so using a rule
1o rewrite a term is a valid inference in that equational theory. Once a term has been rewrit-
ten, one may further rewrite its rewritten form, to produce more rewritten forms, all of which
are equivalent to the original term in the equational theory. A "normal form" for aterm is a
_rewritten form of that term that cannot be rewritten further using any rule in the rewriting
system. [f all terms have a normal form with respect to the rewriting system, the rewriting
system is said to "terminate.” The rewriting system is "confiuent" if, for any term, the normal

Chapter 1 Introduction

form of that term is the same no matter what order the rules are applied, whenever a normal
form exists. Rewriting systems that are both terminating and confluent are said to be

"convergent.”

To automate equational theorem proving, we are interested in finding a convergent rewriting
system for a set of axioms. For such a réwriting system, an equation is in the equational
theory of the axioms if and only if the normal forms of its two sides are the same.
Unfortunately, both termination and confluence are undecidable, which complicates the
problem of finding a convergent rewriting system for a given set of axioms. However, widely-
applicable and easily-automated sufficient conditions for these two properties are known. A
popular methbd for proving termination is to exhibit a "reduction ordering" on terms such
that, for each rule in the rewriting system, the left-hand side is greater than the right-hand side
under that ordering. Several such reduction orderings have emerged in recent years. Once
termination has been established, confluence is decidable. When a terminating rewriting
system is not conﬂbent, one may use a special technique, calied the Knuth-Bendix completion
procedure, for adding additional rules to the system in the hope of achieving confluence. All
rules added in this manner are in the equational theory of the original axioms, so the theorem
proving utility of the rewriting system is preserved. When a convergent rewriting system for a
set of axioms can be constructed in this manner, one has an efficient decision procedure for
the equational theory of those axioms.

Convergent rewriting systems are also useful in automatically proving inductive theorems. To
prove, by hand, that an equation is in the inductive theory of a set of axioms, one must
inductively show that the theorem holds for all ground terms contructed from operators that
appear in those axioms. However, if all such operators are compietely defined with respect to
the axioms, an "inductionless induction" approach may be used to prove inductive theoremé.
This automatic method consists of using Knuth-Bendix to construct a convergent rewriting
system for the axioms together with the proposed inductive theorem. If such a rewriting
system can be built, the proposed equation is an inductive theorem of the original axioms if
and only if Knuth-Bendix finds no inconsistencies in the equational theory.

Of interest, then, is the availability of powerful and easy to use programs that incorporate
implementations of reduction orderings and Knuth-Bendix. Some current systems that
provide some of these capabilities are Affirm [Musser 80a], FORMEL [Huet 80a, Huet 82], RRL

10

Chapter 1 : Introduction
[Kapur 84a), and [GObel 84). REVE, the subject of this thesis, differs from these programs by
providing implementations of the pertinent procedures that allow theorem proving to proceed

almost totally automatically.

1.2 Motivation for Building REVE

While the progress of research into rewriting systems has been significant, it has been im-
peded by the inordinate difficulty of implementing and using the increasingly complex
procedures and algorithms prevalent in current term rewriting research. The crux of the
problem is twofold: the large effort required to build state-of-the-art software, and the dif-
ficulty of acquiring usable software from others. The difficulty of acquiring or constructing
good rewriting software serves both to slow down the work of those already involved in
studying or using term rewriting systems and to inhibit the entry of new researchers into the
field. it affects theoretical work as well as application-oriented work.

1.2.1 Building Applications

it is becoming increasingly likely that mechanical inference techniques based on term rewrit-
ing can be useful in a wide variety of applications. Unfortunately, it is exceedingly difficuit for
anyone who is not well versed in the theory of rewrite rule systems to make good use of them.
Not only must one contend with all the normal problems that arise in relatively large software
projects, but one is also faced with a number of problems peculiar to this kind of effort.
Simply to program efficient implementations of the basic primitives requires: ’

(1) Conducting a literature search to find appropriate algorithms,

{2) Reading and understanding several papers that are almost certainly aimed at a
relatively theoretically-minded audience,

(3) Choosing a representation for the primitive data objects and mapping the al-
gorithms presented in papers (each of which is likely to have used different
representations) onto those representations, and finally

(4) Implementing it all in some programming language.

After the primitives are implemented, the problem of understanding and implementing a grow-
ing number of useful but complex procedures, e.g., the Knuth-Bendix completion procedure

11

Chapter 1 : Introduction

or associative-commutative unification, remains. Once this rather lengthy digression is com-

plete, one can finally begin working on application-related problems.

A major problem in acquiring software upon which one can build is that there is relatively little
exportable software available. What there is, has, in general, been built for a particular use:
to test a particular algorithm or to provide a particular facility. These programs rarely come
with the hooks necessary to make them good building blocks. Pulling them together into a
coherent system is aimost impossible. They are written in different languages (mostly dialects
of LISP), they use different representations of basic objects (e.g., terms), and they are often
sparsely documented.

1.2.2 Theoretical Work

While accessing and understanding the relevant literature presents less of a problem to the
theoretically-oriented than to those interested primarily in applications, the difficulties com-
mon to the production of all software are likely to present more of a problem. Certainly, the
investment of considerable amounts of ti'me in software development represents a serious
digression for the theoretical group. Unfortunately, there are at least two excellent reasons
why such a digression may seem useful or even necessary.

First, the manipulation of examples plays a vital role in much of the theoretical work in the
rewrite rule area. Before trying to prove a difficult conjecture one often spends some time
looking for a counterexampie. If one finds such a counterexample, it may indicate a useful
way to "patch” the conjecture. At the very least, it spares one the trouble of trying to prove a
false conjecture. If one doesn’t find a counterexample, an examination of why the examples
tried were not counterexamples is often very helpful in constructing a proof of the validity of
the conjecture. In a similar vein, one often develops new conjectures through the study of
examples. It is sometimes possible to work these examples by hand, but doing so is generally
too difficult to consider. The alternative of writing a program to experiment with an unproven
idea is also usually seen as being prohibitively time-consuming.

The second reason is that it is difficult to judge the utility of much of the work in this area.
Decision procedures don't exist for deciding most of the important guestions about a rewrit-
ing system; e.g., is it terminating, is it confluent, is this or that theorem in its theory, etc.

12

Chapter 1 Introduction

Consequently, a great deal of effort has been devoted to the development of restricted
classes of rewriting systems for which some questions are decidable, and to the development
of semi-decision procedures for unrestricted sets of rewrite rules. The utility of such work
often hinges on whether it deals with a signiﬁcant‘ subset of those sets of rules that arise in
various applications. Even when a technique is in principle applicable to a wide class of
rewriting systems, efficiency issues often arise. The worst case running time of many impor-
tant procedures and algorithms is clearly prohibitive. This leads one to consider average case
behavior. However, meaningful analytic results in this area can be exceedingly difficuit to
derive. One may have to consider such things as the number of rules, the size of the rules, the
structure of the rules, etc. In many cases, a procedure’s primary use is as a subroutine of
some other procedure, and its efficiency is most productively studied in a specialized context
established by the calling procedure.

The difficulty of judging the utility of new procedures and algorithms leads one to attempt
empirical evaluation. Unfortunately, it is usually impossible to conduct useful experiments by
hand. One has the choice of either implementing one’s techniques and trying them on an
appropriate data base of examples (which one will probably have to create), or merely
speculating on the applicability of those techniques. Researchers in the field, confronted with
the difficulty of doing the former, have almost invariably chosen the latter.

REVE has been designed to help meet the above needs of both theoreticians and potential
users of rewriting applications. We hope it can facilitate the conducting of expedmonts with
rewriting systems, supply the primitives needed for automatic theorem proving, and provide a
firm base upon which to build application programs.

1.3 Overview of Thesis

This thesis introduces the basic theory and procedures related to term rewriting, presents
new results in automatic theorem proving using rewriting systems, and describes the design
and implementation of REVE, which incorporates these results. Potential areas of future
research and implementation are also indicated, and a complete description of REVE's user
commands is provided.

During the course of completing a system, the Knuth-Bendix completion procedure uses a

13

Chapter 1 . Introduction

reduction ordering to prove the termination of the rewriting system it constructs from the set
of axioms. The choice of an appropriate ordering intimately depends on the particular axioms
and the equations that get generated during the cdmpletioupnocess. In the past, most Knuth-
Bendix implementations have required that the reductiog, cwdering be given a priori, a sig-
nificant impediment to automatic theorem proving. Lescanne's REVE 1 introduced the impor-
tant refinement of allowing, and helping, the user to dynamically extend the reduction order-
ing to order equations as they are encountered. REVE 2 improves on this scheme with the
use of automatic orderings, whose implementations automatically compute all of the possible
valid extensions to the ordering that allow an unorderable equation to be ordered. Here, we
review the most popular classes of reduction orderings, present a new class of orderings that
is more powerful than most, and present the theoretical and implementation issues in making
these orderings automatic.

In addition, REVE 2 incorporates a new, "failure-resistant” implementation of the Knuth-
" Bendix completion procedure, which has been designed with automatic theorem proving in
mind. This implementation uses a fine-grained approach to automatic equation postpone-
ment that categorizes equations based on the degree of difficulty they pose to the completion
process. The Knuth-Bendix procedure is formulated as an ordered sequence of tasks
designed to expedite the completion process and maximize the chances for successful ter-
mination. The order of the tasks within the sequence can be easily modified to accomodate
varying requirements.

REVE is designed to be a practical, easy to use implementation of theoretical results pertain-

ing to equational and inductive theorem proving using term rewriting. It has been carefully

modularized and documented to facilitate understanding and use. REVE will have fulfilled its

purpose if theoreticians can modify it to experiment with new results, and if software en-
gineers can extend it for use in real world applications.

The organization of the thesis progresses from theory to practice. Chapter 2 is an intro-
duction to equational and inductive theories, and proving theorems using rewriting systems
and Knuth-Bendix. Chapter 3 introduces automatic orderings and presents a procedure for
automatically constructing terminating rewriting systems. Chapter 4 describes the design of
REVE'’s failure-resistant Knuth-Bendix implementation. Chapter 5 describes REVE itself: the
user interface, example usage, and the program modules that comprise its CLU implemen-

14

Chapter 1 Introduction
tation. Chapter 6 summarizes the thesis, highlights some possible areas of future work, and

reflects on the engineering obstacles encountered in building REVE. The Appendix

describes, in detail, each of the user commands provided in the current version of REVE.

15

Chapter Two

Term Rewriting Systems and Proof Theory

2.1 Introduction

This chapter introduces equational theories, inductive theories, and term rewriting systems,
as they pertain to REVE. We begin by defining notions related to terms and substitutions. We
then discuss equational and inductive theories, and what :t means to prove a theorem in each
kind of theory. We describe term rewriting systems, and the process of rewriting. Two
important propeﬂies of rewriting systems, termination and confluence, are characterized, and
shown to provide a decision procedure for equational theories. We show how the Knuth-
Bendix completion procedure can be used to generate such a decision procedure. Finally,
we introduce inductionless induction, a technique that uses Knuth-Bendix to prove inductive
theorems. Our development here takes an operational view of rewriting. See [Huet 80a] for a
treatment using relations.

2.2 Terms and Substitutions

We assume a finite set of distinguishable symbols called operators. Examples of operators
are + in arithmetic, concat in lists, and true in boolean. We also assume a disjoint set of
distinguishable symbols called variables.

A term is defined inductively as either (1) a variable, or (2) an operator and a sequence of
terms. in the latter case, if f is the operator and ty: - 1, i8 the sequence of terms, the term is
denoted flty s t) 1 is called the root operator, and the t, are called the arguments of the
term. The number of arguments, n, is called the arity of f. Here, we assume that an operator's
arity is fixed. When the root is binary (i.e., has arity 2), we often use the infix form, e.g., x +vy,
and use parentheses to resolve ambiguity. An operator with zero arity is called a constant.
We will denote a constant by its name, with no accompanying parentheses. We use 1{t) to
denote the set of variables that occur in aterm t. When Nt) = {}, t is said to be a ground term.
By convention, we will reserve the symbols u, v, ..., z for variables, so that variables and
constants can be distinguished.
16

Chapter 2 Term Rewriting Systems and Proof Theory

The subterms of a term are the term itself and the subterms of its arguments. A subterm s
within a term t can be designated by an occurrence, which is a sequence of positive integers
denoting an access path in the term. We use A to denote the empty seduence. The

occurrence set of aterm t, O(t), is the set of occurrences of all its subterms. Formally,

O(t) = {A} iftis avariable or constant,
o) = {AYU{iqlqe o) i=1,..n} ift flty, i ty):

For example, ift, = f(g(x), h(z) + 1, y), O(t1) = {A,1,11,2,21,21.1,22,3}. fqeO(t), t/qis

the subterm of the term t at occurrence g, defined by
/A = t,
t/iq = 1/q ift = f(t1, ey).

For example, t,/2.1 = h(z). We use f{g—s] to denote the term ¢t with the subterm at occur-
rence q replaced by the term s. Thus, t1[1 de—h(v)] = Hg(h(v)), h(z) + 1, ¥)).

A substitution, ¢, is a mapping from variables to terms such that o(x) = x for all but a finite
number of variables. We can represent a substitution by a finite set of ordered pairs, denoted
o = {x,—t,, .., x,—t}. We extend the domain of a substitution to the set of all terms by
defining

o(f(ty, ..., 1)) = Hot,), ..., alt,).
For example, if we have the substitution o = {x—h(v), z—g(g(z)), y—2} and the term , =
fiz, g(y), v, h(x)), we can apply o to obtain o(t,) = flg(g(z)), g2}, v, h(h(v}))).

Two terms, s and t, are said to be unifiable if and only if there exists a substitution, o, such
that o(s) = oft). 'The substitution ¢ is called a unifier of s and t. For example, if s =
fg(x), h(y)) and t = f(y, z), one of their unifiersis o, = {x—4 +w, y—g({4 +w), z—h(g(4 + w))}.
For this unifier, o,(s) = o,(f) = Hg(4+w), h(g(4+w))). Whenever two terms are unifiable,
they have a most general unifier, mgu, such that every unifier contains mgu as a factor (in
terms of functional composition). The most general unifier of two terms is unique, up to
variable renaming. For s and t above, mgu = {y+g(x), z—h(g(x))}. The unifier o, above can
be expressed as the functional composition ¢, = ¢, ° mgu, where o, = {x—4+w}. The
unification of two terms, s and t, is mgu(s) (which is the same as mgu(t)) for their most general
unifier, mgu. With s and t as above, f(g(x), h(g(x))) is tl\éir unification.

Unification plays a central role in resolution theorem proving [Robinson 65] and logic pro-
gramming [Kowalski 74]. We shall use unification in the context of the Knuth-Bendix comple-
tion procedure, described in Section 2.6. Many algorithms to perform unification have been

17

Chapter 2 Term Rewriting Systems and Proof Theory

proposed (e.g.,[Robinson 71] and [Baxter 73]), including those that run in linear-time
[Paterson 78]. The algorithms in [Martelli 82] and [Corbin 83] are particularly fast in practice.

A term, s, is said to match (or have the form of) a term, t, if and only if there exists a substitu-
tion o such that s = o{t). When the domain of o is restricted to the set of variables in t, o is
unique and is called the match of s by t. For example, s = f(g(h(y)), h(y)) has the form of
t = f(g(x),x), and the match of s by t is ¢ = {x+—h(y)}. Matching can be thought of as
"one-way" unification, where unification is permitted in only one of the terms.

2.3 Equations and Proof Theory

2.3.1 Equational Theories

- An equation is an undirected pair of terms, written s=t. In equations, all variables are
(implicitly) universally quantified. A ground instance of an equation, s=t, is an equation,
o(s) = o(t), that contains no variables, where ¢ is some substitution.

We are interested in the equational theory, =g, of a set of equations, 8. The equational
theory of & consists of the closure of & under the foliowing rules of inference: reflexivity,
symmetry, transitivity, universal instantiation, and replacement of equals for equals. We say
that 8 is a set of axioms for = g if an equation, s=1,isin = g we say that s = t is an equational
theorem (or equational consequence) of 8, and we write s = gt

Figure 2-1 presents a set of axioms for groups. Here, * is the binary operation, x~ denotes
the inverse of x, and e is the identity. An example formal proof is given in Figure 2-2. Starting
with the axioms, the rules of inference are used to prove that

) ax m
is an equational theorem. Note that the result of each proof step is itself an equational
theorem.

Note that the group axioms, as given in Figure 2-1, state that e is the left identity, but not that it
is the right identity. However, during the course of proving Equation 1 in Figure 2-2, we show,
in Step 16, that x*e = x is an equational consequence of the axioms. The generation of useful
"lemmas," such as this one, is also a by-product of the automatic theorem proving method in
Section 2.6.

18

Chapter 2 Term Rewriting Systems and Proof Theory

Figure 2-1: Axioms for Group Theory

(1) e*x=x
(2) xlox=e

(3) (x*y)*z = x*(y*2)

[1]
[2]
[3]
[4]
)
6]
(71
[8]
(9]
[10]
[11]
[12]
[13]
[14]
[18]
[16]
7]
[18]

Figure 2-2: Proof of an Equational Theorem About Groups

e°x=x (axiom)
xlexae (axiom)
(x*y)ez a x*(y*2) (axiom)
(x"{?‘1 xlae (apply o = {x—x""} to [2])
() Texyexmx (insert [4] into [1])
Oy VoxNox = (7N Yo7V ex) (apply o = {x—(x"")", y—x~1, zx} t0 [3])
(Y VexNox = (1) 10 (insert [2] into [6])
) leomx (insert [7] into [5])
e*e=g ' \ (apply 0 = {x+e} to [1])
(x" 1y Ye(eve) = x (insert [8] into [8])
() Vee)ee = (x71)e(e%e) (apply o = {xe—(x"'), y—e, 2~} 10 [3))
((x") ee)ea=x (insert [11}into [10])
() Te(x Tex))ee m x (insert [2] into [12))
(Y VexY)ex)oe = x (insert [6] into [13])
(e*x)*e = x (insert [4] into [14])
x*@ =X (insert [1] into [15])
oYy teem () (apply o = {x+—{x"")"'} to [16])
Y lax | (insert [8] into [17])

Most equational proofs, such as the one in Figure 2-2, are tedious and time-consuming to
construct by hand. However, the myriad details in this style of proof are well-suited to
automation.

19

Chapter 2 Term Rewriting Systems and Proof Theory

2.3.2 Inductive Theories

Although "equational theory" is a useful notion in the context of algebraic structures like
groups, it is less Oseful in the context of abstract data types. Consider the set of axioms about
lists shown in Figure 2-3. These axioms presume that lists are built from the operators null (a
constant) and cons, where null denotes the empty list, and where the first argument to cons is
a list element and the second argument is a list. (For convenience, we use "list" here to mean
a term that denotes a list.) The axioms describe concat, which concatenates two lists, and

reverse, which reverses a list, in terms of nu/l and cons. The equation _
reverse(concat(cons(x, cons(y, null)), cons(z, null))) = cons(z, cons(y, cons(x, null}))

is an equational theorem of these axioms. However, most interesting and generally-

applicable fist theorems are not in the equational theory; e.g.,
reverse(reverse(x)) = x (2)

Figure 2-3: Axioms About the Theory of Lists

(1) concat(null, x) = x
(2) concat(cons(x, y), z) = cons(x, concat{y, z))
(3) reverse{null) = null

(4) reverse(cons(x, y)) = concat(reverse(y), cons(x, nulil))

Nevertheless, Equation 2 is a theorem, in the sense that every ground instance of Equation
2 that consists only of the operators in the axioms of Figure 2-3 is an equational theorem of
those axioms. The inductive theory of a set of axioms consists of their equational theory, plus
all equations for which all ground instances are in the equational theory*. We will refer to the
equations in the inductive theory as inductive theorems. Below, we show that Equation 2 is

an inductive theorem of lists.

The "inductive theory" is so named because we ordinarily prove inductive theorems using
data type induction. This typically proceeds as follows: One designates certain operators as

“The initial algebra is a model of the inductive theory.

Chapter 2 _ Term Rewriting Systems and Proof Theory

constructors of the data type of interest. One then shows that each ground term of that type
is equivalent to at least one ground term consisting only of constructors; one usually proves
this using induction on the structure of ground terms. If the latter property holds, the type is
said to be fully specified® [Musser 80b]. Then, to prove an inductive theorem (again using
structural induction), one need only show that the theorem holds for all ground terms consist-

ing solely of constructors of the type.

Consider the constructors for lists. It can be shown that all ground terms constructable using
the operators in Figure 2-3 can also be built using only cons and null. (We omit this proof
here.) We designate cons and null to be the list constructors. Given the choice of operators
in Figure 2-3, we have chosen the only minimal constructor set. In general, however, the
minimal set will not always be unique. For example, if we define another operator, append,
that appends an element to the right end of a list, {cons, null} and {append, null} serve
equally well as minimal constructor sets, since any list can be constructed using the construc-
tors in either set. '

Having selected the constructor set {null, cons}, and proved (or asserted) that lists are fully
specified with respect to these constructors, one may proceed to prove an inductive theorem.

We first present a theorem that will be useful in our proof of Equation 2:
reverse(concat(x, cons(u, null)})) = cons(u, reverse(x)) (3)

A proof of this equation is given in Figure 2-4. In the proof, we induct over the number of
elements in the list denoted by x; i.e., over the number of occurrences of cons in x. The basis
step proves the theorem for lists with zero elements (i.e., nu/l lists). The induction step
assumes the induction hypothesis holds for lists of length n (we denote such lists by s), and
proves the theorem for lists of length n + 1 (denoted by cons(v, s), where v is any list element).
In this way, we prove the theorem for all lists, since any list can be constructed using nu/l and
cons. Using Equation 3 as a theorem, Figure 2-5 proves that Equation 2 is an inductive
theorem of lists. Note that, except for the induction principle, a formal inductive proof uses
the same rules of inference as in equational proofs.

Like equational proofs, proving inductive theorems is typically time-consuming. These proofs
by hand" also require creativity and trial-and-error to discover which inductive lemmas

5The notion of full specification is closely related to that of sufficient completeness [Guttag 78a].

21

Chapter 2 Term Rewriting Systems and Proof Theory

[1]
[2]
(3]
[4]

Figure 2-4: Proof of an Inductive Lemma About Lists

concat(null, x) = x (axiom)
concat(cons(u, x), y) = cons(u, concat(x, y)) ‘ {axiom)
reverse(null) = null , (axiom)
reverse(cons(u, x)) = concat{reverse(x), cons(u, null)) (axiom)

Basis step: Show that the theorem holds for the list nul/l.

[5]
[6]
[7]

(8]
[}
[19]

reverse(cons(u, null)) = concat(reverse(null), cons(u, null)} (apply o = {x—nuli} to [4])
concat(nuil, cons{u, null)) = cons{u, null) (apply o = {x+—cons(u, null)} to [1])
reverse(concat{null, cons(u, null))) = concat(reverse(nuil), cons(u, nulf))

(insert [6] into [5])
reverse(concat(null, cons(u, null))) = concat{null, cons(u, null)) (insert [3] into [7])
reverse(concat(null, cons(u, null))) = cons(u, null) (insert [6] into [8])
reverse(concat(null, cons(u, null))) = cons(u, reverse{null)) (insert [3] into [9])

Induction step: Assume the theorem holds for the list s. Show that it holds for the list
cons(v, 8).

[11]

[12]
[13]

[14]

[15]

[16]
[17]

[18]

concat(cons(u, reverse(s)), cons(v, null)) = cons(u, concat(reverse(s), cons(v, null)))
(apply o = {x+reverse(s), y—cons(v, nul)} to [2])
reverse(cons(v, s)) = concat(reverse(s), cons(v, null)) (apply o = {x+s, u+v}to [4])
concat{cons(u, reverse(s)), cons(v, null)) = cons(u, reverse{cons(v, 5)))
' (insert [12] into [11])
concat(reverse(concat(s, cons{u, null))), cons(v, null)) = cons{u, reverse{cons{v, s)))
(insert induction hypothesis into [13])
reverse(cons(v, concat(s, cons{u, null)))) =
concat(reverse{concat(s, cons(u, null})), cons(v, null))
(apply o = {u+v, x+—concat(s, cons(u, null))} to [4])
reverse(cons(v, concat(s, cons(u, null)))) = cons(u, reverse(cons(v, 8)))
(insert [15] into [14])
concat(cons(v, s), cons(u, null)} = cons(v, concat(s, cons(u, nulf)))
(apply o = {u+v, y—cons(u, null), x+—s} to [2])
reverse(concat{cons(v, s), cons(u, nuil))) = cons(u, reverse(cons(v, 8)))
(insert [17] into [16])

Conclude:

[19]

reverse(concat(x, cons(u, null))) = cons(u, reverse(x))
({10}, [18]; and induction principle)

Chapter 2 Term Rewriting Systems and Proof Theory

Figure 2-5: Proof of an Inductive Theorem About Lists

We will use the fact that Equation 2-4 is an inductive theorem.

[1] concat(null, x) = x (axiom)
[2] concat(cons(u, x), y) = cons(u, concat{x, y)) (axiom)
[3] reverse(null) =null (axiom)
[4] reverse(cons(u, x)) = concat(reverse(x), cons(u, null)) (axiom)

Basis step: Show that the theorem holds for the list nu/l.
[8] reverse(reverse(null)) = null (insert [3] into [3])

Induction step: Assume the theorem holds for the list s. Show that it holds for the list
cons(u, s).
[6] reverse(concat(reverse(s), cons(u, null))) = cons(u, reverse(reverse(s)))
(apply o = {x—reverse(s)} to Equation 2-4)
[7] reverse(concat(reverse(s), cons{u, null))) =cons(u, s)
: (insert induction hypothesis into [6])

[8] reverse(cons{u, s)) =concat(reverse(s), cons(u, null)) (apply o = {x+—s} to [4])

[9) reverse(reverse(cons(u, s))=cons(u, s) (insert [8] into [7])
Conciude: _

[10] reverse(reverse(x))=x ([5]. [9], and induction principle)

should be proven before attempting to show the main theorem. In Section 2.7, we present a
radically difterent, automatic method that can, in many cases, decide the validity or invalidity
of equations with respect to the inductive theory. When applied to the problem of proving
Equation 2, the method automatically "discovers" Equation 3 and proves it to be a theorem

before proving Equation 2.

2.4 Term Rewriting Systems

Term rewriting systems are an important means for proving theorems in equational and induc-
tive theories, and this is the use that concerns us here. Their mathematical properties also
make them attractive as a model of computation; see [Dershowitz 83a} and [Goguen 79] for
examples of these applications.

A rewrite rule (or, just rule) is a directed pair of terms, written A—+p, such that every variable

Chapter 2 Term Rewriting Systems and Prootf Theory

that occurs in p also occurs in A. One may reduce (or rewrite) a term t using a rewrite rule
A—p if there is an occurrence g € O(t) such that t/q matches A. The reduced (rewritten) form
of t is t{g—o(p)], where ¢ is the match of t/qg by A. For example, if we have (X—-»p) =
fgly, v), x)—g(x, x) and t = f{f(g(a, a), h(y)), z), t/1 matches A, 0 = {y—a, x—h(y)},and tis
reduced to f{g(h(y), h{y)), z). In this example, we can again use A—p to reduce the resulting
term and obtain g(z, z).

A term rewriting system (or, just rewriting system) % is a finite set of rewrite rules. We write
s =gt if and only if s can be reduced to t using one of the rewrite rules in % exactly once.
The % subscript on — will be omitted when % is clear from context. The notation s —g t
means that t can be obtained from s by applying rules from % zero or more times. We say that
two terms s and s’ are joinable if and only if there exists a term t such thats —*tand s’ —* ¢.
When there exist zero or more terms s, ..., s, such that t¥2s, 2...s¢s 221, where ¥ denotes
(— or +), we write t ~+& t'. For example, with ® = {a—b, g(a, x)—f(x, x)}, we have f(a, &)
++* g(b, b), since f(a, a) — f(a, b) — (b, b) — g(a, b) — g(b, b).

The equational theory of a rewriting system %, denoted =g, is the equational theory of %
when viewed as a set of equations. We can obtain a rewriting system % from a set of
equations & using the following technique, suggested in [Knuth 70] and [Huet 80a}: For every
equation s =t in €, choose nondeterministically one of the following: :

(1) K ¥{s) C N1, putt—sin B.
(2) If At) C© Ns), puts—tin .
B LetX = Ns) N Nt) = {x1, o xn}. introduce a new operator f that does not
appear in 8 or %, and put the two rules s—f(x,, ..., x,) and t—f(x,, ..., x) into %
The resulting rewriting system % will have the same equational theory as 8, except for the

possible presence of new operators. If either of the first two actions above appliesto s=t, we
say that the equation is compatible. If only the third action applies, we say it is incompatible.

We will refer to the third action above as dividing an equation. Any equation may be divided,
because since s=t holds for all substitutions, its validity is independent of the values of
variables not in X. Because the choice of action is nondeterministic, there may be more than
one action that could apply to a given equation. For example, if an equation in 8 can be
viewed as a rewrite rule in both directions, it can be placed into % either way, or it can be
divided.

24

Chapter 2 Term Rewriting Systems and Proof Theory

We have seen that one can generate a rewriting system, %, from a set of axioms, &, such that
s =gt if and only if s =g t for all terms s and t. It can be easily shown thats = o ! if and only
if s .H?*k t. Thus, if we have a decision procedure for iy, we have a decision procedure for
the equational theory of 8. The next section describes two properties that, if they hold for %,

let us decide "’?‘R,'

2.5 Termination and Confluence

We say that a rewriting system, %, terminates (or that it is noetherian, finitely terminating, or
uniformly terminating) if and only if there is no term ty for which there exists an infinite
sequence of reductions t, — t, — ty —... Aterm is irreducible if and only if it cannot be
reduced by %. If % terminates, any term, t, has at least one normal form, defined to be an
irreducible term, t], such that t —* t|. The rewriting system % = {{(x +y) +z)—(x + (y + 2))}
terminates. However, the rewriting system % = {(x+y) — (y+x)} does not terminate, be-

cause we have (a+b) — (b+a) — (a+b)—....

It is undecidable whether an arbitrary rewriting system terminates [Huet 78]. However, a
number of methods have been proposed that prove termination in particular cases (see
~ [iturriaga 67], [Knuth 70], [Manna 70], [Lankford 75a], [Lipton 77}, [Plaisted 78a], [Plaisted
78b], [Dershowitz 79a], [Lankford 79a], [Dershowitz 82a), {Guttag 83a], [Jouannaud 82a]).
The most popular method, employed in REVE and described in Chapter 3, uses a reduction
ordering, defined to be any well-founded partial ordering, >, on terms, such that s > t =
f(...s...) > f(...t...) and o(s) > oft) for any terms f(...s...) and f(...t...) and any substitution o
[Manna 70]. The termination proof consists of showing that A > p for every rule, A—p, in %.

Another important property for term rewriting systems is confluence. A rewriting system, %, is
confluent (or uniformly confluent or Church-Rosser) if and only if, for all terms ¢, s, and s, t
—*sandt —* s’ implies s and s’ are joinable. % is said to be convergent (or canonical or

complete) if it is both terminating and confluent.

When a rewriting system is confluent, the normal form of any term is unique, when the normal
form exists. A sufficient condition fdr the existence of such a canonical form is the termina-
tion of all rewritings. Thus, for convergent rewriting systems, %, every term has a unique
normal form. Furthermore, - *, and hence = % (see the last section), is decidable when % is

25

Chapter 2 . Term Rewriting Systems and Proof Theory

convergent: (s =g t)if and only if (s —* #) if and only if (s{ = tl). To test whether s =g 1,
one can reduce both terms to normal form (by applying arbitrary reductions) and then check
whether the normal forms are identical. Since % terminates, this procedure is effective;
reductions cannot continue indefinitely. The property of confluence is undecidable for an
arbitrary term rewriting system, k. However, we will now see that one can decide confluence
when % terminates.

A rewriting system, %, is locally confluent if and only if, for all terms ¢, s, and s',t - sand t —
s’ implies s and s’ are joinable. The definitions of confiuence and local confluence differ in
the number of reductions of t permitted to obtain s and s'. Note that confluence implies local
confluence. The converse is not necessarily true. For instance,® = {a - b,a —¢c,b—+ a,
b — d} is locally confluent, even though a has two distinct normal forms, ¢ and d. However,
the following theorem is proved in [Newman 42]:

Theorem 1. A terminating rewriting system, %, is confiuent if and only if it is locally con-
fluent.

Similar "diamond lemmas" have been shown in [Knuth 70] and [Huet 80b]. It is difficult to test
for local confluence as defined, since the definition quantifies over all terms. Theorem 1 is of
interest to us only if it is easier to decide local confluence than confiuence. This is indeed the
case. We need the following definitions.

Two terms are said to over/ap if and only if one is unifiable with a nonvariable subterm of the
other, and the two terms share no variables. The superposition of two overlapping terms is
the corresponding unification of one term and a subterm of the other term. To superpose two
rewrite rules is to compute all of the superpositions between their left-hand sides. Let A,—p,
and)\2—»p2 be two rules in a rewriting system % such that A, and A, overlap at occurrence q
inA,, and let o be the most general unifier of A,/q and A,. (We assume that variables have
been renamed to alleviate sharing between the rules.) The critical pair associated with this
overlap is (a(A,[g—p,]), a(p,)). It consists of the two reductions of o(A,) by the two rules.
Intuitively, a critical pair captures the way in which two rewrite rules might be used to rewrite a
term into two different terms. For examﬁle, consider the two rules f(x, g(x, h(y))) — k{x, y) and
g(a, z) — m(z). We can superpose the first rule at occurrence 2 with the second one, using
the most general unifier {x+—a, z—h(y)}, to obtain the critical pair (f(a, m(h(y))), k(a, y)). We
will write a critical pair, (s, t), as an equation, s =1.

Chapter 2 Term Rewriting Systems and Proof Theory

For a finite rewriting system %, there are finitely many critical pairs. They can be effectively
computed with the use of a unification algorithm. Their utility is apparent in the following

theorem.

Theorem 2. A rewriting system, %, is locally confluent if and only if every critical pairin % is

joinable.

The original version of this theorem is presented in [Knuth 70], where it is used in conjunction
with Theorem 1. Our statement of the theorem is from [Huet 80b}, and does not require
termination.

Combining Theorems 1 and 2 gives us a decision procedure for the confluence of terminating
rewriting systems. The usefuiness of convergent rewriting systems has already been argued.
Note the dual importance of termination: it permits the use of Theorem 2 as a test for the
confluence of a rewriting system %, and helps us decide ~g (and =), when % is confiuent,
by alleviating infinite reductions. in some cases, a terminating, non-confiuent rewriting sys-
tem can be "comblet " to produce a convergent rewriting system having the same equa-
tional theory. This is the subject of the next section.

2.6 The Knuth-Bendix Completion Procedure

Suppose we have a rewriting system %, and a reduction ordering, >, such that A > p for all
rules, A—p, in . By Theorem 2, we may test for local confluence by checking that all critical
pairs are joinable. The two terms comprising & critical pair, s=t, are merely the result of
reducing a single term by two different rewrite rules in %, after applying a substitution.
Consequently, s=t is in =g, and s—t or t—s may be added to % without changing =g,
Furthermore, if the two sides of the added rule are ordered under > in the appropriate
direction, the termination of % is preserved. Thus, if the local confiuence test fails, i.e., if a
non-joinable critical pair is found, and the critical pair is orderable, we may add the critical
pair to %, and test again for local confluence. If thig process eventually causes % to be locally
confluent, and no unorderable critical pairs were found, the resulting rewriting system is
convergent, and has the same equational theory as the original.

The above method for "completing” % is the basis for the Knuth-Bendix completion
procedure. The procedure, as originally described in [Knuth 70}, is given in Figure 2-7. It

27

Chapter 2 Term Rewriting Systems and Proof Theory

incorporates the additional refinement that all rewrite rules are kept in normal form, for
reasons of efficiency. In this figure, repeat means "go to the first statement of the smallest
enclosing loop." Figure 2-7 makes use of the functions in Figure 2-6. The initial input to the
procedure is a reduction ordering, >, and a (finite) rewriting system %, where ¥ A—p € %
A > p. Later formulations of Knuth-Bendix accept equations as input and explicitly order
these original equations into rules using >. REVE's implementation of Knuth-Bendix is
described in Chapter 4.

Figure 2-6: Auxiliary Functions Used by Figure 2.7

Narmal(t, R) = A normal form of the term t with respect to the rewriting system R
Unorderable(s =) = (s 3£ t) and (t)¢ s)
Order(s =1) = If s >t then s—t else t—s

CriticalPairs(r, r') = All critical pairs between the rules r and r’

In looking for a decision procedure for an equational theory, =g, using Knuth-Bendix, one
first selects a reduction ordering, >, and constructs a rewriting system, %, that consists of
the axioms in &, ordered, such that A > p for every rule, A—p, in %. One then executes the
procedure in Figure 2-7. Knuth-Bendix is not an algorithm, in that it may hait in "tailure" if the
two sides of a rule are not orderable, or fail to terminate because it may generate an infinite
set of rules. Consequently, any practical implementation needs to provide a means for stop-
ping the main loop, perhaps by setting a limit on the number of iterations.

When > is unable to order the two sides of a rewrite rule, it is either because > is not general
enough to show that % terminates, or the rule is inherently non-terminating (e.g., x + y—y + x).
This is one of the major drawbacks of Knuth-Bendix as presented here: it does not apply to
theories containing such (useful) permutative equations. The procedure 6an be extended,
however, to work with certain equational theories with permutative axioms; see Section
6.2.4.3 for an overview of these results. |

The Knuth-Bendix procedure has been successfully used on a number of interesting axiom

Chapter 2 Term Rewriting Systems and Proof Theory

Figure 2-7: Description of the Original Knuth-Bendix Completion Procedure

Complete the initial system %:
loop

Find non-joinable critical pair:
foreach A—p in % do
for each y—p in% do
for each s =1t in CriticalPairs(A—p, y—p) do
s’ .= Normal(s, %); t' : = Normal(t, %)
if s’ # t' then goto Order equation endit
endfor
endfor
endfor
halt with success

Order equation:

if Unorderable(s’ = t') then halt with failure endit
(A—p) : = Order(s’ =t")

%= % U{A—p)

Normalize rewriting system:

foreach y—pin% do
¥’ := Normal(y, %); u’ : = Normal(p, %)
if(y = Y) and (u = p') then repeat endit
if Unorderable(y’ = u') then halt with failure endif
%= (R~ {y—p)) U {Order(y' =)}

endfor

endioop.

sets. One easy example is the central groupoid [Evans 67], which consists of one binary
operator, *, and the single axiom

(Mixey)ely-2)=y
As shown by REVE, and indicated in [Knuth 70] and [Hullot 80a], the completed rewriting
system consists of the above equation (ordered) plus the following two rewrite rules:

(2 (x*((xey)e2))—(x°y)

@) ((xe(y=2))*2)—(y*2) ,
This example can also be easily worked by hand. The latter two rules are the two critical pairs
that result from overlapping the first axiom with itself.

29

Chapter2 - Term mm '8mms and Proof Theory

Aparﬁcwnymm wmm mdmmmww
Knuth-Bendix is.group theory, aMhﬁm&immm wm
_mwmmmaamu MW!&MMMW
gent rewriting system coreponding 1o & set of axisms. Knuth:Blendix produces a difierent
mmmmmummmm%&ﬂmumm

in HMM

Figure 2-8: Convergent:

(oo x—x
R xLex—e .
@ xroy)szaxefron)
@tz o
o e |
©® 67 o
Mxeo—x
LA ,..,-} ve
@ xe e li”! |
TR A At s -

To prove, for example, the equational theorem _ ,

ooy teysortoet | | “@
mmmwhﬁmmmmnmwdmmn
normal form:

(Ve

Chapter 2 Term Rewriting Systems and Proof Theory

eyt

e (apply Rule 10)
ye (x7)? (apply Rule 6)
y*x ' (apply Rule 6 again)

and the right-hand side to normal form:

y*(xteg)!

ye(e e (7)) (apply Rule 10)
ye(es) (apply Rule 5)
ye () (apply Rule 1)
yex _ (apply Rule 8)

and note that the two normal forms are identical. If the normal forms were not identical,
Equation 4 would not be an equational theorem of groups. See [Hullot 80a] for other ex-
amples of convergent rewriting systems.

In addition to its use as a means of obtaining decision procedures for equational theories,
Knuth-Bendix may be used, among other purposés, to prove theorems by refutation [Hsiang
82]; to perform "meta-unification” in certain equational theories [Fay 79, Lankford 79b, Hullot
80b]; to interpret, verify, and synthesize "rewrite programs" [Dershowitz 83a}; and to compute
the congruence closure of a finite set of ground equations [Lankford 75b]. See [Dershowitz
83b] for a survey of these applications. It was announced in [Butier 80] and proven in
[Dershowitz 82b} that, for a given reduction ordering >, there is at most one convergent
rewriting system corresponding to an equational theory. Thus, Knuth-Bendix may sometimes
be used to prove that two different axioms sets have the same equational theory, by compiet-
ing the two sets and comparing the resulting rewriting systems for equality (modulo variable
renaming). Knuth-Bendix may also be used to prove inductive theorems, as explained in the
next section.

2.7 Inductionless Iinduction

Musser [Musser 80b] first suggested using Knuth-Bendix to prove theorems in the inductive
theory of a set of equations, as an alternative to performing explicit induction by hand. This
idea, dubbed inductionless induction by Lankford, was extended and/or simplified in
[Goguen 80], [Huet 80a], [Huet 82], [Lankford 81], [Dershowitz 83b], and [Kapur 84b]. We
present here the method of Huet-Hullot [Huet 82}, and interpret it in the context of the follow-

ing theorem:

31

Chapter 2 Term Rewriting Systems and Proof Theory

Theorem 3. [Dershowitz 83b] Let % be a convergent rewriting system for a set of axioms, 8,
where > is a reduction ordering used to establish the termination of %. Let §% be the set of
irreducible ground terms in %. Let J6 be a set of equations to be shown as inductive
theorems. An equation in J6 is not valid in the inductive theory of & if and only if running
Knuth-Bendix on % U J6 with > results in a rule with a left-hand side that has an instance in
§. This, provided the procedure does not terminate in “failure.”

This suggests the following method for proving that the equations in 36 are valid in the induc-
tive theory of 8: Complete & using Knuth-Bendix. Add the equations in 16 to the system and
continue the completion process. If an instance of a term in % appears on the left-hand side
of a rule, some equation in J6 is not valid in 8. If this does not occur, and Knuth-Bendix
completes successfully, all of the equations in 36 are inductive theorems in 8. If Knuth-Bendix
terminates in "failure" or generates an infinite set of rules, the method gives us no information
about the validity of the J6 equations in 8. The main difficulty in this scheme is determining
g% from a given %. ‘The remainder of this section presents the Huet-Hullot approach to this
problem. '

Let C denote a chosen set of operators found in 8. We refer to these operators as
HH-constructors. Let G8 denote all ground terms consisting only of operators found in &, and
GC denote all ground terms consisting only of operators in the set C. Before running Knuth-
Bendix on % U J6, one checks that & satisfies the principle of definition: every term in 8 is
8-congruent to exactly one term in §GC. This check is difficult (indeed, undecidable) because
both (& and (C are often infinite.

The Knuth-Bendix procedure is modified so that when it considers an equation, s =t, where
the normal form, s, of s is not identical to the normal férm. t', of t, the algorithm in Figure 2-9 is
executed. The first case in the algorithm is an optimization, valid when the principle of
definition holds, that divides s =t into several smaller equations to assist in the successful
compiletion of Knuth-Bendix. The second, third, and fourth cases in the algorithm ensure that
distinct terms in §C are not reducible to one another. The last two cases guarantee that the
terms in §C are less, under >, than all other terms in §8. Thus, when % satisfies the principle
of definition, the last five cases together ensure that §C consists precisely of the irreducible
ground terms in %, so GC is the set §% that we seek. Furthermore, the algorithm will halt with

Chapter 2 Term Rewriting Systems and Proof Theory

"pseudo-inconsiste’ncy"s if and only if a rule would be generated whose left-hand side has an
instance in GC. The principle of definition and Figure 2-9 together imply the conditions
required by Theorem 3. REVE incorporates Figure 2-9 into Knuth-Bendix, but does not cur-
rently provide support for checking the principle of definition. This is undecidable in general,
but efforts are underway to incorporate a useful check for sufficient conditions (see Section
6.2.4.5).

Figure 2-9: Huet and Hullot's Inductionless Induction Modification to Knuth-Bendix

case
s = fs;,..,s,)andt’ = ftg, nt), WithfEC: 8:= (B-{s'=t}) U {s,=1}; repeat
s’ = f(...) and t' is a variable, with f € C: halt with pseudo-inconsistency
s'is avariable and t' = f(...), with f € C: hait with pseudo-inconsistency
s'=f(.)andt = g(..),withfEC,gE&Candf=g: hait with pseudo-inconsistency
s’ = f(..)andt' = g(...), withf € C,g & C, and s" > t": halt with fallure
s' = f(..)andt' = g(...), withf € C,g € C,and t' > s": halt with failure

endcase |

As an example, consider using inductioniess induction to prove inductive theorems in the
theory of lists, as defined in Figure 2-3 on Page 20. We first use Knuth-Bendix to complete the
list axioms’, given a suitable reduction ordering, >. Here, Knuth-Bendix finds no non-
joinable critical pairs, so the resulting rewriting system % just consists of the equatibns in
Figure 2-3, ordered. We then dasignate nu// and cons as the HH-constructors, and check that
% satisfies the principle of definition. The principle does hold for '_.%, since all ground terms
are irreducible, and §€ = §C in this example. We then continue running Knuth-Bendix on %,
together with the set J6 consisting, say, only of Equation 2 on Page 20. Knuth-Bendix will
~complete successfully in this case, and happens to produce Equation 3 on Page 21 as a
critical pair that appears in the final convergent rewriting system. Note that Equation 3 is not

6In [Huet 82], the authors use the word “disproof" rather than "pseudo-inconsistency."”

7ln the Huet-Hullot approach, i & itself satisfies the principle of definition, it is not atrictly necessary that one first
run Knuth-Bendix on.8 before adding the equations in J6. In practice, however, it is customary to run Knuth-Bendix
first. The principle of definition is easier to check for a convergent rewriting system than for an arbitrary set of
equations.

Chapter 2 Term Rewriting Systems and Proof Theory

in the equational theory of the original list axioms, but it is in the equation theory of the list
axioms plus Equation 2. Because Knuth-Bendix does not halt with "failure" or "pseudo-
inconsistency" in this case, we conclude that Equation 2 (and Equation 3) are in the inductive
theory of the original list equations. These theorems may, in turn, allow us to prove other

inductive theorems. (For further examples, see Section 5.3.)

Chapter Three

Automatic Construction of
Terminating Rewriting Systems

3.1 Introduction

In this chapter, we present a new, totally automatic method for constructing a rewriting sys-
tem from a set of equations, and proving that the rewriting system terminates. Previous
techniques have either required user help in guiding the proof, or have been too restrictive to
be generally applicable. The ability to prove termination automatically is an important require-
ment in applications where the theorem prover is to be embedded in a larger program, espe-
cially when term rewriting is not the principal function of that program. In most such
programs, it would be inappropriate to expect users to be sufficiently fluent in rewriting sys-
tem termination techniques to assist in the termination proof.

Termination is undecidable. Nevertheless, we are often interested in whether a rewriting
system, &, terminates, because (see Section 2.5):

o Termination allows one to decide whether % is confluent.

¢ [f % is confluent, termination allows one to decide =gy

o [f & is not confluent, termination aliows the use of the Knuth-Bendix completion

procedure to help achieve confluence.

Knuth-Bendix, as part of the completion process, constructs a terminating rewriting system
from a set of equations with the use of a reduction ordering, >. The construction process
consists of showing that every equation can be ordered, in one direction or the other, into a
rewrite rule, A—p, such that A > p. These ordered rewrite rules comprise %, and > proves
that % terminates.

In the context of Knuth-Bendix, the problem of ensuring that % terminates reduces to the
problem of choosing an appropriate reduction ordering, >, if such an ordering can be found
for the example at hand. In particular, constructing % in an automatic fashion consists of

Chapter 3 ‘ Automatic Construction of Terminating Rewriting Systems

automatically finding >. Selecting > based on a static analysis of the equations is not
sufficient, because the set of equations grows during the completion process. The selection
of > must proceed dynamically: whenever an equation is encountered that cannot be or-
dered by >, > must be extended (if possible) so that it can order the new equation and also
order all previously-ordered equations. This idea was pioneered by Lescanne in REVE 1
[Lescanne 83a] In this chapter, we present an automatic, dynamic procedure for extending
>, so that the construction of % and its proof of termination proceed automatically. The
procedure is sufficiently general to be effective in a wide variety of practical applications.

The remainder of this chapter presents the theoretical justification and algorithmic methods
supporting the automatic procedure for extending >. Section 3.2 presents the basic defini-
tions and theory behind the use of orderings in constructing terminating rewriting systems.
Section 3.3 describes and generalizes some popular classes of orderings. Section
3.4 introduces a new class of orderings that is more powerful than most other known classes
of orderings for tefmination proofs. Section 3.5 presents methods for dynamically extending
these orderings. Finaily, Section 3.6 describes the automatic extension procedure itself.
Sections 3.2 and 3.6 may be read independently of the other three, to obtain an overview of
the scheme for automatically constructing terminating rewriting systems, while skipping the
details of the orderings themselves.

3.2 Ordering Definitions and Properties

3.2.1 Relations, Relationals, Mappings, and Orderings

This chapter is concerned with various binary relations. A binary relation, ¢, is a set of
ordered pairs of elements belonging to a base set, S. The notation s ¢ t means (s, t) € ¢. A
relation, @, is an extension of another relation, ,, if and only if ¢, 2 ¢,. The extension is
strict if and only if the containment is proper. ‘

A relation pair is inductively defined to be a pair, (p,.,), where ¢, and ¢, are either relations
or relation pairs. The base set of (p,,@,) is the union of the base sets of ¢, and ¢,. A relation
pair, (@,.¢,), is empty if and only if both @, and ¢, are empty. We say that (¢,,@,) is an
extension of (@},9,) if and only if g, is an extension of ¢, and g, is an extension of ¢,. The
extension is strict if and only if either of the constituent extensions is strict.

36

Chapter 3 Automatic Construction of Terminating Rewriting Systems

A relational is a relation that is parameterized on another relation or relation pair. f ® is a
relational on ¢, @ is monotonic in g if and only if extending ¢ extends ®[p]. An instantiation
of @ is any relation ®[¢p] where ® is defined on ¢. If &, and &, are both relationals on ¢, we
say that @, is an extension of @, if and only if ®,[p] 2 ®,[¢] with any ¢ for which @, is
defined. The extension is strict if and only if the containment is proper. We will usually just
write the name of the relational, say ®, rather than ®[¢], since ¢ will usually be clear from
context.

Given a domain set, D, and a range set, R, a (partial) mapping, u, from D to R is a binary
relation with base set D U R, where p(d) = r (i.e., du r)only if d € D, r € R, and, for every
d € D, there is at most one r satisfying u(d) = r. The mapping p is total if and only if there is
exactly one such r for every d. We say that pu is total over T if it is total when its base set is
restricted to T. |

A quasi ordering, >, is a transitive, reflexive binary relation. The notation s =~ t means (s >= ¢

andt > s), and s ¥* t means (s, t) & >. We say that s and t are comparable under >~ if and
onlyifs>=tort>s.

A partial ordering, >, is a transitive, irrefiexive binary relation. The notation s < t means (s, t)
¢ >. We can obtain a partial ordering, >, from a quasi ordering, >, by defining s > t if and
only if (s >t and t * s). We say that a partial ordering, >, is well-founded if and only if it
admits no infinite descending sequences s, > s, > s, > ... of elements in its base set. An
ordering is any quasi or partial ordering.

3.2.2 Simplification Orderings

[Dershowitz 82a] introduced a general class of partial orderings on terms, known as
simplification orderings, and showed that simplification orderings can be straightforwardly
used to prove the termination of rewriting systems.

Definition 4. A partial ordering, >, on terms is a simplification ordering if it possesses the
following two properties: » ’

Compatibility: s>t => f(...s...) > f(..t...
Subterm: H..t.) >t

for any terms s, t, f(...s...), and f(...t...).

Chapter 3 Automatic Construction of Terminating Rewriting Systems

Theorem 5. [Dershowitz 82a] A term rewriting system, %, terminates if there exists a
simplification ordering, >, such that o(s) > o(t) for all substitutions ¢ and all rules s—tin .

Every simplification ordering > considered here is stable; i.e., s > t implies a(s) > o(t), for all
terms s and t, and all substitutions . Consequently, we may use a variant of the above
theorem that is slightly less general.

Theorem 6. A term rewriting system, %, terminates if there exists a stable simplification

ordering, >, such that s > t for all rules s—t in %.

In the last chapter, we indicated that Knuth-Bendix uses reduction orderings to prove termina-
tion. Theorem 6 indicates that stable simplification orderings can be used instead. Stable
simplification orderings are different from reduction orderings, because stable simplification
orderings are not necessarily well-founded, and reduction orderings do not necessarily have
the subterm property. However, [Dershowitz 82a] showed that when the base sets of the
orderings are restricted to terms over a finite set of operators, such as the terms that comprise
a (finite) rewriting system, these two classes of orderings are the same. The notion of
simplification ordering was introduced because it is usually much easier to show that an
ordering is a simplification ordering than to show it is a reduction ordering. in applications
other than termination proofs, when a well-founded ordering is needed for terms over an
infinite set of operators, one must separately show the well-foundedness of the simplification
ordering. See [Dershowitz 83c] for techniques in constructing well-founded orderings, and
for an overview of most known classes of simplification orderings, including some of those
discussed here.

3.2.3 Registered and Automatic Orderings

Most classes of simplification orderings in popular use can be viewed as what we will call
registered orderings. A registered relation is any relational, parameterized on a registry, that
yields a relation over terms. A registry, {w,¥), is any relation pair consisting of a precedence,
@, and a status map, ¥, representing information about operators. A registered ordering is
any registered relation whose every instantiation is a stable simplification ordering.

It is important to recognize that a registered ordering is a relational, so it is not an ordering: it
is a class of orderings. We use this terminology to be consistent with the names of existing

38

Chapter 3 Automatic Construction of Terminating Rewriting Systems

classes of simplification orderings, such as the recursive path ordering. We will use the
symbol > both for registered orderings and simplification orderings. The meaning of > will
be clear from context. '

A precedence, # = (¥,#), is a relation pair, where > and are binary relations on
operators. We say that (»,5¢) is consistent if and only if all of the following are true:

(1) The relation ¥ is a quasi ordering.
(2) The relation is irreflexive and symmetric.

(3) For any three operators, f, g, and h, where f > gand g ¥ h, if f 3 g or g h, then
t#h.

We say that f and g are comparable under (,:¢) it and only if they are comparabie under .
We will use f » g as a shorthand for (f » g and f 3 g), and f = g as a shorthand for (f > g and
g & f). Note thatif f & g, one may extend () withf gorg P> ftoobtainf» gorf=g,
respectively. Also note that 3> is a partial ordering. We say that (>, is total if and only if,
for all operators f and g in the base set, either f 3 g, g » f, orf = g. The precedence (¥,%) is
total over T if it is total when its base set is restricted to 7. We will usually just use » to denote
a precedence, rather than (»,). '

A status map, ¥, is a binary relation that represents some auxiliary information used by regis-
tered orderings. We say that ¥ is consistent if and only if it is a partial mapping from operators
to statuses. A status can have the value multiset, denoted @; left-to-right, denoted ©; or
right-to-left, denoted ®. If an operator, f, is not in the domain of a status map, ¢, the "status"
of f is said to be undefined, written y(f) = @. Loosely, ¥(f) = & means that, for a term, ¢,
whose root is f, the ordering regards the arguments of t as a multiset, and the order of the
arguments is ignored. When y(f) = ©, the leftmost arguments of ¢ are given more weight in
the ordering. Similarly, §(f) = ® indicates that the rightmost arguments are more important.
if ¥(f) = @, has not yet been assigned a particular status. We say that the status of f has
been set if and only if (f) # @. The two statuses © and ® are lexicographic in that they
imply a lexicographic comparison of argument lists. (Left-to-right and right-to-left are not the
only lexicographic possibilities, but they are the most useful.) Two statuses are incompatible
if one is @ and the other is lexicographic, and are compatible otherwise. In registered
orderings, the status of an operator is irrelevant if its arity is less than two.

Chapter 3 Automatic Construction of Terminating Rewriting Systems

The operators in the base set of a registry, (w,¥), are implicitly assumed to be restricted to
those occurring in the (finite) term rewriting system of interest. We say that {(n,y) is tota/ if
and only if both o and ¥ are total. The registry is total over T if and only if both « and ¥ are
total over T. The registry is consistent if and only if both # and ¥ are consistent, and for all
operators f and g such that f = g, ¥(f) and Y{g) are compatible. Registered orderings are not
defined for inconsistent registries, so implementations should take precautions to preserve
the consistency of the registry. Unless stated otherwise, all registries considered here are
assumed to be consistent. We will denote the contents of particular registries using braces,
for convenience; e.g., {f ¥ g, ¥() = @}. We will usually just use p to denote a registry,
rather than (7,§) or {(&,).¥).

To construct a terminating rewriting system from a set of equations, 8, using a registered
ordering, >, one must find a terminating registry: a registry that allows every equation in & to
be ordered by > in one direction or the other. Thus, for > to be useful in constructing
terminating rewriti_ng systems automatically, it must be possible to dynamically extend >~ by
extending the registry when an equation that is unorderable (under the current registry) is
found. lﬁ is essential that > be monotonic in the registry, so that extending the registry does
not change the ordering of previously-ordered equations under > [Lescanne 83a]. Another
important property of >~ is its extensibility: the degree to which > can be extended by
extending the registry.

For unorderable eduations, we seek extenders. An extender for s ¢ t under the registry p,
where ¢ is a registered relation, is an extension of p such that s ¢ t under that registry
extension. The registry p is itself an extender if we already have s ¢ t. An extender is minimal
if and only if no proper subset of that extender is also an extender. A complete extender set,
S, for s @ t under p is a set of registries such that every registry in S is an extender fors ¢ t
under p, and every extender for s ¢ t under p is an extension of at least one registryin S. A
minimal complete extender set, %f(q),p), is a complete set of extenders that contains no
non-minimal extenders. We will usually just write () rather than %f(cp,p) when s, ¢, and p
are irrelevant or clear from context. Note that a complete extender set explicitly includes
every minimal extender. Consequently, every non-minimal extender in a complete extender
set is an extension of some other (minimal) extender in that same set. Thus, %f(cp,p) can be
obtained from a complete extender set for s ¢ t under p, S, by removing all extenders from S
that are extensions of other extenders in S. We say that 5 f(qz,p) is the minimal reduction of S.

40

Chapter 3 Automatic Construction of Terminating Rewriting Systems

The ability to compute H(>>) is the key to our method for automatically constructing a ter-
minating rewriting system from a set of equations, by automatically finding a terminating
registry under >-. An automatic ordering is an implementation of a registered ordering, >,
that can compute %(>>) when two terms are unorderable. In Section 3.5, we will show how
some registered orderings can be implemented as automatic orderings.

Some interesting questions that one can ask about a registered relationa! are:

ols evéry instantiation a simplification ordering?
o Is every instantiation stable?

o Is every instantiation well-founded?

o Is it monotonic in the registry?

o How extensible is it?

o Can it be implemented as an automatic ordering?
We will consider these questions for the registered relationals we will describe.

3.3 Path and Decomposition Orderings

This section discusses two important categories of registered orderings, one based on &
recursive path tra\)ersal of terms, and one based on a comparison of term decompaositions.
The recursive path ordering with status (RPOS) is a widely used registered ordering, because
it is powerful and easy to understand. A newer registered ordering, the recursive decom-
position ordering with status (RDOS), is more powerful than RPOS, and can help extend the
registry when two terms are unorderable.

Although both RPOS and RDOS allow the precedence to be incrementally extended during
the termination proof, neither of these registered orderings perhits the status map to be
incrementally extended. Thus, one must set the status map a priori, rather than allowing it to
be extended appropriately to order unorderable equations as they are encountered. Thisis a
significant shortcoming for automatic termination. proofs. In addition, both RPOS and RDOS
are somewhat inflexible with respect to incremental precedence extensions during the ter-
mination proof. However, by changing the definitions of RPOS and RDOS slightly, we can

41

Chapter 3 Automatic Construction of Terminating Rewriting Systems

correct these deficiencies in extensibility. We refer to the modified, fully extensible versions
of these orderings as the extensible path ordering with status (EPOS) and the extensible

decomposition ordering with status (EDOS).

In the remainder of this section, we present those definitions and properties of the above
orderings that will be needed in the rest of the chapter. We will fully define the path orderings,
because the definitions will be used in Section 3.5. We will also discuss the essential features
of the decomposition orderings, though we will not require the details here.

3.3.1 Path Orderings

To define RPOS, we first need two subsidiary relationails on collections of elements, and two
subsidiary functions.

Intuitively, a multiset (or bag), s, on a quasi ordering, >, is an unordered coliection of ele-
ments, where s may contain muiltiple elements that are equivalent under ~. More formally, s
is a mapping from the base set, S, of > onto the nonnegative integers, that associates, with
each member of S, the number of elements to which it is = in the muitiset. We use
{sys - 8,,} t0 denote the multiset containing the (possibly duphcated) elements 8., ..., 5,

AM(S) denotes the set of all finite muitisets on S.

Definition 7. [Huet 80a] Given a quasi ordering, >, whose base set is S, and elements s
and t of M(S), we obtain a relational, g, on M(S), by s >z t if and only if (Vx)([t(x) > s(x)] =>
AyXly > x] A [sy) > t{y)])). The instantiations of >x are quasi orderings, called the muitiset

orderings.

See [Jouannaud 82b] for properties of this ordering, a comparison of this ordering with other
multiset orderings, and an efficient implementation.

We will write a sequence as (s,, ..., s). L(S) denotes the set of all finite sequences on S.

Definition 8. Given a quasi ordering, >, whose base set is S, and elements s =
(84185 Sy andt = (t,1,, ... t) of L(S), we obtain a relational, >, on L(S), by s x t if and
onlyifn = 0,orn>0,m>0,s, >t,and (s, .. 8,) X (t,, .. t,). The instantiations of >x

are quasi orderings, called the lexicographic orderings.

Chapter 3 Automatic Construction of Terminating Rewriting Systems

The LexSequence function takes a lexicographic status and a term, and re-orders the term’s

arguments (if necessary) to be appropriate for the given status:

LexSequehce(y, (tpnt)=ify=@then(t, ...t)else(t, ..t)endif

CompareEquivalent, which makes use of LexSequence, is used to compare two terms whose
roots are = in the precedence. The function takes two pairs, where each pair consists of a
term and a status assignment, plus a partial ordering for comparing arguments.
CompareEduivalent compares the two terms, using the ordering, under the assumption that
the roots of the terms are =, and treating the terms as though the root of each term has the
status assignment that is paired with that term. (in defining RPOS, the status assignment
paired with each term will be the same as the status of the root of the term, but this will not be
the case when we use CompareEquivaient in defining EPOS, below.)
CompareEquivalent((s = (s, ... 5), Y,). {t = glt,. .. 1), 7,), >) =

case _
(v, = ®)and (v, = ®): {s,...,s_ } 2 {t,, ... 1.}

Y, and Y, are both lexicographic:
[LexSequence(y,, s) >x LexSequence(y,,)] and (V1)(s > t)
endcase ‘

in effect, CompareEquivalent compares the arguments of s and t as multisets if the statuses
are both multiset, and compares them lexicographically, from left-to-right and/or right-to-left,
it the statuses are both lexicographic. In addition, with lexicographic comparisons,
CompareEquivalent must ensure that s is greater than each argument of 1, if s is to be greater
than t. CompareEquivalent is not defined if the two statuses are incompatible or if either
status is @.

Kamin & Lévy’'s RPOS registered ordering [Kamin 80], >8, is an extension of the recursive
path ordering [Dershowitz 82a]. RPOS is monotonic in the precedence [Lescanne 83b], and
an instantiation of RPOS is well-founded if and only if 3 is well-founded. (The partial ordering
> will always be well-founded if its base set of operators is finite.) The following definition
makes use of Definitions 7 and 8, and of CompareEquivalent.

Definition 9. The recursive path ordering with status® (RPOS), 52, is a registered relational.
The partial ordering >2[p] is induced by the quasi ordering >2[p], where -

8Kamin & Lévy did not use a formal notion of status map. Our use of status is adapted from Lescanne's REVE 1
and from [Lescanne 84].

43

Chapter 3 Automatic Construction of Terminating Rewriting Systems

§ = f(sq, i Sp) 0] glty, oty =
is defined inductively as the union of the foliowing three cases:

(1) 3s)(s, 2p] 1)
(2) (f > g) and (V1)(s >[p] 1)

(3) (f = g) and CompareEquivalent((s, ¥(), {t, ¥(9)), >2[p])
(Note that F and g might be the same operator.) The ordering is only defined for consistent
registries. We lift > to a stable ordering on terms with variables by treating variables as
constants, where: 1) x = x and Y(x) = ® (any status woukd do) for all variables x; and 2)
(x, y) & 2 and (x, y) € ¢ for all distinct symbols, x and y, where x and/or y is a variable.

Theorem 10. Every instantiation of > is a simplification ordering.

Proof. See [Kamin 80]. ' O

Lemma 11. >E is monotonic in the precedence.

Proof. Easy extension of the argument in [L.escanne 83b] for the recursive path ordering. [J

One would like to initialize the status of all operators to @, and then incrementally choose
status assignments for operators while constructing the rewriting system, as needed.
Unfortunately, 2 is not defined for @ status. Some implementations of > (e.g., RRL [Kapur
84a] and REVE 1 [Lescanne 83a}) initially assign @ status to all operators, and then in-
crementally change the status of some operators to be lexicographic to help order un-
orderable equations. However, this is not a sound termination proof method, because it can
cause previously-ordered rewrite rules to become unorderabie.

For example, suppose that the status of both f and g is initially ®, and we héve previously
placed f ® g in the precedence to order some previous equation. We encounter the equation

glf(x, y)) = fly, x) (5)
and find that the left-hand side is already greater than the right-hand side under >£, with the
current registry. Hence, we convert the equation into a rewrite rule and add it to the rewriting
system, %. Later, we decide to change the status of f from ® to ©, to allow some other
equation to be ordered. Making this change causes Equation 5 to become unorderable.
Moreover, no further extensions to the registry will order the equation. We now have an

Chapter3 \ : Autom c»mwa mmmmm Systems

mmmmms,mnmmmumusm Thenmlu ’

define & 158 mm e ;’: :
0B 1. Thas, when o i

%

Chapter 3 Automatic Construction of Terminating Rewriting Systems

in either of these ways, and s and t will still be ordered. This change preserves

the monotonicity of the ordering with respect to =.

By making the above modifications to >&, we obtain EPOS, denoted >£.

To define EPOS formally, we first define two subsidiary functions, AllStatuses and
CompareAll. AliStatuses takes a status and returns a set of statuses. CompareAl, which uses
the CompareEquivalent function declared above, takes two terms and a partial ordering, and
compares the arguments of those terms (using the ordering) under all possible compatible
status assignments to the roots of those terms, assuming that the two roots are = in the

precedence.
AliStatuses(y) = if y = @ then {®, O, @} else {y} endif

CompareAll(s = f(...),t = g(...), >) =
(V(y " yz)e[AllStatuses(Mf))XAIIStatuses(nP(g))]: v, and v, are compatible)
CompareEquivalent((s, y,), {t, Y,) >)

Definition 12. The extensible path ordering with status (EPOS), £, is a registered rela-
tional. The partial ordering £[p] is induced by the quasi ordering >=[p], where

§ = sy 5,) ZElpl gltys o t) =t
is defined inductively as the union of the foliowing three cases:

(1) 3s)(s; Elp] 1)
(2) (f > g) and (V1)(s >E[p] t)
(3) ([f = g] or [(f & g) and (V1)(s >[p])]) and CompareAli(s, t, >=[p])
Variables are handled in the same manner as for >&.
In the definition of 3£, the treatment of @ is the conjunction of the treatment given to ®, ©,

and @, and the treatment of > is the conjunction of the treatment given to > and =. When
the status map is total and the precedence is committed, 5% = SE,

Let us consider an example that illustrates the extensibility of >£. Suppose we wish to find a
terminating registry for the equations shown in Figure 3-1, under >*. We start with an empty
registry (the precedence is empty, the status of all operators is @).

(1) The first equation in the figure is not orderable with > under an empty registry.

Chapter 3 Automatic Construction of Terminating Rewriting Systems

However, the equation is orderable into a rewrite rule from left to right if we set
Y(f) = ©, or it can be ordered from right to left if we set y(f) = ®. We arbitrarily
choose ¥(f) = ©.

(2) The second equation cannot be ordered from right to left under any extension to
the current registry (nor under any registry). The equation may be ordered from
left to right if we extend the registry with either y(g) = ® or f & g. The first
choice offers greater flexibility for later extending the precedence, and the
second offers greater flexibility for later extending the status map. We arbitrarily
choose the second of these registry extensions.

{3) The third equation is not orderable from right to left under any registry. However,
it is orderable from left to right if we commit the precedence by extending it with
g ¥ f,sothatf = g. We do so, and the equation becomes ordered into a rewrite
rule from left to right.

(4) The fourth equation is not orderable from left to right under any registry.
However, it is orderable from right to left if we set ¥(g) = ®, s0 we extend the
registry accordingly.

The final, terminating registry is {f = g, ¥() = ©, ¥(g) = ®).

Figure 3-1: Example to lilustrate the Extensibility of EPOS -

(1) Kf(x, x), y) = f(x, Kx, y))
(2) Kg(y, x), y) =glx, y)
(3) gty x), x)=1(x, y)

(4) glglx, x), y) =g(y, glx, y))

In the above example, we happened to make the right choices for extending the registry so
that a terminating registry was produced. In general, one cannot tell that a particular ex-
tender will not work until it is found to prevent the ordering of some later equation. In the
example, further experimentation would reveal that no choices for extending the registry,
other than the ones made above, allow a terminating rewriting system to be constructed using
>£. See Section 3.6 for a discussion of recovering from bad extender choices.

In practice, the » relation between operators contributes the most toward ordering terms.

47

Chapter 3 . Automatic Construction of Terminating Rewriting Systems

The status map is of secondary importance, though it is essentiai for ordering certain impor-
tant equations, such as (x + y) + z=x + (y + z), which expresses the associativity of +.
Although = was needed for the above example, this is rarely the case. An important example
where its use is required, however, is in the Knuth-Bendix completion of the one-axiom

characterization of groups [Lescanne 83a].

3.3.2 Decomposition Orderings

Lescanne has recently developed the recursive decomposition ordering with status (RDOS)
[Lescanne 84], which is an extension of the recursive decomposition ordering [Jouannaud
82a]. Like RPOS, RDOS is monotonic in the precedence, every instantiation of RDOS is a
stable simplification ordering, and an instantiation of RPOS is well-founded if and only if » is
well-founded. RDOS and RPOS yield the same ordering when the precedence is total. RDOS
is a strict extension of RPOS when the precedence is not total.

In addition, RDOS is incremental [Jouannaud 82a] in that an implementation can easily give
some help to the user for extending the precedence when two terms are not orderable. This
help consists ofya complete set of all pairs of operators that might make the terms orderable, if
used to extend 3. As described in [Jouannaud 82a], these suggestions are not extenders,
per se, because they are only single pairs of operators and they only address the » relation in
the registry. Nevertheless, the suggestions produced by RDOS are helpful and important,
because (as noted in the previous section) the ¥ relation is usually the most significant
information in the registry, and the set of suggestions produced is usually small. The decom-
position orderings are the first ones to provide an sasy way to help the user extend the

registry.

RDOS has the same two extensibility limitations as RPOS: 1) RDOS requires that the status
map be total before the termination proof begins, and 2) RDOS cannot take advantage of the
partial information in uncommitted precedences. Again, these problems are easily fixed.
RDOS can be straightforwardly extended to allow @ status for operators, and to handle f ® g,
in a manner very similar to the way we éhanged RPOS into EPOS above. We call this
modification to RDOS the extensible decomposition ordering with status (EDOS), 2.

We do not give the details of RDOS (or EDOS) here. We have mentioned the decomposition

Chapter 3 Automatic Construction of Terminating Rewriting Systems

orderings because they are more powerful than the path orderings, and their ability to provide
suggestions is the inspiration for the automatic orderings described here. In the next section,
we introduce a new ordering that is more powerful than both > and >£.

3.4 Closure Ordering with Status

Plaisted has suggested the closure ordering with status® (COS), a registered ordering that is
more powerful than both EPOS and EDOS. In this section, we describe COS, and show that
every instantiation of COS is a stable simplification ordering, COS is monotonic in the registry,
and an instantiation of COS is well-founded if and only if 3 is weli-founded.

The definition of COS makes use of two subsidiary registered orderings, >3 and >, that are
relationals on other registered orderings. For a given registry p = (w,), let ‘.Pf(n) denote the
set of all total extensions of w over all operators that appear in s and/or t. (Note that all
precedences in P{(x) are committed with respect to these operators.) Let ¥¥) denote the set
of all total extensions of y over those same operators, and let .Af(p) denote the set of all total
extensions of p over those operators.

Definition 13. Let > be a registered ordering. We define the registered ordering, >, such
that s >y t if and only if (V pe.,(f(p))(s >[pl] 1.

Theorem 14. If every instantiation of > is a simplification ordering, the same is true for >y.

Proof. We must show that every instantiation of >; is a partial ordering, is compatible, and
has the subterm property, for any > whose every instantiation also has these properties.
Compatibility: (By contradiction.) Suppose that every instantiation of > is compatible, but
that this is not true for >. Then for some registry, p, and some terms, s, f, f(...s...), and
f(....t...), we have s > t and £(...s...) 3§ f(...t...). By Definition 13, we have s > t and f(...s...) ¢
f(...t...) for some registry extension in .Af(p), which contradicts the supposition.

Subterm: (By contradiction.) Suppose that every instantiation of > has the subterm
property, but that this is not true for >;. Then for some registry, p, and some terms, t and

9As suggested by Plaisted, the closure ordering does not use status, but it is easy to extend his idea in this

manner.

Chapter 3 Automatic Construction of Terminating Rewriting Systems

f(...1...), we have f(...t...) 4 t. By Definition 13, we have f(......) ¥ t for some registry extension
in A {p), which contradicts the supposition.
The proofs of transitivity and irreflexivity are similar. ' 0

Lemma 15. If every instantiation of > is stable, the same is true for >3

Proof. (By contradiction.) Suppose that every instantiation of > is stable, but that this is not
true for . Then for some registry, p, some terms, s and t, and some substitution, o, we have
s >yt and o(s) »§ o(t). By Definition 13, we have s > t and o(s) ¥4 of(t) for some registry
extension in .Af(p), which contradicts the stability of >-. O

Lemma 16. >y is monotonic in the registry.

Proof. (By contradiction.) We must show that >y is monotonic in both & and ¥. Suppose >y
is not monotonic in #. Then for some precedences «, and ,,, where =, is an extension of w,
and for some ¥, s >3 t under ,(w,,,' ¥), but s 3¢ t under (w,, ¥). By Definition 13, it must
therefore be the case that s > t under ¥ and all precedences in 9:(11), but not under ¥ and
all precedences in F)(w,). But this is a contradiction, since FiAw,) 2 P{(x,). The proof for
W-monotonicity is similar, | O

Lemma 17. Assume > is monotonic in the registry. If an instantiation of > is weli-founded
whenever 3> is well-founded, the same is true for >y. If >y is well-founded under some
registry, p, > is also well-founded under p.

Proof. (By contradiction.) Suppose that an instantiation of > is well-founded whenever 3 is
well-founded, but that this is not true for >y. Then there exists an infinite decreasing se-
quence t, >y t, >y I, >y... for some precedence » for which 3 is well-founded, and for some
¥. By Definition 13, we have t, > t, > t; >... under all registries in Af(p). Since » is
well-founded, there is (by Zorn’s Lemma) some total extension, #, = (2,,%,), of w, such that
P, is well-founded, and (by supposition) > is well-founded under (w., ¥). Since > is
monotonic in ¥, > is well-founded under all registries in {#,}X¥X¥). But this is a contradic-
tion, since {#,}XS%¥) is non-empty and AXp) 2 {r,}X7A¥), and > is not well-founded -
under any registries in .A:(p).

Suppose > is well-founded under some registry, p, and > is not. Then there exists an infinite
decreasing sequence t, >~ t, > t, >... under all registries in . Yp), since > is monotonic in
p. By Definition 13, we have t, >y t, >y t, >y... under p, which contradicts the supposition. O

50

Chapter 3 Automatic Construction of Terminating Rewriting Systems

Corollary. If an instantiation of > is well-founded if and only if » is well-founded, and > is
monotonic in the registry, then an instantiation of >y is well-founded if and only if -» is
well-founded.

Definition 18. Given a registered ordering, >, we obtain its c/osure, >, where s >t is
defined as the union of the following two cases:

(1)s>1t
(2 s>yt
Lemma 19. [f > is monotonic in the registry, >x = >y.

Proof. Assume > is monotonic in the registry. By Definitions 13 and 18, s >y t implies s >x t,
and (2) (above) implies s >3 t. We must also show that (1) (above) implies s > t. Suppose (1).
Since > is monotonic in the registry, we have s > t under all registries in . {p). By Definition
13,8 >xt. ' 0O

Note that the closure, >, of a registered ordering, >, is usually more efficient to compute
than >3 because, by the definition of >, s >3 t need not be computed if we already have
s > t. The closure operation unifies >£ and >, in that the closure of >F is the same
registered ordering as the closure of »2. l.e.,

Lemma 20. >k = >R

Proof. When the registry is total, 5= = SB (see Section 3.3.2). Thus, by Definition 13,
>k = >B. Since both >t and > are monotonic in the registry, we have > = >}, by Lemma 18.
O

For concreteness, we use >% instead of 52, and obtain Plaisted's registered ordering“’.

Definition 21. The closure ordering with status (COS), >, is the closure, >&, of >2.

10pigisted’s definition of the closure ordering is more general than the one we give here. His definition treats
variables as operators in the total precedences under which EPOS is computed. This results in a more powerful
closure ordering. The proof of stability for this improved closure ordering is more complicated than for our definition,
because it does not follow directly from the stabifity of >=. Such a proof would be a digression here, 30 we have
presented the simpler definition. This improvement to the closure ordering is largely independent of the automatic
termination issues discussed in this chapter.

51

Chapter 3 Automatic Construction of Terminating Rewriting Systems

We will write >2 in place of >& in the remainder of this thesis. The monotonicity of £ implies
that 52 = &, by Lemma 19. Consequently, Theorem 14, Lemmas 15 and 16, and the
corollary to Lemfna 17 apply to >* as well as >5. Thus, since every instantiation of > is a
stable simplification ordering, > is monotonic in the registry, and an instantiation of > is
well-founded if and only if 3 is well-founded (see Section 3.3.1), these properties also hold for
>%. The next theorem states the main reason for our interest in >, ‘

Theorem 22. % is a strict extension of >2.

Corollary. ¥ is a strict extension of SE.

Proof. Assume s > t under p. Then we have s >2 t under all registries in .4 {p), because >2
is monotonic in the registry. Since 52 = >E when the precedence is total, we have s > t
under all registries in .Aﬁp). By the monotonicity of >, Lemma 19, and Definitions 13 and 21,
we have s > t under p. Thus, > is an extension of >2.

To see that the extension is strict, consider the two terms,
s = f(Ka, a), (b, b)) '
t = f(b, a)

Assume that the registry is empty. We have s > t, but s and t are not orderablé under 2.
Since >R is a strict extension of 52, the coroliary follows immediately. (]

To order the above two terms under >2 and >£, one can extend the registry in any of several
ways, including ¥(f) = @, ora b, or b P a, or any registry extension in .l:(p), each of which
causes s to be greater than t.

As an aside, the above example does not demonstrate the added power of > over the recur-
sive path ordering (RPO) [Dershowitz 82a]. RPO is the same as RPOS, except that the status
of all operators is @. Above, when ¥() = @, we have s b2 t, as well as s > t. Lescanne has

suggested another exampie:
s = f(f(f(a, a), a), f(b, b))
t = f(Ha, b), f(a, b))

Here, s and t are not orderable under >2 when the precedence is empty and all operators have
@ status. However, we do have s > t in this case.

On the face of it, > looks to be a mixed blessing. On the one hand, the >* registered ordering
is more powerful than 2. On the other hand, a >* implementation based directly on the

52

BT BRI GRAMGAT n r i e

Chapter 3 ‘ Automatic Construction of Terminating Rewriting Systems

definition would run very slowly in the worst case. For two terms, s and ¢, under an empty
registry, where (s, f) & >, s > ¢, and s and t include 5 different operators (not atypical), it
appears that there are 5! X 5% = 15,000 total registries under which >£ must be computed in
an attempt to order the equation under >*. However, the next section presents a method of

computing > that may be more efficient.

3.5 Computing Minimal Extenders

- As discussed in Section 3.2.3, it is highly desirable to compute the minimal complete extender
set, B(>), whenever two terms, s and ¢, are found to be unorderable under >. This section
describes methods for computing B(>£), B(>2), and H(>*), allowing >£, 52, and > to be
implemented as automatic orderings for automatic termination proofs. We show that B(>),
and even > itself, can be computed using either B(>*) or B(>2). The H(>F) scheme has been
implemented in REVE, and Lescanne is currently developing a %(>2) implementation. Some
further study is required before implementing a %(>2) scheme.

The computing of minimal extenders has been largely ignored in the past. The precedence
and status map are typically chosen a priori, and then appropriately adjusted in a trial-and-
error fashion. There are three major reasons for this:

(1) Until recently, even manually-produced termination proofs have been difficuit to
obtain. Only in the last several years have classes of simplification orderings,
such as RPOS and RDOS, emerged that are sufficiently general to be applicable
to a wide variety of rewriting systems found in practice.

(2) Prior to the emergence of Lescanne's REVE 1, the idea of extending the registry
on an as-needed basis, as unorderable equations are encountered, had not ap-
peared in any available system. '

(3) Minimal extenders seem computationally intractable. Any algorithm for comput-
ing %(>) probably requires time that is exponential in the number of operators in
theterms s and t.

A goal of this chapter is to pragmatically address the last concern above. The methods for
computing minimal extenders that we present here have probable worst-case exponential
behavior. However, for typical examples, we have found that the %(>E) aigorithm usually
requires no more than several seconds per equationlénd we conjecture that the running time
of the B(>2) and %(>*) algorithms will be similar. Moreover, when constructing a terminating

53

Chapter 3 Automatic Construction of Terminating Rewriting Systems

rewriting system from a typical set of equations, many of the equations will already be or-
derable under the current registry, and it is only necessary to compute $(>) when an equa-
tion is not orderable.

In the‘remainder of this section, we describe the T(>*) computation in detail, briefly indicate
the differences between computing B(>2) and B(>£), and give an overview of a technique for
computing H(>*). Throughout, we assume that the two terms being compared are
s = sy, ...,s,)and t = g(t, ..., t), and that all variables are to be regarded as constants, as
indicated above in the definitions of >& and >£.

3.5.1 Minimal Extenders for EPOS and EDOS

This section presents the terminology, concepts, and aigorithms related to the computing of
B(>E) and B(>2). We will present the details of our algorithm for computing %(>*). The
method for compﬁting %(>2) is similar, so we will only indicate how the %(>2) generation
scheme differs from the one for B(>F). For concreteness, all terminology will be introduced in
the context of >, A

The B(>F) algorithm makes use of comparators and orderals. We will see that the problem of
computing the minimal extenders for s > t reduces to the problem of computing extenders for
the orderals of s >& t under each incremental extension. This, in turn, reduces to the problem
of computing combined extenders for the orderals, which then reduces to the problem of
computing the minimal extenders for the comparators that compose the orderals.

A relator, @, is one of three registered relations used in defining and computing >£. The value
of @ may be either 5, >, or £,

A comparator, denoted (s,t,¢), associates a particular pair of terms (here, s and t) with a
relator (p) under which they should be compared. A registry is a (minimal) extender for a
comparator, (s,t,¢), if and only if it is a (minimal) extender for s ¢ t. The notions of complete
extender set, minimal complete extender set, and minimal reduction (see Section 3.2.3) carry

over straightforwardly to comparator extenders.

An orderal, D, for a comparator, (s,t,¢), under p is a set of comparators such that:

Chapter 3 Automatic Construction of Terminating Rewriting Systems

(1) For every comparator (s't'\,@') in D, s' € {s, s,, ., s },t'E€ {1, ty -t} anditis
not the case thatboths’ = sandt’ = t.

(2) If p is an extender for every comparator in D, it is an extender for (s.t,p).

(3) No subset of D is an orderal.
Intuitively, the comparators in an orderal represent subterms that can be compared to estab-
lish s ¢ t. The orderals for (s,t,¢) are not defined if both s and t are constants. An extender
for an orderal, D, is an extension of the current registry that is an extender for every com-
parator in D. An extender for D is minimal if no proper subset of that extender is also an
extender for D. The notion of complete extender set carries over straightforwardly to orderal
extenders. A combined extender for an orderal D is a union of extenders that consists of
exactly one minimal extender from each comparator in D, provided that union resuits in a

consistent registry.

We will use 3 {¢,p) to denote the complete set of orderals for (s,t,p) under p. The orderals in
g f(cp.p) are derived directly from the definitions of >, _>_E or £, depending on ¢. Consider
the comparator {s,t,>F). If f > g, there is only one orderal: {(s,t,,>F), ..., (s.t,,55)}. 1 (. g) &
P, there are m orderals for (s,t,>:): {(s,,t,_>-f'.)}, ey {(sm.t,i)}. There are typically many
orderals when f = g, and so on. A complete extender set for ‘.‘lf(cp,p) is any set of registries
that is a complete extender set for every orderal in ¥ f(q:,p).

An incremental extension of p = ((3,5),¢) for s and t is any extension to p that differs from p
only in that it may contain additional information about 7 and g. For example, if f and g are not
comparable under (3>,5), and both have @ status, then p,p U {g » f},and p U {f P g,
¥() = @} are incremental extensions. The inc_remenral extension set, denoted Jt‘(p), of p for

s and t is the set of all such incremental extensions.

Note that every minimai extender for an orderal, D, must also be a combined extender for D,
and every combined extender for D is an extender for D. Thus, the set of all combined
extenders for an orderal is a complete extender set for that orderal. Therefore, by the defini-
tion of Ebf(cp,p) complete extender sets, the set of all combined extenders for ali orderals in
9 {@,p) is a complete extender set for J ®.p).

To compute the minimal complete extender set for some comparator (s,t,@) under p, one
must compute complete extender sets under p, and also under each possible extension to p

55

Chapter 3 Automatic Construction of Terminating Rewriting Systems

that extends the information about f and g. Thus, we must individually use each incremental
extension in J f(p) (which includes p itself) as a starting point for computing extenders. When
both s and are constants, a complete extender set for (s,t,¢) is the set of all registries in 3 (p)
under which s g t. When either s or t is not a constant, a complete extender set for (s,t,p) is,
by the definitions of 9 Yg,p) and Sf(p). the union of complete extender sets for all sets
g f(:p,p1) corresponding to each p, in f(p). Thus, using the remark in the paragraph above, a
complete extender set for (s,t,9) is the set of all combined extenders for all orderais in all sets
Sf(w,p1) corresponding to each p, in Jf(p). The minimal reduction of this set yields the
minimal complete extender set for (s,t,p).

- Finally, B(>£), the minimal complete extender set for s >& t under p,’ is the minimal complete
extender set for the comparator (s,t,>¢) under p, computed in the manner indicated above.

The function ComparatorExtenders, shown in Figure 3-2, computes and returns the minimal
complete extender set for a given comparator under a given registry. The function
OrderalExtenders, shown in Figure 3-3, computes and returms the set of all combined ex-
tenders for all orderals in a given set under a given registry. The two functions are mutually
recursive.

ComparatorExtenders first accumulates, in S’, a complete extender set for (s,t,p) by collect-
ing combined extenders, in the manner indicated above. The minimal reduction of S’ is then
accumulated in S to obtain the minimal compiete extender set.

OrderalExtenders uses S to accumulate all combined extenders for all orderals, D, in §'. C .
holds the combined extenders for all comparators preceding (s,t,¢) in D. C' is used to in-
crementally accumulate the next value of C, as each minimal extender for (s,t,p) is con-
sidered. OrderalExtenders assumes the existence of a subsidiary function, IsConsistent, that
returns true if and only if its argument is a consistent registry.

Figure 3-4 presents the minimal complete extender set for an example comparator, as com-
puted by the ComparatorExtenders function in Figure 3-2. The example is derived from one
of the equations in Figure 3-1 on Page 47. Here, we assume that the current registry is empty.

Chapter 3 . Automatic Construction of Terminating Rewriting Systems

Figure 3-2: Function to Compute the Minimal Extenders for a Comparator

function ComparatorExtenders ({s,t,p), p) returns (S)

Compute complete extender set:
§:={}
if (s is a constant) and (t is a constant) then
for each p, in 3Yp) do
ifsptthenS':= S'U {p,} endif
endfor
else foreachp, in Sf(p) do
S':= 8’ U OrderalExtenders(F f(tp,p1), Py
endfor
endif

Compute minimal reduction of complete extender set:
S:={}
for each p, in S'do
for each p, in S’ do
if p, is a strict extension of p, then p, : = p, endif
endfor
S:=8SU {p1}
endfor
return(S)
end ComparatorExtenders

57

Chapter 3 Automatic Construction of Terminating Rewriting Systems

Figure 3-3: Function to Compute All Combined Extenders for All Orderals in a Set

function OrderalExtenders (S’, p) returns (S)
S:= {}

. for each D in S’ do

- Compute complete extender set for D:

C:={}
for each (s,t,p) in D do
C':= {}

Incrementally compute derived extenders:
for each p, in ComparatorExtenders((s,t,¢), p) do
foreach p,in Cdo

Py = py U Ps
if IsConsistent(p,) then c:=Cc'U {pa} endif
endfor
endfor
Cc:=C
endfor
§$:=8SUC
endfor
return(S)

end OrderalExtenders

Chapter 3 Automatic Coneteuction of Terminating Rewriting Systems

Figure 3-4: Minimal Extenders for (fg(y,), 1), g(x.),) Under Empty Registry

(1) {¥(@) =)
@tra)

@ {2 g, ¥() = O, ¥(g) = O}
@RV = 8, i) = 8)

B {IR g, ¥ = O, ¥ig) = @)

-

mmmmMW)&MMum sof-; m.'
stmmmm &Wnbamd

Chapter 3 Automatic Construction of Terminating Rewriting Systems

3.5.2 Minimal Extenders for COS

This section presents the outline of a scheme to automatically generate the minimal complete
extender sets under >%. This same technique can also be used to compute >8 itself. The
scheme assumes the ability to compute minimal complete extender sets under > or >2,
presented in the last section.

We do not propose that an implementation of T(>) literally use the technique presented here.
Our purpose is to demonstrate that %(>*) can be computed using implementations of B(>£) or
%(>2), and that >* need not be implemented by computing S5 under potentially thousands of
registries. Further work is needed to discover an appropriate, practical impleinentation that
might make use of the ideas presented in this section.

The minimal extenders for > are closely related to the minimal extenders for > and >2. By
the definition of >, the set of all total extensions to the registries in B(>*) is the set of all total
registries under which s >2 t. The same is true for (>2). The difference between %(>*) and
%B(>£) is that the extensions in B(>) are not necessarily minimal for >2. Thus, we propose
that B(>*) be obtained by properly reducing the registries in (>). Since > and > are the
same ordering under total registries, the same relationship holds between B(>%) and $(>2) as
between H(>%) and H(>£). For concreteness, we will use B(>*) here, though B(>2) could be
used in exactly the same manner.

Our approach to computing £(>%) involves viewing registries as formulas in propositional
calculus. Every registry can be viewed as a set of items, where an item is a stated » or %
relationship between two operators, or a status assignment to some operator. For example,
f g, f#g, and ¥(f) = @ are three items. (All » shorthands are represented by their
two-item > and 3 equivalents, and = is represented by two ¥ items.) For any registry, p, we
define its propositional formula, denoted Prop(p), to be the Boolean conjunction of all items
comprising p. Thus, if p is:
{t2g.g2hthy) = @}

Prop(p) is:
fI2gAgPhAIBhAY N =8
Note that for two registries, p, and p,, p, is an extension of p, if and only if Prop(p,) =

Prop(p,).

Chapter 3 Automatic Construction of Terminating Rewriting Systems

An extender set can be viewed as a formula in disjunctive normal form, by taking the disjunc-
tion of the formulas associated With each of the extenders in the set. For example, the
extender set in Figure 3-4 can be viewed as the formula shown in Figure 3-5. We use Prop(S)
to denote the formula associated with the extender set S. Note that p_ is an extender for s >t
under p if and only if Prop(p,) = Prop(% f(>.p)).

Figure 3-5: Formula Formed from the Extenders in Figure 3-4

(¥g) = @)V

[(f>g) Alf #£g)]V

[(f2g) A(¥(f) = O) A (¥(g) = O)] V
[(F=g) A(¥(f) = ®) A (¥(g) = B)] V
[(f29) A (W) = O)A (¥(g) = B®)]

A formula in disjunctive normal form that is composed of items, where none of the items is
negated, can be straightiorwardly viewed as a set of registries, provided each disjunct forms a
consistent registry. We use Reg(y) to denote the set of registries obtained from such a
formula, . By taking these two different views of an extender set, one can manipulate the
extenders in the well-understood domain of propositional caiculus, but interpret the formulas
in the domain of registry extensions. We propose a method for computing > extenders that
is based on propositional calculus manipulation of £ extenders.

Let S be the set of operators appearing in the rewriting system of interest, and T be the set of
operators appearing in s and/or t. Note that for any S, there exists a formula, Consis(S), such
that a registry, p, over S is consistent if and only if Prop{p) A Consis(S) is true. (The formula
Consis(S) is easily constructed from S using the definition of consistent registry.) Also note
that A {{}) is the complete set of all registries that are total over T. For any p, € A, p, is
a total extension, over T, of a registry p,, over S, if and only if p, U p, is a consistent registry;
or, in terms of formulas, if and only if Prop(p,) A Prop(p,) A Consis(S) is true.

By the definition of >2, p, is an extender for s >[p] ¢ if and only if all total extensions of p,
over T are extenders for s >[p] t. Translating to formulas, p_ is an extender for s >*[p] ¢ if and

only if

61

Chapter 3 Automatic Construction of Terminating Rewriting Systems

(Yo, € A1) [(Prop(p,) A Prop(p,) A Consis(S)) = Prop(3 1>*.p))]

The above formula may be syntactically transformed into
Prop(p,) => [Prop(3 1>%,p)) V —Prop(A{{})) V —Consis(S)]

Therefore, Py is an extender for s >2 t if and only if the above implication hoids. Let n denote a
disjunctive normal form of Prop(% {(>£,p)) V —Prop(A{{})) V —Consis(S), where each dis-
junct contains as few items (or negated items) as possible under the simplification rules of
propositional calculus. Since Prop(p,) is a conjunction of items, Prop(p,) = 1 if and only if
Prop(p,) implies one of the disjuncts in 7. By its construction, Prop(p1) contains no negated
items, so all digjuncts in 5 that contain any negated items may be removed from 5 without
affecting the Boolean implication. Let Reduce(s,t,S,p) denote this reduced form of 9.

We now have that p, is an extender for s > t if and only it

Prop(p1) => Reduce(s,t,S,p)
interpreting this in the domain of ektenders, Reg(Reduce(s,t,S,p)) is a complete extender set
for s >* t under p.' The extenders in Reg(Reduce(s,t,S,p)) are aiready minimal, because the
disjuncts in Reduce(s,t,S,p) contain as few items as possible, so. Reg(Reduce(s.,S,p)) is
B(>%).

In short, we may compute %(>£) by first computing %(>F), and then manipulating B(>£) using
propositional calculus. Furthermore, we have s >[p] t it and only if the computed value of
%(>*) is {p}. This gives us an alternative method for computing the > registered ordering
itself, without having to compare s and t with > under many registries.

As an example of computing >& extenders, consider the terms s = f(f(a, a), f(b, b)) and t =
g(b, a). The extenders comprising % Y>F,p), assuming that p is empty, are shown in Figure
3-6. Note that f > g is a minimal extender for s 52 t, as indicated in the figure, butf ¥ g is not
an extender for s > t. However, the formula Reduce(s,!,S,p) for this example is the single
item f > g. Thus, this yields the only minimal extender fors > t: B(>#) = {f & g).

Chapter 3 Automatic Construction of Terminating Rewriting Systems

Figure 3-6: Minimal Extenders for f(f(a, a), {(b, b)) > g(b, a) Under Empty Registry

M{t>g}

@ {r2g,¥(N = ©,y(g) = @}

@ {f2g.9(= O, ¥(g) = ®}

@{fRg v = ® y(g) = O}

© {f2g &b ¥() = O, () = O}

©) {f>g,a® b ¥(f) = O, ¥(g) = O}

M{rzg.bPa i) = O, ¥(g) = O}

@ {f2g B a) = ® ¥ = B}
@ {f2g.apb ¥ = ® ¥ = B}
(10){f2g.b B a () = B, ¥(9) = B}

3.6 Automatically Constructing Rewriting Systems

With an automatic ordering, >, a terminating rewriting system can be automatically con-
structed from a set of equations, 8, as follows: Start with an empty registry. Consider each
equation, s =1, in 8. If there are any minimal extenders for s =1t in either direction, choose one
of them to be the current registry, and go on to the next equation. Otherwise, back up to the
last equation, choose one of its minimal extenders that has not yet been tried, and continue.
When s =t is considered again, the registry might be such that it has some minimal extenders.
Systematically pursued, this automatic technique is a depth-first search for a terminating
registry for & under >. If all minimal extenders are tried at each backtrack point, and the
depth-first search fails to find such a registry, there is no. terminating registry. in this case,
either the equations in & cannot be ordered into a terminating rewriting system, %, or > is not
powerful enough to demonstrate the termination of .

Chapter 3 Automatic Construction of Terminating Rewriting Systems

Figure 3-7 presents a procedure, AutomaticConstruction, that formalizes thé above idea. This
procedure has been implemented in REVE. AutomaticConstruction takes 8, and returns a
terminating registry for € and the automatic ordering >, together with the terminating rewrit-
ing system corresponding to that registry. If there exists no terminating registry for & under
>, AutomaticConstruction halts with "failure.” The procedure makes use of the stack primi-
tives New, Push, Pop, Top, and IsEmpty, which have their conventional meanings. The AnyOf
function returns any element of its set argument, and EmptyRegistry returns an empty
registry. As each equation is considered, it is removed from 8. When an equation is success-
fully ordered, a tuple consisting of the following items is. pushed onto the stack:

e The equation, in the direction it is being considered.

e A Boolean value that indicates whether the equation has been tried in the reverse
direction.

o The minimal extenders, for this direction of the equation, that have not yet been
tried.)

e The rest of SA.

Whenever there are no extenders, in either direction, for some equation, the stack is popped
until an equation is found for which there are minimal extenders that have not yet been tried,
and the current contents of & are reset accordingly. If all equations are successfully pushed
onto the stack, the current registry is returned, along with a rewriting system consisting of all
the equations in the direction that they appear on the stack. Note that %f(>—,p) consists only
of p if s > t under p. Also, if s—t is not a valid rewrite rule, we have s 3¢ t (because >[p}is a
simplification ordering), so % {>>,p) = {} in this case.

Chapter 3 Automatic Construction of Terminating Rewriting Systems

Figure 3-7: Procedure To Automatically Construct a Terminating Rewriting System

procedure AutomaticConstruction (8) returns (p, %)
stack : = New
p := EmptyRegistry
while 8 # {} do
~s=t:= AnyOi(€); 8:= 8-{s=t}
reversed : = false
Xi= BY>,p)
while X = {} do
if —vreversed then
s, t:=mt, s
reversed : = true
X:= %B{>,p)
else if IsEmpty(stack) then halit with failure endif
(s=1, reversed, X, 8) : = Top(stack)
stack : = Pop{stack)
endif
endwhile :
p:= AnyOk(X); X : = X - {p}
. stack := Push(stack, (s =t, reversed, X, 8))
endwhile -
%:= {}
while —IsEmpty(stack) do
(s =t, reversed, X, 8) : = Top(stack)
stack : = Pop(stack)
%= B U {s—t}
endwhile
return(p,)
end AutomaticConstruction

Chapter 3 . Automatic Construction of Terminating Rewminc Systems

Figure 3-8: Example 10 Hustrate the A omet

- (DHx, x), y) = Hx, £, yD)
(2) fgty. x), Y =glx,)
(@ 9tty, x),)= Fix,y)
(4) glglx, x), y) = oly. glx. ¥))

'hmmmnhﬁma‘}mﬂnpﬂ. ‘
mummummm&:m
(1)mwwhm m ot acntion

(s)mmhmmmm«

Chapter 3 Automatic Construction of Terminating Rewriting Systems

under the current registry, but B(>) consists of a single minimal extender (and it
is different from Step (3), above): {¢(f) = ©,f = g}. We choose this as the
current registry, and push a tuple containing an empty extender set onto the
stack.

(8) The fourth equation is not orderable under the current registry, but this time the
minimal complete extender set in the reverse direction is {y() = ©,f = g,
Y(g) = ®). We use this as the current registry, and pusha tuple on the stack
containing the reversed equation.

(9) There are no further equations to consider, so we pop the equations from the
stack, build them into a rewriting system, and return the current registry together
with that rewriting system.

The registry {{(f) = ®} orders the first equation in Figure 3-8 in the reverse direction. If this
equation were reversed in the figure, AutomaticConstruction would try several registry exten-
sions before finally backing up to the first equation, reversing it, and continuing.

As an aside, it is not strictly neceséary to use only minimal extenders when proving termina-
tion automatically with registered orderings. Allowing non-minimal extenders can sometimes
lead to a gain in efficiency. For example, consider the minimal extenders in Figure 3-4 on
Page 59, The second minimal extender in the figure states that all registries that containf » g
are extenders for s >F 1. If AutomaticConstruction cannot finish successfully using extensions
of this extender, it makes no sense to try the third, fourth, and fifth minimal extenders in
conjunction with f 3¢ g. Thus, one may replace all occurrences of f ¥ g in the figure with
f = g, without danger of AutomaticConstruction missing a potential extender. Making this
replacement may allow the rewriting system construction process to proceed faster, since
then the extensions of the second extender will be disjoint from the extensions of the last
three extenders, avoiding some potential redundancy when searching for an extender for the
rewriting system. Once %(>~) has been computed, one may perform a postprocessing on
B(>) to remove such redundancies before considering the extender set in
AutomaticConstruction, if desired. '

Instead of arbitrarily choosing a minimal extender from %(>), an implementation of
AutomaticConstruction might display the extenders in %(>>) and permit the user to select
one. Rather than presenting the entirety of each extender to the user, it may be desirable to
present the transitive reduction of each extender, for brevity. A transitive reduction [Aho 72]
of a directed graph, G, is a smallest graph, G,‘,, such that the transitive closures of G1 and 62

67

Chapter 3 Automatic Construction of Terminating Rewriting Systems

~are the same. The relation in a precedence can be regarded as a directed graph, where
operators are nodes, and ¥ defines the edges on those nodes. We define the transitive
reduction of a registry, {(2,),¢¥)}, to be the transitive reduction of ¥, together with ;¢ and ,
which remain unchanged. The transitive reduction of p conveys the same information as p. it
may also be desirable to subtract away the current registry before presenting the transitive
'reduction of each extender, so that only the new information introduced by the extender is

displayed.

One might think that AutomaticConstruction’s exhaustive backtracking scheme for construct-
ing a terminating rewriting system would be too slow to be practical. However, we have found
that for typical examples where termination can be proven using >, backtracking is usually
not required. Even though there may be many extenders to choose from when an equation is
unorderable, successive extender choices have a cumulative effect such that the terminating
registry obtained tends to be relatively insensitive to the particular extender choices made

along the way.

3.7 Summary

In this chapter, we have presented the basic definitions of relations and orderings, and intro-
duced relationals as parameterized relations. We then presented simplification orderings,
and the termination theorem that justifies the use of simplification orderings in termination
proofs. The notion of a registered ordering was defined: a relational, parametized on a
registry, that yields a stable simplification ordering. We then introduced automatic orderings,
which are registered orderings whose implementation can compute the minimal complete

extender set when two terms are unorderable.

We described RPOS, which can be viewed as a registered ordering, and extended it into
EPOS, which is more suitable for the automatic construction of terminating rewriting systems.
This was foll'oweq by a brief discussion of RDOS, the important role that RDOS has played in
establishing the utility and viability of helping the user dynamically extend the registry when
two terms are unorderable, and the fact that RDOS can be extended slightly to produce
EDOS. We then presented COS, which is more powerful than EPOS and EDOS, and proved
the correctness of COS in the context of termination proofs.

Chapter 3 Automatic Construction of Terminating Rewriting Systems

This was followed by algorithms that allow EPOS, EDOS, and COS to be used as automatic
orderings. A minimal compilete extender set scheme for EPOS was described in detail; and
we roughly indicated how the scheme could be modified for EDOS. We showed how, in
principle, the minimal extenders under COS, and the COS registered ordering itself, could be
computed using minimal extender schemes for either EPOS or EDOS.

Finally, we presented a procedure that automatically constructs a terminating rewriting sys-
tem from a set of equations. The procedure makes use of an automatic ordering, and
automatic implementations of EPOS, EDOS, or COS could be used for this purpose.

Chapter Four

A Failure-Resistant Knuth-Bendix Design

4.1 Introduction

in its original formulation (Section 2.6), the Knuth-Bendix completion procedure is used to
transform a term rewriting system, %, into another rewriting system, %', such that %' is con-
vergent and = R equals = ' As discussed in Section 2.5, %' provides a decision procedure
for =g . However, Knuth-Bendix is not an algorithm: it may hait with "failure” if the two sides
of a rule are not orderabile, or fail to terminate because it may generate an infinite set of rules.

The original version of Knuth-Bendix, as presented in Figures 2-6 and 2-7 on Pages 28 and
29, was chosen by its authors for its simplicity of exposition and for eagse of proving its
correctness, rather than for its efficiency. it differs slightly from later formulations by others in
that it begins with a set of previously-ordered rewrite rules to be completed, rather than
starting with a set of equations and using the reduction ordering to orient each of those
equations into a rewrite rule. Three important problems of the original procedure are:

(1) itis inefficient,
(2) It fails whenever an unorderable equation is generated, and

{3) The reduction ordering must be given a priori.

This chapter presents a new, failure-resistant formulation of Knuth-Bendix that addresses
these issues. As a partial solution to (1), above, it incorporates improved schemes for
generating critical pairs and normalizing the rewriting system. For (2), it uses a fine-grained
approach to postponing equations that are currently unorderable. For (3), it makes use of an
important idea that first appeared in Lescanne’s REVE 1: it allows the ordering to be in-
crementally extended as unorderable equations are encountered.. The net result is a poten-
tially faster completion procedure that halts with "failure” in fewer cases. The procedure is
formulated as a sequence of tasks, that are performed in an order commensurate with their
expected contribution to the successful and expeditious completion of the procedure.

70

Chapter 4 A Failure-Resistant Knuth-Bendix Design

Existing "incremental” implementations of orderings provide various degrees of help to the
user when an unorderable equation is encountered. At one end of the user-assistance
spectrum, automatic orderings compute all the possible ways that the registry can be ex-
tended to allow the equation to be ordered. At th_e other end, if no ordering implementation at
all is used, the user must hand-order each equation with no assistance from the program. In
between are registered orderings, such As EDOS, where current implementations provide
suggestioqs that help the user find an appropriate registry extension'2. We assume here that
ordering "extensions" do not change the ordering of previously-ordered rules in the rewriting
system. (This is true of all registered orderings described in Chapter 3, because they are
monotonic in the registry.)

If partial help or no help is provided to the user to extend the ordering, discovering ap-
propriate ordering extensions can be a slow process for the user, so Knuth-Bendix can
usually be expedited in this case by postponing unorderable equations for a time. This may
allow generated critical pairs to become rewrite rules that reduce some of these unorderable
equations, to maké the equations orderable or make them disappear.

If an automatic ordering is used, it is usually faster to compute the minimal complete extender
set for unorderable equations before generating more critical pairs. This is because Knuth-
Bendix typically generates the smallest, most useful equations first, and, with automatic order-
ings, the overhead of searching for an appropriate registry extension is reduced. In this case,
an equation should probably only be postponed if there exists no registry under which it is
ordered.

Both of these possibilities are considered here. Section 4.2 describes Huet's improved ver-
sion of Knuth-Bendix. Section 4.3 presents our standard failure-resistant Knuth-Bendix
scheme, especially appropriate for implementations of orderings that provide only partial help
for extending the ordering. Section 4.4 indicates how the procedure can be appropriately
modified for automatic orderings by switching two of the Knuth-Bendix tasks. Both of the
failure-resistant schemes are provided in REVE.

1""A:s noted in Section 3.5, Lescanne is currently working on an automatic ordering implementation of EDOS.

7

Chapter 4 A Failure-Resistant Knuth-Bendix Design

4.2 Huet’s Version

Huet's formulation of Knuth-Bendix [Huet 81] is presented in Figure 4-2, which makes use of
the functions in Figure 4-1. The initial input to the procedure is a reduction ordering, >, and
a set of equations, 8. The rewriting system, %, is represented by a set of triples. Each triple
consists of a rewrite rule, an integer label, and a fiag, in that order. If the flag is ¢, the rewrite
rule is considered to be "marked"; if the fiag is ©, the rule is "unmarked.” Since the proce-
dure preserves the invariant that no rewrite rule occurs in more than one triple in %, a triple
can be denoted by its rewrite rule. As in Figure 2-7 on Page 29, repeat means "go to the first
statement of the smallest enclosing l00p.”

Figure 4-1: Auxiliary Functions Used by Figure 4-2

Normali(t, %) = A normal form of the term t with respect to the rewriting system %
Unorderable(s =1) = (s % t) and (t 3£ s)

Order(s =t) = it s > t then s—t else t—s

CriticalPairs(r, r') E Set of all critical pairs between the rules r and r’

AnyOf(8) = Any equation in the set 8

Huet's version of Knuth-Bendix is more efficient than the original. It achieves this efficiency
with two key optimizations:

o Huet's procedure generates the critical pairs between any two rewrite rules only
once, whereas the original procedure begins again to look for critical pairs
among all rules during each iteration through the main loop. The speed-up at-
tained in Huet's formulation can be substantial, since the unifications required in
computing critical pairs can be time consuming.

¢ Huet's procedure does not "normalize” the entire rewriting system each time a
rewrite rule is added. Rather, it uses the fact that the rewriting system is com-
pletely normalized prior to adding an additional rewrite rule, and that only those
rewrite rules whose left or right-hand sides can be rewritten by the new rule will
not be in normal form once the rule has been added. Furthermore, unlike the
original Knuth-Bendix, Huet's procedure does not re-order rewrite rules whose
right-hand sides are rewritten during normalization but whose left-hand sides are
left intact. This re-ordering is unnecessary because such rules will still be or-
dered under the reduction ordering.

72

Chapter 4 A Failure-Resistant Knuth-Bendix Design

Figure 4-2: Huet's Formulation of the Knuth-Bendix Completion Procedure

R:={};n:=0
loop
while & = {} do

Find non-joinable critical pair:
(s =t) : = AnyOf(8)
8= 8-{s=1}
s’ := Normal(s, ®); t' : = Normal(t,)
if s’ = t' then repeat endif

Order equation:
if Unorderable(s’ = t') then halt with failure endif
(A—p) : = Order(s' =1)

Normalize rewriting system:
for each <y—p, i, D in% do
y' := Normal(y, {A—p})
if y # y' then .
®:i= B~ {y—p);8:= 8U {y' =p)
else p':= Normal(p, % U {A—p})
if p*p'thenB® = (B~ {y—p}) U Ky—p' i, @O} endit
endif
endfor

n:=n+1
®:= B U {KA—p, n, o>}
endwhile

Find an unmarked rule:
for each<A—p, i, > in% do
if 2 = o then goto Compute critical pairs endif
endfor
halt with success

Compute critical pairs:
for each <y—p, k, > in % do

if k < ithen 8 := & U CriticalPairs(A—p, y—p) endif
endfor

Mark the rule:
% = (m - {<A“"P; is °>}) U {<A—+p' i' ‘>}
endloop.

73

Chapter 4 A Failure-Resistant Knuth-Bendix Design

Huet's Knuth-Bendix implementation removes some of the obvious inefficiencies of the
original procedure. However, it is still the case that the reduction ordering must be given a
priori, and it fails whenever an unorderable equation is generated. The next section describes
how REVE's Knuth-Bendix implementation attempts to address the latter two problems.

4.3 A Failure-Resistant Knuth-Bendix

This section presents REVE’s failure-resistant Knuth-Bendix implementation. ([Forgaard 84]
presents a preliminary version of these resuits'3.) The chief improvements of this version over
Huet's are:

e REVE does not require that the reduction ordering be given a priori. The ordering
may be extended during the course of running Knuth-Bendix. During this
process, the user may undo previous decisions and restart Knuth-Bendix. '

e REVE's Knuth-Bendix implementation does not fail when an unorderable equa-
tion is found. The ordering may be extended to aliow the equation to be ordered,
or the equation may be postponed. Postponement might allow the equation to be
reduced, to disappear, or to be ordered later.

o REVE automaﬁcally postpones congideration of large equations.

e REVE computes smaller critical pairs first, which can expedite the completion
process.

o REVE's Knuth-Bendix incorporates the modification shown in Figure 2-8 on Page
33, to support the Huet-Hullot inductionless induction method (see Section 2.7).

REVE's technique of computing small critical pairs i3 presented in Section 4.3.1. Section
4.3.2 describes the use of user interaction in extending the ordering. Section 4.3.3 describes
equation postponement in REVE, and Section 4.3.4 outlines REVE's scheme for efficiently
computing the normal forms of postponed equations. Finally, the task-based control flow in
REVE's Knuth-Bendix implementation is presented in Section 4.3.5.

Brne tiexible attribute, described in [Forgaard 84], is unnecessary here, because we assume monotonicity in the
ordering.

74

Chapter 4 A Failure-Resistant Knuth-Bendix Design

4.3.1 Computing Small Critical Pairs

Huet's scheme for computing critical pairs can be characterized as follows: Maintain the
rewriting system as a list of rules. Each rule that gets added to the list is initially uhmarked. In
the critical pair computation step, choose an unmarked rule A—p and compute all critical
pairs between A—p and itself, and between A—p and every rule above it in the list. Then,
mark A—p. In this way, each distinct pair of rewrite rules is used only once.

In [Knuth fO], the authors note that small pairs of rewrite rules are more likely to lead to small
critical pairs. Small critical pairs are useful because they take iess time to generate and tend
to lead to more general rules than do larger critical pairs. It is often the case that these rules
reduce larger rules and equations, thus reducing the number of larger critical pairs that need
to be generated.

Huet's Knuth-Bendix will tend to generate small critical pairs if it chooses the smallest un-
marked rewrite rule when computihg critical pairs, thus using unmarked rules in increasing
order of size.'* However, this refinement does not always pick the smallest pair of rules that
has yet to be considered, since there may be rules in the list, below the chosen rule A—p, that
are smailer than some of the rules above A—p in the list. This strategy will tend to generate
smaller critical pairs before larger ones, so the latter problem can be partially alleviated by
always appending new rules to the bottom of the list so that larger rules tend toward the
bottom.

If the list of rewrite rules is always maintained so that it is sorted by size, and if critical pairs
with a chosen rule A—p are calculated with rules above A—p in order from the top of the list
down to A—p itself, the marking scheme will ensure that critical pairs are always calculated
starting with smallest pair of rules that have not yet been considered.

REVE uses a strategy for choosing pairs of rules that is a compromise between the above two
schemes. The REVE method does not pair the chosen rule with large unmarked rules, nor
does it incur the additional mechanism (and minor inefficiencies) associated with maintaining
a sorted list of rewrite rules. Instead, REVE chooses the smallest unmarked rule A—p, marks
it, and then computes critical pairs between A—p and every marked rule, including itself.

" 1his was the scheme employed in REVE 1.

75

Chapter 4 A Failure-Resistant Knuth-Bendix Design

Since all marked rules are "small" in the sense that each marked rule was at one time the
smallest unmarked rule, this scheme tends to start with small pairs of rules and move up to the
larger rules as Knuth-Bendix progresses. However, REVE's method does not necessarily start
with the smallest pair of rules that have not yet been used, since some critical pairs may get
generated that are smaller than some of the marked rules. Note that REVE's strategy, as with

Huet's, considers each possible pair of rules, and does so only once.

Further ideas for computing small critical pairs first are presented in Section 6.2.4.1.

4.3.2 Proving Termination Using User Interaction

REVE's Knuth-Bendix provides explicit support for orderings that give help to the user when
an equation is unorderable, although any ordering (including ordering by hand) may be used.
The ordering is chosen by the user. We assume here that some ordering that provides help
has been selected.

When REVE encounters an equation that the ordering is currently unable to order, the equa-
tion is shown to the user. He is also presented with any suggestions provided by the ordering.
The user is then asked to choose an action from an appropriate subsget of the choices shown

in Figure 4-3.

If the user picks Choice (1), the ordering is extended accordingly and the equation becomes
ordered into a rewrite rule in the appropriate direction.

Choice (2) puts the equation on the list of unoriented or incompatible equations. Choice
(3) puts the equation on the deferred list. See the next section for a discussion of these lists.

If the user selects Choices (4) or (5), the equation gets added to the rewriting system, and
REVE proceeds to try to complete it. (These choices are only allowed if the equation can be
validly viewed as a rewrite rule in the selected direction.) if REVE succeeds, the user is
warned that the resulting rewriting system may not be convergent because it is not
guaranteed to terminate. Allowing this hand-ordering of equations is sometimes useful with
equations that are not amenable to termination progf using the selected ordering.

Choice {6) invokes the technique, discussed in Section 2.4, for converting one equation into
two. The user is prompted to supply the new operator name.

76

 Chapter4 A Failure-Reistant Knuth-Bendix Design

Figure 4-3: Mmmw ,
(ﬂEmau«:.mginmmm mmmw
MM”M’!M '
(2) Postpone the squation lor the time being.
(3) Defer the equation. | o ‘
(4) Accept the equation as 2 rowrite rule hﬁsmm
(6) Divide the squation into two equations, inleeds ‘
(8) Undo Knuth-Bendix.

entirely, mnhmnammm ’t.".‘_"_
ordering has besn extendad. Al ol the Uses: M

Chapter 4 A Failure-Resistant Knuth-Bendix Design

In Section 4.3.1, we mentioned the usefulness of generating small critical pairs first. For
similar reasons, it is advantageous to consider small equations first. Thus, REVE postpones

large equations, in addition to the unorderable ones.

REVE's Knuth-Bendix imp!ementatibn partitions equations into five lists. The equations that
REVE has not yet tried to order are in the new list. The postponed unorderable equations are
in one of the incompatible, unoriented, or deferred lists. The postponed large equations are

in the big list.

An incompatible equation is one that cannot be viewed as a rewrite rule in either direction, as
discussed in Section 2.5.

An unoriented equation is one that can be viewed as a rewrite rule, but is unorderable at the

present time.

A deferred equation is an incompatible equation, or an unoriented equation that the user
believes will probably never be orderable. It is being postponed, rather than divided or hand-
ordered, because the user hopes that a later rule will reduce the equation to make it or-
derable. For example, the user should direct REVE to put cyclic equations, e.g., x +y=y+x,
on the deferred list. In the future, REVE couid be made to automatit:ally put certain types of
equations on the deferred list.

REVE's Knuth-Bendix implementation does not look at big equations until all other equations
have been ordered or postponed, and all critical pairs have been computed. The number of
symbols in every big equation is greater than or equal to B8, a special value maintained by
REVE. The size of all other postponed equations is less than 8. The value of 8 is set so that
no user-introduced equation is considered big. When REVE finally looks at the big equations,
it considers them from smallest to largest, and the value of 8 is adjusted accordingly.

4.3.4 Computing Normal Forms of Postponed Equations

In every iteration of the inner loop of the version of Knuth-Bendix in Figure 4-2, an equation is
selected and the normal forms of its two constituent terms are computed. Computing a
normal form can be time-consuming. In the worst case, the left-hand side of every rewrite rule
must be matched against each subterm of the term being reduced. In Section 6.2.2, we

78

Chapter 4 A Failure-Resistant Knuth-Bendix Design

discuss the efficient computation of normal forms in general. Here, we present REVE’s

strategy for normalizing postponed equations.

Before REVE postpones an equation, it replaces the equation by its normal form. When the
equation is reconsidered later, it is already in normal form with respect to whatever rewrite
rules were in the rewriting system when it was previously normalized. The equation can only
be reduced further if it is reducible by a rewrite rule that has been added to the rewriting
system since the last time its normal form was computed. |f the equation can be reduced
using one of the new rules, the entire rewriting system must be used to find the new normal

form; otherwise, the equation is already in normal form.

Though perhaps the most time-efficient strategy, it is probably prohibitively space-consuming
to associate, with each normalized equation, the list of rewrite rules with respect to which the
equation was normalized. Instead, REVE does the following: When an equation is ordered,
the new rewrite rule is temporarily stored on a list of unused rules in addition to being added
to the rewriting system. Before attempting to order any equations, REVE removes each
rewrite rule from the unused list, and attempts to reduce each of the remaining postponed
eduations in the system with respect to that rule. Those equations that can be reduced by the
unused rule are then changed into new equations, since they must be re-normalized using the
entire rewriting system. No such normal form computation is necessary for the other equa-
tions. In this way, all equations are maintained in normal form with respect to the rewriting
system minus the unused rules.

4.3.5 Knuth-Bendix Tasks and Organization

In the original Knuth-Bendix procedure (Figure 2-7, Page 29) there is a main loop that con-
sists of finding a non-joinable critical pair, computing its normal form, ordering it, and nor-
malizing the rewriting system. In Huet's version (Figure 4-2), there is an inner loop that
processes all of the equations, and an outer loop that computes more critical pairs once all
the equations have been processed. Knuth-Bendix would remain correct if we instead com-
puted critical pairs in the inner loop, and only converted equations to rules in the outer loop,
when the critical pairs had been exhausted. However, it is implicit in the procedure’s formula-
tion that the computing of critical pairs is a less "desirable" task than ordering equations.
Indeed, critical pairs are expensive to compute, and one hopes that by first processing as

79

Chapters AMMMMH

manyeqummtomnduupm mmmmwmm

REVE';MM: hmmmm&.hﬁﬁnmm w -
are " Min o ofoniiibity.

mmmmawm,_ wived & oul

The overall goal was 1o masimins the set of systems that Souid He compiv

 user intoraction and computstion Sme. THe Sssueion

are given in Figure 4-5. The Kauth-Bendix implen
mmmmmumw wvo For eums

‘ “w.mmwmmmwhw ndovary abts

Chapter 4 A Failure-Resistant Knuth-Bendix Design

Figure 4-4: Tasks Performed by REVE's Knuth-Bendix Implementation

ReduceEquations: Remove a rewrite rule from the unused list, and attempt to reduce every
postponed equation using that rewrite rule. Move, to the list of new equations, all equations
that get reduced. Repeat with each .unused rule until none remain.

ConsiderNew: Remove an equation from the new list, and reduce it to normal form with
respect to. the rewriting system. If the resulting equation is big, move it to the list of big
equations. Otherwise, execute the algorithm in Figure 2-9 on Page 33. If the algorithm
divides the equation into a set of new equations, add those equations to the new list.
Otherwise, attempt to order the equation. Put the equation into one of 1) the list of unused
rules and the rewriting system, 2) the list of incompatible equations, or 3) the list of unoriented
equations, as appropriate. If the equation becomes a rule, normalize the rewriting system as
per the procedure in Figure 4-2. Any rules that become equations as a result of normalization
get added to the list of new equations. Repeat until there are no more new equations.

Considerincompatible: Remove an equation from the incompatible list, and ask the user
whether he wishes to divide or postpone the equation. Repeat until an equation has been
divided or all incompatible equations have again been postponed.

CriticalPairs: Mark the smallest unmarked rule in the rewriting system, compute critical pairs
between it and all marked roles, including itself, and add the critical pairs to the list of new
equations. If no critical pairs result, repeat. if there are no unmarked rules, do nothing.

ConsiderUnoriented: Remove an equation from the unoriented list, and present the user with
any suggestions, provided by the ordering’s implementation, for extending the ordering. Ask
the user to choose one of the actions shown in Figure 4-3. If the equation gets divided, add
the two new equations to the new list. Repeat until a new equation or rewrite rule has been
generated, or all unoriented equations have again been postponed.

ConsiderBig: Remove the smallest equation from the list of big equations, and adjust 8 so
that the equation is no longer big. Process the equation in the same manner as for new
equations in the ConsiderNew task (except that it is already in normal form). Repeat until a
new equation or rewrite rule has been generated, or there are no more big equations.

ConsiderDeferred: Remove an equation from the deferred list. If the equation is incom-
patible, process the equation in the same manner as in the Considerincompatible task.
Otherwise, process it as in the ConsiderUnoriented task. Repeat until a new equation or
rewrite rule has been generated, or all deferred equations have again been postponed.

81

Chapter 4 A Failure-Resistant Knuth-Bendix Design

Figure 4-5: Assumptions that Determine the Relative Desirability of Tasks

(1) Reducing equations to normal form is relatively cheap. It is also useful: as a
result of this task, equations and rewrite rules can become smaller or disappear
entirely. -

(2) Ordering equations (without user help) can resuit in more rewrite rules, which in
turn can allow other equations or rules to be reduced. The benefits are not as
direct as for reducing equations, but it is not computation-intensive.

(3) An incompatible equation cannot be ordered, and user help is required to decide
whether the equation should be divided into two. Nevertheless, dividing an in-
compatible equation can be very beneficial. Each of the rewrite rules that come
from the two resulting equations has at least one variable on its left-hand side
that does not occur on its right. Consequently, when either of these rules is used
to reduce a term, one or more subterms of that term are effectively eliminated
during the reduction. Incompatible equations occur infrequently, but their
presence usually indicates an important underlying property of the equational
theory that should be immediately incorporated into the completion process.

(4) Computing critical pairs can be time-consuming. Critical pairs must be ordered
before they can be of further use, so they only contribute indirectly to the reduc-
ing of other equations. However, critical pairs are computed without user help.

{5) To order an unoriented equation, user help must be solicited to extend the order-
ing (if possible) or postpone the equation. Because of the user interaction, this
task is not as desirable as the above tasks in the context of automatic theorem

proving.

(6) As mentioned previously, big equations are rarely heipful to Knuth-Bendix. It is
more desirable to consider the unoriented equations first, even though user help
is required, because they are smaller.

{7) it is unlikely that any deferred equation is orderable. if there are any other equa-
tions, all of them should be ordered or divided before the deferred equations are
considered, with the hope that the deferred equations will reduce. Thus, con-
sideration of the deferred equations is the least desirable task.

Chapter 4 : A Failure-Resistant Knuth-Bendix Design

Figure 4-8: Flow of Controlin REVE':WW :

while there are any equations do
ReduceEquations
ConsiderNew
: nm-wmmmmmmw
Considerincompatible
if there are any new equations then WM'
CriticalPuirs :
HMmmymmmmﬂ o
- Congidertinoriented .
: nMwmmmmmw
- ConsierBig
umnmmmmm}
ConsiderDelerred
endwhile

4.4 Knuth- Bendix Using Automatic Os
As noted in Saction 4.1, wiien aviomalic ORIrings 4 U
*.moumnu»mmm; sfors computls
present lees overhesd In Snding a0 spn ots Mgl

equation. mmam»;j‘__“,f[\jy’*’;_;; '
mmwmmmmﬁmfg; wies: Al Coneideriinorier

Chaptér 4 A Failure-Resistant Knuth-Bendix Design

might initially choose a particular orientation for an equation that causes the completion
process to diverge, with Knuth-Bendix generating an infinite set of critical pairs that are all
orderable. AutomaticConstruction will not back up to reverse that equation in this case; the
procedure is designed to work with a finite set of equations. See Section 6.2.4.2 for a discus-

sion of implementing a fully-automatic Knuth-Bendix.

REVE currently provides an implementation of AutomaticConstruction that converts a fixed
set of equations into a terminating rewriting system (when possible), but, in the context of the
completion process, the registry is not extended automatically. Instead, when using an
automatic ordering with Knuth-Bendix and an unorderable equation is encountered, the min-
imal complete extender set is presented to the user, and the user selects one of the minimal
extenders (if any) to make the equation orderable.

Chapief Fivo

The MVE g

5.1 Introduction
“This m describes the AEVE term mm peneenier, & proge

= mmmuaamwdmmm %n itly:

Chapter 5 The REVE Program

any omitted arguments. Whenever REVE expects input, the user may type "?" to see the list
of possible responses in the current context. The HELP command provides on-line documen-
tation for each command, plus additional information on more general topics related to
REVE’s use.

REVE’s remaining commands fall into the fo"owing categories:
e Handling the input, output, display, and deletion of the rules and equations
manipulated by Knuth-Bendix.

e Selecting the registered ordering to be used by Knuth-Bendix, and controlling the
precedence and status map to be used by that ordering.

¢ Invoking Knuth-Bendix and theorem proving.
» Directly accessing rewriting and unification primitives.

e Saving and restricting terminal input/output.
The remainder of this section presents an overview of these capabilities. See the Appendix
on Page 116 for a detailed description of each command currently available in REVE.

5.2.1 System

The user's current system of rules and equations may be read from, and written to, disk files
and the user’s terminal. individual rules and equations may be deleted from the system, and
the user will be warned if such deletion might compromise the correctness of Knuth-Bendix.

in addition, the current system may be stored and retrieved in raw CLU object form'®. When &
system has been fully or partially completed by Knuth-Bendix, the user may FREEZE, into a
file, the entire system state, including all of the current rules and equations, the current
registry, and the "undo" history stack. Later, the‘ user may THAW the frozen system.
FREEZE and THAW are particularly useful for saving completed systems that are of general
utility, or for temporarily saving an incomplete session with Knuth-Bendix.

611is idea has been borrowed from Affirm [Musser 80a).

86

Chapter 5 : The REVE Program

5.2.2 Ordering and Registry

An ORDERING command is provided that allows the user to choose between EPOS and
EDOS for the ordering that will be used by Knuth-Bendix. As indicated previously, EPOS
computes the complete set of minimal extenders when an equation cannot be ordered, and
EDOS currently computes > suggestions. Alternatively, the user can select the "manual”
ordering, which causes REVE to present each equation to the user so that it can be hand-
ordered.

Normally, the user extends the current registry incrementally as each unorderable equation is
considered by Knuth-Bendix. However, REVE commands for initializing, extending, and view-
ing the current registry are also provided by the top-level command interpreter.

5.2.3 Knuth-Bendix and Proofs

The KB command invokes Knuth-Bendix on the current system. Knuth-Bendix can be inter-
-rupted at any time by typing tG (control G). The user can then invoke other commands, and
subseqqently continue the completion process. At any time, UNDO (Section 4.3.2) can be
invoked one or more times to réturn to any previous user interaction (e.g., to choose a dif-
ferent minimal extender for an equation or to divide an incompatible equation), and Knuth-
Bendix can be resumed from that point.

Equational and inductive proofs are performed with PROVE. PROVE takes an equation as its
argument, and attempts to prove that the equation is in the equational or inductive theory of
the current system. PROVE first uses the current rewriting system to reduce the equation to
normal form; if the two sides of the equation become equal, the theorem holds. Otherwise, if
the current system has not been completed by Knuth-Bendix, Knuth-Bendix is automatically
invoked (after user confirmation). If Knuth-Bendix terminates successfully, the equation is
again normalized. If the two sides are equal, the equation is valid in the equational theory.
Otherwise, after user approval, REVE automatically checks to see if the equation is-in the
inductive theory: the equation is added to the current system, and Knuth-Bendix is again
invoked. If the procedure completes successfully, the user is told that the equation is an
inductive theorem. If the procedure aborts with Huet-Hulot pseudo-inconsistency, the equa-
tion is invalid in the inductive theory.

Chapter 5 : ' ' The REVE Program

For Huet-Hullot inductionless induction to be sound, the user must declare HH-constructors
using the HH-CONSTRUCTORS command prior to running Knuth-Bendix, and the system
must be shown to satisfy the principle of definition with respect to these constructors. As
noted in Section 2.7, this condition is undecidable, and REVE does not yet check for sufficient
conditions. Currently, it is the user's responsibility to ensure that the definition principle
holds.

5.2.4 Basic Operations

Basic rewriting primitives are invoked with the REDUCE and NORMAL-FORM commands.
Both of these commands operate on a term given by the user. REDUCE reduces the term (if
possible) once, using an arbitrary applicable rewrite rule from the current rewriting system.
NORMAL-FORM computes the normal form of the term with respect to the current rewriting
system, and also displays all intermediate reduced forms. If the term gets rewritten an in-
ordinately large number of times and no normal form has yet been found, REVE assumes that
rewriting will probably not terminate. in this case, the normal form computation stops, and the
user is shown the last several intermediate reduced forms to help in identifying the source of
the non-termination.

The UNIFY and CRITICAL-PAIRS commands permit access to the primitive operations used
by Knuth-Bendix. The UNIFY command accepts two terms as arguments, and displays their
unification, or indicates that the two terms cannot be unified. The CRITICAL-PAIRS com-
mand displays all the critical pairs, if any, that result from superposing two rewrite rules given
by the user.

5.2.5 Terminal Session

The last category of commands controi the terminal session itself, and are provided for user
convenience. These commands are fairly independent of the application domain; they do not
directly pertain to the rewriting and theorem proving capabilities of REVE.

Two commands allow terminal interaction to be sent to a file at the same time it is seen on the
screen. The SCRIPT command takes a ﬁle name, and sends all terminal input/output to that
script file for later viewing. The LOG command causes all terminal input (only) to be stored in

Chapter § o _ " 'The REVE Program

2 log file. The log file can later be "played back” using the REPLAY command. REPLAY
mmnmwmw&mawmummmmwsm‘
~ when the log file is exhausted. mmbmmmtf; enairations and for regres-
sion testing. UNSCRIPT and UNLOG closs the cusrent s ,‘_!Iwhﬂﬁ' Ao, these files
mwmmmmmmm . :

mmmmmmdwmmw REVE's
.mmmwbmﬁmmmdmmu
-mmmmm

o The normat form of that equation. |
,-mmmnmmmmm |
‘ommmmwmumumm

Chapter 5 - The REVE Program

next user interaction. Alternatively, most operating systems provide some separate means for
controlling output'’. However, these capabilities are sometimes inoperable when the com-
puter is accessed over a network from a remote host, so REVE’s page mode feature can be

particularly useful for remote users.

5.2.6 Possibie Enhancements

REVE's line-oriented user interface provides on-line help facilities, a robust parser, and a
flexible command interpreter. Many enhancements are possible, however, to extend its
functionality and ease of use. This section presents some of the user interface improvements

that are under consideration.

The user interface could benefit from many features found in screen-oriented text editors.
Multiple windows could be established, to allow the user to cut and paste, view, and scroll
both input and output. Separate windows could also be established for the current rewriting
system and set of equations, enabling the user to dynamically view the system changes ef-
fected by Knuth-Bendix.

There are many useful statistics that might be collected about a Knuth-Bendix run and
provided to the user, to measure the complexity of examples, to identify REVE modules where
efficiency optimizations are needed, etc. The original Knuth-Bendix paper [Knuth 70] used an
“efficiency rating" — a ratio of "useful” derived rules to the total number of derived rules —
to measure the effectiveness of the procedure. Other statistics possibilities are the number of
rewrites, number of unifications, average ratio of number of equations to number of rules,
largest number of equations at any one time, number of critical pairs, average number of
rewrites required when normalizing a term, size of largest critical pair, number of user inter-
actions required, time spent in rewriting, time spent in unification, time spent in ordering
equations, and total time spent in completing the system. '

Type checking has been found to be a useful facility when developing large programs.
Similarly, sort' checking can be useful when using large sets of equations in REVE. REVE

7For example, when REVE runs under Unix, +S and +Q can usually be typed by the user to stop and start output.

18S«:ms in algebra are analogous to types in programming languages.

90

 Chapters e [rm-aEVEPWcm'

' Mpﬁmmmmmmnhmdmmmhhm ‘

Chapter 5 The REVE Program

5.3.1 Group Theory Example

To begin the group theory example, we start up REVE, and use the READ command to input
the axioms shown in Figure 5-1 (which are the same axioms as in Figure 2-1 on Page 19) from
a previously-prepared file. Alternatively, we could invoke the TERMINAL command and type
the group axioms directly. Either way, REVE responds by displaying the current contents of
the system at the terminal. We use the ORDERING command to set the current registered
ordering to be the automatic ordering EPOS.

Figure 5-1: Axioms for Group Theory

(1)e*x=x
(2) x lex=e

(3) (x*y)*z = x*(y*z)

We then invoke the.-KB command to start the Knuth-Bendix procedure on the group axioms.
REVE will display, among other things, each equatic;n as it becomes ordered, and the critical
pairs that get computed. Even though the current registry is empty, EPOS (because it is a
simplification ordering) is able to order the first group axiom into the rule eex—x. The two
sides of the axiom x“'ex = e are not orderable under the empty registry, however, so REVE
presents the two minimal extenders "' 3> e" and "+ P e" to us, and we are told that either
one will order the equation into a rewrite rule from left to right. We arbitrarily choose the first
extender, REVE orders the equation, and Knuth-Bendix continues. We are prompted to select
minimal extenders for two more unorderable equations during the coi'npletion process. All
critical pairs are equational consequences of the original axioms. Along the way, we see
various critical pairs that reveal that the left identity, e, is also a right identity; e is its own
inverse; the left inverse, ™, is also a right inverse; and (x~")" = x (which is Equation 1 on Page
18) is in the equational theory. When Knuth-Bendix completes, REVE prints the completed
system shown in Figure 2-8 on Page 30.

The completed system gives us a decision procedure for group theory. We can now prove,
for example, that (x™1 ¢ y 1) =y« (x™! « &) (which is Equation 4 on Page 30) is a theorem by

Chapter 5 : The REVE Program

using the PROVE command. This causes REVE to reduce both sides of the equation to
normal form and compare the normal forms for equality. REVE indicates that the equation is,

indeed, an equational theorem.

5.3.2 Fibonacci Function Example

in this section, we use inductionless induction to prove that two characterizations of the
Fibonacci function, fib and dfib, are equivalent. [Lescanne 83a] contains a terminal session
with REVE 1 on this example. The interested reader may wish to consult [Lescanne 83a] to
compare the use of REVE 1 (there) with REVE 2 (hers).

We read the equations shown in Figure 5-2 into REVE. The first two equations define addition

in terms of the zero and successor functions of Peano arithmetic. The third equation is an

inductive theorem of addition. We have introduced it as an axiom here, because we are
interested in proving properties about fib, rather than +. The last three equations comprise

the classical definition of the Fibonacci function, fib.

Figure 5-2: Equations Describing the fib Function

(10 + x=x
(2) s(x) + y=s(x +y)
B +y)+z=x+(y+2)
(4) fib(0) = 0 |
(5) fib(s(0)) = 8(0)

(6) fib(s(s(x))) = fib(x) + fib{s(x))

We will want to use Huet-Hullot inductionless induction (see Section 2.7), so we use the
HH-CONSTRUCTORS command to declare 0 and s, the constructors of nonnegative integers.
It is our responsibility to declare appropriate HH-constructors, and to verify that our axioms
satisfy the principle of definition with respect to those HH—constructors. We then invoke

Chapter 5 : The REVE Program -

Knuth-Bendix. We are asked to choose minimal extenders for two unorderable equations
during the completion process. Knuth-Bendix finds no non-joinable critical pairs along the
way, so the resulting convergent rewriting system contains just the original axioms (ordered).

Since the irreducible ground terms in this system are exactly those that consist solely of 0 and
s, the normal form of fib(n) (where n is built with O and s) is the n'th Fibonacci number. Thus,
we might use the NORMAL-FORM command at this point to find that fib(s(s(s(s(0))))) is

s(s(s()).

We now add the three equations in Figure 5-3, which describe dfib, to the system. The

equation
fib(x) = dfib(x, 0) 6)

directly expresses the meaning of fib in terms of dfib. We invoke PROVE to verify that this
equation is a theorem of the above equations and rewrite rules. PROVE finds that both sides
of Equation 6 are irreducibie with respect to the current rewriting system, and thus the normal
forms are not identical. The equation might still be an equational theorem, however, since the
current system (consisting of the previously-compieted convergent rewriting system and the
equations in Figure 5-3) is not complete. Consequently, PROVE automatically invokes Knuth-
Bendix, after user confirmation.

~ Figure 5-3: Equations Describing the dfib Function

(1) ofib(0, y) =y
(2) dfib(s(0), y) = s(y)

(3) dfib(s(s(x)), y) = dfib(s(x), dfib(x, y))

When considering the third equation in Figure 5-3,
dfib(s(s(x)), y) = dfib{s(x), dfib(x, y)) @)

REVE presents the user with three minimal extenders: either J(dfib) = & or Y (dfib) = ® will
order the equation from right to left, and Y(dfib) = © will order the equation from left to right.
We choose y/(dfib) = @. Accordingly, REVE reverses Equation 7, converts it to a rewrite rule,
and Knuth-Bendix continues. At this point, the completion procedure diverges: ' it starts

Chapter 5 The REVE Program

generating an infinite set of ever-larger rules. In some cases, this difficulty can be averted by
choosing a different orientation for a previous equation. We interrupt Knuth-Bendix by typing
*G, and invoke the UNDO command, which backs:up the completion process to the last user
interaction. (We can perform successive UNDOs to return to any previous interaction.) in this
case, we are again presented with Equation 7. This time, we choose the minimal extender
Y(dfib) = ®, and Knuth-Bendix completes successfully. it can be difficult, even for ex-
perienced users, to choose an appropriate minimal extender for an unorderable equation.
This is one reason why the UNDO command is so useful.

This Knuth-Bendix run was actually performed as part of the PROVE command. Since Knuth-
Bendix has successfully terminated, PROVE again checks whether Equation 6 is an equa-
tional theorem. It is not, so PROVE automatically uses inductioniess induction (after user
confirmation). This entails adding Equation 6 to the system, and running Knuth-Bendix once
again.

After asking the user to pick minimal extenders for two unorderable equations, Knuth-Bendix
diverges. Further experimentation would reveal that choosing other minimal extenders for the
equations will not solve the problem. This situation can often be alleviated by first finding and
proving an inductive lemma that may help in proving the theorem of interest. We interrupt
Knuth-Bendix, cancel the proof with the CANCEL command, and attempt to prove the lemma

fib(x) + y =dfib(x, y) (8)
We hope that this equation, which is a more general version of Equation 6, may be easier for
Knuth-Bendix to handle. '

PROVE finds that Equation 8 is not an equational theorem of the system. Thereforg, PROVE
adds the equation to the system, runs Knuth-Bendix, and the system completes successfully.
PROVE announces that Equation 8 is an inductive theorem of the system (though, as noted
above, the soundness of this inductionless induction scheme requires that the initial system
satisfy the principle of definition, which must be verified by the user). If the algorithm in
Figure 2-9 on Page 33 had halted with pseudo-inconsistency, REVE would have told us that
Equation 8 is not valid in the inductive theory of the system.

Having proven the lemma, we return to proving the original theorem of interest, Equation 6.
This time, Knuth-Bendix completes, and the inductionless induction proof of Equation 6 is
successful.

Chapter § : The REVE Program

5.4 Internal Structure df REVE

This section gives an overview of the major modules in REVE, and how they interact. This
information is primarily intended for programmers who wish to extend REVE or adapt it to
their purposes. Throughout this section, names in boldface are module names in REVE's
implementation. There are many minor and general purpose modules that are not discussed
here; e.g., set, list, mapping, and scanner. Also, we omit discussion of modules that are
used only by the orderings, the unification algorithm, and the user interface.

REVE is written in the programming language CLU [Liskov 81}, which provides mechanisms
for data abstraction (c/usters), procedural abstraction (procedures), and control abstraction
(iterators). In CLU, a modufe is either a cluster, procedure, or iterator. A cluster has a
concrete representation type, called the rep, for the abstract type it implements, as well as a
set of operations for manipulating objects of the abstract type. These cluster operations,
which are themselves procedures or iterators, are the only means of manipulating objects of
the corresponding abstract type. The abstract type implemented by a cluster may be 1)
mutable, which means that the state (value) of objects of that type can be changed, or 2)
immutable, which means that any object of that type, once created, always has the same
state.

Figure 5-4 is a module dependency diagram for most of the clusters and procedures that we
will discuss here. There is an arc from a module, A, to another module, B, if A directly uses B
in its implementation.

5.4.1 Registry, Precedence, and Status/Arity Map

The registry stores all operator information needed by REVE. Like the mathematical notion
of registry introduced in Section 3.2.3, a registry consists of a precedence and status map.
in addition, the registry stores the arity of each operator. REVE uses the arity information to
ensure that each operator always has the same arity in all terms that are read as input. In the
future, if sort information is incorporated into REVE (see Section 5.2.8), the signature (domain
and range sorts) of each operator will also be stored in the registry. The registry preserves
the invariant that it be consistent (Section 3.2.3) with respect to its precedence and
status/arity map components.

Chapter 5

The REVE Program

Figure 5-4: Module Dependency Diagram for the Major Modules in REVE

overiap

system

1

rewriting equational
system system
rewrite rule equation

- | Key: data abstraction

<procedural abstractmn>

tracer

registry

precedence

status/arity
map

The precedence cluster is implemented as a labelled directed acyclic graph. The nodes are

operators, and there are two kinds of edges: » and =. if/ > g, thereisbotha ®» anda =
edge from f to g. The precedence maintains the invariant that it be consistent (Section

3.2.3).

The status/arity map is a mapping from operators to their status and arity. If an operator
has not been assigned a status, its status is recorded as @.

97

Chapter 5 - : The REVE Program

5.4.2 EPOS and EDOS

The implementation of Knuth-Bendix is independent of the particular ordering being used. It
requires only thaf an ordering module provide two procedures that attempt to order an equa-
tion: a quiet procedure that does not interact with the user, and a user procedure that may
obtain user assistance. The quiet procedure is used by the ConsiderNew and ConsiderBig
tasks (see Figure 4-4 on Page 81), and the user procedure is used by the ConsiderUnoriented,
Considerincompatible, and ConsiderDeferred tagsks. Both procedures have access to the
registry. The quiet procedure just returns the result of comparing the two terms, and does
not change the registry. The user procedure may return the comparison, or may inform
Knuth-Bendix that the user wishes to postpone the equation, divide it into two, interrupt
Knuth-Bendix, or "undo.” In addition, the user procedure may extend the precedence and

status map in the registry.

EPOS and EDOS are the two orderings currently available in REVE. The quiet procedure in
both of these modules merely checks whether an equation is currently orderable, in either
direction, under that orderihg. The user procedures of EPOS and EDOS compute minimal
extenders and ® suggestions, respectively, for each unorderable equation. The COS module
is shown in Figuré 5-4 for illustrative purposes, to indicate how future ordering implemen-

tations will fit into.REVE's internal structure.

5.4.3 Unify and Overlap

The procedure unify takes two terms and returns the most general unifier of those terms.
The unification algorithm currently used in REVE is that of Martelli & Montanari [Martelli 82],

whose efficiency compares favorably with other algorithms on typical examples.

The procedure overlap takes two rewrite rules, computes the superpositions associated with
each overlap between the left-hand sides of the two rules, and returns all of the critical pairs
resulting from those superpositions. This procedure is the heart of the confluence test in
Knuth-Bendix.

Chapter 5 . R - The REVE Program

 5.4.4 Term, Rowrite Rule, and Equation

Thehmduwwmmm#hmummmm .
Operations are provided for fmding the size of & Wrm, desenining
| dmmnm.mnmmmmtmmmc
mmmmmmmammmwmammua

given occurrence. |

Terms are the most basic and often-manipulated objscts in REVE, 80 It is important that their
implementation be efficient. Since terme are irwnutabls, the:siae, 98t of variables, and set of
mhlmmmmm memmmm
once for any given term. Snammal-tdd sov sittiies P '
mmumdmmnmnmmng vopuied in the i
mamemmmmhm'
Glustar, 30 the sbetraction is invmulaisl. =

TMMIH'M”“MMMQ”MMﬁ“WI
’ mmmnamm m)

Aive-oat of variables and set

Chapter 5 : The REVE Program

4.3.1). There is a special rewriting system operation that returns a list of all marked rewrite
rules plus the smallest unmarked rewrite rule, and marks the latter. Knuth-Bendix computes
critical pairs between the latter rule and all the marked rules. '

To improve performance, REVE borrows an idea from Affirm [Musser 80a]: Stored in the rep
of the rewriting system is a hash table that maps operators to buckets of "pointers," where
each "pointer” points to a rewrite rule in the marked list or the unmarked list. The root
operator of the left-hand side of each rewrite rule serves as the hash key for that rule. When
reducing a term or subterm, t = f(...), the rewriting operation only needs to try the rules
referenced by the bucket associated with f. Rules not referenced by "pointers" in that bucket
will not match t.

An equational system consists of all equations to which Knuth-Bendix is being applied.
The equations in an equational system are divided into five lists, as described in Section
4.3.3: new, unoriented, incompatible, deferred, and big. Special operations are provided for
manipulating these lists and for computing the current value of 8.

A system contains a rewriting system and an equational system. Its key operation is
- the failure-resistant Knuth-Bendix procedure described in Chapter 4. By encapsulating the
Knuth-Bendix equations and rewrite rules within a single system data abstraction, and thus
controlling access to the data being manipulated by Knuth-Bendix, the integrity of the
completion process can be maintained. Also contained in the rep of a system are:

» The ordering being used by Knuth-Bendix.
o The list of unused rewrite rules.
o The set of HH-constructors.

e The name of the Knuth-Bendix task currently being executed. This is used when
the user interrupts Knuth-Bendix, and later asks REVE to resume completing the

system.
e The history stack, used to implement the "undo” facility in Knuth-Bendix.

» Total Knuth-Bendix running time for the current system, less all time lost along
decision paths that were subsequently canceﬂed with “undo.”

e The tracer (see the next section).

100

Chapter § The REVE Program

5.4.6 Laboratory and Tracer

The laboratory operations correspond to all of the useful functions available in REVE that
are not related to the user interface. Together, they form a rewrite rute laboratory. (The
laboratory cluster is not shown in Figure 5-4. It uses almost all of the modules in the figure.)
A user interface to REVE need not make direct use of any modules below the laboratory.
Applications that wish to use REVE's capabilities can be built directly on top of the
laboratory cluster.

At the present time, there is only one user interface to REVE. This interface reads input from
the user's terminal or from files, invokes the desired laboratory function, and prints the
results on the user's screen. Most user interaction is orchestrated directly by this user inter-
face module.

There are some interactions with the user for which it is not convenient to use the top-level
user interface. Prominent among these are the informational messages priﬁted by Knuth-
Bendix, and the choosing of minimal extenders by the user. For these situations, the tracer
module is provided. All modules below the level of laboratory perform ali of their input and
output to the terminal through tracer. Tracer provides a different procedure for each pos-
sible type of output message produced by REVE. Although the tracer supports various levels
of output (see Section 5.2.5), this feature is invisible to the modules that use it: tracer merely
filters out those display messages that are not appropriate for the current tracing level. If
desired, the tracer module implementation can be easily changed to support a different style
of user interface.

101

Chapter Six

Summary and Conclusions

This chapter presents a summary of the thesis, indicates some areas of future implementation
and research, and reflects on the development of REVE.

6.1 Summary of Contributions

In this thesis, and the associated implementation work, the author has:

e Presented the basic theory of term rewriting, and equational and inductive proofs,
in a manner that should be accessible to computer scientists who are not familiar
with the area. '

e Developed a method for automatically constructing a terminating rewriting sys-
tem from a set of equations. This method, based on simplification orderings, uses
new algorithms that compute minimal complete extender sets for unorderable
terms. The orderings supported by the method include improved, fully extensible
versions of existing orderings, and a recent closure ordering.

e Designed and implemented a new failure-resistant version of the Knuth-Bendix
completion procedure, particularly well-suited to automatic theaorem proving ap-
plications. It features a strategy for automatic postponement of unorderable
equations that considers “easier" equations first, an "undo" facility that can-back
up the completion process to change the response at any previous decision
point, and support for the Huet-Hullot "inductioniess induction”™ method.

o Designed and implemented most of REVE 2, a production-quality program that
incorporates the above ideas in a powerful, user-friendly system that is suitable
for theorem praving and experiments in term rewriting. The REVE source code is
modularly designed and carefully documented, in the hope that it may provide the
basis for experimental implementations in this area by other researchers, and
thus expedite the development process.

102

Chapter 6 Summary and Conclusions

6.2 Current Limitations and ldeas for the Future

REVE continues to be enhanced, both with new features and fine tuning. We list here some of
the improvements that are-either under developmeht or under consideration.

6.2.1 A Rewrite Rule Laboratory

A primary goal of REVE 2 is to provide a solid source code base upon which one can easily
build implementations of experimental programs in the rewriting area. Unfortunately, since
REVE is written in CLU, making changes or additions to REVE requires some recompilation.
As explained below in Section 6.3, we feel that CLU's advantages outweigh this disadvantage.
Nevertheless, it is worthwhile looking at another software system, RRL, that provides many of
REVE's features in an interpretive language environment.

Kapur & Sivakumar's Rewrite Rule Laboratory (RRL) [Kapur 84a] is an environment for ex-
perimenting with algorithms for manipulating term rewriting systems and equational theories.
its goals differ from those of REVE 2, primarily in that RRL emphasizes easy experimentation
and de-emphasizes automatic theorem proving. Accordingly, RRL has besn written partially
in Musser's interpreted language, L [Musser 84], and partially in LISP. L is based on LOGO
and LISP and has been designed with the RRL application in mind. L wili also serve as the
command language for RRL and the language in which a user can interactively program small
experiments. To build on RRL or change an existing function, the user need only type in a
new or replacement function, written in L. No recompilation is necessary.

RRL currently lacks REVE’s scheme for constructing terminating rewriting systems automati-
cally, and the failure-resistant Knuth-Bendix implementation. Conversely, REVE currently
lacks many of RRL's facilities for experimentation, such as different rewriting/normalization
strategies (see Section 6.2.2, below), different strategies for computing critical pairs, and
different unification algorithms. Both the REVE project and the RRL project have profitted in
the mutual exchange of information and ideas between our respective research groups.

103

Chapter 6 ; Summary and Conclusions

6.2.2 Rewriting

Term rewriting is the heart of REVE. This section presents methods for improving rewriting
efficiency and extending REVE’s rewriting capabilities. See also Section 6.2.4.3, where equa-

tional rewriting is discussed.

In a simple approach to rewriting, reducing a term with respect to a rewriting system might
require matching each subterm of that term with the left-hand side of each rewrite rule in the
rewriting system. As noted in Section 5.4.5, REVE uses Affirm’s [Musser 80a] hash table idea
to increase rewriting speed.

Affirm also uses pattern-match compilation (PMC) [Guttag 78b] to improve the efﬁciency of
performing reductions. In PMC, all rewrite rules with the same root operator on the left-hand
side get compiled into a single LISP function that reduces any term that has that root
operator. If the rewriting is successful, this function calls the appropriate function to further
reduce the rewritten term. The LISP functions are stored in a hash table (a LISP a-list), where
the root operator is the hash key, as described above. This idea cannot be directly imple-
mented in REVE; CLU is a compiled language, so CLU functions cannot be both created and
invoked'while REVE is running. However, each LISP function could probably be closely
simulated with a special data structure, call it a multi-rule, that represents all rules in the
rewriting system that have a given root operator on the left-hand side. It is likely that a fast
interpreter for multi-rules could be written in CLU. '

Plaisted [Plaisted 83] has advanced an idea to speed up normal form computations. He
suggests associating a hash table with the rewriting system, where the hash keys are terms
and the values stored in the hash table are rewrite rules. Whenever the normal form, t,, of a
term, t,, is found, one adds the rule t,—t, to the hash table under the hash key . When
computing the normal form of a term, tay first hash ty and try to match t, against the left-hand
sides of each rewrite rule in the resulting hash bucket. f a match is found, rewrite ty using
that rewrite rule, and then compute the normal form of the resulting term with respect to the

rewriting system. In this way, several reduction steps can often be skipped.

REVE uses a “leftmost-outermost” strategy to rewrite a term, t: it attempts to rewrite t at its
root using each of the rules in the rewriting system. If this is unsuccessful, REVE then
attempts to rewrite each of the immediate subterms of t using each rewrite rule, and so on.

104

Chapter 6 : o Summary and Conclusions

Kapur & Sivakumar have compared this strategy with three others [Kapur 84a], in the context
of computing normal forms. Each of these four strategies has been implemented in RRL. In
their experiments, Kapur & Sivakumar have found one strategy that is often faster than
leftmost-outermost. It is a modification of leftmost-innermost that recognizes that certain
subtérms have already been normalized. As in RRL, it may be useful to allow the user to
choose from among these strategies for experimentation purposes. Also, if the modified
leftmost-innermost strategy is found to be faster than leftmost-outermost on most typical
examplies, it may be worthwhile using the former strategy as the defaultin REVE.

Additional expressive power for equational specifications can be obtained by associating a
Boolean condition with each equation. The semantics of a conditional equation are that the
equation holds whenever the condition is true. For example, with an equation that defines
division, one might associate a condition that the divisor be non-zero. Such a specification
can be converted into a conditional rewriting system, where a rewrite rule can only be used
for rewriting if its condition is true for the term being rewritten. The conditions associated
with the rewrite rules aiso affect the proof of termination and the Knuth-Bendix completion
procedure. Zhang has implemented, using REVE’s modules, the prototype of a program for
validatiné conditional specifications using conditional term rewriting techniqués, based on his
work with Remy [Remy 84, Remy 85]. This work will be incorporated into ECOLOGISTE

[Barros 84], a structured specification support system.

6.2.3 Simplification Orderings

The simplification orderings used in REVE are instances registered orderings, all of which are
descendants of Dershowitz' recursive path ordering. This section describes a method for
extending registered orderings further, and presems a simplification ordering that is not
parameterized on registries. |

In some cases, before using a registered ordering to construct a terminating rewriting system
from a set of equations, it may be useful for the user to designate a particular constant
operator in the system as being the Jeast constant. This constant is, by definition, less than or
equal to every other operator in the precedence. Thus, under RPOS, EPOS, EDOS, and COS,
it is also less than or equal to every term that consists only of operators in the system. The
definitions of these registered orderings can be extended to use this information, by consider-

105

Chapter 6 Summary and Conclusions

ing the least constant to be less than or equal to every variable. This allows these orderings to
prove the termination of additional rewriting systems‘g. isabelle Gnaedig of the Centre de
Recherche en Informatique de Nancy (CRIN) has implemented the least constant extension of
RPOS in an experimental version of REVE. Francoise Bellegarde, also of CRIN, has found this
feature to be important in her use of REVE to prove theorems about FP [Backus 78] programs
[Bellegarde 84}, taking the identity function to be the least constant.

Registered orderings are among the most commonly-used classes of simplification orderings.
Another relational in popular use, which is not parameterized on registries, is the polynomial

ordering.

Lankford [Lankford 78a] and Dershowitz [Dershowitz 79b] have suggested associating a poly-
nomial, F(a1, - an), with each n-ary operator, f, in the system. This mapping extends to a
morphism, u, on terms by letting p(f(t1, wa t)) = F(p(t1), ey Bt) The polynomial ordering,
>[u], on the relation is defined as s >[u] t if and only if u(s) > u(t) for all assignments, u(x),
to the variables in s and t.

Note that >~[u] is a partial ordering. However, >[i] is not necessarily a simplification order-
ing. For any given u, compatibility and the subterm property must be shown separately.
Dershowitz suggests using polynomials over the real numbers. In this context, for any rewrit-
ing system, %, it is decidable [Tarski 51] whether there exists a p such that >[u] is a
simplification ordering that proves the termination of %. However, this is not yet a practical
method for proving termination, since existing decision procedures [Cohen 69] require super-
exponential time.

Lankford suggests restricting the polynomials to those over the positive integers. All such
polynomials have the compatible and subterm properties, so >[u] is a simplification ordering
in this setting. However, for positive integer polynomials, it is undecidable whether there
exists a p for % such that >~[u] proves the termination of %. Nevertheless, for a proposed p, it
is often possible to check, by hand, whethér p(s) > p(t) for all assignments to the variabies,
and for every rule s—t in %. This is typically accomplished, for each rule, by factoring the
polynomials u(s) and u(t), and dividing out the common factors. (Such dividing is permitted
because no factor is equal to zero, since the polynomials range over positive numbers.)

19For example, the termination of {{(g(x))—+g(a)}, where g » /, can be proven using the least constant extension
of any of these orderings, if a is the ieast constant.

106

Chapter 6 ’ : Summary and Conclusions

When registered ordering implementations are not available, the polynomial ordering (using
polynomials over the positive integers) is sometimes easier to use than registered orderings
when proving termination by hand. However, the main reason for incorporating the polyno-
mial ordering into REVE is that there are rewriting systems whose termination cannot be
proven with existing registered orderings, but can be proven with the polynomial orderingzo.
The converse is also true [Dershowitz 83c], so both registered orderings and the polynomial
ordering should be provided in REVE. Implementing the polynomial ordering will not be easy.
It is difficult to develop procedures for comparing polynomials, and for automatically deriving
an appropriate u for a given %, that are sufficiently pawerful to be generally useful. Lescanne
and Alhem Bencheriffa are studying these problems for REVE.

6.2.4 Completion Procedure

REVE derives its theorem proving capabilities from the Knuth-Bendix completion procedure.
This section discusses methods for improving the efficiency of Knuth-Bendix, making it fully
automatic, augmenting it to allow for rewriting modulo a set of equations, extending it to
handle first-order predicate calculus, and using it in alternative inductionless induction

schemes.

6.2.4.1 Computing Small Critical Pairs

As discussed in Section 4.3.1, smaller critical pairs are more desirable than larger ones. Itis
difficult, if not impossible, to determine the size of a critical pair in advance (in general).
However, Section 4.3.1 notes that it is a good heuristic to pick a small pair of untried rewrite

rules with which to compute critical pairs.

Since critical pairs are expensive to compute, it is useful to generate only a few critical pairs
at a time. If these can be ordered into rules, they might reduce or eliminate larger rul_es,
reducing the number and size of othercritical pairs that' must be computed.

Section 4.3.1 noted that if we keep the rules sorted and always pick the smallest unmarked
rule, the marking scheme will always use the smallest pairs of untried rules. A drawback,
though, is that many critical pairs get generated at once.

z)One such rewriting system, encountered in Bellegarde’'s work, is {/{g(x), g{y))—g{f(x, y)), Hx, f{y, z))}—
f(t(x, y), z), {{H(x, g(v)), g(z))—Kx, glily, z)))}.

107

Chapter 6 Summary and Conclusions

We can generate fewer critical pairs at once if we pick the smallest pair of untried rules, and
only compute the critical pairs between those two rules before attempting to order the critical

pairs. This scheme requires more bookkeeping.

RRL extends this idea further, by generating critical pairs one at a time. Once the smallest |
pair of rewrite rules has been identified, only one critical pair (if any exist) is generated from
the pair of rules. After handling the critical pair (e.g., by ordering it into a rewrite rule and
normalizing the rewriting system accordingly), if that same pair of rules is still the smaligst
pair, the next critical pair between those rules is generated, and so on. |

6.2.4.2 Fully-Automatic Knuth-Bendix
The Knuth-Bendix completion procedure, as implemented in REVE, does not yet work fully
automatically. User interaction is required to:

(1) Choose one of the minimal extenders to try, whenever an equation is not or-
derable.

(2) Invoke the Knuth-Bendix "undo” command when (for some compatible equation)
there are no further minimal extenders to try.

{3) Decide whether an incompatible equation should be divided, and, if so, what the
name of the new operator should be.

(4) Interrupt Knuth-Bendix and invoke "undo" when it appears that the completion
process ig diverging, possibly because of some "bad" decision made earlier in
the compietion process.

Let us assume that we are using the automatic method for constructing a terminating rewrit-
ing system from a set of equations, as described in Section 3.6. This will automatically handle
(1) and (2) above. Similarly, assume that REVE can automatically introduce a non-conflicting
operator name when an incompatible equation is divided?', so that (3) reduces to a decision
of whether or not to divide the equation. In this context, a decision path for a system is a
sequence of choices, one choice for each equation that requires a decision (choosing a
minimal extender for a compatible equation or choosing whether or not to divide an incom-
patible equation) as Knuth-Bendix proceeds. '

2 Lescanne's REVE 1 provided this capability.

108

Chapter 6 : Summary and Conclusions

Knuth-Bendix could be fully automated by pursuing all possible decision paths for a system,
to handle (3) and remove the need for (4). Recall that REVE uses a system data abstraction
to store all state information required by Knuth-Bendix (see Section 5.4.5). At each decision
point during the completion process, REVE could make duplicate copies of the current state
of the system, one for each possible decision at that point, and put them into a process
queue. REVE could then continue to complete each of the systems in the queue
"simultanepusly" by alternately running Knuth-Bendix for a short time on each of them.
When any of these systems reaches another decision point, more system copies could be
spawned, and so on. In effect, there would be one system in the process queue for each
possible decision path. When any of the systems reaches a dead end (for some unorderable
equation, there are no minimal extenders to try), that system would get deleted from the
queue. Also, if criteria can be found that identify systems that are definitely diverging, such
systems would also get deleted from the queue. If some decision path successfully
produces a completed system, the process would stop. Since REVE would run Knuth-
Bendix on each system in the process queue in an alternating fashion, the entire process

would diverge only if all decision paths diverge.

As descfibed here, it may appear that the fully-automatic Knuth-Bendix procédure would be
hopelessly inefficient. However, as noted in Section 3.6, backtracking to choose different
minimal extenders is usually not required. Also, most examples found in practice do not
generate incompatible equations, so there are usually no decisions for dividing equations.
Consequently, the speed of the scheme described above could probably be improved, in most
cases, by giving running preference to the first system, and only pursuing other decision
paths if the first system reaches a dead end, or requ'ires_ an unusuaily long time to complete.

6.2.4.3 Equational Term Rewriting Systems
The correctness of Knuth-Bendix requires that the rewriting system terminate at each step of
the procedure. As noted in Section 2.6, this requirement disallows the use of equation sets

that include, e.g., the useful commutative equation x+y =y +x.

To handle this problem, Huet [Huet 80b] and Peterson & Stickel [Peterson 81] have extended
the Knuth-Bendix procedure to operate on an equational term rewriting system (ETRS): a
rewriting system, together with a set, E, of equations, where the equations in E are not con-

109

Chapter 6 : Summary and Conclusions

verted into rules. For example, one might have E consist solely of the above commutative
equation. The completed rewriting system, together with E, provides a decision procedure for
the equational theory of the equations and rules that comprise the ETRS. Huet's method
requires that all.rewrite rules be left Iihear (for every rule, each variable appears at most once
on the left-hand side). The Peterson-Stickel approach is limited to examples where E consists
only of equations that are both left and right linear, and where a finite and complete unifica-
tion algorithm for E is known. ("E-unification" is the process of finding a set of maximally-
general substitutions for the variables in two terms, that make those two terms equal in the

theory of E.)

ETRS completion procedures are powerful tools for automatic equational reasoning. Huet's
procedure is too restrictive, however, to handle many typical examples of ETRS. The
Peterson-Stickel procedure is probably too inefficient to permit a practical implementation.
The i'nefficiency stems from both E-unification, wherein hundreds of substitutions are
routinely computed for each pair of unifiable terms, and E-matching, wherein the equivalence
class (under E) of.a term is, in effect, searched to find an equivalent term that can be rewrit-

ten.

{Jouannaud 83] unifies the Huet and Peterson-Stickel results, showing them to be special
cases of a more abstract theory. In addition, the [Jouannaud 83} approach generalizes
Peterson-Stickel by allowing non-linear equations in E. However, [Jouannaud- 83] does not
propose a particulér completion procedure that incorporates these new results.

in [Jouannaud 84], Jouannaud & Kirchner simplify, generalize, and extend the [Jouannaud
83] results about ETRS. They use these new results to prove the correctness of a new
compiletion procedure that is more powerful and more efficient than previous methods. Some
issues regarding the efficiency and effective use of the [Jouannaud 84] completion procedure
are still under study. For automatic theorem proving applications, the failure-resistant
properties described in Chapter 4 should also be considered for possible inclusion in the new
ETRS completion procedure.

Helene Kirchner and Claude Kirchner are currently building on REVE 2 to create REVE 3,
which will incorporate the [Jouannaud 84] completion procedure. Their implementation
makes use of Yelick’'s generalized unification design and her implementation of a unification

110

Chapter 6 Summary and Conclusions

algorithm for AC theories [Yelick 84]. It is clear that the use of an ETRS completion proce-

dure is essential for practical theorem proving using current rewriting methods.

6.2.4.4 First Order Predicate Caiculus

Hsiang [Hsiang 82]22 has developed complete proof strategies for first order predicate cal-
culus, based on rewriting methods and Knuth-Bendix. These strategies make use of a new,
convergent ETRS for deciding Boolean aigebra. Rather than using conventional, inefficient
AC-unification for the Boolean binary operations, Hsiang introduced a new algorithm, called
BN-unification, that is optimized for the Boolean operators. The validity of first order sen-
tences is proven using a refutational proof technique that is much more efficient than resolu-
tion [Robinson 65] in many interesting cases. The utility of predicate calculus, and the ef-
ficiency of Hsiang’s method, suggest that Hsiang's work should be included in a future
release of REVE. In addition, it might be possible to use Hsiang's Boolean algebra ETRS to
help perform the disjunctive normal form simplifications required by the COS minimal com-
plete extender set computation scheme, described in Section 3.5.2.

6.2.4.5 Inductionless Induction

REVE uses the Huet-Hullot approach to inductionless induction [Huet 82], whose correctness
requires that the rewriting system satisfy the principle of definition. However, as indicated in
Section 2.7, this principle is undecidable in general, and REVE does not currently include a
check for sufficient conditions. Jean-Jacques Thiel has recently proposed a powerful new
algorithm for performing such a test [Thiel 84}, and is currently implementing it in an ex-
perimental version of REVE.

The Huet-Hullot inductionless induction method is but one of several. Its principle advantage
over other such methods is that it is fairly amenable to automatic theorem proving. Its prin-
ciple disadvantage is that it disaliows many interesting examples. Huet-Hullot requires that no
two ground terms built from HH-constructors be congruent in the equational theory of the
system. This restriction makes Huet-Hullot non-applicable to set theory, for example, since
insert must be an HH-constructor (because insert(empty, a) is irreducible), and yet the theory
of sets tells us that insert(insert(empty, a), b} and insert(insert(empty, b}, a) are congruent.

250 also Hsiang & Dershowitz [Hsiang 83] for a condensed discussion of this work.

111

Chapter 6 Summary and Conclusions

Kapur & Musser [Kapur 84b] have unified and generalized inductionless induction results into
a genéra‘l theory of proof by consistency. Their unambiguity property admits many interesting
theories (including sets) that are not handied by Huet-Hullot. If useful (decidable) sufficient
conditions can be identified that imply (undecidable) unambiguity, the Kapur-Musser ap-
proach may vieid effective ways to handle many practical inductive theories in an automatic
fashion.

" [Huet 82] and [Lankford 81] discuss extensions, to ETRS, of their respective inductionliess
induction methods, where E is identically AC. Further work is needed to determine the ap-
plicabllity of inductionless induction and proof by consgistency to more general E-theories.

6.2.5 Exploiting Concurrency Opportunities

‘"The Knuth-Bendix completion procedure is inherently siow. Rewriting, ordering, unification,
computing critical pairs, and "undo" backtracking are all fairly expensive operations.
However, we remark that many of these functions are highly amenabile to paraliel processing:

e When rewriting a term, the left-hand sides of all rewrite rules can be simul-
taneously matched against the term. The rule corresponding to any successful
match can be used to rewrite the term, since (in REVE) the order in which rules
are applied does not maiter.

e The efficiency of computing s > t (and hence s > t) can be improved by compar-
ing the subterms of s with the subterms of t in parallel. The particular subterms
mvolveddependonmeroouofsand t and the information in the registry. The
efficiency of s > t can be similarly improved.

e There may be many critical pairs that result from overiapping the left-hand sides
of two rewrite ruies at all'possible occurrences. All of these overlaps may be tried
concurrently, since none of them depends on intermediate results from the other
overlaps. In addition, multiple pairs of rules may be cveriapped concurrently.

e The fully-automatic Knuth-Bendix implementation, described in Section 6.2.4.2,

- can be very time consuming, if multiple decision paths must be explored. The
running time can be reduced by concurrently trying every decision path, rather
than trying them in an alternating fashion.

Somewhat surprisingly, Dwork, Kanellakis, & Mitchell [Dwork 84] have shown that unification
is an inherently sequential process that cannot benefit significantly from parallelism.
However, they have also shown that matching, during rewriting, can be significantly improved
using concurrency.

112

Chapter 6 Summary and Conclusions

As concurrency capabilities in device technology, computer architecture, and programming
languages increase, so will the potential speed and utility of automatic theorem proving
methods using term rewriting techniques. The application of concurrency in this field is an

interesting and largely unexplored research area. -

6.3 Reflections on the System Development Pfocess

Currently consisting of 20,000 lines of source code and in-line comments, more than four
times the size of REVE 1, REVE 2 is one of the largest CLU programs in existence. It is only
slightly smaller than the CLU compiler itself. Moreover, the size of REVE 2 is likely to grow by
50% in the next year, as the new features that will comprise REVE 3 get incorporated. In the
presence of such a large and growing body of code, issues common to the development of all
large software systems become almost as important as the application domain. In this sec-
tion, we reflect on these issues as they pertain to REVE 2,

To maintain the consistency and coherence of the REVE source code as it evolves, full
responsibility for maintaining REVE and incorporating improvements is always in the hands of
a single person. VFollowing an official REVE release by this maintainer, our colleagues are
welcome to modify and extend the capabilities of REVE, using their own copy of the current
source code. Before the next release, each such extension is sent to a small review com-
mittee for examination, to determine the importance of the extension and its degree of com-
patibility with the goals and existing code of the system. The selected extensions are com-
bined, inconsistencies are resolved, and programming styles are made uniform, by the REVE
maintainer. The new REVE version is released (with a new release number), and the develop-
ment cycle repeats, building on the newly-released source code.

The CLU language provides a number of features that substantively assist in the construction
of large programs. Data abstraction is fully supported in the language, and can be used to
great effect in modularizing the code. Compile-time type checking of both built-in and user-
defined types catches many errors that might otherwise result in obscure run-time bugs.
Garbage collection, dynamic arrays, and exception handling automatically manage tedious
and error-prone tasks and contribute to clean, elegant code. CLU’s structured syntax is easy
to read.. Furthermore, the convenient CLU programming environment, with accompanying
text editor and interactive symbolic debugger, expedites program development.

113

Chapter 8 : : -Summary and Conclusions

There are some disadvantages 1o using CLU, however. Mot existing software in this field is
written in LISP. LISP versions exist that have aii of the honefits listed above for CLU, except
for compile-time type checking and lucid syntax. Thus, it might appesr that REVE's im-
- plementation language unnecessarily isaletes REVE from similar efforts elsewhere. However,
- we believe that the benefits of compile-time type checking with large programs, even with the

programming mitations that such checking impases, outweigh the disadvantages of not
using LISP. Moreover, mLBPeodlhthmum because of dif-
' ferences in LISP dislects and inetaliation environmans.

mnsvememw::Wmammmm
tems development: Build a prototype early. Ammmmnm»
project, and heips indicate the potential difficuities to be mehied. Lescanne's REVE 1 served
' amummmmzwmm=mmmwm»m
solutions. However, this principle was not sirictly fellowest during the development of REVE 2.
_ mmmwummmmmnm‘
established that such difficultiss sleled. For example, it was believed early on that the code
could be made more sicient by keeping, in each ORI sppearing in & term, & "pointer” t0
the curvent registry. -in this way, the segietry would not have:i9. be passed twough multiple

lnyers of provedure calts® 1o be avallabie 10 the ontwrings. ‘Howewer, a8'this idea parmented
wmmmmhmmmwmnwmmumm
current regietry; umwmmmm Moreover, the

S mmam-mmmmm-ﬁnmmmmwu n

‘retrospect, ahmmzmmmnmmmm
‘mance mmu.mmmwmwmmm

mmmwmmmdmmm
mumamz.

ments ,f'mmmu

'mmmbmm

”nummnmammmumm mmm
maintaining multiple syalemes, sach with- s own segintey, by sturs: "

“rmd-dm.m umzmmm N

114

Chapter 6 ' | | . 'Summry and Concilusions

idemiﬁodmdmovod Todae mwmwwammmm ‘
: mmmmm —mmmwmmmummm

wmummwmmummumdmm, o
“in REVE 2. vmmwmamwmmmwa:

mmmmmmmm wmmawdmwh
| mmnmmmmm Banels Alcherds ua '

REVE's implementation, wmmmmmmmmumm“_
mummaammm&summm |
[Guitag 830} mmuwnmmmmwummm;
'MMMQWW Ry ,

the sum M of m m a m ; ; g he Linki ;

116

Appendix:

REVE Commands

In this Appendix, we present the descriptions of each command in the current version of
REVE 2. These descriptions are taken almost directly from the on-line HELP information
provided by REVE. The commands fall into five categories, indicated by the subheadings
below.

You do not need to type in the whole command name; unambiguous prefixes are sufficient.
Commands and arguments can be typed in upper and/or lower case. if you have a file in your
login directory calied ".reve_init," that file will be executed as if by the REPLAY command
whenever you start REVE. This can be useful, for example, if you often desire a page mode,
tracing level, etc., that is different from the default, or if you always want to script your

sessions.

User Interaction

HELP Provides the user with detailed explanations of REVE commands, as well
_as information on other topics, such as interrupting Knuth-Bendix, or
entering arguments to commands. HELP takes one argument, which is
the topic on which help is desired. Unambiguous prefixes are sufficient
specifiers of help topics. "HELP ?" prints out a terse list of topics on
which help is available. "GENERAL" is a special topic that gives a short
introduction to each HELP topic.

TRACE Sets the Knuth-Bendix tracing level. This should be an integer between 0
and 3, inclusive. 0 is the least verbose, printing nothing but user inter-
action. Level 1 announces the size of the system at regular intervals, and
informs the user whether Knuth-Bendix is reducing and orienting egua-
tions or generating critical pairs, that equations have been oriented into
rewrite rules, that rewrite rules have been turned back into equations be-
cause their left-hand sides were reduced, that non-trivial critical pairs
have been found, and that equations have been divided or separated.
Level 2 gives this information, and also informs the user when an equation
or the right hand side of a rewrite rule has been reduced as a result of the
addition of a pew rule, and, for critical pairs, gives both the original critical
pair and its reduced form. Finally, level 3 gives all this information, and

116

Appendix

SCRIPT

UNSCRIPT

LOG

UNLOG -

REPLAY

PAGE

Quir

REVE Commands

‘also informs the user when equations are postponed because they are

classified as "big" or are unable to be ordered, and also always prints the
pair of rules being superposed, even if no critical pairs are found. 1is the

~ default tracing level. An argument of "?" displays the current tracing

Starts recording of the terminal session in a script file. SCRIPT takes an
argument, which is the name of the file to which scripting should be sent.
Any previous contents of a script file are lost. Only one script file is
allowed at a time. Scripting is ended by the QUIT or UNSCRIPT com-
mands. _

Stops recording the terminal session in a script file, and closes that file.

Starts recording the user input in a log file. LOG takes an argument,
which is the name of the file to which logging should be sent. Any pre-
vious contents of the file are lost. Only one log file is allowed at a time.
Logging is ended by the QUIT or UNLOG commands. In order to avoid
annoying UNLOG commands at the end of log files, UNLOG commands
are not stored in log files. Log files, once made, can be executed via the

. REPLAY command. (REPLAY commands are not stored in log files,

either.)

Stops the recording of user input in a log file. The log file is closed.

" UNLOG commands do not show up in log files.

Causes REVE to take input from the file whose name is given as the ar-
gument. This command is ordinarily used to read from a file that was

_created by the LOG command, but any text file may be specified. Once

the file has been exhausted, REVE starts accepting input from the ter-
minal. REPLAY commands may not be nested, so REPLAY commands
are ignored in files executed via the REPLAY command. REPLAY com-
mands do not appear in log files. '

Controis REVE’s page mode. In page mode, REVE buffers output a
screen at a time, 80 that no output is missed. When a screenful of output
has been printed since the last user interaction, the user is prompted for
what to do next. The options include printing the next full screen, haif
screen, single line, or "n" lines where n is a gingle digit; printing without
stopping until the next user interaction point; or not printing at all until the
next user interaction point. These options are explained in detail if you
type "?" in response to a "--More--" prompt. The default page mode is
"off." See HELP REVE-INIT for information on how to change this.
(Another method of controlling output is by using the tS and 1Q keys. S
stops output, and 1Q resumes printing.)

CaUsés REVE to halt, returning the user to the operating system. Any
script or log file is closed.

117

Appendix

READ

APPEND

TERMINAL

ADDITIONAL

WRITE

DISPLAY

FREEZE

THAW

REVE Commands

Input/Output

Deletes any existing equations and rewrite rules in REVE, and reads new
equations from a file. The precedence information is cleared, and the
status of all operators becomes "undefined.” The file name is given as an
argument. [f the file name has no directory part, the current working
directory is first searched for that file, and then a special "examples"
directory is searched. An argument of "?" gives a list of the example
equation files in this directory. See also the TERMINAL, APPEND, and
ADDITIONAL commands.

Reads equations from a file, adding them to the current system. The file
name ig given as an argument. If the file name has no directory part, the
current working directory is first searched for that file, and then a special
"examples" directory is searched. An argument of "?" gives a list of the
example equation files in this directory. See also the READ, TERMINAL,
and ADDITIONAL commands.

Deletes any existing equations and rewrite rules in the system, and reads
new equations from the terminal. The precedence information is Cleared,

and the status of all operators becomes "undefined.” See also the READ,

APPEND, and ADDITIONAL commands.

Reads new equations from the terminal, and adds them as user equations

to the system. See also the READ, TERMINAL, and APPEND commands.

Writes the equations and rewrite rules in the current system to a file, given
as the argument. This file can later be read in (with the rewrite rules

_interpreted as equations) using the READ or APPEND commands.

Displays the equations and rewrite rules in the current system on the ter-
minal. Divides the equations into two sets, those entered by the user and
those generated as critical pairs. The equations and rules are numbered
for reference in other commands. Also shows the equation to be proved if
an equational or inductive proof is in progress.

Saves the current system, including the equations, rewrite rules,
precedence, status map, and Knuth-Bendix "undo"” information, into a file
in object form. The name of this file is given as the argument. Systems
saved using FREEZE can be later be restored by the THAW command.
This command is useful for saving completed or partially-completed sys- -
tems.

Restores a system that was saved previously using the FREEZE com-
mand. The name of the file in which the system was saved is given as the
argument. THAW does not allow files to be thawed if they were made
using an out-of-date version of REVE.

118

Appendix

KB

UNDO

PROVE

 CANCEL

DELETE

- REVE Commahdc

System
Rummxnumsondixcummmmwmmd_

~ equations and rewrite rules. Kauth-Bendix stiempis 1o complete & system
. mawmmwummmmuu

original set of user squations.. This ey 0 can be used to prove
mmnmmammwmm

: vln m m
Voucaamummmmwmumm i

Causes mm h-b:qntbhiﬂwﬁnbnﬂe last interaction with

momnmm-;whsmmmmwm :
mmmmmhmm mmhwnh :

119

Appendix

CLEAR

TASK-ORDER

AUTOMATIC

ORIENT

REVE Commands

user is prompted for the equations and rules to delete.) If all the numbers
in the list correspond to equations and/or rules in the system, those equa-
tions and rules are deleted. Otherwise, nothing is done, and an error
message is printed. Deleting rewrite rules "compromises" the system, in
that it is no longer guaranteed to represent the same equational theory as
the original system. “Deleted" critical pair equations are saved on a spe-

.cial list, and are reinserted into the system after Knuth-Bendix is finished,

to preserve correctness. In this case, DELETE should be thought of as
postponing consideration of an equation. Deleting user equations just
causes Knuth-Bendix to complete the system consisting of the new,
smaller set of equations.

Resets REVE. All equations and rewrite rules are deleted from the system,
the precedence is cleared, and the status of all operators is set to
"undefined.”

Changes the order in which the Knuth-Bendix tasks are executed. The
default is "automatic,” a task order that considers all non-big unorderable
equations before computing critical pairs. This order is the most efficient

" one for use with automatic orderings, such as EPOS, and perhaps also for

the current implementation of EDOS, if you are familiar with the basics of
choosing EDOS suggestions. The other possible task order currently
available is "postpone,”" which postpones compatible unorderable equa-
tions until after critical pairs have been computed, in the hope that the
unorderable equations will reduce (and become orderable) or become
identities and disappear. If you interrupt Knuth-Bendix and change the

“task ordering, Knuth-Bendix will start with the first task of the new order

when resumed.

Sets the current REVE execution mode to be automatic ("on") or manual
("off"). if "on," and the current ordering is EPOS, the ORIENT command
will convert the equations into rewrite rules without user help, automati-
cally choosing different minimal extenders, reversing equations when all
extenders have been tried, etc. In the future, if a fully-automatic Knuth-
Bendix is implemented, AUTOMATIC wili also determine whether or not
Knuth-Bendix runs automatically.

Causes REVE to order all current equations into rewrite rules, using the
current ordering, without computing any critical pairs. If the AUTOMATIC
execution mode is "on," and the current ordering is EPOS, ORIENT will
transform the equations into rules without user heip, automatically choos-
ing different minimal extenders, reversing equations when all extenders
have been tried, and reporting failure if a terminating registry cannot be
found. Otherwise, for each unorderable equation, the suggestions or ex-
tenders from the ordering are displayed, and the user is prompted to take
action on the equation accordingly.

120

Appendix

REDUCE

NORMAL-FORM

UNIFY

CRITICAL-PAIRS

ORDERING

INITIALIZE

PRECEDENCE

REVE Commands

Laboratory

Rewrites a term ohce, using the current rewriting system. The term is
given as the argument.. The choice of rewrite rule applied is non-
deterministic.

Computes the normal form of a term with respect to the current rewriting
system. The term is given as the argument. If the rewriting system is not
guaranteed to terminate, i.e., if the user has added a rewrite rule to the
system that the current ordering was unabile to order (or if the "manual”
ordering is being used), the normal form computation may not terminate.
When the rewriting system is not known to terminate, REVE stops the
rewriting process and issues a waming after a very large number of
rewrites during a normal form computation.

Computes and prints the unification of two terms, i.e., the result of apply-
ing their most general unifier to either term. Standard unification (i.e.,
unification in the empty theory) is used. The two terms are entered as
arguments. |f the terms are entered on the same line, they shouid be
separated by a semicolon (";").

"Finds and prints all critical pairs between two rewrite rules, which are

entered as arguments. If the two rules are entered on the same line, they

‘shouldbeseparaiMbyaaembolon(";").

Orderings
Sets the ordering to be used by Knuth-Bendix. Currently, the orderings

-supported are "EPOS," which computes the minimal complete extender

set when an equation is unorderable; "EDOS," which currently provides
suggestions for extending the ">" relation in the precedence, and
"manual,” which prompts the user to hand-order each equation. When
ORDERING is used to switch from "manual" to either "EPOS" or
"EDOS," all rewrite rules are converted back into equations to preserve
the correctness of Knuth-Bendix.

Restores the system to a state in which there are no Huet & Hullot con-
structors, there is no precedence information associated with operators,
and all operators have "undefined” status. All rewrite rules are turned
back into equations. Note that this preserves the equational theory
defined by the rewrite rules and equations in the system. See also the
CLEAR command.

Adds precedence information to the system. REVE uses orderings on
terms to prove the termination of the rewriting system. These orderings
are parameterized on a precedence. The precedence records information
regarding whether "f > g," "f = g," "t >= g," or "f" and "g" are unre-

121

Appendix

STATUS

CONSTRUCTORS

REVE Commands

lated, with respect to the ordering, for any two operators "f" and "g."
PRECEDENCE takes an argument, which is a list of lists of relations
among operators, where the lists are separated by commas. The permis-
sible relations are ™,” "{(," "=," "»=," and “"{=." For example, the
argument "f >= g < h, a = g" causes "f" to be greater than or equal to
"g," "h" to be greater than "g," and "a" and "g" to be equivalent in the
precedence. All operators in the lists must already appear in one of the
equations or rewrite rules in the system. All the lists taken together must
parse correctly and represent a consistent addition to the precedence, or
else nothing is done and an error message is printed. See also the
CONSTRUCTORS, STATUS, and OPERATORS commands.

Declares the status of an operator, which is used by the orderings in
REVE. . This status can be "multiset,” “left-to-right,” "right-to-left,” or
"undefined." Loosely, "muiltiset” status for "f" means that for a term "t"
= "f(...)," the ordering regards the arguments of "t" as a multiset, and the
order of the arguments is ignored. When the status is "left-to-right," the
leftmost arguments of “t" are given more weight in the ordering. Similarly,
"right-to-left" status indicates that the rightmost arguments are more im-

‘portant. If the status of "f* is "undefined,” "f" has not yet been assigned

a particular status. "Undefined” is the initial status assignment of all
operators. STATUS takes two arguments: an operator name, and a
status, which should be "left" for left-to-right, "right" for right-to-left, or -
"multiset." The operator must already appear in one of the equations or
rewrite rules in the system. See also the PRECEDENCE,
CONSTRUCTORS, and OPERATORS commands.

Adds precedence information to the system. REVE uses an ordering on
terms to prove the termination of the rewriting system. This ordering on
terms is an extension of a partial ordering on operators, calied a
precedence. CONSTRUCTORS allows one to extend the precedence
relation in a particular way: it takes one argument, which is a list of
operators, and declares each of those operators to be less than or equal
to all other operators not in the list. You must declare all constructors at
the same time. It is particularly useful to deciare alil of the basic construc-
tors using this command (hence its name), since all constructors are al-
most always less than all non-constructors in any precedence that aliows ..
REVE’s ordering to prove termination. All operators declared using this
command must already appear in one of the equations or rewrite rules in
the system. See also the PRECEDENCE, STATUS, OPERATORS, and
HH-CONSTRUCTORS commands.

HH-CONSTRUCTORS

Declares Huet-Hullot constructors, which are used in inductionless induc-
tion. For inductionless induction to work properly, it must be the case that
every "ground term" (a term containing no variables) is congruent, with
respect to the equations and rewrite rules in the system, to exactly one

122

OPERATORS

CHECK

ground term consisting solely of Huet-Hullot constructors. In abstract
data type axioms, the constructors of the data type will often have this
property. (Sets are a notable exception, since "insert" and "new" are the
set constructors, and, in general, there will be many congruent ground
terms that denote a given set.) This command takes one argument, which
is a list of operators. Any operators that get declared as Huet-Hullot con-
structors also receive the treatment accorded to operators by the
CONSTRUCTORS command. All operators declared using HH-
CONSTRUCTORS must already appear in one of the equations or rewrite
ruies in the system. See also the CONSTRUCTORS command.

Displays the operator precedence and status information in the system.
For every set of operators that are equivalent in the precedence, telis
which of those operators are constructors ("(C)"), and/or have non-
undefined status ("(M)" for "multiset,” "(L)" for "left-to-right," or "(R)"
for "right-to-left"), and displays the operators to which they are greater
than or equal in the precedence. OPERATORS without any arguments
prints this information for all the operators in the system. If a list of
operators is typed on the same line as the OPERATORS command, only

" information about the relationships between these operators is listed.

Checks the operator information for certain kinds of inconsistencies. It
will tell the user if there are any sets of equivalent operators that contain
both constructors and non-constructors, or operators of both "muitiset”
and lexicographic ("left-to-right" or "right-to-left") status. This situation
must be corrected before Knuth-Bendix can be run, so REVE automati-
cally performs CHECK before running Knuth-Bendix. CHECK is not
guaranteed to catch all such inconsistencies in a single pass; only to
catch at least one if there are any.

123

 References

[Aho 72] A.V.Aho, M.R. m_ma.o M"mtmnmﬁam o

Mmu} F. mmwmw

'[Comneal P. J. Cohen, "Dk
| APP‘M m.

-[ouusmm; n.m. *am;af

| [m = N m edarings. ter.

124

References:

[Dershowitz 83a] N. Dershowitz, "Computing with Rewrite Systems," Technical Report
ATR-83(8478)-1, Aerospace Corp., El Segundo, CA, January 1983. Also in Proc. of an
NSF Workshop on the Rewrite Rule Laboratory, Sept. 6-9, 1983, General Electric
Corporate Research and Development Report No. B4GENO008, Schenectady, NY, April
1984, pp. 269-298. To appear in Information and Control. ’

[Dershowitz 83b] N. Dershowitz, "Applications of the Knuth-Bendix Completion Procedure,”
Technical Report ATR-83(8478)-2, Aerospace Corp., El Segundo, CA, May 1983.

[Dershowitz 83c] N. Dershowitz, "Waell-Founded Orderings,"' Technical Report
ATR-83(8478)-3, Aerospace Corp., El Segundo, CA, May 1983.

[Dwork 84] C. Dwork, P.C. Kanellakis, and J. C. Mitchell, "On the Sequential Nature of
Unification,” Journal of Logic Programming 1(1), 1984.

[Evans 67] T. Evans, "Products of Points — Some Simple Algebras and Their Identities,"
Amer. Math. Monthly 74, pp. 362-372, 1967.

[Fay 78] M. Fay, "First-order Unification in an Equational Theory," Proc. 4th Workshop on
. Automated Deduction, Austin, TX, February 1979, pp. 161-167. Also Master’s Thesis,
Technical Report 78-5-002, Univ. of California, Santa Cruz, May 1978.

[Forgaard 84] R. Forgaard and J. V. Guttag, "REVE: A Term Rewriting System Generator
with Failure-Resistant Knuth-Bendix," Proc. of an NSF Workshop on the Rewrite Rule
Laboratory, Sept. 6-9, 1983, General Electric Corporate Research and Development
Report No. 84GENQOS, Schenectady, NY, April 1984, pp. pp. 5-31.

[Gobel 84] R. Gobel, "A Completion Procedure for Globally Finite Term Rewriting Systems,"
Proc. of an NSF Workshop on the Rewrite Rule Laboratory, Sept. 6-9, 1983, General
Electric Corporate Research and Development Report No. 84GEN00B, Schenectady,
NY, April 1984, pp. 155-203.

[Goguen 78] J. A. Goguen and J. J. Tardo, "An Introduction to OBJ: A Language for Writing
and Testing Formal Algebraic Program Specifications," Proc. Specification of Reliable
Software, Institute of Electrical and Electronics Engineers, April 1979, pp. 170-188.

[Goguen 80] J. A.Goguen, "How to Prove Algebraic Inductive Hypotheses. Without
Induction, With Applications to the Correctness of Data Type Implementation,”
Lecture Notes in Computer Science, Vol. 87: Proc. 5th Conf. on Automated Deduction,
Les Arcs, France, Springer-Verlag, New York, July 1980, pp. 356-373.

[Goree 81] J. A. Goree, Jr., "Using Abstractions to Implement the Knuth-Bendix Completion
Procedure," Bachelor's Thesis, MIT Lab. for Computer Science, May 1981.

[Guttag 78a] J. V. Guttag and J. J. Horning, "The Algebraic Specification of Abstract Data
Types," Acta Informatica 10, pp. 27-52, 1978.

[Guttag 78b] J. V.Guttag, E.Horowitz, and D.R. Musser, "Abstract Data Types and
Software Validation," Communications of the ACM 21(12):1048-1064, December
1978.

125

References

[Guttag 83a] J. V. Guttag, D. Kapur, and D. R. Musser, "On Proving Uniform Termination
and Restricted Termination of Rewriting Systems," SIAM Journal of Computing
12(1):189-214, February 1983. Aiso as "Derived Pairs, Overlap Closures, and Rewrite

" Dominoes: New Toois for Analyzing Term Rewriting Systems,"” Lecture Notes in
Computer Science, Vol. 40: Proc. 9th EATCS Inti. Colloq. on Automata, Languages,
and Programming, Aarhus, Denmark, July 1982, pp. 300-312, and Technical Report
TR-268, MIT Lab. for Computer Science, December 1881.

[Guttag 83b] J. V.Guttag and J.J. Horning, "Preliminary Report on The Larch Shared
Language,” Technical Report TR-307, MIT Lab. for Computer Science, October 1883.
Also Technical Report CSL-83-6, Xerox Palo Alto Research Center, Palo Alto, CA,
September 1983,

[Hsiang 82] J. Hsiang, "Topics in Automated Theorem Proving and Program Generation,”
Ph.D. Thesis, Univ. of lliinois, Urbana-Champaign, November 1882.

[Hsiang 83] 'J. Hsiang and N. Dershowitz, "Rewrite Methods for Clausal and Non-Clausal
Theorem Proving," Lecture Notes in Computer Science, Vol. 154: Proc. 10th EATCS
intl. Colloq. on Automata, Languages, and Programming, Barcelona, Spain, Springer-
Verlag, New York, July 1883, pp. 331-346.

[Huet 78] G. Huet and D. S. Lankford, "On the Uniform Halting Problem for Term Rewriting
Systems," Laboratory Report 283, INRIA, Le Chesnay, France, March 1978.

[Huet 80a] G. Huet and D. C. Oppen, "Equations and Rewrite Rules: A Survey," in R. Book
(Ed.), Formal Language Theory: Perspectives and Open Problems, Academic Press,
New York, 1980, pp. 349-405.

[Huet 80b] G. Huet, "Confluent Reductions: Abstract Properties and Applications to Term
Rewriting Systems," Journal of the ACM 27(4):797-821, October 1880. Preliminary
version in Proc. 18th IEEE Symp. on Foundations of Computer Science, Providence,
Ri, October 1977, pp. 30-45.

[Huet 81] G. Huet, "A Complete Proof of Correctness of the Knuth-Bendix Completion
Algorithm," Journal of Computer and System Sciences 23(1):11-21, August 1981.

[Huet 82] G. Huet and J.-M. Hullot, "Proofs by Induction in Equational Theories with
Constructors,” Journal of the ACM 25, pp. 239-266, 1982. Preliminary version in Proc.
21st IEEE Symp. on Foundations of Computer Science, L.os Angeles, CA, Octaber
1880, pp. 96-107.

[Hutlot 80a] J.-M. Hullot, "A Catalogue of Canonical Term Rewriting Systems,” Technical
Report CSL-113, SRI Inti. Computer Science Laboratory, Menlo Park, CA, April 1980.

[Huliot 80b] J.-M. Hullot, "Canonical Forms and Unification," Lecture Notes in Computer
Science, Vol. 87: Proc. 5th Conf. on Automated Deduction, Les Arcs, France, Springer-
Veriag, New York, July 1880, pp. 318-3M. v

[turriaga 67] R. lurriaga, "Contributions to Mechanical Mathematics," Ph.D. Thesis,
Carnegie-Melion Univ., Pittsburgh, PA, 1867.

126

References

[Jouannaud 82a] J.-P. Jouannaud, P. Lescanne, and F. Reinig, "Recursive Decompaosition
Ordering." Proc. 2nd IFIP Workshop on Formal Description of Programming Cancepts,
Garmisch-Partenkirchen, W. Germany, June 1982. Also in "Recursive Decomposition
Ordering and Multiset Orderings,” Technical Memo TM-219, MIT Lab. for Computer
Science, June 1982.

[Jouannaud 82b] J.-P. Jouannaud and P.Lescanne, "On Multiset Ordering,” Information
Processing Letters 18(2), 1982. Also in J.-P. Jouannaud, P. Lescanne, and F. Reinig,
"Recursive Decomposition Ordering and Multiset Ordanngs. Techmcal Memo
TM-219, MIT Lab. for Computer Science, June 1982,

[Jouannaud 83] J.-P. Jouannaud, "Church-Rosser Computations with Equational Term
Rewriting Systems,” Technical Report, Centre de Recherche en Informatique de
Nancy, Vandoeuvre-iés-Nancy, France, January 1983. Submitted to Journal/ of the
ACM.

[Jouannaud 84] J.-P. Jouannaud and H. Kirchner, "Compiletion of a Set of Rules Modulo a
Set of Equations,” Technical Note, SR! intl. Computer Science Laboratory, Menio
Park, CA, April 1884, Preliminary version in Proc. 11th ACM Symp. on Principles of
Programming Languages, Salt Lake City, UT, January 1984. Also in Proc. of an NSF
Workshaop on the Rewrite Rule Laboratory, Sept. 6-9, 1983, Generai Electric Corporate
Research and Development Report No. B4GEN0OS, Schenectady, NY, April 1984, pp.
207-228. Submitted to SIAM Journal of Computing.

[Kamin 80] S. Kamin and J.-J. Lévy, "Attempts for Generalising the Recursive Path
Orderings,” Dept. of Computer Science, Univ. of lilinois, Urbana-Champaign, February
1980. Unpublished manuscript.

[Kapur 84a] D. Kapur and G. Sivakumar, “Experiments with and Architecture of RRL, A
Rewrite Rule Laboratory,” Proc. of an NSF Workshop on the Rewrite Rule Laboratory,
Sept. 6-9, 1983, General Electric Corporate Research and Development Report No.
84GENQQS8, Schenectady, NY, April 1984, pp. 33-58.

[Kapur 84b] D. Kapur and D. R. Musser, "Proof by Consistency,” Report GECRD-84-083,
General Electric Corporate Research and Development, Schenectady, NY, February
1984. Also in Proc. of an' NSF Workshop on the Rewrite Rule Laboratory, Sept. 6-9,
1983, GeneralElectricComorauRm&mdMopmmReponNo 84GENO0OS,
Schenectady, NY, April 1984, pp. 245-2887.

[Knuth 70] D. E. Knuth and P. B. Bendix, "Simple Word Problems in Universal Algebras,” in
J. Leech (Ed.), Computanonal Problems in Abstract Algebra, Pergamon, Oxford, 1970,
pp. 263-297.

[Kowalski 74] R. A. Kowalski, "Predicate Logic as a Programming Language,” Proc. IFIP-74
Congress, North-Holland, 1974, pp. 569-574.

[Kownacki 84] R. W. Kownacki, "Semantic Checking of Formal Specifications," Master's
Thesis, MIT Lab. for Computer Science, June 1984.

127

References

[Lankford 75a] D. S. Lankford, "Canonical Algebraic Simplification in Computational Logic,"
Technical Report ATP-25, Automatic Theorem Proving Prmect Univ. of Texas, Austin,
May 1975.

[Lankford 75b] D. S.Lankford, "Canonical Inference," Technical Report ATP-32,
Mathematics Dept., Univ. of Texas, Austin, December 1975.

[Lankford 79a] D. S.Lankford, "On Proving Term Rewriting Systems are Noetherian,”
Technical Report MTP-3, Mathematics Dept., Louisiana Tech. Univ., May 1978.

[Lankford 79b] D. S.Lankford and A.M. Ballantyne, "The Refutation Completeness of
Blocked Permutative Narrowing and Resolution," Proc. 4th Workshop on Automated
Deduction, Austin, TX, February 1979, pp. 53-58. _

[Lankford 81] D. S. Lankford, "A Simple Explanation of Inductionless Induction,” Technical
Report MTP-14, Mathematics Dept., Louisiana Tech. Univ., August 1881.

[Lescanne 83a] P. Lescanne, "Computer Experiments with the REVE Term Rewriting
System Generator," Proc. 10th ACM Symp. on Principles of Programming Languagas,
Austin, TX, January 1983, pp. 99-108.

[Lescanne 83b] .P. Lescanne, "Some Properties of Decomposition Ordering. A
Simplification Ordering to Prove Termination of Rewriting Systems," RA/RO.
Informatique Theorique/Theorstical Informatics 16, pp. 331-347, 1983.

[Lescanne 84] P. Lescanne, "Uniform Termination of Term Rewriting Systems: Recursive
Decomposition Ordering with Status,” Proc. of 6th Colloq. on Trees in Algebra and,
Programming, Bordeaux, France, Cambridge Univ. Press, March 1884. Also as "How
to Prove Termination? An Approach to the implementation of a new Recursive’
Decomposition Ordering,” Proc. of an NSF Workshop on the Rewrite Rule Laboratory;’
Sept. 6-9, 1983, General Electric Corporate Research and Development Report No
84GENO08, Schenectady, NY, April 1984, pp. 109-121.

[Lipton 77] R. J. Lipton and L. Snyder, "On the Halting of Tree Replacement Systems,” Proc.
Conl. on Theoretical Computer Science, Univ. of Waterloo, Waterioo, Ontario, A.uqust
1977, pp. 43-46. “

[Liskov81] B. Liskov, R. Atkinson, T. Bloom, E. Moss, J. C. Schatfert, R. Scheifler, A. Snyder,
Lecture Notes in Computer Science, Vol. 114: CLU Reference Manual, Sprinqer-
Verlag, New York, 1981.

[Manna 70] Z. Manna and S. Ness, "On the Termination of Markov Algorithms,” Proc. 3rd
Hawaii Intl. Conf. on System Sc:ences Honolulu, Hi, January 1970, pp. 788-782. g

[Martelli 82] A. Martelli and U.Montanari, "An Efficient Unification Algorithm," ACM’
Transactions on Programming Languages and Systems 4(2):258-282, April 1882.

[Musser 80a] D. R. Musser, "Abstract Data Type Specification in the Affirm System," IEEE
Transactions on Software Engineermg 6(1):24-32, January 1880.

128

References

[Musser 80b] D. R. Musser, "On Proving Inductive Properties of Abstract Data Types," Proc.
7th ACM Symp. on Principles of Programming Languages, Las Vegas, NV, January
1980, pp. 154-162.

[Musser 84] D. R. Musser, "The L Programming Language Preliminary Reference Manual,"
Proc. of an NSF Workshop on the Rewrite Rule Laboratory, Sept. 6-9, 1983, General
Electric Corporate Research and Development Report No. 84GEN008, Schenectady,
NY, April 1984, pp. 57-72.

[Newman 42] M. H. A. Newman, "On Theories With a Combinatorial Definition of
'Equivalence’,” Annals of Mathematics 43(2):223-243, 1942.

[Paterson 78] M. S. Paterson"and M. N. Wegman, "Linear Unification," Journal of Computer
and System Sciences 16, pp. 158-167, 1978.

[Peterson 81] G. E.Peterson and M. E. Stickel, "Complete Sets of Reductions for Some
Equational Theories," Journal of the ACM 28(2):233-264, April 1881. -

[Plaisted 78a] D. A. Plaisted, "Well-Founded Orderings for Proving Termination of Systems
of Rewrite Rules,” Report R-78-932, Dept. of Computer Science, Univ. of lllinois,
Urbana-Champasgn July 1978.

[Plaisted 78b] D. A. Plaisted, "A Recursively Defined Ordering for Proving Termination of
Term Rewriting Systems,” Report R-78-943, Dept. of Computer Science, Univ. of
lilinois, Urbana-Champaign, September 1978. :

[Plaisted 83] D. A.Plaisted, private communication, September 1883.

[Remy 84] J. L. Remy and H. Zhang, "REVEUR 4: A System for Validating Conditional
Algebraic Specifications of Parameterized Abstract Data Types,” Proc. 2nd European
Conterence on Artificial Intelligence, Pisa, italy, September 1984. (To appear.) :

[Remy 85] J. L. Remy and H. Zhang, "REVEUR 4: A System to proceed Experiments on
Conditional Term Rewriting Systems," January 1985. Unpublished manuscript.

[Robinson 65] J. A. Robinson, "A Machine-Oriented Logic Based on the Resolution.-
Principle,” Journal of the ACM 12(1):23-41, January 1965.

[Robinson 71] J. A.Robinson, "Computational Logic The Unification Computation,” in A
B. Meltzer and D. Michie (Eds.), Machine intelligence, Vol. 6, Edinburgh Univ. Press,.
Edinburgh, Scotland, 1971, pp. 63-72. _

[Tarski 51] A. Tarski, A Decision Method for Elementary Algebra and Geometry, University of
California Press, Berkeley, CA, 1851.

[Thiel 84] J.-J. Thiel, "A New Completeness Test," Proc. of an NSF Workshop.on the Rewrite
Rule Laboratory, Sept. 6-9, 1983, General Electric Corporate Research and
Development Report No. 84GEND08, Schenectady, NY, April 1884, pp. 289-300.

[Yelick 84] K. A.Yelick, "A Generalized Approach to Equational Unification," Master's
Thesis, MIT Lab. for Computer Science, 1884. (To appear.)

128

References

[Zachary 83] J. L.Zachary, "A Syntax-Directed Tool for Constructing Specifications,"
Master’s Thesis, MIT Lab. for Computer Science, March 1983.

130

