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Towards a Problem Solving System for Molecular Genetics 

by 

Phyllis A. Koton 

ABSTRACT. 

This paper describes a program called GENEX that reasons about the behavior 
of bacterial operons. It is the first step towards a generalized system that will 
reason about genetic control mechanisms. The system is easily extensible a.nd able 
to produce detailed explanations without relying on canned text. Problems in 
molecular genetics are complicated by uncertainty introduced when reasoning about 
conformations. GENEX can reduce the number of possible solutions that must be 
verified by formula.ting likely models from the behavior of the system it is examining. 
Future work is outlined that will extend the program presented here by improving 
the reasoning mechanisms, utilizing several AI methods. 
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Chapter 1 

Introduction 

Humans are limited in their ability to manage complex collections of information. 
For example, the field of molecular genetics is advancing so rapidly that it is be
coming difficult for any one researcher to assimilate all the new information being 
reported. Every month, over 500 new papers are published in the leading journals 
of the field. Artificial intelligence techniques can provide a framework for organizing 
and managing this information. In addition, expert syst~ms technology allows us 
to model the behavior of the expert in using and manipulating this data. 

These techniques could be used to build an intelligent knowledge base for the 
domain of molecular genetics. The knowledge base would be a record of the current 
knowledge in the field. It could be used by molecular biologists to interpret exper
imental data and to propose hypotheses for unexplained phenomena 1• By saying 
that the system will "propose a hypothesis," I mean proposing some mechanism to 
explain an observation or set of observations. 

The system would not be "smarter" than a molecular biologist, but it would 
be extremely methodical and consistent in applying the information it has. The 
same cannot always be said of human experts. By thorough examination of its 
knowledge base, the system may be able to suggest possibilities that the researcher 
has overlooked. 

This paper describes a program called GENEX II that reasons about the be
havior of bacterial operons. It is the first step towards a more generalized system 
that reasons about genetic control mechanisms. 

G ENEX II models the <?Peron on what I term a micro level: it reasons about the 
behavior of the operon over one cycle (or at most, a few cycles) of replication, tran
scription, and translation. It does not do a macro-level simulation of the operon, i.e. 
it does not model the operon's behavior over an extended period of repeated cycles. 

1 Another use would be retrieving information relevant to their research. 
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While the ability to do macro reasoning is dearly important for some problems, it 
is not necessary for the types of problems that GENEX II was intended to so.Ive. 

GENEX II takes as input a description of an operon (real or imaginary) and 
information on whether or not the genes of that operon are expressed, then attempts 
to explain the observed behavior of the operon. The specificity of the result is 
dependent on how much information the program is given as input. If GENEX II is 
told only that the genes of an operon are not expressed, it will suggest every possible 
reason why the end product is not made, consistent with the information about the 
operon it has. If given the nucleotide sequence of the operon and the location 
and nature of any mutations, it can give a highly specific assessment of the cause 
of the operon 's behavior. In order to reduce the number of possible explanations 
that the system must examine (which could number in the thousands), GENEX 

II first reduces the space of possible solutions by determining likely models of the 
operon's behavior using the observed behavior. It then constrains the explanations 
it considers to those that fit the likely model. 

GENEX II represents an initial attempt at reasoning about genetic control sys
tems by computer. An earlier version, GENEX I, was is described here and in (Ko
ton, 1983). GENEX I performed well on test questions and demonstrated that 
such a system is feasible. However, it encoded the domain knowledge in highly
compiled rules, which limited the types of problems it could solve and made it 

( 

difficult to produce explanations or extend the knowledge base. The GENEX II 
system has a more detailed representation of the domain knowledge and a different 
reasoning method which eliminates _many of the problems of the previous system. 
Further work is outlined which will extend the program presented here by improving 
the reasoning mechanisms, utilizing a number of AI methods. 
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Chapter 2 

A Brief Overview of DNA 
Replication and Protein Synthesis 

The hereditary pr~perties of all cells are controlled by structures known as genes, 
whose principal component is deoxyribonucleic acid (DNA). Each protein produced 
by a cell is coded for by a gene specific for that protein. A protein is simply a chain 
of amino acids> and a gene carries the information that determines the order of the 
amino acids. 

The DNA consists of two nucleotide chains which form a double helix. There are 
four main nucleotides: adenine (A), guanine (G), cytosine (C), and thymine (T). 
The two chains are linked together by hydrogen bonds between the pairs of bases. 
Adenine is always paired with thymine and cytosine is always paired with guanine. 
Thus, there is a complementary relationship between the nucleotide sequences of 
the two chains. During DNA replication, the two strands partially unravel, and 
each single strand serves as the template for the formation of its complement. DNA 
polymerase,· the enzyme which links individual nucleotides together into a linear 
chain, binds to the single strands and promotes this reaction. 

All genetic information is carried in the sequence of the four nucleotides that 
make up the gene. The average gene contains about 1000 nucleotide pairs. A group 
of three adjacent nucleotides codes for an amino acid. The relationship between 
nucleotide triplets and amino acids is termed the genetic code. Mutations involve 
changes in the nucleotide sequence of the gene; this may result in a different amino 
acid sequence and therefore a different protein being produced. 

DNA is not the direct template for amino acid synthesis. Instead, the sequence 
information from DNA is transferred into molecules of ribonucleic acid (RNA) by 
the enzyme RNA polymerase. This process is known as transcription. The rela
tionship between DNA, RNA, and protein is expressed by the central dogma shown 
in figure 2.1, which summarizes the transfer of genetic infonnation. 
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RNA protein 

Figure 2.1: the central dogma. DNA serves as the template for its own replication. 
RNA molecules are made on DNA templates, and all protein sequences are made 
on messenger RNA (mRNA) templates. 

Messenger RNA (mRNA) is a single stranded molecule of RNA whose sequence 
is identical to one strand of the DNA duplex from which it is made and complemen
tary to the other 1 . The process by which mRNA directs the formation of proteins 
is called translation, and also involves ribosomes and transfer RNA (tRNA). In 
prokaryotes, 2 translation begins as soon as a segment of mRNA has been synthe
sized, while transcription of the rest of the gene is still underway. During translation, 
ribosomes, which are particles mad~ up of ribosomal RNA (rRNA) and proteins, 
bind to the transcript and move across it, ''reading" the nucleotide triplets. For each 
nucleotide triplet (called a codon) in the mRNA, there is a corresponding comple
mentary triplet (an anticodon) present in a particular tRNA. Each tRNA is capable 
of binding only one specific amino acid and also is capable of binding to only one 
codon on the mRNA template. Protein synthesis occurs in the ribosome, where the 
formation of bonds between the amino acids assembled by the tRNA is catalyzed, 
forming the polypeptide chain. 

The sequence of nucleotides or amino acids that make up a molecule is known 
as the primary structure of a molecule. In its native state, a protein tends to 
fold into a three-dimensional configuration that maximizes the number of favorable 
interactions between the protein and its environment. The 3-D configuration of a 
molecule is called its conformation. It is determined by the primary structure of 
the molecule, however the specific relationship between sequence and conformation 
is not known. Mutations, which change the primary structure of a molecule, can 
change the conformation of the molecule, which may result in a change in the 
behavior of the molecule. 

1except that the nucleotide thymine in DNA is replace by the nucleotide uracil in RNA. 
2simple on~celled organisms which do not have nuclei, e.g. bacteria. As compared to eukaryotea, 
organisms with cells that have nuclei, e.g. yeast, man. 
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Chapter 3 

Control of Expression of Bacterial 
Operons 

Different proteins ~e produced in different amounts within a given cell. Some pro
teins, for example those which are involved in synthesizing nucleotides, are needed 
in large amounts. Other proteins are needed· in much smaller amounts. Cellular 
mechanisms exist to selectively synthesize those proteins that are needed in large 
amounts: Similarly, not every protein that the organism can make is needed all the 
time. For instance, the proteins that digest an energy source such as lactose are 
useless in the absence of lactose. Organisms have therefore evolved mechanisms to 
regulate the amount of protein made in response to differing environmental. condi
tions. 

The amount of a given protein produced by a cell can be expressed as follows: 

amt of protein =(amt of protein made) - (amt of protein degraded) 
amt of protein made = K x amt of meBBage, K > 1 
amt of message =(amt of message made) - (amt of message degraded) 

Many of the mechanisms for controlling the amount of protein and :message 
made and degraded are known, and these can be examined systematically. 

Most known bacterial proteins, once made, are relatively stable. Differences in 
the amount of protein present are most likely related to the amount of protein made 
rather than the amount degraded 1• Control of the amount of protein made can 
be divided into transcriptional control and translational control. The amount of 
protein which is degraded is governed by pod-translational control. 

1Watson, p. 382. Note, however, that only ·about 10% of the E. Coli genome has been defined, 
and it remains possible that mechanisms involving differential stability of proteins may play an 
important regulatory role for the remaining 90% of the gene products. 
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In bacteria, most control of gene expression is effected at the transcriptional 
level. Consequently, GENEX concentrates on transcriptional control. 

3.1 Control of Transcription 

Synthesis of the mRNA message of a gene or set of genes is regulated by signals 
encoded in nucleotide sequences in the DNA. Sequences called promoters specify 
start sites for the transcription of mRNA. Terminator sequences specify transcrip
tion stop sites. The sequences of specific promoters (and terminators) can differ 
among organisms, and from gene to gene in the same organism, but there are ho
mologies among the known sequences2• Some sequences interact more effectively 
with RNA polymerase in their roles as promoter (or terminator). Thus regulation 
of transcription can occur by varying the efficiency with which polymerase interacts 
with these sites. 

Another form of transcriptional control, termed attenuation, is exerted dur
ing the elongation phase of transcription. Attenuation refers to the regulation of 
whether or not a mRNA molecule that has been initiated is transcribed to comple
tion. This is also dependent on the DNA sequence. 

3.1.1 Control of Initiation 

The initial interaction of RNA polymerase with a specific region of DNA is known 
as initiation. If all regions of DNA were equally attractive to RNA polymerase, 
transcription would be able to initiate anywhere along the strand, irrespective of 
gene boundaries. This would result in a large number of "nonsense" mRNAs3 being 
produced and would be very wasteful of the cell's energy. Therefore cells have 
developed mechanisms to ensure that initiation only occurs at specific sites along 
the DNA strand. 

Characteristics of the promoter 

Initiation occurs at the promoter. It is thought to consist of three steps: recog
nition of the promoter site by RNA polymerase; "firm binding" of the polymerase 
to the DNA; and the actual initiation of transcription. By convention, the nu
cleotide at which transcription. begins is numbered 1. The promoter region consists 

2See Rosenberg and Court. 

3i.e. those which do not code for any protein. 
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of approximately 40 nucleotides preceding the transcription start site (i.e. position 
-40).4 

A region located about 35 nucleotides upstream of the transcription start site is 
thought to function as the RNA polymerase recognition site. It consists of the highly 
conserved sequence TTG followed by the slightly less conserved sequence ACA 5• In 
some systems it has been shown that the efficiency of the promoter correlates with 
how well the -35 region matches the prototype hexanucleotide TTGACA 6• The 
sequences surrounding the -35 region do not show definite homology but tend to be 
AT-rich. Since AT pairs are held together by only two phosphodiester bonds, while 
GC pairs contain three bonds, it is possible that local melting also plays a role, 
allowing the polymerase to unwind the DNA after it has recognized the TTGACA 
sequence. 

The RNA firm binding site is located in a region approximately ten nucleotides 
upstream of the transcription start site. It is a seven base pair sequence homologous 
to the sequence TATAATG. The T residue in the sixth position is invariant among 
known promoters and it is likely that this nucleotide plays a necessary role in the 
positioning of RNA polymerase on the DNA strand. Again, promoter efficiency 
appears to correlate with how well the sequence matches the prototype 7• 

Transcription of mRNA initiates at a position six to nine base pairs downstream 
of the highly conserved T residue in the -10 ·region. The start nucleotide is usually 
an A or a G. However, it is impossible to locate the exact start site without in vivo 
or in vitro data. 

A gene whose initiation is normally only controlled by a promoter is said to be 
constitutive. Its end product is produced in fixed amounts, regardless of environ
mental conditions. There are other genes whose synthesis can be adapted to refiect 
growth conditions by virtue of the interaction of specific regulatory proteins with a 
sequence adjacent to the genes known as an operator. A set of genes transcribed 
from a single promoter, and whose joint function is controlled by a.n operator and 
a regulatory protein is known as an operon (see figure 3.1). 

Role of the Regulatory Protein 

A class of proteins called regulatory proteins is involved in the control of oper
ons. The genes which code for ·regulatory proteins are called regulatory genes. All 

'If the CAP site is included as part of the promoter, then the region extends to -80. 
5 "conserved" refers to presence across species lines, i.e. conserved in evolution. It is a general 
molecular biological principle that conserved sequences are functionally .important. 

6Rosenberg and Court, p. 325. 

7Rosenberg and Court, p. 330. 
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Figure 3.1: a typical operon. i represents the regulatory gene; p, the promoter; o, 
the operator; and x, y and z, the structural genes of the operon. Relative sfzes of 
the parts are not drawn to scale. 

known regulatory proteins are either produced constitutively or regulate their own 
production8 • · 

Regulatory proteins in bacteria can exhibit both positive and negative control 
mechanisms. In positive control {PC) systems, the presence of the regulatory pro
tein (the activator) is necessary for the expression of the operon. In negative control 
(NC) systems, the operon is expressed unless it is inhibited by the presence of the 
regulatory protein .(the repressor). Most known bacterial operons are NC. Some 
operons are under both positive and negative control. 

Regulatory proteins by themselves are not always functional. If they were, the 
operons that they control would be permanently on or off. Instead, the activity of a 
regulatory protein is dependent on its combining with-a specific small molecule. The 
binding of the small molecule to the regulatory protein changes the conformation 
of the protein, thus affecting its ability to bind to the operator (see below). 

Regulatory proteins are either inducible or repressible. If the binding -of the 
small molecule to the regulatory protein turns the operon on, then the system is 
inducible (the small molecule is called an inducer). If the binding of the small 
molecule turns the operon off, the system is repressible and the small molecule is 
called a corepressor. 

Certain general rules determine whether a system is inducible or repressible and 
what the small molecule is likely to be. An operon whose genes code for enzymes 
to digest a certain substance is likely to be inducible by that substance, since the 
digestive enzymes are needed only when the substance is present. On the other 
hand, an operon whose ge~es code for enzymes to synthesize a certain product is 
likely to be repressed by that product, since if the product is present, there is no 
need to synthesize it. 

The class of operons known as glucose sensitive operons operate under both 
positive and negative control. Each of these operons controls the breakdown of a 
specific sugar. In the presence of glucose, none of the glucose sensitive operon's 

8 A possible explanation for this is that if all regulatory genes were themselves regulated by other 
regulatory proteins, it would require an infinite chain of control. 
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proteins are synthesized, because the catabolism (breakdown) of glucose lowers 
the amount of cyclic AMP ( cAMP) within the cell. cAMP is necessary for the 
transcription of all glucose sensitive operons. It works by binding the catabolite 
activator protein {CAP}, which then binds to a specific site on DNA (the CAP 
site). This acts to increase the rate at which RNA polymerase binds to the promoter. 
Thus the CAP-cAMP complex is the positive control element for all glucose sensitive 
operons. 

The Role of the Operator 

All regulatory proteins act by binding to DNA at specific sites called operators. The 
operator region is located at or near the transcription start site, slightly overlapping 
the promoter. The operator sequence must be at least 10-12 nucleotides in length 
to avoid the possibility of the same sequence randomly occurring elsewhere on the 
chromosome. 

The mechanism by which an active repressor molecule inhibits expression of 
its associated operon is well understood for several operons. Since the operator 
region includes the transcription start site, the presence of a bound repressor at the 
operator physically blocks the binding of RNA polymerase. to the DNA strand. The 
action of activator molecules is not as well understood. It is thought that they act 
by somehow "opening up" the DNA helix for the polymerase. 

There are· thus four IlfOdels for operon control: PC-inducible, PC-repressible, 
NC-inducible, and NC-repressible. How the operon reacts to its external environ
ment is dependent on which one of these four types it is. 

3.1.2 Control of Elongation 

Transcription termination sites can occur early within, as well as at the end of, an 
operon. These internal termination sites are known as attenuators. In bacterial 
systems, attenuators have been found in operons whose end products are involved 
in the syll.thesis of amino acids. Attenuators are located in a leader region between 
the transcription start site and the structural genes of the operon. Attenuators 
regulate gene expression by controlling transcription of the operon downstream 
from the attenuator. The mechanism by which this occurs takes advantage of the 
fact that in prokaryotic systems, translation of the initial segment of the peptide 
begins while the later regions are being transcribed. 

Analysis of the sequence of the leader region of several operons revealed that 
the region contains a potential transcription start site and termination· site. The 
termination site is preceded by a segment rich in the amino acid that is the end 
product of the corresponding biosynthetic pathway. In a bacterial cell lacking this. 
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amino acid, the ribosome translating the leader sequence becomes stalled at these 
amino acid codons (due to a lack of charged tRNA molecules) 0• The mRNA 
sequence within the leader region is capable of forming two alternative secondary 
structures. One of these structures is more stable (and thus thermodynamically 
favored) when ribosomes have stalled in the leader region. This structure does 
not contain a functional transcription termination signal. The other secondary 
structure contains a function transcription terminator sequence. Since transcription 
and translation proceed cotemporally in prokaryotic systems, it is thought that the 
secondary structure in the stalled message directs the RNA polymerase to continue 
transcribing the operon. Thus transcription of the structural genes of the operon 
can be completed, leading to the synthesis of the deficient amino acid. 

3.1.3 Control of Termination 

Transcription termination occurs at the end of genes and operons and is necessary 
to prevent transcription in one part of the chromosome from reading through to 
other genes. 

Comparison of transcription termination site sequences reveals several common 
features 10• All contain inverted repeat sequences (palindromes). These sequences 
have the ability to form stable hairpin-loop ·structures by base-pairing between nu
cleotides of the same strand of DNA or RNA, and might serve for steric recognition. 
The termination site is preceded by a GC-rich region of variable length (from 3-
11 consecutive GC pairs). Since GC bonds are more stable than AT bonds, this 
segment may assist termination by hampering the movement of RNA polymerase 
along the template. Finally, the termination sequences end in a series of four to 
eight T residues. These may enhance release of the transcript. 

As discussed· above, most of the control of gene expression in prokaryotes ex
ists at the transcriptional level. Other levels of control are possible, however. The 
amount of gene product made can be affected by the stability of the message (post
transcriptional controQ, by mutations which change the reading of the message 
(translational controQ, and by stability of the final product (post-translational con
troQ. 

Mutations which affect the. stability of the message can only be hypothesized, 
since the exact relationship between. conformation and stability is not known. Sim
ilarly, the steady-state level of a particular protein can be infl-q.enced by post
translational modification (e.g. proteolytic cleavage) which aff~cts its stability. 

0tRNA molecules are said to be charged if they are bound to their corresponding amino acid, 
otherwise they a.re said to be uncharged. 

10 All the termination data is from Rosenberg and Court. 
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However, not enough is currently known about these areas for GENEX to make 
any significant use of them. 

3. 2 Control of Translation 

The amount of protein made from a given message could be influenced by the rel
ative affinity of ribosomes for that message compared with other cellular messages. 
Thus, a mutation in the ribosome binding site could theoretically alter gene expres
sion by increasing or decreasing the rate at which ribosomes attach to and begin 
translation of .a specific message. The most extreme example of this is an mRNA 
molecule from which the ribosome binding site has been deleted-such a message 
would almost never be translated into protein. 

Each codon in an mRNA molec;ule codes for either an amino acid or chain termi
nation. Of the 64 possible three-letter codons, three code for chain termination, and 
61 code for am.ino acids (of which there are only 20). Thus several different codons 
may correspond to· the same amino acid. However, a mutation which changes even 
a single nucleotide of a message may change the protein made from that message. 
Ribosomes can_ only initiate translation at a specific sequence, AUG 11 • Mutations 

- which alter the nucleotide sequence of the translate~ region of the gene can result 
in the wrong protein being made (missense mutations), or, if the mutation replaces 
a codon for an amino acid with a termination codon, in no protein being made 
{nonsense mutations). 

11Much less frequently, GUG. 
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Chapter 4 

The Genex I Program 

The following represents a brief description of the GENEX I program. Readers 
interested in further implementational details are referred to the appendix. 

4.1 Overview 

The GENEX I program represented an operon as consisting of a promoter, operator, 
possible leader sequence, structural genes, and an associated regulatory gene. The 
operator was assumed to be located spatially between the promoter and the struc
tural genes. The promoter included the CAP site in glucose-sensitive operons, but 
other positive regulators were assumed to function at the operator. The regulatory 
gene was represented as having a promoter but no other control sites. There was 
no constraint on the location of the regulatory gene relative to the operon. 

To use the GENEX I program, the user entered the name of the operon to be 
examined, the nature of the protein for which it codes-whether it is involved in 
an anabolic or catabolic pathway, and what its substrates or end products are
and whether or not the genes of the operon are expressed. Additional information 
could als·o be given to assist the program in determining a model for the operon 's 
behavior. This included the nucleotide sequence of all or part of the operon, the 
existence and location of any mutations in the operon or its regulatory gene, and 
the phenotype of any known diploids. 

The more information that was given to the program initially, the more precise 
its solution. Told only that the operon's genes are or are not expresse~, it would 
suggest every model consi~tent with the protein product of the operon. Given the 
nucleotide sequence of the operon, it could give a solution as detailed as pinpointing 
the exact nucleotide mutation which was the likely cause of the behavior. 

The "expert knowledge" in the GENEX I program consisted of the information 
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in the preceding chapter encoded as 62 heuristic rules relating observed phenomena 
to possible causes. In each rule, the information was highly compiled and generally 
incorporated several inference steps. 

The rules were grouped into procedures based on their categorization as being 
relative to transcriptional or translational control mechanisms, and further sub
divided according to the location of the mutation which might be affecting the 
expression of the operon. Within these procedures, the information was further 
divided into two types: factors which enhance gene expression and factors which 
inhibit it. The procedures, which resembled decision trees, were then systematically 
applied to the operon given as input. 

The How of control in the original GENEX I program generally followed the 
protocol for determining the control of gene expression in bacterial operons shown 
in figure 4.1. 

If there was a possibility that some aspect of the regulatory gene was causing 
the observed behavior, the program would call itself recursively using the regulatory 
gene as its input, since it too can be subject to transcriptional and translational 
control (such as promoter or structural mutations). The program would ignore 
procedures that do not apply to regulatory genes, for instance, those that look for 

. positive and negative control structures 1• 

GENEX I could terminate execution und.er two circumstances: when it had gen
erated all possible solutions, or when it had found a solution that was an extremely 
likely cause of the observed behavior. 

The primary data structure in the GENEX I program was a two-element list 
whose first element was an atom representing the operon being examined and whose 
second element represented the product of the operon (i.e. the protein coded for 
by the structural genes). Properties of the operon and gene product were attached 
to the property iist of the corresponding element. This representation was chosen 
purely for the sake of expediency. 

As an example of the way that the original system represented and used the 
domain information, consider the regulatory protein. GENEX I used the rule that 
anabolic processes are repressible and catabolic processes are inducible to deter
mine the interaction of small molecules with the regulatory protein. There. were 
also procedures to determine if any of the substances known to be present are a 
potential inducer (or corepressor) Qf the operon. Finally, there were rules which 
explained the relationship between the presence or absence of an inducer (or core
pressor) and protein synthesis, shown in the FIND-INDUCERS procedure in figure 
4.2. As can be seen in the above program, GENEX I could analyze the operon and -

1Since, as mentioned above, regulatory genes are not thought to be themselves regulated by re
pressors or activators. 
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is the operon 's no is the proper yes is the gene 
product made? transcript made? translated? 

yes yes 

no no · · -

yes 
decreased amount? 

stability of message 

no 
nonsense or 

missense mutation? 

inducer absent? no post-translational 

corepressor present? 
!---, control? 

yes 

is transcription is attenuation off?. 

regulatory gene initiated? (no= QED) 

mutation? yes 
operator mutation? no cleavage? 

mutation eliminating message degraded 
need for positive as it's made? 
control element? unstable transcript? 

(yes= QED) 

no misfunction at RN A yes mutation? 

pol recognition site? site blocked? 
distant effect on 

no secondary structure? 

increased affi.ni ty for 
mutation? ribosomes? misfunction at yes 

distant effect on superpromoter? promoter? 
secondary structure? 

no 

inducer present? yes 
operator mutation? 

corepressor absent? regulatory gene 
(no= QED) mutation? 

Figure 4.1: Protocol for modeling gene control in bacterial operons. 
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(defun find-inducers (x) 
(cond ((null (get (car x) 'inducer)) 

;we have to figure out the inducer 
(let ((inducer 

(do ((possible-inducers things-present 
(cdr possible-inducers))) 

((null possible-inducers) nil) 
(cond ((inducer? x (car possible-inducers)) 

(return (car possible-inducers))))))) 
(cond ((and (null inducer)(not protein-made?)) 
;it seems that nothing present is the inducer, so ... 

(format t 
11 -r.-A possibly inactive due to missing inducer" 

(car x))) 
(t (format t 

11 -Y.assuming -A is inducer for -A-Cl 
-A is active in presence of -A11 

inducer (car x) (car x) inducer))))) 
;if we get to here, we were told what the gene's inducer is. 
;first check if it's present, and if not, 
;then maybe that explains bug. 

(t (cond ((member (get (car x) 'inducer) things-present) 
(format t 11 -r.-A is active in presence of -A" 

(car x) (get (car x) 'inducer))) 
((not protein-made?) 
(format t 
n-r.-A inactive due to missing inducer ·A11 

(car x) (get (car x) 'inducer)) 
·(*throw 'exit 'qed)))))) 

Figure 4.2: the FIND-INDUCERS procedure. 
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determine whether or not it would be active, but the consequences that it reported 
were "canned." This is because GENEX I's rules contained highly-compiled knowl
edge and the program had no access to the lower-level mechanisms that justify the 
information contained in the rules. 

The GENEX I program was tested on three examples taken from the final exam 
of an MIT undergraduate genetics course. These were all the questions appropri
ate for the program (dealing with not more than one mutation, and not requiring 
calculation of quantities. See discussion below). GENEX I was not designed aiid 
tested using these questions as a guide. In order to present a true picture of the 
capabilities of the program, it was evaluated using questions that were not available 
at the time the program was designed and implemented. A representative question 
from the exam and the program's output are shown below. (Comments on the 
example are given in italics.) 

The enzyme uncine synthetase {USase) of the hypothetical bacterium 
Altacoccus profundii synthesizes the essential· amino acid uncine. When no 
uncine is present in the growth medium USase is made at a high level, 
allowing cells to grow. When uncine is ·added to the medium, however, 
very little USase is made {the cells use the added uncine to grow). 

This ·information can be represented to the program as follows. Let the operon 
be called unc. The gene coding for USaae is labeled unc-gene. 

unc 
(UNC-GENE USASE) 

This is what we the program has been told about USase: 

(plist 'usase) 
(PURPOSE SYNTHESIS END-PRODUCT UNCINE INV-PROPORTIONAL-TO (UNCINE)) 

THINGS-PRESENT is a lilt of the substances present in the medium at the time of 
interest. The substances besides uncine are acting aa red herringa. 

things-present 
(LACTOSE TRYP UNCINE ARABINOSE) 

(initialize unc) 
is UNC-GENE product made? NO 

The gene product, USaae, i8 not made in the presence of uncine. 
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is there a mutation in UNC-GENE? (yes, no, unknown) NO 
is there an unlinked mutation? (yes, no, unknown) NO 
was diploid constructed? NO 
DONE 

The program now has all the information stated in the above paragraph. 
Outline briefly, at the molecular level, two simple but different models 

that would explain why very little USASE ls made in the presence of 
uncine. In each, be sure to indicate the role of unclne. 

(genex unc) 
assuming no misfunction at UNC-GENE promoter 
is UNC-GENE a regulatory gene? HO 
assuming UNC-GENE can be repressed 
assuming UNC-GENE repressor is repressible 
assuming UNCINE is corepressor for UNC-GEHE--

UNC-GENE is inactive in presence of UHCI~E 

GENEX I has found one model for the behavior of the unc operon-that it is 
negatively controlled and corepressed by uncine. It used a rule which states that 
genes which code for biosynthetic pathways are repressible by their end-products. 

assuming no misfunction at UNC-GENE operator 
checking positive control of UNC-GENE 
assuming UNCINE is corepressor for UNC-GENE--

UNC-GENE is inactive in presence of UNCINE 
done checking positive control of UNC-GENE 

A second model has been found, that unc is positively controlled and the activator 
is inactivated by the presence of the co-repressor, uncine. 

message possibly attenuated due to presence of UNCINE 
NIL 

In fact, GENEX I has found a third model for the behavior of unc, that uncine 
acts as an attenuator on the transcription of the unc genes. It used a rule which 
states that genes which code for the synthesia of amino acids can be attenuated. 
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Certain mutants of A. profundii make USase even in the presence of 
added uncine (which can be shown to penetrate the cell as effectively 
as in the wild type). In each of your models from part A, indicate two 
different ways mutants could allow this to happen. 

In order to answer this question, GENEX I is run twice. The first time, it is 
told to assume that there is a mutation in the operon itself, the second time it is 
told to assume that the mutation is in the regulatory gene. 

First examine a potential mutation in the operon: 

(initialize unc) 
is UNC-GENE product made? YES 
in what amount? (increased or decreased) INCREASED 
is there a mutation in UNC-GENE? (yes, no, unknown) YES 
Where is it located? (promoter operator xc-region linked) LINKED 
was diploid constructed? NO 
DONE 

(genex unc) 
is UNC-GENE a regulatory gene? NO 
assuming UNC-GENE can be repressed 
assuming UNC-GENE repressor is repressible 
assuming UNCINE is corepressor for UNC-GENE--

UNC-GENE is inactive in presence of UNCINE 
possible structural mutation in UNC-GENE operator allowing activator 

to bind despite presence of corepressor 

This is one way ou.r second model could be mutated which would explain the 
observed behavior. 

mutation possibly affecting attenuator 
NIL 

GENEX I also suggests that the mutation could be affecting the attenuator region, 
consistent with its third model of how the unc operon is regulated . . 

Now for the regulatory gene mutation: 

(initialize unc) 
is UNC-GENE product made? YES 
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in what amount? (increased or decreased) INCREASED 
is there a mutation in UNC-GENE? (yes, no, unknown) NO 
is there an unlinked mutation? (yes, no, unknown) YES 
was diploid constructed? NO 
DONE 

(genex unc) 
assuming no misfunction at UNC-GENE promoter 
assuming UNC-GENE can be repressed 
assuming UNCINE is corepressor for UNC-GENE--

UNC-GENE is inactive in presence of UNCINE 
examining UNC-GENE~REGULATORY-GENE 
Is the regulatory protein made? (yes, no, unknown) UNKNOWN 
assume UNC-GENE-REGULATORY-PROTEIN is not made 

First assume that it 1s a nonsense mutation. 

operon cannot be switched off without UNC-GENE-REGULATORY-PROTEIN 

If the. repressor is not made, the operon cannot be· turned off. This is one muta
tion that may occur in our first model. 

now assuming UNC-GENE-REGULATORY-PROTEIN is made 
possible structural mutation in UNC-GENE-REGULATORY-PROTEIN 

eliminating ability to bind corepressor 
possible structural mutation in UNC-GENE-REGULATORY-PROTEIN which 

prevents it from binding to operator 
done examining UNC-GENE-REGULATORY-GENE 

These are two more possible mutations which would alter the behavior of our 
first model in a way which would explain the observation&. 

assuming no misfunction at UNC-GENE operator 
checking positive control of UNC-GENE 
assuming UNCINE is corepressor for UNC-GENE--

UNC-GENE is inactive in presence of UNCINE 
examining UNC-GENE-REGULATORY-GENE 
possible structural mutation in UNC-GENE-REGULATORY-PROTEIN 

eliminating ability to bind corepressor 
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This is a second mutation that could occur in our second model which would 
explain the observed behavior. 

done examining UNC-GENE-REGULATORY-GENE 
done checking positive control of UNC-GENE 
NIL 

In its limited domain, G ENEX I performed very well. The goal of the system 
was to give every probable model for the behavior of the operon (within the limits 
of its knowledge). For all the problems on which it was tested, it gave all the correct 
models, sometimes more than the problem called for, and did not give any incorrect 
models. In this sense, the program was considered a success. 

4.2 Limitations of the Genex I Program 

GENEX I has certain limitations which prevent it from answering all types of ques
tions even within the domain of bacterial operons. 

The program is modeled on the investigative course of human experts. However, 
this results in a poorly modularized program, because the domain knowledge is 
incorporated into the reasoning mechanism. This makes it difficult to extend or 
modify the domain knowledge, because it would requrre rewriting all the procedures 
dealing with the new or changed information. This problem is relatively simple to 
correct, by rewriting the rules and inference engine as separate entities. 

A more critical problem that GENEX I has is that its knowledge base consists 
solely of empirical associations and compiled knowledge, and the system's reasoning 
process consists of matching the right rules to the observed phenomena. Because 
the system solves a problem by matching the current situation against a set of 
predetermined situations, the set of rules must anticipate situations that may arise. 
In a small domain, it may be possible to enumerate all possible situations and write 
a rule to handle each one. 2 In a large domain, it may not be feasible to predict 
every possible occurrence. If the current situation does not match any rule, then 
the system fails. 

Take as an example the observation that GENEX I could only handle problems 
involving one mutation in the operon. Many real-world problems in molecular 
genetics require reasoning ~bout the combined effect of multiple mutations on gene 
expression .. In order to expand the system to con$ider multiple mutations, it would 
have been necessary to add a large number of rules with complicated antecedents, 

2This technique was used in Puff (Kuni, 1978). 
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each rule corresponding to each possible combination of mutation location, gene 
product production, and control model.3 These rules would no longer resemble the 
simple "rules of thumb" that the expert uses and on which the program was based. 

Another limitation of the way that the domain knowledge is represented in 
the original system is that it is implicit in the rules, and thus inaccessible. For 
example, the original version of GENEX can only give "canned" explanations of its 
conclusions. The information that GENEX has is already compiled into high-level 
rules. GENEX has a rule which states that deleting the promoter causes a decrease in 
transcription of the operon. If given a problem that included a promoter mutation 
and a decrease in gene product, G ENEX applies this rule and suggests that the 
promoter mutation caused the decrease in gene product. However, GENEX has no 
knowledge of the mechanism which makes this true, i.e. that the promoter is where 
the RNA polymerase binds, if the promoter is deleted the polymerase cannot bind, 
and if the polymerase cannot bind the operon cannot be transcribed. The details 
of how lower-level mechanisms combine to produce the more complex observed 
behavior was not included because the program could solve the problems without 
them. As a result of this, the system cannot be extended to explain its conclusions. 
The best it can do is to state which rules it applies. The rules that GENEX uses 
are not wrong, but each is a high-level compilation of a more detailed collection of 
knowledge about objects and their interactions. This lower-level information is not 
available to G ENEX for use in justifying its conclusions. 

Furthermore, because the knowledge is contained implicitly, it is inflexible. One 
piece of knowledge may be contained in any number of rules in the system, so in 
order to change that knowledge it must be changed in every nlle that uses it. Highly 
compiled rules do not permit simple, local changes which arc then reflected system
wide. For example, the original version of GENEX has an inflexible model of the 
operon. It is constrained to think of the operon as having exactly one promoter, 
operator, and regulatory gene. It cannot be presented with a problem where, for 
instance, a second promoter had been inserted into the operon. In operons having 
more than one structural gene, GENEX is constrained to deal with the genes as a 
group-it cannot reason about them as separate entities. The reason for this rigid 
model is that GENEX does not actually have or use any structure which represents 
''the operon." Instead, the repr.esentation is implicit in the procedures which reason 
about the operon, and therefore cha;.nging the way that GENEX models the operon 
requires changing most of the rules in the program. A variable mod~l of the operon, 
which could change with each invocation of the program, is impos~ible in the initial 
version of the program. 

3To see why the number of rules necessary would be so large, consider that if GENEX I had been 
given all the information nccel!Sary to solve problems involving two mutations in compiled form, 
this still would uot have allowed it to solve problems involving three mutations. 
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A final problem with the empirical "rules of thumb" used by the original GENEX 

I program is that they often contain implicit preconditions. For instance, the heuris
tic that states that "deleting the operator results in increased expression of the 
operon" contains the implicit precondition "all other things being equal." H all 
other things are not equal, the validity of the heuristic's conclusion is unknown'· 
Implicit preconditions make it difficult, if not impossible, to determine the condi
tions under which a heuristic can be applied correctly. However, explicitly stating 
every precondition may be tedious - consider having to explicitly encode ''all other 
things being equal" in a system with hundreds of components. 

G ENEX has no mechanisms for reasoning about spatial relationships, for in
stance, those between the structural genes, the promoter, and the operator. There 
are types of problems where the ability to do this kind of reasoning is important. 
For example, there is a phenomenon called the polarity effect whereby genes closer 
to the promoter are transcribed with higher efficiency. The ability to do spatial 
reasoning is essential for dealing with information about tertiary structure. 

GENEX I makes no distinction between an increase in the amount of protein 
and constitutive production of the protein (or between a decrease in the amount of 
protein made vs. no protein made at all). This is because GENEX I has no concept 
of quantity. For many problems, relative quantities of substances are not significant 
to the s.olution of the problem. However, it would be useful to be able to deal 
with gross level changes. Also, the distinction between increased and constitutive 
production (and between decreased production and none at all) is important and 
should be expressible. 

4 This is the difference between an abstractiOn and a heuristic. An abstracted rule X--+ Yhold~ 
for any z which can be abstracted to X via the abstraction relation. The same is not necessarily 
true for a heuristic. 
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Chapter 5 

The Genex II System 

The performance of the GENEX I was probably as good as it could be consider
ing the simple design of the system. There were a few additions that would have 
been easy to implement and that would have fit in with the format of the program. 
For instance, it would have been useful to have a procedure which, given a DNA 
sequence, located any hairpin loops 1• The program could then have been given 
new rules that depended on knowing the secondary structure of the DNA (such 
as those that might have been written for the conditions of transcription termina
tion). G ENEX I could also have used a procedure to determine if a sequence was 
AT- or GC-rich. Again, it could then have been given new rules which used this 
information. 

These additions could have fine-t-uned the performance of GENEX I, but would 
not have significantly increased its reasoning power. Any substantial improvements 
in the capabilities of the system required a major redesign of the program control 
structure and kn·owledge representation format. The improved version would have 
a model for each object and mechanism involved in operon control. The models 
would include such information as what the different parts of the object were, the 
role that each part plays in the functioning of the operon, how the parts interact, and 
how lower-level mechanisms combine into higher-level behavior. When presented 
with a problem, the system would pass the information through the models_ in a 
form of simulation to reach its conclusions (rather than doing a match between 
the observed phenomena and the knowledge in the system, as the original program 
did). The advantage of this model-driven approach is that the system would have 
more ''understanding" of the processes with which it deals, because more of the 
details would be captured by the program (rather than being compiled out as rules 
by the system designer, as was done in the original program). The system would 

1In fact, most commercially available DNA sequencing progiams include such a procedure, which 
is why one was not included. 
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have access to the details, so it could generate more detailed solutions, and have the 
capability to explain the reasoning behind its conclusions. Finally, since the models 
would no longer be incorporated into the reasoning mechanism, the system would 
be more easily extensible. These significant improvements were implemented in the 
GENEX II program. 

G ENEX II was designed using the performance criteria described above as its 
goal. The domain knowledge was separated from the reasoning mechanisms, the 
rules used in the original system were rewritten to capture the underlying mecli
anistic details, and a primitive explanation capability was added. GENEX II is 
currently implemented in Prolog 2• 

5.1 Representation of Objects in Genex II 

Since the domain of the system is molecular genetics, the objects that are manipu
lated by the system are those that exist inside a cell. Some of the objects that are 
represented are shown in figure 5.1. 

The representation of objects is independent of the representation of cell opera
tions and the r~asoning mechanism of the program. The representation of an object 
includes properties of the object, a description of it.s parts {which are themselves 
described) and its relationship with its environment. Part of the definition of a 
repressible regulatory protein is given in figure 5.2. For readers unfamiliar with 
Prolog, a detailed explanation of the description of a regulatory protein follows. 

The description of the regulatory protein is made up of eleven clauses. The 
clause is made up of a head and a body. The head consists of a single goal and the 
body consists of a sequence of zero or more goals 3• In the first clause shown in 
figure 5.2, "protein(X)" is the head and ''reg-protein(X)" is the body. This can be 
interpreted to mean ''to satisfy the goal protein(X), satisfy the goal reg-protein{X}," 
or, in English, "any X is a protein if X is a reg-protein." Where there is more than 
one goal with the same head clause, Prolog will attempt to satisfy each one in 
turn, until one succeeds, or they all fail. Variables in Prolog are denoted by names 
beginning with a capital letter. The scope of the variable is the clause in which it 
appears, so the variable X'in the first clause is independent of the variable named 
X in the next three clauses. 

The second and third clauses state that the activator or repressor of an operon 
is a regulatory protein, i.e. that there are two types of regulatory protein. The 

2For an introduction to the Prolog language, see Clocksin and Mellish, 1981. 
3In this example, no clause bas an empty b'ody. A clause with no body is called a unit clause and 
is written in the form P. where P is the head goal, and is interpreted to mean "P is true." 
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operon 
promoter 
operator 
terminator 
binding-site 
regulatory-site 
gene 
structural-gene 
regulatory-gene 
nucleotide 
nucleotide-sequence 
codon 
DNA 

RNA 
amino-acid 
amino-acid-sequence 
protein 
structural-protein 
regulatory-protein 
sugar 
repress or 
activator 
inducer 
corepressor 
enzyme 
polymerase 

Figure 5.1: The ohjccts rcprcsenLcd in CENEX II 
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protein(X) :- reg-protein(X). 
reg-protein(X) ·- activator(Operon,X). 
reg-protein(X) :- repressor(Operon,X). 
reg-protein(X) :- product(Reg-gene,X), 

reg-gene(Reg-gene). 
part-of (R, operator-binding-site(R)) :

reg-protein(R), normal(R). 
part-of (R, operator-binding-site(R)) :

reg-protein(R), 
assuming(part-of(R, operator-binding-site(R))). 

part-of (R, small-mol-binding-site(R)) :-
reg-protein(R), norm~l(R). 

part-of (R, small-mol-binding-site(R)) :-
reg-protein(R), 
assuming(part-of(R, small-mol-binding-site(R))). 

active(Reg_protein) :- reg_protein(Reg_protein), 
active_smmol_conform(Reg_protein). 

active(Reg_protein)d :- reg_protein(Reg_protein), 
. assuming(active_smmol_conform(Reg_protein)). 

active-smmol-conform(R) :- repressor(Op,R), 
nornial(R), 
repressible(Op), 
corepressor(Op,C), 
bindable(C,small-mol-binding-site(R)). 

Figure 5.2: Part of the description of a regulatory protein 
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fourth clause defines a regulatory protein to be the product of a regulatory gene. 
The next four clauses define the important parts of a regulatory protein: its 

operator binding site and its small molecule binding site. GENEX II assumes that 
if the regulatory gene is not mutated, then the product regulatory protein is normal 
and has all its parts. If the regulatory gene is mutated, then the goal is satisfied if 
we are currently assuming 4 that its parts are intact. 

Finally there are clauses for determining whether a regulatory protein is active, 
that is, able to bind to the operator. A normal regulatory protein is active if it 
interacts correctly with the associated small molecule ( GENEX II calls this state 
active-smmol-conform). In the case of a mutated regulatory protein, the goal is 
satisfied if we are currently assuming that active-smmol-conform is true. GENEX 

II contains twelve rules5 for determining whether a regulatory protein is in an 
active conformation. Because of space considerations, only on,e is shown in figure 
5.2 6

• This rule states that a normal repressor is in the active conformation if the 
corepressor of the operon is able to bind to the small molecule binding site of the 
repressor. 

In the G ENEX I program, an operon was predefined, and there was only an 
implicit representation of the relationship between its parts, and its interaction 
with its environment. In GENEX II, this is all explicit. For instance, the lac 
opcron would be represented as shown in ,figure 5.3 r. 

5.2 Representation of Operations in Genex II 

The system must also be able to manipulate models of the operations that can be 
performed on the objects. These operations correspond to the processes that go on 
inside the cell. The operations that the system can use to model the processes of 
a cell are ezpress, replicate, transcribe, translate, bind, and break. A future system 
might include the operations insert, react~ cut, ligate, polymerize, add-functional
group, remove-functional-group, replace-functional-group, denature, renature, and 
unwind. The addition of these operations would be very simple. 

GENEX II simulates an operation by proving that all the preconditions of that 
operation are satisfied. If they are, it asserts that any postconditions of the opera-

4 Assumptions are discussed in section 5.3.1. 

5The use of the word rule in this chapter should be interpreted as referring to a. Prolog clause, and 
should not be confused with the rules of a "rule-based system." 

6Interested readers can consult Appendix B, which contains a complete listing of the GENEX II 
code. 

7 The user does not have to enter all this information by hand. There are rules for deriving some 
of the relationships based on given information. . 
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operon(lac-operon). 

part-of(lac-operon, lac-operon-promoter). 
promoter(lac-operon-promoter). 

part-of(lac-operon, lac-operon-operator). 
operator(lac-operon-operator). 

part-of(lac-operon, lac-operon-reg-gene). 
reg-gene(lac-operon-reg-gene). 

part-of(lac-operon, b-galactosidase-gene). 
struct-gene(lac-operon, b-galactosidase-gene). 

part-of(lac-operon, b-galactoside-permease-gene). 
struct-gene(lac-operon, b-galactoside-permease-gene). 

part-of(lac-operon, b-galactoside-transacetylase-gene). 
struct-gene(lac-operon, b-galactoside-transacetylase-gene). 

part-of(P,overlap-region(P,O)) :- promoter(P),operator(O). 
part-of(O,overlap-region(P,0)) :- operator(O),promoter(P). 
next-to(lac-operon-promoter,b-galactosidase-gene). 
next-to(b-galactosidase-gene,b-galactoside-permease-gene). 
next-to(b-galactoside-permease-gene, 

b-galactoside-transacetylase-gene). 

product(b-galactosidase-gene, b-galactosidase). 
enzyme(b-galactosidase). 
substrate(b-galactosidase, lactose). 
purpose(b-galactosidase, catabolic-proc) . 

. . . etc 

Figure 5.3: Representation of the lac operon in GENEX II. 
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bind(Mol, Site) ·- binding-site(Mol, Site), 
complementary-conform(Mol,Site), 
\+ bound(X,Site), 
free-to-bind(Mol), 
assert(bound(Mol,Site)). 

Figure 5.4: The BIND operation. 

tion are true. 
GENEX II's representation of the bind operation shown in figure 5.4. This 

operation involves two objects, the molecule being bound, and the site to which it 
is being bound. The operation has several preconditions: 

First, the site must be the binding site for that molecule. In general, the binding 
site is an abstract label corresponding to a specific region of the operon, for instance, 
the binding site of the regulatory protein is the operator. GENEX II also has rules 
to determine whether a nucleotide sequence can be a binding site for a molecule. 
For example, if the molecule is RNA polymerase, it can check to see if the site has 
properties which would qualify it as a promoter sequence. 

The molecule and the site to which it is being bound must have complementary 
conformations. Since the details of protein folding are not yet understood, G ENEX 

II uses the assumption that in their normal (i.e. non-mutated) state, the molecule 
and the site have complementary conformations. This may be dependent on the 
presence or absence of a small molecule for regulatory protein binding operations. If 
either of the objects are mutated, GENEX II will check to see whether it is currently 
assuming that they have complementary conformations, and proceed accordingly. 

Next, the bind operation requires that the site be unoccupied. In this respect, 
GENEX II uses a simplification of the actual biological process. It ignores the 
possibility that a molecule that it is attempting to bind has a higher affinity for a 
site than a molecule that is already there, in which case the bound molecule would 
eventually be displaced. Since the prog~am works on the micro level, reasoning 
about only one operon through only one cycle of gene expression, it can avoid 
dealing with the equilibrium situation by always binding the molecule with the 
higher affinity for the site first. 

Finally, the molecule must be free to bind to the site. This clause represents 
the possibility that there is a limited amount of a molecule present in the system, 
and there might be none available for this binding operation. Other substances are 
available in essentially unlimited quantities, and th.is clause would always be true 
for bind operations involving that substance. This feature is not currently imple-
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mented in GENEX II, because, as explained in the previous paragraph, GENEX II 
currently only models a single operon at a time, and therefore does not deal with 
the quantitative aspects of the problem. 

If the preconditions are satisfied, GENEX II will then assert that the molecule 
is bound to the site, which is the postcondition of the bind operation. 

5.3 Program Structure 

The GENEX II program is divided into three parts: a front end, called the model
maker which g~ts the information for the current simulation from the user; an inter
preter, which simulates the behavior of the operon on the input, and the database. 

The model-maker asks the user to enter information about the operon, and con
structs the system's physical mode} of the operon from this information. Depending 
on the input, the model-maker can also decide that certain variables are uncertain 
{discussed belo~ ~ The model-maker sets up all the system variables needed to run 
the program. · 

The second level of the GENEX II program is the GENEX II interpreter. The 
clauses that co!ltain the system's domain knowledge are not run directly by the 
Prolog interpreter, but rather through this intermediCl:l'Y, thus allowing more control 
over the ·program's execution. Explanations are generated by attempting to prove 
that the operon is expressed (or not expressed, depending on the observed behavior), 
using rules corresponding to the operations that take place in the cell. The GENEX 
II interpreter decides when a result is nontrivial and should be reported to the user. 
This seryes as a primitive explanation capability in the current system. 

The bottom level of the G ENEX II system is the knowledge base containing 
facts about prokaryotic operons and rules for reasoning about their behavior, as 
described in. the previous section. It consists of just over 250 clauses, of which 
about 150 are definitions (e.g. protein(x) :- reg_protein(x).). The remaining 
100 clauses encode rules for simulating the objects in the domain. 

5.4 Dealing with Uncertainty 

Certain concepts with which GENEX II deals are uncertain to some degree, due to 
incomplete input given to the system. For example, suppose GENEX II is told that 
an operon has a promoter mutation, but is not given the promoter sequence. Its 
hypotheses about the effect of that mutation have a lower degree of certainty than if 
the sequence had been given, since in that case, the program coul~ have compared 
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it with known promoter up- and down-mutations 8• Other rules in GENEX Il's 
knowledge base are what I term ultimately uncertain from the system's point of view: 
that is, the system has no way to determine the truth or falsity of that rule, due 
to an incomplete understanding within the domain itself (rather than incomplete 
information within the system). An example of ultimate uncertainty is whether 
a mutation in the small molecule binding site of the regulatory protein will leave 
the protein able to assume an active conformation. The system can't tel19 if this 
will cause the regulatory protein to be unable to bind the small molecule and thus 
never to be able to assume an active conformation, or if it makes the small molecule 
unnecessary, causing the regulatory protein to always be in an active conformation. 
However, these two cases. can be distinguished by their effect on the behavior of the 
operon. This observation led to the introduction of likely models, discussed below. 

The number of uncertain variables depends on the number and location of mu
tations given in the problem statement. GENEX II decides that a given variable is 
uncertain before running the main program. If any part of the operon is mutated, 
then any rules relating to the conformation of that part are uncertain, as are any 
rules relating to whether or not that part, or any of its subparts, even is part of the 
operon (as might be the case in a deletion mutation). Mutations in the transcribed 
portion of the operon are dealt with by the transcribe and translate operations. 
The worst case (in terms of number of uncertain variables) occurs when it is not 
even known whether or not the operon contains a mutation. Then every uncertain 
variable for every part of the operon is activated, as well as an uncertain variable 
corresponding to the presumed intactness of each operon part. 

G ENEX I I initially dealt with ultimately uncertain clauses by initiating two 
paths of computation a priori for each ultimately uncertain variable: one for possible 
value true, and one for possible value false. It then sinmlated the behavior of the 
operon for each possible set of values. Of course, not every possible state yielded 
a simulation result consistent with the observed behavior of the operon. Only 
those which did were proposed as possible explanations to the user 10• However, 
the total. number of computations that would be generated is exponential in the 
number of uncertain variables, and for any but the most trivial problems, this is 
an unmanageable number. For instance, a problem containing a regulatory gene 
mutation and an operator mutation would require seven uncertain variables, and 

8 An up-mutation is one which increases the efficiency of the promoter. A down-mutation decreases 
the efficiency of the promoter: 

9 nor can any expert: the relationship between sequence and conformation is by no means completely 
understood by biologists. 

10 GENEX II does not rank the potential solutions in order of plausibility. This requires knowledge 
of molecular biology that the author has not yet acquired. 
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thus 128 distinct possible states 11 • 

In order to reduce the number of possible states that the system had to examine, 
several new rules were added to the knowledge base. Before G ENEX II begins to 
search for possible explanations, these rules use the obaerved behavior of the operon 
to derive a likely model of its behavior. GENEX II restricts its search for explana
tions to those which fit with the likely model. This model is one of the following 
mutually exclusive, collectively exhaustive possibilities: inducible, repressible, con
stitutive, or uninducible 12 • Each of these models requires certain conditions to be 
true. For example, in order for an operon's product to be produced constitutively, 
either the regulatory protein cannot bind to the operator, or the small molecule 
cannot bind to the regulatory protein. GENEX II compares the conditions of the 
model with the known structure of the operon and the uncertain variables. A condi
tion for a model can be satisfied in one of two ways. The condition may be known to 
be true - for instance, the user could tell the system that a regulatory protein does 
not bind to the operator based on experimental evidence, or may be provable based 
on known information. H a condition is not proVa.ble based on known information, 
but is possibly true (depending on the state of one or more uncertain variables) 
then the system will assume that the uncertain variables are in the proper state to 
make the model work. GENEX II then simulates the behavior of the operon under 
the combination of known and assumed conditions. 

In many cases there are still a number of possible states which must be checked, 
since there is more than one assignment of uncertain variables that will satisfy the 
model. The number of states is much smaller than in the unrestricted case, however. 

·It is not possible for the system to overlook a solution which fits the model, since 
it will try every state which is consistent with the model, and exactly one model 
is consistent with the observed behavior of the operon. If it happens that a model 
exists with which the system is unfamiliar, of course, the system will be unable to 
find a correct solution. · 

The use of likely models reduces the number of possible states that the program 
must verify by reducing the number of uncertain variables generated from the initial 
problem statement. Each likely model has a list of sets associated with it. Each 
set is an assignment of uncertain variables that would make the likely model .true. 
The number of possible states which must be examined is halved for each uncertain 
variable for which we can a.Ssign a vaj.ue. The result of using likely models to control 
11 While this may not seem like an unmanageable number, the reader must consider that we are still 

discussing relatively simple problems in a simplified problem space. In a more general molecular 
genetics problem solver, an exponential growth rate would be overwhehning. 

12The system does not use these terms in the literal biological sense. For instance, an operon which 
was lacking a promoter would be considered "unindudble" because the gene product was not 
made despite the presence or absence of the small molecule. 
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genotype 

observed 
behavior 

no. of uncer~--no. of possible 
tain variables 

7 
5 
5 

states 
128 
32 
32 

no. of . states 
generated 

32 
8 
8 

Table 5.1: Reduction in possible states using likely models. 
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known 
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behavior 

compare 
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try next state 

Figure 5.5: A flowchart for the GENEX II system. 

the size of the search space is shown in table 5.1. 

For the problems tested the use of likely models reduces the number of states that 
must be searched by 75 per cent. 

The flow of control and information in the GENEX II is summarized in figure 
5.5. I believe that this is the same way in which molecular biologists approach 
problems. A hypothesis is proposed based on previous problems which had similar 
behavior (corresponding to the model-making phase of the program). The biologist 
attempts to fit the details of the current problem to the hypothesis. The program 
does the same by making a set of assumptions from the uncertain variables. Finally, 
the biologist attempts to verify the hypothesis. GENEX II also attempts to verify 
the hypothesis, by simulating the behavior of the operon, and checking if it agrees 
with the observed behavior. 

In some of-the possible states, certain variables may be unimportant, i.e. the 
result of the simulation is the same whether they are true or false. For example, 
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given an unexpressed operon with a mutation in the promoter and a mutation in 
the structural genes, the latter mutation may be unimportant if we assume that the 
promoter is unable to bind RNA polymerase. If the program were able to recognize 
this, it could generate a more informative explanation. 

GENEX Il's model-maker is similar to heuristic DENDRAL's Planner. DEN
DRAL had a Structure Generator which could generate all chemically plausible 
isomers, given a chemical formula, and a Predictor which determined if a candi
date structure's mass spectrum fit the given data. Because of the enormous size of 
the problem space, the designers wanted to reduce the number of candidate struc
tures generated. They achieved this by requiring the generator to generate only 
those classes of structures which met some criteria obtained from the problem data. 
The Planner consists of a group of specialists, one for each chemical family. Each 
specialist determines the class of allowable candidates within its family by using a 
collection of "special facts and special-purpose heuristics" 13 applied to the given 
data. GENEX Il's four likely models correspond to DENDRAL's specialists. 

5.5 Generating Explanations and Justifications 

The GENEX II interpreter recognizes certain operations and circumstances as im
portant. When important operations are simulated, or important circumstances are 
noted, the system reports this to the user. The designation of operations as impor
tant is done by the system, and can change with each invocation of the program. 

A rule is said to be important if it depends on an uncertain variable, or if it is 
non-trivial. All unit clauses are trivial {this inhibits the system from continually 
informing the user that it has determined that the input operon is indeed an operon, 
for instance). A ·rule is also trivial if it relates to a model of the operon that is not 
the one that the system has assumed is true. For instance, the system will not 
inform the user of any attempts to prove that the system has some inducer X if the 
model of the system is repressible. 

In addition, the procedures EXPRESSED, INITIATED, ATTENUATED, TRAN
SCRIBE, TRANSLATE, TERMINATE, and PROCESS are permanently designated as 
being important. These seven procedures serve as milestones during execution. 

GENEX II currently explains its reasoning to the user by informing the user 
of important results during the cotirse of execution. This is essentially a trace of 
the program, and is meaningful simply because all rules have been· given mnenonic 
names. Since the system now has a finely detailed model of operons and operon 
behavior, this trace is informative without resorting to the use of canned text, 

13 Feigenbaum, p. 175. 
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and has the potential to be upgraded, using techniques such as those described by 
Swartout (1981). 

At the present time, GENEX II cannot respond to requests for justification 
from the user; however, the design of the system permits this as a possible future 
modification. 

5.6 Types of Problems that Genex II Can Solve 

GENEX II can solve all the problems that were solved by the original program. 
The new enco.ding of the domain knowledge allows the system to represent more 
objects and relationships, so the system is more powerful than it was before. 

It was difficult to expand GENEX I to reason about problems involving more 
than one mutation in the operon, .because it would have required adding a compli
cated conditional statement corresponding to each combination of mutation sites, 
gene expressio~, and control model in the system. GENEX II can now reason about 
the combined effed of multiple mutations on gene expression. The model-maker 
computes the set of all possible states corresponding to the mutation sites, etc., and 
then simulates _the operon on each of the possible states. This allows the system to 
be easily expanded, since the set of possible states is_ dynamic: it is created by the 
system when the program is invoked, rather than being written into the program. 

GENEX II now· has an explicit model of the operon, which allows the system 
to represent non-standard operons. This allows it to solve another large class of 
problems. For instance, it can now model an operon which has two promoters. 
GENEX II can also model diploids, 14 allowing the system to determine, for instance, 
whether a mutation is trans-dominant or trans-recessive. 

The system still has no concept of quantity. GENEX II cannot solve any problem 
relating to equilibrium states, enzyme assays, or any abstract type of quantitative 
measurement, such as less than or a small amount. It was decided at the inception 
of this project by the molecular biology expert that the more interesting genet
ics research questions involved micro-level reasoning rather than reasoning about 
quantities, and the system reflects that bias. 

The system currently takes in a description of behavior and structure, and ex
plains the behavior of the operon. With a minor modification to the system, it 
could also take in a structure and predict the behavior. 

14a operon in which some parts are represented twice. 
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5. 7 "Understanding" Molecular Genetics 

This section contains two examples whic.h demonstrate the increased capabilities of 
the system. The first example deals with a double mutant containing mutations in 
both the regulatory gene and the operator. This example is again taken from the - -" --
MIT undergraduate genetics exam 15• 

Bacterium pedantia produces a protein, Sporulin, that. makes other bac
teria sporulate .•. Sporulin synthesis is inducible by chalk. In the absence 
of chalk a repressor produced by gene spoR prevents expression of the 
Sporulin structural gene spoS. 

Haploids carrying two mutations can be made in B. pedantia by re
combination. Most haploid double mutants that carry both a consti
tutive spoR and a constitutive spoO mutation are constitutive, as ex
pected. However, one particular double - the haploid carrying spoR43 
and spo007 - is anomalous: it produces Sporulin only when chalk is ab
sent. spoR43 is known to be missense. Explain briefly how the repressor 
and operator are functioning in_ the double mutant. 

The program is started up and the information stated in the problem is given as 
input. 

I ?- genex. 
end every answer with a period followed by a CR! 

solution mode (terse or verbose): verbose. 
name of operon: spo. 
spo structural genes: enter one at a time, 6prime - 3prime order 
-- end with ''done.'' 

structural gene: 
I: spos. 
what is product of spos 
I : sporulin. 
what is purpose of sporulin: (synthesis, digestion, or other) 
I: other. 
structural gene: 
I: done. 

15For this example, the program generated 32 possible states, two of which were shown .to be consis
tent with the model. The explanation for only one state is shown here, due to space co11sideratiOI111. 
The output of the program has been edited to omit redundancy in the proofs. Places where editing 
has occurred and comments inserted are marked by the symbol "))." 
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enter sequence of spo or [ ] 
I : [ l . 
are there any mutations in spo or reg-gene (yes, no, or unknown) ? 
I: yes. 
mutation site known (yes or no) ? 
I: yes. 
mutation in promoter (yes or no) ? 
I: no. 
mutation in reg-gene (yes or no) ? 
I: yes. 
mutation in operator (yes or no) ? 
I: yes. 
mutation in struc-genes (yes or no) 
I: no. 
is spo gene product made? 
I: no. 

? 

enter any other information available 
e.g. proportional-to(X,Y), inv-proportional-to(X,Y), 
present(Substance), etc. 

end with ''done.•• 
I: present(chalk). 
I: inv-rel(chalk,sporulin). 
I: done. 

The program now lists the assumptions that it is making based on the input. "smbs" 
stands for "small molecule binding site." 

assuming: mutated(operator_specific(spo_operator)) 
assuming: mutated(overlap_region(spo_promoter,spo_operator)) 
assuming: active_smmol_confor,m(spo_reg_protein) 
assuming: mutated(spo_reg_protein) 
assuming: part_of (spo_reg_protein,smbs(spo_reg_protein)) 
assuming: complementary_conform(_1146,smbs(spo_reg_protein)) 
assuming: smmol(_1868) 
assuming: reg_protein(spo_reg_protein) 
assuming: operator(spo_operator) 
assuming: complementary_conform(_1868,smbs(spo_reg_protein)) 
assuming: complementary_conform(spo_reg_protein, 

overlap_reglon(spo_promoter,spo_operator)) 
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· The following trace is printed out by the program. Each time a new goal is encoun
tered, the program prints out the rule or rules it uses to try to prove that goal. 

goal: expressed(spo) 
attempting to prove: 
[operon(spo), 
initiated(spo), 
\+attenuated(spo), 
xcribe(get_gene_seq(spo),_1721), 
xlate(_1721,_1722)] 
goal: initiated(spo) 

attempting to prove: 
[operon(spo), 
part_of(spo,_1772), 
promoter(_1772), 
bindabie(rna_pol,_1772)] 

Expression initiates when RNA polymerase binds to the promoter. The system first 
checks to see if polymerase is already bound to the promoter, otherwise it checks if 
RNA polymerase is abkto bind. 

goal: bindable(rna_pol,spo_promoter) 
attempting to prove: 
[bound(rna_pol,spo_promoter)] 
goal: bound(rna_pol,spo_promoter) 

attempting to prove: 
[promoter(spo_promoter), 
part_of(spo_promoter,_1961), 
bound(rna_pol,_1961)] 

goal: bound(rna_pol,overlap_region(spo_promoter, 
spo_operator)) 

>>failed goal: bound(rna_pol, 
overlap_region(spo_promoter, 

spo_operator)) 
>>failed goal: bound(rna_pol,spo_promoter) 

goal: bindable(rna_pol,spo_promoter) 
attempting to prove:· 
[bind(rna_pol,spo_promoter)] 
goal: bind(rna_pol,spo_promoter) 

attempting to prove: 
[binding_site(rna_pol,spo_promoter), 
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complernentary_conform(rna_pol,spo_promoter), 
\+bound(_1961,spo_promoter), 
asserta(genex_clause(bound(rna_pol,spo_promoter)))] 
goal: binding_site(rna_pol,spo_promoter) 

attempting to prove: 
[prornoter(spo_promoter)] 

proved: binding_site(rna_pol,spo_promoter) 
goal: complementary_conform(rna_pol,spo_promoter) 

attempting to prove: 
[operon(_2039), 
assoc(_2039,_2040), 
product(_2040,spo_promoter), 
smmol(_2039,rna_pol), 
present(rna_pol), 
normal(spo_promoter)] 

This rule is inapplicable because the spo promoter is not the product of any operon. 

goal: complementary_conform(rna_pol,spo_promoter) 
attempting to prove: · 

[promoter(spo_promoter), 
\+bad_rna_conform(spo_promoter)] 

"Bad rna conform" is GENEX 's term for a promoter not in the proper confor
mation to bind·RNA polymerase. An active regulatory protein bound to the operator 
prevents the polymerase from binding to the promoter, in negative-control systems. 
GENEX will try to determine if the regulatory protein can bind to the operator. 

goal: normal(spo_promoter) 
attempting to prove: 
[\+mutated(spo_promoter), 
\+assuming(mutated(spo_promoter))] 

proved: normal(spo_promoter) 
goal: bindable 

(spo_reg_protein, 
o~erlap_region(spo_promoter,spo_operator)) 

attempting to prove: 
[bound(spo_reg_protein, 

overlap_region(spo_promoter,spo_operator))] 
>>failed goal: bound(spo_reg_protein, 

overlap_region(spo_promoter, 
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spo_operator)) 
goal: bindable 

(spo_reg_protein, 
overlap_region(spo_promoter,spo_operator)) 

attempting to prove: 
[bind(spo_reg_protein, 

overlap_region(spo_promoter,spo_operator))] 
goal: bind(spo_reg_protein, 

overlap_region(spo_promoter·, spo_operator)) 
attempting to prove: 
[binding_si te 

(spo_reg_protein, 
overlap_region(spo_promoter,spo_operator)), 

complementary_conform 
(spo_reg_protein, 
overlap_region(spo_promoter,spo_operator)), 

\+bound{_2718, 
overlap_region(spo_promoter,spo_operator)), 

asserta(genex_clause 
(bound(spo_reg_protein, 

overlap_region(spo_promoter, 
spo_operator))))] 

goal: binding_site(spo_reg_protein, 
overlap_region(spo_promoter, 

spo_operator)) 
attempting to prove: 
[reg_protein(spo_reg_protein), 
operator(spo_operator), 
promoter(spo_promoter)] 

proved: binding_site(spo_reg_protein, 
overlap_region(spo_promoter, 

spo_operator)) 
goal: camplementary_conform 

(sp~_reg_protein, 

overlap_region(spo_promoter,~po_operator)) 

Based on its likely model of the operon, the system is already assuming that the reg
ulatory protein and the overlap region have complementary conformations. In order 
to see the details of the solution, we have told the pr:ogram to ignore its assumption 
by telling it to use "verbose" mode. ("Terse" mode would be used to quickly ver-
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ify a solution without having to see all the details}. It will have to show that the 
regulatory protein and t~e overlap region have complementary con/ ormations using 
model-based reasoning. 

attempting to prove: 
[operator(spo_operator), 
pr~moter(spo_promoter), 

reg_protein(spo_reg_protein), 
normal(overlap_region(spo_promoter,spo.:..operator)), 
active(spo_reg_protein)] 

The system as·sumes that if the overlap region is normal, then the regulatory protein 
can bind. to it. This goal fails because the system is assuming that the overlap region 
is mutated. 

goal: normal(overlap_region(spo_promoter, 
spo_operator)) 

attempting to prove: 
[\+mutated(overlap_region(spo_promoter, 

· spo_operator)), 
\+assuming(mutated(overlap_region(spo_promoter, 

spo_operator)))] 
goal: normal(overlap_region(spo_promoter, 

spo_operator)) 
attempting to prove: 
[gene (_3432) , 
product(overlap_region 

(spo_promoter,spo_operator),_3432), 
normal (_3432)] 

>>failed goal:normal(overlap_region(spo_promoter, 
spo_operator)) 

The system now tries an empirical rule, which states that if the regulatory pro
tein demonstrates an increased affinity for the operator, the two must have comple
mentary conformations, without the need for the small molecule to "turn on" the 
repressor. 

goal: complementary_conform 
(spo_reg_protein, 
ove·rlap_region(spo_promoter, spo_operator)) 

attempting to prove: 
[reg_protein(spo_reg_protein), 
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promoter(spo_promoter}. 
operator(spo_operator}, 
inc~affinity(spo_reg_protein,spo_operator}] 

goal: inc_affinity(spo_reg_protein,spo_operator} 
attempting to prove: 
[operon(_3433}. 
part_of(_3433,spo_operator}. 
operator(spo_operator}. 
mutated(spo_operator}. 
assoc(_3433,_3434}. 
reg_gene (_3434} • 
product (_3434, spo_reg .... protein} , 
phenotype(_3433,uninducible}] 

goal: phenotype(spo,uninducible} 
attempting to prove: 
[operon(spo}. 
assoc(spo,_3740). 
reg_gene(_3740). 
mutatedL3740), 
observed_not_expressed(spo}. 
no_influence(_3741,spo), 
asserta(genex_clause(phenotype 

(spo,uninducible))}] 
goal: no_influence(_3741.spo) 

attempting to prove: 
[operon(spo}, 
structural_gene(spo,_3946}, 
product(_3946,_3946). 
\+dir_rel(_3741,_3946), 
\+inv_rel(_3741,_3946)] 

>>failed goal: no_influence(_3741,spo) 

This goal failed because the system was told that chalk. inhibits the production of 
sporulin. 

>>f~iled goal: phenotype(spo,uninducible) 
goal: inc_affinity(spo_reg_protein, 
· spo_operator) 

attempting to prove: 
[operon(_3433}, 
part_of(_3433,spo_operator), 
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operator(spo_operator), 
mutated(spo_operator), 
assoc(_3433,_3434), 
reg_gene(_3434), 
product(_3434,spo_reg_protein), 
phenotype(_3433,superrepressed)] 

goal: phenotype(spo,superrepressed) 
attempting to prove: 
[operon(spo), 
assoc(spo,_3740), 
reg_gene(_3740), 
mutated(_3740), 
observed_not_expressed(spo), 
no_influence(_3741,spo), 
asserta(genex_clause 

(phenotype(spo,superrepressed)))] 
goal: no_influence(_3741,spo) 
>>failed goal: no_influence(_3741,spo) 

>>failed goal: phenotype(spo,superrepressed) 
>>failed goal: inc_affinity(spo_reg_protein, 

spo_operator) 
goal: active(spo_reg_protein) 

attempting to prove: 
[reg_protein(Reg_protein), 
active_smmol_conform(Reg_protein)]) 

GENEX now trie-s several rules in an attempt to show that the regulatory protein is 
in an active conformation. They will fail because they either depend on a normal 
regulatory protein, or because they require a different control model than the one 
exhibited by SPO {i.e. repressible). 

goal: active_smmol_conform(spo_reg_protein) 
attempting to prove: 
[repress or {_3823 •. spo_reg_protein), 
normal(sp~_reg_protein), 
inducible(_3823), 
\+inducer(_3823,_3824)] 

goal: normal(spo_reg_protein) 
attempting to prove: 
[\+mutated(spo_reg_protein), 
\+assuming(mutated(spo_reg_protein))] 
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goal: normal(spo_reg_protein) 
attempting to prove: 
[gene(_ 4083) , 
product(spo_reg_protein,_4083), 
normal(_ 4083) l 

>>failed goal: normal(spo_reg_protein) 
goal: active_smmol_conform(spo_reg_protein) 

attempting to prove: 
[repressor(_3823,spo_reg_protein), 
normal(spo_reg_protein), 
inducible {_3823) , 
inducer(_3823,_3824), 
\+bindable(_3824,smbs(spo_reg_protein))] 
goal: normal(spo_reg_protein) 
>>failed goal: normal(spo_reg_protein) 

goal: active_smmol_conform(spo_reg_protein) 
attempting to prove: 
[repressor {_3823, spo_reg_protein), 
phenotype(_3823,inducible), 
\+inducer(_3823 ,_3824)] · 
goal: phenotype(spo,inducible) 

attempting to prove: 
[operon(spo), 
structural_gene(spo,_4083), 
product(_4083,_4084), 
dir_rel(_4086,_4084), 
asserta(genex_clause(phenotype(spo,inducible)))] 

>>failed goal: phenotype(spo,inducible) 
goal: active_smmol_conform(spo_reg_protein) 

attempting to prove: 
[repressor(_3823,spo_reg_protein), 
phenotype {_3823, inducible) , 
inducer(_3823,_3824), 
\+bindable(_3824,smbs(spo_reg_protein))] 

goal: phenotype(spo,inducible) 
>>failed goal: phenotype(spo,inducible) 

goal: active_smmol_conform(spo_reg_protein) 
attempting to prove: 
[repressor(_3823,spo_reg_protein), 
normal(spo_reg_protein), 
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repressible(_3823), 
corepressor(_3823,_3824), 
bindable(_3824,smbs(spo_reg_protein))] 

goal: normal(spo_reg_protein) 
>>failed goal: normal(spo_reg_protein) 

goal: active_smmol_conform(spo_reg_protein) 
attempting to prove: 
[repressor(_3823,spo_reg_protein), 
phenotype(_3823,repressible), 

This rule will succeed. 

corepressor(_3823,_3824), 
bindable(_3824,smbs(spo_reg_protein))] 

goal: phenotype(spo,repressible) 
attempting to prove: 
[operon(spo), 
structural_gene(spo,_4083), 
product(_4083,_4084), 
inv_rel(_4086,_4084), 
asserta(genex_clause 

(phenotype(spo,repressible)))] 
proved: phenotype(spo,repressible) 
goal: corepressor(spo,_3824) 

attempting to prove: 
[operon(spo), 
structural_gene(spo,_4231), 
product(_4231,_4232), 
end_product(_4232,_3824), 
inv_proportional_to(_4232,_3824), 
repressor(spo,_4233), 
bindable(_3824,_4233)] 

The previous rule encoded a real-world heuristic for determining the corepressor of a 
repressible operon, however it fails on this ''toy" example. The system uses a more 
general, simplified rule: if- the. gene product is made only in the absence of some 
substance, then that substance is a likely corepressor of the operon. 

goal: corepressor(spo,_3824) 
attempting to prove: 
[operon(spo), 
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structural_gene(spo,_4231), 
product(_4231,_4232), 
inv_rel(_3824,_4232)] 

proved: corepressor(spo,chalk) 
goal: bindable(chalk,smbs(spo_reg_protein)) 

The system tries to determine if chalk is binding to the regulatory protein and putting 
it in an active conformation. 

attempting to prove: 
[bound(chalk,smbs(spo_reg_protein))] 

>>failed goal: bound(chalk,smbs(spo_reg_protein)) 
goal: bindable(chalk,smbs(spo_reg_protein)) 

attempting to prove: 
[bind(chalk,smbs(spo_reg_protein))] 
goal: bind(chalk,smbs(spo_reg_protein)) 

attempting to prove: 
[binding_site(chalk,smbs(spo_reg_protein)), 
complementary_conform(chalk, 

smbs(spo_reg_protein)), 
\+bound(_4396,smbs(spo_reg_protein)), 
asserta(genex_clause 

(bound(chalk, 
smbs(spo_reg_protein))))] 

goal: binding_site(chalk,smbs(spo_reg_protein)) 
attempting to prove: 
[reg_protein(spo_reg_protein), 
part_of(spo_reg~protein,smbs(spo_reg_protein)), 

assoc(_4422,_4423), 
reg_gene{_4423), 
product(_4423,spo_reg_protein), 
inducible(_4422), 
inducer(_4422,chalk)] 

·goal: induc"ible(spo) 
>>failed goal: inducible(spo,_4863) 

This rule failed because the SPO operon is not inducible. This rule .and the following 
state that small molecule of an operon binds to the small molecule binding site of 
the operon's regulatory protein. 

goal: binding_site(chalk,smbs(spo_reg_protein)) 
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attempting to prove: 
[reg_protein(spo_reg_protein), 
part_of (spo_reg_protein, 

smbs(spo_reg_protein)), 
assoc(_4422,_4423), · 
reg_gene(_4423), 
product(_4423,spo_reg_protein), 
repressible(_4422), 
corepressor (_ 4422, chalk)] 

goal: repressible(spo) 
attempting to prove: 
[operon(spo), 
structural_gene(spo,_4863), 

·product(_4863,_4864), 
purpose(_4864,_4866), 
anabolic_proc(_4866)] 

goal: repressible(spo) 
attempting to prove: 
[operon(spo), 
corepressor(spo,_4863)] 

goal: corepressor(spo,_4863) 
attempting to prove: 
[operon(spo), 
structural_gene(spo,_4914), 
product{_4914,_4916), 
end_product(_4916,_4863), 
inv_proportional_to(_4916,_4863), 
repressor(spo,_4916), 
bindable(_4863,_4916)] 

goal: corepressor(spo,_4863) 
attempting to prove: 
[operon(spo), 
structural_gene(spo,_4914), 
product(_4914,_4916), 
inv_rel(_4863,_4916)] 

proved: corepressor(spo,chalk) · 
·proved: repressible(spo) 

proved: binding_site(chalk, 
smbs(spo_reg_protein)) 

goal: complementary_conform 
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(chalk,smbs(spo_reg_protein)) 
attempting to prove: 
[operon(_6220), 
assoc(_6220,_6221), 
reg_geneL6221), 
product(_6221,spo_reg_protein), 
reg_protein(spo_reg_protein),. 
smmol(_6220,chalk), 
phenotype(_6220,repressible)] 

An empirical rule. The corepressor must be in the proper conformation to bind to 
the regulatory protein if the operon is observed to be repressed in the presence of the 
corepressor. 

goal: smmol(spo,chalk) 
attempting to prove: 
[corepressor(spo,chalk)] 
goal: corepressor(spo,chalk) 
proved: corepressor(spo,chalk) 

proved: smmol(spo,chalk) 
goal: phenotype(spo,repressible) 

attempting to prove: 
[operon(spo), 
structural_gene(spo,_614~). 

product(_6146,_6147), 
inv_rel(_6148,_6147), 
asserta(genex_clause 

(phenotype(spo,repressible)))] 
proved: phenotype(spo,repressible) 

proved: complementary_conform 
(chalk,smbs(spo_reg_protein)) 

proved: bind(chalk,smbs(spo_reg_protein)) 
proved: bindable(chalk,smbs(spo_reg_protein)) 

proved: active_smmol_conform(spo_reg_protein) 
proved: active(spo~reg_protein) 

proved: complementary_conform 
(spo_reg_protein, 
overlap~region(spo_promoter,spo_operator)) 

proved: bind(spo_reg_protein, 
overlap_region(spo_promoter,spo_operator)) 

proved: bindable(spo_reg_protein, 
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overlap_region(spo_promoter,spo_operator)) 
>>failed goal: bind(rna_pol,spo_promoter) 

transcription cannot initiate 
>>failed goal: expressed(spo) 
checking other explanations 
no sequence given ... 
no message to translate ... 
done. 

Briefly, the system has decided that the spo operon is no longer inducible, but is 
now repressible by chalk. When chalk is bound to the mutated regulatory protein, it 
is in the proper conformation to bind to the mutated operator, thus RNA polymerase 
cannot bind. Transcription cannot initiate, and the product is not made. 

The following is another example of the system's more detailed knowledge of 
the mechanisms of molecular genetics. In this example, GENEX has been told that 
the promoter has been deleted,and is then asked to explain why the operon is not 
expressed. 

name of operon: op. 

op structural genes: enter one at a time, 6prime - 3prime order 
-- end with "done" 

structural gene: 
I: done. 
enter sequence of op or [ ] 
I: C l. 
are there any mutations in op or reg_gene (yes, no, or unknown) ? 
I: yes. 
mutation site known (yes or no) ? 
I: yes. 
mutation in promoter (yes or no) ? 
I: deletion. 
mutation in reg_gene (yes .or no) ? 
I: no. 
mutation in operator (yes or no) ? 
I: no. 
mutation in struc_genes (yes or no) 
I: no. 
is op gene product made? 
I: no. 

53 

? 



enter any other information available 
e.g. proportional_to(X,Y), inv_proportional_to(X,Y), present(Substance), 
etc. 
-- end with "done" 
I: done. 

·goal: expressed(op) 
attempting to prove:· 
[operon(op), 
initiated{op), 
\+attenuated(op), 
xcribe{get_gene_seq(op),_863), 
xlate{_863,_864)] 

goal: initiated{op) 
attempting to prove: 
[operon{op), 
part_of{op._904), 
promoter (_904) , 
bindable(rna_pol,_904)] 

goal: promoter{_904) 
a~tempting to prove: 
[sequence(_904,_999), 
\+sequence(_904,[]), 
length(_999,_1000),approx(_1000,40), 
contains_subseq(_904,[t,t,g,a,c,a]), 
contains_subseq(_904,[t,a,t,a,a,t,g])] 

Since the system does not have any part of the operon labeled as the promoter, it 
checks the sequence to see if any section of the sequence qualifies as the promoter. 
In this example, no sequence was given so it fails. It then checks to see if any part 
of the operon that it knows about is the promoter. This will also fail. 

goal: promoter{op_operator) 
>>failed goal: P!Omoter(op_operator) 
goal: promoter(op_terminator) 
>>failed goal: promoter(op_terminator) 

>>failed goal: promoter{_904) 
»failed goal: initiated{op) 
transcription cannot initiate 
>>failed goal: expressed{op) 
checking other explanations 
checking other explanations 

54 



goal: xcribe([] ,[]) 
no sequence given ... 
goal: xlate([],[]) 
no message t.o translate ... 
done. 

With no promoter there is no place for the RNA polymera8e to bind so the operon 
cannot be transcribed. 

5.8 What Makes a Problem Complex? 

In many domains, some interesting problems cannot be solved using heuristics alone. 
In the domain of bacterial operons, only problems involving prototypical operons 
(e.g. those whose structure. corresponds to that shown in figure 3.1) with a single 
mutation are guaranteed to be solved correctly by the original GENEX system using 
the heuristics given. Some might claim that this is the fault of the system designer, 
for giving the wrong heuristics, or an insufficient number of heuristics. 

Certainly, any given problem which is currently unsolvable could be solved by 
giving a new heuristic (or set of heuristics). This does not improve the performance 
of the system in general, but only on that one type of problem. Only if we could 
give the system a heuristic for every type of problem would its overall performance 
improve. This is not always possible, as discussed in the previous chapter. 

The original version of GENEX was given heuristics to deal with operons having 
no more than one mutation. Supposed we tried to improve the system by giving 
the heuristics sufficient to deal with all pairs of mutations. Then there would still 
be the problem of three mutations, etc., until we find that we have created a set 
of heuristics whose size is the exponential of the size of our original heuristics. We 
have transformed the problem to one of choosing the correct heuristic-not always 
so easy, and possibly intractable now, due to the number of heuristics. 

When model-based reasoning is used, the system creates its solution anew for 
each problem, based on its model of the domain, rather than relying on pre-compiled 
solutions. There cannot be a situation which the system cannot handle as long as it 
is derivable from the model. We trade off time for space16 • Model-based reasoning 
has several other advantages, which were discussed in this chapter. 

The problem of when tO'use heuristics and when to use model-based reasoning is 
not restricted to the case given above, i.e. which problem can be solved using only 
heuristics. For some problems heuristics may work for part of the solution, and the 

111 The ideas presented in this and the preceding paragraphs are due to Ramesh Patil, personal 
communication. 
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remainder of the problem is solved using model-based reasoning. In the solution 
of other problems, heuristic and model-based reasoning may be interspersed. This 
is an issue in expert systems: when is the use of empirical or heuristic knowledge 
appropriate, and when is it necessary to return to an approach based on more 
general principles? 

As discussed in the previous chapter, heuristic rules often contain implicit pre
conditions which make it difficult to determine the exact conditions under which 
a heuristic can be applied correctly. The human expert can usually recognize a 
situation as being one to which a certain heuristic applies. Furthermore, a human 
expert can often reduce a complicated problem to a more simple one to which a 
known heuristic applies. If the rule was applied mistakenly, the expert recognizes 
that subsequent conditions are incorrect or inconsistent. This is certainly a topic 
for further study. The experiment described in this paper demonstrates the need 
for a system which can use both heuristics and model-based reasoning. 
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Chapter 6 

Future Work 

This chapter outlines the broad requirements and approaches for a generalized prob
lem solving system in molecular genetics. It describes several AI mechanisms that 
may prove useful in developing later versions of the GENEX II program. It assumes 
that in later versions of the system, a major concern will be limiting the complexity 
of the program and the enormous amount of information with which it must deal. 

6.1 Meta-Reasoning 

GENEX II reasons about uncertainty by using the necessary conditions of the 
model it has made to assign values to the uncertain variables. In the current 
implementation, the necessary conditions for each model are given to the program. 
It should be possible for the pro~am itself to derive these conditions, since all the 
necessary information is contained in the knowledge base. The following example 
illustrates why this is difficult. 

Assume the system has decided that an operon is repressible. It does this by 
noting an inverse relationship between the product of the operon and some small 
molecule; which it assumes is the corepressor. The necessary conditions for repress
ibility are (1) that the repressor can bind to the operator, and (2) that the small 
molecule can bind to the.repressor. If the knowledge base contained rules .such. as 
"an active repressor must bind at the operator to switch the operon off," and "if 
the operon is repressible and the small molecule is bindable to the repressor, then 
the repressor is active," then the derivation of the necessary conditions would be 
trivial. The second rule is .in the knowledge base already. The first rule could be 
derived from existing rules by collapsing a chain of inferences, e.g. Rl: an operon 
is not expressed if it is not initiated, R2: it is not initiated if the RNA polymerase 
cannot bind to the promoter, R3: a molecule cannot bind to a site if something 
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is already bound there, R4: the repressor binding site of the operator overlaps the 
promoter, and finally, R5: an active repressor binds at the repressor binding site of 
the operator. 

Unfortunately, there is no easy way to extract these inferences from the encoding 
of the rules. For instance, R2 is the last clause of the rule to prove initiation can 
occur, and the preceding clauses are only there to restrict the variable in the call to 
BIND to a promoter. Many of GENEX II's rules mix clauses containing knowledge 
about operon structure, about the function of operon subparts, and about processes 
involving the operon, instead of representing each of these separately. If the dif
ferent types of knowledge were represented explicitly, it would be much simpler to 
recognize necessary conditions by analysis of the knowledge base. 

6.2 Analogy and Learning 

The system could decrease searching the problem space by determining whether 
the observations presented fit any known mechanism. H so, the system can attempt 
to transfer properties from the known mechanism to the new situation. I call this 
hypothesis formation by analogy. Indeed, the original goal of this project was to 
design a system that would hypothesize about eukaryotic gene regulation based on 
information it had about prokaryotic gene regulation. The system would do this by 
attempting to draw analogies between the prokaryotic and eukaryotic systems.1 The 
ability to reason by analogy would also enable the system to explain the structure 
and behavior of a new system by showing its similarity to an existing system. 

Patrick Winston has done work in the area of learning and reasoning by analogy. 
In an early paper, he introduces the trans/ er frame as a means of acquiring infor
mation from simile-like statements. For example, from the statement "John is like 
a fox," the system would conclude "John is clever." The simile determines a source 
frame and a destination frame. For the example given above, John is the destination 
and fox is the source. The transfer frame determines which property-value pairs 
are allowed to pass from the source to the destination. Winston proposes several 
criteria for determining which properties should be transferred: those which are 
exhibited to an unusual degree (very high or very low), those which are deemed 
globally important {such as purpose), and those which are filled in an unusual way 
relative to other descriptions in the same class as the source. H more than one trans
fer frame is generated, the frames are filtered according to the following method: 
pref er transfer frames that have properties which are present in the typical instance 

10f course, there is no reason why the system bas to be restricted to prokaryotic regulation 88 a 
source for &nalogy. It could use information a.bout regulation in lower forms of eukaryotes, or even 
information about systems from a. totally different fields. 
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or in some sibling of the destination, or prefer those that are in the context of the 
last transfer (if all else fails). 

A mechanism for hypothesizing by analogy would be very useful to a molecular 
genetics expert system. It might use a mechanism similar to Winston's transfer 
frames. Every process in the prokaryotic system could have a purpose or action. 
Then when an explanation was needed in the eukaryotic domain, the system would 
look for a process in the prokaryotic domain that had a purpose or action that 
matched the need. The system would then attempt to match the objects in the 
prokaryotic domain to objects in the eukaryotic domain, possibly using transfor
mations (for instance, one transformation might state that it is permissible to 
substitute one enzyme for another if they have similar functions) to aid the cor
respondence. The role of some object in the prokaryotic domain might be played 
by several objects in the eukaryotic domain; in this case the system would have to 
perform some transformation that would enable it to think of the group as a single 
entity for the purpose of translating the action of the mechanism. 

Research by Tom Mitchell in the areas of learning and problem solving also 
has application to the area of hypothesis formation by analogy. In particular, his 
recent work on generalization (wherein the problem solver attempts to formulate 
a heuristic given an application of an operator to a rule) describes a means by 
which the problem solver can create new terms to·use in de.fining its heuristics. 
Generalization would be used when formulating analogies to produce the transfer 
frames described above. 

The new work by Mitchell is particularly interesting because it claims to give the 
program the capability to formulate new relationships, instead of being restricted to 
those about which it has been told. The program creates new terms by propagating 
and combining constraints on the use of a sequence of operators. The domain of 
Mitchell's program, called LEX, is integral calculus, so the operators consist of 
approximately 50 transformations that can be applied to integrals, such as: 

J rf(x)dx ~ r J f(x)dx 

where r indicates a real number. 
Mitchell gives the follo'Ying example in which the program could create the new 

term odd integer. Consider the solution path shown in figure 6.1. 
State5 is a polynomial raised to some integer power. By propagation of this 

constraint backwards through the sequence of operators used, the program could 
determine that statel must match an instance of cos(:i:)dz, where c is constrained 
to satisfy the predicate real(c)and integer((c - 1)/2), which is the definition of odd 
integer. 

Using Mitchell's method, the new terms are created out of terms which appear in 
the operator definitions. There seems to be an essential set of terms which must be 
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statel : 

! 
state2 : 

! 
state3 : 

! 
state4: 

! 
state5 : 

f cos7(x)dx 
opl :. f'(x) => r- 1(x)f(x) 
f cos6(x) cos(x)dx 
op2: f'(x) ;:::> (/2(z))lr/2l 
f(cos2{x))3 cos(x)dx 
op3: cos2 (:z:) => {1 - sin2(z)) 
f(l - sin2(x)) 3 cos(x)dx 
op4: f g(f(x))f'(x)dx => f g(u)du,u = f(x) 
f(l - u2)3du, u =sin( end) 

Figure 6.1: Solution path for f cos1(x)dx 

predefined before any new terms can be created. For LEX's domain, this set would 
include integer, real number, function, etc. Any new terms which the system creates 
must derive from the basic set of terms provided. If a potential new term is truly 
novel, i.e. not derivable in whole from any pre-existing definitions, the program will 
be unable to define it. There is not even a way to ensure that a complete set of 
essential terms has been provided, for the same reason. This would limit the power 
of a hypothesis-forming system if all the essential terms have not yet been defined. 
However, even a combination of previously-known terms, such as Mitchell's method 
could generate, may provide new insight into a problem. 

6.3 Abstraction Spaces and Multiple Levels of 
Representation 

An abstraction space is a simplification of a given problem space in which unim
portant details a.re ignored. After a problem is solved in the abstraction space, all 
that is needed to complete the sol_ution is to account for those details in the original 
problem space, if this is possible. A hierarchy of abstraction spaces can be con
structed if the system is able to discriminate among several levels of detail. Objects 
appearing in the highest abstraction level a.re those most critical to the solution of 
the problem. Other objects appear in lower levels as they become necessary to fill in 
the gaps in the partial solutions created in the preceding levels. If a problem cannot 
be solved in a given abstraction space, control reverts to a higher abstraction .space. 
The problem solver eliminates the troublesome step and attempts to complete a 
new plan starting at that point in the higher space. Only then does control return. 

60 



to the lower space. 
In his 1974 paper on ABSTRIPS, Sacerdoti introduced the concept of a hierarchy 

of abstraction spaces. ABSTRIPS solves a problem in one abstraction space before 
beginning to plan in a lower space. In this way, steps that don't lead to the problem 
solution or that yield very inefficient plans can be eliminated early, before a great 
deal of effort has gone into planning the details of their execution. This saves the 
problem solver a lot of wasted work. The difficulty lies in determining which aspects 
of a problem are important and which are details. 

The concept of multiple levels of representation is complementary to abstraction 
spaces. If the user presents the system with a problem, the system would first try to 
solve it using the least detailed descriptions possible. If the details are not needed, 
they will only complicate the problem-solving process. If they are needed, then 
the system can always choose to .use them. The system would not always use the 
least detailed representation it has available, but it would use the least amount of 
detail that is sufficient to solve the problem. If the user asks for an elaboration 
of a solution, it might become necessary for the system to use a more detailed 
representation. 

Ramesh Patil's 1981 work on electrolyte and acid-base disorders examined mul
tiple levels of representation. Patil argued that knowledge represented at several 
levels of detail is necessary for complex reasoning. Patil implemented a system 
which used a multi-level model for representing diseases and causal phenomena. 
The deepest level consisted of pathophysiological knowledge about disease, while 
higher levels contained more syndromic knowledge. Patil states 

The aggregate syndromic knowledge provides us with a concise global 
perspective and helps in the efficient exploration of diagnostic alterna
tives. The ·physiological knowledge, on the other hand, provides us the 
capabilities of handling complex clinical situations ... , evaluating the 
physiological validity of the diagnostic possibilities being explored, and 
organizing a number of fragmented and seemingly unrelated facts into 
a coherent causal description 2• 

Each level of description can be viewed as a collection of nodes, each representing 
some state of a physiological parameter, and links, representing the relationships 
between different nodes. Some nodes can be defined in terms of a network of 
states, called the elaboration structure, at the next lower (more detailed) level of 
description. The multi-level description scheme also allows a single link in a higher 
level to represent a chain of links in a lower level. These are useful mechanisms for 
controlling the amount of detail that is dealt with at a.ny given time. 

2Patil 1981, p. «. 
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Three levels of representation - genetic, molecular, and atomic - should be suffi
cient for an expert system in molecular genetics. For example, the action of enzymes 
can be understood on several levels. On the least detailed level, the function of an 
enzyme is to catalyze the reaction of two chemicals (called substrates). If both 
substrates are present, it is assumed that the reaction will take place. On a more 
detailed level, the way an enzyme works is that each of the substrates binds to the 
enzyme, and then since they are physically close to each other, the reaction is more 
likely to occur. Thus the preconditions for the enzyme working at this level of detail 
are not only that the substrates are present, but that they are able to bind to the 
enzyme (i.e. their binding site is not blocked by anything). On the atomic level the 
conformations- of all three elements involved and the thermodynamics qf the reac
tion are important 3 . In attempting to explain some problem involving enzymes, 
the system will first use the least detailed model, and if it can complete the solution 
on that level, it will attempt to work out the solution in the more detailed model. 
GENEX II currently makes models and does simulation on the genetic level, except 
in the case of the BIND operation which is simulated on the molecular level. This is 
because GENEX II has no means of switching between levels, and most interesting 
events (i.e. those that the system would want to describe in more detail) occur 
during the bind operation. 

PEP'l'IDE (Weld, 1984) is a system which predicts genetic activity by simu
lating a combination of five basic processes (BIND, FOLD, SLIDE, DROP, and 
REACT). The five processes are discrete; "they either happen completely or not at 
all." A continuous process is generated from a repeated cycle of discrete processes. 
PEPTIDE can determine what will happen when a continuous process is run to the 
limit, i.e. until "a currently active discrete process will stop or an inactive one will 
start." For instance, PEPTIDE would represent transcription as a BIND opera
tion, followed by a continuous simulation of a REACT-SLIDE cycle, followed by a 
DROP. 

PEPTIDE represents processes on the molecular level described above. This 
level of detail is suitable for simulating a subpart of some larger process within the 
cell. It would not be appropriate for GENEX II to solve problems entirely on this 
level 4 for several reasons .. First, the molecular level often is too finely-grained to 
produce a satisfactory solution. Consider a problem in which a molecule is bound 
to DNA and blocks the movement along the DNA strand of an enzyme such as RNA 
polymerase. The exact location of binding is probably not essential to the solution 
of the problem; the general region of the DNA strand (e.g. transcribed region) is. 

3Much of the icl"ormation required to model molecular genetics on the atomic level is still unknown 
in the domain. 

'hut note that Weld never claims that PEPTIDE should be used to solve any entire real problems. 
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A program which reasoned only on the molecular level might have to simulate the 
consequences of blocking the RNA polymerase at every one of 1000 specific sites 
along the DNA strand 5• 

The second reason why it is difficult to reason entirely on the molecular level 
is that there is not enough fundamental knowledge about the physical chemistry 
of these processes to predict the interaction of two macromolecules. Therefore 
any solution reached by simulation alone would have to simulate every possible 
interaction. 

Finally, many of the heuristics used by molecular biologists (and by GENEX II's 
model-maker) to select a likely model for the operon's behavior deal with objects 
on the genetic level. A higher-level view of the system is needed to reduce the 
complexity of the solution space, and also to resolve the potentially conflicting 
results of the multiple simulations. The lower-level view would allow the system to 
elaborate on its solutions. 

6.4 Constraints 

Constraints can sometimes be used . to cut off a particular branch of speculation. 
Suppose the system hypothesized that a protein was preventing DNA from being 
transcribed by binding to the DNA and blocking the binding site for RNA Poly
merase II. The typical binding site is between 15 and 40 nucleotides in length, so 
the binding site of the protein would have to be approximately that size to cover 
it. Now perhaps the system had previously constrained the protein to be smaller 
than this, to support the hypothesis that the protein got into the nucleus by pass
ing through the nuclear membrane. These two constraints are not simultaneously 
satisfiable, so the system can abandon this line of reasoning. 

Constraints a.re a very common device in artificial intelligence reasoning sys
tems. MOLGEN {Stefik, 1981), a program that plans gene cloning' experiments in 
molecular genetics 6 uses constraints to coordinate separate subproblems because 
MOLGEN breaks up a problem into subproblems that a.re solved independently. 
Constraints that represent the interactions of these subproblems ensure that the 
various solutions interface correctly. A typical constraint might state that the en
donuclease used in step six should not cut the gene inserted in step two. MOLGEN 

5PEPTIDE shifts its focus to the larger scale in this instance, too: its "qualitative representation 
of quantities (including positions on a chain} only contains information like 'a repressor is bound 
between the promoter and the gene.' " 

6In addition to the work reported by Stcfik, there has been a considerable amount of additional 
work done in the areas of representing the knowledge needed to do planning in molecular genetics, 
building up knowledge bases (Friedland, 1982}, and experiment planning. 
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identifies three operations on constraints: formulation, propagation, and satisfac
tion. Constraint formulation is the adding of new constraints as the design process 
progresses. Usually, the constraints become more detailed during the solution pro
cess. Constraint propagation brings together constraints from the separate subprob
lems. MOLGEN uses a least commitment strategy-it avoids instantiating variables 
in the constraints for as long as possible. This gives it the greatest number of op
tions for constraint satisfaction, finding values that satisfy the constraints on the 
problem. 

6.5 Representation 

There are two problems of knowledge representation that must be considered in any 
expert system: how the knowledge is represented internally and how the knowledge 
is represented for the user. In a molecular genetics expert system, the internal 
representation must facilitate the representation of several kinds of knowledge: facts 
about molecular biology (which can be as diverse as strings of letters representing 
nucleotide sequences or a procedure that encodes the behavior of a polymerase), 
knowledge about processes and how to reason about them, and knowledge of how 
to formulate hypotheses. 

As discussed in the section on meta-knowledge, GENEX II's reasoning power is 
restricted by a representation which does not distinguish between different types of 
knowledge (about structure, processes, and interactions). A .knowledge representa
tion system proposed by Brian Smith in 1978 seems suited to encoding .knowledge 
about the objects and operations of molecular genetics. The representation was 
based on a division of knowledge between the "anatomical" (how is x structured?) 
and ''physiological" (how does x work?). The representation could also be used to 
encode processes. Smith classified potential questions that might be asked of the 
system into requests for information (e.g. "what is X?" and ''how do X and Y re
late?"), verification of suggestions ("is it true that ... ?"),and hypotheticals ("what 
would happen if ... ?"). 

Smith's proposed knowledge representation system seems to clarify the distinc
tion between the different types of knowledg~ in the system. The capabili.ty to 
answer the above types of questions could seI"Ve as the framework for the hypothesis
forming mechanism in a molecular genetics expert system. 

A representation such as the one described by Smith would also facilitate the 
representation of spatial and quantitative information. 

How an expert system's knowledge is represented to the user is a serious con
sideration. I believe that new domain information s~ould be entered by the experts 
themselves. Molecular biology knowledge that must first pass through the com-
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puter scientist is subject to possible oversimplification, misinterpretation and plain 
errors. A related problem is that in a field where new information is being discov
ered rapidly, the knowledge base of a system such as the one proposed can easily 
become obsolete. Facilitating addition of new information by the experts themselves 
should be a primary goal of the knowledge-acquisition mechanism of a molecular 
genetics expert system. 

6.6 Control Structure 

In a system a,s complex a.S this, there is an advantage to separating solving the 
problem from planning the strategy of how to solve the problem. This is called a 
layered control structure. 

Stefik described a layered control structure that separated decisions about plan
ning steps in the laboratory from decisions about what strategy to use in planning 
the problem so.lving process. MOLGEN divided the problem solver into three levels, 
called planning spaces . 

. The lowest level, the domain space, in a molecular genetics system contains 
knowledge abo~t the objects and operations inside the nucleus of a cell. The opera
tions are actions that would be carried out in a real ceµ (for example, REPLICATE). 
The doniain space is not a control level. The GENEX II knowledge base corresponds 
to MOLGEN's domain space. 

The design space is a. control level that contains knowledge about how to solve 
a problem. The operators (such as PROPOSE-OPERATOR and PROPAGATE
CONSTRAINT) create and arrange steps in domain space. 

The highest control level is strategy space. The strategizer controls the design 
operators that solve the problem. It contains operators such as USE-ANALOGY 
and USE-MORE-DETAIL. This level also controls the use of abstraction spaces. 
The model-maker in GENEX II is a simplified version of MOLGEN's strategy space. 
If GENEX II encoded some expert techniques for formulating hypotheses, these 
would be used at the strategy level. 

An advantage of this approach is that by dividing the different levels of the plan
ning process into separate domains, the complexity of the problem solving process is 
reduced. Another advantage is that being able to reason about the planning process 
makes the problem solver better at setting priorities and scheduling subgoals. 
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6. 7 The Role of Complexity Reducing Mechanisms 
in Genex 

It would be useful for a molecular genetics expert system to include features from 
the systems described above. I assume that the knowledge base will be sufficiently 
complex that attempting to solve the problem in a very detailed fashion right away 
is not efficient-there are just too many possibilities at each point in the process. 
Rather, a molecular genetics expert system would have to work out the broad 
outlines of the solution first, and add the details gradually. I think that this is the 
way that human experts work, too. Such a system would use techniques from truth 
maintenance to keep track of what things it believed to be true while it examined 
different possible explanations for a problem. None of the systems described above 
contain all the mechanisms that the molecular genetics system should incorporate. 
For instance, neither ABSTRIPS nor MOLGEN use the idea of truth maintenance 
which would allow them to reason about a projected course of action or events. 
This is necessary to examine the consequences of proposed hypotheses. ABEL 
has the limitation that all relationships between states are represented by causal 
links. This is not sufficient to represent all possible interactions. For example, it 
has been observed that regions of DNA that are hypermethylated tend not to be 
transcribed. It is not known whether the relation:ship between hypermethylation 
and reduced gene activity is causal, but in Patil's system we would have no choice 
but to represent it as such. 

Issues that should be addressed when designing a molecular genetics expert 
system include: 

• What knowledge do experts use to select the most promising refinements (and 
rule out the least likely) at each step in the problem solving process. 

• How to control the amount of detail. When do you need more detail and when 
do you need to step back and look at the larger picture? 

• How to limit the search space of possible hypotheses. Can some possibilities 
be eliminated a priori, and if so, how do you identify them? How to "zero in" 
on an answer. 

• How can analogies help. in formulating hypotheses? 

6.8 Analyzing Laboratory Data 

It may be~ome desirable to extend GENEX II so that it would be capable of un
derstanding biological data; e.g, interpretation of gel patterns and enzyme activity· 
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studies, etc. While the inability to interpret laboratory data does necessarily pre
vent GENEX II from solving a given problem, it makes it necessary for the problem 
to be pre-processed into a form that GENEX II will understand. This is time
consuming and might limit the system's usefulness. 

In order to analyze laboratory data, GENEX II must have the ability to do 
macro-level reasoning, as described above. Weld (1984) introduces a process called 
aggregation which could give GENEX II this capability. As Weld describes it, 

The system starts by simulating the effects of discrete processes until 
it recognizes a cycle ... where aHdiscrete processes ar.e repeated. It then 
aggregates the trace of a single iteration of the cycle of discrete process 
executions, producing a continuous process. 

Although Weld demonstrates aggregation on his molecular-level operations, there 
appears to be no reason why the same technique could not be applied to GENEX 

Il's genetic-level operations, so that the system could reason about approximate 
amounts of gene product made, etc. Some technique for reasoning about the re
sults of aggregation is necessary for GENEX II to do macro-level reasoning. For 
example, the aggregation of a continuous process of DNA replications would result 
in all the resulting DNAs being identical, if the original replication (the one that 
started the cycle going) produced two identical strands. Given a DNA molecule with 
both strands methylated 7 and if told that there was no maintainance methylase, 
the system could correctly conclude that the net result would be unmethylated 
DNA, since the original replication ·would produce one methylated and one non
methylated strand in each copy. The actual implementation of Weld's aggregation 
system in G ENEX II would not require major system redesign, and is a possible 
future improvement to the system. 

7having methyl groups attached to the cytOBine residues. 
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Chapter 7 

Conclusion. 

In this paper we examined two programs, both designed to solve the same types 
of problems in the same domain. The first program used compiled knowledge and 
empirical associati?ns, and the second, model-based reasoning. The first program, 
GENEX I, performed well, but because the domain knowledge was compiled into 
the rules, the knowledge base was difficult to extend, and the system could not 
access the knowledge to. produce explanations. In the second system, GENEX II, 
the domain knowledge is represented explicitly, and is thus easily extensible and 
available for generating explanations. 

Because rules match the current problem against a set of predetermined situa
tions, the number of problems that GENEX I could solve was limited to those 
which match the situations predetermined by the rules. In the GENEX II, the 
system creates possible models of the current problem and tests each one for con
sistency with the observed behavior of the operon 1• Theoretically, any problem 
derivable from the model can be handled by the second program. 

As alway.a, there are tradeoffs. GENEX II required a more complicated control 
structure to reduce the amount of search. Its more detailed knowledge created 
more steps in the inference chains, resulting in a slower-executing program. The 
performance ot the system would be improved if it could use both heuristic and 
model-based reasoning. 

The GENEX programs aemonstrate that it is possible to apply artificial intelli
gence successfully to the solution of certain types of problems in molecular genetics. 
Problems in molecular genetics are complicated by uncertainty introduced when rea
soning about conformations. Althougp a definitive solution to this problem must 
await advances in protein chemistry, GENEX II can reduce the number of possible 
solutions that must be verified by fonnulating likely models from the behavior of 

1This method is known as generate and te11t. 
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the system it is ex;i,mining. 
CENEX II 11ow reasons about bacterial operons, a small subpart of molecular 

genetics. If a future version .of CENEX is to represent other systems, such as cu
karyotic opcro11s, and use more of the available knowledge in the field, it will require 
the use of the A [ techniques discussed here in order to reduce the complexity of the 
system. 
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Appendix A 

Details of the Genex I Program 

A.1 Data Structures 

The primary data structure in GENEX I was a two-element list whose first element 
was an atom representing the physical structure of the operon being examined and 
whose second element represented the product of the operon {i.e. the protein coded 
for by the structural genes). Properties of the structure and gene product were 
attached to the property list of the corresponding element. This representation was 
chosen purely for the sake of expediency. 

One property of the operon structure that GENEX I used is its sequence. GENEX 
I stored the sequence of only one strand (preferably the one that is transcribed, 
if this is known) since the sequence of the complementary strand can easily be 
obtained from the known sequence. The sequence was stored as a list of characters 
(either A, T, G, or C). The reason for storing the sequence as a list rather that as 
a single multi-character atom (i.e. as "(A, T T G C)" rather than as "ATTGC") 
was to facilitate access to and manipulation of the individual nucleotides of the 
sequence. 

The structure property list also contained the properties INDUCIBLE {which has 
value t if the operon is inducible) and, similarly, REPRESS IBLE. The identity of the 
inducer or corepressor was. stored under the property INDUCER or COREPRESSOR. 

Other properties of the operon which might have been stored on its structure 
property list include its tertiary structure (e.g. the location of any hairpin loops or 
clover leaves), the location of any AT-rich or GO-rich segments, and the location of 
any repeat sequences. 

Properties of the gene product that GENEX I used are its purpose (i.e. the func
tion it serves for the organism, usually·either synthesis or digestion), its substrates, 
its end-product (if the gene product is used in a synthesis reaction), and whether 
production of the gene product is influenced by the presence of some other sub-
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stance in the cell (either proportionally or inversely). This information was used to 
determine the control structure of the operon-if it is inducible or repressible, what 
the inducer or co-repressor is, whether or not it is subject to attenuation. Not all 
these properties are applicable to all operons. 

If the program determined that it should examine the regulatory gene of the 
operon, it constructed a representation for the regulatory gene. This was very 
similar to the representation of an operon. It was a list with the form ( operon
name-REGULATORY-GENE operon-name-REGULATORY-PROTEIN). The sequence of the 
regulatory gene could be stored and used in the same way as that of an operon. 
The original GENEX did not use any properties of the regulatory protein. In any 
case, they would not have been the same properties as those used for the operon 
product. The latter were used to determine control structure, and since regulatory 
genes are not themselves regulated, those properties do not apply. A property of 
the regulatory protein which might have been used would be some aspect of its 
quaternary structure (e.g. monomeric or dimeric). This would have assisted the 
program in determining how the regulatory protein interacts with the operator. 

A.2 System Variables 

Before running the GENEX I program, the user had to set up certain variables that 
the program used. First, the program had to be given the operon, in the form of a 
two-element list as described above. Any properties of the operon discussed above 
might also have been given. The variable THINGS-PRESENT, which is a list of the 
substances present in the medium, was set. Finally, the user ran the INITIALIZE 
program. This asked the user if the gene product was made and whether there were 
any known mutations. It used the responses to set the following global variables: 

PROTEIN-MADE. This has value t if the operon's product is made, otherwise it 
has the value nil. 

INCREASED-AMOUNT-PROTEIN, DECREASED-AMOUNT-PROTEIN. If PROTEIN-MADE is 
t, the user is asked if it is made in a greater or lesser amount than normal. If made 
in a greater amount, INCREASED-AMOUNT-PROTEIN is set to t. If lesser, DECREASED
AMOUNT-PROTEIN is set to t, but PROTEIN-MADE is set to nil, since the causes of a 
decrease in amount made are, in general, the same as the causes of no production 
at all. 

KNOWN-MUTATION. This ·has· value t if there is a known mutation in the operon 
or regulatory gene, nil if it is definitely known that there is no mutation, and has 
the value unknown otherwise. 

MUTATION-LOCATION. If KNOWN-MUTATION is t, this can be set to indicate a mu
tation in the promoter, operator, or transcribed region of the operon, a mutation in. 
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the operon whose exact location is unknown (a "linke<l' mutation), or a mutation 
in the regulatory gene (an "unlinked" mutation). 

Finally, if the system was told about the behavior of pseudodiploids,1 it used 
this information to help determine whether the system is under positive or negative 
control. Having determined this, the INITIALIZE program could set the variables 
PC (positive control) or NC (negative control) or both to t. 

A.3 Control Structure of the Genex I Program 

All of the procedures described below are called with one argument, which is the 
operon being examined, unless otherwise stated. 

The user started up the system by invoking the genex program. This program 
passed control to one of the procedures XPLN-NO-PROTEIN (if PROTEIN-MADE is nil 
or if DECREASED-AMOUNT-PROTEIN is t) or XPLN-INC-PROTEIN (if PROTEIN-MADE is 
t). 

XPLN-NO-PROTEll divided the solution of the problem into three parts, cor
responding to the procedures it called: transcription-related causes (examined in 
the procedure XC-BUGlt translation-related causes (examined in XL-BUG), and post
translational causes 2• XPLN-INC-PROTEIN ~onsidered two possible ways to explain 
the behavior of the operon, one in terms of transcription (again using the procedure 
XC-BUG), and the other in terms of attenuation, using the procedure ATTENUATOR
BUG. 

XC-BUG checked to see if the behavior of the operon could be explained by some 
mechanism of transcription. It called the two procedures INITIATION-BUG and 
CHECK-ATTENUATION. 

The CHECK-ATTENUATION procedure encoded the knowledge that the system had 
about attenuation of transcription. If the sequence of the operon was not given, 
the procedure could go no further than suggesting the possibility of attenuation in 
operons involved in the synthesis of amino acids. If the leader sequence was given, 
however, a procedure ca.lled FIND-ATTEN-REG was called by CHECK-ATTENUATION. 
This procedure translated the nucleotide sequence into amino acids and could iden
tify a likely attenuator, if one exists. The criterion used for an attenuator was the 
occurrence of five codons for the end product amino acid in a sequence of eight 
adjacent codons following a start codon. This procedure would correctly identify 

1 A pseudodiploid is an operon of which some parts are represented twice. 

2 GENEX had no information about post-translational control, but this could have been added in 
a new procedure at some later date, and it would have been called from the XPLN-NO-PROTEIH 
procedure. 
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the attenuator region in five of the six known attenuated operons 3• 

The ATTENUATOR-BUG procedure called by XPLN-INC-PROTEIN used the FIND
ATTEN-REG procedure to check whether the increased protein production might be 
due to a deleted attenuator region. It did this by comparing the original sequence 
with the mutated sequence of the operon. 

Effects which occur at the time of initiation of transcription were divided by the 
INITIATION-BUG procedure into an enumeration of promoter-related control (in the 
procedure PROMOTER-BUG), operator-related control (in the procedure OPERATOR
BUG), control due to the presence or absence of the small molecule (examined in 
the procedure CHECK-REPRESSOR), and solutions which could be attributed to some 
positive control element (examined in the procedure POSITIVE-CONTROL-BUG. 

The XL-BUG procedure was responsible for reporting the possible effects of mu
tations in the translated region of the operon (or, if the system was examining the 
regulatory gene, mutations in that· gene). H the sequence of the operon was known, 
the CHECK-XL-MUTATION2 procedure was called which compared the original se
quence with the mutated sequence, looking for nonsense and missense mutations. 

The system examined the regulatory gene when the variable MUTATION-REGION 
was set to unlinked,. or when the variable KNOWN-MUTATION was set to unknown. 
The procedure-REG-GENE-MUTATION, which was called by XL-BUG and XPLN-INC
PROTEIN, examined the effect of regulatory gene mutations on the production of the 
regulated protein. 

CHECK-REPRESSOR, which was called by INITIATION-BUG as noted above, in 
turn called the procedures INDUCIBLE? and REPRESSIBLE? which determined if an 
operon is inducible or repressible, and INDUCER? and COREPRESSOR? which deter
mined whether a given substance is the inducer or corepressor of the operon. If the 
inducer or corepressor of the operon was not given by the user, CHECK-REPRESSOR 
attempted to determine what the inducer or corepressor is, using the procedures 
FIND-INDUCERS and FIND-COREPRESSORS. 

CHECK-REPRESSOR also called the procedure MUTATED-REPRESSOR. This proce
dure recursively invoked GENEX using the regulatory gene as the argument. CHECK
REPRESSOR reset many of the system variables to maintain consistency during the 
recursive call. The variable protein-made, which referred to the operon's product 
before the call, was stored in the variable regulated-protein-made for the dura
tion of the recursive call, while protein-made referred to the regulatory protein, 
the product of the regulatory gene. Since the system did not know whether or not 
the regulatory protein was made; CHECK-REPRESSOR called GENEX twice, once with 

3It would not recognize the trp attenuator, which contains only two adjacent trp codons. However, 
tryptophan is a rare amino acid, usually occurring only once in every 109 amino acids. An 
improved version of this procedure would take into account the relative frequencies of the amino 
acid residue.s when deciding how many adjacent residues coruititute an attenuator. 
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protein-made set to t and once with it set to nil. mutation-location, which previ
ously held the value unlinked, indicating a mutation outside the physical boundaries 
of the object under consideration, was reset to linked, indicating a mutation in the 
object currently being examined. There was no chance of CHECK-REPRESSOR getting 
caught in an infinite loop since regulatory genes are not themselves represented as 
having regulatory genes. 

The procedure POSITIVE-CONTROL-BUG examined two mechanisms of positive 
control: the cAMP-CAP complex, using the procedure CAP-BUG; and activators, us

. ing the procedure CHECK-ACTIVATOR. CHECK-ACTIVATOR was very similar to CHECK
REPRESSOR, and called all the same procedures. 

A.4 Knowledge Encoding in Genex I 

This section gives some examples of how the information presented in the previous 
chapter was encoded into the GENEX I program. 

A.4.1 Mutations 

GENEX I was guaranteed to give a correct solution only for problems involving a 
single mutation in the operon or its regulatory gene 4 • 

There are several aspects of a mutation that are important with regard to its 
effect on gene expression.· 

• Is the mutation located in the operon itself or in its regulatory gene? 

• If the mutation is in the operon, in what region-promoter, operator, tran
scribed region, or translated region? 

• Does the mutation increase or decrease gene expression? 

• Is the mutant dominant or recessive in a diploid? 

GENEX I used this information to help build a model of the operon's behavior. 
Of course, not all this information is always available to the program. 

G ENEX I had rules (encoded as decision trees) to help it model the behavior 
of the operon when a mutation is present. For example, it had a rule that says 
that dominant operator m~ta:iits cause constitutive synthesis in PC systems and 
are uninducible in NC syst-ems. 

'By ''single mutation," I do not mean a point mutation, but rather a mutation in one region of 
the operon. Thus GENEX I cannot reason about the combined effect of mutations in both the 
regulatory gene and the operator, for example. 
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If the nucleotide sequence of the operon was given, GENE I gave a very spe· 
ci.fic analysis of the cause of the operon's behavior. It would identify a mutation in 
the leader sequence that affects attenuation. If the mutation was in the promoter, 
G ENEX I would compare the mutated sequence and normal sequence with the tern· 
plate sequence, checking for the better match (since promoter strength correlates 
with how well the promoter matches the template). If it determined that the mu· 
tation was in the translated region of the gene, the CHECK-XL-MUTATION procedure 
would compare the mutated sequence with the normal one to find any nonsense or 
missense mutation. 

A.4.2 Determining Positive and Negative Control 

Since most known operons function under negative control, GENEX I assumed that 
the input operon is subject to negative control and tried to model the behavior using 
that assumption. It had rules for recognizing when an operon is also under positive 
control: if the -ope:ron codes for enzymes to digest a sugar other than glucose (in 
which case it is under the control of the cAMP-CAP complex), or if the deletion of 
the regulatory gene makes the protein uninducible. The behavior of pseudodiploids 
could also cause the program to consider positive control. 

A.5 Another Example 

Bacterium pedantia produces a protein, sporulin, that makes other bacteria 
sporulate ... Sporulin synthesis is inducible by chalk. In the absence of 
chalk a repressor produced by the gene spoR prevents expression of the 
Sporulin structural gene spoS. 

This is w_hat the program has been told about the Sporulin gene: 

spo 
(SPO-GENE SPORULIN) 

(plist 'spo-gene) 
(INDUCER CHALK INDUCIBLE T) 

Two spoR mutations are ·available. Strains carrying the mutation 
spoRl secrete sporulin whether or not chalk is present. Strains carry· 
ing spoR2 fail to produce Sporulin even when chalk is present. One of 
the two mutations is known to be missense, and the other is known to 
be nonsense. Which mutation,, is the missense one, and why? 
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First give G ENEX I the phenotype of the spoR1 mutation. 

Cini tialize spo) 
is SPO-GENE product made? YES 
in what amount? (increased or decreased) INCREASED 
is there a mutation in SPO-GENE? (yes, no, unknown) NO 
is there an unlinked mutation? (yes, no, unknown) YES 
was diploid constructed? NO 
DONE 

(GENEX spo) 
is SPO-GENE a regulatory gene? NO 
assuming no misfunction at SPO-GENE promoter 
assuming SPO-GENE can be repressed 
examining SPO-GENE-REGULATORY-GENE 
Is the regulatory protein made? (yes, no, unknown) UNKNOWN 
assume SPO-GENE-REGULATORY-PROTEIN is not made 
possible mutation at SPO-GENE-REGULATORY-GENE promoter preventing 

Pol from binding 
operon cannot be switched off without SPO-GENE-REGULATORY-PROTEIN 
QED 

RNA 

GENEX I claims that if the regulatory protein is not made, i.e. if spoR1 is a non
sense mutatio~, the operon cannot be switched off, which explains the constitutive 
behavior of the Sporulin gene. 

Now give the phenotype of the spoR2 mutation. 

(setq things-present '(arabinose lactose chalk)) 
(ARABINOSE LACTOSE CHALK) 

We tell it that chalk is present since strains with the spoR2 mutation don't 
produce sporulin even in the presence of the inducer. 

(initialize spo) 
is SPO-GENE product made? NO 
is there a mutation in SPO-GENE? (yes, no, unknown) NO 
is there an unlinked mutation? (yes, no, unknown) YES 
was diploid constructed? NO 
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DONE 

(genex spo) 

is SPO-GENE a regulatory gene? NO 
assuming no misfunction at SPO-GENE promoter 
assuming SPO-GENE can be repressed 
SPO-GENE is active in presence of CHALK 
examining SPO-GENE-REGULATORY-GENE 
Is the regulatory protein made? (yes, no, unknown) UNKNOWN 
assume SPO-GENE-REGULATORY-PROTEIN is not made 
now assuming SPO-GENE-REGULATORY-PROTEIN is made 
possible mutation in SPO-GENE-REGULATORY-GENE promoter causing 

superpromoter 
possible structural mutation in SPO-GENE-REGULATORY-PROTEIN preventing 

inducer from binding 
done examining SPO-GENE-REGULATORY-GENE 

GENEX I found no reasons for Sporulin not to be made if the regulatory protein 
is not made {implying that the mutation cannot be nonsense). It found two types of 
mutations in spoR that might cause Sporulin to be made in decreased amounts or 
not at all. One is a missense mutation that prevents the repressor from binding the 
i'nducer {possibly by eliminating the inducer binding site} which would prevent the 
repressor from attaining an inactive conformation. The other mutation it proposes 
is in the spoR promoter causing greater amounts of the regulatory protein to be made 
{a so-called "superpromoter" because it has a higher affinity for RNA polymerase). 
This would generally not be an explanation for the observed phenomenon unless 
there was only a limited amount of inducer present. 

The rest of the examination revealed n.o other possible explanations and is omit
ted. 
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Appendix B 

Genex II Program Listing 

This chapter contains the GENEX database as well as the code for the GENEX 
interpreter and the front end. Clauses encoding domain knowledge are expressed 
as arguments to a binary function called genex_clause to facilitate the use of the 
interpreter. For e:X:ample, if the original Prolog clause encoding a piece of domain 
knowledge was 

rule1(X,Y) :- a(X),b(Y)., 

it would be written as 

genex_clause(rule1(X,Y),[a(X),b(Y)]). 

to run under the GENEX interpreter. 

genex_clause(nt(t). []). 
genex_clause(nt(g), []). 
genex_clause(nt(c),[]). 
genex_clause(nt(u),[]). 

genex_clause(complement(a,t),[]). 
genex_clause(complemen~(g,c),[]). 

genex_clause(complement(t,a),[]). 
genex_clause(complement(c,g),{]). 

Y.f acts about operonsY. 
genex_clause(part_of(Operon, Promoter), 

[op~ron(Operon), promoter(Promoter)]). 
genex_clause(part_of(Operon, Operator), 

[operon(Operon), operator(Operator)]). 
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genex_clause(assoc(Operon, Reg_gene), 
[operon(Operon), reg_gene(Reg_gene)]). 

genex_clause(part_of(Operon, Struc_genes), 
[operon(Operon), 
setof(X, structural_gene(Operon,X), 
Struc_genes)]). 

genex_clause(part_of(Operon, T), 
[operon(Operon), terminator(T)]). 

genex_clause(ntseq([]),[]). 
genex_clause(ntseq([XIY]),[nt(X),ntseq(Y)]). 

genex_clause(enzyme(rna-pol),[]). 
genex_clause(enzyme(dna-pol),[]). 
genex_clause(protein(X),[enzyme(X)]). 
genex_clause(part_of(Enz,active_site1(Enz)),[enzyme(Enz)]). 
genex_clause(part_of(Enz,active_site2(Enz)),[enzyme(Enz)]). 
genex_clause(binding_site(Mol, active_site1(Enz)), 

· [substrate1(Enz,Mol)]). 
genex_clause(binding_site(Mol, active_site2(Enz)), 

[substrate2(Enz,Mol)]). 

genex_clause(promoter(P), 
[sequence(P,Seq),\+ sequence(P,[]), 
length(Seq,N), 
approx(N,40), 
contains_subseq(P,[t,t,g,a,c,a]), 
contains_subseq(P,[t,a,t,a,a,t,g])]). 

genex_clause(contains_subseq(X,[],0),[X=[]]). 
genex_clause(contains_subseq(X, [] ,0), [X=LI_]]). 
genex_clause(contains_subseq([HeadlP_tail],[HeadlS_tail],1), 

[S_tail•[])). 
genex_clause(contains_eub~eq([HeadlP_tail] ,[HeadlS_tail],1), 

[prefix_of(P_tail,S_tail)]). 

genex_clause(contains_subseq([_IP_tail],Subseq,Offset), 
[contains_subseq(P_tail,Subseq,N), 
Offset is N+1]). 
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genex_clause(header([XIY], [XIZ]), [Y=[]]). 
genex_clause(header([XIY],[XIZ]), [prefix(Z,Y)]). 
Y.the string X ... Y appears at the head of string X ... Y ... Z Y. 

genex_clause(prefix_of([XIY],[X]),[]). 
genex_clause(prefix_of([XIY] ,[XIZ]), [prefix_of(Y,Z)]). 

genex_clause(approx(N,M),[Tolerance is M/10, 
High is M+Tolerance, 
Low is M-Tolerance, 
N > Low, 
N <High]). 

genex_clause(length([] ,0),[]). 
genex_clause(length([HIT],N),[length(T,M),N is M+1]). 

genex_clause(member(X,[XI_]),[]). 
genex_clause(member(X, [_IList]), [member(X,List)]). 

genex_clause(gene(X),[reg_gene(X)]). 
genex_clause(gene(X),[structural_gene(X)]). 

genex_clause(protein(X), [reg_protein(X)]). 
genex_clause(reg_protein(X), [activator(Operon,X)]). 
genex_clause(reg_protein(X), [repressor(Operon,X)]). 
genex_clause(reg_protein(X), [product(Reg_gene,X), 

reg~gene(Reg_gene)]). 

genex_clause(present(Reg_pro),[reg_protein(Reg_pro)]). 
genex_clause(protein(X),[struct_protein(X)]). 
genex_clause(part_of(R,smbs(R)), 

[reg_protein(R), 
normal(R}]). 

genex_clause(part_of(R~ smbs(~)), 
[reg_protein(R),assuming(part_of(R,smbs(R)))]). 

genex_clause(amino_acid_seq([]),[]). 
genex_clause(amino_acid_seq([YIZ]),[protein(Y)]). 
genex_clause(amino_acid_seq([YIZ]),[amino_acid(Y), amino_acid_seq(Z)]). 
genex_clause(amino_acid(gly),[]). 
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genex_clause(amino_acid(ala),[]). 
genex_clause(amino_acid(val),[]). 
genex_clause(amino_acid(ileu), []). 
genex_clause(amino_acid(leu),[]). 
genex_clause(amino_acid(ser),[]). 
genex_clause(amino_acid(thr),[]). 
genex_clause(amino_acid(pro),[]). 
genex_clause(amino_acid(asp),[]). 
genex_clause(amino_acid(glu), []). 
genex_clause(amino_acid(lys),[]). 
genex_clause(amino_acid(arg),[]). 
genex_clause(amino_acid(asn),[]). 
genex_clause(amino_acid(gln),[]). 
genex_clause(amino_acid(cys)~[]). 

genex_clause(amino_acid(met),[]). 
genex_clause(amino_acid(trp),[]). 
genex_clause(amino_acid(phe),[]). 
genex_clause(amino_acid(tyr),[]). 
genex_clause(amino_acid(hls), []). 

genex_clause(codon([u,u,u] ,phe),[]). 
genex_clause(codon([u,u,c) ,phe),[]). 
genex_clause(codon( [u, u,a] ,leu), []). 
genex_clause(codon([u,u,g] ,leu),[]). 
genex_clause(codon([u,c,u] ,ser),[]). 
genex_clause(codon([u,c,c] ,ser), []). 
genex_clause(codon([u,c,a] ,ser), []). 
genex_clause(codon([u,c,g] ,ser),[]). 
genex_clause(codon([u,a,u) ,tyr),[]). 
genex_clause (codon( [u, a, c] , tyr) , []). 
genex_clause(codon([u,a,a] ,term),[]). 
genex_clause(codon([u,~.g],term),[]). 

genex_clause(codon([u,g,u] ,cys),[]). 
genex_clause(codon([u,g,c) ,cys),[]). 
genex_clause(codon([u,g,a] ,term),[]). 
genex_clause(codon( [u, g, g] , trp). []}. 
genex_clause(codon( [c,u,u} ,leu), []). 
genex_clause(codon( [c, u, c], leu) ,.[]). 
genex_clause(codon([c,u,a] ,leu),[]}. 
genex_clause(codon([c,u,g] ,leu),[]). 
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genex_clause(codon([c,c,u] ,pro),[]). 
genex_clause(codon([c,c,c] ,pro),[]). 
genex_clause(codon([c,c,a] ,pro),[]). 
genex_clause(codon([c,c,g],pro),[]). 
genex_clause(codon([c,a,u] ,his),[]). 
genex_clause(codon([c,a,c] ,his),[]). 
genex_clause(codon([c,a,a] ,gln),[]). 
genex_clause(codon([c,a,g] ,gln),[]). 
genex_clause(codon([c,g,u] ,arg),[]). 
genex_clause(codon([c,g,c] ,arg),[]). 
genex_clause (codon( [c, g, a] , arg), []). 
genex_clause(codon([c,g,g] ,arg), []). 
genex_clause(codon([a,u,u] ,ileu),[]). 
genex_clause(codon([a,u,c] ,ileu),[]). 
genex_clause(codon([a,u,a],ileu),[]). 
genex_clause(codon([a,u,g] ,met),[]). 
genex_clause(codon([a,c,u],thr),[]). 
genex_clause(codon([a,c,c] ,thr),[]). 
genex_clause(codon([a,c,a] ,thr),[]). 
genex_clause(codon([a,c,g] ,thr),[]). 
genex_clause(codon([a,a,u] ,asn),[]). 
genex_clause(codon([a,a,c] ,asn),[]). 
genex_clause(codon([a,a,a] ,lys),[]). 
genex_clause(codon([a,a,g] ,lys),[]). 
genex_clause(codon([a,g,u] ,ser),[]). 
genex_clause(codon([a,g,c] ,ser),[]). 
genex_clause(codon([a,g,a] ,arg),[]). 
genex_clause(codon( [a,g,g] ,arg), []). 
genex_clause(codon([g,u,u] ,val),[]). 
genex_clause(codon([g,u,c],val),[]). 
genex_clause(codon([g,u,a],val),[]). 
genex_clause(codon([g,u,g] ,val),[]). 
genex_clause(codon([g,c,u],ala),[]). 
genex_clause(codon([g,c,c],ala),[]). 
genex_clause(codon([g,c,a] ,ala),[]). 
genex_clause(codon([g,c,g] ,ala),[]). 
genex_clause(codon([g,a,u] ,asp),[]). 
genex_clause(codon([g,a,c] ,asp),[]). 
genex_clause(codon([g,a,a] ,glu),[]). 
genex_clause(codon([g,a,g] ,glu),[]). 
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genex_clause(codon([g,g,u] ,gly),[]). 
genex_clause(codon([g,g,c] ,gly), []). 
genex_clause(codon([g,g,a] ,gly), []). 
genex_clause(codon([g,g,g] ,gly),[]). 

genex_clause(binding_site(X,overlap_region(P,O)), 
[reg_protein(X), operator(O),promoter(P)]). 

genex_clause(binding_site(rna_pol,P),[promoter(P)]). 
genex_clause(binding_site(I,smbs(R)), 

[reg_protein(R), 
part_of(R,smbs(R)), 
assoc(O,RG), 
reg_gene(RG), 
product(RG,R), 
inducible(O), 
inducer(O,I)]). 

genex_clause(binding_site(C,smbs(R)), 
[reg_protein(R), 
part_of(R,smbs(R)), 
assoc(O,RG), 
reg_gene(RG), 
product(RG,R), 
repressible(O), 
corepressor(O,C)]). 

genex_clause(bind(Mol, Site), 
[binding_site(Mol, Site), Y.preconditionsY. 
complementary_conform(Mol,Site), 
\+ bound(X,Site), 

Y. free_to_bind(Mol), Y. 
asserta(genex_clause(bound(Mol,Site)))]) .. 

genex_clause(bind(Mol, Si~e), 

· [binding_site(Mol, Site), Y.preconditionsY. 
assuming(complementary_conform(M~l,Site)), 
\+ bound(X,Site), 

Y. free_to_bind(Mol), Y. 
asserta(genex_clause(bound(Mol,Site)))]). 

genex_clause(part_of(P,overlap_region(P,O)),[promoter(P),operator(O)]). 
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genex_clause(part_of(P,promoter_specific(P)), [promoter(P)]). 
genex_clause(part_of(O,overlap_region(P,O)),[operator(O),promoter(P)]). 
genex_clause(part_of(O,operator_specific(O)),[operator(O)]). 

genex_clause(same(X,X),[]). 

genex_clause(bound(Mol; P),[promoter(P), 
part_of(P, Promoter_part), 
bound(Mol, Promoter_part)]). 

genex_clause(bound(Mol, O),(operator(O), 
part_of(O, Operator_part), 
bound(Mol, Operator_part)]). 

genex_clause(bindable(X, Y), [bound(X, Y)]) .· 
genex_clause(bindable(X,Y),[bind(X,Y)]). 

genex_clause(complementary_conform(Reg_pro,overlap_region(P,Oper)), 
(operator(Oper), 
promoter(P), 
reg_protein(Reg_pro), 
normal(overlap_region(P,Oper)), 
active(Reg_pro)]). 

genex_clause(complementary_conform(Mol, Regpro),(operon(O), 
assoc(O,RG), 
product(RG,Regpro), 
smmol(O,Mol), 
present(Mol), 
normal(Regpro)]). 

genex_clause(smmol(O,Mol),(inducer(O,Mol)]). 
genex_clause(smmol(O,M?l),[corepressor(O,Mol)]). 
genex_clause(complementary_conform(rna_pol,P),[promoter(P), 

\+ bad_rna_conform(P)]), 

genex_clause(unbind(Mol,Site), (retract(bound(Mol,Site))]). 

Y.Y.Y. this clause states the requirements for an operon to be expressed 
r.r.r. 
genex_clause(expressed(Operon),(operon(Operon), 
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initiated(Operon),!, 
not_attenuated(Operon),!, 
xcribe(get_gene_seq(Operon),Xcripts),!, 
xlate(Xcripts,Protein)]). 

'I. processed(Protein). Y. 
'I. processed includes termination_ok (if not msg could be unstable) 'I. 

'l.'l.'I. if operon is not initiated, the above will fail, but we want it 'l.'l.'I. 

'l.'l.'I. to keep looking for other reasons, so run it from the next step 'l.'l.Y. 

'l.'l.'I. if we have gotten this far and no sequence is given, we cannot con
clude 'l.'l.'J. 

Y.'l.'I. anything about transcription or translation, so just stop and fail. 
'l.Y.'I. 

genex_clause(expressed(Operon),[print('transcription cannot initiate'),nl, 
print('checking other explanations'),nl,!, 
operon(Operon), 
not_attenuated(Operon),!, 
get_gene_seq(Operon,[]),!,fail]). 

Y.'l.Y. otherwise continue to see if you can find problems in transcription 
Y.'I.'!. 

'!.'!.'I. or translation. 'J.'J.'I. 

genex_clause(expressed(Operon),[print('transcription cannot initiate'),nl, 
print('checking other explanations'),nl,!, 
operon(Operon), 
not_attenuated(Operon),!, 
get_gene_seq(Operon,[SeqJRest]),!, 
xcribe([SeqlRest],Xcripts),!, 
xlate(Xcripts,Protein)]). 
'I. processed(Protein). 'I. 

genex_clause(expressed(Operon),[operon(Operon), 
print('checking other explanations'),nl, 
get_gene_seq(Operon,[Seql~est]),!, 

xcribe([SeqlRest],Xcripts),!, 
xlate(Xcripts,Protein)]). 
'!. processed(Protein). Y. 

'l.Y. if you get this far, you can't prove operon expressed, so fail. Y.'I. 
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genex_clause(expressed(Operon),[operon(Operon),!,fail]). 

Y. If there is no sequence given for the operon, it should be Y. 
Y. entered as [] Y. 

genex_clause(get_gene_seq(O,[]),[sequence(O,[])]). 
Y.Y.Y. get_gene_seq gets structural gene sequence from operon sequence. Y.Y.Y. 
Y.Y.Y. it is not implemented yet. Y.Y.Y. 

genex_clause(xcribe([] ,[]),[print('no sequence given ... '),nl]). 
genex_clause(xcribe([GenelRest] ,[MsglXcripts]), 

[sequence(Gene,Seq), 
transc(Seq,Msg), 
xcribe(Rest,Xcripts)]). 

genex_clause(transc([] ,[]), [print('no transcript created ... '),nl]). 
genex_clause(transc([FirstlRest] ,[MfirstlMrest]). 

[xc(First,Mfirst),transc(Rest,Mrest)]). 
genex_clause(xc(a,u),[]). 
genex_clause(xc(t,a),[]). 
genex_clause(xc(g,c),[]). 
genex_clause(xc(c,g),[]). 

genex_clause(xlate([], []),[print('no message to translate ... '),nl]). 
genex_clause(xlate([MsglRest] ,[Prot1!Proteins]), 

[transl(Msg,Prot1),xlate(Rest,Proteins)]). 

Y. have to look for the ribosome binding site for each transcribed gene 
in msg Y. 

genex_clause(transl(M,Protein), 
[contains_subseq(M, [a,g,g,a] ,N), Y. the rib. bind site Y. 
index(M,N,Substr), Y.ignore seq upstream of rib bind site% 
get_start~codon(~ubstr,O,XL), 
xl(XL,Protein)]). 

genex_clause(get_start_codon(Msg,20,_),[fail]). 
Y. start codon is within 13 nt of bind site Y. 

genex_clause(get_start_codon(Msg,Offset,XL), 
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[Start_point is Offset+10, 
length(Msg,L), 
L > Start_point, 
index(Msg,Start_point,Head),!, 
prefix_of(Head,[a,u,g]), XL=Head]). 

genex_clause(get_start_:codon(Msg,Offset,XL), 
[Start_point is Offset+10, 
length(Msg,L), 
L > Start_point, . 
index(Msg,Start_point,Head),!, 
New_offset is Offset+!, 
get_start_codon(Msg,New_offset,XL)]). 

genex_clause(index([],_,[]), []). 
genex_clause(index(String,1,String),{]). 
genex_clause(index([_ITail] ,I,Substr), 

[J is I-1, index(Tail~J,Substr)]). 

genex_ciause(xl([], []),[]). 
genex_clause(xl([Nt1,Nt2,Nt31Rest] ,[Amino11Aminos]), 

[codon([Nt1,Nt2,Nt3],Amino1), 
Amino1=term, 
Aminos=[]]). Y. termination case Y. 

genex_clause(xl([Nt1,Nt2,Nt31Rest] ,[Amino11Aminos]), 
[codon([Nt1,Nt2,Nt3],Amino1), 
xl(Rest,Aminos)]). 

Y. have to take care of error cases Y. 
genex_clause(proper_xcript(M), 

[\+ nonsense_mut(M),! ,\+ missense_mut(M), !]). 

genex_clause(anabolic_proc(digestion),[]). 
genex_clause(catabolic_proc(synthesis),[]). 

Y. how to tell if an operon is inducible Y. 
Y. if the operon doesn't fit either of these rules, Y. 
Y. then guess either or both Y. 
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genex_clause(inducible(O),[operon(O), 
structural_gene(O,Gene), 
product(Gene,Prod), 
purpose(Prod,Proc), 
catabolic_proc(Proc)]). 

genex_clause(inducible(O),[operon(O),inducer(O,I)]). 

genex_clause(repressible(O), [operon(O), 
structural_gene(O,Gene), 
product(Gene,Prod), 
purpose(Prod,Proc), 
anabolic_proc(Proc)]). 

genex_clause(repressible(O),[operon(O),corepressor(O,C)]). 

genex_clause(inducer(O,I),[operon(O), 
structural_gene(O,Gene), 
product(Gene,Prod), 
substrate(Prod,I), 
proportional_to(Prod,I), 
repressor(O,R), 
bindable(I,R)]). 

genex_clause(inducer(O,I), 
[operon(O), 
structural_gene(O,Gene), 
product(Gene,P), 
dir_rel (I ,P)]). 

genex_clause(corepressor(O,C),[operon(O), 
structural_gene(O,Gene), 
product(Gene,Prod), 
end_product(Prod,C), 
inv_proportional_to(Prod,C), 
repressor(O,R), 
bindable(C,R)]). 

genex_clause(corepressor(O,C), [operon(O), 
structura+_gene(O,Gene),product(Gene,P), 
inv_rel(C,P)]). 

genex_clause(initiated(Op),[operon(Op), 
part_of(Op,P), 
promoter(P), 
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bindable(rna_pol,P)]). 

genex_clause(bad_rna_conform(P), [promoter(P), 
normal(P), 
operon(Op), 
part_of(Op,P), 
neg_control(Op), 
repressor(Op,R), 
part_of(Op,O), 
operator(O), 
bindable(R,overlap_region(P,O))]). 

genex_clause(bad_rna_conform(P), [promoter(P), 
normal(P), 
operon(Op), 
part_of(Op,P), 
possible_pos_control(Op), 
activator(Op,A), 
part_of(Op,O), 
operator(O), 
inactive_activator(A,O,P)]). 

genex_clause(inactive_activator(A,O,P),[\+ active(A)]). 
genex_clause(inactive_activator(A,O,P), 

[\+ bindable(A,overlap_region(P,O))]). 

genex_clause(neg_control(Op),[operon(Op)]). 
Y. most operons· are under negative control Y. 

genex_clause(possible_pos_control(Op),[glucose_sensitive(Op)]). 
genex_clause(possible_pos_control(Op), [assuming(pos_control(Op))]). 

genex_clause(glucose_sensitive(Op),[operon(Op), 
structural_gene(Op,X), 
produc:t(X,P), 
purpose(P, catabolism(S)), 
sugar(S)]). 

genex_clause(sugar(lactose),[]). 
genex_clause(sugar(galactose), []). 
genex_clause(sugar(arabinose), []). 
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genex_clause(sugar(maltose),[]). 

genex_clause(activator(Op,cap), [operon(Op),glucose_sensitive(Op)]). 
genex_clause(inducible(cap),[]). 
genex_clause(inducer(cap,cAMP),[]). 
genex_clause(present(cAMP),[\+ present(glucose)]). 

genex_clause(active(Reg_protein), 
[reg_protein(Reg_protein), 
active_smmol_conform(Reg_protein)]). 

genex_clause(active(Reg_protein), 
[reg_protein(Reg_protein), 
assuming(active_smmol_conform(Reg_protein))]). 

genex_clause(active_srnmol_conform(R), 
[repressor(Op,R), 
normal(R), 
inducible(Op), 
\+ inducer(Op,I)]). 

genex_c~ause(active_smmol_conform(R), 

[repressor(Op,R), 
normal(R), 
inducible(Op), 
inducer(Op,I), 
\+ bindable(I,smbs(R))]). 

genex_clause(active_smmol_conform(R), 
[repressor(Op,R), 
phenotype(Op,inducible), 
\+ inducer(Op,I)]). 

genex_clause(active_smmol_conform(R), 
[repressor(Op,R), 
phenotype(Op,inducible), 
inducer(Op,I), 
\+ bindable(I,smbs(R))]). 

genex_clause(active_smmol_conform(R), 
[repressor(Op.R), 
normal(R), 
repressible(Op),. 
corepressor(Op,C), 
bindable(C,smbs(R))]). 
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genex_clause(active_smmol_conform(R), 
[repressor(Op,R), 
phenotype(Op,repressible), 
corepressor(Op,C), 
bindable(C,smbs(R))]). 

genex_clause(active_smmol_conform(A), 
[activator(Op,A), 
normal(A), 
inducible(Op), 
inducer(Op,I), 
bindable(I,smbs(A))]). 

genex_clause(active_smmol_conform(A), 
[activator(Op,A), 
phenotype(Op,inducible), 
inducer(Op,I), 
bindable(I,smbs(A))]). 

genex_clause(active_smmol_conform(A), 
[activator(Op,A), 
normal(A), 
repressible(Op), 
\+ corepressor(Op,C)]). 

genex_clause(active_smmol_conform(A), 
[activator(Op,A), 
normal(A), 
repressible(Op), 
corepressor(Op,C), 
\+ bindable(C,smbs(A))]). 

genex_clause(active_smmol_conform(A), 
[activator(Op,A), 
phenotype(Op,repressible), 
\+ corepressor(Op,C)]). 

genex_clause(active_smmol_conform(A), 
[activator(Op,A), 
phenotype(Op,repressible), 
corepress~r(Op,C), 

\+ bindable(C,smbs(A))]). 

genex_clause(normal(X),[\+ mutated(X),\+ assuming(mutated(X))]). 
genex_clause(normal(Y),[gene(X),product(Y,X),normal(X)]). 
genex_clause(repressor(Op,R), 
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[operon(Op), 
neg_control(Op), 
assoc(Op,Reg_gene), 
reg_gene(Reg_gene), 
product(Reg_gene,R)]). 

genex_clause(activator(Op,A), 
[operon(Op), 
possible_pos_control(Op), 
assoc(Op,Reg_gene), 
reg_gene(Reg_gene), 
product(Reg_gene,A)]). 

genex_clause(not_attenuated(Op), 
[seq(Op,Seq),\+ Seq= [], 
structural_gene(Op,X), 
product(X,Prod), 
purpose(Prod,synthesis), 
product(Prod,Amino_acid), 
amino_acid(Amino_acid), 
present(Amino_acid), 
codons(Amino_acid,Codons), 
find_atten_reg(Seq,Codons),!,fail]). 

genex_clause(not_attenuated(Op), 
[seq(Op, []), 
structural_gene(Op,X), 
product(X,Prod), 
purpose(Prod,synthesis), 
product(Prod,Amino_acid), 
amino_acid(Amino_acid), 
present(Amino_acid), 
print(Op),print(' is possibly attenuated'),nl,!,fail]). 

present (Amino_acid)., 
print(Op),p~int(' is possibly attenuated'),nl]). 

genex_clause(find_atten(Seq,Codons), 
[find_atten2(Seq,Codons,O,O,[])]). 

genex_clause(find_atten2([],C,length,clength,atten_seq),[fail]). 
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Y. the following four clauses determine the likely model of Y. 
Y. the operon's behavior. Y. 

Y. the following four clauses determine the likely model of Y. 
Y. the operon's behavior. Y. 

create_model(O,Remove,Assumptions,Mode) :- genex_clause(operon(O),[]), 
genex_clause(observed_expressed(O),[]), 
no_influence(Smmol,O), 
((genex_clause(reg_gene(RG),[]), 
genex~clause(mutated(RG),[])); 

(genex_clause(part_of(O,Op),[]), 
genex_clause(operator(Op),[]), 
genex_clause(mutated(Op),[]))), 

precond(constitutive,0,Remove,Assumptions,Mode). 

create_model(O,Remove,Assumptions,Mode) :- genex_clause(operon(O),[]), 
genex_clause(observed_not_expressed(O), [] >., 
no_influence(Smmol,0), 
((genex_clause(assoc(O,RG),[]), 

genex_clause(reg_gene(RG),(]), 
genex_clause(mutated(RG),[])); 

(genex_clause(part_of(O,Op), []), 
genex_clause(operator(Op),[]), 
genex_clause(mutated(Op),[]))), 

precond(uninducible,0,Remove,Assumptions,Mode). 

create_model(O,Remove,Assumptions,Mode) :- genex_clause(operon(O),[]), 
genex_clause(structural_gene(O,Gene),[]), 
genex_clause(product(Gene,Prod),[]), 
genex_clause(dir_rel(Smmol,Prod),[]), 
precond(inducible,0,Re~ove,Assumptions,Mode). 

create_model(O,Remove,Assumptions,Mode) :- genex_clause(operon(O),[]), 
genex_clause(structural_gene(O,Gene),[]), 
genex_clause(product(Gene,Prod),(]), 
genex_clause(inv_rel(Smmol,Prod),[]), 
precond(repressible,O,Remove,Assumptions,Mode). 

no_influence(Smmol,O) :-
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genex_clause(operon(O),[]), 
genex_clause(structural_gene(O,Gene),[]), 
genex_clause(product(Gene,Prod),(]), 
\+ genex_clause(dir_rel(Smmol,Prod),[]), 
\+ genex_clause(inv_rel(Smmol,Prod),[]). 

Y. the following four clauses return a list of sets of conditions Y. 
Y. necessary for the model to be true. Each set separately is Y. 
Y. sufficient. These are used in terse mode. Y. 

precond(repressible,0, 
[[complementary_conform(X,smbs(RP)), Y. uncertain vars to remove 

complementary_conform(RP,overlap_region(P,Op))]], · 
[[smmol(X),reg_protein(RP),operator(Op), Y. make these Y. 

complementary_conform(X,smbs(RP)), Y. assumptions Y. 
complementary_conform(RP,overlap_region(P,Op))]] ,terse) 

:- name(O, Oname), 
append(Oname,"_promoter",Pname), 
name(P,Pname), 
append(Oname,"_operator",Opnarne), 
name(Op,Opname), 
append(Onarne,"_reg_gene",Rname), 
narne(R,Rnarne), 
append(Oname,"_reg_protein",RPname), 
narne(RP,RPname). 

precond(inducible,O, 
[[complementary_conform(X,smbs(RP)}, 

complementary_conform(RP,overlap_region(P,Op)}]], 
[[smmol(X),reg_protein(RP),operator(Op}, 

complementary_conform(X,smbs(RP)), 
complementary_conform(RP,overlap_region(P,Op})]],terse) 

:- name(O, On~me), 

append(Onarne, "_promoter" •. Pname}, 
name(P,Pname}, 
append(Oname,"_operator",Opnarne}, 
name(Op,Opnarne), 
append(Oname, 11 _reg_gene",Rname}, 
name(R,Rname), 
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append(Oname,"_reg_protein",RPname), 
name(RP,RPname). 
precond(constitutive,0, 

[[complementary_conform(RP,overlap_region(P,Op))], 
[complementary_conform(X,smbs(RP))]], 

[[not_complementary_conform(RP,overlap_region(P,Op))]. 
[not_complementary_conform(X,smbs(RP))]],terse) 

·- name(O, Oname), 
append(Oname,"_promoter",Pname), 
name(P,Pname), 
append(Oname,"_operator",Opname), 
name(Op,Opname), 
append(Oname,"_reg_gene",Rname), 
name(R,Rname), 
append(Oname,"_reg_protein",RPname), 
name(RP,RPname). 

precond(uninducible,O, 
[[complementary_conform(rna_pol,P)], 
[complementary_conf orm(Smmot ,smbs(RP))], 
[complementary_conform(RP,overlap_region(P,Op))]], 

[[not_complementary_conform(rna_pol,P)], 
[not_complementary_conform(Smmol,smbs(RP))], 
[reg_protein(RP),operator(Op), 
complementary_conform(RP,overlap_region(P,Op))], 

[not_complementary_conform(RP,overlap_region(P,Op))]] ,terse) 
·- name(O, Oname), 
append(Oname, 11 _promoter",Pname), 
name(P,Pname), 
append(Oname, 11 _operator",Opname), 
name(Op,Opname), 
append(Oname, 11 _reg_gene 11

1 Rname), 
name(R,Rname), 
append(Oname, "_reg_pro.tein" ,Rfname), 
name(RP,RPname). 

Y. The following four clauses are used in verbose mode. They do not Y. 
Y. include the assumptions about conformation so that the program Y. 
Y. will give a detailed description of the mechanism of the operon Y. 
Y. using model-based reasoning. Y. 
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precond(repressible,O, 
[], 

[[smmol(X),reg_protein(RP),operator(Op), 
complementary_conform(X,smbs(RP)), 
complementary_conform(RP,overlap_region(P,Op))]] ,verbose) 

:- name(O, Oname), 
append(Oname,"_promoter",Pname), 
name(P,Pname), 
append(Oname,"_operator",Opname), 
name(Op,Opname), 
append(Oname,"_reg_gene",Rname), 
name(R,Rname), 
append(Oname,"_reg_protein";RPname), 
name(RP,RPname). 

precond(inducible,0, 
[], 

[[smmol(X),reg_protein(RP),operator(Op), 
complementary_conform(X,smbs(RP)), 

complementary_conform(RP,overlap_region(P,Op))]] ,verbose) 
:- name(O, Oname), 
append(Oname,"_promoter",Pname), 
name(P,Pname), 
append(Oname,"_operator",Opname), 
name(Op,Opname), 
append(Oname,"_reg_gene",Rname), 
name(R,Rnalne), 
append(Oname,"_reg_protein",RPname), 
name(RP,RPn~me). 

precond(constitutive,0, 
[]. 
[[not_complementary_conform(RP,overlap_region(P,Op))], 
[not_complementary_conform(X,smbs(RP))]],verbose) 

·- name(O, Oname), 
append(Oname,"_promoter",Pname), 
name(P,Pname), 
append(Oname, 11 _operator",0pname), 
name(Op,Opname), 
append(Oname,"_reg_gene",Rname), 
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name(R,Rname), 
append(Oname,"_reg_protein",RPname), 
name(RP,RPname). 

precond(uninducible,O, 
[], 

[[not_complementary_conform(rna_pol,P)], 
[not_complementary_conform(Smmol,smbs(RP))], 
[reg_protein(RP),operator(Op), 
complementary_conform(RP,overlap_region(P,Op))], 

[not_complementary_conform(RP,over1ap_region(P,Op))]] ,verbose) 
·- name(O, Oname), 
append(Oname,"_promoter",Pname), 
name(P,Pname), 
append(Oname,"_operator",Opname), 
name(Op,Opname). 
append(Oname, 11 _reg_gene 11 ,Rname), 
name(R,Rname), 
append(Oname;"_reg_protein",RPname), 
name (RP_, RPname). 

Y.Y.Y. given the behavior, deduce a model of the behavior. Use the '!.'!.'!. 

'!.'!.'!. preconditions for the model to tell you what variables to '!.'!.Y. 

'!.'!.'!. assume '!.Y.Y. 

genex_clause(phenotype(O,derepressed), 
{operon(O), 
assoc(O,RG), 
reg_gene(RG), 
mutated(RG), 
observed_expressed(O), 
no_influence(Smmol,O), 

. asserta 
(genex_clause(phenotype(O,derepressed)))]). 

genex_clause(phenotype(O,derepressed), 
[operon(O), 
pa:r:t_of(O,Op), 
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operator(Op), 
mutated(Op), 
observed_expressed(O), 
no_influence(Smmol,0), 
asserta ---- -------- --·-

(genex_clause (phenotype (O, derepressed)))]). 

genex_clause(phenotype(O,superrepressed), 
[operon(O), 
assoc(O,RG), 
reg_gene(RG), 
mutated(RG), 
observed_not_expressed(O), 
no_influence(Smmol,O), 
asserta 

(genex_clause(phenotype(O,superrepressed)))]). 
genex_clause(phenotype(O,superrepressed), 

[operon(O), 
part_of(O,Op), 
operator(Op), 
mutated(Op), 
observed_not_expressed(O), 
no_influence(Smmol,0), 
asserta 

(genex_clause(phenotype(O,superrepressed)))]). 

genex_clause(phenotype(O,constitutive), 
[operon(O), 
assoc(O,RG), 
reg_gene(RG), 
mutated(RG), 
observed_expressed(O), 
no_influence(Smmol,0), 
assert a 

(genex_clause(phenotype(O,constitutive)))]). 
genex_clause(phenotype(O,constitutive), 

· [operon(O), 
part_of(O,Op), 
operator(Op), 
mutated(Op), 
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observed_expressed(O), 
no_influence(Smmol,0), 
assert a 

(genex_clause(phenotype(O,constitutive)))]). 

genex_clause(phenotype(O,uninducible), 
[operon(O), 
assoc(O,RG), 
reg_gene(RG), 
mutated(RG), 
observed_not_expressed(O), 
no_influence(Smmol,0), 
assert a 

(genex_clause(phenotype(O,uninducible)))]). 
genex_clause(phenotype(O,uninducible), 

[operon(O), 
part_of(O,Op), 
operator(Op), 
mutated(Op), 
observed~not_expressed(O), 

no_influence(Smmol,0), 
assert a 

_(genex_clause(phenotype(O, uninducible)) )] ) . 

genex_clause(phenotype(O,inducible), 
[operon(O), 
structural_gene(O,Gene), 
product(Gene,Prod), 
dir_rel(Smmol,Prod), 
asserta(genex_clause(phenotype(O,inducible)))]). 

genex_clause(phenotype(O,repressib1e), 
[o.peron(O). 
struc~ural_gene(O,Gene), 

product(Gene,Prod), 
inv_rel(Smmol,Prod), . 
asserta(genex_clause(phenotype(O,repressible)))]). 

genex_clause(no_influence(Smmol,0), 
[operon(O), 
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structural_gene(O,Gene), 
product(Gene,Prod), 
\+ dir_rel(Smmol,Prod), 
\+ inv_rel(Smmol,Prod)]). 

genex_clause(inc_affinity(Reg_pro,Oper), 
· [operon(O), 

part_of(O,Oper), 
operator(Oper), 
mutated(Oper), 
assoc(O,RG), 
reg_gene(RG), 
product(RG,Reg_pro), 
phenotype(O,uninducible)]). 

genex_clause(inc_affinity(Reg_pro,Oper), 
[operon(O), 
part_of(O,Oper), 
operator(bper)". 
mutated(Oper), 
assoc(O,RG), 
reg_gene(RG), 
product(RG,Reg_pro), 
phenotype(O,superrepressed)]). 

genex_clause(inc_affinity(Reg_pro,Oper), 
[operon(O), 
part_of(O,Oper), 
operator(Oper), 
assoc(O,R-0), 
reg_gene(RG), 
mutated(RG), 
product(RG,Reg_pro), 
phenotype(O,uninducible)]). 

genex_clause(inc_affinity(Reg_pro,Oper), 
[operon(O), 
part_of(O,Oper), 
operator(Oper), 
assoc(O,RG), 
reg_gene-(RG), 
mutated(RG), 
product(RG,Reg_pro), 
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phenotype(O,superrepressed)]). 

genex_clause(dec_affinitJ(Reg_pro,Oper), 
[operon(O), 
part_of(O,Oper), 
operator(Oper), 
mutated(Oper), 
assoc(O,RG), 
reg_gene(RG), 
product(RG,Reg_pro), 
phenotype(O,derepressed)]). 

genex_clause(dec_affinity(Reg_pro,Oper), 
[operon(O), 
part_of(O,Oper), 
operator(Oper), 
mutated(Oper), 
assoc(O,RG), 
reg_gene(RG), 
produci(RG,Reg_pro), 
phenotype(O,constitutive)]). 

genex_clause(dec_affinity(Reg_pro,Oper), 
· [operon(O), 

part_of(O,Oper), 
operator(Oper), 
assoc(O,RG), 
reg_gene(RG), 
uiutated(RG), 
product(RG,Reg_pro), 
phenotype(O,derepressed)]). 

genex_clause(dec_affinity(Reg_pro,Oper), 
[operon(O), 
part_of(O,Oper), 
operator(Oper), 
assoc(O,RG), 
r~g_gene(RG), 

mutated(RG), 
product (RG •. Reg_pro) , 
phenotype(O,constitutive)]). 

genex_clause(norm_affinity(Reg_pro,Oper), 
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[operon(O), 
part_of(O,Oper), operator(Oper), 
assoc(O,RG), reg_gene(RG), 
product(RG,Reg_pro), 
\+ phenotype(O,derepressed), 
\+ phenotype(O,superrepressed), 
\+ phenotype(O,constitutive), 
\+ phenotype(O,uninducible)]). 

genex_clause(complementary_conform(Reg_pro,overlap_region(P,Oper)). 
[reg_protein(Reg_pro),promoter(P),operator(Oper), 
inc_affinity(Reg_pro,Oper)]). 

genex_clause(complementary_conform(Reg_pro,overlap_region(P,Oper)), 
[operon(O),assoc(O,Reg_gene),reg_gene(Reg_gene), 
product(Reg_gene,Reg_pro), 
reg_protein(Reg_pro),active(Reg_pro), 
part_of(O,P),promoter(P), 
part_of(O,Oper),operator(Oper), 
phenotype(O,repressible)]). 

genex_clause(complementary_conform(Reg_pro,overlap_region(P,Oper)), 
[operon(O),assoc(O,Reg_gene),reg_gene(Reg_gene), 
product(Reg_gene,Reg_pro), 
reg_protein(Reg_pro),active(Reg_pro), 
part_of(O,P),promoter(P), 
part_of(O,Oper),operator(Oper), 
phenotype(O,inducible)]). 

genex_clause(c-omplementary_conform(X,smbs(RP)), 
[operon(O),assoc(O,RG),reg_gene(RG),product(RG,RP), 
reg_protein(RP),smmol(O,X),phenotype(O,repressible)]). 

genex_clause(complementary_conform(X,smbs(RP)), 
[operon(O),assoc(O,RG),reg_gene(RG),product(RG,RP), 
reg_protein(RP),smmol(O,X),phenotype(O,inducible)]). 

genex_clause(part_of(RP,smbs(RP)), 
[operon(O),assoc(O,RG),reg_gene(RG),product(RG,RP), 
reg_protein(RP) ,phenotype(O, repressiblel]). 

genex_clause(part_of(RP,smbs(RP)), 
[operon(O),assoc(O,RG),reg_gene(RG),product(RG,RP), 
reg_protein(RP) ,phenotypeC0.1 inducible)]). 

The following code comprises the GENEX interpreter. · 
. . 
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member(X, [XI_]). 
member(X,[_IL]) :- member(X,L). 

clause_uses(G,G). 
clause_uses(G,Clause) :- genex_clause(G,Body), 

(member(Clause,Body); 
member(\+ Clause.Body)). 

trivial(G) ·- repressible(O),clause_uses(G,inducible(O)). 
trivial(G) ·- inducible(O),clause_uses(G,repressible(O)). 
trivial(G) ··- inducer(O,I),clause_uses(G,corepressor(O,C)). 
trivial{G) ·- corepressor(O,C),clause_uses(G,inducer(O,I)). 
trivial(G) ·- \+ pos_control(O),clause_uses(G,pos_control(O)). 
trivial(G) ·- \+ neg_control(O),clause_uses(G,neg_control(O)). 
trivial(G) ·- genex_clause(G,[]). 
trivial(part~of(O,X)). 

trivial(assoc(O,X)). 
trivial(neg_control(O)). 
trivial(pos_aontrol(O)). 
tri vial.(reg_protein(RP)). 
trivial(repressor(O,RP)). 
trivial(activator(O,RP)). 
trivial(gene(X)). 
trivial(neg_control(O)). 
trivial(print(X)). 

Y. The following program runs the possible states. The 1ST ARG. Y. 
Y. is a list of lists of UNCERTAIN VARIABLE COMBINATIONS, Y. 
Y. representing the possible states that might be in effect. Y. 
Y. The 2ND ARG. is the OPERON that we want to simulate. All Y. 
Y. possible states in the list of states are tried. If the Y. 
Y. result of the simulation matches the observed behavior, then Y. 

Y. the list of assumptions which were made for the current run of Y. 
Y. the simulation is printed out, along with highlights of the Y. 
Y. simulation of the program. This program assumes that system Y. 
Y. variables which are not ·uncertain will be set up before this Y. 
Y. program is run. Y. 
try_possible_state([],Operon) :- Y. CASE: NO ASSUMPTIONS Y. 

(observed_expressed(Operon) -> prove(expressed(Operon))); 
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\+ prove(expressed(Operon)). Y. if it's not observed expressed Y. 

try_possible_st~te([AIB], Operon) :- Y. CASE: ASSUMPTIONS MADE Y. 
try_possible_states([AIB], Operon). 

try_possible_states([] ,_). 

try_possible_states([Newstate!Rest],Operon) ·
retract_asswnptions, 
make_assumptions(Newstate), 
((genex_clause(observed_expressed(Operon),[]), 

try_prove_expressed(Operon)); 
(genex_clause(observed_not_expressed(Operon),[]), 
try _prove_not_express_ed(Operon))), 

try_possible_states(Rest,Observed). 

try_prove_expressed(O) ·- prove(expressed(O)) ,ril,print('yes') ,nl. 
try_prove_expressed(O) ·- nl,print('no'),nl. 

try_prove_not_expressed(O) ·- \+ prove(expressed(O)),nl,print('yes'),nl. 
try_prove_not_expressed(O) ·- nl,print('no'),nl. 

Y. The following program actually interprets the genex_clauses Y. 
Y. in PROLOG Y. 

prove( Cl). 
prove([GoallRest]) :

genex_clause(Goal,Body), 
(\+ trivial(Goal) -> (print('goal: '),print(Goal),nl, 

print('attempting to prove: '),print(Body),nl);true), 
prove(Body), 
(\+ trivial(Goal) -> (print('proved: '),print(Goal),nl); true), 
prove(Rest). Y. this is for goals with more than one clause Y. 

prove([\+ Goal!Rest]) :- . 
(genex_clause(Goal,Body) -> (\+ prove(Body), prove(Rest))); 
prove(Rest). · 

prove([asserta(Assertion)]) :- asserta(Assertion). 
prove([print(X)IRest]) :- print(X),prove(Rest). 
prove([nllRest]) :- nl,prove(Rest). 
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prove(Goal) :-
\+ functor(Goal,'. ',_),%if goal is not a list Y. 
prove([Goal]). 

Y. MAKE_ASSUMPTIONS asserts assuming(_) for each uncertain variable % 
Y. in the list passed to it. Must be given a LIST. Note, however, Y. 
Y. that GENEX only looks for positive assumptions, the negative ones Y. 
Y. are used only for explaining the programs results (because in Y. 
Y. prolog, if there is no way to prove foo(X), it is the same as if Y. 
% we had explicitly stated \+ foo(X) ... ) Y. 

make_assumptions([]). 
make_assumptions([FirstlRest]) :

asserta(genex_clause(assuming(First), [])), 
print('assuming: '),print(First),nl, 
make_assumptions(Rest). 

% RETRACT-ASSUMPTIONS removes every instance of a clause of the Y. 
Y. form assuming(_) Y. 

retract_assumptions :- genex_clause(assuming(_)), 
retract(genex_clause(assuming(_))),fail. 

retract_assumptions. 

insert(Item,List,[ItemlList]). 
remove(Item,[itemlList],List). 

Y. make a list of uncertain variables Y. 

Y. make states set from list of uncertain variables Y. 
make_uncertain_sets ( [] , []) . 
make_uncertain_sets([Firs~IRest],[NewlNewrest]) ·
make_uncertain_set(First,New). 
make_uncertain_sets(Rest,Newrest),!. 

make_uncertain_set([],[]). 
make_uncertain_set([X],Set) :
X = .. [FunclArgs], 
name(Func,N), 
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append("not_",N,Neg), 
name(N1,Neg), 
Z = .. [N11Args]. 
Set= [ [X] , [Z] ] . 
make_uncertain_set([XIRest],Uncertain) :
make_uncertain_set([X] ,[X1,X2]), 
make_uncertain_set(Rest, [S1IS2]), 
add_to_set([S1IS2] ,X1,New1), 
add_to_set([S1IS2],X2,New2), 
append(New1,New2,Uncertain),!. 

% add-to-set takes as input a bigset of sets and a newset. It returns 
Y. 
Y. the result of appending newset to each set in bigset. Y. 

add_to_set(0,List1,[]). 
add_to_set([FirstlS2] ,X, [NewlRest]) ·
append(First,X,New), 
add_to_set(S2,X,Rest),t. 

subtract_sets([],Var_set,[Var_set]). 
subtract_sets((X] ,Var_set, [Newset]) :- subtract(Var_set,X,Newset). 
subtract_sets((SubtracteelRest],Var_set,(NewsetlNewrest]) :-

subtract(Var_set,Subtractee,Newset), 
subtract_sets(Rest,Var_set,Newrest),!. 

make_state~((],0 .0). 
make_states([Uncerts11UncertsN],[] ,States) ·- [Uncerts!IUncertsN] =States. 
make_states([Uncerts11UncertsN] ,(Conds11CondsN],States) :
add_to_set(Uncerts1,Conds1,States1), 
make_states(UncertsN,C~ndsN,StatesN), 

append(States1,StatesN,States),!. 

append((AIX] ,Y,[AIZ]) :- append(X,Y,Z). 
append([], Y, Y). 

same(X,X). 

genex ·- print('end every answer with a period followed by a CR!'), 
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nl.nl. 
print('solution mode (terse or verbose): '),read(Mode). 

print('name of operon: '),read(O), asserta(genex_clause(operon(O),[])), 
make_parts(O), 
print('are there any mutations in '),print(O),print(' or reg_gene.'), ·~··----·

print(' (yes, no, or unknown) ?'), nl, read(Mut), 
do_mutations(Mut,O,Sites), 

set_uncertain_vars(O,Sites,Uncert_vars), 
listtoset(Uncert_vars,Var_set), Y.no dup.elts in var_setY. 

print('is '),print(O),print(' gene product made?'),nl, 
read(Expressed), 
((same(Expressed,'yes') -> 
asserta(genex_clause(observed_expressed(O),[]))); 
(same(Expressed,'no') ~> 

asserta(genex_clause(observed_not_expressed(O) ,[]))); 
(same(Expressed,'predict') -> 
asserta(genex_clause(predict_expressed(O),[])))), 
print('enter any other information available '), 
nl, 
print('e.g. proportional_to(X,Y), inv_proportional_to(X,Y)'), 
print(', present(Substance), etc.'), nl, 
print('-- end with "done"'), nl. 
any_other_info(O), 
Y. if we are not in predict mode, can use observed behavior of operon to 
Y. 
Y. decide on the likely model of its behavior. Y. 
(( \+ same(Expressed, 'predict') -> 
Y. return uncertain vars to be removed and sets of conditions for model 
Y. 

. (create_model(O,Remove_these,Conditions,Mode), 
Y. the next clause subtracts each of the condition sets from the uncert. 
Y. 
Y. var.set in turn, yielding a number of uncert.var sets in which the Y. 
Y. remaining vars do not depend on some set of conditions Y. 

subtract_sets(Rem9ve_these,Var_set,Newsets), 
listtoset(Newsets,Newsets1), Y. get rid of dupl. sets Y. 

Y. make uncertain sets from the remaining uncertain var. sets and merge 
Y. 
Y. the conditions into their corresponding uncertain sets Y. 

make_uncertain_sets(Newsets1,Uncert_sets), 
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make_states(Uncert_sets,Conditions ,States),nl)); 
Y. in predict mode, we don't have the observed behavior and so cannot Y. 
Y. reduce the number of uncertain variables, so just use the original set. 
Y. 

(same(Expressed,'predict') -> 
make_uncertain_set(Var_set, Uncert_sets))), 

try_possible_state(States,0), 
print('do you want to try positive control? (yes or no)'),nl, 
read(PC), 
do_pos_control(PC,Set,0). 

do_pos_control('no' ,_,_) :- print('end of GENEX session.'),nl. 
do_pos_control('yes',Set,0) :
retract(genex_clause(neg_control(Operon))), 
assert(genex_clause(assuming(pos_control(O)),[])), 
print('assuming positive control ... '),nl, 
try_possible_state(O), 
assert(genex_clause(neg_control(O),[])), 
print('assuming positive and negative control ... '),nl, 
try_possible_state(O). 

do_mutations('no' ,0, []) :- assert(genex_clause(normal(O),[])). 
do_mutations('unknown',O,[pr~moter,operator,reg_gene,struct_genes,unknown]). 

· do_mutations('yes',0, Sites) :
print('mutation site known (yes or no) ?'),nl, 
read(Ans), 
(same(Ans,'no;) -> 

(Sites= [promoter,reg_gene,operator,struct~genes,unknown])); 
(same (Ans, 'yea') -> 

(get_mutation_sites(Sites, 
[promoter,reg_gene,operator,struct_genes]))). 

make_parts(O) :- name(O, Oname), 
append(Oname,"_promoter",Pnam~}. 
name(P,Pname), 
asserta(genex_clause(promoter(P),[])). 
append(Oname,"_operator",Opname), 
name(Op,Opname), 
asserta(genex_clause(operator(Op),[])), 
append(Oname, 11 _reg_gene 11 ,Rname), 
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name(R,Rname), 
asserta(genex_clause(reg_gene(R),[])), 
append(Oname,"_reg_protein",RPname), 
name(RP,RPname), Y. hack so we can use reg-protein Y. 
asserta(genex_clause(product(R,RP),[])), Y. in mutation rules Y. 
append(Oname,"_terminator",Tname), 
name(T,Tname), 
asserta(genex_clause(terminator(T), [])), 
print(O), 
print(' structural genes: '), 
print('enter one at a time, 6prime - 3prime order'), 
nl, 
print(' -- end with "done"'), 
nl, 
make_struct_genes(O), 
print('enter· sequence of '),print(O),print(' or []'), 
nl,read(Seq), 
asserta(genex_clause(sequence(O,Seq),[])). 

make_st.ruct_genes (0) : - print ('structural gene:'), nl, 
read(X), make_struct_gene(O,X). 
make_struct_gene(O,'done'). 
make_struct_gene(O,X) !-

asserta(genex_clause(structural_gene(O ,X), [] )) , 
print('what is product of '),print(X),nl, 
read(Y), 
asserta(genex_clause(product(X,Y), [])), 
print('what is purpose of '),print(t), 
print(': (synthesis, digestion, or other)'),nl, 
read(P), 
asserta(genex_clause(purpose(Y,P), [])), 
make_purpose(Y,P), 
make_struct_genes(O). 

make_purpose(Y,'synthesis') ·- print('what does '),print(Y), 
print(' synthesize?'),nl, 
read(End_pr:od), 
asserta(genex_clause(end_product(Y,End_prod))). 
make_purpose(Y, 'digestion') ·- print('what does '),pririt(Y), 
priat(' digest?'),nl, 
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read(Substrate), 
asserta(genex_clause(substrate(Y,Substrate))). 
make_purpose(Y, 'other'). 
get_mutation_sites([].[]). 
get_mutation_sites(Sites, [Site!Rest]) ·-
print('mutation in '),print(Site),print(' (yes or no) ?'), 
nl,read(Ans), 
analyse(Ans,Site,Add), 
get_mutation_sites(Rest_of_sites, Rest), 
append(Add,Rest_of_sites,Sites). 

analyse('yes' ,Site,[Site]) ·- genex_clause(X,[]), 
functor(X,Site,_), 
arg(t,X,Op_site), 
asserta(genex_clause(mutated(Op_site),[])). 
analyse('no' ,Site,[]). 
analyse('deletion',promoter,[]) ·- retract(genex_clause(promoter(X),[])). 
analyse(' deletion', operator, [l) : - retract (genex_clause(operator(X), [])). 
analyse('deletion',reg_gene,[]) ·- retract(genex_clause(reg_gene(X),[])). 
analyse('deletion',struct_genes, []) :-

. retract(genex_clause(struct_genes(X),[])). 

append([], Y, Y). 
append([A!X] ,Y,[AIZ]) :- append(X,Y,Z). 

Y. the following program makes a list of Uncertain_vars (arg3) for the 
Y. 
Y. operon 0 using the list of mutated regions of the operon (arg2) Y. 

set_uncertain_vars(_, [] ,[]). 
set_uncertain_vars(O, [Site!Rest], Uncertain_vars) ·
same(Site,promoter) -> 
(genex_clause(promoter(P), []), 
set_uncertain_vars(O,Re~t,Rest_of_vars), 

append([complementary_conform(rna_pol,P)], 
Rest_ of _vars, 
Uncertain_vars)); 

same(Site,operator) -> 
(genex_clause(operator(Op),[]), 
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genex_clause(promoter(P),[]), 
genex_clause(reg_gene(RG),[]), 
genex_clause(product(RG,RP), (]), 
set_uncertain_vars(O,Rest,Rest_of_vars), 

append([complementary_conform(RP,overlap_region(P,Op)). 
mutated(overlap_region(P,Op)). 
mutated(operator_specific(Op))], 

Rest_ of _vars, 
Uncertain_ vars)); 

same(Site,struct_genes) -> true; 
same(Site,reg_gene) -> 
(genex_clause(reg_gene(RG),[l), 
genex_clause(product(RG,RP),[]), 
genex_clause(operator(Op), (]), 
genex_clause(promoter(P),[]), 
set_uncertain_vars(O,Rest,Rest_of_vars), 
append([complementary_conform(RP,overlap_region(P,Op)), 
complementary_conform(X,smbs(RP)), 
part_of(RP,smbs(RP)), 
mutated(RP), 
active_smmol_conform(RP)], 
Rest_of_vars, 
Uncertain_vars)); 

· same(Site,unknown) -> Y. if mutation site is not known Y. 
(genex_clause(promoter(P), []), 
genex_clause(operator(Op),[]), 
genex_clause(reg_gene(RG), []), 
genex_clause(product(RG,RP),[]), 
genex_clause(structural_gene(O,X), []), 
set_uncertain_vars(O,Rest,Rest_of_vars), 
append([mutated(P),mutated(Op),mutated(RG),mutated(X), 

complementary_conform(rna_pol,P), 
complementary_conform(RP,overlap_region(P,Op)). 
complementary_conform(Smmol,s~bs(RP)). 
mutated(overlap_region(P,Op)), 
mutated(operator_specific(Op)), 

active_smmol_conform(RP)], 
Rest_ of _vars, 
Uncertain_vars)). 
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any_other_info(O) :- read(X), do_othor_info(O,X). 

do_other_info(D, 'done'). 

do_ other _info (0, Info) : - assert a (genex_ clause (Info, [])) , any _other _info (0) . 

CENEX also uses a Prolog set manipulation utility package written by Lawrence 
Byrd and R.A. O'Kcefc. 

l l fi 


